

conference

proceedings

Proceedings of the 20th U
SEN

IX Sym
posium

 on N
etw

orked System
s Design and Im

plem
entation (N

SDI ’23)	
Boston , M

A
, USA 

April 17–19, 2023

Sponsored by

In cooperation with
ACM SIGCOMM and ACM SIGOPS

ISBN 978-1-939133-33-5

20th USENIX Symposium on
Networked Systems Design
and Implementation (NSDI ’23)

Boston, MA, USA
April 17–19, 2023

USENIX Supporters

USENIX Patrons
Amazon • Futurewei • Google • Meta

USENIX Benefactors
Bloomberg • NetApp

USENIX Partner
Thinkst Canary • Two Sigma

Open Access Supporter
Google

Open Access Publishing Partner
PeerJ

NSDI ’23 Sponsors

Open Access Sponsor

Platinum Sponsor

Silver Sponsors

Bronze Sponsors

Gold Sponsors

USENIX Association

April 17–19, 2023
Boston, MA, USA

Proceedings of the 20th USENIX Symposium
on Networked Systems Design and

Implementation (NSDI ’23)

© 2023 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-33-5

Conference Organizers

Program Committee
Sangeetha Abdu-Jyothi, University of California, Irvine, and

VMware Research
Fadel Adib, Massachusetts Institute of Technology
Rachit Agarwal, Cornell University
Aditya Akella, The University of Texas at Austin
Deniz Altinbuken, Google
Ganesh Ananthanarayanan, Microsoft Research
Maria Apostolaki, Princeton University
Katerina Argyraki, EPFL
Behnaz Arzani, Microsoft Research
Adam Belay, Massachusetts Institute of Technology
Ken Birman, Cornell University
Matthew Caesar, University of Illinois at Urbana–Champaign
Marco Canini, KAUST
Ranveer Chandra, Microsoft Research
Ang Chen, Rice University
Paolo Costa, Microsoft Research
Murat Demirbas, Amazon
Nandita Dukkipati, Google
Ramakrishnan Durairajan, University of Oregon
Giuila Fanti, Carnegie Mellon University
Anja Feldmann, Max Planck Institute for Informatics
Bryan Ford, EPFL
Yashar Ganjali, University of Toronto, Huawei Canada
Mojgan Ghasemi, Google
Yasaman Ghasempour, Princeton University
Soudeh Ghorbani, Johns Hopkins University
Shyam Gollakota, University of Washington
Prateesh Goyal, Microsoft Research
Arpit Gupta, University of California, Santa Barbara
Indranil Gupta, University of Illinois at Urbana–Champaign
Hamed Haddadi, Imperial College London
Andreas Haeberlen, University of Pennsylvania
Dongsu Han, Korea Advanced Institute of Science and

Technology (KAIST)
Haitham Hassanieh, University of Illinois at Urbana–Champaign
Michio Honda, University of Edinburgh
Jon Howell, VMware Research
Wenjun Hu, Yale University
Rebecca Isaacs
Anand Iyer, Microsoft Research
Vikram Iyer, University of Washington
Zhihao Jia, Carnegie Mellon University
Junchen Jiang, University of Chicago
Xin Jin, Peking University
Srikanth Kandula, Microsoft Research
Sachin Katti, Stanford University
Anurag Khandelwal, Yale University
Song Min Kim, Korea Advanced Institute of Science and

Technology (KAIST)
Marios Kogias, Imperial College London

Dejan Kostic, KTH Royal Institute of Technology
Gautam Kumar, Google
Jeongkeun Lee, Intel
Alan (Zaoxing) Liu, Boston University
Grace Liu, NYU Shanghai
Jay Lorch, Microsoft Research
Harsha Madhyastha, University of Michigan
Morley Z. Mao, University of Michigan
James Mickens, Harvard University
Radhika Mittal, University of Illinois at Urbana–Champaign
Jayashree Mohan, Microsoft Research India
Iqbal Mohomed, Samsung AI Center Toronto
Shuai Mu, Stony Brook University
Rajalakshmi Nandakumar, Cornell Tech
Srinivas Narayana, Rutgers University
Ravi Netravali, Princeton University
Amy Ousterhout, University of California, Berkeley
Aurojit Panda, New York University
Peter Pietzuch, Imperial College London
Sanjay Rao, Purdue University
Jen Rexford, Princeton University
Nirupam Roy, University of Maryland, College Park
Ahmed Saeed, Georgia Institute of Technology
Raja Sambasivan, Tufts University
Stefan Schmid, Technische Universität Berlin
Aaron Schulman, University of California, San Diego
Siddhartha Sen, Microsoft Research
Srinivasan Seshan, Carnegie Mellon University
Muhammad Shahbaz, Purdue University
Rachee Singh, Microsoft Research
Dimitrios Skarlatis, Carnegie Mellon University
Alex Snoeren, University of California, San Diego
Brent Stephens, University of Utah
Mina Tahmasbi, Cornell University
Amy Tai, Google
Doug Terry, Amazon
Amin Vahdat, Google
Hakim Weatherspoon, Cornell University
Michael Wei, VMware Research
John Wilkes, Google
Keith Winstein, Stanford University
Yiting Xia, Max Planck Institute for Informatics
Tianyin Xu, University of Illinois at Urbana–Champaign
Neeraja Yadwadkar, The University of Texas at Austin
Francis Yan, Microsoft Research
Ellen Zegura, Georgia Institute of Technology
Ennan Zhai, Alibaba
Ying Zhang, Meta
Ben Zhao, University of Chicago
Zhizhen Zhong, Massachusetts Institute of Technology
Danyang Zhuo, Duke University

External Reviewers

Vamsi Addanki
Anirudh Badam
Sujata Banerjee
Michael Barrow
Theophilus Benson
Jeremias Blendin
Vijay Chidambaram
Asaf Cidon
Angela Demke Brown
Fahad Dogar
Rodrigo Fonseca
Phillipa Gill

Brighten Godfrey
Ramesh Govindan
Kurtis Heimerl
Kyle Jamieson
Anuj Kalia
Ana Klimovic
Ana Klimovic
Morten Konggaard Schou
Yanfang Le
Christos Liaskos
Jonathan Mace
Georgios Nikolaidis

KyoungSoo Park
Chunyi Peng
Chunyi Peng
Ben Pfaff
George Porter
Costin Raiciu
Robert Ricci
Amedeo Sapio
Michael Schapira
Malte Schwarzkopf
Marco Serafini
Elahe Soltanaghai

Laurent Vanbever
Deepak Vasisht
Shivaram Venkataraman
Ymir Vigfusson
Jia Wang
Walter Willinger
Michelle X. Yeo
Yiying Zhang
Lin Zhong

Poster Session Co-Chairs
Soudeh Ghorbani, Johns Hopkins University
Francis Yan, Microsoft Research

Test of Time Awards Committee
Aditya Akella, University of Wisconsin–Madison
Sujata Banerjee, VMware Research
Ranjita Bhagwan, Microsoft Research India
Jon Howell, VMware Research
James Mickens, Harvard University
Amar Phanishayee, Microsoft Research
George Porter, University of California, San Diego
Vyas Sekar, Carnegie Mellon University
Minlan Yu, Harvard University

Steering Committee
Aditya Akella, University of Wisconsin–Madison
Sujata Banerjee, VMware Research
Ranjita Bhagwan, Microsoft Research India
Casey Henderson, USENIX Association
Jon Howell, VMware Research
Arvind Krishnamurthy, University of Washington
Jay Lorch, Microsoft Research
James Mickens, Harvard University
Amar Phanishayee, Microsoft Research
George Porter, University of California, San Diego
Vyas Sekar, Carnegie Mellon University
Renata Teixeira, Netflix

Message from the
NSDI ’23 Program Co-Chairs

Welcome to NSDI ’23! This year marks the 20th anniversary of the NSDI conference. In these two decades, networked
systems have transformed the way that we live, work, and interact with one another. NSDI papers have spearheaded this
revolution, providing many of the key technological advances behind industries such as Cloud Computing, Big Data,
Software-Defined Networks, and more. With this latest iteration of NSDI, we hope to extend our community’s track record
of enabling and accelerating seismic shifts in computing via foundational research.

NSDI ’23 received 560 submissions across two deadlines (272 in the Spring and 288 in the Fall), an increase of 40% from
NSDI ’22. To handle this record number of submissions, we assembled a Program Committee of 99 experts from academia
and industry. The reviewing process included two rounds of double-blind review, an online discussion phase, and a two-day
online PC meeting for each of the two deadlines. A total of 96 papers were accepted, resulting in an acceptance rate of 17%.

We thank our Program Committee members, who wrote over 1.6 million words of thoughtful, high-quality feedback across
2172 reviews, and discussed the papers extensively online and during the PC meetings. Many thanks to our poster chairs,
Francis Yan and Soudeh Ghorbani, for bringing back the poster session to NSDI after a three-year hiatus. We thank our
stand-in conflict PC chairs: Ben Y. Zhao, Siddhartha Sen, Indranil Gupta, and Katerina Argyraki. We would also like to
thank Ellen Zegura, Rebecca Isaacs, and Matthew Caesar for helping us select the Best Paper award winners this year; and
Aditya Akella, Sujata Banerjee, Ranjita Bhagwan, Jon Howell, James Mickens, Amar Phanishayee, George Porter, Vyas
Sekar, and Minlan Yu for serving on the Test-of-Time awards committee. We are also grateful to Amar Phanishayee, Vyas
Sekar, Arvind Krishnamurthy, Jay Lorch, Aditya Akella, and the rest of the NSDI Steering Committee for their advice
and insight from running past NSDI instances. We would like to thank Sudarsanan Rajasekaran of MIT, who helped us
immensely with the logistics of the PC meetings. We also thank Casey Henderson, Jasmine Murcia, Ginny Staubach, Jessica
Kim, Sarah TerHune, Heidi Sherwood, Liz Markel, Camille Mulligan, Cathy Bergman, Nicole Santiago, Olivia Vernetti,
Arnold Gatilao, Mo Moreno, and the rest of the USENIX staff for all their hard work behind the scenes. Finally, we would
like to thank all the authors for submitting their best work to NSDI.

We look forward to seeing you all in Boston for the 20th iteration of NSDI!

Mahesh Balakrishnan, Confluent
Manya Ghobadi, Massachusetts Institute of Technology
NSDI ’23 Program Co-Chairs

20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’23)

April 17–19, 2023
Boston, MA, USA

Monday, April 17
RDMA
SRNIC: A Scalable Architecture for RDMA NICs. . 1
Zilong Wang, Hong Kong University of Science and Technology; Layong Luo and Qingsong Ning, ByteDance; Chaoliang
Zeng, Wenxue Li, and Xinchen Wan, Hong Kong University of Science and Technology; Peng Xie, Tao Feng, Ke Cheng,
Xiongfei Geng, Tianhao Wang, Weicheng Ling, Kejia Huo, Pingbo An, Kui Ji, Shideng Zhang, Bin Xu, Ruiqing Feng, and
Tao Ding, ByteDance; Kai Chen, Hong Kong University of Science and Technology; Chuanxiong Guo

Hostping: Diagnosing Intra-host Network Bottlenecks in RDMA Servers. . 15
Kefei Liu, BUPT; Zhuo Jiang, ByteDance Inc.; Jiao Zhang, BUPT and Purple Mountain Laboratories; Haoran Wei,
BUPT and ByteDance Inc.; Xiaolong Zhong, BUPT; Lizhuang Tan, ByteDance Inc.; Tian Pan and Tao Huang, BUPT and
Purple Mountain Laboratories

Understanding RDMA Microarchitecture Resources for Performance Isolation. . 31
Xinhao Kong and Jingrong Chen, Duke University; Wei Bai, Microsoft; Yechen Xu, Shanghai Jiao Tong University;
Mahmoud Elhaddad, Shachar Raindel, and Jitendra Padhye, Microsoft; Alvin R. Lebeck and Danyang Zhuo,
Duke University

Empowering Azure Storage with RDMA. . 49
Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir Bahl, Ameya Bhagat, Gowri Bhaskara,
Tanya Brokhman, Lei Cao, Ahmad Cheema, Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek Ette, Igal Figlin,
Daniel Firestone, Mathew George, Ilya German, Lakhmeet Ghai, Eric Green, Albert Greenberg, Manish Gupta, Randy
Haagens, Matthew Hendel, Ridwan Howlader, Neetha John, Julia Johnstone, Tom Jolly, Greg Kramer, David Kruse,
Ankit Kumar, Erica Lan, Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen Liu, Guohan Lu, Yuemin Lu, Xiakun Lu,
Vadim Makhervaks, Ulad Malashanka, David A. Maltz, Ilias Marinos, Rohan Mehta, Sharda Murthi, Anup Namdhari,
Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas Phillips, Adrian Power, Suraj Puri, Shachar Raindel, Jordan Rhee,
Anthony Russo, Maneesh Sah, Ali Sheriff, Chris Sparacino, Ashutosh Srivastava, Weixiang Sun, Nick Swanson, Fuhou
Tian, Lukasz Tomczyk, Vamsi Vadlamuri, Alec Wolman, Ying Xie, Joyce Yom, Lihua Yuan, Yanzhao Zhang, and
Brian Zill, Microsoft

Learning with GPUs
Transparent GPU Sharing in Container Clouds for Deep Learning Workloads. . 69
Bingyang Wu and Zili Zhang, Peking University; Zhihao Bai, Johns Hopkins University; Xuanzhe Liu and Xin Jin,
Peking University

ARK: GPU-driven Code Execution for Distributed Deep Learning. . 87
Changho Hwang, KAIST, Microsoft Research; KyoungSoo Park, KAIST; Ran Shu, Xinyuan Qu, Peng Cheng, and
Yongqiang Xiong, Microsoft Research

BGL: GPU-Efficient GNN Training by Optimizing Graph Data I/O and Preprocessing . . 103
Tianfeng Liu, Tsinghua University, Zhongguancun Laboratory, ByteDance; Yangrui Chen, The University of Hong
Kong, ByteDance; Dan Li, Tsinghua University, Zhongguancun Laboratory; Chuan Wu, The University of Hong Kong;
Yibo Zhu, Jun He, and Yanghua Peng, ByteDance; Hongzheng Chen, ByteDance, Cornell University; Hongzhi Chen and
Chuanxiong Guo, ByteDance

Zeus: Understanding and Optimizing GPU Energy Consumption of DNN Training. . 119
Jie You, Jae-Won Chung, and Mosharaf Chowdhury, University of Michigan

RPC and Remote Memory
Remote Procedure Call as a Managed System Service. . 141
Jingrong Chen, Yongji Wu, and Shihan Lin, Duke University; Yechen Xu, Shanghai Jiao Tong University; Xinhao Kong,
Duke University; Thomas Anderson, University of Washington; Matthew Lentz, Xiaowei Yang, and Danyang Zhuo,
Duke University

Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory . . 161
Chenxi Wang, Yifan Qiao, Haoran Ma, and Shi Liu, UCLA; Yiying Zhang, UCSD; Wenguang Chen, Tsinghua University;
Ravi Netravali, Princeton University; Miryung Kim and Guoqing Harry Xu, UCLA

Hermit: Low-Latency, High-Throughput, and Transparent Remote Memory via Feedback-Directed Asynchrony. . . 181
Yifan Qiao and Chenxi Wang, UCLA; Zhenyuan Ruan and Adam Belay, MIT CSAIL; Qingda Lu, Alibaba Group;
Yiying Zhang, UCSD; Miryung Kim and Guoqing Harry Xu, UCLA

NetRPC: Enabling In-Network Computation in Remote Procedure Calls. . 199
Bohan Zhao, Tsinghua University; Wenfei Wu, Peking University; Wei Xu, Tsinghua Univesity

Congestion Control
Bolt: Sub-RTT Congestion Control for Ultra-Low Latency. . 219
Serhat Arslan, Stanford University; Yuliang Li, Gautam Kumar, and Nandita Dukkipati, Google LLC

Understanding the impact of host networking elements on traffic bursts . . 237
Erfan Sharafzadeh and Sepehr Abdous, Johns Hopkins University; Soudeh Ghorbani, Johns Hopkins University and Meta

Poseidon: Efficient, Robust, and Practical Datacenter CC via Deployable INT . . 255
Weitao Wang, Google LLC and Rice University; Masoud Moshref, Yuliang Li, and Gautam Kumar, Google LLC;
T. S. Eugene Ng, Rice University; Neal Cardwell and Nandita Dukkipati, Google LLC

Rearchitecting the TCP Stack for I/O-Offloaded Content Delivery. . 275
Taehyun Kim and Deondre Martin Ng, KAIST; Junzhi Gong, Harvard University; Youngjin Kwon, KAIST; Minlan Yu,
Harvard University; KyoungSoo Park, KAIST

Distributed Systems
Hydra: Serialization-Free Network Ordering for Strongly Consistent Distributed Applications. 293
Inho Choi, National University of Singapore; Ellis Michael, University of Washington; Yunfan Li, National University
of Singapore; Dan R. K. Ports, Microsoft Research; Jialin Li, National University of Singapore

The Benefit of Hindsight: Tracing Edge-Cases in Distributed Systems. . 321
Lei Zhang, Emory University and Princeton University; Zhiqiang Xie and Vaastav Anand, Max Planck Institute for
Software Systems; Ymir Vigfusson, Emory University; Jonathan Mace, Max Planck Institute for Software Systems

DiSh: Dynamic Shell-Script Distribution. . 341
Tammam Mustafa, MIT; Konstantinos Kallas, University of Pennsylvania; Pratyush Das, Purdue University;
Nikos Vasilakis, Brown University

Waverunner: An Elegant Approach to Hardware Acceleration of State Machine Replication. 357
Mohammadreza Alimadadi and Hieu Mai, Stony Brook University; Shenghsun Cho, Microsoft; Michael Ferdman,
Peter Milder, and Shuai Mu, Stony Brook University

Wireless
LeakyScatter: A Frequency-Agile Directional Backscatter Network Above 100 GHz. . 375
Atsutse Kludze and Yasaman Ghasempour, Princeton University

RF-Bouncer: A Programmable Dual-band Metasurface for Sub-6 Wireless Networks. . 389
Xinyi Li, Chao Feng, Xiaojing Wang, and Yangfan Zhang, Northwest University; Yaxiong Xie, University at Buffalo SUNY;
Xiaojiang Chen, Northwest University

Scalable Distributed Massive MIMO Baseband Processing . . 405
Junzhi Gong, Harvard University; Anuj Kalia, Microsoft; Minlan Yu, Harvard University

DChannel: Accelerating Mobile Applications With Parallel High-bandwidth and Low-latency Channels 419
William Sentosa, University of Illinois Urbana-Champaign; Balakrishnan Chandrasekaran, Vrije Universiteit Amsterdam;
P. Brighten Godfrey, University of Illinois Urbana-Champaign and VMware; Haitham Hassanieh, EPFL; Bruce Maggs,
Duke University and Emerald Innovations

Cloud
SkyPilot: An Intercloud Broker for Sky Computing. . 437
Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil Bhardwaj, Woosuk Kwon, Siyuan Zhuang,
Frank Sifei Luan, and Gautam Mittal, UC Berkeley; Scott Shenker, UC Berkeley and ICSI; Ion Stoica, UC Berkeley

Unlocking unallocated cloud capacity for long, uninterruptible workloads. . 457
Anup Agarwal, Carnegie Mellon University; Shadi Noghabi, Microsoft Research; Íñigo Goiri, Azure Systems Research;
Srinivasan Seshan, Carnegie Mellon University; Anirudh Badam, Microsoft Research

Invisinets: Removing Networking from Cloud Networks. . 479
Sarah McClure and Zeke Medley, UC Berkeley; Deepak Bansal and Karthick Jayaraman, Microsoft; Ashok Narayanan,
Google; Jitendra Padhye, Microsoft; Sylvia Ratnasamy, UC Berkeley and Google; Anees Shaikh, Google; Rishabh Tewari,
Microsoft

Bamboo: Making Preemptible Instances Resilient for Affordable Training of Large DNNs. . 497
John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, and Yifan Qiao, UCLA; Zhihao Jia, CMU; Minjia Zhang, Microsoft
Research; Ravi Netravali, Princeton University; Guoqing Harry Xu, UCLA

Internet-Scale Networks
OneWAN is better than two: Unifying a split WAN architecture . . 515
Umesh Krishnaswamy, Microsoft; Rachee Singh, Microsoft and Cornell University; Paul Mattes, Paul-Andre
C Bissonnette, Nikolaj Bjørner, Zahira Nasrin, Sonal Kothari, Prabhakar Reddy, John Abeln, Srikanth Kandula,
Himanshu Raj, Luis Irun-Briz, Jamie Gaudette, and Erica Lan, Microsoft

RHINE: Robust and High-performance Internet Naming with E2E Authenticity. . 531
Huayi Duan, Rubén Fischer, Jie Lou, Si Liu, David Basin, and Adrian Perrig, ETH Zürich

Enabling Users to Control their Internet. . 555
Ammar Tahir and Radhika Mittal, University of Illinois at Urbana-Champaign

xBGP: Faster Innovation in Routing Protocols. . 575
Thomas Wirtgen, Tom Rousseaux, Quentin De Coninck, and Nicolas Rybowski, ICTEAM, UCLouvain; Randy Bush,
Internet Initiative Japan & Arrcus, Inc; Laurent Vanbever, NSG, ETH Zürich; Axel Legay and Olivier Bonaventure,
ICTEAM, UCLouvain

Tuesday, April 18
Synthesis and Formal Methods
TACCL: Guiding Collective Algorithm Synthesis using Communication Sketches . . 593
Aashaka Shah, University of Texas at Austin; Vijay Chidambaram, University of Texas at Austin and VMware Research;
Meghan Cowan, Saeed Maleki, Madan Musuvathi, Todd Mytkowicz, Jacob Nelson, and Olli Saarikivi, Microsoft Research;
Rachee Singh, Microsoft and Cornell University

Synthesizing Runtime Programmable Switch Updates . . 613
Yiming Qiu, Rice University; Ryan Beckett, Microsoft; Ang Chen, Rice University

Practical Intent-driven Routing Configuration Synthesis . . 629
Sivaramakrishnan Ramanathan, Ying Zhang, Mohab Gawish, Yogesh Mundada, Zhaodong Wang, Sangki Yun,
Eric Lippert, and Walid Taha, Meta; Minlan Yu, Harvard University; Jelena Mirkovic, University of Southern California
Information Sciences Institute

Formal Methods for Network Performance Analysis. . 645
Mina Tahmasbi Arashloo, University of Waterloo; Ryan Beckett, Microsoft Research; Rachit Agarwal, Cornell University

Data Centers
Flattened Clos: Designing High-performance Deadlock-free Expander Data Center Networks Using
Graph Contraction. . 663
Shizhen Zhao, Qizhou Zhang, Peirui Cao, Xiao Zhang, and Xinbing Wang, Shanghai Jiao Tong University;
Chenghu Zhou, Shanghai Jiao Tong University and Chinese Academy of Sciences

Scalable Tail Latency Estimation for Data Center Networks. . 685
Kevin Zhao, University of Washington; Prateesh Goyal, Microsoft Research; Mohammad Alizadeh, MIT CSAIL;
Thomas E. Anderson, University of Washington

Shockwave: Fair and Efficient Cluster Scheduling for Dynamic Adaptation in Machine Learning. 703
Pengfei Zheng and Rui Pan, University of Wisconsin-Madison; Tarannum Khan, The University of Texas at Austin;
Shivaram Venkataraman, University of Wisconsin-Madison; Aditya Akella, The University of Texas at Austin

Protego: Overload Control for Applications with Unpredictable Lock Contention. . 725
Inho Cho, MIT CSAIL; Ahmed Saeed, Georgia Tech; Seo Jin Park, Mohammad Alizadeh, and Adam Belay, MIT CSAIL

Systems for Learning
TopoOpt: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training Jobs. 739
Weiyang Wang, Moein Khazraee, Zhizhen Zhong, and Manya Ghobadi, Massachusetts Institute of Technology;
Zhihao Jia, Meta and CMU; Dheevatsa Mudigere and Ying Zhang, Meta; Anthony Kewitsch, Telescent

ModelKeeper: Accelerating DNN Training via Automated Training Warmup . . 769
Fan Lai, Yinwei Dai, Harsha V. Madhyastha, and Mosharaf Chowdhury, University of Michigan

Shepherd: Serving DNNs in the Wild. . 787
Hong Zhang, University of Waterloo; Yupeng Tang and Anurag Khandelwal, Yale University; Ion Stoica, UC Berkeley

Better Together: Jointly Optimizing ML Collective Scheduling and Execution Planning using Syndicate. 809
Kshiteej Mahajan, University of Wisconsin - Madison; Ching-Hsiang Chu and Srinivas Sridharan, Facebook;
Aditya Akella, UT Austin

Privacy and Security
Addax: A fast, private, and accountable ad exchange infrastructure. . 825
Ke Zhong, Yiping Ma, and Yifeng Mao, University of Pennsylvania; Sebastian Angel, University of Pennsylvania &
Microsoft Research

SPEEDEX: A Scalable, Parallelizable, and Economically Efficient Decentralized EXchange 849
Geoffrey Ramseyer, Ashish Goel, and David Mazières, Stanford University

Boomerang: Metadata-Private Messaging under Hardware Trust . . 877
Peipei Jiang, Wuhan University and City University of Hong Kong; Qian Wang and Jianhao Cheng, Wuhan University;
Cong Wang, City University of Hong Kong; Lei Xu, Nanjing University of Science and Technology; Xinyu Wang,
Tencent Inc.; Yihao Wu and Xiaoyuan Li, Wuhan University; Kui Ren, Zhejiang University

Hamilton: A High-Performance Transaction Processor for Central Bank Digital Currencies. 901
James Lovejoy, Federal Reserve Bank of Boston; Madars Virza and Cory Fields, MIT Media Lab; Kevin Karwaski and
Anders Brownworth, Federal Reserve Bank of Boston; Neha Narula, MIT Media Lab

Video
RECL: Responsive Resource-Efficient Continuous Learning for Video Analytics. . 917
Mehrdad Khani, MIT CSAIL and Microsoft; Ganesh Ananthanarayanan and Kevin Hsieh, Microsoft; Junchen Jiang,
University of Chicago; Ravi Netravali, Princeton University; Yuanchao Shu, Zhejiang University; Mohammad Alizadeh,
MIT CSAIL; Victor Bahl, Microsoft

Boggart: Towards General-Purpose Acceleration of Retrospective Video Analytics . . 933
Neil Agarwal and Ravi Netravali, Princeton University

Tambur: Efficient loss recovery for videoconferencing via streaming codes. . 953
Michael Rudow, Carnegie Mellon University; Francis Y. Yan, Microsoft Research; Abhishek Kumar, Carnegie Mellon
University; Ganesh Ananthanarayanan and Martin Ellis, Microsoft; K.V. Rashmi, Carnegie Mellon University

Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge. . 973
Arthi Padmanabhan, UCLA; Neil Agarwal, Princeton University; Anand Iyer and Ganesh Ananthanarayanan, Microsoft
Research; Yuanchao Shu, Zhejiang University; Nikolaos Karianakis, Microsoft Research; Guoqing Harry Xu, UCLA;
Ravi Netravali, Princeton University

Data
Fast, Approximate Vector Queries on Very Large Unstructured Datasets . . 995
Zili Zhang and Chao Jin, Peking University; Linpeng Tang, Moqi; Xuanzhe Liu and Xin Jin, Peking University

Arya: Arbitrary Graph Pattern Mining with Decomposition-based Sampling. . 1013
Zeying Zhu, Boston University; Kan Wu, University of Wisconsin-Madison; Zaoxing Liu, Boston University

Secrecy: Secure collaborative analytics in untrusted clouds. . 1031
John Liagouris, Vasiliki Kalavri, Muhammad Faisal, and Mayank Varia, Boston University

FLASH: Towards a High-performance Hardware Acceleration Architecture for Cross-silo Federated Learning. . 1057
Junxue Zhang and Xiaodian Cheng, iSINGLab at Hong Kong University of Science and Technology and Clustar;
Wei Wang, Clustar; Liu Yang, iSINGLab at Hong Kong University of Science and Technology and Clustar;
Jinbin Hu and Kai Chen, iSINGLab at Hong Kong University of Science and Technology

Making Systems Learn
On Modular Learning of Distributed Systems for Predicting End-to-End Latency. . 1081
Chieh-Jan Mike Liang, Microsoft Research; Zilin Fang, Carnegie Mellon University; Yuqing Xie, Tsinghua University;
Fan Yang, Microsoft Research; Zhao Lucis Li, University of Science and Technology of China; Li Lyna Zhang,
Mao Yang, and Lidong Zhou, Microsoft Research

SelfTune: Tuning Cluster Managers. . 1097
Ajaykrishna Karthikeyan and Nagarajan Natarajan, Microsoft Research; Gagan Somashekar, Stony Brook University;
Lei Zhao, Microsoft; Ranjita Bhagwan, Microsoft Research; Rodrigo Fonseca, Tatiana Racheva, and Yogesh Bansal,
Microsoft

CausalSim: A Causal Framework for Unbiased Trace-Driven Simulation . . 1115
Abdullah Alomar, Pouya Hamadanian, Arash Nasr-Esfahany, Anish Agarwal, Mohammad Alizadeh, and Devavrat Shah, MIT

HALP: Heuristic Aided Learned Preference Eviction Policy for YouTube Content Delivery Network 1149
Zhenyu Song, Princeton University; Kevin Chen, Nikhil Sarda, Deniz Altınbüken, Eugene Brevdo, Jimmy Coleman,
Xiao Ju, Pawel Jurczyk, Richard Schooler, and Ramki Gummadi, Google

IoT Networks
OpenLoRa: Validating LoRa Implementations through an Extensible and Open-sourced Framework 1165
Manan Mishra, Daniel Koch, Muhammad Osama Shahid, and Bhuvana Krishnaswamy, University of Wisconsin-Madison;
Krishna Chintalapudi, Microsoft Research; Suman Banerjee, University of Wisconsin-Madison

VeCare: Statistical Acoustic Sensing for Automotive In-Cabin Monitoring. . 1185
Yi Zhang, The University of Hong Kong and Tsinghua University; Weiying Hou, The University of Hong Kong;
Zheng Yang, Tsinghua University; Chenshu Wu, The University of Hong Kong

SlimWiFi: Ultra-Low-Power IoT Radio Architecture Enabled by Asymmetric Communication. 1201
Renjie Zhao, University of California San Diego; Kejia Wang, Baylor University; Kai Zheng and Xinyu Zhang,
University of California San Diego; Vincent Leung, Baylor University

SLNet: A Spectrogram Learning Neural Network for Deep Wireless Sensing. . 1221
Zheng Yang and Yi Zhang, Tsinghua University; Kun Qian, University of California San Diego; Chenshu Wu,
The University of Hong Kong

Wednesday, April 19
Programming the Network
A High-Speed Stateful Packet Processing Approach for Tbps Programmable Switches. . 1237
Mariano Scazzariello and Tommaso Caiazzi, KTH Royal Institute of Technology and Roma Tre University;
Hamid Ghasemirahni, KTH Royal Institute of Technology; Tom Barbette, UCLouvain; Dejan Kostić and
Marco Chiesa, KTH Royal Institute of Technology

ExoPlane: An Operating System for On-Rack Switch Resource Augmentation. . 1257
Daehyeok Kim, Microsoft and University of Texas at Austin; Vyas Sekar and Srinivasan Seshan, Carnegie Mellon University

Sketchovsky: Enabling Ensembles of Sketches on Programmable Switches . . 1273
Hun Namkung, Carnegie Mellon University; Zaoxing Liu, Boston University; Daehyeok Kim, Microsoft Research;
Vyas Sekar and Peter Steenkiste, Carnegie Mellon University

RingLeader: Efficiently Offloading Intra-Server Orchestration to NICs . . 1293
Jiaxin Lin, Adney Cardoza, Tarannum Khan, and Yeonju Ro, UT Austin; Brent E. Stephens, University of Utah;
Hassan Wassel, Google; Aditya Akella, UT Austin

Alternative Networks
StarryNet: Empowering Researchers to Evaluate Futuristic Integrated Space and Terrestrial Networks. 1309
Zeqi Lai and Hewu Li, Tsinghua University and Zhongguancun Laboratory; Yangtao Deng, Tsinghua University;
Qian Wu, Jun Liu, and Yuanjie Li, Tsinghua University and Zhongguancun Laboratory; Jihao Li, Lixin Liu, and
Weisen Liu, Tsinghua University; Jianping Wu, Tsinghua University and Zhongguancun Laboratory

Polycorn: Data-driven Cross-layer Multipath Networking for High-speed Railway through
Composable Schedulerlets. . 1325
Yunzhe Ni, Peking University; Feng Qian, University of Minnesota – Twin Cities; Taide Liu, Yihua Cheng, Zhiyao Ma,
and Jing Wang, Peking University; Zhongfeng Wang, China Railway Gecent Technology Co., Ltd; Gang Huang and
Xuanzhe Liu, Key Laboratory of High Confidence Software Technologies, Ministry of Education, Peking University;
Chenren Xu, Zhongguancun Laboratory and Key Laboratory of High Confidence Software Technologies, Ministry of
Education, Peking University

Augmenting Augmented Reality with Non-Line-of-Sight Perception. . 1341
Tara Boroushaki, Maisy Lam, and Laura Dodds, Massachusetts Institute of Technology; Aline Eid, Massachusetts
Institute of Technology and University of Michigan; Fadel Adib, Massachusetts Institute of Technology

Acoustic Sensing and Communication Using Metasurface . . 1359
Yongzhao Zhang, Yezhou Wang, and Lanqing Yang, Shanghai Jiao Tong University; Mei Wang, UT Austin; Yi-Chao Chen,
Shanghai Jiao Tong University and Microsoft Research Asia; Lili Qiu, UT Austin and Microsoft Research Asia;
Yihong Liu, University of Glasgow; Guangtao Xue and Jiadi Yu, Shanghai Jiao Tong University

Performance
Skyplane: Optimizing Transfer Cost and Throughput Using Cloud-Aware Overlays . . 1375
Paras Jain, Sam Kumar, Sarah Wooders, Shishir G. Patil, Joseph E. Gonzalez, and Ion Stoica, University of California,
Berkeley

Electrode: Accelerating Distributed Protocols with eBPF. . 1391
Yang Zhou, Harvard University; Zezhou Wang, Peking University; Sowmya Dharanipragada, Cornell University;
Minlan Yu, Harvard University

Nu: Achieving Microsecond-Scale Resource Fungibility with Logical Processes. . 1409
Zhenyuan Ruan and Seo Jin Park, MIT CSAIL; Marcos K. Aguilera, VMware Research; Adam Belay, MIT CSAIL;
Malte Schwarzkopf, Brown University

Enabling High Quality Real-Time Communications with Adaptive Frame-Rate. . 1429
Zili Meng, Tsinghua University and Tencent Inc.; Tingfeng Wang, Tsinghua University, Tencent Inc., and
Beijing University of Posts and Telecommunications; Yixin Shen, Tsinghua University; Bo Wang and Mingwei Xu,
Tsinghua University and Zhongguancun Laboratory; Rui Han and Honghao Liu, Tencent Inc.; Venkat Arun,
Massachusetts Institute of Technology; Hongxin Hu, University at Buffalo, SUNY; Xue Wei, Tencent Inc.

Serverless and Network Functions
LemonNFV: Consolidating Heterogeneous Network Functions at Line Speed. . 1451
Hao Li and Yihan Dang, Xi’an Jiaotong University; Guangda Sun, Xi’an Jiaotong University and National University of
Singapore; Guyue Liu, New York University Shanghai; Danfeng Shan and Peng Zhang, Xi’an Jiaotong University

Disaggregating Stateful Network Functions . . 1469
Deepak Bansal, Gerald DeGrace, Rishabh Tewari, Michal Zygmunt, and James Grantham, Microsoft; Silvano Gai,
Mario Baldi, Krishna Doddapaneni, Arun Selvarajan, Arunkumar Arumugam, and Balakrishnan Raman,
AMD Pensando; Avijit Gupta, Sachin Jain, Deven Jagasia, Evan Langlais, Pranjal Srivastava, Rishiraj Hazarika,
Neeraj Motwani, Soumya Tiwari, Stewart Grant, Ranveer Chandra, and Srikanth Kandula, Microsoft

Following the Data, Not the Function: Rethinking Function Orchestration in Serverless Computing. 1489
Minchen Yu, Hong Kong University of Science and Technology; Tingjia Cao, University of Wisconsin-Madison;
Wei Wang, Hong Kong University of Science and Technology; Ruichuan Chen, Nokia Bell Labs

Doing More with Less: Orchestrating Serverless Applications without an Orchestrator. . 1505
David H. Liu and Amit Levy, Princeton University; Shadi Noghabi and Sebastian Burckhardt, Microsoft Research

Real Networks
Enhancing Global Network Monitoring with Magnifier. . 1521
Tobias Bühler and Romain Jacob, ETH Zürich; Ingmar Poese, BENOCS; Laurent Vanbever, ETH Zürich

NetPanel: Traffic Measurement of Exchange Online Service. . 1541
Yu Chen, Microsoft 365, China; Liqun Li and Yu Kang, Microsoft Research, China; Boyang Zheng, Yehan Wang,
More Zhou, Yuchao Dai, and Zhenguo Yang, Microsoft 365, China; Brad Rutkowski and Jeff Mealiffe, Microsoft 365,
USA; Qingwei Lin, Microsoft Research, China

DOTE: Rethinking (Predictive) WAN Traffic Engineering. . 1557
Yarin Perry, Hebrew University of Jerusalem; Felipe Vieira Frujeri, Microsoft Research; Chaim Hoch, Hebrew University
of Jerusalem; Srikanth Kandula and Ishai Menache, Microsoft Research; Michael Schapira, Hebrew University of Jerusalem;
Aviv Tamar, Technion

Dashlet: Taming Swipe Uncertainty for Robust Short Video Streaming. . 1583
Zhuqi Li, Yaxiong Xie, Ravi Netravali, and Kyle Jamieson, Princeton University

Cellular
CellDAM: User-Space, Rootless Detection and Mitigation for 5G Data Plane . . 1601
Zhaowei Tan, Jinghao Zhao, Boyan Ding, and Songwu Lu, University of California, Los Angeles

LOCA: A Location-Oblivious Cellular Architecture. . 1621
Zhihong Luo, Silvery Fu, and Natacha Crooks, UC Berkeley; Shaddi Hasan, Virginia Tech; Christian Maciocco, Intel;
Sylvia Ratnasamy, UC Berkeley; Scott Shenker, UC Berkeley and ICSI

mmWall: A Steerable, Transflective Metamaterial Surface for NextG mmWave Networks 1647
Kun Woo Cho, Princeton University; Mohammad H. Mazaheri, UCLA; Jeremy Gummeson, University of Massachusetts
Amherst; Omid Abari, UCLA; Kyle Jamieson, Princeton University

Building Flexible, Low-Cost Wireless Access Networks With Magma. . 1667
Shaddi Hasan, Virginia Tech; Amar Padmanabhan, Databricks; Bruce Davie, Systems Approach; Jennifer Rexford,
Princeton University; Ulas Kozat, Hunter Gatewood, Shruti Sanadhya, Nick Yurchenko, Tariq Al-Khasib, Oriol Batalla,
Marie Bremner, Andrei Lee, Evgeniy Makeev, Scott Moeller, Alex Rodriguez, Pravin Shelar, Karthik Subraveti,
Sudarshan Kandi, Alejandro Xoconostle, and Praveen Kumar Ramakrishnan, Meta; Xiaochen Tian, Indepenent;
Anoop Tomar, Meta

Testing
LinkLab 2.0: A Multi-tenant Programmable IoT Testbed for Experimentation with Edge-Cloud Integration 1683
Wei Dong, Borui Li, Haoyu Li, Hao Wu, Kaijie Gong, Wenzhao Zhang, and Yi Gao, Zhejiang University

Push-Button Reliability Testing for Cloud-Backed Applications with Rainmaker. . 1701
Yinfang Chen and Xudong Sun, University of Illinois at Urbana-Champaign; Suman Nath, Microsoft Research;
Ze Yang and Tianyin Xu, University of Illinois at Urbana-Champaign

Test Coverage for Network Configurations. . 1717
Xieyang Xu and Weixin Deng, University of Washington; Ryan Beckett, Microsoft; Ratul Mahajan, University of
Washington; David Walker, Princeton University

Norma: Towards Practical Network Load Testing. . 1733
Yanqing Chen, State Key Laboratory for Novel Software Technology, Nanjing University and Alibaba Group;
Bingchuan Tian, Alibaba Group; Chen Tian, State Key Laboratory for Novel Software Technology, Nanjing University;
Li Dai, Yu Zhou, Mengjing Ma, and Ming Tang, Alibaba Group; Hao Zheng, Zhewen Yang, and Guihai Chen, State Key
Laboratory for Novel Software Technology, Nanjing University; Dennis Cai and Ennan Zhai, Alibaba Group

Physical Layer
μMote: Enabling Passive Chirp De-spreading and μW-level Long-Range Downlink for Backscatter Devices. 1751
Yihang Song and Li Lu, University of Electronic Science and Technology of China; Jiliang Wang, Tsinghua University;
Chong Zhang, Hui Zheng, and Shen Yang, University of Electronic Science and Technology of China; Jinsong Han,
Zhejiang University; Jian Li, University of Electronic Science and Technology of China

Channel-Aware 5G RAN Slicing with Customizable Schedulers . . 1767
Yongzhou Chen and Ruihao Yao, UIUC; Haitham Hassanieh, EPFL; Radhika Mittal, UIUC

RF-Chord: Towards Deployable RFID Localization System for Logistic Networks. . 1783
Bo Liang, Peking University and Alibaba Group; Purui Wang, Massachusetts Institute of Technology; Renjie Zhao,
University of California San Diego; Heyu Guo, Peking University; Pengyu Zhang and Junchen Guo, Alibaba Group;
Shunmin Zhu, Tsinghua University and Alibaba Group; Hongqiang Harry Liu, Alibaba Group; Xinyu Zhang,
University of California San Diego; Chenren Xu, Peking University, Zhongguancun Laboratory, and Key Laboratory
of High Confidence Software Technologies, Ministry of Education (PKU)

Exploring Practical Vulnerabilities of Machine Learning-based Wireless Systems. . 1801
Zikun Liu, Changming Xu, and Emerson Sie, University of Illinois Urbana-Champaign; Gagandeep Singh, University of
Illinois Urbana-Champaign and VMware Research; Deepak Vasisht, University of Illinois Urbana-Champaign

SRNIC: A Scalable Architecture for RDMA NICs

Zilong Wang1∗ Layong Luo2 Qingsong Ning2 Chaoliang Zeng1∗ Wenxue Li1 Xinchen Wan1∗

Peng Xie2 Tao Feng2 Ke Cheng2 Xiongfei Geng2 Tianhao Wang2 Weicheng Ling2

Kejia Huo2 Pingbo An2 Kui Ji2 Shideng Zhang2 Bin Xu2 Ruiqing Feng2 Tao Ding2

Kai Chen1 Chuanxiong Guo3

1Hong Kong University of Science and Technology 2ByteDance 3Unaffiliated

Abstract
RDMA is expected to be highly scalable: to perform well
in large-scale data center networks where packet losses are
inevitable (i.e., high network scalability), and to support a
large number of performant connections per server (i.e., high
connection scalability). Commercial RoCEv2 NICs (RNICs)
fall short on scalability as they rely on a lossless, limited-scale
network fabric and support only a small number of perfor-
mant connections. Recent work IRN improves the network
scalability by relaxing the lossless network requirement, but
the connection scalability issue remains unaddressed.

In this paper, we aim to address the connection scalabil-
ity challenge, while maintaining high performance and low
CPU overhead as commercial RNICs, and high network scal-
ability as IRN, by designing SRNIC, a Scalable RDMA NIC
architecture. Our key insight in SRNIC is that, on-chip data
structures and their memory requirements in RNICs can be
minimized with careful protocol and architecture co-designs
to improve connection scalability. Guided by this insight, we
analyze all data structures involved in an RDMA conceptual
model, and remove them as many as possible with RDMA
protocol header modifications and architectural innovations,
including cache-free QP scheduler and memory-free selective
repeat. We implement a fully functional SRNIC prototype
using FPGA. Experiments show that, SRNIC achieves 10K
performant connections on chip and outperforms commercial
RNICs by 18x in terms of normalized connection scalability
(i.e., the number of performant connections per 1MB mem-
ory), while achieving 97 Gbps throughput and 3.3 µs latency
with less than 5% CPU overhead, and maintaining high net-
work scalability.

1 Introduction

Datacenter applications are increasingly driving the demands
for high-speed networks, which are expected to provide high

∗ This work is done while Zilong Wang, Chaoliang Zeng, and Xinchen
Wan are interns with ByteDance.

throughput, low latency, and low CPU overhead, with a large
number of connections (a.k.a., connection scalability), over a
large-scale network (a.k.a., network scalability). Specifically,
bandwidth-intensive applications like distributed machine
learning training [13, 23] and cloud storage [16, 18], require
100 Gbps and beyond network bandwidth between servers;
online services like search [9, 15] and database [25, 29], de-
mand low latency to minimize query response time; most
applications desire a network stack with low CPU overhead
to reserve as many CPU cores as possible for computations;
cloud storage like Alibaba Pangu [18] requires a large number
of performant connections per host to provide mesh communi-
cations between chunk servers and block servers; last but not
the least, high-speed networks tend to be deployed at larger
scale as their application footprints expand [19].

Remote Direct Memory Access (RDMA) is emerging as a
popular high-speed networking technique, thanks to its high
throughput, low latency and low CPU overhead provided by
architectural innovations including kernel bypass and trans-
port offload. With these advantages, RoCEv2 (RDMA over
Converged Ethernet Version 2) is becoming the de-facto stan-
dard for high-speed networks in modern data centers [4, 42].

Despite high performance and low CPU overhead, com-
mercial RoCEv2 NICs (RNICs) suffer from both network
scalability and connection scalability issues. On one hand,
the network scalability issue arises from PFC (Priority-based
Flow Control) which is required by RDMA to implement a
lossless network fabric. PFC brings issues such as head-of-
line blocking, congestion spreading, occasional deadlocks,
and PFC storms in large-scale clusters [18, 19, 21, 34, 42].
As a result, datacenter operators tend to restrict the PFC con-
figurations within a small network scope (e.g., a moderate
cluster). On the other hand, the connection scalability issue is
the phenomenon that RDMA performance drops dramatically
when the number of connections (a.k.a., queue pairs (QPs))
exceeds a certain small threshold (e.g., 256) [24, 28, 39]. Al-
though commercial RNICs are blackbox, the root cause of
this performance collapse phenomenon is explained as cache
misses due to context switch between connections [24].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1

To improve network scalability of RNICs, existing work
IRN [33] advocates lossy RDMA that eliminates PFC, by
replacing go-back-N with more efficient selective repeat (SR).
However, the introduction of SR is non-trivial: it adds some
SR specific data structures and thus increases memory con-
sumption. To reduce the on-chip memory overhead, IRN
makes some RoCEv2 header extensions, but still requires
3-10% more memory than existing RNIC implementations.
As a result, IRN achieves high network scalability but leaves
the connection scalability issue unaddressed.

In this paper, we propose SRNIC, a Scalable RDMA NIC
architecture to address the connection scalability issue, while
preserving high performance and low CPU overhead inherited
from transport offload as commercial RNICs, and maintain-
ing high network scalability originated from lossy RDMA as
IRN. The major insight of SRNIC is that, most on-chip data
structures and their memory requirements in RNICs can be
eliminated with careful protocol and architecture co-designs,
and the connection scalability of RNICs could be, as a re-
sult, significantly improved. Guided by this insight, we ex-
amine the typical data flow in a lossy RDMA conceptual
model (§3.1), analyze all the involved data structures, classify
them into two categories: common data structures required
by RDMA in general, and selective repeat specific data struc-
tures brought by lossy RDMA, and finally take customized
optimization strategies to minimize these two types of data
structures respectively to improve the connection scalability
(§3.2).

In particular, the cache-free QP scheduler proposed in §4.3
optimizes common data structures for RDMA designs no
matter whether the underlying network is lossy or lossless.
The optimizations of RDMA header extensions and bitmap
onloading introduced in §4.4 are for memory-free selective
repeat, hence specific for lossy RDMA.

We have implemented a fully functional SRNIC prototype
with FPGA (§5) and evaluated SRNIC’s scalability and per-
formance through the testbed and simulations. Experiments
(§6) show that SRNIC achieves high connection scalability,
while preserving high performance and low CPU overhead
as commercial RNICs, and high network scalability as IRN.
Specifically, SRNIC supports 10K1 connections/QPs without
performance degradation, which outperforms Mellanox RNIC
CX-5 by 18x in terms of normalized connection scalability
(i.e., the number of performant connections per 1MB mem-
ory). Meanwhile, SRNIC achieves 97 Gbps line-rate through-
put and 3.3 µs latency, with only 5% CPU overhead, which
are comparable with Mellanox RNICs. In addition, SRNIC
shows its high network scalability via high loss tolerance (3x
higher goodput than Mellanox RNICs under 1% loss rate) and
predictable performance in large-scale lossy networks.

As a summary, Figure 1 shows the design space of RDMA
NICs and makes a comparative analysis between different so-

1Unless otherwise stated, K is 1024 in measuring the size of memory,
data structures and messages, and 1000 in measuring the others.

Network Scalability

RDMA

IRNCommercial RNICs SRNIC

High throughput, low latency, low CPU overhead

(PFC + Go-back-N)
Connection Scalability

(256 QPs)

Network Scalability
(PFC-free + Selective Repeat)
Connection Scalability

(Unaddressed)

Network Scalability

Connection Scalability
(10K QPs)

(PFC-free + Selective Repeat)

Figure 1: Design space of RDMA NICs.

lutions. Although all RDMA hardware solutions provide high
throughput, low latency, and low CPU overhead via transport
offload and kernel bypass, their scalability varies. Commer-
cial RNICs suffer from both the network scalability issue
caused by the troublesome PFC, and the connection scala-
bility issue caused by unknown blackbox implementations.
IRN revisits the network supports for RDMA, and eliminates
the need of PFC by introducing selective repeat with 3-10%
extra memory overhead. As a result, the network scalability
is significantly improved, but the connection scalability is left
unsolved. SRNIC leverages the lossy RDMA approach of
IRN to improve network scalability, and further addresses the
connection scalability issue with the design guiding principle:
minimize the on-chip memory requirements of RNICs in a
simple yet performant way. As a result, SRNIC achieves both
high network scalability and connection scalability.

This paper makes the following major contributions:

• We systematically study and quantify the memory require-
ments of RDMA NICs, by introducing an RDMA concep-
tual model (§3).

• We design SRNIC, a scalable and high-performance RDMA
NIC architecture, that significantly improves the connection
scalability, guided by an insight that the on-chip memory
requirements in the conceptual model can be minimized
with careful RDMA protocol modifications and architec-
ture innovations, including cache-free QP scheduler and
memory-free selective repeat (§4).

• We implement SRNIC using FPGA, with only 4.4 MB on-
chip memory. The implementation achieves our design
goals on scalability, performance, and CPU overhead (§5
and §6).

2 Background and Motivation

2.1 RDMA Overview
Unlike the traditional software transport TCP, RDMA is a
hardware transport that implements the transport functionali-
ties including congestion control and loss recovery entirely in
NIC hardware, and provides kernel-bypass and zero-copy in-
terfaces to the user applications. As a result, RDMA achieves
high throughput, low latency, and low CPU overhead, com-
pared with software transport TCP [42].

2 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RDMA was originally designed and simplified for lossless
Infiniband [1]. To make RDMA work in Ethernet, RoCEv2
relies on PFC [22] to turn Ethernet into a lossless fabric. How-
ever, PFC brings management risks and network scalability
challenges (e.g., PFC storms and deadlocks) that affect the
entire network’s availability and also causes collateral dam-
age to innocent flows due to head-of-line blocking [19, 42].
Besides, with PFC, the lossless network scale is also limited
by the switch buffer size. Consequently, datacenters usually
limit the scale of RDMA networks [18].

As the network scalability issue of RoCEv2 is mainly
caused by PFC, IRN [33] takes the first step to rethink
RDMA’s network requirements, eliminates PFC and allows
RDMA working well in lossy networks, by replacing the de-
fault lossy recovery mechanism go-back-N with more efficient
selective repeat. However, it leaves the connection scalability
challenge unsolved.

2.2 Connection Scalability Issue
Commercial RNICs face a well-known connection scalabil-
ity issue [24, 27, 28, 39], i.e., the RDMA performance drops
significantly as the number of QPs increases beyond a small
value (varies from 16 to 500 in different settings [28]). We
demonstrate this issue using off-the-shelf commercial RNICs
including Mellanox CX-5 and CX-6 [7, 8] with PFC enabled.
As shown in Figure 2a, the aggregate throughput of Mellanox
CX-6 drops 46% (from 97 to 52 Gbps) when the QP num-
ber increases from 128 to 16384, and there is no obvious
improvement of connection scalability from CX-5 to CX-6.

The root cause of RNIC’s performance degradation is com-
monly explained as cache misses [24, 28, 38]. Commercial
RNICs usually take a DRAM-free architecture, which does
not have DRAM connected directly to the RNIC chip to re-
duce cost, power consumption, and area, but just has limited
on-chip SRAM. As a result, RNICs can cache only a small
number of QPs on chip, while storing the others in host mem-
ory. When the number of active QPs increases beyond the on-
chip memory size, frequent cache misses and context switches
between host memory and RNIC cause performance collapse.
Our experiments in Figure 2b verify this in some sense. We
observed significant extra PCIe bandwidth2 and an increase
in ICM cache miss3 during the performance collapse. Both
metrics reflect certain kinds of cache misses, causing extra
PCIe traffic increase after 256 QPs.

Although on-chip SRAM is limited, it is abnormal in that
the performance drops so early. Given the on-chip memory
size and the QP Context (QPC) size for a QP, we can esti-
mate the maximum number of performant QPs that could be
supported without cache misses and performance collapse as:

max_QPs =
memory_size
sizeo f (QPC)

. (1)

2Extra PCIe throughput = PCIe throughput - network throughput.
3"ICM Cache Miss" is a counter provided by Mellanox Neohost tool [12].

RNIC CX-6
RNIC CX-5
TCP

256QPs

Th
ro

ug
hp

ut
 (G

bp
s)

50
60
70
80
90

100

QP Number
128 512 2048 8192

(a) Aggregate throughput

Extra PCIe BW
ICM Cache Misses

Ex
tra

 P
C

Ie
 B

W
 (G

bp
s)

14

16

18

IC
M

 C
ache M

isses

0
1×

10
62×

10
63×

10
6

QP Number
128 512 2048 8192

(b) ICM Cache misses and extra
PCIe traffic

Figure 2: Connection scalability issue of current RNICs. Com-
pared with TCP, the aggregate throughput of current RNICs
collapses when the number of QPs exceeds 256.

Let’s take Mellanox CX-5 as an example. Its on-chip mem-
ory size is ∼2 MB [24] and a QPC takes ∼375 B [24], so that
the maximum number of performant QPs supported by CX-5
could be up to 5.6K (2 MB/375 B), which contradicts the fact
shown in Figure 2a that CX-5 performance begins to collapse
much earlier at 256 QPs. The contradiction implies that there
is room to significantly improve the connection scalability.

Motivated by this contradiction, we systematically analyze
the memory requirements of RNICs, and improve the connec-
tion scalability based on the insights derived from thorough
memory analysis.

3 RNIC Memory Analysis

As commercial RNICs are blackbox, we are not able to use
their micro-architectures as a reference. Instead, we leverage a
lossy RDMA conceptual model with selective repeat to derive
the involved data structures (§3.1). Then, we summarize and
classify these data structures into two categories: common
data structures required by RDMA in general, and selective
repeat specific data structures brought by lossy RDMA, and
discuss different optimization strategies to minimize them
respectively to improve the connection scalability (§3.2).

3.1 RDMA Conceptual Model
Figure 3 shows an RDMA conceptual model, based on which,
a typical RDMA data flow consists of the following steps:

1. Requester: the user posts a work queue element (WQE)
into a send queue (SQ) to issue a SEND request. RNIC
fetches the WQE from the SQ to a WQE Cache.

2. Requester: RNIC gets the virtual address of the data
buffer by parsing the WQE, translates it into the physical
address through a Memory Translation Table (MTT),
and fetches data from the host data buffer using the physi-
cal address. RNIC then appends an appropriate RoCEv2
header onto the data and sends out the packet to the
responder. The metadata of all outstanding requests is

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 3

Requester Responder

SQ RQ CQ

DMA Engine

Data
Buffer

Transport

Basic NIC

Send
WQE

Recv
WQE

CQE

WQE Cache
MTT

Receiving Buffer

ORT

Bitmaps

Reordering Buffer
QPC

DMA Engine

Transport

Basic NIC

WQE Cache

Bitmaps

Receiving Buffer

ORT
QPC

12

3

4

SQ RQ CQ

Send
WQE

Recv
WQE

CQEData
Buffer

5

5

6

6

MTT

PCIe

CPUCPU

RNIC RNIC

PCIe

Reordering Buffer

4

Figure 3: An RDMA conceptual model, and the RDMA data
flow using a small SEND message as an example.

stored in an Outstanding Request Table (ORT) for fast
retransmission in case of packet loss.

3. Responder: the incoming request is first queued in the
Receiving Buffer and then gets verified. Out-of-order
packets will be recorded in Bitmaps and reordered using
the Reordering Buffer.

4. Responder: upon receiving a SEND packet, RNIC
fetches a Receive WQE from a receive queue (RQ),
queries MTT to get the physical address of the host data
buffer, and DMAs the reordered data from the Reorder-
ing Buffer to the host data buffer.

5. Responder: RNIC replies an acknowledgment (ACK)
packet to the requester, and notifies the user with a com-
pletion queue element (CQE) to indicate the Receive
WQE is consumed.

6. Requester: RNIC receives the ACK, and generates a
CQE to indicate the Send WQE is consumed.

Besides, RNIC leverages a QPC per QP to track
QP/connection related contexts for all modules.

3.2 Data Structures
As concluded in Table 1, we classify the involved data struc-
tures into two categories: (1) common data structures, re-
quired by RDMA in general, and (2) selective repeat specific
data structures, brought by lossy RDMA.

3.2.1 Common Data Structures

Common data structures are essential to RDMA in general,
no matter whether the underlying network is lossy or lossless.

Receiving Buffer. The receiving buffer in the Basic NIC
module is used to queue all incoming packets. Its major pur-
pose is to absorb bursts caused by the temporal performance
gap between the upstream Ethernet port and the whole down-
stream RNIC processing logic.

QPC. A QPC maintains for a QP all its contexts, including
the DMA states (e.g., the start and end addresses, read and
write pointers of SQ & RQ), and connection states (e.g., ex-
pected and next packet sequence numbers, window or rate for
congestion control). The QPC size we allocate for each QP is
210 B, so the total size for 10K QPs is 2.0 MB.

MTT. RDMA uses virtual addresses in the packet while
the PCIe system relies on physical addresses to perform DMA
transactions. To perform address translation, RNIC maintains
an MTT to map virtual pages of memory regions into physical
pages. The size of MTT depends on the total size of memory
regions and the page size, irrelevant to the number of connec-
tions. For example, considering the total memory region size
of 4 GB, the page size of 4 KB, and an MTT entry size of 8 B,
the MTT size is equal to 4GB/4KB∗8B = 8MB.

WQE Cache. An SQ WQE cache could be used to cache
the Send WQEs fetched from an SQ in host memory. Assum-
ing each QP stores 8 WQEs (64 B*8) in a dedicated cache,
10K QPs consume 4.9 MB on-chip memory. Similarly, RNIC
needs to fetch Receive WQEs from the RQ to process incom-
ing SEND requests, and could allocate an RQ WQE cache to
store the fetched Receive WQEs. The memory size of the RQ
WQE cache is similar to that of the SQ WQE cache.

3.2.2 Selective Repeat Specific Data Structures

These data structures are all introduced by lossy RDMA using
selective repeat as the loss recovery mechanism.

Bitmap. Bitmaps are used to track which packets are re-
ceived or lost [31]. As mentioned in IRN [33], each QP re-
quires five BDP (bandwidth-delay product)-sized bitmaps
(500 slots for each bitmap to fit the BDP cap of a network
with bandwidth 100 Gbps and RTT 40 µs [5]) and 10K QPs
cost 3.0 MB memory in total.

Reordering Buffer. A reordering buffer is used to rear-
range the out-of-order packets and ensure in-order delivery
to the data buffer in host memory. The reordering buffer is
required in a lossy RNIC implementation with the standard
RoCEv2 header. As RoCEv2 is designed for the lossless net-
work, its header lacks the necessary information to support
out-of-order packet reception without extra reordering buffers.

One option is to allocate a separate reordering buffer for
each QP. Each QP requires a BDP-sized (0.5 MB) reorder-
ing buffer, so it takes 4.9 GB memory to support 10K QPs.
Another option is to maintain a shared reordering buffer for
all QPs [31]. However, it does not scale. When multiple QPs
experience out-of-order packets, it may soon run out of the
shared buffer with limited on-chip SRAM. Hence, we choose
the separate reordering buffer option in the analysis.

4 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Category Data structures Typical sizes Optimization ideas Sizes after optimization

Common

Receiving Buffer 0.6 MB None 0.6 MB
QPC 2.0 MB None 2.0 MB
MTT 8 MB Cache (§4.5) 1.2 MB
WQE Cache 9.8 MB Cache-free QP scheduler (§4.3) 0

SR Specific
Bitmap 3.0 MB Bitmap onloading (§4.4.2) 0
Reordering Buffer 4.9 GB Header extensions (§4.4.1) 0
Outstanding Request Table 114.4 MB Header extensions (§4.4.1) 0

Table 1: Data structures in the RDMA conceptual model. The first three columns show the typical data structures and their
memory requirements with 10K QPs. The last two columns summarize our ideas to minimize the on-chip memory requirements
of these data structures, and show the memory size after optimization.

Outstanding Request Table. Outstanding request table is
used to maintain the mapping between outstanding request
packets and their metadata, which are used to quickly lo-
cate and retransmit the lost packets. These metadata include
(1) packet sequence number (PSN), used to track packet se-
quences, (2) message sequence number (MSN), used to track
message sequences and to locate the WQE associated with
that message quickly, and (3) packet offset (PSN_OFFSET),
used to locate the data offset inside the corresponding data
buffer. With these fields, the outstanding request table size for
each QP is 11.7 KB (given the entry size 24 B, entry number
500 sized to BDP), and 10K QPs consume 114.4 MB in total.

In summary, all the data structures derived from the RDMA
conceptual model could be classified into two categories: com-
mon data structures required by RDMA in general, and selec-
tive repeat specific data structures brought by lossy RDMA.
Table 1 summarizes the memory requirements of these data
structures in the third column. Both categories require signifi-
cant memory sizes, and thus need to be optimized to improve
connection scalability.

To this end, we make different optimization strategies to
minimize these two types of data structures respectively. In
particular, all the common data structures required by RDMA
should be optimized in a generic way, with architectural inno-
vations that are not specific to lossless or lossy RDMA. The
cache-free QP scheduler proposed in §4.3 falls into this strat-
egy. On the other hand, all the selective repeat specific data
structures brought by lossy RDMA, could be optimized based
on the lossy network assumption. The header extensions and
bitmap onloading approaches in the memory-free selective
repeat architecture in §4.4 follow this strategy.

4 SRNIC Design

4.1 Design Goal and Guiding Principles

In the design space of RDMA NICs, Mellanox RNICs rep-
resent the state-of-the-art in terms of high performance and
low CPU overhead, and IRN is the state-of-the-art in network
scalability. The design goal of SRNIC is to maximize the con-

nection scalability, while preserving high performance and
low CPU overhead as Mellanox RNICs, and maintaining high
network scalability as IRN.

To achieve this goal, we follow three design guiding prin-
ciples:(1) keep as many RDMA functionalities as possible
in hardware to achieve high performance and low CPU over-
head; (2) handle packet loss as efficient as possible to allow
discarding PFC and thus to support large-scale lossy networks;
and (3) reduce the on-chip memory requirements as much as
possible to support a large number of performant QPs with a
limited amount of memory.

4.2 Architecture Overview

Guided by the above principles, we design a scalable RDMA
NIC architecture SRNIC, as shown in Figure 4.

The server CPU allocates and manages QPs in the RNIC
driver, and runs applications in user space over these QPs. Be-
sides, a software retransmission module resides in user space
to maintain the memory-consuming retransmission states col-
lected by hardware and assist packet loss processing (§4.4).
A pair of control queues (CtrlQs) is used as the communica-
tion channel between the software retransmission module and
RNIC hardware.

RNIC hardware consists of three layers: DMA Engine,
Transport, and Basic NIC. The DMA Engine layer leverages a
QP scheduler to schedule tens of thousands of QPs from host
memory, decides which QP to send data next, and then fetches
WQEs and data from that SQ via data mover. The Transport
layer realizes most of RDMA transport functionalities (except
for the software retransmission in CPU), including a con-
gestion control module that implements a hardware-friendly
DCTCP [14], and a hardware retransmission module that im-
plements the hardware part of selective repeat. The Basic NIC
layer implements the primary functions of the Ethernet NIC,
responsible for sending and receiving RoCEv2 packets via the
100GE MAC. In addition to these three layers, there are two
major data structures: QPC, which maintains all QP-related
contexts, and MTT, which stores the mapping between virtual
and physical addresses.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 5

Software
Retransmission

PCIe

Driver

CPU

RNIC

DMA
Engine

Transport

Basic NIC
100GE MAC

QP

Data Mover QP Scheduler

SQ RQ CQ

CtrlQ

Tx Rx

QPCCongestion
Control

Hardware
Retransmission

Application Buffer

User space

MTT

RetryQ

Outbound Path Inbound Fast Path Inbound Slow Path

Figure 4: SRNIC architecture.

In order to balance performance and scalability, the data
path of SRNIC is divided into a fast path and a slow path
(§4.4), which handle sequential and out-of-order (OOO) pack-
ets, respectively. The fast path wholly implemented in RNIC
processes the majority of traffic consisting of sequential pack-
ets, and thus provides hardware-level high performance with
low CPU overhead for most packets. The slow path imple-
ments software retransmission, processes very little traffic
consisting of OOO packets, and onloads bitmaps to host mem-
ory for connection scalability.

The overhead of the data path separation is very low for
two reasons. First, the average packet loss rate in data centers
is low (less than 0.01% [20, 41, 43]), and the resulting OOO
packets form a very small fraction of traffic. Second, SRNIC
only transmits loss events (i.e., metadata of the OOO packets)
over PCIe, further reducing the PCIe overhead. For example,
the extra PCIe overhead is only 2.46% even with 1% loss rate.

Based on the above architecture, we further make two criti-
cal design optimizations: cache-free QP scheduler (§4.3) and
memory-free selective repeat (§4.4) to optimize RDMA com-
mon data structures and lossy RDMA specific data structures,
respectively, in order to address the scalability issues while
preserving high performance.

4.3 Cache-free QP Scheduler
4.3.1 SQ Scheduler

An SQ is either active when it contains WQEs or inactive oth-
erwise. The SQ scheduler (as modeled in Figure 5a) chooses
one active SQ each time from tens of thousands of SQs in
host memory to send messages next. The design challenges

…
Tens of thousands of SQs

SQ Scheduler

Congestion
Control

credits

Send
WQE

Host

RNIC

(a) SQ scheduler model.

…
Tens of thousands of RQs

RQ Scheduler

Recv
WQE

Host

RNIC

(b) RQ scheduler model.

Figure 5: The QP scheduler models.

of the SQ scheduler are as follows:

• Challenge #1: Active SQs cannot be scheduled blindly,
as they are also subject to congestion control, as shown
in Figure 5a. Once an SQ is scheduled, if it is not allowed
to send messages due to the lack of credits granted by
congestion control, the scheduling does not take effect
but just wastes time and degrades performance.

• Challenge #2: The PCIe round-trip latency between
RNIC and host memory is high (around 1 µs in FPGA
based RNIC), and it takes at least two PCIe transactions
(one WQE fetch and one message fetch), to execute one
scheduling decision. Without careful design, the high
latency between scheduling iterations will significantly
degrade the performance.

• Challenge #3: There are tens of thousands of SQs in
host memory but very limited on-chip memory within
RNIC. It is prohibitive to have separate WQE caches for
different SQs in the RNIC.

To address these challenges, SQs should be scheduled when
they are both active and have credits (to address Challenge
#1), with appropriate batch transactions to hide PCIe latency
(to address Challenge #2), and in a WQE-cache-free way (to
address Challenge #3).

Guided by these principles, we propose a cache-free SQ
scheduler (as shown in Figure 6) that can do fast scheduling
among tens of thousands QPs with minimal on-chip memory
requirements. It consists of three major components:
Event Mux (EMUX): The EMUX module handles all
scheduling related events, including (1) SQ doorbell4 from
the host to indicate which SQ has new WQEs and messages
to send; (2) credit update from the congestion control module
to indicate window or rate adjustment for a connection/SQ;
and (3) dequeue event from the schedule queue to indicate an
SQ is scheduled.

Upon receiving an event, EMUX changes the scheduling
states in QPC. There are three scheduling states: an active
state indicating the SQ has WQEs; a credit value indicating

4Doorbell is the mechanism for the driver to notify RNIC that a SEND
WQE has been posted into an SQ [26]. It is usually implemented by updating
the write pointer of the SQ into an RNIC register.

6 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

doorbell
credit

RNIC

Host

3
Schedule QueueQPC

Congestion
Control

Scheduler

…

SQ1 SQ2 SQ3 SQ4

…

dequeue

QP1: active 0, credit 1, ready 0

QP2: active 0, credit 1, ready 0

QP3: active 1, credit 1, ready 1

QP4: active 1, credit 0, ready 0

DMA
Engine

WQE

enqueue

Data
Buffer

Schedule
Policy

Event Mux

Figure 6: The cache-free SQ scheduler.

the bytes of messages allowed to send, and a ready state indi-
cating the SQ is in the schedule queue and ready for schedul-
ing. An SQ is ready for scheduling only when it is both active
and has available credits, which addresses Challenge #1.
Scheduler: The scheduler leverages a schedule queue to
maintain a list of SQs ready for scheduling. The scheduler
implements a round-robin strategy in the schedule policy
module, by popping a single ready SQ from the head of the
schedule queue each time, and fetching from that SQ a given
amount of WQEs and messages. After this scheduling itera-
tion, if the SQ is still ready for scheduling, it will be pushed
back into the schedule queue by the EMUX. Other scheduling
strategies (e.g., weighted round-robin and strict priority) can
be implemented by modifying the schedule policy module.
DMA Engine: When an SQ is being scheduled, the
DMA engine fetches from that SQ up to n WQEs and
min(burst_size,credit) bytes of messages to address Chal-
lenge #2. After a scheduling iteration, there could be unused
WQEs left in RNIC, if the total message size associated with
the n WQEs is over min(burst_size,credit) bytes. Unused
WQEs are dropped instead of being cached in RNIC, and
they will be fetched again next time when its SQ is scheduled.
This fetch-and-drop strategy enables us to achieve cache-free
scheduling to address Challenge #3.

There are two critical parameters (n and burst_size) to bal-
ance tradeoffs. n is the maximum number of WQEs, and
burst_size is the maximum bytes of messages allowed to
fetch in each scheduling iteration. n reflects the tradeoff be-
tween PCIe bandwidth usage and PCIe latency hiding. A
smaller n would lead to less PCIe bandwidth waste in the
fetch-and-drop strategy, but be harder to hide the PCIe latency
or saturate the PCIe bandwidth with small messages, while
a larger n would perform inversely. In SRNIC, n is set to 8
to balance the PCIe bandwidth utilization and latency hid-
ing. With this setting, the maximum message rate of a single
QP is 8 million requests per second (Mrps) (i.e., 8 messages
per 1 µs). As for burst_size, it reflects the tradeoff between
PCIe bandwidth utilization and scheduling granularity. A

smaller burst_size would enable finer scheduling granularity
and hence less HoL, but be harder to saturate PCIe bandwidth,
while a larger burst_size would perform inversely. Based on
this analysis, we set burst_size to the PCIe BDP, i.e., 16 KB,
to balance performance and scheduling granularity.

In summary, the SQ scheduler adopts a cache-free archi-
tecture to do fast scheduling among a large number of SQs
with minimal on-chip memory. Specifically, the width of the
schedule queue is 2 bytes, i.e., the QPN (QP Number) size,
and a schedule queue of 19.5 KB can support 10K SQs.

4.3.2 RQ Scheduler

The RQ scheduler is modeled as shown in Figure 5b. Upon
receiving a packet, RNIC gets its QPN by parsing the packet
header, fetches a Receive WQE from the RQ indicated by
that QPN, and places the packet payload into the data buffer
associated with that Receive WQE.

This process seems straightforward, but there is one design
decision affecting connection scalability: do we prefetch and
cache Receive WQE in RNIC before the packet arrives?

If Receive WQEs are prefetched and cached, the incoming
packet could hit the WQE cache, reducing the latency by
one PCIe round-trip time (i.e., around 1 µs). However, it is
hard to predict from which RQ to prefetch Receive WQEs
before packets arrive, and thus the cache hit ratio largely
depends on the traffic pattern and the cache size. Therefore,
we decide to take the cache-free approach without prefetching
or caching Receive WQEs, thus improving the connection
scalability. Given that the typical RDMA network latency for
small messages is tens of microseconds in data centers(e.g.,
for 1KB messages, RDMA P50 and P99 latency is 24us and
40us, respectively [5]), the increased 1 µs latency is generally
negligible. For latency-sensitive scenarios where 1 µs matters,
like in rack-scale deployments, a shared Receive WQE cache
can be brought back to optimize the latency.

4.4 Memory-free Selective Repeat

The introduction of selective repeat into RNICs increases the
challenge to achieve high connection scalability. As analyzed
in §3.2.2, the extra data structures brought by selective repeat
include outstanding request tables, reordering buffers, and
bitmaps, whose memory requirements in total exceed the
typical on-chip SRAM sizes of RNICs.

To minimize the memory requirements introduced by se-
lective repeat, SRNIC eliminates the need for outstanding
request tables and reordering buffers via RDMA protocol
header extensions (§4.4.1), and onloads bitmaps into host
memory without sacrificing performance via careful software-
hardware co-designs (§4.4.2).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 7

4.4.1 Header Extensions

As described in §3.2, the outstanding request table is used
to maintain for each QP the mapping between outstanding
request packets and their metadata including PSN, MSN, and
PSN_OFFSET for fast selective retransmission. We eliminate
the need for this data structure, by carrying these per-packet
metadata on packet headers, instead of storing them in the
on-chip memory. Specifically, we let all outstanding request
packets carry these metadata on their headers, and let their
response packets echo the same metadata back. In this way,
the requester can locate the WQE and its message quickly
with metadata in the response packet header.

The reordering buffer is used by each QP to rearrange
the OOO packets and ensures in-order delivery to the data
buffer of user applications. To get rid of the per-QP reordering
buffer, our approach is in-place reordering, i.e., leveraging
the user data buffer pinned in host memory as the reordering
buffer. To achieve this, all incoming packets should be placed
directly into the user buffer at correct addresses. We make
the following header extensions so that RNIC can derive the
address for each packet by parsing its header: (1) all SEND
packets carry send message sequence number (SSN) and the
aforementioned PSN_OFFSET, which can be used by the
RNIC responder to locate the corresponding receive WQE
and the offset in its associated receive buffer. (2) all WRITE
packets carry their target remote addresses [33].

As to RDMA READ, we add acknowledgements to READ
requests and responses respectively to add self-clocking for
RDMA READ, and schedule RDMA READ at the responder
side similar to RDMA WRITE. By doing so, we can apply
similar header extensions of SEND and WRITE for READ
request and response packets, and more importantly, we can
apply window-based congestion control for RDMA.

With these modifications, both sequential and out-of-order
packets can be placed directly into the user buffer at the cor-
rect address, thus achieving in-place reordering and eliminat-
ing per-QP reordering buffer in the on-chip memory.

The aforementioned extensions add 8 to 20 bytes of headers
to packets. In particular, the header is increased from 58 to
66 bytes for SEND and from 58 to 78 bytes for WRITE,
which will decrease the application goodput by 0.7% and
1.8%, respectively, given 1024 byte RoCE MTU.

4.4.2 Bitmap Onloading

As mentioned in §3.2.2, each QP requires five BDP-sized
bitmaps, and 10K QPs need 3.0 MB memory to store bitmaps,
which alone may exceed the RNIC on-chip memory size (e.g.,
2 MB in Mellanox RNIC [24]), thus increasing the challenge
to achieve high connection scalability.

We observe that, when there is no packet loss, packets from
the same QP are sent and received in order, and an expected
PSN (ePSN) in the responder and a last acknowledged PSN

metadata
(PSN & lACK)

RN
IC

CPU

CtrlQ
RxPSN=“eACK”?

Per-QP Bitmaps
0 1 0

RetryQ
ePSN

1

2

Transport
Logic

ePSNlACK
QPC

response
packet

yes no
2

Requester

Responder

metadata
(PSN & ePSN)

RN
IC

CPU

CtrlQ
RxPSN=“ePSN”?

Per-QP Bitmaps

0 1 0

ePSN

1

2

Transport
Logic

ePSNePSN
QPC

request
packet yes no

2
Tx

Update ePSN
3

Retransmission
3

Figure 7: Selective repeat with bitmap onloading.

(lACK) in the requester are enough to track the sequential re-
ception of request and response packets, respectively, without
the need of bitmaps; when there is packet loss, OOO packets
appear, and bitmaps are only required to track OOO packets.

Based on the above observation, for each QP we maintain
an ePSN and a lACK in QPC to process sequential packets in
hardware, and onload all bitmaps into host memory to track
OOO packets. Assume packet loss rate is low and sequential
packets are the majority, most traffic is handled by hardware
directly, and little traffic containing the OOO packets is han-
dled by software with the memory-consuming bitmaps in
host memory. In this way, we achieve a balance between high
performance and high connection scalability.

Figure 7 shows the software-hardware co-designed selec-
tive repeat architecture with bitmap onloading. On the respon-
der side, the PSN of an inbound request packet is compared
against the ePSN (À). If they match (Á), it is a sequential
packet and will be handled in the RNIC; otherwise (Á), it
is an OOO packet and the responder enters into the loss re-
covery state. In this state, the metadata (PSN and ePSN) of
all incoming OOO packets is sent to software, which then
fills the bitmaps in host memory to track received packets.
After lost packets are received and bitmaps are filled accord-
ingly, a new ePSN is updated (Â), and the RNIC exits from
the loss recovery state. On the requester side, the PSN of
an inbound response packet is compared against an eACK
(i.e., a coalesced ACK greater than the lACK) (À). If they
match (Á), the lACK is updated in hardware; otherwise (e.g.,
upon receiving NACK or SACK) (Á), the requester enters
into the loss recovery state. In this state, the metadata of all
incoming OOO response packets including PSN and lACK is
sent to the software retransmission module, which then ma-
nipulates the bitmaps in host memory to track which packets
are received by the responder, and makes retransmission de-
cision accordingly. The retransmitted requests are submitted
through a Retry Queue (RetryQ) associated with each QP (Â).
After all retransmitted packets are successfully delivered (in-
dicated by ACKs), the requester exits from the loss recovery
state. Another option is to keep bitmaps only in the responder
and make the requester stateless. Then, the responder should
notify the requester exactly which packets to be retransmitted.

8 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CPU

1 1

ePSN=0
psn_left=2

psn_right=4

bitmaps

RNIC

23incoming packets

1 0

update ePSN=3

metadata
(PSN & ePSN)

2

1

3

0
0 1 2 3 4

QPC

Transport

fall into [2,5]
new ePSN=5

104

Figure 8: Fast exit from the loss recovery state.

A race condition may arise in the responder when exiting
from the loss recovery state. Specifically, when the software
updates the new ePSN, there might be inflight metadata of
OOO packets with newer PSN between RNIC and CPU. In
this case, the updated ePSN is not the latest, and thus the exit
fails. To address the race condition problem while preserv-
ing high performance, RNIC records the range of the most
advanced sequential packets (via [psn_le f t, psn_right]) af-
ter it enters the loss recovery state. A QP can exit from the
loss recovery state if the updated ePSN falls into [psn_le f t,
psn_right +1] range, and the ePSN in QPC will be updated
to psn_right +1, as illustrated in Figure 8.

4.5 Other Design Considerations
With the cache-free QP scheduler and memory-free selective
repeat, all data structures shown in Table 1 are eliminated,
except for the receiving buffer, QPC, and MTT.

Receiving Buffer is a shared packet buffer among all QPs
and its size is small, so it is not optimized in this paper.

QPC is essential to maintain the per-QP states, and is in-
volved in per-packet processing. To support a large number
of performant QPs, we have to store their QPCs entirely in
on-chip memory. Therefore, this part is not eliminated, and
we preserve as much on-chip memory as possible for QPC to
maximize the number of performant QPs.

MTT is memory-consuming as analyzed in §3.2 (e.g., 4 GB
memory region requires 8 MB MTT size). Therefore, MTT
is maintained in the host memory, and an MTT cache is im-
plemented inside the RNIC by leveraging traffic locality. The
cache size does not increase with the number of QPs, and
its performance is highly related to traffic patterns. In ad-
dition, adopting hugepages (e.g., 2MB/1GB) is a classical
optimization to reduce the memory size of address translation
tables [24, 40], but requires modification to the applications.

4.6 Design Summary
The last two columns of Table 1 summarize our ideas to
minimize the RDMA related data structures, and show the
memory requirements after optimizations. Specifically, we
eliminate the WQE cache through a cache-free QP scheduler,
eliminate all SR-related data structures in on-chip memory
through SR-friendly header extensions and bitmap onloading,

Resource Usage

LUT Register BRAM URAM

101102 140816 621 48

Memory Breakdown (MB)

QPC MTT Receiving Buffer SQ Scheduler Total

2.3 1.2 0.6 0.3 4.4

Table 2: Resource usage of the SRNIC prototype.

and minimize the on-chip memory requirements of MTT with
a cache, while keeping the large MTT table in host memory.

5 Implementation

We build a fully functional prototype of SRNIC using a Xilinx
FPGA board with a PCIe Gen3 x16 interface and a 100 Gbps
Ethernet port, running at a clock frequency of 300 MHz.
Congestion Control. Since SRNIC introduces ACK based
self-clocking for RDMA READ, we therefore can use
window-based congestion control for RDMA. Window-based
approach in general is more friendly for hardware implementa-
tion than rate-based congestion control due to its self-clocking
mechanism. More specifically, window-based design is event-
driven: congestion window update events are triggered by
inbound acknowledgement packets, and window based con-
gestion control for each flow is applied at QP scheduling
events. These events are naturally serialized and can be pro-
cessed one by one. On the other hand, rate-based congestion
control is timer-driven. It is challenging to support a large
number of timer-based rate limiters in parallel for many con-
current flows. In SRNIC, we use DCTCP.
Memory Consumption. We realize 10K QPs in SRNIC and
the resource consumption is broken down in Table 2. SRNIC
consumes 4.4 MB on-chip SRAM in total. The QPC table,
whose size increases linearly with the QP number, occupies
2.3 MB5 for 10K QPs. The remaining memories are used by
QP-irrelevant data structures, including MTT cache, receiving
buffer, and SQ scheduler, which consume constant memories
when the QP number increases.

Per Table 2, the precious on-chip SRAM of SRNIC is
mainly partitioned between the two most memory-consuming
data structures: the QPC table and the MTT cache. A larger
QPC table would support more performant QPs, while a larger
MTT cache could provide a higher cache hit rate during ad-
dress translation thus better performance. The best on-chip
memory partition strategy between the QPC table and the
MTT cache highly depends on scenarios, and it’s an interest-
ing problem to explore in the future.

5This is slightly larger than 2 MB calculated in Table 1 due to memory
alignment overhead, e.g., each memory depth should be a power of 2 in FPGA
implementation.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 9

SRNIC
RNIC CX-6
RNIC CX-5
TCP

Ag
gr

eg
at

e
Th

ro
ug

hp
ut

 (G
bp

s)

50

60

70

80

90

100

QP Number
128 256 512 1024 2048 4096 8192 10K

Figure 9: Connection scalability. SRNIC maintains constant
high throughput as the number of QPs increases, while the
performance of commercial RNICs (Mellanox CX-5 & 6)
drops dramatically when the QP number exceeds 256.

6 Evaluation

We evaluate SRNIC using both testbed experiments and large-
scale ns-3 simulations [10], and compare it with Mellanox
RNICs, IRN, and TCP. Our results reveal that:

• SRNIC achieves high connection scalability: it supports
10K performant QPs, outperforming Mellanox RNIC CX-5
by 18x in terms of normalized connection scalability.

• SRNIC achieves high throughput (97 Gbps), low latency
(3.3 µs), and low (5%) CPU overhead.

• SRNIC achieves high network scalability: it is loss-tolerant
(up to 75 Gbps goodput under 1% loss rate) and maintains
predictable performance over large-scale lossy networks.

6.1 Connection Scalability
We compare SRNIC with Mellanox RNIC CX-5, CX-6, and
TCP in terms of connection scalability. The settings of the
testbed experiments are as follow. We connect two RNICs
directly and launch 16 threads on each side, with each thread
executing 512 B send operations. We set the RoCE MTU to
1024 bytes, and use the standard per f test benchmarks [11]
in all experiments. With the above settings, we measure the
aggregate throughput of these solutions while increasing the
number of QPs from 128 to 10K, as shown in Figure 9.

SRNIC preserves the highest aggregate throughput almost
unchanged at around 97 Gbps when the QP number increases
from 128 to 10K. This is expected, as SRNIC keeps the QPC
of 10K QPs entirely in the on-chip memory while eliminating
or minimizing all other data structures.

TCP also preserves relatively high performance (from 81
to 96 Gbps), as it maintains the contexts of 10K connections
in the large host memory, demonstrating high connection
scalability but lower and unpredictable performance.

In contrast, the aggregate throughput of Mellanox RNICs

CX-5 and CX-6 drops dramatically when the QP number ex-
ceeds 256 due to frequent cache misses, as explained in §2.2.

In summary, SRNIC provides much higher connection scal-
ability than commercial RNICs. Specifically, SRNIC realizes
10K QPs with 4.4 MB memory, while Mellanox CX-5 sup-
ports 256 QPs with 2 MB memory. To make a fair comparison,
we define normalized connection scalability as the number of
performant connections per 1 MB on-chip memory. SRNIC
outperforms Mellanox CX-56 by 18x (10 K QPs/4.4 MB vs.
256 QPs/2 MB) in terms of normalized connection scalability.

6.2 Performance and CPU Overhead
We compare SRNIC with CX-67 and TCP in terms of through-
put, latency, and CPU overhead using a single connection,
with the same settings as above (i.e., 1024-byte RoCE MTU,
two NICs are connected directly).
Throughput. The throughput comparison is shown in Fig-
ure 10a. When the message size exceeds 4 KB, SRNIC and
CX-6 both achieve line-rate throughput (97 Gbps), whereas
TCP can only achieve up to 37 Gbps since the single CPU core
becomes the bottleneck. In our experiments, the maximum
message rate that SRNIC can achieve is 6.6 Mrps, comparable
to that of the CX-6 (6.3 Mrps). This confirms that RNIC can
achieve a high message rate without WQE cache. As men-
tioned in §4.3.1, the message rate of SRNIC depends on the
batch size of the SQ scheduler. In our implementation, the
SQ scheduler can request at most 8 WQEs at a time and the
average PCIe RTT we measured is 1.1 µs, therefore our result
is close to the upper bound of 7.2 Mrps.
Latency. We measure the latency for transmitting 64 B small
messages. As Figure 10b shows, the latency of SRNIC is
about 3.3 µs, slightly higher than that of CX-6 (1.16 µs). We
believe this gap comes from the extra 1 µs added by the cache-
free QP scheduler and the clock frequency difference between
FPGA (300MHz) and ASIC (GHz) implementations. The la-
tency would be decreased if SRNIC adopts the shared Receive
WQE cache or is implemented in ASIC. In contrast, TCP has
the highest latency of 24 µs, indicating that bypassing ker-
nel and offloading transport in RDMA is vital for significant
latency reduction.
CPU overhead. As shown in Figure 10c, the CPU overhead
of SRNIC and CX-6 both maintains at a low level (< 5%)
thanks to transport offload and kernel bypass. TCP consumes
much more CPU cycles at both the client and server sides
(around 100% CPU utilization, not shown in the figure).

6.3 Network Scalability
Finally, we evaluate the network scalability of SRNIC. We
show the efficiency of loss recovery in SRNIC with testbed

6We know the on-chip memory size (i.e., 2 MB) of CX5 [24] but not CX6,
so we only compare with CX-5 in terms of normalized connection scalability.

7CX-5 and CX-6 behave similarly, so we only show CX-6 thereafter.

10 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SRNIC
RNIC CX-6
TCP

Th
ro

ug
hp

ut
 (G

bp
s)

0

20

40

60

80

100

Message Size (Bytes)
8 16 64 256 1K 4K 16K 64K 256K 1M

(a) Throughput

Ti
m

e
to

 T
ra

ns
fe

r 6
4B

 (μ
s)

0

5

10

15

20

25

TCP RNIC CX-6 SRNIC

(b) Latency

SRNIC-Client
SRNIC-Server

RNIC CX-6-Client
RNIC CX-6-Server

C
PU

 U
til

iz
at

io
n

(%
)

2

4

6

Message Size (Bytes)
16 256 4K 64K 1M

(c) CPU overhead

Figure 10: Performance and CPU overhead. SRNIC achieves
high throughput, low latency, and low CPU overhead, similar
to CX-6.

experiments, and the performance of SRNIC over large-scale
lossy networks via simulations.
Loss tolerance. We compare the goodput of SRNIC with
CX-6 at different packet loss rates, which are emulated by
placing an FPGA between two RNICs and letting the FPGA
randomly drop packets at given rates. We use per f test to
generate 4 KB messages continuously. We disable congestion
control here to exclude the influence of congestion control on
loss tolerance, and only compare the loss recovery efficiency
between selective repeat in SRNIC and go-back-N in CX-6.

Figure 11 compares SRNIC with CX-6 in terms of goodput
under different loss rates. The goodput of CX-6 drops rapidly
when the loss rate exceeds 0.1%. In particular, the CX-6
goodput is down to 25 Gbps when the loss rate exceeds 1%.
Meanwhile, we monitor the MAC statistics counters in CX-6
and get its raw throughput of ∼97 Gbps, which indicates that
most of the RNIC bandwidth is wasted on retransmission
caused by go-back-N. The goodput of SRNIC drops much
slower than that of CX-6. When the loss rate exceeds 1%, the
goodput is still 75 Gbps, 3x higher (75 vs. 25 Gbps) than that
of CX-6.

The good loss tolerance of SRNIC comes from both the
efficiency of selective repeat and its careful software-hardware
co-designs in §4.4.2.
Performance in large-scale lossy networks. We use ns-3 to
simulate the transport behavior of SRNIC, and compare it with
CX-6 and IRN in large-scale lossy networks. We simulate

SRNIC
RNIC CX-6

G
oo

dp
ut

 (G
bp

s)

0

20

40

60

80

100

Loss Rate
10−6 10−5 10−4 10−3 10−2

Figure 11: Loss tolerance. SRNIC achieves higher goodput
than CX-6 when loss rate increases, as the number of retrans-
mitted packets with selective repeat is much fewer than that
with go-back-N.

CX-6 Avg
CX-6 Tail

IRN Avg
IRN Tail

SRNIC Avg
SRNIC Tail

FC
T

(m
s)

0
1
2
3
4
5

Server Number
16 64 256 1024 4096

(a) Average and tail FCT

CX-6 Avg
IRN Avg

SRNIC Avg

Sl
ow

do
w

n

0

2

4

6

8

Server Number
16 64 256 1024 4096

(b) Average slowdown

Figure 12: Performance at different network scales.

the fat-tree topologies with the server number ranging from
16 to 4096, with the (ToR, Aggregate, Core) switch number
varying among five settings: (1, 0, 0), (4, 4, 0), (8, 8, 0), (64,
64, 16) and (128, 128, 64). The subscription ratio is 1:1 in
all topologies. We equip each server with one 100 Gbps NIC
connected to one ToR. ToR, Aggregate, and Core switches
are connected via 400 Gbps links. The propagation delay of
each link is 1 µs.

PFC is enabled for CX-6 but disabled for SRNIC and IRN.
We use the traffic trace in Cache_Follower [36], where 53%
of the flows are sized between 0 - 100 KB, 18% between
100 KB - 1 MB, and the rest are larger than 1 MB. We set the
network load at 0.7 utilization, and configure other algorithm
parameters based on their papers.

We primarily focus on three metrics, i.e., average FCT, P99
tail FCT, and average slowdown [33]. The average FCT and
tail FCT describe the performance of throughput-intensive
flows, while the average slowdown shows the performance of
latency-sensitive flows.

As shown in Figure 12, the performance of SRNIC is
1.9 - 2.2x better than CX-6 across all three metrics. As the
cluster scale increases, SRNIC maintains stable performance,
while the performance gap between SRNIC and CX-6 widens.
Meanwhile, SRNIC and IRN perform similarly well as they
use the same loss-recovery mechanism (selective repeat) and
similar congestion control schemes (DCTCP vs. DCQCN).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 11

7 Discussion

RDMA Protocol for lossy Ethernet. The RDMA protocol
was originally designed and simplified for lossless Infiniband,
and it "does not support selective packet retransmission nor
the out-of-order reception of packets", written in the Infini-
band RDMA specification [1]. As a result, the current RDMA,
by design, requires a lossless fabric to perform well.

Based on this requirement, when RDMA is introduced into
Ethernet-based data centers, Ethernet is turned from lossy
to lossless by introducing PFC, rather than re-designing an
Ethernet-native or loss-friendly RDMA protocol.

A lossless Ethernet network, however, is inherently diffi-
cult to scale and hard to maintain for high availability. It is
therefore desirable to look into the other end of the design
spectrum: revising the RDMA protocol for a lossy network.
This is the path taken by the pioneering work of IRN [33],
and SRNIC. We hope these early attempts can inspire the
re-design of a new RDMA specification for lossy network,
which supports out-of-order packet reception and selective
packet retransmission natively and efficiently, and ensures
compatibility and interoperability among different protocol
versions and RNIC vendors.
SRNIC vs. RoCEv2, iWARP and ToE. There exists a long
debate [3, 6] between RoCE and iWARP [35] (ToE [2] is
similar to iWARP in the sense of TCP offload). The former
takes a bottom-up strategy: start from a minimal, hardware-
friendly yet working transport (e.g., go-back-0, no congestion
control) and incrementally add more advanced mechanisms
(e.g., go-back-N/selective repeat, DCQCN/DCTCP) to make
RoCE work better over various networks. The latter takes a
top-down strategy: offloading the fully-compatible TCP/IP
stack (which is already proven to work well over various net-
works at scale), and gradually reduce unnecessary complexity
to improve hardware friendliness.

SRNIC takes a more balanced approach: it inherits the hard-
ware friendliness (and thus high performance) from RoCE,
and introduces only necessary features from TCP such as
selective repeat and DCTCP.

SRNIC demonstrates that high network scalability and hard-
ware friendliness can be achieved simultaneously with careful
architecture and protocol co-designs. We believe that the best
of both RoCE (hardware friendliness) and iWARP/TCP (high
network scalability) can coexist as we have shown in SRNIC.

8 Related Work

Several works [30,32,42] aim at improving RDMA’s network
scalability via bringing advanced congestion control algo-
rithms to RNICs.They control the queue length at switches
and thus improve RDMA’s performance at scale. Note that
these works are orthogonal to ours and can be integrated into
SRNIC if they are hardware-friendly.

Mellanox tries to improve RNIC’s connection scalability
via DCT [17] technology, which restricts the number of ac-
tive connections and avoids QP exhaustion via dynamically
creating and destroying QPs. However, such behavior may
cause frequent flips of connections, resulting in increased la-
tency and bandwidth waste [27]. StaR [39] improves RNIC’s
connection scalability at one side by letting the other side
save states for it. However, this strategy highly relies on the
asymmetric communication pattern, where the client with low
concurrency can share its resources with the server with high
concurrency, to improve the overall connection scalability.

Other software based transport solutions or DPDK-style
NICs, e.g., eRPC [24], FaSST [27], 1RMA [38], and Ni-
tro [37], expect NICs to provide scalable connection-less
service including packet transmission and reception, and lever-
age CPU to implement connection-related semantics. In these
solutions, it is the CPU’s responsibility to handle most of the
transport-related tasks, including packet order maintenance,
congestion control, and loss recovery. Though the scalabili-
ties of these approaches are comparable to the software trans-
port TCP, the heavy involvement of CPU results in higher
CPU overhead, higher latency, and higher jitter than that of
hardware-based transport. In contrast, SRNIC handles almost
everything in hardware but leaves only part of retransmission
in software, resulting in hardware-level performance in most
cases when there is no packet loss, and software-level loss
tolerance when packet loss happens.

9 Conclusion

This paper presents the design and implementation of SRNIC,
a scalable RDMA NIC architecture, which addresses the con-
nection scalability challenge, while achieving high network
scalability, high performance, and low CPU overhead at the
same time. Our key insight in SRNIC is to minimize RNIC’s
memory requirement, by eliminating as many on-chip data
structures as possible in a simple yet performant way. Guided
by this insight, we make a few RDMA protocol header exten-
sions and architectural innovations to achieve the design goal.
Our experiences in SRNIC tell us that existing RDMA header
formats originally designed for a lossless environment, are
not suitable for much large-scale, lossy data center networks.
SRNIC therefore is our first attempt towards more scalable
and performant, next-generation RoCE/RDMA designs.

Acknowledgments

We would like to thank our anonymous reviewers and shep-
herd Yashar Ganjali for their valuable comments. This work
is supported in part by the Key-Area Research and Develop-
ment Program of Guangdong Province (2021B0101400001),
the Hong Kong RGC TRS T41-603/20-R, GRF-16215119,
GRF-16213621, ITF ACCESS, the NSFC Grant 62062005,
and a joint HKUST-ByteDance research project.

12 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Infiniband architecture volume 1, general specifications,
release 1.2.1. www.infinibandta.org/specs, 2008.

[2] Information about the TCP Chimney Offload,
Receive Side Scaling, and Network Direct
Memory Access features in Windows Server
2008. https://docs.microsoft.com/en-us/
troubleshoot/windows-server/networking/
information-about-tcp-chimney-offload-rss-
netdma-feature, 2008.

[3] The pitfalls in RoCE answered with respect to
iWARP. https://www.chelsio.com/wp-content/
uploads/2011/05/RoCE-FAQ-1204121.pdf, 2011.

[4] Supplement to InfiniBand architecture specification
volume 1 release 1.2.2 annex A17: RoCEv2 (IP
routable RoCE). https://www.infinibandta.org/
specs, 2014.

[5] RDMA in Data Centers: Looking Back and Looking For-
ward. https://conferences.sigcomm.org/events/
apnet2017/slides/cx.pdf, 2017.

[6] RoCE vs. iWARP competitive analysis.
https://network.nvidia.com/sites/default/
files/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf,
2017.

[7] Mellanox ConnectX-5 Product Brief. https:
//network.nvidia.com/files/doc-2020/pb-
connectx-5-en-card.pdf, 2020.

[8] Mellanox ConnectX-6 Product Brief. https:
//network.nvidia.com/sites/default/files/
doc-2020/pb-connectx-6-en-card.pdf, 2020.

[9] Microsoft Bing. https://www.bing.com/, 2020.

[10] Network Simulator 3. https://www.nsnam.org/,
2021.

[11] OFED Perftest. https://github.com/linux-rdma/
perftest/, 2021.

[12] Mellanox NEO-Host. https://
support.mellanox.com/s/productdetails/
a2v50000000N2OlAAK/mellanox-neohost, 2022.

[13] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: A system for large-scale machine learning.
In Proc. OSDI, 2016.

[14] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
tcp (dctcp). In Proc. SIGCOMM, 2010.

[15] Luiz André Barroso, Jeffrey Dean, and Urs Holzle. Web
search for a planet: The google cluster architecture.
IEEE Micro, 2003.

[16] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei
Li, Wenjie Wu, Linqiang Ouyang, Peng Wang, Yijing
Wang, Ray Kuan, et al. POLARDB meets computa-
tional storage: Efficiently support analytical workloads
in Cloud-Native relational database. In Proc. FAST,
2020.

[17] Diego Crupnicoff, Michael Kagan, Ariel Shahar, Noam
Bloch, and Hillel Chapman. Dynamically-connected
transport service, July 3 2012. US Patent 8,213,315.

[18] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, et al. When cloud storage meets
RDMA. In Proc. NSDI, 2021.

[19] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. Rdma
over commodity ethernet at scale. In Proc. SIGCOMM,
2016.

[20] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, et al. Pingmesh: A large-scale
system for data center network latency measurement
and analysis. In Proc. SIGCOMM, 2015.

[21] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Tagger: Prac-
tical pfc deadlock prevention in data center networks.
In Proc. CoNEXT, 2017.

[22] IEEE. 802.1 qbb—priority-based flow control. 2008.

[23] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed DNN training in heterogeneous
GPU/CPU clusters. In Proc. OSDI, 2020.

[24] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In Proc. NSDI,
2019.

[25] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using rdma efficiently for key-value services. In Proc.
SIGCOMM, 2014.

[26] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design guidelines for high performance RDMA systems.
In Proc. ATC, 2016.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 13

www.infinibandta.org/specs
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/information-about-tcp-chimney-offload-rss-netdma-feature
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/information-about-tcp-chimney-offload-rss-netdma-feature
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/information-about-tcp-chimney-offload-rss-netdma-feature
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/information-about-tcp-chimney-offload-rss-netdma-feature
https://www.chelsio.com/wp-content/uploads/2011/05/RoCE-FAQ-1204121.pdf
https://www.chelsio.com/wp-content/uploads/2011/05/RoCE-FAQ-1204121.pdf
https://www.infinibandta.org/ specs
https://www.infinibandta.org/ specs
https://conferences.sigcomm.org/events/apnet2017/slides/cx.pdf
https://conferences.sigcomm.org/events/apnet2017/slides/cx.pdf
https://network.nvidia.com/sites/default/files/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf
https://network.nvidia.com/sites/default/files/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://network.nvidia.com/sites/default/files/doc-2020/pb-connectx-6-en-card.pdf
https://network.nvidia.com/sites/default/files/doc-2020/pb-connectx-6-en-card.pdf
https://network.nvidia.com/sites/default/files/doc-2020/pb-connectx-6-en-card.pdf
https://www.bing.com/
https://www.nsnam.org/
https://github.com/linux-rdma/perftest/
https://github.com/linux-rdma/perftest/
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost

[27] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (RDMA) datagram rpcs. In Proc. OSDI,
2016.

[28] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding performance anomalies in RDMA subsystems.
In Proc. NSDI, 2022.

[29] Feng Li, Sudipto Das, Manoj Syamala, and Vivek R
Narasayya. Accelerating relational databases by lever-
aging remote memory and rdma. In Proc. SIGMOD,
2016.

[30] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. Hpcc:
High precision congestion control. In Proc. SIGCOMM.
2019.

[31] Yuanwei Lu, Guo Chen, Zhenyuan Ruan, Wencong
Xiao, Bojie Li, Jiansong Zhang, Yongqiang Xiong, Peng
Cheng, and Enhong Chen. Memory efficient loss recov-
ery for hardware-based transport in datacenter. In Proc.
APNet, 2017.

[32] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin Vah-
dat, Yaogong Wang, David Wetherall, and David Zats.
Timely: Rtt-based congestion control for the datacenter.
In Proc. SIGCOMM, 2015.

[33] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting network support for rdma. In
Proc. SIGCOMM, 2018.

[34] Kun Qian, Wenxue Cheng, Tong Zhang, and Fengyuan
Ren. Gentle flow control: avoiding deadlock in lossless
networks. In Proc. SIGCOMM. 2019.

[35] Renato Recio, Bernard Metzler, Paul Culley, Jeff Hil-
land, and Dave Garcia. A remote direct memory access
protocol specification. Technical report, RFC 5040, Oc-
tober, 2007.

[36] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C Snoeren. Inside the social network’s (data-
center) network. In Proc. SIGCOMM, 2015.

[37] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sab-
bag. A cloud-optimized transport protocol for elastic
and scalable hpc. IEEE Micro, 2020.

[38] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F
Wenisch, Monica Wong-Chan, Sean Clark, Milo MK
Martin, Moray McLaren, Prashant Chandra, Rob Cauble,

et al. 1rma: Re-envisioning remote memory access for
multi-tenant datacenters. In Proc. SIGCOMM, 2020.

[39] Xizheng Wang, Guo Chen, Xijin Yin, Huichen Dai, Bo-
jie Li, Binzhang Fu, and Kun Tan. Star: Breaking the
scalability limit for rdma. In Proc. ICNP, 2021.

[40] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
FileMR: Rethinking RDMA networking for scalable
persistent memory. In Proc. NSDI, 2020.

[41] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-resolution measurement of data
center microbursts. In Proc. IMC, 2017.

[42] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale rdma deploy-
ments. In Proc. SIGCOMM, 2015.

[43] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Förster, Arvind Krishnamurthy, and Thomas An-
derson. Understanding and mitigating packet corruption
in data center networks. In Proc. SIGCOMM, 2017.

14 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Hostping: Diagnosing Intra-host Network Bottlenecks
in RDMA Servers

Kefei Liu†, Zhuo Jiang§, Jiao Zhang†‡∗, Haoran Wei†§, Xiaolong Zhong†,
Lizhuang Tan§, Tian Pan†‡ and Tao Huang†‡

†BUPT ‡Purple Mountain Laboratories
§ByteDance Inc.

Abstract
Intra-host networking was considered robust in the RDMA
(Remote Direct Memory Access) network and received lit-
tle attention. However, as the RNIC (RDMA NIC) line rate
increases rapidly to multi-hundred gigabits, the intra-host net-
work becomes a potential performance bottleneck for network
applications. Intra-host network bottlenecks may result in de-
graded intra-host bandwidth and increased intra-host latency,
which can severely impact network performance. However,
when intra-host bottlenecks occur, they can hardly be no-
ticed due to the lack of a monitoring system. Furthermore,
existing bottleneck diagnosis mechanisms fail to diagnose
intra-host bottlenecks efficiently. In this paper, we analyze
the symptom of intra-host bottlenecks based on our long-
term troubleshooting experience and propose Hostping, the
first bottleneck monitoring and diagnosis system dedicated to
intra-host networks. The core idea of Hostping is conducting
loopback tests between RNICs and endpoints within the host
to measure intra-host latency and bandwidth. Hostping not
only discovers intra-host bottlenecks we already knew but
also reveals six bottlenecks we did not notice before.

1 Introduction

RDMA has been applied to many applications [14] [17] [28]
[30] [42] [46] in data centers to achieve high throughput
and ultra-low latency. As the last hop of network commu-
nication, intra-host networking can significantly impact the
performance of network applications. However, the intra-host
network is far from flawless, and intra-host bandwidth may
degrade due to sudden link failures or occupation by other
traffic. Previously, the intra-host bandwidth was much greater
than the RNIC line rate (e.g., ~63 Gb/s PCIe Gen 3 x8 for 25
Gb/s RNIC), providing sufficient bandwidth redundancy for
RNIC traffic. Therefore, the intra-host network rarely became

The first two authors contributed equally to this paper. This work is done
while Kefei Liu, Haoran Wei, and Xiaolong Zhong are doing a joint research
project at ByteDance. (∗Jiao Zhang is the corresponding author.)

an obstacle to network communication, and bottlenecks in the
host network received little attention.

However, bottlenecks in the host network are on the rise.
With the increasing demand for high throughput and ultra-low
latency, the RNIC line rate increases rapidly (from 25 Gb/s
to 200 Gb/s). In contrast, the intra-host bandwidth does not
improve equally (e.g., PCIe bandwidth increases from ~63
Gb/s to ~252 Gb/s). As a result, when intra-host bandwidth de-
grades, traffic on the RNIC is more likely to be throttled. What
is worse, both the topology and traffic patterns within the host
become much more complicated, making bandwidth degra-
dation caused by sudden link failures or traffic contention
happens more frequently. Besides, as intra-host services be-
come more complex, configuration items in the host also
increase considerably, leading to a high probability of miscon-
figurations. Some of them, such as enabling Access Control
Service, will redirect GDR (GPU Direct RDMA) traffic to the
CPU, leading to a drastic increase in intra-host latency and
severe degradation of intra-host bandwidth.

Intra-host bottlenecks 1 may significantly degrade network
performance. In our distributed machine learning system,
one single intra-host bottleneck can significantly degrade the
whole system and may even block the training process. This
phenomenon is common in our data center. When it occurs,
operators may need hours to days to diagnose the root cause.

Why do intra-host bottlenecks have such a severe impact? If
the intra-host bandwidth is lower than the RNIC receiving rate,
the RNIC receive buffer may accumulate or even be saturated.
When this occurs in a lossy environment (without PFC) [39],
RNIC may drop packets. Since RDMA is vulnerable to packet
drops, even a low drop rate will result in drastic throughput
degradation [24]. While in a lossless environment, RNIC will
send PFC pause frames (Tx pause frames) to the upstream
switch’s egress port to stop its traffic. If the RNIC sends pause
frames continually, it may eventually lead to a PFC storm
[21] [24] [36], which may bring down the whole network.

1In the following, we use "intra-host bottleneck" as the bottleneck in the
host network and "network bottleneck" as the bottleneck in the inter-host
network, i.e., switches and cables.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 15

Therefore, when an intra-host bottleneck occurs, it should be
discovered, diagnosed, and resolved as soon as possible.

However, due to the lack of an efficient intra-host bottle-
neck monitoring system, bottlenecks can hardly be noticed
when they occur. When customers complain to the network
team about performance degradation, the upper layer service
usually has been severely influenced by the bottleneck. In
addition, the phenomena caused by intra-host and network
bottlenecks may be similar. Thus, when network performance
degrades, operators need first to judge whether the host or the
network should be blamed. Furthermore, when finding the
bottleneck lies in the host, operators need to log in to the host,
execute a series of test cases and conduct some profiling tools
to infer the bottleneck. The whole process is time-consuming.
What is worse, existing profiling tools could only be used for
specific devices, such as Intel PCM [2] for Intel CPUs, AMD
uProf [1] for AMD CPUs, and Nvidia SMI [9] for Nvidia
GPUs. As each host may have devices from different ven-
dors, operators may need different toolsets for each diagnosis,
which brings additional learning and execution overhead.

To solve the limitations above, we propose Hostping, the
first bottleneck monitoring and diagnosing system dedicated
to intra-host networks. It could be deployed on all RDMA
servers with low overhead and adapt to devices from differ-
ent vendors. When intra-host bottlenecks occur, Hostping
could quickly discover them and automatically diagnose their
root causes. Thus, when network performance degrades, we
can rapidly judge whether the host or the network should be
blamed.

We need to address three challenges to achieve these design
targets. Firstly, we need to find and measure metrics that
could effectively discover and diagnose intra-host bottlenecks.
Secondly, we need to keep responsive to intra-host bottlenecks
with low overhead. Finally, we need to efficiently diagnose
intra-host bottlenecks based on measured data.

Based on our long-term troubleshooting experience, we
realized that leveraging intra-host bandwidth and latency as
metrics could effectively discover and diagnose most intra-
host bottlenecks. This guides the core idea of Hostping: con-
duct loopback tests between RNICs and endpoints (GPUs and
memory nodes [33]) within the host to measure intra-host
latency and bandwidth. By registering memory regions in
different endpoints, Hostping could evaluate the latency and
bandwidth of any intra-host path that a message received by
an RNIC can take. To keep Hostping responsive to intra-host
bottlenecks without degrading application performance, we
design a hardware monitor to determine when to launch it.
Finally, we propose an efficient diagnosing mechanism that
could effectively identify the root cause of intra-host bottle-
necks even under the interference of service traffic on RNICs.

We evaluate Hostping on over 300 servers in our distributed
machine learning system. During the deployment, Hostping
not only discovers intra-host bottlenecks we already knew but
also reveals six bottlenecks we did not notice before, such

as CPU root port failures and memory channel flapping. To
summarize, this paper makes the following contributions:

• We analyze the symptom of intra-host network bottlenecks
based on our long-term troubleshooting experience and
realize that most intra-host bottlenecks have one or both of
the following symptoms: intra-host bandwidth degradation
and intra-host latency increase.

• We design Hostping, the first bottleneck monitoring and
diagnosing system dedicated to intra-host networks.

• We propose an efficient diagnosing mechanism that could
effectively identify the root cause of intra-host bottlenecks
even under the interference of service traffic on RNICs.

2 Background & Motivation

2.1 Intra-host Bottlenecks
When sending/receiving a message, the RNIC will read/write
it from/to an intra-host endpoint (e.g., memory node, GPU)
through multi-hops in the host network, such as PCIe links,
memory channels, and inter-socket buses (e.g., Intel QPI
[51]/UPI [11] and AMD xGMI [12]). We refer to the round-
trip latency and the maximum available bandwidth between
the RNIC and the endpoint as intra-host latency and intra-
host bandwidth2, respectively.

Previously, intra-host bandwidth was much greater than the
RNIC line rate, providing sufficient bandwidth redundancy.
Therefore, the host rarely became an obstacle to network com-
munication, and intra-host bottlenecks received little attention.
In recent years, with the increasing demand for high through-
put and ultra-low latency from applications, the RNIC line
rate has increased rapidly. In contrast, the intra-host band-
width does not improve equally. As a result, when intra-host
bandwidth degrades due to link failures or contention from
other intra-host traffic, it is more likely to trigger network
performance degradation.

What is worse, both the topology and traffic patterns within
the host become much more complex, making the intra-host
bandwidth degradation commonplace [13] [16] [19] [35] [37].
To satisfy the ever-increasing demand for computation capa-
bility, more GPUs and RNICs are integrated into one single
host. For example, the latest Nvidia DGX-A100 [5] server
incorporates 8 Nvidia A100 GPUs and 4 Mellanox 200 Gb/s
RNICs. This leads to much more complicated intra-host traf-
fic patterns and more bandwidth contention. In addition, as
the number of root ports [43] on the CPU socket is limited,
more PCIe switches are required to interconnect these devices.
As a result, the intra-host topology becomes more complex,
leading to more frequent intra-host link failures.

2It could be further divided into sending bandwidth from the endpoint
to the RNIC and receiving bandwidth from the RNIC to the endpoint. If
not explicitly mentioned, it indicates the minimum value of the sending and
receiving bandwidth.

16 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Furthermore, as intra-host services become more compli-
cated, configuration items in the host also increase consid-
erably, leading to a high probability of misconfigurations.
Among them, some misconfigurations may lead to severe
intra-host bottlenecks. For example, ACS (Access Control
Service) is a PCIe configuration used in IO virtualization.
GDR is a widely used communication method in machine
learning, which uses the GPU to communicate directly with
the RNIC without any involvement of the CPU and host mem-
ory. However, all GDR traffic will be redirected to the CPU
with ACS enabled, leading to a drastic increase in intra-host
latency and severe degradation of intra-host bandwidth.

2.2 The Impact of Intra-host Bottlenecks

When bottlenecks appear in the host, the intra-host bandwidth
may be lower than the RNIC receiving rate, and the RNIC
receive buffer may accumulate. If the receive buffer is satu-
rated in a lossy environment (without PFC) [39], the RNIC
will drop packets. Since RDMA is vulnerable to packet drops,
even a low drop rate will result in drastic throughput degrada-
tion [24]. While in a lossless environment, when the RNIC
receive buffer exceeds a threshold, it will send pause frames
to the upstream switch’s egress port to stop its traffic. If the
RNIC sends pause frames continually, it may finally lead to a
PFC storm, which may bring down the whole network.

One single intra-host bottleneck may significantly degrade
the distributed machine learning system. To achieve better
training performance, developers aggregate more and more
servers in a distributed system. However, this leads to more
frequent performance bottlenecks. In data-parallel training,
before updating the neural network parameters, all involved
GPUs need to aggregate their local gradients [16] [28] [45]. In
this process, GPUs may communicate in one or several rings
[22] [38] [41] consisting of intra-host links (e.g., NVLinks [8],
PCIe links) and network links to achieve optimal bandwidth
utilization. This ring-based communication is extremely sen-
sitive to network and intra-host bottlenecks. A single RNIC
suffering from degraded intra-host bandwidth may signifi-
cantly slow down the aggregation process of the whole system.
We conducted a ring-based nccl all-reduce test [7] with eight
hosts, and each host has a 200 Gb/s RNIC for network commu-
nication. Fig.1 shows the throughput of each host during the
test. In this scenario, an RNIC’s PCIe link has degraded band-
width due to a link failure, leading to a slow sending/receiving
rate. As a result, the throughput for all the hosts drops drasti-
cally to 50 Gbps (~70% lower than the ideal).

Frequent intra-host bottlenecks bring more challenges for
performance bottleneck diagnosis. When packet drops or
bandwidth degradation occur on a path, how to diagnose the
root cause? This problem generally lies in the network when
few intra-host bottlenecks appear, and operators only need
to check each link and switch on the path in sequence. How-
ever, as intra-host bottlenecks occur much more frequently,

0 120 240 360 480
Time Stamp (s)

50

100

150

200

T
hr

ou
gh

pu
t(

G
bp

s)

Figure 1: One single bottleneck degrades the throughput of
the entire machine learning system by 70%. The upper lines
are ideal, and the lower lines are abnormal. The throughput
of each host is calculated every 30 seconds.

the same phenomenon may also be caused by the degraded
intra-host bandwidth. As a result, operators must first dis-
tinguish whether the host or the network should be blamed,
which brings more challenges for bottleneck diagnosis.

2.3 Limitations of Existing Intra-host Bottle-
neck Diagnosis Mechanisms

When an intra-host bottleneck occurs, it must be discovered,
diagnosed, and resolved as soon as possible. Unfortunately,
as far as we know, there are currently no monitoring and
diagnosing systems dedicated to the host network in data
centers, and intra-host bottleneck diagnosis is inefficient.
Unresponsive. When bottlenecks occur in a host, they can
hardly be noticed in time due to the lack of an efficient intra-
host bottleneck monitoring system. However, when customers
(e.g., the machine learning team) complain to the network
team about performance degradation, the upper layer service
has usually been severely influenced. Thus, operators require
a responsive monitoring system to quickly discover intra-host
bottlenecks, avoiding application performance degradation.
Time-consuming. When a system suffers from degraded per-
formance, operators usually need to run benchmark tests, such
as perftest [10] and nccl-test [7], to narrow down the prob-
lem. However, these tests reflect “end-to-end” performance,
including senders, networks, and receivers. Thus, they cannot
quickly determine whether the bottleneck occurs in the net-
work or the host. When finding the bottleneck lies in the host,
root cause diagnosis is still challenging due to the complex
intra-host topology. Operators need to log in to the host, exe-
cute a series of test cases, and conduct some profiling tools to
evaluate all intra-host links. The entire process above needs
to be conducted manually, which is time-consuming.
Fragmented. When an intra-host link has anomalous per-
formance, operators may need to run some profiling tools
to determine whether the link is occupied by other traffic.
However, these tools are usually vendor-specific, such as Intel
PCM for Intel CPUs, AMD uProf for AMD CPUs, Nvidia
SMI for Nvidia GPUs, and Mellanox Neohost [4] for Mel-
lanox RNICs. Unfortunately, each host in data centers may
have a different combination of equipment, such as different

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 17

network adapters (Mellanox, Broadcom, or Intel), different
CPUs (Intel or AMD), and different GPUs (Nvidia or AMD).
As a result, when diagnosing bottlenecks in the host, operators
need to utilize different combinations of tools, which brings
additional learning and execution overhead.

2.4 Targets of Hostping
Considering the limitations above, we desire to develop a
dedicated intra-host bottleneck monitoring and diagnosing
system, which could be deployed on all RDMA servers with
little overhead and adapt to devices from different vendors.
When intra-host bottlenecks appear, the system can quickly
discover them and automatically diagnose their root causes.
Thus, when network performance degrades, we can rapidly
judge whether the bottleneck lies in the host or the network.
In conclusion, this system should have the following charac-
teristics:

• Responsiveness: It should quickly discover intra-host bot-
tlenecks and diagnose their root causes.

• Deployability: It should be implementable with commodity
hardware.

• Scalability: It should be compatible with equipment from
different vendors.

• Lightweight: It should have negligible interference with
services in the host.

3 Hostping Overview

In this section, we will first introduce the challenges we should
address to achieve the targets of Hostping (3.1). Then we
will analyze the symptoms of intra-host network bottlenecks
based on our long-term troubleshooting experience, which
guides the core idea of Hostping (3.2). Finally, we will briefly
illustrate the framework of Hostping (3.3).

3.1 Challenges
To realize the targets of Hostping, there are three main chal-
lenges to be solved:
Find and measure metrics that could effectively discover
and diagnose intra-host bottlenecks. As the topology and
traffic patterns within the host become much more complex,
the root causes of intra-host performance bottlenecks are het-
erogeneous. We need to find some unified metrics that could
effectively uncover intra-host bottlenecks and precisely infer
their root causes. Besides, since the intra-host network is like
a black box, measuring these metrics with high accuracy is
also challenging.
Be responsive to intra-host bottlenecks with low overhead.
Diagnosing intra-host performance bottlenecks requires eval-
uating all the links in the host. Due to the complexity of the

host topology, this is not an easy task and will have a non-
negligible impact on the applications within the host. For
example, active probing consumes CPU memory, GPU video
memory, and bus bandwidth. How can we quickly perceive
intra-host bottlenecks with low overhead to the performance
of applications running in the host?
Effectively diagnose intra-host performance bottlenecks
based on measured data. During the operation of Hostping,
we will collect many performance data through active probing
and monitoring. However, the complex intra-host topology
makes it challenging to infer intra-host bottlenecks from scat-
tered data. Besides, the data measured by active probing may
be influenced by the service traffic on the RNIC. In this sce-
nario, the degraded performance data does not necessarily
mean the emergence of an intra-host bottleneck. We need to
find an efficient bottleneck diagnosis mechanism to determine
whether there is an intra-host bottleneck and find its root cause
effectively based on scattered performance data.

3.2 Symptoms of Intra-host Bottlenecks

As mentioned above, intra-host bottlenecks are varied. How to
use the least number of metrics to uncover most intra-host bot-
tlenecks? Based on our long-term troubleshooting experience,
we realize that although different root causes may be blamed,
most intra-host bottlenecks have one or both of the following
symptoms: intra-host bandwidth degradation and intra-
host latency increase. Furthermore, leveraging intra-host
bandwidth and latency as metrics could effectively discover
and diagnose most intra-host bottlenecks. This guides the core
idea of Hostping: conduct loopback tests between RNICs and
endpoints within the host to measure intra-host latency and
bandwidth. Next, we will introduce these two symptoms and
their possible causes.

3.2.1 Bandwidth Degradation

Intra-host bandwidth degrades when an intra-host link is failed
or is occupied by other traffic in the host. The RNIC receive
buffer will accumulate when the intra-host bandwidth is lower
than the RNIC receiving rate. If this situation continues, it will
finally trigger packet drops (in lossy environments) or PFC
pause frames (in lossless environments), leading to severe
network performance degradation.

As the host topology becomes more complicated, the pos-
sibility of link failures in the host boosts. In addition, due to
the large number of data center hosts, even if link failures are
unusual on a particular host, they frequently occur throughout
the data center. We encounter abnormal servers even daily
in severe cases. What is worse, the locations of failures are
varied, requiring a great deal of time for debugging. The host
topology inside one of our most used training machines is
shown in Fig.2, which has two Intel Xeon CPUs connected
through Intel UPI (Intel UltraPath Interconnect). Each CPU

18 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: The host topology in one of our most used training
machines. ¶-¹ show the GDR distance between an RNIC
and a GPU. ¬-° show the link failures we encountered in
practice, and ± shows intra-host bandwidth degradation due
to bandwidth contention.

root complex [43] is attached with four Nvidia A100 GPUs3

and two Mellanox CX6-DX 200 Gb/s RNICs through multi-
ple PCIe switches. As shown in Fig.2, we have encountered
failures of ¬ RNIC PCIe links, ­ GPU PCIe links, ® CPU
root ports, ¯ memory channels, and ° UPI in practice. Some
issues cannot be detected via static commands such as lspci
and can only be discovered through benchmark tests.

Furthermore, services in the host are becoming more com-
plicated, leading to more bandwidth contention. When the
host bandwidth is occupied by other traffic, traffic on the
RNIC may be congested (Fig.2 ±). Here, we give two practi-
cal examples. First, as RDMA devices are far from flawless,
TCP and RDMA traffic may co-exist in the same host to meet
high availability and a Service-Level Agreement [21]. How-
ever, the processing of TCP in the Linux kernel may consume
a lot of memory bandwidth, leading to a slow receiving rate
for RDMA traffic. Besides, in the training scenario, a physical
machine is usually split into multiple Virtual Machines (VMs)
to fully utilize host resources. In this case, communication
between two VMs in the same host may trigger loopback
traffic, which consumes the RNIC PCIe bandwidth and slows
down the receiving rate from other hosts [32]. As shown in
Fig.3, both link failures and bandwidth contention may throt-
tle RNIC throughput and trigger a large number of PFC pause
frames.

3.2.2 Latency Increase

When sending/receiving a message, the RNIC will read/write
it from/to an endpoint (e.g., memory node, GPU) through
multi-hops in the host network, such as PCIe links, memory
channels, and inter-socket buses. We refer to the round-trip
latency from the RNIC receive buffer to the endpoint as intra-
host latency. Intra-host latency increases when there are too

3GPUs are connected via NVLinks and NVSwitches [8] for intra-host
GPU-to-GPU communication (not shown in Fig.2).

PCIe downgrade Normal
0

50

100

150

200

T
hr

ou
gh

pu
t(

G
bp

s)

67.0

197.0

Throughput Pause Duration Ratio

0
5
10
15
20
25
30
35
40

Pa
us

e
D

ur
at

io
n

R
at

io
(%

)35.7

0.0

Traffic contention Normal
0

50

100

150

200

T
hr

ou
gh

pu
t(

G
bp

s)

150.0

197.0

Throughput Pause Duration Ratio

0
5
10
15
20
25
30
35
40

Pa
us

e
D

ur
at

io
n

R
at

io
(%

)

24.7

0.0

Figure 3: Both link failures (¬-°) and bandwidth contention
(±) will lead to intra-host bandwidth degradation, which may
throttle RNIC throughput and trigger a large number of PFC
pause frames.

Distance 1 Distance 3 Distance 40.0

0.5

1.0

1.5

2.0

2.5

H
os

tL
at

en
cy

(u
s)

1.0

2.2
2.4

Distance 1 Distance 3 Distance 40

50

100

150

200

T
hr

ou
gh

pu
t(

G
bp

s)

195.0

125.5 116.4

Figure 4: As the GDR read distance increases (from ¶ to ¹),
the intra-host latency rises, especially when going through
the CPU root complex. Accordingly, the throughput degrades
due to limited outstanding read request TLPs.

many hops between the RNIC and the endpoint. High intra-
host latency hurts application latency and may significantly
degrade intra-host bandwidth. When an RNIC needs to read
from an endpoint, it sends PCIe read request TLPs (Trans-
action Layer Packets) [34] to the endpoint, and the endpoint
will respond data to the RNIC after receiving the request.
Therefore, when intra-host latency increases, the RNIC needs
to send more read requests to sustain the line rate. However,
RNICs limit the maximum outstanding read requests. As a
result, intra-host bandwidth degrades when intra-host latency
increases significantly.

Next, we leverage GDR traffic to illustrate the impact of
high intra-host latency on intra-host bandwidth. GDR has
been widely used in data centers to improve training perfor-
mance in distributed machine learning systems. With GDR,
the RNIC can write and read GPU video memory directly
without using host memory, effectively improving the intra-
host latency and intra-host bandwidth. However, GDR suffers
from high latency when traffic traverses the CPU root com-
plex. As shown in Fig.2, there are four types of communica-
tion distances between an RNIC and a GPU: ¶ traversing a
single PCIe switch, · traversing multiple PCIe switches with-
out traversing the CPU root complex, ¸ traversing the CPU
root complex without traversing the UPI, and ¹ traversing
the UPI.

In the experiment, we use GDR read to test the impact
of different communication distances on intra-host latency
and bandwidth. We leverage Mellanox Neohost to measure

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 19

Figure 5: The core idea of Hostping: conduct loopback tests
between RNICs and endpoints (GPUs and memory nodes)
within the host to measure intra-host latency and bandwidth.

the intra-host latency. Since the latency of ¶ and · is al-
most the same, we only compare the intra-host latency and
the GDR bandwidth of ¶, ¸, and ¹ in the experiment. As
shown in Fig.4, when the RNIC communicates with the clos-
est GPU (distance ¶), the host latency is 1 µs, and the RNIC
can achieve almost the line rate. For distance ¸, when GDR
packets need to pass through the CPU root complex, the host
latency rises dramatically to 2.2 µs, and the throughput drops
sharply to 125.5 Gbps. As for distance ¹, traversing the UPI
bus brings an additional 200 ns delay, and the throughput
degrades to 116.4 Gbps. Just 1.4 µs of additional intra-host
latency results in a 40% drop in intra-host bandwidth.

3.3 Framework of Hostping

As shown in Fig.5, the core idea of Hostping is conducting
loopback tests between RNICs and endpoints within the host
to measure intra-host latency and bandwidth and leveraging
the measured data to infer intra-host bottlenecks. Hostping is
implemented based on commodity RNICs. Thus, it could run
on all RDMA servers in data centers.

In the loopback test, the RNIC will read messages from one
endpoint to its buffer and then write them back directly. In
this process, all communication occurs inside the host without
any network participation. Therefore, we could leverage the
loopback latency and bandwidth to reflect intra-host latency
and bandwidth. Furthermore, by conducting loopback tests
between an RNIC and all endpoints in the host, we could
evaluate the latency and bandwidth of all intra-host paths that
a message received by the RNIC can take. When network per-
formance degrades, if RNICs find no anomalies in loopback
tests, we infer that the bottleneck occurs in the network. On
the contrary, when the loopback test to an endpoint shows
anomalous results, we confirm that a bottleneck exists on the
path between the RNIC and the endpoint.

Fig.6 shows the framework of Hostping. The Hostping
agent is deployed on RDMA servers and consists of three
components: hardware monitor, Hostping engine, and data
analyzer. The Hostping engine implements the core logic of
Hostping and consists of two functions: (1) leverage RNICs
to measure intra-host latency and bandwidth; (2) monitor
bus utilization (PCIe links, inter-socket buses, and memory

Figure 6: The framework of Hostping.

channels). The hardware monitor judges when to run the
Hostping engine based on host status and abnormal metrics on
RNICs. The data analyzer is responsible for diagnosing intra-
host bottlenecks based on the data collected by the Hostping
engine. All these modules will upload the information they
collect to the cloud, which will be the basis for subsequent
bottleneck diagnosis.

4 Hostping Design

In this section, we will first illustrate the functions of the
Hostping engine and how to measure intra-host latency &
bandwidth with the loopback test (4.1). Then, we will intro-
duce how to utilize the hardware monitor to keep Hostping
highly responsive to intra-host bottlenecks with low overhead
(4.2). Finally, we will present how to diagnose intra-host bot-
tlenecks with the data analyzer (4.3).

4.1 Hostping Engine
4.1.1 Measure Intra-host Latency & Bandwidth

Next, we will illustrate how to measure intra-host latency
and bandwidth in the Hostping engine. Fig.7 demonstrates
the process of the loopback test. First, the Hostping engine
leverages ibv_reg_mr [3] to register two memory regions
(read and write) in an endpoint for sending and receiving,
respectively. Next, the Hostping engine uses ibv_post_send
[3] to post a write WQE (Work Queue Element. Tell the RNIC
to read the message of a specified size from the read region
and write it to the write region) and doorbell the RNIC to
fetch the WQE. Then the RNIC will send a request to read the
message from the read region. Since the receiver is the same
RNIC as the sender, the RNIC will directly write the message
back to the write region instead of sending it to the network.
Finally, after all PCIe write packets are sent out, the RNIC will
generate a completion notification and inform the Hostping
engine that the transmission is finished. By measuring the
span between the call of ibv_post_send and the polling of
completion, the Hostping engine could figure out the loopback
latency. Moreover, by registering memory regions in different
endpoints, we could get the loopback latency between the

20 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: The process of the loopback test. Hostping engine
figures out loopback latency by measuring the span between
the call of ibv_post_send and the polling of completion.

RNIC and any intra-host endpoint. The measured loopback
latency could be approximated4 as follow:

Lat = Tproc +Lathost +
Size

BWhost
(1)

Tproc contains two periods: (1) the duration between the
call of ibv_post_send in the Hostping engine and the RNIC
sending the first read request, and (2) the duration between
the RNIC sending out all the PCIe write packets and the CPU
polling the completion. The intra-host bandwidth (BWhost)
is determined by the minimum bandwidth in PCIe read and
write. Besides, the measured latency also includes intra-host
latency (Lathost). When we leverage a small message, the
measured latency is close to:

lim
size→0

Lat = Tproc +Lathost (2)

It is hard to measure Tproc on commodity RNICs. Never-
theless, Tproc generally remains the same when the RNIC is
underutilized and does not suffer from intra-host bottlenecks.
In this case, we could leverage the change of small message la-
tency to reflect the variation of intra-host latency. Thus, when
the measured latency of a small message increases drastically,
we could infer that there is an intra-host bottleneck leading to
abnormal intra-host latency. On the contrary, when we use a
very large message, the measured latency is close to:

lim
size→∞

Lat =
Size

BWhost
(3)

Then the latency reflects intra-host bandwidth. Actually,
we do not need to use a very large message in practice. We
could use the difference between the latency of large and
small messages (Equation 1 - Equation 2) to obtain Equation
3. In practice, our large message size is 128K bytes for 200
Gb/s RNICs, and our small message size is 1 byte.

4Here size refers to the message size. For simplicity, we do not consider
PCIe encapsulation overhead (e.g., TLP header).

4.1.2 Monitor Bus Utilization

While the loopback test could reveal anomalous intra-host
paths and links, it fails to diagnose the root cause of anomalies
in some scenarios. For example, when the loopback test shows
a memory channel has degraded bandwidth, how to further
determine whether the root cause lies in traffic contention or
a link failure?

To solve this problem, we implement a monitoring mod-
ule in the Hostping engine to monitor bus utilization (PCIe
links, inter-socket buses, and memory channels). Therefore,
when the loopback test shows an intra-host link has degraded
bandwidth, we could further check its utilization. If the link
is overloaded, we infer that the root cause lies in traffic con-
tention. Otherwise, the link is possibly failed. Unlike previous
vendor-specific tools, our monitor could automatically adapt
to devices from different vendors, and operators no longer
need to learn and use various tools for different devices.

4.2 Responsiveness with Low Overhead

When performance bottlenecks occur in the host network, we
hope Hostping can automatically, quickly, and accurately lo-
cate their root causes. However, high responsiveness and low
overhead are usually a trade-off. We can frequently run loop-
back tests to judge whether there are performance bottlenecks
in the host. However, loopback tests consume CPU/GPU
memory and intra-host bandwidth, leading to contention with
service traffic. Thus, frequent loopback tests will have a non-
negligible impact on applications in the host. How could we
ensure responsiveness to bottlenecks with low overhead to
application performance?

Generally, data center hosts keep switching between busy
and idle status. When the host is idle (little traffic on RNICs
and all GPUs are inactive), we could frequently run loopback
tests to keep responsive to intra-host bottlenecks, regardless
of the overhead. When the host is busy with services and
the network performance is degraded due to intra-host bottle-
necks, abnormal metrics on the RNIC, such as packet drops
and Tx pause frames, will usually appear. These metrics are
indicators of intra-host bottlenecks. Therefore, we could exe-
cute loopback tests when these abnormal metrics appear. This
way, Hostping keeps responsive to intra-host bottlenecks with
low overhead to application performance.

We implement a hardware monitor in the Hostping agent
to achieve the targets above. It (1) monitors host status and
abnormal metrics on RNICs and (2) determines when to run
the Hostping engine. In general, it has two functions:

• Monitor RNIC throughput and GPU status periodically.
If the throughput of all RNICs is less than the thresh-
old T hplow, and all GPUs are idle, execute the Hostping
engine to detect if there are intra-host bottlenecks. Oth-
erwise, skip this execution.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 21

• Monitor abnormal metrics on all RNICs. If the Tx pause
duration ratio is larger than PFChigh or packet drops
appear, execute the Hostping engine immediately to di-
agnose intra-host bottlenecks.

4.3 Bottleneck Analysis
In this section, we will demonstrate how the data analyzer
leverages the data collected by the Hostping engine to de-
termine whether there is a bottleneck within the host and
diagnose its root cause. We first discuss how to diagnose
intra-host bottlenecks when the host is idle. In general, the
analyzer determines intra-host path status (normal or abnor-
mal) by comparing the measured intra-host path bandwidth
with the baseline and leverages path status to infer anoma-
lous links. This idea is inspired by binary network tomogra-
phy [15] [18] [27]. Besides, the analyzer compares measured
intra-host path latency with the baseline to assist in root cause
diagnosis. The baseline path bandwidth and path latency are
obtained via loopback tests on a batch of idle hosts with the
same devices and configurations.

y j = ∏
i: linki∈path j

xi,∀ j, (4)

The measured path bandwidth reflects the minimum link
bandwidth on it. As shown in Equation 4, y j,xi ∈ {0,1}, repre-
sents the status of path j and link i, respectively (1 for normal
and 0 for abnormal). If the measured path bandwidth is lower
than the baseline by Abnormalth, we infer that one or more
links on this path suffer from degraded bandwidth and mark
this path as abnormal. However, a path with the expected
bandwidth is not necessarily bottleneck-free. It depends on
whether the RNIC can reach the line rate on this path. For
affinitive endpoints of the RNIC (memory nodes5, GPUs un-
der the same root port as the RNIC), the path bandwidth could
reach the RNIC line rate. If the bandwidth of these paths is
as expected, we consider them normal. However, as demon-
strated in Section 3.2.2, the RNIC could not reach the line rate
for GPUs under different CPU root ports due to high intra-
host latency. In this case, if the bandwidth of a link degrades
but is still higher than the RNIC rate, the measured bandwidth
is still close to the baseline. For these paths, we only judge
whether they are abnormal based on the baseline.

With adequate path status, we can judge the status of each
link within the host. Our algorithm is shown in Algorithm
1. In a symmetric topology like Fig.2, conducting loopback
tests between RNICs and their affinitive endpoints could eval-
uate all intra-host links. Nevertheless, we do full-mesh tests
when the host is idle to improve the accuracy of bottleneck
inference. If no abnormal paths could be found, we conclude
that there is no bandwidth bottleneck. Otherwise, we will

5We draw this conclusion from the server introduced in Section 3.2.1. For
some types of servers, the RNIC cannot reach the line rate when communi-
cating with the memory in remote NUMA nodes.

Algorithm 1 Detect Links with Bandwidth Degradation
Input: normal and abnormal paths
Output: abnormal and gray links
1: function DETECTABNORMALLINKS()
2: InitLinkStatus()
3: for path j in normal paths do
4: for linki in path j do
5: linki.status← normal
6: for path j in abnormal paths do
7: if ∃ links ∈ path j in uncertain status then
8: for linki in all these links do
9: linki.status← abnormal

10: linki.abnormal_cnt ++

11: if ∃ links ∈ path j in abnormal status then
12: for linki in all these links do
13: if marked abnormal by a new RNIC then
14: linki.abnormal_cnt ++

15: if ∀ links ∈ path j in normal status then
16: for linki in path j do
17: linki.status← gray
18: return abnormal links and gray links
19: function INITLINKSTATUS()
20: for linki in all links do
21: linki.status← uncertain
22: linki.abnormal_cnt← 0

diagnose anomalous links based on Algorithm 1. First, we
mark all intra-host links as uncertain. Next, we traverse all
normal paths and mark all links on them as normal. Then, we
traverse all abnormal paths. If an abnormal path has uncertain
links, we mark all these links as abnormal, and abnormal_cnt
records how many RNICs mark a link as abnormal. If all the
links on an abnormal path are normal, some links may be
flapping. Then we set all the links on this path to gray.

When the host is idle, most bottlenecks could be attributed
to link failures or misconfigurations. The analyzer first judges
whether the RNIC is a bottleneck. If the path status between
an RNIC and all its affinitive endpoints is abnormal, then the
RNIC PCIe link may be failed. If the PCIe link connected to
a GPU is marked as abnormal, the analyzer will further check
the path latency between the GPU and its affinitive RNIC. If
the latency is also abnormal, a misconfiguration (e.g., enabling
ACS) may be the root cause. Otherwise, a link failure should
be blamed. For other abnormal links, the analyzer diagnoses
them as failed links. In addition, links marked as gray in
three consecutive loopback tests will be identified as flapping
links. All abnormal links and their possible root causes will be
reported to operators for further operations, such as hardware
inspection and reconfigurations.

When abnormal metrics on an RNIC trigger the Host-
ping engine, the host is usually busy with services, and some
RNICs, especially the abnormal RNIC, may have heavy ser-

22 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

vice traffic. In this case, the path bandwidth measured by
these RNICs will degrade due to the contention of service
traffic, even if there is no bottleneck. Thus, we cannot judge
the status of these paths according to the bandwidth baseline.

Nevertheless, these RNICs could still indicate abnormal
paths. In the server introduced in 3.2.1, applications usually
use an RNIC to communicate with its affinitive endpoints
(memory nodes, GPUs under the same root port) to achieve
optimal performance. Furthermore, memory channels and
inter-socket buses generally provide considerable bandwidth
redundancy. Therefore, the measured bandwidth between the
RNIC and its affinitive endpoints is usually identical if no
bottleneck occurs, no matter how much influenced by ser-
vice traffic on the RNIC. Thus, among the RNIC’s affinitive
endpoints, if the measured path bandwidth to one endpoint
is significantly lower than that to the other endpoints (by
Abnormalth), we infer this path is abnormal. However, we
have no idea whether other paths are normal due to degraded
RNIC loopback bandwidth, leading to reduced diagnosis ac-
curacy. As a workaround, we could check whether there are
idle RNICs on the host, which could still judge path status
according to the baseline.

As applications usually use an RNIC to communicate with
its affinitive endpoints, bottlenecks generally occur on the
paths between the abnormal RNIC and its affinitive endpoints.
Thus, we could focus on finding bottlenecks on these paths.
When triggered by abnormal metrics, the Hostping engine
only conducts loopback tests between RNICs and their affini-
tive endpoints. First, this method is sufficient to diagnose the
status of the memory channel and the inter-socket bus with
low overhead to service traffic. In addition, the service traffic
may affect the measured bandwidth between the affinitive
GPU of the abnormal RNIC and the RNIC under other root
ports. As a result, the analyzer may incorrectly judge these
paths as abnormal, leading to an inaccurate diagnosis. Thus,
for the links under the same root port as the abnormal RNIC,
we only use this abnormal RNIC to judge their status.

The inference of abnormal links is still based on Algorithm
1. However, as RNICs with heavy traffic cannot judge whether
a path is normal, some normal links may be marked as ab-
normal. In this case, links with the highest abnormal_cnt
are most likely abnormal and should receive more attention.
When abnormal metrics trigger the Hostping engine, abnor-
mal links are usually fully loaded. Based on this, we can infer
the root cause by monitoring these links. Links with utiliza-
tion higher than Utilhigh will be diagnosed as overloaded links,
while link failures or misconfigurations may be the root cause
of other abnormal links. However, as the abnormal RNIC
suffers from intra-host bottlenecks, the latency measured by
it will rise anomalously. Thus, we cannot judge whether the
degraded GPU PCIe link is caused by a link failure or a mis-
configuration. Operators then need to do a further inspection.
Notably, if no abnormal link could be found, the RNIC PCIe
link may be the bottleneck, and the analyzer will further check

if it is overloaded with loopback traffic to determine whether
traffic contention or a link failure should be blamed.

5 Implementation

For the hardware monitor, throughput and abnormal metrics
are provided by our RNIC vendors, and GPU status is ob-
tained based on Nvidia Management Library (NVML) [6].
For the threshold, T hplow is 5% of the RNIC line rate to judge
whether the RNIC is idle. PFChigh is 3% (every second, trans-
mission is paused by 30ms) to trigger the Hostping engine.
During the deployment, the monitor checks the host status ev-
ery five minutes6 and collects abnormal metrics every second
to decide whether to start the Hostping engine.

For the Hostping engine, we implement the probing module
with the verbs API and rdma-core libraries [3]. The bus mon-
itor is implemented based on the API and metrics provided
by our vendors: Intel’s and AMD’s API for CPU root ports,
memory channels, and inter-socket buses, NVML for GPU
PCIe links, and Mellanox’s metrics for RNIC PCIe links.

The data analyzer takes the metrics collected by the Host-
ping engine as input and infers the most susceptible root
causes for intra-host bottlenecks. Abnormalth is 20% to judge
whether the latency or bandwidth of a path is abnormal, and
Utilhigh is 90% to judge whether a bus is overloaded.

The cloud data storage is implemented based on our time-
series database. Every time the Hostping engine starts, all the
information collected and deduced by the Hostping agent will
be uploaded to the cloud. These data help us better understand
the frequency and root causes of bottlenecks. Moreover, oper-
ators may need historical data to determine the root causes in
some scenarios.

6 Evaluation & Intra-host Bottlenecks Found

We evaluate Hostping on over 300 servers in our distributed
machine learning system. The host topology is shown in Fig.2
and introduced in Section 3.2.1, which is the most complex
intra-host topology in our data center servers. In this sec-
tion, we will summarize the bottlenecks we found during the
deployment of Hostping. For known bottlenecks, Hostping
could effectively diagnose their root causes. In addition, Host-
ping also reveals six bottlenecks we did not notice before. We
roughly classify the bottlenecks found by Hostping into three
scenarios according to their root causes.
Scenario 1: Intra-host bandwidth degrades due to link
failures. As the host topology becomes more complex, link
failures occur frequently. During the deployment, we encoun-
tered dozens of instances where failed links resulted in de-
graded intra-host bandwidth, including failures of #1 RNIC
PCIe links (Fig.8 (a)), #2 GPU PCIe links (Fig.8 (b) & Fig.10

6As link failures and misconfigurations infrequently appear in a host, 5
minutes is a fine granularity.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 23

(a) (b) (c)

(d) (e) (f)

Figure 8: The intra-host end-to-end bandwidth matrices measured by the Hostping engine when hosts are idle. The topology
between RNICs and endpoints is shown in Fig.2. (a)-(e) show intra-host bandwidth degradation due to link failures. (f) shows the
impact of inappropriate configurations. Green, red, and gray indicate that the path status is normal, abnormal, and uncertain,
respectively.

Wednesday 15/12/2021
0

50

100

150

200

250

300

M
ea

su
re

d
B

an
dw

id
th

(G
bp

s)

Flapping
Normal

Figure 9: Memory channel flapping on the server. When this
occurs, the bandwidth of the memory channel switches be-
tween normal and abnormal.

(a)), #3 memory channels (Fig.8 (b)), and #4 UPI (Fig.8 (c)).
For the sake of space, Fig.8 (b) contains #2 and #3. Their
problem may be loose PCIe interfaces, dust on connecting
fingers, or hardware failures and requires further troubleshoot-
ing. Based on the matrix, the analyzer could accurately infer
abnormal links. Note that in Fig.10 (a), although RNIC2 has a
large amount of service traffic, it could still judge that the path
to GPU4 is abnormal according to other measured paths. With
Hostping, operators could quickly discover and deal with link
failures, avoiding application performance degradation.

[New] #5 CPU root port failures. Before deploying Host-
ping, we only knew four kinds of link failures (#1 to #4).
During the deployment, we found that the CPU root port may
also experience hardware bandwidth degradation. When this
happens, the bandwidth between the RNIC and the GPU un-
der the failed root port is normal. While traffic passes through
the failed root port may suffer from degraded bandwidth. The
corresponding bandwidth matrix is shown in Fig.8 (d) and (e).
They have the same root cause, except that (e) has slight band-
width degradation, and RNICs under other root ports cannot
find anomalies. Nevertheless, Hostping could still accurately
diagnose the root cause in this case.

[New] #6 Memory channel flapping. With the assistance

of Hostping, we found a host suffers from degraded mem-
ory channel bandwidth due to a link failure. However, no
performance issues could be discovered in subsequent man-
ual testing. By continuously running Hostping and collecting
measured data, we found that the root cause lies in the flap-
ping memory channel. As shown in Fig.9, the bandwidth of
the host memory channel switches between normal and ab-
normal. With historical data, we could understand the causes
of intra-host bottlenecks more clearly. This case shows the
necessity to run Hostping periodically.

Scenario 2: Inappropriate configurations lead to degraded
performance. #7 Enabling ACS results in high PCIe latency.
We have mentioned this case in 2.1. With ACS enabled, all
GDR traffic will be guided to the CPU instead of directly to
the GPU, resulting in drastic performance degradation. As
shown in Fig.8 (f), all PCIe bridges are configured as ACS
enabled in this case. As a result, both the latency and band-
width between the RNIC and the GPU under the same root
port turn abnormal. Hostping could accurately diagnose this
bottleneck and remind operators to check the configuration.

[New] #8 Disabling ATS results in high PCIe latency. We
found this case in a virtualized environment. In IO virtualiza-
tion, if Address Translation Service (ATS) is disabled on the
RNIC, all GDR packets will be directed to the CPU root com-
plex for address translation. Similar to #7, with ATS disabled,
the latency between the RNIC and the GPU under the same
root port increases, leading to drastic bandwidth degradation.
By enabling ATS, the translation can be finished in the RNIC
to achieve optimal GDR performance.

[New] #9 Enabling "slow start" on the RNIC. This is a
lossy feature provided by our RNIC vendor. When enabled on
an RNIC, the RNIC sending rate will start from a small value
instead of the line rate. Although "slow start" could alleviate
congestion under Incast scenarios, it increases the completion
time of short flows. Thus, it usually remains disabled in most

24 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) (b) (c)

Figure 10: The bandwidth matrices measured when hosts are busy with services. (a) shows hardware bandwidth degradation due
to the GPU PCIe link failure. (b) and (c) show degraded intra-host bandwidth caused by traffic contention.

scenarios. When "slow start" is enabled, the RNIC bandwidth
to all intra-host endpoints will be lower than the baseline (sim-
ilar to Fig.8 (a)). At first, Hostping diagnosed the root cause
as the RNIC PCIe link failure. However, we found no bottle-
necks during continuous bandwidth tests. After configuration
inspection, we finally uncovered the root cause.

[New] #10 Setting "Tx window" too small on the RNIC.
This is also a lossy feature. "Tx window" will limit the maxi-
mum in-flight bytes of each queue pair on an RNIC. There-
fore, "Tx window" influences the maximum bandwidth a QP
could achieve and needs to be set reasonably to alleviate net-
work congestion without degrading throughput. Similar to #9,
when an RNIC’s "Tx window" is too small, its bandwidth to
all intra-host endpoints will be lower than the baseline.

Scenario 3: Intra-host bandwidth degrades due to traffic
contention. [New] #11 Overloaded Inter-socket buses. Dur-
ing the deployment, we found some malfunctioning applica-
tions overloaded the UPI of a host, and cross-socket receiving
traffic on RNIC0 triggered a large number of Tx pause frames.
Fig.10 (b) shows the corresponding bandwidth matrix mea-
sured by Hostping. In this case, RNIC0 and RNIC2 have a
large amount of service traffic. Nevertheless, they could still
judge that two paths (RNIC0 to mem1 and RNIC2 to mem0)
are abnormal according to other measured paths. With the help
of the other two idle RNICs, the analyzer infers that the UPI
is most likely to be abnormal (with the highest abnormal_cnt).
Furthermore, leveraging the bus monitor, it diagnoses the root
cause as the overloaded UPI. The operator then will find out
the traffic source that overloads the UPI.

#12 Overloaded memory channels. TCP and RDMA traffic
may co-exist in the same host to keep high availability [21]. In
this case, the processing of TCP may consume a lot of memory
bandwidth, leading to a slow receiving rate for RDMA traf-
fic. However, we did not discover this case in A100 servers
during the deployment of Hostping. As a supplement, we
conduct an experiment to evaluate how Hostping behaves
when the memory channel is overloaded. We use several pro-
cesses to overload the channel of mem0. Besides, RNIC0 and
RNIC2 receive traffic writing to mem0 and mem1, respec-
tively. Fig.10 (c) shows the corresponding bandwidth matrix.
Although RNIC0 and RNIC2 have a large amount of receiv-
ing traffic, they could still judge that their paths to mem0 are
abnormal. Similar to #11, in this case, the analyzer infers that
the channel of mem0 is most likely abnormal and diagnoses

the root cause as the overloaded memory channel.
In this scenario, we evaluate the performance of Hostping

when intra-host links are overloaded. Furthermore, the results
show that Hostping could still effectively diagnose intra-host
performance bottlenecks under the interference of service
traffic on RNICs.

7 Experiences Learned

Conduct Hostping before running applications. As the
intra-host topology becomes more complex, the likelihood of
link failures in the host network boosts. Based on our experi-
ence, some failures may already exist when the server leaves
the factory. Thus, it is essential to evaluate the intra-host net-
work performance before delivering the server to customers.
In addition, as intra-host services become more complicated,
configuration items in the host also increase considerably, and
the configuration methods are varied. For example, the set-
ting of Address Translation Service requires a reboot to take
effect. In contrast, Access Control Service is enabled by de-
fault and needs to be disabled after each reboot. Furthermore,
configurations may not be completed successfully for some
reason. Therefore, misconfigurations occur occasionally. We
recommend conducting Hostping after each reboot to ensure
proper configurations before running applications.
Perceive intra-host bottlenecks with VoQ ECN marking.
Although intra-host bottlenecks should be addressed in a tar-
geted manner (e.g., hardware replacement, reconfigurations),
we argue that congestion control mechanisms should be able
to perceive intra-host bottlenecks. Thus, they could alleviate
the triggering of packet drops and Tx pause frames to pro-
vide better network performance before the bottleneck could
finally be resolved. Generally, packets could only be ECN-
marked in a switch’s egress port, and ECN-based congestion
control mechanisms could only perceive network congestion.
Fortunately, some latest RNICs provide a new function called
VoQ (Virtual Output Queuing) ECN marking, enabling the
receiver RNIC to ECN-mark packets when its receive buffer
exceeds a threshold. By enabling this function, ECN-based
congestion control mechanisms, such as DCQCN [50], can
also perceive intra-host bottlenecks. Thus, the sender could
timely slow down its sending rate to alleviate the triggering
of packet drops or Tx pause frames.
Pay attention to intra-host topologies. Although GDR is

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 25

supported at any distance within the host, it is highly recom-
mended not to conduct GDR across CPU root ports. When
this occurs, the GDR bandwidth degrades severely, which may
lead to a large number of Tx pause frames or packet drops.
Furthermore, when testing some AMD servers, we found
a large number of Tx pause frames and drastic throughput
degradation when the RNIC (200 Gb/s) writes to the memory
in the remote socket. This is due to the low cross-socket hard-
ware bandwidth on these servers, and the root cause lies in
the host architecture. Thus in these servers, we should avoid
using RNICs to communicate with the memory in the remote
socket for optimal performance.

8 Related Work

Bottlenecks in the RNIC and intra-host network. With
the increasing RNIC line rate, the intra-host network and
the RNIC have become potential performance bottlenecks in
network communication. Some literature has studied these
bottlenecks. Kong et al. [32] implement a tool to help data
center operators uncover potential performance bottlenecks
in the RNIC. Martinasso et al. [37] analyze congestion be-
haviors in PCIe fabric and develop a congestion-aware per-
formance model for PCIe communication. Zhang et al. [49]
study RDMA sharing characteristics and analyze performance
isolation anomalies in RDMA. Neugebauer et al. [40] study
the performance impact of PCIe in the host network. Dong et
al. [16] analyze different types of traffic congestion in the host
network and propose a new server architecture to alleviate
intra-host congestion. Faraji et al. [19] show the implication
of distance between GPUs on the GPU-to-GPU communi-
cation performance in the host network. Farshin et al. [20]
study when Intel Data Direct I/O (DDIO) technology becomes
a bottleneck in multi-hundred-gigabit networks and how to
optimize DDIO-enabled systems for I/O intensive applica-
tions. These studies help us better understand the potential
bottlenecks in the RNIC and intra-host network.
Bottleneck diagnosis tools. Diagnosis tools could be broadly
classified as system-based tools and intra-host tools. System-
based tools aim to diagnose performance bottlenecks in the
whole system. Pingmesh [25] implements an end-to-end con-
nectivity and latency monitoring system for network trou-
bleshooting and SLA tracking. Netbouncer [44] leverages
the IP-in-IP technique to probe designated paths and then
diagnoses device and link failures in data center networks.
Deepview [48] builds a near-real-time system for virtual disk
failure localization. Microscope [23] leverages queuing in-
formation at network functions to identify the root causes of
performance bottlenecks. SNAP [47] collects network infor-
mation such as TCP statistics and socket-call logs to pinpoint
the problem in data center network applications. In contrast,
intra-host tools are dedicated to diagnosing bottlenecks in the
host. Haecki et al. [26] implement a latency diagnosis tool
to identify the source of network latency in end-host stacks.

Mellanox Neohost [4] provides plenty of diagnosis counters
on Mellanox RNICs. Nvidia SMI [9] provides the status of
Nvidia GPUs. Intel PCM [2] and AMD uProf [1] provide
the internal resource utilization of the CPU, including the
utilization of buses and interfaces connected to the CPU, such
as inter-socket buses, memory channels, and CPU root ports.

9 Conclusion & Future Work

Intra-host networking has become a potential bottleneck for
RDMA networks, and intra-host bottlenecks can severely de-
grade network performance. This paper proposes Hostping
to monitor and diagnose intra-host bottlenecks. We analyze
the symptom of intra-host bottlenecks based on our long-term
troubleshooting experience and realize that most intra-host
bottlenecks have one or both of the following symptoms: intra-
host bandwidth degradation and intra-host latency increase.
Thus, Hostping measures intra-host bandwidth and latency
as performance metrics to detect and diagnose intra-host bot-
tlenecks. Furthermore, we propose an efficient diagnosing
mechanism that could effectively identify the root cause of
intra-host bottlenecks even under the interference of service
traffic on RNICs. During the deployment, Hostping not only
discovers performance bottlenecks we already knew but also
reveals six bottlenecks we did not notice before.

The deployment of Hostping makes us realize that more
work needs to be done. Firstly, when the host is busy with ser-
vices, due to the influence of service traffic, it is challenging to
accurately diagnose intra-host link status based on binary path
status. If the end-to-end traffic information within the host
can be obtained, it will provide more insights into intra-host
bottlenecks. Secondly, after finding an overloaded link, we
hope Hostping could automatically identify the traffic source,
such as malfunctioning applications. Finally, in addition to
intra-host network bottlenecks, RNIC bottlenecks, such as
scalability problems [29] [30] [31], can also lead to severe
network performance degradation. Thus, it is also important
to diagnose bottlenecks in the RNIC.

Acknowledgments

We would like to thank our shepherd, Raja Sambasivan, and
the anonymous reviewers who helped us improve the quality
of this paper. We would also like to thank Huaping Zhou for
his insightful feedback. This work is supported in part by the
National Natural Science Foundation of China (NSFC) under
Grant 61872401 and Grant 62132022, a BUPT-ByteDance Re-
search Project, and the Fok Ying Tung Education Foundation
under Grant 171059.

26 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] AMD uProf. https://developer.amd.com/amd-u
prof/.

[2] Intel Performance Counter Monitor. https://gith
ub.com/opcm/pcm.

[3] Linux rdma-core. https://github.com/linux-rdm
a/rdma-core.

[4] Mellanox Neohost. https://support.mellanox.c
om/s/productdetails/a2v50000000N2OlAAK/mel
lanox-neohost.

[5] Nvidia DGX-A100. https://www.nvidia.com/e
n-us/data-center/dgx-a100/.

[6] Nvidia Management Library. https://developer.
nvidia.com/nvidia-management-library-nvml.

[7] Nvidia nccl-tests. https://github.com/NVIDIA/nc
cl-tests.

[8] Nvidia NVLink and NVSwitch. https://www.nvid
ia.com/en-us/data-center/nvlink/.

[9] Nvidia System Management Interface.
https://developer.nvidia.com/nvidia-sys
tem-management-interface.

[10] OFED perftest. https://github.com/linux-rdm
a/perftest.

[11] Intel® Xeon® Scalable Processors Datasheet.
https://www.intel.com/content/dam/www/publ
ic/us/en/documents/datasheets/2nd-gen-xeo
n-scalable-datasheet-vol-1.pdf, 2019.

[12] Workload Tuning Guide for AMD EPYCTM 7002 Series
Processor Based Servers. https://developer.am
d.com/wp-content/resources/56745_0.80.pdf,
2020.

[13] Marcelo Amaral, Jordà Polo, David Carrera, Seetharami
Seelam, and Malgorzata Steinder. Topology-Aware
GPU Scheduling for Learning Workloads in Cloud En-
vironments. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, pages 1–12, 2017.

[14] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett,
Miguel Castro, Wonhee Cho, Joshua Cowhig, Niko-
las Gloy, Karthik Kalyanaraman, Richendra Khanna,
John Pao, et al. A1: A Distributed In-Memory Graph
Database. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data, pages
329–344, 2020.

[15] Ítalo Cunha, Renata Teixeira, Nick Feamster, and
Christophe Diot. Measurement Methods for Fast and Ac-
curate Blackhole Identification with Binary Tomography.
In Proceedings of the 9th ACM SIGCOMM conference
on Internet measurement, pages 254–266, 2009.

[16] Jianbo Dong, Zheng Cao, Tao Zhang, Jianxi Ye,
Shaochuang Wang, Fei Feng, Li Zhao, Xiaoyong Liu,
Liuyihan Song, Liwei Peng, et al. EFLOPS: Algorithm
and System Co-Design for a High Performance Dis-
tributed Training Platform. In 2020 IEEE International
Symposium on High Performance Computer Architec-
ture (HPCA), pages 610–622. IEEE, 2020.

[17] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
2014.

[18] Nick Duffield. Network Tomography of Binary Network
Performance Characteristics. IEEE Transactions on
Information Theory, 52(12):5373–5388, 2006.

[19] Iman Faraji, Seyed H Mirsadeghi, and Ahmad Afsahi.
Topology-Aware GPU Selection on Multi-GPU Nodes.
In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages
712–720. IEEE, 2016.

[20] Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr,
and Dejan Kostić. Reexamining Direct Cache Access to
Optimize I/O Intensive Applications for Multi-hundred-
gigabit Networks. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 673–689, 2020.

[21] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, et al. When Cloud Storage
Meets RDMA. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21),
pages 519–533, 2021.

[22] Andrew Gibiansky. Bringing HPC techniques to deep
learning. Baidu Research, Tech. Rep, 2017.

[23] Junzhi Gong, Yuliang Li, Bilal Anwer, Aman Shaikh,
and Minlan Yu. Microscope: Queue-based Performance
Diagnosis for Network Functions. In Proceedings of the
Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 390–403, 2020.

[24] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over Commodity Ethernet at Scale. In Proceedings of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 27

https://developer.amd.com/amd-uprof/
https://developer.amd.com/amd-uprof/
https://github.com/opcm/pcm
https://github.com/opcm/pcm
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://www.nvidia.com/en-us/data-center/dgx-a100/
https://www.nvidia.com/en-us/data-center/dgx-a100/
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://github.com/NVIDIA/nccl-tests
https://github.com/NVIDIA/nccl-tests
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-1.pdf
https://developer.amd.com/wp-content/resources/56745_0.80.pdf
https://developer.amd.com/wp-content/resources/56745_0.80.pdf

the 2016 ACM SIGCOMM Conference, pages 202–215,
2016.

[25] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, and Hua and Chen. Pingmesh: A Large-
Scale System for Data Center Network Latency Mea-
surement and Analysis. Computer communication re-
view, 45(4):139–152, 2015.

[26] Roni Haecki, Radhika Niranjan Mysore, Lalith Suresh,
Gerd Zellweger, Bo Gan, Timothy Merrifield, Sujata
Banerjee, and Timothy Roscoe. How to diagnose
nanosecond network latencies in rich end-host stacks. In
19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 861–877, 2022.

[27] Yiyi Huang, Nick Feamster, and Renata Teixeira. Prac-
tical Issues with Using Network Tomography for Fault
Diagnosis. ACM SIGCOMM Computer Communication
Review, 38(5):53–58, 2008.

[28] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui,
and Chuanxiong Guo. A Unified Architecture for Ac-
celerating Distributed DNN Training in Heterogeneous
GPU/CPU Clusters. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 463–479, 2020.

[29] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 1–16, 2019.

[30] Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. Using RDMA Efficiently for Key-Value Services.
In Proceedings of the 2014 ACM Conference on SIG-
COMM, pages 295–306, 2014.

[31] Anuj Kalia, Michael Kaminsky, and David G Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided Datagram RPCs. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 185–201, 2016.

[32] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding Performance Anomalies in RDMA Subsystems.
In 19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22), pages 287–305,
2022.

[33] Christoph Lameter. NUMA (Non-Uniform Memory
Access): An Overview: NUMA becomes more common
because memory controllers get close to execution units
on microprocessors. Queue, 11(7):40–51, 2013.

[34] Jason Lawley. Understanding Performance of PCI Ex-
press Systems. WP350 (v1. 2). Xilinx, 97, 2014.

[35] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li,
Xu Liu, Nathan R Tallent, and Kevin J Barker. Evaluat-
ing Modern GPU Interconnect: PCIe, NVLink, NV-SLI,
NVSwitch and GPUDirect. IEEE Transactions on Par-
allel and Distributed Systems, 31(1):94–110, 2019.

[36] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. HPCC:
High Precision Congestion Control. In Proceedings of
the ACM Special Interest Group on Data Communica-
tion, pages 44–58. 2019.

[37] Maxime Martinasso, Grzegorz Kwasniewski, Sadaf R
Alam, Thomas C Schulthess, and Torsten Hoefler.
A PCIe Congestion-Aware Performance Model for
Densely Populated Accelerator Servers. In SC’16: Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pages 739–749. IEEE, 2016.

[38] Hiroaki Mikami, Hisahiro Suganuma, Yoshiki Tanaka,
Yuichi Kageyama, et al. Massively Distributed SGD:
ImageNet/ResNet-50 Training in a Flash. arXiv preprint
arXiv:1811.05233, 2018.

[39] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting Network Support for RDMA.
In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages
313–326, 2018.

[40] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W
Moore. Understanding PCIe performance for end host
networking. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communica-
tion, pages 327–341, 2018.

[41] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in TensorFlow. arXiv
preprint arXiv:1802.05799, 2018.

[42] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and
Feifei Li. Fast and Concurrent RDF Queries with
RDMA-Based Distributed Graph Exploration. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 317–332, 2016.

[43] Richard Solomon. PCI Express Basics. PCI-SIG, Oct,
2011.

28 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[44] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,
Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.
NetBouncer: Active Device and Link Failure Localiza-
tion in Data Center Networks. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 599–614, 2019.

[45] Xinchen Wan, Hong Zhang, Hao Wang, Shuihai Hu,
Junxue Zhang, and Kai Chen. Rat-Resilient Allreduce
Tree for Distributed Machine Learning. In 4th Asia-
Pacific Workshop on Networking, pages 52–57, 2020.

[46] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lin-
tao Zhang, and Lidong Zhou. Fast Distributed Deep
Learning over RDMA. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–14, 2019.

[47] Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rex-
ford, Lihua Yuan, Srikanth Kandula, and Changhoon
Kim. Profiling Network Performance for Multi-Tier
Data Center Applications. In 8th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 11), 2011.

[48] Qiao Zhang, Guo Yu, Chuanxiong Guo, Yingnong Dang,
Nick Swanson, Xinsheng Yang, Randolph Yao, Murali
Chintalapati, Arvind Krishnamurthy, and Thomas An-
derson. Deepview: Virtual Disk Failure Diagnosis and
Pattern Detection for Azure. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 18), pages 519–532, 2018.

[49] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf
Chowdhury. Justitia: Software Multi-Tenancy in Hard-
ware Kernel-Bypass Networks. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 22), pages 1307–1326, 2022.

[50] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA De-
ployments. ACM SIGCOMM Computer Communication
Review, 45(4):523–536, 2015.

[51] Dimitrios Ziakas, Allen Baum, Robert A Maddox, and
Robert J Safranek. Intel® QuickPath Interconnect Ar-
chitectural Features Supporting Scalable System Ar-
chitectures. In 2010 18th IEEE Symposium on High
Performance Interconnects, pages 1–6. IEEE, 2010.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 29

Understanding RDMA Microarchitecture Resources for Performance Isolation

Xinhao Kong Jingrong Chen Wei Bai† Yechen Xu# Mahmoud Elhaddad†

Shachar Raindel† Jitendra Padhye† Alvin R. Lebeck Danyang Zhuo

Duke University †Microsoft #Shanghai Jiao Tong University

Abstract
Recent years have witnessed the wide adoption of RDMA
in the cloud to accelerate first-party workloads and achieve
cost savings by freeing up CPU cycles. Now cloud providers
are working towards supporting RDMA in general-purpose
guest VMs to benefit third-party workloads. To this end, cloud
providers must provide strong performance isolation so that
the RDMA workloads of one tenant do not adversely impact
the RDMA performance of another tenant. Despite many ef-
forts on network performance isolation in the public cloud, we
find that RDMA brings unique challenges due to its complex
NIC microarchitecture resources (e.g., the NIC cache).

In this paper, we aim to systematically understand the im-
pact of RNIC microarchitecture resources on performance
isolation. We present a model that represents how RDMA
operations use RNIC resources. Using this model, we develop
a test suite to evaluate RDMA performance isolation solu-
tions. Our test suite can break all existing solutions in various
scenarios. Our results are acknowledged and reproduced by
one of the largest RDMA NIC vendors. Finally, based on the
test results, we summarize new insights on designing future
RDMA performance isolation solutions.

1 Introduction
Multiplexing workloads from different tenants on a shared
computing infrastructure enables the modern cloud comput-
ing era. The global cloud infrastructure revenue has already
surpassed 400 billion US dollars and is forecast to grow to
reach around 1 trillion US dollars in the next decade [7].

It is well known that having different tenants’ workloads
share computing resources can lead to unpredictable applica-
tion performance interference [12, 18, 66] and privacy leak-
age [32, 39]. This drives plenty of studies focusing on per-
formance isolation in the cloud, especially for performance-
critical applications that have stringent service-level objec-
tives [11, 12, 18, 41, 63, 66, 70]. The state of the art in practice
has also significantly advanced: CPU vendors even imple-
ment hardware mechanisms to control and isolate access to
CPU caches [20]. Side channels through shared resources are

0 1 2 3 4 5 6 7 8 9
Time / second

0
20
40
60
80

100

Ba
nd

wi
dt

h
/ G

bp
s Victim alone

Isolation
 enabled

Attacker starts

Victim
Attacker

Figure 1: Violations of performance isolation under existing methods

being patched over time [39].

In this paper, we visit one particular hardware device, the
RDMA NIC (RNIC). RDMA offloads the network stack from
OS kernel to NIC hardware to provide high throughput and
ultra-low processing latency with near-zero CPU overhead.
RDMA has been deployed in datacenters at scale to improve
performance and free up CPU cores for first-party workloads
like storage and ML [14, 17, 38, 51]. Now cloud providers
are working towards supporting RDMA in general-purpose
guest VMs to benefit third-party workloads. To this end, cloud
providers must provide strong performance isolation for ten-
ants sharing the same RNIC.

Many efforts have been made to improve network perfor-
mance isolation in the public cloud, with a special focus on
bandwidth and packet processing capacity [3, 15, 16, 25, 34,
62, 64]. However, RDMA brings new challenges due to its
unique and complex NIC microarchitecture resources (e.g.,
NIC caches and processing units). Their existence and impact
on performance are already known to the research commu-
nity [29, 33]. To avoid performance anomalies, developers
carefully design RDMA systems to avoid exhausting these
microarchitecture resources [5,9,10,27,30,50,61]. Our study
is from a different angle: we look at how these microarchi-
tecture resources affect RDMA performance isolation from a
public cloud provider’s perspective. The cloud provider has
no knowledge and control of tenants’ RDMA applications,
and tenants can consume RNIC microarchitecture resources
in arbitrary manners.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 31

To demonstrate RNIC microarchitecture resources’ signifi-
cant impact on performance isolation, we test the state-of-the-
art approach: using SR-IOV with separated hardware traffic
class (HW TC). Both SR-IOV and HW TC are hardware
mechanisms available on commodity RNICs. HW TC lever-
ages multiple hardware queues (usually 8 queues) in RNICs.
We can assign each tenant application to use one queue. We
run one victim traffic between two virtual machines using
ib_write_bw, a standard RDMA bandwidth testing tool in
Perftest [56]. Each virtual machine is on a different server,
and the two servers are equipped with 100 Gbps NVIDIA
ConnectX-5 RNICs. Figure 1 shows the bandwidth. The band-
width test achieves 80 Gbps. We start one virtual machine on
each server to represent an attacker (i.e., a buggy or malicious
tenant application) and enable performance isolation to grant
half of the total bandwidth to the victim and the attacker. The
victim traffic reduces to 50 Gbps, which is expected. How-
ever, when we start a carefully designed attacker traffic of
only 1 Gbps to intentionally exhaust one of the RNIC microar-
chitecture resources, the victim immediately drops to 2 Gbps,
violating the performance isolation guarantee (i.e., 50 Gbps
of guaranteed network bandwidth for the victim).

We develop a set of experiments to study how RNIC
microarchitecture resources are used by different types of
RDMA operations. Our experiments surface several interest-
ing findings, including: (1) Exception or error handling pauses
the RNIC’s pipelines and causes other tenants’ performance
to drop drastically. (2) Control verbs cause a severe increase
in cache misses and impair other tenants’ performance. (3)
Data verbs can exhaust different types of microarchitecture
resources and violate performance isolation. To the best of
our knowledge, we are the first to systematically study the
impact of all types of control verbs and exceptions on RDMA
microarchitecture resource consumption.

We leverage these findings to create an RDMA operation
model to describe the relationship between the RDMA verb
operations and the microarchitecture resources consumed.
Our model allows us to understand how to exhaust each of the
RNIC resources. Using the operation model, we create the
first test suite, Husky, to systematically test and evaluate RNIC
performance isolation solutions. Unfortunately, running our
test suite on commodity RNICs reveals bad news: there is
currently no solution that can provide RNIC performance
isolation. We have already reported all of our findings to three
major RNIC vendors, NVIDIA, Chelsio, and Intel. Our results
are fully reproduced and acknowledged by NVIDIA, one of
the largest RDMA NIC manufacturers. Finally, we present
new insights on how future performance isolation solutions
should be built. We hope these insights can benefit future
RNIC design and RDMA software development.

This paper makes the following contributions:

• We identify multiple interactions between RDMA opera-
tions and the RNIC microarchitecture resources, includ-
ing the previously unknown impact of error handling and

control operations.

• We introduce the first RDMA operation model to de-
scribe how RNIC microarchitecture resources are con-
sumed in verb operations (the standard RDMA program-
ming API) and why these microarchitecture resources
affect performance isolation.

• We build the first test suite to systematically test and eval-
uate RNIC performance isolation solutions. We show
that none of the existing performance isolation solutions
can pass our test suite. Husky test suite is available at
https://github.com/host-bench/husky.

This work demonstrates that providing performance isola-
tion for RDMA in the public cloud is much more difficult than
one may think. There must be a higher standard for future
RDMA performance isolation solutions: they should carefully
consider RNIC microarchitecture resources and be evaluated
by systematic benchmarks.

2 Background and Motivation
We first present the background knowledge of the network
performance isolation in the public cloud. Then we introduce
RDMA and discuss new challenges presented by the RDMA
network performance isolation.

2.1 Network Performance Isolation in the Public Cloud

Tenants in the cloud mainly cause contention on two types
of network resources. The first the most obvious one is the
bandwidth in the network fabric. To mitigate bandwidth con-
tention among tenants, one line of work [58, 60, 62] statically
limits per-tenant bandwidth. Another line of work [1, 3, 4, 6,
16, 24, 25, 37, 58, 59, 68] gives each tenant a minimum band-
width guarantee and allows tenants to use spare bandwidth
capacity. The second type of resource is the packet process-
ing resources at the end host. Per-packet processing costs
depend on many factors, such as cache misses and operations
to perform. Recently, PicNIC [34] provides isolation for such
software packet processing. People also leverage specialized
hardware to achieve the same goal [64].

It is worthwhile to note that network performance isola-
tion is very different from network virtualization. Network
virtualization orchestrates network resources to provide each
tenant with an illusion of an independent network. A tenant
should not impact the connectivity of the network of another
tenant. The goal of network virtualization is to achieve low
overhead [19, 31, 57]. In comparison, network performance
isolation focuses on how to manage resource contentions to
ensure that tenants can achieve guaranteed performance.

2.2 RDMA Overview

RDMA allows the NIC to directly transfer data between the
wire and the application memory. The networking protocol is
implemented in the NIC. Figure 2 presents the overview of

32 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/host-bench/husky

User Application

Userspace Libraries

Kernel Driver

RNIC

Host

Control Verbs
Process

Data Verbs
Process

ibv_open_device
ibv_alloc_pd
ibv_reg_mr

Fabric

ibv_post_send
ibv_post_recv
ibv_poll_cq

ibv_create_cq
ibv_create_qp
ibv_modify_qp

Control Verbs
Data Verbs

Figure 2: Overview of RDMA workflow. Verbs processing logics
are heavily offloaded to the RNIC.

the RDMA workflow. It classifies standard RDMA program-
ming interface, a.k.a., verbs, into two categories: control and
data. An application first needs to call several control verbs
to allocate necessary objects, such as queue pair (QP) and
completion queue (CQ), to set up a reliable connection (RC),
an unreliable connection (UC), or an unreliable datagram
(UD) transmission endpoint. Then the application needs to
register a memory region (MR). This registration essentially
pins the memory in the host DRAM and obtains the mapping
from virtual addresses to physical addresses, which enables
the RNIC to directly read from or write to this memory re-
gion. All these control verbs are processed by the following
procedure: RDMA’s userspace libraries and kernel drivers
process the verb request, generate a request command, put
the command in a negotiated command queue, and ring the
RNIC’s doorbell (e.g., memory-mapped registers). The RNIC
fetches the command from the command queue, processes it,
and pushes the response back to the queue. The drivers then
process the response and return the object to the application.

After the above initialization, the application can start data
transmissions between local and remote memory. There are
several types of operations that applications can use, such as
SEND/RECV, WRITE, READ, and ATOMIC. We name these
operations as data verbs. To issue a data verb, the applica-
tion generally posts a request to its send queue and rings the
RNIC’s doorbell through userspace libraries. The RNIC then
parses the request, reads data from the host memory, segments
data into packets, and transmits packets. This procedure by-
passes the kernel. There are certain differences in processing
different types of requests. For example, for SEND/RECV
messages, the receiver should post enough RECV requests be-
fore the sender issues SEND requests. Otherwise, the incom-
ing SEND requests may be dropped or need retransmissions
because the receiver RNIC lacks receive requests to process
them, which is known as the receive not ready (RNR) error.
For WRITE/READ data to/from the remote end or execute
ATOMIC operations, the sender should specify correct remote
virtual addresses and memory keys. An invalid address or a
wrong key will trigger a memory protection error and cause
the QP to transition into the error state.

2.3 Why RDMA Performance Isolation is Hard?

As shown above, RDMA offloads many host network func-
tionalities to the RNIC, which has many invisible hardware
components, and each component may individually become a
performance bottleneck. Figure 3 shows the hardware com-
ponents of a commodity RNIC. We draw this figure based on
publicly available documents from NVIDIA [44, 46, 48]. In
addition to the packet buffers (TX/RX Buffer), the RNIC also
has multiple processing units (PU) and many types of internal
caches. Each internal cache is used to store a specific type of
metadata. For example, in NVIDIA RNICs, the Interconnect
Context Memory (ICM) cache stores QP contexts; the Mem-
ory Translation Table (MTT) and Memory Protection Table
(MPT) store entries for memory address translation and pro-
tection information; and the Work Queue Entry (WQE) cache
stores prefetched send WQEs and posted receive WQEs. As
these caches are derived from the design needs, other RNICs
include similar components. We name these RNIC hardware
components microarchitecture resources based on the anal-
ogy for CPU hardware. CPUs are designed to conform to
a standard instruction set architecture (e.g., ARM, x86), but
the CPU designers can make the microarchitecture-level deci-
sions, such as how many levels of caches and the cache sizes.
RNICs are similar because RNIC vendors have to provide the
same programming interface for RDMA application develop-
ers, but the vendors can decide on these microarchitecture-
level details, e.g., RNIC caches.

Many previous efforts have already identified some im-
pacts of these microarchitecture resources on RDMA applica-
tion performance. For example, [5, 29, 50] find that an RNIC
caches QP contexts. A QP context cache miss can trigger
an additional PCIe round trip for the RNIC to fetch the con-
text from the host DRAM, thus degrading application per-
formance. For example, 200 connections can cause an 90%
request rate drop on NVIDIA ConnectX-3 NIC [5]. However,
these efforts study microarchitecture resources from the per-
spective of an application developer. After a performance
degradation, they identify the bottleneck resource, seek more
efficient methods to use data verbs, and modify their applica-
tions correspondingly.

However, in public clouds, cloud providers have no control
over tenants’ applications. Tenants thus can consume RNIC’s
microarchitecture resources as they wish, even maliciously.
Therefore, from the perspective of the cloud provider, we need
to understand the microarchitecture resource consumption of
most of (if not all) RDMA verbs, not just common data verbs.
Only with this knowledge can we properly allocate RNIC’s
microarchitecture resources to different tenants to deliver
predictable performance.

3 RNIC Microarchitecture Resources
In this section, we present a study on all the RNIC microarchi-
tecture resources that we are currently aware of. Prior works
have already identified several particular forms of resource

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 33

Memory
Device

PCIe
Network

RX Pipeline
(Processing Unit)

ICM Cache

MTT/MPT
Cache

TX Pipeline
(Processing Unit)

RX Buffer

TX Buffer

WQE Cache

(4)

(1) (2)
(2) (2)

(6)

(6)

Data Execution Flow
Request for metadata from NIC Cache Metadata from NIC cache

Request for metadata from DRAM Metadata from host DRAM

(3)

(5)

Figure 3: RDMA NIC microarchitecture hardware details: when the doorbell is rung, the RNIC first fetches the control/data verbs request from
the host DRAM. (1) To fetch and process this request, the RNIC may need several metadata (e.g., QP contexts) and there are different types of
caches inside the RNIC that can store this metadata. The RNIC can get the metadata directly from these caches, (2) or fetch them from DRAM
if a cache miss happens (red lines in the figure). Then the RNIC processes the request and (3) sends the response back to the host DRAM for
control verbs or issues DMA requests to read payload for data verbs. After (4) reading data from the host DRAM, the RNIC (5) processes the
data into network packets and (6) sends them to the fabric. The symmetric receiver side is not shown for simplicity.

contention. But our goal here is to systematically study all
possible types of resource contention. For each microarchitec-
ture resource, we study how it is consumed by three categories
of RDMA operations: (1) control verbs that allocate objects
for applications (e.g., ibv_create_qp), (2) data verbs that
initiate data transfer (e.g., ibv_post_send), and (3) excep-
tion handling operations that handle exceptions or errors (e.g.,
RNR errors). Due to space limitations, we first present a few
key findings that have significant implications on RNIC perfor-
mance isolation. After that, we summarize several other find-
ings. We present a detailed analysis of NVIDIA’s responses
to these findings in Appendix B.

3.1 Methodology

Our findings center around how to exhaust RNIC microarchi-
tecture resources through the verbs interface [21], the stan-
dard RDMA programming API. For each key finding, we
demonstrate it with a concrete setting, which consists of a
victim workload and an attacker workload. Although we use
the terminology attacker, the attacker tenant does not get
unauthorized access to other tenants through vulnerabilities.
Instead, the attacker is just a normal RDMA application that
issues standard RDMA verbs. Each tenant has one client and
one server. The clients of the victim and the attacker locate
on the same physical machine and share the same RNIC.
The servers of the victim and the attacker are colocated on
a different physical server. During the measurement, we do
not enable any isolation mechanism. We will study existing
performance isolation solutions in §5.

We focus on the performance interference between the
victim and the attacker through the exhaustion of microar-
chitecture resources. We first run only the victim to saturate
the link bandwidth capacity (bits per second) or the RNIC’s

maximum request rate (requests per second). We then start
the attacker and measure the two metrics for both the victim
and the attacker. If there is no microarchitecture resource con-
tention, the sum of the performance metrics of the two tenants
should match the RNIC’s limit in the specification. Modern
RNICs specify their bandwidth capacity and request rate lim-
its. If the sum of the two tenants’ performance metrics falls
below both specified limits, we attribute this to the contention
of microarchitecture resources. For example, assume there is
no attacker, and the victim can achieve 100 Gbps. However,
with an X Gbps attacker, the victim reduces to Y Gbps, and
X +Y < 100. Let us also assume the total request rate is below
the RNIC specification. In this situation, we conclude that
some microarchitecture resource is bottlenecked. The traffic
is using RC connection unless otherwise noted.

We test four types of 100 Gbps RNICs: NVIDIA
ConnectX-5 EN and ConnectX-6 Dx, Chelsio T62100-LP-
CR, and Intel E810. NVIDIA NICs runs RoCE, and the Chel-
sio NIC runs iWARP. Intel E810 supports both RoCE and
iWARP, but we currently only test its RoCE implementation.
RoCE and iWARP are two standard ways to run RDMA
over Ethernet-based networks. Our testbed consists of two
servers, each equipped with an RNIC, and the two RNICs
are connected via a 100 Gbps switch. For NVIDIA RNICs,
we have access to their hardware counters, e.g., cache miss
counters, through their network adapter management tool
NEO-Host [44]. These hardware counters allow us to pin-
point which resource is oversubscribed. For example, when
the ICM cache miss counter increases quickly with a certain
application workload, we learn that this workload heavily uses
this cache, making it oversubscribed. Since other RNICs do
not expose such counters, we experiment other RNICs based
on their end-to-end performance metrics (e.g., bandwidth).

34 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Scenarios Alone Registration Deregistration
BW / Gbps 96.6 95.9 48.0
Miss Rate 17.2% 22.9% 49.1%

Table 1: MR control verbs exhaust the MTT cache and reduce band-
width.

3.2 NIC Caches

We are aware that an RNIC has at least three types of caches,
as shown in Figure 3. The RNIC stores several types of
metadata in these caches to accelerate the request processing,
such as the QP contexts in the ICM cache. Prior works have
identified some RNIC cache contention problems caused by
data verbs with particular patterns. For example, transmitting
small messages across many RC QPs simultaneously and
random accesses to a large number of memory regions can
cause certain types of severe cache misses (e.g., ICM and
MTT/MPT) [29, 53]. ScaleRPC [5] found that this scalability
problem can reduce the WRITE request rate by 90%.

In addition to these well-known problems, we observe a
new, and even more severe way to exhaust caches:

Key finding #1: control verbs can cause excessive cache
misses and a drastic performance reduction. Control verbs
(e.g., ibv_reg_mr) are used to create and destroy objects like
MRs and QPs, which will be used by data verbs to transfer
data. To the best of our knowledge, there is no study on how
control verbs consume RNIC microarchitecture resources.
We find that control verbs can easily trigger excessive cache
misses, thus degrading bandwidth and request rate.

We demonstrate this finding with a simple experiment on
NVIDIA ConnectX-5 RNICs. We let the victim tenant use
6 cores, 16 connections per core, to issue 512B WRITE re-
quests to exhaust the bandwidth capacity of the RNIC (i.e.,
100 Gbps). Table 1 shows the results. The victim can achieve
96.6 Gbps with 17.2% MTT cache miss rate. The victim can
still achieve line rate under such cache miss rate because
QP multiplexing and the RNIC pipeline design can mask the
overhead of cache misses to some degree. We let a single-
threaded attacker keep registering memory regions (MRs)
using ibv_reg_mr (∼5K registration per second) on the vic-
tim’s sender side. In this scenario, the victim’s bandwidth is
almost not affected, staying at 95.9 Gbps with the miss rate
slightly increased to 22.9%. However, if the attacker keeps
deregistering MRs, we can see a significant impact on the
victim: the cache miss rate increases to 49.1%, and the band-
width degrades to 48 Gbps. The overhead under such a high
cache miss rate becomes significant and can no longer be
masked by the RNIC processing pipeline. It is worthwhile to
note that the attacker does not need to issue any data verbs,
so the attacker consumes no network bandwidth or request
rate at all. Fortunately, we observe that such interference is
negligible at the receiver side.

Compared with data verbs, we find that control verbs are

easier to cause performance interference. To overfill cache
resources, we need to launch enough in-flight data verbs and
force them to randomly access a large number of objects (e.g.,
MRs). For example, on NVIDIA ConnectX-5 RNIC, we find
that it takes 6 threads to access more than 18K MRs with
96 QPs to cause serious enough MTT cache misses that can
degrade bandwidth by 40.1%. We believe cache misses due to
data verbs will become less serious since RNIC vendors keep
increasing on-chip cache resources. In contrast, control verbs
impact cache resources by their special semantics instead of
simply consuming them, and thus the impact from control
verbs can be hard to mitigate. For example, we speculate that
the MR deregistration may invalidate the entire MTT/MPT
cache to avoid accessing outdated MRs. This causes cache
misses for accessing other MRs.

We also conduct the same experiments on Chelsio and Intel
NICs, and we observe similar results.

3.3 Processing Units

The RNIC has several processing units (PUs) to process verbs
requests. Due to the lack of public available counters to mon-
itor the status of PUs, we use the request rate as the metric
to measure how PUs are consumed by different verbs. We
summarize the following two key findings:

Key finding #2: performance interference between differ-
ent data verbs depends on the complexity of verbs. Dif-
ferent data verbs have different complexities. Simple verbs,
like send and read, only copy data between machines. Com-
plex verbs, such as fetch_and_add, atomically add a 64-bit
value to the memory of a remote address. This operation lever-
ages PCIe features (e.g., read-modify-write transactions), and
may also acquire a lock on the target address. These complex
verbs consume more PU resources, resulting in a lower re-
quest rate [29]. Our new discovery here is that this difference
in resource consumption can also open a new pathway for per-
formance interference through resource exhaustion: a victim’s
performance can be substantially penalized when colocated
with an attacker that uses complex verbs intensively.

To understand this effect, we first measure the data verbs
request rate when competing with other data verbs. We begin
with the NVIDIA 100 Gbps ConnectX-5 RNIC. We set up
two workloads for each test, and each workload runs 8 QPs
across 8 dedicated CPU cores to saturate the RNIC’s rate. To
avoid RNIC severe cache misses, we only use 128 QPs in
total and 16 MRs. We observe less than 1% cache miss in all
the PU tests. To avoid reaching the bandwidth capacity limit,
we use 8B as the request size of all data verbs. We first set up
one workload (victim) using a particular type of data verbs,
and then set up the attacker workload with different types of
data verbs. We show their request rate results in Figure 4.

Our first takeaway is that in addition to the ATOMIC opera-
tions [29], the READ operations are also more expensive than
SEND/RECV and WRITE. When they are running alone (as
victim traffic), FAA and CAS only achieve 5.2 Mrps and 4.8

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 35

SEND

w/SEND

w/W
RITE

w/R
EAD

w/FA
A

w/C
AS

0
25
50
75

100
125 SEND

WRITE

w/SEND

w/W
RITE

w/R
EAD

w/FA
A

w/C
AS

0
25
50
75

100
125 WRITE

READ

w/SEND

w/W
RITE

w/R
EAD

w/FA
A

w/C
AS

0
15
30
45
60
75 READ

FA
A

w/SEND

w/W
RITE

w/R
EAD

w/FA
A

w/C
AS

0
2
4
6
8

10 FETCH_AND_ADD

CAS

w/SEND

w/W
RITE

w/R
EAD

w/FA
A

w/C
AS

0
2
4
6
8

10 CMP_AND_SWAP

R
at

e
/ M

rp
s

Figure 4: The contention of different data verbs on PU (NVIDIA). The leftmost bar on each subfigure is the request rate of running the victim
only. The right 5 bars of each subfigure are the victim’s rate when the attacker is running.

SEND

w/SEND

w/W
RITE

w/R
EAD

0

2

4

6 SEND

WRITE

w/SEND

w/W
RITE

w/R
EAD

0

2

4

6 WRITE

READ

w/SEND

w/W
RITE

w/R
EAD

0

2

4

6 READ

R
at

e
/ M

rp
s

Figure 5: The contention of different data verbs on PU (Chelsio).
The leftmost bar on each subfigure is the request rate of running the
victim only. The right 3 bars of each subfigure are the victim’s rate
when the attacker is running.

Mrps respectively. READ achieves approximately 60 Mrps.
SEND and WRITE can achieve more than 90 Mrps.

The second and the more important takeaway is that the
contention behavior between different combinations of data
verb operations can vary. For example, when the victim runs a
READ workload alone, it can achieve 60 Mrps. If the attacker
runs a CAS workload, the victim’s request rate immediately
drops to 3 Mrps. If the attacker runs a READ workload, the
victim’s request rate only drops to 30 Mrps. This means the
complex verbs (e.g., CAS) can consume more resources and
penalize other colocated verb workloads. One non-intuitive
behavior we want to highlight is that the request rate of the vic-
tim running FAA or CAS can actually increase if the attacker
runs a SEND or WRITE workload under this setting1.

We also conduct similar tests on 100 Gbps Chelsio T62100-
LP-CR RNIC, and the results are shown in Figure 5. This
iWARP RNIC does not support ATOMIC operations. We ob-
serve that the iWARP RNIC’s request rate for all types of data
verbs is lower compared with RoCE RNICs, which matches
findings from previous works [8, 49, 71]. We find that the
contention among data verbs on Chelsio’s RNIC also varies.
For example, the victim with WRITE workload can achieve
4.76 Mrps without interference. The attacker can cause the
victim’s request rate to drop 55.0% with SEND workload and
73.1% with READ workload. The specific patterns are differ-
ent from NVIDIA RNIC, but this result still demonstrates our
key finding: the PU overhead of different data verbs varies.

Key finding #3: error handling can stall RNIC processing
units and hang all the applications. RNICs need to handle a
few types of errors, including transport timeout (the responder
side does not send an ACK or NACK), Receive Not Ready

1We report this to the RNIC vendor and this observation is acknowledged.
However, the root cause currently has not been figured out yet.

Scenario Victim Bandwidth SEND Bandwidth
Victim Only 97.07 -

w/o RNR 93.53 4.01
w/ RNR 0.018 0

Table 2: The impact of RNR errors on bandwidth. The unit is Gbps.

(RNR) error (the responder does not have enough receive
requests for arriving send requests), local or remote protection
error (the posted request does not reference a valid local or
remote memory region), and local operation error (an opcode
is operated on the wrong type of QP). Handling these errors
require resources from RNIC processing units and some errors
can be expensive for RNICs to handle.

On NVIDIA ConnectX-5 and ConnectX-6 RNICs, we find
handling RNR errors can completely stall the RNIC process-
ing units. For the victim, we use Perftest [56] to keep 128
outstanding 64KB WRITE requests on a single QP to saturate
the bandwidth capacity. For the attacker, we only use a single
QP (i.e., the SEND application in the table) to keep only one
in-flight 4KB SEND request to consume a small amount of
bandwidth. As shown in Table 2, if the SEND application
generates traffic normally (e.g., the responder posts enough
receive requests), it consumes 4 Gbps bandwidth, and the
bandwidth for the victim only drops approximately 3.5 Gbps.
However, when the SEND application triggers RNR errors
(e.g., the responder side does not post any receive requests),
both the SEND application and the victim are stalled. We
test this RNR errors with both directions and see the same
results. The reason is that the RNIC of the RNR receiver is
stalled, and the RNIC cannot even process the ACK packet.
The victim therefore is stalled even when they are sending
traffics in the opposite direction.

We conduct the same experiments using both Intel and
Chelsio NICs. We observe that the victim’s QP connections
are also terminated unexpectedly during data transfer for Intel
E810. Fortunately, we do not see such RNR issue for Chelsio
T62100-LP-CR. Our best guess is that the iWARP is designed
on the top of TCP and aimed at running on a lossy fabric, so
it may have a more effective error handling mechanism.

3.4 PCIe Bandwidth

The RNIC is connected to the PCIe controller and transfers
data from/to the CPU using PCIe lanes. The impact of PCIe

36 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

on the networking stacks has been studied by several prior
works [29, 34, 52]. Based on existing PCIe models, we fur-
ther study how RDMA verbs consume and even use up the
PCIe bandwidth. Previous works have already identified how
RDMA loopback traffic can exhaust PCIe bandwidth [26, 33].
We therefore focus on the normal RDMA TX and RX traffic.
To transfer an RDMA message, PCIe introduces the following
types of extra bytes: (1) an MMIO to ring the doorbell on the
RNIC (64B, depending on cache line size), (2) a Work Queue
Element (WQE) (36B or 64B), (3) the PCIe protocol overhead
(e.g., TLP headers), and (4) extra PCIe operations triggered
by cache misses. Our key observation for PCIe bandwidth is:

Key finding #4: PCIe bandwidth will only become the
bottleneck when the request size is in a specific range. We
only need a single tenant to demonstrate this key finding. We
run the experiment on NVIDIA 100 Gbps ConnectX-5 RNIC.
The PCIe bandwidth capacity is 128 Gbps (PCIe Gen 3.0
x16). We use 96 QPs across 6 cores to saturate the PCIe TX
bandwidth. Each QP keeps 256 outstanding WRITE requests.
We vary the request size and collect both the NIC and the PCIe
bandwidth consumption by reading the RNIC’s counters. The
result is shown in Figure 6. We first observe that when the
payload size is small, the commodity RNIC can mitigate the
WQE overhead by embedding the small message in the WQE.
As shown in the green rectangle, when the request size is
smaller than 28B, increasing the request size does not cause
more PCIe bandwidth consumption because the payload is
embedded in the same MMIO operation with the WQE.

Our second observation is that PCIe TX bandwidth may
only become the bottleneck when the payload size of the
request is in a specific range. The reason is that short re-
quests are first throttled by the request rate before exhausting
PCIe bandwidth while large requests are always throttled by
the RNIC’s bandwidth capacity. We confirm this observa-
tion through a theoretical PCIe consumption model and we
present two concrete examples. We assume the network MTU
is 4096B and the maximum payload per PCIe transaction is
128B (the worst setting to maximize the PCIe overhead). The
TLP overhead depends on the implementation [52] and we
assume it as 20B, a typical size for a PCIe 3.0 device. Trans-
mitting a 29-byte message will consume at most 127 network
bytes and at least 189 PCIe bytes [29, 69]. Therefore, to satu-
rate the link bandwidth (100 Gbps), we need at least 148.8
Gbps PCIe bandwidth, which is much larger than the PCIe
3.0x16 capacity. Appendix A includes the detailed compu-
tation. Our measurement shows that the actual consumption
can be even higher, as shown in Figure 6. The consumption
model for PCIe RX bandwidth (i.e., the RNIC to the host) is
similar to that of TX. Additionally, too many cache misses
may also cause high PCIe bandwidth consumption due to lots
of PCIe reads to fetch metadata. However, in most scenarios,
the large number of cache misses will first slow down the
RNIC execution (e.g., introduce extra latency) and the PCIe
bandwidth is therefore less consumed. In our measurement

0 1 24 28 29 128 129 256 257 1024 64K
Message Size / Bytes

0

50

100

Ba
nd

wi
dt

h
/ G

bp
s

MMIO
(WQE + payload)

require
 another

 DMA

require
 another

 DMA

NIC Bw PCIe Bw

Figure 6: The PCIe bandwidth and RNIC bandwidth consumed by
the application.

of cache misses, we do not observe cases where PCIe TX
bandwidth is exhausted.

Both the theoretical model and our experimental results
demonstrate that the PCIe bandwidth can become the bottle-
neck, but only for a particular request size range.

3.5 Other findings

We also have several other interesting findings. In the interest
of space, we only briefly present them here. However, we do
use these findings to guide our test suite design in §4.

Other finding #1: Data verbs contend for different RNIC
caches. We conduct the scalability test using different data
verbs, and observe different types of cache contention. For
example, a large number of RC QPs that issue READ and
WRITE will mainly cause ICM cache misses. A large number
of UD QPs that issue SEND/RECV requests or many RC
QPs that issue ATOMIC requests can cause severe RECV
WQE cache misses. This observation indicates that data verbs
contend for cache differently, similar to the contention on
RNIC PUs.

Other finding #2: Wide range access across many objects
(QP, CQ, MR) causes ICM cache misses. The scalability
issue has been well studied, but our measurement reveals new
observations. In addition to QP and MR, the context of the
completion queue (CQ) is also stored in the ICM cache. Thus,
accessing a large number of CQs can also trigger severe ICM
cache misses. In addition, allocating a large number of these
objects does not necessarily cause severe ICM cache misses.
Wide range access across the objects (i.e., poor locality) is the
key to triggering severe ICM cache misses and performance
degradation.

Other finding #3: The impact of control verbs is restricted
by its kernel involvement. We observe that all control verbs
are first processed by the kernel drivers, thus causing expen-
sive context switch. The execution rates of these control verbs
are usually throttled by the kernel instead of RNIC process-
ing. Therefore, control verbs have a limited impact on ex-
hausting RNIC PUs. However, they can still cause significant
performance interference and affect the other applications by
triggering severe cache misses, as our key finding #1 shows.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 37

Data Verbs

Control Verbs

Processing Units

NIC Bandwidth

NIC Caches

Receiver not
ready

PCIe Bandwidth

RNIC Error Handling

Post
Request

WRITE SEND
READ CASFAA

Transport
timeout

Wide range accessCQ QP MR

Deallocation

Modification

AllocationObjects
CQQP

MR PD
Context

Figure 7: The relationship between verbs and microarchitecture
resources. The arrow indicates heavy resource consumption.

3.6 The Resource Consumption Model

We summarize our findings in an RDMA operation model
shown in Figure 7. This model describes which microarchitec-
ture resource a verb operation consumes heavily. Note that a
verb operation can also use other microarchitecture resources
that are not captured by our experiments. This is because the
usages of these resources are low and do not lead to resource
contention. This model is qualitative: we do not try to under-
stand the exact resource usage since we have no visibility into
proprietary RNIC hardware. For example, we know a certain
traffic pattern can trigger a certain type of cache misses, but
we does not figure out the total size of the cache or how much
of the cache an operation consumes. Even so, we show that
this model is sufficiently powerful for us to create the first test
suite for RNIC performance isolation, and it can capture a
wide range of workloads that can break existing performance
isolation solutions.

4 The Husky Test Suite
After we understand how different RDMA operations use
these microarchitecture resources, we can design a test suite
to evaluate performance isolation solutions. Our goal is the
following: given an RNIC hardware and a performance isola-
tion solution, we want to find a set of workloads combinations
for an attacker and a victim that can break the performance
isolation. We need to check different victim workloads for
completeness because different victim workloads are sensitive
to exhaustion of different microarchitecture resources.

Our test suite must be general: we will use it to test various
RNIC performance isolation solutions on different RNICs.
This means we cannot rely on tools and features from spe-
cific vendors, such as Mellanox Neo-Host [44]. In addition,
different RNICs have different amounts of microarchitecture
resources. And existing performance isolation solutions may
only be able to mitigate contention on specific resources.

To this end, we build Husky to systematically test and eval-
uate RNIC performance isolation solutions. Husky targets
at four types of resources: NIC bandwidth, PCIe bandwidth,
NIC PU, and NIC cache. For each type of resource, we de-
sign synthetic workloads with different types of behaviors
(e.g., control verbs) to exhaust this resource. More specifi-

cally, we exhaust NIC BW with long messages using different
opcodes (e.g., WRITE); we exhaust PCIe bandwidth with
loopback traffic and specific message patterns (from key find-
ing #4); we exhaust NIC PU with expensive data verbs (key
finding #2), small messages, or error handling behaviors (key
finding #3); we exhaust different types of RNIC cache with
intensive control verbs (key finding #1) and a wide range
access of data verbs. We vary parameters (e.g., connection
types) of some synthetic workloads to be more inclusive. In
all, Husky includes 52 attacker synthetic workloads (6 for
NIC BW, 4 for PCIe BW, 14 for NIC PU, and 28 for NIC
cache) and 20 synthetic victim workloads. Many of the at-
tacker workloads cannot be directly generated with existing
RDMA traffic engines. We therefore extend Collie [33]’s traf-
fic engine, the most flexible one to the best of our knowledge,
to generate these synthetic RDMA traffics, including flexible
control verbs workloads and error handling workloads.

Husky’s framework can also easily allow running real ap-
plications as additional victim workloads. Husky currently
contains two real applications, including the OSU bench-
mark [54] and eRPC-based Masstree key-value store [27, 40].
The OSU benchmark contains workloads such as allreduce
and allgather. Note that we can integrate any RDMA applica-
tions into Husky. We test all the (victim, attacker) workload
pair exhaustively from our test suite.

One key question is how to define a violation of perfor-
mance isolation. Our definition of violation depends on the
concrete isolation solution. Husky uses a user-specified predi-
cate to compute the expected performance results when isola-
tion is enabled. Husky compares the actual performance with
the expected performance to identify violation. For example,
most of existing performance isolation solutions only provide
bandwidth guarantee. The expected performance for these iso-
lation solutions therefore is a guaranteed bandwidth, Bg. We
assume the application can consume bandwidth of Ba when
running alone. The bandwidth of this application should be at
least (1−α)min(Ba,Bg) under any attacker workload, where
α is a tolerance level. A lower α means stricter isolation. We
use an example to demonstrate how this definition works: let
us assume that attacker and the victim are configured to share
the same 100 Gbps network and we set α to be 25%. If the
victim can achieve 60 Gbps when running alone, it should be
able to achieve at least (1− 25%)min(60,50) = 37.5 Gbps
under the attacker’s workload. If the victim can only achieve
10 Gbps when running alone, its consumed bandwidth should
not be less than (1−25%)min(10,50) = 7.5 Gbps. In prac-
tice, we find all existing performance isolation solutions for
commodity RNICs are bandwidth guarantee or can be trans-
lated into bandwidth guarantee. We use this definition for
performance isolation violation in §5 and set α to be 25%.

5 Evaluation
We use a NVIDIA testbed to evaluate existing RDMA perfor-
mance isolation solutions. There are two servers in the testbed,

38 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Resource Processing Units RNIC Cache PCIe BW
Isolation

Mechanism
Error Handling

(RC)
Error Handling

(UD & UC) Data Verbs Control Verbs Data Verbs Data Verbs

SR-IOV ✓ ✗ ✗ ✗ ✗ ✗

HW TC ✗ ✗ ✗ ✗ ✗ ✗

SR-IOV + HW TC ✓ ✗ ✗ ✗ ✗ ✗

Justitia ✗ ✗ ✓ ✗ ✗ ✗

Justitia + HW TC ✗ ✗ ✓ ✗ ✗ ✗

Table 3: Performance isolation violation caused by exhausting microarchitecture resource. Justitia can only provide isolation among applications
using the same function, so cannot be combined with SR-IOV. ✓ means performance isolation is properly enforced. ✗ means Husky can find a
workload pair (attacker, victim) to violate performance isolation by exhausting microarchitecture resources.

and each is equipped with one 100 Gbps NVIDIA ConnectX-
5 RNIC. The server is equipped with Intel Xeon Gold 5215
CPUs, and the RNICs are connected to the server through
PCIe 3.0 x16. The RNICs are connected to a 100 Gbps
NVIDIA switch. We use Ubuntu 20.04 and the kernel version
is 5.11. For NVIDIA NICs, the kernel drivers and verbs li-
braries are both from 5.4-OFED. The firmware version is
16.31.1014. We also conduct all the experiments also on
NVIDIA ConnectX-6 RNICs and the result is similar.

We evaluate 3 different isolation solutions provided by
RNIC vendors and prior work: (1) NVIDIA separate hard-
ware traffic class (HW TC). Cloud operators can set separate
TCs for different tenants to use, which separate the RNIC
bandwidth and packet buffers [47] to enforce performance
isolation. Modern RNICs typically only have 8 traffic classes.
This means we cannot use HW TC when we want to colocate
more than 8 tenants in a physical server. (2) NVIDIA SR-IOV.
Though the SR-IOV technique is designed for hardware vir-
tualization, it provides separate virtual functions with some
separated resources to different tenants and actually achieves
some degrees of performance isolation [45]. (3) Justitia, a
software-based performance isolation solution [71]. Justitia
implements data verbs rate-limiting and pacing in RDMA
userspace libraries to enforce performance isolation. This
means Justitia has no security: malicious applications can
easily circumvent the userspace library. Although Justitia’s
software architecture does not target a multi-tenant public
cloud environment, we still use Husky to evaluate the effect
of its isolation policy (e.g., its token-based algorithm). We
also evaluate all the possible combinations of the above solu-
tions2. Unfortunately, though we have a testbed with Chelsio
T62100-LP-CR and Intel E810 NICs, we did not enable their
hardware-based isolation mechanisms. Justitia also does not
support Chelsio or Intel drivers. We therefore are not able to
conduct the same evaluation on Chelsio or Intel NICs. 3

2We do not test Justitia with SR-IOV because Justitia only isolates traffic
through the same device. When SR-IOV is enabled, tenants are using different
devices (i.e., VF) and Justitia does not work for that scenario.

3We contact the NIC vendors and have multiple rounds of conversations
with their experts. However, we still fail to enable any hardware isolation
solution for RDMA on both NICs. In addition, we are not aware of any prior
work that can set up such RDMA isolation.

5.1 Testing Existing Performance Isolation Solutions

Based on the types of verbs and the exhausted resources, we
categorize the workloads generated by Husky into 6 groups.
We distinguish the error handling of RC from UD & UC be-
cause they cause different behaviors of RNIC PU, and we
observe some isolation solution (e.g., SR-IOV) provides dif-
ferent degrees of isolation on these PU behaviors.

We first take a look at the hardware-based isolation mecha-
nism provided by NVIDIA. For NVIDIA SR-IOV, we enable
two virtual functions (VF) and assign both the victim ten-
ant and the attacker tenant with one VF. We also enable the
VF-based rate limiter and restrict the maximal TX bandwidth
of each tenant to be 50 Gbps, which is a typical fair sharing
setting for the public multi-tenant environment. Given this
configuration, we therefore define the isolation violation for
NVIDIA SR-IOV as the victim’s consumed bandwidth (in
terms of bits per second) being reduced by the attacker to
less than (1−α)min(50,Ba), where α is 25% and Ba is the
victim’s bandwidth without attack. For NVIDIA HW TC, we
assign each tenant with a dedicated TC. For example, the vic-
tim exclusively uses TC 0 and the attacker exclusively uses
TC 3. We configure TC 0 and TC 3 to equally share the RNIC
bandwidth and the NIC buffer (which stores the packets, dif-
ferent from the cache). The violation definition for NVIDIA
HW TC therefore is the same as that of NVIDIA SR-IOV.

The first three rows of Table 3 show the isolation effect
provided by SR-IOV, HW TC, and the combination of them.
Unfortunately, we find both SR-IOV and HW TC fail to pro-
vide enough isolation on RNIC’s microarchitecture resources.
For example, by exhausting RNIC’s cache through either con-
trol verbs or data verbs, Husky can successfully affect the
colocated victim’s applications, even when both SR-IOV and
HW TC are enabled. The key reason is that both SR-IOV
and HW TC only isolate the architectural resources (e.g., link
bandwidth) and do not restrict the cache usage of a single
tenant. Husky therefore is able to use an attacker workload
that exhausts RNIC cache, such as MTT/MPT cache. Other
applications would suffer from severe cache miss and hence
the performance drop. In addition, we find that although SR-
IOV is mainly aimed at virtualization, it has indeed enforced
some isolation, especially for RNIC PUs. The RC RNR error

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 39

handling can cause RNIC PUs to pause and even hang the
colocated applications if there is no performance isolation
mechanism enabled. With SR-IOV, the RC RNR error does
not affect tenants running on other VFs. However, the similar
RNR exception handling process for UD and UC still violates
the isolation of SR-IOV. Due to the RNIC’s black box nature,
we do not know the root cause of such a difference. Our best
guess is that some part of the RNIC’s PUs (e.g., that handles
RC RNR) is isolated by different VFs, while other parts are
not well isolated. These hardware-based solutions also cannot
isolate PCIe bandwidth well. We observe that an attacker can
consume substantial PCIe bandwidth and reduce the victim’s
usable bandwidth.

We then evaluate the software-based solution, Justitia. Justi-
tia is not designed for the public cloud and requires the tenant
to cooperate (e.g., using modified RDMA libraries). Husky
can certainly break its isolation by bypassing the modified
libraries, but this would defeat the purpose of testing Justitia.
We therefore require all of Husky’s traffics (both the victim
and the attacker) to go through Justitia’s modified drivers and
be paced by Justitia. In addition, Justitia only supports limited
types of data verbs on the latest drivers (i.e., mlx5), so we
restrict the applications to only use the opcodes that Justitia
supports. Justitia aims at providing each tenant a fair share
of the NIC resource. We only set up two tenants, so we sim-
ply define the violation of Justitia as the victim’s bandwidth
is less than (1−α)min(Ba,50), similar to the definition for
SR-IOV. We also test the combination of Justitia and HW TC.

As shown in Table 3, Justitia does provide some PU iso-
lation but to a limited extent. For example, Justitia takes the
RNIC’s request rate (i.e., execution throughput) into its iso-
lation consideration. It therefore uses a pacer to control the
request rate for each tenant and successfully prevent a single
tenant from posting a large number of requests to exhaust
the PUs. However, its isolation is violated when the attacker
keeps posting requests that trigger error handling on the RNIC.
The reason is that these errors are detected and handled by
RNIC, which is out of Justitia’s control. In addition, Justitia
does not take cache and PCIe into consideration. The attacker
tenant therefore can still exhaust the RNIC cache and PCIe
bandwidth and cause other tenants to suffer from excessive
cache misses or low usable PCIe bandwidth.

It is worthwhile to note that these solutions already provide
more or less tolerable isolation for architectural resources,
e.g., NIC bandwidth. Husky includes a set of workloads that
only contend for NIC bandwidth, and we do not see such
violation on those workloads when enabling these solutions.
However, ignoring microarchitecture resources makes these
solutions insufficient for real public cloud deployment.

5.2 Impact for Real Applications

Next, we conduct experiments on a larger testbed to study
how microarchitecture resource exhaustion impacts real ap-
plication workloads when using state-of-the-art performance

isolation solutions. We use the allreduce workload [54] on
an RDMA-based MPI implementation [55] and eRPC-based
Masstree (a key-value store) [27, 40] as two real victim appli-
cations. Our testbed consists of four physical servers. Each
server is equipped with one 100 Gbps NVIDIA ConnectX-5
RNIC. The other settings are the same as §5.1. The victim ap-
plications run their VMs on all the four servers. The attacker
tenant controls two VMs, each on a different server. We set
up the testbed this way to emulate a real multi-tenant environ-
ment because an attacker may not have VMs colocated with
all the victim’s VMs. However, our results demonstrate that
violation of performance isolation in a subset of the victim’s
VMs is already enough to substantially reduce the overall
end-to-end performance of the real distributed applications.

For protection mechanisms, we enable either SR-IOV +
HW TC or Justitia + HW TC to provide isolation for the col-
lective communication application. For eRPC-based Masstree,
we only enable SR-IOV + HW TC. This is because Justitia
only supports high-performance RDMA WRITE on the lat-
est NVIDIA drivers, but eRPC-based Masstree leverages UD
SEND/RECV for its communication.

We use four types of attackers from the Husky test suite
to demonstrate our results: (1) BW attack is the baseline.
We use the standard Perftest [56] ib_write_bw to set up a
bandwidth-hungry application. It uses 16 RC QPs and each
QP keeps 128 outstanding 1 MB WRITE requests to saturate
the link bandwidth (consuming ∼50 Gbps when rate limiter
is enabled). BW attack does not target any microarchitecture
resources. (2) PCIe attack exhausts PCIe TX bandwidth.
It runs 36 RC QPs on 6 cores and keeps 128 outstanding
257 B WRITE requests. It also consumes almost 50 Gbps
link bandwidth (less than 20 Mrps) but causes more than
73 Gbps PCIe TX bandwidth consumption. This leaves only
about 50 Gbps usable PCIe TX bandwidth (i.e., less than
50 Gbps usable network bandwidth) for the victim. (3) Cache
attack exhausts RNIC cache. It runs 1536 RC QPs on 6 cores,
uses 12288 MRs and each QP keeps only a single 256 B
outstanding request. This attacker causes severe cache miss
and only uses less than 7 Gbps link bandwidth (i.e., 3 Mrps).
(4) PU attack pauses RNIC PUs. It runs 1 UC QP on a single
core and keeps 128 outstanding SEND/RECV requests. Its
receiver side does not post any receive requests, so the RNIC
has to handle many receive not ready exceptions. It consumes
less than 0.5 Gbps and less than 0.5 Mrps.

We begin with testing the RDMA-based allreduce work-
load. Allreduce is a collective communication operation
widely used in distributed deep learning training. It aggre-
gates a vector across all workers and propagates the result
back to all workers. We set up 2 workers on each host (8 in
total) to run allreduce. The allreduce buffer size is set to 1 MB.
We run allreduce continuously and record the execution rate
(allreduce operations per second). The raw rate without any
isolation mechanism and interference is shown as the leftmost
bars in the figure. The bar of no attack indicates the effect of

40 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

No
protection No

attack BW
attack PCIe

attack Cache
attack PU

attack
0

500

1000

1500

Ra
te

 /
rp

s

0

violation threshold
 (SR-IOV + HW TC)

violation threshold
 (Justitia + HW TC)

Justitia + HW TC SR-IOV + HW TC

Figure 8: Allreduce results under exhaustion of different resources.

enabling these isolation solutions. When Justitia is enabled,
the allreduce rate drops by 38.5%. One possible reason is that
Justitia uses a shim layer (the pacer) to exert sender admis-
sion control, which introduces extra performance overheads
compared to the hardware-based solutions. Since the allre-
duce workload only uses less than half of the NIC bandwidth
(23 Gbps), its performance under attack should be at least
(1−α)Pa, where α is 25% and Pa is its performance without
any attack. We can then compute a violation threshold in allre-
duce rate for each isolation solution based on the bandwidth
the victim should consume.

The result for allreduce is shown in Figure 8. The horizontal
red lines show the violation threshold. Bars under the red
line indicate isolation violation. Pa for the application with
Justitia + HW TC is 38.5% lower than that with SR-IOV +
HW TC. This means the violation threshold is also 38.5%
lower for Justitia + HW TC. We first observe that the BW
attack only causes a negligible performance drop for SR-
IOV + HW TC setting. And Justitia + HW TC also achieves
the bandwidth isolation goal within the tolerance. We then
observe that all the PCIe, Cache, and PU attacks successfully
violate the isolation provided by either Justitia + HW TC or
SR-IOV + HW TC. For example, the PCIe attack can cause
the performance of the allreduce application to drop 27.3%
for SR-IOV + HW TC and 42.1% for Justitia + HW TC. The
impact of the Cache attack is more significant. Allreduce
workload’s performance drops more than half (71.3%) for
Justitia + HW TC and almost half for SR-IOV + HW TC. We
observe that the PU attack is the most powerful. It can directly
stall the allreduce application by exhausting the RNIC PUs.

We use the same set of attackers to test the eRPC-based
Masstree. We use the default setting of eRPC-based Masstree
(e.g., key size and the number of threads). We set up the key-
value server in one physical server and three clients each in a
different physical server. We colocate one attacker VM with
the key-value server and another attacker VM with one of the
clients. We collect the execution rate (in terms of the number
of GET requests per second) and the latency from all the
clients. The Masstree server only uses 14 Mrps and less than
20 Gbps, so we define the isolation violation as the same as
the violation of allreduce. Figure 9 and Figure 10 show the
GET rates and the latency results. The SR-IOV + HW TC

No
Protection No

attack BW
attack PCIe

attack Cache
attack PU

attack
0.0

2.5

5.0

7.5

Ra
te

 /
M

rp
s

violation
 threshold

0

Colocated Non-colocated

Figure 9: Mastree’s GET rate under exhaustion of different resources.
colocated means that the client and the attacker are on the same host.
Non-colocated means that they are on different hosts.

No
Protection No

attack BW
attack PCIe

attack Cache
attack PU

attack
0

25

50

75

100

La
te

nc
y

/ u
s

+∞!

Colocated(p50)
Colocated(p99)

Non-colocated(p50)
Non-colocated(p99)

Figure 10: Mastree’s latency under exhaustion of different resources.

more or less achieves the BW isolation goal within tolerance.
We find that all microarchitecture resource exhaustion attacks
successfully violate the isolation for the client that is colocated
with an attacker VM. Similar to the allreduce workload, the
PU attacker stalls the entire key-value store system. Worse
still, it even pauses the clients that are not colocated with an
attacker VM. This is because we stall the key-value server.

Another observation is that the performance of eRPC-based
Masstree is impaired by the cache exhaustion attack but to
a very limited extent. One possible reason is that the eRPC
leverages UD transport. A UD QP does not need as much
connection metadata as an RC QP does and therefore is less
sensitive to the RNIC internal cache miss. In addition, we
find that the Masstree is more sensitive to PCIe exhaustion.
This is probably due to its small request size. According to
our key finding #4, requests of a relatively small size cause
more extra PCIe TX bandwidth consumption.

We have several high-level takeaways from the real appli-
cation results.

Takeaway #1: targeting microarchitecture resources
makes violating performance isolation easy. If we treat the
RNIC as a black box, it is quite difficult to break performance
isolation. The BW attack targets the bandwidth resource, and
we observe that all the existing solutions provide good pro-
tection. However, once we know a few more details about
how an RNIC works (e.g., the potential microarchitecture
resources), breaking isolation becomes simple. Our attack is
very efficient. For example, Cache Attack only needs 7 Gbps
and 3 Mrps. PU Attack stalls victims with even less bandwidth

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 41

and request rate. Note that these attacks are only targeting
publicly disclosed microarchitecture components.

Takeaway #2: applications’ sensitivity for resource con-
tention is different. Applications’ end-to-end performance
drops can be quite different even for the same attack. The
allreduce application is more sensitive to the cache exhaustion
while the Masstree is more vulnerable to the PCIe exhaustion.

Takeaway #3: distributed applications need performance
isolation on every single server. For both applications, the
attacker only has two VMs, but why does the application-level
performance drop substantially even if the application is run-
ning across four machines? Many modern distributed systems’
performance is usually bottlenecked by a few slowest workers
in the system. For example, in allreduce, each iteration re-
quires synchronization of all workers. Thus, our attack on one
or two workers can slow down the entire allreduce procedure.

5.3 Analysis for Existing Solutions

Our evaluation shows that all existing approaches fail to pro-
vide RDMA performance isolation.We now analyze the fun-
damental restrictions of these solutions and some potential
improvements we may achieve.

SR-IOV and separate HW TC. These hardware based
solutions already provide some hardware resource isolation
(e.g., the hardware queue and the on-NIC packet buffer). The-
oretically, RNIC vendors should be able to incorporate more
hardware isolation features to these solutions. For example,
to statically separate NIC PU or partition NIC cache for dif-
ferent VFs can help to build a better isolation mechanism
for SR-IOV. However, these hardware modifications are non-
trivial and can hardly be applied to existing hardware. RNIC
vendors usually release these new features together with their
new hardware products. Cloud providers thus cannot use these
features in existing hardware.

Justitia. Justitia provides modified userspace libraries and
uses sender admission control to enforce fair sharing of both
bandwidth and execution rates for all tenants. Justitia does
not work for a multi-tenant cloud because its policies are not
enforceable: a malicious application can easily circumvent
the modified user libraries. Putting the security aspect aside,
it is worthwhile to ask whether a pure software solution like
Justitia could in theory support RDMA performance isolation.
We do not have a direct answer to this question, and we believe
it is an interesting future research direction. We reckon that
this can be quite difficult for the following reasons. First, it is
challenging to track and control how much cache a tenant has
occupied without hardware support. Second, it is challenging
to establish a quantitative resource consumption model for
verbs. Finally, error handling is deeply integrated into RDMA
NIC hardware, and is opaque to software.

6 Guidelines
Our results show that, unfortunately, no existing RNIC per-
formance isolation solution is sufficient. We analyze the fail-

ure of existing isolation solutions based on our key findings,
and we present several design guidelines for potential future
RDMA performance isolation work. These guidelines may
also be helpful for RDMA application developers to write
better RDMA applications under multi-tenant environments.

Hardware support for isolation is needed. Software ap-
proaches like Justitia [71] have a common problem. They only
monitor architecture-level metrics, e.g., latency, bandwidth,
and request rate. They cannot detect contention in microarchi-
tecture resources, e.g., caches, let alone manage and fair share
those resources. We believe future performance isolation so-
lutions will have to leverage hardware support, similar to how
modern hypervisors can use Intel Resource Director Technol-
ogy (RDT) to monitor and manage access to the last-level
cache and memory. NVIDIA RNICs expose several useful
hardware counters, but they are still insufficient. For example,
we can only observe cache misses, but we cannot manage the
cache access or split the cache for different tenants.

A layer of indirection is needed. RDMA means kernel
bypass for data verbs. This enables low latency and reduced
CPU overheads. So where should performance isolation be en-
forced? We believe that future performance isolation solutions
will require a layer of indirection either in NIC or in software.
Having the enforcement point in the userland RDMA library
(as Justitia) does not work, because it lacks security. Instead,
a software indirection can have a microkernel-like design,
with a set of cores running the isolation logic in a separate
protection domain [43]. RDMA performance isolation should
be enforced in such a central controller that takes over both
control verbs and data verbs.

Programmer, compiler, and library support for RDMA
applications. After a future performance isolation solution
is invented, applications may need modification as well. If
the future performance isolation solution requires strict par-
titioning of microarchitecture resources, this means each ap-
plication has limited microarchitecture resources to use and
can lead to substantially reduced performance. The amount of
microarchitecture resource an application uses may also vary
(depending on how many other tenants are on the same server
or other configurations). Building high-performance RDMA
applications will require additional effort for the programmer,
compiler, and application library to efficiently use these lim-
ited resources. For CPU cache, these efforts occurred in the
research community two decades ago [35, 36, 42].

7 Discussion

The impact of broken RDMA performance isolation. Our
evaluation shows that a malicious tenant can cause other ten-
ants’ to suffer from drastic performance drop or even get
stuck. In addition, a broken performance isolation exposes
vulnerability for malicious users to conduct side-channel at-
tacks. Since the tenant can affect others’ performance on the
same host, it can set up side channels that leak access pat-

42 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

terns of victim nodes or deliver information by affecting the
host’s performance in a pattern [65]. RDMA performance
isolation therefore is a critical feature for a secured RDMA
public cloud.

What RDMA performance isolation solution should cloud
providers use today? One good news is that we are not
aware of any cloud provider that currently using commodity
RNICs to provide RDMA-capable VMs with partitioned host
resources. To rent an RDMA-capable VM, customers have
to rent the entire physical machine. This means currently we
do not need an RNIC performance isolation solution at all,
because the RNIC only runs a single tenant’s traffic. To move
forward to multi-tenant usage of an RNIC, we believe per-
formance isolation is still a major blocker, and multi-tenancy
should not be enabled until a mature performance isolation
solution is ready, one that can at least pass our test suite.

Generalizability to other kernel bypass host networking
architectures. Our test suite design is based on the verbs
interface, which is RDMA-specific. However, we believe our
methodology should be generalizable to find violations of
performance isolation in other kernel bypass architectures,
e.g., DPDK [13], 1RMA [64], as these implementations com-
monly require RDMA-like mechanisms in the DMA portion
of the design. The industry trend today is to offload functions
to hardware accelerators. For example, RDMA is offload-
ing congestion control and reliable message delivery into the
hardware. Microarchitecture resources in hardware are criti-
cal to delivering these offloaded functions. Paying attention to
these microarchitecture resources for performance isolation
is going to be increasingly important.

8 Related Work

Microarchitecture resources in RNICs. The existence of
RNIC microarchitecture resources is well-known in the net-
working community, and many studies focus on how to design
RDMA applications to circumvent certain RNIC performance
anomalies due to these resources. For example, HERD [28],
FaSST [30], and eRPC [27] avoid using RDMA reliable con-
nection to mitigate the QP context cache miss for better scal-
ability. ScaleRPC [5] and Flock [50] multiplex reliable con-
nections in a time-sharing manner to mitigate the scalability
problem. Kalia et al. [29] studies the RNIC’s PCIe behaviors
and provides guidelines for writing efficient RDMA programs.
Unfortunately, these works only focus on optimizing applica-
tions to fully utilize the limited resources in RNICs. However,
public cloud providers cannot control the third-party tenants’
applications. Collie [33] conducts a systematic search on
RDMA performance anomalies, and the anomalies are mostly
due to oversubscribed microarchitecture resources. However,
since Collie only focuses on first-party traffic, it just builds
a search space based on normal operations. It therefore only
considers normal data verbs and fails to uncover findings
related to other types of behaviors. For example, the key find-

ings #1, #2, and #3 in §3 are fundamentally not covered by
Collie’s search space because Collie does not take control
verbs, error handling, and expensive atomic verbs into consid-
eration. In all, prior works focus more from the perspective of
application developers. Our work is on a complementary as-
pect by looking from the public cloud provider’s perspective:
how these microarchitecture resources affect performance
isolation. This requires us to be microarchitecture resource
aware and take a look at all types of RDMA behaviors, in-
cluding control verbs and error handling, because we need to
deal with misbehaving and even malicious tenants.

Other NIC performance isolation solutions. PicNIC [34]
provides isolation for both packet processing and bandwidth
on NIC. This allows latency-bound workloads not to be af-
fected by bandwidth-bound workloads. FairNIC [15] isolates
resources in SoC-based SmartNICs. Compared with them,
our work focuses on the RDMA-related resources on NICs.

Performance isolation in other contexts. Performance iso-
lation problems are not limited to NICs. Other server hard-
ware components also have this issue, and they already have
corresponding solutions. There exist several partitioning tech-
niques for CPU caches [11, 20] and memory bandwidth [22].
Network bandwidth in the network fabric is also a crucial
resource to isolate [1, 3, 4, 6, 16, 24, 25, 37, 58–60, 62, 68] as
well as the switch processing piplines [67].

9 Conclusion

RDMA is a promising networking technology to enable low
latency and high CPU efficiency in datacenter networks. To
enable RDMA in a multi-tenant environment, performance
isolation is an important property, and RDMA NICs (RNICs)
bring new challenges due to the existence of microarchitecture
resources (e.g., RNIC cache, processing units). We present an
RNIC operation model on how these resources are used by dif-
ferent RDMA operations. Using this model, we create Husky,
the first test suite to evaluate RNIC performance isolation
solutions. Our results show that none of the existing RNIC
performance isolation solutions provides sufficient isolation
against workloads that try to exhaust these microarchitecture
resources. Our findings are acknowledged and reproduced
by one of the largest RDMA NIC vendors. We believe that
building a usable RNIC performance isolation solution will
be a long battle.

Acknowledgement

We thank Chelsio, and Intel for their technical support. We
especially thank NVIDIA, who gives us timely and insightful
feedback, including the root causes of our findings and the cor-
responding solutions. We thank our shepherd Brent Stephens
and other anonymous reviewers for their insightful feedback.
Our work is partially supported by gifts from Adobe, Amazon,
Meta, and IBM.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 43

References
[1] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis,

Greg O’Shea, and Eno Thereska. End-to-End Perfor-
mance Isolation through Virtual Datacenters. In OSDI,
2014.

[2] Infiniband Trade Association. Rocev2, 2014.

[3] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and
Ant Rowstron. Towards Predictable Datacenter Net-
works. In SIGCOMM, 2011.

[4] Hitesh Ballani, Keon Jang, Thomas Karagiannis,
Changhoon Kim, Dinan Gunawardena, and Greg
O’Shea. Chatty Tenants and the Cloud Network Sharing
Problem. In NSDI, 2013.

[5] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable
RDMA RPC on Reliable Connection with Efficient Re-
source Sharing. In EuroSys, 2019.

[6] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ion
Stoica. HUG:Multi-Resource Fairness for Correlated
and Elastic Demands. In NSDI, 2016.

[7] The Global Cloud Computing Market Size.
https://www.yahoo.com/now/global-cloud-
computing-market-size-081600295.html, 2021.

[8] Chelsio Communications. 100g network performance
for illumos, 2018.

[9] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In NSDI, 2014.

[10] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No Com-
promises: Distributed Transactions with Consistency,
Availability, and Performance. In SOSP, 2015.

[11] Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, Har-
shad Kasture, Xiaosong Ma, and Daniel Sanchez. KPart:
A Hybrid Cache Partitioning-Sharing Technique for
Commodity Multicores. In HPCA, 2018.

[12] Alexandra Fedorova, Margo Seltzer, and Michael D
Smith. Improving performance isolation on chip multi-
processors via an operating system scheduler. In 16th
International Conference on Parallel Architecture and
Compilation Techniques (PACT 2007), pages 25–38.
IEEE, 2007.

[13] Linux Foundation. Data plane development kit (DPDK).
http://www.dpdk.org, 2015.

[14] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,
Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng
Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang,
Dennis Cai, and Jiesheng Wu. When cloud storage
meets RDMA. In NSDI 21, 2021.

[15] Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C.
Snoeren. SmartNIC Performance Isolation with Fair-
NIC: Programmable Networking for the Cloud. In SIG-
COMM, 2020.

[16] Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang
Yang, Chao Kong, Peng Sun, Wenfei Wu, and Yong-
guang Zhang. SecondNet: A Data Center Network Vir-
tualization Architecture with Bandwidth Guarantees. In
CoNEXT, 2010.

[17] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over Commodity Ethernet at Scale. In SIGCOMM, 2016.

[18] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and
Amin Vahdat. Enforcing performance isolation across
virtual machines in xen. In ACM/IFIP/USENIX Interna-
tional Conference on Distributed Systems Platforms and
Open Distributed Processing, pages 342–362. Springer,
2006.

[19] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan,
Bei Hua, Zhi-Li Zhang, and Kai Zheng. MasQ: RDMA
for Virtual Private Cloud. In SIGCOMM, 2020.

[20] Andrew Herdrich, Edwin Verplanke, Priya Autee,
Ramesh Illikkal, Chris Gianos, Ronak Singhal, and Ravi
Iyer. Cache QoS: From Concept to Reality in the Intel
Xeon Processor E5-2600 v3 Product Family. In HPCA,
2016.

[21] Jeff Hilland. RDMA Protocol Verbs Specification. Tech-
nical report, Internet Engineering Task Force, 2003.

[22] Derek R. Hower, Harold W. Cain, and Carl A. Wald-
spurger. PABST: Proportionally Allocated Bandwidth
at the Source and Target. In HPCA, 2017.

[23] IEEE. 802.3-2018 - ieee standard for ethernet. https:
//ieeexplore.ieee.org/document/8457469.

[24] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby
Moncaster. Silo: Predictable Message Latency in the
Cloud. In SIGCOMM, 2015.

[25] Vimalkumar Jeyakumar, Mohammad Alizadeh, David
Mazières, Balaji Prabhakar, Albert Greenberg, and
Changhoon Kim. EyeQ: Practical Network Performance
Isolation at the Edge. In NSDI, 2013.

44 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.yahoo.com/now/global-cloud-computing-market-size-081600295.html
https://www.yahoo.com/now/global-cloud-computing-market-size-081600295.html
https://ieeexplore.ieee.org/document/8457469
https://ieeexplore.ieee.org/document/8457469

[26] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui,
and Chuanxiong Guo. A Unified Architecture for Ac-
celerating Distributed DNN Training in Heterogeneous
GPU/CPU Clusters. In OSDI, 2020.

[27] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In NSDI,
2019.

[28] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Using RDMA Efficiently for Key-Value Services. In
SIGCOMM, 2014.

[29] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Design Guidelines for High Performance RDMA
Systems. In USENIX ATC, 2016.

[30] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
OSDI, 2016.

[31] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu,
Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong
Guo, Vyas Sekar, and Srinivasan Seshan. FreeFlow:
Software-based Virtual RDMA Networking for Con-
tainerized Clouds. In NSDI, 2019.

[32] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting
Speculative Execution. In IEEE S&P, 2019.

[33] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding Performance Anomalies in RDMA Subsystems.
In NSDI, 2022.

[34] Praveen Kumar, Nandita Dukkipati, Nathan Lewis,
Yi Cui, Yaogong Wang, Chonggang Li, Valas Valancius,
Jake Adriaens, Steve Gribble, Nate Foster, and Amin
Vahdat. PicNIC: Predictable Virtualized NIC. In SIG-
COMM, 2019.

[35] Monica D. Lam, Edward E. Rothberg, and Michael E.
Wolf. The Cache Performance and Optimizations of
Blocked Algorithms. ASPLOS IV, 1991.

[36] A.R. Lebeck and D.A. Wood. Cache Profiling and the
SPEC Benchmarks: a Case Study. Computer, 27(10):15–
26, 1994.

[37] Jeongkeun Lee, Yoshio Turner, Myungjin Lee, Lucian
Popa, Sujata Banerjee, Joon-Myung Kang, and Puneet
Sharma. Application-Driven Bandwidth Guarantees in
Datacenters. In SIGCOMM, 2014.

[38] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. HPCC: High Precision Congestion Control. In
SIGCOMM, 2019.

[39] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In USENIX Security, 2018.

[40] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache Craftiness for Fast Multicore Key-Value Storage.
In EuroSys, 2012.

[41] Artemiy Margaritov, Siddharth Gupta, Rekai Gonzalez-
Alberquilla, and Boris Grot. Stretch: Balancing QoS and
Throughput for Colocated Server Workloads on SMT
Cores. In HPCA, 2019.

[42] M. Martonosi, A. Gupta, and T.E. Anderson. Tuning
Memory Performance of Sequential and Parallel Pro-
grams. Computer, 28(4):32–40, 1995.

[43] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: A Micro-
kernel Approach to Host Networking. In SOSP, 2019.

[44] Mellanox. Mellanox neo-host network adapter manage-
ment software. https://support.mellanox.com/s/
productdetails/a2v50000000N2OlAAK/mellanox-
neohost.

[45] Mellanox Single Root IO Virtualization (SR-IOV).
https://docs.nvidia.com/networking/pages/
viewpage.action?pageId=12013542.

[46] Mellanox. Proprietary mellanox adapter diagnostics
counters. https://docs.nvidia.com/networking/
m/view-rendered-page.action?abstractPageId=
12005244.

[47] Mellanox Quality of Service (QoS).
https://docs.mellanox.com/pages/
viewpage.action?pageId=19811934, 2018.

[48] Mellanox Adapters Programmer’s
Reference Manual. https://
www.mellanox.com/related-docs/user_manuals/
Ethernet_Adapters_Programming_Manual.pdf,
2021.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 45

https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=12013542
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=12013542
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=12005244
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=12005244
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=12005244
https://docs.mellanox.com/pages/viewpage.action?pageId=19811934
https://docs.mellanox.com/pages/viewpage.action?pageId=19811934
https://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf
https://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf
https://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf

[49] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting Network Support for RDMA.
In SIGCOMM, 2018.

[50] Sumit Kumar Monga, Sanidhya Kashyap, and Chang-
woo Min. Birds of a Feather Flock Together: Scaling
RDMA RPCs with Flock. In SOSP, 2021.

[51] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,
Jie Amy Yang, Leon Gao, Dmytro Ivchenko, Aarti Bas-
ant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani, Xiaodong
Wang, Rakesh Komuravelli, Ching-Hsiang Chu, Ser-
hat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yin-
bin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang,
Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna
Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman, Ki-
ran Kumar Matam, Adi Gangidi, Guoqiang Jerry Chen,
Manoj Krishnan, Avinash Nayak, Krishnakumar Nair,
Bharath Muthiah, Mahmoud khorashadi, Pallab Bhat-
tacharya, Petr Lapukhov, Maxim Naumov, Ajit Math-
ews, Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and Vi-
jay Rao. Software-Hardware Co-design for Fast and
Scalable Training of Deep Learning Recommendation
Models, 2021.

[52] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W.
Moore. Understanding PCIe Performance for End Host
Networking. In SIGCOMM, 2018.

[53] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli,
Michael Cui, Yiying Zhang, Haggai Eran, Boris Pis-
menny, Liran Liss, Michael Wei, Dan Tsafrir, and Mar-
cos Aguilera. Storm: A Fast Transactional Dataplane
for Remote Data Structures. In SYSTOR, 2019.

[54] OSU benchmarks. https://mvapich.cse.ohio-
state.edu/benchmarks/, 2021.

[55] Dhabaleswar Kumar Panda, Hari Subramoni, Ching-
Hsiang Chu, and Mohammadreza Bayatpour. The
MVAPICH project: Transforming Research into High-
Performance MPI Library for HPC Community. Journal
of Computational Science, 2021.

[56] OFED perftest. https://github.com/linux-rdma/
perftest, 2021.

[57] Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi,
Bernard Metzler, Ionnis Koltsidas, and Thomas R. Gross.
A Hybrid I/O Virtualization Framework for RDMA-
Capable Network Interfaces. In VEE, 2015.

[58] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Ion Sto-
ica. FairCloud: Sharing the Network in Cloud Comput-
ing. In SIGCOMM, 2012.

[59] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jef-
frey C Mogul, Yoshio Turner, and Jose Renato Santos.
Elasticswitch: Practical Work-Conserving Bandwidth
Guarantees for Cloud Computing. In SIGCOMM, 2013.

[60] Barath Raghavan, Kashi Vishwanath, Sriram Ramab-
hadran, Kenneth Yocum, and Alex C. Snoeren. Cloud
Control with Distributed Rate Limiting. In SIGCOMM,
2007.

[61] Waleed Reda, Marco Canini, Dejan Kostić, and Simon
Peter. RDMA Is Turing Complete, We Just Did Not
Know It Yet! In NSDI, 2022.

[62] Alan Shieh, Srikanth Kandula, Albert Greenberg,
Changhoon Kim, and Bikas Saha. Sharing the Data
Center Network. In NSDI, 2011.

[63] David Shue, Michael J. Freedman, and Anees Shaikh.
Performance Isolation and Fairness for Multi-Tenant
Cloud Storage. In OSDI, 2012.

[64] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F.
Wenisch, Monica Wong-Chan, Sean Clark, Milo M. K.
Martin, Moray McLaren, Prashant Chandra, Rob Cauble,
Hassan M. G. Wassel, Behnam Montazeri, Simon L.
Sabato, Joel Scherpelz, and Amin Vahdat. 1RMA: Re-
Envisioning Remote Memory Access for Multi-Tenant
Datacenters. In SIGCOMM, 2020.

[65] Shin-Yeh Tsai, Mathias Payer, and Yiying Zhang.
Pythia: Remote oracles for the masses. In 28th USENIX
Security Symposium (USENIX Security 19), pages 693–
710, Santa Clara, CA, August 2019. USENIX Associa-
tion.

[66] Ben Verghese, Anoop Gupta, and Mendel Rosenblum.
Performance isolation: Sharing and isolation in shared-
memory multiprocessors. In ASPLOS VIII, 1998.

[67] Tao Wang, Xiangrui Yang, Gianni Antichi, Anirudh
Sivaraman, and Aurojit Panda. Isolation mechanisms
for High-Speed Packet-Processing pipelines. In NSDI,
2022.

[68] Di Xie, Ning Ding, Y Charlie Hu, and Ramana Kom-
pella. The Only Constant is Change: Incorporating
Time-Varying Network Reservations in Data Centers.
In SIGCOMM, 2012.

[69] Understanding Performance of PCI Express Systems.
https://docs.xilinx.com/v/u/en-US/wp350, 2018.

46 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://docs.xilinx.com/v/u/en-US/wp350

[70] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jna-
gal, Vrigo Gokhale, and John Wilkes. CPI2: CPU Per-
formance Isolation for Shared Compute Clusters. In
EuroSys, 2013.

[71] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf
Chowdhury. Justitia: Software Multi-Tenancy in Hard-
ware Kernel-Bypass Networks. In NSDI, 2022.

A Network v.s. PCIe
To transmit a payload through Ethernet-based IP-routed
RDMA network (i.e., RoCEv2), the network protocol intro-
duces the following overhead.

1. Ethernet overhead. Each Ethernet frame includes 14-
byte Ethernet (exclude VLAN) header and 4-bytes CRC
as L2 overhead. In addition, each Ethernet frame has L1
overhead - each frame is preceded by a 7-byte preamble
and 1-byte start-of-frame delimiter. The frame is also
followed by an inter-frame gap. The gap should be at
least 12-byte. The total Ethernet overhead per frame
therefore is 38-byte [23].

2. IP overhead. IP overhead comes from the IP header,
with a least size 20-byte.

3. UDP overhead. UDP overhead comes from the 8-byte
UDP header.

4. Infiniband overhead. The Infiniband protocol imple-
ments headers inside the UDP payload. A simple
WRITE message through reliable connection (RC) needs
12-byte Base Transport Header (BTH), 16-byte RDMA
Extended Transport Header (RETH), and 4-byte invari-
ant CRC. Hence, the Infiniband protocol overhead is at
least 32-byte [2].

To transmit the payload from the host DRAM to the RNIC,
the RNIC PCIe behaviors include the following overhead.

1. Ringing the doorbell. To post a work request, users need
to ring the RNIC’s doorbell through memory-mapped IO
(MMIO). Each MMIO has a fixed aligned size 64-byte.

2. Work Queue Element. The RNIC needs to fetch a work
queue element (WQE) from host DRAM to the NIC. A
WQE for RC/UC is 36-byte, and 68-byte for UD.

3. TLP overhead. Each PCIe transaction has PCIe Trans-
action Layer Packet (TLP) header, and the header size
varies for different PCIe implementation. We assume its
least size as 20-byte according to [29, 69].

We next shows the computation of the 29-byte payload
example in §3. The 29-byte payload is obviously less than
the MTU, and can be sent using a single network packet.
Therefore, the network bytes consumed by this payload is:

Bytes(network) = Bytes(payload)+Bytes(Ethernet)

+Bytes(IP)+Bytes(UDP)+Bytes(IB)

= 29+38+20+8+32

= 127(bytes)

For PCIe consumption, the 29-byte payload is larger than
the maximal inline size (28-byte). So it cannot be delivered

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 47

in the same PCIe transaction as the WQE. It therefore needs
three PCIe transactions: (1) Doorbell, (2) WQE, and (3) pay-
load, and consume the following bytes:

Bytes(PCIe) = Bytes(payload)+Bytes(payload TLP)

+Bytes(WQE)+Bytes(WQE TLP)

+Bytes(Doorbell)+Bytes(DB TLP)

= 29+20+36+20+64+20

= 189(bytes)

Therefore, the PCIe consumption for such payload when
saturating the link capacity (100 Gbps) is:

Bandwidth(PCIe) = Bandwidth(network)∗ Bytes(PCIe)
Bytes(network)

= 100∗ 189
127

= 148.8(Gbps)

B Response from NIC Vendors
We report our findings and results to the NIC vendors, in-
cluding NVIDIA, Intel, and Chelsio. NVIDIA, one of the
largest RDMA NIC vendors, has spent substantial effort on
acknowledging and reproducing our experiments. They have
successfully reproduced all of our findings in their own en-
vironment. In addition, NVIDIA provides us with detailed
analysis and feedback. We would like to share them here.

Key finding #1: control verbs can cause excessive cache
misses and a drastic performance reduction. NVIDIA
provides a more accurate analysis of this finding: the deregis-
tration control verbs can cause drastic performance reduc-
tion mainly because of the NIC internal QoS scheduling
policy. The deregistration control verbs have higher prior-
ity than other types of operations and will be scheduled first.
Consequently, these deregistration verbs trigger excessive
cache misses and cause the performance to drop drastically.
NVIDIA has already figured out a solution to address this
issue. The high-level idea is to tune the NIC internal QoS pol-
icy so that deregistration does not have such a high priority.
They are planning for a firmware upgrade to fix this issue.

Key finding #2: performance interference between dif-
ferent data verbs depends on the complexity of verbs.
NVIDIA is familiar with this phenomenon and will roll out
new firmware upgrades to address this issue.

Key finding #3: error handling can stall RNIC processing
units and hang all the applications. NVIDIA provides a
more accurate explanation of this phenomenon: for unreliable
transport types (UC and UD), there is not the same specific
RNR exception handling procedure as RC. Instead, they have
other processing logic that involves firmware that handles

out-of-order packets. This is the root cause of the perfor-
mance interference when attacking using unreliable transport
types. NVIDIA also provides a potential solution to mitigate
such interference. NVIDIA Connect-X series NICs support
monitoring per-VM consumption of the NIC resources. The
cloud operators therefore can enforce VM capabilities policy
based on the visibility of NIC resources consumption. Further-
more, NVIDIA is planning to introduce an additional layer of
protection in the coming NIC firmware/hardware release to
completely eliminate the attack vector for RC.

Key finding #4: PCIe bandwidth will only become the
bottleneck when the request size is in a specific range.
Though PCIe bandwidth contention is not a unique interfer-
ence brought by RDMA, NVIDIA still acknowledged and con-
firmed our observation on the PCIe consumption for RDMA
NIC.

We thank NVIDIA for their kind and great support. We
believe the above understanding will benefit cloud operators
and RDMA application developers. In addition, our collabo-
ration with NVIDIA also demonstrates how Husky can help
to improve existing RDMA solutions and build robust RDMA
performance isolation in the future.

48 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Empowering Azure Storage with RDMA
Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir Bahl, Ameya Bhagat, Gowri Bhaskara,

Tanya Brokhman, Lei Cao, Ahmad Cheema, Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek Ette, Igal Figlin,
Daniel Firestone, Mathew George, Ilya German, Lakhmeet Ghai, Eric Green, Albert Greenberg∗, Manish Gupta,

Randy Haagens, Matthew Hendel, Ridwan Howlader, Neetha John, Julia Johnstone, Tom Jolly, Greg Kramer, David Kruse,
Ankit Kumar, Erica Lan, Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen Liu∗, Guohan Lu, Yuemin Lu, Xiakun Lu,

Vadim Makhervaks, Ulad Malashanka, David A. Maltz, Ilias Marinos, Rohan Mehta, Sharda Murthi, Anup Namdhari,
Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas Phillips, Adrian Power, Suraj Puri, Shachar Raindel∗, Jordan Rhee∗,

Anthony Russo, Maneesh Sah, Ali Sheriff, Chris Sparacino, Ashutosh Srivastava, Weixiang Sun∗, Nick Swanson, Fuhou Tian,
Lukasz Tomczyk, Vamsi Vadlamuri, Alec Wolman, Ying Xie, Joyce Yom, Lihua Yuan, Yanzhao Zhang, Brian Zill

Microsoft
Abstract

Given the wide adoption of disaggregated storage in public
clouds, networking is the key to enabling high performance
and high reliability in a cloud storage service. In Azure, we
choose Remote Direct Memory Access (RDMA) as our trans-
port and aim to enable it for both storage frontend traffic
(between compute virtual machines and storage clusters) and
backend traffic (within a storage cluster) to fully realize its
benefits. As compute and storage clusters may be located
in different datacenters within an Azure region, we need to
support RDMA at regional scale.

This work presents our experience in deploying intra-region
RDMA to support storage workloads in Azure. The high com-
plexity and heterogeneity of our infrastructure bring a series
of new challenges, such as the problem of interoperability
between different types of RDMA network interface cards.
We have made several changes to our network infrastructure
to address these challenges. Today, around 70% of traffic in
Azure is RDMA and intra-region RDMA is supported in all
Azure public regions. RDMA helps us achieve significant
disk I/O performance improvements and CPU core savings.

1 Introduction

High performance and highly reliable storage is one of the
most fundamental services in public clouds. In recent years,
we have witnessed significant improvements in storage media
and technologies [73] and customers also desire similar perfor-
mance in the cloud. Given the wide adoption of disaggregated
storage in the cloud [35, 46], the network interconnecting
compute and storage clusters becomes a key performance
bottleneck for cloud storage. Despite the sufficient bandwidth
capacity provided by Clos-based network fabrics [25, 48],
the legacy TCP/IP stack suffers from high processing delay,

∗Albert Greenberg is now with Uber. Chen Liu is now with Meta.
Shachar Raindel and Jordan Rhee are now with Google. Weixiang Sun is
now with a stealth startup. This work was performed when they were with
Microsoft.

Figure 1: Traffic statistics of all Azure public regions between
January 18 and February 16, 2023. Traffic was measured by
collecting switch counters of server-facing ports on all Top of
Rack (ToR) switches. Around 70% of traffic was RDMA.

low single-core throughput, and high CPU consumption, thus
making it ill-suited for this scenario.

Given these limitations, Remote Direct Memory Access
(RDMA) offers a promising solution. By offloading the
network stack to the network interface card (NIC) hard-
ware, RDMA achieves ultra-low processing latency and high
throughput with near zero CPU overhead. In addition to per-
formance improvements, RDMA also reduces the number of
CPU cores reserved on each server for network stack process-
ing. These saved CPU cores can then be sold as customer
virtual machines (VMs) or used for application processing.

To fully utilize the benefits of RDMA, we aim to enable
it for both storage frontend traffic (between compute VMs
and storage clusters) and backend traffic (within a storage
cluster). This is different from previous work [46] that targets
RDMA only for the storage backend. In Azure, due to capacity
issues, corresponding compute and storage clusters may be
located in different datacenters within a region. This imposes
a requirement that our storage workloads rely on support for
RDMA at regional scale.

In this paper, we summarize our experience in deploy-
ing intra-region RDMA to support Azure storage workloads.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 49

Figure 2: The network architecture of an Azure region.

Compared to previous RDMA deployments [46, 50], intra-
region RDMA deployment introduces many new challenges
due to high complexity and heterogeneity within Azure re-
gions. As Azure infrastructure keeps evolving incrementally,
different clusters may be deployed with different RDMA
NICs. While all the NICs support DCQCN [112], their imple-
mentations are very different. This results in many undesir-
able behaviors when different NICs communicate with each
other. Similarly, heterogeneous switch software and hardware
from multiple vendors significantly increase our operational
effort. In addition, long-haul cables interconnecting datacen-
ters cause large propagation delays and large round-trip time
(RTT) variations within a region. This brings new challenges
to congestion control.

We have made several changes to our network infrastruc-
ture, from application layer protocols to link layer flow con-
trol, to safely enable intra-region RDMA for Azure storage
traffic. We developed new RDMA-based storage protocols
with many optimizations and failover support, and seamlessly
integrated them into the legacy storage stack (§4). We built
RDMA Estats to monitor the status of the host network stack
(§5). We leveraged SONiC to enforce a unified software stack
across different switch platforms (§6). We updated firmware
of NICs to unify their DCQCN behaviors and used the com-
bination of Priority-based Flow Control (PFC) and DCQCN
to achieve high throughput, low latency and near zero packet
losses (§7).

In 2018, we started to enable RDMA for storage backend
traffic. In 2019, we started to enable RDMA to serve customer
frontend traffic. Figure 1 gives traffic statistics of all Azure
public regions between January 18 and February 16, 2023.
As of February 2023, around 70% of traffic in Azure was
RDMA and intra-region RDMA was supported in all Azure
public regions. RDMA helps us achieve significant disk I/O
performance improvements and CPU core savings.

2 Background

In this section, we first present background on Azure’s net-
work and storage architecture. Then, we introduce the moti-

Figure 3: High-level architecture of Azure storage.

vation for and challenges to enabling intra-region RDMA.

2.1 Network Architecture of an Azure Region
In cloud computing, a region [2,5,8] is a group of datacenters
deployed within a latency-defined perimeter. Figure 2 shows
the simplified topology of an Azure region. The servers within
a region are connected through an Ethernet-based Clos net-
work with four tiers of switches1: tier 0 (T0), tier 1 (T1), tier 2
(T2) and regional hub (RH). We use external BGP (eBGP) for
routing and equal-cost multi-path (ECMP) for load balancing.
We deploy the following four types of units.
• Rack: a T0 switch and the servers connected to it.
• Cluster: a set of racks connected to the same set of T1

switches.
• Datacenter: a set of clusters connected to the same set of

T2 switches.
• Region: datacenters connected to the same set of RH

switches. In contrast with short links (several to hundreds
of meters) in datacenters [50], T2 and RH switches are
connected by long-haul links whose lengths can be as long
as tens of kilometers.
There are two thing to notice about this architecture. First,

due to long-haul links between T2 and RH, the base round-
trip time (RTT) varies from a few microseconds within a
datacenter to as large as 2 milliseconds within a region. Sec-
ond, we use two types of switches: pizza box switches for
T0 and T1, and chassis switches for T2 and RH. The pizza
box switch, which has been widely studied in the research
community, typically has a single switch ASIC with shallow
packet buffers [31]. In contrast, chassis switches are built
using multiple switch ASICs with deep packet buffers based
on the Virtual Output Queue (VoQ) architecture [3, 6].

2.2 High Level Architecture of Azure Storage
In Azure, we disaggregate compute and storage resources for
cost savings and auto-scaling. There are two main types of

1In this paper, we use switch to denote the layer 3 switch which can
perform IP routing. We use the terms switch and router interchangeably.

50 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

clusters in Azure: compute and storage. VMs are created in
compute clusters but the actual storage of Virtual Hard Disks
(VHDs) resides in storage clusters.

Figure 3 shows the high-level architecture of Azure stor-
age [35]. Azure storage has three layers: the frontend layer,
the partition layer, and the stream layer. The stream layer is
an append-only distributed file system. It stores bits on the
disk and replicates them for durability, but it does not un-
derstand higher level storage abstractions, e.g., Blobs, Tables
and VHDs. The partition layer understands different storage
abstractions, manages partitions of all the data objects in a
storage cluster, and stores object data on top of the stream
layer. The daemon processes of the partition layer and the
stream layer are called the Partition Server (PS) and the Ex-
tent Node (EN), respectively. PS and EN are co-located on
each storage server. The frontend (FE) layer consists of a set
of servers that authenticate and forward incoming requests
to corresponding PSs. In some cases, FE servers can also
directly access the stream layer for efficiency.

When a VM wants to write to its disks, the disk driver
running in the host domain of the compute server issues I/O
requests to the corresponding storage cluster. The FE or PS
parses and validates the request, and generates requests to
corresponding ENs in the stream layer to write the data. At the
stream layer, a file is essentially an ordered list of large storage
chunks called "extents". To write a file, data is appended to the
end of an active extent, which is replicated three times in the
storage cluster for durability. Only after receiving successful
responses from all the ENs, the FE or PS sends the final
response back to the disk driver. In contrast, disk reads are
different. The FE or PS reads data from any EN replica and
sends the response back to the disk driver.

In addition to user-facing workloads, there are also many
background workloads in the storage clusters, e.g., garbage
collection and erasure coding [57]. We classify our storage
traffic into two categories: frontend (between compute and
storage servers, e.g., VHD write and read requests) and back-
end (between storage servers, e.g., replication and disk recon-
struction). Our storage traffic has incast-like characteristics.
The most typical example is data reconstruction, which is im-
plemented in the stream layer [57]. The stream layer erasure
codes a sealed extent to several fragments, and then sends
encoded fragments to different servers to store. When the user
wants to read a fragment which is unavailable due to a failure,
the stream layer will read the other fragments from multiple
storage servers to reconstruct the target fragment.

2.3 Motivation for Intra-Region RDMA
Storage technology has improved significantly in recent years.
For example, Non-Volatile Memory Express (NVMe) Solid-
State Drives (SSDs) can provide tens of Gbps of throughput
with request latencies in the hundreds of microseconds [105].
Many customers demand similar performance in the cloud.

High performance cloud storage solutions [1, 4] impose strin-
gent performance requirements to the underlying network
due to the disaggregated and distributed storage architecture
(§2.2). While datacenter networks generally provide sufficient
bandwidth capacity, the legacy TCP/IP stack in the OS kernel
becomes a performance bottleneck due to its high processing
latency and low single-core throughput. What is worse, the
performance of the legacy TCP/IP stack also depends on OS
scheduling. To provide predictable storage performance, we
must reserve enough CPU cores on both compute and storage
nodes for the TCP/IP stack to process peak storage workloads.
Burning CPU cores takes away the processing power that
could otherwise be sold as customer VMs, thus increasing the
overall cost of providing cloud services.

Given these limitations, RDMA offers a promising solu-
tion. By offloading the network stack to the NIC hardware,
RDMA achieves predictable low processing latency (a few
microseconds) and high throughput (line rate for a single flow)
with near zero CPU overhead. In addition to its performance
benefits, RDMA also reduces the number of CPU cores re-
served on each server for network stack processing. These
saved CPU cores can then be sold as customer VMs or used
for storage request processing.

To fully achieve the benefits of RDMA, we must enable
RDMA for both storage frontend traffic and backend traffic.
Enabling RDMA for backend traffic is relatively easy because
almost all the backend traffic stays within a storage cluster.
In contrast, frontend traffic crosses different clusters within
a region. Even though we try to co-locate corresponding
compute and storage clusters to minimize latency, sometimes
they may still end up located in different datacenters within a
region due to capacity issues. This imposes the requirement
that our storage workloads rely on support for RDMA at
regional scale.

2.4 Challenges
We faced many challenges when enabling intra-region RDMA
because our design was limited by many practical constraints.
Practical considerations: We aimed to enable intra-region
RDMA over the legacy infrastructure. While we had some
flexibility to reconfigure and upgrade software stacks, e.g.,
the NIC driver, the switch OS, and the storage stack, it was op-
erationally infeasible to replace the underlying hardware, e.g.,
the NICs and switches. Hence, we adopted RDMA over com-
modity Ethernet v2 (RoCEv2) [29] to keep compatibility with
our IP-routed networks (§2.1). Before starting this project,
we had deployed a significant number of our first generation
RDMA NICs, which implement go-back-N retransmission in
the NIC firmware with limited processing capacity. Our mea-
surements showed that it took hundreds of microseconds to
recover a lost packet, which was even worse than the TCP/IP
software stack. Given such a large performance degradation,
we made the decision to adopt Priority-based Flow Control

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 51

(PFC) [60] to eliminate packet losses due to congestion.
Challenges: Before this project, we had deployed RDMA in
some clusters to support Bing services [50], and we learnt
several lessons from this deployment. Compared to intra-
cluster RDMA deployments [46, 50], intra-region RDMA
deployments introduce many new challenges due to the high
complexity and heterogeneity of the infrastructure.
• Heterogeneous NICs: Cloud infrastructure keeps evolving

incrementally, often one cluster or one rack at a time with
the latest generation of server hardware [91]. Different
clusters within a region may have different NICs. We have
deployed three generations of commodity RDMA NICs
from a popular NIC vendor: Gen1, Gen2 and Gen3. Each
NIC generation has a different implementation of DCQCN.
This results in many undesired interactions when different
NIC generations communicate with each other.

• Heterogeneous switches: Similar to server infrastructure,
we keep deploying new switches to reduce costs and in-
crease the bandwidth capacity. We have deployed many
switch ASICs and multiple switch OSes from different ven-
dors. However, this has increased our operational effort
significantly because many aspects are vendor specific, for
example, buffer architectures, sizes, allocation mechanisms,
monitoring and configuration, etc.

• Heterogeneous latency: As shown in §2.1, there are large
RTT variations from several microseconds to 2 millisec-
onds within a region, due to long-haul links between T2
and RH. Hence, RTT fairness re-emerges as a key chal-
lenge. In addition, the large propagation delay of long-haul
links also imposes large pressure on PFC headroom [12].
Like other services in public clouds, availability, diagno-

sis, and serviceability are key aspects for our RDMA storage
system. To achieve high availability, we always prepare for
unexpected zero-day problems despite large investments in
testing. Our system must detect performance anomalies and
perform automatic failover if necessary. To understand and
debug faults, we must build fine-grained telemetry systems
to deliver crystal clear visibility into every component in the
end-to-end path. Our system also must be serviceable: stor-
age workloads should survive NIC driver updates and switch
software updates.

3 Overview

We have made several changes to our network infrastructure,
from application layer protocols to link layer flow control,
to safely empower Azure storage with RDMA. We devel-
oped two RDMA-based protocols: sU-RDMA (§4.1) and
sK-RDMA (§4.2), which we have seamlessly integrated into
our legacy storage stack to support backend communication
and frontend communication, respectively. Between the stor-
age protocols and the NIC, we deployed a monitoring system
RDMA Estats (§5), giving us visibility into the host network

stack by providing an accurate breakdown of cost for each
RDMA operation.

In the network, we use the combination of PFC and DC-
QCN [112] to achieve high throughput, low latency, and near
zero losses due to congestion. DCQCN and PFC were the
state-of-the-art commercial solutions when we started the
project. To optimize the customer experience, we use two pri-
orities to isolate storage frontend traffic and backend traffic.
To mitigate the switch heterogeneity problem, we developed
and deployed SONiC [15] to provide a unified software stack
across different switch platforms (§6). To mitigate the in-
teroperability problem of heterogeneous NICs, we updated
the firmware of NICs to unify their DCQCN behaviors (§7).
We carefully tuned DCQCN and switch buffer parameters to
optimize performance across different scenarios.

3.1 PFC Storm Mitigation Using Watchdogs
We use PFC to prevent congestion packet losses. However,
malfunctioning NICs and switches can continually send PFC
pause frames in the absence of congestion [50], thus com-
pletely blocking the peer device for a long time. Moreover,
these endless PFC pause frames can eventually propagate
into the whole network, thus causing collateral damage to
innocent devices. Such endless PFC pause frames are called
a PFC storm. In contrast, normal congestion-triggered PFC
pause frames only slow down the data transmission of the
peer device through intermittent pauses and resumes.

To detect and mitigate PFC storms, we designed and de-
ployed a PFC watchdog [11, 50] on every switch and bump-
in-the-wire FPGA card [42] between T0 switches and servers.
When the PFC watchdog detects that a queue has been in the
paused state for an abnormally long duration, e.g., hundreds
of milliseconds, it disables PFC and drops all the packets on
this queue, thereby preventing PFC storms from propagating
into the whole network.

3.2 Security
We use RDMA to empower first-party storage traffic in a
trusted environment, including storage servers, the host do-
main of compute servers, switches and links. Therefore we
are secure against issues described in [69, 94, 104, 109].

4 Storage Protocols over RDMA

In this section, we introduce two storage protocols built on
top of RDMA Reliable Connections (RC): sU-RDMA and sK-
RDMA. Both protocols aim to optimize performance while
keeping good compatibility with legacy software stacks.

4.1 sU-RDMA
sU-RDMA [87] is used for storage backend (storage to stor-
age) communication. Figure 4 shows the architecture of our

52 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: Azure storage backend network stack.

storage backend network stack with the sU-RDMA modules
highlighted. The Azure Storage Network Protocol is an RPC
protocol directly used by applications to send request and
response objects. It leverages socket APIs to implement con-
nection management, sending and receiving messages.

To simplify RDMA integration with storage stack, we built
sU-RDMALib, a user space library that exposes socket-like
byte-stream APIs to upper layers. To map socket-like APIs
to RDMA operations, sU-RDMALib needs to handle the fol-
lowing challenges:

• When the RDMA application cannot directly write into
an existing memory regions (MR), it must either register
the application buffer as a new MR or copy its data into
an existing MR. Both options can introduce large latency
penalties and we should minimize these overhead.

• If we use RDMA Send and Receive, the receiver must
pre-post enough Receive requests.

• The RDMA sender and receiver must be in agreement on
the size of data being transferred.

To reduce memory registrations, which are especially ex-
pensive for small messages [44], sU-RDMALib maintains a
common buffer pool of pre-registered memory shared across
multiple connections. sU-RDMALib also provides APIs to
allow applications to request and release registered buffers. To
avoid Memory Translation Table (MTT) cache misses on the
NIC [50], sU-RDMALib allocates large memory slabs from
the kernel and registers memory over these slabs. This buffer
pool can also autoscale based on runtime usage. To avoid over-
whelming the receiver, sU-RDMALib implements a receiver-
driven credit-based flow control where credits represent the re-
sources (e.g., available buffers and posted Receive requests)
allocated by the receiver. The receiver sends credit update mes-
sages back to the sender regularly. When we started design-
ing sU-RDMALib, we did consider using RDMA Send and
Receive with a fixed buffer size S for each Send/Receive re-
quest to transfer data. However, this design causes a dilemma.
If we use a large S, we may waste much memory space be-
cause a Send request fully uses the receive buffer of the

Figure 5: sK-RDMA’s data flow. We use blue arrows and
red arrows to represent control messages and data massages,
respectively. Arrow width represents data size.

Receive request, regardless of its actual message size. In
contrast, a small S causes large data fragmentation overhead.
Hence, sU-RDMALib uses three transfer modes based on the
message size [87].
• Small messages: Data is transferred using RDMA Send

and Receive.
• Medium messages: The sender posts a RDMA Write re-

quest to transfer data, and a Send request with "Write
Done" to notify the receiver.

• Large messages: The sender first posts a RDMA Send
request carrying the description of the local data buffer to
the receiver. Then the receiver posts a Read request to pull
the data. Finally, the receiver posts a Send request with
"Read Done" to notify the sender.
On top of sU-RDMALib, we built modules to enable dy-

namic transitions between TCP and RDMA, which is critical
for failover and recovery. The transition process is gradual.
We periodically close a small portion of all connections and
establish new connections using the desired transport.

Unlike TCP, RDMA uses rate based congestion con-
trol [112] without tracking the number of in-flight packets
(the window size). Hence, RDMA tends to inject excessive
in-flight packets, thus triggering PFC. To mitigate this, we im-
plemented a static flow control mechanism in the Azure Stor-
age Network Protocol by dividing a message into fixed-sized
chunks and only allowing a single in-flight chunk for each
connection. Chunking can significantly improve performance
under high-degree incast with negligible CPU overhead.

4.2 sK-RDMA
sK-RDMA is used for storage frontend (compute to stor-
age) communication. In contrast with sU-RDMA which runs
RDMA in user space, sK-RDMA runs RDMA in kernel space.
This enables the disk driver, which runs in kernel space in the
host domain of compute servers, to directly use sK-RDMA to

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 53

issue network I/O requests. sK-RDMA leverages and extends
Server Message Block (SMB) Direct [14] which provides
socket-like kernel-mode RDMA interfaces. Similar to sU-
RDMA, sK-RDMA also provides credit-based flow control
and dynamic transition between RDMA and TCP.

Figure 5 shows sK-RDMA’s data flow for reading and
writing disks. The compute server first posts a Fast Memory
Registration (FMR) request to register data buffers. Then it
posts an RDMA Send request to transfer a request message
to the storage server. The request carries a disk I/O com-
mand, and a description of FMR registered buffers available
for RDMA access. According to the InfiniBand (IB) speci-
fication, the NIC should wait for the completion of the FMR
request before processing any subsequently posted requests.
Hence, the request message is actually pushed onto the wire
after the memory registration. The data transfer is initiated
by the storage server using RDMA Read or Write. After the
data transfer, the storage server sends a response message to
the compute server using RDMA Send With Invalidate.

To detect data corruptions, which can happen silently due
to various software and hardware bugs along the path, both
sK-RDMA and sU-RDMA implement a Cyclical Redundancy
Check (CRC) on all application data. In sK-RDMA, the com-
pute server calculates the CRC of the data for disk writes.
These calculated CRCs are included in the request messages,
and used by the storage server to validate the data. For disk
reads, the storage server performs the CRC calculations and
includes them in the response messages, and the compute
server uses them to validate the data.

5 RDMA Estats

To understand and debug faults, we need fine-grained teleme-
try tools to capture behaviors of every component in the end-
to-end path. Despite many existing tools [51, 97, 114] to diag-
nose switch and link faults, none of these tools gives us good
visibility into the RDMA network stack at end hosts.

Inspired by diagnostic tools for TCP [79], we developed
RDMA Extended Statistics (Estats) to diagnose performance
problems in both the network and the host. If an RDMA
application is performing poorly, RDMA Estats enables us
to tell if the bottleneck is in the sender, the receiver, or the
network.

To this end, RDMA Estats provides a fine-grained break-
down of latency for each RDMA operation, in addition to
collecting regular counters such as bytes sent/received and
number of NACKs. The requester NIC records timestamps at
one or more measurement points as the work queue element
(WQE) traverses the transmission pipeline. When a response
(ACK or read response) is received, the NIC records addi-
tional timestamps at measurement points along the receive
pipeline (Figure 6). The following measurement points are
required in any RDMA Estats implementation in Azure

Figure 6: RDMA Estats measurement points. There are four
NIC timestamps and two host timestamps. We use blue arrows
and red arrows to represent PCIe transactions and network
transfers, respectively. Arrow width represents data size.

T1: WQE posting: Host processor timestamp when the WQE
is posted to the submission queue.

T5: CQE generation: NIC timestamp when the completion
queue element (CQE) is generated in the NIC.

T6: CQE polling: Host timestamp when the CQE is polled
by software.

In Azure, the NIC driver reports various latencies derived
from the above timestamps. For example, T6 −T1 is the oper-
ation latency seen by the RDMA consumer, while T5 −T1 is
the latency seen by the NIC. A user-mode agent groups the
latency samples by connection, operation type, and (success/-
failure) status to create latency histograms for each group. By
default, a histogram covers a one-minute interval. Each his-
togram’s quantiles and summary statistics are fed into Azure’s
telemetry pipeline. As our diagnostics evolved, we added to
our user-mode agent the ability to collect and upload NIC
and QP state dumps during high latency events. Finally, we
extended the scope of event-triggered data collection by the
user-mode agent to include NIC statistics and state dumps in
case of events not specific to RDMA (e.g., servicing opera-
tions that impact connectivity).

The collection of latency samples adds overhead to the
WQE posting and completion processing code paths. This
overhead is dominated by keeping the NIC and host time
stamps synchronized. To reduce the overhead, we developed
a clock synchronization procedure that attempts to minimize
the frequency of reading the NIC clock registers, while main-
taining low deviations.

RDMA Estats can significantly reduce the time to debug
and mitigate storage performance incidents by quickly ruling
out (or in) network latency. In §8.3, we share our experience
in diagnosing the FMR hidden fence bug using RDMA Estats.

54 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6 Switch Management

6.1 Overcoming Heterogeneity with SONiC
Our RDMA deployment heavily relies on the support of
switches. However, heterogeneous switch ASICs and OSes
from multiple vendors have brought significant challenges
to network management. For example, commercial switch
OSes are designed to satisfy diverse requirements of all the
customers, thus leading to complex software stacks and slow
feature evolution [39]. In addition, different switch ASICs
provide different buffer architectures and mechanisms, thus in-
creasing the effort to qualify and test them for Azure’s RDMA
deployment.

Our solutions to the above challenges were two-fold. On
one hand, we worked closely with our vendors to define con-
crete feature requirements and test plans, and to understand
their low-level implementation details. On the other hand,
in collaboration with many partners, we developed and de-
ployed an in-house cross-platform switch OS called Software
for Open Networking in the Cloud (SONiC) [15]. Based on
a Switch Abstraction Interface (SAI) [20], SONiC manages
heterogeneous switches from multiple vendors with a sim-
plified and unified software stack. It breaks apart monolithic
switch software into multiple containerized components. Con-
tainerization provides clean isolation, improves development
agility, and enables choices on a per-component basis. Net-
work operators can customize SONiC with only the features
they require, thereby creating a "lean stack".

6.2 Buffer Model and Configuration Practices
of SONiC on Pizza Box Switches

SONiC provides all the features required by RDMA deploy-
ments, such as ECN marking, PFC, a PFC watchdog (§3.1)
and a shared buffer model. In the interest of space, we briefly
introduce the buffer model and configuration practices of
SONiC on pizza box switches, which are used at T0 and T1
(§2.1). We provide a buffer configuration example in §A.

We typically allocate three buffer pools on a pizza
box switch: (1) the ingress_pool for ingress admission
control of all packets, (2) the egress_lossy_pool for
egress admission control of lossy packets, and (3) the
egress_lossless_pool for egress admission control of
lossless packets. Note that these buffer pools and queues are
not backed by separate dedicated buffers, but instead are essen-
tially counters applied to a single physical shared buffer and
used for admission control purposes. Each counter is updated
only by the packets mapped to it, and the same packet can be
mapped to multiple queues and pools simultaneously. For ex-
ample, a lossless (lossy) packet of priority p from source port
s to destination port d updates ingress queue (s, p), egress
queue (d, p), ingress_pool and egress_lossless_pool
(egress_lossy_pool). A packet is accepted only if it passes
both ingress and egress admission controls. Counters incre-

ment by the size of the admitted packet, and decrement by
the size of the departing packet. We use both dynamic thresh-
olds [40] and static thresholds to limit the queue lengths.

We apply ingress admission control only to lossless traffic,
and we apply egress admission control only to lossy traffic.
If the switch buffer size is B, then the ingress_pool size
must be smaller than B, reserving enough space for PFC head-
room buffer (§7.1). When an ingress lossless queue hits the
dynamic threshold, the queue enters the “paused” state, and
the switch sends PFC pause frames to the upstream device.
Future arriving packets on this ingress lossless queue use the
PFC headroom buffer rather than ingress_pool. In contrast,
for ingress lossy queues we configure a static threshold which
equals to the switch buffer size B. Since ingress lossy queue
lengths cannot hit the switch buffer size, lossy packets can
bypass ingress admission control.

At egress, lossy and lossless packets are mapped to the
egress_lossy_pool and egress_lossless_pool,
respectively. We configure both the size of the
egress_lossless_pool and the static thresholds for
egress lossless queues to B so that lossless packets bypass
egress admission control. In contrast, the size of the
egress_lossy_pool must be no larger than the size of the
ingress_pool because lossy packets should not use any of
the PFC headroom buffer at ingress. Egress lossy queues are
configured to use dynamic thresholds [40] to drop packets.

6.3 Testing RDMA Features with SONiC
We use nightly tests to track the quality of SONiC switches.
In this section, we briefly introduce our methods for testing
RDMA features with SONiC switches.
Software-based Tests: We leveraged the Packet Testing
Framework (PTF) [10] to develop test cases for SONiC in
general. PTF is mostly used for testing packet forwarding be-
haviors, with which testing RDMA features require additional
effort.

Our testing approach is inspired by breakpoints in software
debugging. To set a “breakpoint” for the switch, we first block
the transmission of a switch port using SAI APIs. We then
generate a series of packets destined for the blocked port and
capture one or several snapshots of the switch states (e.g.,
buffer watermark), analogous to dumping the values of vari-
ables in software debugging. Next, we release the port and
dump the received packets. We determine if the test passes by
analyzing both the captured switch snapshots and the received
packets. We use this approach to test buffer management
mechanisms, buffer related counters, and packet schedulers.
Hardware-based Tests: While the above approach gives us
good visibility into switch states and packet micro-behaviors,
it cannot meet the stringent performance requirements of
some tests. For example, to test PFC watchdog [50], we need
to generate continuous PFC pause frames at high speed and ac-
curately control their intervals due to the small pause duration

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 55

enforced by each PFC frame.
To conduct such performance-sensitive tests, we need to

control traffic generation at µs or even ns timescales and
have high-resolution measurement of data plane behaviors.
This motivated us to build a hardware-based test system by
leveraging hardware programmable traffic generators [9]. Our
hardware-based system focuses on testing features like PFC,
PFC watchdog, RED/ECN marking.

As of February 2023, we built 32 software test cases and 50
hardware test cases for RDMA features. The documentation
and implementation of our test cases are available at [18].

7 Congestion Control

We use the combination of PFC and DCQCN to mitigate
congestion. In this section, we discuss how we scale both
techniques at regional scale.

7.1 Scaling PFC over Long Links
Once an ingress queue pauses the upstream device, it requires
a dedicated headroom buffer to absorb in-flight packets be-
fore the PFC pause frame takes effect on the upstream de-
vice [50, 112]. The ideal PFC headroom value depends on
many factors, e.g., link capacity and propagation delay [12].
The total demand on the headroom buffer for a switch is also
in proportion to the number of lossless priorities2.

To extend RDMA from cluster scale [46, 50] to regional
scale, we must deal with long links between T2 and RH (tens
of kilometers), and between T1 and T2 (hundreds of meters),
which demand much larger PFC headroom than that of intra-
cluster links. At first glance, it may seem that a T1 switch in
our production environment can reserve half of the total buffer
for PFC headroom and other usages. At T2 and RH, given
the high port density (100s) of chassis switches and long-haul
links, we need to reserve several GB of PFC headroom buffer.

To scale PFC over long links, we leverage the fact that
pathological cases, e.g., all the ports are congested simulta-
neously, and ingress lossless queues of a port pause peers
sequentially, are likely to be rare. Our solution is two-fold.
First, on chassis switches at T2 and RH, we use deep packet
buffers of off-chip DRAM3 to store RDMA packets. Our
analysis shows that our chassis switches in production can
provide abundant DRAM buffers for PFC headroom. Second,
instead of reserving PFC headroom per queue, we allocate a
PFC headroom pool shared by all the ingress lossless queues
on the switch. Each ingress lossless queue has a static thresh-
old to limit its maximum usage in the headroom pool. We
oversubscribe the headroom pool size with a reasonable ratio,

2For an ingress port, the worst case is that its lossless queues sequentially
pause the peer queues, and none of its packets can be drained from the buffer.

3Unlike on-chip SRAM, the bandwidth of off-chip DRAM is slightly
smaller than the forwarding capacity of the switch ASIC. When all the ports
send and receive traffic at line rate, DRAM will suffer from packet drops.

thus leaving more shared buffer space to absorb bursts. Our
production experience shows that the oversubscribed PFC
headroom pool can effectively eliminate congestion losses
and improve burst tolerance.

7.2 DCQCN Interoperability Challenges
We use DCQCN [112] to control the sending rate of each
queue pair (QP). DCQCN consists of three entities: the sender
or reaction point (RP), the switch or congestion point (CP),
and the receiver or notification point (NP). The CP performs
ECN marking at the egress queue based on the RED algo-
rithm [43]. The NP sends Congestion Notification Packets
(CNPs) when it receives ECN-marked packets. The RP re-
duces its sending rate when it receives CNPs. Otherwise, it
leverages a byte counter and a timer to increase the rate.

We deployed three generations of commodity NICs from
a popular NIC vendor: Gen1, Gen2 and Gen3, for different
types of clusters. While all of them support DCQCN, their
implementation details differ significantly. This causes an
interoperability problem when different generations of NICs
communicate with each other.
DCQCN implementation differences: On Gen1, most of the
DCQCN functionality, such as the NP and RP state machines,
is implemented in firmware. Given the limited processing
capacity of the firmware, Gen1 minimizes CNP generation
through coalescing at the NP side. As described in [112], the
NP generates at most one CNP in a time window for a flow,
if any arriving packets within this window are ECN marked.
Correspondingly, the RP reduces the sending rate upon re-
ceiving a CNP. In addition, Gen1 also has limited cache re-
sources. Cache misses can significantly impact RDMA’s per-
formance [50, 63]. To mitigate cache misses, we increase the
granularity of rate limiting on Gen1 from a single packet to a
burst of packets. Burst transmissions can effectively reduce
the number of active QPs in a fixed interval, thus lowering
pressure on the very limited cache resources of Gen1 NICs.

In contrast, Gen2 and Gen3 have hardware-based DCQCN
implementations and adopt a RP-based CNP coalescing mech-
anism, which is the exact opposite of the NP-based CNP co-
alescing used by Gen1. In Gen2 and Gen3, the NP sends a
CNP for every arriving ECN-marked packet. However, the
RP only cuts the sending rate for a flow at most once in a
time window if it receives any CNPs within that window. It
is worthwhile to note that RP-based and NP-based CNP coa-
lescing mechanisms essentially provide the same congestion
notification granularity. The rate limiting is on a per-packet
granularity on Gen2 and Gen3.
Interoperability challenges: Storage frontend traffic, which
crosses different clusters, may lead to communication be-
tween different generations of NICs. In this scenario, the DC-
QCN implementation differences cause undesirable behaviors.
First, when a Gen2/Gen3 node sends traffic to a Gen1 node,
its per-packet rate limiting tends to trigger many cache misses

56 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

on the Gen1 node, thus slowing down the receiver pipeline.
Second, when a Gen1 node sends traffic to a Gen2/Gen3 node
through a congested path, the Gen2/Gen3 NP tends to send
excessive CNPs to the Gen1 RP, thus causing excessive rate
reductions and throughput losses.

Our solution: Given the limited processing capacity and
resources of Gen1, we cannot make it behave like Gen2 and
Gen3. Instead, we try to make Gen2 and Gen3 behave like
Gen1 as much as possible. Our solution is two-fold. First, we
move the CNP coalescing on Gen2 and Gen3 from the RP
side to the NP side. On the Gen2/Gen3 NP side, we add a
per-QP CNP rate limiter and set the minimal interval between
two consecutive CNPs to the value of CNP coalescing timer
of the Gen1 NP. On the Gen2/Gen3 RP side, we minimize the
time window for rate reduction so that the RP almost always
reduces the rate upon receiving a CNP. Second, we enable
per-burst rate limiting on Gen2 and Gen3.

7.3 Tuning DCQCN
There were certain practical limitations when we tuned DC-
QCN in Azure. First, our NICs only support global DCQCN
parameter settings. Second, to optimize customer experience,
we classify RDMA flows into two switch queues based on
their application semantics, rather than RTTs. Hence, instead
of using different DCQCN parameters for inter-datacenter
and intra-datacenter traffic, we use global DCQCN parameter
settings (on the NICs and switches) that work well given the
large RTT variations within a region.

We took a three-step approach to tune DCQCN parameters.
First, we leveraged the fluid model [113] to understand theo-
retical proprieties of DCQCN. Second, we ran experiments
with synthetic traffic in our lab testbed to evaluate solutions to
the interoperability problem and deliver reasonable parameter
settings. Third, we finalized the parameter settings in test clus-
ters, which use the same setup as production clusters carrying
customer traffic. We ran stress tests with real storage applica-
tions and tuned DCQCN parameters based on the application
performance.

To illustrate our findings, we use Kmin, Kmax, and Pmax to
denote the minimum threshold, the maximum threshold, and
the maximum marking probability of RED/ECN [43], respec-
tively. We make the following three key observations (more
experiment results appear in §B):

• DCQCN does not suffer from RTT unfairness as it is a
rate-based protocol and its rate adjustment is independent
of RTT.

• To provide high throughput for DCQCN flows with large
RTTs, we use sparse ECN marking with large Kmax −Kmin
and small Pmax.

• DCQCN and switch buffers should be jointly tuned [112].
For example, before increasing Kmin, we ensure that ingress
thresholds for lossless traffic are large enough. Otherwise,

PFC may be triggered before ECN marking.

8 Experience

In 2018, we started to enable RDMA to serve customer back-
end traffic. In 2019, we started to enable RDMA to serve
customer frontend traffic, with storage and compute clusters
co-located in the same datacenter. In 2020, we enabled intra-
region RDMA in the first Azure region. As of February 2023,
around 70% of traffic in Azure public regions was RDMA
(Figure 1) and intra-region RDMA was supported in all Azure
public regions.

8.1 Deployment and Servicing
We took a three-step approach to gradually enable RDMA in
production environments. First, we leveraged the lab testbed
to develop and test each individual component. Second, we
conducted end-to-end stress tests in test clusters with the same
software and hardware setups as those of production coun-
terparts. In addition to normal workloads, we also injected
common errors, e.g., random packet drops, to evaluate the
robustness of the system. Third, we cautiously increased the
deployment scale of RDMA in production environments to
carry more customer traffic. During our deployment, NIC
driver/firmware and switch OS updates were common. Thus
it was crucial to minimize the impact of such updates to cus-
tomer traffic.
Servicing switches: Compared to switches in T1 or tiers
above, T0 switches, especially in compute clusters, were more
challenging to service as they could be a single point of failure
(SPOF) for customer VMs. In this scenario, we leveraged fast
reboot [17] and warm reboot [19] to reduce the data plane
disruption time from a few minutes to less than a second.
Servicing NICs: In some cases, servicing the NIC driver
or firmware required unloading the NIC driver. The driver
could safely unload only after all the NIC resources had been
released. To this end, we needed to signal consumers, e.g., disk
driver, to close RDMA connections and shift traffic to TCP.
Once RDMA and other NIC features with similar concerns
had been disabled, we could reload the driver.

8.2 Performance
Storage backend: Currently almost all the storage backend
traffic in Azure is RDMA. It is no longer feasible to run large-
scale A/B tests with customer traffic because the CPU cores
saved by RDMA have been used for other purposes, not to
mention customer experience degradation. Hence we demon-
strate results of an A/B test conducted in a test cluster in 2018.
In this test, we ran storage workloads with high transactions
per second (TPS) and switched transport between RDMA and
TCP. Figure 7 plots normalized CPU utilization of storage

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 57

Figure 7: Average CPU usage of storage servers of a storage
tenant. We normalize results to the maximum CPU usage. We
switched traffic between RDMA and TCP twice.

Figure 8: Message completion times of storage backend traf-
fic measured in a test cluster. We normalize results to the
maximum message completion time.

servers during two transport switches. It is worthwhile to note
that CPU utilization here includes all the types of processing
overhead, e.g., storage application, Azure Storage Network
Protocol, and TCP/IP stack. Figure 8 gives message comple-
tion times measured in Azure Storage Network Protocol layer
(Figure 4), which excludes the overhead of application pro-
cessing. Compared to TCP, RDMA achieved obvious CPU
saving and significantly accelerated network data transfer.
Storage frontend: Since we cannot perform large-scale
A/B tests with customer traffic, we present results of an A/B
test conducted in a test cluster in 2018. In this test, we used
DiskSpd to generate read and write workloads at A IOPS
and B IOPS (A < B). The I/O size was 8 KB. Figure 9 gives
average CPU utilization of the host domain during the test
period. Compared to TCP, RDMA could reduce the CPU
utilization by up to 34.5%.

To understand the performance improvement introduced by
RDMA, we leverage an always-on storage monitoring service.
This service allocates some VMs in each region, uses them to
periodically generate disk read and write workloads, and col-
lects end-to-end performance results. The monitoring service

Figure 9: Average CPU usage of the host domain. We normal-
ize results to the maximum value.

Figure 10: Average access latencies of a type of SSDs across
all Azure public regions between February 22, 2022, and
February 22, 2023. We normalize RDMA results to corre-
sponding TCP results.

covers different I/O sizes, types of disks, and transports for
storage frontend traffic.

Figure 10 shows the overall average access latencies of a
type of SSDs across all Azure public regions collected by the
monitoring service for a year. Note that the RDMA and TCP
in this figure only refer to the transport of frontend traffic
generated by test VMs. We normalize RDMA results to cor-
responding TCP results. Compared to TCP, RDMA yielded
better access latencies with every I/O size. In particular, 1
MB I/O requests benefited the most from RDMA with 23.8%
and 15.6% latency reductions for read and write, respectively.
This is due to the fact that large I/O requests are more sen-
sitive to throughput than smaller I/O requests, and RDMA
improves throughput drastically since it can run at line rate
using a single connection without slow starts.
Congestion control: We ran stress tests in a test cluster to
drive the DCQCN parameter setting that could achieve rea-
sonable performance even under peak workloads. Figure 11
gives results of the 99th percentile message completion time,
the key metric we used to guide our tuning. At the beginning,
we disabled DCQCN and only tuned switch buffer parame-

58 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 11: The 99th percentile message completion times of
different schemes measured in a test cluster.

ters, e.g., the dynamic threshold of ingress lossless queues,
to explore the best performance achieved by PFC only. After
reaching the best performance of PFC only, we enabled DC-
QCN using the default parameter setting, which was derived
on the lab testbed using synthetic traffic. While DCQCN re-
duced the number of PFC pause frames, it degraded the tail
message completion time as the default setting reduced the
sending rate too aggressively. Given this, we adjusted ECN
marking parameters to improve DCQCN’s throughput. With
optimized setting, DCQCN performs better than using PFC
alone. Our key takeaway from this tuning experience was that
DCQCN and switch buffer should be jointly tuned to optimize
the application performance, rather than PFC pause duration.

8.3 Problems Discovered and Fixed
During tests and deployments, we discovered and fixed a
series of problems in NICs, switches and our RDMA applica-
tions.
FMR hidden fence: In sK-RDMA (§4.2), every I/O request
from compute servers requires a FMR request followed by a
Send request to the storage server, which contains the de-
scription of FMR registered memory and storage commands.
Therefore, the send queue consists of many FMR/Send pairs.

When we deployed sK-RDMA in compute and storage clus-
ters located in different datacenters, we found that the frontend
traffic showed extremely low throughput, even though we kept
many outstanding FMR/Send pairs in the send queue. To debug
this problem, we used RDMA Estats to collect T5−T1 latency
for every Send request (§5). We found a strong correlation
between T5 −T1 and inter-datacenter RTT, and noticed that
there was only a single outstanding Send request per RTT.
After we shared these findings with the NIC vendor, they iden-
tified the root cause: to simplify the implementation, NICs
processed the FMR request only after the completions of previ-
ously posted requests. In sK-RDMA, the FMR request created
a hidden fence between two Send requests, thus only allowing
a single Send request in the air, which could not fill the large

network pipe between datacenters. We have worked with the
NIC vendor to fix this problem in the new NIC driver.

PFC and MACsec: After we enabled PFC on long-haul
links between T2 and RH, many long-haul links reported
high packet corruption rates, thus triggering alerts. It turned
out that the MACSec standard [21] did not specify whether
PFC frames should be encrypted. As a result, different ven-
dors had no agreement on whether PFC frames sent should be
encrypted and what to do with arriving encrypted PFC frames.
For example, switch A may send unencrypted PFC frames to
switch B, wile switch B was expecting encrypted PFC frames.
As a result, switch B would treat those PFC frames as cor-
rupted packets and report errors. We have worked with switch
vendors to standardize how MACsec enabled switch ports
treat PFC frames.

Congestion leaking: The problem was found in the testbed.
When we enabled interoperability features (§7.2) on Gen2
NICs, we found that their throughput would be degraded. To
dig into this problem, we used the water filling algorithm
to calculate theoretical per-QP throughput results and com-
pared them with actual throughput results measured from the
testbed. We had two interesting observations when comparing
the results. First, flows sent by a Gen2 NIC always had near
identical sending rates regardless of their congestion degrees.
Second, actual sending rates were very close to the theoret-
ical sending rate of the slowest flow sent from the NIC. It
seemed that all the flows from a Gen2 NIC were throttled by
the slowest flow. We reported these observations to the NIC
vendor, and they identified a head-of-line blocking in the NIC
firmware. We have fixed this problem on all the NICs with
interoperability features.

Slow receiver due to loopback RDMA: This problem was
found in a test cluster. During stress tests, we found that a
large number of servers sent PFC pause frames to T0 switches.
However, unlike slow receivers found before, PFC watchdog
was not triggered on any T0 switches. It seemed that those
servers only gracefully slowed down the traffic coming from
T0 switches, rather than completely blocking T0 switches for
a long duration. In addition, where slow receivers were com-
mon at Azure’s scale, it was very unlikely that a significant
portion of servers in a cluster became “mad” simultaneously.

Based on the above observations, we suspected that these
slow receivers were caused by our applications. We found that
each server actually ran multiple RDMA application instances.
All the inter-instance traffic ran on RDMA, regardless of their
locations. Therefore, loopback traffic and external traffic co-
existed on every NIC, thus creating a 2:1 congestion on PCIe
lanes of the NIC. Since the NIC could not mark ECN, it could
only throttle loopback traffic and external traffic through PCIe
back pressure and PFC pause frames. To validate the above
analysis, we disabled RDMA for loopback traffic on some
servers, then these servers stopped sending PFC frames. We
notice that recent work [61, 70] also found this problem.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 59

9 Lessons and Open Problems

In this section, we summarize the lessons learned from our
experience and discuss open problems for future exploration.

Failovers are very expensive for RDMA. While we have
implemented failover solutions in both sU-RDMA and sK-
RDMA as the last resort, we find that failovers are particularly
expensive for RDMA, and should be avoided as much as pos-
sible. Cloud providers adopt RDMA to save CPU cores and
then use freed CPU cores for other purposes. To move traffic
away from RDMA, we need to allocate extra CPU cores to
carry these traffic. This increases CPU utilization, and even
runs out of CPU cores at high loads. Hence, it is risky to per-
form large-scale RDMA failovers, which we treat as serious
incidents in Azure. Given the risk, only after all the tests have
passed, we gradually increase the RDMA deployment scale.
During the rollout, we continuously monitor network perfor-
mance and immediately stop the rolltout once anomalies are
detected. After unavoidable failovers, we should aggressively
switch back to RDMA when possible.

Host network and physical network should be converged.
In 8.3, we present a new type of slow receivers, which is es-
sentially due to congestion inside the host. Recent work [24]
also presents evidence and characterization of host conges-
tion in production clusters. We believe this problem is just
a tip of the iceberg, while many problematic behaviors be-
tween host network and physical network remain unexposed.
In conventional wisdom, host network and physical network
are separated entities and NIC is their border. If we look into
the host, it is essentially a network connecting heterogeneous
nodes (e.g., CPU, GPU, DPU) with proprietary high speed
links (e.g., PCIe link and NVLink) and switches (e.g., PCIe
switch and NVSwitch). Inter-host traffic can be treated as
north-south traffic for the host. With the increase of the data-
center link capacity and wide adoptions of hardware offload-
ing and device direct access technologies (e.g., GPUDirect
RDMA), inter-host traffic tends to consume larger and more
various resources inside the host, thus resulting in more com-
plex interactions with intra-host traffic.

We believe that host network and physical network should
be converged in the future. And we envision this converged
network will be an important step towards the dis-aggregated
cloud. We look forward to operating this converged network
in similar ways as we manage physical network today.

Switch buffer is increasingly important and needs more
innovations. The conventional wisdom [26] suggests that low
latency datacenter congestion control [26, 71, 82, 112] can
alleviate the need of large switch buffers as they can preserve
short queues. However, we find a strong correlation between
switch buffers and RDMA performance problems in produc-
tion. Clusters with smaller switch buffers tend to have more
performance problems. And many performance problems can
be mitigated by just tuning switch buffer parameters without

touching DCQCN. This is why we always tune switch buffers
before touching DCQCN (§8.2). The importance of switch
buffer lies in the prevalence of bursty traffic and short-lived
congestion events in datacenters [108]. Conventional conges-
tion control solutions are ill-suited for such scenarios given
their reactive nature. Instead, switch buffer plays as the first
resort to absorb bursts and provide fast responses.

With the increase in datacenter link speed, we believe that
switch buffer is increasingly important, thus deserving more
efforts and innovations. First, the buffer size per port per Gbps
on pizza box switches keeps decreasing in recent years [31].
Some switch ASICs even split the packet memory into multi-
ple partitions, thus reducing effective buffer resource. We en-
courage more efforts to put into the development ASICs with
deeper packet buffers and more unified architectures. Second,
today’s commodity switch ASICs only provide buffer manage-
ment mechanisms [40] designed decades ago, thus limiting
the scope of solutions to handle congestion. Following the
trend of programmable data plane [32], we envision that future
switch ASICs would provide more programmability on buffer
models and interfaces, thus enabling the implementation of
more effective buffer management solutions [22].

Cloud needs unified behavior models and interfaces for
network devices. The diversity in software and hardware
brings significant challenges to network operation at cloud
scale. Different NICs from the same vendor can even have
different behaviors that cause interoperability problems, not
to mention devices from different vendors. In spite of all the
efforts we put into the unified switch software (§6) and NIC
congestion control (§7.2), we still experienced problems due
to diversity, e.g., unexpected interactions between PFC and
MACsec (§8.3). We envision that more unified models and
interfaces will emerge to simplify operations and accelerate
innovations in the cloud. Some key areas include chassis
switches, smart network appliances, and RDMA NICs. We
notice that there have been some efforts on standardizing
congestion control for different data paths [85] and APIs for
heterogeneous smart appliances [16].

Testing new network devices is crucial and challenging.
From the day one of this project, we have been making large
investments in building various testing tools and running rig-
orous tests in both testbeds and test clusters. Despite the
significant number of problems discovered during tests, we
still found some problems during deployments (§8.3), mostly
due to micro-behaviors and corner cases that were overlooked.
Some burning questions are given as follows:

• How to precisely capture micro-behaviors of RDMA NIC
implementations in various scenarios?

• Despite many endeavors to measure switches’ micro-
behaviors (§6.3), we still rely on domain knowledge to
design test cases. How to systematically test the correct-
ness and performance of a switch?

These questions motivate us to rethink challenges and re-

60 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

quirements of testing emerging network devices with more
and more features. First, many features lack clear specifica-
tions, which is a prerequisite for systematic testing. Many
seemingly simple features are actually entangled with com-
plex interactions between software and hardware. We believe
that unified behavior models and interfaces discussed above
can help with this. Second, the test system should be able
to interact with network devices at high speed, and precisely
capture micro-behaviors. We believe programmable hardware
can help on this [33, 37]. We note that there have been some
recent progresses on testing RDMA NICs [69, 70] and pro-
grammable switches [37, 110].

10 Related Work

This paper focuses on RDMA for cloud storage. The literature
of RDMA and storage systems is vast. Here we only discuss
some closely related ideas.
Deployment experience of RDMA and storage networks:
Before this project, we had deployed RDMA to support some
Bing workloads and encountered many problems, such as
PFC storms, PFC deadlocks, and slow receivers [50]. We
learnt several lessons from this deployment. Gao et al. [46]
summarized the experience of deploying intra-cluster RDMA
to support storage backend traffic in Alibaba. Miao et al. [80]
presented two generations of storage network stacks to carry
Alibaba’s storage frontend traffic: LUNA and SOLAR. LUNA
is a high performance user-space TCP stack while SOLAR
is a storage-oriented UDP stack implemented in proprietary
DPU. Scalable Reliable Datagram (SRD) [96] is a cloud-
optimized transport protocol implemented in AWS custom
Nitro networking card, and used by HPC, ML, and storage
applications [7]. In contrast, we use commodity hardware to
enable intra-region RDMA to support both storage frontend
and backend traffic.
Congestion control in datacenters: There is a large body
of work on datacenter congestion control, including ECN-
based [26, 27, 99, 112], delay-based [71, 72, 76, 82], INT-
based [23, 75, 101], credit-based [34, 38, 45, 52, 55, 84, 86, 88]
and packet scheduling [28, 30, 36, 49, 54]. Our work focuses
on regional networks which have large RTT variations. We
notice that some efforts [95, 107] target at similar scenarios.
Improve RDMA in datacenters: In addition to congestion
control, there are many efforts to improve RDMA’s reliability,
security and performance in datacenters, such as deadlock mit-
igation [56,92,103], support of multi-path [77], resilience over
lossy networks [78,83,102], security mechanisms [94,98,104],
virtualization [53, 67, 89, 100], testing [69, 70], and perfor-
mance isolation in multi-tenant environments [109]. Our work
focuses on first party traffic in the trusted environment. Given
the limited retransmission performance of our NICs, we en-
able RDMA over lossless networks (§2.4).
Accelerate storage systems using RDMA and other tech-

niques: Many proposals [41,62–66,74,93,106,111] leverage
RDMA to accelerate storage systems or networked systems in
general. Similar to some solutions [13,47,74,90], our RDMA
protocols (§4) provide socket-like interfaces to keep compati-
bility with legacy storage stack. In addition to RDMA, some
recent proposals improve storage systems using new kernel
designs [58, 59, 73] and SmartNIC [68, 81].

11 Conclusions and Future Work

In this paper, we summarize our experience in deploying intra-
region RDMA to support storage workloads in Azure. The
high complexity and heterogeneity of our infrastructure brings
a series of new challenges. We have made several changes to
our network infrastructure to address these challenges. Today,
around 70% of traffic in Azure is RDMA and intra-region
RDMA is supported in all Azure public regions. RDMA helps
us achieve significant disk I/O performance improvements
and CPU core savings.

In the future, we plan to further improve our storage sys-
tems through innovations on system architecture, hardware
acceleration, and congestion control. We also plan to bring
RDMA to more scenarios.

Acknowledgements
We thank our shepherd Marco Canini and the anonymous
reviewers for their valuable feedback that significantly im-
proved the final paper. Yuanwei Lu, Liang Yang and Danushka
Menikkumbura also provided important feedback. Yibo Zhu
made contributions to DCQCN and PFC deadlock avoidance
at the early stage of this project. Ranysha Ware contributed to
DCQCN tuning. Zhuolong Yu helped us measure RDMA’s
retransmission performance. This project represents the work
of many engineers, product managers, researchers, data sci-
entists, and leaders across Microsoft over many years, more
than we can list here. We thank them all. Finally, we thank our
partners: Arista Networks, Broadcom, Cisco, Dell, Keysight
and NVIDIA for their technical contributions and support.

References

[1] Amazon ebs volume types. https://aws.amazon.c
om/ebs/volume-types/.

[2] Amazon web services region. https://aws.amazon
.com/about-aws/global-infrastructure/reg
ions_az/.

[3] Arista 7500r switch architecture (‘a day in the life of a
packet’). https://www.arista.com/assets/data
/pdf/Whitepapers/Arista7500RSwitchArchitec
tureWP.pdf.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 61

https://aws.amazon.com/ebs/volume-types/
https://aws.amazon.com/ebs/volume-types/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://www.arista.com/assets/data/pdf/Whitepapers/Arista7500RSwitchArchitectureWP.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista7500RSwitchArchitectureWP.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista7500RSwitchArchitectureWP.pdf

[4] Azure managed disk types. https://docs.microso
ft.com/en-us/azure/virtual-machines/disks-
types.

[5] Azure region. https://docs.microsoft.com/en-
us/azure/availability-zones/az-overview.

[6] Cisco silicon one product family. https://www.cisc
o.com/c/dam/en/us/solutions/collateral/sil
icon-one/white-paper-sp-product-family.p
df.

[7] A decade of ever-increasing provisioned iops for ama-
zon ebs. https://aws.amazon.com/blogs/aws/a
-decade-of-ever-increasing-provisioned-i
ops-for-amazon-ebs/.

[8] Google cloud region. https://cloud.google.com
/compute/docs/regions-zones.

[9] Keysight network test solutions. https://www.keys
ight.com/us/en/solutions/network-test.ht
ml.

[10] Packet testing framework (ptf). https://github.c
om/p4lang/ptf.

[11] Pfc watchdog in sonic. https://github.com/son
ic-net/SONiC/wiki/PFC-Watchdog-Design.

[12] Priority flow control: Build reliable layer 2 infrastruc-
ture. https://e2e.ti.com/cfs-file/__key/com
munityserver-discussions-components-file
s/908/802.1q-Flow-Control-white_5F00_pap
er_5F00_c11_2D00_542809.pdf.

[13] rsocket(7) - linux man page. https://linux.die.
net/man/7/rsocket.

[14] Smb direct. https://learn.microsoft.com/en-u
s/windows-server/storage/file-server/smb
-direct.

[15] Software for open networking in the cloud (sonic).
https://sonic-net.github.io/SONiC/.

[16] Sonic-dash - disaggregated api for sonic hosts. https:
//github.com/sonic-net/DASH.

[17] Sonic fast reboot. https://github.com/sonic-n
et/SONiC/blob/master/doc/fast-reboot/fas
treboot.pdf.

[18] sonic-mgmt: Management and automation code used
for sonic testbed deployment, tests and reporting. ht
tps://github.com/sonic-net/sonic-mgmt.

[19] Sonic warm reboot. https://github.com/sonic
-net/SONiC/blob/master/doc/warm-reboot/SON
iC_Warmboot.md.

[20] Switch abstraction interface (sai). https://github
.com/opencomputeproject/SAI.

[21] Ieee standard for local and metropolitan area networks-
media access control (mac) security. IEEE Std
802.1AE-2018 (Revision of IEEE Std 802.1AE-2006),
2018.

[22] Vamsi Addanki, Maria Apostolaki, Manya Ghobadi,
Stefan Schmid, and Laurent Vanbever. Abm: active
buffer management in datacenters. In SIGCOMM
2022.

[23] Vamsi Addanki, Oliver Michel, and Stefan Schmid.
Powertcp: Pushing the performance limits of datacen-
ter networks. In NSDI 2022.

[24] Saksham Agarwal, Rachit Agarwal, Behnam Montaz-
eri, Masoud Moshref, Khaled Elmeleegy, Luigi Rizzo,
Marc Asher de Kruijf, Gautam Kumar, Sylvia Rat-
nasamy, David Culler, and Amin Vahdat. Understand-
ing host interconnect congestion. In HotNets 2022.

[25] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. In SIGCOMM 2008.

[26] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan. Data
center tcp (dctcp). In SIGCOMM 2010.

[27] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall,
Balaji Prabhakar, Amin Vahdat, and Masato Yasuda.
Less is more: trading a little bandwidth for ultra-low
latency in the data center. In NSDI 2012.

[28] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pfabric: Minimal near-optimal datacen-
ter transport. In SIGCOMM 2013.

[29] InfiniBand Trade Association. Supplement to infini-
band architecture specification volume 1 release 1.2. 1
annex a17: Rocev2, 2014.

[30] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Hao Wang. Information-agnostic flow scheduling
for commodity data centers. In NSDI 2015.

[31] Wei Bai, Shuihai Hu, Kai Chen, Kun Tan, and
Yongqiang Xiong. One more config is enough: Sav-
ing (dc) tcp for high-speed extremely shallow-buffered
datacenters. In INFOCOM 2020.

[32] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David

62 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://docs.microsoft.com/en-us/azure/virtual-machines/disks-types
https://docs.microsoft.com/en-us/azure/virtual-machines/disks-types
https://docs.microsoft.com/en-us/azure/virtual-machines/disks-types
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview
https://www.cisco.com/c/dam/en/us/solutions/collateral/silicon-one/white-paper-sp-product-family.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/silicon-one/white-paper-sp-product-family.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/silicon-one/white-paper-sp-product-family.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/silicon-one/white-paper-sp-product-family.pdf
https://aws.amazon.com/blogs/aws/a-decade-of-ever-increasing-provisioned-iops-for-amazon-ebs/
https://aws.amazon.com/blogs/aws/a-decade-of-ever-increasing-provisioned-iops-for-amazon-ebs/
https://aws.amazon.com/blogs/aws/a-decade-of-ever-increasing-provisioned-iops-for-amazon-ebs/
https://cloud.google.com/compute/docs/regions-zones
https://cloud.google.com/compute/docs/regions-zones
https://www.keysight.com/us/en/solutions/network-test.html
https://www.keysight.com/us/en/solutions/network-test.html
https://www.keysight.com/us/en/solutions/network-test.html
https://github.com/p4lang/ptf
https://github.com/p4lang/ptf
https://github.com/sonic-net/SONiC/wiki/PFC-Watchdog-Design
https://github.com/sonic-net/SONiC/wiki/PFC-Watchdog-Design
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/908/802.1q-Flow-Control-white_5F00_paper_5F00_c11_2D00_542809.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/908/802.1q-Flow-Control-white_5F00_paper_5F00_c11_2D00_542809.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/908/802.1q-Flow-Control-white_5F00_paper_5F00_c11_2D00_542809.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/908/802.1q-Flow-Control-white_5F00_paper_5F00_c11_2D00_542809.pdf
https://linux.die.net/man/7/rsocket
https://linux.die.net/man/7/rsocket
https://learn.microsoft.com/en-us/windows-server/storage/file-server/smb-direct
https://learn.microsoft.com/en-us/windows-server/storage/file-server/smb-direct
https://learn.microsoft.com/en-us/windows-server/storage/file-server/smb-direct
https://sonic-net.github.io/SONiC/
https://github.com/sonic-net/DASH
https://github.com/sonic-net/DASH
https://github.com/sonic-net/SONiC/blob/master/doc/fast-reboot/fastreboot.pdf
https://github.com/sonic-net/SONiC/blob/master/doc/fast-reboot/fastreboot.pdf
https://github.com/sonic-net/SONiC/blob/master/doc/fast-reboot/fastreboot.pdf
https://github.com/sonic-net/sonic-mgmt
https://github.com/sonic-net/sonic-mgmt
https://github.com/sonic-net/SONiC/blob/master/doc/warm-reboot/SONiC_Warmboot.md
https://github.com/sonic-net/SONiC/blob/master/doc/warm-reboot/SONiC_Warmboot.md
https://github.com/sonic-net/SONiC/blob/master/doc/warm-reboot/SONiC_Warmboot.md
https://github.com/opencomputeproject/SAI
https://github.com/opencomputeproject/SAI

Walker. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communica-
tion Review, 2014.

[33] Pietro Bressana, Noa Zilberman, and Robert Soulé.
Finding hard-to-find data plane bugs with a pta. In
CoNEXT 2020.

[34] Qizhe Cai, Mina Tahmasbi Arashloo, and Rachit Agar-
wal. dcpim: Near-optimal proactive datacenter trans-
port. In SIGCOMM 2022.

[35] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-
tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu,
Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci,
Jaidev Haridas, Chakravarthy Uddaraju, Hemal Kha-
tri, Andrew Edwards, Vaman Bedekar, Shane Mainali,
Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq,
Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya
Dayanand, Anitha Adusumilli, Marvin McNett, Sriram
Sankaran, Kavitha Manivannan, and Leonidas Rigas.
Windows azure storage: A highly available cloud stor-
age service with strong consistency. In SOSP 2011.

[36] Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh.
Scheduling mix-flows in commodity datacenters with
karuna. In SIGCOMM 2016.

[37] Yanqing Chen, Bingchuan Tian, Chen Tian, Li Dai,
Yu Zhou, Mengjing Ma, Ming Tang, Hao Zheng,
Zhewen Yang, Guihai Chen, Dennis Cai, and Ennan
Zhai. Norma: Towards practical network load testing.
In NSDI 2023.

[38] Inho Cho, Keon Jang, and Dongsu Han. Credit-
scheduled delay-bounded congestion control for data-
centers. In SIGCOMM 2017.

[39] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang,
Saman Kazemkhani, Rob Sherwood, Ying Zhang, and
Hongyi Zeng. Fboss: building switch software at scale.
In SIGCOMM 2018.

[40] Abhijit K. Choudhury and Ellen L. Hahne. Dynamic
queue length thresholds for shared-memory packet
switches. IEEE/ACM Transactions on Networking,
1998.

[41] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. Farm: Fast remote memory.
In NSDI 2014.

[42] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chatur-
mohta, Matt Humphrey, Jack Lavier, Norman Lam,
Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham

Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw,
Gabriel Silva, Madhan Sivakumar, Nisheeth Srivas-
tava, Anshuman Verma, Qasim Zuhair, Deepak Bansal,
Doug Burger, Kushagra Vaid, David A. Maltz, and Al-
bert Greenberg. Azure accelerated networking: Smart-
NICs in the public cloud. In NSDI 2018.

[43] Sally Floyd and Van Jacobson. Random early detec-
tion gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1993.

[44] Philip Werner Frey and Gustavo Alonso. Minimizing
the hidden cost of rdma. In ICDCS 2009.

[45] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit
Agarwal, Sylvia Ratnasamy, and Scott Shenker. phost:
Distributed near-optimal datacenter transport over com-
modity network fabric. In CoNEXT 2015.

[46] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan
Liu, Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu,
Zheng Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong
Wang, Dennis Cai, and Jiesheng Wu. When cloud
storage meets RDMA. In NSDI 2021.

[47] Dror Goldenberg, Michael Kagan, Ran Ravid, and
Michael S Tsirkin. Zero copy sockets direct proto-
col over infiniband-preliminary implementation and
performance analysis. In HOTI 2005.

[48] Albert Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A. Maltz, Parveen Patel, and Sudipta Sengupta.
Vl2: a scalable and flexible data center network. In
SIGCOMM 2009.

[49] Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert NM Watson, Andrew W Moore, Steven Hand,
and Jon Crowcroft. Queues don’t matter when you can
jump them! In NSDI 2015.

[50] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
Rdma over commodity ethernet at scale. In SIGCOMM
2016.

[51] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A large-scale system for data center net-
work latency measurement and analysis. In SIGCOMM
2015.

[52] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 63

and stacks for low latency and high performance. In
SIGCOMM 2017.

[53] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan,
Bei Hua, Zhi-Li Zhang, and Kai Zheng. Masq: Rdma
for virtual private cloud. In SIGCOMM 2020.

[54] Chi-Yao Hong, Matthew Caesar, and P Godfrey. Fin-
ishing flows quickly with preemptive scheduling. In
SIGCOMM 2012.

[55] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang,
Baochen Qiao, Kai Chen, Kun Tan, and Yi Wang. Ae-
olus: A building block for proactive transport in data-
centers. In SIGCOMM 2020.

[56] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Tagger: Prac-
tical pfc deadlock prevention in data center networks.
In CoNEXT 2017.

[57] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and
Sergey Yekhanin. Erasure coding in windows azure
storage. In ATC 2012.

[58] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agar-
wal. Tcp ≈ rdma: Cpu-efficient remote storage access
with i10. In NSDI 2020.

[59] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and
Rachit Agarwal. Rearchitecting linux storage stack for
µs latency and high throughput. In OSDI 2021.

[60] IEEE. 802.11 qbb. priority based flow control. 2008.

[61] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed dnn training in heterogeneous
gpu/cpu clusters. In OSDI 2020.

[62] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In NSDI 2019.

[63] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design guidelines for high performance rdma systems.
In ATC 2016.

[64] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (rdma) datagram rpcs. In OSDI 2016.

[65] Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. Using rdma efficiently for key-value services. In
SIGCOMM 2014.

[66] Daehyeok Kim, Amirsaman Memaripour, Anirudh
Badam, Yibo Zhu, Hongqiang Harry Liu, Jitu Pad-
hye, Shachar Raindel, Steven Swanson, Vyas Sekar,

and Srinivasan Seshan. Hyperloop: group-based nic-
offloading to accelerate replicated transactions in multi-
tenant storage systems. In SIGCOMM 2018.

[67] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu,
Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong
Guo, Vyas Sekar, and Srinivasan Seshan. Freeflow:
Software-based virtual rdma networking for container-
ized clouds. In NSDI 2019.

[68] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im,
Marco Canini, Dejan Kostić, Youngjin Kwon, Simon
Peter, and Emmett Witchel. Linefs: Efficient smart-
nic offload of a distributed file system with pipeline
parallelism. In SOSP 2021.

[69] Xinhao Kong, Jingrong Chen, Wei Bai, Yechen Xu,
Mahmoud Elhaddad, Shachar Raindel, Jitendra Pad-
hye, and Alvin R Lebeck Danyang Zhuo. Understand-
ing rdma microarchitecture resources for performance
isolation. In NSDI 2023.

[70] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding performance anomalies in rdma subsystems.
In NSDI 2022.

[71] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay
is simple and effective for congestion control in the
datacenter. In SIGCOMM 2020.

[72] Changhyun Lee, Chunjong Park, Keon Jang, Sue
Moon, and Dongsu Han. Accurate latency-based con-
gestion feedback for datacenters. In ATC 2015.

[73] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham,
Jae W. Lee, and Jinkyu Jeong. Asynchronous I/O stack:
A low-latency kernel I/O stack for Ultra-Low latency
SSDs. In ATC 2019.

[74] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao
Zhang. Socksdirect: Datacenter sockets can be fast and
compatible. In SIGCOMM 2019.

[75] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. Hpcc: High precision congestion control. In
SIGCOMM 2019.

[76] Shiyu Liu, Ahmad Ghalayini, Mohammad Alizadeh,
Balaji Prabhakar, Mendel Rosenblum, and Anirudh
Sivaraman. Breaking the transience-equilibrium nexus:
A new approach to datacenter packet transport. In
NSDI 2021.

64 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[77] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang
Xiong, Peng Cheng, Jiansong Zhang, Enhong Chen,
and Thomas Moscibroda. Multi-path transport for
rdma in datacenters. In NSDI 2018.

[78] Yuanwei Lu, Guo Chen, Zhenyuan Ruan, Wencong
Xiao, Bojie Li, Jiansong Zhang, Yongqiang Xiong,
Peng Cheng, and Enhong Chen. Memory efficient loss
recovery for hardware-based transport in datacenter. In
APNet 2017.

[79] Matt Mathis, John Heffner, and Rajiv Raghunarayan.
Tcp extended statistics mib (rfc 4898). Technical re-
port, 2007.

[80] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shu-
jun Zhuang, Bo Li, Shuguang Cheng, Jiaqi Gao,
Yan Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi,
Binzhang Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and
Hongqiang Harry Liu. From luna to solar: The evo-
lutions of the compute-to-storage networks in alibaba
cloud. In SIGCOMM 2022.

[81] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu
Zhao, Andrew Wei, In Hwan Doh, and Arvind Krish-
namurthy. Gimbal: enabling multi-tenant storage dis-
aggregation on smartnic jbofs. In SIGCOMM 2021.

[82] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. Timely: Rtt-based congestion control for the
datacenter. In SIGCOMM 2015.

[83] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Ei-
tan Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy,
and Scott Shenker. Revisiting network support for
rdma. In SIGCOMM 2018.

[84] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
SIGCOMM 2018.

[85] Akshay Narayan, Frank Cangialosi, Deepti Raghavan,
Prateesh Goyal, Srinivas Narayana, Radhika Mittal,
Mohammad Alizadeh, and Hari Balakrishnan. Restruc-
turing endpoint congestion control. In SIGCOMM
2018.

[86] Vladimir Olteanu, Haggai Eran, Dragos Dumitrescu,
Adrian Popa, Cristi Baciu, Mark Silberstein, Georgios
Nikolaidis, Mark Handley, and Costin Raiciu. An edge-
queued datagram service for all datacenter traffic. In
NSDI 2022.

[87] Madhav Himanshubhai Pandya, Aaron William Ogus,
Zhong Deng, and Weixiang Sun. Transport protocol
and interface for efficient data transfer over rdma fabric,
August 2 2022. US Patent 11,403,253.

[88] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Deverat Shah, and Hans Fugal. Fastpass: A centralized
"zero-queue" datacenter network. In SIGCOMM 2014.

[89] Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi,
Bernard Metzler, Ionnis Koltsidas, and Thomas R
Gross. A hybrid i/o virtualization framework for rdma-
capable network interfaces. ACM SIGPLAN Notices,
2015.

[90] Jim Pinkerton. Sockets direct protocol v1. 0 rdma
consortium. 2003.

[91] Leon Poutievski, Omid Mashayekhi, Joon Ong, Ar-
jun Singh, Mukarram Tariq, Rui Wang, Jianan Zhang,
Virginia Beauregard, Patrick Conner, Steve Gribble,
Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu,
Karthik Nagaraj, Jason Ornstein, Samir Sawhney, Ry-
ohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shi-
dong Zhang, Junlan Zhou, and Amin Vahdat. Jupiter
evolving: Transforming google’s datacenter network
via optical circuit switches and software-defined net-
working. In SIGCOMM 2022.

[92] Kun Qian, Wenxue Cheng, Tong Zhang, and Fengyuan
Ren. Gentle flow control: avoiding deadlock in lossless
networks. In SIGCOMM 2019.

[93] Waleed Reda, Marco Canini, Dejan Kostic, and Simon
Peter. Rdma is turing complete, we just did not know
it yet! In NSDI 2022.

[94] Benjamin Rothenberger, Konstantin Taranov, Adrian
Perrig, and Torsten Hoefler. Redmark: Bypassing rdma
security mechanisms. In USENIX Security 2021.

[95] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad
Sharif, Rong Pan, Mostafa Ammar, Ellen Zegura, Keon
Jang, Mohammad Alizadeh, Abdul Kabbani, and Amin
Vahdat. Annulus: A dual congestion control loop for
datacenter and wan traffic aggregates. In SIGCOMM
2020.

[96] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sab-
bag. A cloud-optimized transport protocol for elastic
and scalable hpc. IEEE Micro, 2020.

[97] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,
Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.
Netbouncer: Active device and link failure localization
in data center networks. In NSDI 2019.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 65

[98] Konstantin Taranov, Benjamin Rothenberger, Adrian
Perrig, and Torsten Hoefler. srdma: efficient nic-based
authentication and encryption for remote direct mem-
ory access. In ATC 2020.

[99] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar.
Deadline-aware datacenter tcp (d2tcp). In SIGCOMM
2012.

[100] Dongyang Wang, Binzhang Fu, Gang Lu, Kun Tan, and
Bei Hua. vsocket: virtual socket interface for rdma in
public clouds. In VEE 2019.

[101] Weitao Wang, Masoud Moshref, Yuliang Li, Gautam
Kumar, TS Eugene Ng, Neal Cardwell, and Nandita
Dukkipati. Poseidon: Efficient, robust, and practical
datacenter cc via deployable int. In NSDI 2023.

[102] Zilong Wang, Layong Luo, Qingsong Ning, Chao-
liang Zeng, Wenxue Li, Xinchen Wan, Peng Xie, Tao
Feng, Ke Cheng, Xiongfei Geng, Tianhao Wang, We-
icheng Ling, Kejia Huo, Pingbo An, Kui Ji, Shideng
Zhang, Bin Xu, Ruiqing Feng, Tao Ding, Kai Chen,
and Chuanxiong Guo. Srnic: A scalable architecture
for rdma nics. In NSDI 2023.

[103] Xinyu Crystal Wu and TS Eugene Ng. Detecting and
resolving pfc deadlocks with itsy entirely in the data
plane. In INFOCOM 2022.

[104] Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, Ziyang
Yang, Hongyi Liu, and Ang Chen. Bedrock: Pro-
grammable network support for secure rdma systems.
In USENIX Security 2022.

[105] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh,
Tameesh Suri, Manu Awasthi, Zvika Guz, Anahita
Shayesteh, and Vijay Balakrishnan. Performance anal-
ysis of nvme ssds and their implication on real world
databases. In SYSTOR 2015.

[106] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
Orion: A distributed file system for non-volatile main
memory and rdma-capable networks. In FAST 2019.

[107] Gaoxiong Zeng, Wei Bai, Ge Chen, Kai Chen, Dongsu
Han, Yibo Zhu, and Lei Cui. Congestion control for
cross-datacenter networks. In ICNP 2019.

[108] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-resolution measurement of data
center microbursts. In IMC 2017.

[109] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf
Chowdhury. Justitia: Software multi-tenancy in hard-
ware kernel-bypass networks. In NSDI 2022.

[110] Naiqian Zheng, Mengqi Liu, Ennan Zhai,
Hongqiang Harry Liu, Yifan Li, Kaicheng Yang,
Xuanzhe Liu, and Xin Jin. Meissa: scalable network
testing for programmable data planes. In SIGCOMM
2022.

[111] Bohong Zhu, Youmin Chen, Qing Wang, Youyou Lu,
and Jiwu Shu. Octopus+: An rdma-enabled distributed
persistent memory file system. ACM Transactions on
Storage, 2021.

[112] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale rdma de-
ployments. In SIGCOMM 2015.

[113] Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra
Padhye. Ecn or delay: Lessons learnt from analysis of
dcqcn and timely. In CoNEXT 2016.

[114] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,
Ming Zhang, Ben Y. Zhao, and Haitao Zheng. Packet-
level telemetry in large datacenter networks. In SIG-
COMM 2015.

66 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A SONiC buffer analysis

"BUFFER_POOL " : {
" i n g r e s s _ p o o l " : {

" s i z e " : "18000000" ,
" t y p e " : " i n g r e s s " ,
" mode " : " dynamic " ,
" x o f f " : "6000000"

} ,
" e g r e s s _ l o s s y _ p o o l " : {

" s i z e " : "14000000" ,
" t y p e " : " e g r e s s " ,
" mode " : " dynamic "

} ,
" e g r e s s _ l o s s l e s s _ p o o l " : {

" s i z e " : "24000000" ,
" t y p e " : " e g r e s s " ,
" mode " : " s t a t i c "

}
}

"BUFFER_PROFILE " : {
" i n g r e s s _ l o s s l e s s _ p r o f i l e " : {

" poo l " : " [BUFFER_POOL | i n g r e s s _ p o o l] " ,
" s i z e " : " 1 2 4 8 " ,
" dynamic_ th " : " −3" ,
" x o f f " : "96928" ,
" xon " " 1 2 4 8 " ,
" x o n _ o f f s e t " "2496"

} ,
" i n g r e s s _ l o s s y _ p r o f i l e " : {

" poo l " : " [BUFFER_POOL | i n g r e s s _ p o o l] " ,
" s i z e " : " 0 " ,
" s t a t i c _ t h " : " 2 4 0 0 0 0 0 0 "

} ,
" e g r e s s _ l o s s l e s s _ p r o f i l e " : {

" poo l " : " [BUFFER_POOL | e g r e s s _ l o s s l e s s _ p o o l] " ,
" s i z e " : " 0 " ,
" s t a t i c _ t h " : "24000000"

} ,
" e g r e s s _ l o s s y _ p r o f i l e " : {

" poo l " : " [BUFFER_POOL | e g r e s s _ l o s s y _ p o o l] " ,
" s i z e " : " 1 6 6 4 " ,
" dynamic_ th " : " −1"

}
}

Listing 1: SONiC Buffer Configuration Example

Listing 1 gives a buffer configuration example of a SONiC
pizza box switch with 24 MB packet buffer. ingress_pool
has 18 MB (size) shared buffer for all the ingress queues, and
6 MB (xoff) PFC headroom buffer exclusively for ingress
lossless queues in the paused state. egress_lossy_pool and
egress_lossless_pool have 14 MB and 24 MB shared
buffer, respectively. It is worthwhile to notice that the sum of
pool sizes can be larger than the physical buffer limit, as they
are only virtual counters for admission control purposes.

Lossless packets are mapped to both ingress lossless queues
(ingress_lossless_profile) and egress lossless queues
(egress_lossless_profile). We use Dynamic Thresh-
old (DT) algorithm [40] to manage the buffer occupancy
of the ingress lossless queue in the 18 MB shared buffer
space of ingress_pool. DT algorithm is controlled by a
parameter called α, which is 1/8 (2dynamic_th) in Listing 1.
Once the ingress lossless queue hits the dynamic threshold
(α× remaining buffer), it will enter the paused state (send
PFC pause frames) and start to use PFC headroom. All
the ingress lossless queues in the paused state share a 6
MB PFC headroom pool (xoff of ingress_pool). Each
ingress lossless queue can use up to 96928 bytes buffer
(xoff of ingress_lossless_profile) in the PFC head-
room pool. We bypass the egress admission control for loss-
less traffic by setting the static threshold of the egress loss-
less queue (static_th of egress_lossless_profile) to
24 MB, which equals to the switch buffer size.

In contrast, we only want to apply egress admission

Figure 12: Goodput of two flows with different RTTs.

control for lossy traffic. To bypass ingress admission con-
trol for lossy traffic, we configure a sky-high static thresh-
old 24 MB (static_th of ingress_lossy_profile) for
each ingress lossy queue. Since lossy traffic can only
use 18 MB shared buffer space of ingress_pool, the
size of egress_lossy_pool should be no larger than 18
MB (size of ingress_pool). In Listing 1, the size of
egress_lossy_pool is 14 MB. This guarantees that ingress
lossless queues can exclusively use 4 MB shared buffer
(size of ingress_pool - size of egress_lossy_pool) in
ingress_pool before entering the paused state. We use DT
algorithm to manage the egress lossy queue length and set
α to 1/2 (2dynamic_th). Once the egress lossy queue hits the
dynamic threshold, its arriving packets will be dropped.

B DCQCN experiment results

We conduct an experiment in our lab testbed to demonstrate
the RTT fairness of DCQCN. Our lab testbed uses a four-
tier Clos topology like Figure 2. We use 80 km cables to
interconnect T2 switches to a RH switch to emulate a region.

In this experiment, we use two hosts A and B as senders and
a host C as the receiver. Each host is equipped with a Gen1 40
Gbps NIC. Host A and C are located within the same rack with
∼2 µs base RTT. In contrast, B is in another datacenter. The
base RTT across the RH switch is ∼1.77 ms. On each sender,
we use ndperf to create a QP with the receiver and keep
posting 64 KB Write messages. Each QP can keep up to 160
in-flight Write messages, resulting in around 10 MB in-flight
data, which is enough to saturate the large inter-datacenter
pipe (40 Gbps × 1.77 ms = 8.85 MB). We set RED/ECN
marking parameters Kmin, Kmax and Pmax to 1 MB, 2 MB and
5%, respectively.

As shown in Figure 12, two DCQCN flows achieve similar
goodput regardless of their RTTs. A flow can achieve around
17 Gbps goodput, which is close to half of the line rate. We
also keep polling queue watermark counters at the congested
switch and find queue watermarks oscillate around 1.36 MB,
which is smaller than Kmax. This experiment demonstrates
that DCQCN does not suffer from RTT unfairness.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 67

Transparent GPU Sharing in Container Clouds for Deep Learning Workloads

Bingyang Wu∗ Zili Zhang∗ Zhihao Bai† Xuanzhe Liu∗ Xin Jin∗

∗Peking University †Johns Hopkins University

Abstract
Containers are widely used for resource management in dat-
acenters. A common practice to support deep learning (DL)
training in container clouds is to statically bind GPUs to con-
tainers in entirety. Due to the diverse resource demands of
DL jobs in production, a significant number of GPUs are
underutilized. As a result, GPU clusters have low GPU uti-
lization, which leads to a long job completion time because
of queueing.

We present TGS (Transparent GPU Sharing), a system that
provides transparent GPU sharing to DL training in container
clouds. In stark contrast to recent application-layer solutions
for GPU sharing, TGS operates at the OS layer beneath con-
tainers. Transparency allows users to use any software to
develop models and run jobs in their containers. TGS lever-
ages adaptive rate control and transparent unified memory
to simultaneously achieve high GPU utilization and perfor-
mance isolation. It ensures that production jobs are not greatly
affected by opportunistic jobs on shared GPUs. We have built
TGS and integrated it with Docker and Kubernetes. Experi-
ments show that (i) TGS has little impact on the throughput
of production jobs; (ii) TGS provides similar throughput for
opportunistic jobs as the state-of-the-art application-layer so-
lution AntMan, and improves their throughput by up to 15×
compared to the existing OS-layer solution MPS.

1 Introduction
Containers [1–3] are widely used for resource management
in datacenters. Containers provide lightweight virtualization,
and can significantly reduce the complexity and cost of de-
ployments and managements in datacenters.

Deep learning (DL) is an important workload in data-
centers. With recent advancements in deep neural networks
(DNNs) [4] and the burst of big data space, DL models have
been increasingly integrated into applications and online ser-
vices. Large enterprises build multi-tenant GPU clusters that
are shared by many teams to develop and train DL models.

A common practice to support DL training in container
clouds is to statically bind complete GPUs to containers.
When a GPU is allocated to a container, the container has
exclusive access to the GPU, which provides performance iso-
lation for production jobs. But it means that other containers

Rate
Monitor

ResNet Job Inception Job

Hardware

Container 1 Container 2

Rate
Control

Unified
Memory

TGS

Host Operating System

GPU

Figure 1: TGS architecture.

on the same machine cannot use the GPU when the GPU is
under-utilized or is even completely idle.

The major limitation of this approach is low resource uti-
lization. A recent study on a production GPU cluster by Mi-
crosoft shows that the mean GPU utilization is only 52% [5].
Another measurement on a production GPU cluster at Alibaba
shows even lower GPU utilization—the median GPU utiliza-
tion is no more than 10% [6]. However, due to exclusive GPU
allocation, incoming jobs have to wait in the queue to be
scheduled even when many GPUs are not fully utilized. This
causes a long job completion time for subsequent jobs.

This is a known problem in production GPU clusters [5, 6].
The problem can be addressed by GPU sharing to increase
GPU utilization. In production environments [6–8], DNN
training jobs are typically classified into two classes: produc-
tion jobs, which must run without much great performance
degradation caused by other jobs, and opportunistic jobs,
which utilize spare resources. It is natural to share GPUs
between the two classes of jobs to improve GPU utilization.
Yet, it is critical for production environments to ensure that
the impact of GPU sharing on production jobs is minimized.

GPU sharing solutions can be realized at either the appli-
cation layer or the OS layer. AntMan [6] is a state-of-the-art
application-layer solution. While AntMan can provide high
GPU utilization and performance isolation, it modifies DL
frameworks non-trivially and restricts users to use particu-
lar versions of given frameworks. NVIDIA Multiple Process

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 69

Sharing (MPS) [9] is an OS-layer solution. MPS requires
application knowledge to set resource limits for performance
isolation and does not support GPU sharing under GPU mem-
ory oversubscription. It merges several processes into a single
CUDA context, leading to fate sharing between jobs.

We present TGS, a system that provides transparent GPU
sharing to DL training in container clouds. Unlike application-
layer solutions, TGS works at the OS layer and realizes the
benefits of application-layer solutions at the OS layer without
the limitations of existing OS-layer solutions. Transparency
allows users to choose any version of any DL framework (ei-
ther TensorFlow, PyTorch or a custom framework) to develop
models and run jobs in containers.

The core of TGS is a lightweight indirection layer between
containers and GPUs. It intercepts the system calls from con-
tainers to GPUs and regulates the GPU resource usage for
concurrent jobs. TGS enables GPU sharing between the pro-
duction job and the opportunistic job, but largely isolates the
production job from contention.

There are two primary technical challenges in realizing an
OS-layer GPU sharing solution with performance isolation.
The first challenge is to share GPU compute resources be-
tween containers adaptively without application knowledge.
Inaccurately setting resource limits for each container would
either degrade job performance or leave resources unused.
MPS and MIG require application knowledge to manually set
resource limits. TGS applies an adaptive rate control approach
to address this challenge without application knowledge. It
monitors the performance of production jobs at runtime, and
adaptively updates the resource allocation to opportunistic
jobs. The control loop automatically converges to the point
that opportunistic jobs utilize as many resources as possible
without much affecting production jobs.

The second challenge is to enable transparent GPU mem-
ory oversubscription. GPUs have their own memory to keep
the application state. MPS fails when the total GPU mem-
ory required by containers exceeds the GPU memory size.
AntMan uses a custom memory management component in
DL frameworks to manage memory swapping between GPU
memory and host memory at the application layer. We design
a transparent unified memory mechanism based on CUDA
unified memory to enable unified memory at the OS layer,
obviating the need to explicitly modify applications. This
mechanism manages memory swapping underneath when the
GPU memory is oversubscribed. TGS leverages placement
preferences to ensure that GPU memory is prioritized for
production jobs to protect their performance.

In summary, we make the following contributions.
• We propose TGS, a system that provides transparent GPU

sharing for DL training in container clouds.
• We design adaptive rate control and transparent unified

memory mechanisms to simultaneously achieve high GPU
utilization and performance isolation.

• We implement TGS and integrate it with Docker and Ku-
bernetes. Experiments show that (i) TGS has little impact
on the throughput of production jobs; (ii) TGS provides
similar throughput for opportunistic jobs as state-of-the-
art application-layer solution AntMan and improves their
throughput by up to 15× compared to existing OS-layer
solution MPS.

2 Background and Motivation
In this section, we first introduce containers, deep learning
training, and the current practice to support deep learning
training in container clouds. Then, we show the limitations of
existing solutions to motivate TGS.

2.1 Container Clouds

Containers [1–3] (e.g., Docker) are used widely to manage
resources and deploy workloads in datacenters, and provide
portability and isolation. A container is a standalone software
package including everything needed to run an application.
A containerized application can run across various environ-
ments without any modifications. Such portability enables
developers to use the tools and application stacks of their
choice to develop and run their applications, without worry-
ing about deployment environments. Applications in different
containers are isolated by using independent namespaces.

Containers are lightweight, compared with virtual ma-
chines. Virtual machines use a guest OS, but containers use
the host OS kernel. Thus, applications can achieve bare metal
performance when running in containers. Cloud operators use
a container orchestration platform [10, 11] to provision, man-
age and update containers on many machines in a datacenter.

2.2 DL Training Workloads

DL training uses a dataset to train a DNN model. A train-
ing job contains many iterations. Each iteration uses a batch
of samples from the dataset to train the DNN model. An it-
eration includes a forward pass and a backward pass. The
forward pass uses the DNN model to compute the labels of
the samples in the batch. A loss is computed based on the
output labels and the actual labels using a loss function. The
backward pass propagates the loss from the last layer to the
first layer of the DNN model and computes the gradients for
each weight. The DNN model is updated based on the gradi-
ents using an optimizer. DL training is compute-intensive, so
GPUs are typically used. However, widely-adopted exclusive
GPU allocation leads to low GPU utilization in production,
as reported by Microsoft [5] and Alibaba [6].

2.3 Limitations of Existing Solutions

A natural way to increase GPU utilization is GPU sharing.
If a single container cannot utilize all the GPU resources, a
GPU can be shared by multiple containers to increase GPU
utilization. However, containers on a shared GPU will com-
pete for compute and memory resources of the GPU, and the
interference can slow down the jobs.

70 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

AntMan [6] Salus [12] PipeSwitch [13] MPS [9] MIG [14] TGS

Transparency ✓ ✓ ✓
High GPU utilization ✓ ✓ ✓
Performance isolation ✓ ✓ ✓ ✓ ✓ ✓
Fault isolation ✓ ✓ ✓ ✓

Table 1: Comparison between TGS and existing GPU sharing solutions.

GPU sharing can be done either at the application layer
or the OS layer. The primary drawback of application-layer
solutions [6, 12, 13] is that they are not transparent to users,
i.e., they require significant modifications to DL frameworks.
Users are restricted to use the set of supported versions of
given frameworks and have to wait for the integration if a
newer version of a particular DL framework comes. This
approach loses the advantage of allowing users to use any
tools to develop and run applications in containers.

NVIDIA MPS [9] is an OS-layer solution for GPU sharing.
It requires application knowledge to properly set the resource
limit for each process to ensure performance isolation. More
importantly, MPS requires the total GPU memory of the pro-
cesses to fit within the GPU memory capacity and relies on
applications to handle memory swapping between GPU mem-
ory and host memory. Another limitation of MPS is that it
does not provide fault isolation. MPS merges the CUDA con-
texts of multiple processes into a single CUDA context to
share the GPU. When a process fails, it leaves the MPS server
and other processes in an undefined state and may result in
process hangs, corruptions, or failures.

NVIDIA Multi-Instance GPU (MIG) [14, 15] is another
OS-layer solution. MIG requires GPU hardware support
and is currently only available on three high-end GPUs, i.e.,
NVIDIA A100, NVIDIA A30, and NVIDIA H100. MIG can-
not arbitrarily partition a GPU based on application needs; it
only supports GPU partitioning for a given set of configura-
tions. For example, an NVIDIA A100 GPU can be partitioned
into GPU instances with separate compute and memory re-
sources for different DL training jobs, but MIG only provides
seven fixed configurations for each GPU instance and each
GPU instance cannot use more than 4/7 of the GPU compute
resources or half of the GPU memory resources. Furthermore,
it cannot dynamically change GPU resources owned by GPU
instances if there are running jobs on the GPU even if the
GPU usage of a container changes. Reconfiguration of MIG
can only happen when the GPU is idle. MIG does not support
memory oversubscription.

3 TGS Overview

TGS is a GPU sharing system for deep learning training in
container clouds that is designed to meet the following goals.
Table 1 compares TGS with existing GPU sharing solutions
regarding these four goals.

• Transparency. The system should be transparent to appli-
cations so that users can use any software to develop and
train DNN models in containers.

• High GPU utilization. The system should achieve high
GPU utilization for both compute and memory resources.

• Performance isolation. The system should provide perfor-
mance isolation for DL jobs. Production jobs should not be
significantly affected by opportunistic jobs.

• Fault isolation. Application faults should be isolated by
containers. The fault of an application in one container
should not crash applications in other containers.

Architecture. Figure 1 shows that TGS is an OS-layer ap-
proach: it sits between containers and GPUs. Containers and
applications are unaware of TGS. Users can use any custom
framework to develop and train DNN models. A GPU is ex-
posed as a regular GPU to the containers. The processes in
the containers issue GPU kernels, i.e. functions executed on
the GPU, to the GPU as they do with a dedicated GPU. TGS
uses a lightweight indirection layer to share the GPU between
workloads of several containers. The indirection layer inter-
cepts the GPU kernels from containers and regulates these
GPU kernels to control the resource usage of each container.

Key ideas. TGS leverages an adaptive rate control mecha-
nism and a transparent unified memory mechanism to tackle
two challenges in providing transparent GPU sharing at OS
layer. The first challenge is to adaptively share GPU compute
resources between containers without application knowledge.
To address this challenge, the rate monitor of TGS monitors
the performance of each container, and provides the number
of CUDA blocks (a basic scheduling and execution unit on
the GPU) as a real-time signal for the control loop. Based on
the signal, the rate control of TGS adaptively controls the rate
of sending GPU kernels to the GPU for each container. The
control loop automatically converges to the point that oppor-
tunistic jobs utilize as many remaining resources as possible
to achieve high GPU utilization without greatly affecting the
performance of production jobs.

The second challenge is to enable transparent GPU mem-
ory oversubscription. AntMan [6] modifies DL frameworks
to swap GPU memory when GPU memory is oversubscribed.
OS-layer solution MPS does not support GPU memory over-
subscription, and relies on applications to handle memory
swapping. These approaches are not transparent. To address
this challenge, TGS exploits CUDA unified memory [16]
which unifies GPU memory and host memory in a single

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 71

memory space. TGS intercepts and redirects GPU memory
allocation calls from containers to the CUDA unified memory
space. When the GPU memory is oversubscribed, TGS can
automatically evict some data of opportunistic jobs to the host
memory, and change the mapping of the corresponding virtual
addresses to the new data locations in the host memory. The
entire process is transparent to applications. To ensure perfor-
mance isolation, TGS uses memory placement preferences to
prioritize allocating GPU memory for production jobs over
opportunistic jobs.

The design of TGS has two other benefits. First, the archi-
tecture is lightweight. TGS has low overhead and conforms
with the principle of containers. Second, TGS provides the
same fault isolation property as regular containers. The con-
tainers in TGS use separate GPU contexts, as opposed to MPS
which merges the CUDA contexts of the containers into one.
Therefore, an application fault in one container does not affect
or terminate other containers.

4 TGS Design
In this section, we present the design of TGS. We first describe
the adaptive rate control mechanism to share GPU compute
resources. Then we describe the unified memory mechanism
to share GPU memory resources.

4.1 Sharing GPU Compute Resources

Application code is encapsulated into functions to be executed
on a GPU, which are known as GPU kernels. GPU kernels
are highly optimized based on the particular architecture and
execution model of the GPU. A small DNN training job may
not use all the compute resources of a GPU. In this case, the
GPU has low utilization if it is exclusively allocated to the
container of the job. TGS improves GPU utilization by GPU
sharing. In TGS, a GPU can be exposed to and shared by
multiple containers to increase GPU utilization.

TGS ensures the performance of production jobs is not
greatly affected by opportunistic jobs. Opportunistic jobs use
no more than the resources left by production jobs. To achieve
this, we need to solve two problems. First, we need to estimate
how many resources are left by production jobs. Second, we
need to control opportunistic jobs to use no more than the
remaining resources.

Strawman solution: priority scheduling. A strawman so-
lution is priority scheduling. It intercepts the GPU kernels
from containers and puts them into a production queue and
an opportunistic queue based on the priority of the job. The
kernels in the opportunistic queue are only scheduled to the
GPU when the production queue is empty. In this solution,
whether there are remaining resources is estimated by check-
ing whether the production queue is empty, and controlling
the resource usage of opportunistic jobs is achieved by priori-
tizing the scheduling of the kernels in the production queue.
This is a canonical solution to performance isolation and high
utilization, and has been widely used in computer systems.

Monitor 𝛼!"
Queue kernels
and adapt 𝛽#$%

GPU

𝛼!"

report 𝛼!"

GPU kernels from
high-priority jobs

GPU kernels from
low-priority jobs

𝛼#$% = 𝛼!"

𝛽!"

𝛽#$% ≤ 𝛽!"

Figure 2: Adaptive rate control.

However, this solution is not suitable for GPU sharing.
An empty production queue for GPU jobs does not mean
production jobs are not using the GPU. A GPU kernel is an
optimized GPU function that runs for some time. The GPU
kernels scheduled in the past may still be running on the GPU,
while the production queue is empty. Similarly, an empty
queue also cannot tell how many resources on left on the
GPU. Therefore, if the kernels in the opportunistic queue
are sent to the GPU and the production jobs are using most
of the GPU resources, then the GPU kernels from both jobs
would contend with each other, which incurs large overhead
for production jobs. Keeping track of GPU kernels running
on the GPU is also not feasible, because the state of the GPU
is not fully visible.

It may be possible to implement a priority scheduler into
the GPU device driver, so that the scheduler can have full
visibility of the resource usage and can perform fine-grained
control. This solution is not general. It is tightly tied to the
low-level GPU specifics and requires deep integration with
each type of GPU based on their architecture and execution
model. Some GPUs are blackboxes and do not expose such
control to the OS.

Our solution: adaptive rate control. TGS uses an adaptive
rate control approach (Figure 2). The main idea is to carefully
control the dequeuing rate of the kernels in the opportunistic
queue based on the kernel arrival rate, so that opportunistic
jobs can use up the remaining compute resources without
greatly affecting the production job. This is a general OS-
layer approach: it is decoupled from low-level GPU specifics
and does not require access to GPU internal control.

This approach requires a feedback signal to tell the control
loop whether the dequeuing rate of the opportunistic queue
can be increased to use more resources or should be decreased
to avoid degrading production jobs. Ideally, we want to use
the application performance, i.e., the training throughput for
DL training workloads, as the feedback signal, because this
is the metric we ultimately care about. However, we cannot
directly obtain the training throughput, because this requires
application knowledge, and we aim to design an OS-layer
solution that is transparent to applications.

One choice of the signal is GPU utilization, i.e., increase the
rate if the GPU utilization is below 100%. While this choice

72 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) General case.

𝛼!"

𝛽#$%

GPU is not
fully utilized

R

𝛽∗

(b) Special case 1.

𝛼!"

𝛽#$%
RGPU under

contention

(c) Special case 2.

𝛼!"

𝛽#$%
R0

0

0

no flat part

no decreasing part

Figure 3: Relationship between the rates of production and oppor-
tunistic jobs.

seems natural, it has two drawbacks. First, the definition of
GPU utilization is hardware-specific and is often vague [17].
Today’s GPUs contain different types of compute units on a
single chip, e.g., Tensor cores and CUDA cores for different
data types on NVIDIA GPUs. GPU utilization reported by
GPU drivers (if supported) often lacks a precise definition.
Even if it does (e.g., the percentage of stream processors
that are used), it is unclear what a single utilization value
actually means for a GPU with several types of compute
units. Second, GPU utilization is only loosely coupled with
the application performance. Even when the reported GPU
utilization is below 100%, it does not mean we can increase
the dequeuing rate of the opportunistic queue without slowing
down production jobs. For example, a production job and an
opportunistic job may compete for the same type of compute
units that are already used up by the production job alone,
though there are other types of compute units that are idle;
two jobs may also compete for other resources than the one
captured by GPU utilization.

In TGS, we use the kernel arrival rate of production jobs
(i.e., the rate that TGS receives kernels from the containers)
as the feedback signal. A DL training job constructs a com-
pute graph based on the DNN model for its training process.
It uses the compute graph to generate and send kernels to
the GPU to perform training. The compute graph captures
the dependencies between the kernels. The kernel arrival rate
directly corresponds to the training throughput. If the training
is slowed down, the kernels are finished slower, the depen-
dencies are satisfied slower, and the kernel arrival rate drops.
Therefore, TGS uses a rate monitoring module to monitor
the kernel arrival rate of production jobs, and uses it as the
feedback signal to control the kernel dequeuing rate of oppor-
tunistic jobs. Note that any contention between production
jobs and opportunistic jobs can be captured by this kernel
arrival rate, including GPU cache contention, CPU contention
and network contention. Some of them are beyond what a
GPU hardware design can control, and TGS uses rate control
as a knob to control all of them. Since there can be a small
variance in the kernel arrival rate, TGS uses a moving average
to smooth the estimation of the kernel arrival rate. For the
kernels from production jobs, TGS only performs a simple
counting operation to estimate the kernel arrival rate. It does

not queue the kernels and directly passes them to the GPU, to
minimize the impact on the performance of production jobs.

Rate adaptation algorithm. The rate adaptation algorithm
controls the kernel dequeuing rate of the opportunistic queue,
so that the kernel arrival rate of production jobs is not greatly
affected and the kernel dequeuing rate of opportunistic jobs
is maximized. Formally, let αin and αout be the rates that the
kernels of production jobs arrive at and departure from TGS
respectively, and βin and βout be those of the opportunistic
jobs. TGS only monitors, but does not limit the rate of pro-
duction jobs. So αin = αout . Let the kernel arrival rate of
production jobs when the GPU is not shared be R. The rate
control algorithm is to maximize βout so that αin = R. In the
formulation, βout is the variable controlled by the algorithm
and αin is dependent on βout . Let f be the function that cap-
tures the relationship between αin and βout , i.e., αin = f (βout).
Then the algorithm has to solve the following optimization
problem.

max βout (1)
s.t. αin = f (βout)≥ R (2)

βout ≥ 0 (3)

The exact shape of f (βout) is unknown, but we know its
rough shape by the nature of the problem. Specifically, f (βout)
is flat and is equal to R when βout is small, and is monoton-
ically decreasing when βout is large, as illustrated in Fig-
ure 3(a). The intuition is that when βout is small, the GPU is
not fully utilized and executing the kernels of opportunistic
jobs does not affect the performance of production jobs, re-
sulting in a flat line; after the tipping point β∗, opportunistic
jobs start to compete with production jobs for GPU resources,
causing the performance of production jobs to drop. Note that
the monotonically decreasing part is not necessarily linear;
Figure 3(a) illustrates the general trend that αin decreases
when βout increases. The goal of the algorithm is to find the
tipping point β∗ from which f (βout) starts to decrease.

Figure 3(a) is the general case. There are two special cases.
Figure 3(b) is the special case where the GPU is already fully
utilized by production jobs, so that even executing a small
number of kernels for opportunistic jobs would degrade the
performance of production jobs. In this case, the line does
not have a flat part. Figure 3(c) is the special case where
the demand of opportunistic jobs is very small, so that even
when the dequeuing rate is not limited, the performance of
production jobs is not affected. In this case, the line does not
have a monotonically decreasing part.

To approximate the optimal βout , we use the canonical
additive increase multiplicative decrease (AIMD) method to
control the rate βout , as shown in Algorithm 1. Specifically,
TGS first measures the rate R of a production job on a GPU
before it adds an opportunistic job to the GPU for sharing (line
1−3). After the opportunistic job is added, TGS additively
increases βout , if αin is greater than or equal to R (line 24−

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 73

25), or multiplicatively decreases βout , if αin is below R (line
29−30). AIMD ensures that βout can approximately converge
to the tipping point β∗. To accelerate convergence, a slow start
phase is adopted (line 17−22). Experiments in §6 shows that
the convergence is fast. When the production job changes its
resource usage pattern, TGS detects that the variance of R
is beyond a threshold. In this case, the rate control module
suspends the opportunistic job and measures new R (line
26− 28). When R becomes stable, the rate control module
uses AIMD to adjust βout to the tipping point. We have the
following theorem to ensure the convergence of the adaptive
rate control algorithm at most cases.

Theorem 1 Assuming DL jobs are stable during the profiling
phase and the convergence phase, the adaptive rate control
algorithm converges in O(B logB) function calls, where B is
the throughput limit of jobs in the GPU.

The proof of the theorem is in Appendix A. The proof is
based on the stability of the deep learning training workload.
For readers familiar with congestion control in computer net-
working, our problem resembles the bandwidth allocation
problem when multiple flows compete for the bandwidth re-
sources of a shared link. In bandwidth allocation, each flow
uses a congestion control algorithm to control its own rate,
and after the system converges, each flow gets a fair share
of the link bandwidth. Our problem is subtly different from
bandwidth allocation in that we do not limit the rate of pro-
duction jobs, and only control the rate of opportunistic jobs to
ensure that the performance of production jobs is not greatly
affected by resource sharing.

4.2 Sharing GPU Memory Resources

GPUs have GPU memory that is separated from the host mem-
ory. The memory size in modern GPUs ranges from a few GB
to tens of GB. GPU memory stores the state and data needed
by applications to perform their computation on the GPU. The
compute units in the GPU can access the GPU memory much
faster than the host memory. The GPU device driver exposes
the GPU memory to users with an API, which is similar to
the memory management API for the host memory. Users use
the API to allocate and manage GPU memory for their GPU
programs, e.g., cudaMalloc for GPU memory allocation on
NVIDIA GPUs. Similar to GPU compute resources, the GPU
memory can be shared by multiple containers when a single
container cannot utilize all the GPU memory resources.

Strawman solution: pass-through allocation. A strawman
solution is to directly pass the GPU memory allocation calls
from containers to the GPU. In this way, the GPU memory is
fully utilized as long as there is enough demand from contain-
ers. The major limitation of this solution is that it has large
overhead for production jobs. In this solution, when produc-
tion jobs do not use all the GPU memory, opportunistic jobs
can obtain the remaining memory. Later, if the production job
wants to allocate more GPU memory, they would not be able

Algorithm 1 Adaptive Rate Control Algorithm
1: procedure INIT
2: R = measure_high_prio_ job_rate()
3: βout = 0
4: state = SLOW_START
5:
6: procedure UPDATE_HIGH_RATE
7: Ravg = avg(high_rate_window)
8: dR = |R−Ravg|/R
9: if dR < R_threshold then

10: R = max(R,Ravg)
11: else
12: R = measure_high_prio_ job_rate()
13:
14: procedure UPDATE_LOW_RATE_LIMIT
15: dα = |R−αin|/R
16: switch state do
17: case SLOW_START :
18: if dα < thresholdslow_start then
19: βout ∗= δSS
20: else
21: βout /= δSS
22: state =CA
23: case CA :
24: if dα < threshold1 then
25: βout+= δAI
26: else if dα > threshold2 then
27: βout = 0
28: state = SLOW_START
29: else
30: βout ∗= δMD

to do so because the remaining memory has been allocated
to opportunistic jobs. Without sufficient GPU memory, pro-
duction jobs may run at a lower speed, or even fail, which
violates fault isolation.

Another limitation of this solution is that it does not con-
sider the characteristics of DL frameworks. When starting a
job, some DL frameworks (e.g., TensorFlow) claim all the
available GPU memory even if the training job does not re-
quest that much memory. These DL frameworks typically
have a memory pool that caches all the allocated memory, and
give the memory to the training job on demand. They do not
free and return the allocated memory back to the GPU when
some memory is not used. This is an optimization in these
DL frameworks to avoid the overhead of frequently calling
GPU memory to allocate and release during a job.

This optimization introduces challenges to sharing the GPU
memory. Application-layer solutions like AntMan [6] can
directly modify DL frameworks to obtain the memory usage
of training jobs and disable unnecessary memory caching to
return unused GPU memory back to the GPU. However, to
design a transparent OS-layer solution, modifications on DL
frameworks or applications are not allowed.

Our solution: unified GPU and host memory. Modern
GPUs provide a feature called unified memory which uni-
fies GPU memory and host memory in a single address space.
Unified memory is traditionally used by applications to sim-
plify GPU memory management. TGS applies CUDA unified

74 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

memory [16] in a novel way: it uses CUDA unified memory
allocation as an indirection of GPU memory allocation, in
order to achieve transparency and performance isolation for
GPU memory sharing. Specifically, TGS exposes CUDA uni-
fied memory as pseudo GPU memory to containers. When a
container issues a GPU memory allocation call, whether the
call is for regular GPU memory or CUDA unified memory,
TGS intercepts this call and allocates the memory requested
by the call in the CUDA unified memory space. When pro-
duction jobs do not use up the GPU memory, opportunistic
jobs can obtain the remaining GPU memory.

Pseudo GPU memory refers to that the allocated memory
appears to be normal GPU memory to containers and appli-
cations, while it can actually come from either GPU memory
or host memory depending on availability. Note that we do
not change the virtual memory system. Pseudo memory is
still virtual memory, and applications use virtual memory
addresses to access allocated pseudo memory. A GPU/host
virtual memory address is translated to a GPU/host physical
memory address by the GPU/host memory management unit.

The transparent unified memory in TGS is different from
the original CUDA unified memory in two aspects, which are
(i) performance isolation and (ii) transparent oversubscription
of GPU memory. To provide performance isolation, TGS uses
placement preferences in CUDA unified memory to priori-
tize the allocation of GPU memory to production jobs. When
the GPU memory is not full, the memory allocation requests
from any job get the GPU memory. When the GPU memory
is full, TGS tries to place the blocks of production jobs in the
GPU memory, and evict the blocks of opportunistic jobs to
the host if necessary. This is transparent to the containers, as
the containers still use the same virtual memory addresses
to access their allocated memory space. The virtual mem-
ory addresses are translated to physical memory addresses at
different locations. This mechanism also does not introduce
additional out-of-memory (OOM) faults, because in the view
of DL training jobs, the GPU memory capacity is the same as
the size of the original GPU memory.

The transparent unified memory in TGS also addresses
the issue of overclaiming the GPU memory in existing DL
frameworks, without modifications to DL frameworks. When
the DL framework claims all the available GPU memory, TGS
allocates the requested amount of memory from the CUDA
unified memory space. The actually used memory would
trigger GPU page faults and be swapped to the GPU memory
when it is used for the first time, and then would reside in
the GPU memory. Consequently, only the portion actively
used by the training job is in the GPU memory; the remaining
portion is in the host memory. This allows opportunistic jobs
to efficiently share the GPU memory.

5 Implementation
We have implemented a system prototype for TGS with
∼3000 lines of code in C++ and Python, and integrated it

with Docker and Kubernetes. A coordinator process takes
charge of resource management and leverages the indirec-
tion layer of TGS to enable GPU sharing between containers.
Specifically, the adaptive rate control and the transparent uni-
fied memory provided by TGS are used for GPU sharing.
The code of TGS is open-source and is publicly available at
https://github.com/pkusys/TGS.

Adaptive rate control. TGS intercepts CUDA driver API
calls related to CUDA kernel launch from containers for rate
monitoring and rate control. Because CUDA kernel launch
may be evoked by multiple threads in the container, TGS
uses a global counter to record the number of CUDA blocks
launched in a given time period. A CUDA block is a group of
threads that must execute in the same SM (Streaming Multi-
processor) and different CUDA blocks can run independently
in parallel. As the number of a CUDA block that a kernel
contains is specified in the CUDA driver API call, the number
of pending CUDA blocks can be treated as a real-time signal
to estimate the performance of production jobs. For a produc-
tion container, a standalone thread serves as the rate monitor,
which reads this counter of the TGS periodically and sends
the value to the rate-control component of the opportunistic
container on the same GPU. For an opportunistic container,
a rate control thread is created when the CUDA driver starts
to work. The rate control thread adjusts the rate limit of the
opportunistic container according to the received statistics.
To keep the kernel launch rate of the opportunistic container
at a desirable value, all CUDA kernel launch API calls are
redirected to the rate control component first. The rate control
component accesses statistics generated by the rate monitor
to examine whether the rate limit is satisfied and defers the
kernel launch if the rate of the opportunistic container exceeds
the rate limit.

Unified memory management. To implement transparent
memory sharing, TGS intercepts CUDA driver API calls re-
lated to GPU memory allocation, such as cuMemAlloc, and
replaces these calls with unified memory allocation calls us-
ing cuMemAllocManaged. We use cuMemAdvise to prioritize
the allocation of GPU memory for production containers.
Specifically, we use cuMemAdvise to set the preferred lo-
cation of memory allocation as the current GPU to avoid
eviction for production containers. When the production con-
tainer finishes, the indirection layer in the opportunistic con-
tainer would use CUDA driver API cuMemPrefetchAsync to
prefetch memory located in the host memory transparently.

6 Evaluation

Setup. Most experiments are conducted on a server ma-
chine configured with an Intel Xeon Silver 4210R CPU, two
NVIDIA A100 40 GB PCIe GPUs and 126 GB host mem-
ory. AntMan [6] only open-sourced one particular version
based on TensorFlow 1.15.4 and the version is not compatible

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 75

https://github.com/pkusys/TGS

ShuffleNet
(Production,
PyTorch)

MobileNet
(Opportunistic,

PyTorch)

0
0.25
0.5

0.75
1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

TGS
Exclusive

Co-execution
MPS

MIG

(a) Low-contention scenario.

ResNet-50
(Production,
PyTorch)

ShuffleNet
(Opportunistic,

PyTorch)

0
0.25
0.5

0.75
1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

TGS
Exclusive

Co-execution
MPS

MIG

(b) High-contention scenario.

0 5 10 15 20
Job Duration Ratio

0
20
40
60
80

100

JC
T

Re
du

ct
io

n
(%

) Low contention High contention

(c) JCT reduction of TGS over Exclusive.

Figure 4: Throughput of production and opportunistic jobs for different model pairs when GPU memory is sufficient.

ResNet-50
(Production,
PyTorch)

DLRM
(Opportunistic,

PyTorch)

0
0.25
0.5

0.75
1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

TGS
Exclusive

Co-execution
MPS

MIG

(a) Low-contention scenario.

Bert-Base
(Production,
PyTorch)

DLRM
(Opportunistic,

PyTorch)

0
0.25
0.5

0.75
1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

TGS
Exclusive

Co-execution
MPS

MIG

(b) High-contention scenario.

0 5 10 15 20
Job Duration Ratio

0
20
40
60
80

100

JC
T

Re
du

ct
io

n
(%

) Low contention High contention

(c) JCT reduction of TGS over Exclusive.

Figure 5: Throughput of production and opportunistic jobs for different model pairs under GPU memory oversubscription.

with A100. Therefore, all experiments involved in Tensor-
Flow are conducted on an AWS p3.2xlarge instance which
is configured with eight Intel Xeon Scalable (Skylake) vC-
PUs, one NVIDIA V100 16 GB Tensor Core GPU and 61 GB
host memory. The software environment includes NVIDIA
driver 460.91.03, CUDA 11.2, Docker 20.10.5, PyTorch 1.9.0,
TensorFlow 1.15.4, torchvision 0.10.0 and scipy 1.6.3.

Workloads. We use various models for evaluation. The
models include ShuffleNet, MobileNet, GCN (Graph Con-
volutional Network), ResNet-50, BERT-Base, DLRM (Deep
Learning Recommendation Model) and ESPnet2. These mod-
els are representative and widely-used, and are standard bench-
marks for evaluating DL systems. They vary in terms of GPU
resource usage, which allows us to evaluate TGS under differ-
ent levels of GPU resource contention.

Comparison. To demonstrate the benefits of TGS, we com-
pare the following mechanisms in the experiments. Each job
runs in a separate container. We use throughput (iterations
per second) as the main metric to evaluate the performance of
different mechanisms, because it is a direct metric of a job’s
speed. We run at least 100 seconds for each case to measure
the variance of the throughput, which typically includes 2000
iterations of a DL training job. Because a DL training job
performs the same computation for each iteration (only the
input data is different), the variance is low. We also use job
completion time (JCT), but it depends both on the throughput
and the number of iterations. The latter is configured by the
user and varies from job to job.

• TGS. This is the proposed system.

• Exclusive. The production and opportunistic jobs are given
exclusive access to a GPU when they run.

• Co-execution. The production job and the opportunistic
job are executed concurrently without TGS.

• NVIDIA MPS. The production job and the opportunistic
job run concurrently with NVIDIA MPS. We manually find
the appropriate resource limit to set for each job in MPS
to ensure that the performance of the production job is not
affected by the opportunistic job.

• NVIDIA MIG. We manually set the best configuration to
partition GPUs into different GPU instances so that the
performance degradation of the production job brought by
the opportunistic job is minimal.

Due to the compatibility issue of AntMan [6], we compare it
with TGS in §6.7.

6.1 Adaptive Rate Control

TGS uses an adaptive rate control approach to allocate GPU
compute resources between containers in order to simultane-
ously achieve high GPU utilization and performance isolation.
In this experiment, we show that TGS packs an opportunistic
job with a production job on a GPU to increase GPU uti-
lization when the production job cannot use up all the GPU
resources, and that the overhead of the production job is 5%
to 10.8%. We use two different pairs of DNN models for
the production job and the opportunistic job to evaluate TGS
under different scenarios of resource contention. In this ex-
periment, the total required GPU memory of the two jobs
does not exceed the GPU memory capacity. This allows us to
focus on evaluating the effectiveness of adaptive rate control.
In the experiment, the two jobs arrive at the same time, and
we measure the throughput for each job. To clearly show the
difference between the five mechanisms, we normalize the
throughput of each mechanism to that of Exclusive.

76 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Production Opportunistic0
0.25

0.5
0.75

1.0
1.25

Av
er

ag
e

No
rm

al
ize

d
JC

T
TGS Exclusive Co-execution

(a) Average JCT.

0.0 0.5 1.0 1.5 2.0
Normalized JCT

20

40

60

80

100

CD
F

TGS
Exclusive
Co-execution

(b) CDF of production jobs.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized JCT

20

40

60

80

100

CD
F

TGS
Exclusive
Co-execution

(c) CDF of opportunistic jobs.

Figure 6: Performance comparison under a mixed workload job stream.

Figure 4a compares the performance of the five mecha-
nisms when the production job trains ShuffleNet with batch
size 4 and the opportunistic job trains MobileNet with batch
size 4. These two models are small, so this case has low
resource contention, and the throughput of the production
job and the opportunistic job is almost the same for the five
mechanisms. The overhead of TGS is 5%.

Figure 4b shows the results when the production job
trains ResNet-50 with batch size 24 and the opportunistic job
trains ShuffleNet with batch size 64. Both models are more
computation-intensive than the models in Figure 4a. Thus,
this case has a higher resource contention. TGS and MPS
provide higher performance of the production job compared
to Co-execution, because TGS and MPS control the resource
allocation. Co-execution does not provide performance isola-
tion, so the contention with the opportunistic job causes the
throughput of the production job to reduce to 57% of that
under Exclusive. The opportunistic job gets more resources
than it should get by contending with the production job un-
der co-execution. Thus the throughput of the opportunistic
job under co-execution is high. TGS incurs 10.8% overhead
for the production job although the resource contention is
high. The performance provided by MPS is also comparable
with TGS, although MPS sacrifices fault isolation. MIG only
provides limited configurations for each GPU instance. On
an NVIDIA A100 GPU, each GPU instance can only use at
most one half of the total GPU memory and 4/7 of total SMs
for GPU computation when a GPU is partitioned into two
instances. In the high contention scenario, when the produc-
tion job needs more GPU SMs than 4/7 for computation, the
performance of the production job suffers, and is reduced to
77% of that under Exclusive. The opportunistic job gets more
resources than it should, so its throughput is quite high.

While TGS protects production jobs from high contention
caused by the opportunistic job, some sharing overhead is
inevitable. In terms of throughput, Exclusive slightly outper-
forms TGS, because Exclusive runs DL models exclusively
on the GPU. However, in this case, opportunistic jobs have to
wait until the completion of the production job before execu-
tion. This leads to longer JCT for opportunistic jobs. Figure 4c
shows that as the ratio of the job duration of the production
job to that of the opportunistic job becomes larger, TGS can
significantly reduce the queuing delay and thus speed up the

opportunistic job over Exclusive. When the ratio is 20, TGS
can reduce the JCT of the opportunistic job by 95% than
Exclusive at the low-contention scenario and by 47% at the
high-contention scenario.

6.2 Unified Memory Management

In this experiment, we show that TGS provides high GPU
utilization and performance isolation for GPU sharing even
when the GPU memory is oversubscribed. We use two dif-
ferent pairs of DNN models to evaluate TGS under different
scenarios. To oversubscribe the GPU memory, we use DLRM
as the model of the opportunistic job for both pairs. DLRM
is a large recommendation model with high GPU memory
consumption. Similar to previous experiments, two jobs arrive
at the same time, and we measure the throughput of each job.
To clearly show the differences between the five mechanisms,
we normalize the throughput of each mechanism to that of
Exclusive for each job. Because MPS and Co-execution do
not support GPU memory oversubscription, we modify the
DL frameworks to use unified memory to evaluate them.

Figure 5a compares the performance of the five mecha-
nisms when the production job trains ResNet-50 with batch
size 16 and the opportunistic job trains DLRM with batch
size 2048. The overhead of TGS is 2.3% compared to Ex-
clusive. Co-execution has lower throughput due to resource
contention. While MPS can set resource limits for SM usage,
it cannot prioritize GPU memory allocation, and the two jobs
contend for GPU memory resources when the GPU memory
is oversubscribed. This causes significant memory swapping
between GPU memory and host memory for both jobs, which
degrades the performance of the production job under GPU
memory oversubscription. MIG can partition the GPU mem-
ory resources, but it cannot provide sufficient GPU SMs with
the production job due to the configuration constraints. There-
fore, the performance of the production job under MIG is
lower than that of Exclusive and TGS. In terms of the oppor-
tunistic job, Co-execution and MPS have lower throughput
due to GPU memory contention. TGS improves the through-
put by 7.8× over MPS for the opportunistic job by prioritizing
memory allocation. MIG cannot partition GPU memory flexi-
bly. The GPU instance of the opportunistic job can only use
one half of the GPU memory to maintain performance of the
production job. Therefore, the throughput of the opportunistic

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 77

ResNet-50 GCN BERT-Base0.0

0.5

1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

Without TGS With TGS

(a) Different DNN models.

BS=8 BS=16 BS=320.0

0.5

1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

Without TGS With TGS

(b) Different batch sizes.

Figure 7: System overhead of TGS.

job under MIG is even lower than that of Co-execution and
MPS.

Figure 5b shows the results when the production job trains
BERT-Base with batch size 4 and the opportunistic job trains
DLRM with batch size 256. BERT-Base is more computation-
intensive than ResNet-50, and thus there is heavier contention.
TGS maintains the performance as Exclusive with 12.3%
overhead for the production job. Due to heavier contention,
Co-execution and MPS perform worse for the production job.
Due to more GPU compute resource demand, MIG performs
also worse. TGS improves the throughput by 36× over Co-
execution, 72× over MPS, and 1.5× over MIG for the produc-
tion job. TGS also performs the best for the opportunistic job
compared to MIG, MPS and Co-execution. They are slower
due to resource contention and simply use unified memory
without leveraging priority information. For the opportunistic
job, TGS improves the throughput by 24×, 15× and 259×,
compared to co-execution, MPS, and MIG, respectively.

Exclusive provides all GPU resources to the production
job, even though GPU resources are not fully utilized. As a
result, the opportunistic job has a long queuing time—it has to
wait for the production job to finish before it can be executed.
As shown in figure 5c, when the ratio of the job duration of
the production job to that of the opportunistic job reaches 20,
TGS reduces the JCT of the opportunistic job by 95% over
Exclusive at the low-contention scenario and by 92% at the
high-contention scenario.

6.3 Mixed Workload Job Stream

In this experiment, we compare TGS with Exclusive and Co-
execution when sharing a GPU between a mixed workload
job stream. The DNN models used in the trace are consistent
with previous experiments, including ResNet-50, MobileNet,

0 250 500 750 1000 1250
Time (second)

0
20
40
60
80

100

SM
 U

til
iliz

at
io

n
(%

)

ShuffleNet (Production)
MobileNet (Oppotunistic)

(a) GPU utilization.

0 250 500 750 1000 1250
Time (second)

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Th

ro
ug

hp
ut

ShuffleNet (Production)
MobileNet (Opptunistic)

(b) Training throughput.

Figure 8: Convergence under dynamic job arrival.

ShuffleNet, GCN, BERT-Base, and DLRM. The running time
of the jobs are from a production DL training job trace of Mi-
crosoft [5]. The job stream contains 100 jobs, where half are
production jobs and the other half are opportunistic jobs. We
use fast-forwarding [18] to speed up the experiment. NVIDIA
MIG and NVIDIA MPS cannot dynamically change GPU re-
sources allocated to a DL training job, so we do not compare
them in this experiment.

Figure 6a shows the average JCT when executing the trace.
For fair comparison, we normalize the JCT of each mecha-
nism to that of Exclusive for each job. As shown in figure 6b,
because Co-execution cannot protect production jobs from
contention caused by GPU sharing, the average normalized
JCT of production jobs under Co-execution is 135% of that
under Exclusive, while TGS only incurs 6% overhead. Com-
pared to Exclusive, Figure 6c shows that TGS can significantly
reduce the JCT of opportunistic jobs. This is because TGS
can reduce the queueing time of opportunistic jobs, as they
can use remaining GPU resources not used by production
jobs, instead of waiting for production jobs to complete. TGS
reduces the average normalized JCT of opportunistic jobs to
48% of that under Exclusive.

6.4 System Overhead

TGS monitors the rate of production jobs, and relies on the
monitoring to decide whether a GPU can be shared and how
many resources can be allocated to opportunistic jobs. When a
GPU is shared, experiments in previous sections have demon-
strated that opportunistic jobs do not greatly affect production

78 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

800 850 900 950 1000 1050 1100
Time (second)

20

40

60

80

100

S
M

 U
til

ili
za

tio
n

(%
)

ESPnet2 (Production)
BERT-Base (Opportunistic)

(a) GPU utilization.

800 850 900 950 1000 1050 1100
Time (second)

0.25

0.5

0.75

1.0

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

ESPnet2 (Production)
BERT-Base (Opportunistic)

(b) Training throughput.

Figure 9: Convergence under dynamic resource usage.

jobs. In this experiment, we explore the system overhead
of the rate monitoring component in TGS. We measure the
throughput of a job with and without TGS for different config-
urations, and normalize the throughput to that without TGS.

Figure 7a shows the throughput under different DNN mod-
els. The throughput is almost the same with and without TGS
for ResNet-50, GCN and BERT-Base. Figure 7b shows the
throughput under different batch sizes. We use ResNet-50
as the DNN model. Similarly, the JCT is almost the same
with and without TGS for batch size 8, 16 and 32. The re-
sults demonstrate that the rate monitoring component of TGS
incurs 0.3% to 5% overhead for production jobs.

6.5 Convergence

We evaluate the convergence of TGS in different scenarios.
The first scenario evaluates the convergence under dynamic
job arrivals, i.e., a job arrives in the middle to share the GPU
with an existing job. In this scenario, the production job train-
ing ShuffleNet with batch size 4 is running in the beginning.
The opportunistic job training MobileNet with batch size 4
is started after 350 seconds and runs for 240 seconds before
it finishes. Figure 8a and Figure 8b show the time series of
the GPU utilization and normalized throughput, respectively.
As shown in Figure 8a, there are still idle GPU resources
when the production job runs, so the total GPU utilization
increases when the two jobs run concurrently and share the
GPU. Figure 8b shows that the throughput of the opportunis-
tic job increases when it is launched at 350 seconds. At the

ShuffleNet
(Production,
PyTorch)

MobileNet
(Opportunistic,
TensorFlow)

0
0.25
0.5

0.75
1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

TGS
Exclusive

Co-execution
MPS

(a) Low-contention scenario.

ResNet-50
(Production,
PyTorch)

ShuffleNet
(Opportunistic,
TensorFlow)

0
0.25
0.5

0.75
1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

TGS
Exclusive

Co-execution
MPS

(b) High-contention scenario.

Figure 10: GPU sharing between different DL frameworks.

same time, GPU sharing does not affect the throughput of the
production job.

The second scenario evaluates the convergence under dy-
namic resource usage, i.e., a job dynamically switches be-
tween high and low GPU utilization, and the other job utilizes
the unused GPU resources. In this scenario, the production
job trains ESPnet2 with batch size 1 and the opportunistic job
trains BERT-Base with batch size 16. ESPnet2 has several
phases, so it changes GPU utilization periodically. Figure 9a
and Figure 9b show the time series of the GPU utilization and
normalized throughput during a transition, respectively. When
ESPnet2 needs more GPU resources, the production job keeps
its maximum throughput. Between 910 and 940 seconds, ES-
Pnet2 does not train, but runs validation in the GPU. Thus
ESPnet2 still utilizes GPU but the throughput is zero. After
940 seconds, ESPnet2 runs into a phase that primarily uses
CPU, and Figure 9a shows that the GPU utilization of ESP-
net2 decreases to 0. TGS detects the change and dynamically
allocates more GPU resources to the opportunistic job. After
1060 seconds, the production job starts using GPU again and
reclaims all GPU resources. TGS ensures that the production
job is not greatly affected by the opportunistic job.

In summary, these experiments demonstrate that TGS can
converge in different scenarios. On the contrary, MIG can-
not change GPU resource allocation to each GPU instance
whenever there is a job running on the GPU, and MPS cannot
change GPU resources allocated to a job after the job begins.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 79

ShuffleNet
(Production,
TensorFlow)

MobileNet
(Opportunistic,
TensorFlow)

0
0.25
0.5

0.75
1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

TGS AntMan Exclusive

(a) Low-contention scenario.

ResNet-50
(Production,
TensorFlow)

ShuffleNet
(Opportunistic,
TensorFlow)

0
0.25
0.5

0.75
1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

TGS AntMan Exclusive

(b) High-contention scenario.

Figure 11: Comparison between TGS and AntMan.

6.6 Supporting Different DL Frameworks

The experiments in previous sections are based on PyTorch,
because TensorFlow-like frameworks claim all GPU memory
by default when DL models start and the baselines cannot be
directly used for GPU sharing for these frameworks. Specifi-
cally, Co-execution does not support GPU memory oversub-
scription or GPU memory allocation on demand. When one
job claims all GPU memory, another job cannot use any GPU
memory and would be aborted under Co-execution. MPS also
suffers from this behavior. To compare TGS with them, we
modify DL frameworks to use CUDA unified memory and
enable dynamic GPU memory allocation.

Figure 10a compares the performance of the four mecha-
nisms when the production job trains ShuffleNet with batch
size 4 on PyTorch and the opportunistic job trains MobileNet
with batch size 4 on TensorFlow. The result is similar to that
of Figure 4a.

Figure 10b compares the performance of the four mech-
anisms in the high contention scenario. The production job
trains ResNet-50 with batch size 16 and the opportunistic job
trains ShuffleNet with batch size 32. Similar to figure 4b, TGS
reduces the throughput of the production job by 14% com-
pared to Exclusive, while Co-execution reduces the through-
put by 41%. MPS achieves comparable performance, but it
has to be manually tuned and breaks fault isolation.

6.7 Comparison with AntMan

In this experiment, we compare TGS with AntMan [6], which
is a state-of-the-art application-layer solution for GPU sharing.
AntMan is closely coupled with DL frameworks and uses an
application-layer metric, iteration time, to control the oppor-

GPT
(Production,
Megatron)

MobileNet
(Opportunistic,

PyTorch)

MobileNet
(Opportunistic,

PyTorch)

0
0.25
0.5

0.75
1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

TGS
Exclusive

Co-execution
MPS

Figure 12: GPU sharing with the large model.

tunistic job. The open-sourced GitHub repository of AntMan
is not fully functional. It does not include the logic to dynam-
ically allocate resources to jobs. We contacted the authors of
AntMan and followed their instructions to add necessary code
in order to run AntMan. Figure 11a and 11b show the com-
parison under low-contention (ShuffleNet with batch size 4
and MobileNet with batch size 4) and high-contention scenar-
ios (ResNet-50 with batch size 8 and ShuffleNet with batch
size 4), respectively. Although AntMan uses application-layer
knowledge and controls the jobs at the application layer, TGS
still achieves similar performance to AntMan. The throughput
of the production job under TGS is 104.1% to 104.3% than
that under AntMan, while the throughput of the opportunistic
job using TGS is 103% to 122% than that of AntMan. Com-
pared to AntMan, TGS provides the same benefit of GPU
sharing and is transparent to DL frameworks.

6.8 GPU Sharing for Large Model Training

In §6.2, we have shown that even if a large model (e.g.,
DLRM) with large batch size (e.g., 2048) and large mem-
ory consumption (e.g., 38 GB) runs on a GPU, TGS can still
mostly maintain the performance of the production job, while
providing the remaining GPU resources to the opportunis-
tic job. In this experiment, we show that although it is not a
common scenario, TGS can provide GPU sharing capability
when training a bigger model (e.g., GPT). We train a GPT
with batch size 32 using two NVIDIA A100 GPUs as the
production job, while running two single-GPU opportunistic
jobs training MobileNet with batch size 4. Figure 12 shows
that TGS still can achieve comparable performance compared
to MPS, while MPS breaks fault isolation and Co-execution
breaks performance isolation. NVIDIA MIG does not support
multi-GPU jobs when a GPU is partitioned into several GPU
instances, so it is not evaluated in this case.

7 Discussion
Distributed training. Many solutions have been proposed
to achieve high GPU utilization for distributed training
jobs [19–23]. With these solutions, it is unlikely that a dis-
tributed training job would leave substantial GPU resources
unused; otherwise, the job should reduce its GPUs. Therefore,
there is little need for TGS. It is most suitable for sharing
GPUs between single-GPU jobs, which is also how GPU
sharing is used in previous solutions [6, 12, 13]. Yet, TGS

80 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

can be applied to increase GPU utilization for unoptimized
distributed jobs, by controlling the GPU resource usage of an
opportunistic job on each GPU as for single-GPU jobs.

GPU cluster scheduling. Many solutions [7, 18, 24–28] have
been proposed to minimize job completion time and provide
fairness for a GPU cluster. GPU cluster scheduling is orthogo-
nal and complementary to TGS. TGS provides the mechanism
for transparent GPU sharing, which can be used by cluster
schedulers when they schedule and place jobs. We note that
some schedulers [18,28] pack multiple jobs on a GPU, which
are at the application level and require modifications to DL
frameworks. Also, they do not support GPU memory over-
subscription. These schedulers can benefit from TGS.

Space sharing and time sharing. The concepts of GPU
compute sharing and memory sharing are orthogonal to space
sharing and time sharing. Sharing GPU compute resources
can be done either in space sharing or in time sharing. The
adaptive rate control mechanism and transparent unified mem-
ory mechanism of TGS can be used either in space sharing or
in time sharing. GPU space sharing needs hardware support
and is not well supported. Current space sharing solutions
reduce performance isolation (e.g. MIG) or fault isolation
(e.g. MPS). Therefore, TGS currently uses time sharing.

8 Related Work
Deep learning systems. Many DL frameworks have been
proposed for developing and running DNN models [29–36].
Some works optimize communication to improve distributed
training performance [19–23]. Some works use memory swap-
ping to handle the GPU memory problem for training large
DNN models [16,37–39]. They focus on improving the perfor-
mance of a single training job, while TGS provides a solution
for improving the GPU utilization of running many jobs in
a cluster. Some works [40, 41] propose algorithms for inter-
job GPU memory management, but they are not transparent
to applications and require modifications to DL frameworks.
GPUswap [42] proposes a transparent GPU memory swap-
ping system, but it needs to modify GPU drivers. However,
most current commercial GPU drivers, such as NVIDIA GPU
drivers, are not open-source. Open-source GPU drivers are
not as high performance as the commercial ones, so they are
not widely used for DL training workloads. MIG-Serving [43]
tries to find better configurations to use MIG for GPU sharing.
However, MIG itself has limitations as described above. We
compare MIG with the best configuration and TGS in the eval-
uation section, and show the benefits of TGS. There are many
solutions for optimizing DL inference workloads [44,45]. We
focus on GPU clusters for training workloads in this paper.
Several scheduling algorithms have been designed to sched-
ule DL training jobs in a GPU cluster [7, 18, 24–28]. These
works are orthogonal to TGS.

Containers. Containers provide lightweight virtualization
for applications. Due to the benefits of portability, isola-

tion and performance, containers are widely used in dat-
acenters. Major public cloud services, such as AWS, Mi-
crosoft Azure and Google Cloud, offer containers as a ser-
vice [46–48]. Many container runtimes (e.g., Docker) and
orchestration systems (e.g., Kubernetes) are developed and
deployed [1–3, 10, 11, 49, 50]. Some work is proposed to pro-
vide high-performance networking with isolation [51–56].
These solutions are orthogonal to TGS, which focuses on
improving GPU utilization.

GPU sharing. Several solutions have been proposed for
GPU sharing. Early solutions [57–65] explored OS-layer tech-
niques like driver call interception and application-layer tech-
niques like introducing new programming APIs, for sharing
GPU between applications. They focus on jobs with a few
kernels, and are not specifically designed for DL training that
typically has hundreds of kernels. With the emergence of
DL applications, recent solutions [6, 12, 13] have been de-
signed for GPU sharing of DL training. AntMan [6] is the
state-of-the-art application-layer solution for GPU sharing.
Salus [12] uses centralized GPU memory management and
kernel scheduling for GPU sharing. It requires all the appli-
cations to fit in the GPU memory. PipeSwitch [13] provides
fast context switching for DNN jobs, but only one job can
run at each time. They all modify DL frameworks. MPS [9]
is an OS-layer solution, but it requires application knowl-
edge to correctly set resource limits, does not support GPU
memory oversubscription and does not provide fault isolation.
Planaria [66] is an accelerator designed for the multi-tenant
scenario. In comparison, TGS is a software solution that can
be used for sharing a variety of hardware.

9 Conclusion
We have presented TGS, a system that transparently shares
GPUs for DL workloads to improve GPU utilization in con-
tainer clouds. TGS is distinguished from state-of-the-art
application-layer solutions in that it enables users to use any
DL framework and library to develop and train DNN mod-
els in containers. Shared GPUs are exposed to containers as
regular GPU devices, and TGS transparently runs multiple
containers on a GPU when a single container cannot utilize
all GPU resources. TGS achieves both high utilization and
decent performance isolation.

Acknowledgments. We sincerely thank our shepherd John
Wilkes and the anonymous reviewers for their valuable feed-
back. This work was supported by the National Key Research
and Development Program of China under the grant number
2020YFB2104100, the National Natural Science Foundation
of China under the grant number 62172008 and the National
Natural Science Fund for the Excellent Young Scientists Fund
Program (Overseas). Xin Jin is the corresponding author.
Bingyang Wu, Zili Zhang, Xuanzhe Liu and Xin Jin are also
with the Key Laboratory of High Confidence Software Tech-
nologies (Peking University), Ministry of Education.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 81

References
[1] “containerd.” https://containerd.io/.

[2] “cri-o.” https://cri-o.io/.

[3] “Docker.” https://www.docker.com/.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, 2015.

[5] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian,
W. Xiao, and F. Yang, “Analysis of large-scale multi-
tenant GPU clusters for DNN training workloads,” in
USENIX ATC, 2019.

[6] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng,
W. Lin, and Y. Jia, “Antman: Dynamic scaling on GPU
clusters for deep learning,” in USENIX OSDI, 2020.

[7] W. Qizhen, X. Wencong, Y. Yinghao, W. Wei, W. Cheng,
H. Jian, L. Yong, Z. Liping, L. Wei, and D. Yu, “MLaaS
in the wild: Workload analysis and scheduling in Large-
Scale heterogeneous GPU clusters,” in USENIX NSDI,
2022.

[8] H. Zhao, Z. Han, Z. Yang, Q. Zhang, F. Yang, L. Zhou,
M. Yang, F. C. Lau, Y. Wang, Y. Xiong, and B. Wang,
“HiveD: Sharing a GPU cluster for deep learning with
guarantees,” in USENIX OSDI, 2020.

[9] “CUDA Multi-Process Service.” https:
//docs.nvidia.com/deploy/pdf/CUDA_Multi_
Process_Service_Overview.pdf.

[10] “Kubernetes.” https://kubernetes.io/.

[11] “Docker Swarm.” https://docs.docker.com/
engine/swarm/.

[12] P. Yu and M. Chowdhury, “Salus: Fine-grained GPU
sharing primitives for deep learning applications,” in
Conference on Machine Learning and Systems, 2020.

[13] Z. Bai, Z. Zhang, Y. Zhu, and X. Jin, “Pipeswitch: Fast
pipelined context switching for deep learning applica-
tions,” in USENIX OSDI, 2020.

[14] “Nvidia multi-instance GPU (MIG).” https:
//www.nvidia.com/en-us/technologies/
multi-instance-gpu/.

[15] “Nvidia multi-instance GPU user guide.”
https://docs.nvidia.com/datacenter/tesla/
mig-user-guide/.

[16] “CUDA Unified Memory.” https://devblogs.
nvidia.com/unified-memory-cuda-beginners/.

[17] J. Gleeson, S. Krishnan, M. Gabel, V. J. Reddi,
E. de Lara, and G. Pekhimenko, “RL-Scope: Cross-stack
profiling for deep reinforcement learning workloads,” in
Conference on Machine Learning and Systems, 2021.

[18] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu,
N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang,
F. Yang, and L. Zhou, “Gandiva: Introspective cluster
scheduling for deep learning,” in USENIX OSDI, 2018.

[19] A. Sergeev and M. Del Balso, “Horovod: fast and easy
distributed deep learning in tensorflow,” arXiv preprint
arXiv:1802.05799, 2018.

[20] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu,
and C. Guo, “A generic communication scheduler for
distributed DNN training acceleration,” in ACM SOSP,
2019.

[21] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo,
“A unified architecture for accelerating distributed
DNN training in heterogeneous GPU/CPU clusters,” in
USENIX OSDI, 2020.

[22] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri,
N. R. Devanur, G. R. Ganger, P. B. Gibbons, and M. Za-
haria, “PipeDream: generalized pipeline parallelism for
DNN training,” in ACM SOSP, 2019.

[23] G. Wang, S. Venkataraman, A. Phanishayee, J. Thelin,
N. Devanur, and I. Stoica, “Blink: Fast and generic col-
lectives for distributed ML,” in Conference on Machine
Learning and Systems, 2020.

[24] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon,
J. Qian, H. Liu, and C. Guo, “Tiresias: A GPU clus-
ter manager for distributed deep learning,” in USENIX
NSDI, 2019.

[25] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq:
quality-driven scheduling for distributed machine learn-
ing,” in ACM Symposium on Cloud Computing, 2017.

[26] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Opti-
mus: an efficient dynamic resource scheduler for deep
learning clusters,” in EuroSys, 2018.

[27] K. Mahajan, A. Balasubramanian, A. Singhvi,
S. Venkataraman, A. Akella, A. Phanishayee, and
S. Chawla, “Themis: Fair and efficient GPU cluster
scheduling,” in USENIX NSDI, 2020.

[28] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phan-
ishayee, and M. Zaharia, “Heterogeneity-aware cluster
scheduling policies for deep learning workloads,” in
USENIX OSDI, 2020.

[29] “TensorFlow.” https://www.tensorflow.org/.

82 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://containerd.io/
https://cri-o.io/
https://www.docker.com/
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://www.tensorflow.org/

[30] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system
for large-scale machine learning,” in USENIX OSDI,
2016.

[31] “PyTorch.” https://pytorch.org/.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Rai-
son, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala, “PyTorch: An imperative style,
high-performance deep learning library,” in Advances
in Neural Information Processing Systems, 2019.

[33] “MXNet.” https://mxnet.apache.org/.

[34] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,
T. Xiao, B. Xu, C. Zhang, and Z. Zhang, “MXNet: A
flexible and efficient machine learning library for hetero-
geneous distributed systems,” in LearningSys at Neural
Information Processing Systems, 2015.

[35] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B.-Y. Su, “Scaling distributed machine learning with the
parameter server,” in USENIX OSDI, 2014.

[36] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
M. Mao, M. a. Ranzato, A. Senior, P. Tucker, K. Yang,
Q. Le, and A. Ng, “Large scale distributed deep net-
works,” in Advances in Neural Information Processing
Systems, 2012.

[37] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and
S. W. Keckler, “vDNN: Virtualized deep neural net-
works for scalable, memory-efficient neural network de-
sign,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2016.

[38] C.-C. Huang, G. Jin, and J. Li, “SwapAdvisor: Pushing
deep learning beyond the GPU memory limit via smart
swapping,” in ACM ASPLOS, 2020.

[39] G. Wang, K. Wang, K. Jiang, X. LI, and I. Stoica,
“Wavelet: Efficient dnn training with tick-tock schedul-
ing,” in Conference on Machine Learning and Systems,
2021.

[40] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong,
F. Yang, and X. Qian, “Capuchin: Tensor-based gpu
memory management for deep learning,” in ACM ASP-
LOS, 2020.

[41] G. Lim, J. Ahn, W. Xiao, Y. Kwon, and M. Jeon, “Zico:
Efficient GPU memory sharing for concurrent DNN
training,” in USENIX ATC, 2021.

[42] J. Kehne, J. Metter, and F. Bellosa, “GPUswap: Enabling
oversubscription of gpu memory through transparent
swapping,” in ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, 2015.

[43] C. Tan, Z. Li, J. Zhang, Y. Cao, S. Qi, Z. Liu, Y. Zhu,
and C. Guo, “Serving dnn models with multi-instance
gpus: A case of the reconfigurable machine scheduling
problem,” arXiv preprint arXiv:2109.11067, 2021.

[44] J. Kosaian, K. V. Rashmi, and S. Venkataraman, “Parity
models: Erasure-coded resilience for prediction serving
systems,” in ACM SOSP, 2019.

[45] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Phili-
pose, A. Krishnamurthy, and R. Sundaram, “Nexus: A
GPU cluster engine for accelerating DNN-based video
analysis,” in ACM SOSP, 2019.

[46] “AWS containers.” https://aws.amazon.com/
containers/.

[47] “Microsoft azure containers.” https://azure.
microsoft.com/en-us/product-categories/
containers/.

[48] “Google cloud containers.” https://cloud.google.
com/containers.

[49] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes, “Large-scale cluster management
at Google with Borg,” in EuroSys, 2015.

[50] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes, “Omega: flexible, scalable schedulers for large
compute clusters,” in EuroSys, 2013.

[51] D. Kim, T. Yu, H. H. Liu, Y. Zhu, J. Padhye, S. Raindel,
C. Guo, V. Sekar, and S. Seshan, “Freeflow: Software-
based virtual RDMA networking for containerized
clouds,” in USENIX NSDI, 2019.

[52] D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Kr-
ishnamurthy, and T. Anderson, “Slim: OS kernel sup-
port for a low-overhead container overlay network,” in
USENIX NSDI, 2019.

[53] B. Li, T. Cui, Z. Wang, W. Bai, and L. Zhang, “Socksdi-
rect: Datacenter sockets can be fast and compatible,” in
ACM SIGCOMM, 2019.

[54] Z. He, D. Wang, B. Fu, K. Tan, B. Hua, Z.-L. Zhang,
and K. Zheng, “Masq: RDMA for virtual private cloud,”
in ACM SIGCOMM, 2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 83

https://pytorch.org/
https://mxnet.apache.org/
https://aws.amazon.com/containers/
https://aws.amazon.com/containers/
https://azure.microsoft.com/en-us/product-categories/containers/
https://azure.microsoft.com/en-us/product-categories/containers/
https://azure.microsoft.com/en-us/product-categories/containers/
https://cloud.google.com/containers
https://cloud.google.com/containers

[55] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,
C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans,
S. Gribble, N. Kidd, R. Kononov, G. Kumar, C. Mauer,
E. Musick, L. Olson, M. Ryan, E. Rubow, K. Springborn,
P. Turner, V. Valancius, X. Wang, and A. Vahdat, “Snap:
a microkernel approach to host networking,” in ACM
SOSP, 2019.

[56] A. Narayan, A. Panda, M. Alizadeh, H. Balakrishnan,
A. Krishnamurthy, and S. Shenker, “Bertha: Tunneling
through the network API,” in ACM SIGCOMM HotNets
Workshop, 2020.

[57] G. Giunta, R. Montella, G. Agrillo, and G. Coviello, “A
GPGPU transparent virtualization component for high
performance computing clouds,” in European Confer-
ence on Parallel Processing, 2010.

[58] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche,
N. Tolia, V. Talwar, and P. Ranganathan, “GViM: GPU-
accelerated virtual machines,” in ACM Workshop on
System-level Virtualization for High Performance Com-
puting, 2009.

[59] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S.
Quintana-Ortí, “rCUDA: Reducing the number of GPU-
based accelerators in high performance clusters,” in In-
ternational Conference on High Performance Comput-
ing & Simulation, 2010.

[60] V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar,
“Supporting GPU sharing in cloud environments with a
transparent runtime consolidation framework,” in IEEE
HPDC, 2011.

[61] L. Shi, H. Chen, J. Sun, and K. Li, “vCUDA: GPU-
accelerated high-performance computing in virtual ma-
chines,” IEEE Transactions on Computers, vol. 61,
2011.

[62] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Im-
proving GPGPU concurrency with elastic kernels,” in
ACM ASPLOS, 2013.

[63] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collab-
orative preemption for multitasking on a shared GPU,”
in ACM ASPLOS, 2015.

[64] T. T. Yeh, A. Sabne, P. Sakdhnagool, R. Eigenmann,
and T. G. Rogers, “Pagoda: Fine-grained GPU resource
virtualization for narrow tasks,” in ACM PPoPP, 2017.

[65] K. Zhang, B. He, J. Hu, Z. Wang, B. Hua, J. Meng,
and L. Yang, “G-NET: Effective GPU sharing in NFV
systems,” in USENIX NSDI, 2018.

[66] S. Ghodrati, B. H. Ahn, J. Kyung Kim, S. Kinzer, B. R.
Yatham, N. Alla, H. Sharma, M. Alian, E. Ebrahimi,

N. S. Kim, C. Young, and H. Esmaeilzadeh, “Planaria:
Dynamic architecture fission for spatial multi-tenant
acceleration of deep neural networks,” in IEEE/ACM
MICRO, 2020.

84 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Convergence of Adaptive Rate Control Al-
gorithm

We assume each GPU has an unknown constant throughput
limit B. The TGS’s goal is to maximize throughput of the
opportunistic job without affecting the production job very
much. We assume throughput of the production job is rela-
tively stable. Therefore, the adaptive rate control algorithm
can accurately measure the throughput of the production job,
i.e. αin. When throughput of the production job is unstable
beyond a manual tuned threshold, TGS re-estimates αin. In
this context, we define that a cycle is a phase starting after
TGS detects contention and ending when TGS detects con-
tention again. A step is defined as an invocation of the rate
control component to adjust rate limit of the opportunistic
job, such as an additive increase or a multiplicative decrease.
Hence, a cycle consists of one multiplicative decrease step
and multiple continous additive increase steps. Let the initial
value of βout be β0 (β0 ≤ B). The simplified convergence of
the rate adaptive control algorithm is shown as follow:

Opportunistic Job production Job
β0 min(R,B−β0)
β1 = β0 +δAI min(R,B−β1)
β2 = β0 +δAI +δAI min(R,B−β2)
...

...
βk = β0 +δAI + · · ·+δAI︸ ︷︷ ︸

k

min(R,B−βk)

Detect Contention: R+β0 + kδAI ≥ B
Action: Multiplicative Decrease
βk+1 =

β0+kδAI
δMD

min(R,B−βk+1)

βk+2 =
β0

δMD
+ kδAI

δMD
+δAI min(R,B−βk+2)

βk+3 =
β0

δMD
+ kδAI

δMD
+δAI +δAI min(R,B−βk+3)

...
...

βk+l+1 =
β0

δMD
+ kδAI

δMD
+δAI + · · ·+δAI︸ ︷︷ ︸

l

min(R,B−βk+l+1)

Detect Contention: R+ β0
δMD

+ kδAI
δMD

+ lδAI ≥ B
Action: Multiplicative Decrease
βk+l+2 =

β0
δ2

MD
+ kδAI

δ2
MD

+ lδAI
δMD

min(R,B−βk+l+2)

...
...

β∗ = β0

δ
logβ0
MD

+ kδAI

δ
logβ0
MD

+ lδAI

δ
log

β0
2

MD

+ · · ·+m min(R,B−β∗)

We assume the unit of bandwith is indivisible. As shown
above, the adaptive rate control algorithm converge in
O(logβ0) cycles, because the unknown term β0 decreases
to zero in O(1+ logβ0) cycles, i.e. O(B logB) steps. There-
fore, the complexity of the adaptive rate control algorithm is
O(B logB).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 85

ARK: GPU-driven Code Execution for Distributed Deep Learning

Changho Hwang1,2, KyoungSoo Park1, Ran Shu2, Xinyuan Qu2,†, Peng Cheng2, and Yongqiang Xiong2

1KAIST 2Microsoft Research

Abstract
Modern state-of-the-art deep learning (DL) applications

tend to scale out to a large number of parallel GPUs. Un-
fortunately, we observe that the collective communication
overhead across GPUs is often the key limiting factor of per-
formance for distributed DL. It under-utilizes the networking
bandwidth by frequent transfers of small data chunks, which
also incurs a substantial I/O overhead on GPU that interferes
with computation on GPU. The root cause lies in the ineffi-
ciency of CPU-based communication event handling as well
as the inability to control the GPU’s internal DMA engine
with GPU threads.

To address the problem, we propose a GPU-driven code
execution system that leverages a GPU-controlled hardware
DMA engine for I/O offloading. Our custom DMA engine
pipelines multiple DMA requests to support efficient small
data transfer while it eliminates the I/O overhead on GPU
cores. Unlike existing GPU DMA engines initiated only by
CPU, we let GPU threads directly control DMA operations,
which leads to a highly efficient system where GPUs drive
their own execution flow and handle communication events
autonomously without CPU intervention. Our prototype DMA
engine achieves a line-rate from a message size as small as
8KB (3.9x better throughput) with only 4.3µs of communi-
cation latency (9.1x faster) while it incurs little interference
with computation on GPU, achieving 1.8x higher all-reduce
throughput in a real training workload.

1 Introduction
Modern machine learning (ML) applications tend to har-
ness an increasingly larger number of accelerators (especially
GPUs in this work) [19, 26]. State-of-the-art deep learning
(DL) algorithms often need to scale out to thousands of GPUs
for higher throughput and accuracy [26]. Unfortunately, this
poses a substantial communication overhead to the entire sys-
tem, which harms GPU utilization by delaying or interfering
with numeric computation.

† Now at Horizon Robotics.

The communication overhead mainly arises in two different
aspects. First, collective communication (e.g., all-reduce, split-
and-gather, all-to-all, etc.), which is widely adopted in most of
popular DL algorithms, often splits the data for transfer into
multiple small chunks for pipelining or for sending to multi-
ple different destinations. The chunk size tends to get smaller
as we scale out, which is detrimental to efficient utilization
of networking bandwidth. Second, popular communication
libraries for GPUs such as NCCL [32] and RCCL [5] often
incur a severe I/O overhead on GPU. This is because they
commonly leverage memory-mapped I/O (MMIO) for data
copies between GPUs, which consumes a substantial amount
of GPU resources (i.e., core cycles and L2 cache/DRAM
bandwidth). We observe that concurrent execution of col-
lective communication and numeric computation on GPU
heavily interferes with each other – in our training experiment
with BERT-Large [10], the throughput of parallel computa-
tion drops by 45% while it achieves only 53.6% of the peak
communication throughput (see details in Section 2.3).

Unfortunately, it is challenging for existing systems to ad-
dress both issues (i.e., large transfer delay for small chunks
and I/O overhead on GPU) at the same time. One may avoid
the I/O overhead by offloading the I/O to a hardware DMA
engine instead of employing MMIO with GPU threads. How-
ever, the current DMA engine on commodity GPU is initiated
only by CPU threads, which often enrolls CPU’s control on
the critical path of communication. This incurs the CPU-GPU
synchronization overhead that bloats up the communication
latency, especially detrimental to the throughput of small data
chunk transfer. In fact, one can observe hundreds of µs of com-
munication latency in a popular DL framework as it leverages
the DMA engine. Similarly, if one does not employ the DMA
engine for communication of data chunks, the communication
would suffer from high I/O overhead on GPU.

This paper proposes the GPU-driven system named ARK, a
communication-motivated DL system design. The key idea of
the GPU-driven system lies in autonomous execution control
of GPU code without any control by external devices. This
regime tightly connects computational power of every GPU

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 87

core across machines by allowing GPU threads to communi-
cate directly with remote GPUs without any external control
signals, which ends up achieving low-latency communica-
tion. At the same time, to avoid the I/O overhead on GPU,
we design a GPU-controlled DMA engine. Specifically, our
custom DMA engine is directly initiated by GPU threads,
which avoids the heavy MMIO without CPU intervention.

Our evaluation shows that our DMA engine prototype is es-
pecially beneficial for small messages, achieving a high com-
munication throughput (3.87x over cudaMemcpy with 8KB
messages) at low latency (9.1x faster over CPU intervention).
Furthermore, it does not interfere with computation on GPU,
which delivers both computation and communication through-
put gains over using MMIO-based libraries [5,32] (1.8x faster
all-reduce in BERT-Large [10] training, see Section 5.3).

To realize the GPU-driven system, we also present an effi-
cient scheduler of autonomous execution on GPU. Our key
observation is that online dynamic scheduling is unneces-
sary as DL workloads are typically deterministic at runtime.
Instead, we present the virtual Cooperative Thread Array
(vCTA) framework that abstracts offline GPU scheduling. Of-
fline scheduling allows eliminating the runtime scheduling
overhead at the back-end, while reusing the existing front-end
interface and GPU kernel implementations.

ARK supports efficient and flexible parallel execution mod-
els for data-, tensor-, and pipeline-parallelisms. Our evalua-
tion demonstrates that ARK delivers substantial performance
gains both in training and inference, achieving 2.5x and 3.6x
throughput improvement, respectively.

2 Background & Motivation
This section explains existing inter-GPU communication tech-
nologies and their limitations.

2.1 Small Data Transfer in Distributed DL
Collective communication consists of several communication
primitives that concurrently exchange the data across multiple
GPUs, which is widely adopted to implement various paral-
lelism methods in distributed DL. Popular use cases include
all-reduce for data-parallelism, split-and-gather for tensor-
parallelism [22, 40], and all-to-all for expert-parallelism [11].
As the number of employed GPUs gets larger, the size of unit
data transfer in collective communication becomes smaller
as it splits the local data into multiple pieces to be delivered
to different GPUs. This small transfer size makes the overall
performance of collective communication highly dependent
on the control plane overhead before and after each data trans-
fer. Unfortunately, we observe that the control plane overhead
either with CPU-controlled or even GPU-controlled commu-
nication is pretty substantial (See Section 2.2 and Section 2.3).
Also, existing workarounds (e.g., tensor fusion [39]) that batch
a large amount of data to avoid small transfers would not com-
pletely address the problem as they trade off computational
throughput by intentionally delaying data transfer.

0
2
4
6
8

10
12
14

4
K

8
K

1
6

K
3

2
K

6
4

K
1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

D
at

a
R

at
e

(G
B

p
s)

Message Size (Bytes)

(a) PCIe v3.

0
50

100
150
200
250

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

D
at

a
R

at
e

(G
B

ps
)

Message Size (Bytes)

(b) NVLink v3.

Figure 1: Data dependency between GPUs decreases the inter-
GPU data rate due to event handling delays. Solid lines refer
to actual data rate (for sending one message at a time) in Ten-
sorFlow’s CPU-controlled communication crossing a PCIe v3
or a NVLink v3 switch while dashed lines indicate the ideal
data rate without event handling delays.

2.2 External Execution Control Overhead
Existing GPU program execution heavily relies on an external
processor (i.e., CPU) to submit GPU commands for kernel ex-
ecution or data transfer. Unfortunately, this model often incurs
a large overhead due to the delay for command delivery from
the host side to GPU hardware queue (i.e., stream). One can
use the conventional GPU event interface (i.e., cudaEvent) to
hide the delay, but it would also suffer from substantial delay
for event handling. When adopted to inter-GPU communi-
cation, which we call CPU-controlled communication (in
contrast to GPU-controlled communication by NCCL [32]),
we observe that event handling becomes the primary cause
for large communication delay beyond the data transfer itself.

We consider a common communication scenario where
two GPUs have a data dependency – one GPU receives com-
putation results of another GPU to feed them as input to its
own computation. In every data transfer, event handling is
needed to check the dependency between the copy and the
GPU commands around the copy operation, which reduces
the actual data rate between GPUs. Figure 1 compares the
ideal inter-GPU data rate (cudaMemcpy throughput) with the
actual data rate in TensorFlow’s CPU-controlled communi-
cation, which is still used along with NCCL especially for
model-parallelism implementations. We see that the event
handling overhead with cudaMemcpy drastically lowers the
data rate both in the PCIe and NVLink interfaces. We explain
two implementations when GPU A sends data to GPU B.

2.2.1 Runtime Intervention for the Control
CPU can serve as an intermediary to deliver an event between
two communicating GPUs. In fact, if GPUs are located in
different NUMA nodes or on different machines, the runtime
intervention by CPU is required for communication. Also,
some frameworks like TensorFlow implement a generic inter-
face that always uses CPU for GPU event handling regardless
of the placement. Figure 2 illustrates the event handling over-
head due to CPU intervention when GPU A sends its data to

88 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CPU
Callback
Thread

event

done?

no

yes
deliver

callback
command

wakeup

CPU
Polling
Thread

GPU A GPU B

done?

run callback
command

event handling
overhead

command:
copy A to B

Figure 2: CPU intervention in inter-GPU event handling.

GPU B that plans to run the next command with the data.
We notice three places for the overhead. First, it is ineffi-

cient for a CPU thread to poll GPU events because the event
interface disallows the CPU thread to monitor multiple events
at the same time. While it takes only ∼3µs for a dedicated
busy-waiting CPU thread to be notified of a triggered GPU
event,2 this approach does not scale when an application
has to run many parallel tasks, which will run many polling
threads. Instead, the event polling loop of TensorFlow uses
only one CPU thread, which incurs a ∼58.3µs of polling gap
on average (see Table 1). Second, it takes time to wake up
the CPU thread that invokes the callback function of the trig-
gered event. In TensorFlow, it takes ∼58.7µs for the callback
thread to acquire the mutex lock from when it is released by
the polling thread. This delay could be reduced to as low as
5µs if both threads are running on the same CPU core, but
co-locating the threads or even merging them into a single
one would increase the event polling interval as well as the
overall processing time. Lastly, it is inefficient for the callback
thread to deliver the computation command to GPU B. De-
livering the event signal to GPU B would take only 2∼3µs if
implemented efficiently,3 but we need to deliver the callback
command binary as well. We can avoid the extra delay if we
deliver the GPU command in advance and trigger it later on
the CPU side, but this is not supported by commodity GPU.

2.2.2 Asynchronous Control
If the GPUs are under the same NUMA node, CPU can reserve
a GPU event to be triggered asynchronously so that GPUs
can directly communicate with each other when the event
occurs. In this case, one can deliver the callback command to
GPU B before the actual event and use the conventional GPU
event interface (i.e. cudaEvent or a higher-level wrapper such
as CUDA Graphs [27]) to trigger the callback command on
GPU B with GPU A’s event. Ideally, this should take as short
as sending a single bit from GPU A to GPU B. However,
we find that triggering a GPU event (∼4µs) and waking up
a dependent GPU command (10∼20µs) are disappointingly
slow – it ends up taking as much as sending the command

2Please refer to the experiment setup in Section 5.
3This is roughly estimated based on that it takes ∼2µs for a GPU thread

to read a 4-byte data on the host DRAM and it takes ∼3µs for a busy-waiting
CPU to read a GPU event.

Overhead Detail Delay (µs)
Initiation

Trigger send ready event on the GPU 3.8
Sync comp. stream and comm. stream 11.6

Completion Check
Event polling gap 58.3
Delay of pthread mutex lock 58.7
GPU kernel launch overhead 19.2

Total 151.6

Table 1: Breakdown of the constant overhead of inter-GPU
data transfer using TensorFlow in Figure 1.

binary to the GPU at runtime. We suspect that this is due to
inefficient hardware implementation on GPU for event han-
dling. In TensorFlow, this overhead contributes to the delay
for initiating a transfer that depends on GPU computation as
shown in Table 1.

2.3 I/O Overhead of GPU-side Control
Since CPU intervention incurs a large overhead, how about
managing the communication with GPU itself? NCCL [32] 4

leverages GPUDirect [31] to enable this approach, which ex-
poses the GPU memory space for peer-to-peer access so that
GPU threads can read/write data to/from another GPU.5 As
GPU threads can directly invoke data copy, they can handle
communication events efficiently without the involvement
of CPU. Since commodity GPU hardware disallows GPU
threads to initiate its own DMA engine, GPU-controlled com-
munication leverages MMIO, which will implicitly conduct
DMA when GPU threads write data on the mapping. Figure 3
compares CPU-controlled and GPU-controlled communica-
tion. The former one (Figure 3a) takes the following steps:
1 CPU is notified when the data is ready, 2 CPU initi-

ates the DMA engine, and 3 DMA copies the data. On the
other hand, GPU-controlled communication with MMIO (Fig-
ure 3b) follows 1 CPU creates a memory map (mmap) of the
destination GPU’s address space prior to runtime execution,
2 the data is ready at runtime, and 3 GPU threads copy the

data into the mmap, which implicitly conducts DMA copy.
Unfortunately, data copying by GPU threads often heavily

interferes with parallel kernel computation, especially due to
L2 cache pollution and warp scheduler operations. Specifi-
cally, a data-copy GPU thread needs to load the data onto its
register file for data transfer, but this pollutes the L2 cache as
one cannot bypass the L2 cache when reading from DRAM on
commodity GPU [34]. It leads to severe performance degra-
dation over initiating DMA directly, as the latter copies the
data on DRAM directly to the I/O bus (PCIe or NVLink).
Additionally, the copying threads frequently issue ’load/store’

4Equally applied to RCCL [5] on AMD GPU as well. For convenience,
we borrow the terms from CUDA or NVIDIA GPUs, which can be easily
converted into corresponding terms in OpenCL or AMD GPUs.

5CPU-controlled communication also leverages GPUDirect for efficient
cudaMemcpy between peer GPUs without crossing the root complex, but its
execution path is different from that of GPU-controlled communication.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 89

CPU

GPU (send)

DMA
mem

②

42

GPU (recv)

DMA
mem③

①

(a) CPU-controlled.

③

CPU

GPU (send)

DMA
mem mmap

② 42

GPU (recv)

DMA
mem

①

(b) GPU-controlled MMIO.

DEV

GPU (send)

DMA
mem

42

GPU (recv)

DMA
mem

①
DMA

②

(c) GPU-controlled DMA (this work).

Figure 3: Comparison between CPU-controlled and GPU-controlled communication – the latter has two different approaches,
which leverage (b) MMIO (like NCCL) or (c) directly initiated DMA (this work). DEV refers to any kinds of devices that can
implement our DMA engine.

instructions that drive warp schedulers busy, which makes
other threads for parallel computation yield their clock cy-
cles. Although the affected computation threads are limited to
those that co-run warp schedulers with data-copy threads, they
delay the entire kernel by falling behind the other threads.

To analyze the impact of the contention, we measure the
slowdown of two different GPU kernels that heavily ac-
cess only a specific type of GPU resources each: L2 cache
(1.96 TBps read) and warp schedulers (2.02 IPC),6 respec-
tively (all numbers measured on a V100 GPU), while running
concurrently with NCCL (v2.11.4) 64 MB all-gather7 kernels
using 8x V100 GPUs. We leverage NVIDIA Visual Profiler
(NVVP) and Nsight Compute to verify that (1) the L2 cache
kernel shows near-zero DRAM access and L1 data cache
hit rate and (2) the warp schedulers kernel shows near-zero
L2 cache/DRAM throughput. We have also verified the con-
currency of computation and all-gather kernels and no other
CPU/GPU activities during the experiment. In this experi-
ment, the slowdowns due to L2 cache and warp schedulers
contention are up to 2.4x and 2.0x, respectively, where it
slows down either the computation or the concurrent NCCL
communication (when one side is degraded less, the other
side tends to be impacted more). This result shows that heavy
contention could arise depending on the GPU resource usage
of concurrent computation kernels.

We run a microbenchmark to evaluate the contention of
NCCL all-reduce during data-parallel training of a BERT-
Large [10] model. This model performs 32 MB of all-reduce
at a time, which issues 4 MB data transfer in parallel with
eight GPU workers. On a server with 8x V100 GPUs (con-
nected with a single PCIe switch (16x PCIe v3)), the parallel
computation throughput drops by 45.0% while all-reduce
achieves only 5.0 GBps on average, degraded to 53.6% of the
peak throughput without the interference. On a server with 8x
A100 GPUs (connected with an NVSwitch (NVLink v3)), the
slowdown of all-reduce is even worse – the parallel computa-
tion throughput drops by 14.3% while the NCCL all-reduce
achieves only 30.9% of the peak throughput (49.0 GBps).

6Heavy usage of warp schedulers means frequent instruction fetches, i.e.
large instructions per cycle (IPC). > 99.2% of instructions are FFMA.

7We use all-gather as it only performs communication without any extra
computation such as reduction in all-reduce.

3 ARK Framework Design
In this section, we present the design of ARK, our approach
with the GPU-driven code execution that avoids the commu-
nication overhead on GPU without CPU intervention.

3.1 GPU-controlled DMA Engine
We claim that a GPU-controlled DMA engine (Figure 3c) can
eliminate the communication overhead, which in turn serves
as the basis of our GPU-driven system. The GPU-controlled
DMA engine enables a GPU thread to directly initiate DMA
operations when the data is ready (1), which will immedi-
ately push the data into the I/O bus without wasting GPU
cycles (2). We leverage existing GPUDirect techniques to
expose the GPU’s physical address space to our DMA engine.

While GPU-controlled DMA would deliver low-latency
communication without the MMIO overhead, it is non-trivial
to realize this feature. In fact, an ideal implementation would
be to modify the existing DMA engine on GPU to support
GPU-controlled DMA, but it is infeasible as we cannot up-
date the GPU hardware. Instead, we consider employing an
external device as illustrated in Figure 3c at the cost of extra
communication latency from GPU threads.

Despite of performance benefits, adopting new hardware
for GPU-controlled DMA engine might be costly in many
existing systems. To provide an interim solution, we pursue
a general DMA engine design that can be implemented as
either software or hardware on any hardware platforms (e.g.,
CPU, GPU, SmartNIC, FPGA, etc.) or I/O bus types (PCIe,
NVLink [33], or Infinity Fabric Link (xGMI) [3]). Regardless
of the platform, all implementations need to share the same
runtime interface for GPU kernels. Also, the DMA interface
should support low latency and flexibility while meeting the
different requirements of software and hardware engines.

In this paper, we present both a software implementation
and a hardware prototype of GPU-controlled DMA engine.
Our software engine works over any existing systems without
additional hardware as it leverages host CPU cores – busy-
waiting CPU threads read DMA requests from GPU and initi-
ate DMA accordingly. This design is aligned with the princi-
ple of GPU-driven system as GPU threads directly initiate the
data transfer, while CPU threads only mechanically initiate

90 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

data copies without any GPU event handling or GPU resource
consumption. Our hardware engine prototype is implemented
on FPGA, which we present to show the potential benefit of
hardware deployment over the software engine. We explain
the details of DMA engine implementations in Section 4.1.

3.2 Loop Kernel & Virtual CTA
GPU-controlled DMA engines would be easily adopted by
existing systems, e.g., NCCL can replace its MMIO with initi-
ating our DMA engines. However, existing systems would not
fully exploit the benefit of GPU-controlled communication
as the communication APIs are launched by CPU – the CPU
intervention barrier still remains between computation and
communication.

To remove this barrier, we propose a GPU-driven code
execution system that runs an entire DL application in a sin-
gle kernel, called a loop kernel. Our key observation is that
online dynamic scheduling is unnecessary as DL workloads
are typically deterministic at runtime. Instead of dynamically
launching GPU kernels with CPU at runtime, our GPU-driven
system automatically merges all kernels into a loop kernel
(one for each GPU) at compile time and launches it only once
at application start. Then, the loop kernel runs continuously
during the entire lifetime of the application. A loop kernel
is generated by our code generator that reads an operational
graph of a DL application and automatically assembles cor-
responding code snippets of GPU operators to build loop
kernel code. We call this code generation as offline scheduling
as all GPU operators are statically distributed across GPU
cores, or Streaming Multiprocessors (SMs), by the code. Of-
fline scheduling lets GPUs efficiently control the application,
which would minimize the event handling overhead for inter-
GPU communication. We discuss several technical details of
the loop kernel in Section 4.2.

Figure 4 shows that the loop kernel design deviates from
the conventional framework for declaring, scheduling, and
executing GPU tasks. In both CPU- and GPU-driven systems,
a GPU operator is commonly defined as a set of multiple
unit operators that each computes a part of the entire output
in the SIMD manner. Meanwhile, both systems declare the
operator differently in the GPU code. The CPU-driven system
declares each unit operator as a Cooperative Thread Array
(CTA)8 and the entire operator as a separate kernel, which
requires launching multiple kernels for multiple operators. In
contrast, our GPU-driven system disallows multiple kernels
as it executes all operators in the single loop kernel. Instead,
it exploits intermediate declaration of unit operators that are
scheduled as part of the CTAs of the loop kernel, which we
call virtual CTAs (vCTAs).

vCTA provides the key abstraction for offline scheduling
in ARK, which enables software-defined SM scheduling. A
vCTA declares the code for a unit operator that is affinitized

8CTA is conceptually and functionally the same as a thread block in
CUDA or a workgroup in OpenCL.

Schedule to SMs

CTAs

Operator on specific inputs

CTA …Kernel 1 CTA

𝐵0 𝐵1 𝐵2 𝐵3

𝐴0
𝐴1
𝐴2

𝐶0 𝐶1 𝐶2 𝐶3
𝐶4 𝐶5 𝐶6 𝐶7
𝐶8 𝐶9 𝐶10𝐶11

𝐵

𝐴 𝐶

Define a unit operator

𝐴𝐵 = 𝐶,

𝐶0 𝐶1 𝐶2 𝐶3
𝐶4 𝐶5 𝐶6 𝐶7
𝐶8 𝐶9 𝐶10 𝐶11

Unit operators

0 1 2 3
4 5 6 7
8 9 10 11

CTA …
Kernel 2 CTA

… … … …

kernel
launch

CTA CTA CTA CTA vCTAs

0 1 2 3
4 5 6 7
8 9 10 11

… … … …

kernel
launch

Run one CTA per SM

CPU-driven System

Loop
Kernel

GPU-driven System

CTA …
Kernel N CTA

①

②

… … … …

… … … …

… … … …

64

64

𝑘
𝑘

𝑘 ∈ ℤ+,
A ∈ ℝ64×𝑘 ,
𝐵 ∈ ℝ𝑘×64,
𝐶 ∈ ℝ64×64. 192

256

128
128

code
declaration

𝐶𝑖 = 𝐴𝑖/4𝐵𝑖%4, 𝑖 ∈ [0, 11]

pack into
a kernel

schedule each
separately

Figure 4: Comparing the procedures for declaring, scheduling,
and executing GPU computation tasks between CPU- and
GPU-driven systems. For instance, the figure shows a matrix
multiplication operator with a 192x256 output, which is split
into 12 unit operators that calculate 64x64 outputs each.

to a specific SM inside the loop kernel. While a CPU-driven
system relies on the non-programmable hardware scheduler
that distributes the CTAs across SMs at kernel launch (1⃝ in
Figure 4), a GPU-driven system implements a custom logic
that distributes vCTAs across CTAs (2⃝ in Figure 4). By
launching one CTA per SM that assigns each CTA to use the
entire resources of an SM, ARK can control the SM-affinity of
vCTAs in a programmable manner. This enables fine-grained
GPU scheduling, which is useful for the GPU-driven system
to implement various computational optimization techniques
such as operator fusion [17, 24, 35].

Migration of existing code to ARK is straightforward as
ARK can reuse existing GPU kernel implementations with
minimal modification: replacing the CTA ID (blockIdx in
CUDA), thread ID (threadIdx in CUDA), SM-local memory
address (shared memory in CUDA), and synchronization func-
tions (e.g., __syncthreads() in CUDA) into corresponding
constants or functions provided by the ARK framework. This
modification guarantees the correctness of the framework
which we have extensively verified.

As shown in Figure 4, offline scheduling writes a code
snippet of each vCTA inside the if-branch of the loop kernel
that only a particular CTA (or SM) enters. Since each CTA
statically executes specific vCTAs that are planned offline, the
GPU actually runs a static while() loop rather than being
controlled dynamically – internal busy-polling loops inside
vCTAs handle runtime events. For example, in Figure 5b, each
of CTA 0 (ctaId is 0) and CTA 1 (ctaId is 1) are assigned
three vCTAs from the operator op_0 and two vCTAs from
the operator op_1. Each CTA uses 256 threads, and vCTAs
from op_0 are executed sequentially by thread 0∼127, while
tasks from op_1 are executed by thread 128∼255 (which im-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 91

__device__ void op_0(int vcta_id) {
Add<...>(&BUF[1024], &BUF[9728], &BUF[1024], vcta_id);

}
__device__ void op_1(int vcta_id) {

Matmul<...>(
&BUF[11776], &BUF[9728], &BUF[16384], vcta_id);

}

(a) Operators.
__global__ void loop_kernel(volatile int *iter) {
for (;;) {
// Wait until iteration is requested by the host.
if (threadId == 0) { while (*iter == 0) {} }
__syncthreads();
// Run iterations.
for (int i = 0; i < *iter; ++i) {
if (ctaId == 0) {
if (threadId < 128) { op_0(0); op_0(2); op_0(4); }
else if (threadId < 256) { op_1(0); op_1(2); }

} else if (ctaId == 1) {
if (threadId < 128) { op_0(1); op_0(3); op_0(5); }
else if (threadId < 256) { op_1(1); op_1(3); }

} ...
}
// Inform the host that iterations are done.
if (threadId == 0) { *iter = 0; }
__syncthreads();

}
} (b) Loop kernel.

Figure 5: Example of auto-generated code by the ARK sched-
uler. Note that the code is simplified for readability.

plies that each vCTA is implemented to use 128 co-working
threads). Each vCTA is declared by passing a certain vCTA
ID to a GPU function that defines an operator like in Figure 5a.
The kernel code library of ARK provides the implementation
of common operators (Add or Matmul in the figure) that take
the addresses of data chunks and a vCTA ID as runtime argu-
ments.9 The framework assigns proper offsets to the global
GPU buffer (BUF) for each data chunk, and the vCTA ID
locates a specific part of the chunk that the vCTA deals with.

3.3 Offline Scheduler
Figure 6 shows the scheduling workflow in ARK. Overall, it
reads the DAG of a DL model and generates the correspond-
ing loop kernel code. The ARK scheduler is composed of a
high-level scheduler and a profiling module. The high-level
scheduler implements operator fusion with profiling results
fed by the module. In the initial phase, it builds an OpGraph
that spots all operators and their dependencies in the model,
and generates the code to profile all types of vCTAs that
are needed. Then, the high-level scheduler generates its first
scheduling decision with the profiling results. The decision
may consist of multiple different candidates that need to be
profiled to choose the fastest one, then it iterates the overall
process to compare against multiple other candidates, which
may require additional profiling. The scheduler finally returns
the loop kernel when only a single candidate remains.
Reducing compilations in the profiler. Since the code gener-
ator conducts deterministic scheduling with static vCTA-SM
affinity, it can accurately estimate the performance (i.e. la-
tency and core resource usage) of every scheduling decision
by only profiling the performance of vCTAs, which reduces

9Other arguments such as input data sizes can be fixed during compilation
by passing as template arguments, which we omit here.

ARK Graph File
ARK Scheduler

OpGraph Builder

vCTA set &

buffer info

Kernel Code Library

Code Generator

vCTA info &

code snippets

Compiler

kernel code files to profile (.cu)

Profiler

GPU code binary (.cubin)

High-level Scheduler

profile results

Finished?

return

loop kernel code

Re-schedule

N Y

Figure 6: The ARK scheduler workflow.

the compilation for evaluating scheduling strategies. Say there
are n parallel operators and each operator has m different im-
plementations of the unit operator (or vCTAs),10 then up to
O(mn) different kernels should be compiled to find the best
fusion decision. Since this number could be unreasonably
large, existing works have developed heuristics to focus on
only promising candidates [17].

At first glance, this appears to require only O(nm) kernels
for vCTA evaluations, but it is more complicated as vCTAs
often complete faster when they are run concurrently on the
same SM than when executed serially, which we say they
have joint efficiency. Joint efficiency arises largely due to two
causes: (1) because the L1 cache hit ratio improves as they
access the common memory space running on the same SM,
(2) because the execution of one vCTA hides the memory
access of another (and vice versa) that improves simultaneous
utilization of ALUs and LSUs. The first case is often found
in the vCTAs from the same operator, while the second case
is prevalent in most vCTAs, i.e., almost all vCTAs have the
joint efficiency with each other.

Considering the joint efficiency, in general, we need to
measure the latency when different types of vCTAs co-run
on the same SM, which requires one kernel compilation for
each. Say up to k vCTAs can run simultaneously in one
SM, then the complexity of the number of compilations is
∑

k
i=1

(n
i

)
mi = O(nkmk). In practice, this is much smaller than

O(mn) because k is typically a small constant ≤ 4 due to the
limitation of SM resources (# of maximum threads, bytes of
shared memory, and # of registers).
SM load balancing in the code generator. The code gener-
ator automatically maximizes the SM utilization of the loop
kernel by distributing parallel vCTAs across SMs to balance
their workload. Unfortunately, finding the optimal load bal-
ancing is an NP-hard problem due to the joint efficiency. A
brute-force searching would take unreasonably long due to
the large number of vCTAs to schedule simultaneously.

To tackle this issue, we implement a heuristic load balanc-

10It is common to implement multiple different unit operators for the same
operator, e.g. cuBLAS [30] implements at least 8 different-sized unit matrix
multiplications and choose one depending on the input sizes.

92 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ing on SM by leveraging an existing graph partitioning algo-
rithm. Graph partitioning is a popular load balancing problem
that splits a graph into a given number of subgraphs by cutting
several edges, while achieving two goals: (1) balancing the
total node weights of subgraphs and (2) minimizing the total
weights of cut edges. We represent the SM load balancing
problem into a graph partitioning problem. Specifically, we
first group independent vCTAs that need to be distributed
across SMs. Each group is represented as a graph where each
node represents a vCTA and each edge indicates that the con-
necting nodes (i.e. vCTAs) have joint efficiency. The node
weight is the latency of running the vCTA on an SM, and the
edge weight measures joint efficiency, which is calculated as
the fraction of latency reduction when we run both vCTAs
simultaneously in the same SM compared with when we run
both sequentially.

However, it takes too long to run the partitioning because
it makes too many edges – since almost all vCTAs have joint
efficiency with each other, the graph becomes nearly a mesh
connection. To accelerate the algorithm, we adopt hypergraph
representation [2] instead of an ordinary graph, which repre-
sents an equal-weighted mesh connection of multiple nodes
as a single edge called hyperedge. Fortunately, this repre-
sentation substantially reduces the time for code generation
especially when we use a large batch size (which creates a lot
of vCTAs), from tens of hours to only several seconds.

3.4 Limitations
The vCTA-based scheduling takes a whitebox approach that
assumes all operators to be open-sourced, thus ARK cannot
schedule close-sourced binaries such as cuDNN [28] (similar
to Rammer [24]). Also, the offline scheduler of ARK only
supports static computational graphs, which is less flexible
comparing to e.g. PyTorch’s dynamic graph [13]. However,
such a limitation is commonly found in many popular frame-
works including TensorRT [35] and ONNX Runtime [25].

4 Implementation
This section describes technical details of ARK.

4.1 DMA Engine Implementations
We first present our DMA engine interface, and then introduce
our software and hardware DMA engines.

4.1.1 Interface
The key consideration of our interface design is ensuring
high communication performance while keeping the inter-
face consistent across software and hardware platforms. One
key issue lies in the design of a DMA request message from
GPU, which we call a send request (SR), as it has significant
impact on the performance and the implementation complex-
ity. In terms of hardware, receiving a large SR whose size
exceeds the data bus width (64 bits in modern 64-bit proces-
sors) will take multiple cycles, which would require SR buffer

management, reassembly of segmented SRs, and handling
dropped SRs (caused by SR buffer overflow). Implementing
them on hardware would significantly complicate the logic
and increase the spatial cost. As implementing them on hard-
ware would significantly complicate the logic and increase
the spatial cost, we share an 8-byte SR design for both soft-
ware and hardware engines. While it is challenging to hold
the metadata of a general memory copy (two addresses and
a copy length) within 8 bytes, we address this by adopting a
small number of send/recv buffers, which reduces the address
space by replacing general 8-byte addresses with a few bits
of buffer indices. This is feasible thanks to the static nature of
collective communication where the communicating entities
are fixed – it enables offline pre-scheduling of data transfers
so that receivers know which data arrives at which buffer with-
out any additional metadata received at runtime. Meanwhile,
the DMA requests on different buffers are pipelined for low
latency and high throughput.

In terms of software, keeping an SR buffer would be more
efficient as it would otherwise require extra control to pre-
vent overwriting a previous SR. That is, unlike a hardware
implementation where a fully received SR can immediately
trigger the internal DMA pipeline at every cycle, a software
thread could overwrite an unread SR unless the sender (GPU)
coordinates with the receiver (the DMA stack) prior to send-
ing a new SR. Unfortunately, such coordination would incur
an extra delay as the GPU needs to read a remote flag on
the DMA stack before sending an SR. We address this issue
by maintaining a specialized ring buffer for SR, where the
GPU checks only a local replica of the buffer head before
sending an SR, and the replica is asynchronously updated by
the DMA stack. This removes the coordination delay from the
critical path of communication while providing a consistent
SR interface for both software and hardware engines.

4.1.2 Software Engine
Our software engine harnesses CPU as the data plane while
GPU serves as the control plane. We implement a CPU thread
that busy-waits for SRs and invokes cudaMemcpy or RDMA
writes accordingly, i.e., it leverages the existing hardware
DMA engine on the sender GPU. Note that this is different
from CPU-controlled communication as we use CPU only for
data plane operations while the control plane (event handling)
is managed by GPU threads. For high throughput, the busy-
waiting loop drains all SRs in the ring buffer and invoke
copy once for sending on a continuous memory space. Also,
instead of slow cudaEvent, we use MMIO for the CPU-GPU
communication that delivers SR, SC (Send Completion), and
RC (Receive Completion) signals, which takes only 2∼3µs.

Alternatively, the software engine can perform MMIO with
CPU threads instead of initiating the hardware DMA engine,
which can reduce the cudaMemcpy overhead (i.e., sending a
copy request from CPU to the DMA engine on GPU). How-
ever, this approach fails to achieve the line rate in most host

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 93

GPU

FPGA Internal Transfer Path (ITP)FPGA

PCIe TLP & Hard IP

SR
Decoder

Fetch
Splitter

Fetch
Ctrl SID

Table

Send Arbiter

Send
Composer

Fetch Block Send Block
FPGA Stack

①

②

③

④

⑤

⑥

⑦⑧

Send Ctrl

⑨

Figure 7: Implementation of the hardware DMA engine.

CPU architectures due to their poor throughput of crossing
the PCIe root complex [41, 44]. This issue might be resolved
in the future CPU architectures or by leveraging ARM cores
on SmartNICs [4], which is left as our future work.

4.1.3 Hardware Engine
We implement a custom hardware with FPGA for DMA oper-
ations, which delivers two benefits over our software engine
prototype. First, our hardware engine avoids the extra com-
munication delay incurred by the overhead of cudaMemcpy as
it performs DMA directly. Second, unlike existing hardware
DMA engines on GPU, our custom hardware implements
pipelining of multiple parallel DMA operations. This helps
achieve a high data rate even for sending small data chunks.
Table 2 shows resource usage of our implementation on an
Intel Arria 10 FPGA.

Note that our FPGA prototype is limited to support the
communication between only two GPUs and it does not sup-
port NVLink as there is no programmable hardware (or an
off-the-shelf device) that can connect to NVLink. Instead, we
consider it as a proof-of-concept that demonstrates the ideal
benefit rather than a practical device that can be deployed
on a large scale. A more practical implementation would be
realized by future advances in CPU, GPU, or SmartNICs.

Figure 7 shows the hardware structure of inter-GPU com-
munication stack on the FPGA. Unlike the existing GPU
DMA engine, our DMA stack is designed to pipeline multiple
DMA requests with different SIDs to be handled simultane-
ously. This is implemented by splitting a long-length request
into multiple short-length sub-requests, which prevents head-
of-line blocking and improves the PCIe throughput when
GPU sends multiple different data at the same time. We ex-
plain how each request is processed by the sender- and the
receiver-side stacks, respectively.
Sender side. When the sender stack receives an SR, the Fetch
Block reads the decoded SR and retrieves the requested SID,
which is translated into the physical source GPU address by
looking up the SID Table (1⃝). Using the address, the Fetch
Ctrl fetches one sub-request at a time and it may fetch multiple
times if the copy length is long. Each sub-request reads the
corresponding source data from the GPU and stores it in a

Module Name ALMs BRAM Blocks
Capacity # Capacitry

FPGA Stack 14253 3.34% 188 6.93%
PCIe 1364 0.32% 13 0.48%

Table 2: Resource usage of a single DMA stack.

FIFO buffer of the Fetch Ctrl (2⃝). When the source data is
fully read from the GPU, the stored data and the sub-request
are forwarded to the receiver stack through FPGA Internal
Transfer Path (ITP). (3⃝). After processing all sub-requests
out of an SR, the Fetch Ctrl gives an SC flag to the Send
Arbiter, which will be written on the GPU-side SC flag. (4⃝).
Receiver side. The receiver stack receives the sub-request
from the sender stack and stores the data into a FIFO buffer of
the Send Ctrl (5⃝). At the same time, the SID information in
the sub-request is translated into the physical destination GPU
address (6⃝). The Send Ctrl sends the data to the destination
address, and when it is done, the Send Composer sends an
RC flag to the Send Arbiter, which will be written on the
GPU-side RC flag (7⃝, 8⃝).
Resource usage and limitations. We implement the DMA
stack on Intel Arria 10 FPGA [16]. Table 2 shows that each
stack is implemented at a low cost, using only 14253 ALMs
and 188 M20K BRAMs. Note that our current implementation
supports communication between only two GPUs by directly
connecting the FPGA ITP interfaces of their corresponding
FPGA stacks. Our design considers leveraging DUA [41]
to support routing between multiple stacks (either intra- or
inter-machine), but we leave it as future work.

4.2 Loop Kernel Implementation
This section explains several details of optimizing the loop
kernel performance in ARK.
Per-thread register optimization. GPU kernels often fine-
tune the number of concurrent threads per SM by evaluating
the trade-off between running more threads (gain more par-
allelism) vs. running fewer threads with more registers per
each (gain more computational throughput per thread). So,
the loop kernel also needs to tune it. The ARK scheduler
generates multiple versions of the loop kernel with a different
number of per-thread registers and picks the best-performing
one. Actually, in NVIDIA GPUs, only 32, 64, 128, and 256
are available candidates due to hardware limitation.
Dependency on GPU Architecture. Section 3.2 explains
that ARK launches one CTA per SM, but it may launch two
or more CTAs per SM depending on the GPU architecture.
This is because one CTA may be limited to utilize the en-
tire resources of an SM in some architecture. In such cases,
we need to launch two CTAs per SM to use the entire SM
resources. The ARK scheduler automatically analyzes the
resource requirement of the loop kernel and determines the
number of CTAs per SM accordingly.
Program size. We reduce the program size of a loop ker-
nel by coalescing multiple identical unit operators, e.g., if

94 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a model consists of many convolution operators, only sev-
eral unique implementations of convolution will be actually
defined, which are shared across all operators. Thus, the pro-
gram size depends only weakly on the number of operators
in the model. Instead, it is subject to the aggregate size of op-
erator implementations, which is very limited – e.g., cuBLAS
provides only ∼10 instances of a matrix-multiplication imple-
mentation on a single GPU architecture, while a loop kernel
can accommodate over 5000 instances. This should cover an
arbitrary DL program as the size of the matrix-multiplication
implementation is one of the largest among the popular oper-
ators in DL.

5 Evaluation
We evaluate ARK by comparing it with existing DL frame-
works largely in three different aspects. First, the fast inter-
GPU communication of ARK contributes to higher end-to-end
throughput and lower latency of DL applications. Second, the
benefits on communication are obtained without losing the
computational throughput of GPU. Third, ARK has flexibil-
ity to support various parallelism strategies including data-,
tensor-, and pipeline-parallelism.

5.1 Experiment Setup
Software Engine. For experiments that use the software
DMA engine, unless specified differently, we use two Intel
Xeon Gold 6240R CPUs (48 lcores each, 2.40 GHz) and eight
NVIDIA V100 GPUs. We have two NUMA nodes in the ma-
chine but only a single NUMA node hosts all GPUs, i.e. node
0 connects two PCIe v3 switches to its PCIe root complex
and each switch is directly connected to 4 GPUs. For multi-
node experiments, we use four Azure NDv4 SKUs [7] with
32x NVIDIA A100 GPUs in aggregate (8 per node), where
each GPU has dedicated 200 Gbps NVIDIA Mellanox HDR
InfiniBand connection.
Hardware Engine. For experiments that use the hardware
DMA engine, we use an Intel Xeon Gold 5118 CPU (24
lcores, 2.30 GHz), two NVIDIA V100 GPUs, and an Intel
Arria 10 FPGA. Both GPUs and the FPGA are behind the
same PCIe v3 switch. We use the hardware engine only for
experiments in Section 5.2 and Section 5.5.

5.2 DMA Engine Performance
Figure 8 compares the performance of communication be-
tween two GPUs with our DMA engines (G-Drv-S and G-
Drv-H) over a CPU-controlled communication baseline (C-
Drv). C-Drv is our own minimal implementation of a typical
CPU-driven system, but unlike TensorFlow, C-Drv leverages
asynchronous control using cudaEvent when the event is
used only by GPUs, which further reduces CPU-GPU syn-
chronizations to accelerate inter-GPU communication.

We measure the throughput by sending many parallel mes-
sages at the same time and reporting the maximum throughput

0

2

4

6

8

10

12

14

4

1
6

6
4

2
5
6

1
K

4
K

1
6
K

6
4
K

2
5
6
K

1
M

4
M

Message Size (Bytes)

Throughput (GBps)

C-Drv
G-Drv-S
G-Drv-H

0

10

20

30

40

50

60

70

80

4

1
6

6
4

2
5
6

1
K

4
K

1
6
K

6
4
K

2
5
6
K

1
M

4
M

Message Size (Bytes)

Latency (us)

C-Drv
G-Drv-S
G-Drv-H

Figure 8: Performance comparison between the CPU-
controlled communication (C-Drv) and the GPU-controlled
DMA engines (G-Drv-S (software) and G-Drv-H (hardware))
over PCIe v3.

achieved with varying message sizes. For latency measure-
ments, we implement a ping-pong application and report one-
way latency – unlike throughput measurements, this includes
communication event handling delays. This experiment as-
sumes a favorable scenario for the CPU-controlled baseline
where we can adopt the asynchronous control (explained in
Section 2.2.2). In this scenario, a one-way trip requires trigger-
ing only two GPU events and two stream synchronizations.

In the left graph of Figure 8, our software engine (G-Drv-S)
shows the same throughput as that of C-Drv, since both use
cudaMemcpy for the data-plane. In contrast, our hardware en-
gine (G-Drv-H) shows huge throughput improvement, saturat-
ing the bandwidth with only 8 KB messages while G-Drv-S
needs 4 MB messages for saturation. This is because the
hardware DMA engine pipelines processing multiple DMA
requests while cudaMemcpy cannot. This improvement would
be especially beneficial when GPU sends multiple messages
to different destinations at the same time, e.g., all-to-all com-
munication for expert-parallelism, which is popular for scal-
ing out state-of-the-art Transformer-based models [11].

We note that the maximum achieved throughput of
G-Drv-H is 3.68% lower than G-Drv-S. This is because an ex-
ternal DMA stack needs to send both read and write requests
to sender and receiver GPUs, respectively, while the native
DMA engine on the sender GPU needs to send only write
requests. However, as the gap is small, it would not affect the
end-to-end application performance much.

The right graph of Figure 8 shows that the one-way latency
of C-Drv is at least ∼39.3µs on average. In contrast, G-Drv-S
and G-Drv-H achieve 3.5x and 9.1x better latency, respec-
tively. This is because our DMA engines handle the commu-
nication events directly in GPU threads while C-Drv relies on
the cudaEvent interface that suffers from large overhead to
trigger the events and synchronize streams. This improvement
would be especially beneficial when GPUs perform split-and-
gather of intermediate results to distribute the workload, as in
tensor-parallelism [22, 26]. One thing to note about our DMA
engine is that the benefit is obtained with little GPU cycle
consumption. We evaluate this in the following section.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 95

0

100

200

300

400

500

1 2 4 8

GPUs

Throughput (sequences/sec)

ARK

PT-TRT

Megatron-LM

0

100

200

300

400

500

600

1 2 4 8

GPUs

Avg. Latency (ms/iteration)

Megatron-LM

PT-TRT

ARK

Figure 9: BERT-Large data-parallel training throughput and
average latency per iteration with varying numbers of GPUs
(sequence length 384, batch size 10, mixed-precision).

5.3 Avoiding Communication Interference
To compare the interference between computation and com-
munication of using NCCL against using our DMA engine,
we evaluate data-parallel training throughput of ARK by train-
ing representative NLP models.
Baselines. PT-TRT accelerates PyTorch [12] by adopting Ten-
sorRT [35], which does not scale out to multiple machines.
Megatron-LM [26] is a PyTorch-based framework that sup-
ports large-scale training of NLP models but we use only for
single-node experiments here. SuperBench [42] provides for-
mal DL benchmarks for system performance evaluation also
based on PyTorch, which we use for multi-node experiments.
All baselines leverage NCCL [32] for communication.
Single Node. Single-node experiments train BERT-Large [10]
model using up to 8x V100 GPUs as shown in Figure 9. The
figure shows that ARK outperforms Megatron-LM and PT-
TRT respectively by 2.46x and 2.12x with 8 GPUs. We find
two reasons for the speedup.

First, NCCL adversely affects the computational through-
put during back-propagation while ARK does not as it lever-
ages DMA instead of employing GPU threads for data copy.
Specifically, 64.5% of the end-to-end gap between ARK and
PT-TRT with 8 GPUs is obtained as NCCL operations slow
down due to the interference of MMIO with back-propagation
computation, showing only 5.0 GBps of all-reduce throughput.
We find that NCCL kernels result in 45.0% of slowdown of
the overall back-propagation computation, an increase from
107.63 ms to 156.02 ms. On the other hand, our DMA en-
gine suffers near-zero interference by initiating DMA directly
instead of using MMIO, achieving 9.10 GBps of all-reduce
throughput (1.82x faster).

Second, ARK performs more efficient computation on
GPU. For example, for about 37.8% of the computation time
of PT-TRT, it executes 1.2 thousands of memory-intensive
kernels per iteration, such as element-wise arithmetic or intra-
GPU data movement. Running these operators as separate
kernels would be inefficient because it would incur unneces-
sary kernel launches and intra-GPU synchronizations. ARK
largely reduces such overhead as it schedules all operators in
a single loop kernel, similar as operator fusion [17, 24, 35].

0

200

400

600

800

1 2 4 8 16 32

GPUs

Throughput (sequences/sec)

ARK

SuperBench

0

50

100

150

200

250

300

350

1 2 4 8 16 32

GPUs

Avg. Latency (ms/iteration)

SuperBench

ARK

Figure 10: GPT-2 data-parallel training throughput and av-
erage latency per iteration with varying numbers of GPUs
(sequence length 384, batch size 4, mixed-precision).

Multiple Nodes. Multi-node experiments train the
GPT-2 [36] model using up to 32x A100 GPUs as shown in
Figure 10. All results use only InfiniBand for communication
(no NVLink) and use the ring reduction algorithm. The
figure shows that ARK outperforms SuperBench by 1.77x
with 32 GPUs. Furthermore, while per-iteration latency of
SuperBench is consistently increasing, the increment in
ARK is only marginal. This shows the efficiency of our
communication stack over NCCL, which minimizes the
interference between communication and computation. We
also find a big computational benefit of ARK even without
communication (when using a single GPU), which is further
explained in the following section.

5.4 Offline Scheduling Evaluation
This section shows that the offline scheduler of ARK can gen-
erate comparable or even better GPU kernels comparing with
existing DL optimization techniques. Rather than claiming
state-of-the-art performance in DL optimization, we intend to
show that the communication gain of our GPU-driven system
does not come up with any computational performance drop.

We compare the inference performance of popular DL
models over different frameworks using a single GPU. The
DL models include image classification (ResNet-50 [14]
and GoogLeNet [43]), object detection (SSD [23]), and NLP
(BERT-Large [10]) models. TensorFlow (TF) is the primary
comparison target of ARK because it supports flexible par-
allelism for DL applications like ARK. We also compare
with TensorFlow-XLA (TF-XLA) [1] that implements au-
tomatic operator fusion in the TF back-end, but it is not al-
ways beneficial to the performance because the fused kernel
might perform worse than using vendor-provided kernels (e.g.
cuDNN) without fusion. Rammer [24] and TensorRT imple-
ment optimized operator fusion that often outperforms TF
or TF-XLA, but they support only limited parallelism. For
example, TensorRT supports only intra-node data-parallelism
by adopting it to accelerate other frameworks like TF and
PyTorch, as TensorRT itself does not support distributed exe-
cution. Nimble [20] presents careful asynchronous control (or
ahead-of-time scheduling) of GPU kernels to reduce runtime

96 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Sequence Length = 128

0
2
4
6
8

10
12
14

1 2 8
Batch Size

GoogLeNet (ms)

TF-XLA TF Rammer Nimble TensorRT ARK

0
1
2
3
4
5
6
7

1 2 8
Batch Size

ResNet-50 (ms)

0

5

10

15

20

25

30

1 2 8
Batch Size

SSD (ms)

0

5

10

15

20

25

30

1 2 8
Batch Size

BERT-Large (ms)

Figure 11: Inference latency comparison of popular DL mod-
els over different DL frameworks using a single GPU. All
experiments use mixed-precision computation.

overhead of kernel launch and GPU events. As explained in
Section 2.2.2, however, asynchronous control is limited to
tackle the communication overhead. Nimble also works only
on a single GPU at the moment.

Figure 11 shows that ARK achieves faster single-GPU
inference against existing frameworks in most cases. For in-
stance, ARK shows 1.11x∼3.56x lower latency than Ten-
sorRT, except the case of ResNet-50 with batch size 8 that
is ∼9.90% worse than TensorRT. This is because our matrix
multiplication kernel is slower than the cuDNN [28] kernel
used in TensorRT in this case (note that we implement con-
volution via matrix multiplication). ARK currently does not
implement vCTAs specialized for large matrix multiplications
(one side of the unit operator’s output is larger than 256 ele-
ments), so it is often slower than existing kernels when the
model consists of large matrix multiplications.

We note that the gain of ARK is especially large when the
model consists of many parallel operators like GoogLeNet
or SSD. This is because our high-level scheduler maximizes
overall SM utilization by choosing the best vCTA (or unit
operator) for each parallel operators. Specifically, when a
lightweight operator runs alone in the GPU, we schedule it
to use fine-grained vCTAs so that it utilizes more concurrent
SMs. In contrast, when the GPU is overloaded due to other
co-running operators, we need to use coarse-grained vCTAs
to utilize SMs more efficiently. This is because coarse-grained
vCTAs work on more input data at the same time and thus
have more opportunities to better utilize the parallelism in
an SM. As explained in Section 3.3, the optimization to find
the best-performing vCTAs is easy in the ARK framework
because it accurately estimates the performance with different
vCTAs without running all candidates. We note that other
frameworks do not provide a similar optimization like this.

MHA

MHA FF

FF MHA

MHA FF

FF MHA

MHA FF

FF MHA

MHA

GPU0

GPU1 …

…

Figure 12: MoE model-parallel execution for Transformer
architecture using 2 GPUs, composed of MHA (multi-headed
attention) and FF (feed-forward) modules.

Architecture Message Size (KB) Time Gap (us)
BERT-Large [10] 256 60.9
GPT-3 XL [8] 512 187.4
T5 3B [37] 256 166.9
M4 [6] 256 60.9

Table 3: The message size and the smallest time gap between
transactions for MoE inference. The input sequence length is
128. Time gaps are measured using the ARK framework.

5.5 Tensor-parallel Inference
This section presents the latency improvement with the tensor-
parallel approach called mixture-of-experts (MoE) that effi-
ciently scales up the Transformer [45] architecture, which is
commonly used in many popular NLP models [6, 8, 11, 37].
This method is suggested to scale NLP models to one trillion
of model parameters [11,22], but since we do not have enough
GPUs to run the entire model, we evaluate the tensor-parallel
inference of the model using two GPUs. In real practice, this
is replicated to other GPUs to apply pipeline-parallelism (for
training or inference) and data-parallelism (only for training)
as well at the same time.

Figure 12 illustrates the MoE execution. The message size
and the smallest time gap in-between the exchanges depend
on the model hyperparameters, and some examples are shown
in Table 3. Even though we present only 2-GPU experiments
here, the result would be similar to a larger-scale one because
MoE is designed to send each message only up to a small
constant number (e.g. two in GShard [22]) of selected GPUs,
not to all other GPUs.

We evaluate ARK using the hardware engine with three
different comparison baselines – TF, TF-XLA, and C-Drv.
Note that TensorRT-accelerated TensorFlow (TF-TRT) does
not support model-parallelism, so it is not evaluated here.

Results in Figure 13 shows that ARK outperforms TF and
TF-XLA by 1.66x∼3.48x and 1.25x∼2.31x, respectively. In
terms of only the communication latency, ARK reduces it by
3.68x∼5.65x and 1.77x∼3.31x, respectively. Overall, C-Drv
achieves better communication latencies over TF or TF-XLA,
but its computation is less efficient because it reuses GPU
kernel implementations in ARK but it does not benefit from
ARK scheduler optimization. We also find that the GPU-
driven communication of ARK delivers a substantial speedup
over the CPU-driven communication of C-Drv, as shown in
Section 5.2. We note that ARK computation is slower than

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 97

0

5

10

15

20
BERT-Large MoE Latency (ms)

Computation
Communication

0

5

10

15

20

25

30
GPT-3 XL MoE Latency (ms)

Computation
Communication

0
10
20
30
40
50
60
70

T5 3B MoE Latency (ms)

Computation
Communication

0

10

20

30

40
M4 MoE Latency (ms)

Computation
Communication

Figure 13: MoE inference latencies with different NLP model architectures (batch size 1, mixed-precision).

TF-XLA in GPT-3 XL and T5 3B. This is because our matrix
multiplication kernel performs worse than TF-XLA in these
cases, as explained in Section 5.4.

5.6 Pipeline-parallel Training
In this section, we train the GPT-3 [8] 6.7B model, which is
the largest variation of GPT-3 that can fit the memory of eight
V100 GPUs via pipeline-parallel training. The model consists
of 32 sequential layers and each GPU trains 4 layers in the
sequential order – GPU 0 reads the input data and runs the
forward-pass of layer 0∼3, and the 16 MB output is passed to
GPU 1, and so on. When GPU 7 completes the forward-pass,
it moves on to the backward-pass of layer 31∼28, and the
16 MB of back-propagating gradient is passed to GPU 6, and
so on. We use the mixed-precision computation and set the
number of pipeline stages to 5, the batch size of each stage to
1, and the sequence length to 2048. ARK uses the emulated
DMA stack in this evaluation.

In this experiment, the training throughputs of TF, TF-XLA,
Megatron-LM, and ARK are 0.35, 0.47, 1.69, and 2.38 se-
quences per second, respectively, i.e. ARK outperforms TF,
TF-XLA, and Megatron-LM by 6.80x, 5.06x, and 1.40x, re-
spectively. In this case, most of the improvement of ARK
comes from the computational efficiency on GPU, as pipeline-
parallel training typically overlaps most of the communication
delay with the computation time. This evaluation shows that
ARK delivers the gain of operator fusion while supporting
flexible parallelism for DL.

6 Future Work & Related Work
We expect that hardware advances in near future would enable
more efficient implementations. For example, implementing
our software DMA engine on SmartNIC would avoid the
throughput issue of the PCIe root complex [44] via direct PCIe
connection with GPUs (e.g., NVIDIA H100 CNX [9] com-
bines GPU with SmartNIC), which enables efficient MMIO
on SmartNIC. NVIDIA has announced their hardware ac-
celerators for inter-GPU communication on SmartNICs (e.g.,
all-to-all engine on NVIDIA BlueField-3 [29]), which implies
that a similar implementation with our hardware engine might
be realized in the future. Additionally, host CPU architectures
in the future may fix the root complex issue, which will en-
able our software DMA engine to replace cudaMemcpy with

CPU-side MMIO, or even more efficiently, DMA engines on
CPU (e.g., Intel I/OAT [15] or AMD PTDMA [21]).

ACE [38] proposes offloading the entire collective com-
munication logic to a hardware accelerator that resides on
intra-machine fabric, which cannot be extended to an external
network (Ethernet, InfiniBand, etc). Our work differs from
ACE as it is generally applicable to any (R)DMA networking
and we can reuse most of existing software logic in popular
collective communication libraries.

GPUnet [18] presents a network socket API set for GPU
threads and leverages CPU intervention to let GPU threads
to trigger DMA. This is inefficient as they add a substantial
intervention overhead especially for small messages because
they do not pipeline processing multiple DMA requests. Its
throughput could be suboptimal as it implements a general
socket interface on GPU while ARK reduces the overhead by
leveraging offline scheduling to remove the metadata to be
managed during runtime.

Nimble [20] accelerates DL execution by minimizing run-
time scheduling overhead of kernels, but it works only on a
single GPU. The proposed methods also cannot help reduce
communication event handling overhead as it still relies on the
CPU-side control using cudaEvent and multi-stream inter-
faces. ARK tackles this by letting GPU threads fully control
all computation and communication tasks.

7 Conclusion
This paper envisions a GPU-driven code execution system
that enables autonomous control of GPU throughout the entire
lifetime of DL applications. We present the GPU-controlled
DMA engine at the heart of the GPU-driven system that en-
ables GPUs to communicate with each other without any ex-
ternal control. To avoid interference between computation and
communication, we design our DMA engine and offline GPU
scheduling to consume little GPU resources for communica-
tion, so that its high communication performance is delivered
without sacrificing computational throughput of GPU. While
our software engine already shows benefits over commodity
hardware, we also present a proof-of-concept of a hardware
engine that shows even higher performance, which indicates
that our system performance would be further improved with
future advances in commodity hardware such as CPU, GPU,
or SmartNIC.

98 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgements

We appreciate the feedback by our shepherd, Danyang Zhuo,
as well as anonymous reviewers of NSDI’23. This work is in
part support by the ICT Research and Development Program
of MSIT/IITP, Korea, under [2022-0-00531, Development of
in-network computing techniques for efficient execution of
AI applications] and [2018-0-00693, Development of an ultra
low-latency user-level transfer protocol].

References

[1] XLA: Optimizing Compiler for Machine Learning.
https://www.tensorflow.org/xla, 2021. [Online;
accessed Dec 2022].

[2] Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and
Sebastian Schlag. Engineering a direct k-way hyper-
graph partitioning algorithm. In Proceedings of the
Workshop on Algorithm Engineering and Experiments
(ALENEX), 2017.

[3] AMD. Introducing AMD CDNA™ 2 Architecture.
https://www.amd.com/system/files/documents/
amd-cdna2-white-paper.pdf, 2021. [Online;
accessed Dec 2022].

[4] AMD. Alveo SN1000 SmartNIC Accelerator Card.
https://www.xilinx.com/products/boards-and-
kits/alveo/sn1000.html, 2022. [Online; accessed
Dec 2022].

[5] AMD. ROCm Communication Collectives
Library (RCCL). https://github.com/
ROCmSoftwarePlatform/rccl, 2022. [Online;
accessed Dec 2022].

[6] Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry
Lepikhin, Melvin Johnson, Maxim Krikun, Mia Xu
Chen, Yuan Cao, George F. Foster, Colin Cherry, Wolf-
gang Macherey, Zhifeng Chen, and Yonghui Wu. Mas-
sively multilingual neural machine translation in the
wild: Findings and challenges. CoRR, abs/1907.05019,
2019.

[7] Microsoft Azure. ND A100 v4-series - Azure Virtual
Machines. https://learn.microsoft.com/en-
us/azure/virtual-machines/nda100-v4-series,
2022. [Online; accessed Dec 2022].

[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,

Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learn-
ers. CoRR, abs/2005.14165, 2020.

[9] Charu Chaubal. Build Mainstream Servers for AI
Training and 5G with the NVIDIA H100 CNX.
https://developer.nvidia.com/blog/build-
mainstream-servers-for-ai-training-and-
5g-with-the-nvidia-h100-cnx/, 2022. [Online;
accessed Dec 2022].

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In Pro-
ceedings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), 2019.

[11] William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with
simple and efficient sparsity. CoRR, abs/2101.03961,
2021.

[12] The Linux Foundation. PyTorch. https://pytorch.
org, 2022. [Online; accessed Dec 2022].

[13] The Linux Foundation. How Computa-
tional Graphs are Constructed in PyTorch.
https://pytorch.org/blog/computational-
graphs-constructed-in-pytorch/, 2023. [Online;
accessed Jan 2023].

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2016.

[15] Intel. Fast memcpy with SPDK and Intel® I/OAT DMA
Engine. https://www.intel.com/content/www/
us/en/developer/articles/technical/fast-
memcpy-using-spdk-and-ioat-dma-engine.html,
2017. [Online; accessed Dec 2022].

[16] Intel. Intel® FPGAs - Intel® Arria® 10 FP-
GAs. https://www.intel.com/content/www/us/
en/products/details/fpga/arria/10.html, 2022.
[Online; accessed Dec 2022].

[17] Zhihao Jia, Oded Padon, James J. Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: optimizing
deep learning computation with automatic generation of
graph substitutions. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles (SOSP), 2019.

[18] Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu,
Amir Wated, Emmett Witchel, and Mark Silberstein.
Gpunet: Networking abstractions for GPU programs.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 99

https://www.tensorflow.org/xla
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.xilinx.com/products/boards-and-kits/alveo/sn1000.html
https://www.xilinx.com/products/boards-and-kits/alveo/sn1000.html
https://github.com/ROCmSoftwarePlatform/rccl
https://github.com/ROCmSoftwarePlatform/rccl
https://learn.microsoft.com/en-us/azure/virtual-machines/nda100-v4-series
https://learn.microsoft.com/en-us/azure/virtual-machines/nda100-v4-series
https://developer.nvidia.com/blog/build-mainstream-servers-for-ai-training-and-5g-with-the-nvidia-h100-cnx/
https://developer.nvidia.com/blog/build-mainstream-servers-for-ai-training-and-5g-with-the-nvidia-h100-cnx/
https://developer.nvidia.com/blog/build-mainstream-servers-for-ai-training-and-5g-with-the-nvidia-h100-cnx/
https://pytorch.org
https://pytorch.org
https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/
https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10.html

In Proceedings of the USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), 2014.

[19] Young Jin Kim, Ammar Ahmad Awan, Alexan-
dre Muzio, Andrés Felipe Cruz-Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and
Hany Hassan Awadalla. Scalable and efficient moe
training for multitask multilingual models. CoRR,
abs/2109.10465, 2021.

[20] Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-
Gon Chun. Nimble: Lightweight and parallel GPU task
scheduling for deep learning. In Proceedings of the
Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[21] Michael Larabel. AMD PTDMA Driver Landing
For Linux 5.15 After Two Years In The Works –
Phoronix. https://www.phoronix.com/scan.php?
page=news_item&px=AMD-PTDMA-For-Linux-5.15,
2021. [Online; accessed Dec 2022].

[22] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. CoRR, abs/2006.16668, 2020.

[23] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott E. Reed, Cheng-Yang Fu, and Alexan-
der C. Berg. SSD: single shot multibox detector. In
Proceedings of the European Conference on Computer
Vision (ECCV), 2016.

[24] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2020.

[25] Microsoft. ONNX Runtime. https://onnxruntime.
ai/, 2023. [Online; accessed Jan 2023].

[26] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on GPU
clusters. CoRR, abs/2104.04473, 2021.

[27] NVIDIA. Using NCCL with CUDA Graphs.
https://docs.nvidia.com/deeplearning/nccl/
user-guide/docs/usage/cudagraph.html, 2020.
[Online; accessed Dec 2022].

[28] NVIDIA. CUDA Deep Neural Network (cuDNN).
https://developer.nvidia.com/cudnn, 2021. [On-
line; accessed Dec 2022].

[29] NVIDIA. NVIDIA BlueField-3 DPU – Pro-
grammable Data Center Infrastructure On-a-Chip.
https://www.nvidia.com/content/dam/en-zz/
Solutions/Data-Center/documents/datasheet-
nvidia-bluefield-3-dpu.pdf, 2021. [Online;
accessed Dec 2022].

[30] NVIDIA. cuBLAS. https://developer.nvidia.
com/cublas, 2022. [Online; accessed Dec 2022].

[31] NVIDIA. GPUDirect. https://developer.nvidia.
com/gpudirect, 2022. [Online; accessed Dec 2022].

[32] NVIDIA. NVIDIA Collective Communications Library
(NCCL). https://developer.nvidia.com/nccl,
2022. [Online; accessed Dec 2022].

[33] NVIDIA. NVLink & NVSwitch: Fastest HPC Data
Center Platform. https://www.nvidia.com/en-us/
data-center/nvlink/, 2022. [Online; accessed Dec
2022].

[34] NVIDIA. PTX ISA – Cache Operators. https:
//docs.nvidia.com/cuda/parallel-thread-
execution/index.html#cache-operators, 2022.
[Online; accessed Dec 2022].

[35] NVIDIA. TensorRT SDK. https://developer.
nvidia.com/tensorrt, 2022. [Online; accessed Dec
2022].

[36] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners. OpenAI blog,
1(8):9, 2019.

[37] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. CoRR,
abs/1910.10683, 2019.

[38] Saeed Rashidi, Matthew Denton, Srinivas Sridharan, Su-
darshan Srinivasan, Amoghavarsha Suresh, Jade Nie,
and Tushar Krishna. Enabling compute-communication
overlap in distributed deep learning training platforms.
In Proceedings of the ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA), 2021.

[39] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. CoRR,
abs/1802.05799, 2018.

[40] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language
models using model parallelism. CoRR, abs/1909.08053,
2019.

100 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.phoronix.com/scan.php?page=news_item&px=AMD-PTDMA-For-Linux-5.15
https://www.phoronix.com/scan.php?page=news_item&px=AMD-PTDMA-For-Linux-5.15
https://onnxruntime.ai/
https://onnxruntime.ai/
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/cudagraph.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/cudagraph.html
https://developer.nvidia.com/cudnn
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/nccl
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

[41] Ran Shu, Peng Cheng, Guo Chen, Zhiyuan Guo, Lei Qu,
Yongqiang Xiong, Derek Chiou, and Thomas Mosci-
broda. Direct universal access: Making data center
resources available to FPGA. In Proceedings of the
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2019.

[42] SuperBench. SuperBench Documentation. https:
//microsoft.github.io/superbenchmark/, 2022.
[Online; accessed Dec 2022].

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott E. Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. CoRR, abs/1409.4842,
2014.

[44] Nathan R Tallent, Nitin A Gawande, Charles Siegel, Ab-
hinav Vishnu, and Adolfy Hoisie. Evaluating on-node
gpu interconnects for deep learning workloads. In Inter-
national Workshop on Performance Modeling, Bench-
marking and Simulation of High Performance Computer
Systems (PMBS), 2017.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Pro-
ceedings of the Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2017.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 101

https://microsoft.github.io/superbenchmark/
https://microsoft.github.io/superbenchmark/

BGL: GPU-Efficient GNN Training by Optimizing Graph Data I/O and
Preprocessing

Tianfeng Liu∗1,4,3, Yangrui Chen∗2,3, Dan Li1,4, Chuan Wu2, Yibo Zhu3, Jun He3,
Yanghua Peng3, Hongzheng Chen3,5, Hongzhi Chen3, Chuanxiong Guo3

1Tsinghua University, 2The University of Hong Kong, 3ByteDance,
4Zhongguancun Laboratory, 5Cornell University,

Abstract
Graph neural networks (GNNs) have extended the success of
deep neural networks (DNNs) to non-Euclidean graph data,
achieving ground-breaking performance on various tasks such
as node classification and graph property prediction. Nonethe-
less, existing systems are inefficient to train large graphs with
billions of nodes and edges with GPUs. The main bottle-
necks are the process of preparing data for GPUs – subgraph
sampling and feature retrieving. This paper proposes BGL,
a distributed GNN training system designed to address the
bottlenecks with a few key ideas. First, we propose a dy-
namic cache engine to minimize feature retrieving traffic. By
co-designing caching policy and the order of sampling, we
find a sweet spot of low overhead and a high cache hit ratio.
Second, we improve the graph partition algorithm to reduce
cross-partition communication during subgraph sampling. Fi-
nally, careful resource isolation reduces contention between
different data preprocessing stages. Extensive experiments on
various GNN models and large graph datasets show that BGL
significantly outperforms existing GNN training systems by
1.9x on average.

1 Introduction
Graphs, such as social networks [23, 36], molecular net-
works [19], knowledge graphs [21], and academic net-
works [47], provide a natural way to model a set of objects and
their relationships. Recently, there is increasing interest in ex-
tending deep learning methods for graph data. Graph Neural
Networks (GNNs) [22,36,46] have been proposed and shown
to outperform traditional graph learning methods [50, 57, 59]
in various applications such as node classification [36], link
prediction [56] and graph property prediction [51].

Real-world graphs can be massive. For example, the user-
to-item graph on Pinterest contains over 2 billion entities
and 17 billion edges with 18 TB data size [53]. As a major
online service provider, we also observe over 100 TB size of

*Tianfeng Liu and Yangrui Chen contributed equally to this work as first
authors.

graph data, which consists of 2 billion nodes and 2 trillion
edges. Such large sizes make it impossible to load the entire
graph into GPU memory (at tens of GB) or CPU memory (at
hundreds of GB), hence turning down proposals that adopt
full graph training on GPUs [55]. Recent works [23, 28, 53]
have resorted to mini-batch sampling-based GNN training,
aggregating neighborhood information on sampled subgraphs.

Distributed systems [2, 17, 48] for this training typically in-
clude distributed graph store servers to store partitioned large-
scale graphs and worker machines where each worker has one
GPU for model training. Each training iteration contains three
stages: (1) sampling subgraphs stored in distributed graph
store servers, (2) feature retrieving for the subgraphs from
graph store servers to workers, and (3) forward and backward
computation of the GNN model.

The first two stages, which we refer to as data I/O and
preprocessing, are often the performance bottlenecks in such
sampling-based GNN training. After analyzing popular GNN
training frameworks (e.g., DGL [48], PyG [17], and Euler [2]),
we made two key observations. (1) High data traffic for retriev-
ing training samples: when the sampled subgraph is stored
across multiple graph store servers, there can be frequent
cross-partition communication for sampling; retrieving cor-
responding features from the storage to worker machines
also incurs large network transmission workload. (2) Modern
GPUs can perform the computation of state-of-the-art GNN
models [22, 36, 46] quite fast, leading to high demand for
data input. To mitigate these problems, Euler adopts parallel
feature retrieval; DGL and PyG prefetch the sampling results.
Unfortunately, none of them fully resolves the I/O bottleneck.
For example, we observe only around 10% GPU utilization
in a typical DGL training job on a large graph (§2 and §5),
which means around 90% of GPU cycles are wasted.

In this paper, we propose BGL, a GPU-efficient GNN train-
ing system for large graph learning, to accelerate training and
achieve high GPU utilization (near 100%). Focusing on elim-
inating data I/O and preprocessing bottlenecks, we identify
three key challenges in the existing frameworks, namely: (1)
very heavy network traffic for retrieving features, (2) large

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 103

cross-partition communication overhead during sampling, and
(3) resource contention between different training stages. We
address those challenges, respectively.

The biggest bottleneck of distributed GNN training systems
often lies in retrieving large features (§2.3). PaGraph [38], a
state-of-the-art cache design for GNN training, uses a static
cache (no replacement during training) and explicitly avoids
dynamic caching policy (replacing some cached features at
runtime) because of high overhead. However, we find that
static cache has low hit ratios when the graphs are so large
that only a small fraction of nodes can be cached. Hence, we
co-design a dynamic cache policy and the sampling order of
nodes. We show that a FIFO policy has acceptable overhead
and high hit ratios combined with our proximity-aware order-
ing. The key idea is to leverage temporal locality – in nearby
mini-batches, we always attempt to visit the neighboring train-
ing nodes in the graph. This approach largely increases the
cache hit ratio of FIFO policy. We will further explain the
details of how we ensure the consistency of our multi-GPU
cache engine and GNN convergence in §3.2.

After optimizing feature retrieval, the cross-partition com-
munication for subgraph sampling could become the major
performance bottleneck. Existing algorithms either do not
scale to large graphs or ignore multi-hop neighbor connec-
tivity inside each partition. It leads to heavy cross-partition
communication because, in GNN training, the sampling algo-
rithm usually requests multi-hop neighbors from a given node.
Hence, we design a graph partition algorithm tailored for the
typical GNN sampling algorithms. Our algorithm (in §3.3.2)
strives to maintain multi-hop connectivity in each partition,
while maintaining load balance partitions and scaling to giant
graphs.

Finally, data preprocessing in GNN training takes multiple
stages and is much more complex than that in traditional DNN
training. Execution of some stages may compete for CPU and
bandwidth resources, throttling the performance. Existing
frameworks largely ignore it and let the preprocessing stages
freely compete with each other. Unfortunately, some stages
do not scale well with more resources. They may acquire
more resources than they need, leading to blocking other
stages. Hence, we optimize the resource allocation of data
preprocessing by profiling-based resource isolation. Our key
idea is to formulate the resource allocation problem as an
optimization problem, use profiling to find out the resource
demands of each stage, and isolate resources for each stage.

We implement BGL, including the above design points,
and replace the data I/O and preprocessing part of DGL with
it. The design of BGL is generic – e.g., BGL can also be used
with Euler’s computation backend. However, our evaluation
focuses on using BGL with the DGL GPU backend because
it is more mature and performant. We conduct extensive ex-
periments using multiple representative GNN models with
various graph datasets, including the largest publicly available
dataset and an internal billion-node dataset. We demonstrate

that BGL outperforms existing frameworks, and the geomet-
ric mean of speedups over PaGraph, PyG, DGL, and Euler is
1.91x, 3.02x, 7.04x, and 20.68x, respectively. With the same
GPU backend as DGL, BGL can push the V100 GPU uti-
lization to 99% even when graphs are stored remotely and
distributedly, higher than existing frameworks. It also scales
well with the size of graphs and the number of GPUs.

2 Background and Motivation
2.1 Sampling-based GNN Training
We start by explaining sampling-based GNN training.
Graph. The most popular GNN tasks 1 are to train on graphs
with node features, G = (V ,E ,F), where V and E denote
the node set and edge set of the graph, and F denotes the
set of feature vectors assigned to each node. For example,
in the graph Ogbn-papers [47], each node (i.e., paper) has a
128-dimensional feature vector representing the embeddings
of the paper title and abstract. We assume graph structures
and node features are immutable in this paper.
Graph neural networks (GNNs). Graph neural networks
are neural networks learned from graphs. The basic idea is col-
lectively aggregating information following the graph struc-
ture and performing various feature transformations. For in-
stance, the Graph Convolution Network (GCN) [36] general-
izes the convolution operation to graphs. For each node, GCN
aggregates the features of its neighbors using a weighted av-
erage function and feeds the result into a neural network. For
another example, GraphSAGE [23] is a graph learning model
that uses neighbor sampling to learn different aggregation
functions on different numbers of hops.

Real-world graphs, such as e-commerce and social net-
works [13, 53, 55], are often large. The Pinterest graph [53]
consists of 2B nodes and 17B edges, and requires at least 18
TB memory during training. Even performing simple oper-
ations for all nodes would require significant computation
power, not to mention the notoriously computation-intensive
neural networks. Similar to other DNN training tasks, it is
appealing to use GPUs to accelerate GNN training.
Sampling-based GNN training. There are two camps of
training algorithms adopted in existing GNN systems: full-
batch training and mini-batch training. Full-batch training
loads the entire graph into GPUs for training [36], like Neu-
Graph [40] and ROC [31]. Unfortunately, for very large
graphs like Pinterest’s, such an approach would face the limi-
tation of GPU memory capacity.

Thus, we focus on the other approach, mini-batch train-
ing, or often called sampling-based GNN training. In each
iteration, this approach samples a subgraph from the large
original graph to construct a mini-batch as the input to neural
networks. Mini-batch training is more popular and adopted by
literature [11, 23, 54] and popular GNN training frameworks
like DGL [48], PyG [18] and Euler [2].

1We focus on node classification tasks in this work.

104 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Subgraph Sampling

Graph Store
Graph Structure Features

Worker

Sampler

Model
Computation

GNN

Feature
Retrieving

1

2

3

Subgraph

Mini-batch

Figure 1: Sampling-based GNN training process.

The process of sampling-based GNN training is shown in
Figure 1. The fixed graph data (including the graph structure
and node features) are partitioned and stored in a distributed
graph store. Multiple workers run on worker machines, with
each worker equipped with one GPU. Each training iteration
consists of three stages: 1 Subgraph sampling: Samplers
sample a subgraph from the original graph and send it to
workers. 2 Feature retrieving: After workers receive the
subgraph, the features of its nodes are further retrieved from
the graph store server and placed in GPU memory. 3 Model
computation: Like typical DNN training, workers on GPU
forward-propagate the prepared mini-batch through the GNN
model, calculate the loss function, and then compute gradients
in backward propagation. Then model parameters are updated
using optimizers (e.g., SGD [61], Adam [35]).

In the rest of this paper, we refer to the first two stages as
Data I/O and Preprocessing.

2.2 Data I/O and Preprocessing Bottlenecks
Unfortunately, existing GNN training frameworks suffer from
data I/O and preprocessing bottlenecks, especially when run-
ning model computation on GPUs. Here, we test two rep-
resentative frameworks, DGL [48] and Euler [2]. We train
GraphSAGE [23] model with one GPU worker. Using the par-
tition algorithms of DGL and Euler, we split the Ogbn-papers
graph [47] into four partitions and store them on four servers
as a distributed graph store. More configuration details and
the other framework results are in §5.

Figure 2 shows the training time of one mini-batch and the
time breakdown of each stage. 87% and 82% of the training
time were spent in data I/O and preprocessing by Euler and
DGL, respectively. Long data preprocessing time leads to not
only poor training performance but also low GPU utilization.
The maximum GPU utilization of DGL and Euler is 15% and
5%, respectively, as shown in Figure 3.

In GNN training, such a bottleneck is much more severe
than in DNN training like computer vision (CV) or natural
language processing (NLP) for two main reasons.

First, due to the neighbor explosion problem [12, 54], the
size of mini-batch data required by each training iteration
is very large. For example, if we sample a three-hop sub-
graph from Ogbn-products with batch size 1,000 and fan out
{15,10,5}, each mini-batch consists of 5MB subgraph struc-

Figure 2: Training time per mini-
batch of DGL and Euler.

0 20 40 60 80 100 120
Time (s)

0

5

10

15

GP
U

Ut
iliz

at
io

n
(%

)

DGL Euler

Figure 3: GPU utilization of
DGL and Euler.

ture (roughly 400,000 nodes) and 195 MB node features. As-
suming that we use a common training GPU server like AWS
p3dn.24xlarge [4] (8x NVIDIA V100 GPUs and 100Gbps
NIC) as the worker, and that we could saturate the 100Gbps
NIC pulling such data, we can only pull 60 mini-batches of
data in every second.

Second, the model sizes and required FLOPS of GNN are
much smaller than classic DNN models like BERT [15] or
ResNet [25]. V100 needs only 100MB and 20ms to com-
pute a mini-batch of popular GNN models like GraphSAGE.
P3dn.24xlarge can compute 400 mini-batches per second.

There is clearly a huge gap between the data I/O and pre-
processing speed, and GPU computation speed. Consequently,
though frameworks like DGL and Euler adopt pipelining, the
data I/O and preprocessing bottlenecks can only be hidden by
a small fraction and dominate the end-to-end training speed.

Some recent work [20, 29, 38] also observed this problem
and made promising progress. Unfortunately, it still falls short
in performance (§5) and cannot handle giant graphs well.
Next, we will elaborate on the main challenges existing GNN
training frameworks face.

2.3 Challenges in Removing the Bottlenecks
We identify three main challenges. Two are on large commu-
nication traffic for feature retrieving and subgraph sampling
(as shown in Figure 1 and 2). The other is about resource
contention when running all the stages together.
Challenge 1: Ineffective caching for node feature retriev-
ing. As shown in Figure 2, due to the large volume of data
being pulled to workers, node feature retrieval renders the
biggest bottleneck. A natural idea to minimize such com-
munication traffic is to leverage the power-law degree distri-
bution [16] of real-life graphs. For example, PaGraph [38]
adopted a static (no replacement at runtime) cache that stores
the predicted hottest node features locally. Upon cache hit,
the traffic of feature retrieving can be saved. Unfortunately,
on giants graphs like Pinterest graph [53], such a static cache
may only be able to store a small fraction of nodes due to
memory constraints. We find, when only 10% of nodes can
be cached, the static cache only yields <40% cache hit ratios.

Why not use dynamic (replacing some caches at runtime)
cache policies? It is challenging because it would incur large
searching and updating overhead, pointed out in [38]. Over-
heads become even larger when the cache is large (tens of
GB) and stored on GPU. Our best-effort implementation

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 105

Table 1: Qualitative comparison of graph partition algorithms.

Partition
Algorithms

Scalability to
Giant Graphs

Balanced
Training Nodes

Multi-hop
Connectivity

Random [2, 30] 3 3 7

METIS [32] &
ParMETIS [33]

7 3 3

GMiner [10] 3 7 7

PaGraph [38] 7 3 3

echos [42, 44] – we also find that popular policies like LRU
and LFU lead to a near 80-millisecond overhead for updating.

Nevertheless, we will show in §3.2 that it is still possible
to achieve a good trade-off between cache hit ratios and dy-
namic cache overhead by exploiting the characteristics of
GNN training and carefully designing the cache engine.
Challenge 2: Need for a graph partition algorithm that
is scalable and friendly to subgraph sampling. Beyond
node feature retrieving, communication overhead of subgraph
sampling renders another major bottleneck.

The partition algorithms affect the sampling overheads
in two ways. First, they determine cross-partition commu-
nication overhead. GNN sampling algorithms construct a
subgraph by sampling from a training node’s multi-hop neigh-
bors. If the neighbors are hosted on the same graph store
server, the sampler colocated with graph store servers can
finish sampling locally. Otherwise, it must request data from
other servers, incurring a high communication overhead. Like
random partitioning2 [2, 30], naive algorithms are agnostic
to the graph structure. Most state-of-the-art (SOTA) parti-
tion algorithms on graph processing and graph mining, like
GMiner [10] and CuSP [26], only consider one-hop connec-
tivity instead of multi-hop connectivity, which is suboptimal.

Second, partition algorithms determine the load balance
across graph store servers and sampler processes. In a train-
ing epoch, one must iterate all training nodes and sample
subgraphs based on them. For good load balance, one should
balance the training nodes across partitions. However, SOTA
graph partition algorithms only consider balancing all the
nodes, of which only 10% [27, 47] are training nodes. Be-
cause they focus on maintaining neighborhood connectivity,
they may produce less balanced partitions than the pure ran-
dom algorithm, especially imbalanced for the training nodes.

Since we aim for GNN training on giant graphs, the parti-
tion algorithm must be scalable to giant graphs as well. Like
the METIS [32, 33] used by DGL, some partition algorithms
rely on maximal matching to coarsen the graph, which is not
friendly to giant graphs due to high memory complexity [24].
Some other algorithms, such as PaGraph [38], have high time
complexity and are not friendly to giant graphs.

Ideally, we need a partition algorithm that works on giant

2Also including Lux [30], which is a random partition algorithm that
frequently re-partitions the graph for load balancing.

Graph Partition Module

Distributed Graph

 Data Files

Worker Machine

Graph Store Server Graph Store Server
Graph Store

Sampler

Graph Store

Sampler

Worker

Remote

Features

Sampled

Subgraphs

Worker

Feature Cache Engine

GPU
 GPU

CPU

Worker Machine

Worker Worker

Feature Cache Engine

GPU
 GPU

CPU

Parameter

Synchronization

Cross-Partition

Communication

Graph Partition

SamplerSampler

NVLINK
 NVLINK

Figure 4: The architecture of BGL.

graphs and simultaneously minimizes the cross-partition com-
munication and load imbalance during sampling. As shown
in Table 1, none of the existing partition algorithms satisfies
our needs, which motivates our algorithm (§3.3).
Challenge 3: Different data preprocessing stages contend
for resources. When running all stages together, we further
identify a unique problem of GNN training – the preprocess-
ing is much more complex than traditional DNN training.
The subgraph sampling, subgraph structure serialization and
de-serialization, node feature retrieving, and cache engine
all consume CPU and memory/PCIe/network bandwidth re-
sources. We observe that if all the processes freely compete
for resources, the resource contention may lead to poor perfor-
mance. Some operations may try to acquire more resources
than what they need and hence block other operations, while
they do not scale well with more resources.

Existing GNN training frameworks largely ignore this prob-
lem. DGL, PyG, and Euler either blindly let all processes
freely compete or leave the scheduling to underlying frame-
works like TensorFlow and PyTorch. The low-level frame-
works are agnostic to the specifics in GNN training, and thus
are also naive and suboptimal. Our answer to this challenge
is a carefully designed resource isolation scheme (§3.4).

3 Design
We design BGL to address the challenges presented in §2.3.

3.1 Architecture and Workflow
The overall architecture of BGL is shown in Figure 4. A
training job has the following stages.
Pre-training preparation: graph partition. The graph par-
tition module loads the graph data stored in the distributed
storage system (e.g., HDFS), and shards the whole graph into
several partitions. Graph partitioning is a one-time cost, and
the results can be saved in storage and used by other GNN
training tasks later. Then, each partition is loaded into a graph
store server’s memory, ready for subgraph sampling.

106 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

To address Challenge 2 in §2.3, BGL’s graph partition mod-
ule first uses multi-source BFS to merge nodes into several
blocks for reducing the graph size. Optimal graph partitioning
is NP-hard [7]. Hence, we propose a partition heuristic con-
sidering both multi-hop connectivity of blocks and training
workload balancing to maximize the partition locality, thus
minimizing the cross-partition sampling time.
Subgraph sampling at each training step. Samplers run on
the CPUs of graph store servers. They select several training
nodes and sample their multi-hop neighbors by iteratively
sampling next-hop neighbors several times. If all the next-
hop neighbors are stored in the current graph store server,
samplers can get the list locally; otherwise, they need to send
network requests to other graph store servers.
Training GNN using the sampled subgraphs. Each worker
in BGL runs on 1 GPU. It receives sampled subgraphs from
samplers and retrieves features of subgraph nodes from graph
store servers, with a local feature cache engine to improve the
retrieving efficiency.

To address Challenge 1 in §2.3, BGL’s feature cache engine
adopts an algorithm-system co-design. We leverage the tem-
poral locality — in nearby mini-batches, we always attempt
to train nodes with close distance in the graph. Combined
with a FIFO policy, BGL achieves high cache hit ratios and
low cache overheads. Increasing the temporal locality of train-
ing nodes may influence the convergence of GNN models.
We show BGL can preserve the SOTA training accuracy by
carefully introducing randomness in ordering training nodes.
On the system side, we exploit high-bandwidth GPU-to-GPU
communication with NVLinks, and design a multi-GPU cache
supporting dynamic caching strategies.

Finally, BGL uses a fine-grained pipeline, allowing par-
allel and asynchronous execution of each stage. To address
Challenge 3 in §2.3, BGL adopts resource isolation when
assigning resources to each pipeline stage. Specifically, BGL
formulates an optimization problem and assigns isolated re-
sources accordingly to minimize the execution time of each
pipeline stage under resource constraints (§3.4).

3.2 Feature Cache Engine
Feature retrieving contributes to the majority of communica-
tion overheads. We propose a feature cache engine, which
uses system-algorithm co-design to minimize this overhead.

3.2.1 Dynamic Cache Policy
The first question is, which dynamic caching policy should we
choose? PaGraph [38] indicates that dynamic policies have
too high overheads. Based on our best-effort implementation3,
we compare popular caching policies, including LRU, LFU
and FIFO in Figure 5a. Since cache queries arrive in batches,
we define the cache hit ratio as the percentage of hit nodes
in total number of nodes in a batch. The cache overhead is

3We implement LFU and LRU with O(1) time complexity and use a
contiguous 1D array as a HashMap to speed up key searching.

(a) Trade-off between hit ratios and
overhead (10% cache size).

2.5 5 10 20 40 80
Cache Size (%)

0

20

40

60

80

100

Ca
ch

e
Hi

t R
at

io
 (%

)

PO+FIFO(BGL)
Static(PaGraph)
FIFO

(b) Cache hit ratios with different
cache sizes.

Figure 5: We test the cache hit ratios and overhead on Ogbn-papers
with different cache sizes. PO is short for proximity-aware ordering,
which is proposed in §3.2.2.

the amortized time, including cache lookup on all nodes and
cache update upon cache misses. Hence, a higher cache hit
ratio, representing less frequent cache updates for dynamic
caching, can help reduce the amortized overhead.

LRU [42] and LFU [44] indeed have intolerable cache over-
head. FIFO’s overhead (<20ms per batch) meets the through-
put requirement for GNN training – as mentioned in §2, an it-
eration of typical GNN model computation on GPU is around
20ms. In an asynchronous pipeline with cache as a part of
data prefetching, FIFO cache will not become the bottleneck.

However, FIFO’s cache hit ratio is unimpressive – it is even
lower than static policy’s (Figure 5b). The reason is that FIFO
does not leverage the distribution of node features. Regardless
of how hot the node feature is, it is evicted as frequently as
other colder node features.

3.2.2 Proximity-Aware Ordering
To address the above problem, we propose proximity-aware
ordering – in nearby mini-batches, we always attempt to
visit the neighboring training nodes in the graph. Figure 5b
shows that FIFO combined with proximity-aware ordering
can achieve the highest cache hit ratio among all candidate
cache policies while maintaining low cache overhead.

We observe that each node may appear more than once
among different training batches (e.g., node 9 in Figure 6a
appears three times in sampled subgraphs). This gives us
an opportunity for data reuse by caching node features in
nearby mini-batches (a.k.a., temporal locality). With random
training nodes sampling, the chances of a node in nearby
training batches are low. In order to increase the probability,
we propose to select training nodes in a BFS order. BFS
preserves the graph connectivity in terms of number of hops.
Hence, nearby training nodes in graphs are more likely to
be selected in consecutive batches. As a result, this ordering
increases the probability that each node appears in consecutive
batches and improves the cache hit ratio.

For example, in Figure 6a, starting from a BFS root node
17 , we can generate a BFS sequence of training nodes. Ran-
dom ordering (Figure 6b) results in no cache hits in the first
three batches. On the contrary, with proximity-aware order-
ing (Figure 6c), the second batch and the third batch contain
nodes that exist in the previous batches (i.e., { 17 , 9 , 3 }

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 107

1
7

4

2 3

5

9

10

11

16

13

8

15

6
14

17
18

19

20

Other NodesTraining Nodes

(b) Cache using Random
Ordering { }

17 9 3 10

17 9 3 10 7 18 8 13 5 2

7 18 8 13 5 2 11 4 10 16

5 2 11 4 10 16 1 3 6 9

4 10 16 1 3 6 9 8 17 2

16 1 3 6 9 8 17 2 15 14

17 9 3 10

17 9 3 10 1 8 2

17 9 3 10 1 8 2 4 5 6

3 10 1 8 2 4 5 6 11 16

8 2 4 5 6 11 16 7 18 13

4 5 6 11 16 7 18 13 15 14

17

7

11

1

9

15

17

7

11

1

9

15

1-hop Subgraph Cache Miss Cache Hit

(a) A Sample Graph with

6 Training Nodes

(c) Cache using Proximity-aware
Ordering { }17 7 11 1 9 15 17 71119 15

Figure 6: Compared to random ordering, using proximity-aware
ordering improves hit ratios of FIFO cache.

in the second batch and { 9 , 3 , 1 , 2 } in the third batch).
Consequently, FIFO cache hits are improved from 8 to 14.

However, there is a trade-off between improving the tempo-
ral locality and ensuring model convergence. Traversal-based
ordering improves the temporal locality but violates the i.i.d.
requirement of SGD, leading to different label distributions of
batches and slowing model convergence. On the other hand,
random ordering, such as random shuffling, achieves state-of-
the-art model accuracy by selecting random training nodes,
with the cost of poor temporal locality.

Our proximity-aware ordering needs to balance the above
trade-off. The key idea is that SGD is robust enough, and
slightly relaxing the i.i.d. requirement does not influence the
convergence rate. Theorem 3.15 in [41] shows that if there is
little difference between the output distribution of one order-
ing algorithm A and the uniform distribution, A will not cause
accuracy degradation. Hence, in BGL, samplers still select
training nodes based on BFS traversal, while we carefully
introduce randomness to reduce the difference.

We introduce the following randomness. First, we use sev-
eral different BFS sequences, instead of only one, and each
of them is generated by selecting random BFS roots. To form
a training batch, we select training nodes from different se-
quences in a round-robin manner. Second, we circularly shift
each BFS sequence by a random position. Since giant graphs
have lots of small connected components [37], they are more
likely to be traversed at last and appended at the end of each
BFS sequence in our implementation. This deterministic be-
havior harms the model accuracy. Shifting by a random posi-
tion minimizes its impact to the model, and circular shifting
preserves the order of consecutive nodes in BFS sequences.

How many BFS sequences should we select? We find, as
long as the model convergence is guaranteed, we should use
the minimum number of sequences to maximize the tempo-
ral locality. Meng et al. [41] define the difference ε, named
shuffling error, as the total variation distance between the two
distributions, and proves that, if ε 6

√
bM/n, the convergence

is not influenced, where b is the batch size, M is the number
of workers and n is the size of training data.

Based on the above theorem, we determine the number of
sequences as follows. We use the label distribution to calculate
the shuffling error. The label distribution of proximity-aware
ordering is estimated as the probability of each label appear-
ing in each mini-batch. Before training, BGL firstly generates

CPU

GPU 0 GPU 1 GPU 2

CPU
Cache Buffer

CPU
Cache Map

GPU 0
Cache Map

NVLink

GPU
Cache
Buffer

PCIe Network

Worker
Machine

Remote
Graph Store

Dispatching
Thread 0

Dispatching
Thread 1

Dispatching
Thread 2

Processing
Thread 0

Processing
Thread 1

Processing
Thread 2

GPU
Cache
Buffer

GPU
Cache
Buffer

Cache Query
Queue

②
③

④

⑤

Remote
Graph Store

⑥
Subgraphs
of Worker 0

Subgraphs
of Worker 1

Subgraphs
of Worker 2

①

GPU 1
Cache Map

GPU 2
Cache Map

Figure 7: Structure and workflow of feature cache engine.

hundreds of BFS sequences. After that, it gradually increases
the number of BFS sequences from one until the shuffling er-
ror is smaller than the requirement of convergence (

√
bM/n).

During training, BGL constructs each training batch by intro-
ducing randomness and reusing generated sequences. This
procedure incurs negligible overheads (<1% training time).

3.2.3 Maximizing Cache Size
Based on the observation that GNN models are typically small
(§2.3) and large GPU and CPU memory are unused, in BGL,
we jointly use the memory of multiple GPUs (if the training
job uses multiple GPUs) and CPU memory to build a two-
level cache, which can enlarge the cache size and increase the
cache hit ratio. The detailed structure and cache workflow of
our feature cache engine is shown in Figure 7.
Multi-GPU Cache. We create one cache map and one cache
buffer for each GPU. Cache map is a HashMap with node
IDs as keys and the pointers to buffer slots in cache buffer
as values. Cache buffer contains buffer slots, storing node
features. Each GPU cache map manages its own cache buffer.

To avoid wasting precious GPU memory, we ensure no
duplicated entries among all GPU cache buffers by assign-
ing different and disjoint node IDs to each GPU cache map
(mod by the number of workers). A GPU can fetch node fea-
tures from another GPU via P2P GPU memory copy using
NVLinks. As mentioned in §2.2, transferring 60 mini-batches
can saturate the 100Gbps NIC and PCIe 3.0 x16 bandwidth.
Hence, using NVLinks not only provides high bandwidth and
low latency for inter-GPU communication, but it also allevi-
ates heavy communication in the network and PCIe links.

Since CPU memory is much larger than GPU memory,
BGL also adds a CPU cache on top of the multi-GPU cache to
further increase the cache size and reduce the communication
traffic to graph store servers. The CPU cache uses the same
cache policy as the GPU cache, so we omit the details.
Cache Workflow that Guarantees Consistency. As shown
in Figure 7, the workflow of the cache engine goes as follows.

108 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

After receiving sampled subgraphs (1), dispatching threads
split the subgraph nodes by mod operation into multiple cache
queries4 and send them to cache query queues (2). Each
processing thread is assigned to one GPU cache buffer and
processes all cache queries on this buffer (3). It first looks up
the subgraph nodes in the GPU cache map and then gathers
cached features of those nodes from GPU cache buffers (4).
In case of GPU cache misses, it looks up the CPU cache map
for uncached nodes, gathers cached feature tensors from CPU
cache buffer, and sends them to the GPU (5). The remainders
are requested from graph store servers and sent to GPUs once
received (6). Finally, the cache map and the cache buffer are
updated according to our FIFO caching policy.

Though node features are immutable (§2), cache buffers
are still mutable. The cache buffer and the cache map may be
inconsistent when some buffer slots are read and written by
different GPU workers simultaneously (which occurs when
different nodes are assigned to the same buffer slot). To ensure
the consistency between the cache buffer and the cache map,
a naive solution is to use locks for each buffer slot. But, this
locking means synchronization in CUDA APIs for GPUs,
leading to large overhead. Our solution is to queue all the
operations towards a given GPU cache, including queries and
updates. Only one processing thread polls the queue and then
reads or writes the corresponding GPU cache buffer. This
reduces the overhead by 8x compared with using locks while
avoiding racing.

3.3 Graph Partition Module
3.3.1 Partition Workflow

Graph partitioning largely impacts the cross-partition commu-
nication when sampling subgraphs. As described in §2.3, a
good partition algorithm should have the following properties:
(1) scalability to billion-node graphs, ensuring (2) multi-hop
connectivity, and (3) training load balance.

Our algorithm exploits two types of processes: block gener-
ators and a block assigner. Block generators generate blocks,
each of which is a connected subgraph and treated as one node
in the coarsened graph. The block assigner collects blocks of
the coarsened graph from block generators and assigns each
block to one partition. We outline the three major steps of our
partition algorithm in Figure 8.
(1) Multi-level Coarsening: Each block generator loads dis-
joint graph data from HDFS and generates blocks on the
loaded graph.

Different from merging procedures used in other partition
algorithms (e.g., maximal matching in METIS), we use multi-
source BFS to generate blocks, which can preserve multi-
hop connectivity in the original graph. The block generator
randomly chooses a few nodes as the BFS source nodes. Each
source node is assigned a unique block ID and broadcasts the

4A cache query contains all nodes which are assigned to one GPU cache
buffer by mod operation in a sampled subgraph.

Block
Generator 0

Block
Generator 1

Block
Assigner

Multi-level
Coarsening

Blocks Collection
& Assignment Uncoarsening

Graph Data in HDFS

1

2

3

Figure 8: The partition workflow. Node colors denote different
blocks in the coarsened graph (step 2), or the nodes belonging
to different blocks (steps 1 and 3).

block ID to its neighbors. Once the block size (i.e., the number
of nodes with the same block ID) exceeds a threshold (e.g.,
100K), or there are no unvisited neighbors in BFS, a block is
generated. When all nodes are visited, the block generating
procedure stops. At the same time, block generators maintain
a mapping from the node ID to block ID, and synchronize it
among them for uncoarsening.

However, we find billion-node graphs have numerous con-
nected components [37]. After one round of coarsening, the
coarsened graph still contains a large quantity of nodes, which
results in large partition complexity. Hence, we further de-
ploy a multi-level coarsening strategy. First, for small blocks
connecting to large blocks5, we merge them to their large
block neighbors. Second, other small blocks without large
block neighbors are randomly merged. By considering neigh-
borhood relationship, this approach not only speeds up the
partition process but also preserve the multi-hop connectivity.
(2) Block Collection & Assignment: The block assigner
collects the blocks of the multi-level coarsened graph from
block generators. It applies a greedy assignment heuristic
for each block, targeting both multi-hop locality and train-
ing node balancing. The block assigner then broadcasts the
block partitions to the generators. We leave the details of the
assignment heuristics in §3.3.2.
(3) Uncoarsening: Upon receiving the block assignment
results from the block assigner, the block generators start
mapping back the blocks to the nodes in the original graph,
i.e., uncoarsening. The partition results are then saved to the
HDFS file (step 3 of Figure 8).

As a result, our partition algorithm has low time complexity
and is friendly to giant graphs. Let E1 be the set of edges in the
coarsened block graph after BFS. E2 denotes the set of edges
in the graph for assignment after multi-level block merging,
and j denotes the number of hops to maintain connectivity.
We reduce the time complexity of the assignment to O(|E2| j),
much lower than SOTA O(|E | j) [38], where |E2| � |E |. The
total partitioning complexity is O(|E |+ |E1|+ |E2| j).

5Empirically, we set blocks with top 10% sizes as large blocks.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 109

3.3.2 Assignment Heuristic
Since optimal graph partitioning is NP-hard [7], we propose a
new heuristic for assigning blocks to partitions by considering
the special requirements of GNN training.

Our heuristic is to derive the block assignments by solving
the following maximization problem:

max
i∈[k]

{(
∑

j

∣∣P(i)∩Γ
j(B)

∣∣) ·(1− |T (i)|
CT

)
·
(

1− |P(i)|
C

)}
where k is the number of partitions; each partition is referred
by its index P(i). Based on this heuristic, each block B is
assigned to the partition with the maximum value.

The first term in the heuristic is the multi-hop block neigh-
bor term, ∑ j |P(i)∩Γ j(B)|, which counts the intersection be-
tween the set of j-hop neighbor blocks of B, Γ j(B), and the
current partition P(i). Using this term, we tend to assign the
current block to a partition with the maximum number of
neighbors and preserve the multi-hop connectivity. Second,
we introduce the training node penalty term, (1−|T (i)|/CT),
where T (i) denotes the set of training nodes that have been
assigned to the ith partition, and CT = |T |/k denotes the train-
ing node capacity constraint on each partition. By maximizing
this term, each partition is enforced with the same number
of training nodes. Third, we introduce the node penalty term,
(1−|P(i)|/C), where C = |V |/k is the capacity constraint on
each partition. This term is commonly used in existing par-
tition algorithms to balance the number of nodes among the
partitions. Finally, we multiply the three terms to maximize
them simultaneously.

3.4 Resource Isolation For Contending Stages
To improve resource utilization and training speed, we di-
vide GNN training into 8 asynchronous pipeline stages (see
Figure 9) with careful consideration of data dependency and
resource allocation. This is more complex than traditional
DNN training. Some of the stages contend for CPU, Net-
work, and PCIe bandwidth resources: (i) Processing sampling
requests and constructing subgraphs compete for CPUs on
graph store servers. (ii) Subgraph processing (e.g., convert-
ing graph format) and executing cache workflow compete
for CPUs in the worker machine. (iii) Moving subgraphs and
copying features to GPUs compete for PCIe bandwidth.

However, we find that if all the processes freely compete
for resources, the resource contention may lead to poor per-
formance. A key reason is that some operators may acquire
more resources than what they actually need and block other
stages, with which they do not scale well.

For example, we observe that for the executing cache work-
flow stage (Stage 4 in Figure 9), when the number of CPU
cores exceeds a threshold (e.g., 40), the performance con-
verges or even degrades with more CPU cores (e.g., more
than 64). This is because of the memory bandwidth limit, syn-
chronization and scheduling overhead in the multi-threading
library like OpenMP [8].

2. Construct
Subgraphs

Send
Subgraphs

Receive
Subgraphs

3. Process
Subgraphs

4. Execute
Cache

Workflow

Compute
GNN Model

1. Process
Sampling
Requests

CPU GPU Network PCIe

I. Move
Subgraphs

to GPU

Graph
Store

Worker
Machine

II. Copy
Features
to GPU

Figure 9: GNN training pipeline in BGL.

To solve the above problem, we propose a profiling-based
resource allocation to assign isolated resources to different
pipeline stages. We first profile the execution time of each
stage and then adjust resource allocation to balance the exe-
cution time of each stage. We formulate the following opti-
mization problem to compute the best resource allocation in
a given GNN training task:

min max
{

T1

c1
,

T2

c2
,Tnet ,

T3

c3
,

DI

bI
, f (c4),

DII

bII
,Tgpu

}
s.t. c1 + c2 6Cgs, c3 + c4 6Cwm, bI +bII 6 Bpcie

The objective is to minimize the maximal completion time
of all pipeline stages. The constraints are resource capacity
constraints for CPU on graph store servers, CPU on worker
machines, and PCIe bandwidth. The main decision variables
are ci (i∈{1,2,3,4}), the number of CPUs required for the ith
stage; and bi (i∈ {I, II}), PCIe bandwidth of the ith stage. All
the other quantities are profiled by our system, including the
time of the ith stage Ti, the data size of processed subgraphs
DI , and the average data size of missed features DII when the
cache is stable. Cgs and Cwm denote the number of CPU cores
on graph store servers and worker machines, respectively,
and Bpcie is the PCIe bandwidth of the worker machines. We
assume linear acceleration of CPU execution, except on pro-
cessing caching operation (Stage 4 in Figure 9). We introduce
a fitting function f (c4) = a/c4 +d to output the completion
time of caching stage with a certain number of CPU cores c4,
where a and d are approximated by pre-running.

We use brute-force search to find the optimal resource al-
location. To reduce the search space, we add integer assump-
tions on bandwidth variables bI and bII . The time complexity
is O(C2

gs +C2
wm +B2

pcie) in the worst case. On average, our
method spends less than 20ms on searching for the best re-
source allocation strategy for GNN training pipeline.

4 Implementation
We implement BGL with over 4,400 lines of C++ code and
3,300 lines of Python code. We reused the graph store module
and GPU backend of the open-sourced Deep Graph Library
(DGL v0.5 [1, 48]), and utilized the graph processing module
of GMiner [10] for partitioning. Our design can be applied to
other GNN frameworks with little change. We are collaborat-
ing with the DGL team to upstream our implementation.
Requirement. BGL exploits NVLinks/NVSwitches for high-
bandwidth low-latency cross-GPU communication for multi-
GPU cache. Our measurement shows that without NVLinks,
the feature cache engine retrieves cached features from other

110 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 2: Datasets used in evaluation.

Ogbn- Ogbn- User-Itemproducts papers

Nodes 2.44M 111M 1.2B
Edges 123M 1.61B 13.7B
Feature Dimension 100 128 96
Classes 47 172 2
Training Set 196K 1.20M 200M
Validation Set 393K 125K 10M
Test Set 2.21M 214K 10M

GPUs via PCIe with much lower bandwidth, which could
decrease throughput of BGL by 50%.
Feature Cache Engine. Cache workflow in feature cache en-
gine contains several GPU operations, such as copying tensor
from CPU memory to GPU memory and launching kernels to
copy tensor from/to other GPUs. To make cache processing
asynchronous, we enqueue all cache GPU operations into
a dedicated CUDA stream, and pre-allocate dedicated CPU
memory as buffers and pin these memory. Our cache en-
gine uses CUDA Unified Virtual Addressing and enables fast
GPU P2P communication on each cache processing thread.
The cache processing thread enqueues a lightweight CUDA
callback function into the CUDA stream, which counts the
number of finished cache queries and notifies workers.

To further expedite FIFO performance, BGL uses multiple
OpenMP threads to execute FIFO concurrently. We maintain
an atomic tail shared by all threads to record the next col-
umn index of the GPU cache buffer for insertion or eviction.
When inserting a new node, each thread finds the next po-
sition by atomically increasing tail, and the real position
is (tail+1)%buffer_size. If this position has an old node,
it evicts the old node from the GPU cache map. Since we
assume node features are immutable during training, old node
features are implicitly evicted by inserting new node features.
Inter-Process Communication. We use separate processes
for sampling, feature retrieving, and GNN computation stages.
To minimize the IPC overhead, we use shared memory to
avoid unnecessary memory copy among different processes.
Specifically, we use Linux Shared Memory and CUDA IPC to
avoid unnecessary CPU and GPU memory copy, respectively.

5 Evaluation

5.1 Methodology

Testbed. We evaluate BGL on a heterogeneous cluster with
4 GPU servers and 32 CPU servers. The GPU server has 8
Tesla V100-SMX2-32GB GPUs (connected by NVLink v2),
96 vCPU cores, and 356GB memory. Each CPU server has
96 vCPU cores and 480GB memory. All servers are inter-
connected with 100Gbps Mellanox CX-5 NICs. The graph
datasets are stored in HDFS.
Datasets. As shown in Table 2, we train GNNs on three
datasets with different sizes, including two public graph

datasets: Ogbn-products [27] and Ogbn-papers [47], as well
as a proprietary web-scale graph dataset: User-Item.
GNN Models. We evaluate BGL with three representative
GNN models: GCN (Graph Convolution Network) [36],
GAT (Graph Attention Network) [46] and GraphSAGE [23].
We use the same model hyper-parameters as OGB leader-
boards [3], e.g., 3 layers and 128 hidden neurons per layer.
Mini-batch Sampling Algorithms. In our experiments, we
use Neighbor Sampling [23], which is shown to achieve com-
parable model performance with full-batch graph training.6

Except for the experiment in §5.7, we set the mini-batch size
to 1000, i.e., each mini-batch contains 1000 sampled sub-
graphs and each subgraph contains one training node and its
three-hop neighbors with fanout {15,10,5}.
Baselines. We use four open-sourced and widely-used GNN
training frameworks as baselines for comparison7.
• Euler [2]: Euler (v1.0) is a distributed graph learning

system built atop TensorFlow [5]. We use TensorFlow’s GPU
backend for acceleration.
• DGL [1]: DGL is a deep learning library for graphs,

compatible with multiple deep learning frameworks. We use
the DGL v0.5 release (DistDGL [58]).
• PyG [17]: PyG (v1.6.0) extends PyTorch for deep learn-

ing on graphs. It contains a mini-batch loader for multi-GPU
support in a single machine.
• PaGraph [38]: PaGraph is a sampling-based GNN frame-

work with a static cache strategy on GPU, which supports
multi-GPU in a single server.

Specifically, PyG co-locates graph store servers and work-
ers and allows graph sampling on the same machine only,
making it unable to process large graph datasets (i.e., Ogbn-
papers and User-Item) due to memory limit. Hence, we only
compare BGL with PyG on Ogbn-products dataset. When
training on User-Item dataset with DGL and PaGraph, we
separate the graph store servers from the workers since our
GPU servers do not have enough memory to load the graph
partitions. To evaluate the performance boundary, we use 4, 8
and 32 CPU-based graph store servers for all frameworks on
Ogbn-products, Ogbn-papers and User-Item respectively.
Graph Partitioning. DGL uses METIS partitioning for small
graphs (i.e., Ogbn-products), and Random partitioning for
large graphs that cannot be fitted into a single machine (i.e.,
Ogbn-papers and User-Item). Euler uses random partitioning
for all graphs, and BGL uses the proposed algorithm in §3.3,
where we set j = 2, i.e., searching two-hop neighbors.

5.2 Overall Performance
Figure 10, 11 and 12 show the training speed of baselines
and BGL in log scale when training the three GNN models

6BGL can also be applied to other vertex-centric GNN sampling algo-
rithms, e.g., layer-wise sampling [11] and random walk sampling [53]. We
omit the evaluation of other sampling algorithms since it is beyond our scope.

7We omit P3 [20] because it is not open-sourced.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 111

(a) GraphSAGE (1.38x - 45.98x) (b) GCN (1.49x - 41.33x) (c) GAT (1.14x - 40.60x)
Figure 10: Throughput of 3 GNN models on Ogbn-products in log scale. Numbers above bars are speedups of BGL over other systems.

(a) GraphSAGE (1.86x - 39.62x) (b) GCN (1.84x - 32.11x) (c) GAT (1.28x - 68.97x)
Figure 11: Training throughput of 3 GNN models on Ogbn-papers in log scale. Numbers above bars are speedups of BGL over other systems.

(a) GraphSAGE (1.42x - 14.16x) (b) GCN (1.38x - 12.08x) (c) GAT (1.31x - 29.73x)
Figure 12: Training throughput of 3 GNN models on User-Item in log scale. Numbers above bars are speedups of BGL over other systems.

on three graph datasets, with the number of workers rang-
ing from 1 to 8, where each worker has one GPU. We use
samples/sec as the metric to measure the training speed. A
sample is a sampled subgraph of one training node.
Different Frameworks. BGL achieves 1.14x - 69x speedups
over four baselines in all settings. BGL has 69x (the most)
speedup over Euler. This is because Euler’s random sharding
in graph partition has very low data locality, resulting in fre-
quent cross-partition communication in sampling. DGL does
not cache features on GPU, introducing significant feature
retrieving time. Thus, BGL outperforms DGL by up to 30x.
PaGraph performs the best among baselines. It places graph
structure data on each GPU with static caching on node fea-
tures, leading to much faster data preprocessing. Even in this
case, BGL still has up to 3.27x speedup, thanks to dynamic
feature caching and resource isolation for contending pipeline
stages. BGL outperforms all other systems, and the geomet-
ric mean of speedups over PaGraph, PyG, DGL and Euler is
1.91x, 3.02x, 7.04x and 20.68x, respectively.
Different GNN models. The training performance varies sig-
nificantly across different GNN models. We see that BGL
achieves significantly higher performance improvement with
GraphSAGE and GCN models, by up to 30x as compared to
DGL and PyG. With the computation-intensive GAT model,
however, the training speed of PyG and DGL is closer to that
of BGL. Hence the gain for BGL ranges from 14% to 8x.
It is because the GAT model is computation-bound due to
incorporating the attention mechanism into the propagation
step, while its communication is less intensive than the other
two GNN models; the higher ratio of computation over other
stages results in a smaller improvement space for BGL. We

see that Euler performs the worst in GAT, since it does not
optimize the GPU kernels for irregular graph structures.
Scalability. BGL also outperforms other frameworks in
terms of scalability. Without caching features on GPU, the
throughput of baseline frameworks is bounded by PCIe band-
width. For example, DGL has only 3x speedups when in-
creasing the number of GPUs from 1 to 8. BGL reduces the
transmitted data through PCIe bandwidth with efficient GPU
cache, resulting in linear scalability in throughput. Multi-GPU
systems often suffer poor scalability due to synchronization
overhead or resource contention. However, our design and
implementation of multi-GPU memory sharing scales well
with the increased number of GPUs. With extra bandwidth
brought by NVLink, accessing cache entries on other GPUs
introduces negligible overhead. On the contrary, the increased
cache capacity improved the cache hit ratio (Figure 5b) and
reduced overall feature retrieving time (Figure 13).

We observe the relatively lower improvement with the User-
Item dataset. On the billion-node graph dataset, the subgraph
sampling and feature retrieving becomes more time consum-
ing, due to the inconsistent sampling performance of DGL
graph store server and sparse graph structure. Hence, BGL
cannot produce the similar level of overlapping with the un-
changing model computation time.
GPU Utilization. We compare the GPU utilization achieved
by BGL and DGL with the same GPU backend. We run
GraphSAGE and GAT models on Ogbn-products dataset
with 8 GPU. BGL achieves 99% GPU utilization with the
computation-intensive GAT model, while DGL’s utilization is
only 38%. For GraphSAGE model with shallow neural layers,
BGL improves the GPU utilization from 10% to 65%.

112 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 4 8
of GPUs

101

102

Re
tri

ev
in

g
tim

e
(m

s) Euler
DGL

PaGraph
BGL

Figure 13: Retrieving time per
mini-batch on Ogbn-papers.

Figure 14: Graph sampling time
per epoch during training.

Figure 15: BGL reduces ratio of
cross-partition communication.

Figure 16: One-time partitioning
execution time before training.

5.3 Impact of Feature Cache Engine
In §3.2, we have shown the cache hit ratio with different cache
policies and cache sizes. The trend of them is similar on other
datasets. Here, we present the amortized feature retrieving
time with the feature cache engine.

We compare the feature retrieving time of one mini-batch
using different GPUs on Ogbn-papers. We implement Pa-
Graph static caching policy in BGL, which caches the features
of high-degree nodes. Euler and DGL do not have cache, so
the feature retrieving time is the elapsed time of transmitting
features from graph store servers to GPU memory. As shown
in Figure 13, due to high cache hit ratios and low cache over-
head, the feature retrieving time of BGL is the shortest among
all systems. Compared to other systems on 1 GPU worker,
BGL reduces the feature retrieving time by 98%, 88% and
57% for Euler, DGL and PaGraph, respectively.

5.4 Impact of Graph Partition

We compare the graph partition algorithm in BGL with Ran-
dom and GMiner partitioning, since only these two partition
algorithms can scale to Ogbn-papers and User-Item. We eval-
uate the sampling time per epoch and the one-time partition
time (counted from loading the graph data to saving the parti-
tion results to files) under different partition algorithms. Ogbn-
products, Ogbn-papers and User-Item are divided into 2, 4
and 4 partitions, respectively.

Figure 14 shows the graph sampling time (per epoch) under
different partition algorithms. BGL achieves the best perfor-
mance across different graph datasets, reducing the sampling
time by at least 20% over Random partition algorithm. Com-
pared to GMiner, BGL manages to drop the sampling time by
14% and 10% for Ogbn-products and Ogbn-papers, respec-
tively, thanks to its training node balancing and multi-hop
connectivity of partitioning.

Figure 17: Resource isolation im-
proves training throughput.

1(4) 2(8) 3(12) 4(16)
of worker machines (#GPUs)

0

200

400

600

800

Th
ro

ug
hp

ut
 (T

ho
us

an
d

sa
m

pl
es

/s
ec

) Euler DGL BGL

Figure 18: BGL scales well to
multiple worker machines.

(a) BS 1000, 3 hops, FO {10,10,10}. (b) BS 500, 2 hops, FO {10,25}.

Figure 19: Training throughput of GraphSAGE using different hyper
parameters on 4 GPUs. BS and FO stand for ‘batch size’ and ‘fanout’.

The reduction in sampling time mainly comes from the
reduced cross-partition (inter-server) communication during
distributed neighbor sampling. As shown in Figure 15, by
including multi-hop locality when partitioning, BGL reduces
the ratio of cross-partition communication by 25%, 44%, and
33% for Ogbn-products, Ogbn-papers and User-Item, respec-
tively. The cross-communication traffic is only determined by
the number of partitions, but not the number of graph store
servers or worker machines.

Partitioning a large-scale graph is time consuming. Hence,
BGL introduces multi-level coarsening to mitigate the extra
complexity brought by computing multi-hop locality. Fig-
ure 16 shows BGL’s partition algorithm runs as fast as
the well-optimized original GMiner, and is even better than
GMiner on graph User-Item with 20% reduction of time.

5.5 Impact of Resource Isolation
To evaluate the effectiveness of our resource isolation mecha-
nism, we compare BGL with Euler, DGL, PaGraph, and BGL
without resource isolation when training GraphSAGE with
4 GPUs on datasets Ogbn-products and Ogbn-papers. ‘BGL
w/o isolation’ is a naive resource allocation method that shares
all pipeline stages resources. It increases resource utilization
but incurs larger contention and parallel overhead.

As shown in Figure 17 (in log scale), BGL achieves the
highest throughput. Both BGL and ‘BGL w/o isolation’ out-
perform Euler and DGL. Due to the overhead of resource
contention, the performance of ‘BGL w/o isolation’ on Ogbn-
products is even lower than that of PaGraph. BGL uses re-
source isolation method, which mitigates the resource con-
tention among different pipeline stages and incurs a lower
parallel overhead of OpenMP. As a result, BGL speedups the
throughput by up to 2.7x, compared to the naive resource
allocation strategy without isolation and PaGraph.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 113

5.6 Scalability to Multiple Worker Machines
To show the scalability of multiple worker machines, we vary
the number of worker machines from 1 to 4, and each has 4
GPUs. We train GraphSAGE model on graph Ogbn-papers
with Euler, DGL and BGL. The number of graph store servers
remains the same as in §5.2.

As shown in Figure 18, BGL improves throughput from
250K to 769K (76% of linear scalability) when the number
of worker machine increases from 1 to 4. Due to no feature
cache on GPU and bottleneck in PCIe and network bandwidth,
throughput of Euler and DGL cannot scale well when increas-
ing the number of worker machines. Since our GPU servers
only use NVLink v2, the cache engine cannot share GPU
memory across machines, and BGL’s throughput increases
slightly slower than linear scaling.

5.7 Impact of Hyper Parameters
To verify the robustness of BGL, we evaluate training speedup
under different hyperparameters (batch size, number of layers
and fanouts). As shown in Figure 19, we use another two
widely-used training settings in OGB leaderboards [3]. We
train GraphSAGE on graph Ogbn-papers and User-Item with
4 GPUs. BGL outperforms DGL and Euler as well. The geo-
metric mean of speedup of BGL for Euler and DGL is 10.44x
and 7.50x, respectively. The computation of 2-layer Graph-
SAGE is faster than that with 3 layers. Hence, throughput of
three systems in Figure 19b is higher than in Figure 19a.

5.8 Model Accuracy
To verify the correctness of BGL, we evaluate the test accu-
racy on GAT and GraphSAGE with Ogbn-products, Ogbn-
papers and User-Item. Each task is trained with 100 epochs for
convergence. DGL uses RO while BGL uses PO. As shown
in Figure 20, BGL converges to almost the same accuracy as
the original DGL but the convergence of BGL is much faster.

6 Related Work
Graph Partition Algorithms. Graph partitioning is widely
adopted when processing large graphs. NeuGraph [40] lever-
ages the Kernighan-Lin [34] algorithm to partition graphs
into chunks with different sparsity levels. Cluster-GCN [12]
constructs the training batches based on the METIS [32]
algorithm, together with a stochastic multi-clustering frame-
work to improve model convergence. When dealing with large
graphs in distributed GNN training, partition algorithms, such
as Random [2, 30, 39], Round-Robin, and Linear Determinis-
tic Greedy [6], are often used [2, 48, 55, 60]. They incur low
partitioning overhead while not ensuring partition locality.
GNN Training Frameworks. In recent years, new special-
ized frameworks have been proposed upon existing deep learn-
ing frameworks to provide convenient and efficient graph op-
eration primitives for GNN training [2, 17, 40, 48, 60]. Other
than DGL [48], Euler [2] and PyG [17], NeuGraph [40] trans-
lates graph-aware computation on dataflow and recasts graph

(a) GraphSAGE on Ogbn-products (b) GAT on Ogbn-products

(c) GraphSAGE on Ogbn-papers (d) GAT on Ogbn-papers

(e) GraphSAGE on User-Item (f) GAT on User-Item

Figure 20: BGL achieves the same accuracy as DGL, using 1 GPU.

optimizations to support parallel computation for GNN train-
ing. However, it can only train small graphs on multi-GPUs
in a single machine. AliGraph [60] is a GNN system that
consists of distributed graph storage, optimized sampling op-
erators and runtime to support both existing GNNs and in-
house developed ones for different scenarios. AGL [55] is a
scalable and integrated GNN system implemented on MapRe-
duce [14] that guarantees good system properties. However,
neither Aligraph nor AGL exploits GPU acceleration.
GNN Training Acceleration. Various systems have been
devoted to improving GNN training performance.

Some works [9, 31, 40, 45, 49] target full-batch training.
GNNAdvisor [49] explores the GNN input properties and pro-
poses a 2D workload management and specialized memory
customization for system optimizations. DGCL [9] proposes a
communication planning algorithm to optimize GNN commu-
nication among multiple GPUs with METIS partition. Both
projects assume graphs are stored in a single machine.

Some works [20, 38, 60] target mini-batch training. Pa-
Graph [38] adopts static GPU caching for high-degree nodes.
GNNLab [52] proposes a pre-sampling-based static caching
policy. They assume that a graph can be loaded in a single
machine, making them infeasible for billion-node graphs.

P3 [20] reduces retrieving feature traffic by combining
model parallelism and data parallelism. However, hybrid par-
allelism in P3 incurs extra synchronization overhead. Its per-
formance suffers when hidden dimensions exceed 128 (a com-

114 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

mon practice in modern GNNs). Further, P3 overlooked the
subgraph sampling stage, where random hashing partitioning
leads to extensive cross-partition communication.

Some works try to improve graph sampling performance
on GPUs, such as NextDoor [29] and C-SAW [43]. However,
their performance is limited by small GPU memory. Hence,
they are not suitable for giant graphs.

7 Conclusion
We present BGL, a GPU-efficient GNN training system for
large graph learning that focuses on removing the data I/O and
preprocessing bottleneck to achieve high GPU utilization and
accelerate training. To minimize feature retrieving traffic, we
propose a dynamic feature cache engine with proximity-aware
ordering, and find a sweet spot of low overhead and high cache
hit ratio. BGL employs a novel graph partition algorithm tai-
lored for sampling algorithms to minimize cross-partition
communication during sampling. We further optimize the re-
source allocation of data preprocessing using profiling-based
resource isolation. Our extensive experiments demonstrate
that BGL significantly outperforms existing GNN training
systems by 1.91x on average. We will open-source it in the
future and hope to continue evolving it with the community.

Acknowledgement

We are thankful to the anonymous NSDI reviewers and
our shepherd, Ying Zhang, for their constructive feedback.
This work was supported in part by the National Key Re-
search and Development Program of China under Grant
2018YFB1800800, Hong Kong Innovation and Technology
Commission’s Innovation and Technology Fund (Partner-
ship Research Programme with ByteDance Limited, Award
No. PRP/082/20FX), the National Natural Science Founda-
tion of China under Grant U21B2022, Tsinghua University-
China Mobile Communications Group Co.,Ltd. Joint Institute,
and grants from Hong Kong RGC under the contracts HKU
17204619, 17208920 and 17207621.

References

[1] Deep Graph Library (DGL). https://github.com/
dmlc/dgl, 2020.

[2] Euler. https://github.com/alibaba/euler, 2020.

[3] OGB Leaderboards. https://ogb.stanford.edu/
docs/leader_nodeprop/, 2020.

[4] Amazon EC2 Instance Types. https://aws.amazon.
com/ec2/instance-types/, 2021.

[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek Gordon Murray, Benoit Steiner, Paul A.
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System
for Large-Scale Machine Learning. In Proc. of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[6] Zainab Abbas, Vasiliki Kalavri, Paris Carbone, and
Vladimir Vlassov. Streaming Graph Partitioning: An
Experimental Study. VLDB Endow., 11(11):1590–1603,
2018.

[7] Konstantin Andreev and Harald Räcke. Balanced graph
partitioning. Theory Comput. Syst., 39(6):929–939,
2006.

[8] J Mark Bull. Measuring synchronisation and scheduling
overheads in openmp. In Proc of 1st European Work-
shop on OpenMP, volume 8, page 49. Citeseer, 1999.

[9] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James
Cheng, and Fan Yu. Dgcl: an efficient communication
library for distributed gnn training. In Proceedings of the
Sixteenth European Conference on Computer Systems,
pages 130–144, 2021.

[10] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan,
Da Yan, and James Cheng. G-Miner: An Efficient Task-
Oriented Graph Mining System. In Proc. of the 13th
ACM European Conference on Computer Systems (Eu-
roSys). ACM, 2018.

[11] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast
Learning with Graph Convolutional Networks via Im-
portance Sampling. In Proc. of the 6th International
Conference on Learning Representations (ICLR), 2018.

[12] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy
Bengio, and Cho-Jui Hsieh. Cluster-GCN: An Efficient
Algorithm for Training Deep and Large Graph Convolu-
tional Networks. In Proc. of the 25th ACM International
Conference on Knowledge Discovery & Data Mining
(KDD), 2019.

[13] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios
Logothetis, and Sambavi Muthukrishnan. One Trillion
Edges: Graph Processing at Facebook-Scale. In Proc. of
VLDB Endow., 2015.

[14] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. Communica-
tions of the ACM, 51(1):107–113, 2008.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 115

https://github.com/dmlc/dgl
https://github.com/dmlc/dgl
https://github.com/alibaba/euler
https://ogb.stanford.edu/docs/leader_nodeprop/
https://ogb.stanford.edu/docs/leader_nodeprop/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

[16] Michalis Faloutsos, Petros Faloutsos, and Christos
Faloutsos. On Power-Law Relationships of the Internet
Topology. ACM SIGCOMM computer communication
review, 29(4):251–262, 1999.

[17] Matthias Fey and Jan Eric Lenssen. Fast Graph Rep-
resentation Learning with PyTorch Geometric. CoRR,
abs/1903.02428, 2019.

[18] Matthias Fey and Jan Eric Lenssen. Fast graph represen-
tation learning with pytorch geometric. arXiv preprint
arXiv:1903.02428, 2019.

[19] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-
Hur. Protein Interface Prediction using Graph Con-
volutional Networks. In Proc. of Advances in Neural
Information Processing Systems (NeurIPS), 2017.

[20] Swapnil Gandhi and Anand Padmanabha Iyer. P3: Dis-
tributed deep graph learning at scale. In 15th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 21), pages 551–568, 2021.

[21] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo,
and Yuji Matsumoto. Knowledge Transfer for Out-of-
Knowledge-Base Entities : A Graph Neural Network
Approach. In Proc. of the 26th International Joint Con-
ference on Artificial Intelligence (IJCAI), 2017.

[22] William L. Hamilton, Rex Ying, and Jure Leskovec.
Representation learning on graphs: Methods and ap-
plications. IEEE Data Eng. Bull., 40(3):52–74, 2017.

[23] William L. Hamilton, Zhitao Ying, and Jure Leskovec.
Inductive Representation Learning on Large Graphs. In
Proc. of Advances in Neural Information Processing
Systems (NeurIPS), 2017.

[24] Masatoshi Hanai, Toyotaro Suzumura, Wen Jun Tan,
Elvis S. Liu, Georgios Theodoropoulos, and Wentong
Cai. Distributed edge partitioning for trillion-edge
graphs. Proc. VLDB Endow., 12(13):2379–2392, 2019.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[26] Loc Hoang, Roshan Dathathri, Gurbinder Gill, and Ke-
shav Pingali. Cusp: A customizable streaming edge
partitioner for distributed graph analytics. In 2019 IEEE
International Parallel and Distributed Processing Sym-
posium, IPDPS 2019, Rio de Janeiro, Brazil, May 20-24,
2019, pages 439–450. IEEE, 2019.

[27] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure

Leskovec. Open Graph Benchmark: Datasets for Ma-
chine Learning on Graphs. CoRR, abs/2005.00687,
2020.

[28] Wen-bing Huang, Tong Zhang, Yu Rong, and Junzhou
Huang. Adaptive Sampling Towards Fast Graph Rep-
resentation Learning. In Proc. of Advances in Neural
Information Processing Systems (NeurIPS), 2018.

[29] Abhinav Jangda, Sandeep Polisetty, Arjun Guha, and
Marco Serafini. Accelerating graph sampling for graph
machine learning using gpus. In Antonio Barbalace,
Pramod Bhatotia, Lorenzo Alvisi, and Cristian Cadar,
editors, EuroSys ’21: Sixteenth European Conference
on Computer Systems, Online Event, United Kingdom,
April 26-28, 2021, pages 311–326. ACM, 2021.

[30] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat Mc-
Cormick, Mattan Erez, and Alex Aiken. A distributed
multi-gpu system for fast graph processing. Proc. of the
VLDB Endowment, 11(3):297–310, 2017.

[31] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and
Alex Aiken. Improving the Accuracy, Scalability, and
Performance of Graph Neural Networks with Roc. In
Proc. of Machine Learning and Systems (MLSys), 2020.

[32] George Karypis and Vipin Kumar. A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing, 20(1):359–392,
1998.

[33] George Karypis and Vipin Kumar. A parallel algorithm
for multilevel graph partitioning and sparse matrix or-
dering. J. Parallel Distributed Comput., 48(1):71–95,
1998.

[34] Brian W Kernighan and Shen Lin. An Efficient Heuristic
Procedure for Partitioning Graphs. The Bell System
Technical Journal, 49(2):291–307, 1970.

[35] Diederik P. Kingma and Jimmy Ba. Adam: A Method
for Stochastic Optimization. In Proc. of the 3rd Interna-
tional Conference on Learning Representations (ICLR),
2015.

[36] Thomas N. Kipf and Max Welling. Semi-Supervised
Classification with Graph Convolutional Networks. In
Proc. of the 5th International Conference on Learning
Representations ICLR, 2017.

[37] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue
Moon. What is twitter, a social network or a news me-
dia? In Proceedings of the 19th international conference
on World wide web, pages 591–600, 2010.

[38] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and
Yinlong Xu. PaGraph: Scaling GNN Training on Large

116 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Graphs via Computation-Aware Caching. In Proc. of
ACM Symposium on Cloud Computing (SOCC), 2020.

[39] Tianfeng Liu and Dan Li. Endgraph: An efficient dis-
tributed graph preprocessing system. In 42nd IEEE
International Conference on Distributed Computing Sys-
tems, ICDCS 2022, Bologna, Italy, July 10 - 13, 2022.
IEEE, 2022.

[40] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue,
Ming Wu, Lidong Zhou, and Yafei Dai. NeuGraph:
Parallel Deep Neural Network Computation on Large
Graphs. In Proc. of USENIX Annual Technical Confer-
ence (USENIX ATC), 2019.

[41] Qi Meng, Wei Chen, Yue Wang, Zhi-Ming Ma, and Tie-
Yan Liu. Convergence analysis of distributed stochas-
tic gradient descent with shuffling. Neurocomputing,
337:46–57, 2019.

[42] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard
Weikum. The LRU-K page replacement algorithm for
database disk buffering. In Proc. of the 1993 ACM
SIGMOD International Conference on Management of
Data, Washington, DC, USA, May 26-28, 1993, pages
297–306. ACM Press, 1993.

[43] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S. Li,
and Hang Liu. C-SAW: a framework for graph sampling
and random walk on gpus. In Proceedings of the In-
ternational Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC 2020, Virtual
Event / Atlanta, Georgia, USA, November 9-19, 2020,
page 56. IEEE/ACM, 2020.

[44] Ketan Shah, Anirban Mitra, and Dhruv Matani. An o
(1) algorithm for implementing the lfu cache eviction
scheme. no, 1:1–8, 2010.

[45] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng,
Guanzhou Hu, Zhihao Jia, Jinliang Wei, Keval Vora,
Ravi Netravali, Miryung Kim, et al. Dorylus: affordable,
scalable, and accurate gnn training with distributed cpu
servers and serverless threads. In 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 21), pages 495–514, 2021.

[46] Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
Attention Networks. In Proc. of the 6th International
Conference on Learning Representations (ICLR), 2018.

[47] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-
Han Wu, Yuxiao Dong, and Anshul Kanakia. Microsoft
Academic Graph: When Experts Are Not Enough.
Quantitative Science Studies, 1(1):396–413, 2020.

[48] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai,
Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma,
Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin,
Junbo Zhao, Jinyang Li, Alexander J. Smola, and Zheng
Zhang. Deep Graph Library: Towards Efficient and Scal-
able Deep Learning on Graphs. CoRR, abs/1909.01315,
2019.

[49] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li,
Lei Deng, Yuan Xie, and Yufei Ding. Gnnadvisor: An
adaptive and efficient runtime system for gnn accelera-
tion on gpus. In 15th {USENIX} Symposium on Operat-
ing Systems Design and Implementation ({OSDI} 21),
pages 515–531, 2021.

[50] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S. Yu. A Compre-
hensive Survey on Graph Neural Networks. CoRR,
abs/1901.00596, 2019.

[51] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial
Temporal Graph Convolutional Networks for Skeleton-
Based Action Recognition. In Proc. of the 32nd AAAI
Conference on Artificial Intelligence (AAAI), 2018.

[52] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang,
Qiang Yin, Rong Chen, Wenyuan Yu, and Jingren Zhou.
Gnnlab: a factored system for sample-based GNN train-
ing over gpus. In EuroSys ’22: Seventeenth European
Conference on Computer Systems, Rennes, France, April
5 - 8, 2022, pages 417–434. ACM, 2022.

[53] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombat-
chai, William L. Hamilton, and Jure Leskovec. Graph
Convolutional Neural Networks for Web-Scale Recom-
mender Systems. In Proc. of the 24th ACM International
Conference on Knowledge Discovery & Data Mining
(KDD), 2018.

[54] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Ra-
jgopal Kannan, and Viktor K. Prasanna. GraphSAINT:
Graph Sampling Based Inductive Learning Method. In
Proc. of the 8th International Conference on Learning
Representations (ICLR), 2020.

[55] Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang
Hu, Xianzheng Song, Zhibang Ge, Lin Wang, Zhiqiang
Zhang, and Yuan Qi. AGL: A Scalable System for
Industrial-Purpose Graph Machine Learning. VLDB
Endow., 13(12):3125–3137, 2020.

[56] Muhan Zhang and Yixin Chen. Link Prediction Based
on Graph Neural Networks. In Proc. of Advances in Neu-
ral Information Processing Systems (NeurIPS), 2018.

[57] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep Learn-
ing on Graphs: A Survey. CoRR, abs/1812.04202, 2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 117

[58] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qi-
dong Su, Xiang Song, Quan Gan, Zheng Zhang, and
George Karypis. Distdgl: Distributed graph neural net-
work training for billion-scale graphs. arXiv preprint
arXiv:2010.05337, 2020.

[59] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and
Maosong Sun. Graph Neural Networks: A Re-
view of Methods and Applications. arXiv preprint
arXiv:1812.08434, 2018.

[60] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang
Zhou, Baole Ai, Yong Li, and Jingren Zhou. Ali-
Graph: A Comprehensive Graph Neural Network Plat-
form. VLDB Endow., 12(12):2094–2105, 2019.

[61] Martin Zinkevich, Markus Weimer, Alexander J. Smola,
and Lihong Li. Parallelized Stochastic Gradient Descent.
pages 2595–2603. Curran Associates, Inc., 2010.

118 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Zeus: Understanding and Optimizing GPU Energy Consumption of DNN Training

Jie You∗ Jae-Won Chung∗ Mosharaf Chowdhury

University of Michigan

Abstract

Training deep neural networks (DNNs) is becoming increas-

ingly more resource- and energy-intensive every year. Unfor-

tunately, existing works primarily focus on optimizing DNN

training for faster completion, often without considering the

impact on energy efficiency.

In this paper, we observe that common practices to improve

training performance can often lead to inefficient energy us-

age. More importantly, we demonstrate that there is a tradeoff

between energy consumption and performance optimization.

To this end, we propose Zeus, an optimization framework to

navigate this tradeoff by automatically finding optimal job-

and GPU-level configurations for recurring DNN training

jobs. Zeus uses an online exploration-exploitation approach

in conjunction with just-in-time energy profiling, averting the

need for expensive offline measurements, while adapting to

data drifts over time. Our evaluation shows that Zeus can im-

prove the energy efficiency of DNN training by 15.3%–75.8%

for diverse workloads.

1 Introduction

Deep neural networks (DNNs) have received ubiquitous adop-

tion in recent years across many data-driven application do-

mains such as computer vision [20, 38, 65], natural language

processing [21, 57], personalized recommendation [32, 39],

and speech recognition [33]. To effectively support such

growth, DNN models are predominantly trained in clusters of

highly parallel and increasingly more powerful GPUs [15,70].

However, growing demand for computation ultimately

translates to greater energy demand. For instance, train-

ing the GPT-3 model [13] consumes 1,287 megawatt-hour

(MWh) [75], which is equivalent to 120 years of electricity

consumption for an average U.S. household [1]. This trend

continues to grow: Meta reports an increasing electricity de-

mand for AI, despite a 28.5% operational power footprint re-

duction [96]. Yet, existing literature on DNN training mostly

ignores energy efficiency [83].

We observe that common performance optimization prac-

tices for DNN training can lead to inefficient energy usage.

For example, many recent works prescribe large batch sizes

for higher training throughput [29,84]. However, we show that

maximizing raw throughput may come at the cost of lower

∗Equal contribution.

energy efficiency. Similarly, modern GPUs allow the configu-

ration of a power limit that caps its maximum power draw, but

existing solutions often ignore it. Our analysis of four genera-

tions of NVIDIA GPUs shows that none of them are entirely

power proportional, and drawing maximum power gives di-

minishing return. Indeed, carefully choosing the right batch

size and GPU power limit can reduce energy consumption by

23.8%–74.7% for diverse workloads (§2.2).

Unfortunately, reducing energy consumption is not entirely

free – we discover that there is a tradeoff between energy con-

sumption and training time for a given target accuracy (§2.3).

Our characterization of the energy-time Pareto frontier high-

lights two notable phenomena. First, for a given training job,

all Pareto-optimal configurations provide varying amounts of

energy reductions in comparison to blindly using the maxi-

mum batch size and GPU power limit. Second, the amount

of reduction in energy consumption often has a non-linear

relationship with the increase of training time. This raises a

simple question: how do we automatically identify and navi-

gate the tradeoff between energy consumption and training

time for DNN training?

In this paper, we present Zeus to address this question.

Zeus is a plug-in optimization framework that automatically

configures the batch size and GPU power limit to minimize

the overall energy consumption and training time for DNN

training jobs (§3). Unlike some recent works that only con-

sider GPU-specific configurations [11, 87], Zeus simultane-

ously considers job- and GPU-related configurations. More-

over, it does not require per-job offline profiling or prediction

model training [90, 101], both of which can be prohibitive in

large clusters with heterogeneous hardware and time-varying

workloads [94]. Instead, Zeus takes an online exploration-

exploitation approach tailored to the characteristics of DNN

training workflows. That is, as new data flow into the pipeline,

models need to be periodically re-trained [37], manifesting

itself as recurring jobs in production clusters [37, 94]. Lever-

aging this fact, Zeus automatically explores various configu-

rations, measures corresponding gains or losses, and continu-

ously adjusts its actions based on its measurements (§4).

Designing such a solution is challenging due to two sources

of uncertainty in DNN training. First, due to the random-

ness introduced from DNN parameter initialization and data

loading, the energy consumed until a DNN reaches its tar-

get accuracy varies even when training is run with the exact

same configuration [19, 82]. Thus, evaluating a configura-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 119

tion only once does not provide sufficient information about

its expected energy consumption. Second, since both DNN

models and GPUs have diverse architectures and unique en-

ergy characteristics [93], offline profiling results do not easily

generalize to other DNNs and GPUs. Aggravating these chal-

lenges is the large size of the possible configuration space,

with each configuration taking hours or even days to evaluate.

Zeus can efficiently determine the optimal set of knobs in

the configuration space by decoupling the optimization of

batch size and power limit without losing optimality. Specif-

ically, it captures the stochastic nature of DNN training by

formulating the batch size optimization problem as a Multi-

Armed Bandit (MAB) and runs online optimization under ran-

dom observations using the Thompson Sampling policy [88].

Additionally, Zeus’s just-in-time (JIT) energy profiler finds

the optimal power limit while training is running, making

Zeus a completely online optimization framework.

We have implemented Zeus and integrated it with Py-

Torch [74] (§5). Evaluation on a diverse workload consisting

of speech recognition, image classification, NLP, and recom-

mendation tasks shows that Zeus reduces energy consumption

by 15.3%–75.8% and training time by 60.6% w.r.t. simply

selecting the maximum batch size and maximum GPU power

limit. Zeus converges to optimal configuration among avail-

able ones quickly and can adapt to data drift effectively. Zeus’s

benefits expand to multi-GPU settings as well (§6).

In summary, we make the following contributions:

• To the best of our knowledge, we are the first to charac-

terize the energy consumption vs. performance tradeoff

for DNN training in terms of job- and GPU-specific con-

figuration parameters.

• We present an online optimization framework that can

learn from and adapt to workload dynamics over time.

• We implement and evaluate the optimizer in Zeus that

integrates with existing DNN training workflows with

little code change and negligible overhead, while enabling

large benefits.

Zeus is open-source and available on GitHub.2

2 Motivation

In this section, we present an overview of energy consumption

characteristics of DNN training on GPUs, opportunities for

reducing energy consumption, and conclude with characteriz-

ing the tradeoff between reducing energy consumption and

improving training performance.

2.1 DNN Training

Modern DNNs are trained by going over a large dataset mul-

tiple times, where each pass over the dataset is termed an

epoch [28]. One epoch of training consists of thousands

of iterations of gradient descent over equally sized mini-

2https://github.com/SymbioticLab/Zeus

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
(lo

w
er

 is
 b

et
te

r)

Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

Figure 1: Energy usage normalized against baseline for DNN

training, measured on NVIDIA V100 GPU. Baseline uses maxi-

mum power limit and the default batch size presented in the origi-

nal model publication when available or the maximum batch size

which can consistently reach the target metric.

batches, with the batch size affecting model accuracy,3 train-

ing throughput, and energy consumption. The performance of

DNN training is often measured in terms of time-to-accuracy

(TTA) for a given target accuracy [19], and increasing training

throughput (or precisely goodput [77]) leads to lower TTA.

Modern DNNs are predominantly trained on increasingly

more powerful GPUs, consuming more energy in the pro-

cess [4, 75, 96]. Recent benchmarks show that GPUs are re-

sponsible for around 70% of the total energy consumption

during DNN training [22, 41].

In production GPU clusters, as new data flow into the ma-

chine learning pipeline, DNNs need to be periodically re-

trained at intervals as short as every hour [37]. This need

manifests itself as recurring jobs in the GPU cluster [37, 94].

2.2 Opportunities for Improving Energy Efficiency

We highlight two job and hardware configurations that can

cause sizable energy inefficiency in DNN training: (1) batch

size and (2) power limit of the GPU.

Impact of batch size on energy efficiency. The size of each

mini-batch during DNN training (batch size) determines how

many samples are processed in one iteration. The higher it is,

the faster we can go over the entire input dataset.

We observe across diverse DNN training workloads that

common choices of batch size can lead to more energy con-

sumption for the same target accuracy. Specifically, we per-

formed a sweep over a large range of valid batch sizes (from

8 to the maximum batch size that fits in GPU memory) for

six deep learning workloads including computer vision (CV),

natural language processing (NLP), recommendation, and

speech recognition on an NVIDIA V100 GPU (Figure 1).4

Section 6.1 provides details on workloads and methodology.

We find that the energy-optimal batch size (Batch Size Opt. in

Figure 1) can lead to 3.4%–65.0% lower energy consumption

than the default choice for the same target accuracy.

3In this paper, we specifically consider the validation accuracy of the

model, which captures how well the model generalizes to unseen data.
4We measure GPU power consumption using NVML [2].

120 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/SymbioticLab/Zeus

0 20000 40000 60000 80000
Training Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
E

ne
rg

y
C

on
su

m
pt

io
n

(J
)

1e7

Avg
Pow

er=
90 W

att

Av
gP
ow
er
=2

10
W
at
t

Feasible
Baseline
Pareto Front

(a) Energy-Time Tradeoff

40000 50000 60000
Training Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e7
192, 250W

32, 100W48, 125W48, 150W
48, 175W

48, 200W

56, 225W
48, 250W

Baseline
Pareto Front

(b) Pareto Front Zoom-in

Figure 2: DeepSpeech2 trained with LibriSpeech on NVIDIA V100: (a) ETA vs. TTA. The red dots indicate all feasible configurations. The

two gray dotted lines indicate two boundaries characterized by average power consumption. The green line indicates the Pareto frontier

over all configurations. (b) Zoom-in view on the Pareto frontier in (a), with batch size and power limit annotated on each data point.

Impact of GPU power limit on energy efficiency. Setting

a GPU’s power limit will have the device internally trigger

dynamic voltage and frequency scaling (DVFS) such that its

power draw does not exceed the power limit [69]. If not set

manually, the power limit is at the maximum by default. We

performed a sweep over a wide range of GPU power lim-

its5 for the aforementioned setup. We found that the optimal

energy consumption (Power Limit Opt. in Figure 1) may hap-

pen at a lower power limit than the maximum and can reduce

energy consumption by 3.0%–31.5%.

Joint optimization. As Figure 1 shows, we can achieve

even more energy savings (23.8%–74.7% reduction) if we

jointly optimize both configurations. Note that we observed

similar opportunities for reducing energy consumption for

other generations of GPUs as well (Figure 15 in Appendix A).

2.3 Energy-Performance Tradeoffs

Opportunities for reducing DNN training energy consumption

comes with a cost. When optimized for energy efficiency,

DNN training performance (time-to-accuracy, or TTA) may

be impacted. In the following, we characterize this tradeoff.

We define the energy consumption of DNN training until it

reaches its target accuracy as its energy-to-accuracy (ETA):

ETA(b, p) = TTA(b, p)×AvgPower(b, p), (1)

where p denotes the GPU power limit, b the batch size, and

AvgPower(b, p) the average power consumption during train-

ing with configuration (b, p). Similar to TTA, ETA captures

the end-to-end goal of DNN training.

Note that AvgPower(b, p) is not the same as the GPU

power limit. When changes in configuration (b, p) lead to

5From the minimum to the maximum power limit allowed by NVIDIA

System Management Interface [3]; from 100W to 250W for NVIDIA V100.

an increase in TTA, ETA does not always follow because

AvgPower(b, p) can decrease more. This motivates us to in-

vestigate the tradeoff between ETA and TTA.

Tradeoff between ETA and TTA. We characterize and

elaborate on this tradeoff using DeepSpeech2 trained on Lib-

riSpeech as an example (Figure 2). It shows a scatter plot of

(TTA, ETA) for the batch size and power limit sweep exper-

iments in Section 2.2. We observe similar results for other

workloads as well (Figure 16 in Appendix B).

Let us start with Figure 2a, where each data point denotes

the (TTA, ETA) of training the model for a certain configu-

ration.While sweeping the configurations, we focus on the

boundary of all feasible (TTA, ETA) pairs. We find them to be

bounded by two straight lines characterizing the average GPU

power consumption. When the GPU is under heavy load, the

(TTA, ETA) data points appear closer to 210W. On the other

hand, when the GPU is under lighter load, its average power

consumption tends closer to 90W, which is close to the GPU’s

idle power consumption of 70W. More importantly, we find

a curve along which all (TTA, ETA) pairs achieves Pareto

optimality [16], for which we cannot improve ETA without

sacrificing TTA, and vice versa.

Now let us take a closer look at the Pareto frontier in Fig-

ure 2b, with the configurations used during training annotated

along each data point. We highlight two takeaways:

1. These results show that baseline configurations can lead

to suboptimal energy efficiency (§2). Moreover, it shows

that blindly going for high batch size and power limit

configurations can lead to suboptimal TTA as well.

2. There exists a tradeoff between ETA and TTA, with differ-

ent optimums for each. The configuration optimizing the

ETA (b =32, p =100W) is different from that optimizing

TTA (b =48, p =250W).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 121

3 Zeus Overview

Zeus is an optimization framework that navigates the ETA-

TTA tradeoff by automatically configuring the batch size and

GPU power limit of recurring DNN training jobs. It enables

developers to optimize energy and/or performance metrics

using a single knob.

3.1 Optimization Metric

Defining a good cost metric for users to express their prefer-

ence in this tradeoff is critical in designing Zeus. We propose

a simple cost metric:

C(b, p;η) = η ·ETA(b, p)+(1−η) ·MAXPOWER ·TTA(b, p)
(2)

Here η is the parameter specified by the user to express

the relative importance of energy efficiency and training per-

formance (throughput). When η = 0, we are only optimizing

for time consumption, whereas when η = 1, we are only opti-

mizing for energy consumption. MAXPOWER is the maximum

power limit supported by the GPU, a constant introduced to

unify the units of measure in the cost metric.

3.2 Challenges in Picking the Optimal Configuration

Combining Equations 1 and 2, we have:

C = (η ·AvgPower(b, p)+(1−η) ·MAXPOWER) ·TTA(b, p).
(3)

Picking the optimal configuration(s) to minimize the

energy-time cost C for DNN training is challenging because

the search space [b× p] is large and obtaining the cost of

each configuration is difficult. This is because it is hard to

determine the value of both AvgPower(b, p) and TTA(b, p)
efficiently, as explained below.

• Complex power consumption model: The total energy

consumption of a GPU is affected in a non-linear fashion

by both the characteristics of the workload such as the

number of instructions and memory accesses, as well as

the GPU hardware configurations such as the frequency

and voltage of the cores and memory on board [6, 46].

Existing efforts estimate GPU energy consumption based

on instruction- or kernel-level information [43,64], which

are architecture-specific and workload-dependent.

• Stochastic nature of DNN training: Modeling and pre-

dicting the duration for training a specific model to target

accuracy (TTA) is known to be difficult [31]. Moreover,

the randomness introduced during model initialization

and data loading leads to variations of TTA, even when

the same job is run on the same GPU with the same con-

figuration – TTA variations can be as large as 14% [19].

Fortunately, DNN training jobs often recur in production

clusters [37, 94]. This provides opportunities for empirical

estimation through repeated measurements across recurrences

of the same training job.

Zeus

Batch Size
Optimizer

Bandit

DL Execution Engine

GPU

NVML

Job2 Job3Job1

Optimization Metric
ETA & TTA

DNN

Training

Stats

DNN

Training

Config

GPU

Power

Config

GPU

Power

Stats

x Optimization

y Execution

w Job Submission

z Observation

Power Optimizer

JIT
Profiler

Figure 3: Zeus Workflow.

3.3 Architectural Overview

At a high-level, Zeus takes an online exploration-exploitation

approach to minimize the aggregate cost of recurrent DNN

training jobs. Zeus addresses the aforementioned challenges

with two key components:

1. A just-in-time (JIT) online profiler, which efficiently pro-

files the energy characteristics of the training job online.

2. Multi-Armed Bandit (MAB) with Thompson sampling,

which allows us to embrace the stochastic nature of DL

training and optimize under uncertainty while also adapt-

ing to changing workloads such as data drift.

The combination of the JIT profiler and MAB makes Zeus

a fully online solution, allowing it to immediately begin opti-

mizing for incoming jobs.

Workflow of Zeus. Figure 3 shows an overview of the high-

level workflow of Zeus. In a production environment, users

submit 1 recurrent DNN training jobs (a tuple of data, model,

optimizer, and the target validation metric) to Zeus, along with

a set of feasible batch sizes B and power limits P to explore.

Zeus then predicts 2 the optimal batch size and power limit

configuration based on past execution history, and launches

3 the training job with that configuration. During and after

the training process, 4 statistics about DNN training (e.g.,

validation metric) and GPU power consumption are collected

and fed back to the Zeus optimizer. The Zeus optimizer learns

from the feedback and adjusts its internal states. The train-

ing job will be terminated upon either reaching target metric

or exceeding a stopping threshold determined by Zeus. The

whole process is an automated feedback loop that minimizes

the key objective of energy-time cost.

Building Zeus requires both algorithm design and systems

support. Next we describe the core optimization algorithm

details (§4) and Zeus implementation highlights (§5).

122 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 Zeus Algorithm Design

In this section, we delve into the details of how Zeus selects

the best batch size and GPU power limit to optimize the over-

all cost of recurrent DNN training tasks. We first present the

optimization problem formulation and how we decouple the

optimizations of batch size and power limit (§4.1). Next, we

show how to optimize power limit (§4.2) and batch size (§4.3)

under the decoupled framework. We conclude by discussing

how we address common challenging scenarios (§4.4).

4.1 Problem Formulation

The objective of Zeus is to minimize the cost of a recurring

job by automatically exploring the feasible set of batch sizes

B and power limits P . In essence, we neither want to incur

too much cost searching for the optimal configuration, nor

do we want to miss it. Minimizing the cumulative cost of the

job over recurrences captures the implicit tradeoff between

exploration and exploitation. Put formally in terms of the cost

function defined by Equation 2, our objective becomes

min
b,p

T

∑
t=1

C(bt , pt ;η)

s.t. bt ∈ B, pt ∈ P ,∀t ∈ [1,T],

(4)

where bt and pt respectively denote the batch size and power

limit chosen at the tth recurrence of the job, and b and p are

vectors of length T .

This is a challenging problem without modification, mainly

because the size of the search space can be in the order of hun-

dreds, and each value of C(b, p;η) inside the search space can

only be obtained by running DNN training until it reaches the

target metric. However, further expanding the cost function

(Equation 3) allows us to decouple the exploration of batch

size and power limit, making the problem more tractable:

C(b, p;η)

= (η ·AvgPower(b, p)+(1−η) ·MAXPOWER) ·TTA(b, p)

= Epochs(b) ·
η ·AvgPower(b, p)+(1−η) ·MAXPOWER

Throughput(b, p)
.

(5)

where Epochs(b) denotes the number of epochs needed to

reach the target, and Throughput(b,p) epochs per second.

We find two key insights that allow the decoupling of batch

size b and power limit p:

1. Given b, AvgPower(b, p) and Throughput(b, p) can be

profiled quickly during training for all possible choices

of p. This is due to the iterative nature of DNN training,

yielding stable power and throughput estimations even

with a small number of iterations.

2. Epochs(b) is not affected by the choice of p as changing

the power limit does not change what is computed.

This implies that the optimal power limit, given any batch

size, can be determined independently based on online profil-

ing. Moreover, since any choice of batch size is automatically

accompanied by the optimal power limit, our search space is

reduced to the set of batch sizes B .

Formally put, we have decoupled the problem in Equation 4

into an equivalent two-level optimization problem

min
b∈BT

T

∑
t=1

Epochs(bt) ·EpochCost(bt ;η) (6)

where

EpochCost(bt ;η)

= min
pt∈P

η ·AvgPower(bt , pt)+(1−η) ·MAXPOWER

Throughput(bt , pt)
.

(7)

When a job arrives, Zeus will first decide which batch

size to use based on Equation 6 (§4.3). Then, based on the

batch size, Zeus will pick the optimal power limit based on

Equation 7 (§4.2).

4.2 Optimizing the Power Limit

We start with how Zeus determines the optimal power limit

based on Equation 7, given a choice of the batch size. As

highlighted earlier, we leverage the iterative nature of DNN

training and the recurrent nature of jobs in production DNN

training workflows.

When a job with batch size decision b is submitted, our just-

in-time (JIT) profiler is triggered and checks if this batch size

had been profiled before. For an unseen batch size b, it pro-

files AvgPower(b, p) and Throughput(b, p) for all possible

power limits p during the first epoch of the job by partitioning

the epoch into slices at iteration boundaries and dynamically

changing the GPU power limit for each slice. The profile in-

formation is fed back to Zeus, and the optimal power limit

of the batch size is determined by solving Equation 7. The

rest of the epochs are executed with the optimal power limit.

Our online JIT profiling approach consumes strictly less time

and energy compared to offline profiling before running the

job, because the profiling process itself contributes to training

without affecting its accuracy. We show that JIT profiling

incurs negligible overhead in Section 6.5.

4.3 Optimizing the Batch Size

Now we focus on how Zeus determines the batch size bt for

each job recurrence t that optimizes Equation 6. As seen in

Section 4.2, EpochCost(bt;η) is a cheap and deterministic

function that identifies the optimal power limit for any batch

size bt and returns the optimal cost of one epoch. Thus, we

may limit our exploration to choosing the optimal batch size

because whichever batch size we choose, the optimal power

limit will accompany it.

Due to the unpredictable and stochastic nature of DNN

training, picking out the optimal batch size without adequate

exploration is difficult. Hence, a good solution must (1) in-

corporate such nature of DNN training into its exploration

process, and (2) intelligently tradeoff the cost of exploring for

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 123

Input: Batch sizes B

Belief posterior parameters µ̂b and σ̂2
b

Output: Batch size to run b∗

Function Predict(B , µ̂b, σ̂2
b):

1 foreach batch size b ∈ B do

/* Sample from the belief distribution */

2 Sample θ̂b ∼N (µ̂b, σ̂
2
b)

3 end

/* Select the arm with smallest mean cost sample */

4 b∗← argminb θ̂b

Algorithm 1: Gaussian Thompson Sampling: Choosing

the next batch size to run (Predict)

potentially better batch sizes and the gain of exploiting batch

sizes that are already known to be good.

Grid search is suboptimal. We argue that exhaustively go-

ing through all batch sizes and selecting the one with the

smallest cost is still suboptimal due to the stochastic nature of

DNN training. That is, because the cost of a DNN training job

can differ even when executed with the exact same configura-

tions, it must be modeled as a cost distribution with unknown

mean and variance. Although performing several trials for

each batch size may yield a better estimation of the mean cost,

such a strategy leads to high exploration cost because it does

not quickly rule out obviously suboptimal batch sizes.

Multi-Armed Bandit formulation. Zeus aims to explore

the cost of different batch sizes and converge to the optimal

batch size, while not incurring too much exploration cost.

Zeus formulates the problem as a Multi-Armed Bandit

(MAB) with T trials and B arms, where each trial corresponds

to a recurrence of the job and each arm to a batch size in B .

MAB is a good fit to our problem scenario in that it captures

the stochasticity of DNN training by modeling the cost of

each batch size as a random variable. Specifically, we choose

the Gaussian distribution [81] due to its representational flexi-

bility. The objective of the MAB formulation is to minimize

the cumulative cost regret defined as

T

∑
t=1

Regret(bt ;η) (8)

where the regret of choosing bt is defined as

Regret(bt ;η)

= Epochs(bt) ·EpochCost(bt ;η)−min
b,p

Cost(b, p;η).

(9)

Minimizing cumulative cost regret aligns with our objective

in Equation 6.

Thompson Sampling. We adopt the Thompson Sam-

pling [81] policy for the MAB formulation to tradeoff ex-

ploration and exploitation, not only because it is known to

Input: Batch size b and observed cost C

Previous cost observations Cb for b

Belief prior parameters µ̂0 and σ̂2
0

Output: Belief posterior parameters µ̂b and σ̂2
b

Function Observe(b, C, Cb, µ̂0, σ̂2
0):

/* Add the most recent cost observation to history */

1 Cb← Cb∪{C}
/* Compute the variance of the cost */

2 σ̃2←Var (Cb)
/* Compute the belief distribution’s posterior variance */

3 σ̂2
b←

(

1

σ̂2
0

+ |Cb|
σ̃2

)−1

/* Compute the belief distribution’s posterior mean */

4 µ̂b← σ̂2
b

(

µ̂0

σ̂2
0

+ Sum(Cb)
σ̃2

)

Algorithm 2: Gaussian Thompson Sampling: Updating

the belief distribution (Observe)

perform well in practice [17, 81] and had successful adoption

recently [58, 67], but also because its modeling assumptions

fit our problem scenario well.

At a high level, Thompson Sampling is an online procedure

that refines its belief about the mean cost of each arm (batch

size) based on experience. At each recurrence, the belief is

used to pick the arm with the lowest estimated mean cost

(Algorithm 1), and the belief is updated based on the actual

cost observed (Algorithm 2).

Specifically, the cost distribution is modeled as a Gaussian

distribution with unknown mean θb. Then, the belief about θb

is modeled with its conjugate prior distribution, which is also

a Gaussian distribution [24]. That is, θb ∼N (µ̂b, σ̂
2
b). Here

it is important to note that 1/σ̂2
b can be thought as of how

confident the policy is in its belief about that arm, with the

confidence increasing as it accumulates more observations of

the cost of choosing that arm. Then, Thompson Sampling au-

tomatically balances exploration and exploitation by choosing

the arm with the smallest mean cost sample θ̂b ∼N (µ̂b, σ̂
2
b)

(Algorithm 1). With low confidence (high variance), θ̂b will

be dispersed across a wider range of costs, having higher

chances of getting chosen even if some of its initial observa-

tions showed high cost. In contrast, when the arms observed

a lot of cost samples and the confidence is high (low vari-

ance), θ̂b is likely to be centered around the mean observed

cost, allowing the exploitation of arms that are known to be

good. After the actual cost of an arm is observed, the belief

parameters of that arm are updated using the Bayes Rule [81]

(Algorithm 2).

The belief prior parameters µ̂0 and σ̂2
0 reflect prior belief

about the mean cost of using the batch size for training and

the confidence of such belief. Hence, the choice of prior pa-

rameters serve as a way to initialize the arms such that they

reflect prior knowledge about the cost of each arm. If such

124 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Recurrences

C
h
o

s
e

n
 B

a
tc

h
 S

iz
e Exploration With Pruning Thompson Sampling

Early

Stopped

Figure 4: An example of batch sizes chosen by Zeus for a recurring

job. Each point is a recurrence. During pruning, Zeus explores

each batch size 2 times in order to observe the cost variance (Line 2

in Algorithm 2).

information is not available, which is our default assumption,

it is also possible to initialize the arms with a flat prior that

assumes no prior knowledge – in our case, this is a Gaussian

distribution with zero mean and infinite variance.

In contrast to grid search, our formulation using MAB and

Thompson Sampling meets the two requirements mentioned

earlier. That is, MAB inherently incorporates the stochastic

nature of DNN training in that it models cost as a random

variable. Moreover, Thompson Sampling can quickly rule

out batch sizes that are obviously suboptimal because the

probability of a smaller mean cost being sampled from an

arm that observed noticeably large cost is low.

4.4 Extensions for Challenging Scenarios

Handling unknown cost variance. Unlike conventional

Gaussian Thompson Sampling applications, we may not as-

sume that the variances of the cost of each arm are known.

That is, the cost variance (i.e., how much the cost will fluctu-

ate even when training is run with the same batch size) is not

known before any observation. Moreover, the cost variance

depends not only on the batch size, but also on the DNN’s

robustness to the randomness in parameter initialization and

data loading, making it difficult to quantify at the time the

MAB is constructed. Hence, our approach is to learn the cost

variance as we observe cost samples (Line 2 in Algorithm 2).

Handling stragglers during exploration. There may be

cases where an exploratory job does not reach the target metric

within a reasonable amount of cost, especially during the

earlier exploration stage. To handle this, we employ early

stopping and pruning. The intuition is that if a batch size does

not reach the target metric even after incurring an exceedingly

large cost, it is highly unlikely to be the optimal one.

For early stopping, we define a cost threshold β ·mint Ct ,

meaning that when the cost of the current job is to exceed β
times the minimum cost observed so far, we stop the job and

retry with another batch size. Here β is a parameter to account

for the stochastic nature of DL training. By default, we choose

β = 2, with which we should be able to tolerate variations of

TTA between different runs of the same configuration, which

is usually less than the 14% [19].

For pruning, as illustrated in Figure 4, we begin with the

default batch size provided by the user and first try smaller

batch sizes until we meet the minimum batch size or a batch

10 100
Batch Size

0.0

0.5

1.0

E
TA

 (J
)

1e7

Error margin

Figure 5: ETA of each batch size for DeepSpeech2 trained on

LibriSpeech. Plots for rest of the workloads are in the Appendix C.

Input: Set of batch sizes B

Default batch size b0

Belief prior parameters µ̂0 and σ̂2
0

/* Exploration With Pruning */

1 Recurrence t← 0

2 repeat 2 times

3 Explore b0

4 Explore b < b0 until convergence failure

5 Explore b > b0 until convergence failure

6 B ←{b : b converged}
7 b0← b with smallest cost observed

8 t← t + |B|

9 end

/* Thompson Sampling */

10 while t ≤ T do

11 b∗← Predict(B, µ̂b, σ̂
2
b ∀b ∈ B)

12 Run job with batch size b∗ and add cost to Cb

/* Update our belief of the mean cost */

13 µ̂b, σ̂
2
b← Observe(b,Cb, µ̂0, σ̂

2
0)

14 t← t +1

15 end

Algorithm 3: Gaussian Thompson Sampling Batch Size

Optimizer.

size that fails to reach the target metric before the early stop-

ping threshold. The same process is repeated for batch sizes

larger than the default batch size. Then, only the batch sizes

that reached the target metric are kept in the batch size set

we explore. After performing an initial round of pruning, the

default batch size is updated to be the one with the smallest

cost observed, and we perform pruning once more starting

from the new default batch size.

The intuition behind our batch size pruning approach is the

convexity we observe in the BS-ETA curve around the optimal

batch size (See Figure 5). Moreover, pruning allows Zeus to

quickly rule out batch sizes that are noticeably suboptimal

(typically too large, leading to more training epochs and loss

of accuracy [27, 49], or too small, yielding gradients that are

too noisy [80]), thus cutting down the cost of exploration.

The overall process is depicted in Algorithm 3.

Handling concurrent job submissions. Classic multi-

armed bandit scenarios assume that the MAB immediately

observes the cost of pulling an arm. However, in a DNN

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 125

training cluster, recurring jobs may overlap in their execution

when a later job starts before the completion of an earlier job.

In this case, the MAB does not get to observe the cost of the

earlier job at the time it has to decide the batch size for the

later job. For deterministic policies like [8, 56], this leads to

duplication exploration of the same batch size back-to-back,

reducing the efficiency of exploration.

However, Thompson Sampling naturally mitigates this

problem without modification because deciding the next batch

size to explore (Predict) is a random function. That is, be-

cause Thompson Sampling samples the estimated mean cost

from each arm’s belief distribution and returns the arm with

the lowest sampled value, concurrent jobs can run different

batch sizes even if there was no information gained between

the invocations of Predict. This is especially the case during

the early stage of Thompson Sampling when the arms’ belief

distributions have large variances (low confidence), losing

little exploration efficiency.

During the short initial pruning phase, we run concurrent

job submissions with the best-known batch size at that time.

As the best batch size constantly updates throughout the ex-

ploration stage, this strategy fairly distributes the additional

exploration opportunities from concurrent job submissions to

batch sizes that are known to converge. We evaluate Zeus’s ef-

ficacy on handling concurrent job submissions in Section 6.3.

Handling data drift. In production training clusters, the

data on which the model is trained shifts, which is one of

the reasons why re-training is triggered [61, 63]. The impli-

cation of drift in the perspective of the MAB is that the cost

distribution of each arm is non-stationary.

Thompson Sampling allows a simple modification that

allows us to handle non-stationary cost distributions. Since

older cost observations become less and less relevant, we only

operate on a window of N most recent cost observations [10],

and the belief distributions will not take old observations into

account. Unlike exponential decay, windowing also allows the

cost variance of the most recent observations to be estimated

directly. When old history entries are evicted, computing

the new parameters of the arm is also cheap thanks to the

conjugate prior property. This way, Zeus transparently adapts

to data drifts in an online manner, as we show in Section 6.4.

5 Zeus Implementation

Zeus is implemented as a Python library that can be imported

into DNN training scripts. The ZeusDataLoader class in-

tegrates with PyTorch [74]. The class profiles power and

throughput online by slicing epochs in iteration boundaries

and invoking the NVML [2] library for power limit configu-

ration and profiling. We have observed that five seconds of

profiling for each power limit is enough to yield stable results.

With the information, the optimal power limit can be automat-

ically determined and applied. Moreover, ZeusDataLoader

monitors the cost incurred by training and early stops the job

if needed. Listing 1 shows an example training loop integrated

1 from zeus import ZeusDataLoader

2

3 train_loader = ZeusDataLoader(

4 train_set, batch_size, max_epochs, target_metric)

5 eval_loader = ZeusDataLoader(eval_set, batch_size)

6

7 for epoch in train_loader.epochs(): # may early stop

8 for batch in train_loader:

9 # Learn from batch

10 for batch in eval_loader:

11 # Evaluate on batch

12 train_loader.report_metric(validation_metric)

Listing 1: Zeus Integration Example

with Zeus.

Observer Mode. ZeusDataLoader supports Observer

Mode, where it profiles the power consumption and through-

put of each power limit and determines the optimal one, but

keeps the power limit at the maximum. By doing so, with-

out affecting time or energy consumption, ZeusDataLoader

reports how much time and energy the job would have con-

sumed if the power limit were the optimal one, allowing the

user to get an idea of the impact of using Zeus. We believe that

such a feature can encourage Zeus’s adoption by informing

users of its potential savings.

6 Evaluation

We evaluate Zeus’s effectiveness in terms of navigating the

energy-time tradeoff. Our key findings are as follows:

1. Zeus reduces energy consumption by 15.3%–75.8%. It

achieves this by trading off small performance for jobs

that are already throughput-optimal; otherwise, it reduces

training time by up to 60.1% too (§6.2).

2. Zeus quickly converges to optimal configurations (§6.2).

3. Zeus can handle workloads with data drift (§6.4) and

overall incurs low overhead (§6.5).

4. Zeus scales to multi-GPU settings (§6.6) and provides

consistent savings across four generations of GPUs (§6.7).

6.1 Experimental Setup

Testbed Setup. We evaluate Zeus with four generations of

NVIDIA GPUs as specified in Table 2.

Workloads. Table 1 summarizes our workloads. The de-

fault batch size (b0) is chosen from the original model publi-

cation when available; otherwise, it is set to be the maximum

batch size which consistently achieves the target accuracy.

In terms of learning rate, models trained with the

Adadelta [99] optimizer do not require an initial learning

rate. For optimizers that do require an initial learning rate, we

made our best effort in choosing a batch size and learning rate

pair that achieves reasonable accuracies by experimenting

with values from the original publication of the model and

those discovered by popular DL frameworks [95].

After collecting the initial batch size and learning rate pairs,

126 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Task Dataset Model Optimizer b0 Target Metric

Speech Recognition LibriSpeech [73] DeepSpeech2 [33] AdamW [62] 192 WER = 40.0%

Question Answering SQuAD [79] BERT (QA) [21] AdamW [62] 32 F1 = 84.0

Sentiment Analysis Sentiment140 [26] BERT (SA) [21] AdamW [62] 128 Acc. = 84%

Image Classification ImageNet [20] ResNet-50 [38] Adadelta [99] 256 Acc. = 65%

Image Classification CIFAR-100 [53] ShuffleNet-v2 [65] Adadelta [99] 1024 Acc. = 60%

Recommendation MovieLens-1M [34] NeuMF [39] Adam [51] 1024 NDCG = 0.41

Table 1: Models and datasets used in our evaluation. The provided target metrics is the target for each training job. Here b0 denotes the

default batch size presented in the original work when feasible, otherwise we choose the maximum batch size which can consistently reach

the target. The BERT(QA) and BERT(SA) means fine-tuning BERT on the tasks of question answering and sentiment analysis, respectively.

Node GPU Specification Host Specification

HPE Apollo

6500 Gen10 Plus

A40 × 4

Model A40 PCIe CPU AMD EPYC 7513

VRAM 48GB RAM 512GB DDR4-3200

mArch. Ampere Disk 960GB NVMe SSD

CloudLab [23]

r7525

V100 × 2

Model V100 PCIe CPU AMD EPYC 7542

VRAM 32GB RAM 512GB DDR4-3200

mArch. Volta Disk 2TB 7200rpm HDD

Chameleon

Cloud [48]

RTX6000

Model RTX6000 CPU Xeon Gold 6126

VRAM 24GB RAM 192GB

mArch. Turing Disk 256GB SSD

Chameleon

Cloud [48]

P100 × 2

Model P100 CPU Xeon E5-2670 v3

VRAM 16GB RAM 128GB

mArch. Pascal Disk 1TB HDD

Table 2: Hardware used in the evaluation.

when we scale the batch size, we applied Square Root Scal-

ing [42] for adaptive optimizers such as Adam [51] following

recent theoretical results [30].

Baselines. We compare against the following baselines:

1. Default (b = b0, p = MAXPOWER). This is often the default

configuration used by practitioners, where the GPU power

limit is set to, or rather not changed from, the maximum.

This is the most conservative baseline with no exploration.

2. Grid Search with Pruning. This one tries out one configu-

ration of (b, p) for each recurrence of the job and selects

the best one. We optimize naïve grid search by having it

prune out batch sizes that failed to reach the target metric.

Metric. Our primary metrics are ETA (energy consumption)

and TTA (training time). Ideally, we want to reduce both; but

due to their tradeoff, sometimes it may not be possible to

simultaneously do both.

Defaults. All experiments are done on NVIDIA V100

GPUs, unless otherwise mentioned. By default, we highlight

η = 0.5 to strike a balance between ETA and TTA. Later, we

sweep η from 0 to 1 (§6.7). The early-stopping threshold β is

set to 2, and we also sweep β from 1.5 to 5 (§6.7).

Methodology. Due to resource constraints and environmen-

tal concerns, we cannot afford to repeatedly train all of our

workloads with various configurations end-to-end hundreds

of times sequentially. However, similar to how Zeus decou-

ples the exploration of batch size and power limit, we may

apply the same decoupling in our experimentation. That is,

we instead take a trace-driven approach, where we collect two

kinds of trace data:

1. Training trace. We train all possible combinations of mod-

els and batch sizes until convergence and record the num-

ber of epochs the model took to reach its target accuracy.

We repeat this with four different random seeds for every

combination to capture the stochasticity in DNN training.

2. Power trace. We use our JIT profiler to collect the through-

put and average power consumption of all possible com-

binations of model, batch size, and power limit.

We then replay these traces when we need to train a model

and reconstruct its TTA and ETA values in order to evaluate

the decisions made by Zeus and baselines. Moreover, since

we have access to all the possible choices and their outcomes,

we also know the optimal choice. Therefore, with the traces,

we can evaluate the regret achieved by Zeus and baselines.

Note that Zeus does not directly learn from these traces

(which would be offline-profiling), but instead only learns

from the replay of these traces in an online fashion.

While the aforementioned trace-driven method is used

widely throughout our evaluation, we run Zeus end-to-end for

the evaluation of handling data drift (§6.4) because it is more

expensive to construct the trace for the drifting dataset.

6.2 Zeus Performance

In this section, we evaluate the performance of Zeus in terms

of energy consumption and training time as well as the con-

vergence characteristics of our Multi-Armed Bandit algo-

rithm. Each experiment is run across multiple recurrences

of DNN training jobs. We select the recurrence number to be

2 · |B| · |P |, so that the Grid Search baseline finishes explo-

ration and also has plenty of chances to exploit its choice.

Improvements in ETA. Figure 6a shows the energy con-

sumption (ETA) of the last five recurrences of Zeus and Grid

Search w.r.t. the Default baseline, aiming to compare the fi-

nal point each approach converged to. Zeus reduces energy

consumption (ETA) by up to 15.3%–75.8% w.r.t. the baseline.

This is also comparable to the reduction we found by exhaus-

tively searching through all the configurations in Section 2 as

well as by using Grid Search.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 127

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)
Default Grid Search Zeus

(a) Energy Consumption

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

TT
A

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(b) Training Time

Figure 6: Zeus reduces energy consumption for all workloads. (a)

energy consumption, (b) training time of each workload, normal-

ized by the Default baseline. Results are computed with the last

five recurrences, capturing the knobs each method converged to.

0 100
Job Recurrence (t)

10
7

10
8

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(a) DeepSpeech2

0 25 50
Job Recurrence (t)

10
7

10
8

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(b) ResNet-50

Figure 7: Cumulative regret of Zeus vs. Grid Search for (a) Deep-

Speech2 and (b) ResNet-50.

Tradeoff with TTA. Figure 6b shows the time consumption

(TTA) of the last five recurrences of Zeus and Grid Search

w.r.t. the Default baseline. Even though Zeus reduces training

time by up to 60.1%, for some workloads TTA is increased

by 12.8% (Figure 6b). This is due to the tradeoff between

ETA and TTA, which is the central focus of this paper. This is

especially true for workloads with a b0 tuned for minimizing

training time, where there is little room for TTA improvement.

Cumulative regret. While Zeus and Grid Search perform

close to each other, Zeus uses significantly smaller amount

of resources to converge. As a bandit-based solution, the

effectiveness of our algorithm can be quantified via regret,

the difference between the decision selected and the optimal

choice (Equation 9 in Section 4.3).

Figure 7 shows the cumulative regret of Zeus and Grid

Search for DeepSpeech2 and ResNet-50. The optimal con-

figuration is identified separately by an exhaustive parame-

ter sweep. We observe that in both workloads, Zeus is able

8 12 16 24 32 48 56 64 72 96 12
8

15
6

19
2

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(a) Zeus

8 12 16 24 32 48 56 64 72 96 12
8

15
6

19
2

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(b) Grid Search

Figure 8: Search paths of (a) Zeus and (b) Grid Search for Deep-

speech2. The heatmap in the background shows the regret of each

(Batch Size, Power Limit) configuration. Darker background de-

notes lower regret and therefore better configuration. The colored

line with shifting color shows the search path, with darker color

being later recurrences.

to achieve better regret from the first job recurrence. Zeus

reaches the plateau in the cumulative regret earlier than Grid

Search, which means it converges to the optimal solution ear-

lier. We observe similar results for other workload as well

(Appendix D). In the worst case, Grid Search results in 72×
more cumulative regret than Zeus until convergence.

Convergence to a Pareto-optimal configuration. Despite

having no information about the application beforehand, Zeus

learns the energy characteristics of it online in a few itera-

tions. Figure 8 shows the search path of Zeus and Grid Search

during training DeepSpeech2. Due to the decoupling in the

optimization of power limit and batch size, Zeus explores the

configuration space more efficiently and converges to the opti-

mal configuration much faster. We observe similar results for

other workloads (see Appendix E). Moreover, in Figure 8b we

observe that Grid Search may not even converge to optimal

configuration. This is due to the stochastic nature of DNN

training, with even the same batch size yielding different en-

ergy and time consumptions. Hence, Grid Search may choose

a suboptimal configuration when a suboptimal configuration

luckily yields good energy and time consumptions.

6.3 Trace-Driven Simulation Using the Alibaba Trace

Here we evaluate how Zeus can save energy and time con-

sumption for DNN training in large clusters. We run trace-

128 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)
Default Grid Search Zeus

(a) Energy Consumption

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

TT
A

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(b) Training Time

Figure 9: Zeus reduces energy consumption for all jobs in the

Alibaba cluster trace [94], compared to Grid Search and Default.

(a) Energy consumption with Zeus comparing against baselines,

(b) Training time of each type of workload. Both are normalized

by the Default baseline.

driven simulation using the Alibaba GPU cluster trace [94]

which contains over 1.2 million jobs spanning a period of two

months. The Alibaba GPU cluster trace is suitable for our

evaluation for two reasons. First, the trace identifies groups

of recurring jobs, and each job is annotated with its group ID.

Second, jobs within the same group show overlap in their ex-

ecution, allowing us to evaluate Zeus’s capability of handling

concurrent job submissions with Thompson Sampling.

In order to assign job groups to the workload (Table 1)

that best resembles its runtime, we remove jobs that did not

successfully terminate and run K-Means clustering [36] on

the mean job runtime of each group to form six clusters. Then,

we match the six clusters with our six workloads in the order

of their mean runtime. When running simulation, in order

to capture the intra-cluster runtime variation of each job, we

scale the job runtime with the ratio of the job’s original run-

time to its cluster’s mean runtime. We compare Zeus with

Default and Grid Search and plot the results in Figure 9.

Figure 9a shows the cumulative energy consumption of

training using all three approaches. Zeus outperforms both

baselines for workloads of all types and sizes. Note that there

are scenarios where the Grid Search performs worse than

Default, due to it wasting too much energy and time during

the exploration stage. Thanks to Zeus’s early stopping and

quick online power optimization, its energy and time cost

during the exploration stage is significantly reduced. Across

all the models, Zeus reduces training energy usage by 7%–

52%. Figure 9b shows the training time using Zeus to be

increased by at most 16%, and in many cases even decreased

by up to 33%. Finally, similar to earlier experiments, Zeus

0 10 20 30 40
Slice Index

0.0

0.5

1.0

E
TA

 (J
)

1e6

0

1

2

3

4

TT
A

(s
)

1e3

0

200

400

B
at

ch
 S

iz
e

C
ho

se
n

ETA TTA Batch Size Chosen

Figure 10: Energy and time consumption of training BERT with

Zeus on Capriccio and the batch size chosen for each slice.

had significantly lower cumulative regret than Grid Search.

6.4 Handling Data Drift

While there are previous works that attempt to identify and

address data drift in general ML settings [63], existing datasets

are classification tasks based on small feature vectors [12,35],

completely synthetic [25, 44], or private [66].

Therefore, we create and open-source a new sentiment

analysis dataset called Capriccio that is suitable for evaluating

DNN models. Capriccio consists of 1.6 million tweets over

three months from the Sentiment140 [26] dataset, labeled

with sentiment scores and the timestamp of the tweet. We

emulate data drift by capturing a sliding window of 500,000

tweets (roughly the amount of tweets in one month) at a time

and moving the window forward by each day, generating 38

slices. We skip empty dates to avoid having identical slices.

We train BERT [21] on Capriccio with Zeus configured

with a window size of 10, roughly corresponding to a time

frame of two weeks on Twitter. We plot the selected batch

size for each recurrence (slice) and its corresponding ETA

and TTA of training in Figure 10. It can be seen that spikes in

ETA and TTA (signaling that the current batch size may no

longer be optimal) trigger the exploration of a batch size that

is different from the one previously converged to.

6.5 Overhead of JIT Profiling

Measurements with the Deepspeech2 model using the default

batch size b0 show that JIT profiling results in a 0.01% in-

crease in energy consumption and a 0.03% increase in time

consumption. Such a tiny overhead is possible because the

time needed to profile all power limits is very small (less than

one minute) while one epoch of training spans hours (which is

typical for DL workloads). Measurements on ShuffleNet-v2,

which has much shorter epoch duration, show that JIT profil-

ing results in a 0.6% increase in terms of time consumption

and a 2.8% reduction in energy consumption.

6.6 Scaling to Multi-GPU

While the primary focus of this paper is on single-GPU set-

tings, in this section, we show that Zeus can be extended

to single-node multi-GPU training settings by profiling the

power consumption of all GPUs that participate in training.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 129

40000 45000 50000 55000 60000
TTA (s)

6

7

8
E

TA
 (J

)
1e6

·=0.0
·=0.1
·=0.2
·=0.3
·=0.4
·=0.5

·=0.6
·=0.7
·=0.8
·=0.9
·=1.0
Pareto Front

Figure 11: Pareto Front of DeepSpeech2 and how η navigates it.

2 3 4
Early-Stopping Threshold (³)

0.9

1.0

1.1

1.2

1.3

1.4

R
el

at
iv

e
C

um
m

ul
at

iv
e

E
TA

(n
or

m
al

iz
ed

 b
y
³
=
2.
0) DeepSpeech2

BERT (QA)
BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF
Geometric mean

Figure 12: Relative cumulative energy consumption of Zeus across

all jobs, w.r.t. the early-stopping threshold β.

Extensions to distributed multi-GPU setups that involve net-

work communication is a potential future work.

Extending to multi-GPU allows us to compare our energy

and time consumption with Pollux [77], a state-of-the-art dis-

tributed cluster scheduler that dynamically tunes the batch size

during DNN training in order to maximize goodput. Training

DeepSpeech2 on LibriSpeech on four NVIDIA A40 GPUs,

Zeus consumes 12% more time but 21% less energy, com-

paring favorably. We especially note that while Pollux does

not take energy into account, Zeus allows the user to select a

different energy-time tradeoff point (e.g., speed up training

but consume more energy) by selecting an appropriate η.

6.7 Sensitivity Analysis and Ablation Studies

Impact of η. To characterize the impact of η as defined in

Equation 2, we perform a sweep of 0≤ η≤ 1 when training

DeepSpeech2 and plot the resulting optimal (TTA, ETA) in

Figure 11. We also plot the corresponding Pareto Front for

reference. We observe that the resulting (TTA, ETA) data

points fall closely to the Pareto Front. Moreover, we plot the

lines along which the C in Equation 2 is a constant, shown as

the dotted lines. As expected, these lines form an envelope

around the Pareto Front. Additional sensitivity analysis for η
can be found in Appendix F.

Impact of early-stopping threshold β. To study impact of

the early-stopping threshold β, we sweep β from 1.5 to 5 and

measure the cumulative ETA across all jobs. We calculate the

difference in ETA relative to our default choice of β = 2.0,

and plot the result of all jobs as well as a geometric mean

across all jobs in Figure 12. The result shows that the default

Zeus w/o
Early

Stopping

Zeus w/o
Pruning

Zeus w/o
 JIT Profiler

0.0

0.5

1.0

1.5

E
TA

(n
or

m
al

iz
ed

 b
y

Ze
us

)

Figure 13: Performance break-

down of Zeus.

A40
V100

RTX6000
P100

0.0

0.5

1.0

E
TA

(n
or

m
al

iz
ed

 b
y

D
ef

au
lt)

Default
Grid Search

Zeus

Figure 14: Normalized ETA

w.r.t. GPU models.

β = 2.0 chosen by Zeus achieves the lowest geometric mean

across all jobs. The intuition behind this is that when β is too

low, Zeus prematurely stops exploratory runs, reducing the

effectiveness of exploration. In contrast, when β is too high,

it dilutes the benefit of early stopping which leads to inflated

exploration cost.

Impact of individual components. In order to show the

gains from each component, we show the degradation of re-

moving one component from Zeus: no early stopping (setting

β to infinity), no pruning (keeping a batch size that didn’t

reach the target accuracy), and no JIT profiling (profiling each

power limit in different recurrences). Figure 13 shows the

slowdown relative to Zeus after disabling these components.

We observe that the Zeus benefits mostly from early stopping.

Impact of GPU models. Figure 14 shows the geometric

mean of ETA normalized against Default across all jobs. Zeus

achieves consistent ETA reductions across four generations

of NVIDIA GPUs. See Appendix G for all results.

7 Discussion

Choice of configuration knobs. In this paper, we pick the

batch size and GPU power limit as the configuration knobs

for Zeus to optimize. We choose these two to strike a balance

in the tradeoff between the granularity of control and the size

of the search space. For instance, one can set the frequency

and voltage for individual components on the GPU for more

fine-grained control and potentially higher energy efficiency,

but this would result in prolonged exploration in the bigger

search space. In contrast, we choose the GPU power limit,

which effectively controls both frequency and voltage via

DVFS and reduces the search space.

On the DL job configuration side, we pick the batch size

as the knob for a similar reason. Changing the batch size

has a broader impact on energy consumption of end-to-end

DNN training, because it affects both the training time and the

average power consumption during training. In comparison,

other candidate configuration knobs such as learning rate fall

short because they only affect the training time.

Hyperparameter optimization. Hyperparameter optimiza-

tion is an important workload, where many DL training jobs

(trials) are submitted with specific hyperparameters chosen

from a user-defined search space [9, 59, 60, 98]. If the users

130 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

submit these trials with a specific batch size, they can specify

the feasible batch size set B to only contain that single batch

size. In this case, Zeus can still reduce energy consumption

by searching for the optimal GPU power limit.

Supporting distributed training. Zeus currently only sup-

ports single-node training, but it can easily be extended to

support distributed scenarios. Since the same type of GPU

will have the same time and power consumption characteris-

tics, we can apply the same power limit configuration across

all GPUs to avoid stragglers. The definition of cost can be

extended to sum over the time and energy consumption of all

GPUs participating in training, and all other components in

our solution can remain identical.

Supporting heterogeneous GPUs. Our solution assumes

that the training job runs on the same type of GPU across all

of its recurrences. However, in practice, this may not always

be possible due to varying resource contention or availability.

It is straightforward to add support for heterogeneous GPUs

under our formulation. That is, cost values observed from one

GPU can be translated to values that represent the charac-

teristics of another GPU. As shown in Equation 6, energy-

time cost can be written as the product of Epochs(b) and

EpochCost(b;η). Here, the former term is independent with

the choice of the GPU. Moreover, the latter term can be

quickly profiled on any GPU because it consists of only

AvgPower(b, p) and Throughput(b, p). Thus, we can obtain

cost values that represent the new GPU by quickly profiling

EpochCost(b;η) for each batch size on the new GPU and

multiplying it with Epochs(b) observed from the previous

GPU. These translated cost observations can then be used to

learn a new MAB that specializes on the new GPU.

8 Related Work

DNN training. A large body of recent studies focus on

creating fast kernels for tensor operations [18, 45, 92, 100],

efficiently placing data and/or computation [55,72,78,97], and

optimizing communication [76, 91]. However, most of them

optimize for TTA and are oblivious of their energy impact.

These works can be applied together with Zeus, potentially

accelerating training while making it energy efficient.

Another recent effort in reducing TTA (without considering

energy) in multi-GPU DNN training settings is Pollux [77].

Pollux dynamically changes the batch size during training

based on the Gradient Noise Scale (GNS) [68]. However,

GNS does not theoretically capture the generalization of the

model [68] and can only be efficiently approximated when

there are more than one GPUs participating in training. Zeus,

on the other hand, optimizes and trades off TTA and ETA by

tuning the batch size across job recurrences and does not alter

the model’s convergence characteristics.

Energy measurement for Deep Learning. A recent line

of research has analyzed the energy consumption [75] as well

as the environmental impact [54, 85] for training large DNN

models inside a cluster. On the device-level, benchmarking

efforts have been made to understand the energy efficiency

and performance of training DNN on GPUs and other accel-

erators [93]. Several Python frameworks have been built for

measurement [14, 40] and prediction [5] of energy consump-

tion for DNN training. Zeus takes a similar software-based

approach to measure power consumption via NVML [2], in

order to perform JIT profiling of DNN training jobs.

Energy optimization for Deep Learning. Existing work

has investigated energy-accuracy tradeoff in the context of

DNN inference with new neural network architecture [89]

and algorithm-hardware co-design [86], and training strate-

gies such as warm-start [7] and gradient-matching-based data

subset selection [50]. Other works optimize energy for DNN

training on multiple GPUs with scheduling [47] and task map-

ping [52]. Zeus complements these solutions as it can be

plugged in transparently into these frameworks.

Several works have studied the impact of GPU dynamic fre-

quency and voltage scaling (DVFS) and power configuration

on the energy consumption and performance of DNN train-

ing [11, 52, 87, 90, 101], wherein they focus on the tradeoff

between the transient metric of system throughput and power

consumption. While these work rely on offline modeling and

profiling, Zeus focuses on a more realistic end-to-end metric

of energy-to-accuracy and is fully online.

BatchSizer [71] introduces batch size as a control knob

to optimize for energy efficiency of DNN inference. Zeus

focuses on DNN training, and takes a holistic approach, opti-

mizing both GPU and job configurations together.

9 Conclusion

In this work, we sought to understand and optimize the energy

consumption of DNN training on GPUs. We identified the

tradeoff between energy consumption and training time, and

demonstrated that common practices can lead to inefficient

energy usage. Zeus is an online optimization framework for

recurring DNN training jobs that finds the Pareto frontier

and allows users to navigate the frontier by automatically

tuning the batch size and GPU power limit of their jobs. Zeus

outperforms the state-of-the-art in terms of energy usage for

diverse workloads and real cluster traces by continuously

adapting to dynamic workload changes such as data drift.

We earnestly hope that Zeus will inspire the community to

consider energy as a first-class resource in DNN optimization.

Acknowledgements

Special thanks to CloudLab and Chameleon Cloud for making

Zeus experiments possible. We would also like to thank the

reviewers, our shepherd Jayashree Mohan, and SymbioticLab

members for their insightful feedback. We also thank our col-

league Rui Liu for his helpful suggestions. This work is in part

supported by NSF grants CNS-1909067 and CNS-2104243

and a grant from VMWare. Jae-Won Chung is additionally

supported by the Kwanjeong Educational Foundation.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 131

References

[1] How much electricity does an American home

use? https://www.eia.gov/tools/faqs/faq.

php?id=97&t=3.

[2] NVIDIA Management Library (NVML).

https://developer.nvidia.com/

nvidia-management-library-nvml.

[3] NVIDIA System Management Inter-

face. https://developer.nvidia.com/

nvidia-system-management-interface.

[4] Thomas Anderson, Adam Belay, Mosharaf Chowd-

hury, Asaf Cidon, and Irene Zhang. Treehouse: A case

for carbon-aware datacenter software. In HotCarbon,

2022.

[5] Lasse F. Wolff Anthony, Benjamin Kanding, and

Raghavendra Selvan. Carbontracker: Tracking and pre-

dicting the carbon footprint of training deep learning

models. ICML Workshop on Challenges in Deploying

and monitoring Machine Learning Systems, 2020.

[6] Yehia Arafa, Ammar ElWazir, Abdelrahman ElKa-

nishy, Youssef Aly, Ayatelrahman Elsayed, Abdel-

Hameed Badawy, Gopinath Chennupati, Stephan

Eidenbenz, and Nandakishore Santhi. Verified

instruction-level energy consumption measurement for

NVIDIA GPUs. In Proceedings of the 17th ACM In-

ternational Conference on Computing Frontiers, 2020.

[7] Jordan Ash and Ryan P Adams. On warm-starting

neural network training. NeurIPS, 2020.

[8] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.

Finite-time analysis of the multiarmed bandit problem.

Machine learning, 47(2):235–256, 2002.

[9] James Bergstra, Rémi Bardenet, Yoshua Bengio, and

Balázs Kégl. Algorithms for hyper-parameter opti-

mization. NeurIPS, 2011.

[10] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochas-

tic multi-armed-bandit problem with non-stationary

rewards. NeurIPS, 2014.

[11] Srikant Bharadwaj, Shomit Das, Yasuko Eckert, Mark

Oskin, and Tushar Krishna. Dub: Dynamic underclock-

ing and bypassing in NoCs for heterogeneous GPU

workloads. In 2021 15th IEEE/ACM International

Symposium on Networks-on-Chip (NOCS), 2021.

[12] Albert Bifet, Geoff Holmes, Bernhard Pfahringer,

Philipp Kranen, Hardy Kremer, Timm Jansen, and

Thomas Seidl. Moa: Massive online analysis, a frame-

work for stream classification and clustering. In Pro-

ceedings of the first workshop on applications of pat-

tern analysis, 2010.

[13] Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child,

Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens

Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz

Litwin, Scott Gray, Benjamin Chess, Jack Clark,

Christopher Berner, Sam McCandlish, Alec Radford,

Ilya Sutskever, and Dario Amodei. Language models

are few-shot learners. In NeurIPS, 2020.

[14] Qingqing Cao, Aruna Balasubramanian, and Niranjan

Balasubramanian. Towards accurate and reliable en-

ergy measurement of NLP models. In Proceedings of

SustaiNLP: Workshop on Simple and Efficient Natural

Language Processing, 2020.

[15] Maurizio Capra, Beatrice Bussolino, Alberto Marchi-

sio, Guido Masera, Maurizio Martina, and Muhammad

Shafique. Hardware and software optimizations for

accelerating deep neural networks: Survey of current

trends, challenges, and the road ahead. IEEE Access,

8:225134–225180, 2020.

[16] Yair Censor. Pareto optimality in multiobjective prob-

lems. Applied Mathematics and Optimization, 4(1):41–

59, 1977.

[17] Olivier Chapelle and Lihong Li. An empirical evalua-

tion of thompson sampling. NeurIPS, 2011.

[18] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin

Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,

Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An

automated end-to-end optimizing compiler for deep

learning. In OSDI, 2018.

[19] Cody Coleman, Daniel Kang, Deepak Narayanan,

Luigi Nardi, Tian Zhao, Jian Zhang, Peter Bailis, Kunle

Olukotun, Chris Ré, and Matei Zaharia. Analysis of

dawnbench, a time-to-accuracy machine learning per-

formance benchmark. ACM SIGOPS Operating Sys-

tems Review, 2019.

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. ImageNet: A large-scale hierarchical

image database. In CVPR, 2009.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. BERT: Pre-training of deep bidi-

rectional transformers for language understanding. In

Proceedings of the 2019 Conference of the North Amer-

ican Chapter of the Association for Computational

Linguistics (NAACL), 2019.

132 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface

[22] Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes,

Erika Odmark, Roy Schwartz, Emma Strubell, Alexan-

dra Sasha Luccioni, Noah A. Smith, Nicole DeCario,

and Will Buchanan. Measuring the carbon intensity of

AI in cloud instances. In ACM Conference on Fairness,

Accountability, and Transparency, 2022.

[23] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,

Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,

Mike Hibler, David Johnson, Kirk Webb, et al. The

design and operation of CloudLab. In ATC, 2019.

[24] Daniel Fink. A compendium of conjugate priors. 1997.

[25] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro

Rodrigues. Learning with drift detection. In Brazilian

symposium on artificial intelligence, 2004.

[26] Alec Go, Richa Bhayani, and Lei Huang. Twitter senti-

ment classification using distant supervision. Stanford

CS224N project report, 2009.

[27] Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir

Feinberg, Amir Gholami, Kai Rothauge, Michael W

Mahoney, and Joseph Gonzalez. On the computational

inefficiency of large batch sizes for stochastic gradient

descent. arXiv preprint arXiv:1811.12941, 2018.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Deep learning. MIT press, 2016.

[29] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter No-

ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew

Tulloch, Yangqing Jia, and Kaiming He. Accurate,

large minibatch SGD: Training ImageNet in 1 hour.

arXiv preprint arXiv:1706.02677, 2017.

[30] Diego Granziol, Stefan Zohren, and Stephen Roberts.

Learning rates as a function of batch size: A random

matrix theory approach to neural network training.

Journal of Machine Learning Research, 23(173):1–65,

2022.

[31] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin,

Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang

Liu, and Chuanxiong Guo. Tiresias: A GPU cluster

manager for distributed deep learning. In NSDI, 2019.

[32] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim

Naumov, Brandon Reagen, David Brooks, Bradford

Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia,

et al. The architectural implications of facebook’s

DNN-based personalized recommendation. In HPCA,

2020.

[33] Awni Hannun, Carl Case, Jared Casper, Bryan Catan-

zaro, Greg Diamos, Erich Elsen, Ryan Prenger, San-

jeev Satheesh, Shubho Sengupta, Adam Coates, et al.

Deep speech: Scaling up end-to-end speech recogni-

tion. arXiv preprint arXiv:1412.5567, 2014.

[34] F Maxwell Harper and Joseph A Konstan. The movie-

lens datasets: History and context. ACM transactions

on interactive intelligent systems (TIIS), 5(4):1–19,

2015.

[35] Michael Harries and New South Wales. Splice-2 com-

parative evaluation: Electricity pricing. 1999.

[36] John A Hartigan and Manchek A Wong. Algorithm

as 136: A k-means clustering algorithm. Journal of

the royal statistical society. series c (applied statistics),

28(1):100–108, 1979.

[37] Kim Hazelwood, Sarah Bird, David Brooks, Soumith

Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed

Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. Ap-

plied machine learning at Facebook: A datacenter in-

frastructure perspective. In HPCA, 2018.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

CVPR, 2016.

[39] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,

Xia Hu, and Tat-Seng Chua. Neural collaborative fil-

tering. In Proceedings of the 26th international con-

ference on world wide web, 2017.

[40] Peter Henderson, Jieru Hu, Joshua Romoff, Emma

Brunskill, Dan Jurafsky, and Joelle Pineau. Towards

the systematic reporting of the energy and carbon foot-

prints of machine learning. Journal of Machine Learn-

ing Research, 21(248):1–43, 2020.

[41] Miro Hodak, Masha Gorkovenko, and Ajay Dholakia.

Towards power efficiency in deep learning on data

center hardware. In IEEE International Conference on

Big Data, 2019.

[42] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train

longer, generalize better: closing the generalization gap

in large batch training of neural networks. In NeurIPS,

2017.

[43] Sunpyo Hong and Hyesoon Kim. An integrated GPU

power and performance model. In ISCA, 2010.

[44] Geoff Hulten, Laurie Spencer, and Pedro Domingos.

Mining time-changing data streams. In Proceedings of

the seventh ACM international conference on Knowl-

edge discovery and data mining (SIGKDD), 2001.

[45] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-

wski, Matei Zaharia, and Alex Aiken. TASO: Op-

timizing deep learning computation with automatic

generation of graph substitutions. In SOSP, 2019.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 133

[46] Vijay Kandiah, Scott Peverelle, Mahmoud Khairy, Jun-

rui Pan, Amogh Manjunath, Timothy G Rogers, Tor M

Aamodt, and Nikos Hardavellas. AccelWattch: A

power modeling framework for modern GPUs. In MI-

CRO, 2021.

[47] Dong-Ki Kang, Ki-Beom Lee, and Young-Chon Kim.

Cost efficient GPU cluster management for training

and inference of deep learning. Energies, 15(2):474,

2022.

[48] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre

Riteau, Paul Ruth, Dan Stanzione, Mert Cevik, Jacob

Colleran, Haryadi S Gunawi, Cody Hammock, et al.

Lessons learned from the chameleon testbed. In ATC,

2020.

[49] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-

cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.

On large-batch training for deep learning: Generaliza-

tion gap and sharp minima. In ICLR, 2017.

[50] Krishnateja Killamsetty, S Durga, Ganesh Ramakrish-

nan, Abir De, and Rishabh Iyer. Grad-match: Gradient

matching based data subset selection for efficient deep

model training. In ICML, 2021.

[51] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In ICLR, 2015.

[52] Toshiya Komoda, Shingo Hayashi, Takashi Nakada,

Shinobu Miwa, and Hiroshi Nakamura. Power capping

of CPU-GPU heterogeneous systems through coordi-

nating DVFS and task mapping. In 2013 IEEE 31st

International Conference on computer design (ICCD).

IEEE, 2013.

[53] Alex Krizhevsky, Geoffrey Hinton, et al. Learning

multiple layers of features from tiny images. 2009.

[54] Alexandre Lacoste, Alexandra Luccioni, Victor

Schmidt, and Thomas Dandres. Quantifying the

carbon emissions of machine learning. arXiv preprint

arXiv:1910.09700, 2019.

[55] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and

Mosharaf Chowdhury. Oort: Efficient federated learn-

ing via guided participant selection. In OSDI, 2021.

[56] Tze Leung Lai, Herbert Robbins, et al. Asymptotically

efficient adaptive allocation rules. Advances in applied

mathematics, 6(1):4–22, 1985.

[57] Zhenzhong Lan, Mingda Chen, Sebastian Goodman,

Kevin Gimpel, Piyush Sharma, and Radu Soricut. AL-

BERT: A lite BERT for self-supervised learning of

language representations. ICLR, 2020.

[58] Sebastien Levy, Randolph Yao, Youjiang Wu,

Yingnong Dang, Peng Huang, Zheng Mu, Pu Zhao,

Tarun Ramani, Naga Govindaraju, Xukun Li, et al.

Predictive and adaptive failure mitigation to avert

production cloud VM interruptions. In OSDI, 2020.

[59] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Eka-

terina Gonina, Jonathan Ben-Tzur, Moritz Hardt, Ben-

jamin Recht, and Ameet Talwalkar. A system for mas-

sively parallel hyperparameter tuning. Proceedings of

Machine Learning and Systems, 2:230–246, 2020.

[60] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-

tamizadeh, and Ameet Talwalkar. Hyperband: A novel

bandit-based approach to hyperparameter optimiza-

tion. The Journal of Machine Learning Research,

18(1):6765–6816, 2017.

[61] Weixin Liang and James Zou. Metashift: A

dataset of datasets for evaluating contextual distri-

bution shifts and training conflicts. arXiv preprint

arXiv:2202.06523, 2022.

[62] Ilya Loshchilov and Frank Hutter. Decoupled weight

decay regularization. In ICLR, 2019.

[63] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and

Guangquan Zhang. Learning under concept drift: A

review. IEEE Transactions on Knowledge and Data

Engineering, 31(12):2346–2363, 2018.

[64] Cheng Luo and Reiji Suda. A performance and en-

ergy consumption analytical model for GPU. In 2011

IEEE ninth international conference on dependable,

autonomic and secure computing, 2011.

[65] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and

Jian Sun. Shufflenet v2: Practical guidelines for effi-

cient CNN architecture design. In ECCV, 2018.

[66] Ankur Mallick, Kevin Hsieh, Behnaz Arzani, and Gauri

Joshi. Matchmaker: Data drift mitigation in machine

learning for large-scale systems. In MLSys, 2022.

[67] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime

Tatbul, Mohammad Alizadeh, and Tim Kraska. Bao:

Making learned query optimization practical. In SIG-

MOD, 2021.

[68] Sam McCandlish, Jared Kaplan, Dario Amodei, and

OpenAI Dota Team. An empirical model of large-batch

training. arXiv preprint arXiv:1812.06162, 2018.

[69] Xinxin Mei, Qiang Wang, and Xiaowen Chu. A sur-

vey and measurement study of GPU DVFS on energy

conservation. Digital Communications and Networks,

3(2):89–100, 2017.

134 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[70] Sparsh Mittal and Sumanth Umesh. A survey on

hardware accelerators and optimization techniques for

RNNs. Journal of Systems Architecture, 112:101839,

2021.

[71] Seyed Morteza Nabavinejad, Sherief Reda, and Ma-

soumeh Ebrahimi. Batchsizer: Power-performance

tradeoff for DNN inference. In Proceedings of the 26th

Asia and South Pacific Design Automation Conference,

2021.

[72] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,

Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,

Phillip B Gibbons, and Matei Zaharia. Pipedream:

generalized pipeline parallelism for DNN training. In

SOSP, 2019.

[73] Vassil Panayotov, Guoguo Chen, Daniel Povey, and

Sanjeev Khudanpur. Librispeech: an ASR corpus

based on public domain audio books. In IEEE in-

ternational conference on acoustics, speech and signal

processing (ICASSP), 2015.

[74] Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

et al. Pytorch: An imperative style, high-performance

deep learning library. NeurIPS, 2019.

[75] David Patterson, Joseph Gonzalez, Quoc Le, Chen

Liang, Lluis-Miquel Munguia, Daniel Rothchild, David

So, Maud Texier, and Jeff Dean. Carbon emissions

and large neural network training. arXiv preprint

arXiv:2104.10350, 2021.

[76] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,

Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong

Guo. A generic communication scheduler for dis-

tributed DNN training acceleration. In SOSP, 2019.

[77] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subra-

manya, Willie Neiswanger, Qirong Ho, Hao Zhang,

Gregory R Ganger, and Eric P Xing. Pollux: Co-

adaptive cluster scheduling for goodput-optimized

deep learning. In OSDI, 2021.

[78] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,

and Yuxiong He. ZeRO: Memory optimizations to-

ward training trillion parameter models. In Interna-

tional Conference for High Performance Computing,

Networking, Storage and Analysis (SC), 2020.

[79] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and

Percy Liang. SQuAD: 100,000+ questions for machine

comprehension of text. In EMNLP, 2016.

[80] Sebastian Ruder. An overview of gradient descent opti-

mization algorithms. arXiv preprint arXiv:1609.04747,

2016.

[81] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni,

Ian Osband, Zheng Wen, et al. A tutorial on thomp-

son sampling. Foundations and Trends® in Machine

Learning, 11(1):1–96, 2018.

[82] Simone Scardapane and Dianhui Wang. Randomness

in neural networks: an overview. Wiley Interdisci-

plinary Reviews: Data Mining and Knowledge Dis-

covery, 7(2):e1200, 2017.

[83] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren

Etzioni. Green AI. Commun. ACM, 63(12):54–63,

2020.

[84] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying,

and Quoc V Le. Don’t decay the learning rate, increase

the batch size. In ICLR, 2018.

[85] Emma Strubell, Ananya Ganesh, and Andrew McCal-

lum. Energy and policy considerations for deep learn-

ing in NLP. Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics, 2019.

[86] Thierry Tambe, Coleman Hooper, Lillian Pentecost,

Tianyu Jia, En-Yu Yang, Marco Donato, Victor Sanh,

Paul Whatmough, Alexander M Rush, David Brooks,

et al. EdgeBERT: Sentence-level energy optimizations

for latency-aware multi-task NLP inference. In MI-

CRO, 2021.

[87] Zhenheng Tang, Yuxin Wang, Qiang Wang, and Xi-

aowen Chu. The impact of GPU DVFS on the energy

and performance of deep learning: An empirical study.

In Proceedings of the Tenth ACM International Con-

ference on Future Energy Systems, 2019.

[88] William R Thompson. On the likelihood that one

unknown probability exceeds another in view of the

evidence of two samples. Biometrika, 25(3-4):285–

294, 1933.

[89] Chengcheng Wan, Muhammad Santriaji, Eri Rogers,

Henry Hoffmann, Michael Maire, and Shan Lu.

ALERT: Accurate learning for energy and timeliness.

In ATC, 2020.

[90] Farui Wang, Weizhe Zhang, Shichao Lai, Meng Hao,

and Zheng Wang. Dynamic GPU energy optimization

for machine learning training workloads. IEEE Trans-

actions on Parallel and Distributed Systems, 2021.

[91] Guanhua Wang, Shivaram Venkataraman, Amar Phan-

ishayee, Nikhil Devanur, Jorgen Thelin, and Ion Sto-

ica. Blink: Fast and generic collectives for distributed

ML. In Proceedings of Machine Learning and Systems,

2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 135

[92] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,

Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,

Yuanyong Chen, and Zhihao Jia. PET: Optimizing ten-

sor programs with partially equivalent transformations

and automated corrections. In OSDI, 2021.

[93] Yuxin Wang, Qiang Wang, Shaohuai Shi, Xin He, Zhen-

heng Tang, Kaiyong Zhao, and Xiaowen Chu. Bench-

marking the performance and energy efficiency of AI

accelerators for AI training. In 20th IEEE/ACM In-

ternational Symposium on Cluster, Cloud and Internet

Computing (CCGRID), 2020.

[94] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,

Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei

Lin, and Yu Ding. MLaaS in the wild: Workload anal-

ysis and scheduling in large-scale heterogeneous GPU

clusters. In NSDI, 2022.

[95] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien

Chaumond, Clement Delangue, Anthony Moi, Pierric

Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe

Davison, Sam Shleifer, Patrick von Platen, Clara Ma,

Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,

Sylvain Gugger, Mariama Drame, Quentin Lhoest, and

Alexander Rush. Transformers: State-of-the-art natural

language processing. In EMNLP, 2020.

[96] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta,

Bilge Acun, Newsha Ardalani, Kiwan Maeng, Glo-

ria Chang, Fiona Aga, Jinshi Huang, Charles Bai,

Michael Gschwind, Anurag Gupta, Myle Ott, Anasta-

sia Melnikov, Salvatore Candido, David Brooks, Geeta

Chauhan, Benjamin Lee, Hsien-Hsin Lee, Bugra Aky-

ildiz, Maximilian Balandat, Joe Spisak, Ravi Jain, Mike

Rabbat, and Kim Hazelwood. Sustainable AI: Environ-

mental implications, challenges and opportunities. In

Proceedings of Machine Learning and Systems, 2022.

[97] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake

Hechtman, Yanping Huang, Rahul Joshi, Maxim

Krikun, Dmitry Lepikhin, Andy Ly, Marcello Mag-

gioni, et al. GSPMD: general and scalable paral-

lelization for ML computation graphs. arXiv preprint

arXiv:2105.04663, 2021.

[98] Peifeng Yu, Jiachen Liu, and Mosharaf Chowdhury.

Fluid: Resource-aware hyperparameter tuning engine.

MLSys, 2021.

[99] Matthew D Zeiler. Adadelta: an adaptive learning rate

method. arXiv preprint arXiv:1212.5701, 2012.

[100] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,

Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,

Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and

Ion Stoica. Ansor: Generating high-performance ten-

sor programs for deep learning. In OSDI, 2020.

[101] Pengfei Zou, Ang Li, Kevin Barker, and Rong Ge.

Indicator-directed dynamic power management for iter-

ative workloads on GPU-accelerated systems. In 2020

20th IEEE/ACM International Symposium on Clus-

ter, Cloud and Internet Computing (CCGRID). IEEE,

2020.

136 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Energy Savings Potential on GPUs

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
(lo

w
er

 is
 b

et
te

r)
Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

(a) NVIDIA A40.

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
(lo

w
er

 is
 b

et
te

r)

Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

(b) NVIDIA V100.

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
(lo

w
er

 is
 b

et
te

r)

Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

(c) NVIDIA RTX6000.

DeepSpeech2

BERT (QA)

BERT (SA)

ResNet-50

ShuffleNet V2
NeuMF

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
(lo

w
er

 is
 b

et
te

r)

Baseline
Batch Size Opt.

Power Limit Opt.
Co-Optimization

(d) NVIDIA P100.

Figure 15: Energy usage normalized against Baseline for DNN

training, measured on (a) NVIDIA A40 GPU, (b) NVIDIA V100

GPU, (c) NVIDIA RTX6000 GPU and (d) NVIDIA P100 GPU.

Figure 15 shows the potential for energy savings on four

different generations of NVIDIA GPUs: Ampere (A40), Volta

(V100), Turing (RTX6000), and Pascal (P100). All four gen-

erations show that there are sufficient potential for energy

savings, motivating Zeus.

B TTA vs. ETA for All Workloads

Figure 16 plots the Pareto Front for all six workloads and

the baseline (default batch size and maximum power limit) is

shown as a red triangle. Note that the axes do not start from

zero in order to zoom into the Pareto Front. Data points were

gathered on an NVIDIA V100 GPU.

40000 50000 60000
Training Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e7
192, 250W

32, 100W48, 125W48, 150W
48, 175W

48, 200W

56, 225W
48, 250W

Baseline
Pareto Front

(a) DeepSpeech2

6000 8000 10000
Training Time (s)

1.2

1.4

1.6

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e6
32, 250W

12, 125W8, 150W

12, 175W

12, 200W

12, 225W

12, 250W

Baseline
Pareto Front

(b) BERT (QA)

4000 5000 6000
Training Time (s)

7

8

9

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e5
128, 250W

64, 125W
32, 150W

32, 175W

64, 200W

64, 225W

64, 250W

Baseline
Pareto Front

(c) BERT (SA)

70000 80000 90000
Training Time (s)

1.2

1.3

1.4

1.5

1.6

1.7

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e7
256, 250W

360, 150W

360, 175W

360, 200W

360, 225W

360, 250W

Baseline
Pareto Front

(d) ResNet-50

200 400 600
Training Time (s)

0.2

0.4

0.6

0.8

1.0

1.2
E

ne
rg

y
C

on
su

m
pt

io
n

(J
)

1e5
1024, 250W

128, 100W
128, 125W128, 150W

Baseline
Pareto Front

(e) ShuffleNet V2

20 40 60 80 100
Training Time (s)

1

2

3

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

1e3
1024, 250W

16384, 150W16384, 175W16384, 225W

Baseline
Pareto Front

(f) NeuMF

Figure 16: ETA vs. TTA across all workloads, with Pareto Front

and default configuration highlighted. Measured on an NVIDIA

V100 GPU.

C ETA w.r.t. Configurations for All Workloads

Figures 17 and 18 respectively show the ETA value when

batch size and power limit are swept. Especially note the

convexity of all BS-ETA curves, which justifies the design of

our pruning exploration algorithm.

D Cumulative Regret of All Workloads

Figure 19 shows the cumulative regret of Zeus and Grid

Search over job recurrences for all six workloads. In gen-

eral, Zeus converges to a better knob than Grid Search while

being faster.

E Search Paths for All Workloads

Figures 20 and 21 respectively show the search path of Zeus

and Grid Search in the 2D configuration space. Thanks to the

decoupling of batch size and power limit, Zeus is able to more

efficiently navigate the search space and converge to a knob

while consuming less energy and time during exploration.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 137

10 100
Batch Size

0.0

0.5

1.0

E
TA

 (J
)

1e7

Error margin

(a) DeepSpeech2

10.0
Batch Size

0

1

E
TA

 (J
)

1e6

Error margin

(b) BERT (QA)

10 100
Batch Size

0

5

E
TA

 (J
)

1e5

Error margin

(c) BERT (SA)

2 × 10
2

3 × 10
2

Batch Size

0

2

E
TA

 (J
)

1e7

Error margin

(d) ResNet-50

10 100 1000
Batch Size

0

5

E
TA

 (J
)

1e5

Error margin

(e) ShuffleNet V2

100 1000 10000
Batch Size

0.0

2.5

5.0

E
TA

 (J
)

1e5

Error margin

(f) NeuMF

Figure 17: ETA w.r.t batch size of different DNN training workload.

The blue shade shows the error margin across repeated runs.

100 125 150 175 200 225 250
GPU Power Limit (W)

0

2

4

6

E
TA

 (J
)

1e6

(a) DeepSpeech2

100 150 200 250
GPU Power Limit (W)

0.0

0.5

1.0

1.5

E
TA

 (J
)

1e6

(b) BERT (QA)

100 150 200 250
GPU Power Limit (W)

0.0

2.5

5.0

7.5

E
TA

 (J
)

1e5

(c) BERT (SA)

100 150 200 250
GPU Power Limit (W)

0.0

0.5

1.0

1.5

E
TA

 (J
)

1e7

(d) ResNet-50

100 125 150 175 200 225 250
GPU Power Limit (W)

0

2

4

E
TA

 (J
)

1e4

(e) ShuffleNet V2

100 150 200 250
GPU Power Limit (W)

0

500

1000

E
TA

 (J
)

(f) NeuMF

Figure 18: ETA w.r.t GPU power limit of different DNN training

workload. Measured on an NVIDIA V100 GPU.

F Additional Sensitivity Analysis

Figure 22 compares both the energy consumption and training

time for Zeus against Default. We also calculate and plot the

geometric mean across all jobs. The result shows that with

higher η, Zeus prioritizes reducing energy consumption over

time, leading to higher improvement factor of energy, and

vice versa.

G Performance of Zeus on All GPUs

Figure 23 presents the energy and time consumption of all

workloads on four different generations NVIDIA GPUs: Am-

pere (A40), Volta (V100), Turing (RTX6000), and Pascal

0 100
Job Recurrence (t)

10
7

10
8

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(a) DeepSpeech2

0 50 100
Job Recurrence (t)

10
5

10
6

10
7

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(b) BERT (QA)

0 25 50
Job Recurrence (t)

10
5

10
6

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(c) BERT (SA)

0 25 50
Job Recurrence (t)

10
7

10
8

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(d) ResNet-50

0 50 100
Job Recurrence (t)

10
5

10
6

10
7

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(e) ShuffleNet V2

0 100
Job Recurrence (t)

10
5

10
7

C
um

m
ul

at
iv

e
R

eg
re

t (
J)

Zeus
Grid Search

(f) NeuMF

Figure 19: Cumulative regret of Zeus vs. Grid Search across all

workloads.

(P100). The overall trends hold for all GPUs.

138 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

8 12 16 24 32 48 56 64 72 96 12
8

15
6

19
2

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(a) DeepSpeech2

8 12 16 24 32 48 56
Batch Size

250

225

200

175

150

125

100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(b) BERT (QA)

8 16 32 64 12
8

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(c) BERT (SA)

64 12
8

19
2

25
6

36
0

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(d) ResNet-50

8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(e) ShuffleNet V2

8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92
16

38
4

Batch Size

250

225

200

175

150

125

100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(f) NeuMF

Figure 20: Search path of Zeus across all workloads.

8 12 16 24 32 48 56 64 72 96 12
8

15
6

19
2

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(a) DeepSpeech2

8 12 16 24 32 48 56
Batch Size

250

225

200

175

150

125

100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(b) BERT (QA)

8 16 32 64 12
8

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(c) BERT (SA)

64 12
8

19
2

25
6

36
0

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(d) ResNet-50

8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96

Batch Size

250
225
200
175
150
125
100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(e) ShuffleNet V2

8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96
81

92
16

38
4

Batch Size

250

225

200

175

150

125

100

P
ow

er
 L

im
it

(W
)

Search Path

Converging
Point

R
egret of C

onfiguration
 (darker m

eans low
er)

(f) NeuMF

Figure 21: Search path of Grid Search across all workloads.

(a) ETA

(b) TTA

Figure 22: Impact of priority knob η on ETA and TTA.

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(a) Energy Consumption (V100)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

TT
A

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(b) Training Time (V100)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(c) Energy Consumption (A40)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1
TT

A
(n

or
m

al
iz

ed
)

Default Grid Search Zeus

(d) Training Time (A40)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(e) Energy Consumption (RTX6000)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

TT
A

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(f) Training Time (RTX6000)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

E
TA

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(g) Energy Consumption (P100)

DeepSpeech2
BERT (QA)

BERT (SA)
ResNet-50

ShuffleNet V2
NeuMF

0

1

TT
A

(n
or

m
al

iz
ed

)

Default Grid Search Zeus

(h) Training Time (P100)

Figure 23: Energy and time consumption of DNN training, nor-

malized against Default for DNN training. Results measured on (a)

NVIDIA A40 GPU, (b) NVIDIA V100 GPU, (c) NVIDIA RTX6000

GPU and (d) NVIDIA P100 GPU.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 139

Remote Procedure Call as a Managed System Service

Jingrong Chen1,∗ Yongji Wu1,∗ Shihan Lin1 Yechen Xu3 Xinhao Kong1

Thomas Anderson2 Matthew Lentz1 Xiaowei Yang1 Danyang Zhuo1

1Duke University 2University of Washington 3Shanghai Jiao Tong University

Abstract
Remote Procedure Call (RPC) is a widely used abstraction

for cloud computing. The programmer specifies type informa-
tion for each remote procedure, and a compiler generates stub
code linked into each application to marshal and unmarshal
arguments into message buffers. Increasingly, however,
application and service operations teams need a high degree of
visibility and control over the flow of RPCs between services,
leading many installations to use sidecars or service mesh
proxies for manageability and policy flexibility. These sidecars
typically involve inspection and modification of RPC data
that the stub compiler had just carefully assembled, adding
needless overhead. Further, upgrading diverse application
RPC stubs to use advanced hardware capabilities such as
RDMA or DPDK is a long and involved process, and often
incompatible with sidecar policy control.

In this paper, we propose, implement, and evaluate a novel
approach, where RPC marshalling and policy enforcement are
done as a system service rather than as a library linked into
each application. Applications specify type information to the
RPC system as before, while the RPC service executes policy
engines and arbitrates resource use, and then marshals data
customized to the underlying network hardware capabilities.
Our system, mRPC, also supports live upgrades so that both
policy and marshalling code can be updated transparently to ap-
plication code. Compared with using a sidecar, mRPC speeds
up a standard microservice benchmark, DeathStarBench, by
up to 2.5× while having a higher level of policy flexibility and
availability.

1 Introduction
Remote Procedure Call (RPC) is a fundamental building
block of distributed systems in modern datacenters. RPC
allows developers to build networked applications using a
simple and familiar programming model [10], supported
by several popular libraries such as gRPC [26], Thrift [84],
and eRPC [39]. The RPC model has been widely adopted

∗Jingrong Chen and Yongji Wu contributed equally.

Kernel

RPC
Library

RPC
Library

Policies

mRPC
Library

(a) Now: Library+Sidecar (b) Our Vision: RPC as a Managed Service

M

NIC

Frontend
Engine

Kernel

NIC

Transport
Engine TCP

RDMA

Rate Limit

ACL
…

M U nmarshalsarshals

Kernel
NIC

…

Fl
ex

ib
le

 R
PC

 P
ro

ce
ss

in
g

Lo
gi

c

Client Server

U M U M U M U

U M

Client Server

U M U M U M

Call

Reply

Call

Reply

App

mRPC

App

Sidecar

NIC

M U M M

Figure 1: Architectural comparison between current (RPC
library + sidecar) and our proposed (RPC as a managed
service) approaches.

in distributed data stores [19, 41, 83], network file sys-
tems [24, 80], consensus protocols [68], data-analytic
frameworks [2,12,16,25,55,82,94,98], cluster schedulers and
orchestrators [30,50], and machine learning systems [1,65,72].
Google found that roughly 10% of its datacenter CPU cycles
are spent just executing gRPC library code [42]. Because of
its importance, improving RPC performance has long been
a major topic of research [7, 8, 10, 14, 39, 52, 63, 81, 87, 95, 96].

Recently, application and network operations teams have
found a need for rapid and flexible visibility and control over
the flow of RPCs in datacenters. This includes monitoring
and control of the performance of specific types of RPCs [62],
prioritization and rate limiting to meet application-specific
performance and availability goals, dynamic insertion of
advanced diagnostics to track user requests across a network
of microservices [22], and application-specific load balancing
to improve cache effectiveness [6], to name a few.

The typical architecture is to enforce policies in a sidecar—a
separate process that mediates the network traffic of the
application RPC library (Figure 1a). This is often referred to as
a service mesh. A number of commercial products have been
developed to meet the need for sidecar RPC proxies, such as

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 141

Envoy [18], Istio [32], HAProxy [29], Linkerd [53], Nginx [67],
and Consul [15]. Although some policies could theoretically
be supported by a feature-rich RPC runtime linked in with each
application, that can slow deployment—Facebook recently
reported that it can take months to fully roll out changes to
one of its application communication libraries [21]. One use
case that requires rapid deployment is to respond to a new
application security threat, or to diagnose and fix a critical
user-visible failure. Finally, many policies are mandatory
rather than discretionary—the network operations team may
not be able to trust the library code linked into an application.
Example mandatory security policies include access control,
authentication/encryption [15], and prevention of known
exploits in widely used network protocols such as RDMA [79].

Although using a sidecar for policy management is func-
tional and secure, it is also inefficient. The application RPC
library marshals RPC parameters at runtime into a buffer ac-
cording to the type information provided by the programmer.
This buffer is sent through the operating system network stack
and then forwarded back up to the sidecar, which typically
needs to parse and unwrap the network, virtualization, and RPC
headers, often looking inside the packet payload to correctly
enforce the desired policy. It then re-marshals the data for trans-
port. Direct application-level access to network hardware such
as RDMA or DPDK offers high performance but precludes
sidecar policy control. Similarly, network interface cards are
increasingly sophisticated, but it is hard for applications or
sidecars to take advantage of those new features, because mar-
shalling is done too high up in the network stack. Any change to
the marshalling code requires recompiling and rebooting each
application and/or the sidecar, hurting end-to-end availability.
In short, existing solutions can provide good performance, or
flexible and enforceable policy control, but not both.

In this paper, we propose a new approach, called RPC as a
managed service, to address these limitations. Instead of sepa-
rating marshalling and policy enforcement across different do-
mains, we combine them into a single privilege and trusted sys-
tem service (Figure 1b) so that marshalling is done after policy
processing. In our prototype,mRPC for managed RPC, the priv-
ileged RPC service runs at user level communicating with the
application through shared memory regions [4,8,58]. However,
mRPC could also be integrated directly into the operating sys-
tem kernel with a dynamically replaceable kernel module [61].

Our goals are to be fast, support flexible policies, and
provide high availability for applications. To achieve this, we
need to address several challenges. First, we need to decouple
marshalling from the application RPC library. Second, we
need to design a new policy enforcement mechanism to
process RPCs efficiently and securely, without incurring
additional marshalling overheads. Third, we need to provide a
way for operators to specify/change policies and even change
the underlying transport implementation without disrupting
running applications.

We implement mRPC, the first RPC framework that follows

the RPC as a managed service approach. Our results show that
mRPC speeds up DeathStarBench [23] by up to 2.5×, in terms
of mean latency, compared with combining state-of-art RPC
libraries and sidecars, i.e., gRPC and Envoy, using the same
transport mechanism. Larger performance gains are possible
by fully exploiting network hardware capabilities from within
the service. In addition, mRPC allows for live upgrades of
its components while incurring negligible downtime for
applications. Applications do not need to be re-compiled or
rebooted to change policies or marshalling code. mRPC has
three important limitations. First, data structures passed as
RPC arguments must be allocated on a special shared-memory
heap. Second, while we use a language-independent protocol
for specifying RPC type signatures, our prototype implemen-
tation currently only works with applications written in Rust.
Finally, our stub generator is not as fully featured as gRPC.

In this paper, we make the following contributions:

• A novel RPC architecture that decouples mar-
shalling/unmarshalling from RPC libraries to a
centralized system service.

• An RPC mechanism that applies network policies and
observability features with both security and low perfor-
mance overhead, i.e., with minimal data movement and
no redundant (un)marshalling. The mechanism supports
live upgrade of RPC bindings, policies, transport, and
marshalling without disrupting running applications.

• A prototype implementation of mRPC along with an eval-
uation on both synthetic workloads and real applications.

2 Background
In this section, we discuss the current RPC library architecture.
We then discuss the emerging need for manageability and how
manageability is implemented with existing RPC libraries.

2.1 Remote Procedure Call

To use RPC, a developer defines the relevant service interfaces
and message types in a schema file (e.g., gRPC .proto file). A
protocol compiler will translate the schema into program stubs
that are directly linked with the client and server applications.
To issue an RPC at runtime, the application simply calls
the corresponding function provided by the stub; the stub
is responsible for marshalling the request arguments and
interacting with the transport layer (e.g., TCP/IP sockets or
RDMA verbs). The transport layer delivers the packets to
the remote server, where the stub unmarshals the arguments
and dispatches the RPC request to a thread (eventually
replying back to the client). We refer to this approach as
RPC-as-a-library, since all RPC functionality is included in
user-space libraries that are linked with each application. Even
though the first RPC implementation [10] dates back to the
1980s, modern RPC frameworks (e.g., gRPC [26], eRPC [39],
Thrift [84]) still follow this same approach.

142 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A key design goal for RPC frameworks is efficiency. Google
and Facebook have built their own efficient RPC frameworks,
gRPC and Apache Thrift. Although primarily focused on porta-
bility and interoperability, gRPC includes many efficiency-
related features, such as supporting binary payloads. Academic
researchers have studied various ways to improve RPC effi-
ciency, including optimizing the network stack [45,69,99], soft-
ware hardware co-design [39, 41], and overload control [14].

As network link speeds continue to scale up [77], RPC
overheads are likely to become even more salient in the future.
This has led some researchers to advocate for direct application
access to network hardware [5, 39, 73, 99], e.g., with RDMA
or DPDK. Although low overhead, kernel bypass is largely
incompatible with the need for flexible and enforceable layer
7 policy control, as we discuss next. In practice, multiple
security weaknesses in RDMA hardware have led most cloud
vendors to opt against providing direct access to RDMA by
untrusted applications [48, 49, 58, 79, 95, 101].

2.2 The Need for Manageability

As RPC-based distributed applications scale to large, complex
deployment scenarios, there is an increasing need for improved
manageability of RPC traffic. We classify management needs
into three categories: 1) Observability: Provide detailed
telemetry, which enables developers to diagnose and optimize
application performance. 2) Policy Enforcement: Allow
operators to apply custom policies to RPC applications and
services (e.g., access control, rate limits, encryption). 3)
Upgradability: Support software upgrades (e.g., bug fixes
and new features) while minimizing downtime to applications.

One natural question to ask is: is it possible to add these
properties without changing existing RPC libraries? For
observability and policy enforcement, the state-of-the-art
solution is to use a sidecar (e.g., Envoy [18] or Linkerd [53]).
A sidecar is a standalone process that intercepts every packet
an application sends, reconstructing the application-level data
(i.e., RPC), and applying policies or enabling observability.
However, using a sidecar introduces substantial performance
overhead, due to redundant RPC (un)marshalling. This RPC
(un)marshalling, for example, in gRPC+Envoy, including
HTTP framing and protobuf encoding, accounts for 62-73%
overhead in the end-to-end latency [102]. In our evaluation
(§7), using a sidecar increases the 99th percentile RPC latency
by 180% and decreases the bandwidth by 44%. Figure 1a
shows the (un)marshalling steps invoked as an RPC traverses
from a client to a server and back. Using a sidecar triples the
number of (un)marshalling steps (from 4 to 12). In addition,
the sidecar approach is largely incompatible with the emerging
trend of efficient application-level access to network hardware.
Using sidecars means data buffers have to be copied between
the application and sidecars, reducing the benefits of having
zero-copy kernel-bypass access to the network.

Finally, using sidecars with application RPC libraries does
not completely solve the upgradability issue. While policy

can often be changed dynamically (depending on the feature
set of the sidecar implementation), marshalling and transport
code is harder to change. To fix a bug in the underlying RPC
library, or merely to upgrade the code to take advantage
of new hardware features, we need to recompile the entire
application (and sidecar) with the patched RPC library and
reboot. gRPC has a monthly or two-month release cycle for
bug fixes and new features [27]. Any scheduled downtime has
to be communicated explicitly to the users of the application
or has to be masked using replication; either approach can lead
to complex application life-cycle management issues.

We do not see much hope in continuing to optimize this RPC
library and sidecar approach for two reasons. First, a strong
coupling exists between a traditional RPC library and each
application. This makes upgrading the RPC library without
stopping the application difficult, if not impossible. Second,
there is only weak or no coupling between an RPC library and
a sidecar. This prevents the RPC library and the sidecar from
cross-layer optimization.

Instead, we argue for an alternative architecture in which
RPC is provided as a managed service. By decoupling RPC
logic, e.g., (un)marshalling, transport interface, from the
application, the service can simultaneously provide high
performance, policy flexibility, and zero-downtime upgrades.

3 Overview
Our system, mRPC, realizes the RPC-as-a-managed-service
abstraction while maintaining similar end-to-end semantics
as traditional RPC libraries (e.g., gRPC, Thrift). The goals for
mRPC are to be fast, support flexible policy enforcement, and
provide high availability for applications.

Figure 2 shows a high-level overview of the mRPC
architecture and workflow, breaking it down into three major
phases: initialization, runtime, and management. The mRPC
service runs as a non-root, user-space process with access to
the necessary network devices and a shared-memory region for
each application. In each of the phases, we focus on the view of
a single machine that is running both the RPC client application
and the mRPC service. The RPC server may also run alongside
an mRPC service. In this case, mRPC-specific marshalling
can be used. However, we also support flexible marshalling
to enable mRPC applications to interact with external peers
using well-known formats (e.g., gRPC). In our evaluation, we
focus on cases where both the client and server employ mRPC.

The initialization phase extends from building the applica-
tion to how the application binds to a specific RPC interface.
1 Similar to gRPC, users define a protocol schema. The

mRPC schema compiler uses this to generate stub code to
include in their application. We illustrate this using a key-value
storage service with a single Get function. 2 When the
application is deployed, it connects with the mRPC service
running on the same machine and specifies the protocol(s)
of interest, which are maintained by the generated stub. 3
The mRPC service also uses the protocol schema to generate,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 143

Ctrl

Data

App A App B App C …

Frontend Frontend Frontend

Policy

Global QoS Policy

RDMA TCP

User - Initialization (§4.1) User - Runtime (§4.2) Operator - Management (§4.3)
 Users build apps with the mRPC library and the
compiled protocol stub. The app connects to the
mRPC service, specifying protocols of interest.
 The mRPC service compiles and loads a library
with app-specific marshaling functions.

 Users invoke RPCs using familiar function stubs,
 while the mRPC library handles allocations and
dispatching RPCs through shared memory. The
mRPC service implements the RPC processing logic
with minimal copies and marshaling of data.

 Operators manage RPC services by applying
policies (global or per-app) and adding/upgrading
processing logic. All of this can be done without
disrupting (or modifying) apps.

m
RP

C
 S

er
vi

ce

Apply

to
Policy

App A

7

Update
RDMA

Frontend

Policy

RDMA libApp

NIC

mRPC
Library

Stub libApp

App A mRPC

mRPC
LibrarymRPC

Schema
Compiler

Stub libAppStub

App A mRPC

Proto
Codegen

Connect(, …)Proto

Compile
And
Load

1

2

3

m key …

5

RPC

Verbs

64 key = mBytes::new()
m = mRef(GetReq{key})
entry = Get(m)

NIC NIC

1
2

3

&mMeta

4

6

5

7

RPC
Engines

Service KVStore
 Get(GetReq)→(Entry)

Msg GetReq
 bytes key

Msg Entry
 bytes? value

Proto

Shared Memory

Figure 2: Overview of the mRPC workflow from the perspective of the users (and their applications) as well as infrastructure
operators.

compile, and dynamically load a protocol-specific library
containing the marshalling and unmarshalling code for that
application’s schemas2. This dynamic binding is a key enabler
for mRPC to act as a long-running service, handling arbitrary
applications (and their RPC schemas). 3

At this point,we enter the runtime phase in which the applica-
tion begins to invoke RPCs. Our approach uses shared memory
between the application and mRPC, containing both control
queues as well as a data buffer. 4 The application protocol
stub produced by the mRPC protocol compiler can be called
like a traditional RPC interface, with the exception that data
structures passed as arguments or as return values must be allo-
cated on a special heap in the shared data buffer. As an example,
we show an excerpt of Rust-like pseudocode for invoking
the Get function. 5 Internally, the stub and mRPC library
manage RPC calls and replies in the control queues along with
allocations and deallocations in the data buffer. 6 The mRPC
service operates over the RPCs through modular engines that
are composed to implement the per-application datapaths
(i.e., sequence of RPC processing logic); each engine is
responsible for one type of task (e.g., application interface, rate
limiting, transport interface). Engines do not contain execution
contexts, but are rather scheduled by runtimes in mRPC that
correspond to kernel-level threads; during their execution,
engines read from input queues, perform work, and enqueue
outputs. External-facing engines (i.e., frontend, transport) use
asynchronous control queues, while all other engines are exe-
cuted synchronously by a runtime. Application control queues
are contained in shared memory with the mRPC service.

This architecture, along with dynamic binding, enables
mRPC to operate over RPCs rather than packets, avoiding
the high overhead of traditional sidecar-based approaches.
Additionally, the modular design of mRPC’s processing logic
enables mRPC to take advantage of fast network hardware

2Note that such libraries may be prefetched and/or cached to optimize the
startup time.

3The dashed box of "Stub" and "libApp" means they are generated code.

(e.g., RDMA and smartNICs) in a manner that is transparent
to the application. A key challenge, which we will address in
§4.2, is how to securely enforce operator policies over RPCs
in shared memory while minimizing data copies.

Finally, mRPC aims to improve the manageability of RPCs
by infrastructure operators. Here, we zoom out to focus on
the processing logic across all applications served by an
mRPC service. 7 Operators may wish to apply a number of
different policies to RPCs made by applications, whether on an
individual basis (e.g., rate limiting, access control) or globally
across applications (e.g., QoS). mRPC allows operators to
add, remove, update, or reconfigure policies at runtime. This
flexibility extends beyond policies to include those responsible
for interacting with the network hardware. A key challenge,
which we will address in §4.3, is in supporting the live upgrade
of mRPC engines without interrupting running applications
(and while managing engines sharing memory queues).

4 Design
In this section, we describe how mRPC provides dynamic
binding, efficient policy and observability support, live
upgrade, and security.

4.1 Dynamic RPC Binding

Applications have different RPC schemas, which ultimately
decide how an RPC is marshalled. In the traditional RPC-
as-a-library approach, a protocol compiler generates the
marshalling code, which is linked into the application. In
our design, the mRPC service is responsible for marshalling,
which means that the application-specific marshalling code
needs to be decoupled from an RPC library and run inside the
mRPC service itself. Failing to ensure this separation would
allow arbitrary code execution by a malicious user.

Applications directly submit the RPC schema (and not
marshalling code) to the mRPC service. The mRPC service
generates the corresponding marshalling code, then compiles
and dynamically loads the library. Thus, we rely on our mRPC
service code generator to produce the correct marshalling code

144 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

for any user-provided RPC schema. For the initial handshake
between an RPC client and an RPC server, the two mRPC
services check that the provided RPC schemas match, and if
not, the client’s connection is rejected.

There are three remaining questions. First, what are
the responsibilities of the in-application user stub and
mRPC library? In mRPC, applications rely on user stubs to
implement the abstraction as specified in their RPC schema.
This means we still need to generate the glue code to maintain
the traditional application programming interface. Our
solution is to provide a separate protocol schema compiler,
which is untrusted and run by application developers, to
generate the user stub code that does not involve marshalling
and transport. The application RPC stub (with the help of
the mRPC library) creates a message buffer that contains
the metadata of the RPC, with typed pointers to the RPC
arguments, on the shared memory heap. The message is placed
on a shared memory queue, which will be processed by the
mRPC service. The receiving side works in a similar way.

Second, does this approach increase RPC connect/bind
time? Implemented naively, this design will increase the RPC
connect/bind time because the mRPC service has to compile
the RPC schema and load the resulting marshalling library
when an RPC client first connects to a corresponding server
(or equivalently when an RPC server binds to the service).
However, this latency is not fundamental to our design, and
we can mitigate it in the following way. The mRPC service
accepts RPC schemas before booting an application, as a form
of prefetching. Given a schema, it compiles and caches the
marshalling code. At the time of RPC connect/bind, the mRPC
service simply performs a cache lookup based on the hash
of the RPC schema. If it exists within the cache, the mRPC
service will load the associated library; otherwise, the mRPC
service will invoke the compiler to generate (and subsequently
cache) the library. This reduces the connect/bind time from
several seconds to several milliseconds.

Third, when new applications arrive, do existing appli-
cations face downtime? The multi-threaded mRPC service is
a single process that serves many RPC applications; however,
the marshalling engines for different RPC applications are
not shared. They are in different memory addresses and can
be (un)loaded independently. We will describe in §4.3 how to
load/unload engines without disrupting running applications.

4.2 Efficient RPC Policy Enforcement and Observability

We have one key idea to allow efficient RPC policy enforce-
ment and observability: senders should marshal once (as
late as possible), while receivers should unmarshal once (as
early as possible). On the sender side, we want to support
policy enforcement and observability directly over RPCs
from the application, and then marshal the RPC into packets.
The receiver side is similar: packets should be unmarshalled
into RPCs, applying policy and observability operations,
and then delivered directly to the application. Compared to

the traditional RPC-as-a-library approach with sidecars, this
eliminates the redundant (un)marshalling steps (see Figure 1).

Data: DMA-capable shared memory heaps. Our design is
centered around a dedicated shared memory heap between each
application and the mRPC service. (Note that this heap is not
shared across applications.) Applications directly create data
structures, which may be used in RPC arguments, in a shared
memory heap with the help of the mRPC library. Each applica-
tion has a separate shared memory region, which provides iso-
lation between (potentially mutually distrusting) applications.
The mRPC library also includes a standard slab allocator for
managing object allocation on this shared memory. If there is
insufficient space within the shared memory, the slab allocator
will request additional shared memory from the mRPC service
and then map it into the application’s address space. The mRPC
service has access to the shared memory heap, allowing it to
execute RPC processing logic over the application’s RPCs, but
also maintains a private memory heap for necessary copies.

Figure 3 shows an example workflow that includes access
control for a key-value store service. Having the data structures
directly in the shared memory allows an application to provide
pointers to data, rather than the data itself, when submitting
RPCs to the mRPC service. We call the message sent from an
application to the mRPC service an RPC descriptor. If there are
multiple RPC arguments, the RPC descriptor points to an array
of pointers (each pointing to a different argument on the heap).

Let us say we have an ACL policy that rejects an RPC if the
key matches a certain string. The mRPC service first copies
the argument (i.e., key), as well as all parental data structures
(i.e., GetReq), onto its private heap. This is to prevent time-of-
use-to-time-of-check (TOCTOU) attacks. Since applications
have access to DMA-capable shared memory at all times, an
application could modify the content in the memory while the
mRPC service is enforcing policies. Copying arguments is
a standard mitigation technique, similar to how OS kernels
prevents TOCTOU attacks by copying system call arguments
from user- to kernel-space. This copying only needs to happen
if the policy behavior is based on the content of the RPC. We
demonstrate in §7.2 that even with such copying, mRPC’s
overhead for an ACL policy is much lower than gRPC + Envoy.
The RPC descriptor is modified so that the pointer to the copied
argument now points to the private heap. On the receiver side,
the TOCTOU attack is not relevant, but we need to take care not
to place RPCs directly in shared memory. If there is a receive-
side policy that depends on RPC argument values, the mRPC
service first receives the RPC data into a private heap; it copies
the RPC data into the shared heap after policy processing. This
prevents the application from reading RPC data that should
have been dropped or modified by the policies. Note that we
can bypass this copy when processing does not depend on RPC
argument values (e.g., rate limits). During ACL policy enforce-
ment, the RPC is dropped if the key argument is contained in a
blocklist. Note that if an RPC is dropped, any further process-
ing logic is never executed (including marshalling operations).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 145

Shared
Heap

Private
Heap

Frontend
Engine

ACL
Policy

RDMA
Transport NIC

RPC
Descriptor

mRPC
LibrarySt

ub
&GetReq

GetReq key

&GetReq

GetReq key

Scatter-
Gather List

GetReq key

Desc Desc Desc SGL

App

GetReq key

Copy

&d Reference (&d) to Data (d)d Content-Aware Policy

Figure 3: Overview of memory management in mRPC. Shows
an example for the Get RPC that includes a content-aware
ACL policy.

Finally, at the end of the processing logic, the transport
adapter engine executes. mRPC currently supports two
types of transport: TCP and RDMA. For TCP, mRPC uses
the standard, kernel-provided scatter-gather (iovec) socket
interface. For RDMA, mRPC uses the scatter-gather verb
interface, allowing the NIC to directly interact with buffers
on the shared (or private) memory heaps containing the RPC
metadata and arguments. For both TCP and RDMA, mRPC
provides disjoint memory blocks to the transport layer directly,
eliminating excessive data movements.4

Control: Shared-memory queues. To facilitate efficient
communication between an application and the mRPC service,
we use shared memory control queues. mRPC allocates two
unidirectional queues for sending and receiving requests from
an application to the mRPC service. The requests contain RPC
descriptors, which reference arguments on the shared memory
heap. The mRPC service always copies the RPC descriptors
applications put in the sending queue to prevent TOCTOU
attacks. mRPC provides two options to poll the queues: 1)
busy polling, and 2) eventfd-based adaptive polling. In busy
polling, both the application-side mRPC library and the mRPC
service busy poll on their ends of the queues. In the eventfd
approach, the mRPC library and the mRPC service sends
event notifications after enqueuing to an empty queue. After
receiving a notification, the queue is drained (performing the
necessary work) before subsequently waiting on future events.
The eventfd approach saves CPU cycles when queues are
empty. Other alternative solutions may involve dynamically
scaling up (or down) the number of threads used to busy poll by
the mRPC service; however, we chose the eventfd approach
for its simplicity. In our evaluation, we use busy polling for
RDMA and eventfd-based adaptive polling for TCP.

Memory management. We provide a memory allocator in
the mRPC library for applications to directly allocate RPC
data structures to be sent on a shared memory heap. The
allocator invokes the mRPC service to allocate shared memory
regions on behalf of the application (similar to how a standard

4For RDMA, if the number of disjoint memory blocks exceeds the limit
of NIC’s capability to encapsulate all blocks in one RDMA work request,
mRPC coalesces the data into a memory block before transmission. This
is because sending a single work request (even with a copy) is faster than
sending multiple smaller work requests on our hardware.

heap manager calls mmap or sbrk to allocate memory from an
OS kernel). We need to use a specialized memory allocator for
RPC messages (and their arguments), since RPCs are shared
between three entities: the application, the mRPC service, and
the NIC. A memory block is safe to be reclaimed only when
it will no longer be accessed by any entity.

We adopt a notification-based mechanism for memory
management. On the sender side, the outgoing messages are
managed by the mRPC library within the application. On
the receiver side, the incoming messages are managed by the
mRPC service. When the application no longer accesses a
memory block occupied by outgoing messages, the memory
block will not be reclaimed until the library receives a noti-
fication from mRPC service that the corresponding messages
are already sent successfully through the NIC (similar to how
zero-copy sockets work in Linux). Incoming messages are put
in buffers on a separate read-only shared heap. The receiving
buffers can be reclaimed when the application finishes pro-
cessing (e.g., when the RPC returns). To support reclamation
of receive buffers, the mRPC library notifies the mRPC service
when specific messages are no longer in use by the application.
Notifications for multiple RPC messages are batched to im-
prove performance. If the receiver application code wishes to
preserve or modify the incoming data, it must make an explicit
copy. Although this differs from traditional RPC semantics,
in our implementation of Masstree and DeathStarBench we
found no examples where the extra copy was necessary.

Cross-datapath policy engines. mRPC supports engines that
operate over multiple datapaths, which may span multiple ap-
plications. For instance, any global policy (e.g., QoS) will need
to operate over all datapaths (see §5). For this type of engine,
we instantiate replicas of the engine for each datapath that it
applies to. Replicas can choose to either communicate through
shared state, which requires managing contention across
runtimes, or support runtime-local state that is contention-free.

4.3 Live Upgrades

Although our modular engine design for the mRPC service
is similar to Snap [58] and Click [47], we arrive at very
different designs for upgrades. Click does not support live
upgrades, while Snap executes the upgraded process to run
alongside the old process. The old process serializes the
engine states, transfers them to the new process, and the
new process restarts them. This means that even changing
a single line of code within a single Snap engine requires a
complete restart for all Snap engines. This design philosophy
is fundamentally not compatible with mRPC, as we need
to deal with new applications arriving with different RPC
schemas, and thus our upgrades are more frequent. In addition,
we want to avoid fate sharing for applications: changes to an
application’s datapath should not impact the performance of
other applications. Ultimately, Snap is a network stack that
does not contain application-specific code, where as mRPC
needs to be application-aware for marshalling RPCs.

146 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We implement engines as plug-in modules that are dynam-
ically loadable libraries. We design a live upgrade method that
supports upgrading, adding, or removing components of the
datapath without disrupting other datapaths.

Upgrading an engine. To upgrade one engine, mRPC first
detaches the engine from its runtime (preventing it from being
scheduled). Next, mRPC destroys and deallocates the old
engine, but maintains the old engine’s state in memory; note
that the engine is detached from its queues and not running
at this time. Afterwards, mRPC loads the new engine and
configures its send and receive queues. The new engine
starts with the old engine’s state. If there is a change in the
data structures of the engine’s state, the upgraded engine is
responsible for transforming the state as necessary (which the
engine developer must implement). Note that this also applies
to any shared state for cross-datapath engines. The last step
is for mRPC to attach the new engine to the runtime.

Changing the datapath. When an operator changes the data-
path to add or remove an engine, this process now involves the
creation (or destruction) of queues and management of in-flight
RPCs. Changes that add an engine are straightforward, since it
only involves detaching and reconfiguring the queues between
engines. Changes that remove an engine are more complex,
as some in-flight RPCs may be maintained in internal buffers;
for example, a rate limiter policy engine maintains an internal
queue to ensure that the output queue meets a configured rate.
Engine developers are responsible for flushing such internal
buffers to the output queues when the engines are removed.

Multi-host upgrades or datapath changes. Some engine
upgrades or datapath changes that involve both the sender and
the receiver hosts need to carefully manage in-flight RPCs
across hosts. For example, if we want to upgrade how mRPC
uses RDMA, both the sender and the receiver have to be up-
graded. In this scenario, the operator has to develop an upgrade
plan that may involve upgrading an existing engine to some
intermediate, backward-compatible engine implementation.
The plan also needs to contain the upgrade sequence, e.g., up-
grading the receiver side before the sender side. Our evaluation
demonstrates such a complex live upgrade,which optimizes the
handling of many small RPC requests over RDMA (see §7.3).

4.4 Security Considerations

We envision two deployment models for mRPC: (1) a cloud
tenant uses mRPC to manage its RPC workloads (similar
to how sidecars are used today); (2) a cloud provider uses
mRPC to manage RPC workloads on behalf of tenants. In both
models, there are two different classes of principals: operators
and applications. Operators are responsible for configuring the
hardware/virtual infrastructure, deploying the mRPC service,
and setting up policies that mRPC will enforce. Applications
run on an operator’s infrastructure, interacting with the mRPC
service to invoke RPCs. Applications trust operators, along
with all privileged software (e.g., OS) and hardware that the

operators provide; both applications and operators trust our
mRPC service and protocol compiler. In both deployment
models, applications are not trusted and may be malicious
(e.g., attempt to circumvent network policies).

In the first deployment model, mRPC service runs on top of a
virtualized network that is dedicated to the tenant. Running ar-
bitrary policy and observability code inside the mRPC service
cannot attack other tenants’ traffic since inter-tenant isolation
is provided by the cloud provider. In the second deployment
model, our current prototype does not support running tenant-
provided policy implementation inside mRPC service. How to
safely integrate tenant-provided policy implementation and a
cloud provider’s own policy implementation is a future work.

From the application point of view, we want to ensure
that mRPC provides equivalent security guarantees as
compared to today’s RPC library and sidecar approach,
which we discuss in terms of: 1) dynamic binding and 2) policy
enforcement. Our dynamic binding approach involves the gen-
eration, compilation, and runtime loading of a shared library
for (un)marshalling application RPCs. Given that the compiled
code is based on the application-provided RPC schema, this
is a possible vector of attack. The mRPC schema compiler is
trusted with a minimal interface: other than providing the RPC
schema, applications have no control on the process of how
the marshalling code is generated. We open source our imple-
mentation of the compiler so that it can be publicly reviewed.

As for all of our RPC processing logic, policies are enforced
over RPCs by operating over their representations in shared
memory control queues and data buffers. With a naive shared
memory implementation, this introduces a vector of attack by
exploiting a time-of-check to time-of-use (TOCTOU) attack;
for instance, the application could modify the RPC message
after policy enforcement but before the transport engine
handles it. In mRPC, we address this by copying data into an
mRPC-private heap prior to executing any policy that operates
over the content of an RPC (as opposed to metadata such as the
length). Similarly, received RPCs cannot be placed in shared
memory until all policies have been enforced, since otherwise
applications could see received RPCs before policies have a
chance to drop (or modify) them. Shared memory regions are
maintained by the mRPC service on a per-application basis
to provide isolation.

5 Advanced Manageability Features
mRPC’s architecture creates an opportunity for advanced man-
ageability features such as cross-application RPC scheduling.
In this section, we present two such features that we developed
on our policy engine framework to demonstrate the broader
utility of our RPC-as-a-managed-service architecture.

Feature 1: Global RPC QoS. mRPC allows centralized RPC
scheduling of cross-application workloads based on a global
view of current outstanding RPCs. For example, mRPC can en-
force a policy that prioritizes RPCs with earliest deadlines [86]
across applications to support latency SLO or prioritizes

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 147

latency-sensitive workloads [101]. One challenge here is that
a naive implementation may attempt to apply the QoS policy
for datapaths spread over multiple runtimes (i.e., execution
thread contexts). This would require the (replicated) policy
engines on each datapath to share the state on outstanding
RPCs, and thus impose synchronization overheads. Therefore,
we adopt a similar strategy as used in the Linux kernel to apply
the QoS policy on a per-runtime basis, which instead can use
runtime-local storage without the need for synchronization. In
our implementation, we support a QoS strategy that prioritizes
small RPCs based on a configurable threshold size.

Feature 2: Avoiding RDMA performance anomalies. It
is well known that RDMA workloads may not fully utilize
the capability of a specific RDMA NIC without fine-tuning,
and that particular traffic patterns can even cause performance
anomalies [40, 49] (e.g., low RDMA throughput, pause frame
storms). Previous work such as ScaleRPC [13] and Flock [63]
have proposed techniques to utilize the RNIC more efficiently.
However, their approaches are library-based and only work
for single applications; therefore, they do not handle scenarios
in which the combination of multiple application workloads
causes poor RDMA performance. mRPC’s architecture
enables us to have a global view of all RDMA requests and
to avoid such performance anomalies.

We implement a global RDMA scheduler inside the
RDMA transport engine, which translates RPC requests into
RDMA messages and sends them to the RDMA NIC. In our
implementation, we focus on addressing the performance
degradation from interspersed small and large scatter-gather
elements (which may be across RPCs as well as applications).
We fuse such elements together with an explicit copy with an
upper bound of 16 KB for the size of the fused element.

6 Implementation
mRPC is implemented in 32K lines of Rust: 3K lines for
the protocol compiler, 6K for the mRPC control plane, 12K
for engine implementations, and 11K for the mRPC library.
The mRPC control plane is part of the mRPC service that
loads/unloads engines.

The mRPC control plane is not live-upgradable. The
mRPC library is linked into applications and is thus also not
live-upgradable. We do not envision the need to frequently
upgrade these components because they only implement
the high-level, stable APIs, such as shared memory queue
communication and (un)loading engines.

Engine interface. Table 1 presents the essential API functions
that all engines must implement. Each engine represents some
asynchronous computation that operates over input and output
queues via doWork, which is similar in nature to Rust’s Future.
mRPC uses a pool of runtime executors to drive the engines by
calling doWork, where each runtime executor corresponds to
a kernel thread. We currently implement a simple scheduling
strategy inspired by Snap [58]: engines can be scheduled to

Operations
doWork(in:[Queue], out:[Queue])

Operate over one or more RPCs available on input queues.
decompose(out:[Queue]) → State

Decompose the engine to its compositional states.
(Optionally output any buffered RPCs)

restore(State) → Engine
Restore the engine from the previously decomposed state.

Table 1: mRPC Engine Interface.

a dedicated or shared runtime on start. In addition, runtimes
with no active engines will be put to slept and release CPU
cycles. The engines also implement APIs to support live
upgrading: decompose and restore. In decompose, the
engine implementation is responsible for destructing the
engine and creating a representation of the final state of the
engine in memory, returning a reference to mRPC. mRPC
invokes restore on the upgraded instance of the engine,
passing in a reference to the final state of the old engine. The
developer is responsible for handling backward compatibility
across engine versions, similar to how application databases
may be upgraded across changes to their schemas.

Transport engines. We abstract reliable network commu-
nication of messages into transport engines, which share
similar design philosophy with Snap [58] and TAS [45]. We
currently implement two transport engines: RDMA and TCP.
Our RDMA transport engine is implemented based on OFED
libibverbs 5.4, while our TCP transport engine is built on
Linux kernel’s TCP socket.

mRPC Library. Modern RPC libraries allow the user to
specify the RPC data types and service interface through a
language-independent schema file (e.g., protobuf for gRPC,
thrift for Apache Thrift). mRPC implements support for
protobuf and adopts similar service definitions as gRPC,
except for gRPC’s streaming API. mRPC also integrates
with Rust’s async/await ecosystem for ease of asynchronous
programming in application development.

To create an RPC service, the developer only needs to
implement the functions declared in the RPC schema. The
dependent RPC data types are automatically generated and
linked with the application by the mRPC schema compiler. The
mRPC library handles all the rest, including task dispatching,
thread management, and error handling. To allow applications
to directly allocate data in shared memory without changing
the programming abstraction, we implement a set of shared
memory data structures that expose the same rich API as
Rust’s standard library. This is done by replacing the memory
allocation of data structures such as Vec and String with the
shared memory heap allocator.

7 Evaluation
We evaluate mRPC using an on-premise testbed of servers
with two 100 Gbps Mellanox Connect-X5 RoCE NICs and
two Intel 10-core Xeon Gold 5215 CPUs (running at 2.5 GHz

148 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

base frequency). The machines are connected via a 100 Gbps
Mellanox SN2100 switch. Unless specified otherwise, we
keep a single in-flight RPC to evaluate latency. To benchmark
goodput and RPC rate, we let each client thread keep 128
concurrent RPCs on TCP and 32 concurrent RPCs on RDMA.

7.1 Microbenchmarks

We first evaluate mRPC’s performance through a set of
microbenchmarks over two machines, one for the client and
the other for the server. The RPC request has a byte-array
argument, and the response is also a byte array. We adjust the
RPC size by changing the array length. RPC responses are an
8-byte array filled with random bytes. We compare mRPC with
two state-of-the-art RPC implementations, eRPC and gRPC
(v1.48.0). We deploy Envoy (v1.20) in HTTP mode to serve as
a sidecar for gRPC. We use mRPC’s TCP and RDMA backends
to compare with gRPC and eRPC, respectively. There is no
existing sidecar that supports RDMA. To evaluate the perfor-
mance of using a sidecar to control eRPC traffic, we implement
a single-thread sidecar proxy using the eRPC interface. We
keep applications running for 15 seconds to measure the result.

Small RPC latency. We evaluate mRPC’s latency by issuing
64-byte RPC requests over a single connection. Table 2
shows the latency for small RPC requests. Note that since
the marshalling of small messages is fast on modern CPUs,
the result in the table remains stable even when the message
size scales up to 1 KB. We use netperf and ib_read_lat to
measure raw round-trip latency.

mRPC achieves median latency of 32.8 µs for TCP and
7.6 µs for RDMA. Relative to netperf (TCP) or a raw RDMA
read, mRPC adds 11.8 or 5.1 µs to the round-trip latency. This
is the cost of the mRPC abstraction on top of the raw transport
interface (e.g., socket, verbs).

We also evaluate latency in the presence of sidecar
proxies. The sidecars do not enforce any policies, so we are
only measuring the base overhead. Our results show that
adding sidecars substantially increases the RPC latency. On
gRPC, adding Envoy sidecars more than triples the median
latency. The result is similar with eRPC. On mRPC, having
a NullPolicy engine (which simply forwards RPCs) in the
mRPC service has almost no effect on latency, increasing the
median latency only by 300 ns.

Comparing the full solution (mRPC with policy versus
gRPC/eRPC with proxy), mRPC speeds up the median latency
by 6.1× (i.e., 33.4 µs against 203.4 µs) and the 99th percentile
tail latency by 5.8×. On RDMA, mRPC speeds up eRPC by
1.3× and 1.4× in terms of median and tail latency (respec-
tively). This is because the communication between the eRPC
app and its proxy goes through the NIC, which triples the cost
in the end-host driver (including the PCIe latency). In contrast,
mRPC’s architecture shortcuts this step with shared memory.

In addition, to separate the performance gain from system
implementation difference, we evaluate the latency of mRPC
with full gRPC-style marshalling (protobuf encoding and

Transport Solution Median Latency (µs) P99 Latency (µs)

TCP

Netperf 21.0 32.0
gRPC 63.0 90.3
mRPC 32.8 38.7

gRPC+Envoy 203.4 251.1
mRPC+NullPolicy 33.4 43.3

mRPC+NullPolicy+HTTP+PB 49.8 61.9

RDMA

RDMA read 2.5 2.8
eRPC 3.6 4.1
mRPC 7.6 8.7

eRPC+Proxy 11.3 15.6
mRPC+NullPolicy 7.9 9.1

Table 2: Microbenchmark [Small RPC latency]: Round-trip
RPC latencies for 64-byte requests and 8-byte responses.

HTTP/2 framing) in the presence of NullPolicy engines as
an ablation study. Under this setting, compared with gRPC
+ Envoy, mRPC speeds up the latency by 4.1× in terms of both
median and tail latency. We also observe that the mRPC frame-
work does not introduce significant overhead. Even with the
cost of protobuf and HTTP/2 encoding, mRPC still achieves
slightly lower latency compared with standalone gRPC. In
mRPC, we can choose a customized marshalling format, be-
cause we know the other side is also an mRPC service. In other
cases, e.g., when interfacing with external traffic or dealing
with endianness differences, we can still apply full-gRPC style
marshalling. When mRPC is configured to use full-gRPC
style marshalling, we only need to pay (un)marshalling costs
between mRPC services. For gRPC + Envoy, in addition to
the (un)marshalling costs between Envoy proxies, the commu-
nication between applications and Envoy proxies also needs
to pay this (un)marshalling cost. In the remaining evaluations,
we will use mRPC’s customized marshalling protocol. More
results using gRPC-style marshalling are shown in §A.1.

Large RPC goodput. The client and server in our goodput
test use a single application thread. The left side of Figure 4
shows the result. From this point on, when we discuss mRPC’s
performance, we focus on the performance of mRPC that has
at least a NullPolicy engine in place to fairly compare with
sidecar-based approaches.

mRPC speeds up gRPC + Envoy and eRPC + Proxy, by
3.1× and 9.3×, respectively, for 8KB RPC requests. mRPC is
especially efficient for large RPCs5, for which (un)marshalling
takes a higher fraction of CPU cycles in the end-to-end RPC
datapath. Having a sidecar substantially hurts RPC goodput
both for TCP and RDMA. In particular, for RDMA, intra-host
roundtrip traffic through the RNIC might contend with
inter-host traffic in the RNIC/PCIe bus, halving the available
bandwidth for inter-host traffic. mRPC even outperforms
gRPC (without Envoy). mRPC is fundamentally more efficient
in terms of marshalling format: mRPC uses iovec and
incurs no data movement. §A.1 shows an ablation study
that demonstrates that even if mRPC uses a full gRPC-style
marshalling engine, mRPC outperforms gRPC + Envoy due
to a reduction in the number of (un)marshalling steps.

CPU overheads. To understand the mRPC CPU overheads,
we measure the per-core goodput. The results are shown on

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 149

2 8 32 128 512
2048

8192

RPC Size (KB)

0

10

20

30

G
oo

dp
ut

 (G
bp

s)

2 8 32 128 512
2048

8192

RPC Size (KB)

0

10

20

30

N
or

m
al

iz
ed

G
oo

dp
ut

(G
bp

s/
co

re
)

mRPC gRPC gRPC+Envoy

(a) TCP-based transport

2 8 32 128 512
2048

8192

RPC Size (KB)

0
25
50
75

100

G
oo

dp
ut

 (G
bp

s)

2 8 32 128 512
2048

8192

RPC Size (KB)

0
25
50
75

100
N

or
m

al
iz

ed
G

oo
dp

ut
(G

bp
s/

co
re

)

mRPC eRPC eRPC+Proxy

(b) RDMA-based transport

Figure 4: Microbenchmark [Large RPC goodput]:
Comparison of goodput for large RPCs. Note that different
solutions demand different amounts of CPU cores, so we also
normalized the goodput to their CPU utilization, as shown
in the right figures. The error bars show the 95% confidence
interval, but they are too small to be visible.

1 2 4 8
User Threads

0.0

0.2

0.4

0.6

R
PC

 R
at

e
(M

rp
s)

mRPC
gRPC
gRPC+Envoy

(a) TCP-based transport

1 2 4 8
User Threads

0
3
6
9

12

R
PC

 R
at

e
(M

rp
s)

eRPC
mRPC

(b) RDMA-based transport

Figure 5: Microbenchmark [RPC rate and scalability]:
Comparison of small RPC rate and CPU scalability. The bars
show the RPC rate. The error bars show the 95% confidence
interval.

the right side of Figure 4. mRPC speeds up gRPC + Envoy and
eRPC + Proxy, by 3.8× and 9.3×, respectively. This means
mRPC is much more CPU-efficient than gRPC + Envoy and
eRPC + Proxy. eRPC (without a proxy) is quite efficient, but
converges to mRPC’s efficiency as RPC size increases.

RPC rate and scalability. We evaluate mRPC’s small RPC
rate and its multicore scalability. We fix the RPC request size
to 32 bytes and scale the number of client threads. We use
the same number of threads for the server as the client, and
each client connects to one server thread. Figure 5 shows the
RPC rates when scaling from 1 to 8 user threads. All the tested
solutions scale well. mRPC’s RPC rates scale by 5.1× and
7.2×, on TCP and RDMA, from a single thread to 8 threads.
As a reference, gRPC scales by 4.3×, gRPC + Envoy scales by

5Standalone eRPC exhibits relatively lower goodput on RoCE than on
Infiniband. According to the eRPC paper [39], eRPC should achieve 75 Gbps
on Infiniband for 8MB RPCs.

gRPC mRPC
0

25

50

75

100

R
PC

 R
at

e
(K

rp
s)

49

82

25

80w/o Limit
w/ Limit

(a) Rate Limiting

gRPC mRPC
0

25

50

75

100

R
PC

 R
at

e
(K

rp
s)

50

84

13

79
w/o ACL
w/ ACL

(b) Access Control

Figure 6: Efficient Support for Network Policies. The RPC
rates with and without policy are compared. The bars of w/o
Limit and w/o ACL for gRPC show its throughput when the
sidecar is bypassed. The error bars show the 95% confidence
interface.

3.9×, and eRPC scales by 6.5×. mRPC achieves 0.43 Mrps on
TCP and 6.5 Mrps on RDMA with 8 threads. gRPC + Envoy
only has 0.09 Mrps, so mRPC outperforms it by 5×. We do
not evaluate eRPC + proxy, because our eRPC proxy is only
single-threaded. When we run eRPC + proxy with a single
thread, it achieves 0.51 Mrps. So even if eRPC + proxy scales
linearly to 8 threads, mRPC still outperforms it.

7.2 Efficient Policy Enforcement

We use two network policies as examples to demonstrate
mRPC’s efficient support for RPC policies: (1) RPC rate
limiting and (2) access control based on RPC arguments. RPC
rate limiting allows an operator to specify how many RPCs
a client can send per second. We implement rate limiting as
an engine using the token bucket algorithm [91]. Our access
control policy inspects RPC arguments and drops RPCs based
on a set of rules specified by network operators. These two
network policies differ greatly from traditional rate limiting
and access control, which only limit network bandwidth and
can only operate on packet headers.

We compare rate limit enforcement using an mRPC policy
versus using Envoy’s rate limiter on gRPC workloads. To
evaluate the performance overheads, we set the limit to infinity
so that the actual RPC rate is never above the limit (allowing
us to observe the overheads). Figure 6a shows the RPC rate
with and without the rate limits. gRPC’s RPC rate drops
immediately from 49K to 25K. This is because having a
sidecar proxy (Envoy) introduces substantial performance
overheads. For mRPC, the RPC rate stays the same at 82K.
This is because having a policy introduces minimal overheads.
The extra policy only adds tens to hundreds of extra CPU
instructions on the RPC datapath.

We evaluate access control on a hotel reservation application
in DeathStarBench [23]. The service handles hotel reservation
RPC requests, which include the customer’s name, the check-
in date, and other arguments. The service then returns a list of
recommended hotel names. We set the access control policy
to filter RPCs based on the customerName argument in the
request. We use a synthetic workload containing 99% valid
and 1% invalid requests. We again compare our mRPC policy

150 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10
Time (sec)

0

250

500

750

1000

R
PC

 R
at

e
(K

rp
s) server client

App A
App B

(a) Transport adapter

0 2 4 6
Time (sec)

400

600

800

1000

R
PC

 R
at

e
(K

rp
s) 500K detach

(b) Rate limit policy

Figure 7: Live upgrade. In (a), the annotations indicate when
the client of App A and server of A and B are upgraded. In (b),
the annotations denote the specified rate and when the policy
is removed.

against using Envoy to filter gRPC requests. We implement the
Envoy policy using WebAssembly. gRPC’s rate drops from
50K to 13K. This is because of the same sidecar overheads and
now Envoy has to further parse the packets to fetch the RPC
arguments. On mRPC, the performance drop is much smaller,
from 84K to 79K. Note that, on mRPC, the performance over-
head of introducing access control is larger than rate limiting.
For access control, the mRPC service has to copy the relevant
field (i.e., customerName) to the private heap to prevent TOC-
TOU attacks on the sender side and has to copy the RPC from
a private heap to the shared heap on the receiver side.

7.3 Live Upgrade

We demonstrate mRPC’s ability to live upgrade using two
scenarios.

Scenario 1. During our development of mRPC, we realized
that using the RDMA NIC’s scatter-gather list to send multiple
arguments in a single RPC can significantly boost mRPC’s
performance. In this approach, even when an RPC contains
arguments that are scattered in virtual memory, we can send
the RPC using a single RDMA operation (ibv_post_send).
We use these two versions of our RDMA transport engine
to demonstrate that mRPC enables such an upgrade without
affecting running applications. Note that all other evaluations
already include this RDMA feature. This upgrade involves
both the client side’s mRPC service and the server side’s
mRPC service, because it involves how RDMA is used
between machines (i.e., transport adapter engine). gRPC and
eRPC cannot support this type of live upgrade.

We run two applications (App A and App B). Both applica-
tions are sending 32-byte RPCs, and the responses are 8 bytes.
A and B share the mRPC service on the server side. A’s and B’s
RPC clients are on different machines. We keep 8 concurrent
RPCs for B, forcing it to send at a slower rate, while using 32
for A. We first upgrade the server side to accept arguments
as a scatter-gather list, and we then upgrade the client side of
A. Figure 7a shows the RPC rate of A and B. When the server
side upgrades, we observe a negligible effect on A’s and B’s
rate. Neither A nor B needs recompilation or rebooting. When
A’s client side’s mRPC service is upgraded, A’s performance

geo rate profile search frontend
0
2
4
6
8

M
ea

n
La

te
nc

y
(m

s)

gRPC+Envoy (Go)
gRPC+Envoy (Rust)
mRPC

Network
App

Figure 8: DeathStarBench: Mean latency of in-application
processing and network processing of microservices. The
latency of a microservice includes RPC calls to other
microservices. The frontend latency represents complete
end-to-end latency.

increases from 480K to 860K. B’s performance is not affected
at all because B’s client side’s mRPC service is not upgraded.

Scenario 2. Enforcing network policies has performance
overheads, even when they do not have any effect. For example,
enforcing a rate limit of an extremely large throttle rate still
introduces performance overheads just for tracking the current
rate using token buckets. mRPC allows policies to be removed
at runtime, without disrupting running applications.

We use the same rate limiting setup from §7.2 but on top
of RDMA transport. Figure 7b shows the RPC rate. We start
from not having the rate limit engine. We then load the rate
limit engine and set the throttled rate to 500K. The RPC rate
immediately becomes 500K. We then set the throttled rate to
be infinite, and the rate becomes 840K. After we detach the
rate limit engine, the rate becomes 890K.

Takeaways. There are two overall takeaways from these
experiments. First, mRPC allows upgrades to the mRPC
service without disrupting running applications. Second,
live upgrades allow for more flexible management of RPC
services, which can be used to enable immediate performance
improvements (without redeploying applications) or dynamic
configuration of policies.

7.4 Real Applications

We evaluate how the performance benefits of mRPC transform
into end-to-end application-level performance metrics.

DeathStarBench. We use the hotel reservation service from
the DeathStarBench [23] microservice benchmark suite. The
reference benchmark is implemented in Go with gRPC and
Consul [15] (for service discovery). Our mRPC prototype
currently only supports Rust applications, and we thus port the
application code to Rust for comparison. We use the same open-
source services such as memcached [59] and MongoDB [64].

We distribute the HTTP frontend and the microservices on
four servers in our testbed. The monolithic services (mem-
cached, MongoDB) are co-located with the microservices that
depend on them. We use a single thread for each of the microser-
vices and the frontend. Further, we deploy an Envoy proxy as a
sidecar on each of the servers (with no active policy). The pro-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 151

Median Latency P99 Latency Throughput

eRPC 16.8 µs 21.7 µs 8.7 MOPS
mRPC 22.5 µs 33.1 µs 7.0 MOPS

Table 3: Masstree analytics: Latency and the achieved
throughput for GET operations. MOPS is Million Operations
Per Second.

vided workload generator [23] is used to submit HTTP requests
to the frontend. For a fair comparison, we also implemented a
Rust version of the benchmark with Tonic [93], which is the de
facto implementation of gRPC in Rust. We deploy the mRPC
and Tonic implementations on bare metal, while the reference
Go suite runs in Docker containers with a host network (which
introduces negligible performance overheads compared to us-
ing bare metal [103]). All three solutions are based on TCP. We
issue 20 requests per second for 250 seconds and record the la-
tency of each request, breaking it down into the in-application
processing time and network processing time for each microser-
vice involved. In our evaluation, the dynamic bindings of the
user applications are already cached in mRPC service, so the
time to generate the bindings is not included in the result.

Figure 8 shows the latency breakdown. First, we validate
that our own implementation of DeathStarBench on Rust is
a faithful re-implementation. We can see that the original Go
implementation and our Rust implementation have similar
latency. Moreover, the amount of latency spent in gRPC is
similar. Second, mRPC with a null policy outperforms by
2.5× gRPC with a sidecar proxy in average end-to-end latency.
§A.2 contains more details about the tail latency and the
scenario without a sidecar.

Masstree analytics. We also evaluate the performance of
Masstree [56], an in-memory key-value store, over both mRPC
and eRPC [39] using RDMA. We follow the exact same work-
load setup used in eRPC, which contains 99% I/O-bounded
point GET request and 1% CPU-bounded range SCAN request.
We run the Masstree server on one machine and run the client
on another machine. Both the server and the client use 10
threads, with each client thread using 16 concurrent requests.
The test runs for 60 seconds. The result in Table 3 shows that
eRPC outperforms mRPC, which makes sense since eRPC
is a well-designed library implementation that is focused on
high performance. mRPC enables many other manageability
features in exchange for a slight reduction in performance. In
this case, using mRPC instead of eRPC means that median
latency increases by 34% and throughput reduces by 20%.

7.5 Benefits of Advanced Manageability Features

Next, we demonstrate the performance benefits of having
centralized RPC management, through two advanced manage-
ability features that we developed (see §5). We use synthetic
workloads to test the advanced manageability features.

Latency App B/W App

P95 Latency P99 Latency Bandwidth

w/o QoS 45.1 µs 54.6 µs 22.2 Gbps
w/ QoS 19.5 µs 21.8 µs 22.0 Gbps

Table 4: Global QoS: Performance of latency- and bandwidth-
sensitive applications with and without a global QoS policy.

InceptionV3 EfficientNet MobileNet
0

200

400

600

M
ea

n
La

te
nc

y
(μ

s) 585
456

243
380

246 181

w/o Scheduler
w/ Scheduler

Figure 9: RDMA Scheduler: Mean RPC latency with or
without RDMA scheduler. The error bars show the 95%
confidence interval.

Global RPC QoS. We enable our cross-application QoS
policy that reorders requests from multiple applications and
prioritizes small RPC quests. We set up two applications
and pin them to the same mRPC runtime. One application
is latency-sensitive, sending 32-byte RPC requests with a
single RPC in-flight; the other is bandwidth-sensitive, sending
32 KB requests with 64 concurrent RPCs. We measure the tail
latency for the latency-sensitive application and the utilized
bandwidth of the bandwidth-sensitive one.

Table 4 shows the result. Without the QoS policy, the
bandwidth-sensitive application has a high bandwidth
utilization; however, the latency-sensitive application suffers
from a high tail latency. With the QoS policy in place, the
small requests from the latency-sensitive application get
higher priority and are sent first, improving P99 latency
from 54.6 µs to 21.8 µs. Since small RPC requests consume
negligible bandwidth, it barely affects the bandwidth-sensitive
application (less than a 1% bandwidth drop).

RDMA Scheduler. Our RDMA scheduler batches small RPC
requests into (at most) 16KB messages and sends requests us-
ing a single RMDA operation to reduce the load on the RDMA
NIC. Our synthetic workload is based on BytePS [37], which
uses RDMA for distributed deep learning. To synchronize a
tensor to/from a server, BytePS prepends an 8-byte key and ap-
pends a 4-byte length to describe the tensor. The three disjoint
memory blocks are placed in a scatter-gather list and submitted
to the NIC, resulting in a small-large-small message pattern
that triggers a performance anomaly [49]. This message
pattern is quite common in real applications, as programs often
need to describe a large payload with a small piece of metadata.
We emulate BytePS’s RPC request pattern and generate RPCs
from three widely-used models: MobileNet, EfficientNetB0,
and InceptionV3 [31, 89, 90]. Each RPC call consists of an

152 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

8-byte key, a payload of tensor, and a 4-byte length. We use
a single thread to make RPCs. Figure 9 shows the average
RPC latency. The RDMA scheduler provides 30-90% latency
improvement. This improvement differs for different neural
networks, because of different RDMA message patterns.

8 Related Work
Fast RPC implementations. Optimizing RPC has a long
history. Birrell and Nelson’s early RPC design [10] includes
generating bindings via a compiler, interfacing with transport
protocols, and various optimizations (e.g., implicit ACK).
Bershad et al. showed how to use shared-memory queues
to efficiently pass RPC messages between processes on the
same machine [8]. mRPC’s shared-memory region leverages
this idea but extends it to allow for marshalling code to be
applied after policy enforcement. A similar use of shared-
memory queues can be found with recent Linux support for
asynchronous system calls [3] combined with scatter-gather
I/O [54]; unlike traditional system calls, however, mRPC
protocol descriptions can be defined at runtime.

Another line of work uses RDMA to speed network
RPCs [13, 39, 41, 63, 87, 88]. These studies assume direct ap-
plication access to network hardware and are thus susceptible
to RDMA’s security weaknesses [79]. mRPC leverages ideas
from RDMA RPC research but in a way that is compatible with
policy enforcement and observability, by doing so as a service.
Another line of work reduces the cost of marshalling, by using
alternative formats [2,9,11,20,38,66,78,92] or designing hard-
ware accelerators [35,43,76,97]. This work is largely orthogo-
nal to our goal of removing unnecessary marshalling steps but
could be applied to further improve mRPC performance.

Fast network stacks. Building efficient host network stacks
is a popular research topic. MegaPipe [28], mTCP [36],
Arrakis [73], IX [5], eRPC [39], and Demikernel [99] advocate
building the network stack as a user-level library, bypassing
the kernel for performance. In these systems, an application
directly accesses the network interface, but they assume
policy can be enforced by the network hardware and are thus
vulnerable if the hardware has security weaknesses. mRPC
can interpose policy on any RPC. Like mRPC, Snap [58]
and TAS [45] implement the network stack as a service, but
they stop at layer 4 (TCP and UDP) rather than layer 7 (RPC).
Application RPC stubs must marshal data into shared memory
queues to use Snap or TAS. Flexible policy engines are a key
feature of Snap, but because Snap operates at layer 4, it can only
apply layer 7 policies by unmarshalling and re-marshalling
RPC data. A fast network stack like mRPC can also be
implemented directly in the kernel. LITE [95] implements
RDMA operations as system calls inside the kernel to improve
manageability, and Shenango [69] interposes a specialized
kernel packet scheduler for network messages.

Fast network proxies. There is a long line of work on im-
proving the performance of network proxies [33, 34, 44, 46, 47,

51, 57, 60, 70, 71, 74, 75, 85, 100]. Much of this work considers
the general case of a standalone proxy. Our work differs in
two ways. First, our proposed technique is only for RPC traffic
rather than generalized TCP traffic. Second, we co-design the
application library stub and proxy, and thus, both must be co-
located on the same machine for our shared memory queues to
function. In today’s sidecar proxies (our baseline), this assump-
tion holds, but it does not hold for generalized network proxies.

Live upgrades of system software. Being able to update
system software without disrupting or restarting applications
is key to achieving end-to-end high availability. Snap [58]
provides live upgrade of the network stack running as a proxy;
Bento [61] provides similar functionality for kernel-resident
file systems. Relative to these systems, mRPC upgrades are
more fine-grained. For example, Snap targets a maximum
outage during upgrades of 200 milliseconds, by spawning
another instance of itself and moving all connections to the new
process. By contrast, our goal is near instantaneous changes
and upgrades to RPC protocol definitions, policy engines, and
marshalling code. We accomplish this by keeping the control
plane intact and performing updates by loading and unloading
dynamic libraries. eBPF is a Linux kernel extensibility
mechanism that supports dynamic updates [17]; unlike eBPF,
mRPC can dynamically change the execution graph of policy
engines as well as the individual engines themselves.

9 Conclusion

Remote procedure call has become the de facto abstraction
for building distributed applications in datacenters. The
increasing demand for manageability makes today’s RPC
libraries inadequate. Inserting a sidecar proxy into the network
datapath allows for manageability but slows down RPC
substantially due to redundant marshalling and unmarshalling.
We present mRPC, a novel architecture to implement RPC
as a managed service to achieve both high performance and
manageability. mRPC eliminates the redundant marshalling
overhead by applying policy to RPC data before marshalling
and only copying data when necessary for security. This
new architecture enables live upgrade of RPC processing
logic and new RPC scheduling and transport methods
to improve performance. We have performed extensive
evaluations through a set of micro-benchmarks and two real
applications to demonstrate that mRPC enables a unique
combination of high performance, policy flexibility, security,
and application-level availability. Our source code is available
at https://github.com/phoenix-dataplane/phoenix.

Acknowledgement

We thank our shepherd Amy Ousterhout and other anonymous
reviewers for their insightful feedback. Our work is partially
supported by NSF grant CNS-2213387 and by gifts from
Adobe, Amazon, IBM, and Meta.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 153

https://github.com/phoenix-dataplane/phoenix

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System
for Large-Scale Machine Learning. In OSDI, 2016.

[2] Apache Arrow. https://arrow.apache.org/, 2022.

[3] Jens Axboe. Efficient IO with io_uring.
https://kernel.dk/io_uring.pdf, 2019.

[4] Andrew Baumann, Paul Barham, Pierre-Evariste
Dagand, Tim Harris, Rebecca Isaacs, Simon Peter,
Timothy Roscoe, Adrian Schüpbach, and Akhilesh
Singhania. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In SOSP, 2009.

[5] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In OSDI, 2014.

[6] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac
Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar,
Jim Carrig, Nathan Beckmann, Mor Harchol-Balter,
and Gregory R. Ganger. The CacheLib Caching Engine:
Design and Experiences at Scale. In OSDI, 2020.

[7] Brian N. Bershad, Thomas E. Anderson, Edward D.
Lazowska, and Henry M. Levy. Lightweight Remote
Procedure Call. ACM Trans. Comput. Syst., 8(1):37–55,
February 1990.

[8] Brian N. Bershad, Thomas E. Anderson, Edward D. La-
zowska, and Henry M. Levy. User-Level Interprocess
Communication for Shared Memory Multiprocessors.
ACM Trans. Comput. Syst., 1991.

[9] Bincode. https://github.com/bincode-org/
bincode, 2022.

[10] Andrew D. Birrell and Bruce Jay Nelson. Implementing
Remote Procedure Calls. ACM Trans. Comput. Syst.,
1984.

[11] Cap’n Proto. https://capnproto.org/, 2022.

[12] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas.
Apache Flink: Stream and Batch Processing in a
Single Engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 36(4), 2015.

[13] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable
RDMA RPC on Reliable Connection with Efficient
Resource Sharing. In EuroSys, 2019.

[14] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park,
Mohammad Alizadeh, and Adam Belay. Overload Con-
trol for µs-scale RPCs with Breakwater. In OSDI, 2020.

[15] Consul. https://www.consul.io/, 2022.

[16] Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified Data Processing on Large Clusters. In OSDI,
2004.

[17] eBPF. https://ebpf.io/, 2022.

[18] Envoy Proxy. https://www.envoyproxy.io/, 2022.

[19] etcd. https://etcd.io/, 2022.

[20] FlatBuffers. https://google.github.io/
flatbuffers/, 2022.

[21] Jason Flinn, Xianzheng Dou, Arushi Aggarwal, Alex
Boyko, Francois Richard, Eric Sun, Wendy Tobagus,
Nick Wolchko, and Fang Zhou. Owl: Scale and Flex-
ibility in Distribution of Hot Content. In OSDI, 2022.

[22] Rodrigo Fonseca, George Porter, Randy H. Katz, and
Scott Shenker. X-Trace: A Pervasive Network Tracing
Framework. In NSDI, 2007.

[23] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An Open-Source Benchmark
Suite for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems. In ASPLOS,
2019.

[24] Gluster. https://www.gluster.org/, 2022.

[25] Joseph E. Gonzalez, Yucheng Low, Haijie Gu,
Danny Bickson, and Carlos Guestrin. PowerGraph:
Distributed Graph-Parallel Computation on Natural
Graphs. In OSDI, 2012.

[26] gRPC. https://grpc.io/, 2022.

[27] gRPC Release Schedule. https://grpc.github.
io/grpc/core/md_doc_grpc_release_schedule.
html, 2022.

[28] Sangjin Han, Scott Marshall, Byung-Gon Chun, and
Sylvia Ratnasamy. MegaPipe: A New Programming
Interface for Scalable Network I/O . In OSDI, 2012.

154 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://arrow.apache.org/
https://kernel.dk/io_uring.pdf
https://github.com/bincode-org/bincode
https://github.com/bincode-org/bincode
https://capnproto.org/
https://www.consul.io/
https://ebpf.io/
https://www.envoyproxy.io/
https://etcd.io/
https://google.github.io/flatbuffers/
https://google.github.io/flatbuffers/
https://www.gluster.org/
https://grpc.io/
https://grpc.github.io/grpc/core/md_doc_grpc_release_schedule.html
https://grpc.github.io/grpc/core/md_doc_grpc_release_schedule.html
https://grpc.github.io/grpc/core/md_doc_grpc_release_schedule.html

[29] HAProxy. http://www.haproxy.org/, 2022.

[30] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center. In
NSDI, 2011.

[31] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Ap-
plications. https://arxiv.org/abs/1704.04861,
2017.

[32] Istio. https://istio.io/, 2022.

[33] Ethan J. Jackson, Melvin Walls, Aurojit Panda,
Justin Pettit, Ben Pfaff, Jarno Rajahalme, Teemu
Koponen, and Scott Shenker. SoftFlow: A Middlebox
Architecture for Open vSwitch. In ATC, 2016.

[34] Muhammad Asim Jamshed, YoungGyoun Moon,
Donghwi Kim, Dongsu Han, and KyoungSoo Park.
mOS: A Reusable Networking Stack for Flow
Monitoring Middleboxes. In NSDI, 2017.

[35] Jaeyoung Jang, Sung Jun Jung, Sunmin Jeong, Jun
Heo, Hoon Shin, Tae Jun Ham, and Jae W Lee. A
Specialized Architecture for Object Serialization with
Applications to Big Data Analytics. In ISCA, 2020.

[36] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and
KyoungSoo Park. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In NSDI, 2014.

[37] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A Unified Architec-
ture for Accelerating Distributed DNN Training in
Heterogeneous GPU/CPU Clusters. In OSDI, 2020.

[38] Introducing JSON. https://www.json.org/
json-en.html, 2022.

[39] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In NSDI,
2019.

[40] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design Guidelines for High Performance RDMA
Systems. In USENIX ATC, 2016.

[41] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. FaSST: Fast, Scalable and Simple Distributed
Transactions with Two-Sided (RDMA) Datagram
RPCs. In OSDI, 2016.

[42] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David Brooks. Profiling a Warehouse-Scale
Computer. In ISCA, 2015.

[43] Sagar Karandikar, Chris Leary, Chris Kennelly,
Jerry Zhao, Dinesh Parimi, Borivoje Nikolic, Krste
Asanovic, and Parthasarathy Ranganathan. A Hardware
Accelerator for Protocol Buffers. In MICRO, 2021.

[44] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Re-
becca Steinert, and Gerald Q. Maguire Jr. Metron: NFV
Service Chains at the True Speed of the Underlying
Hardware. In NSDI, 2018.

[45] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP Acceleration as an OS
Service. In EuroSys, 2019.

[46] Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma,
Junhyun Shim, and Sue Moon. NBA (Network Bal-
ancing Act): A High-Performance Packet Processing
Framework for Heterogeneous Processors. In EuroSys,
2015.

[47] Eddie Kohler, Robert Morris, Benjie Chen, John
Jannotti, and M. Frans Kaashoek. The Click Modular
Router. ACM Trans. Comput. Syst., 2000.

[48] Xinhao Kong, Jingrong Chen, Wei Bai, Xu Yechen,
Mahmoud Elhaddad, Shachar Raindel, Jitendra Padhye,
Alvin R Lebeck, and Danyang Zhuo. Understanding
RDMA Microarchitecture Resources for Performance
Isolation. In NSDI, 2023.

[49] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo.
Collie: Finding Performance Anomalies in RDMA
Subsystems. In NSDI, 2022.

[50] Kubernetes. https://kubernetes.io/, 2022.

[51] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing
Peng, Renqian Luo, Ningyi Xu, Yongqiang Xiong,
Peng Cheng, and Enhong Chen. ClickNP: Highly
Flexible and High Performance Network Processing
with Reconfigurable Hardware. In SIGCOMM, 2016.

[52] Tianxi Li, Haiyang Shi, and Xiaoyi Lu. HatRPC:
Hint-Accelerated Thrift RPC over RDMA. In SC, 2021.

[53] Linkerd. https://linkerd.io/, 2022.

[54] Rober Love. Linux System Programming. O’Reilly
Media, 2007.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 155

http://www.haproxy.org/
https://arxiv.org/abs/1704.04861
https://istio.io/
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://kubernetes.io/
https://linkerd.io/

[55] Yucheng Low, Danny Bickson, Joseph Gonzalez, Car-
los Guestrin, Aapo Kyrola, and Joseph M. Hellerstein.
Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud. Proc. VLDB
Endow., 5(8):716–727, 2012.

[56] Yandong Mao, Eddie Kohler, and Robert Tappan
Morris. Cache Craftiness for Fast Multicore Key-Value
Storage. In EuroSys, 2012.

[57] Joao Martins, Mohamed Ahmed, Costin Raiciu,
Vladimir Olteanu, Michio Honda, Roberto Bifulco, and
Felipe Huici. ClickOS and the Art of Network Function
Virtualization. In NSDI, 2014.

[58] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: A Micro-
kernel Approach to Host Networking. In SOSP, 2019.

[59] Memcached. https://memcached.org/, 2022.

[60] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. SilkRoad: Making Stateful
Layer-4 Load Balancing Fast and Cheap Using
Switching ASICs. In SIGCOMM, 2017.

[61] Samantha Miller, Kaiyuan Zhang, Mengqi Chen, Ryan
Jennings, Ang Chen, Danyang Zhuo, and Thomas
Anderson. High Velocity Kernel File Systems with
Bento. In FAST, 2021.

[62] Jeffrey C. Mogul and John Wilkes. Nines Are Not
Enough: Meaningful Metrics for Clouds. In HotOS,
2019.

[63] Sumit Kumar Monga, Sanidhya Kashyap, and Chang-
woo Min. Birds of a Feather Flock Together: Scaling
RDMA RPCs with Flock. In SOSP, 2021.

[64] MongoDB. https://www.mongodb.com, 2022.

[65] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih
Elibol, Zongheng Yang, William Paul, Michael I.
Jordan, and Ion Stoica. Ray: A Distributed Framework
for Emerging AI Applications. In OSDI, 2018.

[66] MessagePack. https://msgpack.org/index.html,
2022.

[67] Nginx. https://www.nginx.com/, 2022.

[68] Diego Ongaro and John Ousterhout. In Search of an
Understandable Consensus Algorithm. In ATC, 2014.

[69] Amy Ousterhout, Joshua Fried, Jonathan Behrens,
Adam Belay, and Hari Balakrishnan. Shenango:
Achieving High CPU Efficiency for Latency-sensitive
Datacenter Workloads. In NSDI, 2019.

[70] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang,
Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and
Scott Shenker. E2: A Framework for NFV Applications.
In SOSP, 2015.

[71] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,
Sylvia Ratnasamy, and Scott Shenker. NetBricks:
Taking the V out of NFV. In OSDI, 2016.

[72] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury,Gregory Chanan,Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In NeurIPS. 2019.

[73] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The Operating System
is the Control Plane. In OSDI, 2014.

[74] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson,
Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang,
Joe Stringer, Pravin Shelar, Keith Amidon, and Martin
Casado. The Design and Implementation of Open
vSwitch. In NSDI, 2015.

[75] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola,
Carmelo Cascone, Marco Spaziani, Valerio Bruschi,
Davide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, Felipe Huici, and Giuseppe Siracusano.
FlowBlaze: Stateful Packet Processing in Hardware.
In NSDI, 2019.

[76] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir,
Mark Sutherland, Zilu Tian, Mario Paulo Drumond,
Babak Falsafi, and Christoph Koch. Optimus Prime:
Accelerating Data Transformation in Servers. In
ASPLOS, 2020.

[77] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun
Singh, Mukarram Tariq, Rui Wang, Jianan Zhang,
Virginia Beauregard, Patrick Conner, Steve Gribble,
Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong
Liu, Karthik Nagaraj, Jason Ornstein, Samir Sawhney,
Ryohei Urata, Lorenzo Vicisano, Kevin Yasumura,
Shidong Zhang, Junlan Zhou, and Amin Vahdat. Jupiter
Evolving: Transforming Google’s Datacenter Network
via Optical Circuit Switches and Software-Defined
Networking. In SIGCOMM, 2022.

156 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://memcached.org/
https://www.mongodb.com
https://msgpack.org/index.html
https://www.nginx.com/

[78] Protocol Buffers. https://developers.google.
com/protocol-buffers, 2022.

[79] Benjamin Rothenberger, Konstantin Taranov, Adrian
Perrig, and Torsten Hoefler. ReDMArk: Bypassing
RDMA security mechanisms. In USENIX Security,
2021.

[80] Russel Sandberg. The Sun Network File System:
Design, Implementation and Experience. In USENIX
Summer ATC, 1986.

[81] Mike Schroeder and Michael Burrows. Performance of
Firefly RPC. ACM Transaction on Computer Systems,
February 1990.

[82] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The Hadoop Distributed File
System. In 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), 2010.

[83] Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob
Cauble, Harshad Deshmukh, Dan Gibson, Milo M. K.
Martin, Amanda Strominger, Thomas F. Wenisch,
and Amin Vahdat. CliqueMap: Productionizing
an RMA-Based Distributed Caching System. In
SIGCOMM, 2021.

[84] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski.
Thrift: Scalable Cross-Language Services Implemen-
tation. Facebook white paper, 5(8):127, 2007.

[85] Snabb: Simple and fast packet networking.
https://github.com/snabbco/snabb, 2022.

[86] Marco Spuri and Giorgio C. Buttazzo. Efficient
aperiodic service under earliest deadline scheduling.
In Real-Time Systems Symposium, pages 2–11, 1994.

[87] Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and
Jonas Pfefferle. DaRPC: Data Center RPC. In SoCC,
2014.

[88] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu
Guo, and Yongwei Wu. RFP: When RPC is Faster than
Server-Bypass with RDMA. In EuroSys, 2017.

[89] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. Rethinking the Incep-
tion Architecture for Computer Vision. In CVPR, 2016.

[90] Mingxing Tan and Quoc Le. Efficientnet: Rethinking
Model Scaling for Convolutional Neural Networks. In
ICML, 2019.

[91] Puqi Perry Tang and Tsung-Yuan Charles Tai. Network
Traffic Characterization Using Token Bucket Model.
In INFOCOM, 1999.

[92] Apache Thrift. https://thrift.apache.org/, 2022.

[93] Tonic. https://github.com/hyperium/tonic,
2022.

[94] Ankit Toshniwal, Siddarth Taneja, Amit Shukla,
Karthik Ramasamy, Jignesh M. Patel, Sanjeev Kulkarni,
Jason Jackson, Krishna Gade, Maosong Fu, Jake
Donham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy
Ryaboy. Storm@twitter. In SIGMOD, 2014.

[95] Shin-Yeh Tsai and Yiying Zhang. LITE Kernel RDMA
Support for Datacenter Applications. In SOSP, 2017.

[96] Amin Vadhat. Coming of Age in the Fifth Epoch
of Distributed Computing: The Power of Sustained
Exponential Growth, 2020. Amin Vahdat - SIGCOMM
Lifetime Achievement Award 2020 Keynote.

[97] Adam Wolnikowski, Stephen Ibanez, Jonathan Stone,
Changhoon Kim, Rajit Manohar, and Robert Soulé.
Zerializer: Towards Zero-Copy Serialization. In HotOS,
2021.

[98] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauly, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient
Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing. In NSDI, 2012.

[99] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S Navarro Leija, Ashlie
Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, et al. The Demikernel Datapath OS Archi-
tecture for Microsecond-scale Datacenter Systems. In
SOSP, 2021.

[100] Kaiyuan Zhang, Danyang Zhuo, and Arvind Krish-
namurthy. Gallium: Automated Software Middlebox
Offloading to Programmable Switches. In SIGCOMM,
2020.

[101] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf
Chowdhury. Justitia: Software Multi-Tenancy in
Hardware Kernel-Bypass Networks. In NSDI, 2022.

[102] Xiangfeng Zhu, Guozhen She, Bowen Xue, Yu Zhang,
Yongsu Zhang, Xuan Kelvin Zou, Xiongchun Duan,
Peng-Ju He, Arvind Krishnamurthy, Matthew Lentz,
Danyang Zhuo, and Ratul Mahajan. Dissecting Service
Mesh Overheads. ArXiv, abs/2207.00592, 2022.

[103] Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu,
Hongqiang Harry Liu, Matthew Rockett, Arvind
Krishnamurthy, and Thomas Anderson. Slim: OS
Kernel Support for a Low-Overhead Container Overlay
Network. In NSDI, 2019.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 157

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://github.com/snabbco/snabb
https://thrift.apache.org/
https://github.com/hyperium/tonic

2 8 32 128 512
2048

8192

RPC Size (KB)

0

5

10

15

G
oo

dp
ut

 (G
bp

s)

2 8 32 128 512
2048

8192

RPC Size (KB)

0

5

10

15

N
or

m
al

iz
ed

G
oo

dp
ut

(G
bp

s/
co

re
)

mRPC-HTTP-PB gRPC gRPC+Envoy

Figure 10: Microbenchmark [Large RPC bandwidth]:
Comparison of large RPC bandwidth where we use HTTP/2
and protobuf (PB) marshalling for mRPC, on TCP transport.
The error bars show the 95% confidence interval, but they are
too small to be visible.

1 2 4 8
User Threads

0.0

0.2

0.4

0.6

R
PC

 R
at

e
(M

rp
s)

mRPC-HTTP-PB
gRPC
gRPC+Envoy

Figure 11: Microbenchmark [RPC rate and scalability]:
Comparison of small RPC rate and CPU scalability where we
use HTTP/2 and protobuf (PB) marshalling for mRPC, on TCP
transport. The error bars show the 95% confidence interval.

A Appendix

A.1 mRPC with Full gRPC-style Marshalling

As gRPC uses protobuf [78] for encoding and HTTP/2 as
the payload carrier, it has a memory copying and HTTP/2
framing cost. On the other hand, mRPC is agnostic to the
marshalling format. Although mRPC’s default marshalling is
zero-copy and is generally faster than gRPC-style marshalling,
our main goal of the paper is to show that we can eliminate
the redundant (un)marshalling steps while enabling network
policies and observability for RPC traffic.

To isolate the performance benefits of using zero-copy
marshalling and reducing the number of (un)marshalling steps,
we evaluate mRPC with full gRPC-style marshalling (protobuf
+ HTTP/2). We implement an mRPC variant that applies encod-
ing (decoding) code generated by the protobuf compiler and
HTTP/2 framing for inter-host mRPC service communication.

We conduct the same large RPC goodput experiment in §7.1.
The results are presented in Figure 10. We find that mRPC
achieves performance comparable to gRPC after switching to
using protobuf + HTTP/2. With full gRPC marshalling, mRPC
still performs 2.6× and 3.7× as fast as gRPC + Envoy in
terms of goodput and goodput per core. This is because mRPC
reduces the number of (un)marshalling steps. The small RPC
rate and scalability of mRPC with gRPC marshalling is also
shown in Figure 11. Since encoding small RPCs with protobuf
is relatively fast, the trend to the rate and scalability is similar
to Figure 5a.

geo rate profile search frontend
0
2
4
6
8

P9
9

La
te

nc
y

(m
s)

gRPC+Envoy (Go)
gRPC+Envoy (Rust)
mRPC

Network
App

Figure 12: DeathStarBench: P99 latency of in-application
processing and network processing of microservices, respec-
tively. gRPC with Envoy and mRPC are compared. A null
policy is applied for mRPC.

geo rate profile search frontend
0

2

4

6

M
ea

n
La

te
nc

y
(m

s)

gRPC (Go)
gRPC (Rust)
mRPC

Network
App

Figure 13: DeathStarBench: Mean latency of gRPC without
proxy and mRPC.

geo rate profile search frontend
0

2

4

6

P9
9

La
te

nc
y

(m
s)

gRPC (Go)
gRPC (Rust)
mRPC

Network
App

Figure 14: DeathStarBench: P99 latency of in-application
processing and network processing of microservices, respec-
tively. gRPC without proxy and mRPC are compared.

geo rate profile search frontend
0

10

20

30

Pe
ak

 M
em

or
y

(M
B)

gRPC (Go)
gRPC (Rust)

mRPC (App)

Figure 15: DeathStarBench: Peak memory usages of different
services. gRPC without proxy and mRPC are compared.

A.2 Extended Evaluation for DeathStarBench

We report the P99 latency of DeathStarBench in Figure 12,
comparing gRPC with Envoy and mRPC. The result is similar
to the comparison of median latency in §7.4. mRPC speeds up
gRPC+Envoy by 2.1× in terms of end-to-end P99 tail latency.

We also evaluate gRPC without proxy and mRPC without
any policy enforced. Figure 13 and Figure 14 show the
results for mean latency and P99 tail latency. We observe
that mRPC speeds up gRPC by 1.7× and 1.6×, in terms of
mean latency and P99 tail latency. Communication costs
are substantial in the DeathStarBench applications, and thus
reducing the communication latency can improve end-to-end
application performance. This is consistent with the original

158 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DeathStarBench paper’s observation [23].
We further compare the memory usage of gRPC and mRPC.

The peak memory consumption of gRPC and mRPC in
DeathStarBench applications is illustrated in Figure 15. For
mRPC, we report the user application side memory usage,
which also includes all the memory pages shared with the
mRPC service. We observe that mRPC does not incur notable
memory overhead compared to gRPC. On the other hand, we
find a small and constant memory footprint of mRPC service
across all machines at around 9 MB.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 159

Canvas: Isolated and Adaptive Swapping for Multi-Applications
on Remote Memory

Chenxi Wang†∗ Yifan Qiao†∗ Haoran Ma† Shi Liu† Yiying Zhang‡

Wenguang Chen§ Ravi Netravali] Miryung Kim† Guoqing Harry Xu†

UCLA† UCSD‡ Tsinghua University§ Princeton University]

Abstract
Remote memory techniques for datacenter applications have
recently gained a great deal of popularity. Existing remote
memory techniques focus on the efficiency of a single ap-
plication setting only. However, when multiple applications
co-run on a remote-memory system, significant interference
could occur, resulting in unexpected slowdowns even if the
same amounts of physical resources are granted to each ap-
plication. This slowdown stems from massive sharing in ap-
plications’ swap data paths. Canvas is a redesigned swap
system that fully isolates swap paths for remote-memory ap-
plications. Canvas allows each application to possess its ded-
icated swap partition, swap cache, prefetcher, and RDMA
bandwidth. Swap isolation lays a foundation for adaptive
optimization techniques based on each application’s own
access patterns and needs. We develop three such tech-
niques: (1) adaptive swap entry allocation, (2) semantics-
aware prefetching, and (3) two-dimensional RDMA schedul-
ing. A thorough evaluation with a set of widely-deployed ap-
plications demonstrates that Canvas minimizes performance
variation and dramatically reduces performance degradation.

1 Introduction
Techniques enabling datacenter applications to use far mem-
ory [36, 39, 8, 62, 73, 91, 104, 90, 19] have gained trac-
tion due to their potential to break servers’ memory capacity
wall, thereby improving performance and resource utiliza-
tion. Existing far-memory techniques can be roughly classi-
fied into two categories: (1) clean-slate techniques [90, 19]
that provide new primitives for developers to manage remote
memory, and (2) swap-based techniques [39, 91, 8, 104, 2]
that piggyback on existing swap mechanisms in the OS ker-
nel. Clean-slate techniques provide greater efficiency by en-
abling user-space far memory accesses, while swap-based
techniques offer transparency, allowing legacy code to run
as is on a far-memory system. This paper focuses on swap
mechanisms as they are more practical and easier to adopt.

A typical swap system in the OS uses a swap partition and
swap cache for applications to swap data between memory
and external storage. The swap partition is a storage-backed
swap space. The swap cache is an intermediate buffer be-
tween the local memory and storage—it caches unmapped
pages that were just swapped in or are about to be swapped

∗ Contributed equally.

out. Upon a page fault, the OS looks up the swap cache;
a cache miss would trigger a demand swap and a number
of prefetching swaps. Swaps are served by RDMA and all
fetched pages are initially placed in the swap cache. The de-
mand page is then mapped to a virtual page and moved out
of the swap cache, completing the fault handling process.
Problems. Current swap systems run multiple applications
over shared swap resources (i.e., swap partition, RDMA,
etc.). This design works for disk-based swapping where disk
access is slow—each application can allow only a tiny num-
ber of pages to be swapped to maintain an acceptable over-
head. This assumption, however, no longer holds under far
memory because an application can place more data in far
memory than local memory and yet still be efficient, thanks
to RDMA’s low latency and high bandwidth.

As such, applications have orders-of-magnitude more
swap requests under far memory than disks. Millions of
swap requests from different applications go through the
same shared data path in a short period of time, leading to se-
vere performance interference. Our experiments show that,
with the same amounts of CPU and local-memory resources,
co-running applications leads up to a 6× slowdown, an over-
head unacceptable for any real-world deployment.
State of the Art. Interference is a known problem in data-
center applications and a large body of work exists on iso-
lation of CPU [64, 16, 25], I/O [40, 96], network band-
width [13, 37, 94, 87, 77, 53] and processing [59]. Most
of these techniques build on Linux’s cgroup mechanism,
which focuses on isolation of traditional resources such as
CPU and memory, not swap resources such as remote mem-
ory usage and RDMA. Prior swap optimizations such as In-
finiswap [39] and Fastswap [8] focus on reducing remote ac-
cess latency, overlooking the impact of swap interference in
realistic settings. Justitia [113] isolates RDMA bandwidth
between applications, but does not eliminate other types of
interference such as locking and swap cache usage.
Contribution #1: Interference Study (§3). We conducted
a systematic study with a set of widely-deployed applica-
tions on Linux 5.5, the latest kernel version compatible with
Mellanox’s latest driver (4.9-3.1.5.0) for our InfiniBand card.
Our results reveal three major performance problems:

• Severe lock contention: Since all applications share a
single swap partition, extensive locking is needed for
swap entry allocation (needed by every swap-out), reduc-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 161

ing throughput and precluding full utilization of RDMA’s
bandwidth. Our experience shows that in windows of fre-
quent remote accesses, applications can spend 70% of the
windows’ time on swap entry allocation.

• Uncontrolled use of swap resources (e.g., RDMA): The
use of the shared RDMA bandwidth is often dominated
by the pages fetched for applications with many threads
simultaneously performing frequent remote accesses. For
example, aggressively (pre)fetching pages to fulfill one
application’s needs can disproportionally reduce other ap-
plications’ bandwidth usage. Further, even within one
application, prefetching competes for resources with de-
mand swaps, leading to either prolonged fault handling or
delayed prefetching that fails to bring back pages in time.

• Reduced prefetching effectiveness: Applications use the
same prefetcher, prefetching data based on low-level (se-
quential or strided) access patterns across applications.
However, modern applications exhibit far more diverse ac-
cess patterns, making it hard for prefetching to be effec-
tive across the board. For example, co-running Spark and
native applications reduces Leap [73]’s prefetching contri-
bution by 3.19×.

These results highlight two main problems. First, in-
terference is caused by sharing a combination of swap re-
sources including the swap partition/cache, and RDMA
(bandwidth and SRAM on RNIC). Although recent kernel
versions added support [47] for charging prefetched pages
into cgroup, resolving interference requires a holistic ap-
proach that can isolate all these resources. Furthermore,
interference stems not only from resource racing, but also
from fundamental limitations with the current design of the
swap system. For instance, reducing interference between
prefetching and demand swapping requires understanding
whether a prefetching request can come back in time. If not,
it should be dropped to give resources to demand requests,
which are on the critical path. This, in turn, requires a re-
design of the kernel’s fault handling logic.

Second, cloud applications exhibit highly diverse behav-
iors and resource profiles. For example, applications with a
great number of threads are more sensitive to locking than
single-threaded applications. Furthermore, managed appli-
cations such as Spark often make heavy use of reference-
based data structures while native applications are often
dominated by large arrays. The application-agnostic nature
of the swap system makes it hard for a one-size-fits-all policy
(e.g., a global prefetcher) to work well for diverse applica-
tions. Effective per-application policies dictates (1) holistic
swap isolation and (2) understanding application semantics,
which is currently inaccessible in the kernel.

Contribution #2: Holistic Swap Isolation (§4). To solve
the first problem, we develop Canvas, a fully-isolated swap
system, which enables each application to have its dedicated
swap partition, swap cache, and RDMA usage. In doing so,

Canvas can charge each application’s cgroup for the usage
of all kinds of swap resources, preventing certain applica-
tions from aggressively invading others’ resources.
Contribution #3: Isolation-Enabled Adaptive Optimiza-
tions (§5). To solve the second problem, we develop a
set of adaptive optimizations that can tailor their policies
and strategies to application-specific swap behaviors and re-
source needs. Our adaptive optimizations bring a further
boost on top of the isolation-provided benefits, making co-
running applications even outperform their individual runs.

(1) Adaptive Swap Entry Allocation (§5.1) Separating
swap partitions reduces lock contention at swap entry alloca-
tions to a certain degree, but the contention can still be heavy
for multi-threaded applications. For example, Spark creates
many threads to fully utilize cores and these threads need
synchronizations before obtaining swap entries. The syn-
chronization overhead increases dramatically with the num-
ber of cores (§6.4.1), creating a scalability bottleneck. We
develop an adaptive swap entry allocator that dynamically
balances between the degree of lock contention (i.e., time)
and the amount of swap space needed (i.e., space) based on
each application’s memory behaviors.

(2) Adaptive Two-tier Prefetching (§5.2) Current ker-
nel prefetchers build on low-level access patterns (e.g., se-
quential or strided). Although such patterns are useful for
applications with large array usages, many cloud applica-
tions are written in high-level, managed languages such as
Java or Python; their accesses come from multiple threads
or exhibit pointer-chasing behavior as opposed to sequential
or strided patterns. As effective prefetching is paramount
to remote-memory performance, Canvas employs a two-tier
prefetching design. Our kernel-tier prefetcher prefetches
data for each application into its private swap cache based
on low-level patterns. Once this prefetcher cannot effectively
prefetch data, Canvas adaptively forwards the faulty address
up to the application tier via a modified userfaultfd in-
terface, enabling customized prefetching logic at the level of
reference-based or thread-based access patterns.

(3) Adaptive RDMA Scheduling (§5.3) Isolating RDMA
bandwidth alone for each application is insufficient. As there
could be many more prefetching requests than demand swap
requests, naı̈vely sending all to RDMA delays demand re-
quests, increasing fault-handling latency. On the other hand,
naı̈vely delaying prefetching requests (as in FastSwap [8])
reduces their timeliness, making prefetched pages useless.
We built a two-dimensional RDMA scheduler, which sched-
ules packets not only between applications but also between
prefetching and demand requests for each application.
Results. Our evaluation (§6) with a set of 14 widely-
deployed applications (including Spark [109], Cassan-
dra [10], Neo4j [79], Memcached [4], XGBoost [23, 22],
Snappy [38], etc.) demonstrates that Canvas improves the
overall application performance by up to 6.2× (average
3.5×) and reduces applications’ performance variation (i.e.,

162 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Miss

RDMA Read

Prefetching

End

cgroup
Accounting

Begin

Lookup
Swap Cache

Hit

Otherwise

Update
Metadata

Set PTE

Swap Out
(Entry Alloc)

Enough local memory

Use locks to serialize concurrent executions.

Figure 1: The kernel’s remote-access data path.

standard deviation) by 7×, from an overall of 1.72 to 0.23.
Canvas improves the overall RDMA bandwidth utilization
by 2.8× for co-run applications. Canvas is available at
https://github.com/uclasystem/canvas.

2 Background
This section presents the necessary background in Linux
5.5, which is the latest kernel version compatible with Mel-
lanox’s latest driver for our InfiniBand adapter.

Figure 1 illustrates the kernel’s remote access data path
where remote memory is mapped into the host server as a
swap partition where applications access remote memory via
page faults. The swap partition is split into a set of 4KB swap
entries, each mapping to an actual remote memory cell and
has a unique entry ID. Upon a page fault, the kernel uses
the swap entry ID contained in the corresponding page table
entry (PTE) to locate the swap entry that stores the page.

The first step in handling the fault is to look up the swap
cache, which is a set of radix trees, each containing a number
of cached and unmapped pages for a block (e.g., 64MB) of
swap entries. These pages were either just swapped in due to
demand swapping or prefetching, or are about to be swapped
out. If a page can be found there, it gets mapped to a vir-
tual page and removed from the swap cache. Otherwise, the
kernel needs to perform a demand swap-in.

Before issuing the request, the kernel first does cgroup

accounting to understand if there is enough physical memory
to swap in the page. If there is, the kernel issues an RDMA
read request, which is then pushed into RDMA’s dispatch
queue. As the demand swap occurs, the kernel prefetches
a number of pages that will likely be needed in the future.
This number depends on the swap history at the past few
page faults. For example, if the pages fetched follow a se-
quential or strided pattern, the kernel will use this pattern to
fetch a few more pages. If no pattern is found, the kernel re-
duces the number of prefetched pages until it stops prefetch-
ing completely. Once these demand and prefetched pages
arrive, they are placed into the swap cache. Their swap en-
tries in remote memory are then freed.

If cgroup accounting deems that local memory is insuf-
ficient for the new page, the kernel uses an LRU algorithm
to evict pages. Evicting a page unmaps it and pushes it into
the swap cache. When memory runs low, the kernel releases
existing pages from the swap cache to make room for newly

fetched pages. Clean pages can be removed right away and
dirty pages must be written back. To write back a page, the
swap system must first allocate a swap entry using a free-list-
based allocation algorithm. Finally, an RDMA write request
is generated and the page is written into the entry via RDMA.

In each remote access, extensive locking is needed for
swap entry allocation—shared allocation metadata (e.g., free
list) must be protected when multiple applications/threads
request swap entries simultaneously. Although there are ac-
tive efforts [48, 46] in the Linux community to optimize
swap entry allocation, their performance and scalability is
unsatisfactory for cloud workloads (see Appendix B).

3 Motivating Performance Study
To understand the impact of interference, we conducted a
study with a set of widely-deployed applications including
Apache Spark [109], Neo4j [79], XGBoost [23] (i.e., a pop-
ular ML library), Snappy [38] (i.e., Google’s fast compres-
sor/decompressor), as well as Memcached [4]. Spark and
Neo4j are managed applications running on the JVM, while
the other three are native applications. They cover a spec-
trum of cloud workloads from data storage through analyt-
ics to ML. In addition, they include both batch jobs (such
as Spark) and latency-sensitive jobs (such as Memcached).
Co-running them represents a typical scenario in a mod-
ern datacenter where operators fill left-over cores unused by
latency-sensitive tasks with batch-processing applications to
improve CPU utilization [15]. For example, in a Microsoft
Bing cluster, batch jobs are colocated with latency-sensitive
services on over 90,000 servers [49]. Google also reported
that 60% of machines in their compute cluster co-run at least
five jobs [112].

We ran these programs, individually vs. together, on a
machine with two Xeon(R) Gold 6252 processors, running
Linux 5.5. Another machine with two Xeon(R) CPU E5-
2640 v3 processors and 128GB memory was used for re-
mote memory. Each machine was equipped with a 40
Gbps Mellanox ConnectX-3 InfiniBand adapter and inter-
connected by one Mellanox 100 Gbps InfiniBand switch.
Using cgroup, the same amounts of CPU and local mem-
ory resources were given to each application throughout the
experiments. RDMA bandwidth was not saturated for both
application individual runs and co-runs. The amount of lo-
cal memory configured for each application was 25% of its
working set.

Snappy (S)
Memcached (M)

XGBoost (X) Spark Neo4j
0.0

2.5

5.0

N
or

m
al

iz
ed

Sl
ow

do
w

n S+M+X+Spark
S+M+X+Neo4j

Figure 2: Slowdowns of co-running applications compared
to running each individually.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 163

https://github.com/uclasystem/canvas

Performance Interference and Degradation. To understand
the overall performance degradation and how it changes with
different applications, we used two managed applications:
Spark and Neo4j. Figure 2 reports each application’s perfor-
mance degradation when co-running with other applications
compared to running alone. The blue/orange bars show the
slowdowns when the three native applications co-run with
Spark/Neo4j. Clearly, co-running applications significantly
reduces each application’s performance. We observed an
overall 3.9/2.2× slowdown when native applications co-run
with Spark/Neo4j. Spark persists a large RDD in memory
and keeps swapping in/out different parts of the RDD, while
Neo4j is a graph database and holds much of its graph data
in local memory and thus does not swap as much as Spark.

Another observation is that the impact of interference dif-
fers significantly for different applications. Applications that
generate high swap throughputs aggressively invade swap
and RDMA resources of other applications. In our experi-
ments, Memcached, XGBoost, and Spark all need frequent
swaps. However, Spark runs many more threads (>90 ap-
plication and runtime threads) than Memcached (4) and XG-
Boost (16), resulting in a much higher swap throughput. As
such, Spark takes disproportionally more resources, leading
to severe degradation for Memcached and XGBoost.

Spark-LR
Spark-KM

Spark-TC
Snappy (S)

Memcached (M)
XGBoost (X)

SLR+S+M+X

SKM+S+M+X
STC+S+M+X

0

50

100

Pr
ef

et
ch

C
on

tr
ib

ut
io

n
(%

)

Figure 3: Prefetching contribution of Leap: the percentage
of page faults served by Leap-prefetched pages (%).

Reduced Prefetching Effectiveness. Sharing the same
prefetching policy reduces the prefetching effectiveness
when multiple applications co-run. Figure 3 reports prefetch-
ing contribution—the percentage of page faults served by
prefetched pages—the higher the better; if a prefetched page
is never used, prefetching it would only incur overhead. We
used Leap [73] as our prefetcher. The left six bars report such
percentages for the applications running individually. When
applications co-run, the rightmost three bars report the aver-
age percentages across applications. As shown, co-running
dramatically reduces the contribution.

Note that Leap [73] uses a majority-vote algorithm to
identify patterns across multiple applications. However,
when applications that exhibit drastically different behaviors
co-run, Leap cannot adapt its prefetching mechanism and
policy to each application. Furthermore, Leap is an aggres-
sive prefetcher—even if Leap does not find any pattern, it
always prefetches a number of contiguous pages. However,
aggressive prefetching for applications such as Spark with

garbage collection (GC) is ineffective—e.g., prefetching for
a GC thread has zero benefit and only incurs overhead. De-
tailed evaluation of prefetching can be found in §6.4.

200 300 400
Elapsed Time (s)

0K

200K

400K

#(
A

llo
c.

En
tr

ie
s)

/s

200 300 400
Elapsed Time (s)

Snappy
XGBoost

Spark
Total

(a) Running individually. (b) Co-running.

Figure 4: Swap entry allocation throughput when applica-
tions run individually (a) and together (b).

200 300 400
Elapsed Time (s)

0

1000

2000

3000

Sw
ap

-in
BW

(M
B/

s)

200 300 400
Elapsed Time (s)

Snappy
XGBoost
Spark
Total

(a) Running individually. (b) Co-running.

Figure 5: RDMA swap-in bandwidth when applications run
individually (a) and together (b).

Lock Contention. We observed severe lock contention in the
swap system when applications co-run, particularly at swap
entry allocation associated with each swap-out.

We experimented with Spark (Logistic Regression), XG-
Boost, and Snappy. Our results show that in windows of
frequent remote accesses, co-running applications can spend
up to 70% of the window time on obtaining swap entries.
Lock contention leads to significantly reduced swap-entry al-
location throughput, reported in Figure 4. The total lines in
Figure 4(a) and (b) show the total throughput (i.e., the sum
of each application’s allocation throughput). The co-running
throughput (b) is drastically reduced compared to the indi-
vidual run’s throughput (a) (i.e., ∼450Kps to ∼200Kps).
Reduced RDMA Utilization. Figure 5 compares the RDMA
read bandwidth (for swap-ins) when applications run indi-
vidually and together. Similarly, the total line represents
the sum of each application’s RDMA bandwidth. The total
RDMA utilization is constantly below ∼1000MBps in Fig-
ure 5(b), which is 3.28× lower than that in Figure 5(a) due to
various issues (e.g., locking, reduced prefetching, etc.). The
RDMA write bandwidth degrades by an overall of 2.80×.
Demand v.s. Prefetching Interference. Optimizations such
as Fastswap [8] improve swap performance by dividing the
RDMA queue pairs (QP) into sync and async. The high-
priority synchronous QP is used for demand swaps, while
the low priority async QP is used for prefetching requests.

164 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0%

20%

40%

60%

80%

100%

0 60 120 180 240 300 360 420 480Ac
cu

m
ul

at
ed

 P
er

ce
nt

ag
e

RDMA Load Latency (us)
Async Prefetching Sync On-Demand

Figure 6: Latency of prefetching and on-demand swapping.

This separation reduces head-of-line blocking incurred by
prefetching. However, when applications co-run, this design
adds a delay for prefetching. Figure 6 depicts the CDF of
the latency of RDMA packets from demand and prefetch-
ing requests, when the four applications co-run on Leap. As
shown, 99% of the on-demand requests are served within
40µs. However, the latency of 36.9% of prefetching requests
is longer than 512µs and it can reach up to 52ms! Long la-
tency renders prefetched pages useless because prefetching
is meant to load pages to be used soon. Our profiling shows
that among the prefetched pages that are actually accessed
by the application, 90% are accessed within 70µs, indicat-
ing that ∼70% of the pages prefetched return too late. A late
prefetch of a page would subsequently block a demand re-
quest of the page when it is accessed by the application. This
problem motivates our two-dimensional RDMA scheduling
(§5.3).
Takeaway. The root cause of performance degradation is
that multiple applications, whose resource needs and swap
behaviors are widely apart, all run on a global swap system
with the same allocator and prefetcher. Table 1 summarizes
these problems, their performance impact, and our solutions.

4 Swap System Isolation
Canvas extends cgroup for users to specify size constraints
for swap partition, swap cache, and RDMA bandwidth. We
discuss the kernel support to enforce these new constraints,
laying a foundation for adaptive optimizations in §5.
Swap Partition Isolation. In Linux, remote memory is man-
aged via a swap partition interface, shared by all applica-
tions. If there are multiple available swap partitions, they are
used in a sequential manner according to their priorities. As
a result, data of different applications are mixed and stored
in arbitrary locations.

Canvas separates remote memory of each cgroup to iso-
late capacity and performance. The user creates a cgroup to
set a size limit of remote memory for an application. Canvas
allocates remote memory in a demand-driven manner—upon
a pressure in local memory, Canvas allocates remote mem-
ory and registers it as a RDMA buffer. Canvas enables per-
cgroup swap partitions by creating a swap partition inter-
face and attaching it to each cgroup. For each cgroup, a

separate swap-entry manager is used for allocating and free-
ing swap entries. Swap entry allocation can now be charged
to the cgroup, which controls how much remote memory
each application can use. Our adaptive swap entry allocation
algorithm is discussed in §5.1.

Canvas explicitly enables a private swap cache for each
cgroup (a default value of 32MB), whose size is charged to
the memory budget specified in the cgroup. As a result, the
size of an application’s swap cache changes in response to
its own memory usage, without affecting other applications.

For each demand swap-in, Canvas first checks the
mapcount of the page, which indicates how many processes
this page has been mapped to before. If the page belongs
only to one process, it is placed in its private swap cache.
Otherwise, it has to be placed in a global swap cache (dis-
cussed shortly). To release pages (e.g., when the applica-
tion’s working set increases, pushing the boundary of the
swap cache), Canvas scans the swap cache’s page list, re-
leasing a batch of pages to shrink the cache.
RDMA Bandwidth Isolation. For each cgroup, Canvas iso-
lates RDMA bandwidth with a set of virtual RDMA queue
pairs (VQPs) and a centralized packet scheduler. Users can
set the swap-in/swap-out RDMA bandwidth of a cgroup

with our extended interface. Our RDMA scheduler works
in two dimensions. The first dimension schedules pack-
ets across applications, while the second dimension sched-
ules on a per-application basis—each cgroup has its sub-
scheduler that schedules packets that belong to the cgroup

between demand swapping and prefetching.
VQPs are high-level interfaces, implemented with lock-

free linked lists. Each cgroup pushes its requests to the
head of its VQP, while the scheduler pops requests from
their tails. At the low level, our scheduler maintains three
physical queue pairs (PQP) per core, for demand swap-in,
prefetching, and swap-out, respectively. The scheduler polls
all VQPs and forwards packets to the corresponding PQPs,
using a two-dimensional scheduling algorithm (see §5.3).
Handling of Shared Pages. Processes can share pages due to
shared libraries or memory regions. These pages cannot go
to any private swap cache. Canvas maintains a global swap
partition and cache for shared pages. When a page is evicted
and ummapped, Canvas checks its mapcount and adds it to
the global swap cache if the page is shared between different
processes. All pages in the global swap cache will be even-
tually swapped out to the global partition using the original
lock-based allocation algorithm. Conversely, pages swapped
in (and prefetched) from the global swap partition are all
placed into the global swap cache. For typical cloud ap-
plications such as Spark, Cassandra and Neo4j, the number
of shared pages is much smaller than process-private pages,
using locks in a normal way would not incur a large over-
head. We cannot charge applications’ cgroups for pages
in the global swap cache, because which process(es) share
these pages is unknown before they get mapped into pro-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 165

Problem Description Performance Impact Canvas’s Solution

Unlimited use of swap Apps generating higher swap thruput Holistic isolation of swap system
and RDMA resources use disproportionately more resources RDMA isolation and scheduling (§4, §5.3)

Lock conten. at swap entry alloc. Reduced swap-out thruput (1) Swap parti. isolation (§4); (2) adaptive entry alloc. (§5.1)

Single low-level prefetcher Increased fault-handling latency Two-tier adaptive prefetching (§5.2)

prefetching v.s. demand interfere Increased fault-handling latency Two-dimensional RDMA scheduling (§5.3)

Table 1: Summary of major issues and Canvas’s solution.

cesses’ address spaces. Canvas allows users to create a spe-
cial cgroup, named cgroup-shared, to limit the size of
the global swap cache/partition.

One limitation of our cgroup-based approach is that
cgroup can only partition resources statically while appli-
cations’ resource usage may change from time to time and
static partitioning could lead to resource underutilization.
However, the focus of this paper is to ensure isolation and
future work could incorporate max-min fair allocation to im-
prove resource utilization.

5 Isolation-Enabled Swap Optimizations
On top of the isolated swap system, we develop three opti-
mizations, which dynamically adapt their strategies to each
application’s resource patterns and semantics.

5.1 Adaptive Swap Entry Allocation

As discussed in §3, swap entry allocation suffers from severe
lock contention under frequent remote accesses—allocation
is needed at every swap-out. To further motivate, we use
a simple experiment by running Memcached alone on re-
mote memory with different core numbers. As the number
of cores increases, the average entry allocation time grows
super-linearly—it grows from 10µs under 16 cores quickly
to 130µs under 48 cores due to increased lock contention
(see Figure 16). Creating a per-application swap partition
mitigates the problem to a certain degree. However, applica-
tions like Spark run more than 90 threads; frequent swaps in
these threads can still incur significant locking overhead.

To further reduce contention, we develop a novel swap en-
try allocator that adapts allocation strategies in response to
each application’s own memory access/usage. Our first idea
is to enable a one-to-one mapping between pages and swap
entries. At the first time a page is swapped out, we allocate
a new swap entry using the original (lock-protected) algo-
rithm. Once the entry is allocated, Canvas writes the entry
ID into the page metadata (i.e., struct page). This ID re-
mains on the page throughout its life span. As a result, sub-
sequent swap-outs of the page can write data directly into the
entry corresponding to this ID. We pay the locking overhead
only once for each page at its first swap-out.

This approach requires a swap entry to be reserved for
each page. For example, if the local memory size is S and
the remote memory allocation is 3S, with one-to-one map-
ping the remote memory allocation would be 4S (i.e., each

page residing in local memory also has a remote page, result-
ing in a 33% overhead). However, this overhead may not be
necessary. For example, modern applications exhibit strong
epochal behaviors. Under the original allocator, swap entries
for pages accessed in one epoch can be reused for those in
another epoch. Under this approach, however, all pages in
all epochs must have their dedicated swap entries through-
out the execution, which can lead to an order-of-magnitude
increase in remote memory usage.

Our key insight is: we should trade off space for time if
an application has much available swap space, but time for
space when its space limit is about to be reached. As such,
when the remote memory usage is about to reach the limit
specified in cgroup (i.e., 75% in our experiments), Canvas
starts removing reservations to save space. The next ques-
tion is which pages we should consider first as our candi-
dates for reservation removal. Our idea is that we should first
consider “hot pages” that always stay in local memory and
are rarely swapped. This is because hot pages (i.e., data on
such pages are frequently accessed) are likely to stay in local
memory for a long time; hence, locking overhead is less rele-
vant for them. On the contrary, “cold” pages whose accesses
are spotty are more likely to be swapped in/out and hence
swap efficiency is critical. Here “hot” and “cold” pages are
relatively defined as they are specific to execution stages—a
cold page swapped out in a previous stage can be swapped
in and become hot in a new stage.

To this end, we develop an adaptive allocator. Canvas
starts an execution by reserving swap entries for all pages to
minimize lock contention. Reservation removal begins when
remote-memory pressure is detected. Canvas adaptively re-
moves reservations for hot pages. We detect hot pages for
each application by periodically scanning the application’s
LRU active list—pages recently accessed are close to the
head of the active list. Each scan identifies a set of pages
from the head of the list; a page is considered “hot” if it ap-
pears in a consecutive number of sets recently identified.

Removing the reservation for a hot page can be done by
(1) removing the entry ID from the page metadata and (2)
freeing its reserved swap entry in remote memory, adding
the entry back to the free list. Once a hot page becomes cold
and gets evicted, it does not have a reservation any more,
and hence, it goes through the original (lock-protected) al-
location algorithm to obtain an entry. In this case, the page

166 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

receives a new swap entry and remembers this new ID in its
metadata.

1

3

2

Init: newly
allocated Page

Hot Page

Cold Page

4Swapped-out Page

swap-in

swap-out
allocate swap-entry

Cold Page
with swap-entry

lock-free
swap-out

5

frequent accessd
remove swap-entry

Figure 7: FSM describing our page management when
remote-memory pressure is detected.

Figure 7 shows the page state machine, which describes
the page handling logic. A cold page (to be evicted) can be
in one of the two states: state 2 and state 5. A page comes
to state 2 if it is (1) a brand new page that has never been
swapped out or (2) previously a hot page but has not been
accessed for long. Once it reaches state 2, the page does not
have a reserved swap entry ID and hence, swapping out this
page goes through the normal allocation path. In the case of
swap-in (state 5), the swap entry ID is already remembered
on the page. The next swap-out will directly use this entry
and be lock-free. If the page becomes hot (from state 5 to 3),
Canvas removes the entry ID and releases the entry reserva-
tion. The entry is then added back to the free list.
Performance Analysis. To understand the performance of
the adaptive entry allocation algorithm, let us consider the
following two scenarios. In the first scenario, the application
performs uniformly random accesses. As a result, Canvas
cannot clearly distinguish hot/cold pages, and thus randomly
cancels their reservations. However, due to the random pro-
cess, when a page is swapped out, it has a certain probability
of still possessing a reserved swap entry (depending on the
ratio of remaining reservations) and hence Canvas can still
improve the allocation performance.

In the second scenario, the application follows a repetitive
pattern of accessing a page a few times (making it hot) and
then moving on to accessing another page; it will not come
back to the page in a long while. Under our allocation algo-
rithm, every page will be identified as a hot page, leading to
the cancellation of its reservation. However, each page will
be swapped out when it is cold enough; at each swap-out,
the page has to go through the original allocation algorithm.
This is the worst-case scenario, and even in this case, Canvas
has the same (worst-case) performance as the original Linux
allocator, which allocates an entry at each swap-out.

Some of the recent patches submitted to the Linux com-
munity also attempt to reduce lock contention for swap entry
allocation. A detailed description of how Canvas differs from
these patches can be found in Appendix B.

5.2 Two-tier Adaptive Prefetching
Problems with Current Prefetchers. Current prefetchers
all focus on low-level (streaming or strided) access pat-

terns. While such patterns exist widely in native array-
based programs, applications written in high-level languages
such as Python and Java are dominated by reference-based
data structures—operations over such data structures involve
large amounts of pointer chasing, making it hard for current
prefetchers to identify clear patterns.

Furthermore, cloud applications such as Spark are heav-
ily multi-threaded. Modern language runtimes, such as the
JVM, run an additional set of auxiliary threads, e.g., for GC
or JIT compilation. How these user-level threads map to ker-
nel threads is often implemented differently in different run-
times. Consequently, kernel prefetchers such as Leap [73]
cannot distinguish patterns from different threads.

To develop an adaptive prefetcher, Canvas employs a two-
tier design, illustrated in Figure 8. At the low (kernel) tier,
Canvas uses an existing kernel prefetcher that prefetches data
for each application into its own private swap cache (un-
less data comes from the global swap partition). A ker-
nel prefetcher is extremely efficient and can already cover a
range of (array-based) applications. For applications whose
accesses are too complex for the kernel prefetcher to handle,
we forward the addresses up to the application level, letting
the application/runtime analyze semantic access patterns at
the level of threads, references, arrays, etc.
Prefetching Logic. In Canvas, we adopt the sync/async sep-
aration design in Fastswap [8], which prevents head-of-line
blocking. As stated earlier, we use three PQPs per core, one
for swap-out, one for (sync) demand swap-in, and one for
(async) prefetching. Canvas polls for completions of crit-
ical (demand) operations, while configuring interrupt com-
pletions for asynchronous prefetches.

Canvas determines whether to use an application-tier
prefetcher based on how successful kernel-tier prefetching
is. If the number of pages prefetched for an application is
lower than a threshold at the most recent N (=3 in our evalua-
tion) faults consecutively, Canvas starts forwarding the fault-
ing addresses up to the application-tier prefetcher (discussed
shortly) although the kernel-tier prefetcher is still used as the
first-line prefetcher.

Canvas stops forwarding whenever the kernel-tier
prefetcher becomes effective again. Our key insight is: the
kernel-tier prefetcher is efficient without needing additional
compute resources (as it uses the same core as the faulting
thread), while the application-tier prefetcher needs extra
compute resources to run. As such, we disable application-
tier prefetchers as long as the kernel-tier prefetcher is
effective. To pass a faulting address to the application, we
modify the kernel’s userfaultfd interface, allowing appli-
cations to handle faults at the user space. Our modification
makes the kernel forward the faulting address only if the
kernel’s prefetcher continuously fails to prefetch pages.
Runtime Support for Application-tier Prefetching. A ma-
jor challenge is how to develop application-tier prefetchers.
On the one hand, application-tier prefetchers should conduct

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 167

Low‐tier
Prefetcher

Low‐tier
Prefetcher

App A

…
forward via
userfaultfd

High‐tier
Prefetcher

for(i = 0; i < 1000; i++)
{ b = a[i]; … }

User u = session.getUser();
Account a =
u.getAccount();
Balance b = a.getBalance();
…

App B

User space

Kernel
major fault major fault

demand swap prefetching demand swap

asyn.
prefetching

Swap Partition

Figure 8: Canvas’s two-tier prefetcher: App A is an array-
based program while B is a modern web application that uses
reference-based data structures. The low-tier prefetcher suc-
cessfully prefetches pages for A, but not for B. Hence, Can-
vas forwards the addresses up to B’s high-tier prefetcher.

prefetching based on application semantics, of which the
kernel is unaware. On the other hand, application developers
may not be familiar with a low-level activity like prefetch-
ing; understanding memory access patterns and developing
prefetchers can be a daunting task for them.

Our insight is: applications that benefit from application-
tier prefetching are mostly written in high-level languages
and run on a managed runtime such as the JVM. Inspired
by previous work on using language runtime to solve mem-
ory efficiency problems for data analytics applications [81,
78, 82, 80, 72], Canvas currently supports application-tier
prefetching for the JVM as a platform. However its support
could be easily extended to other managed runtimes for high-
level languages like Go and C#. Leveraging language run-
time solves both problems discussed above—it has access to
semantic information such as how objects are connected and
the number of application threads; furthermore, the burden
of developing an application-tier prefetcher is shifted from
application developers to runtime developers. Thus, it is not
necessary to supply a custom application-tier prefetcher per
application, but define it once for each language runtime.

In this work, we develop an application-tier prefetcher in
Oracle’s OpenJDK as a proof-of-concept. It works for all
(Java, Scala, Python, etc.) programs that run on the JVM.
Our JVM-based prefetcher considers two semantic patterns:
(1) reference-based (i.e., accessing an object brings in pages
containing objects referenced by this object) and (2) thread-
based (i.e., accesses from different application threads are
separately analyzed to find patterns).

For (1), we modify the JVM to add support that can
quickly find, from a faulting address, the object in which
the address falls. We use write barrier, a piece of code in-
strumented by the JVM at each object field write, as well
as the garbage collector to record references between pages.
For example, for each write of the form a.f=b, if the ob-
jects referenced by a and b are on different page groups, we
record an edge on a summary graph where each node repre-
sents a consecutive group of pages and each edge represents
references between groups. During prefetching, we traverse

the graph from the node that represents the accessed page
and prefetch pages that can be reached within 3 hops. The
traversal does not follow cycles and its overhead is negligi-
ble. This approach is suitable for applications that store a
large amount of data in memory, such as Spark and Cassan-
dra.

For (2), we leverage the JVM’s user-kernel thread map.
For each faulting address, Canvas additionally forwards the
thread information (i.e., pid) to the JVM, which consults the
map to filter out non-application (e.g., GC, compilation, etc.)
threads and segregate addresses based on Java threads (as
opposed to kernel threads). Segregated addresses allow us
to analyze (sequential/strided) patterns on a per-thread basis
(using Leap’s majority-vote algorithm [73]). Once patterns
are found, the prefetcher sends the prefetching requests to
the kernel via async prefetch.

For native programs that directly use kernel threads (e.g.,
pthread), the thread information is straightforward and im-
mediately visible to Canvas. We can easily segregate ad-
dresses accessed from different threads and analyze patterns
based upon addresses from each individual thread.
Policy. To improve effectiveness, the JVM uses a search tree
to record information about large arrays. Upon the allocation
of an array whose size exceeds a threshold (i.e., 1MB in our
experiments), the JVM records its starting address and size
into the tree. The JVM runs a daemon prefetching thread.
Once receiving a sequence of faulting addresses, we deter-
mine which semantic pattern to use based on how many ap-
plication threads are running and whether the faulting ad-
dresses fall into a large array. If there are many threads and
the faulting addresses fall into arrays, the JVM uses (2) to
find per-thread patterns. If either condition does not hold,
the JVM uses (1) to prefetch based on references. For native
applications, we only enable (2), as we observed that our na-
tive programs do not use many deep data structures.

5.3 Two-Dimensional RDMA Scheduling

To provide predictable performance for applications sharing
RDMA resources, our RDMA scheduling algorithm should
provide four properties: (1) weighted fair bandwidth shar-
ing [18, 30] across applications; (2) high overall utilization;
(3) treating demand and prefetching requests with different
priorities; and (4) timely handling of prefetching requests.

Canvas performs two-dimensional scheduling by extend-
ing existing techniques. Canvas uses max-min fair schedul-
ing to assign bandwidth across applications, and priority-
based scheduling with timeliness to schedule prefetching and
demand requests within each application. Although these
scheduling techniques are not new themselves, Canvas com-
bines them in a unique way to solve the interference problem.
Canvas maintains three PQPs on each core, respectively,
for swap-outs, demand swap-ins, and prefetching swap-ins.
Swap-outs are only subject to fair scheduling while swap-ins
are subject to both fair and priority-based scheduling.

168 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Vertical: Fair Scheduling. Under max-min fairness, each
application receives a fair share of bandwidth. If there is ex-
tra bandwidth, we give it to the applications in the reverse
order of their bandwidth demand until bandwidth is satu-
rated. The high overall utilization of bandwidth is achieved
by redistributing unconsumed bandwidth proportionally to
the weights of unsatisfied applications. Canvas implements
weighted fair queuing with virtual clock [84, 30, 110].
Horizontal: Priority Scheduling with Timeliness. Within
each cgroup, Canvas schedules demand requests with a
higher priority than prefetching requests. However, this
could lead to long latency for prefetching requests. To
bound the latency of prefetching, our scheduler employs a
history-based heuristic algorithm to identify and drop out-
dated prefetching requests. In particular, Canvas maintains
the timeliness distribution of prefetched pages per cgroup.
Timeliness is a metric that measures the time between a page
being prefetched and accessed. We attach a timestamp to
each request when pushing it into a VQP. The scheduler
maintains packets statistics on-the-fly to estimate the round-
trip latency and arrival time of each prefetching request. Re-
quests are dropped if the estimated arrival time exceeds the
estimated timeliness threshold.

Special care must be taken to drop prefetching requests.
Before issuing a prefetching request, the kernel creates a
page in the swap cache and sets up its corresponding PTE.
The page is left in a locked state until its data comes back.
However, a thread that accesses an address falling into the
page may find this locked page in the swap cache and block
on it. Dropping prefetching requests may cause the thread to
hang. To solve the problem, we detect threads that block on
prefetching requests for too long and generate new demand
requests for them.

We rely on a per-entry timestamp to efficiently detect
threads that block on prefetching requests. In Canvas, we
attach a timestamp field to the swap entry metadata. Can-
vas’s scheduler records the timestamp every time it enqueues
a prefetching request into VQP. If another thread faults on
the same page later, it will retrieve the same swap entry
from the PTE. If the swap entry contains a timestamp, the
faulting thread knows that a prefetching request has already
been issued. Next, the faulting thread calculates the time
elapsed since the timestamp, and compares it with a time-
out threshold (maintained by the RDMA scheduler based on
page-fetching latencies). If it exceeds the timeout threshold,
the faulting thread drops the prefetching request. The drop
operation is elaborated below:

Before issuing each (demand or prefetching) request, the
kernel first allocates a physical page in the swap cache and
locks the page until the request returns. Upon the return of
the data, the data is written into the page; the page is un-
locked and mapped into the page table. In order to safely
drop a request, we add another field valid in the swap en-
try metadata, indicating whether the prefetching request on

the go is valid. Once a faulting thread identifies a delayed
prefetching request (by using the timestamp as discussed
above), it sets the valid field in the swap entry to false and
then creates a new physical page in the swap cache. The
thread goes ahead and issues another (demand) I/O request
based on this new page. When the delayed prefetching re-
quest returns, it checks the valid field and discards itself once
it sees the false value. The field is then set back to true.

When a demand request is issued, Canvas clears the times-
tamp field in its corresponding swap entry. If a thread faults
on the same page, it will block on the request instead of is-
suing a new one due to the empty timestamp (indicating that
the request on the go is a demand one).

6 Evaluation
It took us 17 months to implement Canvas in Linux 5.5. The
application-tier prefetcher was implemented in OpenJDK 12.

Application Workload Dataset Size / (|E|, |V |)
Managed
Cassandra 5M read, 5M insert YCSB[26] 10M records
Neo4j PageRank Baidu[5] (17M, 2M)
Spark PageRank (SPR) Wikipedia[5] (57M, 1.5M)

KMeans (SKM) Wikipedia[5] 188M points
Logistic Regression (SLR) Wikipedia[5] 188M points
Skewed Groupby (SSG) synthetic 256K records
Triangle Counting (GTC) synthetic (1.5M, 384K)

MLlib Bayes Classifiers (MBC) KDD [3] 1.5M instances
GraphX Connected Components (GCC) Wikipedia[5] (188M, 9M)

PageRank (GPR) Wikipedia[5] (188M, 9M)
Single Src. Shortest Path (GSP) synthetic 2M vertices

Native
XGBoost Binary Classification HIGGS[12] 22M instances
Snappy Compression enwik9 [1] 16GB
Memcached 45M gets, 5M sets YCSB[26] 10M records

Table 2: Programs and their workloads.

Setup. We included a variety of cloud applications in our
experiments, including managed (Java) applications such as
Spark [109], Cassandra [10] (a NoSQL database), Neo4j [79]
(a graph database), as well as three native applications:
XGBoost [23], Snappy [38], and Memcached [4]. Spark,
Cassandra, Neo4j, Memcached, and XGBoost are multi-
threaded while Snappy is single-threaded. The Spark appli-
cations span popular libraries such as GraphX and MLlib.

We co-ran different combinations of programs. The
same application in different combinations receives the same
amount of local (CPU and memory) resources. To sim-
plify performance analysis, we let each combination of ap-
plications co-run contain one managed (Spark, Cassandra,
or Neo4j) application and the three native programs, which
consume less resources. These experiments were conducted
on two machines, one used to execute applications and a sec-
ond to provide remote memory. The configurations of these
machines was reported earlier in §3. We carefully config-
ured Linux with the following configuration to achieve the
best performance for Linux: (1) SSD-like swap model, (2)
per-VMA prefetching policy, and (3) cluster-based swap en-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 169

try allocation. We disabled hyper-threads, CPU C-states, dy-
namic CPU frequency scaling, transparent huge pages, and
the kernel’s mitigation for speculation attacks.

For each combination, we limited the amounts of CPU re-
sources for the managed application, XGBoost, Memcached,
and Snappy to be 24, 16, 4, and 1 core(s). For local memory,
we used two ratios: 50% and 25%, meaning each application
has 50/25% of its working set locally. When using Canvas,
we additionally limited the sizes of swap partitions in such a
way that for each application the total size of its swap par-
tition and assigned local memory is slightly larger than its
working set. In doing so, each application has just enough
(local and remote) memory to run and reservation cancella-
tion (§5.1) is triggered in all executions.

The swap cache size for each application starts at 32MB
and changes dynamically. The global swap cache size (con-
figured by cgroup-share) was also set to 32MB. Canvas
uses max-min fair scheduling to assign bandwidth across ap-
plications, and their initial weights are proportional to their
swap partition assignments. We ran each application 10
times. Their average execution times (with error bars) are
reported in all experiments throughput this section.

Snappy
Memcached

XGBoost Spark
0

250

500

750

El
ap

se
d

Ti
m

e
(s

)

Snappy
Memcached

XGBoost Spark

Infiniswap Leap Fastswap Canvas-swap

(a) 25% local memory. (b) 50% local memory.

Figure 9: Performance of different swap systems.

6.1 Basic Swap Systems

We used Fastswap [8] as our underlying swap system, with
a small amount of code changes to port Fastswap (originally
built against Linux 4.11) to Linux 5.5. We first compared the
performance of each individual application running on ba-
sic swap systems including Infiniswap [39], Infiniswap with
Leap [73], the original Fastswap [8], and Canvas’s ported
Fastswap (without isolation and optimizations). We could
not run LegoOS [91] as it does not support network-related
system calls, which are required for applications such as
Spark. LegoOS implements swaps with RPCs as opposed to
paging, but our idea (i.e., isolation and adaptive swapping) is
applicable to this approach as well.

We ran Infiniswap and Leap on Linux 4.4, and Fastswap
on Linux 4.11. The results are reported in Figure 9. Infin-
iswap hung on XGBoost and Spark, and its corresponding
bars are thus not reported in Figure 9. Since Canvas-swap
was built off Fastswap, they have similar performance.

6.2 Overall Performance

Next, we demonstrate the overall performance when appli-
cations co-run together under Canvas. Each experiment ran
the same set of three native programs with one managed ap-
plication: Spark-LR, Spark-KM, Cassandra, or Neo4j. The
results for the 25% and 50% local memory configurations
are reported in Figure 10(a) and (b), respectively.

The four bars in each group represent an application’s per-
formance when running alone on Linux 5.5, co-running with
other applications on Linux 5.5, co-running on the original
Fastswap, and co-running on Canvas (with all optimizations
enabled). Across all experiments, Canvas improves applica-
tions’ co-run performance by up to 6.2× (average 3.5×) and
up to 3.8× (average 1.9×) under the two memory configura-
tions. Canvas enables Spark and Neo4j to even outperform
their individual runs due to the optimizations that could also
improve single-application performance.

6.3 Isolation Reduces Degradation and Variation

This experiment measures the effectiveness of isolation
alone. We used a variant of Canvas with the isolated swap
system and RDMA bandwidth (i.e., vertical scheduling be-
tween applications) but without our swap-entry optimization,
two-tier prefetcher, and horizontal RDMA scheduling.
Degradation Reduction. We ran the same set of experiments
under 25% local memory. As shown in Figure 11, isolation
reduces the running time by up to 5.2×, with an average of
2.5×. Isolation is particularly useful for applications that do
not have many threads but need to frequently access remote
memory, such as Memcached, which has 4 threads and can-
not compete for resources with managed applications such as
Spark and Cassandra, which have more than 90 (application
and runtime) threads. As such, its performance is improved
by 3.3× with dedicated swap resources. Isolation improves
the average RDMA utilization by 2.8× from 692MB/s to
1908MB/s, making the peak bandwidth reach 4494MB/s.

Table 3: Performance variations of three native applications
when co-running with each of the 11 managed applications
under 25% local memory (Canvas / Linux 5.5 / Fastswap).

Program Mean Min Max σ

Snappy 1.07 1.28 1.23 1.03 1.10 1.08 1.23 1.69 1.46 0.07 0.20 0.14
Memcached 1.45 3.24 3.76 1.30 1.48 2.05 1.91 6.05 8.17 0.20 1.82 2.14
XGBoost 1.05 3.17 2.81 1.01 1.38 1.91 1.13 6.13 4.76 0.04 1.59 1.11
Overall 1.21 2.56 2.60 1.01 1.10 1.08 1.91 6.13 8.17 0.23 1.64 1.72

Variation Reduction. One significant impact of interference
is performance variation—the same application has drasti-
cally different performance when co-running with different
applications (as shown in Figure 2). To demonstrate our
benefits, we co-ran the three native applications with each
of the eleven managed applications listed in Table 2, which
cover a wide spectrum of computation and memory access
behaviors. Table 3 reports various statistics of their perfor-

170 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

S M X Spark-LR
0

1000

2000

3000

El
ap

se
d

Ti
m

e
(s

)

S M X Spark-KM S M X Cassandra S M X Neo4j

Individual on Linux 5.5 Co-run on Linux 5.5 Co-run on FastSwap Co-run on Canvas

(a) 25% local memory.

S M X Spark-LR
0

500

1000

1500

El
ap

se
d

Ti
m

e
(s

)

S M X Spark-KM S M X Cassandra S M X Neo4j
(b) 50% local memory.

Figure 10: Performance of each program under 25% and 50% local memory when the three native programs, Snappy (S),
Memcached (M), and XGBoost (X), co-run with a managed application. Canvas ran with all optimizations enabled.

S M X Spark-LR
0

1000

2000

3000

El
ap

se
d

Ti
m

e
(s

)

S M X Spark-KM S M X Cassandra S M X Neo4j

Individual on Linux 5.5 Co-run on Linux 5.5 Co-run on FastSwap Co-run on Canvas Isolation

(a) Co-run with Spark-LR. (b) Co-run with Spark-KM. (c) Co-run with Cassandra. (d) Co-run with Neo4j.

Figure 11: Performance of native applications co-run with different managed applications under 25% local memory; for Canvas,
only isolation was enabled (i.e., without adaptive optimizations).

Spark-LR
Spark-KM

Cassandra Neo4j
0

500

El
ap

se
d

Ti
m

e
(s

)

Individual on Linux 5.5
Co-run with Isolation Only
Co-run with Isolation +
Adaptive Entry Allocator

Figure 12: Benefit of adaptive swap entry allocation. Com-
pared are the times of the application running individually
on Linux 5.5, co-running on Canvas with adaptive entry al-
location disabled, and enabled.

mance including the mean, minimum, maximum, and stan-
dard deviation of their slowdowns (compared to their indi-
vidual runs). Clearly, the performance of the three programs
is much more stable (indicated by a small σ) under Canvas
than Linux—variations are reduced by 7× overall.

6.4 Effectiveness of Adaptive Optimizations

This subsection evaluates the benefit of each swap optimiza-
tion on top of the isolated swap system by turning it on/off.

6.4.1 Adaptive Swap Entry Allocator

Isolation already reduces lock contention at swap entry allo-
cation because each process has its own swap entry manager.
However, for multi-threaded applications such as Spark and

Cassandra, their processing threads still have to go through
the locking process. In this subsection, we focus on managed
applications due to their extensive use of threads. Figure 12
shows the performance of Spark LR, Spark KM, Cassandra,
and Neo4j when they each co-run with the other three na-
tive programs. On average, our adaptive allocation enables
an additional boost of 1.50× for Spark LR, 1.77× for Spark
KM, 1.31× for Cassandra, and 1.28× for Neo4j.

Table 4: Swap-out throughput w/ and w/o adaptive swap-
entry allocation when native programs co-run with Spark.

Thruput (KPages/s) Linux 5.5 Canvas w/o adap. alloc. Canvas w/

Avg. Spark apps 98 164 295
Avg. all apps 185 309 468

Table 4 reports the swap-out throughput when the native
applications co-run with Spark. As shown, isolation im-
proves the throughput by 1.67× while adaptive allocation
provides an additional boost of 1.51×. This benefit is ob-
tained after applying all optimizations in Linux 5.5.
Effectiveness of Entry Reservation. We compared our adap-
tive allocation algorithm with the original allocator in Linux
5.5 by running Memcached with varying (8 – 48) cores under
25% local memory. As shown in Figure 13(a), for Canvas,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 171

8 16 24 32 48
#(cores)

0K

500K

#(
Pa

ge
s/

En
tr

ie
s)

/s

Linux-5.5 Swap-out Rate
Canvas Swap-out Rate
Canvas Entry Alloc. Rate

8 16 24 32 48
#(cores)

100

101

102

Pe
r-

en
tr

y
A

llo
c.

Ti
m

e
(u

s)

Linux 5.5 Canvas

(a) Swap-out and entry alloc rates. (b) Per-entry alloc time.

Figure 13: Entry allocation comparison between the allo-
cation algorithm in Canvas and Linux 5.5 for Memcached
under 25% local memory. The Y-axis in (b) is log-scaled.

(1) the swap-out rate increases with the core number (show-
ing good scalability) and (2) the swap entry allocation rate
remains low. This is due to Canvas’s entry reservation al-
gorithm that effectively reuses a significant number of swap
entries for page swap-outs. On the contrary, in Linux 5.5,
the swap-out rate (which is the same as its entry allocation
rate) decreases when more cores are used. This is because
each entry allocation takes significantly longer, reducing the
swap-out throughput. A comparison of per-entry allocation
time can be seen in Figure 13(b). We additionally com-
pared the allocation algorithm between Canvas, Linux 5.5,
and Linux 5.14; these results are reported in Appendix B.
6.4.2 Prefetching Effectiveness

Our baseline is the kernel’s default prefetcher on the isolated
swap system with adaptive swap allocator enabled. Since
application-tier prefetching is designed primarily for high-
level languages, here we focus on managed programs.
Time. We compare the running time for three Spark ap-
plications LR, KM, TC, and Neo4j, between the kernel’s
prefetcher over Canvas’s isolated swap system and Canvas’s
two-tier prefetcher, when each managed application co-runs
with the three native applications under the 25% local mem-
ory configuration. Application-tier prefetching brings 33%,
17%, 19%, and 8% additional performance benefits on top
of the kernel prefetching with the isolated swap system. All
the four managed applications benefit from the thread-level
pattern analysis while the managed applications have seen
5-9% contributions from using the reference-based pattern.
The thread-level pattern analysis we added for native pro-
grams brings a 5% and 11% improvement for Memcached
and XGBoost.

We have also run Leap [73], a prefetcher that aggressively
prefetches a number of contiguous pages if it cannot find any
pattern. This approach may work for native applications be-
cause these applications access arrays; hence, the contigu-
ous pages aggressively prefetched are likely to be useful for
array accesses. However, it works poorly for high-level lan-
guage applications such as Spark and Neo4j, which use deep
data structures and run graph-traversal GC tasks (which ex-
hibit neither sequential nor strided patterns). Aggressively

prefetching useless pages wastes the RDMA bandwidth and
the swap cache. Leap slows down our managed applications
by 1.4×, compared to the kernel’s default prefetcher.

Table 5: Prefetching contribution and accuracy when differ-
ent Spark and Neo4j co-run with native applications.

Contribution Spark-LR Spark-KM Spark-TC Neo4j

Leap 23.4% 25.8% 42.2% 67.0%
Kernel 63.3% 68.0% 65.9% 41.1%
Canvas Two-tier 79.2% 79.3% 75.3% 45.0%

Accuracy Spark-LR Spark-KM Spark-TC Neo4j

Leap 16.8% 17.2% 35.9% 6.1%
Kernel 95.6% 96.4% 93.9% 80.4%
Canvas Two-tier 94.3% 94.8% 94.9% 87.1%

Prefetching Contribution and Accuracy. Table 5 compares
prefetching contribution and accuracy for the four managed
applications when each of them co-runs with the same three
native applications. Contribution is defined as a ratio be-
tween the number of page faults hitting on the swap cache
and the total number of page faults (including both cache
hits and demand swap-ins). Accuracy is defined as a ratio
between the number of page faults hitting on the swap cache
and the total number of prefetches. Clearly, contribution has
a strong correlation with performance while accuracy mea-
sures the pattern recognition ability of a prefetcher. For ex-
ample, for a conservative prefetcher that prefetches pages
only if a pattern can be clearly identified, it can have a high
accuracy (i.e., prefetched pages are all useful) but a low con-
tribution (i.e., the number of prefetches is small).

Here we report prefetching contribution and accuracy for
three prefetchers: Leap (on our isolated swap system), the
kernel prefetcher (also on our isolated swap system), and
Canvas’s two-tier prefetcher. Among the three prefetchers,
for all but Neo4j, Leap has the lowest accuracy and contri-
bution because it is an aggressive prefetcher. Leap keeps
prefetching pages even when it cannot detect any patterns,
which greatly reduces the prefetching accuracy. Second, due
to the limited swap cache, the useless pages prefetched can
cause previously prefetched pages to be released before they
are accessed, hurting contribution. The kernel prefetcher
and Canvas have comparable accuracy because the kernel
prefetcher is much more conservative than Leap. It stops
prefetching when no clear pattern can be observed. However,
Linux has lower contribution than our two-tier prefetcher
since Canvas prefetches more useful pages using semantics.
6.4.3 RDMA Scheduling

We evaluate our two-dimensional RDMA scheduling. For
the vertical dimension, we use the weighted min-max ratio
(WMMR) min(xi/wi)

max(xi/wi)
[96] as our bandwidth fairness metric

(the closer to 1, the better), where xi is the bandwidth con-
sumption of the application i, andwi is its weight. We set the

172 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

weight proportionally to the average bandwidth of each ap-
plication when running individually. Our vertical scheduling
achieves an overall of 0.88 WMMR.

The horizontal dimension (i.e., priority scheduling with
timeliness) is our focus here because interference between
prefetching and demand swapping is a unique challenge we
overcome in this work. We ran GraphX Connected Compo-
nents (GraphX-CC) with the three native applications. Fig-
ure 14 compares the latency of sync vs. async swap-in re-
quests with and without the horizontal scheduling of RDMA.

0 50 100 150
Round-trip Latency (us)

50%

60%

70%

80%

90%

100%

A
cc

um
ul

at
ed

Pe
rc

en
ta

ge

Demand w/o
horizon. scheduling
Prefetching w/o
horizon. scheduling
Demand w/
horizon. scheduling
Prefetching w/
horizon. scheduling

w/o horizontal scheduling
Contribution: 52.1%
Accuracy: 46.9%

w/ horizontal scheduling
Contribution: 62.8%
Accuracy: 52.4%

(a) Latency CDF. (b) Prefetching effectiveness.

Figure 14: Horizontal scheduling effectiveness for GraphX-
CC: (a) prefetching latency reduced, and (b) prefetching con-
tribution and accuracy improved.

As shown, our scheduler does not incur overhead for the
synchronous, demand requests but reduces the (90th per-
centile) latency of the asynchronous prefetching requests by
∼5%. Note that these results were obtained with Canvas’s
two-tier prefetcher enabled, which already generates precise
prefetching requests. With the Leap prefetcher, the (90th per-
centile) latency reduction can be as high as 9×. To under-
stand how the latency reduction improves prefetching effec-
tiveness, we have also compared the prefetching contribution
and accuracy with and without the horizontal scheduling, as
shown in Figure 14(b). Due to the high timeliness require-
ment of prefetching requests, even 5% latency reduction can
lead to noticeable improvements in prefetching—e.g., the
contribution/accuracy of GraphX-CC increases by 10.7%
and 5.5% on top of the two-tier prefetcher—which ulti-
mately translate to a 7-12% overall improvement.

7 Related Work
Remote Memory. The past few years have seen a prolif-
eration of remote-memory systems that built on the ker-
nel’s swap mechanisms (including recent works such as Le-
goOS [91], Infiniswap [39], Fastswap [8], and Semeru [104]
as well as earlier attempts [32, 6, 31, 34, 28, 45, 61, 105]).
Remote memory is part of a general trend of resource disag-
gregation in datacenters [43, 21, 36, 14, 11, 66, 65, 58, 7, 9,
83, 95], which holds the promise of improving resource uti-
lization and simplifying new hardware adoption. Under dis-
aggregated memory, application data are stored on memory
servers, making swap interference a more serious problem.

Resource Isolation. Interference exists in a wide variety of
settings [29, 69, 111] and resource isolation is crucial for
delivering reliable performance for user workloads. There
is a large body of work on isolation of various kinds of
resources including compute time [64, 16, 25], processor
caches [35, 57, 106], memory bandwidth [67, 68, 71, 50,
107], I/O bandwidth [40, 96, 70, 74, 97, 103, 108], net-
work bandwidth [13, 41, 37, 94, 87, 77, 53], congestion con-
trol [27, 44], as well as CPU involved in network process-
ing [59]. Techniques such as IX [17] and MTCP [52] isolate
data-plane and application processing at the core granularity.
Prefetching. Prefetching has been extensively studied, in
the design of hardware cache [101, 42, 114, 100, 76], com-
pilers [98, 63, 89, 86, 60, 33], as well as operating sys-
tems [102, 73]. Detecting spatial patterns [75] is a common
way to prefetch data. For example, various hardware tech-
niques [93, 54, 51] have been developed to identify patterns
(i.e., sequential or stride) in addresses accessed. Leap [73]
is a kernel prefetcher designed specifically for applications
using remote memory. Swap interference can reduce the ef-
fectiveness of any existing prefetchers, let alone that none
of them consider complex (semantic) patterns. Early work
such as [85, 20] proposes application-level prefetching for
efficient file operations on slow disks. Our prefetcher is,
however, designed for a new setting where applications trig-
ger page faults frequently and read pages from fast remote
memory, with much tighter latency budgets.
RDMA Optimizations. There is a body of recent work on
RDMA scheduling [88, 92] and scalability improvement [99,
24, 56, 55, 113]. These techniques focus more on scalability
when RDMA NICs are shared among multiple clients.

8 Conclusion
We observed swap resources must be isolated when multiple
applications use remote memory simultaneously. As such,
Canvas isolates swap cache, swap partition, and RDMA
bandwidth to prevent applications from invading each other’s
resources. Now that resource accounting is done separately
for applications, Canvas offers three optimizations that adapt
kernel operations such as swap-entry allocation, prefetching,
and RDMA scheduling to each application’s resource usage,
providing additional performance boosts.

Acknowledgement
We thank the anonymous reviewers for their valuable and
thorough comments. We are grateful to our shepherd
Danyang Zhuo for his feedback. This work is supported
by NSF grants CNS-1703598, CCF-1723773, CNS-
1763172, CCF-1764077, CNS-1907352, CHS-1956322,
CNS-2007737, CNS-2006437, CNS-2128653, CCF-
2106404, CNS-2106838, CNS-2147909, CNS-2152313,
CNS-2151630, and CNS-2140552, CNS-2153449, ONR
grant N00014-18-1-2037, a Sloan Research Fellowship, and
research grants from Cisco, Intel CAPA, and Samsung.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 173

References
[1] Large Text Compression Benchmark.

[2] NVMe over fabrics. http://
community.mellanox.com/s/article/
what-is-nvme-over-fabrics-x.

[3] Libsvm data: Classification. https://www.
csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets, 2012.

[4] Memcached - a distributed memory object caching
system. http://memcached.org, 2020.

[5] Konect networks data. http://konect.cc/
networks/, 2021.

[6] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,
J. Gandhi, S. Novakovic, A. Ramanathan, P. Subrah-
manyam, L. Suresh, K. Tati, R. Venkatasubramanian,
and M. Wei. Remote regions: A simple abstraction
for remote memory. In USENIX ATC, pages 775–787,
2018.

[7] M. K. Aguilera, K. Keeton, S. Novakovic, and
S. Singhal. Designing far memory data structures:
Think outside the box. In HotOS, pages 120–126,
2019.

[8] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ouster-
hout, M. K. Aguilera, A. Panda, S. Ratnasamy, and
S. Shenker. Can far memory improve job throughput?
In EuroSys, 2020.

[9] S. Angel, M. Nanavati, and S. Sen. Disaggregation
and the application. In HotCloud, 2020.

[10] Apache. Apache cassandra. https:
//cassandra.apache.org, 2021.

[11] K. Asanović, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The landscape of parallel computing research: A
view from berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of Califor-
nia, Berkeley, Dec 2006.

[12] P. Baldi, P. Sadowski, and D. Whiteson. Searching
for exotic particles in high-energy physics with deep
learning. Nature communications, 5(1):1–9, 2014.

[13] H. Ballani, P. Costa, T. Karagiannis, and A. Row-
stron. Towards predictable datacenter networks. In
SIGCOMM, pages 242–253, 2011.

[14] L. A. Barroso. Warehouse-scale computing: Entering
the teenage decade. In ISCA, 2011.

[15] L. A. Barroso, U. Hölzle, and P. Ranganathan. The
Datacenter as a Computer: Designing Warehouse-
Scale Machines, Third Edition. Synthesis Lectures on
Computer Architecture, 2018.

[16] D. B. Bartolini, F. Sironi, D. Sciuto, and M. D. San-
tambrogio. Automated fine-grained cpu provisioning
for virtual machines. ACM Trans. Archit. Code Op-
tim., 11(3), July 2014.

[17] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A protected dat-
aplane operating system for high throughput and low
latency. In OSDI, pages 49–65, 2014.

[18] D. Bertsekas and R. Gallager. Data Networks (2nd
Ed.). Prentice-Hall, Inc., USA, 1992.

[19] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A.
Maruf, O. Mutlu, and A. Kolli. Rethinking soft-
ware runtimes for disaggregated memory. In ASPLOS,
pages 79–92, 2021.

[20] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Imple-
mentation and performance of integrated application-
controlled file caching, prefetching, and disk schedul-
ing. ACM Trans. Comput. Syst., 14(4):311–343, Nov.
1996.

[21] A. Carbonari and I. Beschasnikh. Tolerating faults
in disaggregated datacenters. In HotNets-XVI, pages
164–170, 2017.

[22] T. Chen and C. Guestrin. XGBoost: A scalable tree
boosting system. In KDD, pages 785–794, 2016.

[23] T. Chen and C. Guestrin. extreme gradi-
ent boosting for applied machine learning.
https://xgboost.readthedocs.io/en/latest/, 2021.

[24] Y. Chen, Y. Lu, and J. Shu. Scalable RDMA RPC on
reliable connection with efficient resource sharing. In
EuroSys, 2019.

[25] L. Cherkasova, D. Gupta, and A. Vahdat. Compari-
son of the three cpu schedulers in xen. SIGMETRICS
Perform. Eval. Rev., 35(2):42–51, 2007.

[26] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakr-
ishnan, and R. Sears. Benchmarking cloud serving
systems with ycsb. In Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA, 2010. Association for
Computing Machinery.

[27] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik,
M. Ravi, N. McKeown, I. Abraham, and I. Keslassy.
Virtualized congestion control. In SIGCOMM, pages
230–243, 2016.

174 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://konect.cc/networks/
http://konect.cc/networks/
https://cassandra.apache.org
https://cassandra.apache.org

[28] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and
D. A. Patterson. Cooperative caching: Using remote
client memory to improve file system performance. In
OSDI, 1994.

[29] C. Delimitrou and C. Kozyrakis. Bolt: I know what
you did last summer... in the cloud. In ASPLOS, pages
599–613, 2017.

[30] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. SIGCOMM
Comput. Commun. Rev., 19(4):1–12, Aug. 1989.

[31] M. J. Feeley, W. E. Morgan, E. P. Pighin, A. R. Kar-
lin, H. M. Levy, and C. A. Thekkath. Implementing
global memory management in a workstation cluster.
In SOSP, pages 201–212, 1995.

[32] E. Felten and J. Zahorjan. Issues in the implementa-
tion of a remote memory paging system. In University
of Washington CSE TR CSE TR, 1991.

[33] M. Ferdman, C. Kaynak, and B. Falsafi. Proactive
instruction fetch. In MICRO, pages 152–162, 2011.

[34] M. D. Flouris and E. P. Markatos. The network
ramdisk: Using remote memory on heterogeneous
nows. Cluster Computing, 2(4), Dec 1999.

[35] L. Funaro, O. A. Ben-Yehuda, and A. Schuster. Gin-
seng: Market-driven LLC allocation. In USENIX
ATC, pages 295–308, 2016.

[36] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira,
S. Han, R. Agarwal, S. Ratnasamy, and S. Shenker.
Network requirements for resource disaggregation. In
OSDI, pages 249–264, 2016.

[37] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness:
Fair allocation of multiple resource types. In NSDI,
pages 323–336, 2011.

[38] Google. Google’s fast compressor/decompressor.
https://github.com/google/snappy, 2020.

[39] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G.
Shin. Efficient memory disaggregation with infin-
iswap. In NSDI, pages 649–667, 2017.

[40] A. Gulati, A. Merchant, and P. J. Varman. MClock:
Handling throughput variability for hypervisor IO
scheduling. In OSDI, pages 437–450, 2010.

[41] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun,
W. Wu, and Y. Zhang. SecondNet: A data center net-
work virtualization architecture with bandwidth guar-
antees. In Co-NEXT, 2010.

[42] Y. Guo. Compiler-Assisted Hardware-Based Data
Prefetching for next Generation Processors. PhD the-
sis, 2007.

[43] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and
S. Shenker. Network support for resource disaggrega-
tion in next-generation datacenters. In HotNets, pages
10:1–10:7, 2013.

[44] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter,
J. Carter, and A. Akella. AC/DC TCP: Virtual con-
gestion control enforcement for datacenter networks.
In SIGCOMM, pages 244–257, 2016.

[45] L. Iftode, K. Li, and K. Petersen. Memory servers
for multicomputers. In Digest of Papers. Compcon
Spring, pages 538–547, Feb 1993.

[46] Intel. Batch allocation for swap entries.
https://github.com/torvalds/linux/
commit/ed43af10975eef7e, 2020.

[47] Intel. Memcontrol: Charge swap-in pages to
cgroup. https://github.com/torvalds/
linux/commit/4c6355b25e8bb83c, 2020.

[48] Intel. Per-core cluster allocation. https:
//github.com/torvalds/linux/commit/
490705888107c3ed, 2020.

[49] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety,
M. Syamala, V. Narasayya, H. Herodotou, P. Tomita,
A. Chen, J. Zhang, and J. Wang. PerfIso: Performance
isolation for commercial Latency-Sensitive services.
In USENIX ATC, pages 519–532, 2018.

[50] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni,
D. Newell, Y. Solihin, L. Hsu, and S. Reinhardt. QoS
policies and architecture for cache/memory in CMP
platforms. In SIGMETRICS, pages 25–36, 2007.

[51] A. Jain and C. Lin. Linearizing irregular memory ac-
cesses for improved correlated prefetching. In MI-
CRO, pages 247–259, 2013.

[52] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. MTCP: A highly scalable user-
level TCP stack for multicore systems. In NSDI, pages
489–502, 2014.

[53] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prab-
hakar, and C. Kim. EyeQ: Practical network perfor-
mance isolation for the multi-tenant cloud. In Hot-
Cloud, 2012.

[54] D. Joseph and D. Grunwald. Prefetching using
markov predictors. In ISCA, pages 252–263, 1997.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 175

https://github.com/torvalds/linux/commit/ed43af10975eef7e
https://github.com/torvalds/linux/commit/ed43af10975eef7e
https://github.com/torvalds/linux/commit/4c6355b25e8bb83c
https://github.com/torvalds/linux/commit/4c6355b25e8bb83c
https://github.com/torvalds/linux/commit/490705888107c3ed
https://github.com/torvalds/linux/commit/490705888107c3ed
https://github.com/torvalds/linux/commit/490705888107c3ed

[55] A. Kalia, M. Kaminsky, and D. G. Andersen. Design
guidelines for high performance RDMA systems. In
USENIX ATC, pages 437–450, 2016.

[56] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST:
Fast, scalable and simple distributed transactions with
two-sided (RDMA) datagram RPCs. In OSDI, pages
185–201, 2016.

[57] H. Kasture and D. Sanchez. Ubik: Efficient cache
sharing with strict qos for latency-critical workloads.
In ASPLOS, pages 729–742, 2014.

[58] K. Keeton. The Machine: An architecture for
memory-centric computing. In ROSS, 2015.

[59] J. Khalid, E. Rozner, W. Felter, C. Xu, K. Rajamani,
A. Ferreira, and A. Akella. Iron: Isolating network-
based cpu in container environments. In NSDI, pages
313–328, 2018.

[60] A. Kolli, A. Saidi, and T. F. Wenisch. RDIP: Return-
address-stack directed instruction prefetching. In MI-
CRO, pages 260–271, 2013.

[61] S. Koussih, A. Acharya, and S. Setia. Dodo: a user-
level system for exploiting idle memory in worksta-
tion clusters. In HPDC, pages 301–308, Aug 1999.

[62] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal,
R. Burny, S. Butt, J. Chang, A. Chaugule, N. Deng,
J. Shahid, G. Thelen, K. A. Yurtsever, Y. Zhao, and
P. Ranganathan. Software-defined far memory in
warehouse-scale computers. In ASPLOS, pages 317–
330, 2019.

[63] C. Lattner and V. Adve. Automatic pool allocation:
improving performance by controlling data structure
layout in the heap. In PLDI, pages 129–142, 2005.

[64] T. Li, D. Baumberger, and S. Hahn. Efficient and scal-
able multiprocessor fair scheduling using distributed
weighted round-robin. In PPoPP, pages 65–74, 2009.

[65] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K.
Reinhardt, and T. F. Wenisch. Disaggregated memory
for expansion and sharing in blade servers. In ISCA,
pages 267–278, 2009.

[66] K. Lim, Y. Turner, J. R. Santos, A. AuYoung,
J. Chang, P. Ranganathan, and T. F. Wenisch. System-
level implications of disaggregated memory. In
HPCA, pages 1–12, 2012.

[67] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu.
A software memory partition approach for eliminat-
ing bank-level interference in multicore systems. In
PACT, pages 367–376, 2012.

[68] L. Liu, Y. Li, Z. Cui, Y. Bao, M. Chen, and C. Wu. Go-
ing vertical in memory management: Handling mul-
tiplicity by multi-policy. In ISCA, pages 169–180,
2014.

[69] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan,
and C. Kozyrakis. Improving resource efficiency at
scale with heracles. ACM Trans. Comput. Syst., 34(2),
2016.

[70] L. Lu, Y. Zhang, T. Do, S. Al-Kiswany, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Physical disen-
tanglement in a container-based file system. In OSDI,
pages 81–96, 2014.

[71] J. Ma, X. Sui, N. Sun, Y. Li, Z. Yu, B. Huang, T. Xu,
Z. Yao, Y. Chen, H. Wang, L. Zhang, and Y. Bao.
Supporting differentiated services in computers via
programmable architecture for resourcing-on-demand
(PARD). In ASPLOS, pages 131–143, 2015.

[72] M. Maas, K. Asanović, T. Harris, and J. Kubiatowicz.
Taurus: A holistic language runtime system for coor-
dinating distributed managed-language applications.
In ASPLOS, pages 457–471, 2016.

[73] H. A. Maruf and M. Chowdhury. Effectively prefetch-
ing remote memory with Leap. In USENIX ATC,
pages 843–857, 2020.

[74] J. C. McCullough, J. Dunagan, A. Wolman, and A. C.
Snoeren. Stout: An adaptive interface to scalable
cloud storage. In USENIX ATC, 2010.

[75] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S.
Fabry. A fast file system for UNIX. ACM Trans. Com-
put. Syst., 2(3):181–197, 1984.

[76] S. Mittal. A survey of recent prefetching techniques
for processor caches. ACM Comput. Surv., 49(2),
2016.

[77] Y. Mundada, A. Ramachandran, and N. Feamster. Sil-
verline: Data and network isolation for cloud services.
In HotCloud, 2011.

[78] C. Navasca, C. Cai, K. Nguyen, B. Demsky, S. Lu,
M. Kim, and G. H. Xu. Gerenuk: Thin computation
over big native data using speculative program trans-
formation. In SOSP, pages 538–553, 2019.

[79] Neo4j. Neo4j graph data platform. https://
neo4j.com, 2021.

[80] K. Nguyen, L. Fang, C. Navasca, G. Xu, B. Demsky,
and S. Lu. Skyway: Connecting managed heaps in
distributed big data systems. In ASPLOS, pages 56–
69, 2018.

176 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://neo4j.com
https://neo4j.com

[81] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu,
S. Alamian, and O. Mutlu. Yak: A high-performance
big-data-friendly garbage collector. In OSDI, pages
349–365, 2016.

[82] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and
G. Xu. Facade: A compiler and runtime for (almost)
object-bounded big data applications. In ASPLOS,
pages 675–690, 2015.

[83] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and
H. Balakrishnan. Shenango: Achieving high CPU ef-
ficiency for latency-sensitive datacenter workloads. In
NSDI, pages 361–378, 2019.

[84] A. Parekh and R. Gallager. A generalized processor
sharing approach to flow control in integrated services
networks: the single-node case. IEEE/ACM Transac-
tions on Networking, 1(3):344–357, 1993.

[85] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodol-
sky, and J. Zelenka. Informed prefetching and
caching. In SOSP, pages 79–95, 1995.

[86] L. Peled, S. Mannor, U. Weiser, and Y. Etsion. Seman-
tic locality and context-based prefetching using rein-
forcement learning. In ISCA, pages 285–297, 2015.

[87] L. Popa, A. Krishnamurthy, S. Ratnasamy, and I. Sto-
ica. Faircloud: Sharing the network in cloud comput-
ing. In SIGCOMM, pages 187–198, 2012.

[88] H. Qiu, X. Wang, T. Jin, Z. Qian, B. Ye, B. Tang,
W. Li, and S. Lu. Toward effective and fair RDMA
resource sharing. In APNet, pages 8–14, 2018.

[89] R. M. Rabbah, H. Sandanagobalane, M. Ekpa-
nyapong, and W.-F. Wong. Compiler orchestrated
prefetching via speculation and predication. In AS-
PLOS, pages 189–198, 2004.

[90] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Be-
lay. AIFM: High-performance, application-integrated
far memory. In OSDI, pages 315–332, 2020.

[91] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS:
A disseminated, distributed OS for hardware resource
disaggregation. In OSDI, pages 69–87, 2018.

[92] D. Shen, J. Luo, F. Dong, X. Guo, K. Wang, and
J. C. S. Lui. Distributed and optimal rdma resource
scheduling in shared data center networks. In INFO-
COM, pages 606–615, 2020.

[93] T. Sherwood, S. Sair, and B. Calder. Predictor-
directed stream buffers. In MICRO, pages 42–53,
2000.

[94] A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Sea-
wall: Performance isolation for cloud datacenter net-
works. In HotCloud, 2010.

[95] V. Shrivastav, A. Valadarsky, H. Ballani, P. Costa,
K. S. Lee, H. Wang, R. Agarwal, and H. Weather-
spoon. Shoal: A network architecture for disaggre-
gated racks. In NSDI, pages 255–270, 2019.

[96] D. Shue, M. J. Freedman, and A. Shaikh. Performance
isolation and fairness for multi-tenant cloud storage.
In OSDI, pages 349–362, 2012.

[97] E. Thereska, H. Ballani, G. O’Shea, T. Karagian-
nis, A. Rowstron, T. Talpey, R. Black, and T. Zhu.
IOFlow: A software-defined storage architecture. In
SOSP, pages 182–196, 2013.

[98] Tien-Fu Chen and Jean-Loup Baer. Effec-
tive hardware-based data prefetching for high-
performance processors. IEEE Transactions on Com-
puters, 44(5):609–623, 1995.

[99] S.-Y. Tsai and Y. Zhang. LITE kernel RDMA support
for datacenter applications. In SOSP, pages 306–324,
2017.

[100] S. P. Vander Wiel and D. J. Lilja. When caches
aren’t enough: data prefetching techniques. Com-
puter, 30(7):23–30, 1997.

[101] S. P. Vander Wiel and D. J. Lilja. A compiler-assisted
data prefetch controller. In Proceedings 1999 IEEE
International Conference on Computer Design: VLSI
in Computers and Processors, pages 372–377, 1999.

[102] G. M. Voelker, E. J. Anderson, T. Kimbrel, M. J. Fee-
ley, J. S. Chase, A. R. Karlin, and H. M. Levy. Im-
plementing cooperative prefetching and caching in a
globally-managed memory system. In SIGMETRICS,
pages 33–43, 1998.

[103] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger. Argon: Performance insulation for shared
storage servers. In FAST, 2007.

[104] C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen,
M. D. Bond, R. Netravali, M. Kim, and G. H. Xu. Se-
meru: A memory-disaggregated managed runtime. In
14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 261–280.
USENIX Association, Nov. 2020.

[105] C. Wang, H. Ma, S. Liu, Y. Qiao, J. Eyolfson,
C. Navasca, S. Lu, and G. H. Xu. MemLiner: Lining
up tracing and application for a Far-Memory-Friendly
runtime. In OSDI, pages 35–53, 2022.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 177

[106] X. Wang and J. F. Martı́nez. ReBudget: Trading off
efficiency vs. fairness in market-based multicore re-
source allocation via runtime budget reassignment. In
ASPLOS, pages 19–32, 2016.

[107] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-
Flux: Precise online qos management for increased
utilization in warehouse scale computers. In ISCA,
pages 607–618, 2013.

[108] S. Yang, T. Harter, N. Agrawal, S. S. Kowsalya, A. Kr-
ishnamurthy, S. Al-Kiswany, R. T. Kaushik, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Split-
level i/o scheduling. In SOSP, pages 474–489, 2015.

[109] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster computing
with working sets. HotCloud, page 10, Berkeley, CA,
USA, 2010.

[110] L. Zhang. A new architecture for packet switch-
ing network protocols. Technical report, MAS-
SACHUSETTS INST OF TECH CAMBRIDGE LAB
FOR COMPUTER SCIENCE, 1989.

[111] W. Zhang, S. Rajasekaran, S. Duan, T. Wood, and
M. Zhuy. Minimizing interference and maximizing
progress for hadoop virtual machines. SIGMETRICS
Perform. Eval. Rev., 42(4):62–71, 2015.

[112] X. Zhang, E. Tune, R. Hagmann, R. Jnagal,
V. Gokhale, and J. Wilkes. CPI2: CPU performance
isolation for shared compute clusters. In EuroSys,
pages 379–391, 2013.

[113] Y. Zhang, Y. Tan, B. E. Stephens, and M. Chowdhury.
RDMA performance isolation with justitia. In NSDI,
2022.

[114] D. F. Zucker, R. B. Lee, and M. J. Flynn. Hardware
and software cache prefetching techniques for MPEG
benchmarks. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 10(5):782–796, 2000.

178 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Extended Motivation

200 300 400
Elapsed Time (s)

0

20

40

60

Sw
ap

En
tr

y
A

llo
c

tim
e

(%
)

Snappy
XGBoost
Spark

200 300 400
Elapsed Time (s)

(a) Running individually. (b) Corunning.

Figure 15: Percentage of time spent on swap entry allocation
when applications run individually (a) and together (b).

Figure 15 compares the percentage of time spent on swap
entry allocation between individual runs and co-runs under
Linux 5.5. As shown, each application, when co-run with
other applications, spend significantly more time on allocat-
ing swap entries due to the increased locking time.

B Recent Kernel Development
As an optimization in Linux 5.5, the kernel keeps swap en-
tries for clean pages—when clean pages are evicted, they
do not need to be written back if their swap entries are not
released for other allocations. Once a page becomes dirty,
its swap entry must be immediately released. Clearly, this
approach works for read-intensive applications where most
pages are clean, but not for write-intensive workloads such
as Spark. We tried various entry-keeping thresholds (i.e.,
entry keeping starts when the percentage of available swap
entries exceeds this threshold) between 25% and 75%, and
saw only marginal performance differences (<5%) across
our programs.

We have closely followed the kernel development since
the release of Linux 5.5 and found two recent patches re-
lated to our approach. These two patches, submitted by Intel
and merged into the kernel at 5.8, also attempt to optimize
locking overhead at swap entry allocation. The idea of the
first patch [48] is using fine-grained locking—dividing swap
entries into clusters and assigning each core a random clus-
ter upon an allocation request. The second patch [46] per-
forms batch entry allocation by scanning more swap entries
while holding the lock to make each batch larger. Note that
our adaptive allocation algorithm solves a much bigger prob-
lem than these patches—Canvas avoids allocating entries for
most swap-outs, while these patches reduce the overhead of
locking for each allocation. As such, Canvas is completely
lock-free for reserved entries while these patches must still
go through the allocation path, requiring locking if multiple
cores are assigned the same cluster (i.e., core collision).

In fact, the probability of collision increases quickly with
the number of cores. As shown below in Figure 16, the allo-
cation performance of these patches degrades super-linearly
when the number of cores exceeds 24. Another major draw-
back is that none of these patches build on isolated swap par-
titions. Lack of swap partition isolation makes applications
search for swap entries globally, which can still result in in-
terference—applications such as Spark can quickly saturate
these clusters with all its executor threads, making other ap-
plications wait before they can obtain the locks. By reserving
entries, our algorithm significantly reduces the number of en-
try allocation requests (due to entry reusing) and the cost of
each allocation (due to reduced lock contention).

8 16 24 32 48
#(cores)

0K

200K

400K

600K

#(
A

llo
c.

En
tr

ie
s)

/s
8 16 24 32 48

#(cores)
10−1

100

101

102

Pe
r-

en
tr

y
A

llo
c.

Ti
m

e
(u

s)

Linux 5.5 Linux 5.14 Canvas (Linux 5.5)

(a) Swap entry allocation rate. (b) Per-entry allocation time.

Figure 16: Entry allocation comparison between Canvas and
the allocation algorithm when Memcached runs on Linux
5.14 on RAMDisk.

Comparison with Linux 5.5 and Linux 5.14. As the ker-
nel is fast evolving and our latest InfiniBand driver is only
compatible with Linux 5.5, we compared the swap-entry al-
location performance between Canvas, Linux 5.5, and the
latest Linux 5.14 over RAMDisk, by running Memcached
with varying (8 – 48) cores.

As Figure 16(a) shows, our adaptive entry reservation al-
gorithm reduces the allocation rate by several orders of mag-
nitude compared to Linux 5.14. Note that the allocation rate
under Linux 5.5 drops as the number cores increases because
each allocation takes much longer and hence the swap-out
throughput (i.e., allocation throughput) reduces (i.e., the ap-
plication runs slower).

Figure 16(b) compares our algorithm with Linux 5.5 and
Linux 5.14 on per-entry allocation time. As shown, the
optimization in [48, 46] is unscalable—as the number of
cores increases, the per-entry allocation cost increases signif-
icantly. In fact, the allocation cost grows superlinearly after
24 cores due to core collision. On the contrary, Canvas’s per-
entry allocation cost remains low and stable. With 48 cores,
our algorithm outperforms Linux 5.14’s entry allocator (that
uses [48, 46]) by 13×.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 179

Hermit: Low-Latency, High-Throughput, and Transparent Remote Memory via
Feedback-Directed Asynchrony

Yifan Qiao†∗ Chenxi Wang†⋄ Zhenyuan Ruan‡ Adam Belay‡ Qingda Lu♯

Yiying Zhang§ Miryung Kim† Guoqing Harry Xu†⋄

†UCLA ‡MIT CSAIL ♯Alibaba Group §UCSD

Abstract
Remote memory techniques are gaining traction in datacen-
ters because they can significantly improve memory utiliza-
tion. A popular approach is to use kernel-level, page-based
memory swapping to deliver remote memory as it is transpar-
ent, enabling existing applications to benefit without modifi-
cations. Unfortunately, current implementations suffer from
high software overheads, resulting in significantly worse tail
latency and throughput relative to local memory.

Hermit is a redesigned swap system that overcomes
this limitation through a novel technique called adaptive,
feedback-directed asynchrony. It takes non-urgent but time-
consuming operations (e.g., swap-out, cgroup charge, I/O
deduplication, etc.) off the fault-handling path and executes
them asynchronously. Different from prior work such as
Fastswap, Hermit collects runtime feedback and uses it to
direct how asynchrony should be performed—i.e., whether
asynchronous operations should be enabled, the level of
asynchrony, and how asynchronous operations should be
scheduled. We implemented Hermit in Linux 5.14. An eval-
uation with a set of latency-critical applications shows that
Hermit delivers low-latency remote memory. For example, it
reduces the 99th percentile latency of Memcached by 99.7%
from 36 ms to 91 µs. Running Hermit over batch applica-
tions improves their overall throughput by 1.24× on average.
These results are achieved without changing a single line of
user code.

1 Introduction
Techniques enabling datacenter applications to use remote
memory [10, 17, 28, 29, 36, 43, 52, 53, 57] have gained trac-
tion due to their potential to break servers’ memory capacity
wall, thereby significantly improving datacenters’ resource
utilization. Compared to clean-slate techniques [17, 52] that
provide new primitives for developers to efficiently manage
remote memory, swap-based techniques [3, 10, 29, 53, 57,
58] that piggyback on existing paging/swap mechanisms in
the OS kernel are more practical as they offer transparency,
allowing legacy code to run as is on a far-memory system.

The main drawback of swap-based remote access is the
overhead incurred by the kernel’s paging system. For ex-

∗Part of the work was done when Yifan Qiao interned at Alibaba Group.
⋄Corresponding authors.

ample, when running Memcached using Fastswap [10], the
current state-of-the-art swapping system for Linux, a remote
access takes an average of 14 µs, of which only 9 µs are spent
on network (RDMA) operations—the software-induced over-
head is above 50%! This large fault-handling overhead sig-
nificantly increases operation latency, precluding the use of
remote memory with latency-critical applications.

In addition, long remote-access time can further block sub-
sequent instructions dependent on these accesses, leading to
substantial reductions in application throughput. For exam-
ple, the performance of garbage collection in a managed lan-
guage runtime is highly sensitive to memory access latency
due to its pointer-chasing nature. Reductions in GC perfor-
mance can lead to delayed object creations, dramatically re-
ducing the application’s overall throughput [42, 57, 58].

The underlying reason for such high overhead is a mis-
match in the design of today’s swap-based paging systems,
which originally targeted slow, disk-based storage, and mod-
ern datacenter networks (e.g., 100-400 GbE) that can deliver
pages much faster. For example, through profiling, we reveal
the following performance bottlenecks that persist in Linux
(§3):

• Page reclamation blocks the critical path: To make
room to fault in new pages, the OS must reclaim memory
by swapping out cold pages. Linux is designed to handle
this asynchronously by swapping out pages in a separate
thread. However, when Linux fails to keep up with the
demand for new pages, the page fault handler must block
and wait for reclamation to finish.

• Duplication checks are too conservative: Linux is de-
signed to never make duplicate I/O requests for the same
page. Although this occasionally prevents wasted band-
width, it comes at a high cost in terms of synchronization
overhead, such as during swap cache lookup and insertion.

• Opportunities for batching are not exploited: Batching
can be an effective optimization when it does not harm
page fault handling latency. For example, when Linux
performs page reclamation, it first selects a set of victim
pages and then swaps out each page individually. A bet-
ter strategy would be to process victim pages in batches,
reducing the cost of TLB shootdowns, I/O writes, and
cgroup accounting.

State of the Art. The conventional wisdom is that soft-
ware overheads can be overcome by bypassing the ker-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 181

nel [48, 52, 63]. This approach typically requires application-
level modifications or the use of custom APIs, making it im-
practical to deploy transparently across all applications. Our
aim is to answer the following question instead: Can we elim-
inate performance bottlenecks in the kernel directly, allow-
ing the benefits of fast remote memory to be exposed to all
applications transparently?

Recent work, such as Fastswap [10] and InfiniSwap [29],
has made some progress in optimizing the kernel’s swap
subsystem, such as the use of RDMA to deliver remote
pages more efficiently. Fastswap, the current state-of-the-art,
also modifies the Linux Kernel to offload page reclamation
to a dedicated core and executes it asynchronously. This
increases swap-out efficiency, and reduces the time that a
page fault handler must block waiting for reclamation to fin-
ish. However, Fastswap leaves other opportunities for asyn-
chrony on the table. In addition, a single, dedicated core
is insufficient to accommodate changes in demand for swap-
out throughput under time-varying memory pressure, limit-
ing the conditions where Fastswap can perform well (§3).
Insights. This work builds on three insights, all centering
around asynchrony. First, asynchrony can be used to reduce
the latency of page fault handling. For example, during a
page fault, the kernel first looks for the page in the swap
cache. If the page is present, it will be mapped at the fault-
ing address and the kernel does not need to issue a fetch.
However, this check is protected by a lock, which incurs a
non-trivial overhead. Instead, fetching a page via RDMA,
even if the page is already in the swap cache, is extremely
fast: its only penalty is slightly wasted network bandwidth
(i.e., bandwidth is rarely saturated). By always issuing the
fetch asynchronously and overlapping it with the check, we
can reduce the fault-handling latency.

Second, only page faults handlings are latency critical, so
it is safe to aggressively optimize all other operations for
throughput via batching. For instance, when TLB shoot-
downs are batched, it reduces the number of interrupts that
have to be sent across cores. As another example, RDMA
writes of multiple swapped-out dirty pages can be batched
into a single transfer. These opportunities are only possible
because such operations are conducted asynchronously; oth-
erwise, batching would delay critical swap-in operations.

Third, to achieve optimal performance, the use of asyn-
chrony (e.g., number of cores) must be adjusted dynami-
cally. For example, it is critical that swap-out throughput
is perfectly balanced with swap-in throughput. If swap-out
throughput is too low, the page fault handler will block and
delay the application. If it is too high, it will leave a substan-
tial portion of local memory underutilized, impacting appli-
cation performance. This is especially challenging because
the swapping rate depends on the workload, its inputs, and
even the different phases within its execution.
Hermit. This paper presents Hermit, a new paging/swap
system that exploits these (previously-unknown) opportuni-

ties for asynchrony. Hermit employs feedback-directed asyn-
chrony as the major principle in the paging system design,
simultaneously enabling full code transparency (i.e., any
legacy code can run as is), low remote access latency, and
high application throughput. Hermit employs different types
of asynchrony to tackle the three bottlenecks (i.e., blocked
swap-ins, conservative checks, lack of batching), as elabo-
rated below:

First, page reclamation is moved into a set of reclaim
threads, which eagerly evict (least-recently used) pages and
aggressively batch expensive operations involved in each
swap-out (§4.2). In particular, Hermit batches page unmap-
ping, TLB shootdown, RDMA writes, polling, and cgroup

uncharging in swap-out threads, reducing the amounts of
computation involved in swap-outs and improving their
throughput (§4.4).

Second, Hermit opportunistically bypasses the swap-in
duplication check and issues I/O read requests eagerly, de-
laying such checks to the synchronous PTE update stage.
Since only one thread can successfully update the PTE, all
other competing threads will eventually release their dupli-
cate pages, guaranteeing safety (§4.3).

Third, inspired by optimistic locking [4], Hermit makes
page I/O fully asynchronous during swap-in to further re-
duce latency. We split the swap-in procedure into two com-
ponents: one that can still successfully run and is reversible
even if there are concurrent updates, and a second that may
either abort or create irreversible side effects in the presence
of concurrent updates. Hermit moves the first component out
of the critical section to overlap it with the page I/O (details
are in Figure 4). Hermit checks the validity before the crit-
ical section finishes (i.e., whether concurrent updates have
occurred) and if they have, reverts the speculatively executed
operations.

Finally, we create a feedback control system for each type
of asynchronous operation, using execution profiles to adjust
whether and how asynchrony should be applied. In particu-
lar, we use (1) page turnaround (i.e., time between a page’s
swap-in and previous swap-out), (2) page-in/-reclamation
throughput, and (3) conflict rates (i.e., how often concur-
rent updates occur), as metrics to adjust our asynchrony in
dealing with reclamation timing, reclamation intensity, ea-
ger swap-in, conservative checks, respectively. Hermit pro-
files and collects these signals throughout the execution to
dynamically adapt to the application’s changing behaviors.
Results. Hermit was implemented in Linux 5.14 (released
August 2021). We have carefully inspected all relevant ker-
nel patches made since then and confirmed that none of them
are directly related to Hermit.

We evaluated Hermit with a set of real-world applications
including both latency critical (Memcached, SocialNet, and
Gdnsd) and batch processing applications (Apache Spark,
XGBoost, and Apache Cassandra). Our evaluation on Mem-
cached demonstrates that Hermit outperforms Fastswap [10]

182 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

I/O Read

Issue
Prefetch Req. Update

MetadataB
eg

in Lookup
Swap Cache

Hit

Miss Page
Reclamation

Set
PTE

Wait Page
Conflict

En
d

Fastswap offloads reclamation to a dedicated core
Only write back dirty pages

Stage ①: 0.6 μs Stage ②: 2.8 μs Stage ③: 0.4 μs Stage ⑤: 9.1 μs Stage ⑥: 0.9 μsStage ④: 1180 μs

Otherwise

Enough free memory

Unmap
PTE

TLB
Shootdown

I/O
Write

Release Page
& Swap Cache

cgroup
UnchargeB

eg
in

En
d

Deduplicate
Swap-ins

cgroup
Accounting

0.2 μs

Until enough free memory

Figure 1: The life cycle of a remote memory page fault in Linux swap.

by 99.7% in latency, reducing the 99th percentile latency
from 36 ms to 91 µs. For batch processing applications, Her-
mit improves throughput by up to 1.87× with a geometric
mean of 1.24×. Hermit also scales much better with the num-
ber of cores than Fastswap. These results demonstrate that
low tail latency and high throughput can be achieved at the
same time without bypassing kernel, making Hermit a practi-
cal solution for enabling remote memory. Hermit is available
at https://github.com/uclasystem/hermit.

2 Background

Today’s datacenter applications expose high load variability
and diurnal patterns [13, 14, 47]. Despite low average load,
operators have to provision resources for peak demand to
avoid violating service-level agreements. Memory is an es-
pecially challenging resource because it is uncompressable,
meaning that running out of it causes tasks to be killed,
which can be very disruptive to overall performance [56].
This is a major contributing factor to low memory utilization
in today’s datacenters [41, 56].

Remote memory offers a promising solution to improving
memory utilization. Its key idea is to break the hardware
boundary and unstrand the idle memory of remote machines
through fast datacenter networking. Existing systems have
demonstrated the feasibility of utilizing remote memory with
good performance [10, 17, 52]. Among different approaches
to realizing remote memory, the kernel-based approach of-
fers a unique advantage of transparency. It enables existing
applications to run as is over remote memory using commod-
ity hardware. This is very attractive to datacenter operators
as it significantly lowers the bar for adoption.

The kernel-based approach achieves transparency through
paging, an idea that dates back to the 1960s. Originally, pag-
ing was designed to extend the addressable memory space
with a slow but large secondary storage (usually a mechani-
cal disk). Under memory pressure, the kernel pages out cold
pages to disk and marks them as absent from memory. Later,
if a process accesses any of those pages, the memory manage-
ment unit (MMU) raises a page fault exception which trans-
parently traps the control flow into the kernel to page in the
data and update the corresponding page table entry (PTE).

Linux implements paging in its swap subsystem, which is
often used as the last resort for preventing out-of-memory
(OOM) killing. Swap can serve as a temporary mechanism
that buys operators time to solve memory pressure, e.g., by
migrating or killing processes. The architecture of the pag-
ing/swap subsystem has remained relatively stable since its
inception. However, in the context of remote memory, fast
network-attached memory (4 µs, 12 GB/s) can be used as a
secondary storage device as opposed to a slower disk (10 ms,
200 MB/s). Due to this huge performance gap, the legacy
swap system is a bottleneck in accessing remote memory.
For example, when running Memcached on Fastswap (i.e.,
the state-of-the-art swap system) with a high local memory
ratio (70%), we see a 4× throughput drop.

3 Understanding Existing Swap Systems

3.1 The Life Cycle of Remote Memory Access

The legacy design of Linux swap imposes high overheads
on accessing remote memory. To better understand the root
cause of its inefficiencies, we conducted a performance study
by running Memcached on Fastswap [10] (the state-of-the-
art swap system). Figure 1 shows the stages of a remote
memory access and breaks down their costs. We discuss each
stage in more detail as follows:

1⃝ Lookup swap cache. The swap cache serves as a cen-
tralized component that prevents race conditions. It tracks
the information of swapped-in pages and ongoing swap-out
requests. First, the faulting page may have been fetched by
another process or the OS prefetcher. By looking up the swap
cache, Linux detects this and jumps to stage 6⃝. Second, it
is possible that the faulting page is being swapped out by an-
other process. In this case, naïvely fetching the remote page
will see the stale copy. With the swap cache, Linux detects
the race and cancels the ongoing swap-out. Looking up the
swap cache takes an average of 0.6 µs.

2⃝ Deduplicate swap-ins. At the same time, there can be
multiple threads swapping in the same page. Linux guaran-
tees that only one thread can succeed by synchronizing with
lock primitives. The remaining threads will be busy waiting
until the page gets fetched. This design saves I/O bandwidth

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 183

https://github.com/uclasystem/hermit

but impacts latency and hurts scalability. This stage takes an
average of 2.8 µs.
3⃝ cgroup accounting. Before fetching the page, Linux

must ensure that the current process has sufficient free mem-
ory by performing cgroup accounting. For the lucky pro-
cess with enough memory, it jumps to stage 5⃝ directly. The
accounting stage takes an average of 0.4 µs. Otherwise,
Linux must go through stage 4⃝ to reclaim pages to make
room, as elaborated below.
4⃝ Direct page reclamation. Linux iteratively reclaims

pages until the size of the available local memory is above
the low-water mark. Linux swaps out a single page for each
iteration. Swap-out is expensive as it involves operations
such as TLB shootdown, PTE unmapping, etc. This stage
exists only when the local memory runs low, but it is also
the longest one that takes an average of 1180 µs. To re-
duce direct reclamation, Fastswap performs this stage asyn-
chronously with a dedicated core.
5⃝ Fetch and prefetch page. Linux issues an I/O request

to fetch the faulted page. Meanwhile, it may issue multiple
prefetching requests. This stage takes an average of 9.1 µs.
6⃝ Update metadata. Finally, Linux updates kernel meta-

data, including page table entries (PTEs), swap entries, and
page reverse mapping (rmap). This stage takes 0.9 µs.

3.2 Root Causes of Inefficiencies

1 2 3 4
Offered load (Mops)

0
200
400
600
800

1000

99
%

La
te

nc
y

(μ
s) Fastswap

Fastswap∗
-2 cores
Fastswap∗
-4 cores
Fastswap∗
-8 cores
All local

Figure 2: 99th percentile latency with respect to offered load of
Memcached on Fastswap under 70% local memory.

To understand the bottleneck imposed by Fastswap’s sin-
gle, dedicated reclamation core, we ran several experiments
with Memcached. Figure 2 shows Memcached’s 99th per-
centile latency with respect to its offered load when running
with 70% local memory. The baseline for comparison is
Memcached running locally (100% local memory without
swapping), which is the rightmost curve and achieves >4.4
Mops load throughput with good tail latency. Memcached on
Fastswap (the blue curve), however, can only offer ≈1 Mops
load before the dedicated core gets saturated and its latency
increases dramatically. The reason is that Fastswap’s single
dedicated core cannot keep up with the increasing demand
for page reclamation. We then modified Fastswap’s origi-
nal implementation to offload page reclamation onto multi-
ple cores, denoted as Fastswap∗ in the figure, as a naïve
strawman approach.

Using more dedicated cores can indeed help reduce the
direct reclamation ratio, as shown in Figure 3. With 4 ded-
icated cores, Fastswap∗ is able to eliminate direct page

1 2
Offered load (Mops)

0

25

50

75

D
ire

ct
Re

cl
ai

m
R

at
io

(%
) Fastswap

Fastswap∗
-2 cores
Fastswap∗
-4 cores

Figure 3: Direct page reclamation ratio of Memcached on Fastswap
under 70% local memory.

reclamation, thus providing the highest throughput among
all Fastswap variants. However, Fastswap uses static core
provisioning, which is insufficient in practice due to the
phased behaviors and shifts in load that occur within dat-
acenter applications. First, the number of required dedi-
cated cores depends on the application’s working set, the
available local memory, and the swap-in intensity, making
it impossible for a statically determined number to work uni-
versally for different applications or even different phases
of the same application. Second, over-provisioning dedi-
cated cores does not always lead to greater end-to-end per-
formance; in many cases, using more cores only shifts the
bottleneck from page reclamation to the application itself,
as more dedicated cores for reclamation imply fewer avail-
able cores for application threads. As shown in Figure 2,
increasing the number of dedicated cores in Fastswap from 1
to 4 (Fastswap∗-4 cores) improves performance, but fur-
ther allocating cores degrades performance (Fastswap∗-8

cores). Furthermore, although Fastswap∗-4 cores elim-
inates direct page reclamation (i.e., reducing latency), it still
loses ∼45% performance (i.e., reducing throughput). The
performance loss is due to three major kinds of inefficiencies
induced by Linux swap, as elaborated below.
Swap-out blocks swap-in. As explained earlier, Mem-
cached experiences high memory access latency when run-
ning short of local memory, as it has to reclaim pages. Page
reclamation is expensive as it requires finding victim pages
and unmapping them, followed by a number of expensive
operations for consistency such as TLB shootdown. This sig-
nificantly impacts its tail latency, leading to violations of the
service-level agreement (SLA).

Fastswap tackles this issue by allocating a dedicated core
to reclaim pages asynchronously in the background. How-
ever, as discussed earlier, it is nearly impossible to statically
identify the optimal number of cores due to load variability.
Unoptimized for fast I/O. Linux swap was designed for
slow secondary storage like hard-disk drives whose perfor-
mance is two to three orders of magnitude lower than to-
day’s remote memory in both bandwidth and latency. Since
disk bandwidth is often the bottleneck, Linux applies aggres-
sive optimizations in its page fault handling path to reduce
I/O traffic (stage 2⃝). While they were effective in the era
of slow disks, these optimizations become irrelevant in the
context of remote memory whose bandwidth is close to the
bandwidth of main memory. Even worse, the outdated op-

184 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

timization generates an adversarial performance impact; it
prolongs remote memory access latency, hurting scalability
(e.g., due to synchronization). For latency-critical applica-
tions like Memcached, prolonged remote memory accesses
can significantly increase the time for serving incoming re-
quests, imposing super-linear effects on tail latency. Mod-
eled by queueing theory [24], for instance, 10% longer ser-
vice time can potentially double the 99th percentile latency,
leading to vast SLA violations.

Additionally, since the disk latency (ms-scale) is signifi-
cantly higher than the CPU time in page fault handling (µs-
scale), Linux adopts a serial-execution model for simplicity.
As shown in Figure 1, the I/O read stage is executed sepa-
rately from other stages; after issuing the I/O read request,
Linux either busy waits for the I/O response or re-schedules
the faulting thread (which hurts latency of fast I/O requests),
relinquishing the opportunity of overlapping the waiting pe-
riod with other stages.

Unoptimized for CPU overhead. Linux swap is a mech-
anism aimed at avoiding OOM killing. Inherently, treating
swapping as a rare event, it was designed to optimize for
responsiveness, not for CPU efficiency. For example, dur-
ing page reclamation (stage 4⃝), Linux swaps out only one
page at a time, under the assumption that by releasing the
space more timely it can unblock the OOM process sooner.
Unfortunately, this amplifies the CPU usage as it must in-
voke expensive operations such as TLB shootdown for every
reclaimed page. While overhead is acceptable when swap-
ping is rare, it grows significantly in the scenario of remote
memory (which is swapping-intensive). In the case of Mem-
cached, 12.6% of the total CPU time is spent on reclaim-
ing pages, not on application tasks. To make matters worse,
Linux swap heavily relies on locks to synchronize page recla-
mation and scales poorly. Hence, the overhead will further
increase with the number of concurrent swapping operations.

Key takeaway. Linux swap imposes high overheads to re-
mote memory access primarily due to the above three issues.
Fastswap, the state-of-the-art swap system, partially tackles
the first issue, but neglects the last two. For the first issue,
Fastswap uses statically provisioned cores to run swap-out
tasks; as shown in Figure 2, static core provisioning cannot
adapt to dynamic load changes, leading to either insufficient
or wasted CPU resources.

4 Hermit Design

4.1 Design Overview

To overcome the aforementioned inefficiencies, we devel-
oped Hermit, a new swap system based on the principle of
feedback-directed asynchrony. Our key insight is that asyn-
chrony should be used aggressively (to overlap nonurgent
and urgent operations to reduce latency), but this must be
done in a controlled manner—whenever asynchrony cannot

bring benefits, we should switch back to the conventional
synchronous design. Figure 4 illustrates Hermit’s design.

First, Hermit optimizes tail latency of accessing remote
memory by moving page reclamation from the critical path
into the background (§4.2). Instead of following the design
of Fastswap, which statically reserves a certain number of
dedicated cores, Hermit relies on a reclaim scheduler to dy-
namically schedule reclaim threads. The scheduler leverages
feedback from cgroup counters to determine the right tim-
ing and the appropriate number of cores for reclamation.

Second, the swap-in path of Hermit was designed with
fast remote memory in mind (§4.3)—for remote memory,
it is reasonable to trade off network usage for end-to-end
performance as modern datacenter network offers abundant
bandwidth (100-400 Gbps). In the common case, Hermit de-
tects idle network bandwidth and opportunistically bypasses
swap-in duplication checks (stage 2⃝ in §3) to improve scala-
bility and reduce latency. This bypassing has a consequence:
in the (rare) case that multiple threads are fetching the same
page at the same time, they will all transfer the same page
over the network. Note that this will not lead to correctness
issues because only one copy will be mapped by the PTE in
the last stage, and any other requests will abort and release
their page. However, it may potentially waste some network
bandwidth when duplicate pages are requested. Therefore,
instead of bypassing blindly, we use the conflict rate (in the
last stage) as a control signal to determine whether it is ben-
eficial to enable bypassing. To further optimize the critical-
path latency, Hermit also overlaps the I/O read stage with
other swap-in operations (e.g., cgroup accounting, meta-
data updating, etc.).

Finally, we structured Hermit to operate in a swap-
intensive environment to match the reality of using remote
memory (§4.4). Hermit carefully optimizes the CPU usage
of page reclamation so that more CPU resources are avail-
able for applications. Enabled by Hermit’s reclaim scheduler,
which reduces the “urgency” of reclamation tasks, Hermit
opportunistically handles reclamation requests in batches to
amortize the overhead. In addition, Hermit bypasses the ex-
pensive reverse mapping operation when swapping out a pri-
vate page (which is common). As a result, Hermit not only
reduces the remote access latency but also significantly im-
proves the application’s throughput.

4.2 Reclaim Scheduling

In Linux swap, the direct page reclamation in the swap-in
path significantly impacts the tail latency of accessing the
remote memory. To reduce tail latency, Hermit moves recla-
mation off the critical path into background threads; the re-
claim scheduler monitors the free memory size and proac-
tively starts reclamation before memory exhaustion. The
scheduler uses the application’s swap throughput as a feed-
back signal to auto-tune the number of reclaim threads.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 185

I/O Read

Miss

Reclaim
Scheduler

Issue
Prefetch Req.

cgroup
Accounting

Update
Metadata

Use the reclaim scheduler for asynchronous reclamation
Skip these steps unless Hermit detects a high conflict rate

End

Check &
Set PTE

Rollback

Conflict

Success

Deduplicate
Swap-ins

Wait Page

Begin

Lookup
Swap Cache

Hit Conflict

Stage ①: 0.6 μs Stage ②: 9.1 μs

0.4 μs 0.2 μs 0.4 μs

Stage ③: 0.5 μs

Figure 4: The life cycle of a remote memory page fault in Hermit.

Designing such a scheduler is challenging because it must
determine both the right timing and the appropriate amount
of CPU resources for reclamation. (1) As for the timing, if
the scheduler starts reclamation too early, a substantial por-
tion of local memory would be underutilized, impacting ap-
plication performance; on the flip side, if the scheduler starts
reclamation too late, the application would exhaust the local
memory and suffer from direct reclamation. (2) As for CPU
resources, under-provisioning cores for reclamation (i.e., the
case of Fastswap) make it unable to keep up with the local
memory consumption rate, leading to memory exhaustion,
while over-provisioning cores is also undesired as it contends
with the application and reduces its performance.

Dynamically
adjusted

Local Memory Usage

C

or
es

 fo
r

R
ec

la
m

at
io

n Max # Cores

High-Water
Mark

Limit0
1

Low-Water
Mark

Figure 5: Adaptive reclaim scheduler.

Figure 4 shows the design of the reclaim scheduler, which
leverages counters from cgroup to schedule reclamation.
Since the timing for reclamation is critical to performance,
our reclaim scheduler has to be very reactive to free memory
size changes (in µs-level). Instead of using a dedicated core
to poll the memory usage which waste CPU cycles, Hermit
adopts a decentralized reclaim scheduler; it inlines the sched-
uler code into the cgroup charging, an indispensable step
for swap-ins. This design enables us to discover any sudden
change in the free memory size with only a few CPU cycles.

Hermit’s scheduling policy follows the conventional wis-
dom of random early detection [26] to gradually increase its
asynchronous reclaim throughput. Specifically, Hermit starts
asynchronous reclamation when application’s memory bud-
get is running low, but Hermit will only enable a small num-
ber of reclaim threads first and gradually increase the num-
ber of reclaim threads after observing constantly increasing
memory usage. The intention of the design is to handle a
burst of swap-ins within the memory limit with as few re-

claim threads as possible, and thus minimizing asynchronous
reclamation’s interference to the application.

On the other hand, when the application is about to run
out of memory, Hermit must unleash the full power of asyn-
chronous reclaim threads to match the reclaim throughput
to swap-in throughput to avoid direct reclamation, offering
the application maximum swap performance. Figure 5 de-
picts Hermit’s adaptive scheduling policy, which determines
the number of cores for page reclamation given the applica-
tion’s current local memory usage. The curve can be divided
into three phases, marked by the low-water mark and the
high-water mark to differentiate the urgency of asynchronous
reclamation.

When the application does not swap intensively and its lo-
cal memory usage is below the low-water mark, the number
of reclamation cores is zero, indicating that the asynchronous
page reclamation is disabled now to let application threads
have all CPU cores. When the application’s local memory
usage is between the low-water mark and the high-water
mark, it indicates that the application is under memory pres-
sure, and the scheduler will assign one core for asynchronous
reclamation to relieve the memory pressure with minimal
compute to minimize its interference to application’s threads.

Finally, when the application hits the high-water mark, it
indicates that the application is about to run out of memory.
Page reclamation is an urgent task now to prevent the appli-
cation from triggering direct page reclamation. As such, the
reclaim scheduler must assign more cores for reclamation
to match the reclaim throughput with application’s swap-in
throughput. As Figure 5 shows, during this phase, the num-
ber of cores assigned for reclamation is proportional to the
local memory usage, reaching the maximum value when the
local memory usage equals the memory limit.

Hermit leverages the kernel’s runtime statistics to auto-
tune the low and high memory watermarks, as elaborated
below.
High memory watermark. Hermit dynamically adjusts
the high memory watermark based on the application’s cur-
rent swap intensity. We define swap intensity as the overall
swap-in throughput divided by the per-core page reclama-
tion throughput, representing the number of cores needed
for reclamation to match the swap-in speed. Intuitively,
when the swap intensity increases, we should lower the high-
water mark to start ramping up reclamation earlier; and
when the swap intensity decreases, we should raise the high-
water mark accordingly. Hermit sets the high-water mark as
MEM _LIMIT − α · SWAP_INTENSITY , where α = 128

works well in practice.
Low memory watermark. Initially, Hermit sets the low-
water mark to be the same as the high-water mark. Then
it gradually probes its optimal value based on the average
page turnaround time (APT), defined as the average dura-
tion for swapped-out pages to remain untouched. When
APT does not increase, Hermit attempts to lower the low-

186 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

water mark, as now it can potentially start reclamation ear-
lier without impacting the application performance. How-
ever, when APT increases, Hermit immediately raises back
the low-water mark to revert the negative impact on the ap-
plication performance.

4.3 Adapt Swap-in to Fast Remote Memory

As shown in Figure 4, Hermit re-architects the swap-in path
for the fast remote memory with two main innovations.
Eager swap-in. Hermit opportunistically bypasses the
swap-in duplication check to minimize latency. As such, it is
now possible that multiple threads issue swap-in requests for
the same page. To ensure that only one of them will succeed,
Hermit synchronizes them in the final stage (updating PTE)
using a fine-grained lock. All other failed threads will release
their swapped-in pages—CPU cycles consumed by them are
wasted and considered as penalty. Hermit collects the con-
flict rate and the penalty as feedback to reassess whether it
is still beneficial to enable eager swap-in and disable it if it
impacts performance.
Asynchronous I/O. Hermit further shortens the critical
path of swap-ins by overlapping the I/O read with other op-
erations, for example, cgroup charging. If later the cgroup
check shows no memory, Hermit discards the I/O read re-
sponse and updates the failure counter. Hermit falls back
into synchronous I/O when the failure ratio is high. This hap-
pens very rarely in practice thanks to Hermit’s asynchronous
reclamation (§4.2).

4.4 CPU-Efficient Page Reclamation

Unmap
PTE

Unmap
PTE …

Batched I/O Write

Release Page
& Swap Cache

Release Page
& Swap Cache…

Batched
cgroup
Uncharge

Batched
TLB

Shootdown

Begin End

Eliminate reverse mapping overhead for private pages
Batch operations to save compute
Only write back dirty pages

Figure 6: Hermit’s asynchronous page reclamation path.

As shown in Figure 6, Hermit carefully optimizes the CPU
overheads of page reclamation to minimize its performance
impact to applications.
Batched reclamation. As illustrated in §3, Linux’s page
reclamation is mainly designed for slow disk devices where
swapping occurs infrequently—it trades off CPU efficiency
for responsiveness by only swapping out one page at a time.
However, Hermit overcomes the responsiveness loss with its
asynchronous reclamation design, which relaxes the respon-
siveness requirement of page reclamation, thereby creating
opportunities for batching. As depicted in Figure 6, Hermit
batches expensive operations, including TLB shootdowns,
I/O writes, and cgroup accountings—to amortize their over-
heads in the asynchronous page reclamation path.

Reverse mapping elimination. To avoid race conditions
during reclamation, Linux has to ensure that the page is im-
mutable before writing it back to remote memory. Linux
achieves this goal by using rmap (reverse page mapping) to
identify and unmap all the virtual pages mapped to the re-
claimed physical page. rmap walk is expensive as it involves
several memory accesses and lock synchronizations. A key
observation in Hermit is that most reclaimed pages are pri-
vate pages (i.e., only referenced by one virtual page). For
private pages, Hermit eliminates the expensive rmap walk by
inlining the virtual page address into the physical page meta-
data in Linux. This approach trades a tiny portion of local
memory (0.2% in the worst case) for better performance.

5 Implementation
We implemented Hermit atop Linux 5.14, the latest release
when we started the project. We have been carefully exam-
ining every new release to ensure that no patch is directly
related to our techniques. We added or modified 9704 lines
of kernel code, mainly re-implementing Linux’s swap-in and
swap-out code paths.

We built our RDMA-based swap backend atop Fastswap’s
implementation. The original Fastswap uses Linux’s
frontswap interface which only supports blocking I/O. We
extended it with an asynchronous I/O interface to enable
asynchronous batched I/O writes during page reclamation.

For the swap-in path, we stored the feedback signals
swap_stats, used by Hermit to decide whether to by-
pass the swap-in deduplication, in Linux’s process context
mm_struct. swap_stats contains two atomic counters
representing the numbers of successful and aborted swap-
ins respectively. The page fault handler reads and updates
swap_stats when swapping in the page.

For the swap-out path, we implemented per-cgroup re-
claim threads as Linux kernel threads. We stored the feed-
back signals swap_ctrl, used by Hermit to decide the
swap-out timing, in Linux’s memory cgroup mem_cgroup.
swap_ctrl contains two counters representing the total
number of charged pages and reclaimed pages. Hermit up-
dates swap_ctrl during cgroup charging and page recla-
mation. The reclaim scheduler reads swap_ctrl periodi-
cally (per 128 charges in our implementation) to calculate
the swap intensity for updating the high-water mark. We
use Linux’s existing mechanism of tracking the page re-fault
distance to calculate the average page turnaround (APT) for
updating the low-water mark. Hermit batches 32 pages per
NUMA node for its asynchronous page reclamation to keep
low amortized overheads while ensuring most reclamations
can finish timely (within 1 ms). To batch reclamation while
ensuring consistency, we carefully ordered the operations
(see Figure 6). Hermit first selects and unmaps a batch of
pages, and then issues a single TLB flush before writing all
dirty pages to remote memory. After which, Hermit rechecks
each page to ensure it remains untouched and free it. Other-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 187

wise, the page must have been faulted on and re-mapped into
the process’ page table, so Hermit skips freeing this page
and returns it back to the application. To bypass the rmap

walk, we stored the virtual address of private pages using a
global array. We did not directly embed the virtual address
into Linux’s per-page metadata to avoid breaking its cache
alignment.

6 Evaluation
Our evaluation seeks to answer the following questions:

1. Can Hermit maintain low tail latency (§6.2) and high
throughput (§6.3) while delivering remote memory?

2. How does Hermit’s performance compare to standard
Linux and Fastswap [10]? (§6.2-§6.3)

3. What contributes to Hermit’s better performance?
(§6.4)

Setup. We ran experiments in a cluster with one CPU
server and one memory server, connected by a 100 GbE net-
work. Each server equips a 24-core AMD 7402P CPU and
128 GB memory. Both Hermit and Fastswap ran on Ubuntu
20.04 with Linux 5.14. For latency-critical applications, we
generated load from another server, which connects to the
CPU server via a 25 GbE network. We followed common
practices to tune these servers for low latency [47], including
disabling CPU frequency scaling, machine-check exceptions,
and transparent hugepages. We also disabled OS security
mitigations as recent CPUs have fixed these vulnerabilities.
We enabled hyperthreading as it improves the performance
of remote memory systems.
Methodology. We compared Hermit with the ideal system
that only uses local memory and the state-of-the-art kernel-
based remote memory system, Fastswap [10]. To enable a
fair comparison, we also ported Fastswap to Linux 5.14, the
same kernel version that Hermit uses.

6.1 Real-world Applications

We used six real-world datacenter applications for evaluation,
as shown in Table 1.

Category Application Dataset Size

Memcached [7] Facebook’s USR [14] like 32M KVs
Latency- SocialNet [27] Socfb-Penn94 [51] 41.5K nodes,
Critical 1.4M edges

Gdnsd [1] Custom 75M sites

Batch
Spark [62] Wikipedia EN [8] 188M points

XGBoost [21] HIGGS [15] 21M instances
Cassandra [9] YCSB [22] 20M records

Table 1: Applications used in the evaluation.

Latency-critical applications. Memcached [7] is a popu-
lar in-memory key-value store. It only performs a hash table
lookup for each request, leading to a small per-request mem-
ory footprint. It has low compute intensity and poor spatial
locality. We followed Facebook’s USR distribution to gener-
ate load with 99.8% GET and 0.2% PUT [14]. SocialNet (a

part of the DeathStarBench [27]) is a twitter-like interactive
web application built with microservices. It has a fan-out
pattern in which each client request is served by multiple
microservice instances. This leads to a larger per-request
memory footprint than Memcached. It has medium com-
pute intensity and poor spatial locality. We rewrote Death-
StarBench’s python-based load generator using C++ to in-
crease its throughput. Gdnsd is an authoritative-only DNS
server. It performs a tree lookup for each DNS query. It has
a small per-request memory footprint and low compute inten-
sity. Different from previous applications, Gdnsd has good
spatial locality. We generated queries with random domain
names for evaluation. For all three applications, we gener-
ated requests with keys followed Zipf distribution using the
skewness parameter s = 0.99, to be consistent with the stan-
dard YCSB benchmark suite [22].

Batch applications. Apache Spark [62] is a big data ana-
lytics engine. We used the logistic regression model from its
official example suite for evaluation, in which Spark trains
the model iteratively by scanning the dataset to update the
model parameters. It has high compute intensity and a large
memory footprint. XGBoost is a gradient boosting library
for machine learning. We ran binary classification for eval-
uation. It initializes a group of decision trees and trains
them iteratively by splitting the tree leaves with input data.
It has dynamic parallelism and a medium memory footprint.
Apache Cassandra [9] is a large-scale NoSQL database. It
uses a storage structure similar to a log-structured merge tree,
which has medium compute intensity and good spatial local-
ity. Different from other batch applications, it also periodi-
cally persists in-memory data to disk. We used YCSB [22]
as its workload for evaluation. Both Spark and Cassandra
are Java-based and run atop OpenJDK-11. Java’s garbage
collection makes them more memory intensive. XGBoost is
a native C++ application.

6.2 Tail Latency of Latency-Critical Applications

To better quantify the tail latency overhead introduced
by Hermit, we use low-latency applications enabled by
Shenango (a recent datacenter library OS) [47], for evalu-
ation. With Shenango’s low-latency threading runtime and
network stack, these applications achieve sub-millisecond
tail latency, making it an extremely challenging case for
swap systems. We also rerun the same applications with their
vanilla (Linux-based) versions. The results (in Appendix A)
show similar trends but with higher tail latency for all sys-
tems, including the ideal local-only case. This stems from
the higher overhead of the kernel’s threading and network
stack. Following previous studies [34, 49, 63], we primarily
focus on applications’ 99th percentile latency in our evalua-
tion. The results of other percentiles (including median and
99.9th) can be found in Appendix C.

We first ran applications with a fixed load (50% of load ca-
pacity measured with only using local memory) and varying

188 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

50 60 70 80 90 100
Local memory (%)

0

100

200

300

400

500
99

%
La

te
nc

y
(μ

s)

60 70 80 90 100
Local memory (%)

0

200

400

600

800

1000
Linux Fastswap Hermit All local

50 60 70 80 90 100
Local memory (%)

0

100

200

300

400

500

(a) Memcached (2 Mops) (b) SocialNet (0.75 Mops) (c) Gdnsd (4 Mops)

Figure 7: Hermit significantly outperforms Fastswap and Linux in terms of 99% latency under the same fixed load and varying local memory
ratio. Hermit enables applications to operate in a more challenging regime of less local memory while still maintaining < 500 µs 99% latency.

1 2 3 4
Offered load (Mops)

0

100

200

300

400

500

99
%

La
te

nc
y

(μ
s)

0.5 1.0 1.5
Offered load (Mops)

0

200

400

600

800

1000
Linux Fastswap Hermit All local

2 4 6 8
Offered load (Mops)

0

100

200

300

400

500

(a) Memcached (b) SocialNet (c) Gdnsd

Figure 8: Hermit achieves significantly lower 99% latency than Fastswap and Linux under the same fixed local memory ratio and varying
load. For Memcached and Gdnsd, Hermit achieves 99% latency close to the ideal local-only case. SocialNet is more challenging due to its
higher per-request memory footprint, but Hermit still achieves 74% load capacity of the ideal case.

local memory ratios. We measured the application perfor-
mance on Linux, Fastswap, Hermit, and the ideal setup that
only uses local memory (see Figure 7). The original Linux
does not have an RDMA-based swap backend. To enable
a fair comparison, we extended it to use Fastswap’s RDMA
backend. On Figure 7, the X-axis shows the ratio of the local
memory provisioned; the Y-axis shows the 99th percentile
latency achieved by Linux, Fastswap, Hermit, and the ideal
setup.

Intuitively, both Fastswap and Hermit achieve ideal perfor-
mance when only using local memory. When we decrease
the local memory ratio, latency increases as remote accesses
become more frequent. However, Hermit’s latency increases
slower than Fastswap, revealing it is more tolerant to remote
accesses. This is because Hermit’s overhead of accessing
remote memory is lower, thanks to its shorter swap-in path
and its reclaim scheduler that eliminates direct reclamation
(§6.4.1). As Hermit adaptively changes the number of re-
claim threads to match the reclamation rate with the swap-in
rate, it can result in competition for CPU resources if the lo-
cal memory ratio is small enough. Eventually, both systems
encounter a “hockey-stick” when they cannot handle the ex-
cessive remote memory accesses. Compared to Fastswap,
Hermit enables applications to operate in a more challenging
regime of less local memory while still maintaining < 500 µs
99th percentile latency.

Specifically, the low compute intensity of Memcached and
Gdnsd aligns with Hermit’s optimizations well; they only re-

quire a few CPU cores for serving load, leaving the rest of the
cores for reclamation. Moreover, thanks to their small per-
request memory footprints, they only require a small num-
ber of reclaim threads. For Memcached, Hermit has to rely
on more than four reclaim threads to keep up with frequent
swap-ins when Memcached runs under < 60% local memory
ratio. The CPU contention gets more severe when local mem-
ory gets smaller, and the system reaches 70% CPU utiliza-
tion under 58% local memory ratio. Afterward, Hermit’s re-
claim threads can heavily interfere and block Memcached’s
threads, thus ramping up the tail latency. Similarly, Gdnsd
on Hermit used ∼72% CPU cycles when running under 56%
local memory ratio, and the system can no longer maintain
low 99th percentile latency afterward. Fastswap’s single ded-
icated core fails to keep up with the increasing page reclama-
tion demand when local memory ratio is lower than 76% and
82% for Memcached and Gdnsd, respectively, which ramps
up their 99th percentile latency. To conclude, Hermit pushes
the operating regime in terms of local memory ratio from
75% (i.e., Fastswap) to 55% for Memcached, and from 80%
to 55% for Gdnsd. Gdnsd has a slightly better result due to
its better spatial locality. SocialNet is a more challenging ap-
plication that has a higher compute intensity and a larger per-
request memory footprint. It requires more reclaim threads
which compete with application threads more heavily under
low local memory ratios. The system used 70% of its CPU
resources under 65% local memory ratio, and saturated all
CPU cores under 60% local memory ratio. Hermit pushes its

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 189

regime from 75% local memory ratio to 65%. In summary,
Hermit enables applications to store an average of 20% more
working set in remote memory without breaking the tail la-
tency target, thereby harnessing stranded memory resources
more efficiently.

Next, we fixed the local memory ratio to 70% and mea-
sured the tail latency of applications with varying load (see
Figure 8). Under low load, both Fastswap and Hermit en-
counter higher latency than the local-only case due to addi-
tional remote memory accesses. Hermit delivers lower la-
tency than Fastswap due to the cheaper remote accesses it of-
fers. For Memcached and Gdnsd whose per-request memory
footprint is smaller, Hermit reduces 99th percentile latency
by 3–9 µs, whereas for SocialNet, Hermit reduces latency
by 43–86 µs.

Under high load, the latency gap becomes wider be-
cause of the CPU contention between application and asyn-
chronous reclaim threads. In this case, application threads
access remote memory intensively, therefore triggering mem-
ory reclamation frequently. The asynchronous reclaim
threads impact application performance by contending CPU
resources. Hermit experiences lower performance degrada-
tion because of its asynchronous and more CPU-efficient de-
sign of memory reclamation (§6.4.2). By eliminating block-
ing induced by direct reclamation and shifting more CPU
resources from reclamation to application, Hermit handles
higher load than Fastswap under the same local memory ratio
while still maintaining < 500 µs 99th percentile latency. Her-
mit improves the load capacity by 3.2× (from 1.1 Mops to
3.5 Mops) for Memcached, and 1.7× (from 4.0 Mops to 6.8
Mops) for Gdnsd. Notably, compared to the ideal local-only
case, Hermit enables these applications to enjoy the benefit
of remote memory with only an average of 20% decrease in
their load capacity. It is more challenging to handle Social-
Net well due to its larger per-request memory footprint and
higher compute intensity. As a result, the number of reclaim
threads needed increases quickly with the load, deteriorating
the contention with application threads. Even though, Her-
mit still improves SocialNet’s capacity by 1.5× (from 0.75
Mops to 1.15 Mops).

6.3 Throughput of Batch Applications

In this section, we evaluate the throughput of batch applica-
tions under varying local memory ratios (see Figure 9). Her-
mit outperforms both Fastswap and Linux. It only requires
45%–70% local memory to achieve at least 80% of the ideal
throughput for all applications. In contrast, Fastswap (i.e.
the better baseline) has to use an average of 20% more lo-
cal memory to achieve the same throughput. Even under
the extremely challenging case of 20% local memory, Her-
mit is still able to preserve 40%–60% of applications’ ideal
throughput. This leads to 1.23×–1.87× improvement over
Fastswap.

When Spark runs atop Fastswap, its throughput drops sig-
nificantly when running with < 40% local memory. Our
profiling reveals that swapping becomes extremely frequent
in this case, triggering the scalability bottleneck in kernel’s
page reclamation path. Hermit does not suffer from the same
issue due to two reasons. First, Hermit significantly reduces
the direct reclamation ratio by performing reclamation asyn-
chronously and timely. Therefore, it confines reclamation
into a small number of reclaim threads rather than all the
application threads (in direct reclamation). Second, Her-
mit’s CPU-efficient reclamation design reduces the number
of threads needed, further alleviating the scalability issue.

20 40 60 80 1000.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

All local Linux Fastswap Hermit

20 40 60 80 100
Local memory (%)

20 40 60 80 100

(a) Spark (68.4s) (b) XGBoost (42.2s) (c) Cassandra (72.6s)

Figure 9: We measured the throughput of batch applications
achieved by different swap systems normalized to the ideal local-
only setup. Hermit outperforms other baselines. The number in the
parenthesis shows the ideal execution time.

6.4 Design Drill-Down

We now evaluate specific aspects of Hermit’s design to under-
stand their individual contributions to overall performance.

6.4.1 Remote Memory Access Latency

Hermit reduces remote memory access latency by shorten-
ing the critical path of swap-ins. Figure 10 breaks down the
improvements brought by specific optimizations, including
bypassing deduplication and using asynchronous I/O. The re-
sults are measured using Memcached. Without Hermit’s opti-
mizations, the original Linux spends 2.8 µs on swap-in dedu-
plication. Hermit eliminates this overhead entirely by oppor-
tunistically bypassing the deduplication, see Figure 11. After
enabling asynchronous I/O, Hermit further overlaps I/O read
with other swap-in operations (e.g., cgroup accounting and
metadata updating), reducing the swap-in latency by another
0.9 µs. With both optimizations turned on, Hermit reduces
the page fault handling latency by 35%, from 13.8 µs to 10.2
µs. The RDMA backend spends 9 µs on performing a 4KiB-
page I/O. This indicates that Hermit reduces the overhead of
the swap system by a factor of four, from 4.8 µs to only 1.2
µs.

6.4.2 Page Reclamation Efficiency

To demonstrate Hermit’s improvements on page reclamation
efficiency, we ran Memcached and measured the per-thread

190 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10 15
Time (μs; mean)

Linux Swap

+Bypass
Dedup

+Async. I/O

Lookup Swap Cache
Dedup. Swap-ins
cgroup Accounting
I/O Read
Update Metadata &
Set PTE

Figure 10: Hermit reduces the remote memory access latency in
Memcached from 13.8 µs to 10.2 µs with two optimizations, i.e.,
bypassing deduplication and using asynchronous I/O.

1 2 3 4
Offered load (Mops)

0

25

50

75

D
ire

ct
Re

cl
ai

m
R

at
io

(%
) Fastswap

Hermit

Figure 11: Hermit entirely eliminates direct reclamation for Mem-
cached, thanks to its asynchronous reclamation design. Fastswap
fails to serve > 2.4 Mops load due to CPU congestion.

Linux
Swap

+rmap
Elimination

+Batched
TLB

+Batched
Accounting

+Batched
I/O

0K

100K

200K

Re
cl

ai
m

Th
ro

ug
hp

ut
(#

pa
ge

s/
s)

Figure 12: Eliminating reverse mappings and enabling more batch-
ing makes reclamation 2.9× more efficient.

reclamation throughput, see Figure 12. As shown by the left-
most bar, the original Linux achieves 77K pages/s reclama-
tion throughput. Hermit’s rmap elimination optimization ef-
fectively improves the throughput by 37%, as most of pages
are private in Memcached. Batching TLB shootdowns and
cgroup accountings amoritizes their overheads and brings
an additional 27% and 3% improvement, respectively. Fi-
nally, Hermit batches I/O writes for dirty pages and overlaps
them with the page release phase. This significantly reduces
the time wasted on polling for the write completion, generat-
ing a 75% further improvement. Our further profiling reveals
that Hermit reduces the per-page overhead of rmap by 59%
from 1.70 µs to 0.69 µs, TLB shootdown by 92% from 2.45
µs to 0.20 µs, and I/O writes by 88% from 6.47 µs to 0.76
µs. To summarize, Hermit improves the single-thread page
reclamation throughput from 77K pages/s to 221K pages/s,
making reclamation 2.9× more efficient.

6.4.3 Effectiveness of Feedback-directed Asynchrony

To demonstrate the importance of Hermit’s feedback-
directed asynchrony, we modified Hermit’s reclaim sched-
uler to use Fastswap’s static scheduling policy. The new ver-
sion Hermit∗ uses a fixed number of reclaim threads and
starts reclamation only when the free local memory size falls
below 8 MiB. Figure 13 shows the results of Memcached.

1 2 3 4
Offered load (Mops)

0
100
200
300
400
500

99
%

La
te

nc
y

(μ
s) Fastswap

Hermit*-1 thread
Hermit*-2 threads
Hermit*-4 threads
Hermit
All Local

Figure 13: Hermit’s feedback-directed asynchrony is indispensable
for achieving superior performance. Hermit considerably outper-
forms all Hermit∗s—the modified versions that adopt Fastswap’s
static scheduling policy for reclamation.

Hermit consistently outperforms all variants of Hermit∗,
regardless of the number of reclaim threads statically config-
ured. Our further profiling reveals that the memory pressure
during Memcached’s execution varies over time. In most
cases, it only requires ≤2 reclaim threads to mitigate the pres-
sure. However, upon sudden bursts of requests, it needs up
to 4 threads to fully keep up with the demand. Hermit’s re-
claim scheduler dynamically adjusts the number of reclaim
threads to adapt to the changes in demand, thereby achieving
superior performance to its static counterparts.

6.4.4 Breaking Down End-to-End Speedup

1 2 3 4
Offered load (Mops)

0
100
200
300
400
500

99
%

La
te

nc
y

(μ
s) Linux

Fastswap
+ Feedback-
Directed Async.
+ Efficient
Reclamation
+ Fast Swap-in
All Local

Figure 14: All three of Hermit’s optimizations work in tandem to
improve Memcached’s latency and throughput. Results are mea-
sured with 70% local memory.

We evaluated the individual contribution of each of the
three optimizations (§6.4.1-§6.4.3) to the overall application
performance.

For latency-critical applications, we used Memcached as
the representative. We re-ran Memcached with the same con-
figuration as Figure 8 (a) with optimizations enabled incre-
mentally. Figure 14 reports the results. Linux even fails
to handle low load of 0.5 Mops under 70% local memory,
as it frequently triggers direct reclamation which can easily
prolong Memcached’s 99th percentile latency by hundreds
of microseconds. Fastswap outperforms Linux by offload-
ing reclamation to a dedicated core. However, the applica-
tion quickly saturates the core’s reclamation capacity once
the load reaches 1.1 Mops, and starts to trigger direct recla-
mation again (see Figure 11). This prevents Fastswap from
maintaining low 99th percentile latency afterward.

With the reclaim scheduler (§4.2), Hermit can handle a
much higher load, 2.5 Mops, before the latency starts to
spike. This is because Hermit’s reclaim scheduler proac-
tively and timely starts asynchronous reclamation, eliminat-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 191

ing the blocking caused by direct reclamation. Optimizations
in the reclamation path (§4.4) reduce the amount of CPU re-
sources required. This alleviates the contention between re-
claim threads and application threads, adding 0.4 Mops to
the load capacity. Finally, optimizations in the swap-in path
(§4.3) make remote memory accesses faster and reduce the
per-request processing time, thereby enabling Memcached
to achieve higher load with the same amount of compute.
Putting them all together, Hermit helps Memcached reach
3.5 Mops using 70% local memory while maintaining 99th

percentile latency under 250 µs.

Linux
Swap

+ Reclaim
Scheduler

+ Efficient
Reclamation

+ Fast
Swap-in

1

2

3

4

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e All local

Figure 15: All three of Hermit’s optimizations collectively improve
Spark’s throughput. The Y-axis shows the execution time normal-
ized to the ideal local-only time (68.4s). Results are measured under
20% local memory.

For batch applications, we used Spark as the representa-
tive and re-ran it under 20% local memory with the same con-
figuration as Figure 9(a). Figure 15 breaks down the perfor-
mance improvements. Our reclaim scheduler again improves
the application throughput by a large margin (31%) due to
the following reasons. First, batch applications usually fol-
low the epochal hypothesis [46], whose compute and mem-
ory behaviors vary during an epoch but repeat across epochs.
Asynchronous reclamation unleashes the hidden parallelism
by speculatively reclaiming pages, making it possible for re-
claim threads to efficiently harness idle compute resources in
each epoch. Second, Linux swap frequently triggers massive
direct reclamations instantaneously, causing severe lock con-
tentions between page faults handlings (swap-in) and recla-
mation. Hermit avoids the burst of reclamation and greatly
alleviates the contention by reclaiming asynchronously and
proactively. Further, optimizations on the page reclamation
path and the swap-in path collectively improve the swap ef-
ficiency: they yield an additional 10% and 4% throughput
improvement, respectively.

6.4.5 Resource Consumption of Swap Operations
Network Bandwidth. Hermit performs swap operations
eagerly to improve performance. It opportunistically by-
passes swap-in deduplication to reduce swap-in latency
(§4.3) and proactively schedules asynchronous reclaim
threads to avoid direct reclamation (§4.2). These optimiza-
tions offer performance benefits potentially at the cost of ad-
ditional network usage. For example, Hermit might swap in
the same page several times in the presence of concurrent
page faults. To confirm that Hermit does not incur excessive
network traffic, we measure the network bandwidth used for

swap-ins and swap-outs, and compare it with Fastswap’s us-
age.

Figure 16 shows the results when running Memcached.
The X-axis shows the offered load while the Y-axis shows
the average network bandwidth. The error bar quantifies
the bandwidth fluctuation during the application’s execu-
tion. With higher offered load, both Fastswap and Hermit
use more network bandwidth as Memcached swaps memory
more frequently. The bandwidth usage in swap-outs is lower
than in swap-in as clean pages do not need to be written back
during reclamation.

For swap-in, Hermit incurs similar network bandwidth us-
age compared to Fastswap. This is consistent with our fur-
ther investigation which reveals that the conflict rate (i.e. the
ratio of concurrent page faults that swap in the same page) is
less than 0.07%. Therefore, Hermit’s swap-in optimization
barely introduces any extra network overhead in practice.

For swap-out, we break down the total bandwidth con-
sumption into the usage of asynchronous swap-out and
direct swap-out. Hermit is able to constantly perform
asynchronous reclamation without using additional network
bandwidth compared to Fastswap. This makes sense as Her-
mit’s optimizations to reclamation timing and efficiency do
not inflate the number of reclaimed pages.

0.3 0.6 0.8 1.1 1.5 2.1 3.4 3.6
Offered load (Mops)

(a) Swap-in.

0

500

1000

1500

B
an

dw
id

th
(M

B
/s

)

0.3 0.6 0.8 1.1 1.5 2.1 3.4 3.6
Offered load (Mops)

(b) Swap-out.

Fastswap-Async
Fastswap-Direct

Hermit-Async
Hermit-Direct

Figure 16: Hermit’s optimizations do not incur additional network
usage during swap-ins/-outs compared to Fastswap.

0.3 0.6 0.9 1.3 1.7 2.1 2.5 2.9 3.4 3.6
Offered load (Mops)

0

50

100

C
PU

U
sa

ge
(%

)

Fastswap Hermit

Figure 17: Hermit saves ∼30% CPU cycles under varying load
compared with Fastswap, which is the key enabler to achieve low
99th percentile latency under high load.

CPU Cycles. We also profiled the CPU usage of applica-
tions running on Fastswap and Hermit, revealing that Her-
mit can serve much higher load with the same amount of
CPU resources. Figure 17 depicts the total CPU usage of
Memcached and Hermit’s reclaim threads under 70% local
memory ratio and varying load. When increasing load, both
Fastswap and Hermit use more CPU cycles as Memcached

192 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

swaps more frequently. We observed that Memcached fails
to use > 70% CPU cycles due to its internal lock contention
on hot slabs under skewed workloads. Even though Her-
mit can spawn more reclaim threads than Fastswap (when
needed), it uses 20%–30% fewer CPU resources overall,
thanks to its feedback-directed asynchrony and more effec-
tive use of batching. Therefore, Hermit is able to offer 32%
higher load capacity for Memcached compared to Fastswap.

7 Related Work
Resource Disaggregation. Datacenters today suffer from
poor average resource utilization due to overprovisioning
[41, 56]. Resource disaggregation, an idea that dates back
to 1990s [12, 23, 31, 45, 61], has gained renewed inter-
est, thanks to the high performance of modern datacenter
networks [16, 19, 28]. Its key idea is to break the server
boundary and unstrand idle resources of remote servers over
the network. Existing systems have demonstrated the fea-
sibility of disaggregating various types of resources, includ-
ing storage [32, 35, 37], accelerators [6, 20], and memory
[10, 43, 52, 57]. Some other systems focus on improving the
reliability of disaggregated datacenters [33, 64]. We focus on
memory disaggregation (i.e., remote memory) in this paper.
Kernel-based Remote Memory. To provide transparency
to existing applications, the kernel-based approach leverages
OS paging to access and manage remote memory. Most
kernel-based systems build upon Linux, including Hermit.
Infiniswap [29] is an early work that integrates Linux’s
swap subsystem with an RDMA-based block device backend.
Later, Fastswap [10] leverages the lightweight frontswap
interface of Linux to reduce overhead and offloads page
reclamation to a dedicated core. Leap [43] improves Linux’s
prefetcher to achieve a higher local memory hit ratio. Can-
vas [59] isolates swap paths for co-running applications.
The ongoing advances of Linux’s virtual memory subsys-
tem from the kernel community also benefit Linux-based re-
mote memory. These include, but are not limited to multi-
generational LRU [55], speculative page faults [4], maple-
tree-based VMAs [2], and DAMON-based proactive page
reclamation [5]. Finally, LegoOS [53] makes larger changes
to both the kernel and hardware with the goal of achieving
better performance through a clean-slate approach.
Library-based Remote Memory. Library-based ap-
proaches bypasses the OS to reduce kernel overhead and
overcome the granularity restrictions imposed by paging.
They trade application transparency for performance;
application developers often have to modify their code to
use new remote memory APIs. FaRM [25] and KVDirect
[38] expose remote memory with an external key-value
store interface which mismatches with the construction
of existing applications. Distributed shared memory (e.g.,
[40, 44]), on the other hand, provides an object-oriented
interface that is more user-friendly. AIFM [52] proposes a
higher-level abstraction of remote-able data structure, but

but it still requires effort to port applications. Semeru [57],
Mako [42], and MemLiner [58] are JVM-based remote
memory runtimes, offering transparency to Java applications
by co-designing the JVM with the kernel.

Hardware-accelerated Remote Memory. Another type
of work proposes novel hardware designs, thereby unlock-
ing new opportunities for optimizing remote memory. While
Hermit focuses on the software layer, it could benefit from
advances to the underlying hardware. PBerry [18] and Kona
[17] overcome the granularity restriction of paging and en-
able cache-line-level remote memory access. Clio [30],
StRoM [54], and RMC [11] reduce the expensive network
traffic by offloading tasks into the customized hardware of
the memory server. Finally, the emerging CXL bus [39] may
lower the performance cost of accessing remote memory by
delivering lower latency and near-local-DRAM throughput.

Multi-tiered Memory System. Recent research has fo-
cused on overcoming DRAM’s capacity wall through
the use of slower memory/storage devices—such as com-
pressed memory, non-volatile memory (NVM), NVMe SSD,
etc. Two examples of such systems are TMO [60] and
HeMem [50], which transparently offload main memory to
slower tiers. TMO focuses on developing a policy for deter-
mining which data to offload and how much, whereas Hermit
aims at building an efficient offloading mechanism. HeMem
targets improving throughput for batch applications. There-
fore, it treats page offloading as a time-insensitive operation
and performs it in the background. In contrast, Hermit opti-
mizes for both batch and latency-critical applications by con-
ducting page reclamation timely and proactively.

8 Conclusion

In this paper, we presented Hermit, a re-architected swap sys-
tem that is based on adaptive, feedback-directed asynchrony.
Our evaluation shows that Hermit significantly outperforms
Fastswap (the state-of-the-art swap system) in real data cen-
ter applications; it reduces the 99th percentile tail latency by
99.7% and improves the throughput by 1.24× on average.
Hermit defies the conventional wisdom about kernel-based
remote memory, demonstrating that it is possible to achieve
both full transparency and high performance simultaneously.

Acknowledgements

We thank the anonymous reviewers for their valuable and
thorough comments. We are grateful to our shepherd
Michael Wei for his feedback. This work is supported by
NSF grants CNS-1703598, CCF-1723773, CNS-1763172,
CCF-1764077, CNS-1907352, CHS-1956322, CNS-
2007737, CNS-2006437, CNS-2128653, CCF-2106404,
CNS-2106838, CNS-2147909, CNS-2104398, ONR grant
N00014-18-1-2037, research grants from Cisco, Intel CAPA,
VMware, and Samsung, and a gift from Amazon.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 193

References
[1] gdnsd - an authoritative-only dns server. https://

gdnsd.org/.

[2] Introducing maple trees. https://lwn.net/
Articles/845507/.

[3] NVMe over fabrics. http://
community.mellanox.com/s/article/
what-is-nvme-over-fabrics-x.

[4] Speculative page faults. https://lwn.net/
Articles/851853/.

[5] Using damon for proactive reclaim. https://lwn.
net/Articles/863753/.

[6] Virtual gpu (vgpu) | nvidia. https://
www.nvidia.com/en-us/data-center/
virtual-solutions/.

[7] Memcached - a distributed memory object caching sys-
tem. http://memcached.org, 2020.

[8] Wikipedia networks data. http://konect.
uni-koblenz.de/networks/, 2020.

[9] Apache cassandra. https://cassandra.
apache.org, 2021.

[10] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ouster-
hout, M. K. Aguilera, A. Panda, S. Ratnasamy, and
S. Shenker. Can far memory improve job throughput?
In EuroSys, 2020.

[11] E. Amaro, Z. Luo, A. Ousterhout, A. Krishnamurthy,
A. Panda, S. Ratnasamy, and S. Shenker. Remote mem-
ory calls. In Proceedings of the 19th ACM Workshop
on Hot Topics in Networks, HotNets ’20, pages 38–44,
New York, NY, USA, 2020. Association for Computing
Machinery.

[12] T. Anderson, D. Culler, and D. Patterson. A case
for now (networks of workstations). IEEE Micro,
15(1):54–64, 1995.

[13] D. Ardelean, A. Diwan, and C. Erdman. Performance
analysis of cloud applications. In 15th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 18), pages 405–417, Renton, WA, Apr.
2018. USENIX Association.

[14] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference
on Measurement and Modeling of Computer Systems,
SIGMETRICS ’12, pages 53–64, New York, NY, USA,
2012. Association for Computing Machinery.

[15] P. Baldi, P. Sadowski, and D. Whiteson. Searching for
exotic particles in high-energy physics with deep learn-
ing. Nature communications, 5(1):1–9, 2014.

[16] L. A. Barroso. Warehouse-scale computing: Entering
the teenage decade. In ISCA, 2011.

[17] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A.
Maruf, O. Mutlu, and A. Kolli. Rethinking Software
Runtimes for Disaggregated Memory, pages 79–92. As-
sociation for Computing Machinery, New York, NY,
USA, 2021.

[18] I. Calciu, I. Puddu, A. Kolli, A. Nowatzyk, J. Gandhi,
O. Mutlu, and P. Subrahmanyam. Project pberry: Fpga
acceleration for remote memory. HotOS ’19, pages
127–135, New York, NY, USA, 2019. Association for
Computing Machinery.

[19] A. Carbonari and I. Beschasnikh. Tolerating faults in
disaggregated datacenters. In HotNets-XVI, pages 164–
170, 2017.

[20] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat,
J. Fowers, M. Haselman, S. Heil, M. Humphrey,
P. Kaur, J.-Y. Kim, D. Lo, T. Massengill, K. Ovtcharov,
M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger. A cloud-scale acceleration architecture. In
The 49th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-49. IEEE Press, 2016.

[21] T. Chen and C. Guestrin. extreme gradient boosting
for applied machine learning. https://xgboost.
readthedocs.io/en/latest/, 2021.

[22] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems
with ycsb. In Proceedings of the 1st ACM Symposium
on Cloud Computing, SoCC ’10, pages 143–154, New
York, NY, USA, 2010. Association for Computing Ma-
chinery.

[23] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A.
Patterson. Cooperative caching: Using remote client
memory to improve file system performance. In Pro-
ceedings of the 1st USENIX Conference on Operating
Systems Design and Implementation, OSDI ’94, pages
19–es, USA, 1994. USENIX Association.

[24] C. Delimitrou and C. Kozyrakis. Amdahl’s law for tail
latency. Commun. ACM, 61(8):65–72, jul 2018.

[25] A. Dragojević, D. Narayanan, M. Castro, and O. Hod-
son. FaRM: Fast remote memory. In NSDI, pages 401–
414, 2014.

[26] S. Floyd and V. Jacobson. Random early detection gate-
ways for congestion avoidance. IEEE/ACM Transac-
tions on Networking, 1(4):397–413, 1993.

194 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://gdnsd.org/
https://gdnsd.org/
https://lwn.net/Articles/845507/
https://lwn.net/Articles/845507/
http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
https://lwn.net/Articles/851853/
https://lwn.net/Articles/851853/
https://lwn.net/Articles/863753/
https://lwn.net/Articles/863753/
https://www.nvidia.com/en-us/data-center/virtual-solutions/
https://www.nvidia.com/en-us/data-center/virtual-solutions/
https://www.nvidia.com/en-us/data-center/virtual-solutions/
http://konect.uni-koblenz.de/networks/
http://konect.uni-koblenz.de/networks/
https://cassandra.apache.org
https://cassandra.apache.org
https://xgboost.readthedocs.io/en/latest/
https://xgboost.readthedocs.io/en/latest/

[27] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi,
N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jack-
son, et al. An open-source benchmark suite for mi-
croservices and their hardware-software implications
for cloud & edge systems. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, pages 3–18, 2019.

[28] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira,
S. Han, R. Agarwal, S. Ratnasamy, and S. Shenker.
Network requirements for resource disaggregation. In
OSDI, pages 249–264, 2016.

[29] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.
Efficient memory disaggregation with infiniswap. In
NSDI, pages 649–667, 2017.

[30] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang.
Clio: A hardware-software co-designed disaggregated
memory system. In Proceedings of the 27th ACM In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS 2022, pages 417–433, New York, NY, USA, 2022.
Association for Computing Machinery.

[31] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat. Difference
engine: Harnessing memory redundancy in virtual ma-
chines. Commun. ACM, 53(10):85–93, oct 2010.

[32] J. Hwang, Q. Cai, A. Tang, and R. Agarwal. TCP ≈
RDMA: CPU-efficient remote storage access with i10.
In 17th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 20), pages 127–140,
Santa Clara, CA, Feb. 2020. USENIX Association.

[33] S. Kadekodi, F. Maturana, S. Athlur, A. Merchant, K. V.
Rashmi, and G. R. Ganger. Tiger: Disk-Adaptive
redundancy without placement restrictions. In 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 413–429, Carlsbad,
CA, July 2022. USENIX Association.

[34] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST:
Fast, scalable and simple distributed transactions with
two-sided (RDMA) datagram RPCs. In OSDI, pages
185–201, 2016.

[35] A. Klimovic, H. Litz, and C. Kozyrakis. ReFlex: Re-
mote flash ≈ local flash. In ASPLOS, pages 345–359,
2017.

[36] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal,
R. Burny, S. Butt, J. Chang, A. Chaugule, N. Deng,
J. Shahid, G. Thelen, K. A. Yurtsever, Y. Zhao, and
P. Ranganathan. Software-defined far memory in

warehouse-scale computers. In ASPLOS, pages 317–
330, 2019.

[37] S. Legtchenko, H. Williams, K. Razavi, A. Donnelly,
R. Black, A. Douglas, N. Cheriere, D. Fryer, K. Mast,
A. D. Brown, A. Klimovic, A. Slowey, and A. Row-
stron. Understanding rack-scale disaggregated storage.
In HotStorage, 2017.

[38] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,
E. Chen, and L. Zhang. Kv-direct: High-performance
in-memory key-value store with programmable nic. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, pages 137–152, New York,
NY, USA, 2017. Association for Computing Machin-
ery.

[39] H. Li, D. S. Berger, S. Novakovic, L. Hsu, D. Ernst,
P. Zardoshti, M. Shah, I. Agarwal, M. D. Hill, M. Fon-
toura, and R. Bianchini. First-generation memory dis-
aggregation for cloud platforms, 2022.

[40] K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM Trans. Comput. Syst.,
7(4):321–359, Nov. 1989.

[41] C. Lu, K. Ye, G. Xu, C. Xu, and T. Bai. Imbalance in
the cloud: An analysis on Alibaba cluster trace. In Big
Data, pages 2884 – 2892, 2017.

[42] H. Ma, S. Liu, C. Wang, Y. Qiao, M. D. Bond,
S. M. Blackburn, M. Kim, and G. H. Xu. Mako:
A low-pause, high-throughput evacuating collector for
memory-disaggregated datacenters. In PLDI, 2022.

[43] H. A. Maruf and M. Chowdhury. Effectively prefetch-
ing remote memory with Leap. In USENIX ATC, pages
843–857, 2020.

[44] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Ka-
han, and M. Oskin. Latency-tolerant software dis-
tributed shared memory. In USENIX ATC, pages 291–
305, 2015.

[45] T. Newhall, S. Finney, K. Ganchev, and M. Spiegel.
Nswap: A network swapping module for linux clusters.
In European Conference on Parallel Processing, 2003.

[46] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu,
S. Alamian, and O. Mutlu. Yak: A high-performance
big-data-friendly garbage collector. In OSDI, pages
349–365, 2016.

[47] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and
H. Balakrishnan. Shenango: Achieving high CPU ef-
ficiency for latency-sensitive datacenter workloads. In
NSDI, pages 361–378, 2019.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 195

[48] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Kr-
ishnamurthy, T. Anderson, and T. Roscoe. Arrakis: The
operating system is the control plane. In OSDI, pages
1–16, 2014.

[49] A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Pe-
ter. Hemem: Scalable tiered memory management for
big data applications and real nvm. In Proceedings of
the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, SOSP ’21, pages 392–407, New York,
NY, USA, 2021. Association for Computing Machin-
ery.

[50] A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Pe-
ter. Hemem: Scalable tiered memory management for
big data applications and real nvm. In Proceedings of
the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, SOSP ’21, pages 392–407, New York,
NY, USA, 2021. Association for Computing Machin-
ery.

[51] R. A. Rossi and N. K. Ahmed. The network data repos-
itory with interactive graph analytics and visualization.
In AAAI, 2015.

[52] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Be-
lay. AIFM: High-performance, application-integrated
far memory. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
315–332. USENIX Association, Nov. 2020.

[53] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS:
A disseminated, distributed OS for hardware resource
disaggregation. In OSDI, pages 69–87, 2018.

[54] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and
G. Alonso. Strom: Smart remote memory. In Pro-
ceedings of the Fifteenth European Conference on Com-
puter Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[55] The OCP Foundation. Multi-generational lru: the
next generation. https://lwn.net/Articles/
856931/.

[56] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G.
Qin, S. Hand, M. Harchol-Balter, and J. Wilkes. Borg:
The next generation. In EuroSys, 2020.

[57] C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen,
M. D. Bond, R. Netravali, M. Kim, and G. H. Xu. Se-
meru: A memory-disaggregated managed runtime. In
14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 261–280.
USENIX Association, Nov. 2020.

[58] C. Wang, H. Ma, S. Liu, Y. Qiao, J. Eyolfson,
C. Navasca, S. Lu, and G. H. Xu. MemLiner: Lining up
tracing and application for a far-memory-friendly run-
time. In OSDI, 2022.

[59] C. Wang, Y. Qiao, H. Ma, S. Liu, Y. Zhang, W. Chen,
R. Netravali, M. Kim, and G. H. Xu. Canvas: Iso-
lated and adaptive swapping for multi-applications on
remote memory. In NSDI, 2023.

[60] J. Weiner, N. Agarwal, D. Schatzberg, L. Yang,
H. Wang, B. Sanouillet, B. Sharma, T. Heo, M. Jain,
C. Tang, and D. Skarlatos. Tmo: Transparent mem-
ory offloading in datacenters. In Proceedings of the
27th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’22, pages 609–621, New York, NY,
USA, 2022. Association for Computing Machinery.

[61] D. Williams, H. Jamjoom, Y.-H. Liu, and H. Weather-
spoon. Overdriver: Handling memory overload in an
oversubscribed cloud. SIGPLAN Not., 46(7):205–216,
Mar 2011.

[62] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica. Spark: Cluster computing with working
sets. HotCloud, page 10, Berkeley, CA, USA, 2010.

[63] I. Zhang, A. Raybuck, P. Patel, K. Olynyk, J. Nelson,
O. S. N. Leija, A. Martinez, J. Liu, A. K. Simpson,
S. Jayakar, P. H. Penna, M. Demoulin, P. Choudhury,
and A. Badam. The demikernel datapath os architecture
for microsecond-scale datacenter systems. In SOSP,
pages 195–211, 2021.

[64] Y. Zhou, H. M. G. Wassel, S. Liu, J. Gao, J. Mick-
ens, M. Yu, C. Kennelly, P. Turner, D. E. Culler, H. M.
Levy, and A. Vahdat. Carbink: Fault-Tolerant far mem-
ory. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 55–71,
Carlsbad, CA, July 2022. USENIX Association.

196 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://lwn.net/Articles/856931/
https://lwn.net/Articles/856931/

A Tail Latency of Linux-Based Applications
In this section, we evaluate Hermit using the vanilla Linux-
based Memcached as opposed to the Shenango-enhanced
Memcached (§6.2). Figure 18(a) shows 99th percentile la-
tency with fixed load (1 Mops) and varying local memory
ratios. Figure 18(b) shows latency with a fixed local mem-
ory ratio (70%) and varying load. Hermit still significantly
outperforms other baseline systems. The results show a sim-
ilar trend to the results of Shenango-enhanced Memcached.

20 40 60 80 100
Local memory (%)

0

1000

2000

3000

99
%

La
te

nc
y

(μ
s)

Linux Fastswap Hermit All local

0.5 1.0 1.5 2.0
Offered load (Mops)

(a) Under 1 Mops load. (b) Under 70% local memory.

Figure 18: For the vanilla Linux-based Memcached, Hermit still
significantly outperforms other baseline systems.

B CPU Usage of Other Applications
This section reports and compares the CPU usage of Social-
Net and Gdnsd running on Fastswap and Hermit under the
same setting as in Figure 8. Figure 19 shows the results.
Thanks to its efficient swap design, Hermit consistently uses
10%–40% fewer CPU cycles than Fastswap, even though it
invokes more reclaim threads.

C Tail Latency in Other Percentiles
This section reports the median and 99.9th percentile latency
of all three latency-critical applications. Figure 20 depicts
the results when running applications with a fixed load and
varying local memory ratios. The results exhibit a similar
trend to Figure 7. All three systems sustain low median
latency when local memory is not too scarce, while Her-
mit slightly outperforms Fastswap and Linux. When local
memory continues to decrease, applications have to spend
more CPU cycles on frequent remote memory accesses. The
CPU congestion consequently ramps up the median latency.
Thanks to the CPU-efficient swap design, Hermit’s median
latency increases slower than Fastswap, allowing applica-
tions to serve higher load, particularly when local memory
is scarce. With regards to 99.9th percentile latency, Hermit
again significantly outperforms Fastswap and Linux. It en-
ables applications to put on average 20% more working set
in remote memory without violating the tail latency agree-
ment.

Next, we repeated the experiment shown in Figure 8 by
fixing the local memory ratio to 70% and measured the me-
dian and 99.9th percentile latency of applications with vary-

ing load (see Figure 21). Hermit is able to deliver low me-
dian latency close to the ideal setup and much lower tail
latency. Since 99.9th percentile latency is more susceptible
to direct page reclamation, Fastswap experiences significant
performance degradation once its single dedicated core gets
saturated. Hermit, in contrast, is able to offer high load (>
60% compared to the ideal all-local setup) and maintain low
99.9th percentile latency under 70% local memory ratio.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 197

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Offered load (Mops)

0

50

100
C

PU
U

sa
ge

(%
)

Fastswap Hermit

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Offered load (Mops)

0

50

100

C
PU

U
sa

ge
(%

)

Fastswap Hermit

(a) SocialNet (b) Gdnsd

Figure 19: For SocialNet and Gdnsd, Hermit still saves 10%–40% CPU cycles under varying load compared with Fastswap, which is the key
enabler it can achieve low tail latency under high load.

40 50 60 70 80 90 100
Local memory (%)

0

20

40

60

80

M
ed

ia
n

La
te

nc
y

(μ
s)

40 50 60 70 80 90 100
Local memory (%)

0

40

80

120

160
Linux Fastswap Hermit All local

50 60 70 80 90 100
Local memory (%)

0

20

40

60

80

40 50 60 70 80 90 100
Local memory (%)

0

100

200

300

400

500

99
.9

%
La

te
nc

y
(μ

s)

40 50 60 70 80 90 100
Local memory (%)

0

1000

2000

3000

4000

5000

50 60 70 80 90 100
Local memory (%)

0

100

200

300

400

500

(a) Memcached (1.5 Mops) (b) SocialNet (0.75 Mops) (c) Gdnsd (4 Mops)

Figure 20: Hermit still significantly outperforms Fastswap and Linux in terms of median and 99.9% latency under the same load and varying
local memory ratio.

1 2 3 4
Offered load (Mops)

0

20

40

60

80

M
ed

ia
n

La
te

nc
y

(μ
s)

0.5 1.0 1.5
Offered load (Mops)

0

20

40

60

80
Linux Fastswap Hermit All local

2 4 6 8
Offered load (Mops)

0

20

40

60

80

1 2 3 4
Offered load (Mops)

0

500

1000

1500

99
.9

%
La

te
nc

y
(μ

s)

0.5 1.0 1.5
Offered load (Mops)

0

1000

2000

3000

2 4 6 8
Offered load (Mops)

0

500

1000

1500

(a) Memcached (b) SocialNet (c) Gdnsd

Figure 21: Hermit also achieves significantly lower median and 99.9% latency than Fastswap and Linux under 70% local memory ratio and
varying load. As we used a closed-loop load generator for SocialNet, it reaches the maximum load capacity before its median latency spikes.

198 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NetRPC: Enabling In-Network Computation in Remote Procedure Calls

Bohan Zhao
Tsinghua University

Wenfei Wu
Peking University

Wei Xu
Tsinghua University

Abstract
People have shown that in-network computation (INC) sig-
nificantly boosts performance in many application scenarios
include distributed training, MapReduce, agreement, and net-
work monitoring. However, existing INC programming is
unfriendly to the normal application developers, demanding
tedious network engineering details like flow control, packet
organization, chip-specific programming language, and ASIC
architecture with many limitations. We propose a general
INC-enabled RPC system, NetRPC. NetRPC provides a set of
familiar and lightweight interfaces for software developers
to describe an INC application using a traditional RPC pro-
gramming model. NetRPC also proposes a general-purpose
INC implementation together with a set of optimization tech-
niques to guarantee the efficiency of various types of INC
applications running on a shared INC data plane. We conduct
extensive experiments on different types of applications on
the real testbed. Results show that using only about 5% or
even fewer human-written lines of code, NetRPC can achieve
performance similar to the state-of-the-art INC solutions.

1 Introduction

The recent programmable switches like Barefoot Tofino [16]
and Cisco Silicon One [5] can execute user-specified stateful
packet processing at line rate. The evolution has sparked a
surge of proposals to offload application functions into the
network. The trend is called in-network computation (INC).

INC has been widely applied in various applications includ-
ing distributed ML training [11, 22, 29, 31, 37], cache [19, 25],
agreement [6,18,40], and network monitoring [12,17,26,27].
The tremendous bandwidth and low latency on switches lead
to huge performance gains. For example, ATP [22] accelerates
distributed training throughput by 38% ∼ 66%; P4xos [6] re-
duces the end-to-end delay by more than 90%; NetCache [19]
improves throughput by 3-10 times compared with a host-only
software solution. However, developing INC applications in-
volves too much arcane knowledge in networking that is far

from application programmers’ (we refer to them as users in
this paper) expertise and willingness to learn.

First, the INC program centers on individual packets. Users
need to handle network functions such as packet parsing, flow
table installation, forwarding, routing, reliable transmission,
and congestion control as part of the application.

Second, users need to learn chip-specific languages like P4
[3] and NPL [28]. Even the high-level programming models
like Lyra [7] and C3 [20] still focus on packet processing
and require too much network knowledge (e.g., transmission
windows and protocol fields) for software engineers.

Third, users need to understand low-level chip design de-
tails and limitations. Familiar data types and operations like
floating points are missing, and users have to design approx-
imations [13, 22, 31] manually. Even harder, users need to
place their program on a pipeline of stages with isolated mem-
ory and deal with limitations, like once-only memory access
per stage and a limited number of tables and rule entries.

Last but not least, users need to statically decide switch
memory layout, table/register arrangement, etc., as the switch
hardware can only modify them at boot time. Therefore, users
need to reset the switch to start/remove an INC application,
causing minute-level service interruption.

As a result, existing projects use INC only as a single appli-
cation accelerator instead of a shared infrastructure. Even a
simple application involves thousands of lines of code on both
switches and hosts (Table 4 in Section 6). The development
and operation difficulties prevent wide INC adoption.

In comparison, traditional software uses two abstraction
layers to decouple application code from network details:
1) a Socket layer providing connection/session management,
resource sharing, reliable communication, and byte stream
abstraction; and 2) a remote procedure call (RPC) layer pro-
viding high-level data types and call interfaces. In the popular
gRPC framework [10], users write a language-independent in-
terface definition language (IDL) (e.g., protobuf [9]) specify-
ing types of parameters and return values, and the gRPC com-
piler generates client and server stubs that users can integrate
into application code. The stubs automatically marshal/un-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 199

marshal arguments and handle underlying Socket connections.
RPCs prove to be a powerful interface to build modern dis-
tributed systems. Unfortunately, neither layer exists in INC,
leaving tedious network details to user applications.

We propose NetRPC to add both missing layers — an
INCLayer and an RPCLayer — to bridge application pro-
gramming and network packet processing, allowing users to
leverage INC features to develop a diverse set of distributed
applications using the familiar RPC interfaces.

The RPCLayer provides a high-level RPC interface. It is
built on gRPC with two extensions: INC-enabled data types
(IEDTs) and a NetFilter. IEDTs include basic types like inte-
gers and floating points, and collections like arrays and maps.
Users define RPC services using the same protobuf language,
just replacing vanilla gRPC types with IEDTs to allow NetRPC
to recognize and process these data fields. In addition, users
provide a NetFilter to specify the computation with INC, in
terms of five reliable INC primitives (RIPs). RIPs implement
high-level operations on IEDTs such as arithmetics, read-
ing/writing a map/array of arbitrary size, and synchronization
primitives. RIPs also guarantee reliability, i.e., under various
network conditions, RIPs eventually complete as long as the
client/server processes survive.

RPCLayer also provides automatic data parallelism for calls
with large arguments. NetRPC breaks up a call into subtasks,
executes these subtasks concurrently, and sends out multiple
concurrent flows. We offer it as a built-in feature to save
programmers from handcrafting concurrent flows or co-flows
to fully utilize the 100+ Gbps links in INC switches.

Analogous to the Socket, the INCLayer handles all flows
from the RPCLayer. In addition to the basic guarantees of
the Socket-like connection, reliable transport and congestion
control, the INCLayer implements the RIPs using a set of
protocols involving both the INC switches and the end-hosts.

We build NetRPC as a general INC-enabled RPC system.
This is different from existing INC projects that only need to
find one workaround for the switch hardware limitations as
they target only a single application. The first design trade-
off we need to make is between generality (i.e., how pro-
grammable the network is) and simplicity (i.e., how easy it is
to program it). Instead of building yet another general INC
language, NetRPC chooses to provide only the necessary set
of network-independent primitives and the simple NetFilter

specification. Observing INC projects in the past ten years, we
find only a handful successful types (Section 3.1). We design
the primitives so that users can easily develop applications of
all these types and enjoy the INC performance boosts.

New challenges for NetRPC include, from low level to high
level: 1) efficiently managing the switch memory and pipeline
stages to support the high-level array and map types; 2) hiding
the switch hardware limitations from high-level programs; 3)
supporting reliable transmission for different INC scenarios;
4) running multiple INC applications concurrently on a shared
data plane; and 5) allowing users to define INC operations for

their applications in the familiar gRPC abstraction.
We have many innovative designs to solve the above chal-

lenges. 1) Using a fallback mechanism, the end-host agents
can take over all cases that the INC switches fail to handle;
2) Using an INC-compatible transport protocol, we can cor-
rectly handle packet retransmission and congestion control,
maintaining both correctness and throughput; 3) Adapting a
novel memory management scheme, we map from keys to
unified 32-bit logical addresses that further map to switch
physical addresses, allowing us to optimize the switch mem-
ory management much like normal caches; 4) By providing
only a limited interface NetFilter, we abstract all obscure
hardware limitations into a single high-level limitation (i.e.,
the primitives NetFilter supports).

We implement NetRPC using a testbed with two Barefoot
Tofino [16] switches and eight machines. Using four non-
trivial applications (Paxos, network monitoring, distributed
training, and MapReduce) as examples, we show that 1) we
reduce the line of code (LoC) on the end host to about 1/20, us-
ing less than two dozen network-related LoC per application;
2) NetRPC code is completely the same as vanilla gRPC code;
and 3) we can offer the same or even better INC speedup.

In summary, our contributions include:
1) As a programming interface, NetRPC is the first frame-

work to integrate INC acceleration into the RPC framework,
reducing the bar of INC adoption in software.

2) As an INC system, NetRPC proposes a set of INC primi-
tives applicable to different INC application types and innova-
tive design elements to efficiently implement them, including
reliable transport, memory management, and synchronization,
as well as enabling a multi-application INC data plane.

3) Using four common INC application types on a real
testbed, we demonstrate that we can offer the same INC per-
formance boost with far fewer lines of code.

2 Related Work

Most existing INC applications make a network-software co-
design. Even with the “network programming languages”,
users still have to handle many network engineering details.

Network-software co-design of INC. People have recently
demonstrated many promising INC-accelerated applications,
such as NetCache [19] and distCache [25] for caching,
P4xos [6], NetChain [18] and NetLock [40] for agreement,
SwitchML [31], SHARP [11], and ATP [22] for distributed
ML training, and ElasticSketch [38], SilkRoad [26] and
Sonata [12] for network monitoring. These solutions are simi-
larly constructed as the network-software co-design — user
interfaces, customized protocols, switch programs, rule instal-
lation, and endpoint agents — to achieve full-stack optimiza-
tion and higher switch resource efficiency.

Chip-specific Programming Languages. People have pro-
posed several chip-specific programming languages [3, 28,

200 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

32, 33] to support data plane customization. Existing pro-
gramming languages are tightly coupled with corresponding
ASICs. For example, Trident-4 [28] only supports NPL, while
P4 programs can run on Tofino and Silicon One. P4 [3], ar-
guably the most popular one for recent INC solutions, follows
a reconfigurable match table (RMT) architecture. P4 pro-
grams first define packet headers and corresponding parsers
and then process extracted header fields in a pipeline. Pro-
grammers must specify the actions on header fields, persistent
switch registers at each pipeline stage, and drive actions by
match-action tables. Also, users must define a deparser to
reconstruct the packet for forwarding.
High-level network programming abstractions. There have
been efforts to simplify the INC programming. E.g., Lyra [7]
offers a one-big-pipeline abstraction that allows program-
mers to express their intent with simple statements; NCL [20]
imports a window-based abstraction over packets as the ba-
sic processing units. µP4 [34] provides a lightweight logi-
cal architecture that abstracts away the structure of the un-
derlying hardware pipelines for better program composition.
NetVRM [42] allows developers to virtualize switch memory
with a few modifications to existing P4 code. Chipmunk [8]
adopts a domain-specific program synthesis technique to gen-
erate faster packet-processing code at the cost of longer com-
pilation time. However, these high-level abstractions still re-
volve around networking details, such as (de)packetization,
connection maintenance, and protocol stacks. The semantic
gap between the software and network programming model
is still a significant obstacle for ordinary software developers.

3 Design Overview

We design NetRPC to allow software developers to enjoy the
performance benefits of INC without tedious network pro-
gramming. We want NetRPC to be general enough to support
typical INC application scenarios.

3.1 INC Application Types
INC accelerates applications primarily in two ways: opti-
mizing bandwidth usage (reducing the number of bytes to
servers) or reducing latency (removing the server from the
round trip). People have proposed many INC applications.
Table 3.1 summarizes the four types of applications.

The first two types handle large data sets with optimiz-
ing bandwidth as the main goal: (1) synchronous aggrega-
tion (SyncAtgr) for distributed machine learning (ML) train-
ing; (2) asynchronous aggregation (AsyncAtgr) for general
MapReduce-type applications. The difference between these
two types is that SyncAtgr aggregates only a fixed-sized array
(e.g., the gradient updates) and works in iterations, i.e., we
can proceed only after all clients send the updates. In contrast,
AsyncAtgr aggregates over an arbitrary number of keys as
they come in and allows accessing results at any time.

The other two types only use small data, with the main goal
to optimize latency by avoiding sending packets to the server:
(3) key-value cache (KeyValue) that require frequent queries
and responses; and (4) Voting (Agreement) that involve count-
ing votes from different clients until reaching a threshold.
Unlike (1) and (2), each request is small, but the challenge is
how to achieve a latency smaller than client-to-server RTT by
not involving the server at all.

3.2 Challenges and Solution Overview

Providing a reliable data stream for general INC appli-
cation types. Different from traditional networks, there are
side effects when packets go through an INC switch, such as
updating a map. Thus, when a packet goes through a switch
twice in retransmission, the computation is no longer idem-
potent, violating the computation correctness. Prior solutions
are application-specific, e.g., ATP [22] requires explicit server
ACKs. It works in SyncAtgr, but not in the other three types
because involving the server defeats latency optimization. We
design an efficient and general retransmission mechanism that
maintains the per-flow state on the switch using only a few
bits in switch memory. We also design an effective flow and
congestion control protocol (Section 5.1).

Making “normal path” efficient: Supporting memory-
efficient arrays and maps on INC switches. Arrays and
maps are core data structures in many applications, and INC
significantly accelerates operations on them with parallel ele-
ment processing. E.g., training applications use arrays to store
the aggregated gradients, and monitoring applications keep
the aggregates in a map, one key per metric. In both cases,
the switch can add up all values in parallel. Existing systems
either require pre-determined encoding of keys (e.g., knowing
all the keys at compile time) or waste precious switch memory
and packet header space to store the long keys. We leverage
the host agents to generate a two-level mapping from keys of
arbitrary lengths to a unified 32-bit logical address space and
then map it to the switch physical memory. We also design a
cache management algorithm running on the server agent to
improve switch memory utilization efficiency (Section 5.2.2).

Making “corner cases” correct: Hiding switch hardware
limitations from the upper-level program. We still need
to handle switch hardware limitations. Our key idea is to
use all host agents as a fallback mechanism. The host agents
emulate all switch operations in software and thus can always
provide correct INC results to the RPCLayer regardless of the
switch’s ability or resource. NetRPC supports two kinds of
fallbacks: 1) arithmetic overflows that may happen in floating-
point computation and accumulations (Section 5.2.1); and 2)
insufficient memory on the switch (Section 5.2.2).

Supporting multi-application data plane. Prior arts sup-
port only a single application, and the life span of the
switch program does not exceed that of the application. How-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 201

Table 1: Four Common INC Application Scenarios and Primitives They Need
Type Applications and Existing Systems IEDT Primitives

SyncAgtr Distributed ML training (ATP [22], SHARP [11], SwitchML [31]) Array Map.get, Map.addTo, Map.clear, CntFwd
AsyncAgtr MapReduce (ASK [2], NetAccel [23], Cheetah [36]) Map Map.get, Map.addTo, Stream.modify
KeyValue Cache (NetCache [19], DistCache [25]), Monitoring (ElasticSketch [38]) Map Map.get, Map.addTo

Agreement Synchronization (P4xos [6], NetChain [18], NetLock [40]) Integer Map.get, Map.addTo, Map.clear, CntFwd

Switch

Reliable Data
Stream

Reliable INC
primitives

INC Layer

Switch Memory Compute

Write Read

PRC Layer

INC Data Types

NetFilter

Client Agent

Reliable Data
Stream

INC Fallback

INC Layer

PRC Layer

INC Data Types

NetFilter

Invoke
INC

Primitives

Parse

Server Agent

Controller

Figure 1: NetRPC system architecture.

ever, the RPC servers are long-running daemons, and server
start/stop/restart events are common. It is prohibitively expen-
sive to reset the switch on such events. We solve the problem
with three designs: 1) letting all applications share the same
set of RIPs; 2) sharing the same set of switch memory blocks
among applications by partitioning the key spaces among
them; 3) providing three choices of memory eviction behav-
iors to fit different applications (Section 5.2.2).
Interface INCLayer primitives with RPCLayer without
breaking protobuf abstraction. Users need to tell NetRPC
what to process in INC and how to process them. We need to
add the INC specification to protobuf language, but we decide
not to change the language to keep the learning curve low
for users. Thus, we design the NetFilter as a configuration
instead of a program. We only allow users to specify a fixed
set of RIPs with at most one instance for each kind as a filter to
process arguments and return values. The limitation simplifies
NetRPC design yet still allows implementing all four common
types of INC applications (Section 4).

The NetRPC contains a controller, host agents, and switch
programs as in Figure 1. The system-wide controller is a
dedicated process that handles registration and name lookups
at initialization, while at runtime, it manages configurations
on both switches and host agents. The host agents run on
each client/server. Each host agent maintains a fixed number
of connections (configurable) with the switch, even without
running tasks. These connections are essential for the reli-
able communication (Section 5.1). A single switch program
starts each INC switch at boot time and executes all primi-
tives. The switch receives configurations from the controller
to run applications without resetting the switch program (to
avoid interrupting the network). If the switch fails to handle

1 import "netrpc.proto"
2 message NewGrad {
3 netrpc.FPArray tensor = 1;
4 }
5 message AgtrGrad {
6 netrpc.FPArray tensor = 1;
7 }
8 service Training {
9 rpc Update(NewGrad) returns (AgtrGrad)

{} filter "agtr.nf"
10 }

Figure 2: Example protobuf: gradient updates

1 { //agtr.nf
2 "AppName": "DT-1",
3 "Precision": 8,
4 "get": "AgtrGrad.tensor",
5 "addTo": "NewGrad.tensor",
6 "clear": "copy",
7 "modify": "nop",
8 "CntFwd": {
9 "to": "ALL",

10 "threshold": 2,
11 "key": "ClientID",
12 },
13 }

Figure 3: Example NetFilter: gradient updates

a primitive due to resource or functionality limitations, the
primitive execution falls back to the server agents.

4 RPC Layer in NetRPC

In this section, we first introduce the NetRPC programming
interface using gradient aggregation in the distributed training
application as a concrete example. Then we briefly introduce
interface implementation in the RPCLayer.

protobuf definition. Like in vanilla gRPC, users first pro-
vide a protobuf definition that compiles into the client and
server stubs. Figure 2 shows an example protobuf file. The
messages are user-defined types, and service is the RPC def-
inition using messages as arguments and return values. The
only modification to vanilla protobuf is the filter clause al-
lowing users to provide the NetFilter file name (see below).

NetRPC data types. Users declare all variables that they want
to process in INC using INC-enabled data types (IEDTs)
defined by NetRPC. E.g., line 3 and 5 in Figure 2 defines
variables (both tensor) as a netrpc.FPArray (floating point

202 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 shared_ptr <Channel > channel =
CreateCustomChannel(server_ip ,
InsecureChannelCredentials());

2 unique_ptr <Stub > stub_(NewStub(channel));
3 void PushPull(double* data , int length) {
4 NewGrad request;
5 AgtrGrad reply;
6 ClientContext context;
7 request.mutable_tensor()->mutable_data()
8 ->Add(data , data+length);
9 Status status = stub_

10 ->Update(&context , request , &reply);
11 memcpy(data , reply.tensor().data(),
12 length * sizeof(double))
13 train(data);
14 }

Figure 4: Client program to use the RPC

Table 2: NetRPC Primitive Semantics
Primitive Args Semantics
Map.addTo stream map[stream.key] += stream.value
Map.get stream stream.value = map[stream.key]

Map.clear empty map[stream.key] = 0
Stream.modify op,para stream.value = op(stream.value, para)

CntFwd key,th,tgt
cnt[key]++; if cnt[key] == th
then forward(tgt) else drop

array) IEDT. Optionally, user can add normal gRPC data fields
to the same messages, and NetRPC simply passes them to the
server without processing.

Collections (Array and Map) are core data types in NetRPC.
The item value can be integers or floating points, and keys
can be integers or strings. NetRPC enables 1) automatically
applying the user-defined NetFilter on every value in these
collections and 2) accessing the global INC map using keys.

Life of a NetRPC call. In NetRPC, when a client initiates a
call, the client stub marshals the arguments and sends them
through one of two channels: messages with IEDT through
the INC channel established by the per-host client agent and
normal messages through the original gRPC Socket. In this
paper, we only focus on the data streams in the INC chan-
nel. The underlying INCLayer processes the data stream and
optionally interacts with the INC map. The INC map is a
NetRPC abstraction of unlimited global memory addressable
using keys or array indices. INC map is implemented on both
switches and host agents (in Section 5.2.2). The return path is
similar: the server stub marshals the return value and sends it
through either the INC channel or the normal Socket.

The NetFilter and reliable INC primitives (RIPs). In
addition, users need to specify their INC operations. Here,
we have a choice in terms of what kind of operations NetRPC
should provide. We want to find the sweet spot in the trade-off
between generality and simplicity. We also want to provide
a reconfigurable switch program to serve new applications.
Therefore, we pick five primitives that we can compose to-
gether in a similar layout to implement existing types of INC

operations (Section 3.1). Figure 5 displays this layout and its
implementation on the switch. The users only need to provide
configurations for these five primitives in their NetFilter file
(Figure 3) to specify their INC operation of interest.

The NetFilter is a JSON configuration file. It contains a
AppName that uniquely identifies an application, a Precision

field that specifies the floating-point precision (number of
digits after the decimal point). Lower precision allows INC
to process more data without falling back to the host.

The more interesting part in NetFilter is the next five fields
that allow users to provide arguments to RIPs, including three
map-access primitives, Map.addTo, Map.get, and Map.clear,
one data stream manipulation primitive, Stream.modify, and
one synchronization primitive, CntFwd. Table 2 summarizes
the parameters and semantics of these primitives.

Map.addTo accumulates data items from the stream to the
map according to their keys/indices, and Map.get reads out
the values of a specific key from the map. In Figure 3, we
add the values of the NewGrad.tensor array to the INC map
to aggregate the gradient, and on the return path, we read out
the results from the INC map into the AgtrGrad.tensor array.

Map.clear defines how to clear a value from the INC map.
In the example, copy means backing up the aggregates to
the server before clearing it out to handle packet losses. We
introduce other possible options in Section 5.2.2.

Stream.modify performs arithmetics on the stream. It only
modifies the stream without accessing the INC map. In Fig-
ure 3, we set it to nop, as we do not modify streams. Table 8 in
Appendix A lists all operations we support for Stream.modify.

The CntFwd is the most interesting primitive. It accumulates
values on one or more keys (specified with CntFwd.key) in the
INC map until the accumulator reaches the specified threshold
(CntFwd.threshold). Then it forwards out the message to the
destination(s) specified at CntFwd.to. The CntFwd primitive is
essential to control both how many packets to forward to the
clients/servers and when to forward them, and thus essential
for SyncAgtr and Agreement applications. In this example,
we set key to a single ClientID, meaning that we only need
one counter for the number of unique clients who have sent
gradient updates. In this case, only when exactly two unique
clients have sent a stream, will the network aggregate the
items and send back AgtrGrad to ALL clients.

There are other use cases for CntFwd. Setting the
CntFwd.threshold to one makes the CntFwd behave as the
test&set primitive in many instructions sets, useful to im-
plement distributed mutual exclusion. Also, by providing a
collection in the data stream, we can use a map of counters to
track multiple votes in concurrent ballots, a widely-used func-
tionality in distributed agreement protocols. CntFwd allows
the switch to notify the clients only when enough votes arrive.
Appendix D provides more examples of CntFwd primitive.

Table 1 summarizes the primitives used in each INC appli-
cation type. Figure 5 illustrates a RIP pipeline running the
example code in Figure 3. A SyncAgtr application pushes

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 203

Switch Memory

Reliable Data Stream

Map
addTo Map

get
Map
clear

CntFwd
Stream
modify

3
Client
4

Client

7
Server

7
Client
7

Client
7

Server

Figure 5: RIP pipeline in switches.

data into the network by its clients (black arrows) for on-
switch aggregation and on-server backup. The server sends
back the computation results (red arrows) to clients and clears
the switch memory. The same switch program (and the RIP
pipeline) completes all INC functions in the round trip with-
out reconfiguring the switch.

Using RPC calls to build the application. With the protobuf

and NetFilter definition, the remaining process is exactly
the same as normal gRPC. The protobuf compiler generates
client and server stubs, and users include stubs in their ap-
plication. Figure 4 provides the client code using the RPC
service defined in Figure 2. Note that the code is completely
identical to vanilla gRPC, hiding INC details from the users.

Automatic data parallelism on RPCs with large arguments.
There could be multiple concurrent NetRPC applications/chan-
nels and procedure calls in the runtime. The stub submits calls
as tasks to the host agents. A task contains the application data
(i.e., arguments or returned values, encoded as protobuf mes-
sages), the metadata (e.g., network program configurations),
and the routing information.

The host agents maintain a thread pool of worker threads
to process tasks. NetRPC automatically partitions the task into
subtasks and dispatches them onto multiple worker threads
for load balance. The worker threads serve the subtasks in
their queue on a First-Come-First-Serve (FCFS) basis. The
worker threads serialize the subtask’s data into a sequence
of packets (Appendix B.1) and send them over the user-level
network stack we implement using DPDK [15].

Limitation of RIP abstraction. RIP abstraction targets sim-
plifying programming in general INC scenarios where dif-
ferent INC applications regularly start and stop to share the
infrastructure. It lacks logical semantics like looping and
branching and thus can not implement complex algorithms
(e.g., DHS [41]) or data structure (e.g., NetChain [18] queue).
Adding more RIPs will extend the functionality but reduce
the source available for each RIP. We leave further extensions
and a customizable set of RIPs as future work.

5 INC Layer in NetRPC

INCLayer provides a reliable layer to support RIPs. There
are two design objectives: 1) efficiently utilize INC switch
resources to support a multi-application data plane with full

INC performance boost; 2) provide an end-host software-
based fallback mechanism to support reliable byte streams and
INC primitives for the RPCLayer. As a result, RPCLayer can
safely assume that the data stream is delivered reliably, and
the NetFilter is fully executed in various network conditions.

In this section, we first introduce how we can build a gen-
eral reliable data stream abstraction. Then we introduce the
essential RIPs, including map access, arithmetics, and CntFwd.
Finally, we briefly introduce the switch implementation.

5.1 Reliable Data Stream

Encoding IEDTs into sequences of packets. Client agents
receive data streams containing multiple key-value pairs from
the RPCLayer. Then the client agent encodes these pairs into
separate packet headers using a user-level networking stack
written in DPDK [15] and sends them out. Each packet con-
tains a fixed number of key-value pairs (32 in the current
setting), a sequence number, a global application ID (GAID),
as well as other state information we will introduce in this sec-
tion. Figure 14 in Appendix B.1 illustrates the packet header
structure. The packet can optionally contain the normal pay-
load with non-INC types for the application. NetRPC only
processes the key-values encoded in the header.
Idempotent packet retransmission. In case of packet loss,
traditional transport simply retransmits the lost packet. How-
ever, INC complicates the retransmission because the retrans-
mitted packet can cause side effects on the switch, such as
incrementing a map value again. In other words, naive re-
transmission is not idempotent and may lead to incorrect INC
results. Switches need extra information to detect which pack-
ets are retransmitted. Traditional networking doctrine tells us
that we shall avoid keeping states on switches. Thus, some
INC designs choose to keep extra states on the sever [22]
and let the server to ACK each packet. The ACK informs the
switches about processed packets. This design requires the
server to ACK every packet. It works on applications like
gradient aggregation, where the INC is primarily used for
reducing server bandwidth by only forwarding the results
to the server to ACK while completing aggregation on the
switch only. However, this design does not fit applications like
KeyValue and Agreement, as server ACKs defeat the purpose
of latency reduction via sub-RTT switch response.

To design a general protocol, we observe that 1) we send/re-
ceive all INC flows using host-agents under NetRPC control;
2) the INC switches have a relatively large memory, and the
retransmission states are almost negligible compared to the
INC map. Thus, we can safely keep the per-flow state on the
switch as long as we can limit the number of agent flows.

We further design our protocol to minimize per-flow switch
memory usage, allowing a switch to only keep a bit array of
size wmax per flow, where wmax is the max sending window
size. The switch initializes all bits to 1. Every packet con-
tains a sequence number (seq), and a flip bit that is set to

204 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(seq/wmax)%2. On receiving the packet, the switch checks
the (seq%wmax)-th bit in the bit array. If the bit is the same
as the flip in the packet header, the switch considers it as a
retransmitted packet and thus skips updating the INC map.
Otherwise, the packet is new, and the switch sets its corre-
sponding bit to the flip and processes the packet normally.

We show that this simple protocol guarantees idempotent
execution, i.e., 1) a packet’s first appearance flips the bit, and
2) a packet’s later appearance (retransmission) equals the bit.
We prove it by induction. For sending window 0, all flip bits
in packets are 0s, and the switch bitmap is all 1s. Since each
packet only sets the bitmap to 0 once, at the end of window
0, all bits become 0. Then assuming the two properties hold
for window t −1, we show that they still hold for window t.
Recall that the client agent sends out the i-th packet in window
t (denoted as P) only after the i-th packet in window t − 1
(denoted as P′) is ACKed. Therefore, when P first appears,
P′ should already set the bit as P′’s flip. As P and P′ are
opposite in flip, P’s first appearance flips the bit. P’s later
appearance would not flip the bit, and the window controls
packets out of the window not to appear (and falsely flip the
bit) between P’s appearances. Thus, the two properties hold in
window t. By induction, it is correct for all sending windows.

We can use N ×wmax bits of switch memory to support N
concurrent reliable flows on each agent. We experimentally
set wmax = 256 and find it sufficient to achieve a per-flow
bandwidth of 20+ Gpbs.
Flow control and congestion control. Note that wmax is a
fixed value. We still need to deal with the flow control and
congestion control due to resource contentions on either the
end hosts or switches. We use the same mechanism to handle
both flow and congestion control by automatically setting a
congestion window cw ≤ wmax.

Traditional congestion control, like the one in TCP, relies
on round-trip-time (RTT) and duplicate ACKs to adjust cw.
However, in INC primitives like CntFwd, these signals may
not reflect the real network congestion as the receiver needs
to wait for the slowest sender before ACKing.

Thus, NetRPC adopts an ECN (i.e., explicit conges-
tion notification)-based congestion control mechanism. The
switches set the ECN when the ingress port length exceeds the
threshold. Meanwhile, it writes the ECN information to the
INC map under a special key. Thus, all retransmission packets
carry ECN until cleared like other map values. This prevents
ECN signal loss due to packet loss. Otherwise, the client
agents adjust the cw using the same additive increase multi-
plicative decrease (AIMD) policy as priot arts [22]. Experi-
ments show that this design allows multiple flows to achieve
both high goodput and fairness in bandwidth sharing.
Other transport protocols. Several recent transport proto-
cols have affected the design of INCLayer. MTP [35] proposes
a message-based protocol to customize congestion control,
load balancing and resource isolation for INC. However, it
requires maintaining per-pathlet states on both packet headers

and end hosts, importing extra overhead to hurt the system’s
performance. DCTCP [1] imports a more fine-grained conges-
tion window adjustment based on the ECN proportion. This
approach is inapplicable to INC scenarios because we have
to count the maximum number of ECNs in a single (i.e., the
most congested) path instead of the total ECN proportion due
to incast. This consumes more resources on the switch and
will reduce the stream goodput, so we utilize AIMD to sim-
plify implementation and will extend the protocol in future
work (Section 7).

5.2 Reliable INC Primitive Designs

5.2.1 Computation and arithmetic overflows

Floating point arithmetic by quantization. INC switches
only have limited 32-bit arithmetic functionality, yet INC ap-
plications like training require floating-point (FP) arithmetic.
The standard practice uses quantization to fit the FP numbers
into 32-bit integers (aka, fixed-point numbers). NetRPC quan-
tizes an FP value in the client agent by multiplying it with
a scaling factor (the precision field in NetFilter) and maps
the value back to FP before handing it to the RPCLayer.

Handling overflows. While people have shown that the
precision loss might not cause problems in many applications,
32-bit fixed-point numbers do not offer enough representable
range in many cases, and thus overflow is unavoidable. Even
without FP numbers, just using the Map.addTo to accumulate
values may also lead to overflow. Thus, we need a way to
handle occasional overflows.

When the switch detects an overflow during computation, it
sets the overflowed value to MAX_INT or MIN_INT and forwards
the packet normally. When a host agent receives a packet with
MAX_INT/MIN_INT value, it suspects there is an overflow 1 and
gives up the result. Then the client agents mark and resend
these overflow packets, causing the switch to skip the process-
ing and directly forward them to the server agent. The server
agent computes the correct result using 64-bit integers or FP
numbers in software.

Fallback on network fabrics without INC support. A
similar fallback mechanism works when there are no pro-
grammable switches or data-plane resources reach capacity.
If the controller fails to assign the INC application to any
switch, the server agent will execute RIPs in software using
the same switch failure handling mechanism. Therefore, the
application is guaranteed to derive the correct results with the
transparent fallback, only losing performance benefits from
INC.

1Strictly speaking, there is one possibility of a false positive where the
result is exactly MAX_INT/MIN_INT. The false positive only slightly affects
performance leading to an extra retry, but not correctness.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 205

5.2.2 Memory: INC map-access primitives

Memory address spaces in INCLayer. The RPCLayer sup-
ports maps with arbitrary keys, while the INCLayer only pro-
vides a 32-bit logical address space per application. The client
agent hashes keys with different types and lengths into the
32-bit address space. We handle all collisions by putting the
colliding keys into the payload to bypass the switch INC and
let the server agent to process them. We choose not to use a
larger logical space as we find it sufficient to support multiple
applications with acceptable collisions. A short address saves
bits in packets, increasing the effective bandwidth.

INCLayer maps the 32-bit address space onto the physical
address space on switches. Each physical address corresponds
to a register on a switch. Switches may have different numbers
of registers. E.g., the switch we use has about 160K registers
available per pipeline stage, and we use eight stages to support
map-related primitives.

It is not trivial to map the logical address to a physical
switch address. The above hashing approach does not work
here because switch registers are a valuable resource we want
to make full use of, but when the utilization is high, the colli-
sion rate increases fast, causing many fallbacks to servers. In
fact, we need to pack the physical memory tightly. Also, we
want to avoid keeping the logical-physical address mapping
on switches; otherwise, it wastes switch memory.

In some applications, such as distributed training (as in
ATP [22]) in SyncAgtr, it is simple as every client has the
same set of keys. Each of them only needs to sort the keys
and give each key a sequence number. However, it does not
work in general cases, such as AsyncAtgr, where each client
might have a different set of keys.

Multiple clients of a single application. We solve the prob-
lem by letting the server agent, shared by multiple clients,
decide and maintain the mapping for all its clients. The first
time a client uses a new logical address, it sends packets to
the server without INC. If there is switch memory available,
the server agent will piggyback a mapping for this address on
the returning ACK. Then the client can send subsequent pack-
ets with the physical address set in the packet for the switch.
If the switch memory is full, the server will not return the
mapping, and thus clients keep sending subsequent packets
to the server without INC. With the method, we ensure all
clients calling the same server use a consistent mapping.

Handling multiple applications. According to the appli-
cations’ requests, the controller reserves switch memory at
application registration time. When an application gets no
switch memory, they fall back to using server agents. We use
a simple FCFS policy for the static allocation among different
applications and leave advanced memory scheduling as future
work. Note that although the controller reserves memory at
registration time, the actual allocation only happens when
the clients plan to send out data streams. Thus we can avoid
holding memory unnecessarily.

Cache replacement policies. The switch memory serves as a
cache for certain keys, and we need a replacement policy at the
server agent. We take an approximation to the least-recently-
used (LRU) policy. Each client agent counts the uses of each
logical address within a cache update window, and at the end
of the window, they send the counter to the server, allowing
the server to compute the most-used keys in the last window.
Then in the next period, the server evicts less used values.
We also evaluate other popular cache replacement policies
in Section 6, and we show that this periodic counting-based
LRU policy works well.

Optimization for synchronous aggregation. In addition
to the general logical-physical mapping, we realize that
the SyncAgtr (i.e., distributed training) applications like
SwitchML [31] only require access to large continuous arrays.
It is more memory-efficient to be able to allocate such arrays
in a few circular buffers instead of many individual addresses.
NetRPC supports such buffers of a fixed size of 256 keys.

Preventing switch memory leaks on host failures. Un-
like existing INC designs that serve only a single application,
NetRPC is a shared infrastructure supporting many applica-
tions. Thus, we need to take care of potential switch memory
leaks resulting from the crashing of user programs or host
machines before they can explicitly release the memory. We
address this issue with a two-level timeout mechanism.

NetRPC processes a packet with an admission rule that
checks the GAID. We keep a timestamp of the last time the
rule runs for each GAID. The controller periodically polls the
switch for these timestamps. If it finds a stale timestamp, it
triggers the first-level timeout by notifying the server agent
to retrieve the application’s INC map. After a longer period,
the server agent triggers the second-level timeout, sending
the saved data items to the user-defined stub or deleting them
if the stub no longer exists. As switch memory is small and
precious, we want to reclaim it quickly with a small first-
level timeout. However, the small timeout unavoidably intro-
duces false positives, hurting the correctness of programs with
low communication frequency, such as monitoring infrequent
events. In fact, these applications will benefit little from INC
anyways, and the timeout mechanism allows them to run just
like normal applications. Servers have much larger memory
and thus can keep user maps longer, providing the correctness
of such programs similar to software.

The Map.clear primitive. The switch memory only sup-
ports Map.addTo instead of directly overwriting the value.
Thus, to start a new accumulation (e.g., a new iteration of train-
ing, restarting a vote, etc.), the user program needs to execute
three steps: 1) Map.get the accumulator value to the hosts,
and 2) Map.clear the memory and 3) start to Map.addTo new
values. However, there is a risk that the packets get dropped
en-routing to the host. In this case, the memory is already
cleared, so the value is permanently lost.

NetRPC provides different methods to prevent this loss, as

206 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

there is a latency-throughput tradeoff. We decide to allow
users to choose from three clear policies in NetFilter.

1) [Copy]: The client-call stream first carries the map’s
value to the server, and then the return stream from the server
will Map.get and Map.clear the values. Thus we guarantee the
server has a backup in case the return packet is lost. This pol-
icy requires no extra switch memory at the cost of forwarding
more data to the server and thus higher latency.

2) [Shadow]: The switches double memory allocation. The
data stream uses two memory segments alternatively: Map.get
from one and Map.clear the other. This approach reduces
latency at the cost of doubling memory usage and thus is only
suitable for latency-sensitive applications with few data items.

3) [Lazy]: The Map.clear primitive only lets the host agents
to save the current value and let the switch to keep accumu-
lating without clearing. The host agent subtracts the saved
value to compute the accumulated value since the last clear.
When the accumulator eventually overflows, we fall back to
the server agent using the same overflow logic and clear the
switch memory. If the application (e.g., voting) has a slow-
increasing counter, lazy policy involves little overhead.

The multiple clear policies allow users to better customize
their INC applications according to their SLA requirements
and workload features. We compare the performance of the
three policies in Section 6.
Implementation on the switch. We allow 32 key-value pairs
per packet. We use four register groups per stage and 8 out of
the 12 stages on the switch to implement the INC map access.
This design fits the switch hardware limitation: a packet can
only access each group of registers in the switch once per
trip. For the same reason, we arrange Map.get/Map.addTo and
Map.clear to execute in the opposite direction of a packet
round trip. These primitives are organized in a flow chart on
the switch pipeline (Figure 15 in Appendix C). Appendix D
displays a number of example settings of NetFilter in differ-
ent application types.

5.2.3 Forwarding: the CntFwd primitive

The CntFwd primitive requires two extra pieces of logic in the
switch. First, the switch needs to recognize the packet is a
CntFwd packet, and then the packet goes through the normal
map-access pipeline to increase and read the values in the ac-
cumulator. We implement different computation logic for the
accumulator (test&set or accumulate) by applying different
match-action tables according to the CntFwd.threshold. Fi-
nally the packet enters the last stage on the switch that decides
whether to drop, send, or multicast the packet.

6 Evaluation

In this section, we show that NetRPC achieves the following
desirable properties: 1) NetRPC supports four kinds of INC
applications; 2) NetRPC significantly reduces the amount of

Table 3: Workload and Baseline in Experiments
App Type App INC Baselines Dataset

SyncAgtr
Distributed

Training
ATP [22]

SwitchML [31] ImageNet [14]

AsyncAgtr WordCount ASK [2] Yelp [39]

KeyValue
Network

Monitoring ElasticSketch [38]
CAIDA Anonymized

Internet Trace [4]
Agreement Paxos P4xos [6] Synthatic workload

application code; 3) NetRPC achieves the same performance
as handcrafted INC applications; 4) NetRPC handles situations
like packet loss, congestion, etc. In addition, we evaluate the
effects of policy settings (clear and caching).

6.1 Experiment Settings

NetRPC implementation. We implement NetRPC switch
logic on a 12-stage programmable switch. The NetRPC switch
pipeline contains 32 read-write memory segments correspond-
ing to the 32 key-value pairs in the NetRPC packet. Each mem-
ory segment contains 40k 32-bit units to restore INC states
or the INC map. Depending on the service configuration, we
vary packet lengths from 192 to 320 bytes.

NetRPC includes four modules: ∼ 4K lines of P4 code
for the switch logic, ∼ 2K lines of Python code for the re-
mote controller, ∼ 2K lines of C++ code as the plugin of
gRPC++ [10], and ∼ 3K lines of C++ code for the NetRPC
end-host agents using DPDK. We also implement four types
of INC applications with only 200 ∼ 500 lines of code each.

Testbed. We run NetRPC on a testbed of 8 GPU machines and
two programmable switches. The devices form a dumbbell
topology: two connected switches, each with four machines.
In the experiment, we use “X-to-Y ” to denote a topology with
X clients and Y servers. The switch contains a Barefoot Tofino
chip and provides 32 × 100 Gbps ports. Each machine has
a Mellanox ConnectX-5 dual-port 100 Gbps NIC. Each ma-
chine is equipped with two NVIDIA GeForce RTX 2080Ti
GPUs, 56 CPU cores at 2.20GHz, and 192GB RAM. The ma-
chines install NVIDIA driver 430.34, CUDA 10.0, Mellanox
driver OFED 4.7-1.0.0.1, and Ubuntu 18.04.

Workloads and baselines. Table 3 shows the workloads
and baselines we use. We run various typical models (VGG,
ResNet, AlexNet) for SyncAgtr. We also implement each
application’s pure software version as baselines using DPDK.

6.2 Reducing User Code Complexity
We compare the user-written lines of code (LoC) of NetRPC
applications with existing INC arts. Table 4 shows that NetRPC
reduces the overall human-written code by over 97% in all
four application types. To enable INC in an RPC, the appli-
cation developers only need to configure the NetFilter to
enable/disable RIPs on the switch without writing any switch

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 207

Table 4: LoC Comparisons: NetRPC vs. Prior INC Arts
NetRPC Prior INC Arts

Endhost Switch Endhost Switch
SyncAggr 173 13 3394 5329

AsyncAggr 166 26 3278 4258
KeyValue 162 26 898 2360

Agreement 1453 26 5441 931

code. NetFilter results in a huge LoC reduction (12-21 LoCs
in NetRPC v.s. 931-5329 in prior arts). On the host, NetRPC
also reduces the LoC of host programs by 95%, 95%, 73%,
and 82% for the four applications compared with existing
INC applications, as NetRPC users only write code to process
data-stream as call arguments, avoiding the tedious network
functions like (de)packetization, reliability, etc.

6.3 End-to-end Application Performance

Distributed ML training. We set up eight worker machines
for this evaluation. We use two existing INC frameworks,
SwitchML [31] and ATP [22], and a pure software solution,
BytePS, as baselines. We implement the NetRPC version on
BytePS with only 500 LoC modifications. All INC versions
use a single parameter server (PS), while the software version
uses eight to provide enough throughput.

Figure 6 shows the average training speed per worker. We
have the following observations: 1) INC solutions outperform
non-INC ones for most models because they avoid incast to
the PS. NetRPC, ATP, and SwitchML are 42%, 42%, and 11%
faster than BytePS in VGG16; 2) For all models, NetRPC per-
forms similar to ATP (97% to 100% of ATP), and at most
28% faster than SwitchML; 3) the training speeds on ResNet
are similar because they are computation-intensive, and com-
munication does not affect the overall performance much.

We believe the performance gain in NetRPC over existing
systems is from the automatic parallel streams. As a side ben-
efit, NetRPC uses only a single port (or one pipeline) instead
of recirculation like ATP or SwitchML. Using fewer ports
is essential for the multi-application data plane. SwitchML-
RDMA [30] uses even more pipelines by chaining four
pipelines together to achieve a performance gain over ATP.
We do not adopt the design because resource efficiency is one
of our key considerations.

Paxos. We use NetRPC to implement a Paxos [21] consensus
system, offloading the leader and vote counting functions
to switches. The implementation only contains about 700
LoC changes. We use an INC baseline, P4xos [6], and two
software ones, libpaxos [24] and DPDK Paxos [6]. We run
two proposers, two acceptors, and three learners in all cases.

Figure 7 summarizes the results on both throughput and
99th-percentile latency to achieve one consensus. Key find-
ings include: 1) NetRPC achieves a maximum throughput of
503K messages/second, 12% higher than P4xos, and 7.86×

Table 5: Microbenchmark on Basic INC Functions
Metrics NetRPC Prior Arts DPDK

SyncAgtr Goodput(Gbps) 50.55 46.44 (ATP) 40.11
AsyncAgtr Goodput(Gbps) 72.31 73.96 (ASK) 45.88

Voting Delay(µs) 20 22 (P4xos) 92
Monitor Delay(ms) 3.52 3.26 (ElasticSketch) 4.05
Packet Processing
Capacity(Mpps) >1000 >1000 83.47

and 4.93× higher than the two software solutions. INC so-
lutions are much faster because they offload packet process-
ing to the switch to alleviate the CPU bottleneck on servers.
NetRPC has higher throughput than P4xos because it only
sends the final results to the learners, reducing the workload
on servers and saving the traffic on learner links. 2) The 99th-
percentile latency of NetRPC is 311 ms and 96 ms shorter than
software but 42 ms higher than P4xos. This is because we
choose not to run the acceptors on switches like P4xos and
thus need an extra round trip to the software acceptor. We
believe the location and replication flexibility of the acceptor
is a worthwhile tradeoff for the extra latency, given that it is
still much faster than pure software.

6.4 Micro-benchmarks
To better understand NetRPC performance impact, we conduct
a series of micro-benchmarks, focusing on INC-related func-
tions only. We also use both prior INC arts and pure software
DPDK implementation as comparison baselines.
Throughput. We perform SyncAtgr and AsyncAtgr on a 2-
to-1 testbed and measure the sender goodput, using ATP and
ASK as INC baselines.

The first row in Table 5 shows the result. NetRPC offers 9%
higher throughput than ATP. The reason is that NetRPC does
not apply recirculation (we use copy policy in this experiment)
as ATP and SwitchML, which costs extra ports or pipelines on
the switch . Instead, it relies on the parallel message sending
(Section 4) to increase the goodput. Not surprisingly, both
INC solutions outperform software solutions, e.g., NetRPC
offers 26% higher goodput than pure DPDK. In fact, the end-
to-end training results (42% faster, see Section 6.3) show an
even larger improvement than the micro-benchmark, as in
SyncAtgr, the shorter latency also improves GPU utilization
as we spend less time waiting for the aggregation results.

The second row shows the goodput in AsyncAtgr. NetRPC
achieves a similarly high throughput as ASK (about 73 Gbps).
Unlike SyncAtgr, the keys count as part of a valid payload in
this case, and thus the goodput is higher. Both INC solutions
have 37% higher throughput than the pure DPDK.
Latency. We measure the average latency for the two latency-
sensitive applications: Agreement and KeyValue, using P4xos
voting and ElasticSketch [38] (monitoring) as baselines. The
third row in Table 5 shows the average voting latency. Both
NetRPC and P4xos outperform DPDK with a 76% latency

208 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

VGG16 VGG19Alexnet
Resnet50

Resnet101
Resnet1520

100

200

300

400

Tr
ai

ni
ng

 S
pe

ed
 (i

m
g/

s) NetRPC
SwitchML
ATP
BytePS+RDMA

Figure 6: Deep Learning Training Speed

NetRPC P4xos libpaxos DPDK0
100
200
300
400
500

La
te

nc
y

(μ
s)

(a) 99th-Percentile Latency

NetRPC P4xos libpaxos DPDK0
100
200
300
400
500

Th
ro

ug
hp

ut
 (m

sg
/s

)

(b) Throughput

Figure 7: End-to-end Performance of Paxos Systems.

0 2 4 6 8 10 12 14 16 18
Time (10ms)

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

App 1 App 2 App1 + App2

Figure 8: Congestion Control: Fairness

0 40 80 120 160 200
Time (ms)

0.00

0.01

0.02

0.03

0.04
Pa

ck
et

 L
os

s R
at

io
Without CC With CC

Figure 9: Congestion Control: Packet Loss

0.001% 0.01% 0.1% 1%
Packet Loss Rate

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut NetRPC ATP SwitchML

Figure 10: Packet Loss Rates vs. Throughput

reduction. NetRPC and P4xos offer similar latency, showing
that NetRPC abstraction layers do not add extra latency.

The last two rows of Table 5 compares performance for
KeyValue types, specifically in flow counting. Both NetRPC
and ElasticSketch have lower latency than DPDK, by 13%
and 20%, respectively. Notably, the last row of Table 5 also
shows a 10× packet processing capacity increase from DPDK.
NetRPC is about 0.26 ms (9%) slower than ElasticSketch be-
cause we do not have the same application-specific optimiza-
tion that avoids modifying packets. We believe a less-than-
10% latency increase is a reasonable price to pay for the
general programming model by omitting the optimization.

Congestion control performance. To evaluate the effects
of congestion control in NetRPC, we concurrently run two
applications: a SyncAggr and an AsyncAggr on the same data
plane (i.e., the same switch, host, and links), each having two
clients and one server. Figure 8 shows the throughput over a
short time period. We observe that the throughput quickly con-
verges within 200 ms, and the combined bandwidth reaches
77% to 89% of the 100Gbps link. Also, the two application
fairly shares the available bandwidth. Figure 9 shows the
packet loss ratio over a short time period with/without con-
gestion control. We can see that our ECN-based congestion
and flow control reduces packet loss by about 63%, as it auto-
matically adjusts the sending window to avoid overwhelming
both the link and the server agent (Section 5.1).

Reliability mechanisms. To evaluate how NetRPC handles
packet losses, we inject packet losses at different rates to
emulate unreliable network. We run three INC applications

NetRPC, ATP, and SwitchML and verified that all three cor-
rectly handles packet loss. Figure 10 shows the normalized
throughput. NetRPC performs retransmission correctly under
packet loss, using on-switch states only. At a high loss rate,
NetRPC has a more graceful performance degradation. Com-
pared with the no-loss case, NetRPC, ATP, and SwitchML’s
throughput decrease by 22%, 23%, and 43%, respectively.
With 1% loss, NetRPC shows significantly less performance
degradation than SwitchML because it adopts out-of-order
ACKs and thus learns and reacts to packet loss faster.

Handling overflows. We run SyncAggr under synthetic
workload varying overflow ratios from 0.001% to 1%. Fig-
ure 11 plots the throughput vs. overflow ratios. In all experi-
ments, we check the computation results to ensure that NetRPC
detects and corrects the overflow as we expect. When the over-
flow ratio exceeds 0.1%, we notice throughput degradation
due to the software fallback. NetRPC still achieves about 65
Gbps throughput at 1% overflows. Note that the overflow ratio
in real workload is far less than 1% with a reasonable quanti-
zation scaling factor for floating-point numbers. In contrast,
the pure software solution only achieves a max of 40 Gbps.

Performance of clear policies. NetRPC offers three ways to
handle Map.clear in NetFilter (Section 5.2.2). We measure
the performance of a 2-to-1 SyncAggr using three Map.clear

policies, and Table 6 summarizes the results. Lazy policy
performance depends on the ratio of arithmetic overflow, and
we use three ratios of 0%, 1%, and 10%. Copy policy achieves
the highest throughput without extra memory cost but also
has the highest latency because it relies on servers to backup

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 209

0% 0.001% 0.01% 0.1% 1%
Overflow Ratio

30

40

50

60

70

80

Th
ro

ug
hp

ut
 (G

bp
s)

NetRPC Throughput
max Throughput
pure DPDK Throughput

Figure 11: Overflow Ratio vs. Throughput

NetRPC FCFS HASH PoN0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ca
ch

e
Hi

t R
at

io

0

10

20

30

40

50

60

70

Go
od

pu
t (

Gb
ps

)

Cache Hit Ratio Goodput

Figure 12: Caching Policy Comparison

1 2 3 4 5 6 7 8 9 10
Distinct Key Num (32 * 104)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ca
ch

e
hi

t r
at

io

40

50

60

70

Go
od

pu
t (

Gb
ps

)

CHR(1-sw)
CHR(2-sw)
Goodput(1-sw)
Goodput(2-sw)

Figure 13: NetRPC on Two Switches

Table 6: Clear Policy Impact on Performance
Latency Memory Throughput

copy 74µs 1x 83.11Gbps
shadow 24µs 2x 50.41Gbps

lazy (0%) 22µs 1x 83.31Gbps
lazy (1%) 23µs 1x 64.75Gbps
lazy (10%) 30µs 1x 34.82Gbps

the cleared states for reliability. Shadow policy offers a good
latency of 24µs but doubles memory usage and has the lowest
throughput because it needs to recirculate the packet and
keep an extra copy. Lazy policy achieves both the highest
throughput and lowest latency with no overflows. But as the
overflow ratio increases, both metrics degrade. The actual
accumulator overflow ratio depends on the data. Thus, we
leave them as a user configuration in the NetFilter.

Cache policy. As we discuss in Section 5.2.2, a good cache
policy alleviates traffic incast at the server and improves per-
formance. We evaluate multiple cache policies. The experi-
ment uses 32×4K switch memory with 2-to-1 traffic. Com-
parison baselines are FCFS, hash-based caching (HASH),
and Power of N (PoN). HASH policy uses the hash key as
the index to address the switch memory (like ASK [2] and
ATP [22]) and falls back to the server agent on hash collisions.
PoN is a classic policy in sketches [38]: it only caches the hot
keys whose hit number exceeds a threshold N and gives up
caching when the switch memory is full. We tune the hyper-
parameter N to maximize the performance experimentally.

Figure 12 shows the result. First, the CHR is positively cor-
related with the goodput, indicating the need for cache policy
optimization. NetRPC’s periodic cache update outperforms
other cache policies by 18% ∼ 57% on cache hit ratio (CHR)
and 22% ∼ 44% on goodput. HASH performs the worst be-
cause it ignores the locality of keys in the same packet: if
some keys are cached, but their adjacent keys in the same
stream are not due to hash collision, the entire packet will
never hit the cache. PoN and FCFS behave similarly as they
stop caching new hot keys if the cache has been fully filled.
Compared with these baselines, NetRPC catches up the local-
ity better and adapts to high-skewed key distribution better

Table 7: Concurrent Application Throughput and Latency
Metrics 1APP 4APP 4APP×5

Sync Goodput (Gbps) 50.55 24.88 24.84
Async Goodput (Gbps) 72.31 36.01 36.60
Goodput Sum (Gbps) N/A 60.89 61.44
KeyValue Delay (ms) 3.52 3.56 3.85
Agreement Delay (µs) 20 21 24

because it always caches the recent hot keys and periodically
updates the switch cache to make up space for newer ones.

6.5 Multiple Concurrent Applications

An important goal of NetRPC is to support a multi-application
data plane without switch rebooting. To evaluate the perfor-
mance, we run multiple instances of all four application types
in a 2-to-1 topology. We evaluate using three concurrency
settings: 1) running a single application instance (“1APP ”);
2) running one instance per type (“4APP”); and 3) running
five instances per type (“4APP ×5”) . Table 7 shows the total
goodput and average latency. In all cases, we measure and
report the throughput of SyncAgtr and AsyncAgtr and the
latency of KeyValue and Agreement. In the 4APP ×5 case,
we take the average of all instances of the measured type.

When concurrent applications increase from 4 to 20, we
observe that the total bandwidth of SyncAgtr and AsyncAgtr
stays roughly the same. Although KeyValue and Agreement
do not use much bandwidth, they do contend for switch PPS
(packets per second) and queue up in sending threads. The
experiments show that small applications have little impact
on bandwidth-heavy ones. We observe only a 20% latency in-
crease compared to the 1APP case. These results demonstrate
the successful resource sharing ability of NetRPC.

6.6 Running on Multiple Switches

Limited by available hardware, we only validate NetRPC’s
cross-switch capability with two-switches. We chain the two
switches into a longer pipeline, and thus a packet can carry
more key-value pairs. The NetRPC server agent decides which

210 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

key to put on which switch. We compare the performance
of running 2-to-1 MapReduce on the testbed with one / two
switches. We loop through the distinct keys multiple times,
and thus a cache smaller than the number of distinct keys will
suffer cache misses. Then we measure the CHR and the good-
put varying with the number of distinct keys as an indicator
of how well NetRPC is using memory on both switches.

Figure 13 shows the result. Each switch stores M = 32×
40K values with distinct keys. We confirm that the goodput
starts to drop at M using one switch, but 2M with two. The
peak goodput decreases slightly with more switches (from
75 Gbps to 69 Gbps), mainly because of the increased host
workload to encode more keys into the packet. Beyond the
switch memory capacity, the goodput first decreases slightly
(5.3% of peak throughput with 1.5M keys for one switch)
and then dramatically (22% with 2M keys). This is because
offering a 75 Gbps workload, there is little hope that the
server CPU can handle many cache misses. Nevertheless, the
two-switch setting shows a 1.63× improvement over the one-
switch case when handling 2.5M distinct keys, showing that
NetRPC can efficiently utilize memory on multiple switches.

7 Conclusion and Future Work

In-network computation (INC) comes from software-defined
networking (SDN), but INC is fundamentally different from
SDN because it mainly provides computation service instead
of communication. Thus, we need a new programming model
for INC to better describe computation. We need high-level
data structures, collections, memory, and procedure calls that
center around end-hosts instead of packets, headers, tables,
and pipelines that center around switches. On the other hand,
we recognize that the INC data plane is still a shared network
infrastructure, not an application-specific accelerator. Thus,
both generality and multi-application support are essential.

NetRPC, to our knowledge, is the first framework that in-
tegrates INC into the familiar RPC programming model.
NetRPC allows users to implement different types of INC ap-
plications using the familiar gRPC framework and run them
on a single shared INC data plane. NetRPC achieves 97%
of LoC deduction for INC applications and offers similar or
better performance boosts than handcrafted systems.

Current NetRPC mainly focuses on mechanisms of INC +
RPC integration. In future work, we will focus on policies,
such as scheduling among different applications, efficient
sharing between INC workload and other SDN or traditional
network traffic, efficient end-host CPU, GPU, and INC co-
scheduling. We will also explore NetRPC on more complex
topologies, especially those with oversubscribed links. We
will extend NetRPC congestion control with more fine-grained
window adjustment. We will open source NetRPC on the pub-
lication of this paper to benefit the INC community.

References

[1] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
tcp (dctcp). In Proceedings of the ACM SIGCOMM
2010 Conference, pages 63–74, 2010.

[2] Anonymous. ASK: In-network aggregation service for
key-value streams, 2022. https://anonymous.4open.
science/r/ASK-80BF.

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
44(3):87–95, 2014.

[4] Anonymized Internet traces, 2008. https://www.
caida.org/data/passive/passive_dataset.xml.

[5] Cisco. One silicon, one experience, multiple
roles, 2019. https://blogs.cisco.com/sp/
one-silicon-one-experience-multiple-roles.

[6] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh
Lee, Noa Zilberman, Hakim Weatherspoon, Marco
Canini, Fernando Pedone, and Robert Soulé. P4xos:
Consensus as a network service. IEEE/ACM Transac-
tions on Networking, 28(4):1726–1738, 2020.

[7] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao,
Yu Zhou, Bingchuan Tian, Chen Sun, Dennis Cai, Ming
Zhang, and Minlan Yu. Lyra: A cross-platform language
and compiler for data plane programming on heteroge-
neous asics. In Proceedings of the Annual conference of
the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and
protocols for computer communication, pages 435–450,
2020.

[8] Xiangyu Gao, Taegyun Kim, Aatish Kishan Varma,
Anirudh Sivaraman, and Srinivas Narayana. Autogener-
ating fast packet-processing code using program synthe-
sis. In Proceedings of the 18th ACM Workshop on Hot
Topics in Networks, pages 150–160, 2019.

[9] Google. Protocol buffers are a language-neutral,
platform-neutral extensible mechanism for serializing
structured data, 2008. https://developers.google.
com/protocol-buffers.

[10] Google. gRPC: A high performance, open source uni-
versal rpc framework, 2020. https://grpc.io/.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 211

https://anonymous.4open.science/r/ASK-80BF
https://anonymous.4open.science/r/ASK-80BF
https://www.caida.org/data/passive/passive_dataset.xml
https://www.caida.org/data/passive/passive_dataset.xml
https://blogs.cisco.com/sp/one-silicon-one-experience-multiple-roles
https://blogs.cisco.com/sp/one-silicon-one-experience-multiple-roles
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://grpc.io/

[11] Richard L Graham, Devendar Bureddy, Pak Lui, Hal
Rosenstock, Gilad Shainer, Gil Bloch, Dror Goldenerg,
Mike Dubman, Sasha Kotchubievsky, Vladimir Koush-
nir, et al. Scalable hierarchical aggregation protocol
SHArP: a hardware architecture for efficient data reduc-
tion. In 2016 First International Workshop on Com-
munication Optimizations in HPC (COMHPC), pages
1–10. IEEE, 2016.

[12] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-driven streaming network telemetry. In Proceed-
ings of the 2018 conference of the ACM special interest
group on data communication, pages 357–371, 2018.

[13] Ian Horrocks, Peter F Patel-Schneider, Harold Boley,
Said Tabet, Benjamin Grosof, Mike Dean, et al. Swrl: A
semantic web rule language combining owl and ruleml.
W3C Member submission, 21(79):1–31, 2004.

[14] ImageNet. Imagenet is an image database organized
according to the wordnet hierarchy, 2022. https://
www.image-net.org/.

[15] Intel. DPDK is the data plane development kit that con-
sists of libraries to accelerate packet processing work-
loads running on a wide variety of cpu architectures.,
2013. https://www.dpdk.org/.

[16] Intel. Barefoot tofino, 2020. https:
//www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/
tofino-series/tofino.html.

[17] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate
Foster, and Robert Soulé. Life in the fast lane: A line-
rate linear road. In Proceedings of the Symposium on
SDN Research, pages 1–7, 2018.

[18] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. Netchain: Scale-free sub-rtt coordination. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 35–49, 2018.

[19] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, pages 121–136,
2017.

[20] George Karlos, Henri Bal, and Lin Wang. Don’t
you worry’bout a packet: Unified programming for in-
network computing. In Proceedings of the Twentieth
ACM Workshop on Hot Topics in Networks, pages 99–
107, 2021.

[21] Leslie Lamport. Paxos made simple. ACM SIGACT
News (Distributed Computing Column) 32, 4 (Whole
Number 121, December 2001), pages 51–58, 2001.

[22] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael Swift.
ATP: In-network aggregation for multi-tenant learning.
In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 741–761.
USENIX Association, April 2021.

[23] Alberto Lerner, Rana Hussein, Philippe Cudre-Mauroux,
and U eXascale Infolab. The case for network acceler-
ated query processing. In CIDR, 2019.

[24] General purpose Paxos library, 2013. https://
bitbucket.org/sciascid/libpaxos.

[25] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. DistCache: Provable load balancing for Large-
Scale storage systems with distributed caching. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), pages 143–157, 2019.

[26] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-
4 load balancing fast and cheap using switching asics.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 15–28,
2017.

[27] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
directed hardware design for network performance mon-
itoring. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages
85–98, 2017.

[28] NPL. Open, high-level language for developing feature-
rich solutions for programmable networking platforms,
2021. https://nplang.org/.

[29] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,
Marco Canini, and Panos Kalnis. In-network compu-
tation is a dumb idea whose time has come. In Pro-
ceedings of the 16th ACM Workshop on Hot Topics in
Networks, pages 150–156, 2017.

[30] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with In-
Network aggregation. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 785–808. USENIX Association, April 2021.

212 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.image-net.org/
https://www.image-net.org/
https://www.dpdk.org/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://bitbucket.org/sciascid/libpaxos
https://bitbucket.org/sciascid/libpaxos
https://nplang.org/

[31] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nel-
son, Panos Kalnis, Changhoon Kim, Arvind Krishna-
murthy, Masoud Moshref, Dan RK Ports, and Peter
Richtárik. Scaling distributed machine learning with in-
network aggregation. arXiv preprint arXiv:1903.06701,
2019.

[32] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu,
Changhoon Kim, Mohammad Alizadeh, Hari Balakr-
ishnan, George Varghese, Nick McKeown, and Steve
Licking. Packet transactions: High-level programming
for line-rate switches. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 15–28, 2016.

[33] Haoyu Song. Protocol-oblivious forwarding: Unleash
the power of SDN through a future-proof forwarding
plane. In Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking,
pages 127–132, 2013.

[34] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Do-
enges, and Nate Foster. Composing dataplane programs
with µP4. In Proceedings of the Annual conference of
the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and
protocols for computer communication, pages 329–343,
2020.

[35] Brent E Stephens, Darius Grassi, Hamidreza Almasi,
Tao Ji, Balajee Vamanan, and Aditya Akella. Tcp is
harmful to in-network computing: Designing a message
transport protocol (mtp). In Proceedings of the Twenti-
eth ACM Workshop on Hot Topics in Networks, pages
61–68, 2021.

[36] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and
Minlan Yu. Cheetah: Accelerating database queries
with switch pruning. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of
Data, pages 2407–2422, 2020.

[37] Raajay Viswanathan and Aditya Akella. Network-
accelerated distributed machine learning using mlfabric.
arXiv preprint arXiv:1907.00434, 2019.

[38] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve
Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communi-
cation, pages 561–575, 2018.

[39] Yelp. An all-purpose dataset for learning, 2022. https:
//www.yelp.com/dataset.

[40] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman,
Mosharaf Chowdhury, and Xin Jin. Netlock: Fast, cen-
tralized lock management using programmable switches.

Table 8: Arithmetic Operations in Stream.modify
OP Semantics

MAX stream.value = max(stream.value, para)
MIN stream.value = min(stream.value, para)
ADD stream.value += para

ASSIGN stream.value = para
SHIFTL stream.value <<= para
SHIFTR stream.value >>= para
BAND stream.value &= para
BOR stream.value |= para

BNOT stream.value = ∼stream.value
BXOR stream.value ^= para

Counter Threshold (32 bits)

Flag (16 bits)

GAID and SRRT Index (32 bits) Sequence Number (32 bits)

OpType (16 bits)

Key / Register Index 1 (32 bits) Value of key 1 (32 bits)

...

Bitmap (32 bits)

Key-
Value
Pairs

Optional
FieldCounter Index (32 bits)

IsOf isCnf isCrs isClr ECN isSA isMcast Flip

Figure 14: NetRPC Packet Format

In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols
for computer communication, pages 126–138, 2020.

[41] Bohan Zhao, Xiang Li, Boyu Tian, Zhiyu Mei, and Wen-
fei Wu. Dhs: Adaptive memory layout organization of
sketch slots for fast and accurate data stream processing.
In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, pages 2285–
2293, 2021.

[42] Hang Zhu, Tao Wang, Yi Hong, Dan RK Ports, Anirudh
Sivaraman, and Xin Jin. NetVRM: Virtual register mem-
ory for programmable networks. In 19th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI 22), pages 155–170, 2022.

A Arithmetic in NetRPC

We list the arithmetic operators of Stream.modify and their
semantics supported by NetRPC in Table 8.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 213

https://www.yelp.com/dataset
https://www.yelp.com/dataset

B NetRPC Protocol

B.1 Packet Format

The packet contains three kinds of fields. The key-value pairs
encode the application data with the format of an array of
<key/index, value> tuples; computation control fields encode
the NetFilter configurations and guide the switch program
for the computation; transport control fields maintain the chan-
nel connection.

Key-value pairs. Each NetRPC packet carries 32 key-value
pairs. These pairs are either processed on the switch or the
server agent by the selected primitives. The computation re-
sults are also carried back in the same position.

Computation Control Fields. The control flag bits contain
the basic information about primitives selection. Current
bits in use can indicate the following choices: whether any
overflow happens (isOf); whether to use CntFwd (isCnf);
whether to clear the target memory (isClr).

OpType indicates the type of arithmetic operation on key-
value pairs. NetRPC supports various line-rate on-packet com-
putation as we discuss in Appendix A. In bitmap field, the
i-th bit in the bitmap indicates whether the switch should pro-
cess the i-th key-value pair. The CntFwd fields only come into
effect when the isCnf flag is set. counter index tells the
switch which counter (register) to increase; when the register
value equals to the counter threshold, the switch should
forward the packet instead of dropping it.

Transmission Control Fields. Concurrent NetRPC connec-
tions (de)multiplex the network, and NetRPC distinguishes the
flows by the GAID. On hosts, received packets are classified
to the applications; on the switch, the GAID is also used for
admission control. In NetRPC, each sending thread maintains
a short-term connection to serve applications’ calls/tasks and
thus assigns a sequence number (starting from zero) for each
packet. In addition, the reliability control requires sending
threads to maintain a long-term connection (cross the tasks)
with the switch. The field State Register of Reliable Trans-
mission SRRT is the switch memory address to store the state,
and the flip bit is the reliable state to store. Some bits
in the Control Flag also controls the routing: whether the
packet should cross the switch to the server agent (isCross);
ECN indicates whether the switch is experiencing congestion
(queue buildup); whether the packet comes from the server
agent (isSA); whether to multicast the packet (isMcast).

Optimization. Some optional fields will be removed if unnec-
essary in the computation to improve the network bandwidth
efficiency and the goodput. (1) If we address the key-value or
value stream linearly to the switch memory, we can eliminate
the key fields and indicate the starting index of the memory
segment by the counter index field. (2) If the computation
does not need CntFwd, we can eliminate the CntFwd fields.

Check Admission
Check Resend

Check Overflow
Modify Pkt

Pkt.isSA noyes

Pkt.isClr
&&Pkt

isResendyes no

Read
Register

Read+Clean
Register

Pkt.isCnf
Cnt[Pkt.cntId

x]++
yes

Pkt.isMcast

Multicast Pkt Forward Pkt

yes no

Pkt.bitmap[*]
== 1

no

Write+Read
Register

yes

Pkt.isCnf &&
Cnt[Pkt.cntId

x] !=
Pkt.cntTh

Drop Pkt

no

yes

Figure 15: NetRPC Switch Logic

C Switch pipeline details

There is a 12-stage pipeline in our switch, and we use 8 to
implement the map access primitives. The remaining four
stages handle the reliable transmission, flow and congestion
control, as well as Stream.modify and the CntFwd primitive.
Figure 15 illustrate the flowchart for switch logic.

When the switch receives a NetRPC packet, it will first check
whether the corresponding application (GAID) has registered.
Unregistered packets will be forwarded as normal ones. More-
over, the switch checks whether it receives the packet for the
first time. Otherwise, it avoids Map.addTo/Map.clear primi-
tives on the switch memory but still Map.get values from reg-
isters into the packets. An overflow packet will be forwarded
directly for fallback without on-switch processing.

For packets to the server, the switch first executes
Stream.modify and CntFwd if required, then processes key-
value pairs in the packet: Map.addTo the switch registers and
Map.get the computation results back to replace the value.
The switch drops those packets that enable CntFwd but do not
reach the threshold and forwarded/multicast the rest packets.

For packets from the server, the switch first Map.get register
values into the packet and then decides whether to clear the
corresponding registers. The switch will forward/multicast
the packets according to control flags and routing rules.

D NetRPC Implementation Examples

We enumerate some NetRPC implementation of classic INC
applications: MapReduce, lock server, and network monitor-
ing in Figure 16 to 24.

214 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 import "netrpc.proto"
2 message ReduceRequest {
3 netrpc.STRINTMap kvs = 1;
4 }
5 message ReduceReply {
6 string msg = 1;
7 }
8 message QueryRequest {
9 string msg = 1;

10 }
11 message QueryReply {
12 netrpc.STRINTMap kvs = 1;
13 }
14 service MapReduce {
15 rpc ReduceByKey (ReduceRequest) returns

(ReduceReply) {} filter "reduce.nf"
16 rpc Query (QueryRequest) returns (

QueryReply) {} filter "query.nf"
17 }

Figure 16: RPC Service Definition of Distributed
MapReduce

1 { //reduce.conf
2 "AppName": "MR-1",
3 "Precision": 0,
4 "get": "nop",
5 "addTo": "ReduceRequest.kvs",
6 "clear": "nop",
7 "modify": "nop",
8 "CntFwd": {
9 "to": "SRC",

10 "threshold": 0,
11 "key": "NULL",
12 },
13 }
14 { //query.conf
15 "AppName": "MR-1",
16 "Precision": 0,
17 "get": "QueryReply.kvs",
18 "addTo": "nop",
19 "clear": "nop",
20 "modify": "nop",
21 "CntFwd": {
22 "to": "SRC",
23 "threshold": 0,
24 "key": "NULL",
25 },
26 }

Figure 17: NetFilter of Distributed MapReduce

1 shared_ptr <Channel > channel =
CreateCustomChannel(server_ip ,
InsecureChannelCredentials());

2 unique_ptr <Stub > stub_(NewStub(channel));
3 pair <string ,int >* MapReduce(pair <string ,

int >* data , int length) {
4 ReduceRequest request1;
5 ReduceReply reply1;
6 ClientContext context1;
7 for(int i = 0; i<length; i++){
8 (*request1.mutable_kvs()->

mutable_map())[data[i].first]
= data[i].second;

9 }
10 Status status = stub_ ->ReduceByKey(&

context1 , request1 , &reply1);
11 QueryRequest request2;
12 QueryReply reply2;
13 ClientContext context2;
14 stub_ ->Query(&context2 , request2 , &

reply2);
15 int sz = reply2.mutable_kvs()->

mutable_map()->size(), idx = 0;
16 pair <string ,int >* output = new pair <

string ,int >[sz];
17 for(auto it: (*reply2.mutable_kvs()->

mutable_map())){
18 output[idx].first = it.first;
19 output[idx++].second = it.second;
20 }
21 return output;
22 }

Figure 18: Client Stub for Distributed MapReduce

1 import "netrpc.proto"
2 message LockRequest {
3 netrpc.STRINTMap map = 1;
4 }
5 message LockReply {
6 string msg = 1;
7 }
8 message ReleaseRequest {
9 netrpc.STRINTMap map = 1;

10 }
11 message ReleaseReply {
12 string msg = 1;
13 }
14 service Lock {
15 rpc GetLock (LockRequest) returns (

LockReply) {} filter "lock.nf"
16 rpc Release (ReleaseRequest) returns (

ReleaseReply) {} filter "release.nf"
17 }

Figure 19: RPC Service Definition of Distributed
Lock Server

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 215

1 { //lock.conf
2 "AppName": "LS-1",
3 "Precision": 0,
4 "get": "nop",
5 "addTo": "nop",
6 "clear": "nop",
7 "modify": "nop",
8 "CntFwd": {
9 "to": "SRC",

10 "threshold": 1,
11 "key": "LockRequest.kvs",
12 },
13 }
14 { //release.conf
15 "AppName": "LS-1",
16 "Precision": 0,
17 "get": "nop",
18 "addTo": "nop",
19 "clear": "copy",
20 "modify": "nop",
21 "CntFwd": {
22 "to": "SRC",
23 "threshold": 0,
24 "key": "ReleaseRequest.kvs",
25 },
26 }

Figure 20: NetFilter of Distributed Lock Server

1 shared_ptr <Channel > channel =
CreateCustomChannel(server_ip ,
InsecureChannelCredentials());

2 unique_ptr <Stub > stub_(NewStub(channel));
3 void BlockingLock(string* lockTarget , int

length) {
4 LockRequest request1;
5 LockReply reply1;
6 ClientContext context1;
7 for(int i = 0; i<length; i++){
8 (*request1.mutable_kvs()->

mutable_map())[lockTarget[i]]
= 1;

9 }
10 Status status = stub_ ->LockSend(&

context1 , request1 , &reply1);
11 /* critical section */
12 ReleaseRequest request2;
13 ReleaseReply reply2;
14 ClientContext context2;
15 for(int i = 0; i<length; i++){
16 (*request2.mutable_kvs()->

mutable_map())[lockTarget[i]]
= 0;

17 }
18 stub_ ->Release(&context2 , request2 , &

reply2);
19 }

Figure 21: Client Stub for Blocking Lock Acquire
and Release

1 import "netrpc.proto"
2 message MonitorRequest {
3 netrpc.STRINTMap kvs = 1;
4 string payload = 1;
5 }
6 message MonitorReply {
7 string payload = 1;
8 }
9 message QueryRequest {

10 string message = 1;
11 }
12 message QueryReply {
13 netrpc.STRINTMap kvs = 1;
14 }
15 service Monitor {
16 rpc MonitorCall (MonitorRequest) returns

(MonitorReply) {} filter "monitor.
nf"

17 rpc Query (QueryRequest) returns (
QueryReply) {} filter "query.nf"

18 }

Figure 22: RPC Service Definition of Network Mon-
itoring

1 { //monitor.conf
2 "AppName": "MON -1",
3 "Precision": 0,
4 "get": "nop",
5 "addTo": "MonitorRequest.kvs",
6 "clear": "nop",
7 "modify": "nop",
8 "CntFwd": {
9 "to": "SERVER",

10 "threshold": 0,
11 "key": "NULL",
12 },
13 }
14 { //query.conf
15 "AppName": "MON -1",
16 "Precision": 0,
17 "get": "QueryReply.kvs",
18 "addTo": "nop",
19 "clear": "nop",
20 "modify": "nop",
21 "CntFwd": {
22 "to": "SRC",
23 "threshold": 0,
24 "key": "NULL",
25 },
26 }

Figure 23: NetFilter of Network Monitoring

216 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 shared_ptr <Channel > channel =
CreateCustomChannel(server_ip ,
InsecureChannelCredentials());

2 unique_ptr <Stub >stub_(NewStub(channel));
3 pair <string ,int >* MonitorRPC(string*

metrics , int length) {
4 MonitorRequest request1;
5 MonitorReply reply1;
6 ClientContext context1;
7 for(int i = 0; i<length; i++){
8 (*request1.mutable_kvs()->

mutable_map())[metrics[i].
first] = 1;

9 }
10 request1.payload = "Hello";
11 Status status = stub_ ->MonitorCall(&

context1 , request1 , &reply1);
12 if (status.ok()) {
13 cout << reply1.payload << endl;
14 }
15 QueryRequest request2;
16 QueryReply reply2;
17 ClientContext context2;
18 stub_ ->Query(&context2 , request2 , &

reply2);
19 int sz = reply2.mutable_kvs()->

mutable_map()->size(), idx = 0;
20 pair <string ,int >* output = new pair <

string ,int >[sz];
21 for(auto it: (*reply2.mutable_kvs()->

mutable_map())){
22 output[idx].first = it.first;
23 output[idx++].second = it.second;
24 }
25 return output;
26 }

Figure 24: Client Stub for RPC with Monitoring

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 217

Bolt: Sub-RTT Congestion Control for Ultra-Low Latency

Serhat Arslan∗

Stanford University
Yuliang Li

Google LLC
Gautam Kumar

Google LLC
Nandita Dukkipati

Google LLC

Abstract
Data center networks are inclined towards increasing line

rates to 200Gbps and beyond to satisfy the performance re-
quirements of applications such as NVMe and distributed ML.
With larger Bandwidth Delay Products (BDPs), an increasing
number of transfers fit within a few BDPs. These transfers
are not only more performance-sensitive to congestion, but
also bring more challenges to congestion control (CC) as they
leave little time for CC to make the right decisions. There-
fore, CC is under more pressure than ever before to achieve
minimal queuing and high link utilization, leaving no room
for imperfect control decisions.

We identify that for CC to make quick and accurate deci-
sions, the use of precise congestion signals and minimization
of the control loop delay are vital. We address these issues by
designing Bolt, an attempt to push congestion control to its
theoretical limits by harnessing the power of programmable
data planes. Bolt is founded on three core ideas, (i) Sub-RTT
Control (SRC) reacts to congestion faster than RTT control
loop delay, (ii) Proactive Ramp-up (PRU) foresees flow com-
pletions in the future to promptly occupy released bandwidth,
and (iii) Supply matching (SM) explicitly matches bandwidth
demand with supply to maximize utilization. Our experiments
in testbed and simulations demonstrate that Bolt reduces 99th-
p latency by 80% and improves 99th-p flow completion time
by up to 3× compared to Swift and HPCC while maintaining
near line-rate utilization even at 400Gbps.

1 Introduction

Data center workloads are evolving towards highly parallel,
lightweight applications that perform well when the network
can provide low tail latency with high bandwidth [5]. Accord-
ingly, the Service Level Objectives (SLOs) of applications are
becoming more stringent, putting increasing responsibility
on network performance. To support this trend, the industry
is inclined towards increasing line rates. 100Gbps links are
already abundant, 200Gbps is gaining adoption, and industry
standardization of 400Gbps ethernet is underway [24].
∗Work done as a student researcher at Google

100 101 102 103 104 105 106 107

RPC Size (Bytes)
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

PC
s

RPC Read
BDP (100G)
BDP (400G)

Figure 1: RPC size distribution for READ operations

With the increasing line rates, CC needs to make decisions
with higher quality and timeliness over a burstier workload.
We illustrate this based on a recent analysis of RPC sizes in
our data centers with respect to BDP sizes at 100Gbps and
400Gbps (calculated using a typical base delay/RTT in data
centers). Our findings are presented in Figure 1.

The fraction of RPCs that fit within 1 and 4 BDP increases
from 62% and 80% at 100Gbps to 80% and 89% at 400Gbps.
These RPCs are performance-sensitive to queuing and under-
utilization. Ultimately, even a single incorrect or slow CC
decision may end up creating tens of microseconds of tail
queuing [12], or cause under-utilization [53] which prolongs
the flow completion time by a few RTTs. Therefore, an
increasing fraction of such RPCs raises the bar for the quality
and timeliness of CC.

Concomitantly, at higher bandwidth, the workload becomes
burstier and thus harder to control. Figure 1 also reveals that a
400Gbps link with just 40% load sees an RPC arrival or com-
pletion roughly every RTT! Hence, it becomes more difficult
to control queuing and under-utilization as they arrive and
finish quickly at RTT timescales. We expect these numbers
to be even more challenging for upcoming workloads such as
disaggregated memory and ML.

We identify two key aspects of CC that are important to
address the challenges of achieving higher CC quality and
timeliness on burstier workloads:

First, granular feedback about the location and severity of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 219

https://orcid.org/0000-0002-6192-3672

congestion allows avoiding over/under-reaction [3]. A precise
CC algorithm would receive the exact state of the bottleneck
to correctly ramp down during congestion and ramp up during
under-utilization. This congestion information would intu-
itively involve telemetry such as the current queue occupancy
and a measure of link utilization [35]. Then, end-hosts would
be able to calculate the exact number of packets they can
inject into the network without creating congestion.

Second, the control loop delay is a determinant of how
sensitive a control algorithm can be. It is defined as the delay
between a congestion event and the reaction from the senders
arriving at the bottleneck. Smaller the control loop delay, the
more accurate and simpler decisions a control system can
make [41]. The state-of-the-art CC algorithms in production
are reported to work well to the extent their control loop delay
allows [30, 35, 60]. However, even a delay of one RTT will
be too long to tolerate for future networks because of the
increasing BDPs [58]. We conjecture that the inevitable next
step is to reduce the control loop delay to sub-RTT levels.

Fortunately, the flexibility and precision provided by pro-
grammable switches [7, 11, 22] allow designing new mecha-
nisms to reduce the control loop delay and increase the gran-
ularity of control algorithms. These state-of-the-art switches
can generate custom control signals to report fine-grained
telemetry so that flows don’t need to rely on end-to-end mea-
surements for detecting congestion at the bottleneck link.

In this work, we present Bolt, our effort of harnessing
the power of programmable data planes to design an ex-
tremely precise CC for ultra-low latency at very high line
rates. Bolt collects congestion feedback with absolute mini-
mum (sub-RTT) delay and ramps up flows proactively to oc-
cupy available bandwidth promptly. To achieve this, it applies
the "packet conservation" principle [25] onto the traffic with
accurate per-packet decisions in P4 [9]. Small per-packet
cwnd changes, combined with the fine-grained in-network
telemetry, help limit the effects of noise in the instantaneous
congestion signal. With Bolt, end-hosts do not make im-
plicit estimations about the severity and exact location of the
congestion or the number of competing flows, freeing them
from manually tuned hard coded parameters and inaccurate
reactions.

The main contributions of Bolt are:

1. A discussion for the fundamental limits of an optimal
CC algorithm with minimal control loop delay.

2. Description of 3 mechanisms that collectively form the
design of Bolt – an extremely precise CC algorithm with
the shortest control loop possible.

3. Implementation and evaluation of Bolt on P4 switches
in our lab which achieves 86% and 81% lower RTTs
compared to Swift [30] for median and tail respectively.

4. NS-3 [48] implementation for large scale scenarios
where Bolt achieves up to 3× better 99th-p flow comple-
tion times compared to Swift and HPCC [35].

The remainder of the paper describes the rationale behind
the design of Bolt in §2, design details in §3, and implemen-
tation insights in §4. Further evaluations and benchmarks
are provided in §5 followed by practical considerations in §6.
Finally, a survey of related work is presented in §7.

2 Towards Minimal Control Loop Delay

Timely feedback and reaction to congestion are well under-
stood to be valuable for CC [42]. With Bolt, we aim to push
the limits on minimizing the control loop delay that is com-
posed of two elements: (1) Feedback Delay (§2.1) is the time
to receive any feedback for a packet sent, and (2) Observa-
tion Period (§2.2) is the time interval over which feedback is
collected before cwnd is adjusted. Most CC algorithms send
a window of packets, observe the feedback reflected by the
receiver over another window, and finally adjust the cwnd,
having a total control loop delay that is even longer than an
RTT [1, 10, 19, 30, 35, 60]. In this section, we describe both
Feedback Delay and Observation Period in detail and discuss
how these elements can be reduced to their absolute minimum
motivating Bolt’s design in §3.

2.1 Feedback Delay
There are two main types of feedback to collect for congestion
control purposes: (i) Congestion Notification and (ii) Under-
utilization Feedback.

2.1.1 Congestion Notification

The earliest time a CC algorithm can react to drain a queue is
when it first receives the notification about it. Traditionally,
congestion notifications are reflected by the receivers with
acknowledgments [1, 8, 30, 35, 42, 47, 60]. We call this the
RTT-based feedback loop since the delay is exactly one RTT.

To demonstrate how notification delay affects performance,
we run an experiment where the congestion notification is
delivered to the sender after a constant configured delay (and
not via acknowledgments). Setting this delay to queuing delay
plus the propagation time in the experiment is equivalent to
RTT-based control loops described above. The experiment
runs two flows with Swift CC [30] on a dumbbell topology1

where the second flow joins while the first one is at a steady
state. The congestion signal is the RTT the packet will observe
with current congestion. Figure 2 (left) shows the time to
drain the congested queue for different notification delays.
Clearly, smaller notification delay helps mitigate congestion
faster as senders react sooner to it.

More importantly, in addition to traveling unnecessary
links, traditional RTT-based feedback loops suffer from the
congestion itself because the notification waits in the con-
gested queue before it is emitted. Adding the queuing delay

1RTT is 8 µs and all the links are 100Gbps.

220 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2 4 8 16
Constant Notification Delay (μs)

0

10

20

30

40

50

Ti
m

e
to

 D
ra

in
 Q

ue
ue

 (μ
s)

Ing Egr Rcvr
Notification Source

Figure 2: Effect of notification delay on
queue draining time

Sender 1

Sender 2

Switch

Last packet of sender 1 is transmitted
First under-utilization feedback by switch
Sender 2 detects under-utilization
Sender 2 starts ramping up

1
2
3
4

Under-utilization

2

1

43

(a) Reactive Ramp-Up

Sender 1

Sender 2

Switch

Notify switch that sender 1 is near completion
Switch notifies sender 2 about near completion
Sender 2 detects future under-utilization
Sender 2 starts ramping up

1
2
3
4

2

1

3 4

Full Utilization

(b) Proactive Ramp-Up

Figure 3: Under-utilization feedback

to the notification delay hinders tackling congestion even
more. During severe congestion events, this extra delay can
add multiples of the base RTT to the feedback delay [30].

To understand this more, we also measure the congestion
mitigation time of scenarios where the notification is gener-
ated at different locations in the network in Figure 2 (right).
"Rcvr" represents the RTT-based feedback loop where the
congestion notification is piggybacked by the receiver. "Egr"
is when the switch sends a notification directly to the sender
from the egress pipeline, after the packet waits in the con-
gested queue. "Ing" is when the notification is generated at
the ingress pipeline, as soon as a packet arrives at the switch.
As expected, generating the congestion notification as soon
as possible improves performance by more than 2×.

Correspondingly, we stress that in order to reduce the noti-
fication delay to its absolute minimum, the congestion notifi-
cation should travel directly from the bottleneck back to the
sender without waiting in the congested queue.

2.1.2 Under-utilization Feedback

While flow arrival events add to congestion in the network,
flow completion events open up capacity to be used by other
flows. When a flow completes on a fully utilized link with
zero queuing, the packets of the completing flow leave the
network and the link will suddenly become under-utilized
until the remaining flows ramp up (Figure 3a). As traffic gets
more dynamic, such under-utilization events become more
frequent, reducing the total network utilization. Therefore,
in addition to detecting congestion, a good control algorithm
should also be able to detect any under-utilization in order to
capture the available bandwidth quickly and efficiently [44].

In practice, CC schemes deliberately maintain a standing
queue under a steady state, so that when a flow completes,
the packets in the queue can occupy the bandwidth released
by the finished flow until the remaining flows ramp up [34,
40]. For example, while HPCC was designed to keep near-
zero standing queue, the authors followed up that in practice,
HPCC target utilization should be set to 150% to improve
network utilization [36], which implies half a BDP worth
of standing queue. Other CC schemes used in practice also
maintain standing queues by filling up the buffers to a certain
level before generating any congestion signal [1, 30, 60].

Figure 4 demonstrates how Swift behaves upon a flow com-

pletion when a long enough standing queue is not maintained.
There are two flows in the network2 and one of them com-
pletes at t = 200µs. The remaining flow’s cwnd takes about
25 RTTs to occupy the released bandwidth as per the addi-
tive increase mechanism in Swift. During this time interval,
under-utilization happens despite the non-zero queuing at a
steady state. This under-utilization can also be observed when
there are a larger number of flows if the standing queue size
is not adjusted appropriately [53].

Ideally, any remaining flow should immediately capture
the cwnd of the completing flow without under-utilizing the
link. Therefore we conclude that an optimal congestion con-
trol algorithm would detect flow completions early enough,
proactively, to ramp up as soon as the spare capacity becomes
available (Figure 3b).

2.2 Observation Period
In addition to the feedback delay, the total control loop delay
is usually one RTT longer for window-based data center CC
schemes. Namely, once the sender adjusts its cwnd, the next
adjustment happens only after an RTT to prevent reacting to
the same congestion event multiple times. We call this extra
delay the observation period and illustrate it in Figure 5.

Once-per-window semantics is very common among CC
schemes where the per-packet feedback is aggregated into
per-window observation. For example, DCTCP [1] counts the
number of ECN markings over a window and adjusts cwnd
based on this statistics once every RTT. Swift compares RTT
against the target every time it receives an ACK but decreases
cwnd only if it has not done so in the last RTT. Finally, HPCC
picks the link utilization observed by the first packet of a
window to calculate the reference cwnd which is updated
once per window. As a consequence, flows stick to their cwnd
decision for an RTT even if the feedback for a higher degree
of congestion arrives immediately after the decision.

Updating cwnd only once per window removes information
about how dynamic the instantaneous load was at any time
within the window. This effect, naturally, results in late and/or
incorrect congestion control decisions, causing oscillations
between under and over-utilized (or congested) links when
flows arrive and depart. Consider the scenario2 in Figure 6

2The dumbbell topology from Figure 2 (RTT: 8 µs, 100Gbps links).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 221

0 200 400 600
Time (μs)

0

2

4

6

8

Qu
eu

e
Oc

cu
pa

nc
y

(μ
s)

Flow
Completion

Under
Utilization

0

50

100

150

Cw
nd

 (K
B)

Swift Queuing
Ideal Queuing

Swift Cwnd
Ideal Cwnd

Figure 4: cwnd of the remaining Swift flow and
queue occupancy after a flow completion.

Sender

Receiver

Congestion not detected
Congestion feedback reflected by receiver
Congestion observed, but cwnd not decreased
Cwnd decreased per earlier observation

1
2
3
4

1

2

3 4

Observation

Period

Control Loop Delay
RTT

Figure 5: Observation period adds up to an
RTT to the control loop delay.

0

5

10

Qu
eu

in
g

(μ
s)

Flow arrival
Swift
HPCC (INT)
Ideal

0 200 400 600 800
Time (μs)

50
75

100

Ut
iliz

at
io

n
(%

)

Flow completion

Figure 6: HPCC and Swift’s reaction to flow
arrival and completion.

where a new flow joins the network at t = 100µs while another
flow is at its steady state. HPCC drains the initial queue built
up in a couple of RTTs, but immediately oscillates between
under-utilization and queuing for a few iterations. Moreover,
the completion of a flow at t = 650µs again causes oscillations.
Under highly dynamic traffic, such oscillations may increase
tail latency and reduce network utilization.

An alternative way to avoid oscillations would be to react
conservatively similar to Swift. It also reduces cwnd only
once in an RTT during congestion but uses manually tuned
parameters (i.e. ai and β) to make sure reactions are not impul-
sive. Although oscillations are prevented this way, Figure 6
shows that Swift takes a relatively long time to stabilize.

We conclude that once per RTT decisions can lead to either
non-robust oscillations or relatively slow convergence. This
is especially problematic in high-speed networks where flow
arrivals and completions are extremely frequent. Ideally, the
shortest observation period would be a packet’s serialization
time because it is the most granular decision unit for packet-
switched networks. Yet, the per-packet CC decisions should
only be incremental to deal with the noise from observations
over such a short time interval.

3 Design

Bolt is designed for ultra-low-latency even at very high line
rates by striving to achieve the ideal behavior shown in Fig-
ures 4 and 6. The design aims to reduce the control loop
delay to its absolute minimum as described in §2. First, the
congestion notification delay is minimized by generating no-
tifications at the switches and reflecting them directly to the
senders (§3.1). Second, the flow completion events are sig-
naled by the senders in advance to hide the latency of ramp-up
and avoid under-utilization (§3.2). Third, cwnd is updated
after each feedback for quick stabilization where the update
is at most one per packet to be resilient to noise. Together,
these three ideas allow for a precise CC that operates on a
per-packet basis minimizing incorrect CC decisions.

Prior works have separately proposed sub-RTT feedback
[17, 50, 57], flow completion signaling [18], and per-packet

cwnd adjustments [16, 27] which are discussed in §7. Bolt’s
main innovation is weaving these pieces into a harmonious
and precise sub-RTT congestion control that is feasible for
modern high-performance data centers. The key is to address
congestion based on the packet conservation principle [25]
visualized in Figure 7 where a network path is modeled as
a pipe with a certain capacity of packets in-flight at a time.
When the total cwnd is larger than the capacity by 1, there is
an excess packet in the pipe which is queued. If the total cwnd
is smaller than the capacity by 1, the bottleneck link will be
under-utilized by 1 packet per RTT. Therefore, as soon as a
packet worth queuing or under-utilization is observed, one of
the senders should immediately decrement or increment the
cwnd, without a long observation period.

Bolt’s fundamental way of minimizing feedback delay and
the observation period while generating precise feedback for
per-packet decisions is materialized with 3 main mechanisms:

1. SRC (Sub-RTT Control) reduces congestion notifica-
tion delay to its absolute minimum. (§3.1)

2. PRU (Proactive Ramp Up) hides any feedback delay
for foreseen under-utilization events. (§3.2)

3. SM (Supply Matching) quickly recovers from unavoid-
able under-utilization events. (§3.3)

To realize these 3 mechanisms, Bolt uses 9 bytes of
transport-layer header detailed in listing 1. We explain the
purpose of each field as we describe the design of Bolt whose
switching logic is summarized in Algorithm 1.

cwnd=4

cwnd=4

cwnd=5

cwnd=4

cwnd=3

cwnd=4

Bottleneck

Queuing

Under
Utilization

Zero Queuing

Full Utilization

Excess Packet:

Queuing

Packet Deficit:
Under-Utilizaiton

Figure 7: Pipe model of Packet Conservation Principle

222 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1: BOLT LOGIC AT THE SWITCH

1 BoltIngress (pkt):
2 if !pkt.data then ForwardAndReturn(pkt)
3 CalculateSupplyToken(pkt) . see Algorithm 3
4 if cur_q_size≥CCT HRESH then . Congested
5 if !pkt.dec then
6 pktsrc.queue_size← switch.q_size
7 pktsrc.link_rate← switch.link_rate
8 pktsrc.t_data_tx← pkt.tx_time
9 SendSRC(pktsrc)

10 pkt.dec, pkt.inc← 1,0
11 else if pkt.last then . Near flow completion
12 if !pkt. f irst then pru_token++
13 else if pkt.inc then . Pkt demands a token
14 if pru_token > 0 then
15 pru_token← pru_token−1
16 else if sm_token≥MTU then
17 sm_token← sm_token−MTU
18 else
19 pkt.inc← 0 . No token for cwnd inc.
20 ForwardAndReturn(pkt);

Listing 1: Bolt header structure

1 header bolt_h:
2 bit<24> q_size; // Occupancy at the switch
3 bit<8> link_rate; // Rate of congested link
4 bit<1> data; // Flags data packets
5 bit<1> ack; // Flags acknowledgements
6 bit<1> src; // Flags switch feedback
7 bit<1> last; // Flags last wnd of flow
8 bit<1> first; // Flags first wnd of flow
9 bit<1> inc; // Signals cwnd increment

10 bit<1> dec; // Signals cwnd decrement
11 bit<1> reserved; // Reserved
12 bit<32> t_data_tx; // TX timestamp for data pkt

3.1 SRC - Sub-RTT Control
As discussed in §2.1.1, a smaller feedback delay improves
the performance of CC. Therefore, Bolt minimizes the delay
of the feedback by generating control packets at the ingress
pipeline of the switches and sending them directly back to
the sender, a mechanism available in programmable switches
such as Intel-Tofino2 [32]. While in spirit, this is similar to
ICMP Source Quench messages [45] that have been depre-
cated due to feasibility issues in the Internet [33], Bolt’s SRC
mechanism exploits precise telemetry in a highly controlled
data center environment.

Figure 8 depicts the difference in the paths traversed by the
traditional ACK-based feedback versus the SRC-based feed-
back mechanism. As SRC packets are generated at ingress,
they establish the absolute minimum feedback loop possible
by traveling through the shortest path between a congested
switch and the sender. Moreover, to further minimize the

Sender Receiver

SRC ACK

Figure 8: Path of ACK-based vs. SRC-based feedback

feedback delay, Bolt prioritizes ACK and SRC packets over
data packets at the switches.

Bolt generates SRC packets for every data packet that ar-
rives when the queue occupancy is greater than or equal to the
CCT HRESH which is trivially set to a single MTU for minimal
queuing. Yet, if there are multiple congested switches along
the path of a flow, generating an SRC at each one of them
for the same data would flood the network with an excessive
amount of control packets. To prevent flooding switches mark
the DEC flag of the original data packet upon generation of
an SRC packet, such that no further SRC packets at other
hops can be generated due to this packet (lines 5 and 10 in
Algorithm 1). This implies that the number of SRC packets
is bounded by the number of data packets in the network at
any given time. In practice, however, we find that the actual
load of SRC packets is extremely lower (§5.2.1) and present
an approximation for the additional load of SRC packets in
Appendix A.

When there are multiple congested hops, and the flow re-
ceives SRC packets only from the first one, the cwnd decre-
ment still helps mitigate congestion at all of them. Conse-
quently, even if congestion at the first hop is not as severe
as the others, Bolt would drain the queue at the first hop and
quickly start working towards the subsequent hops.

Bolt stamps two vital pieces of information on the SRC
packets – the current queue occupancy and the capacity of the
link. In addition, it reflects the TX timestamp of the original
data packet (lines 6-8 in Algorithm 1). As the sender receives
this packet, it runs the decision logic shown in Algorithm 2.
First, rttsrc is calculated as the time between transmitting the
corresponding data packet and receiving an SRC packet for
it. This is the congestion notification delay for Bolt which
is always shorter than RTT and enables sub-RTT control.
The reflection of the TX timestamp enables this computation
without any state at the sender. Next, reaction_ f actor is cal-
culated as a measure of this flow’s contribution to congestion.
Multiplying this value with the reported queue occupancy
gives the amount of queuing this flow should aim to drain.
All the flows aiming to drain only what they are responsible
for organically help for a fair allocation.

Finally, rttsrc
targetq

gives the shortest time interval between two
consecutive cwnd decrements. This interval prevents over-
reaction because switches keep sending congestion notifica-
tions until the effect of the sender’s cwnd change propagates to
them. For example, if the target queue has a single packet, the
sender decrements its cwnd only if rttsrc has elapsed since the
last decrement. However, if the queue is larger, Bolt allows

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 223

Algorithm 2: BOLT LOGIC AT THE SENDER HOST

1 HandleSrc (pktsrc):
2 rttsrc← now− pkt.t_tx_data
3 reaction_ f actor← f low.rate

/
pktsrc.link_rate

4 targetq← . in number of packets
5 pktsrc.queue_size× reaction_ f actor
6 if rttsrc

targetq
≤ now− last_dec_time then

7 cwnd← cwnd−1
8 last_dec_time← now
9 HandleAck (pktack):

10 if pktack.inc then . Capacity available
11 cwnd← cwnd +1
12 if pktack.seq_no≥ seq_no_at_last_ai then
13 cwnd← cwnd +1 . per-RTT add. inc.
14 seq_no_at_last_ai← snd_next

more frequent decrements to equalize the total cwnd change
to the target queue size in exactly one rttsrc. As the required
cwnd adjustments are scattered over rttsrc, Bolt becomes more
resilient to noise from any single congestion notification.

Events such as losses and timeouts do not happen in Bolt
as it starts reacting to congestion way in advance. However,
due to the possibility of such events occurring, say due to mis-
configuration or packet corruption, handling retransmission
timeouts, selective acknowledgments, and loss recovery are
kept the same as in Swift [30] for completeness.

3.2 PRU - Proactive Ramp Up
Bolt explicitly tracks flow completions to facilitate Proactive
Ramp Up (PRU). When a flow is nearing completion, it
marks outgoing packets to notify switches, which plan ahead
on distributing the bandwidth freed up by the flow to the
remaining ones competing on the link. This helps remaining
Bolt flows to proactively ramp up and eliminate the under-
utilization period after a flow completion (see Figure 3b).

When flows larger than one BDP are sending their last
cwnd worth of data, they set the LAST flag on packets to
mark that they will not have packets in the next RTT. Note
that this does not require knowing the application-level flow
size. In a typical transport like TCP, the application injects a
known amount of data to the connection at each send API call,
denoted by the len argument [29]. Therefore, the amount of
data waiting to be sent is calculable. LAST is marked only
when the remaining amount of data in the connection is within
cwnd size. Our detailed implementation is described in §4.2.

A switch receiving the LAST flag, if it is not congested,
increments the PRU token value for the associated egress port.
This value represents the amount of bandwidth that will be
freed in the next RTT. The switch distributes these tokens to
packets without the LAST flag, i.e. flows that have packets to
send in the next RTT, so that senders can ramp up proactively.

However, only flows that are not bottlenecked at other hops
should ramp up. To identify such flows, Bolt uses a greedy
approach. When transmitting a packet, senders mark the INC
flag on the packet. If a switch has PRU tokens (line 14 in
Algorithm 1) or has free bandwidth (line 16 in Algorithm 1,
explained in §3.3), it keeps the flag on the packet and con-
sumes a token (line 15 and 17, respectively). Else, the switch
resets the INC flag (line 19), preventing future switches on the
path to consume a token for this packet. Then, if no switch
resets the INC flag along the path, it is guaranteed that all the
links on the flow’s path have enough bandwidth to accommo-
date an extra packet. The receiver reflects this flag in the ACK
so that the sender simply increments the cwnd upon receiving
it (lines 10-11 in Algorithm 2). There are cases where the
greedy approach can result in wasted tokens and we discuss
the fallback mechanisms in §3.3.

Flows shorter than one BDP are not accounted for in PRU
calculations. When a new flow starts, its first cwnd worth of
packets are not expected by the network and contribute to the
extra load. Therefore, the switch shouldn’t replace these with
packets from other flows once they leave the network. Bolt
prevents this by setting the FIRST flag on packets that are in
the first cwnd of the flow. Switches check against the FIRST
flag on packets before they increment the PRU token value
(line 12 of Algorithm 1).

Note that PRU doesn’t need reduced feedback delay via
SRC packets, because it accounts for a flow completion in
the next RTT by design. A sender shouldn’t start ramping
up earlier as it can cause extra congestion before the flow
completes. Therefore, the traditional RTT-based feedback
loop is the right choice for correct PRU accounting.

3.3 SM - Supply Matching

Events like link and device failures or route changes can result
in under-utilized links without proactive signaling. In addi-
tion, PRU tokens may be wasted if assigned to a flow that can
not ramp up due to being already at line rate, or bottlenecked
by downstream switches. For such events, conventional CC
approaches rely on gradual additive increase to slowly probe
for the available bandwidth which can take several tens of
RTTs [1, 30, 42, 60]. Instead, Bolt is able to probe multiplica-
tively by explicitly matching utilization demand to supply
through Supply Matching (SM) described below.

Bolt leverages stateful operations in programmable
switches to measure the instantaneous utilization of a link.
Each switch keeps track of the mismatch between the supply
and demand for the link capacity for each port, where the
number of bytes the switch can serialize in unit time is the
supply amount for the link; and the number of bytes that arrive
in the same time interval is the demand for the link. Naturally,
the link is under-utilized when the supply is larger than the
demand, otherwise, the link is congested. Note the similarity
to HPCC [35] that also calculates link utilization, albeit from

224 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 3: Supply Token calculation at the ingress
pipeline for each egress port of the switch

1 CalculateSupplyToken (pkt):
2 inter_arrival_time← now− last_sm_time
3 last_sm_time← now
4 supply← BW × inter_arrival_time
5 demand← pkt.size
6 sm_token← sm_token+ supply−demand
7 sm_token←min(sm_token,MTU)

an end-to-end point of view which restricts it to make once per
RTT calculations. Bolt offloads this calculation to the switch
data plane so that it can capture the precise instantaneous
utilization instead of a coarse-grained measurement.

When a data packet arrives, the switch runs the logic in
Algorithm 3 to calculate the supply token value (sm_token
in the algorithms) associated with the egress port. The token
accumulates the mismatch between the supply and demand in
bytes on every packet arrival for a port. A negative value of
the token indicates queuing whereas a positive value means
under-utilization. When the token value exceeds one MTU,
Bolt keeps the INC flag on the packet and permits the sender
to inject an additional packet into the network (lines 16-17 in
Algorithm 1). The supply token value is then decremented by
an MTU to account for the inflicted future demand.

If a switch port doesn’t receive a packet for a long time, the
supply token value can get arbitrarily large, which prohibits
capturing the instantaneous utilization if a burst of packets
arrive after an idle period. To account for this, Bolt caps the
supply token value at a maximum of one MTU. Details on
how this feature is implemented in P4 are provided in §4.

As noted earlier, there are cases where there can be wasted
tokens, i.e. a switch consumes a token (either PRU or SM)
to keep INC bit, but is reset by downstream switches. In
such cases, SM will find the available bandwidth in the next
RTT. In the worst case, this happens for consecutive RTTs
and Bolt falls back to additive increase similar to Swift [30]
(lines 12-14 in Algorithm 2). Namely, cwnd is incremented
once every RTT to allow flows to probe for more bandwidth
and achieve fairness even if they do not receive any precise
feedback as a fail-safe mechanism.

4 Implementation

We implemented Bolt through Host (transport layer and NIC)
and Switch modifications in our lab. We used Snap [38] as our
user-space transport layer and added Bolt in 1340 LOC in ad-
dition to the existing Swift implementation. Plus, the switch-
side implementation consists of a P4 program – bolt.p4 – in
1120 LOC. Figure 9 shows the overview of our lab prototype
as a whole and we provide details below.

Arrival Time

Supply Token

PRU Token

Queue Size

Buffer

SwitchINC Flag

TX Time

NIC

Sender

First

& Last
Window
Flags

Flow NIC

Receiver

Flow

DATA

B
o
l
t

INC

Flag

Register Arrays

DATA

B
o
l
t

S
R
CCC

A
C
K CC

Figure 9: Bolt system overview

4.1 Switch Prototype

We based our implementation on the programmable data plane
of Intel Tofino2 [11] switches in our lab as they can pro-
vide the queue occupancy of the egress ports in the ingress
pipelines and generate SRC packets [32]. This is crucial for
Bolt to minimize the feedback delay incurred by SRC packets
as they are not subject to queuing delay at congested hops.

When congestion is detected in the ingress pipeline, the
switch mirrors this packet to the input port while forwarding
the original one along its path. The mirroring configuration is
determined with a lookup table that matches the ingress port
of the packet and selects the associated mirroring session.

The mirrored packet is then trimmed to remove the payload
and the flow identifiers (i.e. source/destination addresses and
ports) are swapped. Finally, SRC flag is set on this packet to
complete its conversion into an SRC packet.

The entire bolt.p4 consists mainly of register array dec-
larations and simple if-else logic as shown in Algorithm 1.
There are 4 register arrays for storing queue occupancy, token
values, and the last packet arrival time. All of the register
arrays are as large as the number of queues on the switch
because the state is maintained per queue. In total, only 3.6%
and 0.6% of available SRAM and TCAM, respectively, are
used for the register arrays, tables, and counters.

The switch keeps the last packet arrival time for every
egress port to calculate the supply for the link. On each data
packet arrival, the difference between the current timestamp
and the last packet arrival time is calculated as the inter-arrival
time. This value should ideally be multiplied with the link
capacity (line 4 of Algorithm 3) to find the supply amount.
However, since floating point arithmetic is not available in
PISA pipelines, we use a lookup table indexed on inter-arrival
times to determine the supply amount. We set the size of this
lookup table as 65536 where each entry is for a different inter-
arrival time with a granularity of a nanosecond. Consequently,
if the inter-arrival time is larger than 65 microseconds, the
supply token value is directly set to its maximum value of 1
MTU which triggers INC flag to be set. We find that, at a
reasonably high load, 65 microseconds of inter-arrival time
is rare enough for links greater than 100Gbps such that any
longer value can be safely interpreted as under-utilization.

Our prototype is based on a single HW pipeline. Therefore,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 225

we implemented Bolt entirely at the ingress pipeline to make
it easier to understand and debug its logic. However, since
PRU and SM maintain state per egress port, they could also be
implemented at the egress pipeline with minor modifications.
This way, the state for packets from multiple ingress pipelines
would naturally be aggregated.

4.2 Host Prototype
Our transport layer uses the NIC hardware timestamps to
calculate rttsrc as described in Algorithm 2. When a sender is
emitting data, the TX timestamp is stamped onto the packet.
The switch reflects this value back to the sender, so that rttsrc
is the difference between the NIC time when the SRC packet
is received (RX timestamp) and the reflected TX timestamp.
This precisely measures the network delay to the bottleneck
without any non-deterministic software processing delays.

The transport layer also multiplexes RPCs meant for the
same server onto the same network connection. Then, the
first cwnd bytes of a new RPC isn’t necessarily detected as
the first window of the connection. To mitigate this issue,
our prototype keeps track of idle periods of connections and
resets the bytes-sent counter when a new RPC is sent after
such a period. Therefore the FIRST flag is set on a packet
when the counter value is smaller than cwnd.

Finally, the last window marking for PRU requires deter-
mining the size of the remaining data for each connection.
In our prototype, the connection increments pending bytes
counter by the size of data in each send API call from the
application. Every time the connection transmits a packet into
the network, the counter value is decremented by the size of
the packet. Therefore the LAST flag is set on a packet when
this counter value is smaller than cwnd.

4.3 Security and Authentication
Getting Bolt to work for encrypted and authenticated connec-
tions was a key challenge in our lab. Our prototype uses a
custom version of IPsec ESP [23, 28] for encryption atop the
IP Layer. However, switches need to read and modify CC in-
formation at the transport header without breaking end-to-end
security. The crypt_offset of the protocol allows packets to
be encrypted only beyond this offset. We set it such that the
transport header is not encrypted, but is still authenticated.

In addition, switches cannot generate encrypted packets
due to the lack of encryption and decryption capabilities.
To remedy this, we generate SRC packets on switches as
unreliable datagrams per RoCEv2 standard by adding IB BTH
and DETH headers while removing the encryption header.

The RoCEv2 packets have the invariant CRC calculated
over the packet and appended as a trailer. Fortunately, Tofino2
provides a CRC extern that is capable of this calculation over
small, constant-size packets [31]. As a result, NICs are able to
forward the SRC packets correctly to the upper layers based
on the queue pair numbers (QPN) on the datagrams.

0

4

8

12

Qu
eu

in
g

(μ
s)

Bolt
Swift
HPCC
RTT-based Ideal

100 120 140 160 180
Time (μs)

50
75

100

Ut
iliz

at
io

n
(%

)

Figure 10: Bolt’s reaction to flow arrival versus the ideal behavior.

5 Evaluation

We evaluate Bolt on NS3 [48] micro-benchmarks to demon-
strate its fundamental capabilities in §5.1 followed by sensi-
tivity and fairness analysis in §5.2 and §5.3. Then, in §5.4,
we run large-scale experiments to measure the end-to-end
performance of the algorithm, i.e. flow completion time slow-
downs. Finally, we evaluate our lab prototype in §5.5.

5.1 Micro-Benchmarks

5.1.1 Significance of SRC

The only way for Bolt to decrease cwnd is through SRC whose
effectiveness is best observed during congestion. Therefore,
we repeat the same flow arrival scenario described in Figure 6
with Bolt.3 Typically, with conventional RTT-based conges-
tion control algorithms, a new flow starting at line rate emits
BDP worth of packets until it receives the first congestion
feedback after an RTT. If the network is already fully utilized
before this flow, all emitted packets end up creating a BDP
worth of queuing even for an RTT-based ideal scheme. Then,
the ideal scheme would stop sending any new packets to allow
draining the queue quickly which would take another RTT.
This behavior is depicted as red in Figure 10 where a new
flow joins at 100µs.

HPCC’s behavior in Figure 10 is close to the ideal given
that it is an RTT-based scheme with high precision congestion
signal. As the new flow arrives, the queue occupancy rises to
1 BDP. However, the queue is drained at a rate slower than
the link capacity because flows continue to occasionally send
new packets while the queue is not completely drained.

Bolt, on the other hand, detects congestion earlier than an
RTT. Therefore it starts decrementing cwnd before the queue
occupancy reaches BDP and completely drains it in less than
2 RTTs, even shorter than the RTT-based ideal scheme.

In addition, HPCC’s link utilization drops to as low as
75% after draining the queue and oscillates for some time,
which is due to the RTT-long observation period (§2.2). Bolt’s
per-packet decision avoids this under-utilization.

3The dumbbell topology with two flows (8 µs RTT at 100Gbps).

226 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

180 190 200 210 220 230 240
Time (μs)

0

2

4

6

8

Qu
eu

e
Oc

cu
pa

nc
y

(μ
s)

Flow
Completion

Bolt Queuing
Ideal Queuing

0

50

100

150

Cw
nd

 (K
B)

Bolt Cwnd
Swift Cwnd

HPCC Cwnd
Ideal Cwnd

Figure 11: cwnd of the remaining flow and
queue occupancy after a flow completion.

0 200 400 600
Time (μs)

0

2

4

6

8

Qu
eu

e
Oc

cu
pa

nc
y

(μ
s)

Flow
Reroute

0

50

100

150

Cw
nd

 (K
B)

Bolt
Ideal Queuing

Bolt
Ideal Cwnd

(a) Bolt

0 200 400 600
Time (μs)

0

2

4

6

8

Qu
eu

e
Oc

cu
pa

nc
y

(μ
s)

Flow
Reroute

Under
Utilization

0

50

100

150

Cw
nd

 (K
B)

Bolt (w/o SM)
Ideal Queuing

Bolt (w/o SM)
Ideal Cwnd

(b) Bolt (without SM)

Figure 12: cwnd of the remaining flow and queue occupancy after a flow is rerouted.

Utilization (%) PRU OFF PRU ON

SM OFF 90.46 97.38
ON 92.41 98.54

Table 1: Effectiveness of PRU and SM on the bottleneck utilization.

5.1.2 Significance of PRU

Flow completions cause under-utilization without proactive
ramp-up or standing queues because conventional conges-
tion control algorithms take at least an RTT to react to them
(§2.1.2). Moreover, as shown in Figure 4 for Swift, a standing
queue might not be enough to keep the link busy if the cwnd
of the completing flow is larger than the queue size

We repeat the same scenario with Bolt to test how effective
proactive ramp-up can be upon flow completions against Swift
and HPCC. Figure 11 shows the cwnd of the remaining flow
and the queue occupancy at the bottleneck link. When a
Bolt flow completes at t=200µs, the remaining one is able
to capture the available bandwidth in 1µs because it starts
increasing cwnd (by collecting PRU tokens) one RTT earlier
than the flow completion. Moreover, neither queuing nor
under-utilization is observed. HPCC, on the other hand, takes
20µs (> 2×RTT) to ramp up for full utilization because it
needs one RTT to detect under-utilization and another RTT
of observation period before ramping up. Finally, Swift takes
more than 370µs to reach the stable value due to the slow
additive increase approach which doesn’t fit into Figure 11.
The complete ramp-up of Swift is shown in Figure 4.

Although PRU and SM seem to overlap in the way they
quickly capture available bandwidth, PRU is a faster mech-
anism compared to SM because it detects under-utilization
proactively. To demonstrate that, we create a star topology
with 100Gbps links and a base RTT of 5µs, where 5 senders
send 500KB to the same receiver. Flows start 15µs apart
from each other to complete at different times so that PRU
and SM can kick in. We repeat while disabling PRU or SM
and measure the bottleneck utilization to observe how each
mechanism is effective at achieving high throughput.

Table 1 shows the link utilization between the first flow
completion and the last one. When only PRU is disabled, the

utilization drops by 6% despite having SM. On the other hand,
disabling SM alone causes only a 1% decrease. This indicates
that PRU is a more powerful mechanism compared to SM
when under-utilization is mainly due to flow completions in
the network. Together, they increase utilization by 8%.

5.1.3 Significance of SM

Unlike flow completions, events such as link failure or rerout-
ing are not hinted in advance. Then, PRU doesn’t kick in,
making Bolt completely reliant on SM for high utilization. To
demonstrate how SM quickly captures available bandwidth,
we use the same setup from Figures 4 and 11, but reroute the
second flow instead of letting it complete.

Figure 12 shows the cwnd of the remaining flow after the
other one leaves the bottleneck. Thanks to SM, cwnd quickly
ramps up to utilize the link in 23µs (12a). When SM is dis-
abled, the only way for Bolt to ramp up is through traditional
additive increase which increases cwnd by 1 every RTT (12b).
Therefore it takes more than 33 RTTs to fully utilize the link.

5.2 Sensitivity Analysis

5.2.1 Overhead of SRC

To mitigate congestion, Bolt generates SRC packets in an
already loaded network. In order to understand the extra
load created by SRC, we measure the bandwidth occupied by
SRC packets at different burstiness levels. For this purpose,
we use the same star topology from §5.1.2. The number of
senders changes between 1 and 63 to emulate different levels
of burstiness towards a single receiver at 80% load. The traffic
is based on the READ RPC workload from Figure 1.

Figure 13 shows the bandwidth occupied by the SRC pack-
ets (top) and the 99th-p queue occupancy at the bottleneck
(bottom) with a different number of senders. When there are
multiple senders, the SRC bandwidth is stable at 0.33Gbps
(0.33% of the capacity). Similarly, the tail queuing is also
bounded below 6.4µs for all the experiments. Therefore, we
conclude that Bolt is able to bound congestion with a negli-
gible amount of extra load in the network. In §5.5, we show
that the overhead is negligible for the lab prototype as well.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 227

0 10 20 30 40 50 60
0.25

0.30

0.35

Gb
ps

SRC Bandwidth

0 10 20 30 40 50 60
Senders

2.5
5.0

μs

99%ile Queuing

Figure 13: SRC overhead and sensitivity for
different levels of burstiness

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Flow size (Normalized to 100G BDP)

2

4

6

8

10

12

FC
T

Sl
ow

 d
ow

n

Bolt 100G
Bolt 200G
Bolt 400G

Swift 100G
Swift 200G
Swift 400G

HPCC 100G
HPCC 200G
HPCC 400G

Figure 14: 99th-p Slowdown for messages smaller
than BDP

0 10 20 30 40 50 60 70
Time (msec)

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

Flow 1
Flow 2
Flow 3
Flow 4

Figure 15: Fair allocation by Bolt

Metric Swift HPCC Bolt

99th-p Queuing (msec) 23.543 23.066 13.720
99th-p FCT Slowdown 7017 5037 5000

Table 2: Tail queuing, and FCT slowdown for 5000-to-1 incast.

5.2.2 Robustness Against Higher Line Rates

One of the goals of Bolt is to be robust against ever-increasing
line rates in data centers. To evaluate the performance at
different line rates, we repeat the simulations from §5.2.1
with 63 senders where we increase the link capacity from
100Gbps to 200Gbps and 400Gbps. This way, the burstiness
of the senders increases, making it difficult to maintain small
queuing at the switches. Therefore, flow completion time
(FCT) slowdown [14]4 of small flows are affected the most,
whereas throughput oriented large flows would trivially be
better off with higher line rates.

Accordingly, we plot the 99th-p FCT slowdown for flows
that are smaller than BDP (at 100 Gbps) in Figure 14. Swift’s
performance monotonically decays with higher link rates due
to the increasing burstiness. Similarly, HPCC at 400Gbps
achieves 25% worse performance compared to the 100Gbps
scenario for flow sizes up to 0.7 BDP. For the rest of the
workload, HPCC makes a leap such that it performs worse
than other algorithms irrespective of the line rates. Bolt on the
other hand is able to maintain small and steady tail slowdowns
for all the small flows despite the increasing line rates.

5.3 Fairness Analysis

To test the fairness of Bolt, we run an experiment on a dumb-
bell topology with 100Gbps links. We add or remove a new
flow every 10 milliseconds and measure the throughput of
each flow which is shown in Figure 15. Our results indicate
that Bolt flows converge to the new fair share quickly when
the state of the network changes.

4FCT slowdown is flow’s actual FCT normalized by its ideal FCT when
the flow sends at line-rate (e.g., when it was the only flow in the network).

5.4 Large Scale Simulations

One of the most challenging cases for CC is a large-scale
incast. To evaluate Bolt’s performance in such a scenario, we
set up a 5000-to-1 incast on the star topology described earlier
where each one of 50 senders starts 100 same size flows at the
same time. Table 2 presents the 99th-p queue occupancy and
FCT slowdown for the incast. Since Bolt detects congestion
as early as possible, it bounds tail queuing to a 41% lower
level compared to Swift and HPCC. In addition, the tail FCT
slowdown for Bolt is 5000, indicating full link utilization.
Moreover, the bandwidth occupied by the SRC packets is as
low as 0.77Gbps throughout the incast. This is only twice the
overhead for 80% load in §5.2.1, despite the extreme bursty
arrival pattern of the incast.

We also evaluate the performance of Bolt on a cluster-scale
network where 64 servers are connected with 100Gbps links
to a fully subscribed fat-tree topology with 8 ToR switches.
All the other links are 400Gbps and the maximum unloaded
RTT is 5µs. We run traffic between servers based on two work-
loads at 80% load: (i) the READ RPC workload described
in Figure 1 represents traffic from our data center, (ii) the
Facebook Hadoop workload [49]. Figure 16 and 17 show the
median and 99th-p FCT slowdown for the workloads. Note
that the Hadoop workload is relatively more bursty where
82% of the flows/RPCs fit within a BDP in the given topology.
Hence a large fraction of the curves in Figure 17 is flat where
all the RPCs in this region are extremely small (i.e. single
packet).

For both of the workloads, Bolt performs well across all
flow sizes. Specifically, Bolt and HPCC achieve very low
FCT for short flows (<7KB) because of a few design choices:
First, they maintain zero standing queues. Plus, Bolt’s SRC
reduces the height of queue spikes after flow arrivals. HPCC,
on the other hand, tends to under-utilize the network upon
flow completions (§2.1.2), statistically reducing queue sizes.

FCT of median-size flows (a few BDPs) starts to degrade
for HPCC due to under-utilization described in §2.1.2 and
§2.2. Bolt performs up to 3× better in this regime by avoiding
under-utilization thanks to PRU and SM. Swift’s standing
queues prevent under-utilization, but FCTs are high because

228 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

51
2 4K 10

K
23

K
32

K
46

K
10

2K
26

2K 1M 16
M

Flow size (Bytes)

1

10

100

FC
T

Sl
ow

 d
ow

n

Bolt - 99p
Bolt - 50p
BDP

Swift - 99p
Swift - 50p

HPCC - 99p
HPCC - 50p

Figure 16: FCT slowdown for READ RPC
Workload from Figure 1

32
4

40
0

50
0

60
0

70
0 1K 7K 46

K
12

0K 10
M

Flow size (Bytes)

1

10

100

FC
T

Sl
ow

 d
ow

n

Bolt - 99p
Bolt - 50p
BDP

Swift - 99p
Swift - 50p

HPCC - 99p
HPCC - 50p

Figure 17: FCT slowdown for Facebook
Hadoop Workload

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

RTT (μs)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Bolt (Lab)
Bolt (Ns-3)
Swift (Lab)

Figure 18: Bolt’s lab prototype
matches its simulator

median-size flows are also affected by the queuing delay.
The impact of queuing diminishes and utilization becomes

the dominant factor for long flows. Therefore Bolt and Swift
perform better than HPCC. In addition, Bolt is slightly better
at the tail compared to Swift, while Swift is slightly better at
the median, suggesting that Bolt is fairer.

5.5 Bolt in the Lab
Our lab testbed consists of 2 servers and 2 Intel Tofino2 [11]
switches. Each server runs 4 packet processing engines run-
ning Snap [38] that provide the transport layer with the Bolt
algorithm. Each engine is scheduled on a CPU core that in-
dependently processes packets so that we are able to create a
large number of connections between the servers. Links from
the servers to the switches are 100Gbps and the switches are
connected to each other with a 25Gbps link to guarantee that
congestion takes place within the network. The base-RTT
in this network is 14µs and we generate flows between the
servers based on the READ RPC workload.

We evaluate Bolt on two scenarios. First, we run 100%
(of 25Gbps) load to see if our prototype can saturate the bot-
tleneck. Then, we run 80% load to compare the congestion
mitigation performance of Bolt against Swift in a more realis-
tic scenario. Finally, we verify that our results from the lab
and the simulations match to verify our implementations.

The median and the 99th-p RTT at 100% load for Swift
are 189µs and 208µs respectively. These numbers are high
because Swift maintains a standing queue based on the con-
figured base delay to fully utilize the link even after flow
completions. Bolt on the other hand, attains 27µs and 40µs
of median and tail RTT, 86% and 81% shorter than Swift. In
the meantime, it achieves 24.7Gbps which is only 0.8% lower
compared to Swift despite the lack of a standing queue.

We repeat the same experiment with 80% load and observe
that both Swift and Bolt can sustain 80% (20Gbps) average
link utilization. Figure 18 shows the CDF of measured RTTs
throughout the experiment. Similar to the 100% load case,
the median and tail RTTs for Bolt are 25µs and 40µs, 86%
and 83% lower compared to Swift respectively5.

5For Swift we set 50µs base target delay as specified in the paper [30] and
200µs as flow scaling range. Swift’s average RTT in Figure 18 is higher than

Moreover, we measure that the bandwidth occupied by the
SRC packets in our lab is 0.13Gbps, 0.536% of the bottleneck
capacity. This is consistent with our observation in §5.2
despite the larger SRC packets with custom encapsulations.

Finally, we simulate the 80% load experiment in NS3 [48]
with the same settings to verify that our simulator matches
our observations in the lab. Figure 18 also shows the CDF
of RTTs measured throughout the simulation. The median
and tail RTTs from our simulations are 21µs and 39µs, within
15% and 0.025% of the lab results respectively.

6 Practical Considerations

Typically, new products are deployed incrementally in data
centers due to availability, security, or financial concerns. As
a consequence, the new product (i.e. the CC algorithm) lives
together with the old one for some time called brownfield
deployment. We identify three potential issues that Bolt could
face during this phase and address them below.

First, some switches in the network may not be capable of
generating SRC packets while new programmable switches
are being deployed. Unfortunately, the vanilla Bolt design
can not control the congestion at these switches. This can be
addressed by running an end-to-end algorithm on top of Bolt.
For example, imagine the Swift algorithm calculates a fabric
cwnd as usual in parallel with Bolt’s calculation of cwnd using
SRC packets. Then, the minimum of the two is selected as the
effective cwnd for the flow. When an older generation switch
is congested, SRC packets are not generated, but Swift adjusts
the cwnd. Consequently, flows benefit from ultra-low queuing
at the compatible switches while falling back to Swift when a
non-programmable switch becomes the bottleneck.

Second, hosts would also be migrated to Bolt incremen-
tally. Therefore, Bolt would need to coexist with the prior
algorithm. Studying the friendliness of algorithms with Bolt
through frameworks such as [26] and [56] remains a future
work. For example, TCP CUBIC would not coexist well with
Bolt as it tries to fill the queues until a packet is dropped
while Bolt would continuously decrement its cwnd due to

Swift paper’s value (∼50µs), because of two reasons. First, this workload is
burstier than the ones in Swift paper. Second, the 25Gbps bottleneck implies
a higher level of flow scaling than with 100Gbps links.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 229

queuing. Instead, we propose the use of QoS (Quality of Ser-
vice) queues to isolate Bolt traffic from the rest. Appendix B
describes a baseline approach for such deployment.

Finally, scenarios where packet transmissions are batched
(say by the NIC) even when the cwnd is smaller than BDP
can still trigger SRC generation, inhibiting flows to increase
cwnd to the right value. We find that transport offloading
on modern smart NICs uses batching to sustain high line
rates. Bolt alleviates such bursts with a higher CCT HRESH that
tolerates batch size worth of queuing at the switches.

7 Related Work

In addition to HPCC [35] and Swift [30] that serve as our pri-
mary comparison points, several other schemes have similar
ideas or goals.

FastTune [59] uses programmable switches for precise con-
gestion signal. Similar to HPCC, it calculates link utilization
over an RTT to multiplicatively increase or decrease cwnd.
For shorter feedback delay, it pads the INT header onto ACK
packets in the reverse direction instead of data packets. Ex-
pressPass [10] utilizes the control packets in the reverse di-
rection as well. Nonetheless, forward and reverse paths for a
flow are not always symmetrical due to ECMP-like load bal-
ancing or flow-reroutes. Therefore, Bolt chooses to explicitly
generate SRC packets with little overhead (§5.2).

FastLane [57] is one of the early proposals to send no-
tifications from switches directly to the senders. However,
notifications are generated only for buffer overflows which is
late for low latency CC in data centers. Annulus [50], on the
other hand, uses standard QCN [21] packets from switches
with queue occupancy information. Yet these packets are not
L3 routable, so Annulus limits its scope only to detecting
bottlenecks one hop away from senders. Bolt brings the best
of both worlds and controls congestion at every hop while
knowing the precise state of congestion.

XCP [27] and RCP [13] also propose congestion feedback
generated by the switch. Switches wait for an average RTT
before calculating CC responses that are piggybacked on the
data packet and reflected on the ACK. As discussed in §2.2,
this implies a control loop delay of two RTTs in total.

FCP [18] uses budgets and prices to balance the load and
the traffic demand. FCP switches calculate the price of the
link based on the demand while senders signal flow arrivals
or completions similar to SM and PRU in Bolt. However, the
required time series averaging and floating-point arithmetic
make the calculation infeasible for programmable switches
while consuming bytes on the header. In contrast, Bolt is
based on the packet conservation principle with a simple, yet
precise logic implementable in P4 and requires only 3 bits on
the header (FIRST , LAST , and INC) for SM and PRU.

Switch feedback has also been studied for wireless settings.
For instance, ABC [16] marks packets for cwnd increments
or decrements with an RTT-based control loop for congestion

mitigation. On the other hand, Zhuge [39] modifies the wire-
less AP to help senders detect congestion quicker. However,
since it is challenging to modify schemes in WAN, Zhuge
relies on the capabilities of existing schemes for the precision
of the congestion signals, i.e. delayed ACKs for TCP.

Receiver-driven approaches such as NDP [19], pHost [15],
and Homa [43] require receivers to allocate/schedule credits
based on the demand from senders. They work well for con-
gestion at the last hop because receivers have good visibility
into this link. For example, when an RPC is fully granted, the
Homa receiver starts sending grants for the next one without
the current RPC being finished to proactively utilize the link.
This is similar to PRU in Bolt despite being limited to the last
hop. Unfortunately, the last hop is not always the bottleneck
for a flow especially when the fabric is over-subscribed [52].

Schemes that use priority queues [2,4,20,43] are proposed
to improve the scheduling performance of the network to
approximate SRPT [51] like behavior. We find deploying such
schemes to be rather difficult because, typically, QoS queues
in data centers are reserved to separate different services.

On-Ramp [37] is an extension for CC which proposes to
pause flows at the senders when the one-way delay is high.
Bolt can also benefit from its flow control mechanism. We
leave evaluating Bolt with this extension as future work.

There are also per-hop flow control mechanisms such as
BFC [17] and PFFC [55] that pause queues at the upstream
switches via early notifications from the bottleneck. The
deadlock-like issues of PFC [54] are resolved by keeping the
per-flow state on switches, which we find challenging in our
data centers as switches have to implement other memory or
queue-intensive protocols, e.g., routing tables or QoS. There-
fore, we scope Bolt to be an end-to-end algorithm with a fixed
state similar to other algorithms in production [30, 35, 60].

8 Conclusion

Increasing line rates in data centers is inevitable due to the
stringent SLOs of applications. Yet, higher line rates increase
burstiness, putting more pressure on CC to minimize queuing
delays for short flows along with high link utilization for long
flows. We find that two key aspects of CC need to be pushed to
their boundaries to work well in such highly dynamic regimes
based on experience with our data centers.

Bolt addresses these aspects thanks to the flexibility and
precision provided by programmable switches. First, it uses
the most granular congestion signal, i.e. precise queue occu-
pancy, for a per-packet decision logic. Second, it minimizes
the control loop delay to its absolute minimum by generating
feedback at the congested switches and sending them directly
back to the senders. Third, it hides the control loop delay by
making proactive decisions about foreseeable flow comple-
tions. As a result, accurate cwnd is calculated as quickly as
possible, achieving more than 80% reduction in tail latency
and 3× improvement in tail FCT.

230 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan. Data
Center TCP (DCTCP). SIGCOMM Comput. Com-
mun. Rev., 40(4):63–74, August 2010. doi:10.1145/
1851275.1851192.

[2] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. PFabric: Minimal near-Optimal Dat-
acenter Transport. SIGCOMM Comput. Commun.
Rev., 43(4):435–446, August 2013. doi:10.1145/
2534169.2486031.

[3] Serhat Arslan and Nick McKeown. Switches Know the
Exact Amount of Congestion. In Proceedings of the
2019 Workshop on Buffer Sizing, BS ’19, New York,
NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3375235.3375245.

[4] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Hao Wang. Information-agnostic flow scheduling
for commodity data centers. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 15), pages 455–468, 2015.

[5] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the Killer Mi-
croseconds. Commun. ACM, 60(4):48–54, March 2017.
doi:10.1145/3015146.

[6] Luiz Andrè Barroso, Urs Hölzle, and Parthasarathy
Ranganathan. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale
Machines. Morgan & Claypool Publishers,
San Rafael, CA, USA, 3rd edition, October 2018.
URL: https://doi-org.stanford.idm.oclc.org/
10.2200/S00874ED3V01Y201809CAC046.

[7] Tanya Bhatia. UADP - The Powerhouse of Cata-
lyst 9000 Family. Cisco Systems Inc., December
2018. URL: https://community.cisco.com/t5/
networking-blogs/uadp-the-powerhouse-of-
catalyst-9000-family/ba-p/3764605.

[8] Ethan Blanton, Dr. Vern Paxson, and Mark Allman.
TCP Congestion Control. RFC 5681, September 2009.
URL: https://rfc-editor.org/rfc/rfc5681.txt,
doi:10.17487/RFC5681.

[9] Mihai Budiu and Chris Dodd. The P4-16 Pro-
gramming Language. SIGOPS Oper. Syst. Rev.,
51(1):5–14, September 2017. URL: https:
//doi-org.stanford.idm.oclc.org/10.1145/
3139645.3139648, doi:10.1145/3139645.3139648.

[10] Inho Cho, Keon Jang, and Dongsu Han. Credit-
Scheduled Delay-Bounded Congestion Control for Dat-
acenters. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’17, page 239–252, New York, NY, USA,
2017. Association for Computing Machinery. doi:
10.1145/3098822.3098840.

[11] Intel Corporation. Tofino 2: Second-generation
P4-programmable Ethernet switch ASIC that continues
to deliver programmability without compromise, May
2021. URL: https://www.intel.com/content/
www/us/en/products/network-io/programmable-
ethernet-switch/tofino-2-series.html.

[12] Jeffrey Dean and Luiz André Barroso. The Tail
at Scale. Communications of the ACM, 56:74–80,
2013. URL: http://cacm.acm.org/magazines/
2013/2/160173-the-tail-at-scale/fulltext.

[13] Nandita Dukkipati. Rate Control Protocol (Rcp):
Congestion Control to Make Flows Complete
Quickly. PhD thesis, Stanford University, Stan-
ford, CA, USA, 2008. AAI3292347. URL:
https://dl-acm-org.stanford.idm.oclc.org/
doi/10.5555/1368746.

[14] Nandita Dukkipati and Nick McKeown. Why
Flow-Completion Time is the Right Metric for Con-
gestion Control. SIGCOMM Comput. Commun.
Rev., 36(1):59–62, January 2006. doi:10.1145/
1111322.1111336.

[15] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit
Agarwal, Sylvia Ratnasamy, and Scott Shenker. PHost:
Distributed near-Optimal Datacenter Transport over
Commodity Network Fabric. In Proceedings of the
11th ACM Conference on Emerging Networking Experi-
ments and Technologies, CoNEXT ’15, New York, NY,
USA, 2015. Association for Computing Machinery.
doi:10.1145/2716281.2836086.

[16] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Moham-
mad Alizadeh, and Hari Balakrishnan. ABC: A Simple
Explicit Congestion Controller for Wireless Networks
. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pages 353–372,
Santa Clara, CA, February 2020. USENIX Associa-
tion. URL: https://www.usenix.org/conference/
nsdi20/presentation/goyal.

[17] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios
Nikolaidis, Mohammad Alizadeh, and Thomas E.
Anderson. Backpressure Flow Control. In
19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22), pages 779–
805, Renton, WA, April 2022. USENIX Associa-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 231

https://doi.org/10.1145/1851275.1851192
https://doi.org/10.1145/1851275.1851192
https://doi.org/10.1145/2534169.2486031
https://doi.org/10.1145/2534169.2486031
https://doi.org/10.1145/3375235.3375245
https://doi.org/10.1145/3015146
https://doi-org.stanford.idm.oclc.org/10.2200/S00874ED3V01Y201809CAC046
https://doi-org.stanford.idm.oclc.org/10.2200/S00874ED3V01Y201809CAC046
https://community.cisco.com/t5/networking-blogs/uadp-the-powerhouse-of-catalyst-9000-family/ba-p/3764605
https://community.cisco.com/t5/networking-blogs/uadp-the-powerhouse-of-catalyst-9000-family/ba-p/3764605
https://community.cisco.com/t5/networking-blogs/uadp-the-powerhouse-of-catalyst-9000-family/ba-p/3764605
https://rfc-editor.org/rfc/rfc5681.txt
https://doi.org/10.17487/RFC5681
https://doi-org.stanford.idm.oclc.org/10.1145/3139645.3139648
https://doi-org.stanford.idm.oclc.org/10.1145/3139645.3139648
https://doi-org.stanford.idm.oclc.org/10.1145/3139645.3139648
https://doi.org/10.1145/3139645.3139648
https://doi.org/10.1145/3098822.3098840
https://doi.org/10.1145/3098822.3098840
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
https://dl-acm-org.stanford.idm.oclc.org/doi/10.5555/1368746
https://dl-acm-org.stanford.idm.oclc.org/doi/10.5555/1368746
https://doi.org/10.1145/1111322.1111336
https://doi.org/10.1145/1111322.1111336
https://doi.org/10.1145/2716281.2836086
https://www.usenix.org/conference/nsdi20/presentation/goyal
https://www.usenix.org/conference/nsdi20/presentation/goyal

tion. URL: https://www.usenix.org/conference/
nsdi22/presentation/goyal.

[18] Dongsu Han, Robert Grandl, Aditya Akella, and Srini-
vasan Seshan. FCP: A Flexible Transport Frame-
work for Accommodating Diversity. SIGCOMM Com-
put. Commun. Rev., 43(4):135–146, August 2013.
doi:10.1145/2534169.2486004.

[19] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi,
and Marcin Wójcik. Re-Architecting Datacenter Net-
works and Stacks for Low Latency and High Perfor-
mance. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’17, page 29–42, New York, NY, USA,
2017. Association for Computing Machinery. doi:
10.1145/3098822.3098825.

[20] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang,
Baochen Qiao, Kai Chen, Kun Tan, and Yi Wang.
Aeolus: A Building Block for Proactive Transport
in Datacenters. In Proceedings of the Annual Con-
ference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communica-
tion, SIGCOMM ’20, page 422–434, New York, NY,
USA, 2020. Association for Computing Machinery.
doi:10.1145/3387514.3405878.

[21] IEEE Standard for Local and Metropolitan Area
Networks– Virtual Bridged Local Area Networks
Amendment 13: Congestion Notification. IEEE
Std 802.1Qau-2010 (Amendment to IEEE Std 802.1Q-
2005), pages 1–135, 2010. doi:10.1109/
IEEESTD.2010.5454063.

[22] Broadcom Inc. High-Capacity StrataXGS Tri-
dent4 Ethernet Switch Series, May 2021. URL:
https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56880-
series.

[23] Google Inc. PSP, March 2022. URL: https://
github.com/google/psp.

[24] Versa Technology Inc. 400G Ethernet: It’s Here, and
It’s Huge, December 2021. URL: www.versatek.com/
400g-ethernet-its-here-and-its-huge/.

[25] Van Jacobson. Congestion Avoidance and Control. In
Symposium Proceedings on Communications Architec-
tures and Protocols, SIGCOMM ’88, page 314–329,
New York, NY, USA, 1988. Association for Computing
Machinery. doi:10.1145/52324.52356.

[26] Raj Jain, Dah-Ming Chiu, and W. Hawe. A Quan-
titative Measure Of Fairness And Discrimination For
Resource Allocation In Shared Computer Systems.
CoRR, cs.NI/9809099, January 1998. URL: https:
//arxiv.org/abs/cs/9809099.

[27] Dina Katabi, Mark Handley, and Charlie Rohrs. Con-
gestion Control for High Bandwidth-Delay Product Net-
works. In Proceedings of the 2002 Conference on Ap-
plications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’02, page
89–102, New York, NY, USA, 2002. Association for
Computing Machinery. doi:10.1145/633025.633035.

[28] Stephen Kent. IP Encapsulating Security Pay-
load (ESP). RFC 4303, December 2005. URL:
https://www.rfc-editor.org/info/rfc4303, doi:
10.17487/RFC4303.

[29] Michael Kerrisk. send(2) — Linux manual page, March
2021. URL: https://man7.org/linux/man-pages/
man2/send.2.html.

[30] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: De-
lay is Simple and Effective for Congestion Control in
the Datacenter. In Proceedings of the Annual Con-
ference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communica-
tion, SIGCOMM ’20, page 514–528, New York, NY,
USA, 2020. Association for Computing Machinery.
doi:10.1145/3387514.3406591.

[31] Shiv Kumar, Pravein Govindan Kannan, Ran Ben Basat,
Rachel Everman, Amedeo Sapio, Tom Barbette, and
Joeri de Ruiter. Open Tofino, July 2021. URL: https:
//github.com/barefootnetworks/Open-Tofino.

[32] Jeongkeun Lee, Jeremias Blendin, Yanfang Le,
Grzegorz Jereczek, Ashutosh Agrawal, and Rong
Pan. Source Priority Flow Control (SPFC) towards
Source Flow Control (SFC), November 2021. URL:
https://datatracker.ietf.org/meeting/112/
materials/slides-112-iccrg-source-priority-
flow-control-in-data-centers-00.

[33] Konstantin Lepikhov. Source Quench. Atlas-
sian Corporation Pty Ltd., April 2018. URL:
https://wiki.geant.org/display/public/EK/
Source+Quench.

[34] Yuliang Li. Hardware-Software Codesign for High-
Performance Cloud Networks. PhD thesis, Harvard
University, 2020. URL: https://nrs.harvard.edu/
URN-3:HUL.INSTREPOS:37368976.

232 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.usenix.org/conference/nsdi22/presentation/goyal
https://www.usenix.org/conference/nsdi22/presentation/goyal
https://doi.org/10.1145/2534169.2486004
https://doi.org/10.1145/3098822.3098825
https://doi.org/10.1145/3098822.3098825
https://doi.org/10.1145/3387514.3405878
https://doi.org/10.1109/IEEESTD.2010.5454063
https://doi.org/10.1109/IEEESTD.2010.5454063
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://github.com/google/psp
https://github.com/google/psp
www.versatek.com/400g-ethernet-its-here-and-its-huge/
www.versatek.com/400g-ethernet-its-here-and-its-huge/
https://doi.org/10.1145/52324.52356
https://arxiv.org/abs/cs/9809099
https://arxiv.org/abs/cs/9809099
https://doi.org/10.1145/633025.633035
https://www.rfc-editor.org/info/rfc4303
https://doi.org/10.17487/RFC4303
https://doi.org/10.17487/RFC4303
https://man7.org/linux/man-pages/man2/send.2.html
https://man7.org/linux/man-pages/man2/send.2.html
https://doi.org/10.1145/3387514.3406591
https://github.com/barefootnetworks/Open-Tofino
https://github.com/barefootnetworks/Open-Tofino
https://datatracker.ietf.org/meeting/112/materials/slides-112-iccrg-source-priority-flow-control-in-data-centers-00
https://datatracker.ietf.org/meeting/112/materials/slides-112-iccrg-source-priority-flow-control-in-data-centers-00
https://datatracker.ietf.org/meeting/112/materials/slides-112-iccrg-source-priority-flow-control-in-data-centers-00
https://wiki.geant.org/display/public/EK/Source+Quench
https://wiki.geant.org/display/public/EK/Source+Quench
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368976
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368976

[35] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. HPCC: High Precision Congestion Control.
In Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, page 44–58,
New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3341302.3342085.

[36] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. HPCC: High Precision Congestion Con-
trol, December 2021 [Online]. URL: https://hpcc-
group.github.io/results.html.

[37] Shiyu Liu, Ahmad Ghalayini, Mohammad Alizadeh,
Balaji Prabhakar, Mendel Rosenblum, and Anirudh
Sivaraman. Breaking the Transience-Equilibrium
Nexus: A New Approach to Datacenter Packet Trans-
port. In 18th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 21), pages 47–
63, Berkeley, CA, USA, April 2021. USENIX Associ-
ation. URL: https://www.usenix.org/conference/
nsdi21/presentation/liu.

[38] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: A Mi-
crokernel Approach to Host Networking. In Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles, SOSP ’19, page 399–413, New York, NY,
USA, 2019. Association for Computing Machinery.
doi:10.1145/3341301.3359657.

[39] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Jus-
tine Sherry, Hongqiang Harry Liu, and Mingwei Xu.
Achieving Consistent Low Latency for Wireless Real-
Time Communications with the Shortest Control Loop.
In Proceedings of the ACM SIGCOMM 2022 Confer-
ence, SIGCOMM ’22, page 193–206, New York, NY,
USA, 2022. Association for Computing Machinery.
doi:10.1145/3544216.3544225.

[40] Rui Miao, Li Bo, Hongqiang Harry Liu, and Ming
Zhang. Buffer sizing with HPCC. In Proceed-
ings of the 2019 Workshop on Buffer Sizing, BS ’19,
pages 1–2, New York, NY, USA, 2019. Association
for Computing Machinery. URL: http://buffer-
workshop.stanford.edu/papers/paper5.pdf.

[41] Leonid Mirkin and Zalman J. Palmor. Control Issues
in Systems with Loop Delays. In Dimitrios Hristu-

Varsakelis and William S. Levine, editors, Handbook
of Networked and Embedded Control Systems, pages
627–648. Birkhäuser Boston, Boston, MA, 2005. doi:
10.1007/0-8176-4404-0_27.

[42] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. TIMELY: RTT-Based Congestion Control for the
Datacenter. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communica-
tion, SIGCOMM ’15, page 537–550, New York, NY,
USA, 2015. Association for Computing Machinery.
doi:10.1145/2785956.2787510.

[43] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A Receiver-Driven
Low-Latency Transport Protocol Using Network Pri-
orities. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communi-
cation, SIGCOMM ’18, page 221–235, New York, NY,
USA, 2018. Association for Computing Machinery.
doi:10.1145/3230543.3230564.

[44] Matthew K. Mukerjee, Christopher Canel, Weiyang
Wang, Daehyeok Kim, Srinivasan Seshan, and Alex C.
Snoeren. Adapting TCP for Reconfigurable Datacenter
Networks. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
651–666, Santa Clara, CA, February 2020. USENIX
Association. URL: https://www.usenix.org/
conference/nsdi20/presentation/mukerjee.

[45] John Nagle. Congestion Control in IP/TCP Internet-
works. RFC 896, January 1984. URL: https://
www.rfc-editor.org/info/rfc896, doi:10.17487/
RFC0896.

[46] A.K. Parekh and R.G. Gallager. A generalized pro-
cessor sharing approach to flow control in integrated
services networks: the single-node case. IEEE/ACM
Transactions on Networking, 1(3):344–357, 1993. doi:
10.1109/90.234856.

[47] Injong Rhee, Lisong Xu, Sangtae Ha, Alexander Zim-
mermann, Lars Eggert, and Richard Scheffenegger. CU-
BIC for Fast Long-Distance Networks. RFC 8312,
February 2018. URL: https://rfc-editor.org/
rfc/rfc8312.txt, doi:10.17487/RFC8312.

[48] George F. Riley and Thomas R. Henderson. The ns-3
Network Simulator. In Klaus Wehrle, Mesut Güneş, and
James Gross, editors, Modeling and Tools for Network
Simulation, pages 15–34. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010. doi:10.1007/978-3-642-
12331-3_2.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 233

https://doi.org/10.1145/3341302.3342085
https://hpcc-group.github.io/results.html
https://hpcc-group.github.io/results.html
https://www.usenix.org/conference/nsdi21/presentation/liu
https://www.usenix.org/conference/nsdi21/presentation/liu
https://doi.org/10.1145/3341301.3359657
https://doi.org/10.1145/3544216.3544225
http://buffer-workshop.stanford.edu/papers/paper5.pdf
http://buffer-workshop.stanford.edu/papers/paper5.pdf
https://doi.org/10.1007/0-8176-4404-0_27
https://doi.org/10.1007/0-8176-4404-0_27
https://doi.org/10.1145/2785956.2787510
https://doi.org/10.1145/3230543.3230564
https://www.usenix.org/conference/nsdi20/presentation/mukerjee
https://www.usenix.org/conference/nsdi20/presentation/mukerjee
https://www.rfc-editor.org/info/rfc896
https://www.rfc-editor.org/info/rfc896
https://doi.org/10.17487/RFC0896
https://doi.org/10.17487/RFC0896
https://doi.org/10.1109/90.234856
https://doi.org/10.1109/90.234856
https://rfc-editor.org/rfc/rfc8312.txt
https://rfc-editor.org/rfc/rfc8312.txt
https://doi.org/10.17487/RFC8312
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-642-12331-3_2

[49] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the Social Network’s (Dat-
acenter) Network. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Commu-
nication, SIGCOMM ’15, page 123–137, New York,
NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2785956.2787472.

[50] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad
Sharif, Rong Pan, Mostafa Ammar, Ellen Zegura, Keon
Jang, Mohammad Alizadeh, Abdul Kabbani, and Amin
Vahdat. Annulus: A Dual Congestion Control Loop for
Datacenter and WAN Traffic Aggregates. In Proceed-
ings of the Annual Conference of the ACM Special Inter-
est Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Com-
puter Communication, SIGCOMM ’20, page 735–749,
New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3387514.3405899.

[51] Linus E. Schrage and Louis W. Miller. The Queue
M/G/1 with the Shortest Remaining Processing Time
Discipline. Operations Research, 14(4):670–684, 1966.
doi:10.1287/opre.14.4.670.

[52] Arjun Singh, Joon Ong, Amit Agarwal, Glen Ander-
son, Ashby Armistead, Roy Bannon, Seb Boving, Gau-
rav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin
Vahdat. Jupiter Rising: A Decade of Clos Topolo-
gies and Centralized Control in Google’s Datacenter
Network. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communica-
tion, SIGCOMM ’15, page 183–197, New York, NY,
USA, 2015. Association for Computing Machinery.
doi:10.1145/2785956.2787508.

[53] Bruce Spang, Serhat Arslan, and Nick McKeown. Up-
dating the theory of buffer sizing. Performance Eval-
uation, 151:102232, 2021. doi:https://doi.org/
10.1016/j.peva.2021.102232.

[54] IEEE Standard. Local and metropolitan area networks–
Media Access Control (MAC) Bridges and Virtual
Bridged Local Area Networks–Amendment 17: Priority-
based Flow Control. IEEE Std 802.1Qbb-2011, (Amend-
ment to IEEE Std 802.1Q-2011 as amended by IEEE
Std 802.1Qbe-2011 and IEEE Std 802.1Qbc-2011):1–
40, 2011. doi:10.1109/IEEESTD.2011.6032693.

[55] Shie-Yuan Wang, Yo-Ru Chen, Hsien-Chueh Hsieh,
Ruei-Syun Lai, and Yi-Bing Lin. A Flow Control
Scheme Based on Per Hop and Per Flow in Com-
modity Switches for Lossless Networks. IEEE
Access, 9:156013–156029, 2021. doi:10.1109/
ACCESS.2021.3129595.

[56] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Se-
shan, and Justine Sherry. Beyond Jain’s Fairness In-
dex: Setting the Bar For The Deployment of Conges-
tion Control Algorithms. In Proceedings of the 18th
ACM Workshop on Hot Topics in Networks, HotNets
’19, page 17–24, New York, NY, USA, 2019. As-
sociation for Computing Machinery. doi:10.1145/
3365609.3365855.

[57] David Zats, Anand Padmanabha Iyer, Ganesh Anantha-
narayanan, Rachit Agarwal, Randy Katz, Ion Stoica,
and Amin Vahdat. FastLane: Making Short Flows
Shorter with Agile Drop Notification. In Proceed-
ings of the Sixth ACM Symposium on Cloud Comput-
ing, SoCC ’15, page 84–96, New York, NY, USA,
2015. Association for Computing Machinery. doi:
10.1145/2806777.2806852.

[58] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-Resolution Measurement of
Data Center Microbursts. In Proceedings of the
2017 Internet Measurement Conference, IMC ’17,
page 78–85, New York, NY, USA, 2017. Asso-
ciation for Computing Machinery. URL: https:
//doi-org.stanford.idm.oclc.org/10.1145/
3131365.3131375, doi:10.1145/3131365.3131375.

[59] Renjie Zhou, Dezun Dong, Shan Huang, and Yang Bai.
FastTune: Timely and Precise Congestion Control in
Data Center Network. In 2021 IEEE Intl Conf on Paral-
lel Distributed Processing with Applications, Big Data
Cloud Computing, Sustainable Computing Communica-
tions, Social Computing Networking (ISPA/BDCloud/So-
cialCom/SustainCom), pages 238–245, New York City,
NY, USA, 2021. IEEE. doi:10.1109/ISPA-BDCloud-
SocialCom-SustainCom52081.2021.00043.

[60] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA
Deployments. In Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Communi-
cation, SIGCOMM ’15, page 523–536, New York, NY,
USA, 2015. Association for Computing Machinery.
doi:10.1145/2785956.2787484.

Appendix

A Approximating SRC Overhead

Bolt switches generate SRC packets for every data packet
they receive as long as there is queuing, given that the data
packet is not marked with the DEC flag. Then the number of

234 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1145/3387514.3405899
https://doi.org/10.1287/opre.14.4.670
https://doi.org/10.1145/2785956.2787508
https://doi.org/https://doi.org/10.1016/j.peva.2021.102232
https://doi.org/https://doi.org/10.1016/j.peva.2021.102232
https://doi.org/10.1109/IEEESTD.2011.6032693
https://doi.org/10.1109/ACCESS.2021.3129595
https://doi.org/10.1109/ACCESS.2021.3129595
https://doi.org/10.1145/3365609.3365855
https://doi.org/10.1145/3365609.3365855
https://doi.org/10.1145/2806777.2806852
https://doi.org/10.1145/2806777.2806852
https://doi-org.stanford.idm.oclc.org/10.1145/3131365.3131375
https://doi-org.stanford.idm.oclc.org/10.1145/3131365.3131375
https://doi-org.stanford.idm.oclc.org/10.1145/3131365.3131375
https://doi.org/10.1145/3131365.3131375
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00043
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00043
https://doi.org/10.1145/2785956.2787484

SRC packets depend on how long queuing persisted and how
many packet are received in this time interval.

At steady state where no new RPCs join the network, we
can estimate the fraction of time queuing persist on a bot-
tleneck. Congestion at this regime happens only due to the
once-per-RTT additive increase of 1 by each flow.

As described in §3.1, senders pace cwnd decrements such
that the total number of decrements equals the queue occu-
pancy after 1 rttsrc. This implies that any queuing will persist
for 1 rttsrc, but will be completely drained after. Since a new
congestion is not inflicted until the next RTT, we conjecture
that the fraction of time that the switch has non-zero queuing
is governed by the following golden ratio:

fraction of time switch is congested =
rttsrc

rtt
(1)

which is always less then 1.
Note that equation 1 is an approximation for congestion

interval since it doesn’t incorporate traffic load, new RPC
arrivals or multi bottleneck scenarios. Nonetheless, we can
calculate the number of SRC packets generated at a bottleneck
with it.

of SRC pkts = # of DATA pkts× rttsrc

rtt
(2)

Finally, we map equation 2 to the bandwidth occupied by
the SRC packets by incorporating the link capacity and the
packet sizes:

SRC Bandwidth =C× psrc

pdata
× rttsrc

rtt
(3)

Where C is the rate at which the traffic is flowing through the
bottleneck link, psrc is the size of SRC packets and pdata is
the size of data packets, i.e. MTU.

When we calculate the bandwidth of SRC packets ac-
cording to equation 3 for the simulation in §5.2.1, we find
0.37Gbps which is within 12% of the simulation result of
0.33Gbps. Moreover, equation 3 gives 0.10Gbps for our lab
setup in §5.5 which is within 23% of the measured value of
0.13Gbps.

B Bolt with QoS

The relationship between congestion control algorithms and
QoS has always been contradictory. An ideal congestion
control algorithm aims to mitigate any queuing at the switch,
whereas a QoS mechanism always needs enough queuing to
be able to differentiate packet priorities and serve one before
the other. Put another way, QoS only takes effect when the
arrival rate at a link is greater than the capacity such that
it causes queue build-up. Yet, QoS is vital for commercial
networks in order to be able to differentiate applications or
tenants for business related reasons [6]. This is particularly
true for unavoidable transient congestion events, i.e. incast.

Algorithm 4: Supply Token calculated for QoS queue
i at the switch with n QoS levels serving the same
egress port

1 Function CalculateSupplyToken(pkt):
2 inter_arrival_time← now− last_sm_time
3 last_sm_time← now
4 we f f ective← 0
5 for j← 0 to n do
6 if i = j || q_size j 6= 0 then
7 we f f ective← we f f ective +w j

8 supply← BW × inter_arrival_time× (wi
we f f ective

)

9 demand← pkt.size
10 sm_token← sm_token+ supply−demand
11 sm_token←min(sm_token,MTU)

Fortunately, the way Bolt reports queue occupancy is QoS-
agnostic such that it can generate SRC packets with the oc-
cupancy of the queue assigned by the QoS mechanism. Con-
sequently, it would try to minimize queuing at that particular
queue. Similarly, the way PRU token are calculated would
be queue specific instead of being egress port specific. For
example, if there are P ports on a switch and n QoS levels
per port, the size of the register array that maintains the token
values would be of P× n and flows would only be able to
proactively ramp-up if another flow with the same QoS level
is about to finish.

On the other hand, accounting for the supply token requires
the service rate for the associated queue (§3.3) which would
be a dynamic value depending on the current demand for dif-
ferent QoS levels. We identify two approaches for maintain-
ing supply tokens correctly and implementing a QoS aware
version of Bolt on programmable switches.

B.1 Ideal Approach
Imagine a scenario where weighted fair queuing [46] is ap-
plied for QoS purposes. Then, Bolt would need to be able
to increment the supply token value based on the weight as-
sociated to the QoS level (wi) and the link capacity (C) as
well as the demand for each QoS level. For example, when
all QoS levels have at least 1 packet in their queue, a packet
arriving at QoS level i should increment the token value by
C×wi× tinter−arr.

If a QoS queue is empty, its weight is distributed to other
QoS levels in proportion to each level’s own weight. There-
fore, Bolt should adjust the supply token value of QoS level i
based on the logic presented in Algorithm 4.

Note that in order to be able to determine the service rate
of each queue, queue occupancy of other queues would be
required. This requirement creates a challenge for P4 switches
since only one queue’s occupancy can be read at a time. A
workaround to this would be to create shadow register arrays

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 235

for each priority queue where they get updated whenever a
value is not being read from them. Moreover the calculation
at the line 8 of Algorithm 4 requires floating point arithmetic
which could be address via lookup tables.

B.2 Heuristic Approach
A simpler mechanism to enable QoS on Bolt switches would
be to introduce probabilistic SRC generation where higher
priority traffic has lower probability to generate a SRC packet.
This would naturally keep the rates of high priority flows
high while throttling others. Yet, an extensive empirical study
would be required to determine the probabilities such that the
queuing for all the QoS levels are bounded to some extent.

236 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Understanding the impact of host networking elements on traffic bursts

Erfan Sharafzadeh1, Sepehr Abdous1, Soudeh Ghorbani1,2

1Johns Hopkins University , 2Meta

Abstract

Conventional host networking features various traffic shaping
layers (e.g., buffers, schedulers, and pacers) with complex
interactions and wide implications for performance metrics.
These interactions can lead to large bursts at various time
scales. Understanding the nature of traffic bursts is important
for optimal resource provisioning, congestion control, buffer
sizing, and traffic prediction but is challenging due to the
complexity and feature velocity in host networking.

We develop Valinor, a traffic measurement framework that
consists of eBPF hooks and measurement modules in a pro-
grammable network. Valinor offers visibility into traffic bursti-
ness over a wide span of timescales (nanosecond- to second-
scale) at multiple vantage points. We deploy Valinor to ana-
lyze the burstiness of various classes of congestion control
algorithms, qdiscs, Linux process scheduling, NIC packet
scheduling, and hardware offloading. Our analysis counters
the assumption that burstiness is primarily a function of the
application layer and preserved by protocol stacks, and high-
lights the pronounced role of lower layers in the formation
and suppression of bursts. We also show the limitations of
canonical burst countermeasures (e.g., TCP pacing and qdisc
scheduling) due to the intervening nature of segmentation
offloading and fixed-function NIC scheduling. Finally, we
demonstrate that, far from a universal invariant, burstiness
varies significantly across host stacks. Our findings under-
score the need for a measurement framework such as Valinor
for regular burst analysis.

1 Introduction
Measurement studies show that traffic is bursty across a wide
range of timescales in diverse contexts such as Ethernet LANs
[38], WANs [56], data centers [25], and WWW traffic [21]. In
particular, microsecond-scale congestion events, sometimes
called microbursts, have been the focus of numerous measure-
ment and control papers recently [13, 18, 19, 25, 33, 37, 72].
However, the modulating effect of host networking on traf-

fic burstiness at various timescales is relatively less investi-
gated. This paper addresses this gap. We ask what causes
the traffic to emerge from hosts in bursts? Is burstiness an
scale-invariant property of traffic, i.e., does the traffic retain
its burstiness across a wide range of timescales, or do the
microbursts become smooth at coarse timescales? Are canon-
ical burst countermeasures such as TCP pacing and packet
scheduling effective in curtailing bursts?

These questions have far-reaching implications for net-
work performance and design. Controlling bursts at different
timescales requires deploying mechanisms that operate at the
corresponding pace. Microbursts, for instance, require real-
time techniques with sub-RTT control loops, whereas bursts
at longer timescales can be more effectively managed by re-
source provisioning techniques such as topology engineering
and routing that take seconds to minutes to complete [71].

Unfortunately, studying the impact of host networking on
bursts is complex. Take the Linux network stack as an ex-
ample: the egress traffic that originates from the Linux ker-
nel stack passes through many layers and optimizations be-
fore arriving at the wire. Transport protocol internals like
initial window size, cumulative acknowledgments, queueing
disciplines (qdiscs), driver rings, segmentation offloading, and
hardware packet scheduler at the NIC all handle the traffic.
All these elements and their complex interactions can play a
role in forming or suppressing bursts at various timescales.
These challenges are further compounded by the heterogene-
ity, scale, and the velocity of evolution in today’s networks
that constantly change in response to increasing demand and
the rollout of new services [26, 46, 73].

To address this challenge, we build Valinor, a high-
resolution traffic measurement framework that enables net-
work operators to systematically and periodically dissect the
elements of host networking, their impact on traffic bursti-
ness in isolation, and importantly, their interactions with the
emergent traffic patterns, all at different timescales. To ensure
visibility into the impact of the software stack and the shape
of the traffic on the wire through time, Valinor is composed
of two main components: 1) An in-host timestamping frame-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 237

work (Valinor-H) based on eBPF that collects egress packet
metadata nearly at the last stage of software stack processing.
2) An in-network packet timestamping framework (Valinor-N)
that captures packet arrival timestamps in the programmable
switch data plane immediately after the NIC, and sends the
timestamp data to offline servers for collection, storage, and
burstiness analysis.

Our analysis of the impact of host networking on the shape
of traffic using Valinor reveals some surprising results. As
an example, classical work paints a unifying and consistent
picture of scale-invariant burstiness, i.e, they show the same
degree of variability across a wide range of timescales in a
variety of different network types [21,38,56]. It has also been
established that this scale-invariant burstiness is primarily
caused by application layer characteristics such as long-tailed
flow size distributions and is “robust”: it holds for a variety
of transport protocols (e.g., TCP Reno, Vegas, and flow con-
trolled UDP) and various network configurations [23, 53].

In contrast, our investigations paint a more nuanced
and complex picture. We show that burstiness at various
timescales varies significantly across host configurations
(hardware configurations, transport protocols, scheduling,
etc.). We also show the pronounced modulating effect of
below application layer elements on bursts. This implies that,
for the same heavy-tailed flow size distribution, the ultimate
shape of traffic on the wire depends heavily on the host con-
figuration such as the NIC scheduler. Plus, Valinor’s anal-
ysis of newer reliable transport protocols (e.g., Homa [47],
DCTCP [9], and BBR [17]) reveals the high degree of vari-
ability of burstiness for these protocols. As an example, BBR
is less bursty not just at fine timescales (a result that is consis-
tent with the literature [47, 52]) but also at coarse timescales.
The latter finding (new to the best of our knowledge) im-
plies that techniques such as topology engineering [71] and
multi-timescale congestion control [66]—premised on the
long-range burstiness of traffic—may yield limited perfor-
mance improvements under these new protocols.

Finally, given the impact of some variants of transport pro-
tocols on bursts, we quantify the effectiveness of TCP pacing
and active queue management paradigms such as CoDel [49]
in qdiscs (software packet schedulers) in mitigating bursts.
Our results show the pronounced impact of lower-layer func-
tions (residing in the driver and NIC) on forming the ulti-
mate shape of traffic on the wire relative to the higher-layer
software operations of the TCP/IP stack and qdiscs. As an
example, active queue management techniques such as CoDel
and RED in the Linux kernel try to prevent the formation of
large and lasting bursts. However, our results show that their
impact is effectively erased by offloading (TSO, serialization,
etc.) and the NIC scheduler. For example, while in isolation,
the frequency of large 300 KB bursts under CoDel is 500
times lower than FIFO, this difference is barely visible on the
wire after packets pass through the multi-queue NIC with seg-
mentation offloading. Moreover, TCP pacing enforced in the

qdiscs generates between 1.8×-19× larger bursts when NIC
scheduler and offloading are in action compared to when in
isolation.1 This result indicates that the countermeasures for
controlling bursts should be moved further down the packet
processing pipeline at the end hosts.

Our results on the variability of burstiness (based on hard-
ware configurations, transports, etc.)—combined with the
ever-evolving workloads and features in today’s networks—
highlight the need for periodic traffic measurement and anal-
ysis. To facilitate this, we have released Valinor’s sources
and artifacts as open-source software.2 We next introduce the
mathematical notions developed for capturing bursts across
time, present their practical implications in networks (§2),
provide some background on host networking and the design
space of burst measurement frameworks (§3), and present the
design of Valinor (§4) before delving into our findings (§5).

2 Background: scale-invariant burstiness

Measurements of the Internet traffic show periods of sustained
greater-than-average or lower-than-average traffic rates across
a wide range of timescales [21, 24, 38, 53, 56]. This behavior,
sometimes called scaling or self-similarity, has broad impli-
cations for performance. In this section, we first formalize the
notion of self-similarity and re-introduce the Hurst exponent,
a mathematical representation of self-similarity, before dis-
cussing the implications of self-similarity and characterizing
bursts at fine timescales such as microbursts.

Self-similarity. Self-similarity is a notion pioneered by
Benoit Mandelbrot [45] which refers to a phenomenon where
a certain property of an object (such as an image or a time-
series) is preserved with respect to scaling in space and/or
time. If an object is self-similar, its parts, when magnified,
resemble the shape of the whole [55].

More formally, let (Xt)t∈Z+ be a timeseries, e.g., this time-
series can represent a traffic trace measured at some fixed
time granularity. The aggregated series X (m)

i is defined as

X (m)
i = 1/m(Xim−m+1 + ...+Xim)

In other words, Xt is partitioned into blocks of size m, their
values are averaged, and i denotes the index of these blocks.

Autocorrelation is a mathematical representation of the
degree of similarity between a timeseries Xt and a time-shifted
version of Xt over successive time intervals. It measures the
relationship between the current value of a timeseries and its

1 Despite making the traffic bursty and hard to manage, these low-level
functions are essential for reducing the processing overhead and meeting the
increasingly high link rates. For example, disabling TCP segmentation offload
results in a 3× increase in CPU utilization, 71% lower throughput, and a
46% increase in median packet RTTs for a multi-flow Iperf test. Relatedly,
disabling MQ results in a 4% decline in the throughput of the same workload.

2https://hopnets.github.io/valinor

238 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://hopnets.github.io/valinor

future values. A strong positive autocorrelation for a traffic
volume timeseries, for example, suggests that if the volume
is high (i.e., higher than average) now, then it is likely to be
also high in the next time slot, whereas a strong negative
autocorrelation implies that a high-volume slot is likely to be
followed by a low volume one.

Let r(k) and r(m)(k) denote, respectively, the autocorrela-
tion functions (ACFs) of Xt and X (m)

i where k is the time shift
from the original timeseries. We say that Xt is self-similar, or
more accurately asymptotically second-order self-similar, if
these conditions hold:

r(k)∼ c× k−β (1)

r(m)(k)∼ r(k) (2)

for large k and m, where 0 < β < 1 and c is a constant, and
f (x)∼ g(x) as x → a means that limx→a f (x)/g(x) = 1 [66].
Xt is self-similar in the sense that its ACF r(k) behaves hy-
perbolically with ∑

∞
k=0 r(k) = ∞ (Eq. 1). This property is also

referred to as long-range dependence. Equation 2 implies
that for self-similar timeseries, the autocorrelation structure
is preserved with respect to time aggregation.

In networks, the traffic is called self-similar if the aggre-
gated traffic over varying timescales remains bursty, regard-
less of the granularity of the timescale.

The Hurst exponent. Let H = 1− β/2. H is called the
Hurst exponent. The Hurst exponent, a number in the (0,1)
range that is sometimes referred to as the index of long-range
dependence, is a measure of the long-term memory of a time-
series. It characterizes the self-similarity and long-range de-
pendence of the timeseries:

• 0.5 < H < 1 indicates a self-similar timeseries with
long-term positive autocorrelations, i.e, a high value in
the series (e.g., higher than average traffic volume) is
likely to be followed by another high value. Plus, the
values a long time into the future also tends to be high.
It follows from Eq. (1) above that the closer H is to 1, the
more long-range dependent Xt is. Conversely, H values
closer to 0.5 show weaker long-range dependence.

• H = 0.5 indicates a completely uncorrelated series.
• 0 < H < 0.5 indicates a mean-reverting timeseries, i.e.,

one with long-term switching between high and low
values in adjacent pairs of time slots. That is, a single
high value in the timeseries is likely to be followed by a
low value.3

Various techniques (e.g., rescaled-range analysis and Peri-
odogram [67]) exist for estimating H for an empirical dataset.
Similar to the seminal work on Bellcore Ethernet traffic self-
similarity [38], we use the rescaled-range, R/S, for the results
presented in this paper. The details of this method are pre-
sented in Appendix §A.

3Note that the 0 < β < 1 condition in the equations above is a requirement
for self-similar, and not mean-reverting, series.

0 10 20 30 40 50 60 70 80 90 1000

100000

200000

300000

400000

Th
ro

ug
hp

ut
 (M

bi
ts

)

1s range

0 10 20 30 40 50 60 70 80 90 1000

10000

20000

30000

40000

50000

Th
ro

ug
hp

ut
 (M

bi
ts

)

100ms range

0 10 20 30 40 50 60 70 80 90 100
Time bin

0

1000

2000

3000

4000

5000

Th
ro

ug
hp

ut
 (M

bi
ts

)

10ms range

(a) Time-series

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0 1s range

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0 100ms range

0 10 20 30 40 50
Time lag

0.0

0.2

0.4

0.6

0.8

1.0 10ms range

(b) Auto-correlation
Figure 1: A self-similar timeseries with H=0.88.

Example: Figure 1a (the first row) shows a simulated sce-
nario where 32 TCP connections generate a synthetic work-
load using Pareto flow size distribution with a mean of 4200
KB and α = 1.05 and exponential arrivals that create 6 Gbps
offered load. We plot the traffic rate (in Mbps) against time
where time granularity is 1s. A data point is the aggregated
traffic volume over a 10ms interval. The second row of the
same figure depicts the same traffic series where a randomly
selected second interval in the first timeseries (the highlighted
segment in the first row) is magnified by a factor of ten, re-
sulting in a granularity of 100ms in the truncated timeseries.
The last row similarly rescales a randomly selected slot by
10×. The figures show that this trace is self-similar: when
traffic is aggregated over varying timescales, the aggregate
traffic pattern remains bursty, regardless of the granularity of
the timescale. This visual scaling is confirmed by the Hurst
coefficient, H = 0.88, and the autocorrelation functions of
the trace (Figure 1b) that show positive, slow (almost polyno-
mial) decaying, and consistently shaped correlations across
various timescales. Slow-decaying ACFs signify long-range
dependence in a timeseries.

Practical implications of self-similarity. Self-similarity
has broad implications on network design and performance,
e.g., it is shown to lead to increased delay and loss [5, 6, 22,
42, 50, 53, 66]. We next discuss some of the key implications
of self-similarity:

• Queueing performance and buffer sizing. Self-
similarity greatly influences queueing performance.
From a queueing theory standpoint, the defining char-
acteristic of self-similarity is that the queue length dis-
tribution decays much more slowly than short-range-
dependent traffic (polynomially vs. exponentially under
short-range dependent traffic, e.g., Poisson processes)
[66]. For strongly self-similar traffic, the mean queue

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 239

length increases with the buffer size [54]. This implies
that networks with strongly self-similar traffic should
deploy small buffers to control the queueing delay.

• Throughput and latency trade-off. Prior work [53, 54]
shows that jointly provisioning low delay and high
throughput is adversely affected by self-similarity.

• Traffic prediction and burst countermeasures. The
correlation structures present in self-similar traffic can
be detected and exploited to predict future traffic over
timescales larger than an RTT [66].4 Traffic prediction
at long timescales, in turn, is invaluable for designing
the appropriate burst countermeasures. For instance, re-
source provisioning techniques with control loops larger
than an RTT (e.g., multi-scale congestion control [66],
re-routing, and topology rewiring [71]) enhance the per-
formance of self-similar traffic.

Microbursts. Given their ubiquity and impact, in particular
in data centers, microsecond-scale traffic surges, known as
microbursts [13, 41, 72], have been the focus of many recent
proposals [4, 19, 27, 37, 41, 70].

The intensity of a microburst has often been measured
implicitly based on buffer utilization, or in more extreme
cases, packet loss. Related work also quantifies microbursts
as the number of packets from one flow that occupy a buffer at
a time snapshot [33], the evolution of switch queue length over
time [63], an uninterrupted sequence of packets with gaps of
smaller than a threshold [35], and/or sequence size of larger
than a threshold [68]. Using metrics that are independent of
network queues allows us to perform universal measurements
in the entire network, i.e., both at the hosts and the switches.
Yet, measurement systems intending to quantify microbursts
can leverage all the above definitions to provide a holistic
view of burstiness behavior.

From the technical perspective, we define a burst as the cu-
mulative sum of packet bytes whose inter-arrivals are smaller
than a threshold τ. Setting the minimum value for τ initially
depends on link speeds and MTUs. For example, in a fully
utilized 40 Gbps link with MTU = 1500 bytes, packets arrive
300 ns apart. Therefore, an initial τ of 2-10× of this value
is small enough to detect microbursts and large enough not
to miss consecutive packets from flows. To ensure that τ is
not affected by the network configuration and the internal
characteristics of the workloads, we repeat our measurement
with a wide range of values for τ.

3 Approaches to measuring traffic bursts

In this section, we provide a brief background on host net-
working and present the design space of burst measurement
frameworks before discussing Valinor in §4.

4The prediction methods span diverse domains such as regression theory,
neural networks, and estimation theory [66].

Application

T
C

P
/IP

Qdiscs

 N
IC

 O
ff

loads

Wire

Network Interface

TX Rings

Container
Virtual
Switch
(bridge) Application

Application

Application

App Containers

N
IC

 Sch
edu

ler

Figure 2: Conventional network processing stack architecture
in a containerized Linux deployment.

3.1 Conventional host networking

Conventional network stacks consist of various processing
layers glued together via several optimization techniques. In
Linux, application data is passed to socket interfaces (buffer-
ing in the userspace), and then to the transport protocol pro-
cessing (transport buffers, short queues [20]). Transport pro-
tocols populate sk_buffs,5 a collection of data pointers and
header information. After performing routing, sk_buffs eventu-
ally make their way towards interface qdiscs, the hierarchical
packet schedulers in Linux. qdiscs operate in parallel on all
CPU cores and forward the scheduled sk_buffs towards driver
rings where another layer of buffering is performed before no-
tifying the NIC [65]. Finally, with the conventional offloading
features enabled, the NIC performs scatter/gather [58], seg-
mentation, checksum, and sends the packets on the wire [16].
Figure 2 depicts an overview of the packet’s path through the
network processing pipeline in a Linux host.

3.2 Capturing timestamps

High-resolution timestamping is essential for burst analysis.
Various techniques exist for capturing packet arrivals:

NIC timestamps. Hardware timestamping is avail-
able in all commodity NICs. This feature is supported by the
Linux kernel via ancillary socket data. When a user requests
timestamping through a socket option, the transmission
timestamps are generated in the hardware before sending
the packet on the wire and are eventually sent to the source
socket. Therefore, the application is responsible for polling
the error queue and reading the timestamps. Hardware
timestamping supports most TCP and UDP connections,
however, it suffers from two main shortcomings. First, if the
operating system fails to poll the timestamp registers of the
NIC in time, e.g., in higher packet rates, the timestamp will
be overwritten by that of the next packet. Plus, modifying the
network application to receive timestamps may impact the
application’s workload pattern, and thus must be performed
with extra care.

5sk_buff stands for "Socket buffer" and is used to represent the socket
data that eventually is shaped into the packet. sk_buffs, therefore, may contain
a single or multiple packets.

240 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Modifying networking stack software. To study real-
istic network traffic with higher arrival rates, hardware
timestamping is not ideal due to the need to change the
application internals and high overheads. An alternative
solution is to directly capture the timestamps closer to the
packet processing, e.g., the NIC driver, and either add the
timestamps to the packet payload or re-route them to the
userspace. Alas, accessing and modifying the packet data
requires offloading features such as scatter-gather IO and
Segmentation Offloading to be turned off. Additionally,
timestamps that are at sk_buff granularity may not imitate the
inter-packet gaps on the wire due to the intervention of lower
layers.

eBPF hooks. eBPF offers a series of hooks inside the
Linux kernel and the NIC driver that allows fast execution
of arbitrary data plane logic. An eBPF program consists of
a data plane and a control-plane code targeting a specific
hook on the RX or TX path (XDP hook in the receive path of
NIC driver and traffic control (tc) hook on the TX path of
the qdisc subsystem are two examples). eBPF tc programs
are registered to the kernel using the tc command and are
executed inside a lightweight RISC virtual machine. eBPF
also provides fast data structures that enable shared state
between the kernel and the userspace. This allows us to
perform burst measurements offline with any workload
configuration without modifying the kernel source or packet
payloads.

While eBPF relieves us from directly modifying the packet
processing code in the kernel, it presents two shortcomings.
First, eBPF, similar to the previous solution, works at sk_buff
granularity since packet segmentation is almost always
offloaded to the NIC. Therefore, the eBPF framework can
only measure the gaps between larger chunks of data, not
packets. Additionally, our measurements show that each
eBPF invocation incurs up to 1 µs of delay, mostly due to
memory accesses. While this overhead may be acceptable at
the sk_buff granularity, the framework will lose its visibility
into nanosecond-scale events. Ultimately, eBPF provides
a convenient solution to plug into the network data path
with minor interference. Making it a viable burstiness
probing point on the egress path. We present the design and
implementation of the Valinor eBPF framework, Valinor-H,
in §4.1.

Timestamping in the switch data-plane. A holistic
method to capture the behavior of all host networking
components (including the NIC) is to perform measurements
immediately after transmitting the packets on the wire, i.e., at
the first network hop. Fortunately, the rise of programmable
switch architectures with high-resolution timestamping
enables capturing packet arrival timestamps and sending
this data off the critical communication path for offline
processing. This further ensures zero interference with the

ongoing communication and the ability to track the entire
egress host networking components. We describe the design
of our in-network measurement system, Valinor-N, in §4.2.

Programmable NICs share many of the strengths of
in-network measurements (e.g., timestamping close to the
wire, low overhead, and no interference) but do not provide
visibility into in-network queue occupancies. Plus, our
experience with commodity DPUs [15] shows inconsistencies
in the capabilities of existing devices. General-purpose SoC
NICs [15] are either bound to their slow ARM CPUs or do
not offer per-packet timestamping capabilities on their fast
path. Due to these practical issues as well as the greater
visibility that in-network measurements offer, alongside
its host module, Valinor currently leverages programmable
networks for capturing bursts on the wire.

4 Valinor measurement framework

For designing Valinor, we have three goals in mind:

1. Offering visibility into the host networking traffic, as
well as the shape of the traffic on the wire.

2. Offering high-resolution timestamping of packet arrivals
in line with the increasing link bandwidths and faster
packet processing pipelines.

3. Providing insights on traffic shape and burstiness at dif-
ferent scales and time ranges.

We design and implement Valinor, a measurement frame-
work that consists of two main timestamping prongs to study
packet arrivals from the host and network vantage points.
First, we design Valinor-H to study the host’s view of its
egress traffic by choosing tc eBPF hooks. For capturing the
external picture of traffic burstiness, we design Valinor-N, a
timestamping module for programmable fabric.

4.1 Valinor-H: burst measurement in hosts
Valinor-H offers visibility into the impact of the software
stack on traffic, immediately before the traffic is passed to the
NIC. The insight into the characteristics of the traffic entering
the hardware can help the design of the functions offloaded
to the NIC. This becomes increasingly important as more and
more functions migrate to the NIC, driven by the dire need to
reduce software overhead.6

Figure 3 presents the design of our eBPF framework. Our
framework consists of two separate programs. The data plane
program follows a strict set of C-like instructions that are exe-
cuted at the tc qdisc, every time a sk_buff arrives. We design

6As network speeds increase at a faster pace than CPU speeds, software
overhead is increasingly the performance bottleneck [52]. This has moti-
vated the offloading of various functions such as segmentation, serialization,
scheduling, and even transport protocol processing to the NIC [11, 58, 64].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 241

Network Application

Network Socket

TCP/IP

Queuing disciplines

Valinor-H Data-plane

Valinor-H Control-plane

Netdev

NIC

Linux Virtual
File System

Write handle

Shared
control

data

sk_buff

Packets to the network

Compiler, verifier and libbpf

Per-CPU buffers

Valinor_data {
u64 flow_identifier;
u64 timestamp_ns;
u64 data_size;
}

Read
handle

Poller Threads

Redis
Backend

Flow filters Timestamper Stat Analytics

Figure 3: The eBPF measurement framework’s architecture.
Valinor-h consists of a data plane and a control plane, communi-
cating via lock-free ring buffers.

circular buffers capable of storing up to 216 arbitrary data
entries shared with the control plane. Then, the write handle
determines the correct location for adding new timestamp
entries and updates the data structure. In the control plane,
we initialize the data plane and the circular buffer and start
polling the buffer for new data. The data entries carry the
sk_buff lengths as well as the flow hash and protocol header
information. The read handle, retrieves the timestamp entries
one by one and hands them to the Redis workers for persistent
storage.

One challenge that arises when using a shared data struc-
ture is synchronization between the data plane and the control
plane. This scenario generally needs locking mechanisms to
prevent a race condition, however, the nature of the times-
tamping data, being strictly increasing, lifts this heavy burden.
Therefore, in the control plane, Valinor-H only reads and in-
crements its write handle if the timestamp value is larger than
the previous value read. Another synchronization issue arises
when multiple CPUs attempt to store packet metadata in the
shared memory. Luckily, eBPF offers per-CPU structures to
prevent race conditions in the data plane. The Valinor-H con-
trol plane uses separate threads to read from per-CPU buffers
simultaneously.

With the in-host measurement framework, network oper-
ators can verify the operation of higher-level network pro-
cessing layers on the transmission path of the sender hosts.
Valinor-H, at this stage, can capture the ingress traffic into the
NIC which includes the traffic egress from qdiscs, the trans-
port layer, and the applications. To capture the traffic behavior
in the core of the network, and on a per-packet granularity,
we introduce Valinor-N in the following section.

4.2 Valinor-N: in-network burst measurement
Software-based measurements in the host stack are bound
to the coarse-grained sk_buff arrivals and are implemented
before NIC functions (i.e., ring schedulers and segmentation
offloads). Hence, the captured traffic behavior might not
match that of the wire. To fill this gap, we introduce the
in-network variant of Valinor based on programmable switch

data planes. Valinor-N consists of three pieces: 1) the switch
component, 2) the collector data plane, and 3) the analysis
component. Valinor-N is able to I) capture per-packet arrival
timestamps with zero overhead outside the critical path, II)
collect and store timestamp entries arriving at line rate, and
III) perform various analyses on timestamp data to provide
an in-depth image of the traffic burstiness at different scales.

Valinor Switch. The switch data plane program uses
mirroring and timestamping functionalities available in the
PISA architecture. For every packet that matches user-defined
flow filters, Valinor-N appends the arrival timestamp, queuing
delay, and the size of the original packet along with its
layer l-4 header information to a special IP packet with
a pre-defined Valinor header. The packet is then sent to a
collector server. The server machine, deployed outside the
critical path of the communication between traffic endpoints,
aggregates the timestamp information and performs the
offline analysis.

Timestamp collection. The collector machine features a
userspace packet processing framework based on DPDK
that parses the arrived packets and stores the timestamp
information along with flow metadata into an in-memory
Redis [3] instance. Analysis of the timestamp data is then
performed by querying the data store. Receiving timestamp
packets at line rate and storing them in persistent storage
poses several scalability challenges to the design of the
collector component. To ensure that software can drain NIC
buffers at line rate, we designate multiple worker threads
to read and process the incoming packets. After parsing
timestamp headers, the worker threads extract the timestamp
data and send them to additional worker threads that are
responsible for communicating with Redis. The stored
metadata is then retrieved by the analysis framework to
perform burst analysis using timestamps.

Valinor-N’s Redis workers issue batched commands during
idle periods to minimize interference with packet processing
workers. We use Redis sorted sets to store timestamp entries
sorted by arrival times since the packets that arrive at
the collector may have a different order from the packets
that arrive at the Valinor-N switch data plane. We use 1G
hugepages and large memory pools to ensure that timestamp
packets are not dropped at higher rates (Up to 40 Gbps in our
testbed).

Offline timestamp processing. The last piece of Vali-
nor’s design is the offline timestamp analysis framework
that queries the Redis data structures and performs analysis
on timestamp data. Our framework is able to report various
statistics on traffic burstiness by measuring the packet
inter-arrivals. For example, in the next section, we report
our findings on the scaling behavior, caused by various
packet processing components in the sender machine. We

242 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Server Machine

Collector Machine

Traffic generator machine
(client)

Programmable
Switch

Valinor-H
eBPF framework

N
I
C

Iperf

Containers
Iperf

Container
Iperf

Container
Network

Applications

N
I
C

N
I
C

 Network Load
generators

Valinor-N timestamp
collector

Data Analysis Machine

Valinor data analysis
framework

Cloud Storage

Software
Switch

Valinor-
H

Control
plane

Valinor-N
 In-network
Framework

Figure 4: Deployment overview of Valinor framework.

report actual burst sizes in bytes, inter-arrival distributions,
queueing delays, and various burstiness time series analyses.
We implement the offline processing framework in Python.

5 Findings

We deploy Valinor to analyze the burstiness of various work-
loads and configurations. Our results show:

• Host networking, largely overlooked in prior self-
similarity studies, plays a major role in forming and
suppressing bursts.

• Lower layers of the network processing stack (such as
segmentation offloading and NIC scheduling) compro-
mise the effectiveness of software-based traffic shaping
and active queue management solutions.

• Software pacing has major limitations. For workloads
with a mixture of short and large flows, lower layers
of the network processing stack mask the impact of
software-based traffic pacing. For workloads with very
short flows, software pacing can blunt bursts but leads
to a major increase in RTT and significant throughput
reduction.

• NIC driver buffer sizing and process scheduling can re-
shape bursts.

Experiment setup. Figure 4 demonstrates how Valinor
framework components come together in a basic deployment.
For evaluating Valinor, we use a wide range of workload
distributions. We deploy Iperf instances alongside Homa’s
open-source load generator [47] inside Linux containers and
configure the workload generators to simulate different trace-
driven workload patterns including Facebook’s ETC, Google
search, aggregated Google data center, DCTCP’s web search,
and Facebook’s intra-cluster and intra-rack Hadoop traces
[9,12,47,60]. Unless stated otherwise, all application contain-
ers are connected via an OVS [2] virtual bridge to the external
interface. Our testbed consists of servers featuring Intel Xeon
E5-2620 v4 processors, 64 GB of memory, and Intel XL710
40G NICs. We connect the servers via a Wedge-100 Tofino
switch running Valinor-N timestamping framework. We de-
ploy Valinor-H on Linux kernel 5.17 with the latest version of
libbpf and iproute2 installed. The collector machine features

Setting Default Value Parameter Range
Transport TCP cubic cubic, reno, BBR, DCTCP, Homa
Qdisc fq fq, fq_codel, pfifo_fast, HHF, SFQ
Byte Queue Limit Dynamic [100B-10MB]
MTU 1500 1500, 9000
Process scheduler CFS CFS, FIFO, Microquanta

Table 1: Default system configuration and tested parameter
ranges.

100 101 102 103 104 105 106 107 108
Flow Size (B)

10−4

10−3

10−2

10−1

100

CC
DF

α= 1.05
α= 1.15
α= 1.25
α= 1.35
α= 1.65
α= 1.95
exponential

(a) Synthetic workload

100 101 102 103 104 105 106 107 108
Flow Size (B)

10−5

10−3

10−1

CC
DF FB ETC

Google Search
Google DC
FB Hadoop
Web Search

(b) Trace-driven workload

Figure 5: Two sets of workloads used throughout the experi-
ments. The figures show the complementary cumulative distri-
bution functions (CCDFs) of flow sizes.

Valinor’s userspace data plane based on DPDK v20. We dis-
able idle states on all servers and set the frequency governor
to performance to minimize the interference of power-saving
features on networking performance. The default settings for
the evaluated components are summarized in Table 1.

Finally, to calculate microburst lengths, since we use
40Gbps links, we set the burst inter-arrival threshold to 500ns
for the presented results (see §2). Valinor also computes mi-
croburst lengths for other threshold settings (ranging from
5ns to 10µs). While the threshold setting impacts the size and
quantity of observed bursts, we did not notice any difference
in relative burstiness when comparing multiple cases.

5.1 Revisiting structural causality

Where does traffic burstiness come from? Prior work [23, 53,
54] shows that the heavy-tailed property of the flow size dis-
tribution directly determines link-level traffic self-similarity,
a phenomenon that is sometimes referred to as structural
causality. Heavy-tailed flow size distributions are shown to be
the sufficient condition for generating scale-invariant bursti-
ness and the network stack is shown to play a negligible
role in self-similarity [23, 53]. For instance, for traffic gen-
erated by TCP Reno for a heavy-tailed Pareto file size dis-
tribution with the shape parameter α, there exists an almost
linear relation between H and α: the estimated H is close to
(3−α)/2.7 Heavier tailed distributions (i.e., α close to 1) are
more strongly self-similar (H closer to 1). The self-similarity
of traffic with heavy-tailed flow sizes is in contrast to the lack

7The H = (3−α)/2 relation shows the values of H predicted by the a
theoretical ON/OFF model in the idealized case corresponding to a frac-
tional Gaussian noise process with independent traffic sources with constant
ON/OFF amplitude [54]. This captures an ideal self-similar process.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 243

102 104 106 108
Burst length (B)

10−6

10−4

10−2

100

CC
DF

α= 1.05
α= 1.15
α= 1.25
α= 1.35
α= 1.65
α= 1.95
exponential

(a) Simulation microburst sizes

1.
05

1.
15

1.
25

1.
35

1.
45

1.
55

1.
65

1.
75

1.
85

1.
95 ex
p

Distribution (Pareto alpha / exponential)

0.5

0.6

0.7

0.8

0.9

1.0

Es
tim

at
ed

 H

R/S
(3 - alpha)/2

(b) Simulation Hurst exponents

102 104 106 108
Burst length (B)

10−6

10−4

10−2

100

CC
DF

(c) In-host microburst sizes

1.
05

1.
15

1.
25

1.
35

1.
45

1.
55

1.
65

1.
75

1.
85

1.
95 ex
p

Distribution (Pareto alpha / exponential)

0.5

0.6

0.7

0.8

0.9

1.0
Es

tim
at

ed
 H

(d) In-host Hurst exponents

102 104 106 108
Burst length (B)

10−6

10−4

10−2

100

CC
DF

(e) In-network microburst sizes

1.
05

1.
15

1.
25

1.
35

1.
45

1.
55

1.
65

1.
75

1.
85

1.
95 ex
p

Distribution (Pareto alpha / exponential)

0.5

0.6

0.7

0.8

0.9

1.0

Es
tim

at
ed

 H

(f) In-network Hurst exponents

Figure 6: Microburst sizes and Hurst exponents of different
synthetic workloads for simulated and testbed experiments. The
interference of host networking elements is visible in the differ-
ence between the three scenarios.

of correlation structures for short-tailed flow size distributions
such as an exponential distribution (H close to 0.5).

We first replicate this result using OMNET [1], an exten-
sively used simulator [8, 14, 47], and observe an almost lin-
ear relation between α and H—consistent with the findings
of prior work [53], the estimated H values closely track the
(3−α)/2 line. In a setup where the two simulated servers are
connected via a network switch, we establish 32 long-running
TCP connections and use Pareto and exponential flow size
distributions (Figure 5a shows the flow size distributions). To
achieve a target offered load of 6 Gbps, flows are initiated ex-
ponentially with a mean interarrival time of 87µs. We repeat
each experiment five times. In the box and whisker plots, each
box depicts the 1st and 3rd quartiles, the whiskers represent
the upper and lower extremes, the circles are outlier points,
and the orange dashes show the median Hurst estimates. Fig-
ure 6b shows that heavy-tailed flow size distributions generate
self-similar traffic. Figure 6a shows that these distributions
also result in larger microbursts with heavier tails.

Next, we repeat the above scenario in a testbed, using Vali-
nor to analyze burstiness after the software stack and on the
wire. Using Valinor-H for in-host analysis, we observe that

101 103 105 107
Burst length (B)

10−6

10−4

10−2

100

CC
DF

FB ETC
Google Search
Google DC
FB Hadoop
Web Search

(a) Simulation microburst sizes

101 103 105 107
Burst length (B)

10−6

10−4

10−2

100

CC
DF

(b) In-network microburst sizes

101 103 105 107
Burst length (B)

10−6

10−4

10−2

100

CC
DF

(c) In-host microburst sizes

FB
ETC

Google
Search

Google
DC

FB
Hadoop

Web
Search

0.0

0.2

0.4

0.6

0.8

Hu
rs

t E
st

im
at

e

Simulations
Testbed network

Testbed eBPF

(d) Estim. Hurst exponents

Figure 7: Self-similarity and microburst sizes vary across work-
loads and between testbed and simulation results. Positioned be-
fore the NIC, Valinor-H captures a smoother snapshot of traffic
than in-network measurements.

the impact of the heavy-tailed distributions on self-similarity
is barely visible at this stage with distributions with varying α

parameters behaving similarly and close to a light-tail expo-
nential distribution (Figure 6d), e.g., the software stack greatly
diminishes the degree of self-similarity of heavy-tailed Pareto
distribution with α = 1.05 from H = 0.88 in the simulations
(Figure 6b) to H = 0.64 at the eBPF hook (Figure 6d). We
observe a similar effect on the microburst size distributions
that are much more similar across different workloads and
have shorter tails (Figure 6c).

We next use Valinor-N for analyzing traffic as observed
on the wire. The patterns again change in interesting and
non-uniform ways. Similar to in-host measurements, the in-
network measurements indicate that the influence of flow size
on self-similarity is lower than the simulated experiments,
e.g., H = 0.80 and H = 0.78 for α = 1.05 and α = 1.65, re-
spectively, on the wire in the testbed experiments compared
to H = 0.88 and H = 0.63 for the same workloads in the
simulated experiments (Figure 6f). The more amplified long-
range burstiness in the network compared to in-host experi-
ments is due to the intervention of driver and NIC functions
(such as segmentation offloading scheduling) that reside be-
low Valinor-H. We investigate the roles of these functions in
§5.3. Figure 6e shows that the flow size distribution has a rel-
atively subdued impact on the ultimate size of microbursts on
the wire once the traffic traverses the host networking stack.

Summary: The shape of the traffic in the testbed experi-
ments (in-network and in-host) is substantially different com-
pared to the simulated experiments with identical setups. This
suggests that host networking elements (e.g., qdiscs, process
schedulers, and NIC schedulers, not modeled in common sim-
ulators) alter burstiness.

244 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.2 Impact of workloads

Next, we repeat the above experiments (using both the simu-
lator and the testbed) by replaying the traces of five classes
of workloads from [47]: (1) Facebook’s ETC workload, (2)
Google search workload, (3) Google’s aggregated internal
data center workload, (4) Facebook’s Hadoop workload, (5)
DCTCP’s web search workload [9]. Figure 5b shows the flow
size distributions of these traces. Similar to the previous ex-
periments, in simulations, there exists a direct correlation
between the flow size distributions, self-similarity, and the
burst lengths (Figure 7). In the testbed, however, the differ-
ence in burst lengths starts to fade away as host networking
components come into play. We also observe that the scal-
ing behavior varies substantially across different workloads
and between the simulated and testbed experiments. Hurst
coefficients are larger for the more heavy-tailed distributions
in the network but mostly homogeneous before reaching the
driver. For example, the self-similarity estimates for the ETC
workload (p99th flow size = 1.8 KB), the Google DC work-
load (p99th flow size = 31 KB), and the web search workload
(p99th flow size = 27 MB) are 0.57, 0.75, and 0.85, respec-
tively for in-network measurements and 0.50, 0.57, and 0.65,
respectively for in-host measurements.

5.3 Sources and implications of burstiness

The previous section shows the aggregate impact of host
networking elements on bursts. In this section, we measure the
impact of each element, starting with the transport layer and
moving to the elements that operate below the TCP/IP stack
(e.g., qdiscs) and in parallel to it (e.g., the process scheduler).

5.3.1 Transports and congestion control

Starting with transports, we evaluate four TCP congestion
control variants under a mixture of background traffic and a
small-scale incast traffic pattern where two sender machines
target one receiver. The background traffic consists of two
iperf flows each taking 18Gbps of bottleneck link bandwidth.
The incast traffic follows the map-reduce workload size distri-
bution. For this experiment only, we run both the workload
generators and the applications outside the container envi-
ronment. Figure 8a shows how TCP Cubic [28], TCP Reno,
DCTCP [9], and BBR [17] react to queue buildups in the
network. Compared to Reno, TCP Cubic (the default con-
gestion control setting in recent versions of Linux kernels)
uses a more aggressive function for increasing its congestion
window upon receiving acknowledgments. Therefore, it ex-
periences larger queueing oscillations than Reno. BBR uses
round-trip times to adjust its transmission window and varies
its pacing rate to keep the in-flight bytes near its estimated
bandwidth-delay product. Thus, it experiences a more steady
queueing behavior while trying to keep the buffer half full.

0 600 1200 1800 2400 3000
Time (μs)

0

100

200

De
la

y
(μ

s)

Cubic Reno DCTCP BBR

(a) Buffer occupancy under Incast

0

200000

400000

Th
ro

ug
hp

ut
 (M

bi
ts

) Cubic - 1s range Reno - 1s range DCTCP - 1s range BBR - 1s range

0

20000

40000

Th
ro

ug
hp

ut
 (M

bi
ts

) Cubic - 100ms range Reno - 100ms range DCTCP - 100ms range BBR - 100ms range

0 20 40 60 80 100
Time bin

0

2000

4000

6000

Th
ro

ug
hp

ut
 (M

bi
ts

) Cubic - 10ms range

0 20 40 60 80 100
Time bin

Reno - 10ms range

0 20 40 60 80 100
Time bin

DCTCP - 10ms range

0 20 40 60 80 100
Time bin

BBR - 10ms range

(b) Timeseries of packet arrivals

cubic reno DCTCP BBR0.00

0.25

0.50

0.75

1.00

Hu
rs

t E
st

im
at

e

(c) H estimates for TCP variants

102 104 106
Burst length (B)

10−4

10−2

100

CC
DF

Homa TCP cubic

(d) Homa vs Cubic bursts

Figure 8: (a) Valinor captures the in-network buffer occupancy
for different transport protocols. (b), (c) Timeseries and H coef-
ficients show that burstiness (at both short and long timescales)
varies significantly across transport protocols. (d) A receiver-
driven transport, Homa, is less bursty than TCP Cubic.

Finally, DCTCP uses explicit congestion notifications from
switches to maintain consistently low queuing.

Figure 8b presents the throughput timeseries of the four
congestion control variants at different timescales followed
by their Hurst exponent estimates in Figure 8c. With the help
of pacing and RTT estimations, BBR is able to maintain a
steady throughput and a non-bursty traffic shape, reflected
by H = 0.40. On the other hand, Cubic’s less conservative
transmissions incur a self-similarity estimate of 0.60.

Finally, we deploy Homa’s kernel module [47] as a rep-
resentative implementation of receiver-driven transports in
the Linux kernel. In receiver-driven transports, the destina-
tion initiates more packets by issuing grant control packets
for the sending host. In our setup, Homa sends the first 90
KB of each flow unscheduled as an attempt to initiate the
communication and retrieve the path’s congestion status. The

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 245

102 103 104 105 106
Burst length (B)

10−5

10−4

10−3

10−2

10−1

100

CC
DF pfifo_fast

SFQ
fq
HHF
fq_codel

(a) SQ w/out Offloading

102 103 104 105 106
Burst length (B)

10−6

10−5

10−4

10−3

10−2

10−1

100

CC
DF HHF

fq_codel
pfifo_fast
fq
SFQ

(b) SQ w/ Offloading

102 103 104 105 106
Burst length (B)

10−6

10−5

10−4

10−3

10−2

10−1

100

CC
DF HHF

pfifo_fast
fq
SFQ
fq_codel

(c) MQ w/ Offloading

Figure 9: Burst behavior of Linux queueing disciplines in the absence and presence of offloading (Offloading) and NIC scheduling
(SQ=single-queue, MQ=multi-queue). Both MQ and TCP segmentation offload compromise the intended shape of software packet
scheduling.

following packets are then scheduled using grants. Due to
its limited implementation scope, the Homa module is not
able to achieve line rate performance. Therefore, we limit
our observation to the map-reduce workload tuned down to
6 Gbps offered load. Figure 8d presents the burst lengths for
Homa and TCP Cubic as observed by Valinor-H eBPF frame-
work. We observe that the p99 burst length under Homa is 9×
lower than Cubic which might reflect two facts. First, unlike
Cubic which sends up to 64 KB long data chunks, Homa’s
prepared sk_buff chunks are mostly as large as its MTU (9
KB in this experiment). This is also due to the fact that Homa
kernel module is not making use of TSO because of certain
Intel NIC limitations. Secondly, Homa uses pacing to keep
the NIC fully saturated in its Linux implementation which
further controls the spacing between its transmissions [52].
Combined, these factors result in Homa’s less bursty behavior
compared to TCP Cubic, not just at small timescales (Fig-
ure 8d) but also at large timescales (H = 0.54 for Homa vs.
0.62 for Cubic). However, we suspect a different behavior
from Homa on different setups that can make use of NIC
offloading.

5.3.2 Software switching

Linux leverages queueing disciplines (qdiscs) to enforce
scheduling among segments originating from different ap-
plications in the system. If generic segmentation offload is
not in use, qdiscs are the last software components to decide
the order of data entities on NIC’s FIFO rings. We study five
representative queueing disciplines implemented in Linux:
1) Fair queue (fq) is the default scheduler in recent Linux
kernels and is mainly used to enforce pacing on a per-flow
(per socket) basis. The appropriate pace among flows is either
explicitly enforced via socket options, or is determined by
the TCP congestion control (e.g., BBR). By default, fq uses
deficit round-robin with a default quantum of 3028 bytes to
drain flow queues, with an initial quantum equalling TCP’s
initial 10-packet window.
2) fq_CoDel. The controlled delay (CoDel) algorithm, com-
bined with fair queue, enforces CoDel on per-flow sub-queues.
CoDel, a more recent AQM algorithm, uses packet sojourn

time inside each flow queue to detect slow flows and prevents
the queueing delay to exceed a user-specified target by drop-
ping excess traffic.
3) Stochastic Fair Queueing (SFQ) extends flow-queuing
with random-early marking/drop semantics with small default
queue sizing to control the queueing delay. Similar to fq, it
uses round-robin scheduling on per-flow sub-queues. SFQ
uses a default deficit of one MTU.
4) pfifo_fast is a First-In First-Out priority queue. Higher
priority packets are distinguished by their Type of Service
(TOS) fields in IP headers which are set by upper layers.
5) Heavy Hitter Filter (HHF) attempts to identify and sep-
arate short flows from heavy hitters to prevent head-of-the-
line blocking and increased delays for latency-sensitive flows.
Such flows are given a higher deficit compared to heavy hitters
in each transmission round.

We study qdiscs under three scenarios: First, to see the
actual contribution of qdiscs to the traffic shape, we disable
segmentation offload and serialization offload and limit the
number of the transmit rings to one (single-queue). Segmenta-
tion is the process of breaking large sk_buffs into MTU-sized
segments and is usually deferred to the last processing stages
to reduce CPU utilization and improve flow performance. Seg-
mentation offload can either be performed in the hardware
(TCP Segmentation Offload or TSO) or just before passing the
data to the hardware (Generic Segmentation Offload or GSO).
Additionally, in a multi-queue architecture, the network stack
communicates to the NIC via separate ring buffers pinned to
each CPU core to reduce inter-core communication overheads
and improve throughput. When enabled, a (reportedly, round-
robin [65]) packet scheduler in the hardware will decide the
order in which packets are drained from ring buffers.

Initially, we run 1000 Iperf instances spread across 200
containers, simulating the map-reduce workload on the single-
queue server without offloading. Figure 9a demonstrates how,
in isolation, per-flow queuing can significantly shorten the
size of egress bursts. Techniques such pfifo_fast, and HHF
use one large buffer containing packets from all egress flows,
allowing multiple data segments of one flow to be enqueued
simultaneously. On the other hand, per-flow queueing allows

246 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SQ SQ
+ offloading

MQ
+ offloading

0.0

0.2

0.4

0.6

0.8

1.0
Hu

rs
t E

st
im

at
e

pfifo_fast fq fq_codel HHF SFQ

Figure 10: Hurst estimates for different queueing disciplines.

the scheduler to interleave among packets of different flows,
primarily to maintain fairness and prevent head-of-the-line
blocking [62].

To verify the impact of round-robin scheduling on blunting
bursts, we repeat the same experiment with fq qdisc, increas-
ing the per-flow deficit from one MTU (1514 bytes) to 16
MTUs, and observe a linear correlation between fq deficits
and burst lengths. For example, the 90th percentile of burst
lengths under a deficit of 16 packets is increased to 25 KB
from 13 KB under that of 8 MTUs (92% increase).

While qdisc is the last layer to perform packet scheduling
in the software, the traffic ultimately often passes through
segmentation offloading and NIC scheduling before reaching
the wire. Is the impact of qdiscs on the wire preserved after
the interaction with these lower layers? To investigate, we en-
able all the offloading features and perform our measurements
again. Figure 9b demonstrates the impact of offloading seg-
mentation and serialization on lengthening the egress bursts.
With TSO at work, qdiscs no longer serve packets. Instead,
they schedule between dynamically sized sk_buffs. Hardware
offloading then helps increase the throughput by nearly 50%
for all cases while moving the buffering to the hardware where
large segments are broken into MTU-sized packets and sent
on the wire. This significantly undermines qdisc’s decisions
on shaping the traffic. With offloading in action, the median
burst sizes for fq, fq_codel, and pfifo_fast are, 132 KB, 127
KB, and 127 KB, respectively. While without offloading, these
systems experienced a median burst length of 76 KB, 76 KB,
and 172 KB8, respectively.

To further ruffle the output of qdiscs, we enable the default
multi-ring root qdisc which assigns a separate qdisc instance
to each CPU core and enables the NIC scheduler to perform
last-level scheduling on transmit rings (multi-queue architec-
ture). Figure 9c presents the outcome. With NIC scheduling
and segmentation offloading at work, the shape of the qdisc’s
outgoing traffic is barely preserved on the wire. That is be-
cause, NICs are equipped with internal round-robin sched-
ulers to drain the software rings, further reducing the chances
of creating long bursts. Finally, Figure 10 demonstrates the
estimated Hurst exponents for the three scenarios. Without

8pfifo_fast combined with offloading can exacerbate burstiness as both
layers are prone to creating large, uncontrolled bursts.

segmentation offloading, the degree of burstiness is consid-
erably reduced (H < 0.5) for all but one case. Only pfifo_fast
which does not offer any form of fair queueing suffers from
heavier burstiness (H = 0.8) under the single-queue scenario.
Implications of disabling offloading and multi-ring
scheduling. Apart from burstiness, both offloading and NIC
scheduling have a profound impact on flow performance met-
rics. Our measurements demonstrate that disabling TCP seg-
mentation offload for a workload consisting of 1000 same-
size flows results in 71% decline in median flow throughput,
46% increase in median packet RTTs, and 3× increase in
sender CPU utilization. Therefore, disabling offloading, in
order to enable software control is not always a viable option.
Multi-queue NICs are also considered a quick solution with
potential side effects. While enabling multi-queue reduces
resource contention, they can increase response times and are
usually fixed-function [65].

5.3.3 Software pacing

The above observations raise another important question on
host networking design decisions. While many congestion
control techniques [7, 17, 37, 47, 57] advocate for pacing in
order to achieve accurate control over in-transit data, existing
pacing implementation in the Linux kernel is deeply away
from the wire, at fq qdisc. Are qdiscs a suitable place for
enforcing pacing? To investigate, we repeat the map-reduce
(M/R) workloads on the server with both offloading and NIC
scheduling enabled and observe that for workloads with large
flows (intra-rack M/R), pacing doesn’t have a significant im-
pact on burstiness, and for those with short flows (intra-cluster
M/R), pacing results in throughput reduction. Overall, our re-
sults highlight the limitations of software pacing for data
center workloads.

Concretely, we configure fq to pace 200 flows based on their
fair share of bandwidth (200 Mbps), and gradually increase
the portion of the flows that are counted as heavy hitters from
0% (no flow is paced) up to 100% (all flows are paced). Figure
11 compares the bursts for (a) workload with mostly large
flows and (b) workload with a mix of small and large flows.
In the former workload, we observe that while the impact of
pacing ratio is less evident, pacing allows for better bandwidth
allocation and the line rate is preserved for all rows. On the
other hand, in the latter workload, the throughput is reduced
by 22% under pacing. This is because short flows are not able
to make up for the freed bandwidth that pacing creates. We
also compare packet RTTs and find that pacing large heavy-
hitters helps reduce median RTTs by two orders of magnitude
as short flows experience less head-of-the-line blocking. This
behavior changes in the intra-cluster workload as we do more
pacing, as the increased RTT of paced flows drives the overall
median RTT up by 160%. Further details on the theoretical
analysis of burstiness under software pacing can be found in
Appendix §B.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 247

1,
58

0-
1,

93
7

1,
93

7-
2,

37
5

2,
37

5-
2,

91
3

2,
91

3-
3,

57
2

3,
57

2-
4,

38
1

4,
38

1-
5,

37
2

5,
37

2-
6,

58
8

6,
58

8-
8,

07
9

8,
07

9-
9,

90
8

Burst length (B)

0%
20%
40%
60%
80%

100%

Pa
ce

d
flo

ws
 %

100

101

102

103

104

105

106

of

 b
ur

st
s

0 20 40 60 80 10
0

Paced flows %

0.1

1

10

60

Bo
xe

s:
 R

TT
 (m

s)

1

2

3

4
5

Lin
e:

 T
hr

ou
gh

pu
t (

M
pp

s)

(a) Intra-Rack M/R

66
8-

1,
48

3
1,

48
3-

3,
29

4
3,

29
4-

7,
31

7
7,

31
7-

16
,2

51
16

K-
36

K
36

K-
80

K
80

K-
17

8K
17

8K
-3

95
K

39
5K

-8
78

K

Burst length (B)

0%
20%
40%
60%
80%

100%

Pa
ce

d
flo

ws
 %

100

101

102

103

104

105

of

 b
ur

st
s

0 20 40 60 80 10
0

Paced flows %

0.1

1

10

60

Bo
xe

s:
 R

TT
 (m

s)

1

2

3

4
5

Lin
e:

 T
hr

ou
gh

pu
t (

M
pp

s)

(b) Intra-cluster M/R

Figure 11: Software pacing is workload dependent. For work-
loads consisting of large flows, its impact on smoothing bursts
is unmade by lower layers. For workloads with both short and
long flows, it reduces throughput.

5.3.4 Byte Queue Limits

Linux kernel employs buffers at various stages of network
stack processing to streamline the data movement among
various components. The NIC driver queue is the last buffer-
ing stage before triggering the hardware. A fixed-size driver
queue (a.k.a., TX ring) would ensure that the NIC can always
find ready-to-send packets without communicating with the
OS. However, due to the unpredictable size of packet buffers
in the Linux kernel (ranging from 64B up to tens of kilobytes),
the queueing time will considerably add to the overall RTT of
packets. To prevent that, OS developers propose a dynamic
bound on TX rings that adjusts the limit based on NIC’s trans-
mission rate and the availability of data in the TX rings [29].
To that end, after every transmission, BQL uses time intervals
to check whether the NIC was starved in previous transmis-
sions. If the NIC was not fully utilized during any interval
while data was available at higher layers, the BQL algorithm
increases the limit on the TX ring. Otherwise, if the NIC was
fully busy, the BQL is decreased to reduce the queueing over-
heads. Enforcing smaller queue limits also ensures that the
main queuing occurs at the qdisc-level where more advanced
queuing disciplines can be employed.

Apart from Linux, NIC buffer sizing is also an important
consideration for kernel-bypass runtimes that are less inclined
to distribute TX processing among multiple ring buffers [36,
51]. Figure 12 demonstrates the impact of driver queue size
on performance and burstiness. Intuitively, as we increase the
size of the driver’s buffer, we greatly increase the queueing
time experienced by egress traffic, therefore, preventing the
bursts of packets from arriving at the NIC. On the other hand,
a larger driver queue is more prone to creating longer bursts as

13
3-

35
5

35
5-

95
1

95
1-

2,
54

4
2,

54
4-

6,
80

4
7K

-1
8K

18
K-

49
K

49
K-

13
0K

13
0K

-3
48

K
34

8K
-9

31
K

Burst length (B)

10
100

1,000
10,000

100,000
1,000,000

10,000,000
Dynamic

BQ
L

va
lu

e
(B

)

100

102

104

106

of

 b
ur

st
s

(a) Burstiness heatmap

103 105 107 109
Burst length (B)

10−4

10−2

100

CC
DF

default
10
100
1000
10000
100000
1000000
10000000

(b) Microburst CCDF

Dyn
am

ic 10
B

10
0B 1k

B
10

kB
10

0k
B

1M
B

10
MB

Buffer size

0
1
2
3
4
5
6
7
8

Fl
ow

 G
oo

gp
ut

 (G
bp

s)

(c) Flow goodput

Dyn
am

ic 10
B

10
0B 1k

B
10

kB
10

0k
B

1M
B

10
MB

Buffer size

0

200

400

600

800

1000

Pa
ck

et
 R

TT
 (μ

s)

(d) Packet RTTs

Figure 12: Larger BQL settings produce longer bursts. Also,
the dynamic BQL algorithm presents a similar behavior to a
large static ring size.

it is more susceptible to triggering segmentation offload (99th

percentile burst length for 1 KB buffers and 1 MB buffers
are 68 KB and 9 KB, respectively, but 99.99th lengths shift
to 68 KB and 86 KB, respectively). The microburst length
distributions in Figure 12b further suggest that the default
dynamic buffer sizing algorithm tends to maintain larger ring
buffers which leads to longer bursts.

5.3.5 Linux process scheduling

Apart from the network stack, the operating system features
various internal components that might change the traffic
shape. For example, Linux offers a range of process schedul-
ing classes suited for various use cases:
Completely Fair Scheduler (CFS) is the default process
scheduling class in Linux which aims at achieving fairness
among active processes in the system while maintaining re-
sponsiveness for I/O-bound applications. when running a mix
of compute-intensive and network-intensive workloads, CFS
attempts to proportionally share the CPU among workloads
leading to longer response times [39].
Real-time scheduler supports two policies: Round-robin and
First-In-First-Out (FIFO) scheduling. Both policies give strict
priority to I/O-bound applications (if configured properly).
By default, the round-robin policy preempts high-priority pro-
cesses every 100ms while the FIFO policy is non-preemptive.
We also deploy Microquanta [46] a semi-real-time scheduling
class with microsecond time precision.

Valinor’s picture of traffic burstiness is consistently similar
when the network application is running alone as Hurst esti-
mates vary between 0.51 and 0.54 for all the schedulers. How-

248 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

2500

5000

7500

10000

pa

ck
et

s/
Ti

m
e

Un
it CFS +BG - 1s range FIFO +BG - 1s range CFS - 1s range

0

250

500

750

1000

pa

ck
et

s/
Ti

m
e

Un
it CFS +BG - 100ms range FIFO +BG - 100ms range CFS - 100ms range

0

25

50

75

100

pa

ck
et

s/
Ti

m
e

Un
it CFS +BG - 10ms range FIFO +BG - 10ms range CFS - 10ms range

Figure 13: Impact of process scheduling on traffic bursts.

ever, when the background process is introduced, a course-
grained process scheduler like CFS must enforce fair CPU
time sharing, resulting in the leap of its H estimate to 0.74
while other schedulers are able to schedule the network ap-
plication’s threads in short timescales and result in smooth
transmissions. To validate the self-similarity estimates, we
plot the time series of CFS (running only the network work-
load), CFS+BG (running the network workload alongside
background threads), and the real-time FIFO scheduler run-
ning both applications (FIFO+BG) in Figure 13. The self-
similar nature of the CFS+BG scenario is noticeable in the
leftmost column as CFS causes the network packets to be
sent in larger chunks, causing intermittent but larger bursts
at short time spans.

6 Related work

Traffic self-similarity. A large group of studies rely on quan-
tifying bursts by using the notion of self-similarity in the time
series [5, 24, 38, 50, 53–55] but overlook the role of host net-
working on shaping bursts. Valinor leverages the theoretical
frameworks developed in these works to uncover the impact
of host networking on bursts.
Detecting bursts. A growing number of proposals try to iden-
tify what flows are bursty [18, 19, 40, 48] but they cannot
identify why those flows are bursty. Crucially, they cannot
identify the elements on the traffic path that contribute to or
blunt traffic burstiness. Frameworks such as BurstRadar [33]
and SynDB [34] rely on buffer congestion or external triggers
to capture packet arrivals, which prevents them from capturing
long-range dependency patterns in host egress traffic.

Similar to Valinor, a few proposals study the causes of
bursts. Some papers pinpoint transport protocol internals
such as segmentation, slow start, bulk acknowledgments, and
fast re-transmit as potential sources of bursts at the source
level [10, 31, 69]. Another category of works study the im-
pact of offloading techniques like segmentation offload on
microbursts [35, 72]. Specifically, [35] investigates the im-
pact of application behavior, operating system syscalls, and

NIC offloading features on both sender and receiver hosts
on burstiness and further show that burstiness imposed by
TCP segmentation offload can marginally be controlled by
configuring the kernel’s maximum GSO size. Compared to
these studies, Valinor has a broader scope; it studies the im-
pact of various host elements (not just transport protocols),
the effects of low-level offloading mechanisms on software
scheduling and pacing, and bursts at various timescales (not
just microsecond-scale). Finally, [25] introduces Millisam-
pler, a host-centric burst characterization tool to study the im-
pact of service placement on buffer contention and packet loss.
Valinor uses its switch framework to detect synchronized flow
arrivals at points of interest and unlike Millisampler which
operates at sk_buff granularity, can attribute bursts at packet
resolution. We believe that Valinor and Millisampler com-
bined can assist data center network operators in accurately
detecting the sources of bursty traffic at various timescales.
Burst control. A large and growing number of proposals
[9, 27, 32, 37, 41, 43, 44, 59, 61, 62, 70] focus on controlling
bursts, e.g., via rate-limiting at the switch [44], fine-grained
pacing [61], and high-precision transport protocols [37, 41].
These studies are orthogonal to Valinor. Understanding the
temporal properties of bursts and the causal mechanisms con-
tributing to burstiness will benefit the design of effective burst
control mechanisms.

7 Conclusions

We presented the design of Valinor, a burst measurement
framework that consists of an in-host eBPF framework and an
in-network timestamping module for programmable switches.
Valinor can capture burstiness at different scales (ranging from
nanoseconds to seconds). We use Valinor to demonstrate how
host networking elements affect bursts. We show that the scal-
ing behavior of traffic at long timescales and burstiness at fine
timescales vary significantly across different host networking
configurations (process schedulers, congestion control algo-
rithms, single vs. multi-queue NICs, etc.) and across different
classes of practical workloads. In particular, we show the
impact of hardware-resident functions (e.g., NIC schedulers)
that are largely overlooked in characterizing burstiness. This
variability of burstiness and the implications of bursts on per-
formance underscore the need for measurement systems to
perform periodic burst analysis.

Acknowledgements

We would like to thank our shepherd, Srinivas Narayana, and
the anonymous NSDI reviewers for their insightful feedback.
We would also like to thank John Ousterhout for his input and
feedback, and Xin Jin for his equipment support. This project
was partially supported by an Intel Fast Forward award, a Face-
book faculty research award, and NSF CNS grant 1910821.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 249

References

[1] Omnet++ simulator. https://omnetpp.org/, 2022.

[2] Open vswitch. http://openvswitch.org/, 2022.

[3] Redis: an open source, in-memory data structure store.
https://redis.io, 2022.

[4] ABDOUS, S., SHARAFZADEH, E., AND GHORBANI,
S. Burst-tolerant datacenter networks with Vertigo. In
CoNEXT (2021).

[5] ADAS, A., AND MUKHERJEE, A. On resource man-
agement and qos guarantees for long range dependent
traffic. In INFOCOM (1995).

[6] ADDIE, R. G., ZUKERMAN, M., AND NEAME, T. Frac-
tal traffic: measurements, modelling and performance
evaluation. In INFOCOM (1995).

[7] AGGARWAL, A., SAVAGE, S., AND ANDERSON, T. Un-
derstanding the performance of TCP pacing. In INFO-
COM (2000).

[8] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,
VAIDYANATHAN, R., CHU, K., FINGERHUT, A., LAM,
V. T., MATUS, F., PAN, R., YADAV, N., AND VARGH-
ESE, G. CONGA: distributed congestion-aware load
balancing for datacenters. In SIGCOMM (2014).

[9] ALIZADEH, M., GREENBERG, A., MALTZ, D. A.,
PADHYE, J., PATEL, P., PRABHAKAR, B., SENGUPTA,
S., AND SRIDHARAN, M. Data Center TCP (DCTCP).
In SIGCOMM (2010).

[10] ALLMAN, M., AND BLANTON, E. Notes on burst miti-
gation for transport protocols. SIGCOMM CCR (2005).

[11] ARASHLOO, M. T., LAVROV, A., GHOBADI, M., REX-
FORD, J., WALKER, D., AND WENTZLAFF, D. En-
abling programmable transport protocols in high-speed
NICs. In NSDI (2020).

[12] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG,
S., AND PALECZNY, M. Workload analysis of a large-
scale key-value store. In SIGMETRICS (2012).

[13] BENSON, T., AKELLA, A., AND MALTZ, D. A. Net-
work traffic characteristics of data centers in the wild.
In IMC (2010).

[14] BESTA, M., SCHNEIDER, M., KONIECZNY, M., CYNK,
K., HENRIKSSON, E., GIROLAMO, S. D., SINGLA, A.,
AND HOEFLER, T. FatPaths: Routing in supercomputers
and data centers when shortest paths fall short. In SC
(2020).

[15] BURSTEIN, I. Nvidia data center processing unit (DPU)
architecture. In IEEE HCS (2021).

[16] CAI, Q., CHAUDHARY, S., VUPPALAPATI, M.,
HWANG, J., AND AGARWAL, R. Understanding host
network stack overheads. In SIGCOMM (2021).

[17] CARDWELL, N., CHENG, Y., GUNN, C. S., YEGANEH,
S. H., AND JACOBSON, V. BBR: congestion-based
congestion control. ACM Queue (2016).

[18] CHEN, X., FEIBISH, S. L., KORAL, Y., REXFORD, J.,
AND ROTTENSTREICH, O. Catching the microburst
culprits with snappy. In SelfDN (2018).

[19] CHEN, X., FEIBISH, S. L., KORAL, Y., REXFORD, J.,
ROTTENSTREICH, O., MONETTI, S. A., AND WANG,
T.-Y. Fine-grained queue measurement in the data plane.
In CoNEXT (2019).

[20] CORBET, J. TCP small queues. https://lwn.net/
Articles/507065/, 2012.

[21] CROVELLA, M. E., AND BESTAVROS, A. Self-
similarity in World Wide Web traffic: evidence and pos-
sible causes. ToN (1997).

[22] DUFFIELD, N. G., AND O’CONNELL, N. Large devia-
tions and overflow probabilities for the general single-
server queue, with applications. In Mathematical
Proceedings of the Cambridge Philosophical Society
(1995).

[23] FELDMANN, A., GILBERT, A. C., HUANG, P., AND
WILLINGER, W. Dynamics of ip traffic: A study of
the role of variability and the impact of control. In
SIGCOMM (1999).

[24] GARRETT, M. W., AND WILLINGER, W. Analysis,
modeling and generation of self-similar VBR video traf-
fic. SIGCOMM CCR (1994).

[25] GHABASHNEH, E., ZHAO, Y., LUMEZANU, C.,
SPRING, N., SUNDARESAN, S., AND RAO, S. A
microscopic view of bursts, buffer contention, and loss
in data centers. In IMC (2022).

[26] GOVINDAN, R., MINEI, I., KALLAHALLA, M., KO-
LEY, B., AND VAHDAT, A. Evolve or die: high-
availability design principles drawn from googles net-
work infrastructure. In SIGCOMM (2016).

[27] GOYAL, SHAH, ZHAO, NIKOLAIDIS, AND OTHERS.
Backpressure flow control. In NSDI (2022).

[28] HA, S., RHEE, I., AND XU, L. CUBIC: a new TCP-
friendly high-speed TCP variant. SOSR (2008).

[29] HERBERT, T. bql: Byte Queue Limits. https://lwn.
net/Articles/469652/, 2011.

250 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://omnetpp.org/
http://openvswitch.org/
https://redis.io
https://lwn.net/Articles/507065/
https://lwn.net/Articles/507065/
https://lwn.net/Articles/469652/
https://lwn.net/Articles/469652/

[30] HURST H. E. Long-Term storage capacity of reservoirs.
Trans. of the American Soc. of Civil Eng. (1951).

[31] JIANG, H., AND DOVROLIS, C. Source-level IP packet
bursts. In IMC (2003).

[32] JIN, P., GUO, J., XIAO, Y., SHI, R., NIU, Y., LIU, F.,
QIAN, C., AND WANG, Y. PostMan: Rapidly mitigating
bursty traffic by offloading packet processing. In SoCC
(2019).

[33] JOSHI, R., QU, T., CHAN, M. C., LEONG, B., AND
LOO, B. T. BurstRadar: Practical real-time microburst
monitoring for datacenter networks. In APSys (2018).

[34] KANNAN, P. G., BUDHDEV, N., JOSHI, R., AND
CHAN, M. C. Debugging transient faults in data centers
using synchronized network-wide packet histories. In
NSDI (2021).

[35] KAPOOR, R., SNOEREN, A. C., VOELKER, G. M.,
AND PORTER, G. Bullet trains: a study of NIC burst
behavior at microsecond timescales. In CoNEXT (2013).

[36] KAUFMANN, A., STAMLER, T., PETER, S., SHARMA,
N. K., KRISHNAMURTHY, A., AND ANDERSON, T.
TAS: TCP acceleration as an OS service. In EuroSys
(2019).

[37] KUMAR, G., DUKKIPATI, N., JANG, K., WASSEL, H.
M. G., WU, X., MONTAZERI, B., WANG, Y., SPRING-
BORN, K., ALFELD, C., RYAN, M., WETHERALL, D.,
AND VAHDAT, A. Swift: delay is simple and effective
for congestion control in the datacenter. In SIGCOMM
(2020).

[38] LELAND, W. E. On the self-similar nature of Ethernet
traffic (extended version). ToN (1994).

[39] LI, J., SHARMA, N. K., PORTS, D. R. K., AND GRIB-
BLE, S. D. Tales of the tail: Hardware, OS, and
application-level sources of tail latency. In SoCC (2014).

[40] LI, Y., MIAO, R., KIM, C., AND YU, M. FlowRadar:
a better NetFlow for data centers. In NSDI (2016).

[41] LI, Y., MIAO, R., LIU, H. H., ZHUANG, Y., FENG,
F., TANG, L., CAO, Z., ZHANG, M., KELLY, F., AL-
IZADEH, M., AND YU, M. HPCC: high precision con-
gestion control. In SIGCOMM (2019).

[42] LIKHANOV, N., TSYBAKOV, B., AND GEORGANAS,
N. D. Analysis of an atm buffer with self-similar ("
fractal") input traffic. In INFOCOM (1995).

[43] LIM, H., BAI, W., ZHU, Y., JUNG, Y., AND HAN, D.
Towards timeout-less transport in commodity datacenter
networks. In EuroSys (2021).

[44] LIU, K., TIAN, C., WANG, Q., ZHENG, H., YU, P.,
SUN, W., XU, Y., MENG, K., HAN, L., FU, J., DOU,
W., AND CHEN, G. Floodgate: taming incast in data-
center networks. In CoNEXT (2021).

[45] MANDELBROT, B. B. Self-Affine Fractals and Fractal
Dimension. Physica Scripta (1985).

[46] MARTY, M., DE KRUIJF, M., ADRIAENS, J., ALFELD,
C., BAUER, S., CONTAVALLI, C., DALTON, M.,
DUKKIPATI, N., EVANS, W. C., GRIBBLE, S., KIDD,
N., KONONOV, R., KUMAR, G., MAUER, C., MUSICK,
E., OLSON, L., RUBOW, E., RYAN, M., SPRINGBORN,
K., TURNER, P., VALANCIUS, V., WANG, X., AND
VAHDAT, A. Snap: A Microkernel Approach to Host
Networking. In SOSP (2019).

[47] MONTAZERI, B., LI, Y., ALIZADEH, M., AND
OUSTERHOUT, J. Homa: A Receiver-driven low-
latency transport protocol using network priorities. In
SIGCOMM (2018).

[48] MOSHREF, M., YU, M., GOVINDAN, R., AND VAH-
DAT, A. Trumpet: Timely and precise triggers in data
centers. In SIGCOMM (2016).

[49] NICHOLS, K., AND JACOBSON, V. Controlling Queue
Delay: A modern AQM is just one piece of the solution
to bufferbloat. ACM Queue (2012).

[50] NORROS, I. A storage model with self-similar input.
Queueing systems (1994).

[51] OUSTERHOUT, A., FRIED, J., BEHRENS, J., BELAY,
A., AND BALAKRISHNAN, H. Shenango: Achieving
high CPU efficiency for latency-sensitive datacenter
workloads. In NSDI (2019).

[52] OUSTERHOUT, J. A Linux kernel implementation of
the Homa transport protocol. In ATC (2021).

[53] PARK, K., KIM, G., AND CROVELLA, M. On the re-
lationship between file sizes, transport protocols, and
self-similar network traffic. In ICNP (1996).

[54] PARK, K., KIM, G., AND CROVELLA, M. E. Effect
of traffic self-similarity on network performance. In
Performance and Control of Network Systems (1997).

[55] PARK, K., AND WILLINGER, W. Self-similar network
traffic: An overview. Self-Similar Network Traffic and
Performance Evaluation (2000).

[56] PAXSON, V., AND FLOYD, S. Wide area traffic: the
failure of Poisson modeling. IEEE/ACM ToN (1995).

[57] PRAKASH, P., DIXIT, A., HU, Y. C., AND KOMPELLA,
R. The TCP outcast problem: exposing unfairness in
data center networks. In NSDI (2012).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 251

[58] RAGHAVAN, D., LEVIS, P., ZAHARIA, M., AND
ZHANG, I. Breakfast of champions: towards zero-copy
serialization with NIC scatter-gather. In HotOS (2021).

[59] REZAEI, H., AND VAMANAN, B. Superways: A data-
center topology for incast-heavy workloads. In WWW
(2021).

[60] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND
SNOEREN, A. C. Inside the social network’s (datacen-
ter) network. In SIGCOMM (2015).

[61] SAEED, A., DUKKIPATI, N., VALANCIUS, V.,
THE LAM, V., CONTAVALLI, C., AND VAHDAT, A.
Carousel: Scalable Traffic Shaping at End Hosts. In
SIGCOMM (2017).

[62] SANAEE, A., SHAHINFAR, F., ANTICHI, G., AND
STEPHENS, B. E. Backdraft: a lossless virtual switch
that prevents the slow receiver problem. In NSDI (2022).

[63] SHAN, D., REN, F., CHENG, P., SHU, R., AND GUO,
C. Micro-burst in data centers: observations, analysis,
and mitigations. In IEEE ICMP (2018).

[64] STEPHENS, B., AKELLA, A., AND SWIFT, M. Loom:
Flexible and Efficient NIC Packet Scheduling. In NSDI
(2019).

[65] STEPHENS, B., SINGHVI, A., AKELLA, A., AND
SWIFT, M. Titan: Fair packet scheduling for commodity
multiqueue NICs. In ATC (2017).

[66] TUAN, T., AND PARK, K. Multiple time scale conges-
tion control for self-similar network traffic. Performance
Evaluation (1999).

[67] WERON, R. Estimating long-range dependence: finite
sample properties and confidence intervals. Physica A:
Statistical Mechanics and its Applications (2002).

[68] WOODRUFF, J., MOORE, A. W., AND ZILBERMAN,
N. Measuring burstiness in data center applications. In
ACM BS (2019).

[69] WU-CHUN FENG, TINNAKORNSRISUPHAP, P., AND
PHILIP, I. On the burstiness of the TCP congestion-
control mechanism in a distributed computing system.
In ICDCS (2000).

[70] YAN, S., WANG, X., ZHENG, X., XIA, Y., LIU, D.,
AND DENG, W. ACC: automatic ECN tuning for high-
speed datacenter networks. In SIGCOMM (2021).

[71] ZHANG, M., ZHANG, J., WANG, R., GOVINDAN, R.,
MOGUL, J. C., AND VAHDAT, A. Gemini: Practical
Reconfigurable Datacenter Networks with Topology and
Traffic Engineering. arXiv cs.NI 2110.08374 (2021).

[72] ZHANG, Q., LIU, V., ZENG, H., AND KRISHNA-
MURTHY, A. High-resolution measurement of data
center microbursts. In IMC (2017).

[73] ZHOU, Y., ZHANG, Y., YU, M., WANG, G., CAO, D.,
SUNG, E., AND WONG, S. Evolvable Network Teleme-
try at Facebook. In NSDI (2022).

252 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Rescaled-range analysis for estimating H

For a weak stationary stochastic process X = (Xt : t =
0,1,2, ...,N), the mean-adjusted series is defined as Y , Yt =
Xt −m where m is the empirical mean of the process X . Let
Z denote the cumulative deviate of Y where Zt = ∑

N
t=1 Yt . We

also define mt as the cumulative mean of the series X through
time t.

The rescaled range of X is denoted by

(R/S)t =
Rt

St
, t ∈ {0,1,2, ...,N} (3)

where the Range series R is defined as

Rt = Max(Z1,Z2, ...,ZN)−Min(Z1,Z2, ...,ZN),

t ∈ {0,1,2, ...,N}
(4)

and the standard deviation series S is defined as

St =

√
1
t

t

∑
i=1

(Xi −mt)2, t ∈ {0,1,2, ...,N} (5)

According to [30], R/S scales with the power law of t. There-
fore, to estimate H, the slope of the least-squares linear re-
gression of R/S over t in a log-log scale is used. The resulting
exponent is in the 0-1 range and a value between 0.5 to 1 in-
dicates low to strong long-range dependence (self-similarity),
respectively. In other words, an H estimate close to one indi-
cates a strong desire to maintain the previous trend or more
burstiness. As the H estimate nears 0.5, the time series be-
comes indistinguishable from random noise, and a value close
to zero signifies the traffic’s aim at reverting to its mean value.

B Theoretical analysis of software pacing un-
der different workloads

We presented the size of per-flow bursts for explicit software
pacing in §5.3.3. To further verify our findings using the
notion of self-similarity, we first plot the time-series of packet
arrivals in 1s, 100ms, and 10ms time scales in Figure 14 for
both the intra-cluster (Figure 14a) and intra-rack (Figure 14b)
workloads. One can notice the gradual decay of burstiness
in all time scales as higher degrees of pacing are enforced to
the intra-cluster workload. On the other hand, we can observe
that the intra-rack traffic follows a non-bursty, steady trend in
all time scales regardless of pacing.

Next, we calculate the Hurst exponents for the intra-rack
and intra-cluster workloads. According to Figure 14c, self-
similarity in the latter workload follows the degree of pacing
(i.e., percentage of the paced flows) where 100% pacing re-
sults in 31% reduction in the Hurst estimate compared to the
no-pacing case. For example, the Hurst estimates are 0.91,
0.73, and 0.63 for 0%, 40%, and 100% pacing ratios, respec-
tively. However, under the intra-rack workload pacing seems

0

200000

400000

Th
ro

ug
hp

ut
 (M

bi
ts

) 0% - 1s range 20% - 1s range 60% - 1s range 100% - 1s range

0

20000

40000

Th
ro

ug
hp

ut
 (M

bi
ts

) 0% - 100ms range 20% - 100ms range 60% - 100ms range 100% - 100ms range

0 20 40 60 80 100
Time bin

0

2000

4000

6000

Th
ro

ug
hp

ut
 (M

bi
ts

) 0% - 10ms range

0 20 40 60 80 100
Time bin

20% - 10ms range

0 20 40 60 80 100
Time bin

60% - 10ms range

0 20 40 60 80 100
Time bin

100% - 10ms range

(a) Intra-cluster time series

0

200000

400000

Th
ro

ug
hp

ut
 (M

bi
ts

) 0% - 1s range 20% - 1s range 60% - 1s range 100% - 1s range

0

20000

40000

Th
ro

ug
hp

ut
 (M

bi
ts

) 0% - 100ms range 20% - 100ms range 60% - 100ms range 100% - 100ms range

0 20 40 60 80 100
Time bin

0

2000

4000

6000

Th
ro

ug
hp

ut
 (M

bi
ts

) 0% - 10ms range

0 20 40 60 80 100
Time bin

20% - 10ms range

0 20 40 60 80 100
Time bin

60% - 10ms range

0 20 40 60 80 100
Time bin

100% - 10ms range

(b) Intra-rack time series

0% 20% 40% 60% 80% 100%
% paced flows

0.0

0.2

0.4

0.6

0.8

1.0
Hu

rs
t E

st
im

at
e

Intra-rack Intra-cluster

(c) Hurst exponent estimations

Figure 14: Time-series graphs and Hurst exponents for the
software pacing experiments presenting the traffic behavior at
three time ranges.

to have little to no effect as the egress traffic follows a mean-
reverting behavior during 1-second time ranges (H < 0.20 for
all the cases).

Finally, Figure 15 presents the corresponding auto-
correlation functions (ACFs) for the above time series. While
the cycling trend of bars between positive and negative cor-
relations suggests a strong mean-reverting behavior for the
intra-rack workload (Figures 15e-15h), the intra-cluster ACF
features a slow-decaying, strong positive correlations across
time lags, suggesting strong self-similarity (Figures 15a-15d).
As we increase the pacing ratio (from 0% gradually to 100%),
the correlations start to decline.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 253

0 20 40 60−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(a) Intra-cluster 0% paced

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(b) Intra-cluster 20% paced

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(c) Intra-cluster 60% paced

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(d) Intra-cluster 100% paced

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(e) Intra-rack 0% paced

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(f) Intra-rack 20% paced

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(g) Intra-rack 60% paced

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 1s range

0 10 20 30 40 50−1.0

−0.5

0.0

0.5

1.0 100ms range

0 10 20 30 40 50
Time lag

−1.0

−0.5

0.0

0.5

1.0 10ms range

(h) Intra-rack 100% paced

Figure 15: Comparing the auto-correlation functions (ACFs) for two workloads when we increase the ratio of paced flows from 0%
to 100%. For the intra-cluster workload, enforcing pacing on flows can significantly reduce the self-similarities. For the intra-rack
workload, the correlations between consecutive time lags oscillate between positive and negative numbers, signifying the mean-reverting
nature of the workload irrespective of the pacing.

254 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Poseidon: Efficient, Robust, and Practical Datacenter CC via Deployable INT

Weitao Wang* †, Masoud Moshref*, Yuliang Li*, Gautam Kumar*,
T. S. Eugene Ng†, Neal Cardwell*, and Nandita Dukkipati*

*Google LLC, †Rice University

Abstract
The difficulty in gaining visibility into the fine-timescale

hop-level congestion state of networks has been a key chal-
lenge faced by congestion control (CC) protocols for decades.
However, the emergence of commodity switches supporting
in-network telemetry (INT) enables more advanced CC. In
this paper, we present Poseidon, a novel CC protocol that ex-
ploits INT to address blind spots of CC algorithms and realize
several fundamentally advantageous properties. First, Posei-
don is efficient: it achieves low queuing delay, high through-
put, and fast convergence. Furthermore, Poseidon decouples
bandwidth fairness from the traditional AIMD control law,
using a novel adaptive update scheme that converges quickly
and smooths out oscillations. Second, Poseidon is robust: it
realizes CC for the actual bottleneck hop, and achieves max-
min fairness across traffic patterns, including multi-hop and
reverse-path congestion. Third, Poseidon is practical: it is
amenable to incremental brownfield deployment in networks
that mix INT and non-INT switches. We show, via testbed and
simulation experiments, that Poseidon provides significant
improvements over the state-of-the-art Swift CC algorithm
across key metrics – RTT, throughput, fairness, and conver-
gence – resulting in end-to-end application performance gains.
Evaluated across several scenarios, Poseidon lowers fabric
RTT by up to 50%, reduces time to converge up to 12×, and
decreases throughput variation across flows by up to 70%.
Collectively, these improvements reduce message transfer
time by more than 61% on average and 14.5× at 99.9p.

1 Introduction
Effective datacenter congestion control (CC) needs to provide
high throughput, low latency, fairness, and fast convergence
across varied workloads. CC is becoming more and more
critical as applications increasingly demand low-latency op-
erations at datacenter scale. Examples of such applications
include memory and storage disaggregation [9, 21, 25, 31],
which require latencies as low as O(10µs) at 1M+ IOPs per
server [14], and ML applications that require high network
utilization to keep expensive accelerators busy [37,45]. Large
scale incasts with O(5000) flows [35] caused by shuffle op-
erations [1] and partition-aggregate workflows continue to
be prevalent and need CC to be fair across flows in order
to avoid starvation and control the tail latency, which is crit-
ical for the performance of such applications [20]. Simul-
taneously, CC is becoming more challenging because link

bandwidths are growing faster than buffers at switches [5],
and high-packet-rate servers [3, 24] benefit from simple CC
algorithms offloaded to NICs to save CPU for applications.

Datacenter CC algorithms in deployment today rely on
either end-to-end signals (e.g., delay [35]) or quantized in-
network feedback (e.g., ECN [8]), owing to their simplicity.
An underlying problem with these signals is that they are
aggregated end-to-end across all hops on a flow’s path. Thus,
these CC algorithms react to collective congestion along the
path (for delay) or congestion at any hop on the path at differ-
ent times (for ECN), leading to reducing a flow’s rate before
reaching its fair share in the network. This leads to under-
utilization, slow ramp-up, and/or unfairness in multiple sce-
narios shown in §2.1 and §5.

However, with the emergence of commodity switches that
support in-network telemetry (INT), a new opportunity has
emerged. INT-enabled switches can modify or append to
packet headers to convey information local to the switch,
such as the time the packet spent in the queue. Some state-
of-the-art CC algorithms [7, 40], use INT to gather telemetry
information for every hop to gain more visibility into the net-
work and control the outstanding packets at each hop. Still,
such solutions react to congestion at any hop, which leads to
the unfairness and ramp-up problems mentioned above.

In the last few decades, several schemes have been intro-
duced that leverage help from network switches for better
CC [13, 22, 27, 34, 40] but almost none have been deployed
widely in datacenters. Based on the successful deployment of
ECN-based solutions [8] and no deployments of XCP [34],
RCP [22], and similar AQM solutions, we believe a deploy-
able CC scheme using INT should also have the following
properties: 1) works seamlessly in heterogeneous brownfield
deployments where new switches and old switches co-exist
and provides benefit even if a subset of switches support INT.
2) uses a simple, low-overhead, non-intrusive INT scheme
that requires minimal coordination among applications, net-
working stacks, NICs, and switches.

Therefore, in this paper, we ask the question: How can
we harness the power of INT to design a datacenter CC al-
gorithm that is efficient (high throughput, low latency, and
fast convergence), robust (max-min fairness across traffic pat-
terns including multi-hop and reverse-path congestion), and
practical (simple and deployable)?

We find that learning the congestion state of every hop
of a flow is unnecessary. Instead, an efficient and practical

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 255

CC can be realized based on the congestion state of only the
bottleneck hop of a flow – the hop that limits the rate of the
flow as per the max-min fair allocation. It’s worth noting that
a congested hop is not the bottleneck hop for all flows passing
through it, but only for flows that send more than their max-
min fair-share rate, and thus, CC should ideally decrease the
rate of only those flows that send above their fair-share.

Armed with this key insight, we develop a novel INT-
based CC protocol called Poseidon. Poseidon grounds itself in
Swift [35], the state-of-the-art CC that’s deployed in produc-
tion at scale for TCP [17] and kernel-bypass stacks [41]. But
Poseidon advances beyond Swift by leveraging INT instead of
purely E2E measurements, and formalizes an adaptive conges-
tion window update function that compares the max per-hop
delay (obtained via INT) against a rate-adjusted target bottle-
neck hop delay.

This paper makes contributions in two main areas:
First, Poseidon utilizes the power of INT to provide unique
properties, like network-wide max-min fairness, monotonic
fast convergence, and stable rate under high concurrency.
• By comparing the max per-hop delay against a dynamic

target, Poseidon converges to the network-wide max-min
fair allocation, where flows only react to congestion on
their bottleneck hop. A corollary to this is that flows in
Poseidon do not decelerate before reaching their fair-share
rate, resulting in fast convergence.

• Poseidon provides a characterization for the spectrum of
cwnd update and target max per-hop delay functions that
guarantee both fairness and high utilization. This allows us
to explicitly decouple the fairness objective from the rate
increase-decrease function (e.g., AIMD); Poseidon lever-
ages this to use an adaptive increase-decrease function
(without an AI component) that accelerates arriving at the
fair-share allocation and smooths oscillations around it in
the presence of many flows. Poseidon uses a novel target
function, which achieves low queuing delay and high uti-
lization for both sparse workloads (a few fast flows) and
high-concurrency workloads (many slow flows).

• Poseidon is amenable to incremental deployment, including
seamless coexistence in brownfield scenarios.

Second, Poseidon provides a simple, practical, and deployable
design for enabling INT in datacenters for CC.
• We detail an efficient INT mechanism where switches sig-

nal the maximum per-hop queuing delay on a packet’s path,
using only a small and fixed amount of packet header space,
at line rate.

• We analyze requirements for deployable INT for CC and
compare proposed formats against those requirements.
We implemented Poseidon in a production networking

stack (similar to Pony Express [41]) and a testbed with com-
modity programmable switches, with no changes to the NIC
or applications. Our testbed evaluation shows that Poseidon
is robust to reverse-path and multi-hop congestion scenarios
explained in §2.1. In addition, we have evaluated Poseidon

Figure 1: MD on ramping-up flows delays convergence.

extensively in packet-level simulations (§5) and show that,
compared to Swift and HPCC [40], it is robust to the above
scenarios. Relative to Swift, Poseidon improves application-
level message transfer latency by 61% at median and 14.5×
at 99.9p. This is achieved by lowering fabric RTT by more
than 50%, reducing congestion window ramp-up time up to
12×, and decreasing throughput variation for flows with small
windows by up to 70%. In brownfield, Poseidon achieved at
least 50% of the op latency gain of full deployment.

2 Motivation
In this section, we first show how congestion control (CC)
algorithms are inefficient if they cannot distinguish the bottle-
neck hop of a flow from a merely congested hop. Then, we
motivate the importance of brownfield deployment to support
incremental roll-out and highlight why the format of INT is
important for deployment.

2.1 CC Challenges in Datacenters
We use several scenarios in datacenter networks to highlight
how two classes of issues – reacting to signals from hops other
than the bottleneck hop, and increasing with a fixed value –
cause unfairness, low link utilization, and slow ramp-up.

2.1.1 Decelerating Before Reaching Fair-share

Traditionally, when a hop is congested, a flow with a lower
rate (e.g., a new flow) does not increase its rate monotonically
to the fair share; instead, with every congestion signal, its
rate decreases. Figure 1(a) draws an example where a new
flow competes with two existing flows, Figure 1(b) shows the
typical behavior for AIMD algorithms, and Figure 1(c) shows
the data from that experiment in production using Swift. This
behavior prolongs the time for the lower-rate flow to ramp up
and leads to a longer tail flow completion time. The root cause
is that in current CC algorithms, all flows must react the same
way to the congested hop (either increase/decrease) regardless
of their rate. This mechanism is designed to achieve fairness
and stability given an end-to-end signal (e.g., delay, loss, ECN)
without coordination across flows [19]. Poseidon leverages
INT to get a richer signal and allows flows to increase their
rates monotonically until reaching the fair-share rate.

2.1.2 Multi-hop Congestion

Datacenter networks are usually oversubscribed at ToR and
Spine layers [46], thus it is common for a flow to see multiple

256 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: A Swift flow facing congestion at multiple hops
(red) cannot compete at congested hops

congested hops in its path, especially in an incast. However,
when a flow faces congestion in more than one hop, it gets
lower throughput than other competing flows that traverse
a single congested hop. The reason is that flows reacting to
loss and ECN [8, 28] from multiple hops see more losses or
marked packets on average, as the drops or markings happen
asynchronously across different congested hops. In Swift, the
fabric delay of such flows is higher, since every congested hop
introduces more delay to the sum. HPCC [40], even though it
uses INT, will also react to congestion at any hop with high
in-flight bytes even if the flow is not contributing much to it.

Figure 2 shows this scenario in an experiment in production
settings using Swift. The red flow (victim), that competes with
the blue flow at the destination, gets much lower throughput
once the green flow starts at the source ToR. The root cause is
that the victim flow reacts to the congestion on Rack 0 uplink
or Rack 10 downlink even when it didn’t get the fair-share.
This is because Swift looks at the end-to-end fabric delay and
the victim’s fabric delay includes both the delay at Rack 0
and Rack 10.1 We observe the same problem even if the flow
reacts to the max hop delay [8, 40] as shown in §5.6. Ideally,
the victim flow should always only react to the congestion at
the hop where it got more than the fair-share.

2.1.3 Reverse-path Congestion
In Figure 3, as we increase the number of flows on the reverse-
path (blue), the forward traffic (red) gets lower throughput and
cannot utilize the bandwidth. The root cause is that the end-
to-end delay used in Swift includes the delay of ACKs in the
reverse-path. Thus, Swift decreases the congestion window as
if it is competing for the forward and reverse path bandwidth.
This issue can happen because of congestion on any hop
in the reverse-path, and can also cause unfairness if only a
subset of flows on a bottleneck see reverse-path congestion,
but is special for CC algorithms that use the end-to-end delay.
A solution is to use synchronized timestamps at hosts (at µs
level) in order to break fabric delay into forward and backward
delays [39], but we show that CC can use INT to separate
congestion signals of forward and reverse path and avoid the
overhead of maintaining a synchronized clock.
Summary of the above three scenarios: many existing CC

1Although the victim flow always faces a higher delay than the other two
flows, its throughput didn’t reach 0. The reason is that flow-scaling, designed
for windows<10 [35], rises victim’s target delay.

Figure 3: Flows react to reverse-path congestion.

algorithms – when using loss, ECN, delay, or INT signals –
react to every congested hop along the path, rather than only
the congestion on the bottleneck hop. To put it another way,
all flows going through a congested hop react the same way,
either increase or decrease their rate, regardless of whether
they have achieved their fair share or not. In §3.1, we show
how Poseidon solves this problem by reacting to congested
hops only for flows that reached their fair share.

2.1.4 Slow Convergence and Throughput Oscillation
An efficient CC algorithm should converge quickly to the
right rate when the flow’s rate is far from it and stay near
it in a stable fashion. However, because many existing CC
algorithms [8, 32, 35, 40] do not know the fair-share rate or
how far they are from that rate, they rely on an AIMD, a
well-understood algorithm that converges to fairness.

However, AIMD causes slow convergence for large win-
dows and an unstable rate for small windows because AIMD
increases the congestion window (cwnd) by a fixed amount
every RTT. On the one hand, as cwnd becomes larger, the
increase ratio compared to the window size becomes smaller:
An increase of 1, takes 5 RTTs to double a window of 5,
but 50 RTTs to double a window of 50. Slow cwnd growth
can be particularly detrimental in workloads that desire high
throughput from a few flows per host (e.g., ring topology in
ML applications). On the other hand, as we increase the num-
ber of flows and get smaller cwnd, the effect of the increase
amplifies for windows close to the additive factor. (Each one
of 500 flows with a window of 1 may double its rate.) This
causes oscillating cwnd in high-degree incast applications
(e.g., shuffle [1]). A CC algorithm may use a combination
of a multiplicative factor and additive factor [7, 40] for faster
ramp-up, but still, the disproportionate effect of the additive
increase component will manifest for a small cwnd.

The root cause is that AIMD was designed to provide fair-
ness regardless of the quality of the signal (e.g., a binary loss
signal in TCP Reno). Yet, it is used in many modern data-
center CC [8, 35], including the ones based on INT [40]. If
we knew the fair-share from switches, we could converge
faster [22, 34], but such solutions are hard to deploy. Instead,
in Poseidon, flows can estimate if they are close or far from
the fair-share and adjust the step size accordingly to converge
faster and have a more stable throughput around the fair-share
rate (§3.3), similar to some previous CC algorithms designed
to facilitate large WAN BDPs [18, 28].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 257

Figure 4: An example of Poseidon MPD signal propagation.

2.2 Deployment
Brownfield deployment. An important requirement for de-
ploying INT in production is to support brownfield deploy-
ments. Hardware may be replaced gradually, from the ToR
level to higher levels, or from one pod to another [26]. This
transition phase can last for years [47]. INT may not be en-
abled on some switches, and at any point, we may want to roll
back to disable INT without coordinating hosts and switches.
Therefore, even if we use a separate queue for the new traf-
fic [35], we still have to address the following requirements:
1. Being able to route the traffic regardless of whether a

switch has INT enabled or not: While two hosts can coor-
dinate their capabilities during a connection’s initial hand-
shake, we don’t want any coordination between hosts and
switches or switches with each other in order to forward
packets and use ECMP. This places a tight requirement on
the format of INT packets, as discussed in §4.2.

2. Getting some gains on an incremental INT deployment:
Even though only a subset of hops supports INT, the CC
algorithm should still benefit from that partial information.

3. Fair interaction between flows that have INT support on
every hop and those that have it only on a subset of hops.

In §4.1, we explain why adjusting the target helps deploy
Poseidon in brownfield. We also present our solution to com-
bine end-to-end delay and max-hop delay to keep fairness
while providing some incremental benefit in brownfield.

Low-overhead non-intrusive INT. For easy deployment,
we prefer coordinating the least number of components and
sustaining minimum overhead. Above, we mentioned that
the traffic must go through the brownfield without any co-
ordination between hosts and switches. At the end-host, we
also want minimum coordination between applications, net-
working stack, and NIC. For example, a fixed INT length is
preferred as it doesn’t change MTU.

We want INT on all packets, so its overhead regarding band-
width and packet processing in the hosts, NIC, and switches
is important. Small INT length is preferred for low bandwidth
overhead and easy deployment in offloaded NICs [10, 11]. Fi-
nally, INT information cannot be encrypted, require complex
functions, or rely on the per-flow state in the switch.

There are multiple formats for supporting INT, two of
which are IFA [36] and P4-INT [2]. These formats differ
in multiple aspects. Instead of proposing yet another format,
we describe the features required for an INT format to be
deployable in a production datacenter for CC. §4.2 covers
these requirements and how the formats satisfy them.

Figure 5: Delay is bounded by the faster flow’s target.

3 Design
Poseidon achieves high link utilization, low queuing delay,
network-wide max-min fairness, with fast convergence and
stable per-flow throughput. In this section, we describe the
design of Poseidon: First, we introduce a key idea that allows
Poseidon to only react to the bottleneck hop (§3.1). Next, we
demonstrate how Poseidon guarantees fairness on a single hop
(§3.2) and how decoupling the fairness from the fixed increase
in AIMD allows us to introduce an adaptive increase/decrease
algorithm that achieves faster convergence and more stable
throughput than AIMD (§3.3). Finally, we show that Poseidon
achieves network-wide max-min fairness (§3.4).

3.1 Key-idea: Only React to Bottleneck Hop
Poseidon only reacts to the bottleneck hop by decreasing
the congestion window only if the flow got the fair-share
on congested hops over its path. We explain how to do that
without knowing the fair-share. Poseidon compares a delay
signal with a target delay to increase or decrease the window.
The key idea is in the definition of the delay signal and target:
1. It applies the target to the maximum per-hop delay

(MPD) to allow flows to react to the most congested hop.
2. It adjusts the target based on the throughput of the flow

to make sure only the flows that get the highest rate on the
hop reduce their windows.

Figure 4 illustrates an example of how max per-hop delay is
propagated. Each packet carries the MPD and each hop up-
dates it. The ACK packet will reflect MPD back to the source.
Note that Poseidon could naturally support heterogeneous
link bandwidth in the network.

Now we describe each point in more detail. Every flow tries
to maintain the maximum per-hop delay (MPD) close to a
maximum per-hop delay target (MPT), namely, increasing
the congestion window when MPD≤MPT to keep the link
busy and decreasing the window when MPD > MPT to limit
the congestion. MPD adds small and fixed overhead to packets
and is one of the important designs to find the bottleneck hop:

258 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

In the max-min fair state, the hop with maximum latency is
the bottleneck hop of the flow for Poseidon; otherwise, the
flow has not reached its fair-share along its path (§3.4). The
former case must decrease the congestion window, and the
latter must ignore the congestion and increase the window.
We achieve that by adjusting the target.

Poseidon calculates MPT for each flow based on its rate:
the larger the rate is, the smaller MPT will be (§3.3 defines
the function). This means that flows with higher rates have
lower targets, thus decreasing their window earlier and more
aggressively2. This became possible using INT, as now all
flows competing in the same queue tend to observe the same
congestion signal (per-hop delay). Figure 5 shows an example:
As the arrival rate on the link goes over the line rate at time
t1, a queue builds up. The hop delay grows over the target
of faster flow, red, and forces it to reduce its window at t2.
However, the slower flow, blue, can still increase its window
(solves §2.1.1). Interestingly, this means that given the same
congestion signal from the network, some flows increase and
some decrease their rate. In the next section, we demonstrate
how Poseidon achieves fairness given this flexibility without
relying on an additive increase.

Algorithms 1 shows how Poseidon updates the congestion
window (cwnd). The pacing only happens when the cwnd is
less than 1, similar to Swift [35]. Note that the multiplicative-
increase (MI) happens per packet, thus Line 5 in Algorithm 1
has to approximate the ratio for each packet, while cwnd
decreases happen only once per RTT, thus it is a simple multi-
plication. The retransmit and recovery functions are included
in Appendix A.

3.2 Single-hop Fairness
We show that with the right increase/decrease functions, Po-
seidon can achieve fairness on a single hop. The AIMD algo-
rithm benefits from the fact that all flows either increase rate
with the same amount or decrease rate with the same ratio [19].
However, because of Poseidon’s rate-adjusted target delay and
delay-based increase/decrease function, Poseidon has a new
case, where faster flows decrease rate while slower flows in-
crease rate. This happens if the queuing delay is higher than
the faster flow’s target, but lower than the slower flow’s target.

To prove that Poseidon can achieve fairness, we show that
fairness improves in all possible cases:
1. MPD is low, and all flows increase rate.
2. MPD is high, and all flows decrease rate.
3. MPD is high, some faster flows decrease, other slower

flows increase their rate.
Assume a queue with two flows A and B with rates a and b

where b> a. As a result, the target of A is larger than the target
of B (T (a)> T (b)). In Figure 6, the fairness is graphically de-
fined as the angle between the actual bandwidth share and fair-

2In rare cases, the queuing delay of a port may jump over the target of
both fast and slow flows because of synchronized packet arrival. We make
sure that faster flows with smaller targets decrease more aggressively (§3.3)

Algorithm 1: Poseidon’s Main Algorithm
Input: mpd: maximum per-hop delay,
cwnd: flow’s congestion window size,
rtt: round-trip time,
now: current timestamp
Parameter :min_md: minimum MD ratio,

max_mi: maximum MI ratio,
min_cwnd: minimum cwnd,
max_cwnd: maximum cwnd

1 Function ReceiveACK():
2 mpt← T (cwnd

rtt)
3 update_ratio←U(mpt,mpd)
4 if mpd ≤ mpt then
5 cwnd←

cwnd ∗
(

1+ update_ratio−1
cwnd ∗num_acked

)
6 else
7 if now− t_last_decrease > rtt then
8 cwnd← cwnd ∗update_ratio

9 return cwnd

10 Function Poseidon():
11 cwnd_prev← cwnd
12 if is_ack then
13 cwnd← ReceiveACK()

14 else if is_retransmit then
15 cwnd← RetransmitTimeout()

16 else if is_ f ast_recovery then
17 cwnd← FastRecovery()

18 cwnd← clamp(cwnd,min_cwnd,max_cwnd)
19 if cwnd < cwnd_prev then
20 t_last_decrease← now

21 pacing_delay← 0
22 if cwnd < 1 then
23 pacing_delay← rtt

cwnd

24 return cwnd, pacing_delay

share line. We define the update function U(T (rate),delay)
as the multiplicative factor (where new_cwnd = cwnd×U())
with a specific flow rate and network delay. In order to con-
verge to the line rate, it is ≥ 1 if the delay is less than or equal
to the target and < 1 if the delay is more than the target3.

U(T (rate),delay) =

{
≥ 1,delay≤ T (rate)
< 1,delay > T (rate)

(1)

In all three cases, if we want to guarantee that the fairness
improves, the updated rates should stay in the red triangle

3We assumed, in average, if arrival rate < line rate, delay is low, and if
arrival rate > line rate, delay increases.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 259

Figure 6: Poseidon updates the rate (in the purple area) such that it increases fairness (red) toward the line rate (blue). b) the
queue is under-utilized and both flows increase rates; c) the queue is overloaded, and both flows decrease rates; d) the faster flow
decreases, and the slower flow increases its rate.

(a) AI takes 50 RTTs from 1G to
50G, Poseidon takes around 15 RTTs
and is stable at the fair-share rate.

(b) Poseidon target function has high
resolution over all spectrum of rate
(min-rate=0.02G, max-rate=200G).

Figure 7: The ramp-up using adaptive step sizes is fast and
slows down near the target for stability.

(Figure 6(a)). One side of the triangle is defined by the cur-
rent ratio of rates, and the other side is symmetric across the
fair-share line. If we assume a < b and the delay is D, this
requirement can be written as:

a
b
<

b ·U(T (b),D)

a ·U(T (a),D)
<

b
a
,∀a < b,∀D > 0

a2

b2 <
U(T (b),D)

U(T (a),D)
< 1,∀a < b,∀D > 0

(2)

In summary, Poseidon achieves high link utilization and
fairness if the functions T () and U() satisfy Eq. 1 and Eq. 2.
Figure 6 illustrates Eq. 1, updates that allow full link utiliza-
tion, in blue color, and Eq. 2, updates that converge toward
fairness, in red. The desirable overlapped area is marked in
purple. The additive increase will be in parallel to the fair-
share line, and the multiplicative increase/decrease with the
same ratio stays on the same edge of the red triangle where
the node (a,b) is (Figure 6(a)). For case 1 in Figure 6(b), the
red area ensures the fairness is improved, and the blue area
ensures all flows increase their rate; for case 2 in Figure 6(c),
the blue area ensures all flows decrease their rate; for case 3
in Figure 6(d), the blue area ensures the slower flow increases
rate while the faster flow decreases rate. Next, we introduce a
target function T () and the update function U() which satisfy
the above requirements and have more desirable properties.

3.3 Adaptive Update Steps
Based on §3.2, Poseidon can use any function that satisfies
Eq. 1 and Eq. 2. But we designed the following functions to
leverage the distance between the target and max-hop delay
to not only decide whether to increase or decrease, but also
adjust the update ratio adaptively to reach a better trade-off
between stability and fast convergence. Appendix B proves
that they satisfy Eq. 1 and Eq. 2:

T (rate) = p · ln(max_rate)− ln(rate)
ln(max_rate)− ln(min_rate)

+ k

min_rate < rate < max_rate, p > 0,k > 0
(3)

U(T (rate),delay) = exp
[

T (rate)−delay
p

·α ·m
]

where α = ln(max_rate)− ln(min_rate)
(4)

rate is cwnd ∗MTU/RT T . k defines the minimum target
delay; p tunes the maximum target when the rate is equal to
min_rate and decides how far-apart the target of two flows
with close rate can be. In practice, the target cannot be lower
than a limit without decreasing the throughput because syn-
chronized arrivals can cause premature window decrease. The
target cannot be very large too because a) it can cause packet
drops in switches when the target delay exceeds the queue
capacity; b) as long as we achieve high utilization, we prefer
to back-pressure hosts to leverage other mechanisms such as
load-balancing and admission control for isolation. We use
min_range and max_range to not waste the target range for
differentiating rates that only happen rarely [35]. m defines
the “step” when updating the rate. The larger m is, the slower
the rate of update will be (sensitivity analysis is in §5.6.2).

When |T (rate)− delay| → 0, then U(rate,delay) → 1.
This means when the delay is far away from the target, flows
increase/decrease more drastically for faster convergence, and
when the delay approaches the target delay, the steps will
be more gentle to achieve stable flow rates (solves §2.1.4).
Figure 7(a) shows how the flow can quickly increase its rate
to reach 50 Gbps using the adaptive solution. We explain the
intuition behind the update function with an example. Assume

260 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the rate of a flow is x, and the target delay is D. We define
the target rate r, such that T (r) = D thus U(r,D) = 1. We can
rewrite the update function for the flow as follows (calculation
is in Eq. 11):

U(x,D) =
U(x,D)

U(r,D)
=
(r

x

)m
(5)

Thus, the update function is only related to the ratio of r
and x; when x is far-away from r, the change will be larger.
Poseidon updates the rate of flow from x to r in one RTT, be-
cause x ·U(x,D) = r if m = 1, and for m < 1, it will take more
RTTs because x ·U(x,D)m = r. In this way, the parameter m
controls how fast Poseidon converges to the fair-share rate.

A legitimate alternative for T (rate) is α√
rate +β which is an

extension of the Swift flow-scaling (Appendix §C). However,
we designed Eq. 3 because it gives a meaningful difference
between the target of flows over all rates: The target of a flow
with rate a and c ·a have a fixed difference T (a)−T (c ·a) =
ln(c)/p, providing uniform resolution across all ranges of
rates (Figure 7(b)). This generalizes Swift’s use of 1/

√
cwnd

for target flow scaling (§3.5 of [35]), which only provides
high resolution for small windows. Similarly, an option for
the update function is to use the ratio of target over delay,
similar to Swift. Appendix B.3 shows why distance provides
a better result in high concurrency scenarios.

3.4 Network-wide Max-min Fairness
The key designs of Poseidon to achieve network-wide max-
min fairness are: 1) only react to the max-hop delay; 2) the
target delay of a flow increases when the flow rate decreases.
We will start from the definition of max-min fair and then
show how the above two designs achieve max-min fairness.

Definition 1 (Max-min Fairness [16, 38]). A feasible alloca-
tion of rate~x is “max-min fair” if and only if an increase of
any rate within the domain of feasible allocations must be at
the cost of a decrease of some already smaller rate. Formally,
for any other feasible allocation~y, if ys > xs (s is a flow), then
there must exist another flow s′ such that xs′ ≤ xs and ys′ < xs′ .

For a certain network and workload, the max-min fair allo-
cation is unique [38]. In the max-min fair allocation, for each
flow, there is a unique queue (switch port), which restricts the
rate for that flow. We denote this queue as a flow’s bottleneck,
and the flow’s rate should be the fair-share rate of that queue.
(As a special case, a flow’s bottleneck can also be the source
or destination host, if either of them restricts the rate of the
flow.) Specifically, we can conclude the following Lemma
from the above definition (proved in Appendix D):

Lemma 1. When achieving network-wide max-min fairness,
each flow will have the largest rate among all flows on its
bottleneck hop and not on any other saturated hop.

Formally, for the “max-min fair” allocation~x, for any flow s,
denote the flows that traverse s’ bottleneck as {b1,b2, ...,bk},

Figure 8: The stable state of max-min fairness among 3
switches with 100 Gbps links.

Figure 9: Only the queuing delay on red flows’ bottleneck
(switch 1) can reach red flows’ target.

then for any flow bi, xs ≥ xbi . Denote the flows that traverse
one of the saturated non-bottleneck hops of s as {c1,c2, ...,ck},
then there must exist some c j such that xc j > xs.

With the above definition and Lemma, we first give an
intuition about why Poseidon could converge to the max-min
fair state from any initial state.

With other CC algorithms, the hop with max queuing delay
for a flow may not be the bottleneck hop based on the max-
min fairness. Thus, using INT naively and reacting to the max
delay cannot lead to max-min fairness. However, Poseidon
uses a monotonically decreasing target function, which lets
faster flows have lower target delay. With this design and
Lemma 1, a flow should have the smallest target among all
other flows on its bottleneck, and its target is never the small-
est on other congested hops. Moreover, the delay on a queue
will generally remain close to the minimum target among
all flows on that queue. So gradually, the delay may reach a
flow’s target on its bottleneck; but on other congested non-
bottleneck hops, the delay is not able to reach its target. Thus,
in Poseidon’s final stable state, the max hop delay must
come from flow’s bottleneck. And because each flow only
reacts to its bottleneck, it achieves fairness on the bottleneck
with other flows that have the same bottleneck (§3.2). Then,
the network-wide max-min fairness is achieved by Poseidon.

We provide an example in Figure 8 where green flows have
higher rates than red and blue flows in max-min fair state,
rgreen > rred = rblue, so green flows also have smaller targets,
namely, T (rgreen)< T (rred) = T (rblue). Switch 1 is the bottle-
neck of red and blue flows, and switch 2 is the bottleneck of
green flows. On switch 2, the delay is similar to the target of
green flows, dsw2 ≈ T (rgreen), because the moment the delay
passes the target, green flows reduce their rate. Meanwhile,
red and blue flows have higher targets than the delay dsw2, as
shown in Figure 9(b). This prevents red flows from reacting
to the queuing on switch 2, which means every flow only

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 261

reacts to its bottleneck and maintains max-min fairness. This
property of Poseidon solves the problem mentioned in §2.1.2.

Theorem 1. Poseidon converges to the max-min fairness.

To formally prove that the network converges to the max-
min fair state, we use induction to prove that each queue
achieves max-min fair. Denote the max-min fair rate alloca-
tion as ~x, and for each queue, we denote the fastest flow’s
rate on that queue as Rx

q. Then we sort all the k queues
in the network according to Rx

q from smallest to largest:
Rx

q1
≤ Rx

q2
≤ ... ≤ Rx

qk
. For any other flow rate allocation ~y,

with induction: (1) we prove that the queue q1 will converge
to the max-min fair allocation; (2) assuming the queue q1 to
queue qm have already converged to the max-min fair alloca-
tion~x, we prove that the queue qm+1 will also converge to~x.
A detailed proof is provided in Appendix §E.

4 Deployment
Here, we discuss the design decisions that facilitate the de-
ployment of Poseidon in a large-scale datacenter network.
Firstly, Poseidon provides benefits even if only part of the
network supports INT (incremental deployment), and bounds
the unfairness between flows that see INT vs those that do not.
Secondly, Poseidon allows old switches to transparently route
INT traffic, adds minimum overhead to packets and switches,
and requires no changes in applications or NICs.

4.1 Brownfield Deployment
For a network where a subset of switches can provide hop
delay information, Poseidon splits the fabric delay into two
parts: the MPD from switches equipped with INT; and the
delay from the rest of the path. This is calculated based on
the end-to-end delay, using the NIC timestamp similar to
Swift [35], minus the max-hop delay (both forward and back-
ward). Then we apply Poseidon based on the maximum of
the two. Note that this solution is not robust to reverse-path or
multi-hop congestion happening in the hops that do not have
INT, but still provides incremental benefits (§5.5).

The fairness issue is only relevant if the bottleneck hop of
the two flows is the same. Consider two flows A and B and
three switches, X, Y, and Z. A goes through switch X to Z,
and B goes through Y to Z. The common switch, Z, is the
bottleneck, X supports INT and Y doesn’t. If Z has INT, both
flows get the right feedback about Z in max-hop delay. There-
fore, we get partial benefits. If Z doesn’t have INT, the fabric
delay of flow A doesn’t include the delay of X, but for flow
B it will include the delay of Y. Therefore, flow B observes a
high delay and may decrease its window sooner. However, we
argue that this decrease will be minimal and bounded because
of target scaling. As the rate of flow B goes down, its target
will go higher. The moment the target increases by the delay
at hop Y, the rate of flow B will stabilize.

Interestingly, the above argument suggests that in order to
get most of the benefit, we should prioritize deploying INT

in the usual congestion points (ToRs with oversubscribed
uplinks or incast in downlinks). We evaluate this in §5.5.

4.2 A Deployable INT Format for CC
In this section, we describe the requirements for deploying
INT in datacenters for CC and compare existing INT formats.

4.2.1 Requirements
We consider both the INT metadata that we ask from each
hop and how/where we put it inside the packet.

Make INT information available to the sender for CC:
INT metadata on the forward path should be reflected in the
reverse path ACKs for CC signaling. Ideally, ACKs could
reflect opaque information that could be carried in the INT
header but not be replaced by switches. Or, similar to ECN,
INT could be marked by switches in the forward direction
and echoed back to the sender in L4 headers.

Low-overhead INT metadata: For simplicity and precision,
we want INT on all packets, thus its bandwidth and pro-
cessing overhead must be low. Having many metadata fields
per packet adds bandwidth overhead [15] and is costly for
switches, NICs, and offloaded transports to process [11].

Fixed-sized INT metadata: Per-hop INT metadata makes
the number of INT fields not only large but also variable.
This is bad for two reasons: a) It is wasteful to reduce MTU
for the worst case because link failures may add more hops
to packets transiently, so that the number of hops is long-
tailed. A smaller MTU means more packets to be processed
by hosts and switches. b) Variable-sized INT metadata is more
complex to parse at switches, offloaded transports, and mid-
dleboxes if they access bytes after the INT header. Therefore,
for the CC use case, it is essential for an INT format and its
implementation in the switch to use fixed-size INT metadata,
and support aggregation functions (e.g., max/min/sum) that
can overwrite the information from the previous hop.

Implementable in dataplane at line rate: The aggregation
function must require minimal state and computation in the
switch. This means that it must be simple (e.g., max/min/sum)
and not require per-flow state.

Transparent to routing: Many datacenters use a hash-based
scheme (ECMP [30], WCMP [48]) to balance the load over
multiple ports. Such schemes may use the 5-tuple and/or
IPv6 flow label. A brownfield deployment requires a scheme
that balances load efficiently for packets with/without INT
metadata in switches with/without INT support. For switches
without INT support to balance INT traffic, they must be able
to find and parse L4 headers. Thus, we either need to a) put
INT metadata after L4, b) enable switches to pass over the
INT metadata by adding it as a sub-header in headers that
support extensions, such as VLAN-tag, MPLS-tag, IP option,
GRE shim layer, or VXLAN shim layer. We believe option (a)
is easier to deploy as it is transparent to the network, and thus
works with different L2/L3 protocols, with virtualized and

262 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 10: INT packet format in a) In-band Flow Analyzer (IFA) b) P4-INT

non-virtualized traffic, and with other boxes (except special
middleboxes, which are usually implemented in extensible
software anyway [23, 43], and don’t need to parse INT).

Compatible with encrypted packets: Many cloud providers
encrypt network traffic inside datacenters [4]. But switches
must be able to change INT data. Fortunately, recent NIC
encryption modules such as PSP [6] allow passing an offset
in the packet descriptor to only encrypt the bytes after. PSP
also only authenticates the bytes after its header. For UDP
checksum, PSP requires its implementation to support zero
values (thus there’s no need to rely on switches, even though
programmable switches can update that). We also verified
that we can change where the NIC expects the PSP header.

4.2.2 INT formats
Figure 10 shows two predominant INT formats in the context
of IPv4; the IPv6 format is similar. Poseidon is possible on
both formats, but a few improvements help its deployability.

IFA [36] indicates the presence of INT with a special proto-
col value in the IP header and adds part of the header between
the IP and L4 header. P4-INT [2] indicates INT using a DSCP
(traffic class) value/bit and puts all metadata after the L4
header. In order to use ECMP on switches without changing
their configuration, we prefer to not change the location of L4.
Still, IFA can be used on most switches by first changing the
expected location of the UDP header for IFA packets (using
User Defined Fields, UDF) and then rolling out INT. IFA also
supports a format that puts INT metadata at the tail of the
packet to avoid changing the location of L4.

Neither of the formats has a place to reflect the forward
path INT. But given that the switches in the reverse path don’t
need to read the forward path INT, the receiver can just reflect
the INT metadata in L4 headers, and the sender networking
stack will consume it along with the INT metadata.

Neither of the formats defines a max calculation action,
however, they allow extending the action vector.

Finally, we believe an overhead of 12B for sending a 2B
metadata is excessive for small packets and look forward
to working with the community to reduce overhead while
maintaining protocol flexibility.

5 Evaluation
First, §5.1 explains our prototype implementation on a testbed
with a production networking stack and NIC to highlight the

ease of implementation and show the robustness of Poseidon
to multi-hop and reverse-path congestion. Then we use sim-
ulations to explain how and why Poseidon is robust in those
scenarios (§5.2). §5.3 shows that the adaptive window up-
date enables faster convergence and better stability. Next, we
present the aggregate benefit of the above techniques on op la-
tency (flow completion) in multiple scenarios (§5.4). Finally,
we wrap up with brownfield results (§5.5) and a parameter
sensitivity analysis (§5.6). We use Swift, a practical CC de-
ployed at scale, and HPCC, the state-of-the-art in INT-based
CC, as our main points of comparison.
Simulation setup: We implemented Poseidon along with
Swift and HPCC in the OMNeT++ packet simulator and sim-
ulated a Clos network of 200 Gbps links, with 245 ns link
delay (including 230 ns FEC delay), 600 ns switch delay,
64 MB buffer size, and 4096 Bytes MTU size. For Poseidon,
we set the parameters in Eq. 3 and Eq. 4 as p = 40, k = 2,
m = 0.25 based on §5.6.2. For Swift, we follow the best pa-
rameters in [35] and set the base delay to 25 µs, the max flow
scaling to 100 µs, and the hop-based scaling to 1 µs per hop.
We verified the fidelity of the simulator by comparing it to
the result of the testbed. Note that RTT here is calculated
based on NIC timestamp and doesn’t include the delay in the
networking stack at the host. For HPCC parameters, we use
the values from the paper [40]. To be fair in our comparisons,
we enable pacing only when cwnd < 1, similar to Swift4.

5.1 Implementation in Testbed
For the host networking stack, we change Swift implemen-
tation in a transport stack similar to Pony Express [41] to 1) at
the sender, add a 2-bytes INT header for max-hop-delay right
after L4; 2) at the receiver, reflect back the max-hop-delay in
another 2-bytes in the payload; 3) at the sender, update the
congestion window based on Poseidon algorithm in §3.3.

For network switches, we extract the queuing delay at
the egress pipeline and update the max-hop-delay in the INT
header. We implemented the P4 program with only 2 lines of
P4 code (Listing 1) and 16 lines of parser/deparser code in
a Tofino switch. Moreover, we verified that packets with or
without INT headers can both be routed.

Our testbed only has two hosts and one switch (Fig-
ure 11(a)). To simulate congestion from multiple hosts, we cre-
ate 8 virtual interfaces in hosts with 100G links and route the

4HPCC always paces packets, but that is costly in software and hardware.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 263

bit<16> queuing_delay =

(bit<16>) (eg_intr_md.deq_timedelta >> 8);

hdr.telemetry.max_hop_delay =

max(hdr.telemetry.max_hop_delay, queuing_delay);

Listing 1: Core P4 code for telemetry in Poseidon.

Figure 11: Testbed with 8 virtual sender/receiver ports

traffic insides the switch based on the virtual IPs into separate
loopback ports. Each port, loopback at MAC layer, is config-
ured to 10Gbps and plays the role of a virtual sender/receiver
(Figure 11(b)). Ports 0-7 receive traffic from host 1, and ports
8-15 pass the traffic to host 2.
Testbed Results: To create multi-hop and reverse-path con-
gestions from Figure 2 and Figure 3, we route the flows
between virtual senders/receivers as Figure 12(a) and Fig-
ure 13(a) show. For the multi-hop congestions, Poseidon could
fairly share the bandwidth between background flows and the
victim flow, while Swift only spares 0.16 Gbps for the victim
flow in Figure 12(b). For the reverse-path congestion, Posei-
don could achieve line rate for the victim flow, while Swift
could only achieve 1.91 Gbps (similar throughput as the flows
on the reverse-path) as shown in Figure 13(b).

5.2 Robustness From Max-min Fairness
Poseidon achieves fairness in multi-hop congestion. Con-
sider the scenario in Figure 14(a) where we have M green
flows at Rack 0 and N blue flows at Rack 10. We add more
flows to change M and N to create different multi-hop conges-
tion scenarios. With Swift, the moment we have congestion
at multiple hops (M > 0 and N > 0), the victim flow, red,
cannot compete with other flows (Figure 14(b)). The reason is
that Swift reacts to the inflated sum of delays (Figure 14(c)).
Therefore, the victim reduces its congestion window until
its scaled (because of flow-scaling) target delay matches this
larger end-to-end delay. HPCC and DCTCP also react to the
congestion at any hop, thus when M = N, the victim does an
MD when either of the hops gives a congestion signal (ex:
ECN) and cannot achieve the fair rate.

Poseidon, however, allows the victim flow to achieve its
max-min fair share (200Gbps/max(M + 1,N + 1)) by only
reacting to the bottleneck hop where it gets the fair-share.
One reflection is that Poseidon’s congestion signal, max-hop
delay, and target only changes when the bottleneck hop or its
congestion changes. For example, they stay the same when

(a) Victim from virtual host 2 (vh2) contends
with 2 flows on port 16 and 2 flows on port 10.

(b) Victim achieves fair-
share rate in Poseidon.

Figure 12: Multi-hop congestion. (Linerate: 10 Gbps)

(a) 4 flows create a congestion on the victim’s
reverse-path.

(b) Victim achieves liner-
ate (10 Gbps) in Poseidon.

Figure 13: Reverse-path congestion. (Linerate: 10 Gbps)

M changes from 0 to 2, but change when N increases from
2 to 9 in Figure 14(c) and Figure 14(d). Although the victim
flow experiences higher RTT than other flows, Poseidon uses
a higher congestion window to achieve the fair rate. Another
interesting point happens when both hops have the same fair-
share rate (M = N). Although the delay of both hops is close
to the target (Figure 14(d)), with a rate-adjusted target, the
moment the victim reduces its window, Poseidon raises its
target and will not react to the max-hop delay until the rate
increases again. §5.6 shows that both max-hop latency and
scaling the target are necessary to achieve fairness.
Poseidon utilizes forward path regardless of reverse-path
congestion. Reproducing the scenario in Figure 3, Fig-
ure 15(a) shows that with Swift, as the number of flows on
the reverse-path, N, increases, victim’s throughput decreases
to the fair-share rate in reverse-path. However, with Posei-
don, the victim could maintain 200 Gbps (line rate). The
reason is that Poseidon only uses the max-hop delay from
the forward path, which is not affected by the reverse traffic
(Figure 15(b)). HPCC doesn’t have this problem since it only
uses INT information on the forward path.

5.3 Fast Convergence and Stability
Figure 16 shows the rate of flows in Swift and Poseidon as
we add competing flows one by one and then remove them.
At a single hop, not only does Poseidon achieve the fair-share,
similar to Swift, but also lower throughput variation, hence
better stability. Next, we evaluate Poseidon’s convergence
time and throughput stability.
Poseidon converges fast for flows with large windows. Fig-
ure 17(a) shows the ramp-up phase of a flow, growing its
window to a large value. This flow is competing with another
one on a 200G link. First, the ramp-up shows that Poseidon
does fewer rate reductions than Swift and HPCC. Second,
it shows that Poseidon achieves a super-linear ramp-up at

264 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Multi-hop congestion scenario (b) Victim flow’s rate (c) Victim’s delay signal (d) Victim’s target & per-hop delays

Figure 14: Multi-hop congestion with the same or different fair-share rate on different hops (linerate: 200 Gbps).

(a) Victim’s rate is protected by Po-
seidon (linerate: 200 Gbps) from the
congestion on the reverse-path.

(b) Victim’s congestion signal never
changes for Poseidon, despite in-
creasing delay on the reverse-path.

Figure 15: Reverse-path congestion: N reverse flows

(a) Single hop fairness in Swift (b) Single hop fairness in Poseidon

Figure 16: Fairness on a single hop with step-in&out flows,
throughput is measured every 50 µs.

the beginning, and the rate of growth decreases as it reaches
the fair-share rate as expected in Figure 7(a). As a result,
Poseidon converges around 12× faster than Swift and HPCC.
Poseidon achieves stable throughput for flows with small
windows. Figure 17(b) shows the throughput for a flow com-
peting with N−1 others on a hop. Poseidon reduces the stan-
dard deviation of throughput by 24× for N = 200 (70% on
average over the four cases). As mentioned in §3.3, the reason
is that AIMD in Swift and HPCC becomes more aggressive
for smaller congestion windows. By contrast, Poseidon uses
an adaptive update ratio to adjust the congestion window.
Poseidon keeps link utilization high with low RTT. Posei-
don achieves a smaller RTT than Swift for flows across differ-
ent rates, which means lower latency for small messages. For
example, Figure 18 compares the RTT over different num-
bers of flows in two cases: large window and small window.
Swift cannot use a very low target delay because, for high link
utilization, it has to accommodate the summation of delays
on multiple hops and the variation of delay in a high-degree
incast caused by AI (Figure 17(b)). Since the adaptive up-
date ratio can stabilize the rate, Poseidon could afford to use
a tighter target and achieve high link utilization and small

(a) Fast convergence for big windows (b) Stability under high concurrency

Figure 17: Poseidon achieves fast convergence for flows with
large windows & stable rate for flows with small windows.

(a) Large window: +1 flow per 25ms (b) Small wnd: +50 flows per 25ms

Figure 18: Poseidon achieves lower RTT than Swift by keep-
ing queues short and stable.

queues at the same time. HPCC, however, achieves lower
RTT than Poseidon as it targets near-zero in-network queues
at the cost of op latency (§5.4).

5.4 Application-level Improvements
A key application-level performance metric is op latency,
namely, the time from a message was enqueued for sending
to its completion [22]. We create two scenarios on two racks
(A and B) with 3:1 oversubscription and compare op latency
for 128 KB messages:

1) Uniform Random (UR): Rack A sends 960 Gbps to
Rack B (60% uplink load), while Rack B sends 480 Gbps to
Rack A (30% uplink load). The source and destination hosts
are randomly chosen. Poseidon has a 61% lower median and
14.5× lower 99.9p op latency than Swift (PLB [44] enabled),
44% lower median and 5.49× lower 99.9p op latency than
HPCC in Figure 19(a). This mostly comes from robustness to
reverse-path and multi-hop congestion.

2) Uniform Random with Rotating Incast (UR+RI): A and
B communicate similar to UR scenario, but Rack A also suf-
fers from rotating incast from 100 hosts in other racks (not
A or B). The incast traffic has 100 flows with 0.5 Gbps load

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 265

(a) Uniform random (UR) (b) UR + Rotating Incast (RI)

Figure 19: Poseidon improves op latency (FCT)

(50G in aggregate) and changes its target after sending a mes-
sage from each host. Poseidon achieves 56% faster median
and 41× lower 99.9th op latency for UR traffic than Swift
(PLB [44] enabled), 51% faster median and 6.25× lower
99.9p op latency than HPCC in Figure 19(b). Besides being
robust to reverse-path congestion, Poseidon allows UR flows
to ramp up faster than Swift when the rotating incast targets
another victim.

5.5 Brownfield Evaluation
With brownfield deployments, Poseidon achieves partial per-
formance gains over Swift. We repeat the UR scenario ex-
plained in §5.4 over 4 racks. There are 24 hosts in each rack
connected through 6 hops to hosts in other racks. Only ToRs
have 3:1 oversubscription. Figure 20(a) compares the op la-
tency of Poseidon with INT at all switches vs. Poseidon in the
brownfield where only 2 or 4 ToRs support INT. It shows that
Poseidon can achieve most of the gains compared to Swift in
the brownfield.

To evaluate the fairness scenarios in §4.1, we use the topol-
ogy in Figure 14(a) and enable INT only on Rack 10. We
make sure all blue flows send to the same host and all green
flows send to another to create congestion on multiple hops
for them. In Figure 20(b), when M = 2,N = 9, the bottleneck
of red and blue flows is on Rack 10 that has INT, thus vic-
tim and other blue flows reach the fair rate (20 Gbps). When
M = 9,N = 2, the bottleneck of red and green flows is on
Rack 0, which doesn’t have INT, and brownfield Poseidon
gives a little more bandwidth to the red flow because the green
flows have to react to the end-to-end delay. The unfairness
is bounded because green flows increase their target until it
covers the sum of delay on their congested hops.

5.6 Sensitivity Analysis
5.6.1 Ablation Study
To show the importance of each major aspect of the Poseidon
design, we use the same algorithm and parameters as Posei-
don, but remove one design aspect each time: 1) maximum
per-hop delay (MPD) information instead of RTT; 2) rate-
adjust target for per-hop delay; and 3) adaptive increase
ratio algorithm instead of AIMD.

Figure 21(a) compares the throughput in the multi-hop
scenario (Figure 14(a)). It shows that network-wide fairness
is only achieved when using both rate-based target scaling

(a) Message op latency shrinks when
more switches are equipped with INT
capability.

(b) Unfairness is bounded when the
bottleneck is not on the INT-capable
switches.

Figure 20: Partial gains and fairness in brownfield Poseidon

and max hop delay. However, removing the adaptive update
ratio will not harm the max-min fairness, and Poseidon can
achieve fairness even using AIMD. Figure 17 has already
shown that AIMD slows down ramp-up and causes wider
throughput variations in the presence of many flows.

5.6.2 Robustness of Parameters
Though Poseidon could achieve the design targets with a
wide range of functions and parameters, it is worthwhile to
understand the trade-off of each parameter. In this section, we
vary the three parameters in Eq. 3 and Eq. 4 and show why
we choose: p = 40, k = 2, and m = 0.25.

ppp controls the range of target scaling, affecting round-trip
time and rate variation. Figure 21(b) shows that when we
have congestion from hundreds of flows, a higher p allows
reacting to rate unfairness faster and reduces rate variations.
However, that means enduring larger RTT in the network.

kkk avoids under-utilizing the link bandwidth. Figure 21(c)
shows the utilization % when we have a few flows on the
bottleneck (where the rate is close to max_rate thus the target
is close to k) vs. the fabric RTT when we have hundreds of
flows. For small k values, the fluctuation of the queuing delay
may lead to link under-utilization as the target is low and
flows reduce the congestion window conservatively. However,
if the value of k is too large, the RTT will increase.

mmm determines the trade-off between the variance of flow
rates and the convergence speed. Figure 21(d) compares the
convergence time in Figure 17(a) experiment and rate varia-
tion in Figure 17(b) for different values of m. Larger m values
improve stability as they dampen the effect of the target in
Eq. 4 but also slow down convergence.

6 Related Work
Delay-based: Swift [35], the basis of Poseidon, is a state-of-
the-art delay-based algorithm that relies on hardware times-
tamps from NICs. Swift has some elements of Poseidon, al-
though for different purposes. 1) It separates fabric delay from
engine delay and tracks a separate congestion window for
each. However, this separation was because of fundamental
differences in congestion at fabric hops vs. hosts, and doesn’t
address fabric issues explained in §2.1. 2) Swift uses a larger
target delay for flows with smaller congestion windows to
address synchronized packet arrival from many flows on a

266 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Ablation study (b) p: maximum target scaling (c) k: base target (d) m: update intensity

Figure 21: Ablation study in multi-hop congestion scenario and sensitivity analysis over three parameters.

bottleneck link (flow scaling for windows <10), which forces
flows to converge to the same window. Appendix §C shows
even if we combine flow-scaling with max-hop latency, Swift
still faces unfairness. 3) For multiplicative decrease, Swift
decrease depending on how far the delay is from the (almost
fixed) target, but still uses a fixed step for additive increase. At
a higher level, Swift only looks at the end-to-end delay while
Poseidon uses max-per hop latency and rate-based target scal-
ing to respond to the bottleneck hop. Copa [12] adjusts the
target rate based on end-to-end delay to achieve short queues
and fair allocation, but Poseidon compares the max-hop delay
to a rate-adjust target to reach network-wide max-min fairness.

ECN-based: ECN can be seen as a one-bit INT signal from
switches that is set based on a configurable threshold inside
switches. It is successfully deployed in datacenters and used
by end-to-end CC algorithms such as DCTCP [8] because
ECN was non-intrusive (two bits in the IP header) and those
algorithms were deployable in brownfield environments. Still,
ECN-based algorithms do not recognize the bottleneck hop
and all flows react to any hop in their path that marks packets.

Richer signals from switches: XCP [34] and RCP [22] get
help from switches to enable flows to react to congestion
and achieve the fair-share allocation. In particular, XCP intro-
duced the idea of decoupling utilization from fairness. How-
ever, both proved difficult to deploy in datacenters because
of the lack of a brownfield solution and the overhead in high-
speed switches. Poseidon achieves fairness using target scal-
ing and introduces adaptive update ratios to reach better sta-
bility. It is deployable in brownfield and requires minimal
changes in hardware to support max-hop delay in INT.

HPCC [40] uses queue length, timestamp, and tx-bytes
of each hop to estimate in-flight bytes on each link and up-
date a congestion window in an AIMD fashion in order to
achieve very low queuing in the network. However, HPCC
doesn’t recognize the bottleneck hop: high utilization on any
hop along the path should not force a flow that didn’t get the
link’s fair-share to reduce rate. In addition, HPCC assumes
all flows experience the same base RTT, relies on the additive
increase to achieve fairness, doesn’t address brownfield de-
ployment, and requires bandwidth and CPU overhead from
three INT metadata per hop. In contrast, by using a novel
target-scaling solution, Poseidon achieves fairness without
relying on AIMD, supports brownfield deployment, and only

needs a single max hop delay per packet. PowerTCP [7] ar-
gues that CC should react to both absolute CC signal and its
change rate to avoid slow reaction or overreaction to queue
build-up. Poseidon’s adaptive update ratio in Figure 7(a) ad-
dresses this issue. PowerTCP similar to HPCC still looks at
congestion at any hop and uses per-hop INT metadata.
Receiver-driven: NDP [29] and HOMA [42] face challenges
in oversubscribed networks where may have congestion in the
core. However, Poseidon is insensitive to over-subscription,
and we expect similar gains on op latency by applying Posei-
don’s idea to receiver-driven schemes.
Combined with schedulers: HOMA [42] combines a CC
algorithm with a scheduling policy that prioritizes the short-
est remaining flows to achieve shorter flow completion time.
While Poseidon is currently a pure CC algorithm, we believe
it has the potential to be integrated with similar scheduling
policies and preserve the benefits of fast convergence and
robust performance.

7 Conclusion
We proposed Poseidon, a congestion control algorithm that re-
duces op latency through fast convergence and lower latency
and is robust in multi-hop and reverse-path congestion by
leveraging in-band network telemetry (INT) in a novel way.
Poseidon only needs a single max-hop delay per packet from
INT, which makes it easily deployable with low overhead.
We showed how INT packets can be deployed in brownfield
and how Poseidon can still gain from an incremental deploy-
ment. In the future, we plan to implement Poseidon in NIC
offloading protocols (e.g., RDMA), leverage INT to break
down the delay at end-host networking stacks, use INT to
hint path changes to avoid hash collisions [33], and apply
the target scaling idea to other congestion signals, such as
in-flight bytes [40], to achieve lower in-network delay.

This work doesn’t raise any ethical issues.

Acknowledgment
We would like to thank our shepherd Paolo Costa and the
anonymous NSDI reviewers for providing valuable feedback.
We thank the production, serving, and support teams at Google
for their contributions to the work and the platform. T. S.
Eugene Ng is partially supported by the NSF under CNS-
2214272 and CNS-1815525.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 267

References
[1] How Distributed Shuffle improves scalability and

performance in Cloud Dataflow pipelines, 2018.
https://cloud.google.com/blog/products/data-
analytics/how-distributed-shuffle-improves-
scalability-and-performance-cloud-dataflow-
pipelines.

[2] In-band Network Telemetry (INT) Dataplane Spec-
ification, 2020. https://p4.org/p4-spec/docs/
INT_v2_1.pdf.

[3] Amazon EC2: Linux accelerated comput-
ing instances: Networking performance, 2021.
https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/accelerated-computing-
instances.html#gpu-network-performance.

[4] Encryption in Transit in Google Cloud ,
2021. https://cloud.google.com/security/
encryption-in-transit.

[5] Tomahawk4 / bcm56990 series, 2021. https:
//www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56990-
series.

[6] PSP Architecture Specification, 2022. https://
github.com/google/psp.

[7] Vamsi Addanki, Oliver Michel, and Stefan Schmid. Pow-
erTCP: Pushing the performance limits of datacenter
networks. In NSDI, 2022.

[8] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
TCP (DCTCP). In SIGCOMM, 2010.

[9] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K. Aguilera, Au-
rojit Panda, Sylvia Ratnasamy, and Scott Shenker. Can
far memory improve job throughput? In EuroSys, 2020.

[10] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya
Ghobadi, Jennifer Rexford, David Walker, and David
Wentzlaff. Enabling programmable transport protocols
in high-speed NICs. In NSDI, 2020.

[11] Serhat Arslan, Stephen Ibanez, Alex Mallery,
Changhoon Kim, and Nick McKeown. NanoTransport:
A low-latency, programmable transport layer for NICs.
In SOSR, 2021.

[12] Venkat Arun and Hari Balakrishnan. Copa: Practical
Delay-Based congestion control for the internet. In
NSDI, 2018.

[13] Sanjeewa Athuraliya, Victor H Li, Steven H Low, and
Qinghe Yin. REM: Active queue management. In
Teletraffic Science and Engineering, volume 4, pages
817–828. 2001.

[14] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the killer mi-
croseconds. Commun. ACM, 60(4):48–54, 2017.

[15] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang
Li, Gianni Antichi, Minian Yu, and Michael Mitzen-
macher. PINT: Probabilistic in-band network telemetry.
In SIGCOMM, 2020.

[16] Dimitri Bertsekas and Robert Gallager. Data networks.
Athena Scientific, 2021.

[17] Neal Cardwell, Yuchung Cheng, et al. BBR Up-
date:1: BBR.Swift; 2: Scalable Loss Handling. IETF
109. https://datatracker.ietf.org/meeting/
109/materials/slides-109-iccrg-update-on-
bbrv2-00, Nov 2020.

[18] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
Congestion-based congestion control. ACM Queue, 14,
September-October:20 – 53, 2016.

[19] Dah-Ming Chiu and Raj Jain. Analysis of the increase
and decrease algorithms for congestion avoidance in
computer networks. Computer Networks and ISDN sys-
tems, 17(1):1–14, 1989.

[20] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56:74–80, 2013.

[21] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote memory.
In NSDI, 2014.

[22] Nandita Dukkipati and Nick McKeown. Why flow-
completion time is the right metric for congestion con-
trol. SIGCOMM Comput. Commun. Rev., 36(1):59–62,
2006.

[23] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable software
network load balancer. In NSDI, 2016.

[24] Vishal Fadia and Philip Wells. Turbo boost your com-
pute engine workloads with new 100 gbps networking,
2021. https://cloud.google.com/blog/products/
networking/increasing-bandwidth-to-c2-and-
n2-vms.

268 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://cloud.google.com/blog/products/data-analytics/how-distributed-shuffle-improves-scalability-and-performance-cloud-dataflow-pipelines
https://cloud.google.com/blog/products/data-analytics/how-distributed-shuffle-improves-scalability-and-performance-cloud-dataflow-pipelines
https://cloud.google.com/blog/products/data-analytics/how-distributed-shuffle-improves-scalability-and-performance-cloud-dataflow-pipelines
https://cloud.google.com/blog/products/data-analytics/how-distributed-shuffle-improves-scalability-and-performance-cloud-dataflow-pipelines
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/accelerated-computing-instances.html#gpu-network-performance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/accelerated-computing-instances.html#gpu-network-performance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/accelerated-computing-instances.html#gpu-network-performance
https://cloud.google.com/security/encryption-in-transit
https://cloud.google.com/security/encryption-in-transit
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://github.com/google/psp
https://github.com/google/psp
https://datatracker.ietf.org/meeting/109/materials/slides-109-iccrg-update-on-bbrv2-00
https://datatracker.ietf.org/meeting/109/materials/slides-109-iccrg-update-on-bbrv2-00
https://datatracker.ietf.org/meeting/109/materials/slides-109-iccrg-update-on-bbrv2-00
https://cloud.google.com/blog/products/networking/increasing-bandwidth-to-c2-and-n2-vms
https://cloud.google.com/blog/products/networking/increasing-bandwidth-to-c2-and-n2-vms
https://cloud.google.com/blog/products/networking/increasing-bandwidth-to-c2-and-n2-vms

[25] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao
Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for
resource disaggregation. In OSDI, 2016.

[26] Dan Gibson, Hema Hariharan, Eric Lance, Moray
McLaren, Behnam Montazeri, Arjun Singh, Stephen
Wang, Hassan M. G. Wassel, Zhehua Wu, Sunghwan
Yoo, Raghuraman Balasubramanian, Prashant Chandra,
Michael Cutforth, Peter Cuy, David Decotigny, Rakesh
Gautam, Alex Iriza, Milo M. K. Martin, Rick Roy,
Zuowei Shen, Ming Tan, Ye Tang, Monica Wong-Chan,
Joe Zbiciak, and Amin Vahdat. Aquila: A unified, low-
latency fabric for datacenter networks. In NSDI, 2022.

[27] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Niko-
laidis, Mohammad Alizadeh, and Thomas E Anderson.
Backpressure flow control. In NSDI, 2022.

[28] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a
new tcp-friendly high-speed tcp variant. ACM SIGOPS
operating systems review, 42(5):64–74, 2008.

[29] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
SIGCOMM, 2017.

[30] Christian Hopps. Analysis of an equal-cost multi-path al-
gorithm. Technical report, RFC 2992, November, 2000.

[31] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agar-
wal. TCP ≈ RDMA: CPU-efficient remote storage
access with i10. In NSDI, 2020.

[32] Van Jacobson. Congestion avoidance and control. ACM
SIGCOMM computer communication review, 18(4):314–
329, 1988.

[33] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and
Fabien Duchene. FlowBender: Flow-level adaptive rout-
ing for improved latency and throughput in datacenter
networks. In CoNEXT, 2014.

[34] Dina Katabi, Mark Handley, and Charlie Rohrs. Conges-
tion control for high bandwidth-delay product networks.
In SIGCOMM, 2002.

[35] Gautam Kumar, Nandita Dukkipati, Keon Jang, Has-
san Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Mike
Ryan, David J. Wetherall, and Amin Vahdat. Swift:
Delay is simple and effective for congestion control in
the datacenter. In SIGCOMM, 2020.

[36] J. Kumar, S. Anubolu, J. Lemon, R. Manur,
H. Holbrook, A. Ghanwani, D. Cai, H. ou, and

Y. Li X. Wang. Inband flow analyzer, 2021.
https://datatracker.ietf.org/doc/html/draft-
kumar-ippm-ifa.

[37] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael Swift.
ATP: In-network aggregation for multi-tenant learning.
In NSDI, 2021.

[38] Jean-Yves Le Boudec. Rate adaptation, congestion con-
trol and fairness: A tutorial. on line, 2000.

[39] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan
Wassel, Peter Hochschild, Dave Platt, Simon Sabato,
Minlan Yu, Nandita Dukkipati, Prashant Chandra, and
Amin Vahdat. Sundial: Fault-tolerant clock synchroniza-
tion for datacenters. In OSDI, 2020.

[40] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. HPCC: High Precision Congestion Control. In
SIGCOMM. ACM, 2019.

[41] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Mike Dalton,
Nandita Dukkipati, William C. Evans, Steve Gribble,
Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl
Mauer, Emily Musick, Lena Olson, Mike Ryan, Erik
Rubow, Kevin Springborn, Paul Turner, Valas Valancius,
Xi Wang, and Amin Vahdat. Snap: a microkernel ap-
proach to host networking. In SOSP, 2019.

[42] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
SIGCOMM, 2018.

[43] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A. Maltz, Randy Kern,
Hemant Kumar, Marios Zikos, Hongyu Wu, Changhoon
Kim, and Naveen Karri. Ananta: Cloud scale load bal-
ancing. In SIGCOMM, 2013.

[44] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen
Yin, Qiaobin Fu, Gautam Kumar, Masoud Moshref, Jun-
hua Yan, Van Jacobson, David Wetherall, and Abdul
Kabbani. PLB: Congestion signals are simple and effec-
tive for network load balancing. In SIGCOMM, 2022.

[45] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with
In-Network aggregation. In NSDI, 2021.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 269

https://datatracker.ietf.org/doc/html/draft-kumar-ippm-ifa
https://datatracker.ietf.org/doc/html/draft-kumar-ippm-ifa

[46] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim
Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vah-
dat. Jupiter Rising: A decade of clos topologies and
centralized control in Google’s datacenter network. In
SIGCOMM, 2015.

[47] Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong, Jef-
frey C. Mogul, and Amin Vahdat. Minimal rewiring:
Efficient live expansion for clos data center networks.
In NSDI, 2019.

[48] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kab-
bani, Leon Poutievski, Arjun Singh, and Amin Vahdat.
WCMP: Weighted cost multipathing for improved fair-
ness in data centers. In EuroSys, 2014.

270 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Poseidon Algorithm
Algorithms 2 shows the RetransmitTimeout and FastRecovery
functions called in Algorithm 1 for completeness.

Algorithm 2: Poseidon’s CWND Update Algorithms

1 Function RetransmitTimeout():
2 retransmit_count← retransmit_count +1
3 if retransmit_count ≥

RET X_RESET _T HRESHOLD then
4 cwnd′← min_cwnd

5 else
6 if now− t_last_decrease > rtt then
7 cwnd′← cwnd ∗min_md

8 return cwnd′

9 Function FastRecovery():
10 retransmit_count← 0
11 if now− t_last_decrease > rtt then
12 cwnd′← cwnd ∗min_md

13 return cwnd′

B A Valid Cluster of Functions
We prove that the cluster of functions in Eq. 3 and Eq. 4
satisfy Eq. 1 and Eq. 2.

The target functions are:

T (x) = p∗ ln(max_rate)− ln(x)
ln(max_rate)− ln(min_rate)

+ k

min_rate < x < max_rate, p > 0,k > 0
(6)

Then we give a cluster of update functions, which is specif-
ically designed for the above target functions:

U(x,D) = exp
[

T (x)−D
p

·α ·m
]

where α = ln(max_rate)− ln(min_rate)
(7)

B.1 Proof for Target Functions
When delay D≤ T (x):

U pdate(x,D) = exp
[

T (x)−D
p

·α ·m
]
≥ 1 (8)

When delay D > T (x):

U pdate(x,D) = exp
[

T (x)−D
p

·α ·m
]
< 1 (9)

Thus, Eq. 3 satisfies Eq. 1.

B.2 Proof for Update Functions
Without loss of generality, assume two flows’ rates a < b,
delay is D.

For the rhs, since T(a) > T(b):

U(b,D)

U(a,D)
=

exp
[

T (b)−D
p ·α ·m

]
exp
[

T (a)−D
p ·α ·m

]
= exp

[
T (b)−T (a)

p
·α ·m

]
< 1

(10)

For the lhs:

U(b,D)

U(a,D)
=

exp
[

T (b)−D
p ·α ·m

]
exp
[

T (a)−D
p ·α ·m

]
= exp

[
T (b)−T (a)

p
·α ·m

]
= exp

[
p · ln(a)− ln(b)

α
· 1

p
·α ·m

]
= exp [m · (ln(a)− ln(b))]

= exp
[
m · ln(a

b
)
]

=
(a

b

)m

(11)

So as long as m < 2, we can have

U(b,D)

U(a,D)
=
(a

b

)m
>

a2

b2
(12)

Thus, Eq. 4 satisfies Eq. 2.

B.3 Updating Based on Ratio vs. Distance
A valid update function with the same target function as in
Eq. 3 is to use the ratio of target and max-hop delay. This can
be seen as an extension of the Swift’s MD function.

U(T (rate),delay) =
T (rate)+m
delay+m

,m≥ 0 (13)

A problem with Eq. 13 is that it scales its update ratio
depending on the value of delay. As an example, suppose
that m is negligible, and we went 1 µs above the target. If the
target is 4, the update ratio will be 0.8, but if the target is 30
(high concurrency scenario), the update ratio will be 0.968.

This means that for high concurrency scenarios where fair-
share rate is low, and the target is high, the convergence will
be slow. For example, Figure 22 compares the op latency in
UR+RI scenario introduced in §5.4 for the update function
based on the distance in Eq. 4 vs. the function based on the
ratio in Eq. 13. The update function based on the distance
clearly has an advantage at the tail.

C Flow Scaling in Swift
Swift uses flow scaling to inflate target delay to compensate
for synchronized packet arrivals. The authors in [35] noticed

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 271

Figure 22: Poseidon can achieve lower op latency using the
update function based on the distance of targe and max-hop-
delay

that the average queue length grows as O(
√

N) where N is
the number of flows on a link. Swift adjusts the target in
proportional to 1/

√
cwnd because it argues that the cwnd

trend is inversely proportional to the number of flows when
Swift converged to its fair-share. The flow scaling in Swift
also helps fairness as it speeds slow flows with a larger target,
and slows fast flows with a smaller target. However, the flow
scaling of Swift is not applicable to max-hop delay to find the
bottleneck hop because of two reasons: 1) Its effect is nominal
for windows > 10 (See Figure 5 in [35]) and more importantly
2) The formulation that reached 1/

√
cwnd assumes, at fair-

share, flows see the same RTT (≈target delay) and pushes
them to have the same cwnd. However, to solve the scenarios
in §2.1 and get the fair-share, we only need to react to the
congestion at the bottleneck hop. This means that flows get
different RTTs and pushing flows to get the same cwnd cannot
achieve the fair share rate (rate = cwnd

RT T). For example, in the
fair-share allocation of multi-hop congestion scenario, the
victim flow will have higher RTT and needs higher cwnd to
achieve the fair-share.

We show this shortcoming in the following equations. Sup-
pose that the link capacity is C, and the congestion window
and RTT for flow i are cwndi and RT Ti. The target delay is
calculated as follows, where tbase is the base delay in Swift
and A is just a constant.

t = tbase +A ·
√

N
C

(14)

Fair share for flow i =
cwndi

RT Ti
=

C
N

(15)

If we assume that at the steady state RT Ti is equal to t
(target delay) for all flows and thus cwnds are equal to w in
order to get the same throughput, we can estimate

√
N from

Eq. 15 as follows

√
N =

A+
√

A2 +4 ·C ·w · tbase

2 ·w
(16)

Therefore,
√

N can be estimated by α√
w +β.

However, as explained above, to achieve fair-share rate,
flows get different RTTs thus converging to the same conges-
tion window is not fair. Now, we show that if we follow the

(a) Rate of the victim flow (b) CWND of the victim flow
Figure 23: Compare scaling the target using the rate or con-
gestion window in Poseidon.

formulation of how Swift reached 1/
√

cwnd for cases that
flows have different RTTs at fair share, we end up with a valid
Poseidon rate-based scaling. We repeat Eq. 14 here as Eq. 17
after changing t to thop to emphasize that for Poseidon we
have a target for per-hop delay.

thop = thop_base +A ·
√

N
C

(17)

If we combine Eq. 17 and Eq. 15 we get

thop = thop_base +
A√
C
.

√
RT Ti

cwndi
=

α√
cwndi
RT Ti

+β (18)

cwndi
RT Ti

in Eq. 18 is the rate of flow i. Therefore, for the
flow scaling of Swift to work in a fair-share setting where
flows can have different RTTs, the target should increase in
reverse relation to rate not just cwnd. Figure 23 compares
the throughput and congestion window of the victim flow in
Poseidon if it uses the above target function using rate vs
cwnd in the multi-hop congestion scenario (Figure 14(a)).
The victim and N = 9 flows start at time 0. Then at 50 ms,
M = 5 flows start to create congestion at the source rack.
Figure 23(b) shows that after 50ms, target scaling based on
the rate converged to a higher cwnd to keep the throughput
the same for the victim flow.

Eq. 18 is a special case of T (b) = p ·bq + k, a valid cluster
of functions that satisfy Eq. 1 and Eq. 2 for −2≤ q < 0, with
q =−0.5. However, we believe Poseidon’s function in Eq. 3
is a better function as explained in §3.3.

D Proof of Lemma 1
We first repeat the Lemma here: When achieving network-
wide max-min fairness, each flow will have the largest rate
among all flows on its bottleneck hop and not on any other
saturated hop. Formally, for the “max-min fair” allocation~x,
for any flow s, denote the flows shared the same bottleneck
with s as {b1,b2, ...,bk}. For any flow bi, xs ≥ xbi . Denote
the flow’s share on the saturated non-bottleneck hop of s
as {c1,c2, ...,ck}, then there must exist some c j such that
xc j > xs.

Proof: Assume there exists a flow s that has reached its fair-
share rate r, and there is another flow s′ on its bottleneck hop
with an even larger rate r′. But this state is not max-min fair

272 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

because flow s could get some bandwidth from flow s′ and let
them have the same rate r+r′

2 . By contradiction, the flow s has
the largest rate on its bottleneck hop.

On the other hand, assume there exists a flow s, which is
the fastest flow, with rate r, on one of the non-bottleneck hops.
However, given that this link is congested, its fair-share flows
with rate r′ could obtain bandwidth from flow s and increase
their fair-share rate to at least r+n·r′

n+1 , where n is the number
of fair-share flows. By contradiction, the flow s cannot be the
largest flow on its non-bottleneck hop.

E Proof of Convergence to Max-min Fairness
Problem description:

For any network topology, any traffic pattern (flows’ source
and destination, routing), given an initial flow rate allocation,
Poseidon converges to the max-min fair allocation.
Notations:

Denote all the link bandwidth as B;
Denote the target for flow with rate r as T (r);
Denote a flow rate allocation as~y;
In allocation~y, denote the rate of flow f as y f ;
In allocation ~y, denote the maximum flow rate on a satu-

rated queue q as Ry
q;

In allocation~y, denote the delay on a queue q as Dy
q;

Denote the max-min fair rate allocation as~x;
In max-min fair allocation ~x, denote the maximum flow

rate on a saturated queue q as Rx
q, which is also the fair-share

rate of that port.
Designs of Poseidon and observations:

Design 1: Poseidon reacts to the maximum hop delay along
the path.

Design 2: In Poseidon, the target of a flow increases when
the flow rate decreases. And Poseidon decreases the flow rate
when the delay is higher than the flow’s target; increases the
rate when the delay is lower than the target.

Observation 1: The queuing delay on a saturated port is no
larger than the target of flows with the fastest rate on that port.

Observation 1 holds true because of design 2: if the delay
exceeds the target of a flow, that flow will decrease its rate
immediately. However, in Poseidon, the decrease operation
only happens once per RTT, so the reaction of decreasing rate
may happen at most one RTT later. But this will not affect the
overall trend of queuing.

Observation 2: the queuing delay on an unsaturated port is
always 0.

Observation 2 holds true when senders send packets with-
out bursts. However, the synchronized arrival of many flows
may create a transient queue. But the queue will disappear
within 1 RTT, because the average data sent within one RTT
is less than the line rate.
Proof:

We will use induction to prove any allocation~y will con-
verge to max-min fair allocation~x.

In allocation ~x, if we sort the saturated queues based on
their maximum flow rate (fair-share rate), we can get:

Rx
q1
≤ Rx

q2
≤ ...≤ Rx

qk
(19)

T (Rx
q1
)≤ T (Rx

q2
)≤ ...≤ T (Rx

qk
) (20)

(1) prove queue q1 will converge to the max-min fair
allocation:

For any allocation~y, for queue q1, its fastest flow’s rate is
Ry

q1 . Note that this q1 is still the same q1 sorted by allocation
~x.

Because the queue q1 is saturated in~y, it has to satisfy:

∑
f∈Flows(q1)

y f ≥ B (21)

And we already know:

∑
f∈Flows(q1)

x f = B (22)

Because in allocation~x, all the flows on queue q1 has the
same rate, which is Rx

q1
. Any other allocation~y’s largest rate

cannot be as small as Rx
q1

because their rates are not all equal,
so we have:

Ry
q1
≥ Rx

q1
(23)

Dy
q1
= T (Ry

q1
)≤ T (Rx

q1
) = Dx

q1
(24)

Because of the same reason, we also have:

Dy
qi
= T (Ry

qi
)≤ T (Rx

qi
) = Dx

qi
,∀i ∈ [2,k] (25)

So for flows whose rates are smaller than Rx
q1

, their target
is higher than delay on queue q1 and also delay on any other
queue qi:

T (y f)> T (Rx
q1
)≥ Ry

q1
,∀y f < Rx

q1
(26)

T (y f)> T (Rx
q1
)≥ T (Rx

qi
)≥ Ry

qi
,∀y f < Rx

q1
,∀i ∈ [2,k] (27)

Thus, those flows with smaller rate will keep increasing
and flows with larger rate than Rx

q1
will decrease because of

the delay on queue q1 or on other queues. Eventually, all of
them will converge to the same target:

T (y f) = T (Rx
q1
),∀ f ∈ q1 (28)

So that:

T (Ry
q1
) = T (Rx

q1
) (29)

Thus, we show that the queue q1 will converge to the max-
min fair allocation x

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 273

(2) Assume queue q1 to qm have already converged,
prove queue qm+1 will converge:

Assume queue q1 to qm have already converged to max-min
fair allocation~x, so we have:

T (Ry
qi
) = T (Rx

qi
),∀i ∈ [1,m] (30)

For queue qm+1, the flows whose bottleneck is qm+1 will
not travel queue q1 to qm. Because if they travel to one of
those ports, those ports will have a higher fair-share rate,
which contradicts the max-min fair allocation’s conclusion.

Thus, with a similar analysis as the proof for step 1, we
have:

T (y f)> T (Rx
qm+1

)≥ Ry
qm+1

,∀y f < Rx
qm+1

(31)

T (y f)> T (Rx
q1
)≥ T (Rx

qi
)≥ Ry

qi
,∀y f < Rx

q1
,∀i ∈ [m+2,k]

(32)
So that, the flows with smaller rate than Rx

qm+1
will increase

their rate, while flows with larger rate will decrease their rate,
until:

T (y f) = T (Rx
qm+1

),∀ f ∈ q1 (33)

So that:

T (Ry
qm+1

) = T (Rx
qm+1

) (34)

So we proved that queue qm+1 will also converge to max-
min fair allocation~x.

In conclusion, all the ports in allocation ~y will eventu-
ally converge to the max-min fair allocation~x.

274 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Rearchitecting the TCP Stack for I/O-Offloaded Content Delivery

Taehyun Kim
KAIST

Deondre Martin Ng
KAIST

Junzhi Gong
Harvard University

Youngjin Kwon
KAIST

Minlan Yu
Harvard University

KyoungSoo Park
KAIST

Abstract

The recent advancement of high-bandwidth I/O devices en-
ables scalable delivery of online content. Unfortunately, the
traditional programming model for content servers has a
tight dependency on the CPU, which severely limits the over-
all performance. Our experiments reveal that over 70% of
CPU cycles are spent on simple tasks such as disk and net-
work I/O operations in online content delivery.

In this work, we present IO-TCP, a split TCP stack design
that drastically reduces the burden on CPU for online content
delivery. IO-TCP offloads disk I/O and TCP packet transfer
to SmartNIC while the rest of the operations are executed on
the CPU side. This division of labor realizes the separation
of control and data planes of a TCP stack where the CPU
side assumes the full control of the stack operation while
only the data plane operations are offloaded to SmartNIC for
high performance. Our evaluation shows that IO-TCP-ported
lighttpd with a single CPU core outperforms the Atlas server
and lighttpd on Linux TCP for TLS file transfer by 1.8x and
2.1x, respectively, even if they use all 10 CPU cores.

1 Introduction

The demand for online content delivery is booming in re-
cent years [1, 5]. Especially, the popularity of high-quality
video streaming is growing rapidly [9, 56].For cost-effective
streaming service, it is highly important for online video ser-
vice providers [3, 4, 11, 19, 26, 44] to optimize their content
delivery systems.
However, improving the content delivery performance

is increasingly challenging as the growth of CPU capacity
stagnates [50]. While modern innovation in I/O devices such
as high-bandwidth NICs and NVMe disks has alleviated the
I/O bottleneck, the lack of CPU cycles often fail to translate
the high I/O performance into content delivery throughput.
The root cause lies in the inefficiency of the modern OS ab-
straction which requires all disk data to be brought to main
memory before being delivered to remote clients. For this
reason, CPU (or more precisely, the memory subsystem) eas-

ily becomes the performance bottleneck for I/O-intensive
applications like video content delivery as over 70% of its
entire cycles are spent on simple I/O operations. To effec-
tively harness the recent advancement in the I/O devices, the
OS abstraction must reduce the dependency on CPU and its
memory system for I/O operations.
Our approach to breaking the CPU dependency is to em-

ploy peripheral processors to handle the I/O operations. We
observe that the recent programmable I/O devices such as
SmartNICs [7, 24, 27, 33] or Computational SSDs [28, 40]
may make up for the insufficient compute cycles in CPU.
As the PCIe standard allows peer-to-peer DMA (P2PDMA)
without the intervention of CPU [35], one can conceive a
server system whose NIC offloads disk I/O operations com-
pletely from the CPU. In fact, recent works like DCS [46] and
DCS-Ctrl [63] have demonstrated that an FPGA-based coor-
dinator can perform all disk I/O operations via P2PDMA for a
content delivery server. The main drawback of these systems
is that they do not support TCP-based delivery commonly
adopted by today’s video streaming [3, 11, 26].
However, supporting TCP for an I/O-offloaded server

raises an interesting question of function placement – if
disk I/Os are offloaded to SmartNIC, where do we run the
TCP stack? Running the TCP stack on CPU is impossible as
the data for packet payload is unavailable. So, the obvious al-
ternative is to run it on the NIC side. While it is non-trivial to
implement a full TCP stack on an FPGA 1, it is possible to run
it on SmartNIC. Actually, recent SmartNIC platforms support
Arm-based embedded processors that run Linux with a full
TCP stack [7, 33]. However, running the full TCP stack on
NIC typically requires its application to co-execute on the
same platform, with limited resources. In fact, we observe
that the throughput of nginx on SmartNIC with 8 Arm cores
is smaller than that with even a single CPU core.

We tackle this question with I/O Offloading TCP (IO-TCP),
a split TCP stack design for I/O-intensive applications. The

1There are a few TCP/IP stacks on the FPGA [87, 88], but they simplify
the key features with assumptions on the data center environment.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 275

key idea of IO-TCP is to run only the "control plane" opera-
tions on CPU while delegating all "data plane" operations to
SmartNIC that can access disks via P2PDMA. Figure 1 shows
the overview of our design. The control plane includes all
core functionalities of the TCP protocol – connection man-
agement, reliable data transfer, and congestion/flow control.
On the other hand, the data plane operations refer to all
aspects of data packet creation and transmission including
content fetching from disks. This design ensures that the
CPU side assumes full responsibility of controlling all op-
erations while actual disk and network I/O operations are
offloaded to SmartNIC under the hood. This design enables
dedicating CPU cycles to complex control operations while
exempting them from simple but repetitive I/O operations.
The rationale for the design is that the split stack avoids CPU
cache pollution from intensive disk IO [96] that slows down
the control path operations, stretches the RTT, and lowers the
throughput. In addition, the control path would benefit from
advanced hardware features of modern CPU as it is compute-
intensive with frequent random accesses and branches. In
contrast, the data path depends more on memory bandwidth
than computation, and it is easily parallelizable and can be
even built into hardware.

While IO-TCP presents a great potential for saving CPU cy-
cles, it brings a fewnew challenges. First, IO-TCPmust handle
TCP packet retransmission on SmartNICwithout the timeout
or packet loss information, which may issue redundant disk
I/Os. To avoid the inefficiency, IO-TCP employs an internal
ACK protocol to notify the SmartNIC of the data delivery
so that it can safely throw it out from memory. Second, the
RTT measurement in the host TCP stack could be inaccurate
due to disk-induced delay on SmartNIC before transmission.
In IO-TCP, actual data packet transfer is delayed until the
packet content is fetched from the disk. However, disk I/O
could add significant delay to packet transfer even without
any congestion in the network path. IO-TCP addresses this
challenge by carefully removing the disk-induced delay from
RTT measurement. It employs an echo packet that allows
the host stack to keep track of the packet departure time
accurately. Third, IO-TCP must provide a well-defined API
for an application to flexibly construct file or non-file con-
tent for data transfer. For this, IO-TCP extends the Berkeley
socket API with a few "offload" functions that open a file and
send the file content from the NIC. The "offload" functions
are implemented as a form of API remoting, and the results
are seamlessly delivered to the application on the CPU side.
We implement IO-TCP with the Mellanox BlueField-2

SmartNIC [31] that can directly access NVMe disks with
P2PDMA. For the host stack, we extend an existing user-level
TCP stack [58] to support I/O offloading while we implement
the NIC stack with the DPDK library [12]. It requires 1,793
lines of code modification for the host stack and 1,853 lines
of C code for the NIC stack. To evaluate the effectiveness
with real-world applications, we also port lighttpd [23] to

Host Application

IO-TCP Control Plane
(connection management, congestion/flow control,

reliable data transfer, error handling)

PC
Ie

 B
us

NIC

NVMe
Disks

P2PDMA

IO-TCP Data Plane
(disk I/O, delay correction,

data packet creation/transfer)

Packet I/O
Command

Echo Packet
Departure
Notification

Data Stream

Clients

Figure 1: Overview of IO-TCP stacks

using IO-TCP with only about 10 lines of code modification.
Our evaluation demonstrates that IO-TCP-ported lighttpd

achieves 77.4 Gbps of TLS video content delivery with a sin-
gle CPU core, nearly saturating the full bandwidth of four
NVMe disks. In contrast, the Atlas server [74] on FreeBSD
and lighttpd on Linux reach only 44.2 and 37.4 Gbps, respec-
tively, even with all 10 CPU cores. We observe that the cur-
rent bottleneck of IO-TCP lies in the low memory bandwidth
of the BlueField-2 NIC, but we believe the future version
will achieve better performance. The main contributions of
this work are summarized as follows. (1) We analyze the
impact of CPU usage and cache interference by disk I/O on
the performance of modern content delivery systems. (2) We
present the design and implementation of IO-TCP, a split
TCP stack design that fully leverages recent I/O advances in
SmartNICs by separating TCP control and data planes. (3)
We demonstrate how IO-TCP can surpass the limitations of
the CPU bottleneck to achieve I/O bandwidths far greater
than what the CPU could have normally performed.

2 Background & Motivation

We provide a brief background on content delivery systems
in terms of recent trends in computing hardware.

2.1 Inefficiencies in Content Delivery Sys-
tem Stacks

Modern content delivery systems [2, 14, 26] consist of a
large number of geographically distributed content delivery
Web or reverse proxy servers. These systems serve as the
basis for many applications such as video streaming andWeb
page accesses. Among them, the video traffic takes up about
60% of the entire Internet traffic and the overall volume has
increased due to the recent pandemic [39, 56]. Average Web
object sizes range from 0.01 to 1 MB while average video
chunk sizes are between 0.2 to 1.5 MB [89].

For high performance, the server design has traditionally
focused on optimizing disk access and CPU utilization be-
cause hard disk I/O is many orders of magnitude slower

276 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Workload File Size

Th
ro

ug
hp

ut
 (G

bp
s)

0

5

10

15

20

25

10KB 300KB 500KB 1MB

1.3

10.010.5

14.6

1.7

lighttpd nginx 15.0

12.412.4

Figure 2: Throughputs of lighttpd and nginx on a single CPU core.
Function % CPU
Read data from disk to a kernel buffer 33.53%
Memory management 21.93%
Move data to TCP send buffer (no copy) 10.30%
Open files and get stat 6.00%
Control Plane 28.24%
Total 100%

Table 1: CPU usage per data plane function in nginx when serv-
ing disk-bound workload with sendfile(). The breakdown for
lighttpd is also similar.

than modern storage. For fetching small objects such as Web
page content, the server is optimized to minimize the disk
seeks while maintaining a small memory footprint for in-
dexing [47]. For large-object access like video download, the
server exploits sequential disk reads to maximize the disk
throughput. Also, it typically employs sendfile() to avoid
redundantmemory copy and context switching between user
and kernel spaces. To improve CPU utilization, the server
typically takes the event-driven architecture [48, 67, 77, 81].

Traditional disk-based optimizations have become largely
obsolete due to the advent of inexpensive large RAM and
flash-based disks (e.g., NVMe SSDs) that removed the seek-
induced limitations. Since the major disk bottleneck is lifted,
the memory subsystem becomes the next bottleneck in to-
day’s server [74]. The problem is exacerbated by multiple
memory copies due to disk and network I/O as well as con-
tent scanning for encryption and decryption. While a recent
work [74] optimizes the disk access layer and exploits Intel
Data Direct I/O (DDIO) [21] to arrange all such operations to
perform with the data in CPU cache, it does not dissipate the
workload from CPU. Also, it may be hard to expect a similar
benefit if the workload exceeds the CPU cache size.

To better understand the performance of Web-based con-
tent delivery, we run experiments with two popular Web
servers, lighttpd (v1.4.32) [23] and nginx (v1.16.1) [29] for
disk-bound workload, which simulates a typical setting for
HTTP-adaptive video streaming. The server setup is the
same as in §5.1, and we use various file sizes that represent
Web objects and video chunks of different quality. We con-
figure the servers to use sendfile() for good performance.

Figure 2 shows the results with a single CPU core (refer to
Figure 7 for performance trend overmultiple CPU cores). The
performances of both servers are similar, and they generally
improve with larger file sizes. As our NVMe disk achieves

0

20

40

60

80

100

1 2 3 4 5 6

CP
U

 U
til

iz
at

io
n

(%
)

Number of NVMe Devices

4K BS
8K BS
16K BS
32K BS
64K BS

Figure 3: CPU utilization of fiowith for varying number of NVMe
disks. BS refers to block size.

around 2.5 GB/s (or 20 Gbps) per disk for random file reading,
the single CPU core utilizes around half the bandwidth (10
Gbps) of a single NVMe disk for 300KB files. Considering
that a server-class machine can carry 8 to 10 NVMe disks
per CPU, CPU is a major source of resource bottleneck.

We analyze the CPU overhead in popular Web servers for
content delivery. Table 1 shows the CPU cycle breakdown of
nginx reported by perf[36]. sendfile() and open() take
up the majority of the CPU cycles, which amounts to 71.76%
of the consumed cycles. sendfile() reads the data on disk
to kernel buffers, and serve it to clients withoutmemory copy
(33.35%). This clearly shows where the most of CPU cycles
are spent in a content delivery server – disk and network
I/O. Offloading these operations from the CPU would have a
great potential for improving the performance.

2.2 Mismatch between I/O Device Advances
and CPU Capacity

The capacity growth with recent I/O devices is impressive.
Two decades ago, the fastest hard disk could achieve only
about 200 random I/O operations per second (IOPS), but the
recent NVMe disk can perform over 1 million IOPS [41, 97],
a speedup of almost four orders of magnitude. For the same
period, the bandwidth of an Ethernet NIC has improved by
400 times (from 1 Gbps in 1997 to 400 Gbps in 2021) while 800
Gbps / 1.6 Tbps Ethernet is expected to be standardized in a
few years [55]. In contrast, CPU capacity improvement has
been largely hampered by the end of Moore’s law and break-
down of Dennard scaling 2 [54]. The first general-purpose
multicore CPU appeared in 2005 [6], but the number of cores
of Intel CPU has increased by only 28 times for 16 years [22].

Figure 3 shows the utilization of a single CPU core when
saturating the NVMe disks with fio [15]. We use Intel Xeon
Silver 4210 (2.20GHz) for CPU and Intel Optane 900P for
NVMe devices. The figure indicates that it is relatively easy
to handle large block sizes but a single core cannot saturate
even 2 NVMe disks with a block size of 4KB. For 16KB blocks,
it can handle up to 3 NVMe disks in parallel. Even when
serving large files, disk I/O could still spend a significant
portion of the CPU cycles as metadata access in filesystem
would require frequent random accesses for small blocks.

2Dennard scaling dictates that the power density stays constant as the
transistors become smaller. It is said to stop in 2006 and CPU capacity could
only scale out since then.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 277

NICHost

Ethernet Ports

P
C

Ie
 S

w
itc

h

DDR4
RAM

Arm Subsystem
L3

Cache

Packet Processing Layer

eSwitch
ConnectX-6 Dx

D
riv

er

Figure 4: Architecture of the BlueField SmartNIC

In addition to NVMe, the use of persistent memory (PM)
sees similar CPU bottlenecks. A recent PM performance
study [94] on Intel Optane DC memory shows that 16
cores are required to fully utilize PM read bandwidth even
with large I/O sizes like 64KB or 256KB. Due to the CPU
bottleneck, many PM-based storage systems fall back to a
lightweight storage stack design that misses features [51, 52,
53, 59, 64, 93, 98].

The performance disparity between CPU and I/O devices
calls for revisiting the current OS abstraction for I/O oper-
ations, especially for serving large files with the growing
trend of high-throughput content delivery. Existing OS re-
quires CPU intervention for performing I/O operations such
as reading disk content and transferring it via NIC. This
is because the programming model on the current OS re-
quires the content of the I/O device to be brought to main
memory before performing any operation on the content.
This memory-centric execution model wastes CPU cycles for
frequent memory access stalls due to memory operations.
2.3 Opportunities with SmartNIC
The key idea of our work is to offload data I/O from CPU
to a programmable I/O device while supporting TCP-based
content delivery. Any programmable device that can perform
direct disk I/O and network packet I/O can meet our goal,
but we use SmartNIC as it serves as a convenient place to
interact with remote clients. For example, recent SoC-based
SmartNICs [7, 33] offer an Arm-based embedded system on
top of a NIC data processing unit. These systems support
direct access to NVMe disks on the same domain without
intervention of CPU or main memory. More specifically, the
Mellanox BlueField NIC supports P2PDMA via NVMe over
Fabrics (NVMe-oF) target offload [18] through which the
Arm processors can read directly from local NVMe disks.
These disks are directly mounted on the Linux environment
running on the Arm processors, and they run on the same
file system as seen by the host OS.

Figure 4 shows the architecture of the Mellanox BlueField-
2 NIC (BF-2) [31] that we use for our platform. It is equipped
with 8 Armv8 cores and 16 GB of DDR4 memory that runs
on Linux 3. The Arm subsystem allows running DPDK ap-
plications to perform fast packet I/O either with remote ma-
chines or with the local host. In addition, applications can

3We run CentOS 7.6, but one can run embedded Linux like Poky [37].

lighttpd setup Throughput (Gbps)
Linux TCP on BF-2 only 11.98
Linux TCP on BF-2 and 1 CPU core 22.02
IO-TCP-on BF-2 and 1 CPU core 44.13

Table 2: Performance of lighttpd with Linux TCP vs. IO-TCP for
serving 300KB files over 1600 connections on BlueField-2 (BF-2) and
a single CPU core. We use four Intel Optane 900P in all experiments.

offload TCP/IP checksum calculation as well as TCP segmen-
tation (i.e., TSO) to its ConnectX-6 Dx NIC hardware. The
BlueField-2 also supports hardware acceleration for crypto-
graphic operations that we use for supporting TLS.

With the Linux-operated SmartNIC, one might be tempted
to use it as an extra server system [90]. However, running
a server directly on SmartNIC does not efficiently use the
resources. Table 2 compares the performances of lighttpd on
only BF-2 (w/ all 8 cores), lighttpd on BF-2 and the host’s
single CPU core combined (by evenly dividing the request
load), and IO-TCP-ported lighttpd on the same setup. Naïve
scaling of processing power with SmartNIC ends up with
only half the throughput of our solution (§4).

The experiments clearly show the current limitation with
the SmartNIC – the processors and their memory are not
so powerful as the host system. In fact, the Arm processors
on BF-2 have 2.2x and 4.2x smaller L3 cache and memory
bandwidth than those of our host CPU, which limits the over-
all performance. While this is not an inherent limitation as
the next version [32] is reported to have 3.5x larger memory
bandwidth, one should carefully design the offload function-
ality to effectively exploit the architectural difference.

3 Design
In this section, we present the design of IO-TCP that enables
content delivery systems to leverage recent SmartNIC I/O
advances. The key design choice of IO-TCP is to separate the
control and data planes of the TCP stack such that the CPU
stack takes the full control of every operation (control path)
while individual I/O operations (data path) are offloaded to
the SmartNIC stack. The core rationale for this is to save the
majority of CPU cycles for performing I/O operations while
keeping the SmartNIC stack simple to implement. Simplicity
is the key to achieve the performance scalability.

There are three design goals for IO-TCP: (1) IO-TCP must
conform to the TCP protocol and should be able to support
various congestion control implementations. For example,
handling disk I/O in the NIC stack should not compromise
the congestion control logic in the host stack due to imprecise
RTT measurements induced by disk access latency (§3.5). (2)
The modification of existing applications should be minimal
for migrating to IO-TCP – it should use the same socket API
except for offloading file I/O (§3.2). (3) The IO-TCP host stack
needs to communicate with the NIC stack for I/O offloading,
and its overhead should be made small. In addition, the host
stack should be notified of any failures in the NIC stack to

278 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

int offload_open(const char *filename, int mode) – opens a file in the NIC and returns a unique file ID (fid).
int offload_close(int fid) – closes the file for fid in the NIC.
int offload_fstat(int fid, struct stat* buf) – retrieve the metadata for an opened file, fid.
size_t offload_write(int socket, int fid, off_t offset, size_t length) – sends the data of the given length
starting at the offset value read from the file, fid, and returns the number of bytes virtually copied to the send buffer.

Table 3: IO-TCP offload API functions

handle them in time (§3.3 and §3.6).

3.1 Separating TCP control and data planes
To save host CPU cycles, we need to determine which op-
erations would benefit the most from offloading based on
the capabilities of SmartNICs and CPU. The embedded pro-
cessors on either SoC or ASIC-based SmartNIC are better
fit for simpler data plane operations while x86 CPUs with
advanced features 4 can handle complex control plane opera-
tions faster. To better reflect the architectural difference into
the design, we divide the TCP stack into control and data
plane operations.
The control plane functions refer to the key TCP proto-

col features such as connection management, reliable data
transfer, congestion/flow control, and error control. These
typically require complex state management as the behavior
depends on the response from the other end. For example,
reliable data delivery on the receiver side requires tracking
all received data ranges that are disjoint for proper in-order
delivery and ACK generation. It is also tightly coupled with
congestion control as loss detection and packet retransmis-
sion for reliable delivery in turn re-adjust the send window
size. Similarly, flow control needs to run with congestion
control as they collectively determine the window size. Er-
ror control cannot run alone, either, as it requires tracking
detailed flow states to infer any erroneous behavior. Theo-
retically, each individual operation can be offloaded, but it
would be more efficient to offload them together. However,
offloading them all could overload the SmartNIC as seen in
experiments in §2.3.
The data plane operations refer to all operations that in-

volve data packet preparation and transfer, which supports
the implementation of control plane functions. These include
managing data buffers, segmenting data into packets, cal-
culating TCP/IP checksums, etc. IO-TCP offloads only the
operations in the send path because they are simple, state-
less, and easily parallelizable. In addition, IO-TCP offloads the
file/disk I/O and combines it into TCP data plane operations.
The rationale for offloading is that these operations would
interfere with control plane operations on CPU as recent
innovation like Intel DDIO would pollute the CPU cache by
huge disk data [96]. Offloading them to SmartNIC would al-
low the control path to execute on CPUmuch faster, which in
turn improves the data path performance. Also, SmartNICs
tend to have hardware-based crypto accelerators [24, 27, 31],
which enables TLS data encryption at line rate. Section 5.5

4Such as larger CPU cache and vectorized instructions like AVX/AVX2.

OK

ECHO

IO-TCP
Host StackApplication

Server
Client

IO-TCP
NIC Stack

offload_open()

offload_close()

write()
OPEN

HTTP Response
Header

HTTP
Response
Header

HTTP
Response

Body
(File Content)

offload_write()
SEND

ACKD

CLOS

...
(Continues Sending)

1

2

4

3

5

6

ACK

ACK

Figure 5: Content delivery from a Web server on IO-TCP

analyzes the source of performance improvement in depth.

3.2 IO-TCP Offload API Functions

Ideally, porting an application to IO-TCP should require little
modification of its core logic, yet it should flexibly express
the application needs. For example, an IO-TCP application
should be able to compose any data to transfer regardless
of whether it is file content or not. Towards this goal, we
extend the existing socket API by adding only four functions
(see Table 3) for offloaded file and network I/O.
offload_open() asks the NIC stack to open a file and to

report the result (either success or any error). It returns a file
ID (instead of a file descriptor) that identifies the opened file
in the NIC stack for later operations. offload_open() is an
asynchronous function whose result should be checked with
epoll() or subsequent function calls as file opening can
fail for various reasons. After all file operations, the applica-
tion can call offload_close() to close the file on the NIC
stack. In addition, IO-TCP supports offload_fstat() that
retrieves the metadata for a file (e.g., file size and permission).
With the opened file ID, the application can call

offload_write() to send the file content on a TCP con-
nection. Essentially, offload_write() carries out the same
operation as sendfile() in Linux with the file opened at
the NIC embedded system. The application can still call an
existing socket API like write() to send out any custom
data (e.g., HTTP response headers), or it can send the content
from multiple files opened by the NIC stack. Figure 5 illus-
trates a subset of these operations with the API functions in
the context of an HTTP server.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 279

Web Server

offload_write()

SEQ: 701437608
Payload:
SEND 16778653 838392 72000

SEND Command Packet

E
C

H
O

SEQ: 701437608
Payload:
(File Data)

48 × 1500-bytes TCP Packets

Client’s ACK Packet
ACK: 701509608

IO-TCP Host Stack

Client

1

2

3

5

4

IO-TCP NIC StackNVMe
Disk

Read file ID 16778653
of length 72000 from

offset 838392.

Figure 6: Generation of data packets with offload_write()

3.3 IO-TCP Host Stack
The role of IO-TCP host stack is to provide the full TCP
functionality to applications while it interacts with the NIC
stack to offload the data plane operations. The key challenge
in the host stack design is how to create data packets with
"missing" file data. Similarly, it should handle TCP packet
retransmission without actual file data in the host side.
IO-TCP addresses the challenge by virtually performing

data plane operations on the host stack. The host stack
keeps track of which data in the sequence number space
is "virtual" and performs only the bookkeeping operations
while it delegates the real I/O operations to the NIC stack.
For example, an application can call a mix of write() and
offload_write(), and the host stack writes the immediate
content directly into the send buffer while it virtually fills out
the buffer range for offload_write() by metadata update.
offload_write() returns immediately with the number of
"virtual" bytes that can be written to the send buffer.
Then, the host stack determines the send window size

with its congestion and flow control parameters, and posts a
"SEND" command to the NIC stack to transfer the virtual data
(Refer to 3⃝ and 4⃝ in Figure 5). Note that any data packets
with real content (written by write()) in the host stack are
sent out directly bypassing the NIC stack. 5 The "SEND"
command is carried on a TCP packet destined to the NIC
stack (with an internal MAC address of the NIC). The TCP/IP
headers of the command packet contain the full connection
information (i.e., four connection tuples, sequence and ACK
numbers for the next data packet, etc.) while its payload
contains the "SEND" command that is eventually replaced
by the real content before it is sent out to the client. The
"SEND" command specifies a file ID, the start offset to read,
and the length of the data. With this information, the NIC
stack reads the file content and creates and sends real data
packets with the header information. Depending on the file
content size, one "SEND" command can be translated into

5If real data has to be sent after virtual data, the host stack delays trans-
mission until the arrival of an echo packet (§3.5) to keep the order.

multiple MTU-sized data packets. Figure 6 illustrates how a
"SEND" command packet is processed.

The host stack handles packet retransmission in the same
manner – sending a "SEND" command with the file content
information for retransmission. The rationale for this design
is to make the NIC stack as simple as possible. An obvious
alternative is to have the NIC stack handle retransmission so
that it ensures reliable delivery of whatever data is transmit-
ted due to the "SEND" command. Then, the NIC stack must
keep track of all ACKs from the client and run the congestion
control logic to determine when to retransmit packets. This
would make the NIC stack stateful and more complex, which
would be challenging to implement efficiently on some other
SmartNIC platforms (e.g., FPGA-based ones).

For all other operations, IO-TCP behaves similarly to the
normal TCP stack. All complex operations such as per-
connection state and buffer management on the receive path,
timer management, reliable data transfer, congestion/flow
control, and error control are executed on the host stack. In
addition, for the control packets or packets whose data is
available on the host stack, the host stack creates and sends
them directly to the client bypassing the NIC stack. All in-
coming packets from the client get delivered directly to the
host stack as well. (See 2⃝ and client-sent ACKs in Figure 5)
This is not only because going through the embedded sys-
tem on the NIC incurs extra latency, but it also places an
unnecessary burden on the NIC stack. This packet steering
can be easily enforced in the separated mode of the Mel-
lanox BlueField-2 NIC where an embedded system on NIC
has different IP and MAC addresses.

3.4 IO-TCP NIC Stack
The IO-TCP NIC stack is responsible for performing all real
data plane operations for the host stack – it handles offloaded
file I/O and network I/O for data packet transfer. It operates
by handling custom commands from the host stack where
each command is carried on a special packet destined to the
NIC stack. Currently, four commands are defined: "OPEN",
"CLOS", "SEND", and "ACKD". "OPEN" and "CLOS" are for fille
opening or closing. "SEND" is the main command for sending
the file content to the client. "ACKD" is used to efficiently
handle retransmission without redundant disk access.

The "SEND" command is the key driver for I/O operations.
Conceptually, it extends TCP segmentation offload (TSO)
with the metadata that describes how to fill in the packet
payload. Given the "SEND" command, the NIC stack checks if
the target file is opened, and reads the file content into a fixed-
sized memory buffer. The file read offset and its length are
aligned to the NVMe disk page boundary (e.g., 4KB), and the
actual file I/O is executed asynchronously to prevent blocking
of the main thread. When the file content becomes available
on the memory buffer, the NIC stack creates a TSO packet
with the TCP/IP headers in the "SEND" command packet,
and sends it out to the NIC hardware data plane. The NIC

280 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

hardware data plane takes care of TCP packet segmentation
and TCP/IP checksum calculation.

3.5 Challenges with Integrated I/O
Combining file I/O into the network I/O in the NIC stack
brings a few unique challenges in the correctness of the TCP
stack operation.
Retransmission timer and RTT measurement. TCP re-
lies on delay measurement for setting up retransmission
timers. However, the delays induced by disk I/O could con-
fuse the RTT measurement. Even with fast NVMe disks, the
disk access delay for reading a few KBs of data is in the order
of microseconds, and it can be up to milliseconds if the I/O
requests for the same disk are backlogged. We observe that
our early implementation of IO-TCP often retransmits the
packets even if the original packets have not been sent out
to the client.

To address this problem, we have the NIC stack send back
an echo packet to the host stack just before transferring data
packets for the corresponding “SEND” command. The host
stack starts the retransmission timer only when it receives
an echo packet for the SEND command. For accuracy, the
host stack adds a one-way delay of the echo packet (∼3 mi-
croseconds on our platform) from the NIC stack to itself to
the timeout value. The CPU overhead for the echo packet is
small as it is sent per "SEND" command and a typical "SEND"
command is translated to tens to even hundreds of MTU-
sized packets for large-file delivery.

Also, for precise RTT measurement, the NIC stack reflects
the real "packet processing" delay into the TCP timestamp
option value, i.e., the delay between the arrival of a “SEND”
command to the NIC stack and the departure of the cor-
responding data packets from the NIC stack. That is, the
"SEND" command packet carries the TCP timestamp option
filled by the host stack, and the NIC stack updates the value
before sending out the packets. As the timestamp option
value is in the millisecond granularity [38] and the time feed
in the host stack is on the order of microseconds, the host
stack sends the extra time information in the microsecond
granularity to the NIC stack. Then, the NIC stack can round
up the timestamp value if necessary.
Handling retransmission. Since retransmission of I/O-
offloaded packets is also implemented with the “SEND” com-
mand, a naïve implementation that re-reads the file con-
tent would waste the disk and memory bandwidth. To avoid
the inefficiency, the NIC stack keeps the original data con-
tent in memory until the host stack confirms the delivery
to the client. When the host stack sees the ACKs for the
I/O-offloaded sequence space range, it periodically informs
the NIC stack of the delivered portion with the “ACKD” com-
mand packet. Then, the NIC stack can recycle the memory
buffers holding the delivered data. To minimize the over-
head, the host stack informs the NIC stack whenever it sees

a threshold amount of data (e.g., we use 32KB for now) ac-
knowledged by the client from the last time. Note that this
buffer memory essentially serves as the socket send buffer
in the normal TCP stack, and the required memory in prac-
tice roughly corresponds to the bandwidth-delay product. A
100 Gbps NIC with 30ms of average RTT for the connections
would require 375MB of the buffer memory in aggregate.
3.6 Handling Errors
In IO-TCP, the host stack is responsible for handling all TCP-
level errors such as handling packet losses, malformed pack-
ets, or abrupt connection failures. Since the NIC stack only
sends packets on behalf of the host stack and all incoming
packets bypass the NIC stack, the host stack can reason about
any TCP-level errors as other TCP stacks do.
In contrast, the NIC stack must report errors in file I/O

to the host stack. For an "OPEN" command, the NIC stack
responds to the host stack whether opening a file was suc-
cessful or not. Then, the host stack raises an event to the
corresponding file ID so that the application learns the result.
Since the host stack caches the metadata for an offloaded
file (see §4), it can return an error if offload_write() is
passed wrong parameter values. In case a file read operation
itself fails, it is reported to the host stack with an "Error"
command packet with the file ID and the error code. Then,
offload_write() would return −1 with the error code at
errno next time the application calls it.
3.7 Support for TLS and QUIC
TLS is widely used in the modern Internet as QUIC [65] and
HTTP/2 [20] adopt it by default. IO-TCP can support TLS
similarly to kTLS [92] except that it offloads the encryption to
the SmartNIC. This is feasible as many SmartNICs (including
Bluefield-2) [24, 27, 31] already support AES and SHA in
hardware. So, the CPU side runs the TLS handshake and sets
up the encryption and hashing keys with the SmartNIC. All
data in the receive path should be decrypted by the CPU
stack similarly to other receive-path processing in IO-TCP.
One complication lies in how to encrypt the non-offloaded
data, but one can forward such packets to SmartNIC for
encryption or encrypt them with CPU’s AES-NI instructions.
Support for TLS is still in progress as we have implemented
content encryption with AES-GCM in NIC hardware and
plan to support TLS handshake and TLS record structures.
The key idea of IO-TCP can be easily applied to other

transport layer protocols like QUIC – Appendix A briefly
explains the architecture of IO-QUIC. We plan to elaborate
on the detailed design in the follow-up work.

4 Implementation
IO-TCP host stack.We implement the IO-TCP host stack
bymodifying mTCP [58], a high-performance user-level TCP
stack. We choose mTCP as its socket API is similar to the
Berkeley socket API and it supports event-driven program-
ming with epoll. The host stack extends the mTCP API

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 281

functions with four offload functions (as shown in Table 3).
Each offload function is implemented by exchanging special
command packets with the NIC stack. The NIC stack detects
a command packet by checking the special value in the ToS
field in the IP packet. The "SEND" command packet has valid
TCP/IP headers with the full connection information so that
only the payload (as well as checksums) needs to be replaced
with the real file content before being sent to the client.

For offload_open(), the host stack generates a unique
file ID for the file path and returns it to the user. Under
the hood, it attaches the file ID to the "OPEN" command
to refer to the opened file on the NIC stack. As part of re-
sponse, the NIC stack provides the metadata of the opened
file (e.g., output of fstat()) so that the host stack can handle
offload_stat() locally on its own. This should cut back
the round trip to the NIC stack. For file operations, both the
host and NIC stacks share the same file system – the host OS
mounts the file systems on the NVMe disks as read/writable
while the NIC stack mounts them as read-only. One prob-
lem is that any update on the host-side file system does not
automatically propagate to the NIC stack as they run on a
separate operating system. While we currently assume that
the files do not change during the content delivery service,
one should add support for dynamic synchronization of the
two file systems in the future.
IO-TCP NIC stack. The NIC stack is implemented as a
DPDK application. It operates by handling command packets
from the host stack. Each Arm core runs one main thread
and a few disk reading threads that are pinned to the core.
The command packets are distributed to the main threads
by receive-side scaling (RSS) on the NIC hardware, which
ensures in-order packet delivery in the same connection.
For efficient memory buffer management, the NIC stack

pre-allocates all buffers for file content at startup. Each main
thread owns 1/𝑛 of them to avoid any lock contention, and a
simple user-level memory manager allocates and frees the
buffers at low cost. We implement zero-copy DMA of file
data and packet header with DPDK (i.e., scatter-gather DMA),
which improves the large-file delivery throughput (in the
experiments for Figure 8) by 63%.

File reading, even with faster NVMe disks, is slower than
memory operations, so each main thread employs a few disk
reading threads to prevent blocking of the main thread. Disk
reading threads use direct I/O to bypass the inefficiency in
the file system cache [74], and communicate with the main
thread through shared memory. An alternative is to use a
user-level disk I/O library like Intel SPDK [42]. In fact, we
observe that SPDK reaches the peak disk read performance
with half the Arm processor cycles used by direct I/O, but
we stick to a regular file system here (i.e., ext4 on Linux) as
SPDK’s support for file system is not mature yet.
IO-TCP TLS implementation. We modify the DPDK NIC
driver to offload TLS symmetric key encryption with the

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Th
ro

u
gh

p
u

t
(G

b
p

s)

Number of CPU Cores

Plaintext
TLS

78.1 77.4

20.3

6.4

12.5
12.0

56.8

44.2

37.4

Atlas

LinuxTCP

IO-TCP

Figure 7: Comparison of throughputs of lighttpd on Linux TCP
and IO-TCP, and those of the Atlas server [74] over varying number
of CPU cores serving 500KB files. Dotted lines are for TLS traffic.

BlueField-2 NIC. Our TLS module initializes the NIC with
TLS offloading feature enabled, and it registers a chosen
ciphersuite with the NIC and returns an ID for it. When
the TLS module marks the packets with the ID, the packets
are encrypted with the corresponding ciphersuite. We im-
plement AES-GCM with 256bit keys with ConnectX-6 Dx,
which supports the encryption almost at line rate.
Porting lighttpd to IO-TCP. To evaluate the effectiveness
of IO-TCP in the real-world applications, we port lighttpd
v1.4.32 to IO-TCP. We obtain the mTCP-ported lighttpd code
in Github [16], and have modified it to support offloaded I/O
operations. Porting it to IO-TCP was straightforward as we
needed to modify only about 10 out of 41,871 lines of the
lighttpd code.

5 Evaluation

We evaluate IO-TCP with the following questions in mind:
(1) how much performance improvement does IO-TCP bring
over Linux or custom TCP stacks for content delivery sys-
tems? (2) does it result in significant CPU cycle saving? and
(3) do our design choices (Retransmission timer and RTT
measurement correction) serve their purposes well? Before
running the experiments, we first verified the correctness
(integrity of transferred files) of the IO-TCP stackwith the IO-
TCP-ported lighttpd server even in the case of many packet
losses and multiple concurrent connections.

5.1 Experiment Setup
Our experiment setup consists of one server and two client
nodes. The server machine has two Intel Xeon Silver 4210
CPU @ 2.20 GHz (20 cores) 6, with two 100G Mellanox
BlueField-2 SmartNICs and four Intel Optane 900P NVMe
SSDs. We attach one SmartNIC with two NVMe disks using
NVMe-oF target offload so that the NIC can access the two
NVMe disks directly. The host CPU runs on Linux 4.14 while
the SmartNIC runs on Linux 4.20. The client machines are
each equipped with an Intel E5-2683v4 CPU @ 2.10GHz (16

6We use only one CPU (i.e., 10 cores) for experiments.

282 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cores) and a 100G Mellanox ConnectX-5 NIC. All clients run
on Linux 4.20, and we confirm that the clients are not the
bottleneck for the experiments. All NICs are connected to a
100 Gbps Dell EMC Networking Z9100-ON switch.

We populate the NVMe disks with 100KB, 300KB, 500KB
and 1MB files, which represent the video chunks of different
quality [74, 89]. We make sure that the workload is disk-
bound so that the working set size exceeds the main mem-
ory size. Each disk has an advertised read throughput of
2500 MB/sec, which would imply that we have a theoretical
limit of 80 Gbps when reading from our four disks.

5.2 IO-TCP Throughput
We evaluate the effectiveness of IO-TCP in the large-file con-
tent delivery. We compare the throughput of IO-TCP-ported
lighttpd and that of the stock version with sendfile() over
varying numbers of CPU cores. We also compare against the
Atlas server of Disk|Crypt|Net [74] that runs on FreeBSD
1.10. The Atlas server integrates raw disk reading into large-
file transfer over a user-level TCP stack. For Atlas, we use a
dual-port Chelsio 100Gbps NIC (T-62100) as FreeBSD 1.10
does not support the netmap [86] driver for BF-2. We have
added support for TSO to the NIC driver. We note that it
is not an apples-to-apples comparison as the current imple-
mentation of the Atlas server deviates from the correct oper-
ation of a typical Web server – the current version does not
support regular file systems, so it simply returns a random
content whose HTTP response headers are also hard-coded
into NVMe disks. While implementing a proper custom file
system should fix the problem, the current version bene-
fits from avoiding the overhead. Nevertheless, comparing
with Atlas would give us the rough idea of how well an IO-
TCP-ported server fares over the state-of-the-art CPU-based
server. Clients run wrk [43] to concurrently request on 1600
persistent connections. For testing Atlas, we reduce the num-
ber of concurrent connections to 800 for plaintext transfer as
its custom TCP stack becomes unstable at high concurrency.
Comparison with Linux TCP and Disk|Crypt|Net. Fig-
ure 7 shows the results for serving 500KB files. lighttpd on
IO-TCP achieves 78.1 Gbpswith a single CPU core on the host
side for plaintext transfer, which demonstrates that a single
CPU core is sufficient to handle the control plane operations
for all 1600 clients. IO-TCP saturates the full bandwidth of the
four NVMe disks, and each NIC reaches 39 Gbps, indicating
that the performance scales to the number of NICs. In con-
trast, Linux TCP does not go beyond 57 Gbps even with 10
CPU cores. Even when we use both CPUs (i.e., 20 cores), we
do not see performance improvement (56.2 Gbps). This shows
that the memory bandwidth is inefficiently utilized [74] de-
spite the usage of a zero-copy API like sendfile(). When
lighttpd on each CPU runs with a distinct port and serves
a disjoint set of files, the performance goes up slightly (59
Gbps) as it benefits from local memory bandwidth. However,
the improvement is limited because the content often has to

46.4 51.1
56.8 54.7

64.1
76.6 78.1 75.3 78.2 79.2 78.8 79.5

0

20

40

60

80

100KB 300KB 500KB 1MB

Th
ro

u
gh

p
u

t(
G

b
p

s)

File Size

LinuxTCP IO-TCP Atlas

(a) Plaintext

28.4 33.1
37.4 36.8

64.1
76.2 77.4 74.8

43.4 43.8 44.2 44.1

0

20

40

60

80

100KB 300KB 500KB 1MB

Th
ro

u
gh

p
u

t
(G

b
p

s)

File Size

(b) TLS

Figure 8: Comparison of maximum performance of lighttpd on
LinuxTCP, and IO-TCP and Atlas for varying file sizes.

cross the NUMA domain to a NIC and the placement of ker-
nel objects are not NUMA-aware. On the other hand, Atlas
performs much better, reaching the same performance of IO-
TCP at four CPU cores. When we add more NVMe disks (up
to 8) and use two CPUs with both NIC ports, the performance
of Atlas peaks at 107 Gbps where the memory bandwidth
becomes a bottleneck. The performance of IO-TCP goes up
to 95.2 Gbps if IO-TCP serves a random content with raw
disk access like in Atlas, but the bottleneck lies in the mem-
ory bandwidth of the BF-2 NIC. This shows that efficient use
of the host memory bandwidth is highly effective in achiev-
ing a very good throughput with only CPU. However, the
performance advantage disappears when serving TLS traffic
where the memory bandwidth becomes a bottleneck much
earlier (discussed in the next paragraph). Figure 8a compares
the performances with different file sizes. All performances
of Atlas are similar as it avoids calling filesystem APIs. The
performance of IO-TCP is comparable to those of Atlas from
300 KB files. IO-TCP outperforms Linux TCP by 38% to 51%
and it uses 2x to 10x smaller number of CPU cores to reach
the peak performance.
TLS performance. IO-TCP excels at serving TLS traffic. We
enable packet encryption with AES-GCM with 256bit keys
on the NIC crypto hardware for IO-TCP. For stock lighttpd,
we use OpenSSL 1.0.2k [34] with TLSv1.2, and use the same
algorithm for symmetric key encryption. Both Atlas and
the IO-TCP-ported lighttpd do not implement the TLS hand-
shake, but the overhead for the handshakewith stock lighttpd
is negligible as we use persistent connections. Figure 7 and
Figure 8b show that IO-TCP experiences little performance
degradation with TLS due to the dedicated crypto hardware
on NIC. In contrast, Atlas achieves only 44.2 Gbps even with

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 283

Number of Concurrent Connections

Th
ro

ug
hp

ut
 (G

bp
s)

0

20

40

60

1000 2000 3000 4000

80
80.6

Cores 1 2

Figure 9: Comparison of TLS performance of IO-TCP over different
number of connections using 1 and 2 CPU cores.

10 CPU cores as the main memory bandwidth becomes the
bottleneck. The performance goes up to 54.6 Gbps with two
CPUs, but overall, the TLS performance is 51% to 56% of the
plaintext throughput. The similar trend is seen with Linux
TCP - the TLS performance drops by 48% to 63%. We confirm
that both Atlas and Linux TCP benefit from the AES-NI in-
structions of the CPU, but their TLS performances are poor
due to content scanning for encryption. We note that the
working set size of Atlas exceeds the CPU cache, so their
TLS performance is bottlenecked by the memory bandwidth
much faster. So, the claim that Disk|Crypt|Net manages the
workload within the CPU cache depends on the hardware.
Connection scaling. Figure 9 shows the performance of IO-
TCP serving 1000 to 4000 concurrent TLS connections. We
observe that the performance is more or less stable over dif-
ferent number of connections. For 4000 connections, IO-TCP
loses about 5% of performance with a single CPU core, but it
reaches 80 Gbps again with two CPU cores. We check that the
plaintext performance exhibits comparable trends. At 4000
connections, each connection would get around 20 Mbps, a
comfortable bandwidth to stream 4K videos.
Comparison with user-level TCP stacks. One might be
tempted to compare the performance with recent user-level
TCP stacks likemTCP [58], IX [49],TAS [62], and F-Stack [13]
as they use the CPU cycles efficiently. However, we find that
these stacks are not optimized for large-file content delivery
as most of them do not implement sendfile() nor bene-
fit from TSO. In fact, we measure the performance of TAS,
mTCP, and F-Stack on the same platformwith all 10 cores, but
they showe 8, 21.4, and 36 Gbps, respectively, for 500KB file
delivery. Even if they implement a zero-copy API, we doubt
that it would substantially outperform Linux TCP because
the primary goal of the kernel-bypass networking stacks is to
avoid the overhead of frequent system calls and kernel data
structures for small-message transactions. However, trans-
ferring large messages would rarely impose the system call
overhead nor suffer from the overhead of kernel structures.
Instead, insufficient memory bandwidth (or CPU cycles) is
the main cause for poor performance in large-file content
delivery, which kernel-bypass TCP stacks do not help.
TCP fairness. We also evaluate if IO-TCP provides band-
width fairness among the competing connections. Jain’s Fair-
ness Index of IO-TCP ranges from 0.91 to 0.97 for different

Th
ro

ug
hp

ut
 (G

bp
s)

w/o timer
correction

w/ timer
correction

63.12

0

20

40

60

80 78.06

(a) Correcting retransmission
timers.

A
ve

. M
ea

su
re

d
R

TT
 (m

s)

Time (s)

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15

w/o
Correction

w/

(b) Correcting timestamps for more
accurate RTT estimates.

Figure 10: Time measurement correction in IO-TCP

numbers of concurrent connections. We see a similar range
(0.90 to 0.97) with Linux TCP for the same experiments.

5.3 Evaluation of IO-TCP Design Choices
Retransmission timer correction. We evaluate the im-
pact of echo packets that adjust the retransmission timer –
when the real data packets are sent out. Figure 10a compares
the throughput of lighttpd on IO-TCPwith andwithout timer
correction. Without timer correction, the IO-TCP host stack
stays at 63.12 Gbps. With timer correction, IO-TCP improves
the throughput by 22.6%. This is because IO-TCP without
timer correction experiences highly variable RTTs and pro-
duces 600x more timeouts than that with timer correction.
Such performance drop due to premature timeouts can be
more severe in the wide-area-networks (WANs) where the
end-to-end RTTs are larger.
RTT measurement correction. We compare the impact
of fixing the TCP timestamps on the NIC stack. We measure
the average RTT values recorded by the TCP stack every sec-
ond with 200 concurrent connections. Figure 10b shows that
the average RTT is 1 ms with timestamp correction. When
we disable the TCP timestamp correction, the average RTT
reaches 5 ms, a blowup by a factor of 5. This is because the
RTT includes disk access delay that adds a few milliseconds.
More accurate latency measurement is critical to trigger the
timeout in time when there is a packet loss.

5.4 Overhead Evaluation
The split architecture of IO-TCP may suffer from the com-
munication overhead between host and NIC stacks as well
as lower computing capacity of the Arm-based subsystem in
the NIC. For this reason, the CPU-only approach on Linux
TCP would perform better than IO-TCP for a small number
of concurrent connections as CPU can comfortably handle
the connections without the overhead. However, this trend
will change as the number of connections increases.

Figure 11a shows the throughputs over different numbers
of concurrent connections requesting 300KB files. With a
single persistent connection, Linux TCP outperforms IO-TCP
by over 1.5 times. However, it reaches the peak performance
with as few as four connections and the performance stays
the same beyond that. In contrast, the throughput of IO-TCP

284 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.32

17.63

36.78

6.37 9.78 9.99

0

10

20

30

40

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (G

bp
s)

Number of Connections

IO-TCP
Linux TCP

(a) Throughputs over varying # of
connections w/ 300KB files

0.45

1.81
2.76

0.79 1.33
1.32

0

1

2

3

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (G

bp
s)

Number of Connections

IO-TCP
Linux TCP

(b) Throughputs over varying # of
connections w/ 10KB files

Figure 11: Overhead Evaluation.

slowly increases due to the overhead, but it outperforms the
Linux TCP at four connections.

The performance trend continues to hold with smaller file
sizes. Figure 11b shows the throughput for serving 10KB files
over different numbers of connections. Like in the previous
case, Linux TCP and IO-TCP reach the peak performance at
4 and 64 connections, respectively, but their performance is
much lower than in Figure 11a due to the increased overhead
of file operations. Nevertheless, IO-TCP outperforms Linux
TCP at four or more concurrent connections.

To evaluate the latency overhead, we compare the latency
of single-file downloading with IO-TCP vs. Linux TCP. IO-
TCP shows 50 to 80us of an extra delay for 10KB files, but the
extra overhead goes up to 150 to 200us for 300KB files. This
latency overhead at low congestion is inevitable as the host
CPU is much faster than the Arm processor in the NIC, but
it is negligible for content delivery in wide-area networks.
Memory bandwidth limitation. The performance bottle-
neck of our current prototype lies in the low memory band-
width of the BlueField-2 NIC when it accesses more than two
NVMe disks. We confirm this by running the same test as
in Figure 8a without disk I/O – we observe that the perfor-
mance reaches 80 Gbps per NIC. Note that disk I/O is the
only memory copy for packet payload in our NIC stack as we
employ scatter-gather DMA. Nevertheless, we still think our
design is promising in the future. First,Arm-based SoC can be
designed with much higher memory bandwidth and future
SmartNICs would benefit from it. For example, Bluefield-
3 [32] is reported to have 3.5x better memory bandwidth
(∼90 GB/s) than Bluefield-2, and we expect over 100 Gbps
per NIC 7 for the same workload as in Figure 8a. Cavium
ThunderX2 [8], an Armv8-based SoC server, has 166 GB/s of
peak memory bandwidth, even larger than that of our CPU.
Second, improving the memory bandwidth of the SmartNIC
is more cost-effective as Arm SoCs are less expensive than
server-class x86 CPUs [70] and one can easily scale the over-
all performance by employing multiple NICs. We note that
the current SmartNIC price is very high, but it will go down
with wider adoption as evidenced in the GPU prices.

740 Gbps (perNIC) × 90 GB/s (BF-3 BW) / 25.6 GB/s (BF-2 BW) = 141 Gbps

Functions Instr. per cycle
Before After

APP: Parsing HTTP request 0.82 1.57
APP: Writing response header 0.92 1.89
TCP: Check RTO expire 2.65 3.26
TCP: Process ACK 0.13 1.24
Overall IPC 0.93 1.47

Table 4: Comparison of the IPC of lighttpd and control plane func-
tions before and after data plane offloading with IO-TCP.

100.0

70.2

1.4

33.6

0

20

40

60

80

100

0

20

40

60

80

100

Ca
ch

e
M

is
s

Ra
te

 (%
)

Re
l.

Th
ro

ug
hp

ut
 (%

)

w/o Disk IO w/ Disk IO

(a) Relative throughputs and cache
miss rates with and without disk IO.

99.1

62.9

37.1
28.1 21.6 18.2

0

20

40

60

80

100

10 20 40 60 80 100Re
l.

Th
ro

ug
hp

ut
 (%

)

Additional Delay (μs)

(b) Relative throughputs over extra
delays by the control plane.

Figure 12: Analysis on the source of performance improvement.

5.5 Source of Performance Improvement

We analyze the source of performance improvement with
IO-TCP. First, we observe that the control plane functions
in the IO-TCP stack run faster after the separation of the
data plane. Table 4 indicates that the instructions per cycle
(IPC) of the control path in the IO-TCP stack improves by
58% with the division of labor. Especially, ACK processing
benefits the most from the split – note that it is the key
function that initiates complex operations frequently such
as looking up the TCB in the connection table, determin-
ing packet loss/duplicate ACKs, computing the new send
window size, etc. After the split, the IPC of this function im-
proves by 9.53x. The performance gain mainly comes from
reduced cache/memory contention as we find that the cache
miss rate of last-level cache (LLC) improves by 27% with the
separation. Then, how come the cache miss rate is reduced?
This is because DDIO of NVMe disk IO evicts the data in the
CPU cache if both planes run together [96]. To confirm this,
we measure the TCB lookup performance with and without
NVMe disk reading (fio). Figure 12a shows that the cache
miss rate of the TCB lookup goes up by a factor of 24 if we
co-run disk IO, which in turn reduces the lookup perfor-
mance by 30%. Finally, we observe that the faster execution
of the control plane actually improves the content delivery
throughput. To show this, we add redundant code into the
ACK processing function so that we can delay its execution
by as much as we want. Figure 12b shows that the through-
put degrades significantly as the extra delay increases. This
implies that the faster control plane reduces the end-to-end
RTT and increases the send window size quickly, which ends
up improving the overall performance.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 285

6 Related Work
PCIe P2P communications. Enabling PCIe P2P communi-
cation between external devices could reduce CPU overhead
significantly when transmitting data among them. NVIDIA
GPUDirect RDMA [17], GPUDirect Async [45], and AMD
DirectGMA [10] techniques, provide a way for other devices
to directly access data from GPU by exposing GPU mem-
ory directly to PCIe memory space. EXTOLL [79] proposes
enabling direct communication between Intel Xeon Phi co-
processors (accelerators) and the NICs, so accelerators can
communicate with each other over the network without CPU
involvement. Morpheus [91] enables communications be-
tween NVMe devices and other PCIe devices. DCS [46] and
DCS-ctrl [63] propose a hardware-based framework to enable
P2P communication among various types of external PCIe
devices. However, all these P2P solutions only consider data
communication on hardware, without considering the kernel
stacks. As a result, those solutions still suffer from kernel
stack overhead when running content delivery applications.
Accelerated networking stacks. There are several exist-
ing works that attempt to improve the performance of net-
working stacks. Some works try to improve the performance
of existing kernel stacks. Fastsocket [71] improves the TCP
stack performance by achieving table-level connection parti-
tion, increasing the connection locality, and eliminating the
lock contention. StackMap [95] dedicates network interfaces
to applications and offer a zero-copy, low-overhead network
interface for applications. Megapipe [57] leverages parti-
tioned, lightweighted sockets, and batches system calls to
improve the performance. Another approach is bypassing the
heavyweight kernel stack and running the whole stack in the
user level. mTCP [58], IX [49], Sandstorm [73], F-Stack [13],
and PonyExpress/Snap [75] leverage user-level packet I/O
libraries, and leverage multiple CPU cores to process incom-
ing flows simultaneously, in order to increase the processing
throughput and reduce latency from kernel calls. ZygOS [85],
Shinjuku [60], and Shenango [80] further improve the tail
latency of packet processing by improving the load balancing
of the tasks among CPU cores. Arrakis [82] and IO-TCP share
the same vision of separation of data and control planes, but
Arrakis is focused on bypassing the kernel involvement on
the data path while IO-TCP harnesses extra processors for
work division of the TCP stack operations. TAS [62] builds
a TCP fast path as a separated OS service, which targets to
improve the performance of RPC calls in the data center.
Disk|Crypt|Net [74] builds a scalable video streaming stack,
containing a novel kernel-bypass storage stack and an ex-
isting kernel-bypass network stack, which achieves lower
latency and higher throughput for video streaming applica-
tions. However, all these solutions still require huge CPU
involvements in packet processing,which still consumes a lot
of CPU power on transmitting data among external devices.
A recent work called AccelTCP [78] offloads TCP connection
management as well as connection relaying into SmartNIC,

which relieves a part of packet processing computation from
host CPU cores. However, it focuses only on improving the
throughput for short-lived connections and L7 proxies.
NIC offload. Traditionally, there have been a spectrum of
NIC offload schemes. Stateless schemes like TCP/IP check-
sum offload, TCP segmentation offload (TSO) and large re-
ceive offload (LRO) have become ubiquitous in modern NICs
while stateful schemes like TCP Engine Offload (TOE) andMi-
crosoft Chimney Offload [25] have largely been deprecated
due to security and maintenance concerns coming from its
complexity. IO-TCP is essentially TSO with file reading, and
we believe it can be easily implemented into commodity NIC
hardware due to its simplicity.
More recently, several works have focused on offloading

various tasks to SmartNICs to improve the performance for
specific applications. KV-Direct [68] leverages FPGA-based
SmartNIC to improve the performance of in-memory key-
value stores. Floem [83], ClickNP [69], and UNO [66] lever-
age SmartNICs to accelerate general packet processing for
network applications. Metron [61] offloads packet tagging
into the NICs to reduce the latency of packet processing for
network functions. iPipe [72] builds a general framework for
offloading distributed applications into SmartNICs. Lynx [90]
uses the SmartNIC as part of an accelerator-centric archi-
tecture where the SmartNIC allows direct networking with
the accelerators. Gimbal [76] uses SmartNIC as the traffic
orchestrator for disk IO, and realizes efficient multi-tenancy
using congestion control algorithms and fair scheduling. Lea-
pIO [70] offloads disk IOs to SmartNIC and provides the
seamless address space for cloud tenants while [84] han-
dles NVMe-oF on NIC for remote storage access. However,
neither supports TCP operations to clients from NIC. To
the best of our knowledge, our IO-TCP is the first work that
leverages SmartNICs to accelerate disk and packet I/O for
content delivery systems.

7 Conclusion

In this paper, we have presented IO-TCP, a split TCP stack
design that offloads I/O operations from CPU for scalable
content delivery. IO-TCP provides a new abstraction that
leverages SmartNIC processors to perform I/O operations,
which significantly relieves the pressure on CPU and its main
memory system. Also, our proposal maintains the simplicity
in the NIC stack design so that it can be easily implemented
with low-powered processors on I/O devices.

Our evaluation shows IO-TCP significantly saves CPU
cycles while it delivers the benefit even for small-file transfer
when it serves enough connections. Along with the benefit,
we also discuss the limitations of the current prototype, and
we hope that SmartNIC vendors will consider highermemory
bandwidth for the embedded system when designing the
next version of their SmartNIC. The source code of IO-TCP
is available at https://iotcp.kaist.edu/

286 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://iotcp.kaist.edu/

Acknowledgements

We appreciate the insightful feedback and suggestions from
USENIX NSDI 2022 reviewers on revising our original sub-
mission. We thank Ilias Marinos for sharing the source of
Disk|Crypt|Net and for helping us with setting up the At-
las server. This work is in part supported by the ICT Re-
search and Development Program of MSIP/IITP, Korea, un-
der [2018-0-00693, Development of an ultra low-latency user-
level transfer protocol]. Junzhi Gong and Minlan Yu are sup-
ported in part by the NSF CNS-1955422 and CNS-1955487.

References

[1] Akamai braces for huge streaming audiences in 2021.
https://www.fiercevideo.com/tech/akamai-
braces-for-huge-streaming-audiences-2021.
Last Accessed: 2021-09-15.

[2] Akamai Technologies, Inc. https://www.akamai.
com/. Last Accessed: 2021-09-15.

[3] Amazon Prime Video. https://www.primevideo.
com/. Last Accessed: 2021-09-15.

[4] Apple TV+. https://tv.apple.com/. Last Accessed:
2022-08-23.

[5] As Covid pushes more people online, companies
that help the web stay speedy are having a mo-
ment. https://www.cnbc.com/2020/12/13/cdn-
providers-cloudflare-fastly-benefit-from-
covid-web-traffic-boost.html. Last Accessed:
2021-09-15.

[6] Athlon 64 X2. https://en.wikipedia.org/wiki/
Athlon_64_X2. Last Accessed: 2021-09-15.

[7] Broadcom Stringray SmartNIC. https:
//www.broadcom.com/products/ethernet-
connectivity/smartnic. Last Accessed: 2021-09-
15.

[8] Cavium ThunderX2 Arm-based Processors.
https://www.marvell.com/products/server-
processors/thunderx2-arm-processors.html.
Last Accessed: 2021-09-15.

[9] Cisco Visual Networking Index 2021. https://www.
cisco.com/c/dam/m/en_us/solutions/service-
provider/vni-forecast-highlights/pdf/
Global_2021_Forecast_Highlights.pdf. Last
Accessed: 2021-09-15.

[10] DirectGMA on AMD’s FirePro GPUs. https://www.
amd.com/Documents/SDI-techbrief.pdf.

[11] Disney+. https://www.disneyplus.com/. Last Ac-
cessed: 2021-09-15.

[12] DPDK. https://www.dpdk.org. Last Accessed: 2021-
09-15.

[13] F-Stack | High Performance Network Framework
Based on DPDK. https://github.com/F-Stack/f-
stack. Last Accessed: 2021-09-15.

[14] Fastly, Inc. https://www.fastly.com/. Last Ac-
cessed: 2021-09-15.

[15] fio - Flexible I/O tester. https://fio.readthedocs.
io/en/latest/fio_doc.html. Last Accessed: 2021-
09-15.

[16] GitHub - mtcp-stack/mtcp. https://github.com/
mtcp-stack/mtcp. Last Accessed: 2021-09-15.

[17] GPUDirect. https://developer.nvidia.com/
gpudirect. Last Accessed: 2021-09-15.

[18] HowTo Configure NVMe over Fabrics (NVMe-oF)
Target Offload. https://community.mellanox.
com/s/article/howto-configure-nvme-over-
fabrics--nvme-of--target-offload. Last
Accessed: 2021-09-15.

[19] Hulu: Stream TV and Movies Live and Online. https:
//www.hulu.com/. Last Accessed: 2021-09-15.

[20] IETF RFC 7540. https://tools.ietf.org/html/
rfc7540. Last Accessed: 2021-09-15.

[21] Intel Direct Data I/O Technology. https:
//www.intel.com/content/www/us/en/io/data-
direct-i-o-technology.html. Last Accessed:
2021-09-15.

[22] Intel® Xeon® Platinum 9282 Processor.
https://ark.intel.com/content/www/us/en/
ark/products/194146/intel-xeon-platinum-
9282-processor-77m-cache-2-60-ghz.html.
Last Accessed: 2021-09-15.

[23] Lighttpd - fly light. https://www.lighttpd.net/.
Last Accessed: 2021-09-15.

[24] Marvell LiquidIOII Smart NICs. https://www.
marvell.com/products/ethernet-adapters-
and-controllers/liquidio-smart-nics.html.
Last Accessed: 2021-09-15.

[25] Microsoft Windows Scalable Networking Ini-
tiative. http://download.microsoft.com/
download/5/b/5/5b5bec17-ea71-4653-9539-
204a672f11cf/scale.doc. Last Accessed: 2021-09-
15.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 287

https://www.fiercevideo.com/tech/akamai-braces-for-huge-streaming-audiences-2021
https://www.fiercevideo.com/tech/akamai-braces-for-huge-streaming-audiences-2021
https://www.akamai.com/
https://www.akamai.com/
https://www.primevideo.com/
https://www.primevideo.com/
https://tv.apple.com/
https://www.cnbc.com/2020/12/13/cdn-providers-cloudflare-fastly-benefit-from-covid-web-traffic-boost.html
https://www.cnbc.com/2020/12/13/cdn-providers-cloudflare-fastly-benefit-from-covid-web-traffic-boost.html
https://www.cnbc.com/2020/12/13/cdn-providers-cloudflare-fastly-benefit-from-covid-web-traffic-boost.html
https://en.wikipedia.org/wiki/Athlon_64_X2
https://en.wikipedia.org/wiki/Athlon_64_X2
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.marvell.com/products/server-processors/thunderx2-arm-processors.html
https://www.marvell.com/products/server-processors/thunderx2-arm-processors.html
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.amd.com/Documents/SDI-techbrief.pdf
https://www.amd.com/Documents/SDI-techbrief.pdf
https://www.disneyplus.com/
https://www.dpdk.org
https://github.com/F-Stack/f-stack
https://github.com/F-Stack/f-stack
https://www.fastly.com/
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://github.com/mtcp-stack/mtcp
https://github.com/mtcp-stack/mtcp
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://community.mellanox.com/s/article/howto-configure-nvme-over-fabrics--nvme-of--target-offload
https://community.mellanox.com/s/article/howto-configure-nvme-over-fabrics--nvme-of--target-offload
https://community.mellanox.com/s/article/howto-configure-nvme-over-fabrics--nvme-of--target-offload
https://www.hulu.com/
https://www.hulu.com/
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
https://www.lighttpd.net/
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics.html
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics.html
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics.html
http://download.microsoft.com/download/5/b/5/5b5bec17-ea71-4653-9539-204a672f11cf/scale.doc
http://download.microsoft.com/download/5/b/5/5b5bec17-ea71-4653-9539-204a672f11cf/scale.doc
http://download.microsoft.com/download/5/b/5/5b5bec17-ea71-4653-9539-204a672f11cf/scale.doc

[26] Netflix - Unlimited movies, TV shows, and more.
https://www.netflix.com/. Last Accessed: 2021-
09-15.

[27] Netronome Agilio LX SmartNICs. https://www.
netronome.com/products/agilio-lx/. Last Ac-
cessed: 2021-09-15.

[28] NGD Newport NVMe Computational Storage Drive.
https://www.ngdsystems.com. LastAccessed: 2021-
09-15.

[29] nginx. http://nginx.org/. Last Accessed: 2021-09-
15.

[30] NGINX and Netflix Contribute New sendfile(2) to
FreeBSD. https://www.nginx.com/blog/nginx-
and-netflix-contribute-new-sendfile2-to-
freebsd/. Last Accessed: 2021-09-15.

[31] NVIDIA BlueField-2 Programmable SmartNIC.
https://www.mellanox.com/files/doc-
2020/pb-bluefield-2-smart-nic-eth.pdf.
Last Accessed: 2021-09-15.

[32] NVIDIA BlueField-3 DPU. https://www.nvidia.
com/content/dam/en-zz/Solutions/Data-
Center/documents/datasheet-nvidia-
bluefield-3-dpu.pdf. Last Accessed: 2021-09-15.

[33] NVIDIA BlueField SmartNIC. http://www.mellanox.
com/related-docs/prod_adapter_cards/PB_
BlueField_Smart_NIC.pdf. Last Accessed: 2021-09-
15.

[34] OpenSSL. https://www.openssl.org/. Last Ac-
cessed: 2021-09-15.

[35] PCI Express Base Specification. https://pcisig.
com/specifications. Last Accessed: 2021-09-15.

[36] perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org/index.php/
Main_Page. Last Accessed: 2021-09-15.

[37] Poky – Yocto Project. https://www.yoctoproject.
org/software-item/poky/. Last Accessed: 2021-09-
15.

[38] RFC 7323. https://tools.ietf.org/html/
rfc7323. Last Accessed: 2021-09-15.

[39] Sandvine Global Internet Phenomena Report
COVID-19 Spotlight. https://www.sandvine.com/
phenomena. Last Accessed: 2021-09-15.

[40] SmartSSD Computational Storage Drive.
https://samsungsemiconductor-us.com/
smartssd/index.html. Last Accessed: 2021-09-15.

[41] StoPool Distributed Storage. https://storpool.
com/blog/7-million-iops-and-0-15-ms-
latency-for-an-nvme-powered-vdi-cloud. Last
Accessed: 2021-09-15.

[42] Storage Performance Developement Kit. https://
spdk.io/. Last Accessed: 2021-09-15.

[43] wg/wrk - Modern HTTP benchmarking tool. https:
//github.com/wg/wrk. Last Accessed: 2021-09-15.

[44] YouTube TV - Watch and DVR Live Sports, Shows &
News. https://tv.youtube.com/. Last Accessed:
2021-09-15.

[45] Elena Agostini, Davide Rossetti, and Sreeram Potluri.
Offloading communication control logic in GPU accel-
erated applications. In Proceedings of the IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), 2017.

[46] J. Ahn, D. Kwon, Y. Kim, M. Ajdari, J. Lee, and J. Kim.
DCS: A Fast and Scalable Device-centric Server Archi-
tecture. In Proceedings of the Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2015.

[47] Anirudh Badam, KyoungSoo Park, Vivek S. Pai, and
Larry L. Peterson. HashCache: Cache Storage for the
Next Billion. In Proceedings of the USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2009.

[48] G. Banga and J.C. Mogul. Scalable Kernel Performance
for Internet Servers under Realistic Loads. In Proceed-
ings of the USENIX Annual Technical Conference (ATC),
1998.

[49] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2014.

[50] Steve Blank. What the GlobalFoundries’ Retreat
Really Means. https://spectrum.ieee.org/
nanoclast/semiconductors/devices/what-
globalfoundries-retreat-really-means, 2018.
Last Accessed: 2021-09-15.

[51] Jungsik Choi, Jaewan Hong, Youngjin Kwon, and Hwan-
soo Han. Libnvmmio: Reconstructing Software IO Path
with Failure-Atomic Memory-Mapped Interface. In
Proceedings of the USENIX Annual Technical Conference
(ATC), 2020.

[52] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and Protection in the ZoFS

288 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.netflix.com/
https://www.netronome.com/products/agilio-lx/
https://www.netronome.com/products/agilio-lx/
https://www.ngdsystems.com
http://nginx.org/
https://www.nginx.com/blog/nginx-and-netflix-contribute-new-sendfile2-to-freebsd/
https://www.nginx.com/blog/nginx-and-netflix-contribute-new-sendfile2-to-freebsd/
https://www.nginx.com/blog/nginx-and-netflix-contribute-new-sendfile2-to-freebsd/
https://www.mellanox.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://www.mellanox.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://www.openssl.org/
https://pcisig.com/specifications
https://pcisig.com/specifications
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.yoctoproject.org/software-item/poky/
https://www.yoctoproject.org/software-item/poky/
https://tools.ietf.org/html/rfc7323
https://tools.ietf.org/html/rfc7323
https://www.sandvine.com/phenomena
https://www.sandvine.com/phenomena
https://samsungsemiconductor-us.com/smartssd/index.html
https://samsungsemiconductor-us.com/smartssd/index.html
https://storpool.com/blog/7-million-iops-and-0-15-ms-latency-for-an-nvme-powered-vdi-cloud
https://storpool.com/blog/7-million-iops-and-0-15-ms-latency-for-an-nvme-powered-vdi-cloud
https://storpool.com/blog/7-million-iops-and-0-15-ms-latency-for-an-nvme-powered-vdi-cloud
https://spdk.io/
https://spdk.io/
https://github.com/wg/wrk
https://github.com/wg/wrk
https://tv.youtube.com/
https://spectrum.ieee.org/nanoclast/semiconductors/devices/what-globalfoundries-retreat-really-means
https://spectrum.ieee.org/nanoclast/semiconductors/devices/what-globalfoundries-retreat-really-means
https://spectrum.ieee.org/nanoclast/semiconductors/devices/what-globalfoundries-retreat-really-means

User-Space NVM File System. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
2019.

[53] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System Software for Persistent Mem-
ory. In Proceedings of the European Conference on Com-
puter Systems (EuroSys).

[54] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant,
Karthikeyan Sankaralingam, and Doug Burger. Dark
silicon and the end of multicore scaling. In Proceed-
ings of ACM/IEEE Annual International Symposium on
Computer Architecture (ISCA), 2011.

[55] Ethernet Alliance. The 2020 Ethernet Roadmap.
https://ethernetalliance.org/technology/
2020-roadmap/, 2020. Last Accessed: 2021-09-15.

[56] Anja Feldmann, Oliver Gasser, Franziska Lichtblau,
Enric Pujol, Ingmar Poese, Christoph Dietzel, Daniel
Wagner, Matthias Wichtlhuber, Juan Tapiador, Narseo
Vallina-Rodriguez, Oliver Hohlfeld, and Georgios
Smaragdakis. A Year in Lockdown: How the Waves of
COVID-19 Impact Internet Traffic. Communications of
the ACM (CACM), 64(7):101–108, 2021.

[57] Sangjin Han, Scott Marshall, Byung-Gon Chun, and
Sylvia Ratnasamy. MegaPipe: a new programming
interface for scalable network I/O. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2012.

[58] EunYoung Jeong, Shinae Woo, Muhammad Asim
Jamshed, Haewon Jeong, Sunghwan Ihm, Dongsu Han,
and KyoungSoo Park. mTCP: a Highly Scalable User-
level TCP Stack for Multicore Systems. In Proceedings
of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2014.

[59] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
SplitFS: Reducing Software Overhead in File Systems
for Persistent Memory. In Proceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP), 2019.

[60] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for 𝜇second-scale tail
latency. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2019.

[61] Georgios P Katsikas, Tom Barbette, Dejan Kostic, Re-
becca Steinert, and Gerald Q Maguire Jr. Metron: NFV
Service Chains at the True Speed of the Underlying

Hardware. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2018.

[62] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr. Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP Acceleration as an OS
Service. In Proceedings of the European Conference on
Computer Systems (EuroSys), 2019.

[63] D. Kwon, J. Ahn, D. Chae, M. Ajdari, J. Lee, S. Bae,
Y. Kim, and J. Kim. DCS-ctrl: A Fast and Flexible Device-
Control Mechanism for Device-Centric Server Archi-
tecture. In Proceedings of the ACM/IEEE Annual Inter-
national Symposium on Computer Architecture (ISCA),
2018.

[64] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A Cross Media File System. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
2017.

[65] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, and J. Iyengar.
The QUIC Transport Protocol: Design and Internet-
Scale Deployment. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication
(SIGCOMM), 2017.

[66] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin
Wang, Aditya Akella, Michael M Swift, and TV Laksh-
man. UNO: Unifying Host and Smart NIC Offload for
Flexible Packet Processing. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC), 2017.

[67] Jonathan Lemon. KQueue–A Generic and Scalable
Event Notification Facility. In Proceedings of the USENIX
Annual Technical Conference (ATC), 2001.

[68] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC. In
Proceedings of the ACM Symposium on Operating Sys-
tems Principles (SOSP), 2017.

[69] Bojie Li, Kun Tan, Layong Luo, Yanqing Peng, Renqian
Luo, Ningyi Xu, Yongqiang Xiong, Peng Cheng, and En-
hong Chen. ClickNP: Highly Flexible and High Perfor-
mance Network Processing with Reconfigurable Hard-
ware. In Proceedings of the Conference of the ACM Spe-
cial Interest Group on Data Communication (SIGCOMM),
2016.

[70] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaib-
hav Gogte, Sriram Govindan, Dan Ports, Irene Zhang,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 289

https://ethernetalliance.org/technology/2020-roadmap/
https://ethernetalliance.org/technology/2020-roadmap/

Ricardo Bianchini, Haryadi S. Gunawi, and Anirudh
Badam. LeapIO: Efficient and Portable Virtual NVMe
Storage on ARM SoCs. In Proceedings of the ACM In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
2020.

[71] Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Ji-
aquan He, Wei Xu, and Yuanchun Shi. Scalable Kernel
TCP Design and Implementation for Short-Lived Con-
nections. ACM SIGARCH Computer Architecture News,
44(2):339–352, 2016.

[72] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading
Distributed Applications onto SmartNICs using iPipe.
In Proceedings of the ACM Special Interest Group on Data
Communication. 2019.

[73] Ilias Marinos, Robert NM Watson, and Mark Handley.
Network stack specialization for performance. ACM
SIGCOMMComputer Communication Review, 44(4):175–
186, 2014.

[74] Ilias Marinos, Robert NM Watson, Mark Handley, and
Randall R Stewart. Disk|Crypt|Net: rethinking the stack
for high-performance video streaming. In Proceedings
of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2017.

[75] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: a micro-
kernel approach to host networking. In Proceedings of
the 27th ACM Symposium on Operating Systems Princi-
ples (SOSP), 2019.

[76] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu
Zhao, Andrew Wei, In Hwan Doh, and Arvind Krishna-
murthy. Gimbal: enabling multi-tenant storage disag-
gregation on smartnic jbofs. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference, pages 106–122, 2021.

[77] G. Banga J.C. Mogul and P. Druschel. A Scalable and
Explicit Event Delivery Mechanism for UNIX. In Pro-
ceedings of the USENIX Annual Technical Conference
(ATC), 1999.

[78] YoungGyoun Moon, SeungEon Lee, Muhammad Asim
Jamshed, and KyoungSoo Park. AccelTCP: Accelerating
Network Applications with Stateful TCP Offloading. In
Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2020.

[79] Sarah Neuwirth, Dirk Frey, Mondrian Nuessle, and Ul-
rich Bruening. Scalable communication architecture
for network-attached accelerators. In Proceedings of
the IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2015.

[80] Amy Ousterhout, Joshua Fried, Jonathan Behrens,
Adam Belay, and Hari Balakrishnan. Shenango: Achiev-
ing High CPU Efficiency for Latency-sensitive Datacen-
ter Workloads. In Proceedings of the USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2019.

[81] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel.
Flash: An Efficient and Portable Web Server. In Proceed-
ings of the USENIX Annual Technical Conference (ATC),
1999.

[82] Simon Peter, Thomas Anderson, and Timothy Roscoe.
Arrakis: The Operating System is the Control Plane.
In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2013.

[83] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine
Kaufmann, Simon Peter, Rastislav Bodik, and Thomas
Anderson. Floem: a programming system for NIC-
accelerated network applications. In Proceedings of
the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2018.

[84] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran
Liss, Adam Morrison, and Dan Tsafrir. Autonomous
NIC Offloads. In Proceedings of the ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2021.

[85] George Prekas, Marios Kogias, and Edouard Bugnion.
ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks. In Proceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP), 2017.

[86] Luigi Rizzo. netmap: A Novel Framework for Fast
Packet I/O. In Proceedings of the USENIX Annual Tech-
nical Conference (USENIX ATC), 2012.

[87] David Sidler, Gustavo Alonso, Michaela Blott, Kimon
Karras, Kees Vissers, and Raymond Carley. Scalable
10Gbps TCP/IP Stack Architecture for Reconfigurable
Hardware. In Proceedings of the IEEE International Sym-
posium on Field-Programmable Custom Computing Ma-
chines (FCCM), 2015.

[88] David Sidler, Zsolt Istvan, and Gustavo Alonso. Low-
Latency TCP/IP Stack for Data Center Applications.
In Proceedings of the International Conference on Field-
Programmable Logic and Applications (FPL), 2016.

290 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[89] Aditya Sundarrajan, Mingdong Feng, Mangesh Kas-
bekar, and Ramesh K. Sitaraman. Footprint Descriptors:
Theory and Practice of Cache Provisioning in a Global
CDN. In Proceedings of the International Conference
on Emerging Networking EXperiments and Technologies
(CoNEXT), 2017.

[90] Maroun Tork, LinaMaudlej, andMark Silberstein. Lynx:
A SmartNIC-Driven Accelerator-Centric Architecture
for Network Servers. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
2020.

[91] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark
Gahagan, and Steven Swanson. Morpheus: Creating
Application Objects Efficiently for Heterogeneous Com-
puting. ACM SIGARCH Computer Architecture News,
44(3):53–65, 2016.

[92] Dave Watson. KTLS: Linux Kernel Transport Layer
Security. Proposal by Facebook Engineer, 2016.

[93] Jian Xu and Steven Swanson. NOVA: A Log-structured
File System forHybrid Volatile/Non-volatile MainMem-
ories. In Proceedings of the 14th Usenix Conference on
File and Storage Technologies (FAST), 2016.

[94] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), 2020.

[95] Kenichi Yasukata, Michio Honda, Douglas Santry, and
Lars Eggert. StackMap: Low-Latency Networking with
the OS Stack and Dedicated NICs. In Proceedings of the
USENIX Annual Technical Conference (ATC), 2016.

[96] Yifan Yuan,MohammadAlian,YipengWang,RenWang,
Ilia Kurakin, Charlie Tai, and Nam Sung Kim. Don’t
Forget the I/O When Allocating Your LLC. In Proceed-
ings of the 48th IEEE/ACM International Symposium on
Computer Architecture (ISCA), 2021.

[97] Jie Zhang,Miryeong Kwon,Michael Swift, andMyoung-
soo Jung. Scalable Parallel Flash Firmware for Many-
core Architectures. In Proceedings of the USENIX Con-
ference on File and Storage Technologies (FAST), 2020.

[98] Shengan Zheng, Morteza Hoseinzadeh, and Steven
Swanson. Ziggurat: A Tiered File System for Non-
Volatile Main Memories and Disks. In Proceedings of
the USENIX Conference on File and Storage Technologies
(FAST), 2019.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 291

QUIC Header (PN: 1)
STREAM Frame Header
STREAM Metadata

SEND Command Packet

E
C

H
O

QUIC Header (PN: 1-48)
STREAM Frame Header
(File Data)

48 × 1500-bytes UDP Packets

Client’s ACK Packet
ACK: PN 1-48

IO-QUIC Host Stack

Client

IO-QUIC NIC Stack

Read file ID 16778653
of length 71000 from

offset 838392.

NVMe
Disk

Figure 13: An adaptation of IO-TCP to QUIC.

Appendix

A Support for the QUIC protocol

Unlike TCP/IP headers, the QUIC header is variable-sized,
so the host stack should carefully estimate the header size
before offloading. Since the data length can exceed an MTU
size, the SmartNIC should perform QUIC packet segmen-
tation with generation of QUIC headers as well as UDP/IP
headers. In addition to file IO offloading, UDP packet seg-
mentation with large content on SmartNIC could improve
the performance further as QUIC on the Linux UDP stack suf-
fers from frequent context switchings for invoking a system
call for each UDP packet. For reliable transfer, the host stack
should keep track of STREAM frame packet numbers and
data offsets that are sent out. Retransmissions can be handled
similarly to IO-TCP as the IO-TCP NIC stack manages the
file content buffers independently of the particular transport
layer protocol. Likewise, the "ACKD" command can free the
file content buffers that are confirmed to be delivered to the
QUIC client.
We have finished implementing "IO-QUIC" in the plain-

text version, and we will add support for TLS in the future.
Unlike the IO-TCP implementation, the host stack of our
IO-QUIC implementation uses unmodified Linux kernel as it
communicates with the NIC stackwith a special UDP packet.

B Performance Comparison with Asyn-
chronous sendfile() on FreeBSD

Recent FreeBSD supports asynchronous sendfile() that
does not block on disk reading [30], so we compare the per-

34.2

60.8 67.2 70.9

41.0

66.3 69.3 72.3
64.0

76.6 78.1 75.3

0

20

40

60

80

100KB 300KB 500KB 1MB

Th
ro

ug
hp

ut
 (G

bp
s)

File Sizes

FreeBSD-nginx (S) FreeBSD-nginx (G) IO-TCP

(a) Plaintext

19.2
33.9 34.8 38.8

24.7
35.3

40.6 39.7

64.1
76.2 77.4 74.8

0

20

40

60

80

100KB 300KB 500KB 1MB

Th
ro

ug
hp

ut
 (G

bp
s)

File Sizes

(b) TLS

Figure 14: Comparison of maximum performance of nginx that
uses asynchronous sendfile() on FreeBSD vs. IO-TCP. IO-TCP
uses the same number as in Figure 8a and Figure 8b.

formance of nginx (v1.20.1) on FreeBSD (v13.0) that utilizes
this feature. Since FreeBSD does not allow disabling indi-
vidual CPU cores, we use all 20 CPU cores for FreeBSD ex-
periments (FreeBSD-nginx(S)). Also, to gauge the impact of
higher-capacity CPU, we employ a different server with two
Intel Xeon Gold 6142 CPUs @ 2.60 GHz, a 100G Mellanox
ConnectX-5 NIC and 32GB memory of DRAM (FreeBSD-
nginx(G)). Again, we use all 32 cores in the two CPUs for the
experiments.

Figure 14a shows the results over different file sizes. Over-
all, FreeBSD achieves better performance than Linux for
plaintext transfer, but it does not reach the performance re-
ported in [74] (∼70 Gbps with 8 cores). This is because the
stock FreeBSD version does not support other features in
[74] except asynchronous sendfile(). In contrast, IO-TCP
outperforms all other setups despite that FreeBSD uses 19
to 31 more CPU cores. In terms of the TLS performance,
Figure 14b shows that FreeBSD suffers from the same issue
as Linux.

292 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Hydra: Serialization-Free Network Ordering for Strongly
Consistent Distributed Applications

Inho Choi1, Ellis Michael2, Yunfan Li1, Dan R. K. Ports3, and Jialin Li1

1National University of Singapore, 2University of Washington, 3Microsoft Research

Abstract
Many distributed systems, e.g., state machine replication and
distributed databases, rely on establishing a consistent order
of operations on groups of nodes in the system. Tradition-
ally, this ordering has been established by application-level
protocols like Paxos or two-phase locking. Recent work has
shown significant performance improvements are attainable
by making ordering a network service, but current network se-
quencing implementations require routing all requests through
a single sequencer – leading to scalability, fault tolerance, and
load balancing limitations.

Our work, Hydra, overcomes these limitations by using
a distributed set of network sequencers to provide network
ordering. Hydra leverages loosely synchronized clocks on net-
work sequencers to establish message ordering across them,
per-sequencer sequence numbers to detect message drops,
and periodic timestamp messages to enforce progress when
some sequencers are idle. To demonstrate the benefit of Hy-
dra, we co-designed a state machine replication protocol and
a distributed transactional system using the Hydra network
primitive. Compared to serialization-based network ordering
systems, Hydra shows equivalent performance improvement
over traditional approaches in both applications, but with sig-
nificantly higher scalability, shorter sequencer failover time,
and better network-level load balancing.

1 Introduction
Replication is ubiquitous in data center applications. Consen-
sus protocols like Paxos, Viewstamped Replication, and Raft
are used to maintain multiple copies of data, providing the illu-
sion of a single correct service that remains available even as
individual replicas fail and recover. However, these protocols
impose substantial latency and throughput overhead.

A recent line of work demonstrated that in-network pro-
cessing can alleviate this cost [42, 43, 56]. This network se-
quencing approach routes requests through a sequencer – im-
plemented in a programmable switch or middlebox – which
assigns a monotonically increasing sequence number to each
request. By pre-establishing a total order of all requests, they
enable lighter weight consensus protocols, ultimately yield-
ing impressive performance gains: Network-Ordered Paxos
achieves throughput within 2% and latency within 10% of an
unreplicated, non-fault-tolerant system [43].

However, employing this approach in practice is not easy.
Fundamentally, the difficulty stems from the fact that network

sequencing requires serialization: all traffic for a replicated
service must pass through a single sequencer. This poses three
major challenges in production networks. First, the single se-
quencer must process all request traffic, posing a scalability
bottleneck. Second, it imposes a new routing requirement for
specific application traffic, which network operators are loath
to accept. Restricting path diversity interferes with existing
policies, carefully engineered for load balancing and fault tol-
erance. Finally, it introduces an undesirable coupling between
network and application-level recovery. Replacing a failed or
unreachable sequencer requires coordinating a simultaneous
update to the network routes and recovery of the sequencer
state (via a consensus protocol). This adds deployment com-
plexity and increases system downtime during the recovery
process. All three are serious barriers to adoption, based on
our experiences with large-scale production data centers.

This paper asks whether network sequencing can be
achieved without serialization. We answer that question in the
affirmative by presenting the design of Hydra,1 a new protocol
for network sequencing that allows packets to be sequenced by
multiple active sequencers. Hydra’s sequencers themselves
run a lightweight coordination protocol, in which each se-
quencer independently assigns sequence numbers to requests
that can be merged to establish a total order of operations.
Specifically, Hydra leverages a combination of per-sequencer
sequence numbers and loosely synchronized physical clocks
across sequencers to assign a global ordering while still effi-
ciently detecting dropped messages.

Hydra is a practical protocol; we have built both a software
implementation that runs on end hosts and one in P4 [11] that
runs on an Intel Tofino programmable switch; the latter uses
only a small fraction of switch resources, demonstrating its
practicality for modern network devices. Hydra’s sequencing
functionality allows it to run the existing NOPaxos [43] and
Eris [42] replication and transaction processing protocols with
minimal modification, while making them more resilient to
sequencer faults with marginal performance cost.

Our evaluation results demonstrate that Hydra achieves a
378% increase in throughput and 42% reduction in latency
compared to an atomic multicast baseline, while scaling to
high numbers of receivers, multicast groups, and sequencers.
Comparing to systems that use a network serialization ap-
proach, Hydra significantly improves network-level load bal-

1Hydra is named after the Lernean Hydra of Greek mythology, a multi-
headed serpent that could regrow a new head if one was chopped off [31].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 293

ancing and reduces system downtime by 5×. Moreover, Hy-
dra achieves these benefits without sacrificing performance:
our Hydra-based state machine replication system gets latency
within 5 µs and throughput within 17% of NOPaxos, and our
transactional system attains 47% higher throughput than Eris.

2 Background
Establishing a consistent order of operations is fundamental to
many distributed systems: state machine replication [43,52,53,
61] requires all correct replicas to execute a totally ordered set
of client operations; distributed transactional systems [5, 14,
17,19,26,39] mandate that all shards of the data store process
transactions in a serializable order; distributed caches [50,55]
require consistent updates to ensure coherence.

Traditionally, guaranteeing strong consistency necessitates
running complex application-level distributed protocols which
involve coordination among servers. For instance, many state
machine replication protocols [52, 53, 61] designate a single
leader to assign an order to operations, and require it to com-
municate with replicas before returning a result to the client,
and existing distributed databases execute concurrency con-
trol, atomic commitment, and consensus protocols for each
client transaction. This expensive coordination is at odds with
the demanding throughput, latency, and scalability require-
ments of modern data center applications.

2.1 Request Ordering in the Network

The need for these protocols stems from the fundamental
assumption of a fully asynchronous network which can ar-
bitrarily drop, reorder, or delay messages. A classic line of
work in distributed computing proposes stronger communica-
tion primitives to simplify distributed applications, including
virtual synchrony [8,9], atomic broadcast [10,34], and atomic
multicast [28]. These provide broadcast or multicast opera-
tions that ensure all correct receivers will deliver the same set
of messages in the same order. Such guarantees can obviate
the need for consensus protocols – but implementing them is
a problem equivalent to consensus [13], so applications do
not enjoy a performance benefit.

Network ordering without reliability guarantees. A re-
cent line of work [42, 43, 56] proposes a new network model
that balances guarantees and implementation efficiency. This
new model moves the responsibility of consistent message
ordering into the network, but leaves reliable delivery of mes-
sages to application-level protocols. By providing ordering
guarantees in the network, this network/protocol co-design
approach allows faster replication protocols than traditional
designs; by not enforcing reliability, the network model is
simple enough to implement efficiently.

A key mechanism employed by these systems to imple-
ment network ordering is in-network serialization. For in-
stance, Speculative Paxos [56] routes all client requests first
to a designated switch in the network before multicasting to
the replica servers. The single switch serves as a serialization

point and ensures that, with high probability, all replicas re-
ceive client requests in the same order. NOPaxos [43] extends
this serialization approach by using programmable switch
ASICs to provide guarantees of request ordering. The des-
ignated switch stamps a sequence number into each client
request. Receivers then ensure consistent ordering by pro-
cessing requests only in sequence number order. Additionally,
sequence numbers allow replicas to identify dropped mes-
sages (by detecting gaps in the sequence).

Eris [42] further generalizes the sequencing approach to
support requests that are sent to multiple replication groups
(e.g., to implement fault-tolerant distributed transactions). The
sequencer switch maintains a counter for each group, and on
each client request, atomically increments the counter value
for all destination groups. These counter vectors ensure a
consistent ordering of all multi-group operations, while still
allowing receivers to independently detect dropped messages.

2.2 Limitations of In-Network Serialization

Prior work [42, 43, 56] has demonstrated the performance
benefits of the network ordering approach and its applicability
to several classes of distributed systems. However, the in-
network serialization approach employed by existing network
ordering solutions has important limitations.

Scalability bottleneck. A key requirement in the serializa-
tion approach is that all client requests need to go through
a single sequencer device. This device can become a perfor-
mance bottleneck. While in-switch sequencers can sustain a
far higher sequencing rate than the server-based replicas that
actually execute operations, sequencer capacity can still be a
scalability limit for sharded database systems like Eris [42]
where one sequencer serves many replica groups. Moreover, if
the sequencer is implemented on an end host, as can be more
practical for many deployments, poor CPU-based packet pro-
cessing performance is at odds with the horizontal scaling
capability of the system.

Prolonged system downtime. Being a serialization point
of all client requests, a failure in the sequencer will result
in unavailability of the entire distributed system. Sequencer
failover is more complicated than traditional recovery (e.g.,
changing leaders in a Paxos deployment) because it couples
network rerouting with application-level recovery. To resume
operation, the network control plane must first detect the fail-
ure and carry out network-wide routing changes to redirect
client traffic to a new sequencer, and afterwards begin a view
change procedure to ensure system state is consistent; only
then can replicas process requests from the new sequencer.
Rerouting in a large data center network is expensive: previ-
ous studies [38, 42, 43] show that updating forwarding tables
in a single switch alone can take more than 200 ms. Before
this lengthy rerouting procedure is complete, the system will
remain unavailable.

294 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Worsened data center network properties. Data center
networks are carefully engineered to provide high reliability,
performance, and cost efficiency [2, 27, 49]. By adding re-
dundant paths to the network and using protocols like ECMP,
these networks can effectively load balance network traffic,
tolerate link and switch failures, and sustain high bisection
bandwidth. Serializing traffic through a single switch, how-
ever, reduces the number of available paths and can easily
nullify these desirable network properties. For example, it can
lead to link congestion at the sequencer switch.

Incompatible with multi-pipeline switches. Many switch
ASICs scale out processing capacity by using multiple (e.g.,
2–8 [18]) separate pipelines, with few or no shared resources.
Existing sequencing approaches, however, update and atom-
ically read a single copy of the sequence number. This re-
quirement restricts deploying network sequencing logic to
a single switch pipeline [36]. This not only limits the maxi-
mum throughput of the network sequencer to a fraction of the
switch capacity, it complicates cabling and routing because
specific physical ports are bound to each pipeline.

3 Sequencing with Multiple Sequencers
Hydra allows multiple active sequencers to work concurrently,
preventing a single sequencer from becoming a scalability
bottleneck or a single point of failure. This allows Hydra to
support new deployment models for network sequencers.

3.1 Deployment Options

Hydra supports a spectrum of deployment models.

Root switches. Prior work envisioned using programmable
switches at the root of a tree topology as sequencers, leverag-
ing their centrality in the data center network. Such switches
can handle high request load, making scalability beyond a
single switch’s capacity a less urgent concern, but they do so
through the use of multiple ASICs and forwarding pipelines
which prior sequencer designs do not support. Hydra can also
improve availability by decoupling sequencer failover from
reroute latency of the underlying network (§7.5). In addition,
using multiple Hydra sequencers rather than routing all se-
quenced traffic through one switch provides path diversity,
which allows better link-level load balancing and resilience
to link failures (§7.4).

ToR switches. Many existing data center architectures
cannot deploy programmable switches at the network core:
they use large, multi-ASIC chassis switches at the root
layer [15, 27], and programmable switches are not available
in this configuration. For example, Tofino-based switches are
only available in smaller 32/64-port configurations. For many
scenarios, using top-of-rack switches as sequencers is thus a
more practical alternative. In such deployments, scalability
and fault tolerance are acute concerns: ToR switches fail more
commonly [25] and frequently experience congestion on their

uplinks. Hydra can avoid both problems by employing multi-
ple sequencers (§7.4).

Sequencer appliances. In our experience, incrementally
deploying new functionality in existing switches, ToR or oth-
erwise, can be a challenge: coordinating updates with existing
switch functionality and validating the correctness of a cus-
tom data plane are both obstacles. An appealing alternate
approach is to employ a cluster of switches as dedicated “se-
quencer appliances” attached to the network as edge devices
rather than being part of the fabric [57], as proposed for other
network function accelerators [37, 64]. Again, fault tolerance
of individual sequencers and congestion on their network
links (which may not exploit the full bandwidth of the switch)
are major concerns, which Hydra can alleviate.

End hosts. A final approach eschews specialized hardware
in favor of using end hosts as sequencers [43]. This offers
obvious deployment benefits and may be the only practical
approach for many environments. However, both scalability
and fault tolerance are critical here: Eris’s end-host sequencer
barely handles the load of a 15-shard database [42], making
it an option only for smaller deployments. Hydra’s multiple-
sequencer approach allows it to go beyond this limit, provid-
ing a practical, scalable approach for environments where
specialized hardware is unavailable (§7.1.3).

3.2 Addressing and Routing

Regardless of deployment options, Hydra integrates easily
with existing data center routing structures. Each Hydra de-
ployment has a unique IP address. Each sequencer in the de-
ployment advertises its IP address via BGP anycast, allowing
routes to be dynamically updated as sequencers join or leave
the deployment. Messages are routed to individual sequencers
using traditional shortest-path routing and load balancing tech-
niques, e.g., ECMP. Alternatively, in an SDN-oriented design
with a centralized controller, the network controller can install
appropriate anycast routes for the group of sequencers.

Apart from these routing changes, Hydra does not require
any changes to any other elements in the network besides the
sequencers themselves. This is a key design constraint, and
one that differentiates Hydra from other ordering approaches
like 1Pipe [41], which exchanges timestamps between every
switch, as well as complementary techniques like RDMA,
which requires complex in-network flow control [29].

4 Hydra: Serialization-Free Network Ordering
4.1 High-Level Abstraction

The core abstraction provided by Hydra is a group commu-
nication protocol. A Hydra deployment consists of receiver
groups, and each group contains one or more receivers. Hydra
offers a groupcast primitive, where a sender specifies one or
multiple groups as the destination, and the message is mul-
ticast to the receivers in the destination groups. The Hydra
groupcast primitive provides the following properties to the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 295

participants:
• Partial Ordering. Hydra groupcast messages are partially

ordered (the partial order relation is denoted as ≺) – all
groupcast messages with overlapping destination groups
are comparable. If groupcast message m1 is ordered before
m2 (m1 ≺m2) and a receiver receives both m1 and m2, then
every receiver delivers m1 before m2.

• Unreliable Delivery. Hydra only offers best effort mes-
sage delivery. A groupcast message is not guaranteed to be
delivered to any of its recipients.

• Drop Detection. If a groupcast message is not delivered
to all its recipients, the primitive will notify the remaining
receivers by delivering a DROP-NOTIFICATION. More for-
mally, let R be the set of receiver groups for message m,
then either one of the following two conditions holds: all
receiver groups in R deliver m or a DROP-NOTIFICATION
for m, or none of the receiver groups in R delivers m or a
DROP-NOTIFICATION for m.

These are the same guarantees provided by the network ab-
stractions in NOPaxos and Eris [42, 43]. However, critically,
Hydra allows scalability, fast failure recovery, and load bal-
ancing across sequencers, where previous designs fell short.

4.2 Prior Approach: Centralized Sequencer

A recent line of work [6, 7, 42, 43, 63] proposed to use ded-
icated devices in the network – a programmable switch, a
network processor, or an end-host server – as a centralized se-
quencer to establish message ordering. In particular, Eris [42]
builds a multi-sequenced groupcast primitive that provides
the same set of guarantees as we specified in §4.1.

To implement multi-sequenced groupcast, a centralized se-
quencer maintains a sequence number for each group in the
system. Senders of a groupcast message encode all recipi-
ent groups in a special packet header, and the packet is first
routed to the sequencer. Upon receiving a groupcast packet,
the sequencer atomically increments the sequence number for
each recipient group, and writes a multi-stamp into the packet.
The multi-stamp contains a set of ⟨group-id, sequence-num⟩,
one for each recipient group. The groupcast packet is then
forwarded to each receiver in each receiver group.

Groupcast receivers track the next sequence number they
expect from the sequencer. When a receiver receives a group-
cast packet, it checks the sequence number that corresponds
to its group ID in the multi-stamp. The receiver rejects the
packet if the sequence number is lower than the expected
value (indicating out-of-order or duplicated messages), and
delivers a DROP-NOTIFICATION to the application if the se-
quence number is higher than expected.

Multi-sequencing provides the three properties of §4.1. By
incrementing sequence numbers atomically, the sequencer en-
sures that if two groupcast messages have overlapping groups,
all receivers in those groups will deliver the two messages
in a consistent order. By maintaining per-group sequence
numbers, any packet loss from the sequencer to a receiver

Algorithm 1 SequencerHandlePacket(pkt)
id: sequencer ID
N: total number of Hydra groups
clk: switch physical clock
seq[N]: sequence number for each group

1: pkt.id← id
2: pkt.c← clk
3: for grp in pkt.grps do
4: pkt.seq[grp]← ++seq[grp]
5: end for
6: Forward pkt

will result in a gap in the received sequence numbers, and
hence a DROP-NOTIFICATION. However, using a centralized
sequencer introduces the limitations previously described.

4.3 Consistent Ordering with Multiple Sequencers

Naïvely applying multi-sequenced groupcast to a multi-
sequencer deployment violates the guarantees listed in §4.1.
Suppose each sequencer independently maintains sequence
numbers for each receiver group, and groupcast messages
can be forwarded to any of the sequencers. Consider two
groupcast messages m1 and m2, both destined to group G1,
but routed through two sequencers. The two sequencers may
write the same sequence number (since they maintain se-
quence numbers independently) for G1 into m1 and m2. When
receivers in G1 receive m1 and m2, they cannot consistently
order the messages while providing drop detection. Break-
ing ordering ties with sequencer ID, for example, would be
consistent across receivers, but a receiver that only received
the “larger” of m1 and m2 would have no way of inferring the
existence of the “smaller.”

To enforce all the guarantees in §4.1 while scaling to mul-
tiple sequencers, we propose a new approach by combin-
ing loosely synchronized clocks across sequencers and per-
sequencer sequence numbers to establish consistent ordering
and detect drops, and using periodic flush messages to ensure
receiver progress.

4.3.1 Physical Clocks for Message Ordering

Hydra uses a combination of sequence numbers and physical
clocks to order messages. Concretely, each Hydra sequencer
possesses a local physical clock that is strictly monotoni-
cally increasing; each sequencer also maintains a sequence
number for each receiver group. Physical clocks are loosely
synchronized across sequencers, but this is not required for
safety; clock skew can only slow progress. Safety of Hydra
only depends on physical clocks not drifting backwards. This
requirement is already common practice: existing clock syn-
chronization protocols such as NTP ensure that clocks can
only move forward [51].

Each Hydra groupcast message is routed to one sequencer
before being forwarded to all receivers in each destination
group. When a sequencer receives a groupcast message, in
addition to incrementing the sequence number for each recip-

296 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 2 ReceiverHandlePacket(pkt)
M: total number of sequencers
gid: receiver group ID
bu f : ordered queue of undelivered messages
s[M]: largest sequence number received (per sequencer)
c[M]: largest clock value received (per sequencer)

1: if pkt.seq[gid]≤ s[pkt.id] then
2: return
3: end if
4: c[pkt.id]←max{c[pkt.id], pkt.c}
5: Deliver DROP-NOTIFICATION for

(s[pkt.id]+1 . . . pkt.seq[gid]−1) (inclusive)
6: s[pkt.id]← pkt.seq[gid]
7: if pkt is not a flush message∧ pkt ̸∈ bu f then
8: Add pkt to bu f
9: end if

10: for p in bu f do
11: if p⪯min{(c[m], m) : m ∈ (1 . . .M)} then
12: Dequeue p from bu f and deliver p
13: else
14: break
15: end if
16: end for

ient group and inserting a multi-stamp, it writes its current
clock value into the packet (Algorithm 1 line 2-5). Note that
reading the clock value and incrementing sequence numbers
must be done in an atomic block. Strict monotonicity of phys-
ical clocks and the above atomicity requirement ensure the
following: for any two groupcast messages m1 and m2 with
an overlapping recipient group g sequenced by the same se-
quencer, s1 ̸= s2 ∧ (s1 < s2 ⇐⇒ c1 < c2), where s1 and s2
are the assigned sequence numbers for g, and c1 and c2 are
the assigned clock values.

With a clock value inserted into each groupcast message,
Hydra defines the partial ordering (≺) of groupcast messages
in the following way: for groupcast messages m1 and m2
with overlapping recipient groups and clock values c1 and
c2 sequenced by sequencers with IDs i and j, m1 ≺ m2 if
c1 < c2 ∨ (c1 = c2 ∧ i < j) 2. Breaking ties between equal
clock values using sequencer IDs is necessary in guaranteeing
the partial order property in §4.1.

Hydra groupcast receivers deliver groupcast messages to
their users according to our partial order. If a receiver re-
ceives groupcast messages m2 before m1 with m1 ≺ m2, it
must either deliver a DROP-NOTIFICATION for m1 before de-
livering m2 or add m2 to a buffer until it receives m1. However,
delivery based on physical clocks alone is not strong enough
to detect message drops.

4.3.2 Combining Physical Clocks and Multi-Stamps for
Drop Detection

Attaching sequence numbers to messages offers the useful
property that any dropped message can be detected by observ-

2For ease of exposition, we slightly abuse the ≺ notation: it applies to
both groupcast messages and (clock value, sequencer ID) tuples.

ing gaps in the number sequence. Unfortunately, this property
is lost when using physical clocks to order messages – a re-
ceiver seeing a message with a clock value c cannot determine
if it missed any message with c′ < c. To detect message drops,
Hydra combines physical clock values and sequence numbers
from multiple sequencers. Hydra receivers buffer incoming
messages and deliver them in clock value order, but only once
they have determined – based on sequence numbers – that
no message with a lower clock value from another sequencer
will be delivered.

Specifically, each Hydra receiver maintains two values for
each sequencer i (Algorithm 2): the largest group sequence
number s[i] it has received from i, and the largest clock value
c[i] among messages it has received from i. Let cmin be the
minimum value among all (c[i], i) tuples, ordered by ≺. A
Hydra receiver delivers messages using the following rules:
(i) it delivers pending groupcast messages in clock value

and sequencer ID order (line 10),
(ii) it will only deliver a single message or DROP-

NOTIFICATION for each sequence number from each se-
quencer (lines 1 and 6),

(iii) it only delivers groupcast messages m if m⪯ cmin (line
11), and

(iv) when receiving groupcast message m with sequence num-
ber s from sequencer i, if s > s[i]+1, it delivers a DROP-
NOTIFICATION for each message from s[i]+ 1 to s− 1
(line 5).

From our discussion in §4.3.1, rules (i) and (ii) ensure the
partial ordering property of Hydra groupcast. To show how
rules (iii) and (iv) enforce drop detection, we leverage a key
invariant: for a receiver r in group g and for any groupcast
message m that has g as a recipient group, if m⪯ cmin, then
r has either received m, or has received another groupcast
message m′ stamped with a higher sequence number from
the same sequencer. With this invariant, the drop detection
property of Hydra groupcast is guaranteed, since r either de-
livers m (m is received and rules (i) and (iii)), or delivers a
DROP-NOTIFICATION for m (m′ is received and rule (iv)). As
an optimization, Hydra receivers can delay the delivery of
DROP-NOTIFICATIONs until a message is needed to advance
cmin. Because Hydra is robust to message reordering, this does
not affect the correctness of the receiver protocol.

4.3.3 Ensuring Progress with Flush Messages

Our groupcast design so far ensures all the properties listed
in §4.1, but has one remaining issue. In order for a receiver
to make progress in delivering messages, it needs to receive
groupcast messages from all sequencers to advance cmin. For
instance, if a receiver has received message m≻ cmin, to de-
liver m, the receiver needs to receive messages from other se-
quencers to advance cmin. Consequently, any single sequencer
that stays idle for an extended period of time would impede
the progress of all groupcast receivers in the system.

To ensure progress in message delivery, each sequencer

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 297

Message Legend
M1 = ⟨G, 1, {(1,1),(2,1)}, 42⟩ M2 = ⟨G, 2, {(1,1)}, 42⟩ F1 = ⟨F, 1, {(1,3),(2,2)}, 80⟩
M3 = ⟨G, 2, {(1,2)}, 85⟩ M4 = ⟨G, 2, {(1,4)}, 90⟩ F2 = ⟨F, 1, {(1,3),(2,4)}, 98⟩

{} {M1}
M1 {M2}

Delivers M1

M2
{}

Delivers ⟨D, 1, 2⟩
Delivers M2

F1
{M3}

M3 {M3,M4}
Delivers ⟨D, 2, 3⟩

M4
{}

Delivers M3
Delivers M4

F2

Figure 1: An example execution of the Hydra message delivery protocol. At every step, the state of the Hydra buffer is displayed along
with any messages delivered to the application. Hydra groupcasts are written ⟨G, sequencer, multi-stamp, timestamp⟩, while
flush messages are written ⟨F, sequencer, multi-stamp, timestamp⟩, and DROP-NOTIFICATIONs are written ⟨D, sequencer,
sequence_num⟩. A multi-stamp is a set of (group, sequence_num) tuples. This execution follows a receiver in group 1 receiving
messages from two sequencers, 1 and 2. Transitions between states of the receiver show the message being received.

periodically sends a flush message to all groupcast receivers
containing its current clock value and the latest sequence num-
ber that the sequencer has sent to each receiver group (without
incrementing). When a receiver receives a flush message from
sequencer i, it follows the same procedure (§4.3.2) to advance
c[i], cmin, and s[i]. Applications are unaware of flush messages.
Receivers, however, still use the sequence number in flush
messages to deliver DROP-NOTIFICATIONs, following rule
(iv) (Algorithm 2 line 5). Again, Hydra receivers can delay
the delivery of DROP-NOTIFICATIONs until they are needed
as an optimization.

The above protocol guarantees that, in the absence of fail-
ures (we discuss failure handling below), all received group-
cast messages on every receiver will eventually be delivered.
Clock divergence on different sequencers can delay message
delivery (up to the clock skew), since cmin on each receiver
depends on the sequencer with the slowest clock value, but
cannot violate any of the safety properties.

Figure 1 shows an example execution of Hydra from the
point of view of a single receiver receiving groupcast and
flush messages from two sequencers. At every step of the
execution, the receiver accepts an incoming message and
delivers groupcasts and DROP-NOTIFICATIONs and retains
pending groupcasts in its local buffer according to the rules
defined in §4.3.2.

4.4 Handling Sequencer Failures

If a sequencer fails or link failures occur between a sequencer
and some of the groups, some (or all) groupcast receivers
will stop delivering messages, since they no longer receive
messages from the failed sequencer and are unable to advance
cmin. We use a reconfiguration protocol to address this issue.

Concretely, each Hydra deployment uses a centralized,
fault-tolerant configuration service to manage a sequence
of configurations. Each configuration specifies the set of
sequencers and groupcast receivers (here we only discuss
changes to sequencers across configurations). Groupcast re-
ceivers also store the current configuration locally. When a
receiver suspects that sequencer j in the current configuration
n has failed, e.g., when it has not received messages from

sequencer j in a timeout period, it notifies the configuration
service. The configuration service creates a new configuration
n+1 with sequencer j removed, and sends the configuration
to all groupcast receivers.

When groupcast receivers receive the new configuration,
they run an agreement protocol to agree on the last sequence
number each receiver group should deliver from the failed
sequencer. To do so, each Hydra receiver additionally stores,
for each sequencer, the largest sequence number it has seen
in a multi-stamp for each receiver group (not just its own). To
continue the sequencer removal process, each receiver sends
a message with the largest sequence numbers (for all groups)
it has received from the failed sequencer to the configuration
service and stops processing messages with higher sequence
numbers from that sequencer. Once the configuration service
receives a quorum of these messages from each receiver group,
it aggregates them to derive the highest sequence number each
receiver group has or should have received from the failed se-
quencer. The configuration service sends a removal message
to each group. A groupcast receiver delivers all necessary
DROP-NOTIFICATIONs based on this removal message and
continues to deliver messages following the rules in §4.3.2;
the removal message serves as a final flush from the failed
sequencer (with an infinitely large timestamp). Once all pend-
ing messages from the failed sequencer have been delivered,
the receiver can safely transition to the new configuration.
To avoid inconsistencies caused by different configurations,
a receiver always attaches its current configuration number
when delivering messages to the application.

Discussion. How does Hydra’s recovery protocol compare,
in terms of availability, to single-sequencer systems like those
originally used by NOPaxos and Eris? Like these systems,
Hydra experiences an interruption in message delivery caused
by the failure of a sequencer. However, Hydra receivers can
resume delivering messages from the other sequencers once
they run the above protocol, which requires coordination only
between the receivers, not the network layer. Thus, its un-
availability period depends only on failure detection time
and the agreement protocol latency, which can be orders-of-

298 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

magnitude shorter than the duration of network rerouting. It
can also support more aggressive sequencer removal with
shorter timeouts. Even though deploying more sequencers
increases sequencer failure probability, by avoiding network
rerouting on the critical path, Hydra still achieves overall
improvement in system availability.

Adding new sequencers. To add a sequencer k to the sys-
tem, the configuration service similarly creates a new con-
figuration n+1 with sequencer k added, and sends the con-
figuration to all receivers. Once a receiver receives the new
configuration, it stops delivering groupcast messages to the
application, and waits until it receives a flush message from
the new sequencer k that has a higher timestamp than its latest
delivered message. It then sends that flush message to the con-
figuration service. When the configuration service receives a
quorum of flush messages from each receiver group, it picks
the flush message with the highest timestamp, denoted as tk,
and broadcasts that flush to all receivers; tk effectively serves
as the starting time of the new configuration. A receiver then
resumes delivering messages for the previous configuration,
until the next-to-be-delivered message has timestamp big-
ger than tk. At that point, the receiver transitions to the next
configuration, sets s[k] to the sequence number in the flush
message it receives from the configuration service, and starts
delivering messages from the new sequencer. Note that if an
old sequencer (removed previously) rejoins in a new config-
uration, the sequencer’s ID is reassigned to a value unique
from all other IDs, and its sequence numbers are all reset.

4.5 Correctness

We provide a detailed discussion of the safety of the Hy-
dra protocol in Appendix B. In addition, a TLA+ speci-
fication [40] of the Hydra groupcast and sequencer addi-
tion/removal protocols (Appendix C) has been model checked
against Hydra’s safety guarantees.

The liveness of the Hydra protocol is straightforward: as
long as (1) receivers continue to receive groupcasts or flush
messages from non-failed sequencers, and (2) the configura-
tion service remains available and can communicate with a
quorum of each receiver group to remove failed sequencers
and complete the addition of new sequencers, Hydra group-
casts will be delivered.

4.6 Optimizations

Flush messages facilitate progress of Hydra receivers. How-
ever, generating flush messages at an overly aggressive rate
will adversely affect a receiver’s performance, as these flush
messages consume network, CPU, and I/O resources. To strike
a balance between message delivery latency and throughput,
we propose two optimizations: receiver-side flush message
solicitation and in-network flush message aggregation.

4.6.1 Receiver-Side Flush Message Solicitation

In our basic protocol described in §4.3.3, sequencers periodi-
cally send flush messages to all receivers. We can manually
tune the flush message generating interval T on sequencers to
adjust the latency/throughput trade-off: a smaller T improves
message delivery latency but increases the load on the re-
ceivers, while a larger T has the opposite effect. However,
since flush messages are broadcast to all receivers, this one-
value-for-all policy cannot account for the different processing
capacities and load levels on different receivers. Moreover,
blindly sending flush messages every T time unit, particularly
when T is small, can result in significant amount of unneces-
sary traffic. To see why this is the case, consider a receiver
that currently has no message to deliver. Any flush message
sent to this receiver, before the next Hydra message (with
a higher clock value) arrives, will have no effect on the re-
ceiver’s delivery progress and thus are strictly unnecessary.

Our key observation is that receivers, not sequencers, have
perfect knowledge of when flush messages are required: re-
ceivers only need flush messages to make progress when
they possess undelivered messages. We therefore propose a
receiver-centric optimization, in which sequencers do not ac-
tively generate flush messages; instead, receivers explicitly
request flush messages when needed. This optimization also
enables various solicitation policies on the receivers. To op-
timize for latency, a receiver can immediately request flush
messages when it receives groupcast messages that cannot be
delivered. To optimize for throughput, it can delay requesting
flush messages, equivalent to a batching approach. It can also
apply a more sophisticated approach where it determines the
solicitation delay based on the current load of the receiver,
adaptively optimizing for both latency and throughput.

4.6.2 In-Network Flush Message Aggregation

Our message delivery rules (§4.3.2) require that a receiver
delivers a groupcast message if and only if it has received mes-
sages with higher clock values from all other sequencers. The
implication of this rule is that, the number of flush messages
required to deliver a groupcast message increases linearly
with the number of sequencers. To further reduce the pro-
cessing overhead caused by excessive flush messages, we
propose an advanced optimization technique inspired by re-
cent in-network aggregation work. Concretely, we leverage
ToR programmable switches connected to Hydra receivers
to track each sequencer’s clock value and sequence numbers.
These numbers are updated when a ToR switch receives a
flush message, but it does not immediately forward the flush
message to the receiver. Only when the minimum stored
clock value becomes large enough, the switch sends a single
aggregated flush message containing all the clock values and
sequence numbers to the receiver. To accurately determine
this threshold, receivers attach the largest clock value among
all undelivered messages in its flush message solicitation re-
quest. The ToR switch uses this value as the clock threshold,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 299

which guarantees that the aggregated flush message would
allow the receiver to deliver all undelivered messages in the
buffer (those when the solicitation request was made). By
applying our in-network aggregation optimization, the num-
ber of flush messages a receiver processes remains constant
regardless of the number of sequencers.

5 Hydra Implementation
A Hydra deployment contains a dynamic set of groupcast
senders, receivers, and sequencers, managed by a configura-
tion service. We use a centrally-controlled SDN approach
for managing groupcast routing: a POX [58]-based SDN
controller installs rules that route groupcast messages to a
randomly-selected reachable sequencer. When using end-host
sequencers, we use a source routing approach: the configura-
tion service tracks addresses of sequencers, which are cached
on Hydra senders. When sending groupcast messages, senders
randomly pick one of the sequencers and send to it via unicast.
No special network routing is required.

Hydra sequencers each maintain minimal state: a unique
sequencer ID, a sequence number for each receiver group, and
a physical clock that is monotonically increasing. One of our
key design principles is simplicity. It enables us to implement
a Hydra sequencer efficiently on different hardware platforms.

In-network sequencing using programmable switches.
Implementing Hydra sequencers in the data plane of network
switches offer the highest sequencing performance, as cur-
rent programmable switches can process billions of packets
per second, with switching latency consistently under a few
hundred nanoseconds. Hydra groupcast is implemented as
an application-level protocol atop UDP. We reserve a special
UDP port for Hydra groupcast, and append a customized Hy-
dra header after the UDP header. The Hydra header includes a
bitmap to specify the destination groups, a vector of sequence
numbers (one for each destination group), and a single clock
value. The switch implementation uses one switch register
array element for each receiver group to store its current se-
quence number. The switch checks each bit of the bitmap,
and for each enabled bit, increments the corresponding se-
quence number register and writes the sequence number into
the Hydra header. Since there is no dependency across groups
when processing a groupcast message, bit checking and se-
quence number updating for all destination groups can be
done in parallel. This enables us to significantly reduce the
required pipeline stages, allowing us to scale to higher num-
ber of groups. Subsequently, the switch stamps the hardware
clock time into the header, and uses the replication engine to
multicast the packet to receivers.

End-host Sequencers. Implementing Hydra sequencers on
end-host servers offers better flexibility and portability, partic-
ularly attractive for deployments that cannot deploy special-
ized hardware. The downside is comparatively lower packet
processing performance. Our Hydra protocol, however, en-

ables scaling sequencing performance by adding additional se-
quencers. As we will show in our evaluation (§7.1.3), through-
put of Hydra scales linearly with the number of sequencers.

Sender and receiver libraries. Hydra provides user-space
libraries for sending and receiving groupcast messages. In
addition to coordinating with the configuration service to track
active sequencers and groups, this library also implements
receiver-side buffering to deliver messages in the right order,
and the flush message solicitation policies of §4.6.1. We have
implemented two I/O stacks for the libraries. First, a polling-
based DPDK [23] stack for efficient, kernel-bypassed packet
processing. Second, a Linux-based transport using sockets
and libevent [45] for better compatibility. Our evaluation in
§7 uses the DPDK stack.

6 Building Distributed Systems using Hydra
Our Hydra groupcast primitive has a unique set of trade-offs
between its guarantees and efficiency of the implementation.
Compared to best effort primitives such as unicast and IP
multicast, Hydra offers strong message ordering guarantees;
compared to atomic broadcast and atomic multicast primitives,
Hydra does not guarantee reliable message delivery, but can
be implemented efficiently using a single phase protocol. In
order to show the benefits of its design, we applied Hydra to
two recent distributed systems – NOPaxos and Eris [42, 43] –
and built a state machine replication called HydraPaxos and a
distributed transaction processing system called HydraTxn.

Hydra’s groupcast provides the same guarantees as the
network protocols used in NOPaxos and Eris (Ordered Unre-
liable Multicast and Multi-sequenced Groupcast). Therefore,
Hydra is readily composed with these existing protocols. Hy-
draPaxos and HydraTxn use the NOPaxos and Eris protocols
to tolerate server faults and handle DROP-NOTIFICATION,
while use Hydra to provides message ordering guarantees and
allows the adding and removing of sequencers. The only nec-
essary modifications to NOPaxos and Eris are the disabling of
their sequencer failure handling protocols, as this is handled
by Hydra itself. Both HydraPaxos and HydraTxn can commit
operations in a single round trip in the normal case.

HydraPaxos. HydraPaxos is a state machine replication
system based on NOPaxos that tolerates crash failures of
less than half of the replicas (or equivalently, with 2 f + 1
replicas, HydraPaxos tolerates f crash failures). It guarantees
linearizability [30] as long as the application state machine
is deterministic. Each HydraPaxos deployment registers a
unique Hydra groupcast address. HydraPaxos clients send
state machine operations as a groupcast message with a single
destination group. Each replica in a HydraPaxos deployment
acts as a single Hydra receiver of the group. HydraPaxos
operations are handled in a single round trip in the normal
case. Once Hydra delivers an operation to the replicas, the
replicas use the NOPaxos protocol to ensure operations are
committed durably. Briefly, each replica adds the operation to

300 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

its log, and the leader replica executes the operation against
the current state. Clients wait for consistent replies from a
majority of replicas (including the leader) before considering
a reply committed. When a DROP-NOTIFICATION is delivered
to a replica, replicas need to reach consensus on the fate of
the message – either to process or to permanently ignore – to
ensure linearizability. The replica first attempts to recover the
missing message by contacting other replicas in the group. If
replicas fail to recover the dropped message, they coordinate
(driven by the leader) to commit the message as a NO-OP.

HydraTxn. HydraTxn, is a fault-tolerant, distributed trans-
action processing system. HydraTxn partitions the entire data
store into multiple shards with each shard replicated on multi-
ple servers. Clients wrap data reads and writes into transac-
tions. HydraTxn guarantees atomic, strict serializable execu-
tion of the transactions, and tolerates failures of less than half
of the replicas in each shard. Similar to HydraPaxos, each Hy-
draTxn deployment uses a unique Hydra groupcast address.
Each shard of the deployment is assigned a unique group, and
each replica in the shard registers a Hydra group receiver,
delivering Hydra messages and DROP-NOTIFICATIONs. For
transactions that qualify as independent transactions – stored
procedures that has no dependency across shards and requires
no client interactions – clients send the transaction in a single
Hydra groupcast message destined to all the involved shards.
HydraTxn also supports more general transactions by divid-
ing them into multiple independent transactions and using
two-phase locking on the servers to ensure isolation. As in
HydraPaxos, independent transactions are handled in a single
round trip in the normal case. Replicas in each shard involved
in the transaction log the transaction and reply to the client,
with the leader of each shard additionally executing the trans-
action. Clients wait for majority quorums from each shard
to reply before considering a transaction committed. Since
a transaction groupcast may involve multiple shards, DROP-
NOTIFICATION requires all involved shards, not just the local
group, to reach consensus on the reception/dropping decision.
Similar to Eris [42], we use a logically separate, fault-tolerant
failure coordinator service to manage this agreement protocol.

7 Evaluation
Our Hydra implementation includes Hydra host libraries,
switch data and control planes, end-host sequencers, and Hy-
dra co-designed replication (HydraPaxos) and transactional
(HydraTxn) protocol implementations. The switch data plane
is implemented in 1040 lines of P4 [11] code, and the switch
control plane is written in 493 lines of Python code. We im-
plemented the end-host sequencer, Hydra host libraries, the
HydraPaxos protocol, and the HydraTxn protocol in approxi-
mately 8000 lines of C++ code.

Our evaluation testbed consists of 10 nodes connected to
an APS BF6064X-T (Barefoot Tofino-based) programmable
switch. We ran servers/replicas on nodes with dual 2.90GHz
Intel Xeon Gold 6226R processors (32 total cores), 256 GB

RAM. We used the remaining nodes to run clients and end-
host sequencers. Clients use 2.10GHz Intel Xeon Gold 6230
processors (20 total cores) and 96 GB RAM. All nodes
ran Ubuntu Linux 20.04 and use Mellanox ConnectX-5
100 GbE NICs. We statically partitioned resources on the pro-
grammable switch to implement multiple switch sequencers.

7.1 Hydra Groupcast Microbenchmarks

We first used microbenchmarks to evaluate the performance
of our Hydra groupcast primitive. We ran closed-loop clients,
each sending groupcast messages to a set of receiver groups.
When a Hydra receiver delivers a groupcast message, it imme-
diately replies to the client. Clients send the next groupcast
message when they receives replies from each receiver in all
destination groups (we assume no receivers fail).

We compared Hydra to two other groupcast implementa-
tions. First, we implemented a version of genuine atomic
multicast [28]. To atomic multicast a message, a client first
sends the message to all the receivers in each destination
group. Receivers in each group run a consensus round to
agree on a message timestamp and send the group timestamp
to the client. The client picks the highest timestamp as the
final message number, and forwards the message number to
all involved group receivers. Receivers deliver messages in
message number order. Second, we implement an unordered
multicast – receivers immediately deliver client messages
without any ordering guarantee – as a baseline.

7.1.1 Latency and Throughput

In the first experiment, we used a single group with three
receivers to evaluate the base case performance. Two switch
sequencers were deployed when evaluating Hydra, and we
applied the receiver-side solicitation optimization (§4.6.1).
We gradually increased the offered client load, and measured
both the latency and the throughput of each system. As shown
in Figure 2a, Hydra achieves a 378% increase in throughput
and 42% reduction in latency compared to atomic multicast.
Running consensus among group receivers for each message
adds substantial throughput and latency overheads to atomic
multicast. On the contrary, Hydra receivers require no coor-
dination among each other to deliver messages in consistent
order. In the worst case, they wait for a half RTT (receiver
→ switch→ receiver) to receive flush messages in order to
deliver a groupcast. This overhead is reflected in Hydra’s
small latency penalty (3 µs) compared to the baseline. As
Hydra receivers can deliver messages without explicit flush
messages when sequencers receive enough traffic, Hydra is
able to attain throughput within 39% of the baseline.

Increasing group size. Next, we added more receivers to
the group. When we increased the group size threefold (from
three to nine), throughput of Hydra dropped only by 8%, and
its latency remained the same. Hydra scales well to larger
group sizes because receivers can independently determine
the correct order of messages with no coordination. Perfor-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 301

0.0M 0.2M 0.5M 0.7M 1.0M 1.2M 1.5M
Throughput (msgs/s)

0

20

40

60

80

100

Av
er

ag
e

La
te

nc
y

(μ
s)

Atomic Multicast
Hydra Groupcast

Unordered

(a) Latency and throughput for a single group of three
receivers

2 4 6 8 10 12 14
Number of Groups

0

10

20

30

Av
er

ag
e

La
te

nc
y

(μ
s)

Atomic Multicast
Hydra Groupcast

Unordered

(b) Latency with increasing number of groups

2 4 6 8 10 12 14
Number of Groups

0.0M

2.0M

4.0M

6.0M

8.0M

10.0M

Th
ro

ug
hp

ut
 (m

sg
s/

s)

Atomic Multicast
Hydra Groupcast

Unordered

(c) Maximum throughput with increasing number of
groups

Figure 2: Latency and throughput of running a micro multicast benchmark. We use two switch sequencers for Hydra, and compare its
performance to an atomic multicast and an unordered multicast protocol. For (b) and (c), we use a group size of three.

0.0M 2.0M 4.0M 6.0M 8.0M 10.0M 12.0M
Throughput (msgs/s)

0

50

100

150

200

Av
er

ag
e

La
te

nc
y

(μ
s)

SOL (10μs)
SOL (100μs)
GEN (10μs)

GEN (10μs) + AGG
GEN (100μs)

ADP + AGG
Unordered

Figure 3: Impact of different flush message policies and parameters
on performance of Hydra. The policies are: the receiver solicitation
strategy (SOL), sequencer generation strategy (GEN), adaptive so-
licitation strategy (ADP), ToR switch aggregation (AGG).

mance of atomic multicast, however, degrades proportionally
to the number of receivers as the cost of consensus increases.
At group size of nine, Hydra outperforms atomic multicast by
567% in throughput and 56% in latency.

Scaling to more groups. To test how well Hydra scales
to larger number of groups, we fixed the group size to three
receivers, and increased the total number of groups. We used a
workload where 80% of the groupcast messages were destined
to a single group, and the remaining 20% had two destination
groups. Clients chose destination groups following a uniform
distribution. As shown in Figure 2b and Figure 2c, Hydra’s
throughput and latency continue to closely match the base-
line. At 15 groups, throughput of Hydra is within 25% of the
baseline, and 340% higher than atomic multicast.

7.1.2 Impact of Flush Messages

As we discussed in §4.6, policies for generating and handling
flush messages can affect Hydra performance. To evaluate
their effectiveness, we ran 15 groups each with three receivers,
deployed four switch sequencers, and measured the latency
and throughput of Hydra with increasing client load. We apply
three flush message policies and show their impact in Figure 3:
(1) sequencers periodically generate flush messages (GEN),

(2) receivers solicit flush messages from sequencers after a
delay (SOL), (3) receivers adaptively solicit flush messages
based on current load (ADP). We also examine the impact
of having ToR switches aggregate flush messages from se-
quencers (AGG).

When we use a higher delay for generating or soliciting
flush messages, receivers on average need to wait longer to
deliver messages. This effect is validated by the higher aver-
age latency experienced by GEN and SOL when their delay
is at 100 µs. By decreasing the delay, both policies enjoy bet-
ter message delivery latency. Unfortunately, it also degrades
maximum throughput, as receivers use more CPU cycles to
process flush messages – up to 14% lower throughput for
GEN. ToR switch aggregation reduces the impact of frequent
flush messages: AGG improves the throughput of GEN by
14%. Finally, by using an adaptive solicitation strategy, ADP
achieves both low latency – it immediately requests flush mes-
sages when it has spare CPU cycles – and high throughput –
it does not receive excessive flush messages at high utiliza-
tion. As shown in Figure 3, it attains latency within 3µs and
throughput within 33% that of the baseline result.

7.1.3 Sequencer Scalability

To evaluate the sequencer scalability of Hydra, we emulated
an increasing number of switch sequencers (up to eight) on
the same physical switch. For each emulated sequencer, we
allocated a dedicated queue in the switch traffic manager
that rate limits to 10 Gbps. Due to the limited number of
physical servers, we only deployed 15 real Hydra groups, each
with three receivers. To saturate the sequencers’ capacity, we
deployed additional virtual groups, whose request traffic were
simply dropped at the switch egress ports. Figure 4a shows
that throughput of the system increases linearly with more
deployed switch sequencers. With eight sequencers, Hydra
can process more than 250 million groupcast per second. The
additional switch sequencers also have minimum impact on
groupcast latency.

For clusters without programmable switches, sequencers
can be deployed on end-host servers, offering an immediately

302 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7 8
Number of Sequencers

0M

50M

100M

150M

200M

250M

300M

350M
Th

ro
ug

hp
ut

 (m
sg

s/
s)

Throughput

0

5

10

15

Av
er

ag
e

La
te

nc
y

(μ
s)

Latency

(a) Latency and sustainable throughput of Hydra with increasing number of
switch sequencers

0.0M 3.0M 6.0M 9.0M 12.0M 15.0M 18.0M
Throughput (msgs/s)

0

20

40

60

80

100

Av
er

ag
e

La
te

nc
y

(μ
s)

1 sequencer
2 sequencers

3 sequencers
4 sequencers

(b) Latency and throughput of Hydra with increasing number of end-host
Hydra sequencers

Figure 4: Scalability of Hydra with increasing number of sequencers.
We use 15 groups, three receivers per group, and deploy sequencers
on switches and end-host servers. We also generate additional group-
cast traffic to virtual Hydra groups to saturate the sequencers.

deployable solution. End-host sequencers, however, have lim-
ited processing capacity compared to an in-switch implemen-
tation. Figure 4b shows that Hydra can avoid this dilemma
by adding more end-host sequencers, with near-linear scal-
ing. With enough Hydra traffic, request load were evenly
distributed among all sequencers. Since receivers need to
wait for at least one message from each sequencer for mes-
sage delivery, latency of Hydra increases slightly with more
sequencers.

7.2 HydraPaxos Evaluations

Next, we evaluate the performance benefits of co-designing
state machine replication (SMR) systems with Hydra. We
compared our HydraPaxos to three other SMR protocols:
Paxos (with the Multi-Paxos optimization), Fast Paxos, and
NOPaxos. We also ran an unreplicated system with no fault
tolerance as a baseline. All protocols were implemented in the
same codebase for a fair comparison. We deployed each SMR
system on three replica servers, ran an echo-RPC applica-
tion, and measured the end-to-end latency and throughput of
each system with increasing client load. We used two switch
sequencers for HydraPaxos, and one switch sequencer for
NOPaxos. Figure 5 shows HydraPaxos achieves significantly
higher throughput than Paxos (204%) and Fast Paxos (180%),
by avoiding replica coordination in the common case. Figure 5
also shows that our design can attain performance compara-
ble to a network serialization approach: HydraPaxos achieves

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Throughput (ops/s)

0

20

40

60

80

100

Av
er

ag
e

La
te

nc
y

(μ
s)

Unreplicated
Paxos
Fast Paxos
NOPaxos
HydraPaxos

Figure 5: State machine replication system comparison. We measure
the latency and throughput of HydraPaxos and other SMR protocols
with three replicas. HydraPaxos uses two switch sequencers.

latency within 5 µs and throughput within 17% of NOPaxos.
Like NOPaxos, HydraPaxos can sustain its throughput even
with a moderate rate of packet drops (≤ 0.1%), because drop
recovery uses a lightweight protocol; a full evaluation appears
in Appendix A.

7.3 HydraTxn Evaluations

The second distributed application we evaluated was a fault-
tolerant, distributed transactional system. We compared Hy-
draTxn with three other systems: Granola [19], Eris [42], and
a standard distributed transactional system [17] called Lock-
Store that uses two-phase commit, two-phase locking, and
Paxos. All systems are implemented in the same code base.
We deployed each system on 15 database shards, each repli-
cated on three servers. HydraTxn uses two switch sequencers,
while Eris uses only one. Similar to our experiment in §7.1.3,
we rate limit each sequencer’s bandwidth in the switch traffic
manager and generate traffic to virtual Hydra groups.

We use the YCSB+T [16] benchmark that wraps read and
write operations into stored-procedure style transactions.
The workload we used consists of single-shard transactions
with a read/write ratio of 1:1. Keys are selected using a uni-
form distribution. As shown in Figure 6, HydraTxn avoids
server coordination overhead when processing transactions,
leading to a 3.1× and 1.9× throughput, and a 49% and 13% la-
tency reduction compared to Lock-Store and Granola. Perfor-
mance of Eris is bottlenecked by the single switch sequencer.
Excessive client load can even cause sequenced packets to be
dropped in the network, leading to throughput collapse due to
more frequent drop agreement protocol [42]. Hydra enables
HydraTxn to scale beyond the central sequencer bottleneck,
achieving a 47% throughput improvement over Eris.

We also tested HydraTxn’s resilience to network anomalies
by injecting simulated packet drops. As in the SMR experi-
ment, small to moderate levels of packet drops have minimal
impact on HydraTxn’s performance (Appendix A).

7.4 Network-Level Load Balancing

To evaluate the impact of our approach on network properties,
we simulated a data center network with a three-layer FatTree
topology in NS3. The network consisted of 2560 servers and
112 switches. All servers generate background traffic follow-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 303

0K 50K 100K 150K 200K
Throughput per Shard (txns/s)

0

100

200

300

400

Av
er

ag
e

La
te

nc
y

(μ
s)

Granola
Lock-Store

Eris
HydraTxn

Figure 6: Distributed transactional system comparison. We mea-
sure the latency and per-shard throughput of HydraTxn and other
transactional systems when running on 15 shards each replicated on
three servers. HydraTxn uses two sequencers, while Eris uses one
sequencer.

0 50 100 150 200 250
Links with Ascending Utilization

0

20

40

60

80

100

Av
er

ag
e

Lin
k

Ut
iliz

at
io

n
(%

) Core Layer

0 100 200 300 400 500
Links with Ascending Utilization

Aggregation Layer

(a) Network link utilization when multicast messages traverse a single ToR
switch sequencer

0 50 100 150 200 250
Links with Ascending Utilization

0

20

40

60

80

100

Av
er

ag
e

Lin
k

Ut
iliz

at
io

n
(%

) Core Layer

0 100 200 300 400 500
Links with Ascending Utilization

Aggregation Layer

(b) Network link utilization when multicast messages are randomly routed to
one of the eight ToR switch sequencers

Figure 7: Average link utilization of a simulated data center network.
We simulate a three-layer FatTree topology with 2560 servers and
112 switches. Links between servers and ToR switches are 1 Gbps,
and all other links are 10 Gbps.

ing a Poisson distribution. We set up 16 multicast receiver
groups in the network, each with three receivers. We selected
a few servers across the data center to generate periodic multi-
cast messages, each message destined to a randomly selected
group. We compared two approaches: a network serialization
approach where all multicast messages are routed through
a single ToR switch, and the Hydra approach where eight
ToR switches are deployed as sequencers. Figure 7 shows
the link utilization of each aggregation and core layer link
for each approach. In the network serialization deployment,
several aggregation layer links were fully saturated due to
concentrated multicast traffic. By distributing multicast traffic
across multiple sequencer switches, utilization of all core and
aggregation links stayed below 50% in the Hydra deployment,
demonstrating the load balancing benefit of our approach.

102 103 104

Latency (μs)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

1 sequencer (no congestion)
1 sequencer
8 sequencers, w/o CAR
8 sequencers, w/ CAR

Figure 8: Latency distribution of multicast in the same simulated
data center network as Figure 7. We generate bursty traffic to a
single sequencer switch that causes congestion.

0 100 200 300
Time (ms)

0.0M

2.0M

4.0M

Th
ro

ug
hp

ut
 (t

xn
s/

s)

(a) Throughput of Eris during a sequencer failover

0 100 200 300
Time (ms)

0.0M

2.0M

4.0M
Th

ro
ug

hp
ut

 (t
xn

s/
s)

(b) Throughput of HydraTxn during a sequencer failover

Figure 9: Throughput of Eris and HydraTxn during a sequencer
failover. For both, we injected a sequencer failure at time 0.

We then studied the impact of network congestion by gen-
erating bursty background traffic to one of the sequencer
switches. Figure 8 shows that in a network serialization de-
ployment, congestion at the sequencer switch caused median
multicast latency to degrade by more than 13×. By distribut-
ing multicast traffic to multiple sequencer switches, Hydra
reduces the impact of local congestion and improves the me-
dian latency by 11×. We also simulated congestion-aware
routing (CAR) [3] for Hydra. By preferentially routing to
non-congested sequencers, Hydra further improves multicast
tail latency.

7.5 Sequencer Failover

Lastly, we evaluated the effectiveness of Hydra in handling se-
quencer failures and compared it to the network serialization
approach. To do so, we used the same transactional system
setup in §7.3, triggered a sequencer failure during the run,
and measured the sustained throughput over time. As shown
in Figure 9b, after the Hydra receivers detected the failure
of one of the sequencers (we used a 30 ms timeout value),
they immediately ran a reconfiguration protocol to remove the
failed sequencer. The protocol only took a few hundred mi-
croseconds. HydraTxn was able to resume normal operation

304 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and returned to its maximum throughput afterwards, using
the remaining sequencers. By contrast, Eris (Figure 9a) relies
on the network control plane needed to perform rerouting
once a failure is detected, to forward client requests to a new
sequencer switch. We simulated a 100 ms rerouting delay
which matches results in the literature [38]. Unlike HydraTxn,
Eris remained unavailable during network rerouting, demon-
strating the benefit of our redundant sequencer approach.

8 Related Work
Ordered group communication primitives such as atomic mul-
ticast [28] have a long history, dating back to virtual syn-
chrony [8], and have been implemented and used widely [4,9,
32,34,62]. The classic atomic broadcast model is equivalent to
consensus [13]. Our work explicitly adopts the ordered but un-
reliable communication model introduced by NOPaxos [43]
and Eris [42], which enables network-accelerated sequencing.

Other distributed systems also use sequencers.
CORFU [63] combines an unreliable sequencer with
replicated storage on flash to build a shared log that
can be used to build distributed data structures [7].
vCorfu [63] extends it to a multi-log abstraction analogous
to multi-sequencing. Scalog [22] addresses the blocking
reconfiguration and sequencer scalability issues of previous
shared log designs by distributing log data to replicated data
shards and periodically order log entries using an Paxos-based
ordering layer. Hydra does not guarantee message persistence,
so it avoids the overhead of intra-shard replication. Hydra
also eliminates coordination among the sequencers on the
critical path, which reduces message delivery latency and
avoids potential bottlenecks of a centralized ordering service.
Percolator [54] uses a sequencer for transaction processing,
and deterministic databases like Calvin [60], SLOG [60], and
Aria [47] combine sequencers with transaction schedulers for
concurrency control.

Hydra builds on work on improving the scalability of con-
sensus protocols. Its use of multiple active sequencers and
flush messages is analogous to Mencius’s rotating leader [48].
Hydra uses loosely synchronized clocks [46] to establish a
total order, an idea used in concurrency control protocols like
CLOCC [1], Spanner [17], and TAPIR [66]. Protocols like
PTP [59] make clock synchronization widely available in data
centers, and recent work like Sundial [44] and DPTP [35]
demonstrates the precision available. Hydra’s approach of
using timestamps to order operations is similar to that of
TEMPO [24]. However, TEMPO requires at least one and a
half RTTs to commit a timestamp. Hydra, using network se-
quencers, can commit timestamps in half of an RTT even in
the presence of concurrent requests. Similar to TEMPO, Hydra
also waits for higher timestamps from other sequencers to
ensure a timestamp is stable.

Hydra is designed to support programmable devices as se-
quencers, including PISA/RMT switch ASICs [12]. Recent
work shows that these switches can implement complex pro-

tocols including consensus [20,21] and chain replication [33].
Like NOPaxos and Eris, Hydra intentionally implements a
limited set of sequencing functionality on the switch, leav-
ing most of the protocol complexity at the end hosts. Red-
Plane [37] and SwiSh [64, 65] provide abstractions for repli-
cating switch data plane state for reliability and scalability,
respectively; sequencing, which requires strong consistency
and frequent updates, represents a worst-case performance
scenario for both, necessitating a different approach.

A concurrent effort, 1Pipe [41] uses programmable
switches in a data center to implement causally and totally
ordered communication. Senders in 1Pipe attach local times-
tamps to messages, and receivers deliver messages strictly
in timestamp order. To determine when a timestamp is safe
to deliver, switches in 1Pipe track barrier information from
all ingress links and write the aggregated barrier timestamp
into each packet. Hosts and switches periodically send beacon
messages on idle links to ensure progress.

Hydra similarly uses timestamps to order messages. A
key difference is that 1Pipe uses sender-generated times-
tamps, while in Hydra timestamps are generated by the se-
quencers. Consequently, 1Pipe requires synchronized clocks
on all nodes in the network and in-network computation at
each switch, a deployment challenge in heterogeneous net-
works where not all switches are programmable [57]; Hydra
accommodates more practical deployments by only running
logic on the sequencers and replicas, and only synchronizing
clocks across sequencers. Moreover, in a 1Pipe deployment,
any node, link, or switch failure in the network would stall
the progress of all receivers; in Hydra, only failures local to
the sequencers may impact progress.

9 Conclusion
The deployment of network sequencing approaches has been
hindered because they require serializing messages through
a single sequencer. Hydra addresses this with a new proto-
col that allows the concurrent use of multiple sequencers. A
Hydra deployment serves as a drop-in replacement for se-
quencers in systems like NOPaxos and Eris, making their ben-
efits more widely accessible. In particular, it scales beyond the
performance of a single sequencer, which allows commodity
servers rather than programmable switches; reduces system
downtime during sequencer failures; and improves network
load balancing by avoiding serialization.

Acknowledgments

We thank our shepherd Shuai Mu and the anonymous review-
ers for their valuable feedback. We also thank Xin Zhe Khooi
and Raj Joshi for their helpful comments on the P4 imple-
mentaion. This material is based upon work supported by the
National Science Foundation Graduate Research Fellowship.
Jialin Li was supported by an MOE AcRF Tier 1 grant T1
251RES2104, an ODPRT SUG grant, and a Huawei research
grant TC20211206645.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 305

References
[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari.

Efficient optimistic concurrency control using loosely
synchronized clocks. In Proceedings of the 1995 ACM
SIGMOD International Conference on Management of
Data, San Jose, CA, USA, June 1995. ACM.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-
able, commodity data center network architecture. In
Proceedings of the ACM SIGCOMM 2008 Conference
on Data Communication, SIGCOMM ’08, page 63–74,
New York, NY, USA, 2008. Association for Computing
Machinery.

[3] M. Alizadeh, T. Edsall, S. Dharmapurikar,
R. Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam,
F. Matus, R. Pan, N. Yadav, and G. Varghese. Conga:
Distributed congestion-aware load balancing for
datacenters. In Proceedings of ACM SIGCOMM 2014,
2014.

[4] Y. Amir and J. Stanton. The Spread wide area group
communication system. Technical Report CNDS-98-4,
The Johns Hopkins University, Baltimore, MD, USA,
1998.

[5] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khor-
lin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yush-
prakh. Megastore: Providing Scalable, Highly Available
Storage for Interactive Services. In Proceedings of the
Conference on Innovative Data system Research, CIDR
’11, Asilomar, California, 2011.

[6] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wob-
ber, M. Wei, and J. D. Davis. CORFU: A Shared Log
Design for Flash Clusters. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation, NSDI ’12, San Jose, CA, USA, 2012.
USENIX Association.

[7] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prab-
hakaran, M. Wei, J. D. Davis, S. Rao, T. Zou, and
A. Zuck. Tango: Distributed Data Structures over a
Shared Log. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13,
Farminton, Pennsylvania, 2013. Association for Com-
puting Machinery.

[8] K. Birman and T. Joseph. Exploiting virtual syn-
chrony in distributed systems. In Proceedings of the
Eleventh ACM Symposium on Operating Systems Prin-
ciples, SOSP ’87, page 123–138, New York, NY, USA,
1987. Association for Computing Machinery.

[9] K. P. Birman. Replication and fault-tolerance in the isis
system. In Proceedings of the Tenth ACM Symposium on

Operating Systems Principles, SOSP ’85, page 79–86,
New York, NY, USA, 1985. Association for Computing
Machinery.

[10] K. P. Birman and T. A. Joseph. Reliable communication
in the presence of failures. ACM Trans. Comput. Syst.,
5(1):47–76, jan 1987.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming Protocol-
Independent Packet Processors. SIGCOMM Comput.
Commun. Rev., 44(3), July 2014.

[12] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKe-
own, M. Izzard, F. Mujica, and M. Horowitz. Forwarding
metamorphosis: Fast programmable match-action pro-
cessing in hardware for SDN. In Proceedings of ACM
SIGCOMM 2013, Hong Kong, China, Aug. 2013. ACM.

[13] T. D. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus. In Pro-
ceedings of the Eleventh Annual ACM Symposium on
Principles of Distributed Computing, PODC ’92, page
147–158, New York, NY, USA, 1992. Association for
Computing Machinery.

[14] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gru-
ber. Bigtable: A Distributed Storage System for Struc-
tured Data. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI
’06, Seattle, Washington, 2006. USENIX Association.

[15] Cisco data center infrastructure design guide 2.5.
https://www.cisco.com/application/pdf/en/
us/guest/netsol/ns107/c649/ccmigration_
09186a008073377d.pdf.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
ycsb. In Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, page 143–154, New York,
NY, USA, 2010. Association for Computing Machinery.

[17] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Tay-
lor, R. Wang, and D. Woodford. Spanner: Google’s
Globally-Distributed Database. In Proceedings of the
10th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’12, Hollywood, CA, USA,
2012. USENIX Association.

306 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf
https://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf
https://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf

[18] I. Corporation. Intel Tofino 3 Intelligent
Fabric Processor Brief. https://www.
intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/
tofino-3-brief.html.

[19] J. Cowling and B. Liskov. Granola: Low-Overhead Dis-
tributed Transaction Coordination. In Proceedings of the
2012 USENIX Conference on Annual Technical Confer-
ence, USENIX ATC ’12, Boston, MA, 2012. USENIX
Association.

[20] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, H. Weath-
erspoon, M. Canini, F. Pedone, and R. Soulé. Net-
work hardware-accelerated consensus. Technical Re-
port USI-INF-TR-2016-03, Università della Svizzera
italiana, May 2016.

[21] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, H. Weather-
spoon, M. Canini, N. Zilberman, F. Pedone, and R. Soulé.
P4xos: Consensus as a network service. Technical Re-
port USI-INF-TR-2018-01, Università della Svizzera
italiana, May 2018.

[22] C. Ding, D. Chu, E. Zhao, X. Li, L. Alvisi, and
R. Van Renesse. Scalog: Seamless reconfiguration and
total order in a scalable shared log. In Proceedings of
the 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’20), Santa Clara,
CA, USA, Feb. 2020. USENIX.

[23] Data Plane Development Kit. https://www.dpdk.
org/.

[24] V. Enes, C. Baquero, A. Gotsman, and P. Sutra. Efficient
replication via timestamp stability. In Proceedings of the
Sixteenth European Conference on Computer Systems,
EuroSys ’21, page 178–193, New York, NY, USA, 2021.
Association for Computing Machinery.

[25] P. Gill, N. Jain, and N. Nagappan. Understanding net-
work failures in data centers: Measurement, analysis,
and implications. In Proceedings of ACM SIGCOMM
2011, Toronto, ON, Canada, Aug. 2011.

[26] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and
T. Anderson. Scalable Consistency in Scatter. In Pro-
ceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles, SOSP ’11, Cascais, Portugal,
2011. Association for Computing Machinery.

[27] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta.
Vl2: A scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication, SIGCOMM ’09, page 51–62,
New York, NY, USA, 2009. Association for Computing
Machinery.

[28] R. Guerraoui and A. Schiper. Genuine atomic multicast
in asynchronous distributed systems. Theor. Comput.
Sci., 254(1–2):297–316, mar 2001.

[29] C. Guo, H. Wu, Z. Deng, J. Y. Gaurav Soni, J. Padhye,
and M. Lipshteyn. RDMA over commodity Ethernet
at scale. In Proceedings of ACM SIGCOMM 2016,
Florianopolis, Brazil, Aug. 2016. ACM.

[30] M. P. Herlihy and J. M. Wing. Linearizability: A cor-
rectness condition for concurrent objects. ACM Trans.
Program. Lang. Syst., 12(3):463–492, jul 1990.

[31] Hesiod. Theogony. c. 730 BCE.

[32] S. Jha, J. Behrens, T. Gkountouvas, M. Milano, W. Song,
E. Tremel, R. V. Renesse, S. Zink, and K. P. Birman.
Derecho: Fast state machine replication for cloud ser-
vices. ACM Transactions on Computer Systems, 36(2):1–
49, Apr. 2019.

[33] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,
C. Kim, and I. Stoica. NetChain: Scale-Free Sub-RTT
coordination. In Proceedings of the 15th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI ’18), Renton, WA, USA, Apr. 2018.
USENIX.

[34] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab: High-
performance broadcast for primary-backup systems. In
Proceedings of the 2011 IEEE/IFIP 41st International
Conference on Dependable Systems and Networks, DSN
’11, page 245–256, USA, 2011. IEEE Computer Society.

[35] P. G. Kannan, R. Joshi, and M. C. Chan. Precise time-
synchronization in the data-plane using programmable
switching asics. In Proceedings of the 2019 Symposium
on SDN Research (SOSR ’19), Santa Jose, CA, USA,
Mar. 2019. ACM.

[36] X. Z. Khooi, L. Csikor, J. Li, and D. M. Divakaran. In-
network applications: Beyond single switch pipelines.
In 2021 IEEE 7th International Conference on Network
Softwarization (NetSoft), pages 1–8, 2021.

[37] D. Kim, J. Nelson, D. R. K. Ports, V. Sekar, and S. Se-
shan. RedPlane: Enabling fault tolerant stateful in-
switch applications. In Proceedings of ACM SIGCOMM
2021, Virtual Conference, Aug. 2021. ACM.

[38] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. In-
oue, T. Hama, and S. Shenker. Onix: A distributed
control platform for large-scale production networks. In
Proceedings of the 9th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’10, page
351–364, USA, 2010. USENIX Association.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 307

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.dpdk.org/
https://www.dpdk.org/

[39] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and
A. Fekete. MDCC: Multi-Data Center Consistency. In
Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys ’13, Prague, Czech Repub-
lic, 2013. Association for Computing Machinery.

[40] L. Lamport. The TLA+ home page. https://lamport.
azurewebsites.net/tla/tla.html.

[41] B. Li, G. Zuo, W. Bai, and L. Zhang. 1pipe: Scalable
total order communication in data center networks. In
Proceedings of the 2021 ACM SIGCOMM 2021 Con-
ference, SIGCOMM ’21, page 78–92. Association for
Computing Machinery, 2021.

[42] J. Li, E. Michael, and D. R. K. Ports. Eris: Coordination-
Free Consistent Transactions Using In-Network Concur-
rency Control. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, Shanghai,
China, 2017. Association for Computing Machinery.

[43] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and
D. R. K. Ports. Just Say No to Paxos Overhead: Replac-
ing Consensus with Network Ordering. In Proceedings
of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI ’16, Savannah, GA,
USA, 2016. USENIX Association.

[44] Y. Li, G. Kumar, H. Hariharan, H. Wassel, P. Hochschild,
D. Platt, S. Sabato, M. Yu, N. Dukkipati, P. Chandra, and
A. Vahdat. Sundial: Fault-tolerant clock synchroniza-
tion for datacenters. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’20), Banff, AL, Canada, Nov. 2020.
USENIX.

[45] libevent – an event notification library. https://
libevent.org/.

[46] B. Liskov. Practical uses of synchronized clocks in dis-
tributed systems. In Proceedings of the 10th ACM Sym-
posium on Principles of Distributed Computing (PODC

’91), Montreal, QC, Canada, Aug. 1991. ACM.

[47] Y. Lu, X. Yu, L. Cao, and S. Madden. Aria: A fast and
practical deterministic oltp database. Proceedings of the
VLDB Endowment, 13(12):2047–2060, July 2020.

[48] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
Building Efficient Replicated State Machines for WANs.
In Proceedings of the 8th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI ’08,
San Diego, California, 2008. USENIX Association.

[49] R. Niranjan Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya,
and A. Vahdat. Portland: A scalable fault-tolerant layer
2 data center network fabric. In Proceedings of the

ACM SIGCOMM 2009 Conference on Data Commu-
nication, SIGCOMM ’09, page 39–50, New York, NY,
USA, 2009. Association for Computing Machinery.

[50] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling Memcache at Facebook. In Proceedings of the
10th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI ’13, Lombard, IL, 2013.
USENIX Association.

[51] NTP clock discipline algorithm. https://www.eecis.
udel.edu/~mills/ntp/html/discipline.html.

[52] B. M. Oki and B. H. Liskov. Viewstamped Replica-
tion: A New Primary Copy Method to Support Highly-
Available Distributed Systems. In Proceedings of
the Seventh Annual ACM Symposium on Principles of
Distributed Computing, PODC ’88, Toronto, Ontario,
Canada, 1988. Association for Computing Machinery.

[53] D. Ongaro and J. Ousterhout. In Search of an Under-
standable Consensus Algorithm. In Proceedings of the
2014 USENIX Conference on USENIX Annual Techni-
cal Conference, USENIX ATC ’14, Philadelphia, PA,
2014. USENIX Association.

[54] D. Peng and F. Dabek. Large-scale incremental process-
ing using distributed transactions and notifications. In
Proceedings of the 9th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI ’10),
Vancouver, BC, Canada, Oct. 2010. USENIX.

[55] D. R. K. Ports, A. T. Clements, I. Zhang, S. Madden,
and B. Liskov. Transactional Consistency and Auto-
matic Management in an Application Data Cache. In
Proceedings of the 9th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI ’10,
Vancouver, BC, Canada, 2010. USENIX Association.

[56] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Kr-
ishnamurthy. Designing Distributed Systems Using Ap-
proximate Synchrony in Data Center Networks. In Pro-
ceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation, NSDI ’15, Oak-
land, CA, 2015. USENIX Association.

[57] D. R. K. Ports and J. Nelson. When should the network
be the computer? In Proceedings of the 17th Work-
shop on Hot Topics in Operating Systems (HotOS ’19),
Bertinoro, Italy, May 2019. ACM.

[58] POX SDN controller. https://github.com/
noxrepo/pox.

308 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/tla.html
https://libevent.org/
https://libevent.org/
https://www.eecis.udel.edu/~mills/ntp/html/discipline.html
https://www.eecis.udel.edu/~mills/ntp/html/discipline.html
https://github.com/noxrepo/pox
https://github.com/noxrepo/pox

[59] IEEE 1588 standard for a precision clock syn-
chronization protocol for networked measurement
and control systems. https://www.nist.gov/
el/intelligent-systems-division-73500/
ieee-1588.

[60] K. Ren, D. Li, and D. J. Abadi. SLOG: Serializable,
low-latency, geo-replicated transactions. Proceedings of
the VLDB Endowment, 12(11):1747–1761, July 2019.

[61] R. Van Renesse and D. Altinbuken. Paxos Made Mod-
erately Complex. ACM Computing Survey, 47(3), Feb.
2015.

[62] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A
flexible group communication system. Communications
of the ACM, 39(4):76–83, Apr. 1996.

[63] M. Wei, A. Tai, C. J. Rossbach, I. Abraham, M. Mun-
shed, M. Dhawan, J. Stabile, U. Wieder, S. Fritchie,
S. Swanson, M. J. Freedman, and D. Malkhi. vCorfu:
A Cloud-Scale Object Store on a Shared Log. In Pro-
ceedings of the 14th USENIX Conference on Networked
Systems Design and Implementation, NSDI’17, Boston,
MA, USA, 2017. USENIX Association.

[64] L. Zeno, D. R. K. Ports, J. Nelson, D. Kim, S. L. Feibish,
I. Keidar, A. Rinberg, A. Rashelbach, I. De-Paula, and
M. Silberstein. SwiSh: Distributed shared state abstrac-
tions for programmable switches. In Proceedings of
the 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’22), Renton, WA,
USA, Apr. 2022. USENIX.

[65] L. Zeno, D. R. K. Ports, J. Nelson, and M. Silberstein.
SwiShmem: Distributed shared state abstractions for
programmable switches. In Proceedings of the 16th
Workshop on Hot Topics in Networks (HotNets ’20),
Chicago, IL, USA, Nov. 2020. ACM.

[66] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy,
and D. R. K. Ports. Building consistent transactions
with inconsistent replication. ACM Transactions on
Computer Systems, 35(4):12, Dec. 2018.

A Additional Evaluation
A.1 Clock Skew

Clock skew among sequencers does not affect Hydra cor-
rectness, but can delay message delivery progress. To eval-
uate the impact of clock skews, we deployed eight switch
sequencers, 15 groups (no virtual groups), and three receivers
in each group. We injected artificial clock skews to different
sequencers, and measured both the latency and throughput of
Hydra. As shown in Figure 10, clock skew does not impact
Hydra throughput. Messages stamped by sequencers with
faster clocks are buffered temporarily on the receivers, but
the rate of delivering messages remains the same. At small to
medium clock skews (1 to 10 µs), Hydra experiences marginal
latency penalties (0 to 5 µs). Such clock skews are realistic:
modern clock synchronization protocols [59] can maintain
clock skews in the sub-microsecond range, and recent work
has demonstrated synchronization error under 50 ns between
programmable switches [35]. Even a 200 µs clock skew only
resulted in less than 100 µs of added latency.

A.2 Message Loss for HydraPaxos and HydraTxn

Handling message drops. When Hydra messages are
dropped in the network, HydraPaxos replicas need to coor-
dinate to handle DROP-NOTIFICATIONs. To evaluate Hydra-
Paxos’s resilience to network anomalies, we measured its max-
imum throughput when an increasing percentage of packets
were artificially dropped in the network. Figure 11 shows that
HydraPaxos is able to sustain its high throughput even with a
moderate rate of packet drops (≤ 0.1%). HydraPaxos uses a
lightweight protocol to recover from DROP-NOTIFICATIONs,
as long as the message is not dropped on all replicas. At
higher drop rates, throughput of HydraPaxos starts to decline
due to more frequent coordination. We observe a similar level
of throughput reduction for NOPaxos at these high drop rates.

We conduct the same experiment for HydraTxn. As in the
SMR experiment, small to moderate levels of packet drops
have minimal impact on HydraTxn’s performance (Figure 12):
its peak throughput decreased only by 11% even when the
network dropped 1% of packets, and remained higher than
that of Eris.

0.0M 1.0M 2.0M 3.0M 4.0M 5.0M 6.0M 7.0M 8.0M
Throughput (msgs/s)

0

50

100

150

200

250

300

350

Av
er

ag
e

La
te

nc
y

(μ
s)

0 μs
1 μs
10 μs
50 μs
100 μs
200 μs

Figure 10: Latency and throughput of Hydra with increasing clock
skew among sequencers. We use 15 groups, three receivers per group,
and eight switch sequencers. Clock skew shows the maximum skew
between any two sequencers.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 309

https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588

0.001% 0.01% 0.1% 1.0%
Simulated Drop Rate

0.0M

0.5M

1.0M

1.5M
Th

ro
ug

hp
ut

 (o
ps

/s
)

Paxos
NOPaxos

HydraPaxos
Unreplicated

Figure 11: Maximum throughput of SMR systems with increasing
packet drop rate. All systems run on three replicas. HydraPaxos uses
two switch sequencers.

0.001% 0.01% 0.1% 1.0%
Simulated Drop Rate

0K

100K

200K

Th
ro

ug
hp

ut
 p

er
 S

ha
rd

 (t
xn

s/
s)

Lock-Store
Granola

Eris
HydraTxn

Figure 12: Maximum throughput of transactional systems with in-
creasing packet drop rate. All systems run on 15 shards each repli-
cated three-way. HydraTxn uses two switch sequencers.

B Proof of Safety
As specified in §3.1 Hydra provides the following guarantees
to receivers of groupcast messages:
• Partial Ordering. All groupcast messages are partially

ordered (the partial order relation is denoted as ≺) – all
groupcast messages with overlapping destination groups
are comparable. If groupcast message m1 is ordered before
m2 (m1 ≺m2) and a receiver receives both m1 and m2, then
every receiver delivers m1 before m2.

• Unreliable Delivery. Hydra only offers best effort mes-
sage delivery. A groupcast message is not guaranteed to be
delivered to any of its recipients.

• Drop Detection. If a groupcast message is not delivered
to all its recipients, the primitive will notify the remaining
receivers by delivering a DROP-NOTIFICATION. More for-
mally, let R be the set of receiver groups for message m,
then either one of the following two conditions holds: all
receiver groups in R deliver m or a DROP-NOTIFICATION
for m, or none of the receiver groups in R delivers m or a
DROP-NOTIFICATION for m.
It is important to note that Hydra receiver groups, like

NOPaxos and Eris receiver groups, use quorum-based proto-
cols to decide which messages are delivered to the the group
and which are permanently dropped. In order to tolerate the
failure of some receivers in a receiver group, the drop de-
tection requirement only considers each receiver group as a
whole. Here, a receiver group delivers a message m or DROP-

NOTIFICATION for m if every receiver in some quorum deliv-
ers m or a DROP-NOTIFICATION for m. Individual receivers
in a group can diverge from the quorum when a sequencer is
added or removed, and the receiver groups themselves must be
able to handle this divergence. (NOPaxos and Eris do handle
this case.) If an application using Hydra requires that the drop
detection property apply uniformly to all receivers, then the
quorum size for each receiver group is the size of the entire
group.

Also important to note is that in the drop detection require-
ment, when we say a receiver delivers a DROP-NOTIFICATION
for message m, what we mean is that the receiver delivers a
DROP-NOTIFICATION for m before delivering any message
ordered after m in the partial order. In this way, the drop
detection requirement is indeed a safety requirement and not
a liveness guarantee.

In the absence of sequencer failures, the correctness of Hy-
dra’s groupcast delivery is straightforward. Receivers deliver
groupcast messages only when the message’s clock value
is less than or equal to cmin, the minimum among the latest
timestamps received from each of the sequencers. In fact,
they only deliver messages whose timestamp is exactly cmin,
as ties in clock value are broken by sequencer ID. Because
receivers only deliver messages in sequence number order,
once message m is delivered by a receiver, no message with
smaller sequence number or clock value from m’s sequencer
will be delivered by the receiver. Therefore, messages are
always delivered in (timestamp,sequencer ID) order, which
is a total order; the partial ordering guarantee is satisfied a
fortiori. Furthermore, because receivers always deliver DROP-
NOTIFICATION for smaller undelivered sequence numbers
before delivering a message when there would be gaps in
the sequence numbers delivered for that sequencer, the drop
detection guarantee is satisfied.

In order to show that the sequencer removal process is
correct, we first note that it is consistent with the Hydra
safety guarantees for a receiver to at any time deliver a DROP-
NOTIFICATION for the next sequence number yet to be deliv-
ered for some sequencer. The sequencer removal process is
functionally equivalent to each receiver delivering infinitely
many DROP-NOTIFICATIONs for all non-delivered sequence
numbers for that sequencer. The agreement round is only nec-
essary to determine exactly how many DROP-NOTIFICATIONs
each receiver must explicitly deliver based on the results from
each quorum. If a message m or a DROP-NOTIFICATION for
m is delivered by a quorum from group g, and the sequencer
that sequenced m is removed, then the configuration service is
guaranteed to receive a multi-stamp with a sequence number
for g at least as high as m’s. Before transitioning to the new
configuration (or delivering any message with a timestamp
larger than m’s), all other receiver groups that m was sent to
must deliver a DROP-NOTIFICATION for m. Similarly, if no
quorum from any receiver group received m or a message
with sequence number larger than m’s’ before agreeing to

310 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

stop processing messages from the removed sequencer, then
m will never be delivered by any receiver group (nor will an
explicit DROP-NOTIFICATION for m be delivered by any re-
ceiver group). Therefore, for every groupcast sequenced by
the removed sequencer, either all groups deliver the message
or a DROP-NOTIFICATION for it or none do, satisfying the
drop detection requirement.

When a sequencer is added, the flush message with times-
tamp tk constructed by the configuration service when adding
sequencer k is sent to all receiver groups. tk is necessarily
larger than the clock value of any message delivered by a quo-
rum of receivers by construction. No message from sequencer
k with clock value less than or equal to tk will be delivered, nor
will any DROP-NOTIFICATION for a message from sequencer
k with clock value less than or equal to tk. tk was derived
from a flush message that included sequence numbers for all
groups, and upon entering the new configuration, a receiver
immediately sets its sequence number for the added sequencer
to the one included in this flush message. Conversely, once
the new configuration starts, receivers in the new configu-
ration will deliver messages or DROP-NOTIFICATIONs from
the new sequencer with timestamp greater than tk following
the normal protocol for message delivery. Therefore, for any
groupcast sequenced by the added sequencer, either all groups
deliver the message or a DROP-NOTIFICATION for it or none
do, satisfying the drop detection requirement.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 311

module Hydra

Specifies the Hydra protocol.

Receiver groups in this model are treated as single entities. This is done to increase model
checking performance and avoid making assumptions about the protocol being run by the receiver
groups. This specification focuses on the Hydra protocol and avoids the details of the quorum-
based protocol being run by the receivers.

extends Naturals , FiniteSets , Sequences , TLC

Constants and Variables

constants numSequencers , receivers , initialActiveSequencers

assume numSequencers ∈ Nat
assume numSequencers > 0
assume IsFiniteSet(receivers)
assume IsFiniteSet(initialActiveSequencers)
assume initialActiveSequencers ∈ subset Nat

sequencers
∆
= (1 . . numSequencers)

mGroupcast
∆
= “mGroupcast”

mFlush
∆
= “mFlush”

mAddSequencer
∆
= “mAddSequencer”

mFinishAdd
∆
= “mFinishAdd”

mRemoveSequencer
∆
= “mRemoveSequencer”

mFinishRemove
∆
= “mFinishRemove”

vGroupcast
∆
= “vGroupcast”

vDropNotification
∆
= “vDropNotification”

variables messages , sequencerState, receiverState, configState

Init
∆
= ∧messages = {}

∧ sequencerState = [s ∈ sequencers 7→
[timestamp 7→ 0,
sequenceNums 7→ [v ∈ receivers 7→ 0]
]]

∧ receiverState = [v ∈ receivers 7→ [
Undelivered groupcasts

buffer 7→ {},
Delivered groupcasts and drop notifications

delivered 7→ 〈〉,
Largest timestamps seen

timestamps 7→ [s ∈ sequencers 7→ 0],
Largest sequenceNums seen

sequenceNums 7→ [s ∈ sequencers 7→ 0],
Currently active sequencers

C Hydra TLA+ Specification

312 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

activeSequencers 7→ initialActiveSequencers ,
Sequencers being added

addedSequencers 7→ initialActiveSequencers ,
Sequencers being removed

removedSequencers 7→ {}
]]

∧ configState = [addedSequencers 7→ initialActiveSequencers ,
removedSequencers 7→ {}]

Helper and Utility Functions

Min(S)
∆
= choose s ∈ S : ∀ sp ∈ S : sp ≥ s

Max (S)
∆
= choose s ∈ S : ∀ sp ∈ S : sp ≤ s

Range(f)
∆
= {f [x] : x ∈ domain f }

recursive SeqFromSet()
SeqFromSet(S)

∆
=

if S = {} then 〈〉
else let x

∆
= choose x ∈ S : true

in 〈x 〉 ◦ SeqFromSet(S \ {x})

Short-hand way of sending a message

Send(m)
∆
= messages ′ = messages ∪ {m}

Main utility function for delivering groupcasts and drop notifications.

Receiver r adds G to its buffer, increments sequencer s’s timestamp to t , increments s’s
sequenceNum to n, and delivers deliverable groupcasts.

It also permanently removes all sequencers in the removed set.

DeliverAvailable(r , G, s , t , n, removed)
∆
=

let
rstate

∆
= receiverState[r]

newRemovedSequencers
∆
= rstate.removedSequencers ∪ removed

newActiveSequencers
∆
= rstate.activeSequencers \ removed

bg
∆
= rstate.buffer ∪G

oldLog
∆
= rstate.delivered

newTimestamps
∆
= [rstate.timestamps except ! [s] = Max ({@, t})]

newSequenceNums
∆
= [rstate.sequenceNums except ! [s] = Max ({@, n})]

Groupcasts about to be delivered

deliverable
∆
= {gp ∈ bg :

Min({newTimestamps [sp] :
sp ∈ newActiveSequencers}) ≥ gp.timestamp}

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 313

Newly/previously delivered Groupcasts + previous drop notifications

delivered
∆
= Range(oldLog) ∪ deliverable

newBuffer
∆
= bg \ deliverable

Necessary drop notifications

dropNotifications(sequencer)
∆
= {

[vtype 7→ vDropNotification,
sequencer 7→ sequencer ,
sequenceNum 7→ k] : k ∈ {l ∈ (1 . . newSequenceNums [sequencer]) :

¬∃ gp ∈ Range(oldLog) ∪ bg :
∨ ∧ gp.vtype = vDropNotification

∧ gp.sequencer = sequencer
∧ gp.sequenceNum = l

∨ ∧ gp.vtype = vGroupcast
∧ gp.sequencer = sequencer
∧ gp.sequenceNums [r] = l}}

allDropNotifications
∆
= union {dropNotifications(s) : sp ∈ sequencers}

orderedDropNotifications
∆
= SortSeq(

SeqFromSet(allDropNotifications),
lambda d1, d2 : d1.sequenceNum < d2.sequenceNum)

orderedDeliverables
∆
= SortSeq(SeqFromSet(deliverable),

lambda g1, g2 : ∨ g1.timestamp < g2.timestamp
∨ ∧ g1.timestamp = g2.timestamp

∧ g1.sequencer < g2.sequencer)

newLog
∆
= oldLog ◦ orderedDropNotifications ◦ orderedDeliverables

in
∧ receiverState ′ = [receiverState except ! [r] =

[@ except ! .buffer = newBuffer ,
! .timestamps = newTimestamps ,
! .delivered = newLog,
! .sequenceNums = newSequenceNums ,
! .activeSequencers = newActiveSequencers ,
! .removedSequencers = newRemovedSequencers

]]
∧ unchanged 〈messages , sequencerState, configState〉

Main Spec

If two receivers deliver groupcasts, they deliver them in the same order

GlobalOrder
∆
= ∀ r1, r2 ∈ receivers : let

d1
∆
= receiverState[r1].delivered

d2
∆
= receiverState[r2].delivered

314 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

in
∀n1 1 ∈ (1 . . Len(d1)), n2 1 ∈ (1 . . Len(d2)) :

(∧ d1[n1 1] = d2[n2 1]
∧ d1[n1 1].vtype = vGroupcast
∧ d2[n2 1].vtype = vGroupcast) ⇒

∀n1 2 ∈ (1 . . n1 1), n2 2 ∈ (n2 1 + 1 . . Len(d2)) :
(∧ d1[n1 2].vtype = vGroupcast
∧ d2[n2 2].vtype = vGroupcast) ⇒

d1[n1 2] 6= d2[n2 2]

If any receiver delivers a Groupcast , then all receivers deliver that

Groupcast or a DropNotification before that timestamp

Delivery
∆
= ∀ r1 ∈ receivers : let

d1
∆
= receiverState[r1].delivered

in
∀n1 ∈ (1 . . Len(d1)) :

d1[n1].vtype = vGroupcast ⇒
let

g1
∆
= d1[n1]

t
∆
= g1.timestamp

in
∀ r2 ∈ domain g1.sequenceNums :
let

d2
∆
= receiverState[r2].delivered

in
∨ ∃ g2 ∈ Range(d2) : g1 = g2
∨ ¬∃ g2 ∈ Range(d2) : ∧ g2.vtype = vGroupcast

∧ g2.timestamp ≥ t
∨ ∃n2 ∈ (1 . . Min({x ∈ domain d2 :

d2[x].vtype = vGroupcast ∧ d2[x].timestamp ≥ t})) :
∧ d2[n2].vtype = vDropNotification
∧ d2[n2].sequencer = g1.sequencer
∧ d2[n2].sequenceNum = g1.sequenceNums [r2]

Groupcasts are always delivered in timestamp and sequence number order

LocalOrder
∆
= ∀ r ∈ receivers :

let
deliveredGroupcasts

∆
= SelectSeq(receiverState[r].delivered ,

lambda g : g.vtype = vGroupcast)
deliveredFromSequencer(s)

∆
= SelectSeq(deliveredGroupcasts ,

lambda g : g.sequencer = s)
SeqNum(g)

∆
= if g.vtype = vGroupcast

then g.sequenceNums [r]
else g.sequenceNum

in

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 315

∧ ∀n ∈ (1 . . Len(deliveredGroupcasts) − 1) :
deliveredGroupcasts [n].timestamp ≤ deliveredGroupcasts [n + 1].timestamp

∧ ∀ s ∈ sequencers : ∀n ∈ (1 . . Len(deliveredFromSequencer(s)) − 1) :
SeqNum(deliveredFromSequencer(s)[n]) ≤
SeqNum(deliveredFromSequencer(s)[n + 1])

Safety
∆
= GlobalOrder ∧Delivery ∧ LocalOrder

Actions and Message Handlers

Advance time at sequencer s

AdvanceTime(s)
∆
=

∧ sequencerState ′ = [sequencerState except ! [s] =
[@ except ! .timestamp = @+ 1]]

∧ unchanged 〈messages , receiverState, configState〉

Sequencer s sends a groupcast to set of receivers R

SendGroupcast(s)
∆
= ∃R ∈ subset receivers :

∧ Cardinality(R) > 0
∧ Send([mtype 7→ mGroupcast ,

sequencer 7→ s ,
timestamp 7→ sequencerState[s].timestamp + 1,
sequenceNums 7→ [r ∈ R 7→

sequencerState[s].sequenceNums [r] + 1]
])

∧ sequencerState ′ = [sequencerState except ! [s] =
[@ except ! .sequenceNums = [r ∈ receivers 7→

if r ∈ R then @[r] + 1 else @[r]],
! .timestamp = @+ 1]]

∧ unchanged 〈receiverState, configState〉

Sequencer s sends a flush

SendFlush(s)
∆
=

∧ Send([mtype 7→ mFlush,
sequencer 7→ s ,
timestamp 7→ sequencerState[s].timestamp,
sequenceNums 7→ sequencerState[s].sequenceNums
])

∧ unchanged 〈sequencerState, receiverState, configState〉

Receiver r receives an mGroupcast message m from receiver i

HandleGroupcast(r , m)
∆
=

let
rstate

∆
= receiverState[r]

s
∆
= m.sequencer

n
∆
= m.sequenceNums [r]

316 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

g
∆
= [vtype 7→ vGroupcast ,

timestamp 7→ m.timestamp,
sequencer 7→ s ,
sequenceNums 7→ m.sequenceNums]

in
Don’t accept Groupcasts if we’re adding a sequencer

∧ rstate.addedSequencers ⊆
(rstate.activeSequencers \ rstate.removedSequencers)

Sequencer must be active and not being removed

∧ s ∈ rstate.activeSequencers
∧ s /∈ rstate.removedSequencers
Don’t receive if already handled

∧ g.sequenceNums [r] > rstate.sequenceNums [s]
∧DeliverAvailable(r , {g}, s , m.timestamp, n, {})

Receiver r receives an mFlush message m

HandleFlush(r , m)
∆
=

let
rstate

∆
= receiverState[r]

s
∆
= m.sequencer

t
∆
= m.timestamp

largestDeliveredTimestamp
∆
= Max ({0} ∪ {

g.timestamp : g ∈ {gp ∈ Range(rstate.delivered) :
gp.vtype = vGroupcast}})

in
Don’t accept flushes while adding sequencers

∨ ∧ rstate.addedSequencers ⊆
(rstate.activeSequencers \ rstate.removedSequencers)

∧ s ∈ rstate.activeSequencers
∧ s /∈ rstate.removedSequencers
∧DeliverAvailable(r , {}, s , t , m.sequenceNums [r], {})

∨ ∧ s ∈ rstate.addedSequencers \ rstate.activeSequencers
∧ s /∈ rstate.removedSequencers
∧ t > largestDeliveredTimestamp
∧ Send([mtype 7→ mAddSequencer ,

receiver 7→ r ,
sequencer 7→ s ,
timestamp 7→ t ,
sequenceNums 7→ m.sequenceNums])

∧ unchanged 〈sequencerState, receiverState, configState〉

Receiver r begins adding sequencer s

BeginAddSequencer(r , s)
∆
=

let
rstate

∆
= receiverState[r]

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 317

in
∧ s /∈ rstate.activeSequencers
∧ s /∈ rstate.addedSequencers
∧ s /∈ rstate.removedSequencers
∧ receiverState ′ = [receiverState except ! [r] =

[@ except ! .addedSequencers = @ ∪ {s}]]
∧ unchanged 〈messages , sequencerState, configState〉

The config service finalizes the addition of sequencer s

AddSequencer(s)
∆
=

let
adds

∆
= {m ∈ messages : m.mtype = mAddSequencer ∧m.sequencer = s}

tStart
∆
= Max ({m.timestamp : m ∈ adds})

seqsStart
∆
= (choose m ∈ adds : m.timestamp = tStart).sequenceNums

in
∧ s /∈ configState.addedSequencers
∧ ∀ r ∈ receivers : ∃m ∈ adds : m.receiver = r
∧ Send([mtype 7→ mFinishAdd ,

sequencer 7→ s ,
timestamp 7→ tStart ,
sequenceNums 7→ seqsStart])

∧ configState ′ = [configState except ! .addedSequencers = @ ∪ {s}]
∧ unchanged 〈sequencerState, receiverState〉

Receiver r receives an mFinishAdd message m

HandleFinishAdd(r , m)
∆
=

let
s

∆
= m.sequencer

rstate
∆
= receiverState[r]

in
∧ s /∈ rstate.activeSequencers
∧ s /∈ rstate.removedSequencers
∧ s ∈ rstate.addedSequencers
∧ receiverState = [receiverState except ! [r] =
[@ except ! .activeSequencers = @ ∪ {s},

! .timestamps = [@ except ! [s] = m.timestamp],
! .sequenceNums = [@ except ! [s] = m.sequenceNums [r]]]]

∧ unchanged 〈messages , sequencerState, configState〉

BeginRemoveSequencer(r , s)
∆
=

let
rstate

∆
= receiverState[r]

gs
∆
= {g ∈ Range(rstate.delivered) ∪ rstate.buffer :

∧ g.vtype = vGroupcast
∧ g.sequencer = s}

318 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

seqs
∆
= [rp ∈ receivers 7→ Max ({0} ∪

{g.sequenceNums [rp] : g ∈
{gp ∈ gs : rp ∈ domain gp.sequenceNums}})]

in
∧ s /∈ rstate.removedSequencers
∧ Send([mtype 7→ mRemoveSequencer ,

receiver 7→ r ,
sequencer 7→ s ,
sequenceNums 7→ seqs])

∧ receiverState ′ = [receiverState except ! [r] =
[@ except ! .removedSequencers = @ ∪ {s}]]

∧ unchanged 〈sequencerState, configState〉

RemoveSequencer(s)
∆
=

let
removes

∆
= {m ∈ messages :

m.mtype = mRemoveSequencer ∧m.sequencer = s}
lastSeqs

∆
= [r ∈ receivers 7→ Max ({0} ∪

{m.sequenceNums [r] : m ∈ removes})]
in

∧ s /∈ configState.removedSequencers
∧ ∀ r ∈ receivers : ∃m ∈ removes : m.receiver = r
∧ Send([mtype 7→ mFinishRemove,

sequencer 7→ s ,
sequenceNums 7→ lastSeqs])

∧ configState ′ = [configState except ! .removedSequencers = @ ∪ {s}]
∧ unchanged 〈sequencerState, receiverState〉

Receiver r receives an mFinishRemove message m

HandleFinishRemove(r , m)
∆
=

let
s

∆
= m.sequencer

rstate
∆
= receiverState[r]

in
∧ s /∈ rstate.removedSequencers
∧DeliverAvailable(r , {}, s , 0, m.sequenceNums [r], {s})

Main Transition Function

Next
∆
= ∨ ∃ s ∈ sequencers : ∨AdvanceTime(s)

∨ SendGroupcast(s)
∨ SendFlush(s)
∨AddSequencer(s)
∨RemoveSequencer(s)

∨ ∃m ∈ messages :

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 319

∨ ∧m.mtype = mGroupcast
∧ ∃ r ∈ domain m.sequenceNums : HandleGroupcast(r , m)

∨ ∧m.mtype = mFlush
∧ ∃ r ∈ domain m.sequenceNums : HandleFlush(r , m)

∨ ∧m.mtype = mFinishAdd
∧ ∃ r ∈ receivers : HandleFinishAdd(r , m)

∨ ∧m.mtype = mFinishRemove
∧ ∃ r ∈ receivers : HandleFinishRemove(r , m)

∨ ∃ r ∈ receivers : ∃ s ∈ sequencers :
∨ BeginAddSequencer(r , s)
∨ BeginRemoveSequencer(r , s)

320 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The Benefit of Hindsight: Tracing Edge-Cases in Distributed Systems

Lei Zhang Zhiqiang Xie
Emory University and Princeton University Max Planck Institute for Software Systems

Vaastav Anand Ymir Vigfusson
Max Planck Institute for Software Systems Emory University

Jonathan Mace
Max Planck Institute for Software Systems

Abstract
Today’s distributed tracing frameworks are ill-equipped to

troubleshoot rare edge-case requests. The crux of the prob-
lem is a trade-off between specificity and overhead. On the
one hand, frameworks can indiscriminately select requests to
trace when they enter the system (head sampling), but this
is unlikely to capture a relevant edge-case trace because the
framework cannot know which requests will be problematic
until after-the-fact. On the other hand, frameworks can trace
everything and later keep only the interesting edge-case traces
(tail sampling), but this has high overheads on the traced ap-
plication and enormous data ingestion costs.

In this paper we circumvent this trade-off for any edge-case
with symptoms that can be programmatically detected, such as
high tail latency, errors, and bottlenecked queues. We propose
a lightweight and always-on distributed tracing system, Hind-
sight, which implements a retroactive sampling abstraction:
instead of eagerly ingesting and processing traces, Hindsight
lazily retrieves trace data only after symptoms of a problem
are detected. Hindsight is analogous to a car dash-cam that,
upon detecting a sudden jolt in momentum, persists the last
hour of footage. Developers using Hindsight receive the ex-
act edge-case traces they desire without undue overhead or
dependence on luck. Our evaluation shows that Hindsight
scales to millions of requests per second, adds nanosecond-
level overhead to generate trace data, handles GB/s of data per
node, transparently integrates with existing distributed trac-
ing systems, and successfully persists full, detailed traces in
real-world use cases when edge-case problems are detected.

1 Introduction
Troubleshooting failures and performance problems in large-
scale distributed systems is crucial. On one side, tiny per-
formance misbehavior in a production system could be
costly [1, 2, 19]. On the other side, exacerbated by growing
system complexity, diagnosing problems takes onerous effort
from system developers and requires significant engineering
resources. Distributed tracing was invented as the solution
of troubleshooting distributed systems by recording detailed,
end-to-end traces of request executions, and have been proved
helpful for a wide range of use cases [59, 62].

Prior distributed tracing works have demonstrated a wide
range of use cases. Common-case analysis focuses on ag-
gregated system behaviors, such as monitoring resource us-
age [46, 59, 60, 62, 70]. In contrast, edge-case troubleshooting
(§2.1), the topic of this paper, focuses on rare and outlier
system behavior, such as tail latency [18, 38, 48, 69, 74].

Since an edge case is rare by definition, tracing edge cases
requires trace coverage of all requests. In typical production
environments, tracing every request—including transmitting,
processing, and storing comprehensive telemetry—requires
enormous backend infrastructure and storage that is unaccept-
able to infrastructure operators. State-of-the-art tracing frame-
works manage this overhead by collecting a small sample
(0.001%) of traces [9,34,37,64]. Though previous works prac-
tically reduce tracing overhead through head sampling [34,64]
and tail sampling [36, 37] techniques, they cannot trace edge
cases at scale (§2.3).

In this paper, we resolve the problem of tracing edge-case
requests in production environments. To achieve this, we
focus our attention on symptomatic edge cases, where the
performance effects of the problem manifest shortly after its
causes and where the impacts can be observed programmati-
cally. We propose retroactive sampling to collect telemetry
data back in time from the present moment of detection from
all machines that serviced the request. The key idea is to
generate all trace data but only collect useful data through a
retrieval mechanism.

To implement retroactive sampling, we built Hindsight—
an always-on, lightweight distributed tracing system that is
compatible with existing tracing APIs—as a practical tool
for edge-case analysis. Under retroactive sampling, all trace
data is recorded locally but only reported when a symptom
is detected, allowing applications to generate copious trace
data in case they are needed without encumbering the trac-
ing system’s backend collection infrastructure. Retroactive
sampling ultimately reports the same volume of trace data
as other sampling methods, but ensures that edge-case traces
are not missed. To provide efficient and coherent retroactive
sampling, Hindsight’s design separates its dataplane, e.g. gen-
erating trace data into fast local memory, from control logic,
e.g. for indexing metadata, coordinating among machines, and
triggering collection for symptomatic requests on demand.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 321

As demonstration, we apply Hindsight on three use cases
corresponding to our running examples. We run experi-
ments on the DeathStar Microservices Benchmark [24], the
Hadoop Distributed File System [63], an Alibaba benchmark
derived from production traces [42], and on several micro-
benchmarks. We have integrated Hindsight with OpenTeleme-
try [52] and as a replacement collection component for X-
Trace [23]. Our experimental results show that Hindsight im-
poses nanosecond-scale overhead when generating trace data,
can scale to 55 GB/s of data per node, rapidly reconstructs
traces when triggered, and coherently captures problematic
traces (>99%), as well as related lateral traces, within 100 ms
of identifying a symptom.

In summary, our paper makes the following contributions.
• We describe the retroactive sampling abstraction for cap-

turing traces of symptomatic edge-cases.
• We present the design of Hindsight, a distributed tracing

system that implements retroactive sampling. Hindsight
is compatible with existing tracing APIs and can be
transparently integrated with existing applications.

• We apply Hindsight on real-world use cases and show
that efficiently collecting edge-case requests is practical.

• We evaluate Hindsight on multiple benchmarks and real
systems, showing that it can achieve nanosecond-level
overhead on trace data generation and handle GB/s data
per node while collecting coherent traces.

• We illustrate that Hindsight is compatible and performs
better than state-of-the-art tracing systems (X-Trace and
Jaeger) with more efficient trace-data generation and
lower overhead, while providing edge-case tracing.

2 Motivation
2.1 Edge-Case Troubleshooting
Consider the following three examples of real-world use cases
UC1–UC3 of edge-case troubleshooting from prior work.

Error diagnosis (UC1). Hardware failures, component er-
rors, exceptions, and programming mistakes abound in large
production systems [73]. Application developers often play
the role of detective, to identify root causes of errors. An error
might only arise due to a specific, rare combination of factors
and code paths exercised; the symptoms of a problem often
manifest far from the root causes [22, 41, 45], and the poten-
tial root causes are manifold, perhaps combined software or
hardware problems on many nodes or network links [35].

Tail-latency troubleshooting (UC2). Distributed systems
track a wide range of high-level health metrics, such as API
distributions, latency percentiles, resource utilization, and
many others [33, 34]. An operator may observe an unusual
metric jump, say the 99th percentile latency has spiked for
some important API. However, knowing about the spike is not
enough; the application developer must identify the specific
service, code paths, or conditions that contribute to the peak
to address any underlying problems [18, 38, 48].

Temporal provenance (UC3). Many modern distributed
systems respond to requests through an architecture of loosely
coupled microservices [62]. Application developers need
tools for tracking queuing issues when the number of compo-
nents in a distributed system is large [3–6, 8], since a request
R exhibiting symptoms (e.g. prolonged queueing time) may
not be the true culprit for the backlogged queue. Rather, the
developer wants to follow the temporal provenance of R to
determine lateral traces of other related requests with which
R interacted through shared components and queues [72].

2.2 Distributed Tracing
Distributed tracing frameworks are in widespread use in both
open-source [31,52,78] and major internet companies [34,58,
64] to chronicle end-to-end requests. A trace is a recording
of one request, and each trace contains spans, events, and
annotations, along with timing and ordering, generated from
every machine visited by the request. Compared to traditional
logs and metrics, the key distinction of distributed tracing
is that a trace captures the full end-to-end structural flow of
request execution across all components visited.

Advantages. Distributed tracing is thus particularly useful
for troubleshooting cross-component problems in large sys-
tems, since the request traces explicitly tie together the indi-
vidual slices of work performed across different machines,
enabling an operator to observe how the work done by one
machine influences, and is influenced by, work done on oth-
ers [23,58,64,68]. Prior research on distributed tracing demon-
strates a range of use cases, including common-case analyses
centered on aggregate system behavior, distributions over data,
and relationships between system components [34,59,60,62].

Limitations. Since edge-case troubleshooting concerns rare
and outlier system behavior, the symptoms and evidence of
a problem might only manifest in a very small fraction of re-
quests. Unfortunately for the operator, this sparsity may yield
exceptionally few exemplar traces of edge-case behaviors and
symptoms, owing to the design of modern distributed tracing
frameworks. Let us look closer at how traces are captured
before returning to this problem.

Current designs. Fig. 1 depicts a typical distributed tracing
framework [34, 52, 58]. When a new request arrives at the
application, the tracing framework assigns it a uniquetraceId
(À). Every request is assigned atraceId, but not every request
is actually traced; the framework sets a per-request sampled
flag to indicate as such. From this starting point, the applica-
tion then propagates the traceId and sampled flag alongside
the request at the application level and includes them with all
inter-process communication (Á).

Any component that handles the request can generate trace
data (e.g. spans, events) using the tracing framework’s client
library (e.g. OpenTelemetry [52])—trace data is only gener-
ated ifsampled is set. Trace data gets explicitly annotated with
the traceId, thereby associating the data with the request (Â).

322 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sampled
traceId

Backend Trace Collectors

Σ
Å

Æ
eager trace
reporting

À

Á Â

Ã

Ä

Fig. 1: Distributed tracing (§2.2). A request (solid black line) tra-
verses system processes, depositing trace data that is eagerly ingested
into the trace collector backends. End-to-end trace objects are con-
structed from trace data, processed, and stored in a database.

Ultimately there may be many components and machines that
handled the request and contribute trace data. At the same
time, many requests may execute concurrently (e.g. in differ-
ent server handler threads), generating temporally-interleaved
data with different traceIds.

The framework’s client library eagerly enqueues, serializes,
and transmits trace data (Ã) to its centralized backend col-
lection infrastructure, or backend for short (Ä). The backend
is distinct from the traced applications and is responsible for
continually receiving, processing (Å), and storing (Æ) trace
data generated across all of the application’s components.
The backend uses the traceId to join data that was dispersed
across many machines but belongs to same request into a
single coherent trace object. The backend finally persists that
trace object in a database if it decides to retain the trace.

Overhead vs. incompleteness. Traces can be detailed and
produced at high volume, risking overheads. Traces at Google,
for instance, are typically more detailed than debug-level log-
ging [64]; each traced request at Facebook, similarly, gener-
ates several MBs of tracing data and approximately 1 billion
traces are captured per day [34]. At high rates, tracing frame-
works may encounter several potential bottlenecks: when gen-
erating data within the traced application (Â); when transmit-
ting trace data over the network (Ã); and in backend process-
ing and storage (Ä–Æ).

To reduce overheads, the de facto practice is to capture
fewer traces. Here, operating at the granularity of an entire
trace maintains trace coherence: if a request is sampled, then
the whole trace is kept including all data across all machines;
otherwise nothing is kept. Coherent traces are essential for
distributed tracing – a partial or fragmented trace has limited
value in diagnosis [23, 29, 30, 64] because it loses the end-to-
end visibility that makes the trace useful in the first place [58,
59, 68]. There are two main approaches for foregoing traces
coherently: the system may decide to omit a request at À
before tracing and ingestion (head sampling) or the traces
may be filtered after collection at Å (tail sampling).

Head sampling reduces overheads by simply tracing fewer
requests in the first place, i.e. by setting the sampled flag for
only a small fraction of requests (À). By leaving sampled un-
set for the majority of requests, trace data will not be recorded

for most requests, thus avoiding application overheads to gen-
erate data, ingestion overheads to transmit and process data,
and storage overheads (Â–Æ). Head sampling is widely used
in practice; it is enabled by default in Jaeger [31] with a 0.1%
sampling probability, and some production systems sample
as few as 0.001% [34, 64].

Tail sampling is used to drop traces at the trace backends
(Å). Unlike head sampling, the application will still trace
all requests and will incur all expenses of generating and
ingesting the trace data (Â–Ä). Tail-based sampling primarily
allows backends to lower the trace storage costs by selectively
dropping traces after combining them into trace objects but
before committing them to storage [36, 37, 53].

2.3 Edge-Case Troubleshooting Troubles
Recall that edge-case problem symptoms only manifest in a
small fraction of requests, which are undetermined until the
problem takes place. We argue that current approaches are
ineffectual at getting traces of edge-cases.
Head sampling sacrifices edge-cases. Indiscriminate sam-
pling decisions made at the beginning of a request (À), while
useful for curbing overhead, cannot know a priori whether a
request will encounter a rare edge-case problem and should be
traced. For edge-case troubleshooting this presents an obsta-
cle: a low head-sampling probability (e.g. 0.1%) means a trace
of the problem will exist with low probability (i.e. 0.1%). The
developer may thus have reports that errors took place (UC1)
yet the corresponding ‘rare’ requests were not sampled when
those requests began—they lack the detailed cross-machine
data necessary for finding the error’s root cause. Likewise,
the application’s high-level metric monitoring may indicate a
spike in end-to-end tail-latency (UC2); the developer is thus
aware that these high-latency outliers exist, yet without a trace,
they cannot localize the problem to a particular component or
request class. The situation is even more problematic when
investigating bottlenecked queues via temporal provenance
(UC3): since each request was sampled independently, the
tracing system will have only a vanishing probability that
traces of all relevant requests in the queue were captured.
Tail sampling sacrifices overheads and scalability. Practi-
tioners have long pointed out a discord between what traces
are interesting and what traces get head-sampled [7, 9, 11,
54, 55]. Fortunately, many common edge-case symptoms,
including error codes (UC1) and high end-to-end response
time (UC2), can be recorded directly within the trace data
itself. This enables tail-samplers to explicitly seek out edge-
case traces, because at this point (Å) they can directly in-
spect the constructed trace object. Today’s tail-samplers
support filtering traces based on span attributes or metrics,
thereby targeting a range of outlier symptoms such as high
tail latency, unexpected error codes, uncommon attributes,
rare code paths, and undesirable behavior such as RPC re-
tries [7, 10, 32, 40, 49, 53, 58, 67].

Tail-sampling entails enormous costs, however: they must

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 323

trace all requests and ingest all trace data in order to make in-
formed decisions. Application latency and throughput can suf-
fer if tracing libraries lack optimization (e.g. 2× throughput re-
duction using OpenTelemetry tail-sampling (§6.4)). Ingesting
all traces consumes substantial network bandwidth between
applications and collectors, interfering with latency-sensitive
application traffic (e.g. up to 200 MB/s per node (§6.4)). Tail-
sampling demands large backend infrastructure investment,
deploying enough collectors to receive and process all incom-
ing traces (e.g. even one chatty RPC server can overwhelm an
OpenTelemetry collector (§6.4)). Even assuming perfect hori-
zontal scaling, tail-sampling requires e.g. 100× the collector
capacity of 1% head-sampling. Lastly, tracing frameworks
are also not robust to bottlenecks mid-way through ingestion
(e.g. network backpressure) and quickly lose trace coherence
when overloaded.
Practitioners sacrifice edge-cases. The justified pragma-
tism of avoiding large overheads means that head sam-
pling reigns supreme in real-world distributed tracing de-
ployments [21, 26, 30, 34, 64]. Even tail-sampling features
of commercial products have low thresholds on data inges-
tion (e.g. <350 kB/s per host [65], <34 spans/s per host [50],
<6 MB/s per collector [39]) after which vendors will auto-
matically enable head-sampling or incoherently drop spans.
Ultimately, the operator who wishes to troubleshoot edge
cases is left unfulfilled.

3 Approach
Hindsight aims to overcome today’s trade-off between over-
heads and edge cases. Our goal is to enable practitioners to tar-
get edge-case traces with the flexible criteria of tail sampling,
while retaining overheads similar to that of head-sampling, i.e.
without high application overheads or substantial additional
backend infrastructure. We now describe several insights that
lead us to Hindsight’s retroactive sampling approach.
It is not expensive to generate trace data. We don’t know
a priori whether a request will be an interesting edge-case;
only after symptoms manifest. Paradoxically, once we ob-
serve symptoms, it is too late to just enable tracing from that
point on, as we have already missed the events that led to
the anomaly. The only sure-fire way of obtaining coherent
traces for any edge-case is to record trace data from the very
beginning of the request, for every request.

Tail-sampling does just that—with high overheads and
steep infrastructure costs. However, these costs are primar-
ily because today’s tracing frameworks tightly couple trace
generation with trace ingestion. Ingesting data is expensive,
incurring network and backend infrastructure costs. Gener-
ating data into local memory is not—outside of distributed
tracing, e.g., we observe new technology like Intel PT can gen-
erate 100–200 MB/s of processor telemetry per core at 5–15%
runtime overhead [28]; likewise method-tracing techniques
for Android applications exhaustively record all function en-
tries and exits with <1 ns per tracepoint and <3% runtime

overhead [43]. We believe that comparable overheads should
be possible for distributed tracing. With careful client library
design, applications should be able to generate detailed trace
data locally into memory, in anticipation of that data being
useful if a problem occurs.
Retroactive sampling: nodes generate, but do not ingest, all
trace data.

Symptoms are locally observable. Although root causes
are many, varied, and difficult to predict, the same is not true
of symptoms of problems. For example, error codes, tail la-
tency, and exceptions are easily-observed indicators of poten-
tial problems. Many symptoms are localized, programmati-
cally detectable, and manifest quickly at some point during or
shortly after a request was served [27, 53, 58]. For example,
tail sampling techniques, by definition, require that some span
in the trace was explicitly annotated with the symptom of an
anomaly, and typically wait only 10 seconds to accumulate
trace data [51,53]. For these common cases it is not necessary
to ingest and construct full trace objects when the symptom is
so readily detectable at the source. Moreover, since symptoms
can be detected independent of traces in the first place, we do
not need the expensive indirection of writing symptoms into
trace data only to later extract and filter them. We believe that
the key to capturing edge-cases is to decouple detection of
symptoms from collection of traces.
Retroactive sampling: applications embed triggers that pro-
grammatically observe symptoms and signal after-the-fact
that a trace is an edge-case.

Triggers are local but trace data is distributed. Prior dis-
tributed tracing frameworks ingest traces eagerly. We instead
believe that traces should be lazily ingested, only in response
to a trigger fired at some point during or soon after a request.
However, triggers are local – only one machine might detect
a symptom, yet the trace data for the request will be dispersed
across memory of all machines that serviced it. To splice to-
gether a coherent end-to-end trace, all of these other machines
need to learn of the trigger and send their slice of the trace
to the backend collectors. To identify and notify all relevant
machines of a trigger, we thus need the ability to back-track
the end-to-end path of a request.
Retroactive sampling: requests propagate and deposit bread-
crumbs so triggers can be shared with all relevant machines.

Trace data will eventually expire. Applications generate
trace data into local memory where it incurs no further pro-
cessing. We only send trace data to collector backends if a
trigger fires. However, we cannot predict when a trigger might
fire – even if a request has finished executing locally, we
cannot easily know that the request isn’t still executing on
some other machine(s) or that a trigger won’t fire remotely.
Thus, trace data must remain in memory on each machine
indefinitely. Over time this will fill memory and eventually
we will need to free up space. The intuitive choice is thus

324 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

to expire trace data for the least-recently-seen request. We
call the implicit time duration between generating data and
overwriting it the event horizon. We believe that retroactive
sampling should not require a large event horizon – as low as
tens of seconds is reasonable – because triggers are automatic
and shared quickly. In the majority of cases a machine should
learn of a trigger within a matter of seconds or milliseconds.
Thus retroactive sampling should be feasible even with large
and detailed traces or constrained memory.

Retroactive sampling: triggers are best effort; we assume we
will see triggers quickly if at all.

4 Design
Overview. Hindsight is a distributed tracing framework that
implements retroactive sampling. Whereas typical distributed
tracing frameworks eagerly ingest trace data, Hindsight lazily
ingests data only after a trigger, thus allowing retroactive sam-
pling of edge-case traces without paying the overhead costs
of ingesting all trace data. Hindsight remains compatible with
existing head-sampling and tail-sampling policies. Hindsight
trivially implements head-sampling policies by firing an im-
mediate trigger upon a positive head-sampling decision (or
if the sampled flag is set). Hindsight is opaque to backend
trace collectors and tail-sampling policies, and existing in-
gestion pipelines require no changes. Likewise, Hindsight is
transparently compatible with existing OpenTelemetry APIs
and instrumentation [52], and piggybacks breadcrumbs with
OpenTelemetry’s context propagation.

Walkthrough. Fig. 2 shows a high-level diagram of Hind-
sight’s main components.
À On request arrival (solid black line) Hindsight generates a

unique traceId and thereafter propagates it alongside the
request, as done by existing frameworks (§2.2).

Á Applications record trace data (e.g. events, spans) using
Hindsight’s tracepoint client API. This leaves the re-
quest’s trace data scattered across the machines it visited.

Â A Hindsight agent runs on each machine to manage trace
data. Hindsight agents do not inspect, process, or eagerly
report trace data to backends – instead, agents index meta-
data by traceId and await further instruction. For most
traces nothing further happens, the trace is not reported,
and agents eventually evict old trace data.

Ã If an application node observes an outlier symptom (e.g.
erroneous response, high latency, or a bottlenecked queue)
it invokes Hindsight’s trigger API and passes the request’s
traceId.

Ä The local Hindsight agent receives the triggered traceId.
The full trace remains dispersed across many Hindsight
agents, so the local agent informs Hindsight’s logically
centralized coordinator service of the traceId. Hind-
sight’s coordinator recursively contacts the set of ma-
chines that serviced this request, soliciting breadcrumbs
deposited by the request at each machine; a breadcrumb is

traceIdÀ breadcrumb traversalÄ
Coordinator

Ãtrigger

Hindsight
Client Lib

Application Á
tracepoint

da
ta metadata Hindsight

Agent

Â

tId
.
... evict

index

Backend
Trace

Collectors

Ålazy trace reporting

Fig. 2: The end-to-end lifecycle of a trace in Hindsight (§4).

a pointer to another machine involved in the request (e.g.
to the RPC caller or callee).

Å Each agent contacted will set aside its slice of data be-
longing to the traceId, and asynchronously send it to the
backend collector.

Design decisions. Hindsight is most shaped by three key
design choices. First, to prioritize trace coherence as a primary
objective throughout the architecture. Second, to maintain an
efficient data and control plane split to enable tracing 100% of
requests. Finally, to support lightweight programmatic trigger
mechanisms.

4.1 Trace Coherence
Coherence is a top-level requirement for distributed tracing
(§2.2). As soon as any machine drops data for a trace, the
trace is incoherent and effectively useless for troubleshooting.
Hindsight’s design avoids incoherence in several places.

At Â, agents continually evict old trace data to free up space
for new data. Agents do this atomically at the granularity of
a trace; there is no point in only dropping part of a trace.
However, for a single trace, its data is non-contiguous and
fragmented in memory. Agents carefully organize and index
metadata about where each trace’s data resides and do not
simply evict old data in a LIFO manner.

At Ä, the coordinator must contact all agents that handled a
request before those agents overwrite their slice of trace data.
Breadcrumbs are a lightweight and scalable solution – the
coordinator recursively follows breadcrumbs and only con-
tacts the specific agents known to have serviced the request.
This approach takes only a few milliseconds in our evaluation.
Breadcrumb traversal is independent of reporting the trace
data; agents set aside and asynchronously send trace data to
the collector backends after learning of a trigger.

At Å, agents can potentially experience network conges-
tion or backpressure from the collector backends, such as in
response to a trigger-happy application that fires too many
triggers and causes a backlog of unreported trace data on
many, or all, agents. Eventually even triggered data must be
dropped. Hindsight agents do not drop data arbitrarily (e.g.,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 325

skipping a full queue) because different agents would then tar-
nish different victim traces—it only takes one agent dropping
its slice of a trace to render the remaining data on other agents
practically worthless due to incoherence. Instead, in several
places agents use priority queues, with priority determined by
consistent hashing of traceIds. A given traceId will enjoy
the same priority across all agents and queues, and the same
traces will be dropped by all agents in the face of a bottleneck.

Finally, at Ã, applications may fire multiple different trig-
gers for a diverse range of symptoms, using a developer-
provided triggerId to distinguish different trigger types.
Hindsight will prevent a profuse trigger from stifling trace
collection of other, low-frequency triggers: agents implement
weighted fair sharing for reporting and evicting trace data,
with user-defined weights and rate-limits for each triggerId.

4.2 Efficient Data Management
Lazy ingestion significantly reduces the volume of trace data
sent from agents to the backend trace collection infrastruc-
ture. However, within an individual machine, retroactive sam-
pling requires the application generate trace data into local
memory for all requests (Â). The most sensitive performance
bottleneck for Hindsight is thus between client applications
generating data (tracepoint) and the local Hindsight agent
that manages trace metadata. Our design establishes a clear
split between control and data activities, which congregates
general-purpose data and efficiency in the data plane, and
embeds all logic in the control plane.

Data plane. Hindsight’s data plane is concerned with ef-
ficiently writing trace data from client applications. Using
tracepoint, applications write trace data to a large shared
memory pool subdivided into buffers. Different threads write
to different buffers; each buffer may only belong to one tra-
ceId at a time, and threads acquire new buffers when full or
when the active traceId changes. Consequently, the buffer
pool is not consumed sequentially and a single trace may be
fragmented across several non-contiguous buffers.

Control plane. Hindsight’s agent process encapsulates con-
trol plane activities, continually circulating metadata about
buffers to the application, via two shared memory queues.
Applications poll for available buffers and push full buffers;
agents poll for full buffers, index metadata of full buffers
grouped by traceId, and push evicted buffers back to the
application. Agents receive triggers and communicate with
Hindsight’s coordinator, manage breadcrumbs linking the
trace data that is strewn across many agents, extract triggered
trace data, and report data asynchronously to the backend
trace collection infrastructure. Hindsight’s control and data
distinction yields an efficient agent implementation because
agents only touch metadata.

4.3 Triggers
Applications initiate retroactive sampling via Hindsight’s trig-
ger API (Ä). In the common case, symptoms are easy to detect

and localize: top-level error codes; high latency; increased
queue time. Such symptoms can be readily recognized and
cheaply computed without the trigger mechanism needing the
trace data itself. For example, this may entail adding a trigger
call within a service’s exception handler, or after checking
for outlier latency upon a request’s completion. Hindsight
provides a library of automatic triggers based on metric per-
centiles, categorical features, and exceptions. All of our use
cases (UC1–UC3) can be implemented using Hindsight’s au-
totriggers. Likewise all existing tail-sampling policies can
be implemented using autotriggers, as span-local attribute
and metric filters directly translate to metric and categorical
autotriggers.

By separating triggers from traces, developers can also im-
plement custom symptom detectors to explicitly decide the
conditions for triggering. This further leads to a straightfor-
ward integration of triggers into existing metric-monitoring
and outlier-detection systems regardless of their architecture.

Lateral traces. Outlier behavior may not map directly to a
single request; instead there may be several other related lat-
eral requests. For example, to diagnose a bottlenecked queue
(UC3), a trigger needs to capture traces for the previous N
requests to understand what led to queue buildup [72]; to
diagnose a write-ahead log, we desire all requests blocking on
a log sync [4, 8]; to diagnose resource contention we require
all requests contending for a slow disk or network [3,5,6]. By
separating triggers from traces, we enable more comprehen-
sive trigger conditions based on factors beyond just a single
trace, and triggers that can capture multiple related traces
simultaneously. Hindsight enables an application to atomi-
cally trigger a group of related lateral traceIds; internally
Hindsight will ensure that the group as a whole is coherently
collected. By comparison, tail sampling cannot easily express
cross-trace triggers or sample lateral traces, because traceId-
based sharding in collector backends is fundamentally at odds
with sharing state between traces.

5 Implementation
We have implemented Hindsight’s client library in ≈4 KLOC
of C and Hindsight’s agent and coordinator in ≈5.5 KLOC of
Go. We chose C for dataplane efficiency and Go for its ease
of use for the more complex control plane logic.

5.1 Data Plane Buffer Pool
Each Hindsight agent pre-allocates a fixed-size buffer pool in
shared memory for applications to directly write trace data.
Hindsight logically subdivides the buffer pool into fixed-size
buffers (default 32 kB). Client applications write trace data to
buffers via Hindsight’s client API. The agent process does not
touch data in the buffer pool except when reporting triggered
traces. At each point in time, a buffer can only contain trace
data of a single request; no two different requests will write
trace data to the same buffer at the same time. A single trace
will thereby comprise (1) multiple non-contiguous buffers on

326 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

begin(traceId) Request begins in the current thread.
tracepoint({payload}) Record data for the current trace; pay-

load is of arbitrary size in bytes.
breadcrumb(address) Adds a breadcrumb to the current trace,

pointing to some other node address.
serialize() Obtain the current traceId and a bread-

crumb to the current node.
end() Request ends processing in current

thread; flush and remove buffers.
trigger(traceId,triggerId,
lateralTraceIds...)

Instruct Hindsight to collect traceId and
zero or more lateralTraceIds

Table 1: Hindsight client API. Applications can invoke the API
directly, or indirectly using Hindsight’s OpenTelemetry [52] tracer.

each agent and (2) many buffers scattered across numerous
agents. Buffers are the granularity of data management within
Hindsight. Within clients and agents, a buffer is addressable
by its bufferId—its offset into the buffer pool.

5.2 Client Library
Table 1 outlines Hindsight’s client API. Applications can inter-
act with this API directly, or use Hindsight’s OpenTelemetry
tracer which acts as a wrapper.

Writing trace data. When a request begins executing in
a thread, it must call begin; subsequently it may call tra-
cepoint an arbitrary number of times; and finally when it
completes executing in a thread, it must call end. This usage
pattern is typical of distributed tracing frameworks. The tra-
cepoint function accepts an arbitrary byte payload if called
directly; conversely Hindsight’s OpenTelemetry tracer serial-
izes trace events as payload. Hindsight internally maintains
thread-local state including the current traceId and a pointer
to a buffer. tracepoint writes directly to the thread-local
buffer without synchronization. Synchronization is only re-
quired when acquiring or returning buffers; these operations
touch shared-memory queues but are infrequent. A buffer is
acquired during begin, returned during end, and replaced
when filled.

Communicating with agents. The client library acquires
bufferIds by polling a shared-memory available queue; if
the queue is empty clients immediately return and instead
write trace data to a special ‘null buffer’ that is simply dis-
carded. When the client fills a buffer, it writes its traceId
and the bufferId to a shared-memory complete queue. The
agent continually drains the complete queue, and likewise con-
tinually returns fresh buffers to the available queue. Shared
memory queues are lock-free and support batch operations;
using batch operations, agents are robust to queue contention
from multiple client writer threads.

This paired channel design forms a natural separator
between control and data with two desirable properties:
(1) queues only communicate metadata—a single integer
bufferId represents, by default, a 32 kB buffer; (2) communi-
cation is infrequent, occurring only when buffers are filled or
a thread switches over to execute a different request, thereby
minimizing synchronization. From the client library’s per-

PercentileTrigger(p) Clients call addSample(traceID, measurement). Trig-
ger fires for measurements >percentile p. (e.g. high
latency or resource consumption)

CategoryTrigger(f) Clients call addSample(traceID, label). Trigger on
categorical data that is less frequent than threshold
f (e.g. rare API calls or attributes)

ExceptionTrigger Trigger on an exception or error code
TriggerSet(T,N) Tracks the most recent N traceIds and includes as

lateralTraceIds when T fires.

Table 2: Hindsight autotrigger API can automatically trigger traces
based on certain conditions.

spective, it cheaply and blindly writes trace data into shared
memory and forwards only the control metadata to agents;
conversely agents are agnostic to buffer contents—they do
not inspect data in the shared memory pool and use only the
metadata communicated via the complete queue.

Depositing breadcrumbs. A breadcrumb is an address of a
Hindsight agent. When a request arrives at a node, it carries
the breadcrumb of the previous node. During trace context
deserialization, the traceId and breadcrumb is written to a
shared memory breadcrumb queue. Agents poll this queue
and index breadcrumbs alongside buffer metadata. Agents do
not forward or act upon breadcrumbs until a trace is explicitly
collected with a trigger. When a request departs a node, it
takes that node’s breadcrumb. Clients can additionally estab-
lish forward-breadcrumbs to a named destination node prior
to communication. By following breadcrumbs, we can recon-
struct the full request graph starting from any node, including
for requests with arbitrary concurrency and fan-out.

Triggering trace collection. Applications initiate trace
collection by invoking trigger, which writes the traceId,
triggerId and zero or more lateralTraceIds to a shared-
memory trigger queue. In addition, Hindsight will propagate
the fired trigger with the request similar to the sampled flag
(cf. Fig. 1) so that later nodes immediately learn of the trigger.

A developer can implement custom outlier detection and
invoke trigger directly, or they can make use of Hindsight’s au-
totrigger library (Table 2), a separate collection of triggers that
track simple conditions over time and automatically invoke
trigger when a condition is met. TriggerSet is noteworthy as
a building block for lateral tracing; it includes N most recent
traces whenever T fires.

5.3 Agent
Trace index. The trace index is a map of metadata, keyed
by traceId. The metadata for a traceId includes a list of
bufferIds and a list of breadcrumbs. Agents also maintain
metadata of the triggers that have fired. Agents continually
update the trace index with recently-written buffers, by polling
traceIds and bufferIds from the complete queue. The agent
will evict traces when the index exceeds a threshold of buffer
pool capacity (default 80%) by removing the least-recently
used untriggered traceId and returning all of its bufferIds to
the available queue.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 327

Local triggers. Agents poll the local trigger queue and im-
mediately forward triggers to the coordinator. Agents include
the breadcrumbs of the triggered traceId, enabling the co-
ordinator to begin recursively disseminating the trigger to
other agents. Meanwhile the agent schedules the trigger to be
reported. In the case of a spammy local trigger, if the trigger
exceeds a per-triggerId rate-limit, the agent will immediately
discard the trigger instead of forwarding and scheduling it.

Remote triggers. Agents receive remote triggers fired by
other agents via the coordinator. To facilitate rapid trigger
dissemination, the agent immediately responds to a remote
trigger by providing any breadcrumbs it has for the traceId
andlateralTraceIds. Unlike local triggers, agents do not rate-
limit remote triggers—they are all scheduled for reporting.

Reporting traces. When a trigger is scheduled for reporting,
its traceId and lateral traceIds can no longer be evicted by
the regular buffer eviction cycle. The trigger is inserted into a
per-triggerId reporting queue. In the normal case when an
agent is not backlogged, the reporting queue will be empty.
The agent asynchronously pulls triggers from the queues;
reads buffers of the traceId and lateralTraceIds from the
buffer pool; sends the buffer contents to the backend collec-
tors; and finally returns the bufferIds to the available queue.
A trace remains triggered even after reporting its data, in case
the request is still generating trace data locally.

Ignoring triggers during overload. If the network or back-
end collectors are overloaded, reporting queues in an agent
can fill up. During overload, the agent continues to report
traces as described above for the normal case. The agent im-
plements weighted fair queueing over the reporting queues
and supports global and per-triggerId reporting rate lim-
its. From a reporting queue, the agent dequeues the highest-
priority trigger, by using consistent hashing of traceId, and
reports its data as described above for the normal case.

Simultaneously, past a configured threshold, the agent must
begin abandoning triggers to free up buffers. Abandoning
a trigger entails removing it from its reporting queue and
returning buffers to the available queue. Agents coherently se-
lect the lowest-priority trigger to abandon, by using the same
consistent hashing of traceId. In the case of multiple report-
ing queues, agents will ensure that a well-behaved triggerId
is not impacted by a spammy triggerId: agents implement
weighted max-min fair-sharing across reporting queues to
choose a queue from which to drop triggers.

Trigger priority ensures coherence during overload. Re-
porting queues are priority queues that use consistent hashing
of traceId to determine priority. Across all agents, a given
traceIdwill enjoy the same priority relative to othertraceIds.
Thus if multiple agents experience overload, they will coher-
ently bias towards reporting the same high-priority traceIds
and abandoning the same low-priority traceIds.

6 Evaluation
We now evaluate how effectively Hindsight overcomes the
fundamental problem of head-based tracing methods in exam-
ples (UC1)–(UC3) and meets the goals of retroactive sampling
to provide lightweight and effective request tracing.

Systems. We evaluate Hindsight on three distributed sys-
tems. To validate our motivating use cases (UC1–UC3), we
integrate Hindsight with the Hadoop Distributed File System
(HDFS) [63](with a ≈300 LOC JNI-based Java client library)
and the DeathStar Social Network Microservices Benchmark
(DSB) [24]. To assess Hindsight at greater scale and load,
we develop a flexible, configurable RPC benchmark called
MicroBricks.

MicroBricks is a microservice benchmark written in
≈3 KLOC C++ using gRPC’s high-performance async li-
brary. A MicroBricks deployment comprises a topology of
RPC services such that each client request will traverse multi-
ple services. A call to a service will execute for some amount
of time, then concurrently call zero or more other RPC ser-
vices with some probability. Each service is independently
configured with its own set of APIs, each with their own exe-
cution times, child dependencies, and child call probabilities.
We evaluate using several different topologies. In particular,
we use Alibaba’s microservice trace dataset [42] to derive
realistic topologies by calculating per-service execution time
distributions, service dependencies, child call probabilities,
and client workloads.

Baselines. We configure OpenTelemetry [52] with
Jaeger [31] under head-sampling (1% unless indicated) and
tail-sampling.

Instrumentation. We instrument MicroBricks with Open-
Telemetry to create spans and events for RPC calls and child
calls. We use DSB’s existing OpenTracing instrumentation
and add support for Hindsight. We use Hadoop’s existing
X-Trace instrumentation [23] and update X-Trace to write its
trace data to Hindsight.

Summary. Our experiments demonstrate the following:
• Hindsight effectively addresses the overhead vs. edge-cases

trade-off faced by existing tracing frameworks.
• Hindsight captures relevant edge-case traces across real

use-cases (UC1–UC3).
• Hindsight is lightweight and not a bottleneck for client

applications, unlike OpenTelemetry [52] and Jaeger [31].
Hindsight’s trace API imposes nanosecond overheads;
Hindsight’s impact on end-to-end application latency and
throughput is <3.5% when tracing 100% of requests and
generating >200 MB/s of trace data per node.

• Hindsight’s control/data split provides up to 55 GB/s write
throughput.

6.1 Overhead vs. Edge-Cases
In this experiment, we evaluate Hindsight in a large-scale
setting with a realistic microservice topology derived from

328 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0%

50%

100%

E
dg
e-
ca
se

T
ra
ce
s

(a)

10-1
100
101
102

 0 2000 4000 6000 8000 10000 12000 14000

B
an
dw
id
th

(M
B
/s
)

(b)

101

102

103

Hindsight
Jaeger Tail

Jaeger Tail (Sync)
Jaeger 1%-Head

No Tracing

L
at
en
cy

(m
s)

Throughput (req/s)

(c)

Fig. 3: Overhead vs. edge-cases on a 93-service Alibaba Micro-
Bricks topology with 1% edge-cases (§6.1). For different tracing con-
figurations we show: (a) application end-to-end latency-throughput
curves; (b) the rate of coherent edge-trace cases captured; and (c)
network bandwidth.

Alibaba request traces [42]. We show that Hindsight over-
comes the limitations of head-sampling and tail-sampling.

We deploy MicroBricks with a 93-service Alibaba topology
in a 544-core private cluster (comprising 10×Dell R920 48-
core 1.5 TB machines and 4×Dell M620 16-core 256 GB
machines). We deploy each service in a separate container.
We use separate machines to (i) generate workload and (ii) run
the OpenTelemetry collector/Hindsight coordinator+collector.

To directly control the number of edge-case traces, we ran-
domly decide with low probability (1%) to designate a request
an edge-case when it completes (later experiments consider
autotriggers). We annotate the root span of edge-cases with
an additional attribute so that tail-sampling can filter traces on
this attribute. Hindsight directly fires a trigger for edge-cases
from within MicroBricks. We repeat the experiment multiple
times, analyzing results under four tracing configurations:

Head sampling (Jaeger 1%-Head). Fig. 3a shows the av-
erage request latency and throughput as we vary the offered
load from 0 to 14,000 requests/sec (r/s). Jaeger 1%-Head has
comparable peak throughput and latency as No Tracing, since
it traces only 1% of requests, thus amortizing the tracing over-
head. Fig. 3b plots the percentage of coherent edge-case traces
captured per second. Since head-sampling cannot discrimi-
nate, it only captures ≈1% of all edge-case traces, peaking at
1.64 per second. Fig. 3c shows the network bandwidth con-
sumption between application nodes and the OpenTelemetry
collector. With few requests being traced, Head-sampling only
consumes a maximum of 1.4 MB/s of network bandwidth.

Tail sampling (Jaeger Tail). Tail-sampling imposes more
burden on the traced application than head-sampling, at-
taining 14% lower peak throughput (Fig. 3a). At low load
(1,000 r/s), tail-sampling successfully captures ≈100% of
edge-case traces, at 9.9 per second (Fig. 3b). However, a load
of just 2,000 r/s is sufficient for clients to encounter back-
pressure from the network and the OpenTelemetry collector,
and they begin incoherently dropping spans: at 2,000 r/s only
71% coherent edge-cases are captured; at 3,000 r/s only 28%;
and so on. Tail-sampling rapidly deteriorates and at peak load
captures fewer coherent edge-case traces than head-sampling

 0%
20%
40%
60%
80%
100%

 0 5000 10000 15000 20000

tA=0.1%
tB=1%
tF=50%

C
ol
le
ct
ed

T
ra
ce
s

Throughput Event Horizon (ms)

 0%
20%
40%
60%
80%
100%

 0 500 1000

10M

 5000 10000

100M

(a) Coherent traces captured when
overloaded with a spammy trigger tF.

(b) Event horizon for constrained
bufferpools (10MB and 100MB).

 0
 20
 40
 60
 80

 100

 0 5 10 15 20 25 30 35

t12k
t8k
t4k
t0.1k

T
ra
ve
rs
al

T
im
e
(m
s)

Number of breadcrumbs

(c) Breadcrumb traversal time as trace size varies, triggering 0.1% (t0.1k) or
50% (t4k, t8k, t12k) traces on different workloads.

Fig. 4: Scalability and overload.

(1.44 edge-cases/s), because 98.8% of captured traces are in-
coherent. Tail-sampling consumes up to 78 MB/s of network
bandwidth (Fig. 3c).

Tail sampling (Jaeger Tail Sync). Jaeger clients asyn-
chronously send spans to OpenTelemetry collectors, and as we
just observed, drop spans when client-side queues fill up. We
repeat the experiment with a synchronous variant, whereby
clients send spans to OpenTelemetry synchronously. Back-
pressure then manifests as additional critical-path request
latency. This approach inevitably increases request latency
and reduces peak throughput by 42% (Fig. 3a). However,
we can observe the collector ultimately captures more edge-
case traces, peaking at 47 edge-cases per second at 6,000 r/s
(Fig. 3b) and 72.2 MB/s of network. Beyond this, the Open-
Telemetry collector is saturated and cannot process a higher
rate of traces; it begins indiscriminately dropping incoming
spans, reducing the fraction of coherent edge-case traces.

Hindsight. Hindsight achieves comparable peak throughput
to No Tracing (<3.5%), and minimal impact on request la-
tency below peak load (Fig. 3a). Hindsight captures 99–100%
of edge-case traces at all throughputs (Fig. 3b). Hindsight
consumes a maximum of 2.6 MB/s of network bandwidth
since only edge-case traces are being collected (Fig. 3c).

6.2 Scalability and Overload
We now focus on two aspects of Hindsight’s scalability: its
breadcrumb traversal mechanism and its ability to rate-limit
spammy triggers. We deploy the 93-service Alibaba topol-
ogy as described in §6.1. To reach a higher request and trace
throughput, we scale down the computation performed at
each service and increase offered load up to 28,000 r/s. We
install three triggers with probabilities tA=0.1%, tB=1%, and
tF=50%. tF represents a faulty trigger—it fires for 50% of re-
quests and thereby adds substantial load to Hindsight’s bread-
crumb traversal mechanism. We rate-limit Hindsight’s collec-
tor bandwidth to 1 MB/s per agent to backlog the agents and
inhibit Hindsight’s ability to collect traces; thus tF triggers
far more traces than Hindsight can collect.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 329

0
200
400
600
800
1000

 0 2 4 6 8 10

Hindsight 1% Limit
Hindsight 5% Limit

Head-Sampling
Errors

E
xc
ep
ti
on
s

Time (min)

1%

5%

(a) Error diagnosis (UC1). Exceptions captured by different sampling strate-
gies as the error rate varies.

 0
 0.2
 0.4
 0.6
 0.8

 1

0 20 40 60

All
Hindsight

Head-Sampling

C
D
F

Latency (ms)

P99 P95 P90

0 20 40 60 0 20 40 60

(b) Tail-Latency (UC2). Latency of requests captured through different
sampling strategies with different tail-latency triggers (left to right).

0

200

400

600

0 5 10 15 20 25

Untriggered
Expensive

Percentile Triggered
Lateral Triggered

L
at
en
cy

 (
m
s)

Time (s)
21.5 22 22.5 23 23.5

(c) Temporal Provenance (UC3). Lateral requests gathered (blue) after
triggering on slow requests (red) due to an overfull queue in HDFS.

Fig. 5: Hindsight applied on use cases UC1–UC3 (see §2.1).

Coherent rate-limiting. Fig. 4a plots the percentage of co-
herent traces captured for tA,tB and tF as the offered load
increases. Throughout the experiment, Hindsight captures ap-
proximately 100% of traces triggered by tA and tB, since they
fire infrequently. By contrast, tF triggers far more traces than
can be collected. In absolute terms, Hindsight collects ≈2,000
coherent traces per second throughout the experiment, with
tF using capacity not used by tA and tB. Thus, higher request
rates result in more traces dropped for tF in both relative and
absolute terms.

Breadcrumb traversal. Fig. 4c plots the average bread-
crumb traversal time based on the trace size – i.e. the num-
ber of Hindsight agents that were recursively contacted. We
show results for four experiment iterations and label them
based on their approximate trigger rates: t12k, t8k, and t4k
correspond to triggering 50% traces on 24k, 16k and 8k r/s
workloads (≈12k, 8k, and 4k triggers/second respectively).
To compare to a non-overloaded setting we also include t0
.1k, a 12k r/s workload from §6.1 (≈0.1k triggers per sec-
ond). Traversal time is elevated for t12k, t8k and t4k (up
to 86 ms) since spammy triggers substantially increase the
load on Hindsight’s coordinator. Conversely, traversal time
for t0.1k is <13 ms since triggers are relatively infrequent.
For each experiment, traversal time increases with trace size,
but sub-linearly since breadcrumbs can be gathered concur-
rently from different branches in requests that have fan-out.
However, even under the extremely overloaded circumstance,
the longest traversal time, which is less than 100 ms, is far
smaller than the event horizon as described in the following
section and thus is still manageable.

Event horizon. We lastly measure Hindsight’s event hori-

zon. Here, we introduce a delay when an agent receives a local
trigger. We vary the delay added to triggers and measure how
many coherent traces are ultimately collected. At a certain
point, triggers will have too much delay and trace data will
have been evicted before the trigger even fires. Fig. 4b plots
the percentage of coherent traces captured for tB as we vary
the trigger delay. We repeat this experiment with small buffer
pools (100 MB and 10 MB per agent) to exacerbate the event
horizon effect. Even a 10 MB buffer pool can capture nearly
100% coherent traces in the absence of added delays, but a
500 ms delay drops coherence to 58% and at 600 ms, coher-
ence is <20%. A larger buffer pool improves the tolerance to
delays: with a 100 MB buffer pool, coherence surpasses 90%
with up to 3s delay, but drops to <20% by 6.4 s. In practice, we
believe our default 1 GB pool is a reasonable choice, bringing
an event horizon around 1 minute.

6.3 Case Studies
We now turn our attention to the case studies introduced
in §2.1, and demonstrate how Hindsight’s local triggers are
able to support these use cases.
Error diagnosis (UC1). We deploy DSB Social Network,
a microservice system with 12 microservices and 17 back-
ends [24], on 13 CloudLab c6320 nodes [20]. We add an
ExceptionTrigger from Hindsight’s autotrigger library to the
ComposePostService, and run DSB’s default workload with
300 r/s1. We randomly inject exceptions in the Compose-
PostService module, with exception rates ranging from 1%
to 10%. We repeat the experiment twice and rate-limit Hind-
sight’s collector to approximately 1% and 5% of the total trace
data generated by the experiment. Fig. 5a plots the exception
rate, and the number of coherent exceptional traces captured,
for each 30 s time window. When there are few exceptions,
Hindsight captures all traces; when the exception rate exceeds
collector bandwidth, Hindsight coherently captures as many
traces as possible within this limit.
Tail-latency (UC2). We add a PercentileTrigger from
Hindsight’s autotrigger library to the ComposePostService
module in the same setting as above, invoking addSample at
the end of each ComposePost RPC call and providing the mea-
sured RPC duration. We set p to 99, 95, and 90, as different
thresholds for tail latency. We inject 10% requests at random
with 20–30 ms latency. Fig. 5b plots the latency distribution
of requests captured by different strategies; the vertical dotted
lines mark the tail-latency percentile threshold. Hindsight is
able to specifically target traces with high-percentile latency.
By contrast, head-sampling is random and thus its captured
latency distribution resembles that of all requests – useful for
aggregate analysis but not for edge-case troubleshooting. We
note that Hindsight does not sacrifice this aggregate analysis
use-case; it supports both simultaneously (cf. §6.1).
Temporal provenance (UC3). We add a QueueTrigger

1We measure a maximum attainable DSB throughput of ≈350 r/s.

330 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20000 40000 60000 80000

�roughput (requests/s)

0

1

10

100

1000

La
te

nc
y

(m
s)

Hindsight
Hindsight 1% Trigger
No Tracing
Jaeger 1%-Head
Jaeger 10%-Head
Jaeger Tail

Fig. 6: End-to-end latency and throughput for a 2-service Micro-
Bricks topology configured with various tracers, showing minimal
application impact for Hindsight despite tracing 100% of requests.

from Hindsight’s autotrigger library to the HDFS NameNode
queue — the QueueTrigger combines a TriggerSet with a
PercentileTrigger, parameterized to capture N = 10 most
recently dequeued lateral requests when 99.99th percentile
queueing latency is observed. We deploy HDFS on 10 ma-
chines (8 DataNodes, 1 NameNode, and 1 client) and run
a Hindsight agent on each machine. We run a closed-loop
workload of random 8 kB reads with 10 concurrent requests.

Fig. 5c (left) shows NameNode queue latency over time.
We inject a burst of 10 expensive createfile requests 21
seconds into the trace that briefly saturate the queue—Fig. 5c
(right) zooms in on this time window. The figure shows high-
latency requests (•), requests that fire the autotrigger (X), and
the additional lateral requests that were triggered to Hindsight
(X). The first expensive request occurred at 22 seconds, fol-
lowed by a pause while it was executed. Upon dequeuing the
subsequent read8k request, QueueTrigger fired due to high
queue latency, and Hindsight retroactively sampled the 10
prior traces leading up to the trigger. The sample included the
culprit expensive request. Overall, all 10 expensive requests
were sampled, 8 unrelated requests prior to the first expensive
request, and 9 additional read8k requests. Moreover, several
intermittent latency spikes occurred unrelated to the exper-
iment (Fig. 5c, left), which Hindsight also captured; upon
investigation, these were due to garbage collection.

Unlike UC1 and UC2, temporal provenance is unsupported
in existing tail-samplers. Moreover, temporal provenance is
fundamentally difficult to support with tail-sampling due to
scalability issues. Temporal provenance requires knowledge
of lateral traces (e.g. the 10 previous traces); by implication
those traces must all route to the same collector instance. How-
ever in practice, tail-sampling necessarily uses traceId for
routing decisions – thus related traces may arrive at different,
oblivious collectors.

6.4 Hindsight Performance
End-to-end application overheads. Hindsight generates
trace data for all requests; thus low overheads are a key goal
of Hindsight’s design. In this experiment, we measure the
impact of Hindsight on end-to-end application latency and
throughput. We deploy a two-service MicroBricks topology
with a 100% call probability from the first service to the sec-
ond. To highlight tracing overheads, neither service performs
additional compute. We vary the offered load and measure

API Call T=1 T=4 T=8 API Call T=1 T=4 T=8
begin 72.7 194.8 237.9 tracepoint 7.9 8.4 8.6
end 70.7 205.8 216.6
Category(.01) 45.8 44.9 46.7 tracepoint 8B 3.9 4.0 4.8
Percentile(99) 275.3 293.5 306.9 tracepoint 128B 11.5 13.5 13.0
Percentile(99.9) 407.1 441.9 512.2 tracepoint 512B 37.7 43.1 40.9
Percentile(99.99) 629.4 875.8 1134.0 tracepoint 2kB 160.2 192.9 174.7
TriggerSet(10) 6.57 44.1 52.2

Table 3: Latency measurements (nanoseconds) for Hindsight client
API and autotriggers for a microbenchmark application configured
with 1, 4, and 8 Threads (§6.4). Default tracepoint writes a 32 kB
trace event; we also measure 8–2048 B tracepoint payloads.

end-to-end request latency and throughput (§A.1).
Fig. 6 plots latency-throughput curves under several dif-

ferent tracing configurations. The lowest latency and highest
throughput is achieved with No Tracing, peaking at an average
71.0 k requests/s. Similar throughput is achieved by Jaeger
when configured with 1% Head-sampling, at 70.2 k r/s. Hind-
sight peaks at 70.4 k r/s – a decrease of only 0.9% compared to
no tracing. Hindsight generates on average 330 MB/s of trace
data at peak request throughput, with an event horizon of 5.2 s,
and consumes a combined 0.3 CPU cores across agents, coor-
dinator, and collector. By comparison, Jaeger configured with
Tail-sampling peaks at only 41.4 k r/s, an overhead of 41.7%;
moreover, the workload over-saturates the OpenTelemetry
collector, resulting in 94% of trace data being dropped while
consuming 4.5 CPU cores.

Client API and autotrigger microbenchmarks. We run a
benchmark application that generates traces and measures the
overhead of calls to Hindsight’s client API and autotrigger
library. The benchmark writes traces by calling begin to start
the trace, writing a total of 16 kB per trace by repeatedly
calling tracepoint, then calling end to finish the trace. Each
tracepoint call writes a 32-byte event struct (3 metadata
fields and a timestamp) using Hindsight’s OpenTelemetry
library. Following each trace, the benchmark invokes five
different autotriggers. The benchmark runs a custom number
of threads to generate traces; each thread independently runs
a continuous loop generating traces, and every thread writes
a different trace. We configure Hindsight to use 32 kB buffers
and a 1 GB buffer pool, and run a Hindsight agent. We run 1
minute per experiment (≈10–50 million traces).

As shown in Table 3, autotrigger overheads vary. Catego-
ryTrigger is relatively cheap (<47 ns) and TriggerSet adds
relatively little overhead to the wrapped trigger (6–53 ns). By
contrast, PercentileTrigger overheads grow proportional to
the percentile: up to 307, 512, and 1,134 ns respectively for
tracking 99th, 99.9th, and 99.99th percentile latency due to
larger internal data structures for tracking order statistics.

Table 3 also shows API latency for 1, 4, and 8 threads.
Overall, Hindsight achieves nanosecond-scale API latency,
and by design the expensive API calls (begin, end, and au-
totriggers) are limited to once per trace. begin and end vary
from 70–230 ns, proportional to the number of threads due
to contending on shared-memory queues to acquire and re-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 331

turn buffers. By contrast, tracepoint call latency is mostly
independent of the number of threads, between 7.9–8.5 ns (re-
duced to ≈4 ns when omitting timestamps). We also measure
tracepoint latency for larger payloads up to 2 kB; latency
increases only up to 175 ns per tracepoint since tracepoint is
primarily a memory copy into the thread-local buffer estab-
lished by begin.

7 Discussion
We next discuss items peripheral to Hindsight’s core design.

7.1 Triggers
Mitigating spammy triggers. Hindsight’s design currently
isolates triggers based on a trigger ID, whereby different
symptom detectors would use different trigger IDs, ensuring
that a symptom detector that fires infrequently is not affected
by one that fires too often.
Lateral trace IDs. All of Hindsight’s autotriggers are
lightweight symptom detectors that run within the application
itself. In principle, the logic to decide when to trigger, and
which traceIds to trigger, is arbitrary. Hindsight’s autotrig-
gers are classes which the application can instantiate that track
state over time. For a PercentileTrigger that tracks latency,
for example, the application must instantiate the autotrigger
within the request handler, and add the new latency sample at
the end of each request’s execution. A TriggerSet can wrap
any trigger; internally it maintains a sliding window of the N
most recently-seen traceIds that tested the wrapped trigger.
When we applied the TriggerSet in the UC3 experiment
(Fig. 5c), for example, we measured queueing latency and
the TriggerSet internally held the N most recenttraceIds that
were dequeued. When the wrapped autotrigger finally calls
trigger, it will include all N of the traceIds in the trigger call.

7.2 Consistent Hashing
Hindsight agents have several forms of queuing and schedul-
ing internally, primarily to decide which traces to evict and
which to report to avoid any unbounded queue. Simple queue-
ing (e.g. used by OpenTelemetry) indiscriminately drops data
when the queue is full. When multiple agents have full queues,
each independently dropping arbitrary data seriously compro-
mises trace coherence. Instead, when Hindsight agents are
at capacity, they bias towards dropping data from the same
victim traces by preferentially discarding items from lowest
priority traces. Thus even though Hindsight agents are operat-
ing independently, they seek to retain the same high-priority
trace IDs when under load.

7.3 The Event Horizon
Parameters. Several factors influence Hindsight’s event
horizon: (i) the buffer pool size of each agent; (ii) the rate
of new trace data being generated; (iii) the time between a
request completing and a trigger firing. Inevitably, if there is
too much trace data, or if triggers are too slow, Hindsight may

be unable to keep the trace before its data is overwritten. For
some use cases this means Hindsight cannot use retroactive
sampling. However, head-sampling or tail-sampling would
still be viable options, equivalent to existing distributed trac-
ing frameworks.

Extending the event horizon. The solution is either to in-
crease the memory available to Hindsight or to scale down
the percentage of traced requests using Hindsight’s optional
trace percentage. Trace percentage is a separate configuration
knob (defaulting to 100%) that controls the percentage of
requests that generate trace data in the first place. The start-
ing premise for Hindsight is that 100% tracing is acceptable,
so we used 100% as the default and described Hindsight as
such throughout this paper. However, if an application has
overhead constraints or limited memory for a buffer pool, the
percentage of requests that are traced in the first place can be
scaled back. Hindsight enforces scale-back coherently across
agents through consistent traceId hashing: e.g. 50% trace
percentage will halve the trace data throughput and double
the event horizon.

Mismatched and dynamic event horizons. The global
event horizon of an application is dictated by the shortest event
horizon among the constituent processes, since the whole
trace becomes incoherent the moment the first agent evicts
any of its data. This fundamental property of Hindsight can
be addressed by enlarging the buffer pool memory on higher
throughput nodes. Moreover, the buffer pool needs not be of
fixed size. We considered implementing a dynamically-sized
buffer pool, e.g. that can be configured with a target event
horizon, but ultimately chose a fixed-size buffer pool to better
bound memory overheads – a desirable property for telemetry
systems [71].

Shared buffer pools. In our current design, we deploy one
Hindsight agent per traced application process. If multiple
containers share a machine, as in our experiments, several
agents may run on the same machine. There is no reason why
applications could not share a single machine-wide buffer
pool, enabling processes to stock their buffer pool capacities
and average out the differences between their event horizons.

7.4 Comparison with Tail Sampling
Event horizons. Hindsight’s event horizon has an analogue
in tail sampling. Since trace collectors cannot immediately
perform tail sampling the instant trace data arrives, and must
wait for all of the slices of a trace to arrive from all of the ma-
chines the request visited. Today, this is done with a timeout
(e.g. 30s by default in OpenTelemetry [52]), after which the
trace objects are constructed and tail samplers can be evalu-
ated. If the application generates a high volume of trace data,
then the trace collector can potentially run out of memory
while awaiting data for to do tail sampling.

Tail sampling expressivity. Today’s tail samplers focus on
filters and outliers applied to span attributes and metrics. Yet a

332 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tail sampling decision for one trace cannot influence the sam-
pling decision of other traces. By contrast, Hindsight’s lateral
traces enable a trigger to specify other, related traces, in addi-
tion to the one exhibiting a symptom, allowing it to support
use cases like temporal provenance (UC3). Tail samplers do
not support such use cases, and they would be challenging to
introduce due to the way trace data for different traces route
to different collectors based on their traceId.

7.5 Robustness
Application failures. If the application process crashes (e.g.
SEGV/NPE-type crashes), then Hindsight preserves problem-
atic traces since Hindsight’s agent continues to run and the
trace data is preserved in memory in the shared buffer pool.
The agent will also be able to continue responding to bread-
crumbs. This is a secondary benefit of externalizing trace data
on the critical path of requests, and is currently supported
by Hindsight. By contrast, existing distributed tracing frame-
works buffer trace data in application memory and would lose
unreported data upon an application crash.

Agent failures. If Hindsight’s agent crashes (irrespective of
whether the application process crashes), then the buffer pool
will still exist in-memory on the machine and could be later
retrieved to inspect the state just prior to the crash. Hindsight
does not currently implement such a recovery process. In
addition, if an agent crashes, it will by default prevent Hind-
sight’s coordinator from following breadcrumbs through this
crashed agent. This can be overcome by extending Hindsight
to propagate breadcrumbs for the last N visited nodes instead
of just one; this would both avoid (N −1)-hop failures and
also speed up Hindsight’s collection process.

Kernel and hardware failures. In the case of kernel crashes
or hardware failure, application-level traces are only useful if
it was the application’s behavior that triggered the crash. In
this case, Hindsight’s data would be lost.

8 Related Work
Distributed tracing. Numerous prior works identify end-to-
end requests as a useful granularity for slicing telemetry data
and troubleshooting distributed systems. Example use cases
include detecting anomalous request structures [37, 64, 72],
diagnosing changes in the steady-state [16, 57, 61], modeling
workloads [46, 70], and identifying resource and queue con-
tention [25,44,72]. Distributed tracing systems have been pre-
sented in industry [34,64], as open-source tools [31,52,56,78],
and in academia [23, 45]. Edge-case troubleshooting stands
in tension with overheads in distributed tracing, and head-
sampling and tail-sampling offer alternative points in this
space (§2.2).

Logging frameworks. Distributed tracing is the cousin of
log ingestion frameworks that collect and store application-
level log data [13,66]. Log ingestion frameworks are agnostic
to concepts like requests, do not record or group log data by re-

quests, and cannot control head-sampling decisions coherently
for requests – instead applications generate simple sequential
streams of log data all at the same level of logging detail. Con-
sequently, logs are typically far less detailed than distributed
tracing and log ingestion frameworks handle a lower volume
of data. For example, Chukwa reports on average 10kB/s per
node [13]; Splunk limits to 330 kB/s per node [66]; Amazon
CloudWatch limits to 5MB/s per log stream [12]. Early dis-
tributed tracing works rejected the idea of building distributed
tracing atop logging, citing coherence challenges from brit-
tle data, enormous post-processing costs, and fundamental
scalability bottlenecks [17, 34, 64]. In practice, trace detail
is typically far greater than even non-production debug-level
logging [64], and it is easy to see why: head-sampling gives
operators leeway to instrument their applications at fine detail,
because they can amortize the high cost of a single trace by
scaling down the number of collected traces. By comparison,
log ingestion frameworks have no such opportunity.

Network provenance. Hindsight is similar in spirit to net-
work packet provenance systems that chronicle the history of
network state, enabling use cases such as tracking the origin or
path traversed by a packet across the network. Earlier systems,
like ExSPAN [77] and SNP [75], adopt this abstraction; more
recent works like SyNDB [35] and SPP [14] apply network
provenance for packet-level root-cause analysis on Internet
scale. Packet provenance systems primarily trace only packet
metadata, which is well-structured and can be summarized
in-band; these systems tackle additional trust challenges out-
side of Hindsight’s purview. By contrast, handling metadata
to reconstruct the path of a trace is but one concern for Hind-
sight; Hindsight is focused on handling arbitrary payloads
(i.e. trace data), and the resulting performance, coherence, and
fairness challenges. Hindsight also draws inspiration from
works focused on temporal provenance [76] and packet reputa-
tion [15] in distributed systems, although Hindsight’s tracing
abstractions operate entirely at the application level.

9 Conclusion
Hindsight circumvents the false dilemma between overhead
and usefulness for diagnosing symptomatic edge cases by pro-
viding developers detailed traces from the recent past when
they encounter symptoms of failures. We believe the retroac-
tive sampling abstraction, and our Hindsight implementation
of it, can shift the conversation around tracing away from
mechanism (how to collect traces) to a question of policy
(what traces should be collected), and allow distributed trac-
ing systems to support edge-cases analysis: a key use case for
which they were originally conceived.

Acknowledgements
We are grateful to our shepherd, Harsha Madhyastha, and the
anonymous reviewers for their insightful feedback that helped
improve our work.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 333

References
[1] Businesses Losing $700 Billion a Year to IT

Downtime, Says IHS. Retrieved April 2022 from
https://www.businesswire.com/news/home/
20160125005188/en/Businesses-Losing-700-
Billion-a-Year-to-IT-Downtime-Says-IHS.

[2] Recent AWS outage and how you could have
avoided downtime. Retrieved April 2022 from
https://medium.com/@datapath_io/recent-
aws-outage-and-how-you-could-have-avoided-
downtime-7d9d9443d776.

[3] HDFS-3751: DN should log warnings for lengthy disk
IOs. Retrieved April 2022 from https://issues.
apache.org/jira/browse/HDFS-3751, 2014.

[4] HBASE-8228: Investigate time taken to snapshot mem-
store. Retrieved April 2022 from https://issues.
apache.org/jira/browse/HDFS-8228, 2015.

[5] HBASE-8744: Enable HBase to log the entire latency
profile for HDFS packets resulting in slow writes.
Retrieved April 2022 from https://issues.apache.
org/jira/browse/HDFS-8744, 2016.

[6] HDFS-11461: DataNode Disk Outlier Detection. Re-
trieved April 2022 from https://issues.apache.
org/jira/browse/HDFS-11461, 2017.

[7] Jaeger Issue 425: Discuss post-trace (tail-based) sam-
pling. Retrieved April 2022 from https://github.
com/jaegertracing/jaeger/issues/425, 2017.

[8] HDFS-6110: adding more slow action log in criti-
cal write path. Retrieved April 2022 from https:
//issues.apache.org/jira/browse/HDFS-6110,
2018.

[9] Jaeger Issue 1861: Delayed Sampling. Retrieved April
2022 from https://github.com/jaegertracing/
jaeger/issues/1861, 2019.

[10] Annanay Agarwal. How Grafana Labs enables
horizontally scalable tail sampling in the OpenTeleme-
try Collector. Retrieved April 2022 from https:
//grafana.com/blog/2020/06/18/how-grafana-
labs-enables-horizontally-scalable-tail-
sampling-in-the-opentelemetry-collector/,
2020.

[11] Narayanan Arunachalam. Zipkin Secondary
Sampling. Retrieved April 2022 from
https://github.com/openzipkin-contrib/
zipkin-secondary-sampling, 2019.

[12] AWS. AWS CloudWatch Logs quotas. Retrieved
April 2022 from https://docs.aws.amazon.com/
AmazonCloudWatch/latest/logs/cloudwatch_
limits_cwl.html, 2022.

[13] Jerome Boulon, Andy Konwinski, Runping Qi, Ariel
Rabkin, Eric Yang, and Mac Yang. Chukwa, a large-
scale monitoring system. In Proceedings of CCA, vol-
ume 8, pages 1–5, 2008.

[14] Ang Chen, Andreas Haeberlen, Wenchao Zhou, and
Boon Thau Loo. One primitive to diagnose them all: Ar-
chitectural support for internet diagnostics. In Proceed-
ings of the Twelfth European Conference on Computer
Systems, pages 374–388, 2017.

[15] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao
Zhou, and Boon Thau Loo. The good, the bad, and
the differences: Better network diagnostics with differ-
ential provenance. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 115–128,
New York, NY, USA, 2016. Association for Computing
Machinery.

[16] Mike Y Chen, Anthony Accardi, Emre Kiciman, Jim
Lloyd, Dave Patterson, Armando Fox, and Eric Brewer.
Path-based failure and evolution management. In 1st
USENIX Symposium on Networked Systems Design &
Implementation (NSDI’04), pages 23–23, 2004.

[17] Michael Chow, David Meisner, Jason Flinn, Daniel Peek,
and Thomas F Wenisch. The Mystery Machine: End-
to-end Performance Analysis of Large-scale Internet
Services. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’14), 2014.

[18] Jeffrey Dean and Luiz André Barroso. The Tail at Scale.
Communications of the ACM, 56(2):74–80, 2013.

[19] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56:74–80, 2013.

[20] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, et al. The
design and operation of CloudLab. In 2019 USENIX
Annual Technical Conference (USENIX ATC’19), pages
1–14, 2019.

[21] elastic. Transaction Sampling. Retrieved April 2022
from https://www.elastic.co/guide/en/apm/
guide/current/sampling.html#sampling.

[22] Úlfar Erlingsson, Marcus Peinado, Simon Peter, Mihai
Budiu, and Gloria Mainar-Ruiz. Fay: Extensible dis-
tributed tracing from kernels to clusters. ACM Transac-
tions on Computer Systems (TOCS), 30(4):1–35, 2012.

334 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.businesswire.com/news/home/20160125005188/en/Businesses-Losing-700-Billion-a-Year-to-IT-Downtime-Says-IHS
https://www.businesswire.com/news/home/20160125005188/en/Businesses-Losing-700-Billion-a-Year-to-IT-Downtime-Says-IHS
https://www.businesswire.com/news/home/20160125005188/en/Businesses-Losing-700-Billion-a-Year-to-IT-Downtime-Says-IHS
https://medium.com/@datapath_io/recent-aws-outage-and-how-you-could-have-avoided-downtime-7d9d9443d776
https://medium.com/@datapath_io/recent-aws-outage-and-how-you-could-have-avoided-downtime-7d9d9443d776
https://medium.com/@datapath_io/recent-aws-outage-and-how-you-could-have-avoided-downtime-7d9d9443d776
https://issues.apache.org/jira/browse/HDFS-3751
https://issues.apache.org/jira/browse/HDFS-3751
https://issues.apache.org/jira/browse/HDFS-8228
https://issues.apache.org/jira/browse/HDFS-8228
https://issues.apache.org/jira/browse/HDFS-8744
https://issues.apache.org/jira/browse/HDFS-8744
https://issues.apache.org/jira/browse/HDFS-11461
https://issues.apache.org/jira/browse/HDFS-11461
https://github.com/jaegertracing/jaeger/issues/425
https://github.com/jaegertracing/jaeger/issues/425
https://issues.apache.org/jira/browse/HDFS-6110
https://issues.apache.org/jira/browse/HDFS-6110
https://github.com/jaegertracing/jaeger/issues/1861
https://github.com/jaegertracing/jaeger/issues/1861
https://grafana.com/blog/2020/06/18/how-grafana-labs-enables-horizontally-scalable-tail-sampling-in-the-opentelemetry-collector/
https://grafana.com/blog/2020/06/18/how-grafana-labs-enables-horizontally-scalable-tail-sampling-in-the-opentelemetry-collector/
https://grafana.com/blog/2020/06/18/how-grafana-labs-enables-horizontally-scalable-tail-sampling-in-the-opentelemetry-collector/
https://grafana.com/blog/2020/06/18/how-grafana-labs-enables-horizontally-scalable-tail-sampling-in-the-opentelemetry-collector/
https://github.com/openzipkin-contrib/zipkin-secondary-sampling
https://github.com/openzipkin-contrib/zipkin-secondary-sampling
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
https://www.elastic.co/guide/en/apm/guide/current/sampling.html#sampling
https://www.elastic.co/guide/en/apm/guide/current/sampling.html#sampling

[23] Rodrigo Fonseca, George Porter, Randy H Katz, and
Scott Shenker. X-trace: A pervasive network tracing
framework. In 4th USENIX Symposium on Networked
Systems Design & Implementation (NSDI’07), 2007.

[24] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-
software implications for cloud & edge systems. In
Proceedings of the 24th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS’19), pages 3–18, 2019.

[25] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan
He, Meghna Pancholi, and Christina Delimitrou. Seer:
Leveraging big data to navigate the complexity of per-
formance debugging in cloud microservices. In Pro-
ceedings of the 24th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS’19), pages 19–33, 2019.

[26] honeycomb.io. Getting At The Good Stuff: How To
Sample Traces in Honeycomb. Technical report, honey-
comb.io, 2019.

[27] Peng Huang, Chuanxiong Guo, Jacob R Lorch, Lidong
Zhou, and Yingnong Dang. Capturing and enhancing in
situ system observability for failure detection. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), 2018.

[28] Intel Corporation. Intel 64 and IA-32 architectures soft-
ware developer’s manual, volume 3 (3A, 3B, 3C & 3D):
System Programming Guide. Intel, 2016.

[29] Irving Popovetsky. Getting At The Good
Stuff: How To Sample Traces in Honey-
comb. Retrieved April 2022 from https:
//www.honeycomb.io/blog/getting-at-the-good-
stuff-how-to-sample-traces-in-honeycomb/,
2020.

[30] Ivan Topolnjak. Kamon: How to Keep Traces
for Slow and Failed Requests. Retrieved April
2022 from https://kamon.io/blog/how-to-keep-
traces-for-slow-and-failed-requests/, 2021.

[31] Jaeger: Open Source, End-to-End Distributed Trac-
ing. Retrieved April 2022 from https://www.
jaegertracing.io/.

[32] Jeremy Castile. What You Need to Know About
Distributed Tracing and Sampling. Retrieved April
2022 from https://thenewstack.io/what-you-
need-to-know-about-distributed-tracing-and-
sampling/, 2020.

[33] Chris Jones, John Wilkes, Niall Murphy, and Cody
Smith. Site Reliability Engineering: How Google
Runs Production Systems. O’Reilly Media, 2016.
https://landing.google.com/sre/sre-book/
chapters/service-level-objectives/.

[34] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edi-
son Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win
Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, et al.
Canopy: An end-to-end performance tracing and analy-
sis system. In Proceedings of the 26th ACM Symposium
on Operating Systems Principles (SOSP’17), pages 34–
50, 2017.

[35] Pravein Govindan Kannan, Nishant Budhdev, Raj Joshi,
and Mun Choon Chan. Debugging transient faults in
data centers using synchronized network-wide packet
histories. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages
253–268. USENIX Association, April 2021.

[36] Pedro Las-Casas, Jonathan Mace, Dorgival Guedes, and
Rodrigo Fonseca. Weighted Sampling of Execution
Traces: Capturing More Needles and Less Hay. In
9th ACM Symposium on Cloud Computing (SOCC ’18),
2018.

[37] Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand,
and Jonathan Mace. Sifter: Scalable sampling for dis-
tributed traces, without feature engineering. In Pro-
ceedings of the ACM Symposium on Cloud Computing
(SOCC’19), pages 312–324, 2019.

[38] Jialin Li, Naveen Kr Sharma, Dan RK Ports, and
Steven D Gribble. Tales of the Tail: Hardware, OS, and
Application-Level Sources of Tail Latency. In Proceed-
ings of the 5th ACM Symposium on Cloud Computing
(SoCC), 2014.

[39] Lightstep. Learn about Microsatellites: How
many Microsatellites do I need? Retrieved
April 2022 from https://docs.lightstep.com/
docs/learn-about-micro-satellites.

[40] Lightstep. OpenTelemetry-Collector Issue #4758:
Tail-Based Sampling Scalability Issues. Retrieved April
2022 from https://github.com/open-telemetry/
opentelemetry-collector-contrib/issues/4758,
2020.

[41] Liang Luo, Suman Nath, Lenin Ravindranath
Sivalingam, Madan Musuvathi, and Luis Ceze. Trou-
bleshooting transiently-recurring errors in production
systems with blame-proportional logging. In 2018
USENIX Annual Technical Conference (USENIX
ATC’18), pages 321–334, 2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 335

https://www.honeycomb.io/blog/getting-at-the-good-stuff-how-to-sample-traces-in-honeycomb/
https://www.honeycomb.io/blog/getting-at-the-good-stuff-how-to-sample-traces-in-honeycomb/
https://www.honeycomb.io/blog/getting-at-the-good-stuff-how-to-sample-traces-in-honeycomb/
https://kamon.io/blog/how-to-keep-traces-for-slow-and-failed-requests/
https://kamon.io/blog/how-to-keep-traces-for-slow-and-failed-requests/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://thenewstack.io/what-you-need-to-know-about-distributed-tracing-and-sampling/
https://thenewstack.io/what-you-need-to-know-about-distributed-tracing-and-sampling/
https://thenewstack.io/what-you-need-to-know-about-distributed-tracing-and-sampling/
https://landing.google.com/sre/sre-book/chapters/service-level-objectives/
https://landing.google.com/sre/sre-book/chapters/service-level-objectives/
https://docs.lightstep.com/docs/learn-about-micro-satellites
https://docs.lightstep.com/docs/learn-about-micro-satellites
https://github.com/open-telemetry/opentelemetry-collector-contrib/issues/4758
https://github.com/open-telemetry/opentelemetry-collector-contrib/issues/4758

[42] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye,
Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and
Chengzhong Xu. Characterizing microservice depen-
dency and performance: Alibaba trace analysis. In Pro-
ceedings of the ACM Symposium on Cloud Computing,
pages 412–426, 2021.

[43] Yu Luo, Kirk Rodrigues, Lijin Jiang, Bing Xia, David
Lion, and Ding Yuan. Hubble: Performance Debugging
with In-Production, Just-In-Time Method Tracing on
Android. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), 2022.

[44] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and
Madanlal Musuvathi. Retro: Targeted Resource Man-
agement in Multi-Tenant Distributed Systems. In Pro-
ceedings of the 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’15), 2015.

[45] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot Tracing: Dynamic Causal Monitoring for Dis-
tributed Systems. In 25th ACM Symposium on Operat-
ing Systems Principles (SOSP’15), 2015.

[46] Gideon Mann, Mark Sandler, Darja Krushevskaja,
Sudipto Guha, and Eyal Even-Dar. Modeling the paral-
lel execution of black-box services. In Proceedings of
USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud’11), 2011.

[47] John D. McCalpin. Memory bandwidth and machine
balance in current high performance computers. IEEE
Computer Society Technical Committee on Computer Ar-
chitecture (TCCA) Newsletter, pages 19–25, December
1995.

[48] Pulkit A Misra, María F Borge, Íñigo Goiri, Alvin R
Lebeck, Willy Zwaenepoel, and Ricardo Bianchini.
Managing tail latency in datacenter-scale file systems
under production constraints. In Proceedings of the
Fourteenth EuroSys Conference 2019, pages 1–15, 2019.

[49] New Relic. Technical distributed tracing details: Tail-
based sampling algorithms. Retrieved April 2022 from
https://docs.newrelic.com/docs/distributed-
tracing/concepts/how-new-relic-distributed-
tracing-works/#tail-sampling-strategy.

[50] New Relic. Technical distributed tracing de-
tails: Trace limits. Retrieved April 2022 from
https://docs.newrelic.com/docs/distributed-
tracing/concepts/how-new-relic-distributed-
tracing-works/#limits.

[51] New Relic. Tail-based sampling (Infinite Trac-
ing). Retrieved April 2022 from https://docs.
newrelic.com/docs/understand-dependencies/

distributed-tracing/get-started/how-new-
relic-distributed-tracing-works#tail-based,
2020.

[52] OpenTelemetry: An Observability Framework for
Cloud-Native Software. Retrieved April 2022 from
http://opentelemetry.io/.

[53] OpenTelemetry. Tail Sampling Processor. Re-
trieved April 2022 from https://github.com/open-
telemetry/opentelemetry-collector-contrib/
tree/main/processor/tailsamplingprocessor.

[54] OpenTelemetry Specification Issue 307: Allow
samplers to be called during different moments
in the Span lifetime. Retrieved April 2022
from https://github.com/open-telemetry/
opentelemetry-specification/issues/307, 2019.

[55] OpenTelemetry Enhancement Proposal 115: Allow
Additional Sampling Hooks. Retrieved April
2022 from https://github.com/open-telemetry/
oteps/pull/115, 2020.

[56] OpenTracing: Vendor-Neutral APIs and Instrumentation
for Distributed Tracing. Retrieved April 2022 from
http://opentracing.io/.

[57] Krzysztof Ostrowski, Gideon Mann, and Mark Sandler.
Diagnosing latency in multi-tier black-box services. In
4th International Workshop on Large-Scale Distributed
Systems and Middleware (LADIS’11), 2011.

[58] Maulik Pandey. Building Netflix’s Dis-
tributed Tracing Infrastructure. Retrieved April
2022 from https://netflixtechblog.com/
building-netflixs-distributed-tracing-
infrastructure-bb856c319304, 2019.

[59] Austin Parker, Daniel Spoonhower, Jonathan Mace, Ben
Sigelman, and Rebecca Isaacs. Distributed Tracing in
Practice: Instrumenting, Analyzing, and Debugging Mi-
croservices. O’Reilly Media, 2020.

[60] Raja R Sambasivan, Ilari Shafer, Jonathan Mace, Ben-
jamin H Sigelman, Rodrigo Fonseca, and Gregory R
Ganger. Principled workflow-centric tracing of dis-
tributed systems. In Proceedings of the Seventh ACM
Symposium on Cloud Computing, pages 401–414, 2016.

[61] Raja R Sambasivan, Alice X Zheng, Michael De Rosa,
Elie Krevat, Spencer Whitman, Michael Stroucken,
William Wang, Lianghong Xu, and Gregory R Ganger.
Diagnosing performance changes by comparing request
flows. In 8th USENIX Symposium on Networked Sys-
tems Design & Implementation (NSDI’11), volume 5,
pages 1–1, 2011.

336 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://docs.newrelic.com/docs/distributed-tracing/concepts/how-new-relic-distributed-tracing-works/#tail-sampling-strategy
https://docs.newrelic.com/docs/distributed-tracing/concepts/how-new-relic-distributed-tracing-works/#tail-sampling-strategy
https://docs.newrelic.com/docs/distributed-tracing/concepts/how-new-relic-distributed-tracing-works/#tail-sampling-strategy
https://docs.newrelic.com/docs/distributed-tracing/concepts/how-new-relic-distributed-tracing-works/#limits
https://docs.newrelic.com/docs/distributed-tracing/concepts/how-new-relic-distributed-tracing-works/#limits
https://docs.newrelic.com/docs/distributed-tracing/concepts/how-new-relic-distributed-tracing-works/#limits
https://docs.newrelic.com/docs/understand-dependencies/distributed-tracing/get-started/how-new-relic-distributed-tracing-works#tail-based
https://docs.newrelic.com/docs/understand-dependencies/distributed-tracing/get-started/how-new-relic-distributed-tracing-works#tail-based
https://docs.newrelic.com/docs/understand-dependencies/distributed-tracing/get-started/how-new-relic-distributed-tracing-works#tail-based
https://docs.newrelic.com/docs/understand-dependencies/distributed-tracing/get-started/how-new-relic-distributed-tracing-works#tail-based
http://opentelemetry.io/
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/processor/tailsamplingprocessor
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/processor/tailsamplingprocessor
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/processor/tailsamplingprocessor
https://github.com/open-telemetry/opentelemetry-specification/issues/307
https://github.com/open-telemetry/opentelemetry-specification/issues/307
https://github.com/open-telemetry/oteps/pull/115
https://github.com/open-telemetry/oteps/pull/115
http://opentracing.io/
https://netflixtechblog.com/building-netflixs-distributed-tracing-infrastructure-bb856c319304
https://netflixtechblog.com/building-netflixs-distributed-tracing-infrastructure-bb856c319304
https://netflixtechblog.com/building-netflixs-distributed-tracing-infrastructure-bb856c319304

[62] Yuri Shkuro. Mastering Distributed Tracing. Packt
Publishing, Feb 2019.

[63] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The Hadoop distributed file sys-
tem. In 2010 IEEE 26th symposium on mass storage sys-
tems and technologies (MSST), pages 1–10. Ieee, 2010.

[64] Benjamin H. Sigelman, Luiz André Barroso, Mike Bur-
rows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a large-
scale distributed systems tracing infrastructure. Techni-
cal report, Google, Inc., 2010.

[65] Splunk. Observability Cloud Usage, Subscription
Limits Enforcement, and Entitlements. Retrieved April
2022 from https://www.splunk.com/en_us/legal/
usage-subscription-limits-enforcement-and-
entitlements.html, 2022.

[66] Splunk. Splunk Enterprise Capacity Planning Man-
ual - Summary of performance recommendations.
Retrieved April 2022 from https://docs.splunk.
com/Documentation/Splunk/8.2.6/Capacity/
Summaryofperformancerecommendations, 2022.

[67] Splunk. Use cases: Troubleshoot errors
and monitor application performance using
Splunk APM. Retrieved April 2022 from
https://docs.splunk.com/Observability/apm/
apm-use-cases/apm-use-cases-intro.html#nav-
Use-cases:-Troubleshoot-errors-and-monitor-
application-performance, 2022.

[68] Cindy Sridharan. Distributed Systems Observability.
O’Reilly Media, 2018.

[69] Kun Suo, Jia Rao, Luwei Cheng, and Francis CM Lau.
Time capsule: Tracing packet latency across different
layers in virtualized systems. In Proceedings of the 7th
ACM SIGOPS Asia-Pacific Workshop on Systems, pages
1–9, 2016.

[70] Eno Thereska, Brandon Salmon, John Strunk, Matthew
Wachs, Michael Abd-El-Malek, Julio Lopez, and Gre-
gory R Ganger. Stardust: Tracking Activity in a Dis-
tributed Storage System. In 2006 ACM International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’06), 2006.

[71] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In Pro-
ceedings of the 10th European Conference on Computer
Systems (EuroSys’15), Bordeaux, France, 2015.

[72] Yang Wu, Ang Chen, and Linh Thi Xuan Phan. Zeno:
diagnosing performance problems with temporal prove-
nance. In 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI’19), pages 395–
420, 2019.

[73] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou,
Lakshmi N Bairavasundaram, and Shankar Pasupathy.
An empirical study on configuration errors in commer-
cial and open source systems. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles
(SOSP’11), pages 159–172, 2011.

[74] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia
Tang. Treadmill: Attributing the source of tail latency
through precise load testing and statistical inference.
In 2016 ACM/IEEE 43rd Annual International Sympo-
sium on Computer Architecture (ISCA), pages 456–468.
IEEE, 2016.

[75] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas
Haeberlen, Boon Thau Loo, and Micah Sherr. Secure
network provenance. In Proceedings of the twenty-third
ACM symposium on operating systems principles, pages
295–310, 2011.

[76] Wenchao Zhou, Suyog Mapara, Yiqing Ren, Yang Li,
Andreas Haeberlen, Zachary Ives, Boon Thau Loo, and
Micah Sherr. Distributed time-aware provenance. Pro-
ceedings of the VLDB Endowment, 6(2):49–60, 2012.

[77] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li,
Boon Thau Loo, and Yun Mao. Efficient querying and
maintenance of network provenance at internet-scale. In
Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 615–626,
2010.

[78] Zipkin: A Distributed Tracing System. Retrieved April
2022 from http://zipkin.io/.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 337

https://www.splunk.com/en_us/legal/usage-subscription-limits-enforcement-and-entitlements.html
https://www.splunk.com/en_us/legal/usage-subscription-limits-enforcement-and-entitlements.html
https://www.splunk.com/en_us/legal/usage-subscription-limits-enforcement-and-entitlements.html
https://docs.splunk.com/Documentation/Splunk/8.2.6/Capacity/Summaryofperformancerecommendations
https://docs.splunk.com/Documentation/Splunk/8.2.6/Capacity/Summaryofperformancerecommendations
https://docs.splunk.com/Documentation/Splunk/8.2.6/Capacity/Summaryofperformancerecommendations
https://docs.splunk.com/Observability/apm/apm-use-cases/apm-use-cases-intro.html#nav-Use-cases:-Troubleshoot-errors-and-monitor-application-performance
https://docs.splunk.com/Observability/apm/apm-use-cases/apm-use-cases-intro.html#nav-Use-cases:-Troubleshoot-errors-and-monitor-application-performance
https://docs.splunk.com/Observability/apm/apm-use-cases/apm-use-cases-intro.html#nav-Use-cases:-Troubleshoot-errors-and-monitor-application-performance
https://docs.splunk.com/Observability/apm/apm-use-cases/apm-use-cases-intro.html#nav-Use-cases:-Troubleshoot-errors-and-monitor-application-performance
http://zipkin.io/

A Supplemental Experiment Results
A.1 End-to-end Application Overheads

0 5000 10000 15000 20000 25000

�roughput (requests/s)

0

1

10

100

1000

La
te

nc
y

(m
s)

Hindsight
Hindsight 1% Trigger
No Tracing
Jaeger 1%-Head
Jaeger 10%-Head
Jaeger Tail

Fig. 7: End-to-end latency and throughput for a 2-service Mi-
croBricks topology configured with various tracers, demonstrating
minimal application impact for Hindsight despite tracing 100% of
requests.

Fig. 7 shows a variant of the experiment described in §6.4.
In the original experiment the services are configured to per-
form no additional compute. We additionally repeat the ex-
periment with services configured to perform approximately
100 microseconds of matrix-multiply compute per service.
We observe similar to trends to those discussed in §6.4; in
particular Hindsight has a comparable latency and throughput
profile to Jaeger configured with 1% head-sampling.

A.2 Head-Sampling and Tail-Sampling Over-
heads.

0 25 50 75 100

Head-sampling %

0

20000

40000

60000

80000

�
ro

ug
hp

ut
(re

qu
es

ts
/s

)

Jaeger Head-Sampling
Hindsight
No Tracing

10−1 100 101 102

Head-sampling %

0

20000

40000

60000

80000

�
ro

ug
hp

ut
(re

qu
es

ts
/s

)

Jaeger Head-Sampling
Hindsight
No Tracing

Fig. 8: Head-sampling impact on end-to-end throughput of a 2-
service MicroBricks topology under a closed-loop workload. We
vary the head-sampling percentage configured for OpenTeleme-
try Jaeger. The right figure plots the same data with a log-scale
x-axis to highlight overheads at low head-sampling percentages.
Tail-sampling is equivalent to 100% Head-sampling

We further measure the application-level impact of differ-
ent head-sampling regimes. We run the application described
in Fig. 8 and submit a closed-loop workload to saturate the sys-
tem. We measure the application-level throughput achieved
with by OpenTelemetry and Jaeger configured with different
head-sampling percentages. We compare the throughput to
that of Hindsight and with No Tracing. The results illustrate
that the OpenTelemetry Jaeger overheads at typical low sam-
pling percentages (<1%) is negligible, but the client library
performance deteriorates at higher tracing percentages. 100%
head-sampling is equivalent to tail-sampling.

A.3 Client throughput

0
10
20
30
40
50
60

1 2 4 8 16 32 64

T'
pu

t (
G

B/
s)

Num threads

4
40
400
4000
STREAM

Fig. 9: Client Throughput achieved by a microbenchmark that
varies the number of threads and the size of payload to tracepoint
calls. Even modest payloads (40 bytes) can saturate memory band-
width.

The purpose of this experiment is to evaluate the trace-
point write throughput that client applications can achieve,
based on the payload size totracepoint calls. The experiment
demonstrates the peak attainable data ingestion throughput
for different numbers of threads and different payload sizes.
Larger payloads can attain higher throughput, but even with
small payloads (40 bytes), we can saturate memory band-
width.

This experiment configures Hindsight to use 32 kB buffers
and a 1 GB buffer pool. We run a client application compris-
ing between 1 and 64 threads. Each thread continually writes
traces in a loop to Hindsight. Writing a trace entails calling
begin, 100 tracepoints, then end. We repeat the experiment
for different numbers of threads and varying the size of tra-
cepoint calls from 4 bytes to 4000 bytes, resulting in traces
between 400 and 400,000 bytes in size.

Fig. 9 plots the throughput achieved in GB/s. Small pay-
loads of 4 bytes fail to fully saturate memory bandwidth,
achieving only 887 MB/s with one thread and peaking at
7.55 GB/s with 64 threads. By contrast, even a modest in-
crease in payload size to 40 bytes is enough to nearly satu-
rate memory bandwidth; with 400 byte payloads, we achieve
throughput of 12.5 GB/s on a single core. We include in Fig. 9
measurements of peak memory bandwidth from the STREAM
benchmark [47].

Hindsight achieves high throughput, despite each trace ac-
quiring and writing a new buffer at an arbitrary non-sequential
offset in the buffer pool. This occurs because Hindsight’s
client library coordinates buffers only during begin and end
(at the start and end of each trace respectively) and stores the
buffer pointer thread-local in the interim. Calls to tracepoint
are then little more than a memory copy to the thread-local
buffer acquired by begin.

A.4 Control-Data Trade-offs
Hindsight’s design emphasizes a control-data split, to enable
applications to write trace data at large volume while reduc-
ing the amount of indexing work agents must perform. The
main factor influencing this trade-off is Hindsight’s buffer
size. With large buffers, agents index fewer buffers and thus

338 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

512

1kB

2kB

4kB

8kB
16kB 32kB

64kB 128kB

128
256

0
1
2
3
4
5
6
7

0 5 10 15

A
ge

nt
 T

'p
ut

 (M
bu

fs
/s)

Client T'put (GB/s)

Client T'put
Agent T'put
Agent Goodput

128 256
512
1kB

2kB 4kB 8kB

16kB

32kB
64kB
128kB0

1
2
3
4
5
6
7

0 10 20 30 40
A

ge
nt

 T
'p

ut
 (M

bu
fs

/s)
Client T'put (GB/s)

1 Thread
2 Threads
4 Threads
6 Threads
8 Threads

Fig. 10: Buffer size trade-off. Each data point is annotated with
the Hindsight buffer size. Small buffers require more indexing work
from agents, while large buffers are less memory efficient by exacer-
bating internal fragmentation.

perform less work; however it may exacerbate internal frag-
mentation when traces only partially fill buffers. Conversely,
small buffers are more space-efficient, but require more index-
ing work from agents. We evaluate this trade-off by measuring
client-side and agent-side throughputs, while varying Hind-
sight’s internal buffer size from very small (128 B) to very
large buffers (128 kB).

We run the benchmark application with one thread, 100 kB
traces, and a payload of 1 kB per tracepoint call (Hindsight
fragments payloads across multiple buffers when necessary).
Fig. 10 (left) plots the client-side throughput of generating
data (x-axis) and the agent-side throughput of indexing buffers
(y-axis). We annotate data points with the corresponding
buffer size used. Large buffer sizes (128 kB) can support
peak client data throughput (12.1 GB/s) while requiring lit-
tle of the agent. Conversely, tiny buffer sizes (128 B) stress
the agent buffer throughput since we more frequently cycle
buffers through the queues. Fig. 10 (left) plots three lines and
indicates two important phenomena. The client throughput
line plots the rate at which the client writes buffers, whereas
the agent throughput line plots the rate at which the agent
cycles buffers; the delta in-between are ‘null buffers’, writ-
ten by the client because the available queue is empty, i.e.
the agent cannot keep up. Writing to null buffers means lost
trace data; the third line, agent goodput, only counts buffers
of coherent traces, i.e. excluding all buffers for traces that
lost data. We observe that the goodput with 128 B buffers is
lower than with 256 B buffers due to greater loss. In general,
with ≥1 kB buffers, the agent is able to consistently keep up
without losing data.

Fig. 10 repeats this experiment with varying numbers of
threads, and plots client-side data throughput and agent-side
buffer goodput. Buffer sizes of 16 kB and higher are sufficient
for reaching peak write throughput while remaining comfort-
ably within agent throughput limits; by default, we select
32 kB for Hindsight.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 339

DiSh: Dynamic Shell-Script Distribution

Tammam Mustafa
MIT

Konstantinos Kallas
University of Pennsylvania

Pratyush Das
Purdue University

Nikos Vasilakis
Brown University

Abstract
Shell scripting remains prevalent for automation and data-
processing tasks, partly due to its dynamic features—e.g.,
expansion, substitution—and language agnosticism—i.e., the
ability to combine third-party commands implemented in any
programming language. Unfortunately, these characteristics
hinder automated shell-script distribution, often necessary for
dealing with large datasets that do not fit on a single computer.
This paper introduces DISH, a system that distributes the exe-
cution of dynamic shell scripts operating on distributed filesys-
tems. DISH is designed as a shim that applies program analyses
and transformations to leverage distributed computing, while
delegating all execution to the underlying shell available on
each computing node. As a result, DISH does not require modi-
fications to shell scripts and maintains compatibility with exist-
ing shells and legacy functionality. We evaluate DISH against
several options available to users today: (i) Bash, a single-
node shell-interpreter baseline, (ii) PASH, a state-of-the-art
automated-parallelization system, and (iii) Hadoop Streaming,
a MapReduce system that supports language-agnostic third-
party components. Combined, our results demonstrate that
DISH offers significant performance gains, requires no devel-
oper effort, and handles arbitrary dynamic behaviors pervasive
in real-world shell scripts.

1 Introduction

Unix and Linux shell scripting remains prevalent—8th most
popular language on GitHub in 2022 [20]—for data process-
ing, system orchestration, and other automation tasks. Part of
this prevalence can be attributed to a unique combination of
features: (1) powerful and language-agnostic primitives for
composing components available in any programming lan-
guage; (2) dynamic features such as command substitution,
variable expansion, and state reflection on the file system;
and (3) a wide range of useful components called commands,
available in the broader environment and tailored to specific
tasks. These features enable the composition of succinct and
powerful programs on a single computer (§2).

Tab. 1: Available options for scaling out shell programs. Com-
patibility: support unmodified shell scripts. Granularity: support
fine-grained distribution. Expressiveness: support arbitrary dynamic
behaviors. Agnosticism: support components in any programming
language. Equivalence: behavior equivalence with existing shells.

Approach Co
mp

ati
bil

ity
Gr

anu
lar

ity
Ex

pre
ssi

ven
ess

Ag
no

stic
ism

Eq
uiv

ale
nce

Examples
Distributed Shells □ ■ ■ ■ □ [14, 18, 63]

POSH ■ ■ □ ■ □ [49]
Cluster Comp. Frameworks (CCF) □ ◪ □ □ □ [44, 57, 68, 71]
Language-agnostic CCFs □ ◪ □ ■ ■ [25, 30]
Job Scheduling Tools ■ □ □ ■ ■ [19, 29, 58, 69]
Other languages □ ■ ■ □ □ [16, 60, 66]
DISH ■ ■ ■ ■ ■

Unfortunately, these features also hinder automated shell-
script scale-out to multiple computers. Such scale-out is often
necessary not only to accelerate computations, but also to
compute over data that either do not fit on a single computer
or are naturally distributed across multiple computers.
State of the art: Shell users dealing with large datasets that
do not fit on a single computer are left with only a few options
(Tab. 1). One option is to use a distributed shell [14, 18, 63].
Distributed shells require rewriting scripts manually and only
support a small subset of UNIX features—often with limited,
if any, dynamic features and varying support for composition
constructs. A recent distributed shell named POSH [49] can
handle a subset of shell scripts without rewriting—although
that subset is limited to dataflow-only computations and also
does not include arbitrary dynamic shell behaviors. In addi-
tion, since POSH is a shell reimplementation, it is not behav-
iorally equivalent with existing shells and thus risks break-
ing ported scripts. A second option is to rewrite (parts of)
the script in a cluster-computing framework [11, 44, 68, 71].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 341

These only support pure computations (e.g., batch, stream),
require manual rewriting, and only rarely [25, 30] support
language-agnostic components. Another option is job schedul-
ing tools [19, 29, 58, 69], but these operate at a coarse granu-
larity and do not leverage parallelism available in individual
commands. Yet another option is to rewrite scripts in lan-
guages that support distribution [3, 40, 42, 66], foregoing the
shell’s succinctness and language agnosticism. To summa-
rize, these options operate on a subset of the shell, require
significant manual effort, risk breaking correctness, or—most
often—suffer from a combination of these limitations (see §8
for more details).
Dynamic shell-script distribution: This paper presents
DISH, a system designed to scale out shell scripts operat-
ing on distributed filesystems while maintaining full POSIX
compatibility. DISH satisfies all requirements in Table 1: it
operates on existing shell scripts; it distributes scripts at the
granularity of individual commands; it handles arbitrary dy-
namic shell features such as substitution and expansion; it
allows the use of commands and utilities of any language; and,
most importantly, it is behaviorally equivalent to Bash.

DISH first instruments the execution of a script to identify
regions that may benefit from distribution. At runtime, it com-
piles these regions to an intermediate representation which it
then optimizes to introduce appropriate parallelism, buffering,
communication, and coordination. DISH then executes each
compiled region in a distributed fashion using the same shell
interpreter, components, and data as the original script.
Implementation and results: DISH is implemented as a
shim layer (rather than a shell) that wraps and orchestrates the
(completely unmodified) user shell, delegating all execution to
the underlying shell available on each computing node. This
design hides distribution from the user and avoids modifying
the underlying shell interpreter: the user thinks that their orig-
inal script is being executed (but faster); each underlying shell
is given a part of the distributed script to execute. As a result,
DISH achieves a new milestone in automated shell-script dis-
tribution: it offers significant performance benefits, it avoids
modifications to shell scripts, and it maintains full POSIX
compatibility. Additionally, this modular design allows fur-
ther research and improvements without modifications in the
underlying shell.

We characterize DISH’s performance on a 4-node on-
premise cluster and a 20-node cloud deployment using 76
scripts—including ones not trivially expressible in mod-
ern distributed computing frameworks, such as scripts with
for loops, side-effects, and complex third-party components.
DISH surpasses the speedups achieved by production-grade
systems on existing benchmarks and extends speedups to
new ones: it achieves significant speedups over (1) Bash (avg:
13.6×; max: 136.3×), a single-node shell-interpreter base-
line; (2) PASH (avg: 8.9×; max: 108.8×), a shell-script par-
allelization system; and (3) Hadoop Streaming (avg: 7.2×;

max: 32.3×), a cluster computing framework that supports
language-agnostic components and shell scripts. Moreover,
whereas Hadoop Streaming does not support 27/76 scripts and
requires rewriting 7/76 scripts, DISH runs all scripts without
any modifications; in fact, DISH is able to execute the entire
POSIX shell test suite, only diverging in one error code out
of thousands of assertions.
Paper outline and contributions: The paper begins with
an example and overview (§2) of DISH’s use and techniques.
Sections 3–6 present DISH’s key components:
• Dynamic orchestration (§3): DISH parses, pre-processes,

expands, and orchestrates its input script to enable dynamic
distribution at runtime.

• Compilation (§4): During script execution, DISH compiles
certain regions to an intermediate representation and applies
a series of optimizations.

• Distribution (§5): DISH distributes each region to a set of
workers in a way that promotes co-location of processing
primitives and the data blocks these operate on.

• Runtime support (§6): DISH bundles additional runtime
primitives supporting correct and efficient communication
in the context of distributed shell script execution.

The paper then presents DISH’s evaluation (§7) and related
work (§8), before concluding (§9).
DISH limitations: DISH currently does not tolerate failures
such as worker aborts or network partitions. In such occasions,
users are expected to rerun their scripts similar to how they
do in non-distributed executions: due to the shell’s dynamic
features and its support for third-party components, users of-
ten re-run failing scripts from the start. The current DISH
prototype does not implement support for security features
such as encryption and containment.
Availability: All the work described in this paper has
been implemented and incorporated into PASH—an MIT-
licensed project—and is available by the Linux Foundation at
https://github.com/binpash/dish.

2 Background, Example, and Overview

DISH allows everyday shell scripts to reap the benefits of dis-
tributed computing: execute on data that do not fit on a single
machine, often also speeding up expensive computations.
Intended use: DISH is designed to support a variety of use
cases, depending on the details of the distributed environment
on which the system is executing. The most common case
is one where input data are downloaded and stored in a dis-
tributed file system such as HDFS1 and then processed using

1The choice of HDFS is not binding. DISH could work on top of any
distributed file system (e.g., NFS or Alluxio [35]) that exposes the locations
of file blocks. To achieve performance benefits due to co-location, there also
needs to be available compute on the nodes that host that file system.

342 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/binpash/dish

various analyses. This is useful for datasets that do not fit on a
single computer, that are naturally distributed across multiple
computers, or that can be processed faster in a data-parallel
fashion. DISH will distribute the computation appropriately,
often running data-parallel instances on multiple machines
and multiple processors per machine. DISH also supports hy-
brid operation where data resides on both distributed and local
file systems; this is useful for computations that contain CPU-
intensive stages over datasets that do not necessarily reside
on distributed file systems.
Example script: Fig. 1 shows a shell script that calculates
maximum and average temperatures across the US, on datasets
hosted on the National Oceanic and Atmospheric Adminis-
tration (NOAA). The script is split into three parts: (p. 1)
an 11-stage pre-processing pipeline to download data from
NOAA and store them on HDFS, with the data range con-
trolled upon invocation via dynamic arguments $1 and $2; (p.
2, 3) two 5-stage pipelines calculating and storing maximum
and average temperatures to the local file system.

HDFS is a distributed file system for handling large data sets
on commodity hardware. Scripts like the one in Fig. 1 that pro-
cess files stored in distributed file systems spend most of their
execution time moving files across the network. On a 4-node
cluster (§7) and 3.6GB of input, running just hdfs dfs -cat

takes 346s; computing pipeline 2 (maximum temperature)
only adds 6s. This phenomenon is due to pipeline parallelism:
the execution time of all concurrently executing commands is
mostly shadowed by hdfs dfs -cat.
Opportunities for scale-out: There are ample opportunities
for improving the performance of this script. Since all parts
contain stages that operate on large datasets, we should be
able to execute (at least some of) their stages in a data-parallel
fashion. For example, we should parallelize commands that
process their input independently, such as cut and grep, by
having them operate in parallel over partial inputs.

Additionally, carefully colocating computation and data
should also improve performance. For example, we should
schedule the data-parallel execution of the aforementioned
cut and grep instances on machines that store the respective
data segments. Directly operating on distributed file segments,
rather than gathering and processing data on a subset of the
machines, eliminates most data-movement overheads.

Finally, the execution of program fragments that do not
depend on each other could become concurrent: since parts
2 and 3 are independent on each other, we should be able to
overlap their execution in a task-parallel fashion.
Key challenges: Unfortunately, exploiting these opportuni-
ties to scale out execution automatically is particularly chal-
lenging in the context of the shell. First, exposing opportunities
at the level of individual commands such as cut and grep is
challenging—and this is why prior systems often focused on
coarser, script-level or job-level granularity [19, 69].

Second, pervasive dynamic features, file-system introspec-

NOAA=${NOAA:-http://ndr.md/data/noaa/}
TEMPS=${TEMPS:-/noaa/temps.txt}
hdfs dfs -mkdir /noaa

Pipeline 1: Download temperature data
and store to HDFS
seq $1 $2 | sed "s;^;$NOAA;" |
sed 's;$;/;' | xargs -r -n 1 curl -s | grep gz |
tr -s ' \n' | cut -d ' ' -f9 |
sed 's;^\(.*\)\(20[0-9][0-9]\).gz;\2/\1\2\.gz;' |
sed "s;^;$NOAA;" | xargs -n1 curl -s |
gunzip | hdfs dfs -put - $TEMPS

Pipeline 2: Compute maximum temperature
over all data
hdfs dfs -cat $TEMPS | cut -c 89-92 | grep -v 999 |
sort -rn | head -n1 > max.txt

Pipeline 3: Compute average temperature
over all data
hdfs dfs -cat $TEMPS | cut -c 89-92 | grep -v 999 |
awk "{ t += \$1; i++ } END { print t/i }" > avg.txt

Fig. 1: Example script. Downloading a temperature dataset, storing
on a distributed file system, and running analysis to extract statistics.

tion, and other side-effects impede traditional distribution ap-
proaches based on static transformation—this is why prior
shell-script distribution work [25, 49] focuses on side-effect-
free dataflow subsets. These challenges are compounded by
the presence of more elaborate control flow such as for loops,
break, and trap statements present in ordinary shell scripts.

Third, behavioral equivalence with existing shells is practi-
cally unattainable, especially with shell reimplementations—
after all, even production-grade shells such as Bash and zsh
diverge subtly in their POSIX behavior [23]. A new distributed
shell [14, 49] has little hope of not breaking some scripts.
DISH overview: To overcome these challenges DISH (1)
extracts details about the behavior of commands through com-
mand annotations, (2) deals with dynamic features and side-
effects by analyzing scripts at runtime using dynamic orches-
tration, and (3) achieves behavioral equivalence with Bash
by only performing script transformations and delegating ex-
ecution to the underlying interpreter. DISH is designed to
dynamically orchestrate, compile, schedule, and support the
execution of shell scripts (Fig. 2). DISH’s orchestration (§3)
kicks in when a potentially distributable script region is iden-
tified, saves a snapshot of the user’s shell environment (vari-
ables, configuration) and invokes the DISH compiler with the
candidate region (Fig. 2a). The compiler analyzes this region
and if possible, translates it to a dataflow graph—which it then
optimizes to introduce parallelism, buffering, etc. (§4), finally
passing it off to the scheduler (Fig. 2b); or aborts compilation
(Fig. 2d) because it cannot guarantee that the region is pure,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 343

script
Dynamic (§3)
Orchestration User Shell

Compiler (§4) Scheduler (§5)

Annotations
(§4.1)

Node

Worker

Shell

Node

Worker

Shell

(a)

(b)

(d)
(c) (c)

(c)

(e)

(e)

(e)

Fig. 2: DISH architecture overview. Steps: (a) compile script
region; (b) schedule compiled dataflow; (c) send dataflow subgraphs
to workers; (d) compilation failed, fall back to original region; and
(e) execute script region (compiled or original).

i.e., side-effect-free. The scheduler (§5) divides the compiled
dataflow graph into different subgraphs which it sends to avail-
able cluster workers (Fig. 2c). In response to these execution
requests, workers apply a second pass of optimizations to bet-
ter utilize available resources, translate the dataflow graph
back to a shell script (Fig. 2e), load the snapshot of the shell
environment stored by the orchestrator, and execute the script
using the local, unmodified shell interpreter (§6).
Applying DISH: DISH preprocesses the script in Fig. 1 to
identify script regions that could benefit from distribution—in
this case, all three pipelines. It then replaces each of these
regions with calls to the dynamic orchestrator and attempts
to distribute them at runtime. During execution, the orches-
trator queries the DISH compiler to determine whether a re-
gion is pure and thus distributable: if the compiler succeeds,
it translates the region to a dataflow graph. Since regions
contain arbitrary black-box commands, DISH cannot analyze
them directly. Instead, it employs a command specification
framework that contains partial specifications of command
invocations such as their inputs and outputs. For example,
DISH’s compiler uses these specifications to determine that
hdfs dfs -cat /noaa/temps.txt reads from the HDFS file
/noaa/temps.txt and writes to stdout. Once a region is in
dataflow form, DISH applies transformations to distribute it.

Fig. 3 shows the distribution stages for pipeline 2 (maxi-
mum temperature). DISH first detects operations on HDFS
files (i.e., HDFS cat) and expands each distributed file to
its segments (datablocks), often stored on different physical
machines. Informed by command annotations, DISH applies
parallelization transformations: commands like cut and grep

are parallelizable directly and can be executed on the machine
with the raw input datablock. The scheduler then splits the
compiled graph into subgraphs and maps them to workers
in a data-aware fashion. Finally, each worker translates the
graph back to a shell script, adds additional runtime primitives
(commands), and executes it locally.

hdfs cat cut/temps.txt grep sort head max.txt

(a) HDFS file expansion

cut
/n1/block1

grep sort head max.txt

/n2/block2

(b) Parallelization

cut/n1/block1 grep sort
head max.txt

/n2/block2 cut grep sort
sort -m

Graph splitting and
worker assignment

cut/n1/block1 grep sort head max.txt

/n2/block2 cut grep sort

sort -m

Worker 1

Worker 2

Host

(c)

Fig. 3: DISH dataflow graph stages. (a) HDFS files are expanded
to sequences of blocks. (b) the graph is parallelized based on the
command specifications. (c) the scheduler splits the graph and assigns
subgraphs to workers.

The result? DISH drops the execution of pipeline 2 from
352s to 6s while maintaining full behavioral equivalence and
requiring no modifications to the user shell.

3 Dynamic Shell Orchestrator

To facilitate adoption, an important desideratum in the design
of DISH is to achieve behavioral equivalence with the under-
lying shell interpreter. To achieve this, DISH is not designed
to operate as another shell, but rather wraps the user’s exist-
ing shell interpreter and the shell interpreters on the worker
machines. As a result, DISH hides parallelization and dis-
tribution from both the user and the underlying shells: the
user thinks that their original script is being executed—just
faster—and each underlying shell simply executes a standard
non-distributed shell script. This allows DISH to achieve ex-
ceedingly high compatibility with the underlying shell imple-
mentation (§7.3), while also minimizing maintenance costs
since updates and modifications on the underlying shell are
reflected in DISH without any change.

Fig. 4 shows an overview of the structure of DISH’s dy-
namic orchestration. To achieve dynamic shell script orches-
tration without any shell-interpreter modification, DISH opts
for a light-weight script instrumentation pre-processing step: it
instruments potentially distributable regions with invocations
to the orchestration engine. It chooses regions with the goal
of maximizing distribution benefits: intuitively, it focuses on
commands and pipelines rather than control-flow statements
and variable assignments. However, the choice of these region
boundaries is not binding—the preprocessor just needs to be
precise enough to determine potential regions, but DISH will
eventually decide whether or not (and if yes, how) to distribute

344 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a candidate region at runtime. The preprocessor first parses the
original script, it then replaces the relevant program regions
with orchestration prefixes, and then un-parses (emits) it back
as an instrumented script that is given for execution to the
user’s shell interpreter.

The instrumented script then makes calls to the orchestra-
tion engine. The orchestration engine is itself a shell script
coordinating with the compiler and worker manager and at-
tempting to distribute the upcoming region (see §4 and 5 for
details). If it succeeds, it runs the distributed version of the
region. If it aborts, it just falls back to the original region,
executing it normally. Reasons for aborting include the re-
gion being side-effectful, e.g., modifying some environment
variable, or lacking relevant command annotations.
Preprocessor: The preprocessor searches for maximal poten-
tially distributable regions by processing the AST bottom-up,
combining distributable subtrees when they are composed
using constructs that do not introduce scheduling constraints
(e.g., &, |). When a region cannot outgrow a certain subtree,
DISH replaces it with a call to the orchestration engine. If the
region is successfully compiled (at runtime), DISH translates
it to a dataflow representation—a convenient and well-studied
model amenable to transformation-based optimizations [26].
At a later point, DISH running on each node translates the in-
strumented AST resulting from the compilation back to shell
code and passes it to the underlying shell for execution.
Parsing library: DISH invokes parsing and unparsing rou-
tines frequently, and therefore needs them to be very effi-
cient. To that end, it uses an internal Python implementa-
tion [32] of POSIX-shell-script parsing and unparsing based
on libdash [22, 23]. The DISH parser contains several opti-
mizations such as caching, inlining, and careful array append-
ing to achieve improved performance.
Orchestration engine: DISH’s orchestration engine is de-
signed to maintain the original script behavior and minimize
runtime overhead—as it is invoked multiple times per script.
The engine is a reflective shell script: it coordinates trans-
parently with the compiler to determine whether or not to
parallelize a script by inspecting the state of the shell and that
of the broader system. DISH constantly switches between two
execution modes when executing scripts: (1) conventional
shell mode, where scripts execute in the original shell context,
and (2) DISH mode, where the runtime reflects on shell state
and invokes the compiler to determine whether to execute
the original or an optimized version of the target region. To
switch from shell mode to DISH mode, the engine saves the
state of the user’s shell; to switch back, it restores the state of
the user’s shell. The state of a shell is quite complex: apart
from saving and restoring variables, DISH must account for
various shell flags along with other internal shell state (e.g., the
previous exit status, working directory). During an invocation,
the engine first switches to DISH mode, communicates with
the compiler and scheduler to determine whether a region can

User Shellscript Preprocessor

State (vars, files)
Parsing lib

orch/ed
script

Orch. Engine

executing
script

Cluster
Workers

Fig. 4: Dynamic orchestration overview. DISH instruments scripts
with calls to the orchestration engine, which passes program frag-
ments to the worker manager at run-time.

be safely distributed, and it then switches back to shell mode
to execute the original or distributed version of the script.
Environment sharing: The distributed version of the script
region might execute on a different shell (or even machine).
Therefore, a challenge that DISH needs to address is to make
sure that all regions execute in the correct environment—
including access to the latest variable values and function
definitions. To achieve that the engine takes a snapshot of
the environment right before execution. It then transfers the
snapshot to the distributed workers, which they load before
executing the incoming script fragment. This is safe to do
since successful distribution of a region implies that it is pure
(and therefore does not affect the environment), and thus the
snapshot will be valid until the region finishes execution.
String expansion: To correctly determine if a script region
is safe to distribute, the compiler needs to expand all strings in
that region. Since DISH performs compilation and distribution
of each script region at runtime, right before execution, it
has access to all the latest variables and system state to fully
expand all strings in the region. DISH only implements a
common and safe subset of all available expansions, and avoids
implementing side-effectful expansions that have the risk of
affecting the environment (e.g., ${x=foo}: set x to foo if x

is unset). Note that DISH keeps expansion local: it does not
expand regions succeeding the target region, as these might
depend on the execution of the target region.

4 Compiler

This section describes the compiler of DISH, which builds on
the PASH parallelizing compiler [64]. The compiler is given
the AST of an input script fragment and information about
the commands in that fragment (§4.1). It then attempts to
transform it to a dataflow graph (§4.2), an intermediate repre-
sentation amenable to parallelization transformations. If the
compiler succeeds in transforming a script region to a paral-
lel dataflow graph, that graph is then passed to the scheduler
which then decides how to map subgraph components to the
available worker nodes. As the compiler operates at runtime
in a just-in-time fashion, it exploits ample opportunities for
parallelization even across subgraphs (§4.3).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 345

4.1 Command Annotations
DISH needs to support analyses and transformations over
third-party commands, without access to their source code.
To achieve this, DISH uses annotations á la PASH [64] and
POSH [49], capturing information about a command invoca-
tion’s parallelizability class, inputs, and outputs. Command
annotations act as an intermediate layer that provides restricted
but sufficient information about the behavior of a command to
analysis and transformation systems like DISH. They also en-
able reuse, as they are not tied to a particular analysis and can
thus be reused by different tools. For this work, DISH reuses
the set of annotations developed by the authors of PASH [64]
extended annotations for commands that appear in the evalua-
tion of DISH (§7).

A command annotation in DISH encodes information at the
level of individual command invocations, i.e., precise instanti-
ations of a command’s flags, options, and arguments. Among
other information, annotations determine how a command
invocation affects its environment, and specifically whether
it is pure, i.e., whether it only affects its environment by
writing and reading to and from a well-defined set of files—
information which DISH uses when translating commands
to and from dataflow nodes (§4.2). For example, the an-
notation for grep can be used to extract that the script frag-
ment grep -f dict.txt src.txt > out.txt contains two in-
put files dict.txt and src.txt and one output file out.txt.
This knowledge of input and output files is used by DISH to
enable location-aware distribution, by scheduling the compu-
tation on nodes that contain relevant data blocks. Additionally,
annotations describe parallelization opportunities—e.g., that
grep "pattern" src.txt processes each line of src.txt in-
dependently and thus can be parallelized at a line boundary.

4.2 Dataflow Model
The core of DISH’s compiler is an order-aware dataflow model
that captures pure shell script regions that read from a well-
defined set of input files and write to a well-defined set of
output files—i.e., they do not modify their environment in any
other way. This model is expressive enough to capture a shell
subset used pervasively in data processing scripts [26].

In this model, nodes represent commands and edges rep-
resent files, pipes, named FIFOs, and file descriptors. The
model is order-aware in the sense that it keeps informa-
tion about the order in which nodes read from their in-
puts, which is important for the script’s semantics. For ex-
ample, grep "pattern" in1.txt - in2.txt first reads from
in1.txt, then from its standard input, and then from in2.txt.
This order awareness allows DISH to perform transforma-
tions that optimize execution of a script—e.g., by exposing
parallelism—but preserve its original behavior.
Translation workflow: Given an AST representation of an
input script region, the compiler uses annotations to deduce

whether commands are pure i.e., they only affect their environ-
ment through a well-defined set of output files, and attempts to
transform them to dataflow nodes. If all commands in the re-
gion are pure the compiler transforms the region to a dataflow
graph. It then applies transformations (described below), op-
timizing the graph to expose parallelism and improve the
script’s performance. Finally, it serializes the graph back to a
(now optimized) shell script, by translating every node back to
a command and connecting them all together with appropriate
channels (e.g., FIFOs, RFIFOs, redirections).
Transformations: DISH’s transformations enable data-
parallel execution by replicating nodes in the graph and adding
appropriate split and merge nodes around them. They apply
a pass over the graph to remove pairs of inverse nodes—i.e.,
pairs of nodes whose semantic effects cancel out but whose per-
formance effects are additive—for example, a concatenation-
style merge followed by a linear split. For commutative com-
mands, i.e., commands that produce the same output irregard-
less of their input-line order, DISH applies transformations that
pack and unpack metadata across the graph—achieving better
performance by avoiding unnecessary blocking and buffer-
ing. Finally, to improve the flow of data across the graph,
DISH applies additional transformations that inject hybrid
memory-disk buffer nodes in points in the graph that are likely
to become bottlenecks.
Remote file resources and HDFS files: To support scripts
that perform data analysis on a combination of HDFS and
local files, DISH extends the dataflow model with remote-file
resources (RFRs) that encode file blocks in different nodes.
RFRs usually represent blocks of files that are partitioned and
replicated in HDFS, and contain information about the location
of the data in the distributed environment. This information
could contain multiple locations to support replication, and is
used by the scheduler to assign script fragments to different
workers. When the DISH compiler comes across an HDFS
file path, it queries HDFS to determine the locations of its file
blocks and then expands that file to a sequence of RFRs, each
of which represents a block.

4.3 Dynamic Dependency Untangling (DDU)
Scripts often contain regions that are independent, i.e., they
have different (file) working sets. Independent regions could
potentially run in parallel, better utilizing computational re-
sources and improving the execution times of the scripts in
which they belong. However, inferring independence stati-
cally and ahead of time is challenging as shell scripts make
extensive use of dynamic features. Figure 5 shows an example
script that contains independent fragments but also features
dynamic behavior. This script iterates over all files in an HDFS
directory, compresses them using gzip, and finally stores them
as independent files.

Determining independence statically in this script would

346 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

for item in $(hdfs dfs -ls -C ${IN});
do

output_name=$(basename $item).zip
hdfs dfs -cat $item |

gzip -c > $OUT/$output_name
done

Fig. 5: Example of independent regions. This shell script com-
presses all files in a directory—but each iteration results in an inde-
pendent body region that can be executed in parallel.

require inferring values of environment variables (like IN

and OUT) and the state of the file system, e.g., hdfs dfs -ls.
DISH’s dynamic orchestration (§3) circumvents this challenge
by making distribution decisions during the execution of the
script when environment variables and the file system state
are known. DISH further exploits this by discovering inde-
pendent dataflow regions at runtime and executing them in
parallel—even if they were not parallel in the original script.

When DISH successfully compiles a dataflow region (at
runtime), it knows that the region is pure and therefore can
determine the region’s inputs and outputs—and it does so for
free, without additional analysis or inference stages. DISH then
uses this information to check for read-write or write-write de-
pendency conflicts with regions that are running concurrently.
If none is found, DISH passes the region to the scheduler,
which orchestrates distributed execution, and then immedi-
ately continues the execution of the script until it reaches the
next dataflow region. Whenever the compilation of a dataflow
region fails, DISH cannot safely detect the input and output
information of this region—and thus it needs to wait until
every previous region is done executing to ensure that no
dependency will be violated.

Since DDU is done at runtime it is both sound, i.e., it does
not execute dependent fragments concurrently, and precise, i.e.,
it offers significant benefits due to improved parallelism and
resource utilization—especially for scripts that do not contain
highly data-parallelizable commands, such as the commands
in the aforementioned compression script (Fig. 5). Compared
to analyses over static languages, DDU cannot identify global
optimizations such as reordering the final command in the
script to run first. This lack of optimality is not specific to
DDU, but applies to any shell script analysis; in fact, as far as
we know there is no sound and precise static analysis for shell
scripts.

5 Distributed Scheduling

This section describes how DISH’s scheduler distributes a
compiled script to a set of workers. The scheduler is given
a dataflow graph that is already parallelized and has HDFS
files expanded to sequences of remote file resources (RFRs)
representing their blocks. The task of the scheduler is then to
distribute this graph with the goal of optimizing performance

cmd

cmd

aggregator

Worker 1

cmd cmd cmd cmdr_write r_read

Worker 2

Worker 1

Worker 2

Worker 3 cmd

cmd

aggregator

Worker 2

Worker 1

cmd cmd

Worker 1 Worker 1

/fifo

Host

cmd cmd

Worker 1

Fig. 6: (Top) Remote writes and reads added during distributed
scheduling. (Mid) Worker-first aggregation. (Bot) Named FIFO tele-
portation.

by both utilizing available resources and moving computation
close to the data. Currently the scheduler knows about the
workers in the cluster ahead of time using a configuration file.

The scheduler makes a decision on how to split the graph
based on a policy that optimizes performance through co-
location of data blocks and the commands that execution over
them. The scheduler processes the top-level dataflow graph to
generate a set of subgraphs, one for each worker and one for
the host machine executing the script. It then replaces edges
corresponding to communication channels (e.g., FIFOs, pipes)
at the boundaries of each subgraph with remote channels—
adding a remote write node on the sender side and a remote
read node on the receiver side (see Fig. 6, Top). It also in-
serts remote reads for subgraph nodes that access files stored
on remote workers. The final generated subgraph represents
the script fragment that is passed for execution to the user
shell running on each worker: the compiled script handles all
the redirection to and from local files and the standard input,
output, and error streams to and from the worker.
Data-aware scheduling policy: The highest performance
overhead when executing distributed shell scripts is networked
data movement across workers. DISH addresses this over-
head by introducing a greedy scheduling policy that allocates
subgraphs in a way that attempts to minimize data move-
ment across workers. If a data file (or block) is available on a
worker, then DISH maps the maximal dataflow subgraph that
starts from that file to that worker—i.e., scheduling as much
of the processing as possible on the worker. The scheduler
also tracks the amount of work that each worker currently
has scheduled, which can vary due to dynamic dependency
untangling (§4.3): if a data file is replicated across multiple
workers, DISH chooses the worker with the least amount of
pending work to execute that subgraph.
Worker-first aggregation: The distributed dataflow graphs
that DISH executes often contain aggregation (i.e., merge)

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 347

nodes, similarly to the reduce stages in Hadoop Streaming.
Regardless of the worker on which the aggregation is per-
formed, data from different workers will need to be combined
onto a single worker and thus these dataflow nodes will neces-
sarily result in data movement. DISH prioritizes performing
aggregation on one of the participating workers, because work-
ers already contain a subset of the data used in the aggregation
(see Fig. 6, Mid). This optimization is particularly beneficial
for scripts that filter and aggregate data, often containing com-
mands such as grep and uniq, because any filtering stages
prior to aggregation result in reduced data transfer.

It is worth noting that, absent additional information about
commands [49], the location of aggregators involves chal-
lenging trade-offs not addressable with a single optimization
policy. For scripts that include aggregators that do not reduce
data sizes, DISH’s worker-first aggregation optimization risks
transferring more data. As DISH’s evaluation confirms (§7),
however, worker-first aggregation results in performance ben-
efits for most scripts.
Delegated script concretization: DISH’s scheduler sends
workers dataflow subgraphs, encoded in DISH’s intermediate
representation, instead of concrete shell scripts ready for exe-
cution. Each dataflow subgraph contains holes that workers
are expected to fill in, based on the specifics of their local envi-
ronment. This choice simplifies DISH’s distributed execution,
as the scheduler does not need to have up-to-date information
about several worker details such as the temporary directo-
ries they use. Additionally, this choice enables better resource
utilization in a heterogeneous environments with different
worker capabilities: a worker can apply another optimization
pass to the dataflow subgraph it receives to better manage and
utilize its resources.
Named FIFO teleportation: Scripts often use named FI-
FOs to share data between concurrently executing processes.
Named FIFOs introduce a performance challenge, because
they are local files that reside on the host machine where the
script was executed. Therefore, by default, all data that would
normally go through named FIFOs in the original execution
would now have to go back and forth between workers and
the machine for which the script was developed. DISH ad-
dresses this challenge by observing that named FIFOs are
ephemeral, i.e., they maintain no data after the execution of
a dataflow region. Based on this observation, DISH migrates
named FIFOs to workers closer to the data, eventually deleting
the migrated versions after the dataflow region has finished
executing (see Fig. 6, Bot). This transformation, termed FIFO
teleportation, improves performance by avoiding unnecessary
data movement in scripts that use FIFOs.

6 Runtime Support

DISH has to address several runtime challenges: communi-
cation among workers, identification of HDFS data block lo-

cations, and correctness in view of HDFS blocks split inde-
pendently of newlines—an assumption necessary for several
dataflow transformations. This section describes several com-
ponents of DISH’s runtime that address the above challenges.
Remote FIFO channel: As described earlier (§5), connec-
tions between dataflow nodes are instantiated using UNIX
FIFOs in a single-machine setting. Unfortunately, FIFOs do
not support networked operation and thus cannot cross worker
boundaries. To address this challenge, DISH introduces a re-
mote FIFO primitive (RFIFO) that is implemented in Go and
uses socket-based communication. RFIFOs are intended to
operate identically to FIFOs, i.e., implement the semantics of
dataflow graph edges, but with support for operation over the
network. They have a unique identifier and two ends—a read
end and a write end.

Since shell streams are lazy, i.e., a producer blocks until its
consumer requests input, the network link is often not fully uti-
lized, lowering throughput and risking introducing significant
latency. To avoid these throughput and latency challenges,
DISH adds two buffer nodes to the dataflow graph: one before
the write end of the RFIFO, to allow uninterrupted access to
data, and one after the read end of the RFIFO, to force the
read to request data. This lazy-to-strict optimization main-
tains correctness and improves performance in most cases; in
rare cases, it may lead to unnecessary data transfer between
nodes—e.g., when there is a head command right after the
read end of an RFIFO.
Port discovery service: As transformations and optimiza-
tions are applied during the execution of a script—contrary
to most other distributed environments—DISH’s scheduler
cannot statically predict which ports will be available at run-
time for RFIFOs at each worker: different scripts and script
fragments running concurrently during a single execution may
collide on port usage. To address that, each DISH worker im-
plements a port discovery service (PDS) that can be accessed
by remote FIFOs to (1) advertise their port, and (2) discover
the port that their other end uses. The discovery service is
implemented in Go with gRPC [61] and supports a few remote
procedure calls (RPCs), central among which are a put call for
advertisement and a get call for discovering the port of a re-
mote end. RFIFOs are extended with gRPC clients to advertise
ports among local PDS or identify the ports corresponding to
their other end by querying the PDS of the respective worker.
By deferring port selection until runtime execution, DISH’s
port discovery service facilitates loose subgraph coupling and
simplifies remote subgraph execution on multiple workers.
HDFS data retrieval: During transformations, the DISH
compiler (§4) needs to retrieve information about HDFS paths
to expand them into block sequences. This expansion happens
on a critical runtime path and thus needs to be efficient. A
prior implementation of DISH invoked this expansion on every
HDFS path using a shell command—by wrapping fsck, a
command offered by HDFS API for querying the health of

348 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the disk in the cluster, returning information about a file and
its partitioning into blocks. This implementation ended up
incurring significant latency (> 1s), and thus DISH switched
to the web API reducing expansion to sub-10ms latency.
Enforcing logical block boundaries: A key challenge when
processing separate file blocks in HDFS is the mismatch be-
tween compiler assumptions about the block shape and how
blocks are actually stored in HDFS: HDFS blocks might not
be split on newline boundaries, but the parallelizing transfor-
mations performed by the DISH compiler (§4) assume that all
blocks are logically separated by newlines. This assumption
is crucial and depends on the way commands process their
input, e.g., sort processes its input line by line, and therefore
would require a significantly more complex parallelization
transformation if its input could be split at arbitrary points.
Developing complex custom parallelization transformations
for each command would be infeasible in practice due to the
sheer number of available commands and would not allow
DISH to reuse the parallelization transformations developed
for PASH [64].

Instead of relaxing the compiler assumption, DISH ad-
dresses the mismatch by ensuring it holds during script exe-
cution using additional runtime support. DISH implements
a distributed file reader (DFR) primitive that runs as a ser-
vice on every worker. The DFR service ensures that parallel
dataflow nodes only process batches that are split in newline
boundaries, independent of how the actual physical blocks
are split—providing the illusion of a logical block that ends
at a newline to its consumer. Given a distributed file path,
DFR reads the local file or block from the worker’s disk going
beyond the first newline character in its block. If the block
is not terminated with a new line, then the DFR communi-
cates with the reader of the next block (and potentially any
readers after that), returning a complete logical block to its
consumer. When a compiled dataflow graph is translated back
to a script, DISH prefixes file paths with a command invoking
a DFR client that communicates with the relevant DFR ser-
vice to retrieve the relevant logical block. Both service and
client are implemented in Go, communicating using gRPC
and protobufs [21].

7 Evaluation

We are interested in evaluating two aspects of DISH: (1) its
performance, and (2) its compatibility with Bash.
Experiments: We perform four experiments using sev-
eral real-world shell scripts taken from a variety of sources
(Tab. 2). The first two experiments focus on the performance
gains (§7.1) achieved by DISH’s distribution on (1) a 4-node
on-premise cluster, and (2) a 20-node cloud deployment—
both over a variety of benchmarks and workloads. We com-
pare DISH’s performance against (1) GNU Bash [50], the
de facto sequential shell-script execution environment; (2)

Tab. 2: Benchmark summary. Summary of all the benchmarks
used to evaluate DISH, and their characteristics.

Benchmark Scripts Pure HS LOC Input Source
1 Classics 10 7/10 123 3G [5, 6, 31, 39, 59]
2 Unix50 34 30/34 142 21G [7, 34]
3 COVID-mts 4 4/4 79 3.4G [62]
4 NLP 21 - 306 120 books [9]
5 AvgTemp 1 1/1 31 3.6G [68]
6 MediaConv 2 - 35 0.8 & 0.4G [49, 56]
7 LogAnalysis 2 - 63 0.7 & 1.3G [49, 56]
8 FileEnc 2 - 44 1.3G [41]

Apache Hadoop Streaming [25] (AHS), a production-grade
distributed data-processing framework that supports language-
agnostic executables; and (3) in the case of the 4-node setup,
PASH [32, 64], a shell-script parallelization system from the
Linux Foundation. PASH’s parallelism benefits make it a likely
alternative to DISH for smaller clusters, where DISH’s an-
ticipated benefits of distribution might be smaller, but this
likelihood diminishes as the size of the cluster grows.

The last two experiments evaluate DISH’s dynamic depen-
dency untangling (§7.2) and DISH’s correctness (§7.3), i.e.,
its compatibility with respect to Bash across all scripts and
the POSIX shell test suite.
Benchmarks: We use 8 sets of real-world benchmarks, total-
ing 76 shell scripts and 823 LoC. Classics and Unix50 contain
classic and recent (c. 2019) scripts that make heavy use of
UNIX and Linux built-in commands. COVID-mts contains
four scripts used to analyze real telemetry data from mass-
transit schedules during a large metropolitan area’s COVID-19
response. NLP contains several scripts from UNIX-for-poets,
a tutorial for developing programs for natural-language pro-
cessing out of UNIX and Linux utilities. AvgTemp contains a
large script downloading and processing multi-year temper-
ature data across the US. MediaConv contains two scripts
that process, transform, and compress video and audio files.
LogAnalysis contains two scripts that apply typical system-
administration and network-traffic analyses over log files. Fi-
nally, FileEnc contains aliases that encrypt and compress files.
Baselines and implementations: Bash, PASH, and DISH
executed every shell script completely unmodified. Apache
Hadoop Streaming (AHS) posed significant expressiveness
limitations. Only 42 scripts in Classics, Unix50, COVID-mts,
and AvgTemp out of 76 scripts can be implemented natively
(Tab. 2, col. Pure HS). Another 7 scripts required manual
porting by splitting them into mappers, reducers, and addi-
tional components: These components were not available na-
tively by AHS—for example, components for reading from
two pipelines for diff.sh and for sorting after the reducer for
bigrams.sh (both in Classics). During porting, we put signifi-
cant care to avoid limiting AHS’s parallelism: we modified
3 AHS scripts in Classics to help HS introduce additional

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 349

Classics
Unix50

COVID-mts NLP

10
0

10
1

10
2

S
pe

ed
up

 (l
og

-s
ca

le
)

AvgTemp

MediaConv1

MediaConv2

LogAnalysis1

LogAnalysis2
FileEnc1

FileEnc2

Hadoop-streaming
PaSh
DiSh

Fig. 7: DISH performance on a 4-node cluster. DISH speedup (vs. PASH and Hadoop Streaming whenever possible) over Bash for Tab. 2
rows 1–4 (left, box) and 5–8 (right, bar) (Cf.§7.1). (Log y-axis; higher is better.)

parallelism—for example, we manually expanded tr -cs into
tr -c | grep -v (both stateless). None of the scripts in NLP,
MediaConv, or LogAnalysis can be implemented in AHS as
they perform processing in loops, the iterations of which de-
pend on the files in a statically indeterminable directory (see
Fig. 5) and are therefore not expressible in AHS. We attempted
to replace the body of the loop with an AHS invocation but
the startup overhead ended up dwarfing the execution time by
a factor of ten on average.
Hardware & software setup: The 4-node cluster consists
of four 6-core Intel(R) Core(TM) i7-10710U CPU nodes each
with 64GBs of RAM, located in the same room and con-
nected with an average bandwidth of 90.8 Mbits/sec. The
20-node deployment consists of xl170 Cloudlab [15] nodes,
each equipped with 10 × Intel Core E5-2640 2.4 GHz CPUs
and 8GB of memory. Single-machine shells (Bash & PASH)
were evaluated on a machine with 20 × 2.80GHz Intel(R)
Core(TM) i9-10900 CPUs and 32GB of memory.

For ease of deployment and reproducibility, we used Docker
swarm to deploy (1) HDFS, and (2) the DISH runtime. The con-
tainers were created using the standard Ubuntu 18.04 image.
We use Bash v.5.0.3, PASH v.6e2ecba, and HDFS/Hadoop
streaming version 3.2.2. We explicitly disabled checksum
verification from HDFS in all configurations, scripts, and mea-
surements. All scripts were executed completely unmodified,
using environment variables, loops, and other shell constructs.
To minimize statistical non-determinism we repeated the ex-
periments several times noticing imperceptible variance.

The DISH implementation comprises 6784 lines of Python
(preprocessor, compilation server, expansion, compiler, and
parser), 1011 lines of shell code (JIT engine and various utili-
ties), and 1174 lines of C (commutativity primitives, and other
runtime components). All counts include only semantically
meaningful lines of code.

7.1 Performance
How does DISH’s distributed perform on small on-premise
clusters and multi-node cloud deployments, and how does it
compare to state-of-the-art systems?

Tab. 3: DISH performance in 20-node cloud deployment. DISH
speedup over Hadoop Streaming for scripts that AHS supports.
DISH speedup over AHS
Benchmark Avg Min 25th 50th 75th Max
Classics 2.74× 0.92× 2.41× 2.60× 2.85× 6.55×
Unix50 6.64× 0.91× 2.85× 5.38× 10.4× 16.9×
COVID-mts 10.4× 6.64× 8.91× 9.27× - 16.8×
AvgTemp 7.85× - - - - -

Results: Fig. 7 (note the log y-axis) shows the performance
of DISH, PASH, and AHS on a 4-node on-premise cluster
across all benchmarks of Tab. 2. Box plots (left) show re-
sult quartiles for multi-benchmark suites (Tab. 2, rows 1–4)
and bars (right) show results for individual scripts (Tab. 2,
rows 5–8). Across all benchmarks, DISH achieves an average
speedup of 13.6× (vs. 2.55× for PASH and 2.1× for AHS) and
a maximum speedup of 136.3× (vs. 7.8× for PASH and 8.6×
for Hadoop Streaming). The average execution time of all
scripts on Bash is 299s, ranging from 1s for 34.sh in Unix50
to 2840s for nfa-regex.sh in Classics. DISH is only slower
than Bash (737s vs 568s) in the case of diff.sh from Classics,
for which AHS is even slower (766s). DISH achieves a per-
formance comparable to Bash (1-2s) in 4.sh and 34.sh from
Unix50, because both perform a short-running head.

Tab. 3 shows the speedup of DISH over AHS on a 20-node
Cloudlab deployment across all scripts implementable with
AHS (Classics, Unix50, COVID-mts, AvgTemp). Across all
benchmarks, DISH achieves an average speedup of 6.17× and
a maximum speedup of 16.95× over AHS. DISH is slower
than AHS only for three scripts: nfa-regex.sh from Classics
(0.92×), 29.sh and 30.sh from Unix50 (0.91× and 0.94×).

Across all scripts in both deployments, DISH’s overheads
(startup cost, dynamic orchestration, preprocessing, compila-
tion, scheduling) take less than 1 second.
Discussion: DISH is faster than Bash, PASH, and AHS across
Tab. 2’s suites (rows 1–4) with respect to average, and across
all of Tab. 2 individual benchmarks (rows 5–8)—often by a
significant margin (e.g., 134× for AvgTemp against PASH).

350 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NLP

10
0

10
1

10
2

S
pe

ed
up

 (l
og

-s
ca

le
)

MediaConv1

MediaConv2

LogAnalysis1

LogAnalysis2
FileEnc1

FileEnc2
AvgTemp

DiSh no DDU
DiSh

Fig. 8: Dynamic dependency untangling. DISH speedup over Bash
when toggling DDU (higher is better).

DISH’s (and PASH’s) speedup over Bash is due to parallelism.
DISH’s speedup over PASH is due to DISH’ co-location of data
and computation: PASH cannot offload computation and thus
first gathers all data onto a single machine—a time-consuming
stage—and then starts processing in parallel. DISH is slower
than Bash only for diff.sh, because (1) it is not highly par-
allelizable and (2) it performs no filtering, i.e., its output is
the same size as its input. In contrast to Bash, which simply
fetches all data and processes it locally, DISH tries to allocate
most commands on the workers, but this leads to increased
data movement since moving data between workers does not
avoid sending the whole output to the client.

DISH’s speedup over AHS is due to a few different reasons.
One reason is the increased expressiveness of DISH’s dataflow
model: DISH accepts and parallelizes complete scripts, discov-
ering more opportunities for parallelism. Many of the AHS
scripts are broken into multiple map and reduce stages, often
leaving pipeline parallelism and data parallelism unexploited.
Another reason is DISH’s dynamic independence discovery,
which allows for additional parallelism and better utilization
of resources—in ways that AHS does not support; we zoom
into these benefits below (§7.2). In the Cloudlab deployment,
DISH is (marginally) slower than AHS in only two cases: (1) a
script that is embarrassingly parallel and thus implementable
in AHS using only a single mapper (nfa-regex.sh), and (2)
two scripts in Unix50 that see slightly more benefits from
our manual, hand-optimized AHS rewrite than they do from
DISH’s automated distribution.

We found porting scripts to AHS a serious challenge. Many
scripts required significant manual effort, resulted in multiple
error-and-fix cycles, and led to script size increases. To over-
come AHS’s expressiveness limitations, we had to modify a
few scripts in unintuitive ways—often combining plain Bash
scripts with AHS mappers and reducers. These modifications
made scripts significantly more complex and compounded
the effort to test and maintain them. Instead, DISH distributed
scripts successfully without any such challenges.

7.2 Dynamic Dependency Untangling
What is the speedup due to dynamic dependency untangling?

Results: Figure 8 shows DISH’s speedup over Bash with
and without dynamic dependency untangling (DDU, § 4.3).
It excludes scripts that contain a single dataflow, for which
DDU is not applicable. DISH’s average speedup over DISH-
w/o-DDU is 6.9×, ranging between 1.2–13.9×.
Discussion: Enabling DDU improves performance signif-
icantly across all relevant scripts, by running independent
dataflow regions in parallel. This allows DISH to expose paral-
lelism not just within data pipelines but across them, improv-
ing utilization. DDU also improves the distributed execution
of scripts that operate on many files, many or most of which
are small enough to fit on a single HDFS block.

DDU is the main reason why DISH gets an edge over Bash
on scripts that (1) have implicit independences that are not
highly parallelizable, and (2) operate on small data that incur
imperceptible data-movement costs. Examples of such scripts
include MediaConv1 and FileEnc2.

7.3 Correctness
What is DISH’s output compatibility with respect to Bash?
Results: To check the correctness of DISH across all bench-
marks, we check that its stdout and exit status are equivalent
to the ones produced by Bash. Across all benchmarks, totaling
over 650 millions lines (18GB) of output, DISH produces the
same output and exit status as Bash.

We additionally execute the complete POSIX shell-test
suite to evaluate DISH’s compatibility with Bash. Out of all
relevant tests, DISH diverges from Bash in two cases and only
with respect to the exit status it returns: both exit with an
error, but Bash returns 1 whereas DISH returns 127, which
is outside of the POSIX mandated exit status range between
1–125. The reason is that DISH always invokes the underlying
Bash interpreter using the -c flag to set the $0 variable, and
Bash (contrary to most other shells, e.g., dash, ksh, mksh, sash,
Smoosh, yash, zsh) exits with 127 in particular failing cases
when called with -c.
Discussion: All benchmarks in Tab. 2 were executed with
DISH repeatedly. After hundreds of runs over several weeks,
we observed dozens of different execution orders. Comparing
the output on every run provides significant confidence about
the correctness of the resulting distributed execution. The
POSIX test suite mostly evaluates the correctness of dynamic
orchestration (§3), as it does not feature many opportunities for
parallelization and features no opportunities for distribution.

8 Related Work

DISH is related to a large body of prior work.
Distributed data processing: Several environments assist in
the development of distributed software systems: distributed
computing frameworks [11,44,45,57,71] and domain-specific

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 351

languages [3, 8, 13, 40, 42] simplify the development of dis-
tributed systems that fall under certain computational classes
such as batch processing, stream processing, etc. These sys-
tems deal with many of the challenges of distribution, but
require developers to (re)write their computations manually in
models that differ significantly from UNIX shell programming.

Hadoop Streaming and Dryad Nebula are abstractions that
allow using third-party language-agnostic components similar
to the UNIX shell, atop cluster-computing engines (Hadoop
and Dryad, respectively). Both require their users to under-
stand and rewrite their shell scripts using the abstractions
provided by each framework. DISH can operate on arbitrary
shell scripts automatically, without requiring any manual effort
from its users.
Distributed shells and tools: Several packages expose com-
mands for specifying parallelism and distribution on mod-
ern UNIXes—e.g., qsub [19], SLURM [69], calls to GNU
parallel [58]. Different from DISH, their effectiveness is
predicated upon explicit and careful invocation and is lim-
ited to embarrassingly parallel (and short) programs. Often,
these commands provide options to support an array of spe-
cial sub-cases—a stark contradiction to the celebrated UNIX
philosophy. For example, parallel contains flags such as
--skip-first-line, -trim, and --xargs, that a UNIX user can
achieve using head, sed, and xargs; it also includes other pro-
grams with complex semantics, such as the ability transfer
files between computers, separate text files, and parse CSV.
DISH embraces the UNIX philosophy, attempting to rewrite
shell programs to leverage distributed infrastructure.

Several shells [14, 38, 56] add primitives for non-linear
pipe topologies—some of which target distribution. Here too,
however, developers are expected to manually rewrite scripts
to exploit these new primitives.

POSH [49] is a recent shell for scripts operating on NFS-
stored data. It brings pipeline components closer to the data
on which they operate, but operates only on shell pipelines
that are fully expanded—i.e., ones that do not use dynamic
features. DISH operates on shell scripts that use (1) any POSIX
composition primitive, and (2) the full set of dynamic features
present in the UNIX shell.
Distributed operating systems: There is a long history of
networked and distributed operating systems [4, 12, 43, 46,
48, 51–53, 67]. These systems offer abstractions that (1) are
similar, but not identical, to the ones offered by UNIX, (2)
operate at a lower level of abstraction (e.g., that of system calls,
rather than shell primitives), and (3) often aim at simply hiding
the network rather than offering scalability benefits. Instead of
implementing full-fledged distributed operating system, DISH
shows that a thin but sophisticated rewriting-based shim can
operate on completely unmodified programs, avoid requiring
any user input, and achieve significant speedups by executing
fragments in parallel across nodes.
Annotation-based transformations: Recent systems [47,

65,70] lower the developer effort of scaling out program com-
ponents by performing program transformations based on
user-provided annotations. These systems operate in single-
language environments, offering declarative DSLs for tuning
the semantics of the resulting distributed program. DISH uses
a similar approach, leveraging command annotations from
prior projects [49, 64], but operates on-the-fly—within an en-
vironment that makes extensive use of dynamic features and
that allows combining components from multiple languages.

PASH-JIT [32] parallelizes scripts by dynamically interpos-
ing between a shell script and the underlying shell interpreter.
This kind of interposition offers significant performance ben-
efits without jeopardizing correctness, i.e., maintains compat-
ibility with the underlying shell interpreter. DISH uses similar
insights and interposition architecture, but operates on a dis-
tributed multi-node setting and addresses challenges that are
specific to this setting—such as integration with a distributed
file system and distributed environment passing.

Cloud build systems: Several cloud build systems [1, 2, 17,
27] distribute and parallelize the execution of large builds by
constructing dependency graphs using dependency informa-
tion explicitely specified by their users. Contrary to these sys-
tems, DISH operates on general shell programs without exploit-
ing domain-specific information—e.g., build dependencies—
and by taking a just-in-time approach that resolves dependen-
cies during the execution of the script.

Correct distribution of dataflow graphs: The DFG is a
prevalent model in several areas of data processing, including
batch- and stream-processing. Systems implementing DFGs
often perform optimizations that are correct given subtle as-
sumptions on the dataflow nodes that do not always hold,
introducing erroneous behaviors. Recent work [28, 33, 37, 54]
attempts to address this issue by performing optimizations
only in cases where correctness is preserved, or by testing
that applied optimizations preserve the original behavior.
DISH uses its dynamic orchestration to achieve compatibil-
ity with the underlying shell and then achieves correct distri-
bution on a per-region level by building on prior work on
provably correct transformations for order-aware dataflow
graphs [26]. Similarly to other automated shell script transfor-
mation works [49, 64], DISH’s correctness is predicated upon
the correctness of the annotations describing commands.

Resurgence of shell research: Recent shell research [10,
23, 24, 32, 36, 41, 49, 55, 56, 64] highlights renewed interest
in shell scripting both as a vehicle for impactful research and
as a target worthy of scientific attention. We see DISH as a
natural continuation of the insights and research behind re-
cent systems [24, 26, 32, 49, 64], allowing other researchers
to leverage DISH’s POSIX-compliant high-performance dy-
namic distribution in their future work.

352 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

9 Discussion

Programmability: An important consideration with any au-
tomated system is how it affects programmability, and specifi-
cally the ability to debug a misbehaving program or to test a
program for correctness. DISH does not negatively affect the
developer experience compared to a shell: a developer can use
a combination of the many existing tools and commands—e.g.,
head and grep—as they would normally do to inspect their
script’s output and determine what is wrong. When it comes
to shell scripts intended for distributed environments, DISH in
fact improves developer experience: a developer may use the
same set of commands for local or distributed interactions—
e.g., to inspect and project parts of a file, regardless of whether
that file is stored in HDFS or the local system. Furthermore,
developers using DISH can reap the scalability benefits of
distribution in analyzing or testing scripts by automatically
scaling out load to multiple computers.
Command annotations: DISH’s transformations depend
on the existence of command annotations. To maintain sound-
ness, DISH will avoid compiling and distributing a script re-
gion if some command lacks annotations. To increase the
distributability of their scripts, DISH users could opt for more
constrained commands—e.g., cut instead of awk for data
projection—and thus enjoy tighter annotations and more ap-
plicable optimization transformations. The correctness of ap-
plying DISH’s transformations depends on the correctness of
these annotations, and thus annotations are currently expected
to be authored by command developers or other experts (but
not script developers). Developing automation for testing or
synthesizing correct annotations is an interesting avenue for
future research that would benefit several systems that use
them—e.g., DISH, PASH [64], and POSH [49].
Fault tolerance: DISH does not tolerate failures such as
worker aborts or network partitions (§1). In such cases users
are expected to rerun their scripts as shell users normally do in
the non-distributed case. Achieving fault tolerance in the con-
text of general shell scripts is in fact particularly challenging
due to the prevalence of black-box components that may per-
form arbitrary side-effects. A fault-tolerant version of DISH
should be able to track all these side-effects and re-execute
them appropriately when a script fails. This is in contrast to
constrained cluster computing frameworks such as MapRe-
duce and Spark that have precise information about the inputs
and outputs of purely functional program components en-
abling simplified re-execution of dependency graphs (lineage)
in the presence of failures. DISH’s design however combined
with incremental script execution [10] creates an opportunity
for addressing this challenge with a hybrid approach: employ
conventional fault tolerance approaches for script fragments
with annotation information, and instrument the rest of the
script to capture and replay its side-effects appropriately in
cases of failure.

Conclusion: DISH is the first system able to distribute un-
modified shell scripts that use (1) any POSIX composition
primitive, (2) the full set of dynamic features present in the
UNIX shell, and (3) distributed file systems such as HDFS.
DISH uses a dynamic orchestration approach that instruments
a given script and dynamically distributes it at runtime to
then execute it using the underlying shell interpreter. As a re-
sult, DISH avoids modifications to shell scripts and maintains
compatibility with existing shells and legacy functionality.
Evaluated against several alternatives available to users today,
DISH offers significant speedups, requires no developer effort,
and handles arbitrary dynamic behaviors pervasive in shell
scripts. DISH is open-source software, available by the Linux
Foundation.

Acknowledgments
We would like to thank Ayush Bhardwaj, Felix Stutz, Han-
nah Gross, Lily Tsai, Malte Schwarzkopf, Michael Greenberg,
Neil Ramaswamy, the Brown Systems Group, the NSDI 2023
reviewers, and our shepherd, Rebecca Isaacs, for discussions
and feedback on the paper. This material is based upon work
supported by DARPA contract no. HR00112020013 and no.
HR001120C0191, and NSF award CCF 2124184.

References

[1] Bazel dynamic execution. https://bazel.build/
remote/dynamic, 2022. [Online; accessed Feb 1,
2022].

[2] Google cloud build. https://cloud.google.com/
build/docs/overview, 2022. [Online; accessed Feb
1, 2022].

[3] Peter Alvaro, Neil Conway, Joseph M Hellerstein, and
William R Marczak. Consistency analysis in bloom: a
calm and collected approach. In CIDR, pages 249–260,
2011.

[4] Amnon Barak and Oren La’adan. The mosix multi-
computer operating system for high performance clus-
ter computing. Future Generation Computer Systems,
13(4):361–372, 1998.

[5] Jon Bentley. Programming pearls: A spelling checker.
Commun. ACM, 28(5):456–462, May 1985.

[6] Jon Bentley, Don Knuth, and Doug McIlroy. Program-
ming pearls: A literate program. Commun. ACM,
29(6):471–483, June 1986.

[7] Pawan Bhandari. Solutions to unixgame.io, 2020. Ac-
cessed: 2020-04-14.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 353

https://bazel.build/remote/dynamic
https://bazel.build/remote/dynamic
https://cloud.google.com/build/docs/overview
https://cloud.google.com/build/docs/overview

[8] Martin Biely, Pamela Delgado, Zarko Milosevic, and
Andre Schiper. Distal: A framework for implementing
fault-tolerant distributed algorithms. In Proceedings
of the 2013 43rd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN),
DSN ’13, pages 1–8, Washington, DC, USA, 2013. IEEE
Computer Society.

[9] Kenneth Ward Church. Unix™for poets. Notes of a
course from the European Summer School on Language
and Speech Communication, Corpus Based Methods,
1994.

[10] Charlie Curtsinger and Daniel W Barowy. Riker:
Always-Correct and fast incremental builds from sim-
ple specifications. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22), pages 885–898, 2022.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simpli-
fied data processing on large clusters. Commun. ACM,
51(1):107–113, January 2008.

[12] Sean Dorward, Rob Pike, David L Presotto, Dennis
Ritchie, Howard Trickey, and Phil Winterbottom. In-
ferno. In Proceedings IEEE COMPCON 97. Digest of
Papers, pages 241–244. IEEE, 1997.

[13] Cezara Drăgoi, Thomas A Henzinger, and Damien Zuf-
ferey. Psync: a partially synchronous language for fault-
tolerant distributed algorithms. ACM SIGPLAN Notices,
51(1):400–415, 2016.

[14] Tom Duff. Rc—a shell for plan 9 and unix systems.
AUUGN, 12(1):75, 1990.

[15] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of CloudLab. In Proceedings of the USENIX
Annual Technical Conference (ATC), pages 1–14, July
2019.

[16] Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones.
Towards haskell in the cloud. In Proceedings of the 4th
ACM Symposium on Haskell, Haskell ’11, pages 118–
129, New York, NY, USA, 2011. ACM.

[17] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets,
Erica Lan, Erik Mavrinac, Wolfram Schulte, Newton
Sanches, and Srikanth Kandula. Cloudbuild: Microsoft’s
distributed and caching build service. In SEIP. IEEE -
Institute of Electrical and Electronics Engineers, June
2016.

[18] Jim Garlick. pdsh. https://github.com/chaos/
pdsh, 2022. [Online; accessed September 15, 2022].

[19] Wolfgang Gentzsch. Sun grid engine: Towards creating
a compute power grid. In Proceedings First IEEE/ACM
International Symposium on Cluster Computing and the
Grid, pages 35–36. IEEE, 2001.

[20] Inc. GitHub. The 2021 state of the octoverse: Top lan-
guages over the years. https://octoverse.github.
com/#top-languages-over-the-years, 2021. [On-
line; accessed June 1, 2022].

[21] Google. Protocol Buffers, 2022. Accessed: 2022-06-01.
[22] Michael Greenberg. libdash. https://github.com/

mgree/libdash, 2019. [Online; accessed December 6,
2021].

[23] Michael Greenberg and Austin J. Blatt. Executable for-
mal semantics for the posix shell: Smoosh: the symbolic,
mechanized, observable, operational shell. Proc. ACM
Program. Lang., 4(POPL):43:1–43:30, January 2020.

[24] Michael Greenberg, Konstantinos Kallas, and Nikos
Vasilakis. Unix shell programming: The next 50 years.
In Proceedings of the Workshop on Hot Topics in Op-
erating Systems, HotOS ’21, page 104–111, New York,
NY, USA, 2021. Association for Computing Machinery.

[25] Hadoop. Hadoop streaming. https://hadoop.
apache.org/docs/r1.2.1/streaming.html, 2022.
[Online; accessed September 15, 2022].

[26] Shivam Handa, Konstantinos Kallas, Nikos Vasilakis,
and Martin C. Rinard. An order-aware dataflow model
for parallel unix pipelines. Proc. ACM Program. Lang.,
5(ICFP), aug 2021.

[27] Jason Hickey and Aleksey Nogin. Omake: Designing
a scalable build process. In Luciano Baresi and Reiko
Heckel, editors, Fundamental Approaches to Software
Engineering, pages 63–78, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[28] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra
Gedik, and Robert Grimm. A catalog of stream process-
ing optimizations. ACM Computing Surveys (CSUR),
46(4):46:1–46:34, March 2014.

[29] Lluis Batlle i Rossell. tsp(1) Linux User’s Manual.
https://vicerveza.homeunix.net/ viric/soft/ts/, 2016.

[30] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: distributed data-parallel pro-
grams from sequential building blocks. In Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, pages 59–72, 2007.

354 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/chaos/pdsh
https://github.com/chaos/pdsh
https://octoverse.github.com/#top-languages-over-the-years
https://octoverse.github.com/#top-languages-over-the-years
https://github.com/mgree/libdash
https://github.com/mgree/libdash
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html

[31] Dan Jurafsky. Unix for poets, 2017.
[32] Konstantinos Kallas, Tammam Mustafa, Jan Bielak,

Dimitris Karnikis, Thurston H.Y. Dang, Michael Green-
berg, and Nikos Vasilakis. Practically correct, Just-in-
Time shell script parallelization. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 22), pages 769–785, Carlsbad, CA, July 2022.
USENIX Association.

[33] Konstantinos Kallas, Filip Niksic, Caleb Stanford, and
Rajeev Alur. Diffstream: Differential output testing for
stream processing programs. Proceedings of the ACM
on Programming Languages, 4(OOPSLA):1–29, 2020.

[34] Nokia Bell Labs. The unix game—solve puzzles using
unix pipes, 2019. Accessed: 2020-03-05.

[35] Haoyuan Li. Alluxio: A virtual distributed file system.
University of California, Berkeley, 2018.

[36] Aurèle Mahéo, Pierre Sutra, and Tristan Tarrant. The
serverless shell. In Proceedings of the 22nd International
Middleware Conference: Industrial Track, pages 9–15,
2021.

[37] Konstantinos Mamouras, Caleb Stanford, Rajeev Alur,
Zachary G. Ives, and Val Tannen. Data-trace types for
distributed stream processing systems. In Proceedings
of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2019,
pages 670–685, New York, NY, USA, 2019. ACM.

[38] Chris McDonald and Trevor I Dix. Support for graphs of
processes in a command interpreter. Software: Practice
and Experience, 18(10):1011–1016, 1988.

[39] Malcolm D McIlroy, Elliot N Pinson, and Berkley A
Tague. Unix time-sharing system: Foreword. Bell System
Technical Journal, 57(6):1899–1904, 1978.

[40] Christopher Meiklejohn and Peter Van Roy. Lasp: a
language for distributed, eventually consistent computa-
tions with crdts. In Proceedings of the First Workshop on
Principles and Practice of Consistency for Distributed
Data, page 7. ACM, 2015.

[41] Jürgen Cito Michael Schröder. An empirical investi-
gation of command-line customization. arXiv preprint
arXiv:2012.10206, 2020.

[42] Adrian Mizzi, Joshua Ellul, and Gordon Pace.
D’artagnan: An embedded dsl framework for distributed
embedded systems. In Proceedings of the Real World
Domain Specific Languages Workshop 2018, pages 1–9,
2018.

[43] Sape J Mullender, Guido Van Rossum, AS Tanenbaum,
Robbert Van Renesse, and Hans Van Staveren. Amoeba:
A distributed operating system for the 1990s. Computer,
23(5):44–53, 1990.

[44] Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Na-
iad: A timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 439–455, New York, NY,
USA, 2013. ACM.

[45] Derek G. Murray, Malte Schwarzkopf, Christopher
Smowton, Steven Smith, Anil Madhavapeddy, and
Steven Hand. Ciel: A universal execution engine for
distributed data-flow computing. In Proceedings of the
8th USENIX Conference on Networked Systems Design
and Implementation, NSDI’11, pages 113–126, Berkeley,
CA, USA, 2011. USENIX Association.

[46] John K Ousterhout, Andrew R. Cherenson, Fred Douglis,
Michael N. Nelson, and Brent B. Welch. The sprite net-
work operating system. Computer, 21(2):23–36, 1988.

[47] Shoumik Palkar and Matei Zaharia. Optimizing data-
intensive computations in existing libraries with split
annotations. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, pages 291–
305, New York, NY, USA, 2019. ACM.

[48] Rob Pike, Dave Presotto, Ken Thompson, Howard
Trickey, et al. Plan 9 from Bell Labs. In Proceedings
of the summer 1990 UKUUG Conference, pages 1–9,
1990.

[49] Deepti Raghavan, Sadjad Fouladi, Philip Levis, and
Matei Zaharia. POSH: A data-aware shell. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 617–631, 2020.

[50] Chet Ramey. Bash reference manual. Network Theory
Limited, 15, 1998.

[51] Richard F Rashid and George G Robertson. Accent:
A communication oriented network operating system
kernel, volume 15. ACM, 1981.

[52] Marc Rozier, Vadim Abrossimov, François Armand, Ivan
Boule, Michel Gien, Marc Guillemont, Frédéric Her-
rmann, Claude Kaiser, Sylvain Langlois, Pierre Léonard,
et al. Overview of the chorus distributed operating sys-
tem. In Workshop on Micro-Kernels and Other Kernel
Architectures, pages 39–70. Seattle WA (USA), 1992.

[53] Jan Sacha, Jeff Napper, Sape Mullender, and Jim McKie.
Osprey: Operating system for predictable clouds. In
IEEE/IFIP International Conference on Dependable Sys-
tems and Networks Workshops (DSN 2012), pages 1–6.
IEEE, 2012.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 355

[54] Scott Schneider, Martin Hirzel, Buğra Gedik, and Kun-
Lung Wu. Safe data parallelism for general streaming.
IEEE Transactions on Computers, 64(2):504–517, Feb
2015.

[55] Jiasi Shen, Martin Rinard, and Nikos Vasilakis. Auto-
matic synthesis of parallel unix commands and pipelines
with kumquat. corr abs/2012.15443 (2021). arXiv
preprint arXiv:2012.15443, 2021.

[56] Diomidis Spinellis and Marios Fragkoulis. Extending
unix pipelines to dags. IEEE Transactions on Computers,
66(9):1547–1561, 2017.

[57] Craig A Stewart, Timothy M Cockerill, Ian Foster, David
Hancock, Nirav Merchant, Edwin Skidmore, Daniel
Stanzione, James Taylor, Steven Tuecke, George Turner,
et al. Jetstream: a self-provisioned, scalable science
and engineering cloud environment. In Proceedings of
the 2015 XSEDE Conference: Scientific Advancements
Enabled by Enhanced Cyberinfrastructure, pages 1–8,
2015.

[58] Ole Tange. Gnu parallel—the command-line power tool.
;login: The USENIX Magazine, 36(1):42–47, Feb 2011.

[59] Dave Taylor. Wicked Cool Shell Scripts: 101 Scripts for
Linux, Mac OS X, and Unix Systems. No Starch Press,
2004.

[60] Elixir Core Team. Elixir. https://elixir-lang.
org/.

[61] The gRPC Authors. grpc, 2018. Accessed: 2019-04-16.
[62] Eleftheria Tsaliki and Diomidis Spinellis. The real statis-

tics of buses in athens. https://bit.ly/3s112R5,
2021.

[63] Junichi Uekawa. dsh. https://www.netfort.gr.jp/
~dancer/software/dsh.html.en, 2022. [Online; ac-
cessed September 15, 2022].

[64] Nikos Vasilakis, Konstantinos Kallas, Konstantinos
Mamouras, Achilles Benetopoulos, and Lazar Cvetković.
Pash: Light-touch data-parallel shell processing. In Pro-
ceedings of the Sixteenth European Conference on Com-
puter Systems, EuroSys ’21, page 49–66, New York, NY,
USA, 2021. Association for Computing Machinery.

[65] Nikos Vasilakis, Ben Karel, Yash Palkhiwala, John Son-
chack, André DeHon, and Jonathan M. Smith. Ignis:
Scaling distribution-oblivious systems with light-touch
distribution. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI 2019, pages 1010–1026, New York,
NY, USA, 2019. ACM.

[66] Robert Virding, Claes Wikström, and Mike Williams.
Concurrent Programming in ERLANG (2Nd Ed.). Pren-
tice Hall International (UK) Ltd., Hertfordshire, UK, UK,
1996.

[67] Bruce Walker, Gerald Popek, Robert English, Charles
Kline, and Greg Thiel. The locus distributed operat-
ing system. ACM SIGOPS Operating Systems Review,
17(5):49–70, 1983.

[68] Tom White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 4th edition, 2015.

[69] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm:
Simple linux utility for resource management. In Work-
shop on Job Scheduling Strategies for Parallel Process-
ing, pages 44–60. Springer, 2003.

[70] Gina Yuan, Shoumik Palkar, Deepak Narayanan, and
Matei Zaharia. Offload annotations: Bringing heteroge-
neous computing to existing libraries and workloads. In
2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 293–306, 2020.

[71] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the
9th USENIX Conference on Networked Systems Design
and Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012. USENIX Association.

356 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://elixir-lang.org/
https://elixir-lang.org/
https://bit.ly/3s112R5
https://www.netfort.gr.jp/~dancer/software/dsh.html.en
https://www.netfort.gr.jp/~dancer/software/dsh.html.en

Waverunner: An Elegant Approach
to Hardware Acceleration of State Machine Replication

Mohammadreza Alimadadi, Hieu Mai, Shenghsun Cho∗, Michael Ferdman, Peter Milder, Shuai Mu
Stony Brook University, ∗Microsoft

Abstract. State machine replication (SMR) is a core mech-
anism for building highly available and consistent systems.
In this paper, we propose Waverunner, a new approach to ac-
celerate SMR using FPGA-based SmartNICs. Our approach
does not implement the entire SMR system in hardware; in-
stead, it is a hybrid software/hardware system. We make the
observation that, despite the complexity of SMR, the most
common routine—the data replication—is actually simple.
The complex parts (leader election, failure recovery, etc.) are
rarely used in modern datacenters where failures are only oc-
casional. These complex routines are not performance critical;
their software implementations are fast enough and do not
need acceleration. Therefore, our system uses FPGA assis-
tance to accelerate data replication, and leaves the rest to the
traditional software implementation of SMR.

Our Waverunner approach is beneficial in both the common
and the rare case situations. In the common case, the system
runs at the speed of the network, with a 99th percentile latency
of 1.8 µs achieved without batching on minimum-size packets
at network line rate (85.5 Gbps in our evaluation). In rare
cases, to handle uncommon situations such as leader failure
and failure recovery, the system uses traditional software to
guarantee correctness, which is much easier to develop and
maintain than hardware-based implementations. Overall, our
experience confirms Waverunner as an effective and practical
solution for hardware accelerated SMR—achieving most of
the benefits of hardware acceleration with minimum added
complexity and implementation effort.

1 Introduction

Variants of State Machine Replication (SMR) are responsible
for all reliable, consistent, and highly available online services.
SMR is at the core of massive-scale systems such as cloud
infrastructure coordination services [6, 26], large-scale dis-
tributed databases [13,25,63,69], and many other systems that
require high availability and consistency [2, 14]. Due to their
central nature in critical infrastructure, SMR implementations
must be extremely robust and resilient. At the same time, the
performance characteristics of the SMR dictate the perfor-
mance of the overall service. As a result, mechanisms for
reducing SMR operation latency and increasing throughput
have received significant research attention.

A fundamental requirement of SMR implementations is
that networked hosts must exchange multiple messages to

agree on the shared state. While implementations that use
traditional NICs and process all packets through the OS net-
work stack are the most straight-forward, their performance
is bounded by the large amount of CPU time spent on packet
processing [8, 22, 28, 46, 57, 58, 68], limiting the throughput
and drastically impacting the operation latency due to many
traversals of the software network stack.

To overcome the CPU bottleneck, researchers have begun
exploring hardware acceleration of network processing. For
example, a recent work demonstrated the ZooKeeper broad-
cast protocol implemented entirely in reconfigurable hard-
ware on an FPGA (Field-Programmable Gate Array). This
implementation is able to approach line-rate throughput with
operation latencies that are only marginally higher than the
on-the-wire latency of the messages [30].

Unfortunately, although it is an impressive demonstration
of hardware-acceleration capabilities, the hardware-only ap-
proach is too complex and brittle for practical deployment.
Despite the improvements in the ease-of-use of hardware de-
velopment toolchains, the ZooKeeper FPGA implementation
required significant expertise, including a hardware version
of the TCP/IP stack and all of the protocol details such as
leader election and failure recovery. Implementing and debug-
ging distributed protocols in hardware is significantly more
difficult than user-level software implementations. Moreover,
consensus algorithms—the core of SMR—are well known for
being complex and error-prone in design and implementation.
Properly capturing all corner-case behaviors in a hardware
implementation is challenging and difficult to verify.

We observe that the complexity of SMR is actually in the
uncommon routines. Indeed, the most common operation, the
one that limits throughput and dictates operation latency, is ex-
tremely simple: a leader node receives requests and broadcasts
them to the follower nodes, locally committing requests only
after receiving acknowledgements from the followers. Other
SMR routines, such as leader election and failure recovery,
are indeed considerably more complex.However, these com-
plex operations are used only in special circumstances, such
as system bootstrap or replica failures. These operations are
rare, not performance critical, and their traditional software
implementations are fast enough for all practical purposes.

We propose a new approach to accelerate SMR by creat-
ing a hybrid hardware/software organization that implements
only a small, simple, but performance-critical portion of the
protocol in hardware and leaves the vast majority of the imple-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 357

mentation in traditional user-level software. We showcase Wa-
verunner, our approach for hardware acceleration of Raft [52],
a well-known consensus protocol, where the entirety of the
robust software implementation remains intact, adding only
an extra high-performance hardware-accelerated path for the
common-case operation. The Waverunner approach permits a
clean separation of the complex operations from simple ones
in the Raft application software, and reduces the complexity
of transport protocol handling. Waverunner uses UDP for the
common routines, but leaves all complex cases, such as er-
ror handling and view changes, to the traditional TCP-based
software. Moreover, by restricting the Waverunner hardware
to only the common case, we are able to leverage FPGA
HLS (high-level synthesis) tools to automatically generate
the hardware from its C++ description, significantly reducing
implementation and adoption effort. Although our prototype
system is based on Raft, the Waverunner technique is generic
and can be easily adapted for other distributed protocols.

Waverunner is notable for its performance and simplic-
ity. We achieve line-rate operation of Raft (85.5 Gbps af-
ter accounting for Ethernet frame overheads on a 100 Gbps
network), with the vast majority of the SMR broadcast re-
quests handled in three wire-delay latencies (median latency is
1.8 µs). At the same time, we retain the robustness, flexibility,
and completeness of a software implementation—Waverunner
includes a fully operational implementation of Raft without
hardware acceleration and can smoothly transition between
hardware-accelerated and software-only modes. In a failure
test, Waverunner can recover from a leader crash within 1 sec-
ond. While the implementation of Raft is by no means simple,
leaving it in software is appealing for debugging, upgrades,
and maintainability. Moreover, the 220-line HLS-based C++

implementation of the hardware, made possible by limiting
the hardware only to a simple core routine, greatly simplifies
modification and maintainability of the hardware components
compared to a full-hardware implementation.

2 Background & Motivation

In this section, we briefly introduce the concepts of state
machine replication and FPGAs, as well as the key idea and
motivation of our Waverunner approach.

2.1 State Machine Replication

State machine replication (SMR) is the standard approach
to build highly consistent and available systems [6, 13, 26].
It aims to provide a consistent view among replicas while
tolerating replica failures in a practical environment where
messages can be arbitrarily delayed and there are no perfect
failure detectors. In the most common model, SMR replicates
a sequence of log entries that contain the operations to be
executed by each replica. The application is modeled as a

deterministic state machine so that all replicas will have iden-
tical states after executing the same sequence of operations.

At the center of an SMR system is a consensus protocol,
which is known to be complex and delicate. Most consen-
sus protocols share a common leader-follower model, from
early academic ones (e.g., Viewstamped Replication [51] and
Paxos [40]) to more recent ones that are widely adopted in in-
dustry (e.g., Zookeeper Atomic Broadcast [26], and Raft [52]).
Despite their differences, these protocols largely follow a two-
stage structure: a leader election and recovery stage when the
system elects a new leader and synchronize all replicas after
possible failures, and a data replication stage when the leader
replicates log entries to the followers as new requests arrive.1

2.2 Programmable NIC with FPGA

The last three decades have witnessed the emergence of a great
mismatch between network speed and CPU performance. The
bottleneck of a networked system has gradually moved from
the network (NIC and switch) to the CPU and the OS software
stack. To mitigate this problem, the use of programmable
NICs with Field Programmable Gate Arrays (FPGAs) has
emerged. Equipped with on-chip processing units and mem-
ory, FPGA-based NICs can process packets at line rate (e.g.,
100 Gbps), with stable nanosecond-range latency. In com-
parison, the traditional software approach can process only
several gigabits per second on a CPU core, with latencies
measured in milliseconds.

Although capable of high throughput and low latency,
FPGA hardware is notoriously difficult to program. Program-
ming FPGAs is particularly challenging because it requires
hardware development skills and knowledge of hardware de-
scription languages. Although high-level synthesis (HLS)
tools make the FPGA programming process more accessible
by translating functions from C++ to hardware, these tools are
difficult to use effectively when the logic being implemented
is complex. As a result, one of our goals in the design of Wa-
verunner is to make sure that all functions that we implement
in FPGA hardware are straightforward and simple, so they
can be easily implemented with HLS.

2.3 Motivation

As the critical building block of large-scale systems, the per-
formance of SMR has been a focus in many recent studies.
High-performance SMR implementations use a wide range of
advanced hardware, including programmable NICs with FP-
GAs [30], RDMA [2], and programmable switches [16,32,42].
In this work, we propose a unique hybrid approach to acceler-
ating SMR with FPGAs: only accelerating the data plane and
leaving the control plane, including election and recovery, to

1(Multi-)Paxos does not have a universally agreed algorithm, whether to
implement it as a two-stage structure depends on the implementation [2, 10].

358 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Usage Ratio (%)
Control plane Data plane Application

Our Raft ∼0 (1e-8) 88 12
NuRaft ∼0 (1e-4) 92 8
etcd ∼0 (1e-4) 72 28

(a) CPU cycle breakdown of Raft implementations.
LOC (approx.)

Control plane Data plane Application
Our Raft 1500 200 5400
NuRaft 3600 1100 6000
etcd 1700 180 8900

(b) LOC estimates of Raft implementations.
Usage ratio (%)

Network descriptor read 6.1
Network descriptor write 16.8
Other RPC cost 5.9
Memory allocation 9.6
Reference counting and memory free 13.3

(c) Breakdown of the data plane usage on system-related
(non-logic) code in our Raft implementation.

Table 1: Raft Implementation Analysis

be processed by software. Our approach leverages the obser-
vation that the data plane dominates the system performance
when the system is stable (most of the time), while the recov-
ery part is only used in rare cases and is usually fast (seconds
or less), so there is no need to accelerate it.

Table 1a and 1b show a CPU cycle analysis of various Raft
implementations, including our own implementation in C++.
In our experiments, we set the failure rate to once a year, and
observe that the data plane consumes the majority of the CPU
cycles while the control plane consumes almost none. More-
over, the majority of data plane usage is on common utilities
such as networking, data serialization, memory allocation, etc.
(Table 1c). Implementing the data plane in FPGA can avoid
these costs. Implementing the control plane with software can
minimize the programming effort needed in the hardware; it
also allows us to rapidly iterate on the software implementa-
tion, as required when developing complex modules.

In this paper, we choose Raft as our acceleration target.
This is another advantage of our approach: we can accelerate
existing protocols and systems rather than develop entirely
new ones. The hardware acceleration in deployment can then
be optional. That is, the system can run either with or without
the programmable NIC. This approach adds great flexibility
in practice. Though we use Raft for our prototype, we believe
our approach similarly applies to other common consensus
protocols, as they have similar structure [64, 67].

3 Waverunner System Overview

Waverunner takes the standard state machine replication
model: it replicates a sequence of operation log entries (mes-
sages) identically onto each replica. The target of replication
is referred to as the application (e.g., a key-value store or a

Replica
Replica

Replica

SW

HW

Network
InterfaceWaverunner

Op Log Vanilla
Raft

Normal Path

Accelerated Path

Kernel

Client

Network Switch

Figure 1: System Design Overview. The solid black lines
represent the normal path when Waverunner is disabled,
where network packets travel between the application (Vanilla
Raft) and NIC via the POSIX interface and Kernel device
driver; the dashed lines represent the accelerated path, where
the NIC diverts incoming packets to Waverunner, which can
send messages into the network via the NIC and/or deliver
them directly into a buffer allocated by the application.

lock service). The application must be deterministic; after all
replicas process the messages in the order they are recorded
in the log, the replicas will all reach the same state. A client
for SMR can be either the replicated application itself or an
independent client that sends requests to the application. A
replica server is either a leader or a follower. Only the leader
accepts client requests and replicates these requests to the
followers. Followers reject client requests, causing the clients
to resend requests to the leader.
System Architecture. The system architecture, including its
hardware and software components, is shown in Figure 1. The
software includes a complete vanilla Raft implementation that
uses conventional TCP sockets provided by the Linux kernel.
Additionally, the software can access hardware configuration
registers to control the Waverunner hardware. The software
can disable Waverunner hardware acceleration, causing all
received network packets to be delivered via the conventional
network stack. However, if the software enables hardware ac-
celeration, the network interface examines all received packets
to identify those carrying Raft messages, and directs packets
containing the most common Raft messages (client requests
and data replication messages) to the Waverunner hardware
protocol handler instead of the kernel network stack. To com-
municate with the software, the Waverunner hardware writes
messages into a pre-allocated user-space log buffer, bypassing
the kernel. Uncommon Raft messages and all other network
traffic (e.g., ARP requests and ssh connections) are handled by
the kernel like with a conventional NIC, regardless of whether
Waverunner hardware acceleration is enabled or not.
Typical Waverunner Workflow. Waverunner takes advan-
tage of the Raft leader election protocol to coordinate enabling
and disabling hardware acceleration (Figure 2). When the sys-
tem is first initialized, hardware acceleration is disabled by

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 359

Election
Enable accl.

Replication
Accelerated

Election
Disable accl.

Recovery/Rep.
Software-only

Figure 2: Waverunner Workflow

default. The Raft software triggers a leader election, select-
ing one of the replicas as the leader, and enables hardware
acceleration. The system then replicates data with the assis-
tance of hardware acceleration. The hardware takes care of
the data replication operations and deposits the committed
log messages into the user-space log buffer for the software
application to handle. If a leader failure occurs, the system
disables acceleration, conducts another leader election, and
performs the requisite Raft protocol actions to resolve the
problem before re-enabling acceleration. Other uncommon
and complex operations are handled in a similar way. For
example, after a series of failure events, the replicas may have
diverged log sequences. The leader software will synchronize
replicas by re-sending the missing log entries and potentially
overwriting existing entries in the followers if necessary. After
the complex conditions are addressed and all replicas are in
the same state, the system can conduct another leader election
and re-enable hardware acceleration.

The safety and consistency properties of SMR guarantee
that 1) all replicas will commit the same log entry at the same
position in the buffer, and 2) if an operation starts after another
one commits, then the two operations will appear in the same
order in the logs of all replicas.

4 Waverunner Hardware

In this section, we describe the Waverunner hardware (§ 4.1),
explain its hardware data replication operation (§ 4.2), and
detail the design of the communication mechanism necessary
for Waverunner to achieve high performance (§ 4.3).

4.1 Hardware Architecture
Our Waverunner prototype is based on a traditional PCIe NIC
architecture, where a NIC DMA engine, controlled by the
host kernel network stack, streams data between the network
interface and the host using the PCIe bus. When receiving
packets from the network interface, the NIC transfers the
packet contents into host memory and raises an interrupt
to alert the CPU that the transfer is completed. To transmit
packets, the NIC uses the PCIe bus to traverse a queue of
packet contents populated in host memory by the software,
transferring packets to the network interface.

E
th

e
rn

e
t
M

A
C

T
X

 M
u
x

TX

Packet
Generator

Packet

Parser

RX

Protocol
Handler

User-

Space
MCDMA

NIC

DMA

Normal Packets

P
C

Ie

Raft

Kernel

Network

Stack

FPGA Host

Raft Packets

1 2 3a

3b 4 6

N
e
tw

o
rk

 (
2
x
1
0
0
G

)

7

Retrans.
FIFO

5

Figure 3: Waverunner Hardware Overview

Waverunner uses a bump-in-the-wire organization to ex-
tend the traditional NIC functionality with SMR hardware
acceleration, as shown in Figure 3.

When packets arrive over the network 1 , they are first
streamed through a packet parser 2 module to identify pack-
ets containing SMR protocol messages. Packets that do not
contain SMR messages are streamed to the NIC DMA engine
3a and are handled by the host kernel. If hardware accelera-
tion is enabled and the packet parser detects a supported Raft
message, the message is streamed to the Waverunner hardware
protocol handler 3b instead of the NIC DMA. The protocol
handler performs internal bookkeeping on the protocol state,
tracking Raft messages forwarded to the followers and their
acknowledgements. If the received messages require one or
more packets to be sent out (e.g., client requests must be repli-
cated to the follower nodes), the protocol handler streams the
messages to a packet generator module 4 , which generates
the packets and transmits them into the network. Outgoing
packets are buffered in a circular buffer 5 that includes re-
transmission logic; when packet loss or reordering is detected,
the protocol handler can signal the buffer to retransmit its
contents. Notably, in this case, Raft packets are received and
transmitted with minimum latency, entirely without host CPU
involvement. Finally, the protocol handler determines if the
received message must also be sent via User-Space MCDMA
6 to the Raft software for further processing 7 . For each

data replication Raft message, Waverunner will write two op-
eration messages into the user-space log buffer in the host
memory: 1) when the client request is received and forwarded
to the follower replicas, the request is also written into the log
buffer, and 2) when a sufficient number of acknowledgements
are received from the followers, a commit operation is written
into the log buffer. Application software then processes the
log in order and performs the committed operations.

Messages to be delivered to the software are streamed to
a descriptor-based, high-performance Multi-Channel DMA
(MCDMA) engine that transfers the message contents di-
rectly to the user-space Raft software, bypassing the kernel
network stack in a similar way to DPDK [21]. Each channel
of MCDMA has a ring buffer of descriptors. Each descriptor
consists of metadata such as the size and address of the data
buffer, complete bit, and the pointer to the next descriptor.

360 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Once the MCDMA completes a transaction, it updates the
metadata, allowing the CPU software to consume the data.
In the case that Raft traffic arrives too fast to transfer to the
host and the MCDMA ring buffer becomes full, the Waverun-
ner hardware will drop the packets before the packet parser,
preventing the scenario where a message is processed by the
Raft protocol handler but not transferred to the software.

To facilitate coordination between the host software and
the hardware acceleration modules, the Waverunner hardware
exposes a set of control and status registers (CSRs) accessible
from the host software. Some registers, such as follower MAC
and IP address, are used to configure the Waverunner system
before the operation. An ACC_ENABLE register can be used
to enable or disable the accelerated packet processing. Finally,
the Waverunner hardware and software use several CSRs to
maintain the Raft protocol state. After disabling hardware
acceleration, the software can read the latest values of these
registers from the hardware. The complete set of Raft protocol
registers is listed in Appendix (§ C).

4.2 Raft Leader and Follower Operation

Although Raft is complex, Waverunner implements only the
most common operations in hardware (pseudocode shown in
Figure 4) and relies on the software to handle uncommon and
complex interactions. Uncommon hardware-generated mes-
sages such as AppendEntryReject are sent to the software
via the user-space log without additional processing, while
complex messages such as leader election are not identified
by the packet parser at all, allowing these messages to be
delivered via the traditional NIC DMA (also passing through
the OS network stack, and therefore allowing these messages
to naturally leverage features such as reliable TCP transport).

When configured to act in a leader role, the hardware accel-
erator includes protocol handling logic for only two message
types: client requests and follower acknowledgements. Upon
receiving a client request (Figure 4, lines 2-12), the accel-
erator updates the Raft protocol state (e.g., lastLogIndex,
lastLogTerm), streams the message contents to the packet
generator (to transmit AppendEntry messages to the follow-
ers), and also sends the message to software. Upon receiving
a follower acknowledgement (Figure 4, lines 33-43), the ac-
celerator updates the protocol state and, if the operation is
ready for commit (half of the followers have acknowledged),
the acknowledgement message is sent to the user-space log.
Only one acknowledgement is delivered to the software, sub-
sequent acknowledgements for the same request are ignored.
All other protocol messages identified by the packet parser
are delivered to the software without updating protocol state
and without response packet generation by the accelerator.

The follower role is even simpler, as it handles only
AppendEntry messages. Upon receiving a message (Figure 4,
lines 15-30), the follower first conducts several safety checks,
including the is_leader check, checking if the previous log

-

1 // FPGA receives client request
2 function FPGA -AppendEntry(fs, op):
3 if fs.isLeader
4 prevLogIndex = fs.lastLogIndex
5 prevLogTerm = fs.lastLogTerm
6 logEntry = makePair(op, fs.currentTerm)
7 push(fs.host.log, logEntry)
8 fs.lastLogIndex++
9 fs.lastLogTerm = fs.currentTerm

10 send <‘FPGA-append’, op, prevLogIndex,
prevLogTerm, fs.currentTerm, fs.commitIndex>
to all except self

11 else
12 reject
13 .

14 // FPGA receives <‘FPGA-append’, op,
prevLogIndex, prevLogTerm, term,
commitIndex>

15 function FPGA-ReceiveAppend(fs, op, prevLogIndex,
prevLogTerm, term, commitIndex):

16 if not fs.isLeader
17 and fs.currentTerm == term
18 and fs.lastLogTerm == prevLogTerm
19 if prevLogIndex > fs.lastLogIndex
20 reply with retransmission request
21 else if prevLogIndex < fs.lastLogIndex
22 ignore and return
23 fs.host.commitIndex = commitIndex
24 logEntry = makePair(op, fs.currentTerm)
25 push(fs.host.log, logEntry)
26 fs.lastLogIndex++
27 fs.lastLogTerm = fs.currentTerm
28 reply <‘FPGA -appendOK’, term , fs.id, fs.

lastLogIndex >
29 else
30 reply <‘FPGA -appendReject’, fs.id>
31 .

32 // FPGA receives <‘FPGA-appendOK’, term, id,
lastLogIndex>

33 function FPGA -ReceiveAppendAck(fs, term , id,
lastLogIndex):

34 if fs.isLeader and fs.currentTerm == term
and fs.matchIndex[id] < lastLogIndex

35 fs.matchIndex[id] = lastLogIndex
36 if fs.commitIndex < lastLogIndex
37 if a (majority -1) elements in matchIndex

>= lastLogIndex
38 fs.commitIndex = lastLogIndex
39 fs.host.commitIndex = fs.commitIndex
40 if the request does not read the

system state (e.g., a blind write
in a key-value store)

41 notify the client of commit and skip
the reply from the host

software (in ApplyLog)
42 else
43 halt and notify host to handle failures

Figure 4: Pseudocode of the hardware accelerator.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 361

index and term match (ruling out the case of lost or duplicated
packets), and confirming that the message term value matches
the currentTerm variable. Then the follower updates the pro-
tocol state, streams the message into the packet generator to
produce an acknowledgement (AppendEntryAck) or rejec-
tion (AppendEntryReject) message, and updates its local
commitIndex according to the message commitIndex.

It is worth noting that the protocol-specific Waverunner
hardware accelerator actions and logic are intentionally prim-
itive. For an FPGA implementation, the logic of these opera-
tions is automatically translated from their C++ description.

4.3 User-Space Log Considerations

The behavior of communication between the hardware and
software is critical for high Waverunner performance. Raft
messages must be delivered by MCDMA (shown in Figure 3)
to the log accessible in user-space software without being a
bottleneck in the system. We describe three critical aspects of
the design of the User-Space MCDMA block.

First, the MCDMA component requires fast write response.
In our platform, MCDMA is connected to the PCIe bridge
using AXI Memory Mapped (AXI-MM) interfaces, where
the MCDMA’s AXI master interface writes data to the PCIe
bridge’s AXI slave interface to transfer data to the user-space
buffer. Under the AXI-MM protocol, MCDMA first issues the
write address to the PCIe bridge, followed by the write data.
After the data transfer is complete, the PCIe bridge sends
a write acknowledgement response to the MCDMA. In our
experiments, we observed a very high latency (300 to 400 cy-
cles) for the PCIe bridge to send the write acknowledgement
response after the data transfer. During this period, MCDMA
stops processing descriptors and accepting packets from the
protocol handler, negatively affecting the system performance.
To solve this problem, we insert a small custom FIFO between
the MCDMA and the PCIe bridge. The custom functionality
of this FIFO is to send write acknowledgement responses
immediately after the write operations are completed on the
MCDMA side, thereby hiding the high acknowledgement la-
tency introduced by the PCIe bridge and allowing MCDMA
to process descriptors for the other channels.

Second, we introduce batched MCDMA operation in the
hardware. For each MCDMA operation, in addition to the data
transfer, there are also descriptor read and write operations
across PCIe. The descriptor reads and writes are overheads,
which significantly reduce the effective bandwidth for the ac-
tual PCIe data transfers. To minimize the descriptor overhead,
we designed a hardware module to batch multiple consecutive
message writes into a single transfer to amortize the descriptor
overheads, solving the performance bottleneck and improv-
ing throughput over PCIe. The batching hardware collects
messages until one of two conditions is met: either a pre-
configured batch size is reached or a pre-configured timeout
is reached without new messages arriving on the given chan-

nel. With the second condition, the latency increase caused
by batching is negligible.

Finally, although Waverunner hardware acceleration sig-
nificantly reduces the work that must be done by the CPU
of the leader replica, the application code that executes com-
mitted operations still consumes CPU resources and can be-
come the bottleneck in the system. One design option is to
use a software dispatcher to handle incoming log messages
from the hardware and coordinate spreading the handling
of the log messages across software threads running on dif-
ferent cores. However, at our target throughput, a software
dispatcher would itself become the system bottleneck. In-
stead, Waverunner shards log messages in hardware, using
separate DMA channels to write log messages destined for
processing by different application software instances. The
leader replica runs multiple application processes, one per
core, with each process having its own user-space log buffer
into which the hardware deposits Raft messages belonging
to the corresponding shard. This approach mirrors the op-
eration of high-performance NICs that allow the software
(e.g., DPDK) to install rules into the NIC hardware to steer
incoming packets to different descriptor rings or queues to be
handled by different cores.

4.4 Transmission with UDP

Our implementation uses UDP to transmit packets between
FPGAs. UDP is unreliable for transmission and suffers from
packet loss, duplication, and reordering with traditional hard-
ware and software stacks. However, using UDP in the Wa-
verunner hardware greatly reduces the hardware complexity
compared to a TCP implementation. To handle the cases of
UDP packet loss and reordering, our hardware implements
a small retransmission buffer. The buffer, placed between
our packet generator and the TX Mux (shown in Figure 3),
holds all recently sent packets. In the event of packet loss or
reordering being detected in AppendEntry, the protocol han-
dler requests the packet generator to create a retransmission
request packet (Figure 4, lines 19-20). When a retransmission
request arrives at the retransmission buffer, instead of writing
it into the buffer, the control logic triggers a retransmission
of all packets currently in the buffer. The retransmission is
finished when all the packets in the buffer have been transmit-
ted. During the retransmission, incoming packets continue to
be written to the tail of the buffer. The buffer is 256 KB, en-
suring that in the worst-case scenario in our system (192 byte
packets at 26 Mpps) packets will remain in the buffer, eligible
for retransmission, for 52 µs. This time is sufficient to tolerate
28 consecutive retransmission requests in our testbed, and
is well beyond the round-trip latency of modern datacenter
networks. Notably, the retransmission buffer does not affect
system correctness; it simply avoids triggering software fail-
ure recovery in case of UDP packet loss or reordering in the
network. In the extremely unlikely case that persistent retrans-

362 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

missions repeat until a lost packet is no longer present in the
retransmission buffer, the hardware triggers a conventional
Raft failure recovery in software.

5 Waverunner Control Plane

In this section, we describe our software components. The
software is primarily in charge of the uncommon routines
of the system, such as bootstrapping and recovering from an
abnormal system state. This functionality includes electing
a new leader, synchronizing data between a new leader and
the replicas, and controlling hardware acceleration. We begin
with a vanilla Raft software implementation and add support
for interaction with the accelerator hardware. For complete-
ness, we include a discussion of the full Raft implementation,
and we explicitly highlight the Waverunner-specific design
decisions and additions for software-hardware interaction.

5.1 Switching to Software via Leader Election

Leader failures are handled by re-electing a new leader.
Leader election can be initiated by any replica. Each replica
keeps a timer in software, starting an election if a timeout is
triggered due to a lack of new messages received from the
leader. Each replica uses a randomized timeout value, thereby
reducing the probability of competition. When the system is
idle, a timed loop in the leader’s software sends empty re-
quests to the hardware to avoid unnecessary elections. This
does not cause extra overhead compared to a software-only
Raft implementation, as it would have a similar timed loop to
send empty AppendEntry heartbeats.

When a follower triggers an election and requests to be-
come leader (referred to as a candidate), its software will
first disable the hardware acceleration and wait for the hard-
ware to complete processing of the packets in the hardware
accelerator pipeline and MCDMA batch queues.

The candidate software will increment its own term and
stop responding to replication requests with lower terms, and
send a RequestVote message to the other replicas. Even if
the replicas that receive the message are using hardware ac-
celeration, the message will pass through the hardware trans-
parently and be directly handled by the software. Each replica
will confirm that its term is smaller than that of the candi-
date, and then disable hardware acceleration and check if
the candidate has a more up-to-date log by comparing the
lastLogIndex and lastLogTerm of the candidate with its
own. If the candidate is more up-to-date (or the same), the
receiver grants the vote and sets the leader id to the candidate.
If the candidate receives enough votes (including itself for a
majority), it transitions into the leader role.

When the new leader software takes over, the system is a
fully capable software Raft. It can perform any traditional
system maintenance operations, such as view change. The

software handles all Raft routines not implemented in hard-
ware, such as synchronizing logs on the replicas.

5.2 Synchronizing Missing Logs
When a leader crashes or communication with it fails, the
replicas may be left unsynchronized, such that some replicas
may have longer logs. In more complex cases, such as elec-
tion competition or consecutive leader crashes, replicas may
even have different uncommitted logs at the same log position.
Raft’s (or any consensus protocol’s) logic for handling these
situations is complex. To ensure a simple hardware imple-
mentation, Waverunner keeps the implementation of replica
log synchronization entirely in software.

After a new leader is elected, it initiates synchronization
of the replica logs by sending an AppendEntry message con-
taining a special noop operation to all replicas. If a follower
has fallen behind or has non-matching logs, it will reply with
an AppendEntryReject message, indicating a log mismatch.
The leader will then send earlier log entries until the follower
acknowledges accepting these logs, ensuring that the follower
is synchronized with the leader. The noop commit entry is
necessitated by the Raft protocol, as simply counting existing
log entries in all replicas may fail due to a corner case in the
Raft algorithm. (This is a documented idiosyncrasy of the
Raft protocol (§5.4.2) [52].)

Note that there is a limit on the maximum number of entries
that a replica can hold in its in-memory log. If a replica is
down for an extensive amount of time, or a new replica is
added to the system, that replica cannot catch up via the afore-
mentioned approach because the leader will have discarded
its older logs from memory. In this case, the leader should
send a snapshot of the application dataset to the failed replica.
The snapshot will contain the system state up to a particular
log position which is still in the leader memory, allowing the
leader to catch up the replica by sending it the entries starting
from the snapshot log position. Similar to the original Raft
work [52] and other recent works on speedy SMR [2, 49],
the creation of the snapshot is application-specific and is or-
thogonal to the scope of this paper. For example, a standard
approach is available in [65].

5.3 Enabling Hardware Acceleration
After the logs of all reachable replicas are synchro-
nized, the leader will increment the term and send out
RequestVoteFPGA messages to the synchronized followers.
This message is identical to a normal leader election, with
the additional side-effect of causing the followers to enable
hardware acceleration. Once the leader receives acknowledge-
ments from half of the followers (reaching a majority when
including itself), the leader enables its own hardware accel-
eration. All future log entries are replicated by the hardware,
without involving the CPU.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 363

Separating hardware and software into different terms pro-
vides several benefits. First, it keeps the Raft algorithm intact,
eliminating the need to prove correctness of our changes. Sec-
ond, this approach is easy to implement, debug, and maintain,
because the term of a log entry indicates whether it was ini-
tially replicated by software or hardware.

If a replica does not receive RequestVoteFPGA, but later
receives an AppendEntry (e.g., a crashed replica rejoins), it
will see a higher term in the message. Whenever a replica
sees a higher term in AppendEntry than its currentTerm,
or if it cannot find an entry at prevLogIndex in its log, it
will disable hardware acceleration (if it is enabled) and re-
ply with AppendEntryReject. When the leader receives an
AppendEntryReject, it will disable hardware acceleration,
trigger an election to go into a new term, and synchronize
with the straggling replica using software. Afterwards, the
system will transition back to running with hardware accel-
eration using the previously described steps. To summarize,
Waverunner uses a unified approach to address all possible
cases that deviate from the normal replication routines, includ-
ing the possible loss of messages, message delays, temporary
server anomalies, etc.

6 Evaluation and Results

We evaluate Waverunner with real-world applications and
off-the-shelf hardware. The major questions we answer are:

• What is Waverunner’s replication performance?
• Can Waverunner efficiently recover from a failure?
• How well does the Waverunner approach perform with real-

world applications?
• How does Waverunner compare to other hardware-

accelerated SMR approaches?

6.1 Setup
We conduct our evaluation on a 3-replica Waverunner cluster,
with several additional client machines to issue requests in
an open-loop manner. Each replica has two Intel E5-2695v4
CPUs, 1TB DDR4 memory, and a Xilinx U280 FPGA con-
nected via PCIe gen 3 x16. Each FPGA has two 100 Gbps
QSFP28 ports. Our replicas are connected to one switch and
clients to another, and there is a 100 Gbps fiber connecting the
two switches. On the FPGAs, we implemented the Waverun-
ner hardware accelerator using Vivado HLS. For the control
plane, we modified our C++ Raft implementation to coordinate
with the Waverunner FPGA hardware.

In addition to Waverunner, we also evaluate the replication
performance of two SMR systems for comparison:

• Mu [2]: An RDMA-based SMR implementation, which
aims to provide microsecond level latency for application
replication. It has a custom leader-follower consensus proto-
col. In the Mu implementation, all requests originate from

the leader. This gives it an advantage over Waverunner,
where requests are sent over the network from clients.

• DPDK-Raft: An in-house DPDK-based Raft implementa-
tion. We built our own DPDK-Raft implementation because
the state of the art Raft implementation (in eRPC [34]) is
equipped to perform latency tests and we are interested in
both latency and throughput experiments. Our DPDK-Raft
achieves similar latency as eRPC Raft.

Both Mu and DPDK-Raft use a 100 Gbps Mellanox
ConnectX-4 NIC included in the replicas with the same con-
nection specifications as the FPGA (i.e., PCIe gen 3 x16 and
100 Gbps QSFP28).

6.2 Methodology

We present two key metrics: throughput and latency. We re-
port throughput in millions of request packets per second
(Mpps) and total network bandwidth used (Gbps). For la-
tency, we report the time in microseconds (µs) and present the
median (50th percentile) and tail (90th and 99th percentile)
measurements. To improve accuracy, whenever possible, we
collect the results using internal hardware performance coun-
ters on the FPGAs, NICs, and switches.

We implement our client using DPDK to achieve high per-
formance and accurate measurement. Precise control of the
offered load at the client is difficult to achieve, so we set
approximate targets and plot all results by using the actual
measured request rates. As a result, experiments that vary
the request rate may not have results with round throughput
values (e.g., our plots may show 4.1 and 5.2 Mpps, rather than
precisely 5 Mpps). For measuring end-to-end latency from
the client and to avoid subjecting latency measurements to
client-side queueing, we use a sampling approach by concur-
rently running two DPDK client configurations: one to apply
the target load and a second lightly-loaded client (using a
separate NIC) to precisely measure the latency.

6.3 Replication Performance Results

We first focus on evaluating the SMR replication performance
without a specific application (where the “application” sim-
ply discards committed operations) to better understand the
capability of Waverunner in a clean environment. The clients
send requests to the replica cluster using small random pack-
ets (50 bytes for Waverunner and DPDK-Raft, 64 bytes for
Mu due to its implementation restriction). We sweep the re-
quest rate in steps of approximately 1 Mpps and measure the
replication throughput and latency at each step. We described
Waverunner’s MCDMA batching with timeout mechanism
in Section 4.3. An adaptive batching strategy can minimize
latency under all load scenarios, however, we found that for
our evaluation, a constant batch size was sufficient to limit
PCIe transfer overheads.

364 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10 15 20 25
Request Rate (Mpps)

0

2

4

6

8

10

La
te

nc
y

(μ
s)

99th DPDK RAFT
90th DPDK RAFT
50th DPDK RAFT
50th Mu
99th Waverunner
90th Waverunner
50th Waverunner

Figure 5: Performance of Packet Replication

Throughput. Figure 5 shows that the maximum request rate
Waverunner can achieve is 26 Mpps, which is bounded by
the leader’s network receive bandwidth. Under this request
rate, the bandwidth utilization of the leader FPGA approaches
85.5 Gbps, the maximum theoretical bandwidth achievable
by the network transceivers and switch.2

Beyond this throughput, the FPGA transmit FIFOs expe-
rience back pressure from the MAC, which cascades to the
Waverunner protocol handler and causes packet loss of in-
coming client requests and follower acknowledgements. This
result indicates that Waverunner can fully utilize the available
network bandwidth and achieve the maximum request rate.

On the contrary, Mu and DPDK-Raft cannot saturate the
network bandwidth with one request per packet, resulting in
only ∼2 Mpps and ∼5 Mpps peak request rate, respectively.
Mu has to rely on client-side batching (aggregating multiple
requests into one packet) to increase the request rate and
utilize the available network bandwidth. However, doing so
also drastically increases the latency. For DPDK-Raft, the
throughput is bottlenecked by descriptor ring handling via
PCIe. At peak throughput, DPDK-Raft starts to drop packets
because the CPU cannot process and release RX descriptors
at the same rate as the incoming packet stream, a situation
we overcome in Waverunner by transferring multiple requests
using each descriptor (§ 4.3).
Latency. Figure 5 also shows the replication latency for Wa-
verunner, Mu, and DPDK-Raft at various request rates. Repli-
cation latency is measured from when the leader receives
a client request, until the leader receives the corresponding
acknowledgements from half of the followers.

The Waverunner replication latency is effectively constant
at 1.8 µs, only marginally higher than the RTT of a minimum-
sized packet in our network (1.68 µs). There are two charac-
teristics of Waverunner’s latency that are notable: the median,
90th-, and 99th-percentile latencies are all nearly identical,
and as the request rate increases, the latency does not increase,
all the way until network bandwidth is exhausted. These la-

2Each Ethernet frame includes a 7-byte preamble, a 1-byte start of line
delimiter, and a 12-byte inter-packet gap, which together account for the
approximately 14.5 Gbps gap to the advertised 100 Gbps line rate.

5 10 15 20 25
Request Rate (Mpps)

0
5

10
15
20
25
30
35
40
45
50

La
te

nc
y

(μ
s)

99th DPDK RAFT
90th DPDK RAFT
50th DPDK RAFT
99th Waverunner
90th Waverunner
50th Waverunner

Figure 6: End-to-end Latency

tency characteristics are a unique advantage of an FPGA
implementation [30], as most of the components in the FPGA
hardware have low and constant latency that is immune to
queuing effects, allowing the replication latency to remain
stable. In contrast, both Mu and DPDK-Raft exhibit substan-
tially higher 90th- and 99th-percentile latency compared to
the median latency, and the latency grows as the request rate
increases and the CPUs become busier, amplifying interfer-
ence and system queuing effects. As a result, the replication
latency of Waverunner is significantly lower than Mu and
DPDK-Raft. The worst Waverunner 99th-percentile tail la-
tency is approximately 1/3 (36%) of the best median latency
of DPDK-Raft (5 µs) and 40–80% of Mu (2.5–4.3 µs).

For completeness, we also measure the end-to-end latency
on the client for Waverunner and DPDK-Raft, as shown in
Figure 6. The end-to-end latency on the client includes the
replication latency, the RTT between the client and the leader
(with 1 switch placed between the two), and the time for the
client to process the packets. For Waverunner, this adds an-
other 4–6 µs for the median and tail latencies. For DPDK-Raft,
the additional time is much larger because DPDK-Raft relies
on batching and buffering to achieve maximum throughput,
which add extra cost to overall latency.
Performance with Different Packet Sizes. In addition to
minimum sized packets, we investigate the effect of larger
requests on Waverunner, shown in Figure 7. We maintained a
constant throughput of 1 Mpps and varied the payload size ac-
cordingly. For minimum-sized packets, the replication latency
is 1.79 µs. As the payload grows, the latency increases slowly
to a maximum of 2.13 µs. Importantly, the 99th-percentile
latency remains approximately the same as the median.
CPU Utilization. Compared to the RDMA and DPDK ap-
proaches, Waverunner has an important advantage, especially
at high request rates: it places far less pressure on the host
CPU cores. For example, to achieve peak performance in our
tests, DPDK-Raft saturates 18 CPU cores. In contrast, Wa-
verunner consumes negligible host CPU resources because
it only needs to manage the MCDMA descriptors for the op-
eration log. This leaves CPU resources almost entirely free,
allowing them to be used by the target application.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 365

32 64 128 256 512 1024
Payload Size (Bytes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

nc
y

(μ
s) 1.79 1.79 1.82 1.86 1.95

2.13

Figure 7: Latency across payload sizes.
Bars show 99th percentile.

0 5 10 15 20 25
Time (s)

0

5

10

15

20

25

30

Re
qu

es
t R

at
e

(K
pp

s)

Le
ad

er
 Fa

ilu
re

Ne
w

Le
ad

er
 E

le
ct

ed

Ol
d

Le
ad

er
 R

ec
ov

er
y

Re
co

ve
ry

 D
on

e

Figure 8: Request rate during failure
recovery.

0 5 10 15 20
Time (s)

0

5

10

15

20

25

30

Re
qu

es
t R

at
e

(K
pp

s)

Figure 9: Request rate during view
change.

6.4 Fault Tolerance and View Change
We evaluate Waverunner fault tolerance by injecting a leader
failure on a healthy cluster. As expected, the leader failure
triggers a leader election. At a later point, we resume the
old leader, allowing it to rejoin the SMR cluster. Figure 8
presents the behavior by showing the request rate measured
at the client as these failure-related events take place.

In this experiment, the system first runs normally for ten
seconds, then we halt the leader to simulate a failure. At this
point, requests from the clients fail to proceed because the
system has no available working leader, and the throughput
of the system drops to 0.

We configured the followers with a one second timeout.
After timeout, a new leader election begins. This can be seen
on the graph slightly more than one second after the failure,
where the system resumes processing requests after the clients
discover the new leader and resume sending requests.

At 15 seconds, we resume the old leader; this is recognized
by the new leader when the old leader rejects the replication
requests that it receives from the new leader. Because the
old leader is missing log entries from its down time, the new
leader starts recovery by catching up the old leader’s replica.
After approximately 200 ms, the log recovery completes and
the system re-enables hardware acceleration, showing that
the hybrid architecture of Waverunner can correctly and effi-
ciently recover from failure.

Similar to the failover test, we performed a view change
test; results are shown in Figure 9. Initially, the system runs
with three replicas. After ten seconds, we send a view change
command to the leader to reconfigure the system down to
two replicas (removing one follower). The leader disables
hardware acceleration, initiates a leader election to advance to
a new term, completes the view change, and then re-enables
hardware acceleration.

6.5 Real-world Applications
To understand how Waverunner performs with real-world ap-
plications, we evaluate three key-value stores: an in-memory
hash table, Memcached, and Redis. We modified the appli-
cations to receive requests from Waverunner instead of the

conventional network sockets. This enables low latency and
high throughput operation as Waverunner bypasses the ker-
nel to send and receive packets. Scalability across cores is
achieved through sharding; the number of replication groups
is the same as the number of threads. Unless otherwise indi-
cated, we use 8-byte keys and values, which makes the packets
(including network header) 135 bytes for the hash table, 150
bytes for Memcached, and 156 bytes for Redis. We use open-
loop clients that perform operations on uniformly distributed
keys. Although the applications were not originally designed
with SMR in mind, using them with Waverunner transforms
them into consistent high-availability systems.

Throughput. To evaluate applications throughput, our client
can send a mixture of PUT and GET requests. Both PUT and
GET requests are replicated in Waverunner, but are processed
differently. For PUT requests, Waverunner responds to the
client when the request is committed in Raft (acknowledged
by the majority of replicas), allowing the application to handle
the request log in the background, eventually updating the key-
value store. For GET requests, Waverunner does not generate
a client response, instead relying on the application to execute
the operation from the log by retrieving the relevant data
and sending them to the client. Figure 10 shows the peak
sustained throughput we observed. The peak throughput of the
original Memcached and Redis implementations is 1.5 Mpps,
while the Waverunner implementations reach 20.7 Mpps and
19.9 Mpps, respectively. Redis has a lower throughput because
it dynamically increases the size of its hash table and needs to
rehash every entry. However, Memcached has a constant-size
hash table that is initialized at the start.

We also examined the effect of different GET/PUT ratios
on Memcached, shown in Figure 11. We observed that Mem-
cached needs more CPU cycles for PUT requests than GET
requests because, in addition to fetching the query in the
key-value store (like a GET does), it also locks the region
containing the key to update. As a result, higher GET ra-
tios observe higher throughput. For Redis, we observed that
changing the GET/PUT ratio does not affect the throughput.

Latency. We measured the end-to-end latency of GET and
PUT operations in a 50% GET/PUT test for Memcached and
Redis, as shown in Figure 12. To show the effect of different

366 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 4 8 16 32
Number of Server Threads

0
4
8

12
16
20
24
28

Th
ro

ug
hp

ut
 (M

pp
s)

Hash table
Memcached

Redis

Figure 10: Peak application throug-
hput.

1 2 4 8 16 32
Number of Server Threads

0
4
8

12
16
20
24

Th
ro

ug
hp

ut
 (M

pp
s)

25% GET
50% GET

75% GET
99% GET

Figure 11: Memcached throughput
across request ratios.

8 16 32 64 128 256 5121024
Value Size (Bytes)

0

20

40

60

80

La
te

nc
y

(μ
s)

Waverunner+Mem
Waverunner+Redis

Mem
Redis

Figure 12: End-to-end latency. The
bars indicate 99th percentile latency.

packet sizes, we varied the size of the value from 8 to 1024
bytes. Without Waverunner, Memcached and Redis exhibit a
stable end-to-end latency of 41–44 µs, which is much lower
than reported in the prior work [2, 17]. We attribute the lower
latency to our high-end Mellanox NICs, both in client and
server. When run on commodity NICs, the results (not shown)
are much higher and closer to the previously published work.

Waverunner has a lower latency of 11.69 µs and 12.07 µs
for Memcached and Redis respectively in most cases. With
Waverunner, the leader FPGA generates responses for PUT
requests without any CPU involvement, resulting in signifi-
cantly lower end-to-end latency. For incoming GET requests,
Waverunner delivers them to the application and transmits
the responses to the network without involving the kernel. In
summary, applications using our Waverunner framework can
achieve performance comparable to kernel bypassing tech-
niques (e.g., DPDK) for processing GET requests, and better
performance for PUT requests.

6.6 Comparison to Prior Work
In this section, we discuss a comparison of Waverunner with
Consensus in a Box [30] (referred to as ZABFpga below), a
recent implementation of the ZooKeeper SMR protocol on an
FPGA. We did not find the exact code release corresponding
to ZABFpga online, which complicated our ability to study
its operation in our environment. Although we did locate a
project that appears to include ZABFpga’s code [1], we found
it challenging to port to our platform and extract from it just
the ZABFpga components. A ground-up re-implementation
of ZABFpga would constitute a major development effort.
Such difficulties highlight the challenges in the development,
portability, and maintenance of FPGA-based systems, stress-
ing the benefits of the Waverunner approach in leaving the
majority of the SMR protocol in software and implementing
the hardware components using relatively portable HLS.

Based on what we can infer from the description of ZABF-
pga, the system has excellent performance, and would likely
exhibit throughput and latency on par with Waverunner if

ported to our environment, which has 100 Gbps NICs com-
pared to 10 Gbps in the original paper. However, the ZABFpga
system clearly required a drastically more complex develop-
ment effort and would incur massively higher maintenance
and troubleshooting cost. This is because ZABFpga imple-
mented the ZooKeeper protocol completely, including the
leader election and failure recovery, in custom FPGA hard-
ware. This approach also required implementing the applica-
tion (a key-value store) on the FPGA, including the ability to
store the replication log in DRAM connected to the FPGA.
Based on the description in the paper, the replication latency
is 3 µs while Waverunner has 1.8 µs. It would be unfair to
compare two designs on the throughput as the ZABFpga uses
10Gbps NICs to communicate with other nodes.

7 Related Work

Hardware Accelerated Networking. Early works on hard-
ware acceleration in NICs offered a range of features, from
simple ones such as checksum calculation and receive-side-
scaling (RSS), to complex ones such as RDMA and TCP of-
floading engines [48]. Although earlier network hardware ac-
celerators hard-wired the acceleration functionality, the trend
has shifted toward programmability, with modern SmartNIC
devices comprising programmable CPU cores [47] or pro-
grammable FPGA fabrics [50]. Modern advanced accelera-
tors include functionality such as in-line handling of protocol
encapsulation, VLAN processing, and encryption and decryp-
tion of data streams [18, 43]. Waverunner is a SmartNIC that
accelerates replication routines of the Raft protocol. Like
other SmartNICs, we utilized a bump-in-the-wire architecture
to accelerate the replication routines in the FPGA. Accel-
Net [20] accelerates network services for virtual machines
on SmartNICs in data centers. However, the acceleration is
only loosely coupled with the application, such that when-
ever AccelNet does not have a rule for a packet, it consults
the application to install the missing rule. On the other hand,
Waverunner is more specialized, as it identifies Raft packets

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 367

and does not need software support to handle other protocols.
P4 [4] is a high-level language for network functions with
implementations on FPGAs [3, 7, 9, 27, 45, 66]. hXDP [5], an
FPGA-based NIC, uses soft cores to execute eBPF, another
high-level language to describe network functions. These
systems target system-wide packet processing, whereas Wa-
verunner is specialized and optimized for processing only the
Raft replication routines.

Caribou [29] implements a hardware accelerator for high-
performance databases computations, including the full func-
tionality of a fault-tolerant key value store inside an FPGA.
KV-Direct [41], CliqueMap [61], Xenic [59], and RedN [55]
extend RDMA primitives to enable remote key value opera-
tions to main memory. Waverunner takes a similar approach
which puts requests in the follower’s memory through PCIe.
This is unlike Caribou, which does not use the host and relies
on the FPGA to execute the database application. Floem [53],
NICA [19], iPipe [44], FlexTOE [60], and FairNIC [23] pro-
vide a framework that can offload network applications such
as Memcached on programmable SmartNICs. Although its
goals of low latency and high throughput are similar to Floem
and NICA, Waverunner targets the Raft distributed protocol,
using hardware acceleration for the communication among
multiple nodes rather than for the application logic.
State Machine Replication. State machine replication
achieves fault tolerant, highly available services by leveraging
consensus protocols [26, 40, 52]. From among the popular
consensus protocols, Waverunner implements the Raft proto-
col [52], offloading the replication routines to a hardware ac-
celerator. Several prior studies proposed ways to increase the
performance of SMRs. eRPC [34], FaSST [35], and Breakwa-
ter [12] use an RPC library on top of the NIC API and RDMA,
respectively, to provide low latency communication for ap-
plications. PigPaxos [11] relays messages by subgouping
followers. These works optimize the network IO bottleneck,
increasing the performance considerably, but they still suffer
from the CPU bottleneck for implementing all parts of the pro-
tocol. Increasing parallelism of SMR [14, 24, 36, 56, 62] can
further improve the performance, which Waverunner can ben-
efit from for the application design. HovercRaft [39] moves
SMR from the application layer to the transport layer and
optimizes Raft to avoid the CPU and network IO bottleneck.
Similarly, Waverunner addresses the same bottlenecks by of-
floading the network communication and replication to the
hardware accelerator. Some SMR systems leverage high per-
formance programmable switches [15,32,33,42]. Rather than
changing the network infrastructure, Waverunner employs a
hardware accelerator in the NIC of each replica to accelerate
the replication communication and operations.

There are several studies on low latency SMR through
RDMA [17, 31, 37, 38, 54, 65], some of which are based on

variants of Paxos. Although these works offer low latency,
they are still bounded by the CPU bottleneck, as all of them
cannot send packet at line rate with minimum size packets,
and have high replication latency. Mu [2] introduces a mi-
crosecond latency SMR in which the leader writes requests in
the log of each replica in only one round of RDMA transfers,
without involvement from the CPUs on the follower nodes.
Comparably, Waverunner achieves constant microsecond la-
tency using FPGAs without changing core routines of the Raft
protocol, while achieving high throughput on minimum size
packets. ZABFpga [30] accelerates the Zookeeper consensus
protocol using an FPGA and shows the benefits of hardware
accelerator for SMRs in terms of latency and throughput. Wa-
verunner achieves similar performance, but presents a design
for the replication routines of Raft protocol while leaving all
complex functionality of the Raft protocol (such as leader
election and failure recovery) and the application (a key-value
store) in traditional software.

8 Conclusions

We presented Waverunner, a hardware-software hybrid ap-
proach for implementing state machine replication. Our ap-
proach relies on the observation that, despite the complexity
of SMR, the most frequently used routines can be easily im-
plemented in hardware, while leaving the complex protocol
and application logic in traditional software. Using this ap-
proach, we attain the best characteristics of the prior work,
achieving the performance of full-hardware implementations
while retaining the flexibility of software implementations
with hardware-assist mechanisms such as DPDK and RDMA.

Waverunner is a practical realization of our approach. It
is elegant and simple, leveraging a complete software imple-
mentation of the Raft protocol at its core and demonstrating
how the most-frequently used functionality can be offloaded
to hardware using only 220 lines of C++ HLS code. Waverun-
ner achieves network line-rate throughput, nearly constant
mean and tail (99th percentile) replication latency regardless
of throughput, and leaves the majority of the CPU processing
power available for the target application.

Acknowledgements

We thank our shepherd Maria Apostolaki and the anonymous
reviewers of NSDI ’23, OSDI ’22, SOSP ’21. We thank Yida
Wu for implementing the first version of DPDK Raft; we also
thank Satya Jain and Sergey Madaminov for their contribution
to this work in the early stage. This research was supported
in part by NSF CCF 2007362, CNS 1763680, CNS 2130590,
and CNS 2214980.

368 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] FPGA ZooKeeper source code.
https://github.com/fpgasystems/caribou.

[2] Marcos K Aguilera, Naama Ben-David, Rachid Guer-
raoui, Virendra J Marathe, Athanasios Xygkis, and Igor
Zablotchi. Microsecond consensus for microsecond ap-
plications. In Proceedings of USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
November 2020.

[3] P. Benáček, V. Puš, J. Kořenek, and M. Kekely. Line rate
programmable packet processing in 100gb networks.
In 2017 27th International Conference on Field Pro-
grammable Logic and Applications (FPL), 2017.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communica-
tion Review (CCR), 44(3), July 2014.

[5] Marco Spaziani Brunella, Giacomo Belocchi, Marco
Bonola, Salvatore Pontarelli, Giuseppe Siracusano,
Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. hXDP:
Efficient software packet processing on FPGA NICs.
In Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI), November
2020.

[6] Michael Burrows. The chubby lock service for loosely-
coupled distributed systems. In Proceedings of USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), November 2006.

[7] Jakub Cabal, Pavel Benáček, Lukáš Kekely, Michal
Kekely, Viktor Puš, and Jan Kořenek. Configurable
fpga packet parser for terabit networks with guaran-
teed wire-speed throughput. In Proceedings of the
2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, page 249–258, 2018.

[8] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati,
Jaehyun Hwang, and Rachit Agarwal. Understand-
ing host network stack overheads. In Proceedings of
ACM Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication
(SIGCOMM), August 2021.

[9] Z. Cao, H. Su, Q. Yang, J. Shen, M. Wen, and C. Zhang.
P4 to FPGA-a fast approach for generating efficient
network processors. IEEE Access, 8, 2020.

[10] Tushar Deepak Chandra, Robert Griesemer, and Joshua
Redstone. Paxos made live: an engineering perspective.
In Proceedings of ACM Symposium on Principles of
Distributed Computing (PODC), August 2007.

[11] Aleksey Charapko, Ailidani Ailijiang, and Murat Demir-
bas. PigPaxos: Devouring the communication bottle-
necks in distributed consensus. In Proceedings of ACM
International Conference on Management of Data (SIG-
MOD), June 2021.

[12] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park,
Mohammad Alizadeh, and Adam Belay. Overload con-
trol for µs-scale RPCs with breakwater. In Proceedings
of USENIX Symposium on Operating Systems Design
and Implementation (OSDI), November 2020.

[13] James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s globally distributed database. In Pro-
ceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI), October 2012.

[14] Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and
Junfeng Yang. Paxos made transparent. In Proceedings
of ACM Symposium on Operating Systems Principles
(SOSP), October 2015.

[15] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh
Lee, Noa Zilberman, Hakim Weatherspoon, Marco
Canini, Fernando Pedone, and Robert Soulé. P4xos:
Consensus as a network service. IEEE/ACM Transac-
tions on Networking (ToN), 28(4), August 2020.

[16] Huynh Tu Dang, Marco Canini, Fernando Pedone, and
Robert Soulé. Paxos made switch-y. ACM SIGCOMM
Computer Communication Review (CCR), 46(2), April
2016.

[17] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. Farm: Fast remote memory.
In Proceedings of USENIX Conference on Networked
Systems Design and Implementation (NSDI), April 2014.

[18] Haggai Eran, Maxim Fudim, Gabi Malka, Gal Shalom,
Noam Cohen, Amit Hermony, Dotan Levi, Liran Liss,
and Mark Silberstein. Flexdriver: A network driver for
your accelerator. In Proceedings of ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), March
2022.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 369

[19] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and
Mark Silberstein. Nica: An infrastructure for inline
acceleration of network applications. In Proceedings of
USENIX Conference on Annual Technical Conference
(ATC), July 2019.

[20] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure accelerated networking: SmartNICs in the pub-
lic cloud. In Proceedings of USENIX Conference on
Networked Systems Design and Implementation (NSDI),
April 2018.

[21] Linux Foundation. Data plane development kit (DPDK).

[22] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine
Blin, and Gilles Muller. BMC: Accelerating memcached
using safe in-kernel caching and pre-stack processing.
In Proceedings of USENIX Conference on Networked
Systems Design and Implementation (NSDI), April 2021.

[23] Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C.
Snoeren. SmartNIC performance isolation with Fair-
NIC: Programmable networking for the cloud. In Pro-
ceedings of ACM Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Com-
munication (SIGCOMM), July 2020.

[24] Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou,
Lidong Zhou, and Li Zhuang. Rex: replication at the
speed of multi-core. In Proceedings of ACM European
Conference on Computer Systems (EuroSys), April 2014.

[25] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu
Ma, Fei Xu, Li Shen, Liu Tang, Yuxing Zhou, Menglong
Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun Li,
Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu,
Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin Tang.
TiDB: A Raft-based HTAP Database. The Proceedings
of the VLDB Endowment (PVLDB), 13(12), 2020.

[26] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and
Benjamin Reed. ZooKeeper: wait-free coordination for
internet-scale systems. In Proceedings of USENIX Con-
ference on Annual Technical Conference (ATC), June
2010.

[27] Stephen Ibanez, Gordon Brebner, Nick McKeown, and
Noa Zilberman. The P4->NetFPGA workflow for
line-rate packet processing. In Proceedings of the

2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2019.

[28] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo
Jepsen, Muhammad Shahbaz, Changhoon Kim, and
Nick McKeown. The nanopu: A nanosecond network
stack for datacenters. In Proceedings of USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), July 2021.

[29] Zsolt István, David Sidler, and Gustavo Alonso. Cari-
bou: Intelligent distributed storage. In Proceedings of
International Conference on Very Large Data Bases
(VLDB), August 2017.

[30] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a box: inexpensive coordination
in hardware. In Proceedings of USENIX Conference on
Networked Systems Design and Implementation (NSDI),
March 2016.

[31] Sagar Jha, Jonathan Behrens, Theo Gkountouvas,
Matthew Milano, Weijia Song, Edward Tremel, Rob-
bert Van Renesse, Sydney Zink, and Kenneth P Birman.
Derecho: Fast state machine replication for cloud ser-
vices. ACM Transactions on Computer Systems (TOCS),
36(2), April 2019.

[32] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. Netchain: Scale-free sub-rtt coordination. In
Proceedings of USENIX Conference on Networked Sys-
tems Design and Implementation (NSDI), April 2018.

[33] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In Proceedings of ACM Symposium
on Operating Systems Principles (SOSP), October 2017.

[34] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In Proceedings
of USENIX Conference on Networked Systems Design
and Implementation (NSDI), February 2019.

[35] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (RDMA) datagram RPCs. In Proceed-
ings of USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), October 2016.

[36] Manos Kapritsos, Yang Wang, Vivien Quema, Allen
Clement, Lorenzo Alvisi, and Mike Dahlin. All about
eve: Execute-verify replication for multi-core servers.
In Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI), October
2012.

370 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[37] Antonios Katsarakis, Vasilis Gavrielatos, M.R. Siavash
Katebzadeh, Arpit Joshi, Aleksandar Dragojevic, Boris
Grot, and Vijay Nagarajan. Hermes: A fast, fault-
tolerant and linearizable replication protocol. In Pro-
ceedings of ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems (ASPLOS), March 2020.

[38] Mikhail Kazhamiaka, Babar Memon, Chathura
Kankanamge, Siddhartha Sahu, Sajjad Rizvi, Bernard
Wong, and Khuzaima Daudjee. Sift: resource-efficient
consensus with RDMA. In The International Con-
ference on emerging Networking EXperiments and
Technologies (CoNEXT), December 2019.

[39] Marios Kogias and Edouard Bugnion. Hover-
craft: achieving scalability and fault-tolerance for
microsecond-scale datacenter services. In Proceedings
of ACM European Conference on Computer Systems
(EuroSys), April 2020.

[40] Leslie Lamport. Paxos made simple. ACM SIGACT
News, 32(4), 2001.

[41] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. KV-Direct: High-performance in-
memory key-value store with programmable nic. In
Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), October 2017.

[42] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana
Szekeres, and Dan RK Ports. Just say no to paxos over-
head: Replacing consensus with network ordering. In
Proceedings of USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), October 2016.

[43] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh
Sivaraman, and Aditya Akella. PANIC: A high-
performance programmable NIC for multi-tenant net-
works. In Proceedings of USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
November 2020.

[44] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading
distributed applications onto SmartNICs using iPipe.
In Proceedings of ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM), August 2019.

[45] Thomas Luinaud, Jeferson Santiago da Silva, J.M. Pierre
Langlois, and Yvon Savaria. Design principles for
packet deparsers on FPGAs. In The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays, 2021.

[46] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: A mi-
crokernel approach to host networking. In Proceedings
of ACM Symposium on Operating Systems Principles
(SOSP), October 2019.

[47] Marvell. OCTEON TX2 LiquidIO III Smart-
NIC. https://www.marvell.com/products/
data-processing-units.html.

[48] Jeffrey C. Mogul. TCP offload is a dumb idea whose
time has come. In Proceedings of USENIX Workshop on
Hot Topics in Operating Systems (HotOS), May 2003.

[49] Iulian Moraru, David G Andersen, and Michael Kamin-
sky. There is more consensus in egalitarian parliaments.
In Proceedings of ACM Symposium on Operating Sys-
tems Principles (SOSP), November 2013.

[50] NVIDIA. NVIDIA Mellanox Innova-2 Flex Open Pro-
grammable SmartNIC. https://www.nvidia.com/
en-us/networking/ethernet/innova-2-flex/.

[51] Brian M Oki and Barbara H Liskov. Viewstamped
replication: A new primary copy method to support
highly-available distributed systems. In Proceedings
of ACM Symposium on Principles of Distributed Com-
puting (PODC), June 1988.

[52] Diego Ongaro and John K Ousterhout. In search of an
understandable consensus algorithm. In Proceedings of
USENIX Conference on Annual Technical Conference
(ATC), June 2014.

[53] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine
Kaufmann, Simon Peter, Rastislav Bodik, and Thomas
Anderson. Floem: A programming system for nic-
accelerated network applications. In Proceedings of
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), October 2018.

[54] Marius Poke and Torsten Hoefler. DARE: High-
performance state machine replication on rdma net-
works. In Proceedings of ACM Symposium on
High-Performance Parallel and Distributed Computing
(HPDC), June 2015.

[55] Waleed Reda, Marco Canini, Dejan Kostić, and Simon
Peter. RDMA is turing complete, we just did not know
it yet! In Proceedings of USENIX Conference on Net-
worked Systems Design and Implementation (NSDI),
April 2022.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 371

https://www.marvell.com/products/data-processing-units.html
https://www.marvell.com/products/data-processing-units.html
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/

[56] Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav.
Canopus: A scalable and massively parallel consensus
protocol. In The International Conference on emerging
Networking EXperiments and Technologies (CoNEXT),
November 2017.

[57] Luigi Rizzo. netmap: a novel framework for fast packet
i/o. In Proceedings of USENIX Conference on Annual
Technical Conference (ATC), June 2012.

[58] Timothy Roscoe. Keynote: It’s time for operating sys-
tems to rediscover hardware. In Proceedings of USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), July 2021.

[59] Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nel-
son, and Arvind Krishnamurthy. Xenic: SmartNIC-
accelerated distributed transactions. In Proceedings
of ACM Symposium on Operating Systems Principles
(SOSP), October 2021.

[60] Rajath Shashidhara, Tim Stamler, Antoine Kaufmann,
and Simon Peter. FlexTOE: Flexible TCP offload with
Fine-Grained parallelism. In Proceedings of USENIX
Conference on Networked Systems Design and Imple-
mentation (NSDI), April 2022.

[61] Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob
Cauble, Harshad Deshmukh, Dan Gibson, Milo MK
Martin, Amanda Strominger, Thomas F Wenisch, and
Amin Vahdat. CliqueMap: productionizing an RMA-
based distributed caching system. In Proceedings of
ACM Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication
(SIGCOMM), August 2021.

[62] Adriana Szekeres, Michael Whittaker, Jialin Li,
Naveen Kr. Sharma, Arvind Krishnamurthy, Dan R. K.
Ports, and Irene Zhang. Meerkat: multicore-scalable
replicated transactions following the zero-coordination
principle. In Proceedings of ACM European Conference
on Computer Systems (EuroSys), April 2020.

[63] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan Van-
Benschoten, Jordan Lewis, Tobias Grieger, Kai Niemi,
Andy Woods, Anne Birzin, Raphael Poss, et al. Cock-
roachDB: The resilient geo-distributed sql database. In
Proceedings of ACM International Conference on Man-
agement of Data (SIGMOD), June 2020.

[64] Robbert Van Renesse, Nicolas Schiper, and Fred B
Schneider. Vive la différence: Paxos vs. viewstamped
replication vs. zab. IEEE Transactions on Dependable
and Secure Computing, 12(4), 2014.

[65] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi,
and Heming Cui. APUS: Fast and scalable Paxos on
RDMA. In Proceedings of ACM Symposium on Cloud
Computing (SoCC), September 2017.

[66] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh
Lee, Vishal Shrivastav, Nate Foster, and Hakim Weather-
spoon. P4FPGA: A rapid prototyping framework for p4.
In ACM Symposium on SDN Research (SOSR), 2017.

[67] Zhaoguo Wang, Changgeng Zhao, Shuai Mu, Haibo
Chen, and Jinyang Li. On the parallels between paxos
and raft, and how to port optimizations. In Proceed-
ings of ACM Symposium on Principles of Distributed
Computing (PODC), July 2019.

[68] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, et al. The demikernel datapath os architecture
for microsecond-scale datacenter systems. In Proceed-
ings of ACM Symposium on Operating Systems Princi-
ples (SOSP), October 2021.

[69] Siyuan Zhou and Shuai Mu. Fault-tolerant replication
with pull-based consensus in MongoDB. In Proceedings
of USENIX Conference on Networked Systems Design
and Implementation (NSDI), April 2021.

372 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3

Log Index

Replica A

Replica B

Replica C

Replica D

Replica E

6 7

3

3

3

3

3

3

6 7

3

3

3

3

3

3 3

3

6 7

3

3

3

3

3

4

4

4

4

3

6 7

3

3

3

3

3

4

4

4

4

5

5

5

5

3 4

3

3

3

3

4

4

4

4

5

5

5

5 6

6

6

6

5 63

6 7

3

3

3

3

3

4

4

4

4

3 3

3

3

3

3

4

4

4

4

5

5

5

5

(a) (b) (c) (d) (e) (g) (h)

3

6 7 8 9

3

3

3

3

3

4

4

4

4

5

5

5

5

(f)

5

5

5

5

6 7 8 9

5

5

5

5

6 7 8 9 10

5

5

5

5

5

Figure 13: Waverunner Operation.9 represents an election that disables hardware acceleration;8 represents an election
that enables the hardware acceleration; ⊗ represents a fail stop and , a recovery. The numbers inside the boxes refer to the term
numbers in each log entry. The blue boxes refer to regular log entries; the yellow boxes refer to empty noop log entries.

A Correctness

Here we discuss the correctness of our approach. One reason
we choose to implement Raft instead of inventing a consensus
protocol is that Raft is widely used and proved correct.3 Using
Raft can help us avoid having any errors in inventing a new
protocol, which is known to be an error-prone process.

We show that with or without the hardware acceleration,
including the transition, the system follows Raft protocol.

Fact 1. When the hardware acceleration is off at a replica, the
replica follows the Raft protocol.

Therefore, if hardware acceleration at all replicas is off, the
system design is a standard Raft and it is correct.

Lemma 2. When the hardware acceleration is on (and during
the process it is switched on) at a replica, the replica follows
the Raft protocol.

This is the principle throughout the system design. The
hardware part is designed to switch back to software when-
ever it sees a message that it is not expecting. Not responding
to that particular message is not a behavior that violates Raft’s
safety because Raft’s original assumption is that the network
is asynchronous and messages could be lost. Therefore, the
replica as a whole (both hardware and software) is still fol-
lowing the Raft protocol, except that it requests an election.
In Raft (and other consensus protocols), doing an election is
always safe.

As a replica follows the Raft protocol regardless of whether
the hardware acceleration is on or off (or during transition),
the system is a Raft and thus correct.

3By “correct” we mean the system has both safety and liveness. Because
Raft has already proved on these, we will use “correct” to refer to our system
is either a standard Raft or is equivalent to it.

B An Example of Waverunner Operations

Figure 13 walks through an example of Waverunner failure
recovery with five replicas A,B,C,D, and E. The numbers in
the boxes refer to the term numbers in each log entry.

(a) Replica A is the leader, using hardware acceleration to
replicate log entries to followers until it stops.

(b) Replica E is first to detect a lack of new messages from
leader A. E disables hardware acceleration and triggers a
leader election, which it wins (becoming the new leader)
after receiving votes from C and D.

(c) Replica E commits a noop, indicated in yellow, to all
replicas except A (which remains unavailable). Note that
a log entry in replica B is overwritten because it was
ahead of the new leader. This operation is safe because
the log entry was not committed.

(d) Replica E starts a round of RequestVote2FPGA, en-
abling hardware acceleration on all replicas.

(e) Replica E operates as the leader, replicating log entries
using the hardware accelerator.

(f) Replica A recovers, immediately observing new
AppendEntry messages arriving from leader E. Replica
A reports a mismatch with its existing logs by rejecting
the new entries.

(g) Having learned of the mismatch on replica A from the
rejection message, replica E disables hardware accelera-
tion with another leader election.

(h) Replica E then commits another noop and sends the
missing log entries to replica A. In this process, the
mismatched logs on replica A are also overwritten.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 373

-

Variables shared by hardware and software:
Used only by leader:
matchIndex[] for each follower , index of highest

log entry known to be replicated ,
initialized to 0, increases
monotonically

commitIndex index of highest log entry known to
be committed , initialized to 0

Used by all replicas:
id a globally unique integer that

identifes the server
isLeader hint that suggests whether the

server is leader
currentTerm latest term server has seen ,

initialized to 0
lastLogIndex index of the last log entry , is a

sequentially increasing counter ,
initialized to 0

lastLogTerm term of the last log entry

Variables in host software:
Used only by leader:
nextIndex[] for each server , index of the next

log entry to send to that server ,
initialized to leader’s
lastLogIndex+1

Used by all replicas:
votedFor candidateId that received vote in

current term (or null if none)
log[] log entries; each entry contains

command for state machine , and term
when entry was received by leader
(first index is 1)

lastApplied index of highest log entry applied
to state machine (initialized to 0,
increases monotonically)

Figure 14: Variables in Hardware and Software.

C Hardware and Software Variables

Figure 14 presents the complete set of Raft protocol variables
that are used by hardware and software.

374 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

LeakyScatter: A Frequency-Agile Directional Backscatter Network Above 100 GHz

Atsutse Kludze and Yasaman Ghasempour
Princeton University

Abstract
Wireless backscattering has been deemed suitable for various
emerging energy-constrained applications given its low-power
architectures. Although existing backscatter nodes often
operate at sub-6 GHz frequency bands, moving to the sub-THz
bands offers significant advantages in scaling low-power
connectivity to dense user populations; as concurrent
transmissions can be separated in both spectral and spatial
domains given the large swath of available bandwidth and
laser-shaped beam directionality in this frequency regime.
However, the power consumption and complexity of wireless
devices increase significantly with frequency. In this paper,
we present LeakyScatter, the first backscatter system that
enables directional, low-power, and frequency-agile wireless
links above 100 GHz. LeakyScatter departs from conventional
backscatter designs and introduces a novel architecture that
relies on aperture reciprocity in leaky-wave devices. We
have fabricated LeakyScatter and evaluated its performance
through extensive simulations and over-the-air experiments.
Our results demonstrate a scalable wireless link above 100
GHz that is retrodirective and operates at a large bandwidth
(tens of GHz) and ultra-low-power (zero power consumed for
directional steering and ≤ 1 mW for data modulation).

1 Introduction

Low power communication has become increasingly
important in emerging applications such as home automation,
smart healthcare, high-quality video streaming, and
localization [22, 44, 57, 58]. The number of low-power
wireless devices is expected to grow to 41 billion by
2025 [36]. While the last few years have seen rapid
innovations in the design and implementation of low-power
wireless communication [17, 25, 29, 33, 40, 62], existing
networks are limited in the number of nodes that they can
concurrently support [10, 31].

The use of frequencies above 100 GHz (henceforth referred
to as the terahertz (THz) band) provides unique opportunities

for concurrent transmissions. First, the availability of a large
swath of spectrum above 100 GHz will facilitate dense user
populations to operate concurrently at orthogonal frequency
channels. Second, narrow-beam directional transmission
and reception, which is required to combat the high path
loss in this regime, provides additional opportunities for
simultaneous transmission through space division multiple
access. The sub-THz frequencies offer the best of the RF
and Optical spectrum: like RF, they can be phase modulated
and experience lower penetration and reflection losses when
compared to optical while still providing a large swath
of continuous bandwidth and laser-shaped beams. Indeed,
these properties have made THz frequencies promising
for 6G wireless technology. Despite these advantages,
operation at such a high frequency is fundamentally power
demanding since the power consumption of the RF circuitry is
proportional to the frequency. This high power consumption
has even stalled the deployment of mobile 28 GHz nodes and
will worsen at the THz regime [8, 46–48, 52]. Furthermore,
creating directional beams requires large antenna arrays,
drastically increasing the power consumption and complexity
of the device. This challenge worsens under mobility when
constant beam adaption is needed to maintain the link. For
these challenges, most existing low-power solutions have been
limited to sub-6 GHz bands [35, 45, 54], with a few recent
narrow-band demonstrations at 24 GHz band [30, 37, 53].

In this paper, we present Terahertz Leaky-Waveguide
Backscatter (LeakyScatter), a novel architecture for
frequency-agile directional backscattering above 100 GHz.
Instead of generating and emitting THz signals, LeakyScatter
piggybacks its data on the impinging THz signals that
are emitted from a THz transceiver. To enable directional
connectivity, we exploit the unique properties of leaky-wave
antennas. Leaky-wave antennas are traveling wave structures
that can be realized with metal waveguides or on CMOS. In
its simplest form, a leaky-wave antenna is a parallel-plate
metal waveguide having open slit(s) on one side, with
the interesting characteristic that guided waves (inside the
waveguide) can leak out into free space such that the emission

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 375

angle is correlated with the frequency of the signal [21].
These frequency-dependent radiations have been recently
exploited for THz path discovery and localization [12, 13, 28]
and have also been demonstrated in CMOS technology [50].
In this paper, we leverage angle-frequency coupling in leaky
waveguides to enable the first passive ultra-wideband and
retrodirective structure above 100 GHz.

Our key insight is that leaky waveguides are reciprocal
devices, i.e., its reception characteristics are identical to its
transmission’s. When it acts as a receiver, the impinging
signals couple into the waveguide only if their spectral
content is in agreement with the incident angle (i.e., where
the angle of emission and reception from the waveguide is
frequency-dependent). Hence, we devise two symmetrical
slits in LeakyScatter: one for accepting free-space ambient
signals into the waveguide, and the other for leaking those
signals back into the air. Specifically, a far-field active
transceiver emits a THz signal toward the LeakyScatter. The
impinging signal would then couple into the waveguide
where it is guided toward the second slit and radiates out
back to free-space forming a directional beam that points to
the transceiver’s location, thereby enabling retrodirectivity.
We emphasize that our retrodirective structure is truly
wideband and spectrally agile as LeakyScatter can operate
between 100 GHz and 500+ GHz. Further, the directionality
is achieved with zero power consumption. The active
transceiver, however, is expected to be power demanding as it
is capable of generating tunable wideband signals and steering
them to any desired direction. Note that the discrepancy in
RF capabilities between active transceivers and low-power
nodes is often the case in backscatter wireless networks.1

In LeakyScatter, we enable data transmission by
modulating the amplitude of the THz backscattered signal.2

Our key observation is that the size of the slit directly impacts
the amount of coupling efficiency (or backscatter power). Yet,
the physical dimension of the slits in leaky antennas are fixed
upon production; instead, we control the effective size of the
aperture by re-configuring the trajectory of guided waves
inside LeakyScatter’s waveguide. In particular, we employ an
mm-sized electrostatic MEMS mirror inside the waveguide’s
cavity to dynamically and electronically guide EM signals
toward the slit or steer them away from it, as shown in Fig. 1.
We characterize the backscattered power as a function of the
micro-mirror’s orientation using ray optics principles. We
then optimize the architecture of LeakyScatter for maximum
link budget and modulation order.

We fabricate a custom LeakyScatter and deploy it together
with our in-house THz transceiver. We present the first

1In this work, we only focus on the backscatter architecture. Designing
efficient high-frequency transceiver is an active field of research and is beyond
the scope of this paper.

2We emphasize that noncoherent on–off keying is identified as one of
the two modes in the first standardization of sub-THz bands by the IEEE
802.15.3d task group [42].

Figure 1: Illustrating the retrodirective backscatter link
between our LeakyScatter and a broadband transceiver.

experimental exploration of wireless backscattering above
100 GHz. We evaluate the performance of LeakyScatter
with extensive COMSOL simulations and experiments in
various settings. We experimentally validate the reciprocity
in leaky-wave devices, and characterize the retrodirective
beams that radiate from our LeakyScatter nodes. Finally, we
demonstrate low-power amplitude modulation and evaluate
the feasibility of concurrent THz backscatter links in dense
LeakyScatter networks.

2 Background and Related Work

2.1 Wireless Backscatter Communication
Backscatter technology is introduced for energy-efficient
communication between power-constrained wireless
devices [3, 20]. The underlying idea is to allow low-power
nodes to piggyback their data on an ambient signal instead
of generating their own RF signal, which would demand
power-hungry components such as mixers, oscillators, and
amplifiers [34]. In particular, an access point (AP) transmits
an RF signal to the node which will then be modulated and
reflected back to the AP for processing. For example, a
simple On-Off Keying (OOK) can be implemented where
reflecting the AP’s signal translates to sending a ‘1’ bit and
absorbing the signal represents the ‘0’ bit.

Recently, there has been significant work on extending the
communication range [9, 23, 41, 56] and improving the data
rate of backscatter communication links [26,30]. In particular,
employing low-power coding techniques such as chirp spread
spectrum has shown promise for decoding backscattering
signals below the noise floor [6]. However, while these
techniques can achieve long-range communications, they
often do not scale well with the number of devices, i.e.,

376 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) (b)

Figure 2: Parallel plate leaky waveguide: (a) front view (b)
side view.

they are often limited to very few (1-2) concurrent links.
The state-of the-art protocol (NetScatter [18]) allows for
concurrent transmission of 256 backscatter devices over
a bandwidth of 500 KHz. NetScatter relies on the ability
of the low-power nodes to generate cyclic shifted chirps,
which is relatively power-demanding. Further, the number
of concurrent users is inherently bounded to the bandwidth
and the spectral resolution at endpoint devices.

Instead, in this paper, we take a fundamentally new
approach to backscattering and introduce a spectrally-agile
and retrodirective node architecture that scales the number of
concurrent users through the division of signals in frequency
and space. In this context, moving to higher frequencies
is advantageous for two reasons: (i) the large availability
of bandwidth allows for serving more concurrent users on
non-overlapping channels; and (ii) directional communication
(required for mmWave and THz links) provides opportunities
for concurrent transmission of nodes that are sufficiently
separated in space.

Therefore, unlike traditional backscatter nodes that operate
below 6 GHz, our backscatter architecture aims at establishing
backscatter links above 100 GHz. A few recent works have
demonstrated retrodirective backscattering at mmWave bands
(up to 28 GHz) using the Van Atta technique [19, 30, 37, 53].
Unfortunately, Van Atta Arrays are inherently narrow-band as
the transmission lines are optimized at a particular wavelength,
which is fixed (non-configurable) after fabrication.

2.2 Leaky-Wave Antennas
Leaky Wave Antennas (LWAs) belong to the general class
of traveling wave antennas that can be implemented with
circuits [50] or simply with an air-filled parallel-plate
waveguides with an open slit on one of the plates [2].
A traveling wave inside the waveguide may “leak” into
free-space through the open slit, as depicted in Fig. 2. Notably,
Maxwell’s equations and the boundary condition suggest that
the direction of emission from the slit is correlated with the
frequency of the guided wave. By assuming infinitely thin
metal plates that are infinitely conductive, the phase matching

conditions for the T E1 mode yields [24]:

φ(f) = asin
(

c
2b f

)
, (1)

where φ is the emission angle (relative to the waveguide
plate), f is the frequency of the input signal, b is the plate
separation, and c is the free-space speed of light. Eq. (1)
indicates that signals with higher frequencies emit out at lower
azimuth angles and vice versa.

While Eq. (1) captures the optimal emission angle as a
function of frequency, in practice, the signals leaking from the
waveguide can appear at a range of angles, albeit encountering
different coupling losses. To understand this broader angular
width, we can treat the leaky waveguide slot as a finite-length
aperture, which produces a diffraction pattern in the far-field.
According to Huygen’s principle [15, 55], for a diffracting
aperture (i.e., slot length) of L and the dominant T E1 mode,
the far-field radiation pattern can be written as

G(φ, f) ∝

∫ L/2

−L/2
e− jβyye−αye jk0cos(φ)ydy

= sinc
(
(βy − jα− k0cosφ)

L
2

)
,

(2)

where sinc(x) = sin(x)/x, k0 = ω/c is the free-space
wave-number, α is the leakage attenuation, and βy is the

propagation constant. βy can be written as βy =
√

k2
0 − (π/b)2

when the parallel-plate waveguide has an air core. Eq. (2) also
confirms the dependency of emission pattern on frequency
where the peak output radiation occurs at the angle at which
Re{(βz − jα− k0cosφ)L

2}= 0, yielding Eq. (1). It should be
noted that the coupling efficiency and reception behavior of a
leaky-wave antenna are independent of polarization [43].

Recently, leaky-wave antennas have been used in multiple
sensing tasks including link discovery [12, 14], mobility
tracking [13], 3D localization [28], physical-layer security
[61], and even for wireless authentication [27]. However, this
paper is the first work toward exploiting the angle-frequency
relation and the antenna reciprocity for frequency-agile
backscattering.

3 Design

In this section, we describe the underlying principles and key
components of LeakyScatter.

3.1 Design Overview
The large amount of available bandwidth above 100 GHz
together with directional transmission opens up opportunities
for concurrent high-rate networks beyond 5G. Yet, operation
at such high frequencies is fundamentally power-demanding
since the power consumption of the RF circuitry is

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 377

proportional to the frequency. Further, creating directional
beams would require large antenna arrays, which itself
increases the power and complexity. Previously-established
backscattering technology addresses the first challenge by
allowing nodes to piggyback their data on an ambient signal
instead of generating their own RF signal, thereby, eliminating
the need for power hungry components. However, existing
backscatter designs are either directional and narrow-band [30,
37, 53] or omnidirectional at much lower frequency bands
(e.g., sub-6 GHz) [35, 45, 54].

Our proposed LeakyScatter is the first frequency-agile
directional backscattering network at THz bands. Instead
of conventional systems that use phased array antennas
for beam steering, we introduce a fundamentally novel
node architecture based on leaky-wave antennas. Our key
observation is that a leaky wave antenna is inherently
reciprocal. In particular, the first-principle model suggests that
the frequency-dependent radiation in leaky-wave antennas is
identical in both transmission mode (guided signals coupling
out into free-space) and reception mode (free-space waves
coupling into the waveguide). We leverage this interesting
characteristic to build a fully-passive retrodirective node. We
design a two-slit waveguide (one for receiving signals from
the transceiver (TRX) and another for transmitting the signal
back directionally toward the transceiver), as shown in Fig. 1.
We also embed two mm-sized mirrors inside the waveguide
to guide the propagation path between the two apertures.

Given the angle-frequency relationship, the TRX should
choose the correct frequency to communicate with
LeakyScatter nodes depending on the node location and
orientation relative to TRX. Fortunately, single-shot angular
localization with leaky-wave antennas has been successfully
demonstrated in the literature [28]. Here, we assume that the
TRX can localize all LeakyScatters by implementing such
prior schemes. Further, we assume that the TRX has flexible
ultra-wideband transmission and detection capabilities. Such
asymmetry between the RF capabilities at the TRX and
low-power nodes is typical in all backscatter networks.

In order to piggyback information bits on backscattered
signals, we enable amplitude modulation by changing the
trajectory of in-coupled waves. Specifically, a small rotation
in one of the embedded mirrors would cause significant
fluctuations in the amount of power leaked into free-space.
Hence, we realize amplitude modulation by dynamically
changing the voltage of a MEMS mirror according to the
bit stream. We discuss other potential modulation strategies
in Sec. 6. Finally, we emphasize that LeakyScatter is
ultra-wideband (supporting bandwidths upto few 10s of GHz)
and frequency-agile (supporting carrier frequencies from 100
GHz to 500 GHz), retrodirective, and scalable to large-scale
networks. Next, we will illustrate the key components of
LeakyScatter in detail.

Figure 3: Illustration of reciprocity in leaky waveguide: the
angle frequency coupling holds in both transmission and
reception modes.

3.2 Retrodirectivity in LeakyScatter

The retrodirectivity in LeakyScatter is rooted in the antenna
reciprocity of leaky-wave antennas. First, we formally model
this reciprocity. Consider a tunable source, a broadband
detector, and a single-slit waveguide as shown in Fig. 3. First,
the tunable source excites the waveguide (TE1 mode) with
a signal at frequency of fT X . Given the angular-frequency
coupling, the waveguide will act as a directional transmitter
creating a directional beam in the far-field (labeled as TX
mode in Fig. 3). The detector then measures the received
power at various angles to estimate the radiation pattern of the
leaked waves. Eq. (1) suggests a direct one-to-one relationship
between the angle at which maximum power is received
(denoted as φT X in Fig. 3) and fT X . Next, we swap the
detector and source while keeping the same waveguide. The
source emits out signals at different frequencies (f1, f2, ..., fN)
while the broadband detector captures the power of coupled
waves at each corresponding frequency. Antenna reciprocity
suggests that given a fixed leaky-antenna structure (e.g.,
aperture size and plate separation), and waveguide positioning
(i.e., φ∗ = φtx), the maximum coupling happens when f ∗ =
fT X , which is equal to c

2bsin(φtx)
, according to Eq. (1). We will

experimentally evaluate this in Sec. 5.
LeakyScatter utilizes two symmetrical apertures, one meant

for reception and another meant for transmission. Embedded
within the waveguide cavity are two mirrors as illustrated
in Fig. 4 to passively redirect the in-coupled signal from the
receiving aperture toward the transmitting aperture. More
specifically, a THz signal impinging on LeakyScatter at angle
θT X interacts with the first mirror inside the cavity, which
results in a 90◦ rotation in the propagation direction. Upon
impinging on the second embedded mirror, the signal deflects
in the reverse direction and moves towards the second slit. The
signal then leaks out into free-space through the second slit
with an emission angle of θRX . Given the reciprocity, we have
θT X = θRX , as also illustrated in Fig. 4. Such retrodirectivity
is essential to our backscatter networks as a single active

378 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: A schematic of LeakyScatter, showing two open
slits and embedded mm-sized mirrors to guide the THz waves
in between.

transceiver (co-located emitter and detector) is now able to
establish a directional link with a truly passive architecture.

We can model the amount of backscattered power by
incorporating internal waveguide losses as well as the
far-field pattern of LeakyScatter in both TX and RX modes.
Specifically, when a transceiver sends an unmodulated
signal towards the waveguide, the total power that couples
into the waveguide is a function of frequency, f , and the
impinging angle θT RX , and can be modeled by Eq. (2). Once
the impinging signals couple into LeakyScatter, they will
experience propagation losses within the waveguide en route
to the transmitting aperture. Finally, the waves emit out with
a similar far-field behavior. Therefore, the total backscattered
power (Pbsc) at frequency f can be modeled as:

Pbsc(f ,φT RX) ∝ G2(f ,φT RX)× (
1

LWG
), (3)

where LWG represents the incurred losses in the guided mode,
φT RX is the relative angle between the transceiver and the
LeakyScatter device. G(f ,φT RX) is defined in Eq. (2). We
can see that the maximum backscattering power is achieved
when the impinging angle and signal’s frequency satisfies
Re{(βz − jα− kcosθ)L

2}= 0. Next, we explain how LWG is
modulated based on the data bit stream.

3.3 Data Modulation and Demodulation

So far we have explained how LeakyScatter realizes a
retrodirective communication link with an active external
transceiver. Now, we explain how LeakyScatter modulates
the backscattered signal to transmit information bits. Our
design is based on amplitude modulation such that different
backscattered power levels translate to distinct sequences of
bits. Fluctuation in power level is achieved by an on-demand
modification to the power loss inside the waveguide. In
particular, one of the aforementioned embedded mirrors
is replaced with a mm-sized rotatable MEMS mirror. By
changing the mirror’s orientation, we seek to control the

amount of power that is guided toward the second slit and
hence can potentially leak out back to free-space.

Fig. 5 explains how a slight misalignment in the orientation
of the MEMS mirror yields a non-negligible drop in
the backscatter power. In principle, if the dispersion was
minimal and the slit was infinitely thin, even an arbitrarily
small rotation of the mirror (i.e., δθrot) could cause zero
backscattered power as the guided waves would just miss the
open slit. However, in practice, due to dispersion and non-zero
slit width, changing the propagation path of guided waves
would yield a drop in power. The exact amount of power drop
is a complicated function of the frequency, slit dimension,
wave propagation constant, the leakage attenuation factor
(denoted as β and α in Eq. (2)), and more importantly, the
amount of rotation (i.e., θrot).

Our key insight is that the amount of radiated power is
proportional to the leakage area and changing the trajectory
of guided waves would impact the effective aperture. For
simplicity, we consider a rectangular slit (width of W and
length of L) and assume that signal leakage is uniform across
the slit length. As shown in Fig. 5, when θrot increases and
the guided waves are further directed away from the open
slit, the effective aperture area seen by the guided waves
should decrease. Using ray optics, we write a first-order
approximation of the internal waveguide losses as:

LWG(θrot) = c1 + c2
Aslit

Ae f f (θrot)
= c1 + c2|

2L
W

tan(2θrot)|,

(4)
where c1 represents the constant losses such as propagation
loss within LeakyScatter and c2 is a constant aperture
coupling loss. Aslit is the area of the slit and Ae f f is the
effective aperture at rotation angle θrot . Note that c1 and
c2 is a deterministic function of the waveguide geometry
(e.g., the internal path length between the two slits) and can
be measured and known upon production. Clearly, LWG is
minimum at θrot = 0 and increases with θrot . Combining

Figure 5: An electronically rotatable mm-sized mirror
embedded within LeakyScatter changes the propagation path
of guided waves and thus effectively controls the size of
transmitting aperture seen by the guided waves.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 379

Figure 6: The block diagram of a THz backscatter network.

10 11 12 13 14 15 16 17 18 19 20

Slit Width (mm)

-52

-50

-48

-46

-44

-42

S
2
1
 (

d
B

)

Figure 7: The impact of slit width on total backscatter gain in
LeakyScatter.

Eq. (4) and Eq. (3), we can write:

Pbsc(f) ∝
G2(f ,φT RX)

c1 + c2| 2L
W tan(2θrot)|

(5)

Putting all pieces together, Fig. 6 depicts the block diagram
of an TRX-LeakyScatter link. As shown, the modulator at
LeakyScatter sets the voltage values at the micro-mirror
MEMS driver according to the bit stream. The orientation of
the mirror would then change the trajectory of guided waves
imposing amplitude modulations. The modulated signal is
steered back toward the TRX. At the TRX, the demodulation
block retrieves the data bits from analyzing the measured
power spectrum.

3.4 Design Optimization for Maximizing
Reflection Gain

Given the link budget scarcity in backscatter networks,
we aim to maximize reflection gain (i.e., backscatter
power) in LeakyScatter. Here, we introduce the underlying
optimizations and trade-offs that achieve this goal.

3.4.1 Slit Geometry

The slit geometry plays a key role in the coupling efficiency
and directivity gain in LeakyScatter. In principle, a wider
slit is desirable as it allows for a better coupling between
guided waves and free-space waves. Yet, the angle-frequency
relation in leaky-wave antennas only holds for very thin slits.
Indeed, widening the aperture of a rectangular slit quickly

(a) w2 = 1 mm (b) w2 = 5 mm

(c) w2 = 10 mm (d) w2 = 15 mm

Figure 8: Far field emission pattern at various slit widths,
showing higher directivity gains achieved with wider slits.

invalidates the monotonic angle-frequency coupling due to
the increasingly non-uniform electric field distribution along
the slit. To circumvent this issue, we employ trapezoidal
apertures (also explored in [16]) to increase aperture size
while maintaining the coupling relations. Such slits enable
us to increase the captured energy from the receiving slit as
well as the out-coupled energy that leaks back out into space.
Larger slits also yield smaller diffraction, thus, ray optics
models are more accurate with larger slits.

We have simulated LeakyScatter with two symmetric
trapezoid slits with varying slit width. Fig. 7 presents the
simulated S21 parameter against slit widths. The smaller
width of these trapezoid-shaped slits is set at w1 = 1 mm
while the larger width is varied from w2 = 10 mm to 20
mm in COMSOL. These results were presented in the form
of S-parameters, which is a metric to describe the energy
propagation across different input/output ports. Here, we
define S21 as the ratio between the reflected energy from
a LeakyScatter compared to incident energy. Hence, S21 is
a good representative of the backscattering gain. It should
be noted that the S21 values do not directly translate to
the real-world measurements; yet, the general trend can be
successfully predicted by analyzing S-parameters.

From Fig. 7, we observe a clear rise in the radiated output
power (by 10dB) above its initial starting point at 10 mm. We
also look into these simulations in the angular space and plot
the directional far-field pattern of the backscattered signal
in Fig. 8. As shown, the beams become more pencil-shaped
and narrow, leading to higher directivity gains. Therefore,
from both simulations, we expect a higher link budget with
wider trapezoid slits. However, we emphasize an important
tradeoff here: intuitively, with a wider aperture, imposing a
fixed power/amplitude fluctuation of P would require a greater
mirror rotation angle (θrot). Unfortunately, our embedded
MEMS mirrors are extremely small (mm-sized) and thus
limited in their maximum rotation angle (e.g., 5◦ in our setup).
Further, in amplitude shift keying (ASK), the number of
symbols (or modulation order) depends on our flexibility to

380 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) (b)

Figure 9: E-Field simulation of (a) a flat mirror and (b)
an off-axis parabolic mirror showing the impact of mirror
geometry on dispersion inside the waveguide.

create sufficiently distinct amplitude levels. Hence, we argue
that thinner slits are more sensitive to small mirror rotations,
so they support higher modulation orders. We carefully take
into account the two sides of this tradeoff and fabricate
LeakyScatter with the optimal slit width of w2 = 15 mm.

3.4.2 Parabolic Mirror vs. Flat Mirror

The fixed mirror in LeakyScatter provides a 90-degree rotation
in the trajectory of guided waves. The guided waves dispense
as they travel inside the waveguide demanding a large
electronically-controlled mirror to collect and rotate these
waves. In order to keep the mirror size to mm-scale, we
explore other possibilities for the fixed mirror. In particular,
unlike flat mirrors, parabolic mirrors can focus EM radiation
to a focal point. Hence, we use an 90◦ Off-Axis-Parabolic
(OAP) mirror instead of a flat mirror to decrease dispersion
in LeakyScatter. An OAP mirror is a segmented part of a
parabolic mirror that diverts the incident signal by a specific
angle while focusing it at the same time.

Fig. 9 illustrates the simulation results of our OAP mirror
in comparison with a flat reflected surface at 173 GHz. This
plot demonstrates the E-field magnitude only between the
two mirrors to highlight the impact of the mirror shape.
While the flat mirror successfully reflects the incident wave,
it causes outward radiations as opposed to the parabolic
mirror that focuses the beam to the center of the MEMS
mirror. LeakyScatter thus takes advantage of an OAP mirror
to accurately re-direct guided waves toward the transmitting
slit and thereby increase the output power.

3.5 Concurrent Backscatter Links
The directional and wideband operation in LeakyScatter
networks allows for multi-node concurrent transmissions. In
particular, LeakyScatter supports a wide range of frequencies
(e.g., from 100 GHz to 500 GHz). Albeit, the correct spectral
band should be selected based on the angular configuration
of LeakyScatter relative to the active TRX. When multiple
LeakyScatter devices are sufficiently separated in the angular

Figure 10: Concurrent transmissions of multiple LeakyScatter
devices where backscattered signals can be separated in
spatial and/or spectral space.

domain, they can simultaneously and independently modulate
a different sub-band of the ambient wideband spectrum. This
separation in the angular domain can be seen with distributed
nodes at different locations around the TRX (as shown in
Fig. 10) or even in co-located nodes that have different
orientations. A straightforward strategy is to make TRX
broadcast a pseudo-pulse in all directions to collect data
from all existing nodes.3 In such a case, spatially-separated
LeakyScatters will modulate different sub-bands; thus, a
simple power detection across spectrum can retrieve the
information of multiple backscatter nodes. We emphasize that
such a scheme relies solely on power measurements. Each
LeakyScatter initiates its packet with a pre-known preamble
that is utilized at TRX for node identification, localization,
and steady-state power calibrations.

Interestingly, the bandwidth of a backscatter link would also
depend on the incident angle of THz signals on LeakyScatter.
Indeed, the non-linear angle-frequency function causes
the in-coupled/out-coupled spectral range (and therefore
bandwidth) to also change with angle. Particularly, the
operating bandwidth for a receiver located at the far-field
of a typical leaky waveguide device at an angle φ relative to
the waveguide can be described by

BW (φ) =
d f
dβ

dβ

dφ
∆φ =

c0

2b · sinφ tanφ
∆φ, (6)

where ∆φ is the effective angular aperture subtended by the
receiver and β is the wave number of guided waves.

Eq. (6) indicates that the bandwidth is wider for lower
emission angles. Hence, given a fixed application-driven
bandwidth per node, a non-uniform distribution of concurrent
LeakyScatters is expected across the entire angular space.

In summary, the Thz LeakyScatter networks offer a
two-layer protection against inter-user interference. Namely,

3Designing efficient medium access protocols for multi-node
backscattering is out of the scope of this work and is a subject of
future studies.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 381

(a) (b)
Figure 11: Our (a) fabricated LeakyScatter with (b) a 4.6 mm
electrostatic MEMS mirror.

the directionality of the reflected signals offers opportunities
for space division multiple access and the inherent
spatial-angular correlations allow the leaky-wave backscatter
nodes to operate on different sub-bands according to their
angular settings. This flexible multi-band operation would
be self-regulated by the LeakyScatter’s architecture at zero
power costs, allowing scalability to dense user populations.

4 Experimental Platform and Methodology

We evaluate the performance of our LeakyScatter through
extensive COMSOL simulations and over-the-air experiments.
Our custom waveguide-based backscatter device, as illustrated
in Fig. 11, is constructed with two thin metal plates held in
parallel at a separation of 1 mm (i.e., b = 1 mm). The overall
dimension is 60 mm × 54 mm. On the front metal plate,
we cut two trapezoidal shape slits with longer and shorter
widths of 1 mm and 15 mm, respectively. Both slits are
20 mm long. We embed a reflecting OAP mirror that has
a smooth metal surface in between the two plates (hence, the
thickness of the mirror is also 1 mm). We emphasize that
building such a device is cheap (only a few cents) and can
be done in a machine shop. To modulate the amplitude of
backscattered signals, we employ a mm-sized MEMS mirror,
offering continuous rotation in both its x and y directions
(with a max rotation angle of ±5◦). The average power
consumed by the MEMS mirror is less than 1 mW for
continuous full-speed operation. The mirror is controlled
via a low-profile driver with max voltage of 5 V. Resonant
frequencies of these mirrors range from a few kHz up to tens
of kHz and change with mirror size [38].

Our system architecture assumes a tunable wideband
transceiver that is able to transmit signals above 100 GHz
and steer them toward LeakyScatter nodes. Hence, we use a
time-domain broadband system (TeraMetrix T-Ray [1]) that
produces an ultra-short pulse with a flat frequency response
between 100 GHz to 400 GHz. The detector measures the
electric field magnitude at a wide range of frequencies with
a spectral resolution of 1.22 GHz (sampling rate of 10 THz).
The emitter and detectors are both linearly polarized with a
polarization extinction ratio (the ratio of transmitted/received

Figure 12: Our experimental setup.

power between the intended and orthogonal polarization
modes) < 20:1. We collect raw time-domain samples and
apply conventional signal processing techniques (smoothing,
filtering, FFT, etc.) to isolate the signal at the spectral range
of interest. Note that even though our testbed provides
time-domain waveforms, LeakyScatter only uses power
measurements (albeit across multiple frequencies) for data
demodulation and detection.

Fig. 12 demonstrates our experimental setup consisting
of the LeakyScatter and our THz emitter and detector. The
emitter is configured at various settings. The detector is placed
on a motorized rotation stage on top of a 2D motorized
translation stage providing high-precision movement around
the waveguide at various configurations. The emitter is
equipped with a collimating lens that directs the THz signal
into the upper slit of the waveguide.

Our evaluations are limited to an angular range of
20-60 degrees due to our transmitter’s low output power.
Specifically, the transmit power above 400 GHz, which
corresponds to angles below 20 degrees, is always about 6 dB
or more weaker, making the reflected signal harder to observe.
Additionally, signals are very noisy at < 170 GHz due to
a combination of higher dispersion inside the waveguide,
getting closer to the cutoff frequency (which is currently 150
GHz but can be changed by modifying the plate separation)
and limited spectral resolution of the setup. A higher transmit
power is needed to compensate for these losses and will be
addressed with future THz transmitters. Nevertheless, we
emphasize that our observations and conclusions presented in
the paper hold true for all other angles.

5 Evaluation

In this section, we discuss our over-the-air experiments and
evaluate the key design components of LeakyScatter.

5.1 Reciprocity
First, we experimentally characterize and compare the
transmission and reception characteristics of leaky

382 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.15 0.2 0.25 0.3

Frequency (THz)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 P

o
w

e
r

TX
 = 40

TX
 = 42

TX
 = 45

TX
 = 50

TX
 = 55

TX
 = 60

RX
 = 40

RX
 = 42

RX
 = 45

RX
 = 50

RX
 = 55

RX
 = 60

Figure 13: Experimental evaluation of the leaky-wave antenna
reciprocity: The angle-frequency correlation holds in both
transmission and reception modes.

waveguides to validate the reciprocity in angle frequency
coupling. This is a crucial building block for designing a
waveguide-based retrodirective backscatter device.

Setup. To this end, we employ two different configurations,
as also shown in Fig. 3. In particular, for measuring the
emission radiation pattern of a leaky-wave antenna, we focus
a THz pulse into a single-slit waveguide with an external
lens of focal length 75mm. The THz detector is placed
on a 2D translation stage at a fixed distance where it can
be configured at multiple angle directions relative to the
waveguide. Similarly, our setup for measuring the reception
pattern of the leaky-waveguide switches the source and
the detector, i.e., the wideband source is now placed on
a 2D translation stage and the detector focused into the
waveguide. In both setups, the same exact waveguide was
used. We configured the detector in transmission and source
in reception at different angles, each corresponding to θRX
and θT X from Fig. 4 respectively, ranging from 30◦ to 63◦.

Fig. 13 shows the normalized power spectrum
measurements from both reception and transmission
for a few configurations, namely, 40◦, 42◦, 45◦, 50◦, 55◦,
and 60◦. As the angle changes, we see a clear shift in the
peak frequency and bandwidth in both modes (reception
and transmission), obeying both equations Eq. (2) and
Eq. (1). More importantly, the peak frequencies in the
reception and transmission modes are in agreement, with
the greatest discrepancy being a 2 GHz difference at 60◦.
There is, however, a discrepancy in the bandwidths of
the reception and transmission measurements with the
transmission bandwidths being generally larger than the
reception. This is largely a result of the different distances
of the detector-waveguide in transmission mode (38cm) and
of the source-waveguide in reception mode (29.5cm). The
shorter distance in transmission allows for a larger acceptable
range of in-coupling frequencies, as opposed to the reception
setup, and hence a wider bandwidth. Nevertheless, the overall
spectral profiles closely follow each other.

We have experimentally illustrated that leaky-wave
antennas are reciprocal, i.e., the angle-frequency relationship
holds true when the antenna used in transmission and

20 25 30 35 40 45 50 55 60 65

Detector's Angular Position (
RX

o
)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 P

o
w

e
r

tx
 = 30

tx
 = 33

tx
 = 36

tx
 = 39

tx
 = 42

tx
 = 45

tx
 = 48

(a)

25 30 35 40 45 50 55 60 65

Emitter's Angular Position (
TX

o
)

30

40

50

60

M
a
x
 P

o
w

e
r

R
e
fl
e
c
ti
o
n

A
n
g
le

 (
d
e
g
) Y = X

(b)
Figure 14: Experimental characterization of retrodirectivity in
LeakyScatter: (a) The measured radiation patterns at different
settings; (b) the max-power backscatter angle vs. the ground
truth impinging angle.

reception modes. LeakyScatter leverages this property to
enable retrodirective scattering with zero power consumption.

5.2 Retrodirectivty
Next, we experimentally evaluate the retrodirectivity
in LeakyScatter, which is the ability to steer the
backscatter signals toward the transceiver. Such directional
communications are essential for closing the link given the
high path loss at 100 GHz.

Setup. To assess this, we use the setup illustrated in Fig. 12.
We integrate a fixed mirror (instead of a rotating mirror) inside
the waveguide to direct the guided waves from the receiving
aperture toward the transmitting aperture. We try multiple
impinging angles between the THz emitter and LeakyScatter
(θT X). Each time, we move the THz detector on a 2D stage
to measure the radiation pattern of directional backscatter
signals. Recall that given the reciprocal angle-frequency
coupling of leaky waveguides, we expect to observe the
backscattered signal being strongest when the angle of
reflection is the same as the impinging angle.

Fig. 14a presents the normalized power distribution of
backscattered signal across space given several THz source
configurations (θT X): 30◦, 33◦, 36◦, 39◦, 42◦, 45◦, and 48◦.
Given that our source is wideband, evaluation for each of the
backscattering transmissions were restricted to spectral band
where Eq. (5) gave minimal losses. As expected, in each of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 383

30 35 40 45 50 55 60

Emitter's Angular Position (
TX

o
)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 P

o
w

e
r

Figure 15: Normalized received power at different reflection
angles.

the corresponding curves, the peak reception occurs when
the reflection angle is equal to the transmission angle with a
half-power beamwidth of 10.56◦ on average.

Fig. 14b presents these results against the expected
behavior demonstrating that LeakyScatter achieves a mean
error of 1.911◦. We observe an increase in the overall
error and fluctuations at higher impinging angles (i.e., when
LeakyScatter is placed at larger angles relative to the
THz emitter). We find two underlying reasons for this
observation: (i) the inherent angle-frequency relationship in
leaky waveguides is a nonlinear function such that the spectral
profile is much more similar (less differential) at larger
emission/acceptance angles. This implies that the main lobe
of backscatter radiation is prone to slight misalignment when
LeakyScatter is positioned at larger angles; and (ii) the overall
backscattered power is not uniform at different configurations.
We show the dependency of maximum reflected power with
the angular location of LeakyScatter in Fig. 15. As we
approach higher angles, the received power begins to drop
(e.g., a drop of 10 dB is observed when the location changes
from 30◦ to 51◦). However soon after, the maximum received
power begins to be less location-dependent. Although our
results show that retrodirective beams can be formed, they
also reveal that the directivity gain is not uniform across space.
In other words, the amount of reflected power would depend
on the LeakyScatter’s location relative to the TRX: those
positioned at smaller angles have the advantage of forming
more directive/high-power backscattered links. This is to
some extent a direct impact of our design specs (e.g., OAP
mirror) that will be discussed later.

We have experimentally validated that our proposed
backscaterring architecture is retrodirective and can establish
and maintain directional connectivity with an external
transceiver regardless of its location.

5.3 Data Modulation

Next, we experimentally evaluate the ability of LeakyScatter
to modulate the impinging signal for data transmission.

LeakyScatter modulates the reflection path within the
waveguide via an electronically-controlled mirror, thus
enabling ASK by imposing different reflection power (or

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Time (s)

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li
z
e
d
 P

o
w

e
r

data bits f
c
 = 210 GHz f

c
 = 250 GHz f

c
 = 280 GHz f

c
 = 314 GHz

Figure 16: Measured modulated backscattered signal at
various center frequencies, showing the spectral agility of
LeakyScatter.

0 1 2 3 4 5
Mirror Rotation (deg)

-65

-60

-55

-50

S
2

1
 (

d
B

)

TRX
 = 35

TRX
 = 40

TRX
 = 45

TRX
 = 50

TRX
 = 55

TRX
 = 60

Figure 17: The sensitivity of backscatter gain (captured by
S21 simulations) to mirror rotation in LeakyScatter.

amplitude). Specifically, we use the same setup as in 5.2
except that we employ a mm-sized MEMS mirror for digital
data encoding. As an example ASK, we map the base
orientation of the Mirror (θrot = 0◦) to a “0” bit and the
rotation angle of 5 degrees (θrot = 5◦) to a “1” bit. At
the detector, different power levels are translated to their
corresponding bit. We emphasize that this binary ASK is
evaluated as an example scheme. Higher order modulation is
feasible with arbitrary encoding of symbols to the embedded
mirror’s orientation (i.e., reflected amplitude).

Fig. 16 shows the successfully transmitted bit stream
0011100010101 with a symbol time of 5 seconds. We
repeated this experiment at different center frequencies fc =
210 GHz, 250 GHz, 280 GHz, and 314 GHz (corresponding
to reflection angles of 45◦, 37◦, 32◦, and 28◦ respectively).
Our results demonstrate a successful demodulation/detection
regardless of the carrier frequency or LeakyScatter’s relative
angular location. However, we observe that the difference
between the two power levels (representing 0 and 1) gets
smaller at lower frequencies. This implies that the ASK
modulation order is limited for lower frequencies.

To better understand this experimental observation, we have
simulated the LeakyScatter structure in COMSOL and looked
into the S-parameters of this device. Specifically, Fig. 17 plots
S21 as a measure of the backscatter power at different mirror
rotations. We repeat the simulations for several impinging
angle configurations. Surprisingly, at any mirror orientation,
we observe a larger S21 at lower impinging/reflecting angles.

384 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) fc = 173 GHz, θrot = 0 (b) fc = 173 GHz, θrot = 5

(c) fc = 261 GHz, θrot = 0 (d) fc = 261 GHz, θrot = 5
Figure 18: E-field simulations of guided waves in
LeakyScatter.

Further, the power drop caused by the mirror’s rotation is
generally more pronounced at smaller angles (e.g., an S21 drop
of 2.25 dB at θT RX = 60◦ vs. a 4.1 dB drop at θT RX = 35◦.
Note that this trend holds for negative rotations (not shown).

To find the underlying reason, we looked further into the
simulated E-field inside the waveguide at the same device
configurations. Fig. 18 depicts this with an in-coupled signal
of 173 GHz and 261 GHz signal at rotation angles θrot = 0
and θrot = 5. Interestingly, we observe less dispersion for the
higher frequency tone; i.e., the guided waves are much more
directed (laser-like) at 261 GHz, especially as they interact
with the embedded parabolic mirror. The propagation path
of guided waves can thus be more precisely controlled via a
rotating mirror. There is a clear drop in the amount of power
at the second (transmitting) slit due to the 5◦ mirror rotation.
This implies that the ASK modulation order (i.e, the number
of symbols which here correlate with the number of distinct
power levels using an electronically-controlled rotating
mirror) is frequency-dependent with higher frequencies
offering higher modulation orders.

We have experimentally demonstrated that we can
piggyback information bits on the backscattered signal with
LeakyScatter. Interestingly, a higher modulation order can be
achieved at higher frequencies due to their small dispersion
and laser-like behavior in guided mode.

5.4 Multiple Concurrent LeakyScatters

Finally, we investigate the user capacity in LeakyScatter
networks. We consider a single transceiver and emulate
multi-node backscattering by placing the LeakyScatter at
various locations and collecting the raw power spectrum.

First, we experimentally evaluate the half-power bandwidth
at various TRX-LeakyScatter angular configurations. As
discussed in Sec. 3.5, we expect larger half-power bandwidths

30 33 36 39 42 45 48 51

Angular position (deg)

150

200

250

300

S
p

e
c
tr

a
l
P

ro
fi
le

 (
G

H
z
)

(a)

0.25 0.5 1 2 4

Allocated Bandwidth Per LeakyScatter Device (GHz)

0

100

200

300

400

500

T
o

ta
l
N

u
m

b
e

r
o

f

C
o

n
c
u

rr
e

n
t

U
s
e

rs

(b)
Figure 19: Experimental characterization of user density: (a)
Spectral band of operation in LeakyScatter when configured at
various impinging angles; (b) Total concurrent LeakyScatter
nodes given their application-driven bandwidth requirements.

at lower incident angles. Fig. 19a confirms this claim through
experimental analysis where the bandwidth of backscatter
links are captured across different angular positions (all at a
fixed distance of 34 cm from LeakyScatter). This observation
suggests that the concurrent user capacity (given a per-user
bandwidth) is also non-uniform across space, and dependent
on the incident angle with a similar trend.

Fig. 19b shows the emulated total number of concurrent
users across the angular domain. We assume directional
pencil-shaped beams (1◦ of beamwidth) at TRX4. Further,
we emulate five different bandwidths for backscatter
communication. Note that in practice, this number is
application-dependent. According to Fig. 19b, LeakyScatter
can establish 430 simultaneous non-overlapping links with
a spectral allocation of 0.25 GHz per user. Similarly, 18
users can be supported at a spectral allocation of 4 GHz
each. We emphasize that different backscatter nodes modulate
different portions of the spectrum (according to their location
and orientation); thereby, having multiple nodes is a simple
extension of a single LeakyScatter as the signals are
orthogonal in frequency. In the future, we will experimentally
implement a multi-backscatter network using a multi-beam
multi-frequency emitter.

We have experimentally demonstrated that by taking
advantage of LeakyScatter’s retrodirectivity and spectral
agility, we can support multiple concurrent backscatter nodes
in dense user settings.

4For simplicity, we consider the far-field scenario in which the backscatter
range is much larger than the dimension of the physical LeakyScatter nodes.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 385

6 Discussion and Limitations

In this section, we discuss the opportunities and limitations
in THz backscatter networks as well as our future directions.

Mobility Support with LeakyScatter. One of the main
challenges in directional communication is maintaining beam
alignment despite nodal mobility. LeakyScatter offers a
retrodirective link which means the backscatter beam will
always point back toward the broadband TRX regardless
of device motion. Interestingly, this will be accompanied
by a change in the spectral profile observed at the TRX.
This opens the door for simultaneous data transmission and
localization, an emerging paradigm for 6G wireless systems.
Note that leaky-wave antennas have been used recently for
angular positing in unmodulated and active settings (non
backscattering) [11, 13, 28]. This paper is the first effort that
exploits the angle-frequency coupling in leaky-wave devices
for enabling low-power frequency-agile backscattering at the
sub-THz regime.

Communication Range and Coverage. A common
concern in all backscattering networks is the limited
communication range, i.e., the range of a backscatter
link is always smaller than an active TX-RX link due
to lack of amplification at the backscatter. This issue
worsens in sub-THz and THz frequencies that suffer from
increased propagation attenuation. Yet, our experimental
results demonstrate the feasibility of closing a link at
frequencies as high as 314 GHz without any amplifications
and via an ultra-low-power broadband emitter/detector. Our
source has an average output power of 400 nW across 5 THz
non-uniformly. Our current implementation of LeakyScatter,
however, has an operating bandwidth of approximately 400
GHz which upon calculation yields a 260 nW average
power output. Even under such stringent power budgets, a
communication range of half a meter was achieved. This is
owed to the directionality at LeakyScatter which compensates
for the higher path loss. Note that our communication
range is similar to the numbers reported by prior work
that uses an active leaky-wave antenna [13, 28] which
implies that the limitation in range is a direct result of
the employed low-power source and not the architecture of
LeakyScatter. Employing more realistic TRX can scale up
the transmitter-receiver distance as links at WLAN-scale
distances (100+) meters have already been demonstrated
above 100 GHz [59, 60].

We note that LeakyScatter is limited in angular coverage
of 90◦. Prior work proposed a periodic arrangement of slits
to extend the coverage of leaky-wave antennas to 180◦ [32].
To extend the coverage to 360◦, open slits on both ends are
needed. One potential design is to use three aluminum plates
such that two of the plates contain periodic slits and the ‘center
plate’ acts as the common ‘back plate’. We will investigate
these architectures in the future.

Fabrication Cost and Power Consumption. LeakyScatter

can be easily fabricated with two thin metal plates, spacers,
and an electronically-controlled mirror. Prior work has
realized leaky-wave antennas via integrated circuits, i.e.,
in 65nm CMOS with an area size of 3mm2 [50]. The
small form factor, ease of fabrication, and low cost make
such designs suitable for various IoT applications. The
integrated broadband emitter/detector, however, can be power
demanding. We emphasize that such asymmetry between
the transceiver and the backscatter tag is typical in these
networks [34]. Nevertheless, ongoing research continues to
develop efficient low-power THz transmitter and detectors
suitable for future handheld devices [5, 49, 51].

Higher Order Modulation. We have introduced a novel
low-power physical layer architecture for THz communication
by showing the feasibility of passive THz backscattering;
nevertheless, further extensive study is needed for a full-stack
demonstration. Additionally, the current achievable data-rates
fall behind the speeds promised within the THz regime.
The underlying bottleneck is the speed of the electro-static
MEMS mirrors which can be addressed through novel
modulation strategies. Building high-speed THz modulators
is itself an emerging field of research, with recent advances
in materials (e.g., carbon nanotubes and graphene) showing
promise [4, 7, 39]. In this paper, we consider a noncoherent
on–off keying modulation scheme, which is one of the
two identified modes in the recent standardization of the
IEEE 802.15.3d task group [42]. Nevertheless, in the future,
we will explore not only coherent modulation techniques
and higher-order amplitude-phase schemes, but also optical
modulation techniques, such as via variation in waveguide’s
electromagnetic permittivity, for larger data-rates.

7 Conclusion

In this paper, we present LeakyScatter, a novel structure
that enables low-power directional backscattering above
100 GHz. LeakyScatter adopts the inherent dependency
of emission angle on frequency in LWAs to passively
redirect the signals back in the same direction from which
they were transmitted. The proposed architecture utilizes
a metal parallel-plate waveguide with two open slits. Data
transmission is facilitated via a mm-sized MEMS mirror that
modulates the reflection loss (i.e., amplitude of backscattered
link) according to the bit stream. Our over-the-air experiments
show that LeakyScatter is ultra-wideband and spectrally-agile
operating at few 100s of GHz, opening unique opportunities
for dense user implementations.

8 Acknowledgments

We appreciate the valuable comments and feedback from the
anonymous reviewers. This research was supported by the US
Air Force, and NSF grants CNS-2145240 and CNS-2148271.

386 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] The TeraMetrix T-Ray® 5000 Series Intelligent Terahertz Control Unit.

Available at https://lunainc.com/blog/terametrix-t-rayr-5
000-series-intelligent-terahertz-control-unit, 2018.

[2] BALANIS, C. A., AND BIRTCHER, C. R. Antenna measurements.
Modern Antenna Handbook (2008), 977–1033.

[3] BOYER, C., AND ROY, S. Backscatter Communication and RFID:
Coding, Energy, and MIMO Analysis. IEEE Transactions on
Communications 62, 3 (2014), 770–785.

[4] BURDANOVA, M., TSAPENKO, A., SATCO, D., KASHTIBAN, R.,
MOSLEY, C., MONTI, M., STANIFORTH, M., SLOAN, J., GLADUSH,
Y. G., NASIBULIN, A. G., AND LLOYD-HUGHES, J. Efficient
Ultrafast THz Modulators Based on Negative Photoconductivity in
Controllably Doped Carbon Nanotubes. In International Conference
on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2019),
pp. 1–1.

[5] CHI, T., HUANG, M.-Y., LI, S., AND WANG, H. 17.7 A Packaged
90-to-300GHz Transmitter and 115-to-325GHz Coherent Receiver
in CMOS for Full-Band Continuous-wave mm-Wave Hyperspectral
Imaging. In In Proc. of IEEE International Solid- State Circuits
Conference (ISSCC) (2017).

[6] CORREIA, R., DING, Y., DASKALAKIS, S. N., PETRIDIS, P.,
GOUSSETIS, G., GEORGIADIS, A., AND CARVALHO, N. B. Chirp
Based Backscatter Modulation. In IEEE MTT-S International
Microwave Symposium (2019), pp. 279–282.

[7] DOCHERTY, C. J., STRANKS, S. D., HABISREUTINGER, S. N.,
JOYCE, H. J., HERZ, L. M., NICHOLAS, R. J., AND JOHNSTON,
M. B. An Ultrafast Carbon Nanotube Terahertz Polarisation Modulator.
Journal of Applied Physics 115, 20 (2014), 203108.

[8] DUTTA, S., BARATI, C. N., RAMIREZ, D., DHANANJAY, A.,
BUCKWALTER, J. F., AND RANGAN, S. A Case for Digital
Beamforming at mmWave. IEEE Transactions on Wireless
Communications 19, 2 (2019), 756–770.

[9] EID, A., HESTER, J., AND TENTZERIS, M. M. A Scalable High-gain
and Large-beamwidth mm-wave Harvesting Approach for 5G-powered
IoT. In IEEE MTT-S International Microwave Symposium (2019),
pp. 1309–1312.

[10] FEDERAL COMMUNICATIONS COMMISSION. The Commission Seeks
Comment on Spectrum for the Internet of Things. ET Docket, 21-353
(2021).

[11] GHASEMPOUR, Y., AMARASINGHE, Y., YEH, C.-Y., KNIGHTLY, E.,
AND MITTLEMAN, D. M. Line-of-Sight and Non-Line-of-Sight Links
for Dispersive Terahertz Wireless Networks. APL Photonics 6, 4 (2021),
041304.

[12] GHASEMPOUR, Y., SHRESTHA, R., CHAROUS, A., KNIGHTLY, E.,
AND MITTLEMAN, D. M. Single-Shot Link Discovery for Terahertz
Wireless Networks. Nature Communication 11, 1 (2020), 2017.

[13] GHASEMPOUR, Y., YEH, C.-Y., SHRESTHA, R., AMARASINGHE, Y.,
MITTLEMAN, D., AND KNIGHTLY, E. W. LeakyTrack: Non-Coherent
Single-Antenna Nodal and Environmental Mobility Tracking with a
Leaky-Wave Antenna. In Proc. of ACM SenSys (2020), pp. 56–68.

[14] GHASEMPOUR, Y., YEH, C.-Y., SHRESTHA, R., MITTLEMAN, D.,
AND KNIGHTLY, E. Single Shot Single Antenna Path Discovery in
THz Networks. In Proc. of ACM MobiCom (2020), pp. 317–327.

[15] GROSS, F. B. Frontiers in Antennas: Next Generation Design &
Engineering. McGraw-Hill Education, 2011.

[16] GUERBOUKHA, H., SHRESTHA, R., NERONHA, J., RYAN, O.,
HORNBUCKLE, M., FANG, Z., AND MITTLEMAN, D. M. Efficient
Leaky-Wave Antenna for Terahertz Wireless Communications. In
Conference on Lasers and Electro-Optics (2021), Optical Society of
America.

[17] GUO, X., SHANGGUAN, L., HE, Y., JING, N., ZHANG, J., JIANG,
H., AND LIU, Y. Saiyan: Design and implementation of a low-power
demodulator for LoRa backscatter systems. In Proc. of USENIX NSDI
(Apr. 2022), pp. 437–451.

[18] HESSAR, M., NAJAFI, A., AND GOLLAKOTA, S. NetScatter: Enabling
Large-Scale backscatter networks. In Proc. of USENIX NSDI (2019),
pp. 271–284.

[19] HESTER, J. G., AND TENTZERIS, M. M. A Mm-wave
Ultra-long-range Energy-autonomous Printed RFID-enabled Van-atta
Wireless Sensor: At the Crossroads of 5G and IoT. In IEEE MTT-S
International Microwave Symposium (2017), pp. 1557–1560.

[20] ILIE-ZUDOR, E., KEMÉNY, Z., VAN BLOMMESTEIN, F.,
MONOSTORI, L., AND VAN DER MEULEN, A. A survey of
Applications and Requirements of Unique Identification Systems and
RFID Techniques. Computers in Industry 62, 3 (2011), 227–252.

[21] JACKSON, D. R., AND OLINER, A. A. Leaky-Wave Antennas. Modern
Antenna Handbook (2008), 325–367.

[22] JAMEEL, F., DUAN, R., CHANG, Z., LILJEMARK, A., RISTANIEMI,
T., AND JANTTI, R. Applications of Backscatter Communications for
Healthcare Networks. IEEE Network 33, 6 (2019), 50–57.

[23] JIANG, J., XU, Z., DANG, F., AND WANG, J. Long-range Ambient
LoRa Backscatter with Parallel Decoding. In Proc. of ACM MobiCom
(2021), pp. 684–696.

[24] KARL, N. J., MCKINNEY, R. W., MONNAI, Y., MENDIS, R., AND
MITTLEMAN, D. M. Frequency-division Multiplexing in the Terahertz
Range using a Leaky-wave Antenna. Nature Photonics 9, 11 (2015),
717.

[25] KELLOGG, B., PARKS, A., GOLLAKOTA, S., SMITH, J. R., AND
WETHERALL, D. Wi-Fi Backscatter: Internet Connectivity for
RF-powered devices. In Proc. of ACM SIGCOMM (2014), pp. 607–618.

[26] KIMIONIS, J., GEORGIADIS, A., DASKALAKIS, S. N., AND
TENTZERIS, M. M. A Printed Millimetre-wave Modulator and
Antenna Array for Backscatter Communications at Gigabit Data Rates.
Nature Electronics 4, 6 (2021), 439–446.

[27] KLUDZE, A., AND GHASEMPOUR, Y. Towards Terahertz Wireless
Authentication with Unique Aperture Fingerprints using Leaky-Wave
Antennas. In International Conference on Infrared, Millimeter, and
Terahertz Waves (IRMMW-THz) (2022).

[28] KLUDZE, A., SHRESTHA, R., KNIGHTLY, E., MITTLEMAN, D., AND
GHASEMPOUR, Y. 3D Localization via a Single Non-Coherent THz
Antenna. In Proc. of ACM MobiCom (2022).

[29] LI, S., ZHENG, H., ZHANG, C., SONG, Y., YANG, S., CHEN, M.,
LU, L., AND LI, M. Passive DSSS: Empowering the Downlink
Communication for Backscatter Systems. In Proc. of USENIX NSDI
(Apr. 2022), pp. 913–928.

[30] LI, Z., CHEN, B., YANG, Z., LI, H., XU, C., CHEN, X., WANG, K.,
AND XU, W. FerroTag: A Paper-Based MmWave-Scannable Tagging
Infrastructure. In Proc. of ACM SenSys (2019), p. 324–337.

[31] LIANG, Q., DURRANI, T. S., GU, X., KOH, J., LI, Y., AND WANG,
X. Guest Editorial Special Issue on Spectrum and Energy Efficient
Communications for Internet of Things. IEEE Internet of Things
Journal 6, 4 (2019), 5948–5953.

[32] LIU, J., JACKSON, D. R., AND LONG, Y. Substrate integrated
waveguide (SIW) Leaky-Wave Antenna with Transverse Slots. IEEE
Transactions on Antennas and Propagation 60, 1 (2011), 20–29.

[33] LIU, V., PARKS, A., TALLA, V., GOLLAKOTA, S., WETHERALL, D.,
AND SMITH, J. R. Ambient backscatter: Wireless communication out
of thin air. ACM SIGCOMM Computer Communication Review 43, 4
(2013), 39–50.

[34] LIU, W., HUANG, K., ZHOU, X., AND DURRANI, S. Next Generation
Backscatter Communication: Systems, Techniques, and Applications.
EURASIP Journal on Wireless Communications and Networking 2019,
1 (2019), 1–11.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 387

https://lunainc.com/blog/terametrix-t-rayr-5000-series-intelligent-terahertz-control-unit
https://lunainc.com/blog/terametrix-t-rayr-5000-series-intelligent-terahertz-control-unit

[35] LONG, S., AND MIAO, F. Research on ZigBee Wireless
Communication Technology and its Application. In IEEE IAEAC
(2019), vol. 1, pp. 1830–1834.

[36] LUETH, K. L. State of the IoT 2020: 12 billion IoT Connections,
Surpassing Non-IoT for the First Time. Available at https://iot-an
alytics.com/state-of-the-iot-2020-12-billion-iot-con
nections-surpassing-non-iot-for-the-first-time/, 2020.

[37] MAZAHERI, M. H., CHEN, A., AND ABARI, O. MmTag: A Millimeter
Wave Backscatter Network. In Proc. of ACM SIGCOMM (2021),
p. 463–474.

[38] MIRRORCLE. MEMS Mirrors - Mirrorcle Technologies Inc. Available
at https://www.mirrorcletech.com/wp/products/mems-mirro
rs/ (2022/04/20), 2022.

[39] MITTENDORFF, M., LI, S., AND MURPHY, T. E. Graphene-based
Waveguide-Integrated Terahertz Modulator. ACS Photonics 4, 2 (2017),
316–321.

[40] NADERIPARIZI, S., HESSAR, M., TALLA, V., GOLLAKOTA, S., AND
SMITH, J. R. Towards Battery-free HD Video Streaming. In Proc. of
USENIX NSDI (2018), pp. 233–247.

[41] PENG, Y., SHANGGUAN, L., HU, Y., QIAN, Y., LIN, X., CHEN,
X., FANG, D., AND JAMIESON, K. PLoRa: A Passive Long-Range
Data Network from Ambient LoRa Transmissions. In Proc. of ACM
SIGCOMM (2018), pp. 147–160.

[42] PETROV, V., KURNER, T., AND HOSAKO, I. IEEE 802.15.3d:
First Standardization Efforts for Sub-Terahertz Band Communications
toward 6G. Comm. Mag. 58, 11 (Nov 2020), 28–33.

[43] POLEMI, A., AND MACI, S. On the Polarization Properties of
a Dielectric Leaky Wave Antenna. IEEE Antennas and Wireless
Propagation Letters 5 (2006), 306–310.

[44] PRADHAN, S., CHAI, E., SUNDARESAN, K., QIU, L.,
KHOJASTEPOUR, M. A., AND RANGARAJAN, S. Rio: A Pervasive
RFID-based Touch Gesture Interface. In Proc. of ACM MobiCom
(2017), pp. 261–274.

[45] QIN, Z., LI, F. Y., LI, G. Y., MCCANN, J. A., AND NI, Q.
Low-power Wide-area Networks for Sustainable IoT. IEEE Wireless
communications 26, 3 (2019), 140–145.

[46] RANGAN, S., RAPPAPORT, T. S., AND ERKIP, E. Millimeter-Wave
Cellular Wireless Networks: Potentials and Challenges. Proceedings
of the IEEE 102, 3 (2014), 366–385.

[47] RAPPAPORT, T. S., HEATH JR, R. W., DANIELS, R. C., AND
MURDOCK, J. N. Millimeter Wave Wireless Communications. Pearson
Education, 2015.

[48] RAPPAPORT, T. S., SUN, S., MAYZUS, R., ZHAO, H., AZAR, Y.,
WANG, K., WONG, G. N., SCHULZ, J. K., SAMIMI, M., AND
GUTIERREZ, F. Millimeter Wave Mobile Communications for 5G
Cellular: It Will Work! IEEE Access 1 (2013), 335–349.

[49] REYNAERT, P., STEYAERT, W., STANDAERT, A., SIMIC, D., AND
KAIZHE, G. mm-Wave and THz Circuit Design in Standard CMOS
Technologies: Challenges and Opportunities. In IEEE Asia Pacific
Microwave Conference (2017), pp. 85–88.

[50] SAEIDI, H., VENKATESH, S., LU, X., AND SENGUPTA, K. 22.1
THz Prism: One-Shot Simultaneous Multi-Node Angular Localization
Using Spectrum-to-Space Mapping with 360-to-400GHz Broadband
Transceiver and Dual-Port Integrated Leaky-Wave Antennas. In IEEE
International Solid- State Circuits Conference (ISSCC) (2021), vol. 64,
pp. 314–316.

[51] SENGUPTA, K., AND HAJIMIRI, A. A 0.28 THz Power-Generation and
Beam-Steering Array in CMOS Based on Distributed Active Radiators.
IEEE Journal of Solid-State Circuits 47, 12 (2012), 3013–3031.

[52] SKRIMPONIS, P., DUTTA, S., MEZZAVILLA, M., RANGAN, S.,
MIRFARSHBAFAN, S. H., STUDER, C., BUCKWALTER, J., AND
RODWELL, M. Power Consumption Analysis for Mobile mmWave
and Sub-THz Receivers. In 6G Wireless Summit (2020), IEEE, pp. 1–5.

[53] SOLTANAGHAEI, E., PRABHAKARA, A., BALANUTA, A.,
ANDERSON, M., RABAEY, J. M., KUMAR, S., AND ROWE,
A. Millimetro: MmWave Retro-Reflective Tags for Accurate, Long
Range Localization. In Proc. of ACM MobiCom (2021), p. 69–82.

[54] SORNIN, N., LUIS, M., EIRICH, T., KRAMP, T., AND HERSENT, O.
LoRaWAN Specifications, LoRa Alliance, San Ramon.

[55] SUTINJO, A., OKONIEWSKI, M., AND JOHNSTON, R. H. Radiation
from fast and slow traveling waves. IEEE Antennas and Propagation
Magazine 50, 4 (2008), 175–181.

[56] TALLA, V., HESSAR, M., KELLOGG, B., NAJAFI, A., SMITH, J. R.,
AND GOLLAKOTA, S. Lora Backscatter: Enabling the vision of
Ubiquitous Connectivity. In Proc. of ACM IMWUT (2017), vol. 1,
pp. 1–24.

[57] TONG, X., ZHU, F., WAN, Y., TIAN, X., AND WANG, X. Batch
Localization Based on OFDMA backscatter. In Proc. of the ACM
IMWUT (2019), vol. 3, pp. 1–25.

[58] WANG, Q., YU, J., XIONG, C., ZHAO, J., CHEN, S., ZHANG, R., AND
GONG, W. Efficient Backscatter with Ambient WiFi for Live Streaming.
In IEEE Global Communications Conference (2020), pp. 1–6.

[59] Y. YANG, M. MANDEHGAR, AND D. R. GRISCHKOWSKY. THz-TDS
Characterization of the Digital Communication Channels of the
Atmosphere and the Enabled Applications. Journal of Infrared,
Millimeter, and Terahertz Waves 36, 1 (2015), 97–129.

[60] YANG, Y., MANDEHGAR, M., AND GRISCHKOWSKY, D. R.
Understanding THz Pulse Propagation in the Atmosphere. IEEE
Transactions on Terahertz Science and Technology 2, 4 (2012),
406–415.

[61] YEH, C.-Y., GHASEMPOUR, Y., AMARASINGHE, Y., MITTLEMAN,
D. M., AND KNIGHTLY, E. W. Security in Terahertz WLANs with
Leaky Wave Antennas. In Proc. of ACM WiSec (2020), pp. 317–327.

[62] ZHANG, J., SOLTANAGHAI, E., BALANUTA, A., GRIMSLEY, R.,
KUMAR, S., AND ROWE, A. PLatter: On the Feasibility of
Building-Scale Power Line Backscatter. In Proc. of USENIX NSDI 22
(Apr. 2022), pp. 897–911.

388 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://www.mirrorcletech.com/wp/products/mems-mirrors/
https://www.mirrorcletech.com/wp/products/mems-mirrors/

RF-Bouncer: A Programmable Dual-band Metasurface
for Sub-6 Wireless Networks

Xinyi Li1,∗, Chao Feng1,∗, Xiaojing Wang1, Yangfan Zhang1, Yaxiong Xie2, Xiaojiang Chen1,†

1Northwest University, 2University at Buffalo SUNY

Abstract
Offloading the beamforming task from the endpoints to
the metasurface installed in the propagation environment
has attracted significant attention. Currently, most of the
metasurface-based beamforming solutions are designed and
optimized for operation on a single ISM band (either 2.4 GHz
or 5 GHz). In this paper, we propose RF-Bouncer, a compact,
low-cost, simple-structure programmable dual-band metasur-
face that supports concurrent beamforming on two Sub-6
ISM bands. By configuring the states of the meta-atoms, the
metasurface is able to simultaneously steer the incident sig-
nals from two bands towards their desired departure angles.
We fabricate the metasurface and validate its performance
via extensive experiments. Experimental results demonstrate
that RF-Bouncer achieves 15.4 dB average signal strength
improvement and a 2.49× throughput improvement even with
a relatively small 16 × 16 array of meta-atoms.

1 Introduction

It is a common practice for wireless communication systems
to leverage beamforming technique to improve the throughput
and extend the communication range. Higher beamforming
gain requires a larger number of antennas installed on the
communication endpoints. Two practical challenges hinder
the deployment of radio systems with a large antenna array.
First, the majority of today’s IoT devices have to be small in
size due to cost and form factor constraints, leaving no space
for a large array. Second, the radio chains connected to each
antenna increase hardware costs and power consumption.

Recently, offloading the beamforming from the communi-
cation endpoints to a metasurface deployed in the propagation
environment has attracted significant attention [4, 14]. RFo-
cus [4] leverages a metasurface that consists of thousands of
simple 2-way RF switches to beamform the incoming signal
towards the receiver. Due to the limited programmability of

∗Co-primary authors, both authors contributed equally to this research.
†Corresponding author.

Incident
wave

Departure
wave

Departure
wave

x

y

z
Incident

wave

2.4 GHz 2.4 GHz 5 GHz 5 GHz

(a) RF-Bouncer principle.

2.4 GHz band
5 GHz band

Smart Home

Laptop

Router

SmartPhone

Security
Camera

RF-Bouncer

(b) 3D scenario.

Figure 1: RF-Bouncer’s metasurface simultaneously steers
the incident signal towards the target directions at two bands,
improving the overall performance of dual-band concurrent
communication in a complex 3D indoor environment.

the RF switch, i.e., switch on for reflecting and switch off
for no reflection, RFocus needs huge number of meta-atoms
to work efficiently and robustly. RFlens [14] upgrades the
metasurface with a dedicated meta-atom that resembles a 1-
bit phase shifter and thus achieves reasonable beamforming
performance with only 256 functional meta-atoms.

We observe that most of the current metasurface-based
beamforming solutions focus on optimizing communication
performance on single frequency band, for example, RFocus
works for frequencies below 3 GHz while RFlens is optimized
for 5 GHz band. But, these two Sub-6 ISM bands at 2.4 GHz
and 5 GHz accommodate three wireless protocols widely used
for communication between IoT devices: Wi-Fi, Bluetooth
and ZigBee. Due to the densely deployed IoT devices, con-
current wireless transmissions over two Sub-6 ISM bands are
very common. A naive solution to extend existing solutions
to support dual-band operation is to install two meta-surfaces,
one for a single band. Such a solution not only requires more
deployment space to accommodate the extra metasurfaces
but also results in higher costs. Stacking one metasurface on
top of another [42] is another option to support the dual-band
operation, resulting in a complicated circuit design. More re-
cent attempts [11,14,26,32] employ varactor to adjust phase,
which incurs a high insertion loss [26,32] and require a precise

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 389

and sophisticated DC voltage control backend [11, 14].
In this paper, we propose to design an area-efficient, low-

cost, and simple-structure programmable dual-band metasur-
face that supports concurrent beamforming on two ISM bands.
By concurrent beamforming we mean the metasurface is able
to simultaneously steer the two incident signals from two ISM
bands towards their desired departure angles, just as shown
in Figure 1. The locations of the two pairs of transceivers are
random in practice, so our metasurface should work with a ar-
bitrary combination of two incident angles and two departure
angles in 3-D space, as shown in Figure 1 (b).

Designing a dual-band metasurface is challenging. Gener-
ally, to maximize the communication efficiency, the electric
length of the RF components (meta-atoms) should match the
wavelength of the signal. There exists a large discrepancy in
the wavelength of signals from two widely separated bands,
for example, the wavelength is 12 cm and 6 cm for signals at
frequency 2.4 GHz and 5 GHz, respectively. Therefore, it is
difficult to fabricate hardware with fixed physical dimensions
but multiple resonance frequencies.

To solve the problem, we propose a novel meta-atom that
has two resonant frequencies (bi-resonant), by integrating two
antenna structures. The basic structure of our meta-atom is a
metal-backed patch square structure. By adjusting its physical
dimensions, we successfully fix its resonant frequency to the
first ISM band (2.4 GHz). To generate an additional resonant
frequency, we propose to etch slots on the patch, since the
slots impact the path of the stimulated current and thus the
resonant frequency, according to antenna theory [5]. By fine-
tuning the location, the number and the physical dimensions
of the slots on the patch, we successfully generate the second
resonant frequency at the second ISM band (5 GHz) without
affecting the first resonant frequency.

To empower the meta-atoms with dual-band programmabil-
ity, we embed two PIN diodes into carefully selected positions
of the patch on the meta-atom. Each PIN diode functions
similarly to an RF switch, and two PIN diodes provide four
"on/off" states. Depending on the state of the PIN diodes, the
meta-atom introduces different amount of phase shifts to its
reflected signal, resembling a 2-bit phase shifter.

Based on our programmable dual-band metasurface, we im-
plement a dual-band beamforming algorithm that can quickly
configure the states of all meta-atoms to accurately steer the
incident signal towards the desired departure angle. We also
design a beam alignment algorithm to adjust the configura-
tions of meta-atoms in real-time to handle user mobility.

We build a prototype of RF-Bouncer’s metasurface by em-
bedding 16 × 16 meta-atoms inside an area of 0.35 × 0.35m2.
Owing to its small form factor, RF-Bouncer’s metasurface
can be attached to the facades of the ambient environment
such as walls, furniture, and advertisement boards. Hence, RF-
Bouncer can easily cope with complex indoor environments,
as shown in Figure 1. Extensive experiments demonstrate
that even with the small-size prototype, RF-Bouncer enables

15.4 dB average signal strength improvement and a 2.49×
throughput improvement. RF-Bouncer also works robustly
across protocols (e.g., Bluetooth, Zigbee and Wi-Fi), and in
complex radio environments (3D and even NLoS).
Contributions. The main contributions of RF-Bouncer are:
(i) We design a programmable dual-band metasurface that
supports concurrent beamforming over two ISM bands1. (ii)
We implement a dual-band beamforming algorithm that can
quickly configure the metasurface to simultaneously steer the
incident signals of two bands towards their desired departure
directions. (iii) We fabricate RF-Bouncer’s metasurface and
validate its effectiveness in a wide range of practical scenarios.

2 Related Work

Metasurfaces and smart surfaces. Metasurfaces are three-
dimensional, periodic, and artificial structures [6, 10, 17, 30].
By manipulating the phase/ amplitude of electromagnetic
waves, it can beamform or re-steer the signals towards an
intended direction, so as to extend the network coverage.
MilliMirror [28] utilizes a 3D printed metasurface to re-
steer mmWave beams to illuminate coverage blind spots. Al-
though promising, such metasurfaces are not configurable.
To enable programmability, prior studies focus on adding
electronic components (i.e., varactors [8, 12, 15] or PIN
diodes [35, 40, 41]) into the metasurface. Another line of lit-
erature improves indoor network coverage by designing and
deploying smart surfaces in the environment to manipulate
wireless channels. These smart surfaces generally consist of
non-periodic but adjustable electronic components [4, 13, 39].
While the above methods have shown great promise, they
mostly focus on single-link optimizations and are not yet opti-
mized for dual-band concurrent links or 3D coverage. Unlike
them, RF-Bouncer aims to simultaneously support dual-band
wireless links (e.g., 2.4 GHz and 5 GHz) and targets indoor
3D network coverage improvement.
Expanding indoor wireless coverage. To expand the wire-
less coverage, several systems [9, 16, 20, 27, 36] deploy pas-
sive reflectors near the AP to reflect the incident signal to
enhance the link SNR. Such reflectors, however, cannot be re-
configured, resulting that they cannot adapt to dynamic indoor
environments. Instead, RF-Bouncer can dynamically config-
ure the metasurface to reshape incident beams, thus adapting
to dynamic indoor environments. Alternatively, some stud-
ies improve indoor wireless coverage by installing multiple
APs [24, 25, 29, 34] or RF relays [2, 7, 18] in the environment.
Yet, when applying to a new wireless standard or working
frequency band, these approaches require updating protocols
or hardware, which is cumbersome and high implementation
cost. In contrast, RF-Bouncer is a standard-agnostic and cost-
effective solution to enhance indoor wireless coverage.

1The design of RF-Bouncer is available at: https://github.com/ZYF-
PhD/RF-Bouncer_OpenSource

390 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 Metallic layer

 Metallic patch

 Dielectric

L

W

h

Figure 2: The incipient
structure of meta-atom.

(a1) Patch length (a2) Patch width (a3) Dielectric height

L=17.5 mm
W=17.5 mm
h=6.8 mm

(a) Paraments of incipient structure (b) Surface input impedance

Figure 3: Impact of the paraments of the incipient structure and the surface input impedance across
operating frequencies.

Dual-band design. Many efforts have been devoted to design-
ing dual-band metasurfaces. Stacking two metasurfaces with
two resonant frequencies is a straightforward solution [42],
which however results in complicated circuit design. Some
studies [22, 37] exploit polarization orthogonality to enable
dual-band reflectarray antenna, one polarization for each band,
while RF-Bouncer supports dual-band with the same po-
larization, without requiring low-cost IoT devices to rotate
when switching the working frequency bands. [23] propose
a metasurface structure that supports dual-band but only pro-
duces two symmetrical reflected beams, lacking programma-
bility in controlling the departure direction. Some recent at-
tempts [11, 32] employ varactor to adjust phase, which incurs
a high insertion loss [26,32] and requires a precise and sophis-
ticated DC voltage control backend [11,14]. [3] also supports
dual-band operation, but focuses on blocking the signal from
one band (either 2.4 GHz or 5 GHz) from penetrating through,
whose purpose is entirely different from RF-Bouncer. The
most relevant work is [31], which proposes a similar structure
to support dual-band frequencies of the same polarization, but
it only focuses on simulation and merely fabricates two meta-
atoms as a proof-of-concept prototype. Compared with the
existing dual-band design, RF-Bouncer leverages PIN diodes
and a simple square patch to achieve a programmable dual-
band metasurface that supports dual-band operation with the
same polarization. Due to the simplicity of its structure, the
proposed metasurface is easy to fabricate and thus can be
easily embedded into the environment to support various IoT
devices. Furthermore, RF-Bouncer designs a dual-band beam-
forming algorithm that can quickly configure the states of all
meta-atoms to accurately steer the incident signal towards the
desired departure angle, which has not been implemented by
any of the prior works.

3 Hardware Design of the Metasurface

In this section, We introduce the design of the meta-atom
followed by a description of the overall architecture of the
whole metasurface.

3.1 Design Goal and Challenges
Design goals. To support diverse IoT devices in complex
indoor environments, we have the following two design goals

for RF-Bouncer’s metasurface:
Goal 1: Concurrent dual-band communication. The metasur-
face must support concurrent wireless communication over
two widely separated frequency bands, e.g., 2.4 GHz and
5 GHz in our current implementation.
Goal 2: Dual-band programmability. The metasurface should
have dual-band programmability to facilitate concurrent beam-
forming for communication at two frequency bands.
Design challenges. To achieve of design goals, we also face
the following design challenges:
Challenge 1: Discrepancy in electric length. To maximize the
communication efficiency, the electric length (physical size)
of the meta-atoms depends on the operating frequency, i.e., the
electric length should be half of the signal wavelength. There
exists a large discrepancy in the electric length of two widely
separated bands, for example, the electric length is 6 cm and
3 cm for signals at frequency 2.4 GHz and 5 GHz, respectively.
Therefore, it is difficult to fabricate hardware with a fixed
physical dimension but multiple resonance frequencies.
Challenge 2: Enabling programmability. Empowering the
meta-atoms with programmability without affecting the re-
flection efficiency is the second challenge.

3.2 Design of Meta-Atoms
In this section, we first introduce the hardware architecture of
the meta-atoms followed by the description of the programma-
bility of meta-atoms.

3.2.1 Dual-band Meta-Atoms

The basic structure. We propose to build our meta-atom
based on the metal-backed patch square structure, which con-
sists of three tightly connected layers: a metallic square patch
on the top, a dielectric cuboid in the middle, and a metallic
sheet at the bottom, just as shown in Figure 2. According to
the cavity model theory [19], the resonant frequency of such
a patch structure is given as:

f =
c

2
√

εre
· 1

le
(1)

where c is the free-space speed of light. The parameter εre is
effective dielectric constant of the dielectric cuboid, which is

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 391

①

②

③

④

⑤

⑥

①

②

③

④

⑤

⑥

①

②

③

④

⑤

⑥

Figure 4: Different locations
of slots in the meta-atom.

(2.42,6721)

(2.4,7045)

(4.8,621)
(5.2,418)

(2.1,5096)

Figure 5: Surface impedance
under different single slots.

Min MinMax 0

1Current direction

Figure 6: Current distribution
of the incipient patch.

(5.0,269)
(5.6,850)

(6.6,1838)

Figure 7: Surface impedance
with different number of slots.

given as:

εre =
εr +1

2
+

εr −1
2

(
1+

12h
w

)− 1
2

(2)

where εr is the fundamental dielectric constant of the material
that makes up the dielectric cuboid, w is the width of the patch,
and h is the height of the dielectric cuboid. The parameter le
is the effective length of the patch, which is given as:

le = l +0.824h ·
(εre +0.3)(w

h +0.264)
(εre−0.258)(w

h +0.8)
(3)

where l is the length of the patch. We know from Eqn. 1, 2, and
3 that the resonate frequency of the structure is determined
by the length l, the width w of the patch, and the height h of
the dielectric cuboid.

To embed more meta-atoms within one metasurface, we
prefer area-efficient design, i.e., smaller width w and length l.
We leverage High Frequency Structure Simulator (HFSS) to
conduct comprehensive simulations to quantitatively examine
the relationship between the resonant frequency and the phys-
ical dimension of the meta-atoms. From the result in Figure 3
(a), we observe that, for a fixed dielectric cuboid height h,
decreasing the w and l results in increased resonant frequency.
Therefore, to maintain the resonant frequency at 2.4 GHz, an
area-efficient meta-atom inevitably leads to a thick dielectric
cuboid. To balance the size of meta-atom and thickness of
the metasurfaces, we conduct extensive off-line simulations
and chose the combination of w = 17.5mm, l = 17.5mm and
h = 6.8mm for our meta-atom. The final result is illustrated in
Figure 3 (b), from which we see that the resonance frequency
is indeed at 2.4 GHz.
Dual-band operation. To empower the meta-atom with
a dual-band capability, we propose to fine-tune the metal-
backed patch square structure to generate a second resonant
frequency at 5 GHz while keeping the first resonant frequency
at 2.4 GHz. Inspired by the theory of slot antenna [5], we pro-
pose to etch slots on the patch to generate additional resonant
frequency, since the slots on the patch would change the path
of the stimulated current and thus the resonant frequency. The
final patch structure and thus the resonant frequency depends
on the location and the number of slots we etch to the patch.

To study the relationship between the location of the slot
and the resonant frequency, we pick six candidate slot posi-
tions on the patch, as shown in Figure 4 and leverage HFSS

(a) The length of slot. (b) The width of slot.

Figure 8: The impact of different slot lengths and widths.

simulation to calculate the resonant frequency. We plot the
simulation results in Figure 5, from which we observe that
the slots located at the edge of the patch, i.e., the slots 1⃝,
2⃝, 5⃝, and 6⃝, have minimum impact on the first resonant

frequency, but indeed generate the second resonant frequency.
The slots at the center, i.e., the slots 3⃝ and 4⃝, however, sig-
nificantly change the first resonant frequency (shifting it from
2.4 GHz to 2.1 GHz). To explain the rational behind such a
phenomenon, we plot the current distribution of the original
frequency (2.4 GHz) is shown in Figure 6. We see that the dis-
tribution is highly unbalanced: the current at the edge is much
weaker than the current at the center of the patch. According
to [21], narrow slots located close to the current minima have
a minor perturbation to the original resonant frequency. Con-
sequently, we should etch the slots at the edge of the patch to
maintain the first resonant frequency at 2.4 GHz.

Even though a new resonant frequency is successfully ex-
cited, the reflected signal by the meta-atom is weak at the new
resonant frequency, since the impedance between the meta-
atom and the free space is close to each other. Specifically, the
reflection coefficient Γ of an antenna measures the portion of
re-radiated signal, whose value is given as Γ = Z11−Z0

Z11+Z0
, where

Z0 = 120πΩ is the impedance of free space. We can see that
a larger difference between Z11 and Z0 means more power of
the incident signal re-radiates. To obtain more energy from re-
flective signal, we propose to increase the surface impedance
and thus increase the impedance difference between Z11 and
Z0. Our solution is to etch multiple slots at locations with
small current to form an antenna array. Figure 7 depicts the
Z11 of the meta-atom, with the number of etched slots varying
from one to four. We see that the surface impedance indeed
increases with the number of slot increases, but the second
resonance frequency also diverges from the desired 5 GHz.

392 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(2.4,3616)

(5.18,2044)

Figure 9: Surface impedance
of final slot size.

PIN diode 1 PIN diode 2

Metallic layer

Dielectric (FR4)

Dielectric (FR4)

Bias layer

Metallic patch

Figure 10: Modified meta-
atom structure.

(a) 2.4 GHz band (b) 5 GHz band

2.4 2.48 5.15 5.35

Figure 11: Reflection phase of different frequency bands.

(a) 2.4 GHz band (b) 5 GHz band

2.4 2.48 5.15 5.35

 = 0.7 = 0.7

Figure 12: Reflection coefficient of 2.4 GHz and 5 GHz.

We, therefore, further fine-tune the physical dimensions
of the slots to shift the second resonant frequency back to
5 GHz. We use HFSS to calculate the impedance of the meta-
atom with varying slot length ls and width ws, and plot the
results in Figure 8. We see that the increase of both ls and ws
leads to a decrease in second resonant frequency. We choose
the combination of ls = 7mm and ws = 0.5mm as our final
solution. The final impedance of the meta-atom is plotted in
Figure 9, from which we see that our optimized meta-atom not
only shifts the resonant frequency back but also maximizes
the reflection efficiency at two operating frequency bands.

3.2.2 Empowering Programmability for Meta-Atoms

To empower the meta-atom with phase-shifting capability, our
basic solution is to embed tunable electronic components into
the metallic patch. By programming the state of the electronic
components, we change the surface impedance of meta-atom
and thus the introduced phase shifts. Specifically, we select
PIN diodes as our basic tunable electronic component. We
select PIN diodes over varactors because PIN diode only re-
quires two different DC voltage levels rather than precise and
continuous voltage values, significantly reducing the design
complexity and insertion loss [14]. We etch a rectangle slot
under “U” slots and embed two PIN diodes into each slot, just
as shown in Figure 10 (Please refer to Appendix A for the de-
tailed design). By controlling the DC voltage, we obtain four

A B

C D

1
2

8

...

...

... 57

64

...

0
.3

5
 m

(b) Bottom view

1

2

3

4

5

6

7

8

Register 1

...

Register 1

Register 2

Register 8

...

A
rd

u
n

in
o

 M
C

U

64

Channel 8

Channel 7

Channel 6

Channel 5

Channel 4

Channel 3

Channel 2

Channel 1
1 0 1 0 0 1 0 110100101…

Register 2

Register 8

 1

0

1

0

0

 1

0

 1

...

PIN diode 1
PIN diode 2

(a) Top view

Figure 13: The control architecture of the RF-Bouncer.

stages for each meta-atom, resulting in four phase shifts. We
employ HFSS to simulate the phase and reflection coefficient
of each stage, and plot the results in Figure 11. We see that the
phase difference between each state is about π/2 at 2.4 GHz
and 5 GHz frequency bands. In addition, from Figure 12, we
find that the reflection coefficient is stably higher than 0.7 in
each stage at two separated frequency bands, implying each
state has small impact on the power of the reflective signal.
Thus, we can use the final meta-atom as a 2-bit phase shifter.

3.3 Metasurface by Assembling Meta-Atoms

RF-Bouncer’s metasurface is designed by assembling mul-
tiple optimized meta-atoms, We build a prototype of RF-
Bouncer’s metasurface that consists of 16×16 meta-atoms.
All the meta-atoms are evenly distributed inside an area of
0.35×0.35m2, with a distance of 19.5mm between adjacent
meta-atoms, as shown in Figure 13. To reconfigure the PIN
diode states of each meta-atom, we embed a bias layer to trans-
mit DC bias voltage to each PIN diode (SMP1340-040LF PIN
diodes [1]).

The controller. To configure the whole metasurface, we de-
sign a control circuit module consisting of a Arduino DUE
controller and 64 SN74LV595 shift registers to provide differ-
ent DC voltages (0 V or 5 V) for each meta-atom. Specifically,
we divide the entire MTS board into 4 zones, as shown in
Figure 13. For each zone, we use two channels in the Arduino
MCU to transmit a data stream with 128 bits to control 128
PIN diodes. Due to limited GPIO pins, each channel connects
8 registers to store 64 bits. Once the enabled port is triggered,
each resister transmits 8 different DC voltages to respectively
control 8 PIN diodes in each meta-atom. Via the above set up,
the controller is now able to independently configure the state
of each meta-atom’s PIN diode. In our system, RF-Bouncer’s
power consumption is only at the level of mW since the meta-
surface itself does not emit any power.

4 Beamfomring Through RF-Bouncer

4.1 Problem Formulation

RF-Bouncer supports dual-band beamforming in 3-D space.
Given the angle θi = (αi,βi) of the incident signal, by ap-
plying appropriate phase shift γm,n on a matrix of M × N

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 393

meta-atoms, RF-Bouncer’s metasurface beamforms the inci-
dent signal towards arbitrary angle θd = (αd ,βd) in the 3-D
space, where α and β represent the azimuth and elevation
angle, respectively, just as shown in Figure 14. RF-Bouncer
has the following two working modes:
Single-band mode. In this mode, RF-Bouncer focuses on
finding the phase shift γm,n of every meta-atom that enables
the metasurface beamforming the incident signal at a single
frequency band (either 2.4 GHz or 5 GHz) towards an arbi-
trary angle in 3-D space. RF-Bouncer works in this mode
when there only exists wireless communication over a single
frequency band.
Dual-band mode. In this mode, RF-Bouncer must finds the
optimal phase shift γm,n for every meta-atom so that the meta-
surface simultaneously beamforms the wireless signals at
2.4 GHz and 5 GHz with incident angle θ2.4G

i and θ5G
i , to-

wards the departure angle of θ2.4G
d and θ5G

d , respectively. RF-
Bouncer works in this mode if there exist concurrent dual-
band transmissions.

4.2 Single Band Beamforming
For the purpose of illustration, we begin the introduction of
RF-Bouncer’s single-band beamforming algorithm with a sim-
ple case where we beamforming in 2-D space using a meta-
surface consists of two meta-atoms. We then generalize the
algorithm to beamforming in 3-D space with a metasurface
consisting of a matrix of M×N equally spaced meta-atoms.
A two-element linear array in 2-D space. We use the exam-
ple of a two-element linear array to illustrate our beamforming
algorithm. As shown in Figure 15 (a), the signal travels dif-
ferent distances before reaching two meta-atoms of the array,
resulting in phase differences. Supposing the phase of signal
received by the first meta-atom is 0, then the phase vector
induced by the incident path is given as:

φ
I(θi, fc) =

2π fc

c
·d

[
0

cosθi

]
(4)

where fc is the central frequency of the wireless signal and d
is the distance between two meta-atoms. Similarly, the signal
departure also results in phase difference. The phase vector
induced by the departure path is given as:

φ
T (θd , fc) =

2π fc

c
·d

[
cos(π−θd)

0

]
(5)

The meta-atoms shift the signal by γ = [γ1,γ2]
T before re-

flecting the signal, just as shown in Figure 15 (b). Therefore,
the phase of the signals reflected by two meta-atoms along
the wavefront at the departure angle θd is given as:

φ(θi,θd , fc,γ) = φ
I +γ+φ

T =
2π fc

c
·d

[
cos(π−θd)

cosθi

]
+

[
γ1
γ2

]
(6)

x

y

z

 = ,

 = ,

Figure 14: A metasur-
face in 3D space.

(a) Incident wave

d

1 2

d

1 2

(b) Departure wave

 cos

 cos −

Figure 15: A linear array in 2D
space.

4 16 64 144 256 400 625 900
The number of meta-atoms

0

0.5

1

G
ai

n
di

ffe
re

nc
e

(d
B

)

(a) Gain difference.

4 16 64 144 256 400 625 900
The number of meta-atoms

-20

-10

0

10

20

D
ire

ci
on

 o
ffs

et
 (

de
g)

(b) Direction offset.

Figure 16: Beamforming gain difference and direction offset
between the continuous solution γm,n and the discrete solu-
tion Q2−bit(γm,n) after quantization.

Beamforming the signal towards departure angle θd requires
signals adding constructively, i.e., the phase of signal reflected
by all the meta-atoms must be the same. In the above two-
element case, the phase shifts γ applied to two meta-atoms
should satisfy the following equation:

γ2 − γ1 =
2π fc

c
·d(cos(π−θd)− cosθi) (7)

If we set the phase shift of the first meta-atom to zero, i.e.,
γ1 = 0, the phase shift of the second meta-atom can be directly
calculated according to the above equation.
Generalization. We now generalize the above beamforming
algorithm to a metasurface embedded with a matrix of M×N
meta-atoms in 3-D space. The phase vector of the incident
path in 3-D space becomes:

φ
I(θi, fc) =

2π fc

c
·d

[
0 ... (N−1)vi
...

(M−1)ui ... (M−1)ui+(N−1)vi

]
(8)

where ui = cosαi sinβi and vi = sinαi sinβi. Similarly, the
phase vector of the departure path is given as

φ
T (θi, fc) =

2π fc

c
·d

[
(M−1)ud+(N−1)vd ... (N−1)vd

...
0 ... (M−1)ud

]
(9)

where ud = cosαd sinβd and vd = sinαd sinβd . Combing
Eqn 8 and 9 with Eqn 6, we have enough equations to derive
the phase shifts γm,n that we should apply to each meta-atom
of the metasurface.
Discrete phase shifts of meta-atoms. The optimal phase shift
γm,n we calculate according to above section is continuous.
Recall that each meta-atom in the metasurface is essentially
a 2-bit phase shifter that only provides four possible phase

394 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

shifts: 0, π

2 , π and 3π

2 . We apply the following quantization
rule to find the discrete solution of phase shifts γm,n:

Q2−bit (γm,n) =


0, otherwise
π/2, i f π/4 ≤ γm,n < 3π/4
π, i f 3π/4 ≤ γm,n < 5π/4
3π/2, i f 5π/4 ≤ γm,n < 7π/4

(10)

Phase quantization brings phase error and inevitably degrades
the beamforming performance. To quantitatively investigate
the impact of phase quantization, we traverse all the possible
combinations of incident angle θi and departure angle θd and
calculate one continuous solution γm,n and one discrete solu-
tion Q2−bit(γm,n) for each combination (θi,θd). We calculate
the gap of the beamforming gain and beamforming direction
between the continuous solution and the discrete solution and
plot the results in Figure 16. We clearly see that with the
number of meta-atoms in the metasurface increases, the gap
of beamforming gain stabilizes at 1 dB, while the direction
offset decreases and eventually gets very close to zero. This
result is in line with the prior work [35]. RF-Bouncer’s meta-
surface has 16×16 = 256 meta-atoms so the degradation of
the beamforming performance becomes negligible.

4.3 Dual-band Beamforming

Challenge. For single band beamforming, we are able to cal-
culate the optimal phase shifts γ̂m,n of every meta-atom that
strictly meeting the requirement of the beamforming: the sig-
nal reflected by all meta-atom has exact the same phase so
they superimpose constructively at the receiver. Ideally, if
each meta-atom is able to compensate the signal with two
arbitrary phase shifts at two operating frequency band, then a
naive solution would be separately finding the optimal phase
shifts for two frequency band, i.e., γ̂2.4G

m,n for 2.4 GHz band and
and γ̂5G

m,n for 5 GHz band, and then applying the optimal phase
shifts to each meta-atom. Our meta-atom, however, only has 2-
bit programmability (four states) and thus provides four fixed
combination of phase shifts at two frequency band. Specif-
ically, for each state ηm,n, the phase shifts at two frequency
band can be derived via a known mapping:

γ
2.4G
m,n = P2.4G(ηm,n)

γ
5G
m,n = P5G(ηm,n) (11)

We list the mapping between the state of meta-atom and the
phase shifts introduced by the meta-atom at that state at both
2.4 GHz and 5 GHz band in Table 1.

Due to each meta-atom’s limited phase combinations at two
frequency bands, it is impossible to simultaneously implement
the optimal phase shifts γ̂2.4G

m,n and γ̂5G
m,n on our metasurface.

Consequently, it is also impossible to find analytical solutions
that strictly meet the phase requirement of the beamforming.
Instead, we turn to search for the optimal combination of

ηm,n P2.4G P5G ηm,n P2.4G P5G

00 3π/2 0 10 π/2 π

01 π π/2 11 0 3π/2

Table 1: The mapping between the state of meta-atom and the
phases shift the meta-atom at that state introduces to signals
with central frequency of 2.4 GHz and 5 GHz.

states ηm,n of meta-atom that maximize the total gain of the
main lobes of the metasurface’s beamforming patterns at two
frequency bands.
Dual-band link optimization. Given the incident angle θ2.4G

i ,
the strength of the 2.4 GHz signal reflected by the metasurface
along the departure angle θ2.4G

d is given as:

S2.4G(θ
2.4G
i ,θ2.4G

d ,η) = a2.4G(θ
2.4G
d)

M
∑
1

N
∑
1

e jϕ(θ2.4G
i ,θ2.4G

d , f2.4G,γ)

= a2.4G(θ
2.4G
d)

M
∑
1

N
∑
1

e jϕ(θ2.4G
i ,θ2.4G

d , f2.4G,P2.4G(ηm,n))

(12)
where a2.4G(θ

2.4G
d) represents the amplitude of 2.4 GHz signal

reflected by each meta-atom along direction θ2.4G
d , whose

value is identical across all identical meta-atoms. Similarly,
the strength of 5 GHz signal reflected by the metasurface can
be represented as:

S5G(θ
5G
i ,θ5G

d ,η) = a5G(θ
5G
d)

M

∑
1

N

∑
1

e jφ(θ5G
i ,θ5G

d , f5G,P5G(ηm,n)).

(13)
Our goal is to search for the optimal meta-atom states η∗ that
maximizes the total signal strength along direction θ2.4G

d and
θ5G

d , given incident signal angle θ2.4G
i and θ5G

i :

η
∗= argmax

η

(∣∣∣S2.4G(θ
2.4G
i ,θ2.4G

d ,η)
∣∣∣+ ∣∣∣S5G(θ

5G
i ,θ5G

d ,η)
∣∣∣) .

(14)
To prevent over-optimizing single band and thus guarantee the
fairness between two bands, we further adjust our objective
function to:

η
∗ = argmin

η

((∣∣∣S∗2.4G

∣∣∣− ∣∣∣S2.4G(θ
2.4G
i ,θ2.4G

d ,η)
∣∣∣)+(∣∣∣S∗5G

∣∣∣− ∣∣∣S5G(θ
5G
i ,θ5G

d ,η)
∣∣∣)) (15)

where S∗2.4G and S∗5G are the theoretical maximum signal
strength achieved when we single-band beamform on 2.4 GHz
and 5 GHz band using continuous phase shifters, respectively.
We employ genetic algorithm (GA) algorithm [33] to solve
our optimization problem described in Eqn 15. To speed up
the search, instead of generating a random initial population,
we use the coding patterns optimized for each single fre-
quency band as a set of initial chromosomes in the initial
population of the GA algorithm.

We conduct an experiment to verify the effectiveness of
the proposed dual-band links optimization algorithm. In this

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 395

M
et

a-
at

o
m

 s
ta

te
s

11

10

01

00

11

10

01

00

(d) Single band (5 GHz)(c) Single band (2.4 GHz)

-3 dB contour line-3 dB contour line-3 dB contour line -3 dB contour line-3 dB contour line -3 dB contour line-3 dB contour line-3 dB contour line -3 dB contour line-3 dB contour line

(a) Dual band (2.4GHz) (b) Dual band (5 GHz)

Figure 17: The beam patterns of single-band links and dual-band links, respec-
tively.

M
et

a-
at

o
m

 s
ta

te
s

11

10

01

00

11

10

01

00

 (a) 2.4 GHz band (b) 5 GHz band

-3 dB contour line-3 dB contour line-3 dB contour line -3 dB contour line-3 dB contour line

Figure 18: The beam patterns when changing
negative meta-atoms.

experiment, we set the incident angle of 2.4 GHz and 5 GHz
signal to (α2.4G

i = 0◦,β2.4G
i = 0◦) and (α5G

i = 0◦,β5G
i = 0◦),

respectively. The desired beamforming direction of 2.4 GHz
and 5 GHz signal are set to (α2.4G

d = 0◦,β2.4G
d = 40◦) and

(α5G
d = 0◦,β5G

d =−40◦), respectively. After applying the op-
timal state η∗

m,n to each meta-atom, the beam pattern of the
whole metasurface is plotted in Figure 17, from which we
could see that: 1) the two mainlobes obtained by dual-band
beamforming well match the desired angles; 2) the sidelobe
levels are much lower than the mainlobe levels. In addition,
the mainlobe beamwidth of the 2.4 GHz band is wider than
the 5 GHz band. The reason is that the size of the meta-atom
is more suitable for 5 GHz band, but this issue can be easily
solved by increasing the number of meta-atoms to generate a
narrow beam of mainlobe [38]. 3) dual-band beamforming has
a lower gain about 3 dB than single-band beamforming, while
the -3 dB beamwidth is only slightly wider than single-band
beamforming (Figure 17 (c) and (d)).

4.4 Harnessing the Ambient Multipath

We observe that there exists some meta-atoms that contribute
negligible power or even have negative impact on the main
lobe, but significantly affect the distribution of the side lobes,
especially when the metasurface is configured for dual-band
operation. To demonstrate such a phenomenon, we change
the states of a small group of meta-atoms in Figure 17 (a) and
(b), and plot the 3-D beam patterns of the new metasurface
configuration in Figure 18. Comparing the beam patterns in
these two figures, we see that the direction and gain of main
lobes still retain, but the side lobes change dramatically. The
signal of the side lobes does not travel directly towards the re-
ceiver, but may still reach the receiver after being reflected by
diverse objects in the propagation environment. We propose
to further improve the signal strength by adjusting the pattern
of side lobes of the metasurface.

The key challenge we face is to select the group of meta-
atoms that mainly affects the side lobes. Since the target
meta-atoms have negligible or even negative impact on the
main lobe, the phase of the signal reflected by the target meta-
atoms must be misaligned (difference larger than π/2) with
the phase of the main lobes. Without loss of generality, we
denote the desired beamforming directions at 2.4 GHz and
5 GHz bands are (α2.4G,β2.4G) and (α5G,β5G), respectively.

Then, the phase of mainlobe is given as:

PM2.4G = ∠
M

∑
m=1

N

∑
n=1

e jφ(θ2.4G
i ,θ2.4G

d , f2.4G,P2.4G(η
∗
m,n)) (16)

PM5G = ∠
M

∑
m=1

N

∑
n=1

e jφ(θ5G
i ,θ5G

d , f5G,P5G(η
∗
m,n)) (17)

where η∗
m,n is the optimal states of meta-atoms we calculated

according to Eqn 15. Then, we find separate sets of target
meta-atoms at two frequency bands, respectively:

TU2.4G =
{
{m,n}|

∣∣PM2.4G −φ(θ2.4G
i ,θ2.4G

d , f2.4G,γm,n)
∣∣≥ π

2

}
,

(18)

TU5G =
{
{m,n}|

∣∣∣PM5G −φ(θ5G
i ,θ5G

d , f5G,γm,n)
∣∣∣≥ π

2

}
,

(19)

where m and n vary from 1 to 16 in our system. Finally, we
select the intersection of two sets of target meta-atoms as the
final solution:

TU = TU2.4 ∩TU5. (20)

The intersection TU includes meta-atoms that have negligi-
ble or even negative impact for 2.4 GHz and 5 GHz band
simultaneously, so we are safe to change the states of the
meta-atoms in TU to adjust the side lobes while at the same
time guarantees minimum impact on main lobes of two band.
We iterate all possible combinations of state and choose the
one that provides best signal quality. It is worth noting that
when the number of variable meta-atoms is large, it could take
a long time for exhaustive search. To reduce the search time,
one potential solution is to divide the whole metasurface into
several parts. For each part, the variable meta-atoms change
their state in the same way. Therefore, the number of exhaus-
tive search will be reduced to a small number. For example,
we divide the whole metasurface into 4 parts. Therefore, all
possible combinations of state will be reduced to 512 (i.e.,
44). Assuming Wi-Fi packets are collected at a rate of 1,000
packets per second, the search time will be 0.5 seconds.

4.5 Beam Alignment
To accurately beam the reflected signal towards the receiver,
we need to know the signal incident angle θi and departure

396 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Downlink
AP

Client

Figure 19: Illustration of
uplink and downlink.

Figure 20: Phase offset under
different incident angles.

angle θd . We observe that in a typical Wi-Fi system, the access
point is static for most of the cases. Therefore, the signal
incident and departure angle is fixed and known for downlink
and uplink Wi-Fi communication, respectively (Figure 19).
We propose to search for the unknown angle, i.e., incident
angle for uplink and departure angle for downlink.
Beam search for downlink. For downlink communication,
we need to search for the departure angle θd . In n-th round
of beam search, the metasurface configures its meta-atoms
to point the main lobe towards a specific angle θn

d . After re-
ceiving one packet under such a configuration, the receiver
embeds one bit inside its ACK to inform the metasurface
whether the received signal quality has increased or not com-
paring with the previous configuration, i.e., bit 1 represents
increase and bit 0 means decrease. We equip the metasurface
with a Wi-Fi receiver to overhear the ACK. After iterating all
possible departure angles, we select the θd that provides the
highest received signal quality as our results.

To speed up the searching process, we implement a two-
stage searching algorithm. In the first stage, we search with
a relatively large step size of 20◦. After obtaining the rough
direction, we then search with a small step size of 5◦ to fine-
tune the results. A step size of 5◦ is fine-grain enough since the
beamforming gain only decreases less than 1 dB at directions
that are 2.5◦ apart from the beamforming direction, according
to both our simulation and empirical results.
Bidirectional communication. We observe that, due to reci-
procity, we only need to perform beam search in one direction.
First, according to channel reciprocity, the phase shifts that
should be applied to each meta-atom for beamforming is the
same even when we swap the value of the incident angle θi
and departure angle θd . As shown in Figure 19, the signal
travels exactly the same distance no matter the AP or the
client is the sender, introducing the same amount of phase
variations. Therefore, the phase shifts required to meet the
phase requirement of beamforming is also the same.

Second, the optimized meta-atom introduces the same
amount of phase shifts to the signal, regardless of the sig-
nal incident angle. To verify that, we use HFSS to calculate
the phase shifts introduced by meta-atom by varying the inci-
dent angle, operating frequency and state of meta-atom. We
plot the distribution of phase shifts in Figure 20, from which
we see that the phase variations introduced by the meta-atom
is stable. According to the above analysis, the configuration

of the metasurface used for beamforming in one direction
also works in the opposite direction. Such an observation
significantly accelerates convergence of the beam alignment
algorithm, especially when the client moves.

5 Evaluation

Experimental setup. For controlled experiments, we use
USRP N210 software-defined radios with a UBX-40 daugh-
terboard as the radio transmitter (Tx) and receiver (Rx). We
conduct extensive experiments in three indoor environments
to evaluate the performance of RF-Bouncer: a 140 m2 duplex
with two-bedroom, a 160 m2 apartment and a spacious cor-
ridor environment with corner. In the default experimental
setting, 2.44 GHz and 5.25 GHz are selected as the operating
frequency of the 2.4 GHz band and 5 GHz band, respectively.
The Tx is deployed in the normal direction of the metasurface.

5.1 Hardware Verification

Dual-band beamforming verification. This experiment com-
pares beamforming results between single-band and dual-
band coding patterns. We configure the metasurface using
single-band coding patterns of 2.4 GHz and 5 GHz, and op-
timization dual-band coding patterns, respectively. The Rx
moves along a semicircle (3 m radius) from -90◦ to 90◦

with a step of 10◦, while the Tx stays in the center. The
Tx-metasurface distance sets as 0.5 m. Figure 21 demon-
strates that both single-band and dual-band coding pattern can
achieve effective beamforming results, but dual-band beam-
forming results come at the cost of slight decreases of signal
strength or slight shift of the direction on the mainlobe.
The performance of beamforming in dual-band. To evalu-
ate the beamforming performance of dual-band, we keep the
Tx-metasurface distance sets as 0.5 m. We default α = 0◦ and
only vary β in the following experiments. We move the Rx
along a semicircle (3 m radius) from −90◦ to 90◦ with a step
of 10◦. The results are shown in Figure 22, we can clearly
see that the effective beamforming ranges of 2.4 GHz and 5
GHz are both [−60◦,60◦]. Although the −3dB beamwidth be-
comes wider and beamforming gain becomes lower when the
beamforming direction is towards the boundary, the correct
directionality is retained. It is worth noting that the beam-
forming gain of 0◦ is slightly decreased since the Tx blocks
the link between metasurface and Rx. In addition, the perfor-
mance will be significantly dropped when the beamforming
direction is over the boundary. In conclusion, the effective
field-of-view (FoV) of beamforming is [−60◦,60◦].
The effective incident angles. We conduct experiments in
the corridor to explore the effective range of incident angles.
For the convenience of expression, we only mention β in the
following and default α = 0◦. To determine the range, we first
vary incident angles by changing the direction of Tx from

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 397

Single-band

Beam pattern

Dual-band

2.4 GHz band 5 GHz band

Dual-band

Coding
pattern

Coding
pattern

Single-band

Beam pattern

Figure 21: Results of single and dual band coding patterns.
(a) 2.4 GHz band. (b) 5 GHz band.

Figure 22: The results of beam steering from −90◦ to 90◦.

Desired angle

Boundary of efficient incident angle

(a) 2.4 GHz band.

Desired angle

Boundary of efficient incident angle

(b) 5 GHz band.

Figure 23: The performance under different
incident angles.

2.4 2.42 2.44 2.46 2.48 2.5
Frequency (GHz)

0

5

10

15

Im
pr

ov
em

en
t (

dB
)

(a) 2.4 GHz band.

5.15 5.19 5.23 5.27 5.31 5.35
Frequency (GHz)

0

5

10

15

Im
pr

ov
em

en
t (

dB
)

(b) 5 GHz band.

Figure 24: SNR improvement across operat-
ing frequencies.

ð î ì ê è ïð ïî ïì
ð
ðòî
ðòì
ðòê
ðòè
ï

© ¿«¹³»²¬¿¬·±² îòì ÙØ¦
©ñ± ¿«¹³»²¬¿¬·±² îòì ÙØ¦

ð î ì ê è ïð ïî ïì
×³°®±ª»³»²¬ø¼Þ÷

ð
ðòî
ðòì
ðòê
ðòè
ï

© ¿«¹³»²¬¿¬·±² ë ÙØ¦
©ñ± ¿«¹³»²¬¿¬·±² ë ÙØ¦

Figure 25: Results of multipath
augmentation scheme.

MTS Tx

Corridor

4 m

Rx 5 m

3 m

0.5 m5.5 m

(a) Deployment layout.

ìð

ëð

êð

ðòë ïòë îòë íòë ìòë ëòë
Î¨ Ô±½¿¬·±² ø³÷

ð

îð

ìð

ÓÌÍ Ó»¬¿´ Ì®·°±¼

(b) Power improvement.

Figure 26: The performance of different reflectors.

−90◦ to 0◦ with a step of 10◦ and set the Tx-metasurface
distance as 0.5 m. Then, we move Rx along a semicircle
(3 m radius) from −90◦ to 90◦ with a step of 10◦ to obtain
different beam patterns under different incident angles. The
desired beamforming direction is set towards 30◦. The results
are shown in Figure 23, from which we see that RF-Bouncer
can achieve beamforming effectively in the desired direction
when the incident angle varies from −70◦ to 0◦. However, the
beamforming gain and direction of the mainlobe can not be
guaranteed due to the incident wave being almost parallel (i.e.,
from −90◦ to −80◦) to the metasurface. In addition, because
of the symmetry of metasurface, the same experimental results
will appear in [0◦,70◦]. To summarize, RF-Bouncer can work
well as long as Tx is located in [−70◦,70◦].

Performance across different spectrums. In this experiment,
we validate the performance of RF-Bouncer across different
operating frequency bands. The distance of Tx-metasurface is
0.5 m, and the direction of the incident wave is perpendicular
to the metasurface. The distance between Rx and metasurface
is set to 3 m. The direction of the emergent wave focuses
on (30◦,0◦) and Rx is located in the same direction. One
case is from 2.4 GHz to 2.5 GHz with a step of 0.02 GHz.
Figure 24(a) shows the SNR can be increased by over 7.79 dB
(up to 13.94 dB). Another case is from 5.15 GHz to 5.35 GHz
with a step of 0.04 GHz. Figure 24(b) shows the SNR can be
improved by over 10.78 dB (up to 11.5 dB). Therefore, RF-

Bouncer can be applied to ubiquitous commercial IoT devices
working in 2.4 GHz and 5 GHz bands.

5.2 Communication Performance

Multipath augmentation verification. To examine the effec-
tiveness of multipath augmentation described in Section 4.4,
we conduct experiments in a representative 3D scenario (Fig-
ure 28 (a)). Specifically, we fix the location of the transmit-
ter and randomly move the receiver to 30 locations. Then,
for each location, we respectively collect the measurements
with/without multipath augmentation at 2.4 GHz and 5 GHz.
Figure 25 plots the CDF of signal strength improvement at
two frequency bands. We can see that the median improve-
ments with/without multipath augmentation at 2.4 GHz and
5 GHz are respectively 4.32 dB, 5.38 dB and 4.43 dB, 5.89
dB. These results demonstrate that our multipath augmenta-
tion scheme can effectively harness the ambient multipath to
improve the link SNR.
The performance of different reflectors. By placing RF-
Bouncer at a corridor intersection, the blind spot around the
corner can be illuminated. We conduct an experiment in a
spacious corridor environment, as shown in Figure 26(a).
The metasurface is placed at the corner, receiving signals
from (−45◦,0◦), and reflecting a fan beam from (−85◦,0◦) to
(5◦,0◦). The Tx is 4 m away from the metasurface; whereas
Rx is 3 m away moved across a 5 m distance. Figure 26(b)
compares the RSS with metasurface, a metal plane reflector
with the same size as the metasurface, and the tripod without
reflectors. While the metal plane creates a stronger main-
lobe towards the specular direction, the RSS drastically drops
as the Rx is moved to anomalous directions. In contrast, RF-
Bouncer reshapes the incidental beam to cover a wider angular
range and thus a larger region around the corner.
Multi-bit beamforming verification. The 2-bit metasurface

398 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 27: 1-bit V.S. 2-
bit.

P2

MTS

Rx-P1

P3

P4

P5
P6

P7 P9

P8

Tx

(a) 3D scenario Layout (b) Power Improvement

Figure 28: Experimental results under 3D sce-
nario.

(b) Throughput improvement

MTS

Tx

Corridor

Rx

2m

40°

20°

(a) Deployment layout

A: Zigbee 3.0, CC2530 B: Bluetooth, SPP2.0, CSRBC417 C: Bluetooth, SPP2.1, T6368A
D: Bluetooth, BLE5.0, nRF52832 E: Wi-Fi, 802.11b/g/n, 2.4GHz ESP32 F: Wi-Fi, 802.11a/g, 2.4GHz WARP
G:Wi-Fi, 802.11a/g, 5GHz WARP

Figure 29: Experimental results of throughput
improvement across different IoT devices.

Th
ro

u
gh

p
u

t
im

p
ro

ve
m

en
t

(M
b

p
s)

2.4 GHz band 5 GHz band

4 m

6 m

5 m

3 m

Tx4 m

3 m

MTS

4.5 m 2.5 m 0.5 m

P1P2P3

P4P5Rx-P6

P7P8P9

P10

(a) Layout (b) Experiment results of SISO and MIMO

Figure 30: Throughput improvement of SISO and MIMO.

MTS
Tx

5 GHz
Tx

2.4 GHz4 m

P14P14 P13P13 P12P12

P9P9P10P10

P4P4P5P5

P1P1P2P2P3P3

P7P7P8P8 P6P6

P11P11

4 m

6 m
5 m

3 m
4 m

6 m
5 m

3 m

5.5 m 0.5 m

Rx location
2.4 GHz 5 GHz

P3P3

P1P1

P1P1

P4P4

P11P11

P14P14

P8P8

P13P13

P5P5

P3P3

P6P6

P14P14

P8P8

P2P2

P9P9

P12P12

P7P7

P10P10

C1C1

C2C2

C3C3

C4C4

C5C5

C6C6

C7C7

C8C8

C9C9

Rx location
2.4 GHz 5 GHz

P3

P1

P1

P4

P11

P14

P8

P13

P5

P3

P6

P14

P8

P2

P9

P12

P7

P10

C1

C2

C3

C4

C5

C6

C7

C8

C9

(a) Layout. (b) SNR improvement.

Figure 31: Performance under concurrent transmissions.

designed by RF-Bouncer can be backward compatible to re-
alize the 1-bit programmable function. In this experiment,
we compare the performance between 2-bit, 1-bit, and with-
out metasurface (referred to w/o MTS). The Tx-metasurface
distance is set to 0.5 m and Rx is located at (30◦,0◦) of meta-
surface. We then vary the Rx-metasurface distance from 1 m
to 10 m by the step of 1 m to measure the SNR improvement.
Figure 27 demonstrates that compared w/o MTS, 1-bit and
2-bit programmable functions both can significantly enhance
the SNR, but the improvement of 2-bit is larger than 1-bit.
For example, when compared between 2-bit and 1-bit, the
minimum, median, and maximum SNR increase by 1.22 dB,
3.52 dB, and 4.91 dB across the 2.4 GHz band, and 1.29 dB,
2.81 dB, and 4.54 dB across the 5 GHz band, respectively.

Performance under 3D scenario. We test the SNR improve-
ment achieved by RF-Bouncer in a representative 140 m2 3D
scenario(Figure 28(a)). Due to the deployment limitation, we
mount the Tx and metasurface on tripods and place them at the
same height up the ground. The distance of Tx-metasurface
is 0.5 m. Both Rx and Tx work in the 5 GHz band. The
Rx is located at 9 different locations. The height of the Rx
from the ground varies from 10 cm to 5 m. The elevation
angle of Rx varies from −30◦ to 30◦ and the azimuth angle
of Rx varies from −30◦ to 40◦. We measure the SNR im-
provement by using directional and omnidirectional antenna,

respectively. Figure 28(b)shows the improvement in different
channel conditions. Almost all signal strength improvements
under different positions are above 2.5 dB and up to 13.5 dB.
Furthermore, due to indoor multipath, the improvement of
omni-directional antenna at some positions (i.e., P6 and P7)
in the 3D scenario is higher than directional antenna. In con-
trast, the improvement of P9 is negative due to the following
reasons: 1) the azimuth angle between P9 and metasurface ex-
ceeds the effective beamforming FoV of metasurface, leading
RF-Bouncer can not provide beamforming gain to it; 2) the re-
inforced concrete between floors blocks the LoS between Tx
and Rx, causing most energy of the incident signal reflects to
other directions. This issue can be easily solved by deploying
multiple metasurfaces.

Throughput across different IoT devices. RF-Bouncer aims
to enhance the signal energy of IoT devices in the NLoS
scenario. Hence, in this experiment, we test IoT devices
(i.e., CC2530, CSRBC417, KT6368A, nRF52832, ESP32,
WARPv3) operating different frequency bands (i.e., 2.4 GHz
and 5 GHz) with various protocols (i.e., Zigbee 3.0, SPP
2.0, SPP 2.1, BLE 5.0, 802.11 b/g/n, and 802.11 a/g) in a
corner NLoS scenario. We use iperf to measure TCP through-
put for ESP32 and use the WARPLab environment for the
WARPv3 boards. The NLoS deployment layout is shown in
Figure 29(a). We set the Tx-metasurface distance and Rx-
metasurface distance as 1.4 m and 2 m, respectively. The
incident angle of metasurface is (20◦,0◦) and the emerging
angle is (−40◦,0◦). The results with metasurface and without
metasurface (referred to w MTS and w/o MTS) are shown
in Figure 29(b). We can see that the minimum, median, and
maximum throughput gain are 115%, 137%, and 249%, re-
spectively. These results imply that RF-Bouncer is transparent
to the working protocols and frequencies.

SISO and MIMO links. We now evaluate the throughput
performance in SISO and MIMO communication systems.
Specifically, we use two laptops equipped with AR9580 wire-
less cards as the transmitter and receiver, each of them has
three antennas and works on the 801.11n protocol. Then,
we fix the transmitter location and move the receiver to 10
locations, as shown in Figure 30(a). At each location, we
respectively change the communication mode, varying from
1×1, 2×2 and 3×3, and use iperf toolbox to collect through-
put measurements. Figure 30(b) shows that as the number
of antennas used in communication system increases, the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 399

(b1) 0.5 m/s of 2.4GHz. (b2) 1 m/s of 2.4GHz. (b3) 0.5 m/s of 5GHz. (b4) 1 m/s of 5GHz.

MTS Tx

Corridor

4 m

Rx

3 m

0.5 m5.5 m

(a) Layout. (b) The SNR of different walking speeds under different frequency bands.

Trajectory

Figure 32: Experimental results of different walking speeds under different frequency bands.

MTS1 Tx

Rx-P1

P2
P3

P5

P4 P7

P8

P9
P10

P12
P13

Room 1 Room 3

K
it

ch
e

n

Dining
room

P15

P16

Room 4P6 Room 2

MTS3

Living room

MTS4MTS2
P11

P14

(a) NLoS scenario layout.

Dire Omni

(b) SNR improvement.

Figure 33: Whole-house coverage under cooperative work.

throughput improvement increases in both frequency bands.
For example, RF-Bouncer can achieve a median through-
put improvement of 1.88Mbps, 3.37Mbps, 4.38Mbps, and
2.96Mbps, 4.22Mbps, 4.87Mbps for 1×1, 2×2 and 3×3 at
2.4 GHz and 5 GHz, which corresponds to an improvement
of up to 50% compared with the baseline in each case.

Concurrent transmissions. In this experiment, we evalu-
ate RF-Bouncer’s performance in the presence of concurrent
wireless links at 2.4 GHz and 5 GHz. Specifically, we fix two
transmitters working at 2.4 GHz and 5 GHz in two differ-
ent locations, and move two corresponding receivers to nine
different location combinations. The detailed deployment is
presented in Figure 31(a). In each location combination, the
coding pattern of metasurface is obtained based on Sec. 4.3,
and we then collect the measurements to calculate the SNR
improvement when there is no metasurface. The results in Fig-
ure 31(b) shows that RF-Bouncer can simultaneously improve
the SNR of two concurrent wireless links. For example, RF-
Bouncer can achieve an average SNR improvement of 9.01
dB and 12.08 dB for 2.4 GHz and 5 GHz, respectively. This
demonstrates that RF-Bouncer can work well for dual-band
concurrent wireless transmissions.

5.3 Performance under Mobility

In this section, we examine the performance of RF-Bouncer
in a mobile environment. We place the transmitter at a fixed
location and move the receiver along a predefined trajectory
with two constant speeds: 0.5 m/s (slow) and 1.0 m/s (nor-
mal). In each speed case, RF-Bouncer controller configures
the metasurface in real time to accurately beam the reflected
signal towards the receiver. The detailed sweep mechanism
is referred to Sec. 4.5. Then, we collect the measurements

to calculate the SNR during the receiver’s movement. Fig-
ure 32 shows the real-time SNR measurements with/without
metasurface (referred to w MTS and w/o MTS) in 2.4 GHz
and 5 GHz. We can see that RF-Bouncer can consistently
achieve a SNR improvement compared to the case without
metasurface at both different speeds and different frequency
bands. These results demonstrate that RF-Bouncer can work
well in mobile environments. In addition, we can observe that
the performance of RF-Bouncer in slow speed works better
than high speed. This is because RF-Bouncer has more time
to beam the signal towards the receiver. We thus will explore
the high speed scenario of RF-Bouncer in future work.

5.4 Coverage Extension

Whole-house coverage under cooperative work. By placing
multiple metasurfaces (MTSs) in the complex whole-house
scenario, the signal coverage can be efficiently expanded. We
conduct an experiment in a 160 m2 place with four rooms
(Figure 33(a)). Four MTSs are cooperating. MTSs indepen-
dently control and the working range of each MTS is disjoint.
We note that this experiment does not consider how to select
a good MTS route in the central control end to achieve good
performance. Instead, we manually selected a routing route
to perform beamforming for each location. Specifically, the
transmitter in this experiment is fixed at one location and
four MTSs are also pre-fixed at different locations. The route
starts at MTS1, goes through MTS2 and MTS3, and ends at
MTS4. Coverage includes the living room, the dining room,
and three rooms. Note that missing areas that are not currently
covered - such as the kitchen, room 4, and the bathrooms -
can be easily covered by deploying more MTSs in the future.
We set the Tx-MTS distance to 1 m and measure the SNR
improvement in different locations. RSS from P1 to P6 is
controlled by MTS1; from P7 to P10 is controlled by MTS2;
from P11 to P13 is controlled by MTS3; and from P14 to P16
is controlled by MTS4. The results of using the omnidirec-
tional/directional antenna (referred to Omni and Dire) and
with/without the MTS (referred to w MTS and w/o MTS) are
shown in Figure 33(b). We can clearly see that 1) the signal
coverage can be efficiently expanded by leveraging multiple
MTSs collaborative with each other; 2) the SNR is generally
improved (above 1.26 dB and up to 17.65 dB) in NLoS envi-

400 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ronments by the MTS, while the enhancements of different
distances are different due to multipath; 3) MTS can achieve
good performance even without LoS path between MTS and
Rx (i.e., through the wall); 4) regardless of the antenna pattern,
RF-Bouncer can improve the SNR.
Corner coverage expansion. In this experiment, we show
how RF-Bouncer expands the wireless coverage at the corner
scenario. As shown in Figure 34, we collect measurements
with/without metasurface in both downlink and uplink for
each location. From Figure 34, we can see that without meta-
surface, most locations around the corner have a lower SNR,
especially for 5 GHz links, which only have an average SNR
of 4.24 dB and 3.67 dB in downlink and uplink, respectively.
This is because a signal of higher frequency has more severe
path attenuation. In contrast, with the help of RF-Bouncer
metasurface, most locations around the corner significantly
improved SNR in both downlink and uplink at 2.4 GHz and 5
GHz. For example, RF-Bouncer can achieve an average SNR
improvement of 10.30 dB (up to 26.16 dB) and 8.10 dB (up to
24.19 dB) for 2.4 GHz and 5 GHz downlinks, while an aver-
age SNR improvement of 8.78 dB (up to 25.27 dB) and 8.54
dB (up to 17.01 dB) for 2.4 GHz and 5 GHz uplinks. These
results demonstrate that 1)RF-Bouncer can well expand the
wireless coverage at the corner scenario; 2) RF-Bouncer can
achieve good performance when Tx and Rx locations vary
over a wide range of angles; 3) RF-Bouncer can work well
for downlink and uplink simultaneously.

6 Discussion

Multiple metasurfaces cooperation. Cooperating multiple
metasurfaces across rooms can effectively expand the wireless
coverage, which is an interesting and challenging direction. In
our current implementation, we manually calculate the config-
uration of each metasurface offline (which cannot guarantee
the optimal performance) and send the configuration to each
controller. In the future work, we will design an algorithm
that can automatically configure the networked metasurfaces.
In addition, current metasurface only consists of 256 meta-
atoms with a size of 0.35× 0.35m2, such a small aperture
would lead to a wide beam at 2.4 GHz, which results in a
worse coverage between different metasurfaces in the case of
installing multiple metasurfaces. This is a limitation of our
current version. Thus, to avoid this issue, one possible method
is to design a larger aperture metasurface to generate a narrow
beam of mainlobe.
Operationg frequency. Our current design has a bandwidth
of 200 MHz (from 5.15 GHz to 5.35 GHz), which covers 17
WiFi channels at 5 GHz. Since commercial devices go all
the way to 5.8 GHz of spectrum, we thus will optimize our
meta-atom’s design to enlarge the effective working band to
cover additional 5 GHz channels in the follow-up work.
Unwanted interference induced by metasurface. Deploy-

4 mMTS

4 m

6 m
5 m

3 m

(b1) 5 GHz band w MTS

4 m

6 m

5 m

3 m

(b2) 5 GHz band w/o MTS

TxTx4 mMTS

4 m

6 m

5 m

3 m

(a1) 2.4 GHz band w MTS

4 m

6 m
5 m

3 m

(a2) 2.4 GHz band w/o MTS

15

20

25

30

35

40

0.5 m5.5 m 0.5 m5.5 m

0.5 m5.5 m 0.5 m5.5 m

3 m3 m

3 m 3 m

Figure 34: Corner coverage extension.

ing a smart surface to amplify some of the signals could
possibly lead to interference, especially when there are multi-
ple concurrent wireless links. But the possibility is small since
the metasurface is beamforming the signal towards a specific
direction, instead of omnidirectional reflection. Also, if the
whole area is covered with metasurfaces, we could minimize
interference by coordinating the metasurfaces.

Practicality and scalability of RF-Bouncer. The current ver-
sion of RF-Bouncer needs to deploy a metasurface for each
room, causing a huge cost. Fortunately, its cost can be mini-
mized through mass fabrication. Meanwhile, due to the thin
surface nature of metasurface, it can potentially be embedded
into the environment (e.g., furniture and walls) to reduce the
footprint, promoting its widespread deployment. In addition,
since each metasurface has a FoV (i.e., [−60◦,60◦] for RF-
Bouncer’s metasurface), by deploying a metasurface in the
public area (e.g., the corridor), we can only use a single meta-
surface to reflect signal into many rooms, so as to avoid each
room requires installing a metasurface.

7 Conclusion

We have designed, fabricated, and validated RF-Bouncer, a 2-
bit dual-band reflecting metasurface to expand indoor wireless
coverage. By encoding the phase shifting values, RF-Bouncer
can simultaneously manipulate electromagnetic waves in two
ISM bands. In addition, RF-Bouncer is transparent to proto-
cols, so as to support diverse commercial IoT devices. Field
study shows that RF-Bouncer can enable 15.4 dB average
signal strength improvement.

Acknowledgment

Thanks the anonymous shepherd and reviewers for their valu-
able comments. This work is supported in part by National
Natural Science Foundation of China under Grants (62272388,
61972316, 62061146001) and the Shaanxi International Sci-
ence and Technology Cooperation Program (2023-GHZD-04,
2023-GHZD-06).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 401

References

[1] Smp1340-040lf. https://www.skyworksinc.com/
Products/Diodes/SMP1340-Series.

[2] Omid Abari, Dinesh Bharadia, Austin Duffield, and Dina
Katabi. Enabling high-quality untethered virtual real-
ity. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 531–544,
2017.

[3] Haider Ali, Laeeq Riaz, Syed Abdul Mannan Kirmani,
Shahid A Khan, and M Farhan Shafique. Dual band-
stop reconfigurable (switchable) frequency selective
surface for wlan applications at 2.4 and 5 ghz. AEU-
International Journal of Electronics and Communica-
tions, 143:154038, 2022.

[4] Venkat Arun and Hari Balakrishnan. Rfocus: Beam-
forming using thousands of passive antennas. In 17th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), pages 1047–1061, 2020.

[5] Constantine A Balanis. Antenna theory: analysis and
design. John wiley & sons, 2015.

[6] Ertugrul Basar, Marco Di Renzo, Julien De Rosny, Mer-
ouane Debbah, Mohamed-Slim Alouini, and Rui Zhang.
Wireless communications through reconfigurable intelli-
gent surfaces. IEEE ACCESS, 7:116753–116773, 2019.

[7] Dinesh Bharadia and Sachin Katti. Fastforward:
Fast and constructive full duplex relays. ACM SIG-
COMM Computer Communication Review, 44(4):199–
210, 2014.

[8] Michael Boyarsky, Timothy Sleasman, Moham-
madreza F Imani, Jonah N Gollub, and David R Smith.
Electronically steered metasurface antenna. Scientific
reports, 11(1):1–10, 2021.

[9] Justin Chan, Changxi Zheng, and Xia Zhou. 3d printing
your wireless coverage. In Proceedings of the 2nd In-
ternational Workshop on Hot Topics in Wireless, pages
1–5, 2015.

[10] Hou-Tong Chen, Antoinette J Taylor, and Nanfang Yu.
A review of metasurfaces: physics and applications. Re-
ports on progress in physics, 79(7):076401, 2016.

[11] Kun Woo Cho, Yasaman Ghasempour, and Kyle
Jamieson. Towards dual-band reconfigurable metama-
terial surfaces for satellite networking. arXiv preprint
arXiv:2206.14939, 2022.

[12] Kun Woo Cho, Mohammad H Mazaheri, Jeremy
Gummeson, Omid Abari, and Kyle Jamieson. mmwall:

A reconfigurable metamaterial surface for mmwave net-
works. In Proceedings of the 22nd International Work-
shop on Mobile Computing Systems and Applications,
pages 119–125, 2021.

[13] Manideep Dunna, Chi Zhang, Daniel Sievenpiper, and
Dinesh Bharadia. Scattermimo: Enabling virtual mimo
with smart surfaces. In Proceedings of the 26th Annual
International Conference on Mobile Computing and
Networking (MobiCom), pages 1–14, 2020.

[14] Chao Feng, Xinyi Li, Yangfan Zhang, Xiaojing Wang,
Liqiong Chang, Fuwei Wang, Xinyu Zhang, and Xiao-
jiang Chen. Rflens: metasurface-enabled beamforming
for iot communication and sensing. In Proceedings of
the 27th Annual International Conference on Mobile
Computing and Networking, pages 587–600, 2021.

[15] Kai Guo, Qun Zheng, Zhiping Yin, and Zhongyi Guo.
Generation of mode-reconfigurable and frequency-
adjustable oam beams using dynamic reflective metasur-
face. IEEE Access, 8:75523–75529, 2020.

[16] Sihui Han and Kang G Shin. Enhancing wireless perfor-
mance using reflectors. In IEEE INFOCOM 2017-IEEE
Conference on Computer Communications, pages 1–9.
IEEE, 2017.

[17] Hui-Hsin Hsiao, Cheng Hung Chu, and Din Ping Tsai.
Fundamentals and applications of metasurfaces. Small
Methods, 1(4):1600064, 2017.

[18] Kai-Cheng Hsu, Kate Ching-Ju Lin, and Hung-Yu Wei.
Full-duplex delay-and-forward relaying. In Proceedings
of the 17th ACM International Symposium on Mobile Ad
Hoc Networking and Computing, pages 221–230, 2016.

[19] James R James, Peter S Hall, and Colin Wood. Mi-
crostrip antenna: theory and design, volume 12. Iet,
1986.

[20] Wahab Khawaja, Ozgur Ozdemir, Yavuz Yapici, Fatih
Erden, and Ismail Guvenc. Coverage enhancement for
nlos mmwave links using passive reflectors. IEEE
Open Journal of the Communications Society, 1:263–
281, 2020.

[21] Girish Kumar and Kamala Prasan Ray. Broadband mi-
crostrip antennas. Artech house, 2003.

[22] Teng Li, Hongfu Meng, and Wenbin Dou. Design
and implementation of dual-frequency dual-polarization
slotted waveguide antenna array for ka-band applica-
tion. IEEE Antennas and Wireless Propagation Letters,
13:1317–1320, 2014.

402 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.skyworksinc.com/Products/Diodes/SMP1340-Series
https://www.skyworksinc.com/Products/Diodes/SMP1340-Series

[23] Hai Lin, Wen Yu, Rongxin Tang, Jing Jin, Yumei Wang,
Jie Xiong, Yanjie Wu, and Junming Zhao. A dual-
band reconfigurable intelligent metasurface with beam
steering. Journal of Physics D: Applied Physics,
55(24):245002, 2022.

[24] Allen Miu, Hari Balakrishnan, and Can Emre Koksal.
Improving loss resilience with multi-radio diversity in
wireless networks. In Proceedings of the 11th annual
international conference on Mobile computing and net-
working, pages 16–30, 2005.

[25] Rohan Murty, Jitendra Padhye, Ranveer Chandra, Alec
Wolman, and Brian Zill. Designing high performance
enterprise wi-fi networks. In NSDI, volume 8, pages
73–88, 2008.

[26] Binh Duong Nguyen and Christian Pichot. Unit-cell
loaded with pin diodes for 1-bit linearly polarized recon-
figurable transmitarrays. IEEE Antennas and Wireless
Propagation Letters, 18(1):98–102, 2018.

[27] Zhangyou Peng, Linxiao Li, Miao Wang, Zhonghao
Zhang, Qi Liu, Yang Liu, and Ruoran Liu. An effec-
tive coverage scheme with passive-reflectors for urban
millimeter-wave communication. IEEE Antennas and
Wireless Propagation Letters, 15:398–401, 2015.

[28] Kun Qian, Lulu Yao, Xinyu Zhang, and Tina Ng. Mil-
limirror: 3d printed reflecting surface for millimeter-
wave coverage expansion. In Proceedings of the 28th
Annual International Conference on Mobile Computing
and Networking, 2022.

[29] Hariharan Rahul, Haitham Hassanieh, and Dina Katabi.
Sourcesync: A distributed wireless architecture for ex-
ploiting sender diversity. ACM SIGCOMM Computer
Communication Review, 40(4):171–182, 2010.

[30] Marco Di Renzo, Merouane Debbah, Dinh-Thuy Phan-
Huy, Alessio Zappone, Mohamed-Slim Alouini, Chau
Yuen, Vincenzo Sciancalepore, George C Alexandropou-
los, Jakob Hoydis, Haris Gacanin, et al. Smart radio
environments empowered by reconfigurable ai meta-
surfaces: An idea whose time has come. EURASIP
Journal on Wireless Communications and Networking,
2019(1):1–20, 2019.

[31] Yasir Saifullah, Qinzhuo Chen, Guo-Min Yang,
Abu Bakar Waqas, and Feng Xu. Dual-band multi-bit
programmable reflective metasurface unit cell: design
and experiment. Optics Express, 29(2):2658–2668,
2021.

[32] Amin Tayebi, Junyan Tang, Pavel Roy Paladhi, Lalita
Udpa, Satish S Udpa, and Edward J Rothwell. Dynamic
beam shaping using a dual-band electronically tunable

reflectarray antenna. IEEE Transactions on Antennas
and Propagation, 63(10):4534–4539, 2015.

[33] Darrell Whitley. A genetic algorithm tutorial. Statistics
and computing, 4(2):65–85, 1994.

[34] Grace R Woo, Pouya Kheradpour, Dawei Shen, and Dina
Katabi. Beyond the bits: cooperative packet recovery
using physical layer information. In Proceedings of the
13th annual ACM international conference on Mobile
computing and networking, pages 147–158, 2007.

[35] Qingqing Wu and Rui Zhang. Towards smart and re-
configurable environment: Intelligent reflecting surface
aided wireless network. IEEE Communications Maga-
zine, 58(1):106–112, 2019.

[36] Xi Xiong, Justin Chan, Ethan Yu, Nisha Kumari,
Ardalan Amiri Sani, Changxi Zheng, and Xia Zhou.
Customizing indoor wireless coverage via 3d-fabricated
reflectors. In Proceedings of the 4th ACM International
Conference on Systems for Energy-Efficient Built Envi-
ronments, pages 1–10, 2017.

[37] Hongjing Xu, Shenheng Xu, Fan Yang, and Maokun Li.
Design and experiment of a dual-band 1 bit reconfig-
urable reflectarray antenna with independent large-angle
beam scanning capability. IEEE Antennas and Wireless
Propagation Letters, 19(11):1896–1900, 2020.

[38] Fan Yang, Ruyuan Deng, Shenheng Xu, and Maokun Li.
Design and experiment of a near-zero-thickness high-
gain transmit-reflect-array antenna using anisotropic
metasurface. IEEE transactions on antennas and propa-
gation, 66(6):2853–2861, 2018.

[39] R Ivan Zelaya, William Sussman, Jeremy Gummeson,
Kyle Jamieson, and Wenjun Hu. Lava: fine-grained 3d
indoor wireless coverage for small iot devices. In Pro-
ceedings of the 2021 ACM SIGCOMM 2021 Conference,
pages 123–136, 2021.

[40] Lei Zhang, Ming Zheng Chen, Wankai Tang, Jun Yan
Dai, Long Miao, Xiao Yang Zhou, Shi Jin, Qiang Cheng,
and Tie Jun Cui. A wireless communication scheme
based on space-and frequency-division multiplexing us-
ing digital metasurfaces. Nature electronics, 4(3):218–
227, 2021.

[41] Lei Zhang, Xiao Qing Chen, Shuo Liu, Qian Zhang, Jie
Zhao, Jun Yan Dai, Guo Dong Bai, Xiang Wan, Qiang
Cheng, Giuseppe Castaldi, et al. Space-time-coding
digital metasurfaces. Nature communications, 9(1):1–
11, 2018.

[42] Na Zhang, Ke Chen, Yilin Zheng, Qi Hu, Kai Qu, Jun-
ming Zhao, Jian Wang, and Yijun Feng. Programmable
coding metasurface for dual-band independent real-time

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 403

PIN diode 1 PIN diode 2

L1

L2

L1

L4

W1

W2

W3

W4

W5

W6

h1

h2

W1

L3

Ls

Ws

Ls

Ws

Lbias Ws

LGND

(a) 3D architecture (b) Upper layer (c) Middle layer (d) Lower layer

dbias

Figure 35: The structure of optimal unit-cell.

(a) OFF and OFF (b) OFF and ON (c) ON and OFF (d) ON and ON

Main current path in 5 GHz bandMain current path in 5 GHz bandMain current path in 2.4 GHz bandMain current path in 2.4 GHz band

Figure 36: The meta-atom as a 2-bit phase shifter.

beam control. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 10(1):20–28, 2020.

A Appendix

Figure 35 illustrates the structure of optimal unit-cell and
Table 2 summarizes the optimal unit-cell parameter configura-
tions. We place two PIN diodes with the opposite orientation
on the upper patch layer as shown in Figure 35(b). The bias
current supported by a DC voltage regulator flows from the
bias line and flows to the patch through two vertical via-holes.
Then, it flows to the GND line after passing through PIN
diodes. Under the different DC voltage levels, each PIN diode
switches to “ON” or “OFF” state and thus the opening direc-
tions of each patch have four states, as shown in Figure 36.
Depending on the sign of the bias current, the meta-atom
introduces a phase shifting of 0. π/2, π, or 3π/2. In addition,
in order to decouple the influence between each bias line, we
partition the whole metasurface into 4 areas (e.g., A, B, C,

and D in Figure 13, so the maximum number of bias lines
passing through a unit-cell is reduced from 16 to 8.

Therefore, we can consider the meta-atom as a 2-bit phase
shifter, corresponding to four electromagnetic responses. In
order to independently adjust each meta-atom’s phase, we
employ a bias line layer to control the states of the PIN diode
within each meta-atom.

Table 2: The parameters of the unit-cell.

Parameter Value (mm) Parameter Value (mm)
Ls 19.5 Ws 19.5
L1 3 L2 1.4
L3 9.1 L4 0.2

Lbias 0.2 LGND 0.4
W1 17.5 W2 5.8
W3 5.8 W4 15
W5 7 W6 7
h1 0.3 h2 6.5

dbias 0.8

404 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Scalable Distributed Massive MIMO Baseband Processing

Junzhi Gong
Harvard University

Anuj Kalia
Microsoft

Minlan Yu
Harvard University

Abstract
Massive MIMO (multiple-in multiple-out) is a key wire-

less technique to get higher bandwidth in modern mobile
networks such as 5G. The large amount of computation
required for massive MIMO baseband processing poses a
challenge to the ongoing softwarization of radio access net-
works (RAN), in which mobile network operators are re-
placing specialized baseband processing chips with com-
modity servers. Existing software-based systems for mas-
sive MIMO fail to scale to increasingly larger MIMO di-
mensions with an ever-increasing number of antennas and
users. This paper presents a new scalable distributed sys-
tem called Hydra, designed to parallelize massive MIMO
baseband processing while minimizing the overhead of dis-
tributing computation over multiple machines. Hydra’s
high scalability comes from reducing inter-server and inter-
core communication at different stages of baseband process-
ing. To do so, among other techniques, we take advantage
of hardware features in modern commodity radios in novel
ways. Our evaluation shows that Hydra can support over
four times larger MIMO configurations than prior state-of-
the-art systems, handling for the first time, 150×32 massive
MIMO with three servers.

1 Introduction
Massive MIMO is a key wireless technique to increase spec-
tral efficiency in modern mobile networks such as 5G. Mas-
sive MIMO refers to using a large number of radio antennas
to simultaneously serve a large number of users on the same
frequency resources. Mobile network operators today are
deploying multi-user massive MIMO to handle the increas-
ing demand from mobile users [16]. For example, T-Mobile
recently demonstrated the benefits of massive MIMO in a
setup with 64 antennas serving eight concurrent users [12],
achieving an impressively high total downlink bandwidth of
5.6 Gbps. A promising way to handle the demand for higher
spectral efficiency and mobile bandwidth is to increase the
massive MIMO dimensions: the number of radio antennas,
and the number of users served simultaneously [17, 26, 28].

While the previous-generation LTE networks typically
used small MIMO configurations (e.g., four antennas), mas-
sive MIMO deployments with 64 antennas are already com-
monplace in 5G, and future deployments could use hun-
dreds of antennas [16]. For example, AirSpan’s Air5G 7200
already supports 128 transmit and 128 receive antennas [2].

This paper tackles the challenge of scalably supporting
increasing massive MIMO dimensions in virtualized RANs
(vRAN). With vRANs, mobile network operators are replac-
ing specialized RAN hardware, such as ASICs and DSPs for
wireless signal processing, with commodity x86 servers [5,
10, 11, 13, 15]. RAN virtualization offers important bene-
fits, such as mitigating vendor lock in and increasing RAN
flexibility and feature velocity. However, massive MIMO
remains a challenge for software-based RANs [8]. This is
due to the extremely high computational requirements of
massive MIMO, in the presence of tight millisecond-scale
latency deadlines. For example, the largest massive MIMO
configuration considered in this paper—150 antennas and
32 users—requires our system (Hydra) to use 71 CPU cores,
cumulatively handling 80.6 Gbps of fronthaul traffic, within
a latency deadline of 2.5 ms.

Our goal is to design a system that can efficiently scale
to increasing massive MIMO dimensions by using the re-
sources of more servers, to handle the requirements of 5G
and future radio technologies. Key to Hydra’s scalability is
a set of new techniques that we design to scalably distribute
massive MIMO computation among a pool of servers while
minimizing the distribution overhead from inter-server and
inter-core communication. Existing projects that imple-
ment massive MIMO baseband processing in software, such
as Agora [17] and BigStation [28], lack a path for scaling
to increasing MIMO dimensions. One the one hand, single-
machine systems like Agora and Intel’s FlexRAN [3] are lim-
ited to the CPU and network bandwidth resources of only
one machine. One the other hand, the BigStation project
studies the opportunities for distributing multi-user MIMO
computation, but does not seek to optimize the distribution
overhead, which is the focus of this work.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 405

Hydra serversMassive MIMO RU

Server

Server

Server

Switch
Fronthaul

Figure 1: The architecture of a virtualized and distributed
massive MIMO baseband processing system.

AmassiveMIMObaseband processing system (also called
a baseband unit, or BBU) connects to a multi-antenna radio
unit (RU) over awired fronthaul link (Figure 1). In our setup,
the BBU consists of one ormore servers in a datacenter, con-
nected to the fronthaul via an Ethernet switch. The RU and
the BBU exchange packets containing in-band and quadra-
ture (IQ) samples for hundreds or thousands of Orthogo-
nal Frequency Division Multiplexing (OFDM) subcarriers.
The BBU’s computation consists of a pipeline of stages,
each with a different type of parallelism [18, 28]. Hydra’s
design includes three key new ideas (summarized below)
to map these BBU computation stages and the inter-stage
shuffling of intermediate data to different hardware compo-
nents, while minimizing inter-server and intra-server com-
munication for scalability.

Taking the uplink direction as an example, the computa-
tion stages are as follows (Figure 2). First, antenna-parallel
processing converts each antenna’s time-domain IQ sam-
ples into the frequency domain using a fast Fourier trans-
form (FFT). Second, subcarrier-parallel processing converts
each subcarrier’s per-antenna IQ sample streams into de-
modulated per-user streams. Third, user-parallel processing
runs forward error correction on the per-user streams, con-
verting them to user bit streams. The BBU connects these
stages using communication mechanisms that shuffle the
outputs of one stage into the inputs of the next stage.

Our first two ideas reduce inter-server communication
(compared to BigStation), and the third reduces intra-server
communication (compared to Agora).

1. BBU-RU interface. We identify that an existing hard-
ware feature in modern RUs—the ability to perform
FFT and generate separate packets for configurable
subcarrier ranges—can be used to build a scalable dis-
tributed system for massive MIMO. Note that these RU
abilities were not originally intended to build scalable
distributed systems (Section 3.1); instead, we found a
novel use case of these abilities. These FFT-capable RUs
exchange frequency-domain IQ samples with the BBU,
instead of time-domain IQ samples like in BigStation.
Hydra routes packets for different subcarrier ranges
to different servers, partitioning the fronthaul traffic
and feeding the subcarrier-parallel pipeline stage with
near-zero overhead. Compared to BigStation’s design

in which BBU servers run FFT and shuffle subcarrier
ranges in software, our approach reduces inter-server
communication by up to 66.4%.

2. Within the BBU cluster. Due to abundant paral-
lelism, massive MIMO BBU processing offers many op-
tions to distribute computation within the server pool,
at the cost of inter-server communication. For exam-
ple, BigStation shuffles the BBU’s intermediate data
over the network within the subcarrier-parallel stage,
and predicts benefits from splitting individual matrix
inverse operations across servers. Such inter-server
communication limits BBU scalability. To minimize
inter-server communication in Hydra, we observe that
the subcarrier-parallel stage transforms the data di-
mension from antennas to users, and massive MIMO
by nature usesmuch fewer users than antennas. There-
fore, we delay inter-server communication until af-
ter the subcarrier-parallel stage, shuffling only a small
fraction of the BBU’s input data rate among its servers.

3. Within one server. Within a machine, Hydra affini-
tizes the processing of an OFDM subcarrier to a CPU
core. This ensures that the same CPU cores process
a subcarrier through multiple subcarrier-parallel BBU
sub-stages, eliminating inter-core shuffling of interme-
diate outputs. Hydra also avoids centralized schedul-
ing of BBU tasks, which reduces inter-synchronization
overhead, and prevents a single thread from becoming
a bottleneck. This allows Hydra to use up to 47% fewer
CPU cores than Agora’s design (Section 5.6).

Besides the above key ideas, we also dynamically increase
or decrease the number of CPU cores used, to efficiently
handle the varying demands in mobile networks and re-
duce the energy consumption. We build Hydra starting
from Agora’s open source implementation. Our evaluation
with an RU emulator shows that the number of antennas
and users that Hydra can handle scales with the number of
servers. With three servers, Hydra handles 150×32 MIMO,
which has 2.3x more antennas and 2x more users than the
prior state of the art single-machine system (Agora). With a
larger 18-node cluster of old servers, Hydra handles 256×32
MIMO. Our evaluation also shows Hydra reduces CPU use
by 46% when the traffic demand is low, compared to the cor-
responding system without dynamic core scaling.

2 Background and motivation
Antennas at a multi-user massive MIMO RU receive wire-
less signals that are a combination of several users’ trans-
missions. Each antenna has associated hardware that digi-
tizes these signals into per-subcarrier IQ samples (typically
represented as fixed-point complex values), assembles the
IQ samples into packets, and transmits them to the BBU over
a wired fronthaul link. The BBU’s task is to recover the bits

406 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

transmitted by each user from these jumbled complex num-
bers.

Doing so requires a huge amount of signal processing on
the IQ samples, includingmatrix operations and forward er-
ror correction. This high computation cost is justified by the
corresponding improvements in spectral efficiency. Note
that although server hardware is an important contributor
to operating expenditure, spectrum is often the most valu-
able resource in mobile networks.

2.1 Massive MIMO basics
Traditional single-user base stations allows at most one user
to communicate with the base station on a given frequency
resource (i.e., a subcarrier), avoiding inter-user interference.
Multi-userMIMOuses interference canceling to allow amo-
bile base station to serve multiple users concurrently on the
same subcarrier. Multi-userMIMOexploits spatial diversity,
which means that different users are separated in physical
space and therefore have different channels to the RU. Mas-
sive MIMO refers to multi-user MIMO with a large number
(typically 32 or more) of base station antennas.

An M×N massive MIMO configuration uses M RU an-
tennas to simultaneously serve N user antennas. On a
given subcarrier, we can represent the signals transmitted
by the N user antennas using an N×1 complex-valued col-
umn vector xN×1. The signal yM×1 received by the RU is
a mixture of all users’ transmissions. y can be modeled as
≈WM×N × xN×1, where W is the “channel matrix”, i.e., Wi, j
is the wireless channel between antenna i and user j.
Zero-forcing receivers. The BBU’s main task then is to
jointly process the signals y from all RU antennas to recover
the users’ signals x. Importantly, the BBU can do this joint
processing for each subcarrier in parallel. The joint pro-
cessing consists of two steps. First, the BBU estimates the
channel matrix W by using “pilot” transmissions from the
users that have well-known numerical values, and are sep-
arated in time or frequency to avoid inter-user interference.
Second, with the common “zero-forcing” approach, the BBU
then computes the pseudo-inverse of the channel matrixW ,
as H = (W ∗W)−1W ∗. For subsequent non-pilot data trans-
missions, the BBU recovers an approximation of x by com-
puting H × y, in a process called equalization.
After reconstructing x, the BBU performs demodulation

to map the complex numbers to bits. The demodulated bits
contain both user data bits and parity bits, appended by the
radio protocol.

Finally, the BBU decodes the demodulated output via a
forward-error correction (FEC) algorithm to produce the
users’ bits. Similar to Agora [17], Hydra uses 5G’s LowDen-
sity Parity Check (LDPC) algorithm for decoding.

2.2 Massive MIMO baseband processing
Our goal in Hydra is to distribute massive MIMO BBU pro-
cessing among a pool of servers using the fewest number

FFT

Zero-forcing

Equalization Demodulation Decoding

Upstream
precoder

From
RU

To core
network

EncodingModulationPrecodingIFFT From core
network

To
RU

Downstream
precoder

Antenna
parallel

Subcarrier
parallel

User
parallel

Figure 2: Massive MIMO processing pipeline.

of CPU cores and servers, achieved by minimizing distri-
bution overheads from inter- and intra-server communica-
tion. We next discuss the two aspects of the massive MIMO
processing pipeline that are crucial for designing a scalable
distributed system: (1) the opportunity for distribution pre-
sented by the different types of parallelism in each stage,
(2) and the scalability challenge posed by the need to shuf-
fle data from one pipeline stage’s output to the next stage’s
input (which we colloquially call the “data shuffling over-
head”).

Through the paper, we use the largest massive MIMO
configuration supported by Hydra as a running example
for exposition: 150×32 MIMO; with a typical 20 MHz con-
figuration: 2048 subcarriers, out of which 1200 subcarriers
carry data and the rest are used for guard bands; and 1 ms
“slots” (discussed next).

Slots and symbols. Wireless protocols such as 4G and
5G divide time into slots. Each slot duration is typically
further subdivided into 14 symbol durations. In each sym-
bol duration, each RU antenna sends packets to the BBU
containing IQ samples for all subcarriers. The radio proto-
col reserves pre-configured symbols for pilot signals from
users, which are used for channel estimation. Similar to
prior work [18, 28], we use the first symbol for pilots.

2.2.1 Types of parallelism

As noted by prior work [18, 28], massive MIMO baseband
processing exhibits parallelism in different dimensions at
different stages of the processing pipeline. This allows BBUs
to divide the processing among multiple workers (i.e., CPU
cores or servers). Figure 2 shows the three dimensions of
parallelism for both uplink and downlink.

In the first antenna-parallel stage, the BBU performs FFT
on the 150 antenna streams in parallel, converting time-
domain IQ samples into frequency-domain samples. This
step also eliminates the guard subcarriers and retains the
1200 subcarriers. The second frequency-parallel stage con-
sists of three sub-stages: the BBU performs channel inver-
sion, equalization, and demodulation for the 1200 subcar-
riers in parallel. The BBU may amortize the high cost of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 407

matrix inversion by assuming that the channel matrix for
some small configurable number of consecutive subcarriers
is the same. In the third user-parallel stage, the BBU per-
forms FEC decoding for each user independently.
2.2.2 Challenge: Inter-stage data shuffling

Massive MIMO processing is not perfectly parallelizable be-
cause the type of parallelism changes at each stage of mas-
siveMIMO processing, requiring shuffling the output of one
stage to the input of another stage. One of our design goals
in Hydra is to minimize this shuffling overhead.
Antenna-parallel to subcarrier-parallel shuffling.
Consider a thread Tfft that has computed the FFT for a fron-
thaul packet in the antenna-parallel stage. At this point, Tfft
has data for all 1200 subcarriers. Tfft must then transmit data
from different subcarrier ranges to the subcarrier-parallel
stage threads processing the corresponding subcarrier
ranges. This transmission uses shared-memory for destina-
tion threads on the same machine, and over-the-network
transmission for remote threads.
Subcarrier-parallel to user-parallel shuffling. Con-
sider a thread Tsc that has finishes the subcarrier-parallel
stage (i.e., demodulation) for its partition of subcarriers. At
this point, Tsc has data for all users, andmust transmit differ-
ent user ranges to threads running user-parallel processing.

In Section 3, we discuss how Hydra avoids the overhead
of both explicit and implicit intra-stage data shuffling in
prior BBU designs.

2.3 The need for distributed computing
Our goal for building a scalable distributed design for mas-
sive MIMO BBUs is to provide a path for scaling to massive
MIMO’s ever-increasing computational demands. If mas-
sive MIMO vRANs are limited to a single server, they will
suffer from limited mobile bandwidth, spectral efficiency,
and have a less competitive feature set compared to tradi-
tional BBUs based on specialized hardware. Note that while
this paper focuses on increasing antennas and users as the
main driver for higher computation requirements, other im-
portant factors such as increasing the frequency bandwidth
(e.g., 20 MHz to 100 MHz) and decreasing the slot size (e.g.,
1 ms to 0.5 ms) also substantially increase the computation
resources required and fronthaul traffic bandwidth.
PHY latency deadlines. The radio protocol’s NACK
(negative acknowledgment) turnaround time imposes a la-
tency deadline on BBU processing. For example, in 4G and
5G, in case of an irrecoverable bit error on the uplink, the
BBU must send a downlink NACK to the user within four
slots (i.e., within 4 ms). In this work, we set Hydra’s latency
deadline to 2.5 ms at the 99.99-th percentile, to allow 1.5 ms
for the MAC to schedule the downlink NACK.
High computational requirements. The number of
CPU cores required to meet the BBU’s latency deadline in-

creases with MIMO dimensions, eventually exceeding the
capacity of a single machine and necessitating a distributed
design. For example, even after our optimizations, Hy-
dra requires two servers to support 128×32 MIMO, and
three servers to support 150×32 MIMO. Our 150×32 mas-
sive MIMO configuration requires 71 CPU cores. Note that
although servers with very large numbers (100+) of high
performance cores are available today, vRAN operators typ-
ically deploy smaller servers due to constraints such as
power draw and fleet homogeneity. We explain these fac-
tors in detail next.

Limitation of single-machine systems. The CPU re-
quirement of large MIMO configurations such as 150×32
(71 cores) is too high for a single vRAN server. This is be-
cause vRAN servers are deployed in small edge datacen-
ters that have limited energy and space budgets, which pre-
cludes using beefy servers (e.g., quad-socket servers with
100+ cores). vRAN servers are typically single-socket or
mid-range dual-socket servers. For example, HPE’s servers
targeted for vRAN have at most 28 CPU cores [14]. Sim-
ilarly, Dell’s reference architecture for vRAN has 40 cores
per server [4].

In addition, massive MIMO servers co-exist with vRAN
servers handling other workloads, such as BBUs for non-
massive RUs, and virtualized implementations of higher cel-
lular protocol layers (e.g., MAC). Datacenter operators pre-
fer maintaining a uniform fleet of servers, i.e., it is uncom-
mon to deploy special high core-count servers for just one
workload. Therefore, a distributed design that can support
massive MIMOworkloads in typical vRAN servers is useful.

Another advantage of not relying on high-end beefy
servers, which we have currently not explored in this work,
is cheaper fault tolerance. vRAN deployments must provide
extremely high availability since they are part of the criti-
cal phone infrastructure. One way to limit vRAN downtime
is to deploy some servers as hot backups. Maintaining a
beefy backup server to guard against the failure of a single
beefy server is more expensive compared to maintaining a
smaller backup server to guard against failure of one of Hy-
dra’s servers.

2.4 Limitations of prior distributed designs
BigStation [28] is the state-of-the-art design for virtualized
distributed massive MIMO baseband processing. BigStation
was designed around a decade ago for 4GMIMO processing,
supporting up to 12 antennas and 12 users. BigStation’s de-
sign (Figure 3) has two limitations:

High inter-core and inter-server communication.
BigStation was designed for relatively small MIMO con-
figurations, and aimed to meet latency deadlines with the
weaker CPU cores available in 2012. Thus, BigStation ag-
gressively distributes decomposable BBU tasks among CPU
cores in the cluster (Section 3.2). As the MIMO dimension

408 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

...
FFT

FFT

FFT

ZF

ZF

ZF

Equal & Demod Decode

Decode

Decode

RU antennas

Equal & Demod

Equal & Demod

Time-domain
IQ samples

Functions running on
commodity servers

(a) BigStation architecture

... ...

Decode

Decode

Decode

ZF Equal Demod

RU antennas

ZF Equal Demod

ZF Equal Demod

...

FFT

FFT

FFT

Frequency-domain
IQ samples

Functions running on
commodity servers

(b) Hydra architecture

Figure 3: Architecture comparison between BigStation and
Hydra (uplink). Unlike BigStation, Hydra shuffles data only
after the subcarrier-parallel stage. “ZF”, ”Equal”, ”Demod”,
and “Decode” are short for zero-forcing, equalization, de-
modulation, and LDPC decoding, respectively.

increases, the communication overhead in BigStation be-
comes significant and limits its scalability. In contrast, today
we have higher MIMO dimensions and more powerful CPU
cores that can individually complete the requiredMIMO op-
erations within the radio protocol’s deadline. Therefore,
Hydra’s design centers on keeping computation local on a
CPU core to the extent possible.
Time-domain fronthaul traffic. BigStation was de-
signed for older RUs that lacked FFT support (Section 3.1).
To handle the large number of antennas in massive MIMO,
BigStation’s servers spend a correspondingly large amount
of CPU cycles in (a) performing FFT and IFFT, and (2) send-
ing, receiving, and shuffling IQ samples (Section 4). For ex-
ample, in the uplink direction, the servers first receive time-
domain IQ samples from antennas, perform FFT, and then
shuffle the frequency-domain IQ samples among each other
to enter the subcarrier-parallel processing stage.

2.5 Motivation and challenges for Hydra
The above limitations of single-server and distributed
MIMO BBUs motivated us to create a new distributed de-
sign. The key challenge in Hydra is: how can we distribute
massive MIMO BBU processing among a pool of workers
(servers or CPU cores) with minimal overhead? An ideal
design is to perfectly parallelize the workload among the
BBU servers without any inter-server communication.

When splitting massive MIMO BBU processing for an RU

with fronthaul traffic Fbw Gbps among N servers, the min-
imal network communication each server must handle is
Cmin = Fbw/N Gbps. Our design achieves close to perfect
parallelism with only 20% additional inter-server commu-
nication compared to Cmin (Section 5.2).

3 Design
We next describe Hydra’s three main design components.
Our design focuses on reduces communication overhead,
with three approaches: (1) using the ability of modern RUs
to run FFT and split packets into subcarrier ranges (Sec-
tion 3.1), (2) shuffling data between servers at a stage that
minimizes inter-server traffic (Section 3.2), and (3) avoiding
inter-core data movement and coordination within a server
(Section 3.3).

For brevity, similar to prior work [18, 24, 29] we primar-
ily focus on uplink processing, which is often more com-
putationally intensive than downlink processing due to the
higher cost of channel decoding compared to encoding. In-
terestingly, we find that downlink processing can be costlier
than uplink on some server architectures (Section 5.2).

3.1 Scalable fronthaul traffic partitioning
Massive MIMO radios generate a high rate of fronthaul traf-
fic. For a scalable design with minimal overhead, it is criti-
cal to not re-shuffle any substantial fraction of the fronthaul
traffic between servers. Doing so adds overhead in terms
of CPU cycles, latency, and datacenter network bandwidth
use. We show that the new ability in modern RUs to run
FFT and generate separate packets for different subcarrier
ranges allows partitioning the fronthaul traffic among Hy-
dra’s servers with zero overhead. This reduces the amount
of traffic that each server must handle before the subcarrier-
parallel stage by up to 66.4% compared to BigStation.
Quantifying fronthaul bandwidth. For example, the
fronthaul bandwidth in our running example configuration
(Section 2.2)—150×32 MIMO, 20 MHz frequency bandwidth
(2048 subcarriers, 1200 data subcarriers), 1 ms slots with 14
symbols—is 80.6 Gbps, assuming that the RU performs FFT
and eliminates guard subcarriers: Each of the 150 antennas
generates one packet with 1200 subcarriers (four bytes per
IQ sample) for each of the 14 symbols in a slot. Therefore,
the BBU receives 150×1200×4×14 bytes every millisecond,
totaling 80.6 Gbps.

Note that most of the factors listed in Section 2.3 cause
the fronthaul bandwidth to increase linearly. For example,
using 100 MHz bandwidth with 0.5 ms slots is a common
configuration in 5G deployments. This increases the fron-
thaul bandwidth by 5.5x to 444 Gbps by (1) increasing from
1200 to 3300 data subcarriers (4096 total subcarriers), and
(2) doubling the rate at which the BBU receives packets.

To better describe the advantages of Hydra’s fronthaul
traffic partitioning approach, we begin by first discussing
BigStation’s approach. We compare the datacenter network

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 409

System Receive rate Transmit rate
BigStation 47.3 Gbps 12.9 Gbps
Hydra 20.2 Gbps 0 Gbps

Table 1: Comparison of datacenter network bandwidth used
in BigStation andHydra before the subcarrier-parallel stage.
These numbers are for a 150-antenna RU and 20 MHz band-
width with 1 ms slots.

bandwidth handled by each machine before the subcarrier-
parallel stage in BigStation and Hydra, assuming each BBU
design uses a cluster of four machines, and our running ex-
ample MIMO configuration.

BigStation’s approach BigStation uses RUs without FFT
support, and therefore operates on time-domain IQ sam-
ple packets, with 2048 IQ samples each (one IQ sam-
ple per subcarrier). In our example MIMO configura-
tion, the fronthaul bandwidth for BigStation is therefore
80.6×2048/1200 =137.5 Gbps. BigStation partitions the
fronthaul traffic by antenna: each of the four BigStation
servers receives packets for an exclusive range of 32 anten-
nas, i.e., 137.5/4 = 34.4 Gbps.

BigStation’s servers then run FFT on the time-domain
IQ sample packets and drop the guard subcarriers, retain-
ing 1200 subcarriers. To feed the next subcarrier-parallel
stage (Section 2.2.2), each server must send 75% of the
1200 subcarriers to other machines. This corresponds to
32×(0.75×1200)×4×14 bytes per millisecond, or 12.9 Gbps.
Symmetrically, each server also receives 12.9 Gbps of shuf-
fling input from the other three servers.

Hardware capabilities of modern radios The O-RAN
alliance [9] defines specifications for various components
and interfaces in 5G vRAN deployments. There are two
hardware capabilities in modern O-RAN–compliant RUs
that allow us to design newways to partition fronthaul traf-
fic. (1) FFT support. O-RAN’s fronthaul specification [7] re-
quires RUs to support FFT. Running FFT at the RU reduces
fronthaul bandwidth requirement by dropping guard sub-
carriers at the RU. For example, in our 20 MHz configura-
tion with 2048 subcarriers and 1200 data subcarriers, run-
ning FFT at the RU cuts down fronthaul bandwidth by 41%.
Since FFT is cheap to implement, it is widely included in
RUs. This O-RAN feature benefits massive and non-massive
RUs alike (e.g., small cells in a city that have low-bandwidth
connections to the BBU).

(2) O-RAN also requires the RU to support configurable
“fragmentation” (Section 3.5 in the fronthaul spec [7]) of
its IQ sample packets on both the uplink and the down-
link. This is needed to support fronthaul networks with
different MTUs (a fronthaul packet with 1200 subcarriers
requires 4800 bytes, which exceeds Ethernet’s typical 1500-
byte MTU), and to allow the BBU to request only certain

frequency ranges from the RU. The latter is useful for re-
ducing fronthaul traffic during low load when only a few
frequency resources are in use.
Hydra’s approach We found a novel use case of these
two RU abilities, which is different from what they were
originally designed for (i.e., reducing fronthaul traffic or
handling different MTUs): distributingmassiveMIMO fron-
thaul traffic among a pool of servers with zero overhead.

Fortunately, O-RAN RUs do not fragment packets at ar-
bitrary boundaries, such as in the middle of an IQ sample.
With such an implementation of fragmentation, Hydra’s
servers would need to re-shuffle some IQ samples between
servers before the subcarrier-parallel processing stage. In-
stead, each fragment contains a contiguous range of subcar-
riers, and the BBU can configure these ranges over its con-
trol plane connection to the RU. In Hydra, we use as many
equally-sized ranges as the number of servers. If the num-
ber of subcarriers is not a multiple of the number of servers,
one server gets a slightly larger range than others.

For example, in a four-server Hydra cluster, we config-
ure the RU to send four packets per antenna in each symbol
duration. The four packets contain IQ samples for data sub-
carrier ranges 0–299, 300–599, 600–899, 900–1199. We then
route the ith packet to server i. Each Hydra server therefore
receives 80.6/4 =20.2 Gbps and sends no datacenter network
traffic before entering the subcarrier-parallel stage.

Table 1 compares the amount of traffic received and
sent by each server before the subcarrier-parallel stage
in BigStation and Hydra for our example configuration.
Hydra’s total bi-directional bandwidth requirement per-
server (20.2 Gbps) is 66.4% percent lower than BigStation’s
(60.2 Gbps). Our evaluation shows that using FFT-capable
RUs with subcarrier range fragmentation reduces the num-
ber of CPU cores needed byHydra by up to 46% (Section 5.5).

3.2 Scalable PHY computation partitioning
After partitioning subcarriers, Hydra still needs to run
the subcarrier-parallel stage (i.e., zero-forcing, equalization,
and demodulation), and the user-parallel stage (i.e., decod-
ing). There are several possible approaches to partitioning
this remaining computation among Hydra’s servers. We
observe that the massive MIMO processing pipeline pro-
gressively reduces the amount of data transferred between
pipeline stages. Hydra minimizes the amount of inter-
server data shuffling by delaying shuffling to the last stage
of the MIMO processing pipeline (decoding). Compared to
BigStation’s design, Hydra’s servers shuffle up to 42% less
data (Section 3.2.2).
3.2.1 Hydra’s approach

Recall that in our running example, the ith Hydra server
Si receives IQ samples for subcarriers [300×i, 300×(i + 1)).
Si runs all the subcarrier-parallel processing sub-stages for
these 300 subcarriers locally, i.e., without shipping any com-

410 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

putation to remote servers. After demodulation, Si creates
32 per-user output buffers, each with 300 entries for the cor-
responding users’ transmissions on each subcarrier. The de-
coding for 75% of these users happens on other servers, so
Si ships its outputs for those users over the network.

Rationale. The transition point between subcarrier-
parallel and user-parallel stages offers an efficient point for
shipping computation across servers. This is because the
subcarrier-parallel stage reduces the amount of data flowing
through the BBU’s uplink pipeline: The equalization step for
a subcarrier transforms per-antenna samples into per-user
samples, and the number of antennas in massive MIMO is
substantially larger than the number of users. For example,
64×8 is the typical massive MIMO configuration in today’s
5G deployments. In our running 128×32 massive MIMO ex-
ample, equalization shrinks the pipeline’s flow by 4x.

3.2.2 BigStation’s approach

The main alternative to our approach is computation and
data shipping even within the subcarrier-parallel stage. For
example, unlike Hydra, the computation for a given subcar-
rier in BigStation happens on different servers: BigStation
reserves a set of its servers for only matrix inversion. These
servers then ship the computed inverses to other servers
running equalization and demodulation.

Comparison with Hydra. In our running example with
150×32 MIMO, we assume that groups of 32 subcarriers (as
many as the number of users to avoid inter-user interfer-
ence during pilot transmission) have the same channel ma-
trix. Therefore, there are 1200/32 channel matrices, and
each matrix is 150×32×8 = 38400 bytes in size. Shipping
these matrices over the network in each millisecond slot du-
ration requires 11.5 Gbps.

Shuffling data between the subcarrier-parallel stage and
the user-parallel stage for this MIMO configuration cumula-
tively requires 16 Gbps for a three-server BBU (Section 5.2).
This shuffle is required in both Hydra and BigStation, but
it is the only shuffle required in Hydra. Therefore, Hydra’s
inter-server shuffle bandwidth (16 Gbps) is 42% lower than
BigStation’s (11.5 Gbps + 16 Gbps) for this configuration.

Alternative approaches. Similarly, early versions of our
system aimed to maximize parallelism in the MIMO BBU
by dynamically shipping individual matrix inversion and
multiply operations over the cluster. Our thinking was in
line with BigStation’s hypotheses [28, Section 5.3] that for
very large MIMO systems, the matrix inverse and multi-
ply operations may need to be partitioned across servers.
However, such an approach is unnecessary and inefficient:
distributing individual MIMOmatrix operations is unneces-
sary because modern CPU cores are individually powerful
enough to meet the BBU’s deadline. For example, comput-
ing the pseudo-inverse of a 150×32 channel matrix takes
only around 150 µs on our servers. Our evaluation shows

that confining a subcarrier’s processing to a single server (a
single core) works well on today’s hardware. In addition,
shipping the matrix operations adds overhead by shipping
a huge amount of matrix contents over the network, requir-
ing similar bandwidth to the fronthaul bandwidth.

3.3 Scaling within a machine
In our goal to build a scalable distributed system for massive
MIMO baseband processing, we also had to create new op-
timizations for the processing within a single machine. We
found that our baseline Agora system has a large amount of
overhead from inter-core data movement and synchroniza-
tion. We next describe two optimizations to reduce inter-
core data movement and synchronization that we made on
top of Agora. Our evaluation shows that these optimiza-
tions are crucial: without them, for some large MIMO con-
figurations, Hydra either fails to support the configuration,
or requires over 2x more CPU cores (Section 5.6).

Subcarrier-to-core affinity Recognizing the high cost
of inter-core communication, we design Hydra to use the
same CPU core for all the subcarrier-parallel sub-stages for
a given subcarrier. In contrast, Agora centers its design
around fine-grained task distribution, so a random core runs
any individual matrix inverse or matrix multiply. Although
this is a straightforwardway of parallelizingMIMOprocess-
ing that provides flexibility in allocating tasks to cores, it
incurs a large amount of inter-core communication.

In Agora, the CPU core that computes the channel matrix
inverse for a subcarrier (Ci) is almost always different from
the CPU cores that run equalization and demodulation for
that subcarrier (Ce). Note that a given channel matrix in-
verse computed from the pilot symbols is used for equaliza-
tion in 13 subsequent data symbols. This creates overhead
by repeatedly moving the computed matrix inverse from
Ci’s private caches to Ce’s caches. It also reduces the cache
efficiency of all cores, since the same matrix contents are
duplicated in several caches.

In Hydra, the same CPU core performs channel matrix
inversion, equalization, and demodulation for a given sub-
carrier. This eliminates inter-core cache movement and du-
plication of cached data.

No central coordinator thread. Agora uses a
coordinator-worker thread design, in which a single
coordinator thread communicates with worker threads via
shared-memory queues. The coordinator thread queues
task descriptors to the workers (e.g., the address and
dimension of a source matrix to invert), and receives com-
pletions from workers. We find that in Agora’s design, the
worker threads spend a substantial amount of time blocked
and waiting for work from the coordinator. This happens
because the coordinator must schedule a large number of
tasks, restricting performance. In contrast, Hydra’s threads
use shared-memory counters to track dependencies in the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 411

Task Without HT With HT

Invert a 150×32 matrix 2.9 K/sec 4.8 K/sec
Equalization (32×150 times 150×1) 0.96 M/sec 1.23 M/sec
Precoding (150×32 times 32×1) 0.67 M/sec 0.72 M/sec
LDPC decoding (one UE) 20.2 K/sec 23.3 K/sec
LDPC encoding (one UE) 48.5 K/sec 60.0 K/sec

Table 2: Comparison of single-core processing rate with and
without Hyper Threading (HT) for 150×32 MIMO.

MIMO pipeline, avoiding the coordinator bottleneck. In
addition, since we also use subcarrier-to-core affinity, there
are over 10x fewer cross-core task dependencies in Hydra
than in Agora.

3.4 Downlink processing
The BBU’s downlink pipeline is the reverse of the uplink
pipeline. A separate MAC layer sends per-user data to Hy-
dra’s user-parallel threads, which perform LDPC encod-
ing, and send the corresponding subcarrier ranges to Hy-
dra’s subcarrier-parallel workers. Subcarrier-parallel work-
ers then apply the precoder matrix that they computed dur-
ing uplink processing (the precoder is the transpose of the
channel matrix inverse) to transform per-user streams to
per-antenna streams. The packet I/O threads on each ma-
chine then combine the outputs of each subcarrier-parallel
worker to generate one packet for the machine’s assigned
subcarrier range, which is then sent to the RU.

4 Implementation
We implement Hydra in C++ for Linux, building on top of
Agora’s open-source codebase. Similar to Agora, (1) we use
Intel MKL for matrix operations accelerated with AVX-512
SIMD instructions, (2) we use Intel’s FlexRAN library [6] for
LDPC decoding and encoding.
Thread types inHydra. AHydra deployment consists of
one ormore Hydra processes running on different servers in
a cluster. Each Hydra process launches three sets of threads,
each pinned to a different core: (1) packet IO threads, (2)
subcarrier-parallel threads, and (3) user-parallel threads.
Packet IO threads send and receive fronthaul traffic, and
shuffle BBU pipeline data between servers. Each subcarrier-
parallel and user-parallel thread is assigned a static range of
subcarriers or range of users, respectively. For each MIMO
dimension, we use the fewest number of threads for each
thread type (currently determined manually) required to
handle the maximum workload.
Hyper Threading. While Agora disables Hyper Thread-
ing (HT), we find that enabling it improves the performance
of massive MIMO processing by reducing the negative im-
pact of memory stalls. Massive MIMO processing generates
a large memory footprint (e.g., 1200 150×32 matrices, or
11.5 MB), causing misses in the CPU’s L1–L3 caches, which
reduce CPU efficiency. Hyper Threading hides the impact

of these memory stalls by overlapping memory accesses
with compute, e.g., by allowing one logical thread to use
a SIMD unit while another logical thread is stalled. Table 2
shows that for 150×32 MIMO, using HT improves a single
core’s throughput by 7.5%–65.5% for different PHY routines
measured in isolation in micro benchmarks. For end-to-end
runs, we were able to fit 150×32 MIMO processing in three
servers only with HT enabled. For smaller MIMO configu-
rations that we were able to test both with and without HT,
using HT reduces the number of physical CPU cores needed
by Hydra, e.g., from 68 to 53 cores for uplink processing for
128×32 MIMO.

Dynamic CPU core utilization. Since mobile networks
experience highly variable workloads, it is important for the
BBU to scale its energy consumption with the workload [1].
For example, cell sites in residential areas have high utiliza-
tion during the day time, but almost no utilization at night.
Hydra scales its CPU usage with the workload as follows.

For every slot, the MAC layer (not included in our sys-
tem yet) communicates the set of users active on each sub-
carrier to Hydra. If during a slot with low load, the base
station has fewer active users than the number of users per-
mitted by theMIMOdimension, Hydra puts the correspond-
ing user-parallel threads to sleep. Similarly, if a slot’s MAC
configuration has some subcarriers not assigned to any user,
Hydra puts the corresponding subcarrier-parallel threads to
sleep. While this approach is fairly simple, we believe that
it works well because mobile networks experience highly
bursty workload patterns, with significant periods of zero
load. For example, recent measurements show that a 4G cell
is fully idle in 75% of the slots [20]. During zero-load peri-
ods, Hydra disables most of its threads, keeping only the
packet I/O threads active. The CPU cores yielded by Hy-
dra may be used by other co-located latency-tolerant edge
workloads such as machine learning and analytics [20].

5 Evaluation
This section presents our evaluation of Hydra’s perfor-
mance, the effectiveness of our design choices, and com-
parisons with design choices made by prior massive MIMO
baseband processing systems (i.e., Agora and BigStation).

For evaluation, we created a complete version of BigSta-
tion based on the original design [29]. To focus the evalua-
tion on the distributed system design differences between
BigStation and Hydra, we also implement all of Hydra’s
single-machine optimizations for BigStation.

5.1 Evaluation setup

5.1.1 Server setup

We run our evaluation in two clusters. For most experi-
ments, we use a “main” cluster of four commodity servers,
with three servers running our distributed BBU, and one
server acting as a fronthaul traffic generator emulating an

412 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RU (Section 5.1.2). All servers are connected to an Arista
7060 switch with 100 GbE single-port Mellanox ConnectX-
5 NICs. Each server has two Intel Xeon Silver 4216 CPUs
(2.1 GHz, AVX512 support), with 16 cores per CPU. We use
at most 29 cores per server to leave some cores for the OS
to avoid kernel thread starvation.

To demonstrate our design’s scalability to more servers
than available in our main cluster, we use another cluster in
CloudLab [19] consisting of 27 servers, with up to 18 servers
for the BBU, and nine servers for emulating the RU. These
servers are less powerful than our main cluster’s servers.
All servers are connected to Mellanox 2410 switches with a
Mellanox ConnectX-4 25 GbE NIC. Each server has one ten-
core Intel E5-2640v4 CPU (2.4 GHz, no AVX512 support).

As is typical in vRAN systems [3, 18], we configure each
server to reduce jitter: we run our processes as real-time
processes with the highest scheduling priority, and remap
OS interrupts to an unused core. Our experiments run in a
dedicated cluster without network congestion and therefore
experience no packet loss. Unless specified otherwise, the
experiments run in the main cluster.

5.1.2 Emulated fronthaul traffic generator

Since O-RAN-compatible massive MIMO radios are not
readily available today, we emulate the fronthaul traffic
with a software-based generator, using Agora’s DPDK-
based generator as a starting point. The generator applies a
Rayleigh fading channel with Gaussian noise (25 dB signal-
to-noise ratio). Agora’s generator emulates a basic RUwith-
out FFT support, transmitting time-domain IQ samples; we
modify it to emulate an O-RAN radio: our generator runs
FFT, discards guard subcarriers, and splits packets into mul-
tiple subcarrier ranges, one per Hydra server. In addition,
for the packet for a given subcarrier range, the generator
uses the network address (IP and MAC address) for the cor-
responding Hydra server.

In the CloudLab cluster, which has 25 GbE, the fron-
thaul bandwidth exceeds a single server’s NIC bandwidth
for MIMO configurations with over 46 antennas. To over-
come this, we split the traffic generation for the antennas
across multiple servers. All servers are time-synchronized
to a sub-microsecond accuracy with PTP, and agree on the
first slot’s start time during initialization. We also add gen-
erator support to change the set of active subcarriers and
users to emulate high and low load scenarios.

5.1.3 Wireless parameters

Our wireless settings are similar to Agora: all experiments
use a 20MHz configuration with 1200 data subcarriers (2048
total subcarriers), 1 ms slot duration, and 64 QAM modula-
tion. We use 1/3 LDPC code rate and base graph #1, with a
LDPC lifting size (“Z”) up to 104. This configuration results
in 29.7 Mbps data rate per user, or 950 Mbps for 32 users.
Since our primary focus is performance, our experiments

use the peak load where all subcarriers and users are active,
unless mentioned otherwise.

5.2 End-to-end performance
Figure 4 shows the number of CPU cores and servers needed
byHydra and BigStation to support differentmassiveMIMO
configurations. We show the numbers for both uplink and
downlink processing. We run the experiment for 100 sec-
onds, spanning 100k 1 ms slots. To support a MIMO di-
mension, the BBU must satisfy two constraints: (1) the
BBU’s 99.99th percentile latency must be below 2.5 ms (Sec-
tion 2.3), and the BBU must have a throughput of one slot
per slot duration (1 ms in our case) to keep up with the
RU. Hydra supports up to 150×32 MIMO with three BBU
servers. For 150×32 MIMO, Hydra uses 71 cores for uplink
processing, or 83 cores for downlink processing.

Interestingly, we find that in our main cluster, Hydra’s
downlink processing is more expensive than uplink. This is
the opposite of measurements in the Agora paper, as well
as our CloudLab measurements for Hydra (Section 5.4.3).
This happens because downlink precoding (0.72 M/s per
core for 32×150 by 150×1 multiplications) is more expen-
sive than uplink equalization (1.23 M/s per core for 150×32
by 32×1 multiplications) on our main cluster (Table 2).1 In
our CloudLab cluster, the lack of AVX512 instructions re-
verses this effect (i.e., downlink becomes cheaper than up-
link) by making LDPC decoding far more expensive than
LDPC encoding: decoding is 10x more expensive than en-
coding on CloudLab, compared to 2.5x more expensive on
our main cluster.

5.2.1 Comparison with BigStation

BigStation supports only up to 128×16MIMOwith the three
servers. For MIMO configurations that BigStation supports,
Hydra uses only around half the CPU cores for uplink pro-
cessing, and between 30–40% fewer CPU cores for downlink
processing. BigStation’s worse performance comes from
two factors. First, BigStation spends additional CPU cycles
for running FFT in software instead of the RU, and shuffling
a larger amount of data between servers than Hydra. Sec-
ond, the higher network I/O and data shuffling generates
more memory pressure and inter-core communication than
Hydra, reducing BigStation’s compute efficiency.

We provide a detailed accounting of Hydra’s and BigSta-
tion’s CPU usage below, with 128×16 downlink processing
(the most challenging downlink configuration supported by
BigStation) as the example.

• Packet I/O. BigStation uses 24 cores for packet I/O,
compared to only four for Hydra.

• IFFT. BigStation uses six cores for IFFT processing,
whereas Hydra uses the RU’s ability to perform IFFT.

1We are investigating the root cause of this difference by studying Intel
MKL’s implementation of matrix multiplication.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 413

 0
 20
 40
 60
 80

 100

64×8 64×16 64×32 128×16 128×32 150×32

1 server

2 servers

3 servers

C
o
re

s
re

q
u
ir

e
d

Hydra-UL

14 19
38 32

53
71

BigStation-UL

30
44

75 72

Hydra-DL

19
27

38 41
56

86

BigStation-DL

27
38

63
78

Figure 4: Number of cores and servers required to support different massive MIMO settings for Hydra and BigStation in
uplink (UL) and downlink (DL) mode. BigStation supports up to 128×16, so the bars for larger configurations are not shown.

10-5

10-4

10-3

10-2

10-1

100

 0 0.5 1 1.5 2 2.5

99.99th latency

C
o
m

p
le

m
e
n
ta

ry
 C

D
F

Latency (ms)

Uplink
Downlink

Figure 5: Complementary CDF of Hydra’s latency for
150×32 uplink and downlink processing.

• Subcarrier processing. BigStation uses 33 cores
for subcarrier-parallel processing (six cores for zero-
forcing, and 27 cores for precoding). Hydra uses 31
cores for its combined subcarrier processing stage.

• LDPC encoding. BigStation uses nine cores for LDPC
encoding, compared to six for Hydra.

5.3 Comparison with Agora
Hydra supports Agora’s largest 64×16 MIMO configuration
with one server for both the uplink and downlink. Differ-
ent from Agora’s single-server design, Hydra allows using
two servers to support 128×32 MIMO, and three servers to
support 150×32 MIMO.
For a single-server performance comparison, we compare

Hydra’s performance with the numbers published in the
Agora paper [18]. This is because we were unable to re-
produce numbers comparable to those reported in Agora
due to hardware differences, e.g., we use weaker CPUs
(16-core Xeon Silver 4216, $900 per CPU) than those used
in Agora’s evaluation (16-core Xeon Gold 6130, $1900 per
CPU). For 64×16 uplink processing, Hydra uses 19 CPU
cores compared to Agora’s 28 (including Agora’s two packet
I/O cores); for downlink processing, Hydra uses 27 cores
compared to Agora’s 23.

5.4 Hydra’s performance details

5.4.1 Tail latency

Figure 5 shows that Hydra successfully meets our latency
target of sub-2.5 ms 99.99th percentile latency for Hydra’s

 0

 5

 10

 15

 20

 25

64×32 128×16 128×32 150×32 256×32

S
e
rv

e
rs

 r
e
q

u
ir

e
d Uplink

8 8

12

16
18

Downlink

6 6 7 8
10

Figure 6: Number of servers required to support different
massive MIMO settings in the CloudLab cluster.

largest-supported 150×32 MIMO configuration. For the up-
link, Hydra’smaximum latency is only 1.8 ms, and its 99.99-
th percentile tail latency is 1.7 ms. For the downlink, Hy-
dra’s maximum and 99.99% latency are both 2.3 ms.

5.4.2 Additional network traffic

For 150×32 MIMO, Hydra processes 80.6 Gbps of fron-
thaul traffic, and cumulatively shuffles only 16 Gbps among
servers, or 20% additional traffic. (Since there are three
servers, each server transmits two-thirds of 32×400×6
bytes per data symbol. Since we use 64 QAM modulation,
our demodulation stage represents each subcarrier’s sample
with 6 bits.)

5.4.3 Server scalability

We use the CloudLab cluster to study how Hydra’s design
scales with an increasing number of servers. Figure 6 shows
how Hydra supports higher massive MIMO dimensions as
the number of servers increases in the CloudLab cluster. Hy-
dra supports 256×32 MIMO with 18 servers for uplink pro-
cessing, or with 10 servers for downlink processing. For
the regime studied, the number of servers needed for up-
link processing scales roughly linearly with the number of
antennas: for 32 users, Hydra needs 8, 12, and 18 servers for
64, 128, and 256 antennas, respectively. There is room for
further scaling since Hydra does not hit a scalability bottle-
neck at 256×32; this scale was limited by only the number
of CloudLab servers we managed to reserve.

Different from our main cluster, downlink processing is
cheaper than uplink processing in the CloudLab cluster.
This is primarily because LDPC decoding is 10x more ex-

414 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 8 16 24 32 40 48

C
o
re

s
re

q
u
ir

e
d

users

64 antennas
128 antennas

Figure 7: Minimum number of CPU cores required to sup-
port different massive MIMO settings.

 0
 10
 20
 30
 40
 50
 60
 70
 80

64×16 64×32 128×16 128×32

C
o
re

s
re

q
u
ir

e
d Hydra

19

38
32

53

Time-IQ

33

49
59

Figure 8: CPU cores needed by Hydra and Time-IQ for dif-
ferent massive MIMO configurations (uplink).

pensive than encoding on CloudLab servers, but only 2.5x
more expensive on our main cluster.
5.4.4 User scalability

Figure 7 shows the minimum of CPU cores required to sup-
port an increasing number of users for two antenna config-
urations: 64 antennas and 128 antennas. We find that Hydra
can scalably support more users by using more cores. Using
LDPC accelerators (e.g., Intel’s ACC100 accelerators) can al-
low Hydra to support even more users.

5.5 Benefits of leveraging RU features
To quantify the performance benefits of offloading FFT and
subcarrier range splitting to the RU, we created a variant
of Hydra called “Time-IQ” that works with time-domain IQ
samples. Time-IQ runs FFT in software on the BBU servers
to generate frequency-domain IQ samples, which it then
shuffles among the servers for the subcarrier-parallel stage.
Figure 8 compares the number of cores needed by Hydra
and Time-IQ to support four different massive MIMO set-
tings. Hydra uses 42%, 22%, and 46% fewer CPU cores for
the 64×16, 64×32, and 128×16 configurations, respectively.
Time-IQ is unable to support the 128×32 MIMO configura-
tion with the 87 cores available in our cluster, whereas Hy-
dra supports this configuration with 53 cores.

Next, we then run both Time-IQ and Hydra for 128×16
massive MIMO using 59 cores (the minimum CPU cores re-
quired by Time-IQ) and measure the 99.99-th tail latency
breakdown. Figure 9 shows the 99.99-th percentile comple-
tion time for each of the three pipeline stages (the antenna-
parallel FFT stage, the subcarrier-parallel stage, and the
user-parallel decoding stage). Time-IQ has higher latency
than Hydra due to the additional FFT processing in soft-

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

Hydra Time-IQ9
9

.9
9

-t
h
 l
a
te

n
cy

 (
m

s)

FFT
Subcarrier-parallel
User-parallel

Figure 9: 99.99-th tail latency breakdown for Hydra and
Time-IQ design for 128×16 MIMO (uplink) with 59 cores.
The figure starts at 1 ms because it takes 1 ms to receive all
IQ samples from RU antennas.

 0
 20
 40
 60
 80

 100
 120
 140

64×16 64×32 128×16 128×32

C
o
re

s
re

q
u
ir

e
d Hydra

19

38 32

53

Central-coordination

51

76
61

Agora-placement

36

57 51

Figure 10: CPU cores needed by Hydra, Central-
Coordination, and Agora-Placement for different massive
MIMO dimensions (uplink).

ware, and a longer subcarrier-parallel stage. Time-IQ’s
subcarrier-parallel stage is longer because it must shuffle
frequency-domain IQ samples between the antenna-parallel
stage and the subcarrier-parallel stage.

5.6 Impact of intra-server optimizations
We next evaluate the effectiveness of our optimization to
reduce inter-core communication (Section 3.3): affinitizing
the processing of subcarriers to CPU cores, and avoiding
a central coordinator thread for task scheduling. We cre-
ated two variants of Hydra for this measurement: The first
variant, called “Agora-Placement,” works without a coordi-
nator thread, but uses Agora’s random assignment of tasks
to CPU cores, which increase inter-core data movement
and reduces cache effectiveness. The second variant, called
“Central-Coordination,” affinitizes subcarrier processing to
CPU cores, but uses a coordinator thread to schedule tasks
to workers. Figure 10 shows that reducing inter-core com-
munication and avoiding centralization of task coordination
logic is crucial for performance. In addition, the two vari-
ants are unable to support 128×32MIMOwith three servers.

For example, using a coordinator thread for task schedul-
ing can more than double the number of CPU cores needed.
We verify that this happens because of the large amount of
time that worker threads in Central-Coordination spend in
waiting for work from the coordinator thread. For exam-
ple, with 128×32 MIMO and 53 cores (the minimum needed
by Hydra to support 128×32), workers cores in the Central-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 415

 0

 25

 50

 75

 100

 0 5 10 15 20 25 30 35

C
P
U

 u
sa

g
e
 (

%
)

Time (second)

32 active users
100% subcarriers

16 active users
25% subcarriers

24 active users
50% subcarriers

24 active users
50% subcarriers

Figure 11: Hydra’s CPU usage with a dynamic workload.

Coordination design spend around 0.5 ms on average in ev-
ery millisecond slot waiting for the coordinator. In contrast,
Hydra’s workers spend only 0.14 ms on average waiting on
shared-memory counters to saturate.

5.7 Dynamic CPU core scaling
We next evaluate the efficiency of Hydra’s dynamic CPU
core scaling mechanism. We run Hydra under 150×32 mas-
sive MIMO with 1200 data subcarriers, and dynamically
change the number of active users and active data subcarri-
ers. We change the workload in four stages, and each stage
lasts for 8–10 seconds. The four stages are 1) 32 active users
and 100% active subcarriers, 2) 16 active users and 25% ac-
tive subcarriers, 3) 24 active users and 50% active subcarri-
ers, and 4) 24 active users and 25% active subcarriers.

In a production RAN, the MAC layer sends commands to
the PHY informing it about the number of active users and
subcarriers in every slot; the PHY can use this information
to adjust its CPU utilization [20]. Since we do not currently
have a MAC layer, Hydra servers read per-slot configura-
tion from a configuration file. Figure 11 shows the real-time
CPU usage of Hydra over time, normalized to 71 cores at
100% load. Hydra first utilizes full CPU resource for the first
stage, and reduces the CPU usage to 54% in the second stage.
Hydra then dynamically changes the CPU usage to 80% and
70% in the third and the fourth stage.

6 Related Work
Software-based RAN processing. The use of commod-
ity servers for high-performance PHY processing was pio-
neered by Sora [27], which demonstrated the use of mod-
ern CPU features such as SIMD for wireless signal process-
ing for WiFi. The Sora project later led to BigStation [28],
which was the first to use a distributed system to handle the
high computation requirements of multiuser MIMO. Agora
is a more recent project that focuses on massive MIMO pro-
cessing within a single server. Hydra builds upon these
designs by combining the single-machine design of Agora
with ideas from BigStation, but focuses on minimizing
the overheads in distributing massive MIMO computation.
Intel’s FlexRAN [3] is a production-grade single-machine

PHY implementation is 5G NR-compliant and is used in
large-scale vRAN deployments [10]. However, FlexRAN
is closed-source, with a few open-source components like
their LDPC encoder and decoder. Hydra’s design could ben-
efit from FlexRAN’s other high-performance signal process-
ing blocks, such as matrix inversion and demodulation.

Hardware-based RAN processing. The LuMaMi
testbed [24] is a massive MIMO processing system that
uses specialized hardware (e.g., FPGAs and PCIe switches).
LuMaMi can handle 100×10 massive MIMO with 0.5 ms
slots. While LuMaMi and Hydra cannot be compared
apples-to-apples, it is interesting to note that Hydra can
handle a substantially larger MIMO configuration (i.e.,
150×32), although with a more relaxed latency deadline
(1 ms slots). We believe that comparing software-only and
hardware-based approaches for massive MIMO processing
is an interesting avenue for future research.

Quantum computing approaches such as QuA-
Max [23] and ParaMax [22] have recently been proposed to
tackle the high computational cost of massive MIMO.While
our work uses linear MIMO methods (i.e., zero-forcing
equalization and precoding), quantum-based approaches
can handle more expensive non-linear methods like sphere
decoding [21, 25]. Since sphere decoding can be too
expensive for a single server, Hydra’s techniques may be
used to distribute the work among multiple servers.

7 Conclusion
We have presented the design of Hydra, a new distributed
design for scalable massive MIMO processing in software.
Hydra focuses its design on reducing the overhead in dis-
tributing massive MIMO computation among a pool of
servers. Our design leverages features of modern RUs in
novel ways to partition the fronthaul traffic with zero over-
head, uses an efficient split for shuffling inter-server data
between the MIMO pipeline’s stages, and reduces inter-core
communication and coordination for processing within a
machine. The result is that Hydra can support much larger
MIMO configurations than prior state-of-the-art, demon-
strating support for 150×32 MIMO for the first time in
software. Importantly, we have demonstrated that massive
MIMO processing can be efficiently distributed over mul-
tiple servers, using only 20% additional network I/O com-
pared to the required fronthaul traffic. We believe that our
design can be used to scalably support even more challeng-
ing MIMO configurations in the future.

Acknowledgments. We thank the NSDI reviewers for
their helpful feedback. We are grateful to JianDing and Rah-
man Doost-Mohammady for their feedback, and help with
the Agora code. We also thank Lin Zhong for early discus-
sions on the project. Junzhi Gong and Minlan Yu are sup-
ported in part by the NSF CNS-1955422 and CNS-1955487.

416 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] A technical look at 5G energy consumption and perfor-

mance. https://www.ericsson.com/en/blog/2019/
9/energy-consumption-5g-nr.

[2] AirSpan 7200: Massive Throughput in a Single, Compact Unit Open-
RANGE 7200. airspan.com/5g-products/.

[3] An Overview of FlexRAN* Software Wireless Access Solutions.
https://software.intel.com/content/www/us/
en/develop/videos/an-overview-of-flexran-
sw-wireless-access-solutions.html.

[4] Building an open vRAN Ecosystem. https://
www.delltechnologies.com/asset/en-us/
solutions/service-provider-solutions/
technical-support/altiostar-redhat-nec-
and-dell-technologies-vran-solution-
reference-architecture.pdf.

[5] Dish selects Fujitsu, Altiostar for 5G radios, Open vRAN.
https://www.fiercewireless.com/operators/
dish-selects-fujitsu-altiostar-for-5g-
radios-open-vran.

[6] FlexRAN LTE and 5G NR FEC Software Development Kit Modules.
https://software.intel.com/content/www/us/
en/develop/articles/flexran-lte-and-5g-nr-
fec-software-development-kit-modules.html.

[7] O-RAN Fronthaul Control, User and Synchronization Plane Specifi-
cation v6.0. https://www.o-ran.org/specification-
access.

[8] Open RAN and the mission to crack massive MIMO.
https://www.lightreading.com/open-ran/open-
ran-and-mission-to-crack-massive-mimo/d/d-
id/768081.

[9] Operator Defined Open and Intelligent Radio Access Networks.
https://www.o-ran.org/.

[10] Rakuten Mobile and NEC to Build Open vRAN Architecture
in Japan. https://global.rakuten.com/corp/news/
press/2019/0605_01.html.

[11] Telefonica invests in vRAN vendor Altiostar. https:
//www.fiercewireless.com/tech/telefonica-
invests-vran-vendor-altiostar.

[12] T-Mobile Achieves Mind-Blowing 5G Speeds with MU-MIMO.
https://www.t-mobile.com/news/network/t-
mobile-achieves-mind-blowing-5g-speeds-
with-mu-mimo.

[13] Vodafone starts trials of OpenRAN in Europe and Africa.
https://www.gsma.com/futurenetworks/digest/
vodafone-starts-trials-of-openran-in-
europe-and-africa/.

[14] vRAN 2.0 on HPE Infrastructure. https://
h50146.www5.hpe.com/products/servers/
document/pdf/edgeline/vran2.0.pdf.

[15] Open RANAlliance. O-RAN: towards an open and smart RAN. white
paper, October, 2018.

[16] Robin Chataut and R. Akl. Massive mimo systems for 5g and beyond
networks—overview, recent trends, challenges, and future research
direction. Sensors (Basel, Switzerland), 20, 2020.

[17] Jian Ding, Rahman Doost-Mohammady, Anuj Kalia, and Lin Zhong.
Agora: Real-time massive MIMO baseband processing in software.
In Proceedings of the 16th International Conference on emerging Net-
working EXperiments and Technologies, pages 232–244, 2020.

[18] Jian Ding, Rahman Doost-Mohammady, Anuj Kalia, and Lin Zhong.
Agora: Real-time massive MIMO baseband processing in software.
In Proceedings of the 16th International Conference on emerging Net-
working EXperiments and Technologies, pages 232–244, 2020.

[19] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and operation
of CloudLab. In Proceedings of the USENIX Annual Technical Confer-
ence (ATC), pages 1–14, July 2019.

[20] Xenofon Foukas and Bozidar Radunovic. Concordia: teaching the
5G vRAN to share compute. In Fernando A. Kuipers and Matthew C.
Caesar, editors, ACM SIGCOMM 2021 Conference, Virtual Event, USA,
August 23-27, 2021, pages 580–596. ACM, 2021.

[21] Chin-yun Hung and Tzu-hsien Sang. A sphere decoding algorithm
for mimo channels. In 2006 IEEE International Symposium on Signal
Processing and Information Technology, pages 502–506, 2006.

[22] Minsung Kim, Salvatore Mandrà, Davide Venturelli, and Kyle
Jamieson. Physics-inspired heuristics for soft mimo detection in 5g
new radio and beyond. In Proceedings of the 27th Annual Interna-
tional Conference on Mobile Computing and Networking, MobiCom
’21, page 42–55, New York, NY, USA, 2021. Association for Comput-
ing Machinery.

[23] Minsung Kim, Davide Venturelli, and Kyle Jamieson. Leveraging
quantum annealing for large mimo processing in centralized radio
access networks. In Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, page 241–255, New York, NY,
USA, 2019. Association for Computing Machinery.

[24] Steffen Malkowsky, João Vieira, Liang Liu, Paul Harris, Karl Nieman,
Nikhil Kundargi, Ian C. Wong, Fredrik Tufvesson, Viktor Öwall, and
Ove Edfors. The world’s first real-time testbed for massive mimo:
Design, implementation, and validation. IEEE Access, 5:9073–9088,
2017.

[25] Konstantinos Nikitopoulos, Juan Zhou, Ben Congdon, and Kyle
Jamieson. Geosphere: Consistently turning mimo capacity into
throughput. SIGCOMM Comput. Commun. Rev., 44(4):631–642, aug
2014.

[26] Clayton Shepard, Jian Ding, Ryan E Guerra, and Lin Zhong. Un-
derstanding real many-antenna MU-MIMO channels. In 2016 50th
Asilomar Conference on Signals, Systems and Computers, pages 461–
467. IEEE, 2016.

[27] Kun Tan, He Liu, Jiansong Zhang, Yongguang Zhang, Ji Fang, and
Geoffrey M Voelker. Sora: high-performance software radio using
general-purpose multi-core processors. Communications of the ACM,
54(1):99–107, 2011.

[28] Qing Yang, Xiaoxiao Li, Hongyi Yao, Ji Fang, Kun Tan, Wenjun Hu,
Jiansong Zhang, and Yongguang Zhang. BigStation: Enabling scal-
able real-time signal processing in large MU-MIMO systems. vol-
ume 43, pages 399–410. ACM New York, NY, USA, 2013.

[29] Qing Yang, Xiaoxiao Li, Hongyi Yao, Ji Fang, Kun Tan, Wenjun Hu,
Jiansong Zhang, and Yongguang Zhang. BigStation: Enabling scal-
able real-time signal processingin large MU-MIMO systems. ACM
SIGCOMM Computer Communication Review, 43(4):399–410, 2013.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 417

https://www.ericsson.com/en/blog/2019/9/energy-consumption-5g-nr
https://www.ericsson.com/en/blog/2019/9/energy-consumption-5g-nr
airspan.com/5g-products/
https://software.intel.com/content/www/us/en/develop/videos/an-overview-of-flexran-sw-wireless-access-solutions.html
https://software.intel.com/content/www/us/en/develop/videos/an-overview-of-flexran-sw-wireless-access-solutions.html
https://software.intel.com/content/www/us/en/develop/videos/an-overview-of-flexran-sw-wireless-access-solutions.html
https://www.delltechnologies.com/asset/en-us/solutions/service-provider-solutions/technical-support/altiostar-redhat-nec-and-dell-technologies-vran-solution-reference-architecture.pdf
https://www.delltechnologies.com/asset/en-us/solutions/service-provider-solutions/technical-support/altiostar-redhat-nec-and-dell-technologies-vran-solution-reference-architecture.pdf
https://www.delltechnologies.com/asset/en-us/solutions/service-provider-solutions/technical-support/altiostar-redhat-nec-and-dell-technologies-vran-solution-reference-architecture.pdf
https://www.delltechnologies.com/asset/en-us/solutions/service-provider-solutions/technical-support/altiostar-redhat-nec-and-dell-technologies-vran-solution-reference-architecture.pdf
https://www.delltechnologies.com/asset/en-us/solutions/service-provider-solutions/technical-support/altiostar-redhat-nec-and-dell-technologies-vran-solution-reference-architecture.pdf
https://www.delltechnologies.com/asset/en-us/solutions/service-provider-solutions/technical-support/altiostar-redhat-nec-and-dell-technologies-vran-solution-reference-architecture.pdf
https://www.fiercewireless.com/operators/dish-selects-fujitsu-altiostar-for-5g-radios-open-vran
https://www.fiercewireless.com/operators/dish-selects-fujitsu-altiostar-for-5g-radios-open-vran
https://www.fiercewireless.com/operators/dish-selects-fujitsu-altiostar-for-5g-radios-open-vran
https://software.intel.com/content/www/us/en/develop/articles/flexran-lte-and-5g-nr-fec-software-development-kit-modules.html
https://software.intel.com/content/www/us/en/develop/articles/flexran-lte-and-5g-nr-fec-software-development-kit-modules.html
https://software.intel.com/content/www/us/en/develop/articles/flexran-lte-and-5g-nr-fec-software-development-kit-modules.html
https://www.o-ran.org/specification-access
https://www.o-ran.org/specification-access
https://www.lightreading.com/open-ran/open-ran-and-mission-to-crack-massive-mimo/d/d-id/768081
https://www.lightreading.com/open-ran/open-ran-and-mission-to-crack-massive-mimo/d/d-id/768081
https://www.lightreading.com/open-ran/open-ran-and-mission-to-crack-massive-mimo/d/d-id/768081
https://www.o-ran.org/
https://global.rakuten.com/corp/news/press/2019/0605_01.html
https://global.rakuten.com/corp/news/press/2019/0605_01.html
https://www.fiercewireless.com/tech/telefonica-invests-vran-vendor-altiostar
https://www.fiercewireless.com/tech/telefonica-invests-vran-vendor-altiostar
https://www.fiercewireless.com/tech/telefonica-invests-vran-vendor-altiostar
https://www.t-mobile.com/news/network/t-mobile-achieves-mind-blowing-5g-speeds-with-mu-mimo
https://www.t-mobile.com/news/network/t-mobile-achieves-mind-blowing-5g-speeds-with-mu-mimo
https://www.t-mobile.com/news/network/t-mobile-achieves-mind-blowing-5g-speeds-with-mu-mimo
https://www.gsma.com/futurenetworks/digest/vodafone-starts-trials-of-openran-in-europe-and-africa/
https://www.gsma.com/futurenetworks/digest/vodafone-starts-trials-of-openran-in-europe-and-africa/
https://www.gsma.com/futurenetworks/digest/vodafone-starts-trials-of-openran-in-europe-and-africa/
https://h50146.www5.hpe.com/products/servers/document/pdf/edgeline/vran2.0.pdf
https://h50146.www5.hpe.com/products/servers/document/pdf/edgeline/vran2.0.pdf
https://h50146.www5.hpe.com/products/servers/document/pdf/edgeline/vran2.0.pdf

DChannel: Accelerating Mobile Applications With
Parallel High-bandwidth and Low-latency Channels

William Sentosa•, Balakrishnan Chandrasekaran†, P. Brighten Godfrey•⋆, Haitham Hassanieh⋄, Bruce Maggs‡

•UIUC, †VU Amsterdam, ⋆VMware, ⋄EPFL, ‡Duke University and Emerald Innovations

Abstract
Interactive mobile applications like web browsing and gam-

ing are known to benefit significantly from low latency net-
working, as applications communicate with cloud servers and
other users’ devices. Emerging mobile channel standards have
not met these needs: 5G’s general-purpose eMBB channel
has much higher bandwidth than 4G but empirically offers
little improvement for common latency-sensitive applications,
while its ultra-low-latency URLLC channel is targeted at only
specific applications with very low bandwidth requirements.

We explore a different direction for wireless channel de-
sign to address the fundamental bandwidth-latency tradeoff:
utilizing two channels – one high bandwidth, one low la-
tency – simultaneously to improve performance of common
Internet applications. We design DChannel, a fine-grained
packet-steering scheme that takes advantage of these parallel
channels to transparently improve application performance.
With 5G channels, our trace-driven and live network experi-
ments show that even though URLLC offers just 1% of the
bandwidth of eMBB, using both channels can improve web
page load time and responsiveness of common mobile apps by
16-40% compared to using exclusively eMBB. This approach
may provide service providers important incentives to make
low latency channels available for widespread use.

1 Introduction
Low latency is critical to interactive applications such as web
browsing, virtual and augmented reality, and cloud gaming.
For web applications, even an increase of 100 ms latency can
result in as much as 1% revenue loss, as noted by Amazon [21].
Emerging VR, AR, and cloud gaming applications also rely
on low latency to deliver a seamless user experience. For
instance, VR requires 20 ms or lower latency to avoid any
simulator sickness [19].

Current mobile broadband, serving general Internet appli-
cations such as web browsing and video streaming, have not
yet delivered consistent low latency performance, in part due
to the inherent trade-off between latency and bandwidth [22].
One approach is to provide two separate channels (or ser-
vices) – one optimizing for bandwidth, the other optimizing
for latency – with different types of user applications assigned
to them. 5G NR follows this pattern with its enhanced mo-
bile broadband (eMBB) and ultra-reliable and low-latency
communication (URLLC) channels. eMBB, which serves
general-purpose Internet use, is heavily focused on delivering
gigabit bandwidth. This channel will be useful for streaming

media but offers little to no improvement for latency-sensitive
applications, such as web browsing [34, 35, 50]. Experimen-
tally, web page load time in existing 5G deployments, even in
close-to-ideal circumstances (a stationary device and a chan-
nel with little utilization), is similar to 4G for pages smaller
than 3 MB in size and about 19% faster than 4G for pages
larger than 3 MB [34]. This is due to 5G eMBB having 28 ms
or larger latency, broadly similar to 4G [34]. Our measure-
ments of 5G mmWave showed similar results, at around 22
ms in ideal conditions.

Meanwhile, 5G URLLC promises an exciting capability
of very low latency, in the range of 2 to 10 ms [6], but com-
promises severely on bandwidth, making it unsuitable for
common mobile applications. Our experiments emulating
web browsing (the most widely used mobile application [44],
and far from the most bandwidth-intensive application) over
URLLC with 2 Mbps bandwidth show web page load times
would be 5.87× worse than with eMBB. Hence, neither using
URLLC alone nor using eMBB alone provides good perfor-
mance. As the latency-bandwidth trade-off is fundamental,
this separation between a high bandwidth channel (HBC)
and a low latency channel (LLC) is likely to persist; 6G, for
example, is also expected to include both [54].

We believe, however, that the availability of two channels
offers an opportunity to deal with the fundamental latency-
bandwidth tradeoff in a new way, beyond simple static as-
signment of an application to a single channel. Specifically,
we argue that by using high bandwidth and low latency chan-
nels in parallel on mobile devices, significant performance
and user experience improvements are possible for latency-
sensitive applications. Here, we explore this hypothesis for
the case of web browsing and web-based mobile applications.

Mapping an application’s traffic to HBC and LLC is diffi-
cult since we have to use LLC’s bandwidth very selectively.
Indeed, the main deployed transport-layer mechanism to com-
bine multiple channels, MPTCP [49], assumes two interfaces
that are each of significant bandwidth, with the goal of ag-
gregating that bandwidth or supporting failover. LLC’s band-
width, however, is a rounding error compared to HBC’s. Other
works – particularly Socket Intents [42] and TAPS [38] – ex-
ploit multi-access connectivity through application-level in-
put, which we prefer to avoid to ease deployment and expand
relevance to other applications in the future; therefore we
expect new mechanisms are necessary.

To solve these problems, we design DChannel, a system
that leverages parallel channels to improve the performance
of mobile applications. DChannel comprises two modules

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 419

running at either end of the channels – namely, in the mobile
device OS and in a gateway device operated by the service
provider. Central to the approach is a packet steering scheme
that operates at the network layer (i.e., IP packets) without
requiring any application input. Such fine-grained, per-packet
decisions (as opposed to, for example, HTTP object-level
steering) are key to making effective use of the limited LLC
bandwidth. To decide which packets are worth accelerating,
since LLC bandwidth is extremely limited, DChannel treats
the channel as an expensive resource and calculates the ben-
efit and cost of utilizing the LLC for each packet. Finally,
since the parallel channels could occasionally confuse the
transport layer with out-of-order delivery, DChannel employs
a reordering buffer in the mobile device and gateway.

To evaluate our design with a concrete scenario, we lever-
age 5G’s eMBB and URLLC as our HBC and LLC. We eval-
uate the benefit of DChannel in our experimental testbed (§4).
Our testbed includes a prototype that can capture and steer
application traffic, and a high-fidelity trace-driven network
emulator that emulates cellular network latency variability
and delay caused by radio resource control (RRC) state tran-
sitions [41]. We gather two types of real 5G eMBB traces –
mmWave and lowband – in three different scenarios: station-
ary, low mobility, and high mobility. Our evaluations cover
popular web applications such as web browsing and Android
mobile applications. Using the testbed, we evaluate our packet
steering scheme and compare it with prior approaches such
as MPTCP [2] and ASAP [29]. We also evaluate DChannel
in live 5G eMBB networks. Our key findings are as follows:

• DChannel, which requires little per-connection state and
no application knowledge, yields superior performance
compared to the other evaluated schemes—object-level
steering, static packet-size-based steering, as well as
prior work, MPTCP and ASAP [29], which used multiple
channels in other settings.

• Compared with exclusively utilizing the eMBB, allo-
cating a modest bandwidth of 2 Mbps to URLLC al-
lows DChannel to improve web page load time (PLT).
Under conditions that are ideal for eMBB (a stationary
client with a line of sight to the base station and full
signal strength), DChannel reduces PLT by 20% and
33% in 5G mmWave and low-band settings, respectively.
Under more challenging mobile conditions, DChannel
improves PLT by 37% and 42% in 5G mmWave and
low-band, respectively.

• In addition to web browsing, we evaluated three Android
mobile apps in a live environment and find DChannel
improves apps responsiveness by 16% on average.

• Somewhat surprisingly, DChannel improves sustained
throughput in our mobile 5G setting by roughly 10% – a
useful side benefit of accelerating the TCP control loop
in dynamic environments.

Finally, we discuss deployment strategies, challenges, and
future opportunities. We believe our basic techniques can
apply to a variety of latency-sensitive applications, and open
new opportunities for app developers and cellular providers.

2 Background and Motivation
2.1 Channels in 5G
5G wireless networks are designed to support applications
with very different service level requirements. The 5G stan-
dard known as New Radio (NR) specifies three service mod-
els: (1) enhanced mobile broadband (eMBB) for standard
high-data-rate Internet and mobile connectivity, (2) ultra-
reliable low-latency communication (URLLC) for mission-
critical and latency-sensitive applications, and (3) massive
machine-type communications (mMTC) for large-scale IoT
deployments. We describe eMBB and URLLC in more depth.

(1) Enhanced Mobile Broadband: This service focuses on
providing high-data-rate mobile access. It is considered an
upgrade to 4G mobile broadband that will satisfy the ever-
increasing demand for mobile and wireless data. 5G eMBB
can operate either at the low-frequency bands below 6 GHz
which we refer to as low-band or the high-frequency bands
around 28 GHz/39 GHz which we refer to as millimeter wave
(mmWave). The mmWave bands are a key new technology in
5G as they offer 10× the bandwidth that is currently available
to 4G LTE networks [4], enabling user throughput of around
1 Gbps [15].

Providers like Verizon, AT&T, and T-Mobile have already
deployed both the low-band and mmWave 5G in several major
US cities, including Chicago, Atlanta, New York, and Los An-
geles [9–11, 34]. A recent measurement study on commercial
mmWave 5G networks in the US shows TCP throughput of
up to 2 Gbps for download and 60 Mbps for upload, with a
mean RTT of 28 ms measured between the client and the first-
hop edge server right outside the cellular network core [34].
The measurements were performed, however, in conditions
favorable to mmWave such as line-of-sight, no mobility, and
few clients.

eMBB latency is expected to be higher as the number of
users increases and as users move. This is because radio
access networks (RANs) operating in the mmWave bands
use very directional beams to compensate for high signal
attenuation, making them vulnerable to blockage and mobil-
ity. High data rate communication is possible only when the
RAN access point aligns its beam towards the user [27]. This
process, commonly referred to as beam alignment, can intro-
duce significant delays, especially when users are moving,
which requires the access point to keep realigning the beam
of each user [23, 27]. Furthermore, the user or other obstacles
can easily block the beam, leading to unreliable and incon-
sistent performance both in terms of changes in throughput
and highly variable RTT [3, 32, 34]. Our own experiments in
Chicago also confirm this and show that the RTT can vary sig-

420 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

nificantly even for stationary clients and is further exacerbated
while walking or driving. This is because 5G eMBB mainly
optimizes for high data rates, focusing less on reliability and
low latency.

(2) Ultra-Reliable Low-Latency Communication: Unlike
eMBB, this channel focuses on providing highly reliable, very
low latency communication at the cost of limited throughput.
It aims to support mission-critical and emerging applications
with stringent latency and reliability requirements such as self-
driving cars, factory automation, and remote surgery. While
the URLLC channel is yet to be deployed in practice, the
standard specifies a target 0.5 ms air latency between the
client and the RAN (1 ms RTT) with 99.999% reliability for
small packets (e.g. 32 to 250 bytes) [15]. It also specifies
a target end-to-end latency (from a client to a destination
typically right outside the cellular network core) of 2 to 10 ms
with throughput ranging between 0.4 to 16 Mbps depending
on the underlying application [6]. URLLC is expected to
operate in the sub-6 GHz frequency bands (e.g. 700 MHz
or 4 GHz) and operators are expected to use network slicing
to provide dedicated resources to URLLC clients in order
to guarantee consistent performance in terms of latency and
reliability across both the radio access network (RAN) and
the cellular core [6]. Finally, client access to the URLLC
channel will be controlled by the network operators. The
access control network slicing mechanisms, however, are left
to the operators’ own implementations [8].

2.2 Web browsing traffic
While we evaluate several applications, web browsing is the
major focus of this work and serves as a running example.

A single web page may contain tens to hundreds of rel-
atively small-sized web objects distributed across multiple
servers and domains. Consequently, web browsing traffic is
characterized by its often short and bursty flows. A study
across Alexa Top 200 pages found that the median number
of objects in a page is 30, while the median object size is
17 KB [48]. Fetching these web objects translates to many
HTTP request-and-response interactions across many short
flows. The browser fires a page load event when it finishes
rendering a page, which is used to determine Page Load Time
(PLT), a performance metric for web browsing. Although PLT
has some shortcomings, the alternatives are not free from is-
sues, and PLT is most widely used. PLT is typically dominated
by DNS lookup, connection establishment, and TCP conver-
gence time—which require little throughput but are highly
dependent on RTT. Prior work also showed that increasing
TCP throughput beyond ≈ 16 Mbps offers little improvement
in PLT [45].

Of course, web page loading is affected by client CPU and
server delay, in addition to network delay. Prior work found
that 35% of the PLT is spent in client-side computations [47].
But the above characteristics, combined with the fact that
mobile CPUs have been getting increasingly powerful [26],

User equipment

Client
app

DChannel client

Packet
steerer

Reordering
buffer

DChannel proxy

Core
network

Base
station

Packet core
gateway

App
server

Internet

Packet
steerer

Reordering
buffer

LLC

HBC

IP packet

IP packet
Virtual
interface

Figure 1: The overview of DChannel. It has two main com-
ponents: packet steerer that steers application traffic to LLC
and HBC, and reordering buffer that reorders packets coming
from LLC.

still suggest that network latency plays an important part in
mobile web performance. Moreover, a significant portion of
network latency lies in the “last mile” connection of the cellu-
lar network. Many other mobile apps also rely on HTTP-based
interaction with cloud services, resulting in similar network
performance requirements.

3 DChannel Design
3.1 High-Level Architecture
To steer application traffic in both uplink and downlink chan-
nels, there will be two main components, one in the mobile
client device and one in the mobile core network (Figure 1).

On the client, applications interact with the network
through a network interface as usual. In our prototype, this
is a special virtual TUN interface designated for traffic that
should utilize both the HBC and LLC. The client-side agent
captures outgoing packets on this interface and implements
an algorithm to steer traffic between the two channels. The
agent also captures incoming traffic on both channels and
merges it into the virtual interface, after buffering it as needed
to reorder packets (§3.6).

The proxy-side agent performs symmetric functions using
the same algorithms – steering traffic headed towards the
client, and merging and reordering traffic outbound to the
Internet. This agent runs in the service provider’s network,
on a gateway at the point where the separate HBC and LLC
channels begin. The exact location of the proxy-side agent
may depend on the service provider’s internal architectural
choices; note that it is not necessarily located at the RAN
base station, because the LLC’s latency optimizations may
extend into the packet core (e.g., for prioritized queuing and
routing) [5].

The next subsections detail how we design the steering
component, in several steps, as it is the more complex compo-
nent. After that, we describe the reordering buffer.

3.2 Steering Granularity
To build the packet steering module, we begin with the ques-
tion of the granularity, and corresponding layer, at which
steering should occur. We considered splitting at two dif-
ferent layers: the application layer and the network layer.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 421

Application-layer splitting refers to steering application re-
quests and responses to the appropriate channels. In the con-
text of web browsing, this approach translates to requesting
and delivering web objects (in the form of HTTP requests)
on either LLC or HBC. Application-layer splitting is broadly
similar to Socket Intents [42].

Object-level splitting may benefit from application-level
knowledge about web objects, which vary in size and priority.
Since LLC is bandwidth constrained, LLC can only deliver
small objects faster than HBC.1 Web pages have complex de-
pendency structures, and certain objects can be on the critical
path for web page loading. These critical-path objects need
not necessarily be small in size. Small objects might have
low priorities such that accelerating them will not improve
load time and thus would waste LLC bandwidth. In contrast,
high-priority objects can be large such that sending those to
LLC will be slower than HBC. Application-level input could
help distinguish between these cases.

But object-level splitting has two drawbacks. First, we want
to avoid requiring application input, which creates deploy-
ment hurdles and extra work for developers. Second, it misses
opportunities for latency improvement. A web object that’s
not small enough to be sent over LLC will still involve small
and latency-sensitive DNS lookups, TCP connection estab-
lishment, TLS handshaking, and ACKs. Accelerating this traf-
fic could significantly reduce object delivery time. We later
demonstrate (§5.3) that object-level splitting is less effective
than finer-grained packet-level steering.

Steering packets at the network layer (e.g., IP datagrams)
comes with its own challenges, however. First, we do not have
any application-level insight into the flow: we do not neces-
sarily know how packet-level acceleration affects application-
level acceleration, so we will need a careful steering heuristic.
Second, even if we identify the packets to accelerate, sending
packets within a flow across two different channels might
result in the packets arriving out-of-order, confusing TCP. To
address this issue, we will introduce a small reordering buffer
(ROB) at the endpoints. The following subsections discuss
these components of the design.

3.3 Packet Steering Intuition
Define a “message” as a sequence of one or more packets
such that the receiving endpoint can take some useful action
after receiving the full message. For example, an individual
SYN or ACK is a message (because the transport layer can
act on it), and an HTTP request or a full response spread
across multiple packets is a message (because the application
may be able to process the request, display an object to the
user, etc.). In contrast, an individual data packet belonging to
a large HTTP request/response is not a message on its own
and would not be worth accelerating individually since we

1If URLLC is assigned a capacity of 2 Mbps (≈250 bytes per ms) and
its RTT is ≈15 ms less than that of eMBB, any object of size larger than
3.75 KB are likely to be delivered faster on eMBB.

need to accelerate the whole sequence of packets to finish the
message.

Ideally, we would like to accelerate the delivery of mes-
sages, especially those that are most valuable to accelerate,
within the bandwidth constraints of the LLC. This suggests a
cost-rewards calculation weighing the benefit of accelerating
a message against the cost of utilizing the meager bandwidth
of the LLC which might be better spent on other messages.

A direct, exact cost-rewards calculation is infeasible since
DChannel running at the network layer lacks full knowledge
of message boundaries (in the application’s data stream), as
well as the relative value of messages to the receiver’s trans-
port layer or application. This leads us to begin with a permis-
sive assumption: any packet might be a message boundary and
we will optimistically consider accelerating it. Nevertheless,
even operating transparently at the network layer, DChannel
does have certain information about rewards and costs that
will help it distinguish among packets.

First, the benefit of steering a packet to the LLC depends on
how much its arrival time would improve, if at all, compared
to using the HBC. This depends on packet size, current output
queue lengths for both channels (which are locally observ-
able), and latency of both channels (which can be estimated).
In addition, the vast majority of applications utilize TCP or
other transport that delivers messages in order.2 This means
that for a message inside packet Pi, delivery of the message
to the application (as opposed to the delivery of Pi to the
receiving host) will depend not only on the arrival time of Pi,
but also on the arrival time of packets P0, . . . ,Pi−1 (which can
also be estimated). For example, suppose Pi−1 was sent over
the HBC, and Pi is ready to send immediately after. If Pi is
also sent over HBC, the pair will arrive at about the same time.
If Pi is sent over LLC, it will very likely arrive much sooner,
but will end up waiting for Pi−1 before it can be delivered to
the application, meaning sending over the LLC is likely not
useful in this case.

Second, the cost of utilizing LLC resources will depend on
the packet length and how much the LLC will be in demand
for other messages in the near future. The latter is not perfectly
known, but current or recent outgoing LLC queue depths
provide some signal.

The net effect of the above considerations is that packets
should tend to get steered to the LLC when they are smaller,
and when they are more isolated in time as individual packets
or members of short packet sequences. This corresponds well
with the intuition of prioritizing acceleration of control mes-
sages or small application-level messages. We now proceed
to describe how we realize this cost-rewards approach.

3.4 Rewards and Cost
Problem statement. The packet steering algorithm is pre-
sented with a sequence of packets and needs to decide if each

2Some don’t, of course, but our goal in this work is to develop generic
packet steering, leaving application-specialized schemes for the future.

422 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

packet Pn should be sent via LLC or HBC. We let P1, . . . ,Pn
denote the sequence of packets in a single end-to-end flow (by
which we mean a unidirectional transport layer connection,
which may contain multiple messages).

Rewards. At the packet level, the objective is to minimize
the packet completion time Cn, defined as the time by which all
packets P0, . . . ,Pn would arrive at the receiver. This captures
the intuition (§3.3) that any Pn might be a useful message
to accelerate on its own, but it wouldn’t be delivered to the
application until prior packets are also delivered. The benefit
of sending a packet Pn via LLC is thus the reduction of Cn
if Pn is sent via LLC (denoted Cn,LLC), compared to when
it is sent via HBC (denoted Cn,HBC). Thus, we calculate the
rewards for sending Pn via LLC as: R(Pn) =Cn,LLC −Cn,HBC.

To calculate the above, we first need to estimate the de-
livery time D for a packet that depends on the channel/link3

propagation delay Dproplink and bandwidth Blink, packet size,
and the link’s queue size Qlink at time tn . The Qlink counts
the number of bytes that have been enqueued for transmis-
sion through a link but have not yet been transmitted out the
interface. Delivery time for Pn on a certain link is thus:

Dlink(Pn) = Dproplink +(size(Pn)+Qlink(tn))/Blink (1)

The packet completion time for Pn (Cn) should also account
for completion times of P0 through Pn−1 (i.e., Cn−1) since
Pn may arrive at the receiver before Pn−1, especially if Pn is
sent over LLC and Pn−1 was sent over HBC. Thus, we can
calculate (Cn,link) as:

Cn,link = max(Cn−1,(tn +Dlink(Pn))) (2)

Note that Dproplink are nondeterministic, comprising dy-
namic channel delay and any congestion along the channel’s
path, and will thus have to be estimated. We return to this
later.

Cost. The cost of sending a packet to the LLC comes from
the increased utilization of LLC. Intuitively, the cost should
increase with the added queueing delay that a packet arriving
very soon after Pn would experience, i.e., size(Pn)/Bllc. The
cost should also be higher if the LLC is currently more highly
utilized so that its limited capacity is reserved for higher-
reward packets. We use a heuristic that captures this by adding
these two effects; specifically, we compute the cost (or fare
F) of putting Pn on LLC as:

F(Pn) = (size(Pn)+Qllc(tn))/Bllc (3)

Note that to be more precise, we should compute the differ-
ence in costs of putting the packet on LLC vs. HBC. But as the
HBC bandwidth is dramatically higher, its cost is negligible
and we omit it for simplicity.

3We use these terms interchangeably for convenience. Note, however, the
LLC channel may involve acceleration in the WAN in addition to the RAN,
so it actually may span multiple physical links.

Comparing rewards and cost. At a high level, we want to
steer packets to LLC when the rewards outweigh the costs, but
comparing them involves a tradeoff: the benefit is immediate
to packet Pn, whereas the cost affects possible subsequent
packets which may not appear. We introduce a parameter α

to capture this, so that we will send a packet to LLC when:
R(Pn)> αF(Pn).

Calibrating α. If we set α too low, a flow may aggressively
send packets to LLC so that it will deny resources to another
flow in a multi-flow application. If we set it too high, we can
be too conservative in utilizing the fast LLC. To find a good
α and determine how sensitive performance is to its value,
we conduct experiments with web browsing across different
alpha values. We load 40 web pages from our corpus over
different α values and pick α with the best Page Load Time
(PLT) result on average. We use our testbed (§5.1) and apply
the packet steering over HBC and LLC. For LLC, we use 5G
NR URLLC as a reference where the RTT and bandwidth
is 5 ms and 2 Mbps. For HBC, we vary its RTT while fixing
bandwidth at 200 Mbps.

The detailed results are in §A.2. In summary, the results
confirm that setting α too low or high has suboptimal per-
formance. The best value for HBC RTT of 20 ms to 60 ms is
0.75. This RTT range covers most cases of 5G eMBB. As the
RTT increases to 80 ms and higher, α = 1 is slightly better.
The difference, however, is less than 1%. We use α = 0.75
for all subsequent experiments.

Note on design. The steering approach described here is
not an optimal choice derived from a model – it is a heuristic,
particularly the calculation of cost and calibration of α, in part
since some of the relevant information (like the application-
level importance of a particular packet) is unavailable. How-
ever: (1) we find the heuristic does perform well in realis-
tic environments, (2) even if poor decisions do occur, they
lead only to suboptimal performance, rather than a correct-
ness problem, and (3) performance is not very sensitive to
the exact value of α. In particular, even with α = 0 – which
corresponds to the greedy strategy, where each packet uses
LLC whenever it expects a reward for itself – there is still a
very good PLT improvement, within 5% or less of the best α.
That said, this problem could be interesting to formalize in
the future, perhaps as an online algorithm that could provide
worst-case guarantees, or using queueing-theoretic tools.

3.5 The Packet Steering Algorithm
Putting together the above pieces, the complete steering algo-
rithm is shown in Algorithm 1 in Appendix A.1. To make a
decision, the algorithm requires (1) packet size, (2) current
LLC queue size, (3) LLC bandwidth, and (4) latency of both
LLC and HBC. The LLC bandwidth is controlled (assigned
by the operator) so it is known, and (1) is directly observable.

LLC queue size (2) may directly be observable at the client,
assuming its NIC is limited to the LLC bandwidth. But the
proxy may have a higher local NIC rate. The proxy, therefore,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 423

tracks outgoing traffic per user and computes what the queue
depth would be if the NIC had been limited. Depending on
the service provider’s admission control policy, the rate could
alternately be explicitly limited at the proxy. Client can also
apply similar approach if (2) is not directly observable.

Latency (4) has to be estimated. To do this, we perform pe-
riodic handshakes (e.g., in every 500 ms in our use case). The
handshakes consist of four steps, all with UDP packets: (1) the
client agent sends a special packet we call a “D-SYN” to the
proxy agent using both HBC and LLC. (2) The proxy agent
upon seeing a D-SYN responds with “D-SYN/ACK” packets
sent across both HBC and LLC. (3) The client agent receives
the D-SYN/ACK packets, updates the base RTT value for
both channels based on the difference between D-SYN/ACK
receive time and D-SYN release time, and replies with “D-
ACK” packets sent across both channels. (4) The proxy agent
receives the D-ACK packets and updates the base RTT value
for both channels. We use the minimum RTT value for the
measurement. As we will see in the evaluation (§5), very
rough latency estimates are sufficient.

The algorithm requires maintaining per-flow state, specifi-
cally to store Cn−1, the estimated completion time of the most
recent previous packet. The proxy also stores per-user state
for its queue depth calculation.

3.6 Reordering buffers at the endpoints
Splitting packets across asymmetric paths (particularly with a
latency differential, as there is for LLC vs HBC) can cause out-
of-order packet delivery, which can be harmful to application
performance. In particular, TCP uses out-of-order packets as
a signal of congestion, potentially causing retransmissions
and a drop in sending rate. To solve this problem, we adopt a
reordering buffer (ROB) in the receiving direction of each of
our agents, to buffer packets arriving only from LLC. Note
that we only buffer packets arrived from LLC as we only
want to handle packet reordering caused by sending packets
through the faster LLC and not to solve reordering caused by
external factors such as wireless losses.

To avoid unbounded buffering delay if the previous packet
was lost, the ROB also releases packets after a timeout. Ideally,
the timeout should equal the latency of HBC, but because the
latency of HBC can be variable and hard to track, we use a
conservative 100 ms timeout. We evaluate the effectiveness
of this timeout value under random packet loss in §5.

4 Prototype and Experimental Setup
Our experiments involve a client representing a mobile end-
user application (e.g., a web browser) fetching content from
a web or content server. Both the client and server endpoints
have access to two interfaces, one representing the high-
bandwidth channel (HBC) and the other the low-latency chan-
nel (LLC). In the case of 5G, HBC and LLC map to eMBB
and URLLC, respectively. Depending on the experiment con-
ditions, the interfaces may be real or emulated. We masked

the two interfaces at the endpoints, however, using a smart
DChannel virtual interface implemented on top of a TUN de-
vice; the client and server use only this virtual interface to
send and receive data. Our DChannel prototype then performs
endpoint-transparent (and application-agnostic) steering of
traffic.

We developed a DChannel prototype and packaged it as
a UNIX shell, similar to the shells in Mahimahi [36]. The
shell captures all outgoing traffic from any unmodified ap-
plication running within it and tunnels them to our DChan-
nel implementation; it processes incoming traffic in a simi-
lar application-transparent manner, so both the steering and
buffering modules of DChannel are used. Our DChannel pro-
totype attaches additional metadata (sequence number and
flow ID) prior to transmission to assist the receiver in reorder-
ing packets and strips this before delivering to the application.
We used our own metadata header as a convenience, but in a
real implementation, this could be avoided by looking inside
the layer 4 header.

We evaluated the performance of DChannel using this pro-
totype under two settings. The first is a live setting where
we used the actual 5G NR eMBB channel as HBC. The sec-
ond setting, in contrast, is one where we emulated the eMBB
channel based on traces that we gathered from an actual 5G
eMBB channel. In both settings, since URLLC is not yet
commercially available, we emulated its “expected” behav-
ior (based on the 5G specification [6]) using a low-latency,
bandwidth-limited wired Ethernet connection.

4.1 Live-eMBB Setting
In this setting, DChannel steers traffic over two real interfaces
(Fig. 2): One interface is tethered with a 5G phone for provid-
ing access to a live eMBB channel, while another is connected
to a low-latency bandwidth-limited Ethernet connection for
emulating the URLLC channel. Packets transmitted over the
5G eMBB channel traverse the core network of the mobile
provider before exiting via the packet gateway (i.e., mobile
path) and then one or more ASes in the public Internet (i.e.,
Internet path) to reach our server. Data sent over the Ethernet
interface, in contrast, traverse a traditional ISP and then one
or more ASes to reach the server. On the server side, DChan-
nel receives all the packets from both the interfaces, reorders
them (if required), and then delivers them to the server-side
application via the TUN device.

We used Ethernet and not WiFi for emulating URLLC,
since the channel is expected to provide high reliability
(≥ 0.9999) [8]. We capped the bandwidth of this link us-
ing netem to emulate the low bandwidth of URLLC. Since
the client must remain physically plugged in to a wired net-
work for emulating URLLC, this setting allows us to study
performance only in stationary conditions.

4.2 Emulated-eMBB Setting
To evaluate DChannel under a wide variety of scenarios,
specifically those including client mobility, we used trace-

424 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Client

Server

Mahimahi replay

DChannel
client

Replayserver-1

DChannel
proxy

Ethernet
with capped
bandwidth

USB
tethering

ISP

Mobile ISP

Replayserver-2

Figure 2: In our live 5G eMBB testbed, the client has two
paths to the server: One path over a tethered connection to
a 5G phone for utilizing the eMBB channel, and the other
through a bandwidth-capped connection over Ethernet, for
emulating the URLLC channel.

driven emulations. Below, we describe how we captured the
network (latency and bandwidth) traces of the 5G eMBB chan-
nel under stationary and low-to-moderate mobility scenarios
and used them in our emulations.

4.2.1 Collecting network traces

To capture the temporal variability of mobile networks, we
measured both the latency and throughput of the eMBB chan-
nel over time.
Latency traces. We measured the latency of the eMBB
channel by periodically sending probes (UDP packets) from
the client to the server. We set the probing period to 15ms to
force the UE radio to remain always in “active” mode and
generate only a small amount of probe traffic to avoid queuing.
Our measurements capture the latency imposed by the base
station and core network, since our server was always in close
proximity to the client (i.e., less than 150 miles), minimizing
the Internet-path latency. Our traceoutes from the client to
the server, although not shown in the paper, also confirmed
that the latency between the client and the server was very
close to the latency between the client and the packet gateway.
Bandwidth traces. We measured the throughput across time
of both uplink and downlink channels by saturating them with
MTU-sized UDP packets. Since TCP cannot reliably saturate
the highly variable cellular uplink and downlink concurrently,
we used an overestimated fixed sending rate to always fill the
queue. First, we measured the maximum supported upload
and download UDP throughput using existing tools such as
iperf. Then, we sent traffic at this maximum rate from both
endpoints. Finally, we used the actual packets received over
time by the endpoints to estimate the uplink and downlink
capacities.
Measuring both latency and bandwidth. A key challenge
in measuring both latency and bandwidth simultaneously is
avoiding interference: bandwidth-intensive operations can sat-
urate the link and fill the queue, thereby inflating the latency.
Since cellular networks use per-user queues, we addressed this
challenge by measuring latency and bandwidth from separate
devices. When using two separate devices, we did not see any
perceivable interference for measurements on 5G low-band,
although we observed them on 5G mmWave. Specifically, we

observed inflation in latency if a nearby device was uploading
data at more than 5 Mbps using mmWave.4 For 5G mmWave,
we measured, hence, only the downlink throughput over time;
we set the uplink bandwidth to a single, fixed rate of 60 Mbps.

The accuracy of temporal variations in latency matters most
for our trace-driven emulations, since the main applications
that we use in our evaluations, web browsing and mobile apps,
are latency-sensitive. The performance of such applications
crucially depends on TCP-related configurations (e.g., initial
congestion window) and network latency (or RTT) rather than
on available bandwidth, particularly when the bandwidth is
more than 16 Mbps [45]. Our approach to estimating band-
widths, therefore, is adequate for our evaluations.

4.2.2 Emulating the traces
In the emulated-eMBB setting, we run both the client and
the server on the same machine. DChannel then steers traffic
between them over two virtual interfaces, emulated using an
extended version of Mahimahi [36]. Specifically, we extended
Mahimahi’s delay shell to vary the eMBB channel latency
over time, based on a trace generated from a real 5G deploy-
ment. The modified delay shell accepts a trace comprising
a “timeline” of RTT values and halves each value to derive
the individual uplink and downlink latency timelines. The
shell then assigns per-packet latency by choosing an uplink or
downlink latency by matching the time a packet arrives at the
interface against the timelines. Since the trace-file granular-
ity is one RTT sample per 15 ms, we use linear interpolation
for assigning RTTs arriving between two samples. Similarly,
we emulated URLLC with a propagation delay of 5 ms and
bandwidth of 2Mbps, unless noted otherwise.

Mobile applications’ traffic (especially web browsing) is
typically bursty in nature and contains periods of inactiv-
ity. To preserve energy during idle periods, UEs switch to a
low-power (or “sleep”) state, which supports discontinuous re-
ception (DRX). The transition to the low-power state depends
on an inactivity timer that we observed (through probing [35])
to be around 30 ms for 5G mmWave; once the device enters
this state, it will “wake up” periodically (every 40 ms). When
emulating the latency traces, we therefore also estimate the
radio power states of the device (based on its activity) and
take into account any additional latency the state transitions
may impose. A packet that arrives 20 ms after the UE enters
the sleep state, for instance, will experience an additional
20 ms delay before it is processed. This delay, however, is not
incurred on the uplink. For 5G low-band, we set the inactivity
timer to 100 ms and wake-up interval to 20 ms.

For the bandwidth emulation, we extended Mahimahi’s
link shell to emulate a time-varying bandwidth that changes
every second. To emulate a link of capacity 60 Mbps at time

4Low-band uses OFDMA so multiple devices can communicate at the
same time and the latency is not inflated, while mmWave uses single carrier
modulation, where multiple devices must take turns transmitting and the
antenna must switch its beam pattern.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 425

Table 1: Characteristics of network traces gathered from actual 5G deployments at different locations and under different
conditions. ‘p50’ and ‘p98’ refer to the 50th and 98th percentiles, and ‘CV’ refers to the coefficient of variation.

Trace name Span RTT (ms) Mean bw. Description
(mins.) min. p50 p98 mean CV ↑ / ↓ (Mbps)

mmWave-Stationary
(MM-S)

60 18 22 106 29.88 0.77 60/140 UE was in a building in the downtown Chicago, placed
near a window with a base station in line of sight.

mmWave-Walking
(MM-W)

56 16 22 120 30.32 0.98 60/110 UE was held by user walking in downtown area of
Chicago.

mmWave-Driving
(MM-D)

18 18 40 236 56.15 0.96 60/100 Phone was with a user driving through the downtown
area of Chicago at low to moderate driving speeds.

LowBand-Stationary
(LB-S)

60 34 40 132 45.20 0.50 26/93 Phone was located in a building in a university campus.
It was placed near a window with full signal strength.

LowBand-Walking
(LB-W)

53 32 52 156 58.94 0.50 21/63 Phone held by user walking in a university campus.

LowBand-Driving
(LB-D)

23 34 54 202 68.84 0.62 15/57 Phone was with a user driving near a university campus.

n seconds, for instance, this extended link shell will release
7.5 KB per millisecond. In our emulation tests, we also used
a FIFO (drop-tail) queue, and we set the buffer to 800 MTU-
sized packets.

5 Evaluation
We evaluated DChannel using 5G eMBB and URLLC as
HBC and LLC, respectively. We ran the client (e.g., a web
browser) on a laptop, unless otherwise mentioned. The laptop
had 16 GB RAM, 512 GB SSD, and an Intel Core i7 processor
running Ubuntu 20.04 (Focal Fossa).

5.1 Testbed Configuration
In the live-eMBB setting, we tethered the laptop with a Google
Pixel 5 phone using USB (refer Fig. 2). We ran the live exper-
iments from two locations: UIUC campus with access to 5G
low-band and the Chicago downtown area for 5G mmWave
access. We emulated the URLLC link between the client
and server using a wired (Ethernet) link and configured it
based on URLLC end-to-end specification and use-cases [6].
The emulated link provides 5 ms RTT between the client and
the network gateway and has 2 Mbps capacity. At the 5G
mmWave test site, however, the wired link only provided a
minimum latency of 8 ms for the URLLC emulation.

We also collected latency and bandwidth traces (summa-
rized in Tab. 1) at the two test locations under three mobil-
ity conditions: stationary, walking, and driving. All traces
were collected using Google Pixel 5 phones with Verizon 5G.
Though mmWave offers lower latency (for eMBB) than low-
band, it also experiences higher variance than low-band, even
when the UE was stationary. This inconsistency in perfor-
mance becomes even worse under mobility. Low-band offers
a stable, albeit relatively higher, RTT than mmWave. We ran
all the components, i.e., the client, DChannel’s modules, and
the server, on the laptop in the emulated-eMBB setting, and
used the traces (in Table 1) for emulating the eMBB channel.

5.2 Application use cases
We evaluated DChannel on 5G under a wide variety of net-
work conditions to highlight its benefits for web browsing
and web-based mobile (Android) applications. We supple-
mented these experiments with a bulk-download application
for demonstrating DChannel’s merits for long (i.e., bandwidth-
intensive) flows.
Web browsing. To measure the improvements brought
about by DChannel for web browsing, we first fetched a set of
200 web pages of “popular” websites, selected uniformly at
random from the Hispar corpus [16]. The sample comprised
40% of landing and 60% of internal pages from 200 websites.
The median web page size and the number of objects are
3.7 MB and 60, while the 95th percentile are 11.8 MB and
168. When fetching these pages, we recorded all the HTTP
requests and responses using mitmproxy [1]. Then we used
a version of Mahimahi with HTTP/2 support [53] to serve
the responses from our server. While recording the pages, we
also estimated the server response time for each request by
subtracting the time-to-first-byte (TTFB) from the client-to-
server RTT. We used the server-response times to emulate
server-side processing delays during the replays.

We used an unmodified Chromium browser spawned within
a DChannel shell to fetch the pages from our server. We
cleared the browser and DNS caches prior to each fetch and
used the default Linux congestion control, TCP CUBIC, un-
less noted otherwise, for all web-browsing experiments. We
measured the page-load time (PLT), based on the onLoad
event [37] in each experiment, on each fetch. In the live-
eMBB setting, we first used the DCHANNEL scheme to fetch
a page and repeated that page fetch in quick succession using
a different scheme. We calculated the difference in PLT be-
tween the different schemes and repeat the fetch five times
to compute the mean difference in PLTs. In the emulated-
eMBB setting, we picked a random sub-sequence from a
trace for each page fetch. Given a page, we used the same
sub-sequence for measuring the PLT across different schemes

426 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

mm-s mm-w mm-d lb-s lb-w lb-d

0

10

20

30

40

%
 Im

pr
v.

ov
er

 A
LL

-e
M

BB

-1
18

.4
1

%

-8
4.

92
 %

-1
14

.8
1

%

-2
0.

07
 %

-1
6.

56
 %

-2
0.

07
 %

-6
61

.3
7

%

-5
80

.2
4

%

-3
58

.0
 %

-4
59

.8
 %

-3
97

.1
7

%

-2
79

.5
3

%

DChannel
Best-pkt-size
ASAP

Obj-steering
MPTCP
All-URLLC

Figure 3: DChannel offers at least 20% lower PLT compared to that of All-eMBB, and it performs better than all other schemes.
MPTCP’s PLTs are 17% to 118% worse than when using a single eMBB channel across all traces.

and computed the difference in PLTs. We used the mean of
the PLT differences across five trials, with each using a ran-
dom sub-sequence of the trace, for comparing and contrasting
the different schemes.
Mobile application. We downloaded three popular Android
applications from the Google play store, one each from three
categories: social (Reddit), shopping (eBay), and news (CNN).
We ran the applications on the phone (Google Pixel 5), but
tunneled all network traffic to a DChannel shell running on our
laptop. We then used the DChannel to steer the traffic over the
appropriate channels. We evaluated the mobile applications
only under the emulated-eMBB setting. Note that this setup
may underestimate the performance improvements because
of the additional overheads in tunneling the traffic from the
phone to the laptop. We measured the RTT from our laptop to
the application server to be 12 to 30 ms, which is significant
given that our emulated URLLC and eMBB RTT can go as
low as 5 ms and 16 ms.

To evaluate application performance, we calculated the
interaction response time (IRT) [40]. IRT measures the time
elapsed between when a user performs an interaction to when
the end screen for that interaction is completely rendered.
We automated user interactions with AndroidViewClient [13]
and cleared application caches within each trial. We recorded
the phone screen using FFmpeg [14] during each interaction
and identified when the screen stopped changing visually
using scenecut-extractor [12]. Since we do not control
the servers used by the application, we repeated the interaction
experiments with DChannel and other schemes, one after the
other, in quick succession. We used the median IRT across
ten trials to compare the performance of different schemes.
Bulk download. The setup for this use case is similar to
that for web browsing. We simply used curl as the client to
download a file hosted in our (Mahimahi) server and repeated
the download five times.

5.3 Comparing steering schemes
We compared the PLT of DChannel’s DCHANNEL scheme
with that of five other schemes across multiple scenarios (us-
ing the traces in Tab. 1) in the emulated-eMBB setting.

Table 2: Comparing the performance of DChannel with All-
eMBB and All-URLLC when fetching the (182 KB) landing
page of amazon.com.

Perf. metric All-
eMBB

All-
URLLC

DChannel

DNS lookup (ms) 44 8 8
TCP connect (ms) 42 6 6
TLS connect (ms) 53 30 30

Object transfer (ms) 209 809 144
Total load time (ms) 349 853 189

The other schemes are as follows. All-URLLC steers all
traffic over URLLC. Obj-steering requests web objects (re-
quests and responses) on URLLC whenever its fetching time
is smaller than eMBB. Best-pkt-size steers packets whose
size is lower than the best predefined threshold to URLLC.
MPTCP uses the two channels concurrently, by running the
Linux kernel implementation of MPTCP [2] with the default
configuration. ASAP [29] was designed for satellite networks.
It diverts traffic from satellite links (or eMBB in our case)
to 3G or 4G (or URLLC) since the latter has lower latency
with a higher cost per byte than the former. ASAP code is not
publicly available, so we used our in-house version.

Fig. 3 compares the relative difference in PLT of each
scheme compared to that obtained when only using eMBB
(i.e., All-eMBB). DChannel offers the best performance un-
der all network conditions in our emulations. In stationary
scenarios (MM-S and LB-S), it improves PLT by about 20%
when using 5G mmWave and 35% with 5G low-band. These
improvements in 5G mmWave and low-band correspond to
absolute reductions in PLTs of about 290 ms and 642 ms, re-
spectively, compared to the All-eMBB scheme. Per Fig. 3,
DChannel’s performance increases in scenarios that involve
UE mobility (MM-W, MM-D, LB-W, and LB-D). The PLT
improvements are higher for low-band than mmWave since
the former exhibits higher latency than mmWave (refer Tab. 1).
We examined the relation between DChannel’s performance
and eMBB latency in detail in §A.3.1.

Where do DChannel’s gains come from? To illustrate the an-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 427

amazon.com

swer to this question, we used curl to fetch the landing page
(i.e., the root document, “/”) of amazon.com in the emulated-
eMBB setting (40 ms RTT and 200 Mbps) without any server-
side response delay. DChannel performs better than not only
all-eMBB, but also all-URLLC (Tab. 2). While URLLC has
lower latency than eMBB, it also has a significantly lower
bandwidth than eMBB. We identified three key sources of
performance gains by analyzing DChannel’s per-packet deci-
sions. DChannel steers three types of packets over URLLC:
(1) DNS packets; (2) control packets (e.g., SYN and client-
to-server ACK packets); and (3) small data packets. Sending
DNS and SYN packets over URLLC reduces DNS lookup and
TCP connection-setup times, and accelerating ACK packets
reduces the object transfer time. The last category includes
small data transfers such as the TLS client-key exchange and
HTTP requests.

Packet vs. web objects steering. Obj-steering performs
HTTP request and response on URLLC when the web ob-
ject size is small such that it will finish faster than eMBB.
The scheme only offers slight improvement to PLT (2-14%).
This is because not all small objects are critical. In fact, we
found out that only 14% of small web objects have VeryHigh
priority [25].

DChannel vs. static packet-size-based steering. Best-pkt-
size steers individual IP packets whose size is smaller than the
best static threshold to URLLC, and the reordering buffer will
reorder any out-of-order packets. To find the best threshold,
we performed web page load experiments for each trace with
five different (size) thresholds: 250, 500, 750, 1000, 1250, and
1400 bytes. We found 750 bytes and 1000 bytes give the best-
averaged result (across the stationary, walking, and driving
scenarios) for mmWave and Low-Band traces, respectively.

DChannel shows an overall better improvement than best-
pkt-size across different network conditions, albeit best-pkt-
size offers similar improvements in stationary traces. In sta-
tionary traces, network latency is more predictable, and static
decisions might suffice. When the network conditions are
more variable, such as in the driving scenario, however, the
static decisions do not suffice. DChannel observes network
conditions, as they evolve, and estimates URLLC channel
usage to make steering decisions dynamically. DChannel will
not steer small packets to URLLC, for instance, if the channel
is already congested. Note that these results are overly gener-
ous to best-pkt-size, for comparison purposes: the best size is
selected in retrospect after running on the test scenarios. In
reality, determining a single packet size threshold would be
complicated: it depends on application traffic patterns as well
as network conditions.

Is MPTCP not designed to exploit multiple channels?
MPTCP works at the transport layer, and in general, it load-
balances application traffic among the available paths and
aggregates their throughput. In our evaluations, MPTCP per-
forms worse (by inflating PLTs between 16% and 66% across

Table 3: The p50 and (p95) of the avg. and max. buffer sizes
(in bytes) when loading 200 web pages under MM-S and LB-
D traces.

MM-S LB-D
Proxy UE Proxy UE

Avg buffer
size (b)

2
(15,7)

12
(63.5)

14
(96)

130
(2638)

Max buffer
size (b)

392
(1122)

944
(2597)

757
(2375)

2848
(15521)

different conditions5) than simply using only the eMBB path.
This poor performance stems from MPTCP’s default sched-
uler (minRTT), which prefers the path with the smallest esti-
mated RTT. This scheduler thus infers that URLLC is better
than eMBB and diverts traffic to URLLC until experiencing
congestion. DChannel, unlike MPTCP, works at the network
layer such that it allows steering data packets on eMBB and
ACK packets on URLLC. MPTCP cannot perform such
packet-level steering, since it results in each path having a
separate data-ACK loop, which MPTCP cannot support.
DChannel vs ASAP. ASAP identifies the different phases
of a web transaction (e.g., TLS handshake and HTTP request)
and accelerates packets of latency-sensitive phases. It accel-
erates, for instance, TLS/SSL handshake as well as HTTP
request traffic, but leaves HTTP responses to eMBB. ASAP
performs better than all other schemes except DChannel. It
falls behind DChannel, however, because of its static heuris-
tics (e.g., accelerate all HTTP requests). HTTP requests are
typically, but not always, small. A user uploading a photo,
for instance, is one example where the assumption fails to
hold. ASAP also encounters problems when the user browses
complex internal pages that push some data to the server.

In the above experiments, we emulated URLLC based on
the 5G standard. We found, however, that DChannel contin-
ues to offer significant PLT improvements even if URLLC
latency is doubled or tripled or when URLLC latency changes
over time (§A.3.2). DChannel offers good performance even
in situations we cannot accurately estimate the eMBB RTT
(§A.3.4), which is crucial for calculating rewards and cost
(§3.4). We also examined DChannel’s performance under dif-
ferent URLLC bandwidths in §A.3.3. Finally, we evaluated
DChannel’s rewards calculation accuracy in §A.4

5.4 Live 5G Experiments
We repeated the web-page fetches (similar to those in §5.3)
over both the live-eMBB and emulated-eMBB settings.
We then compared the relative improvements in PLTs
brought about by DChannel across these settings, for both
5G mmWave and Low-Band (Fig. 4). In conclusion, the
PLT improvements are quite similar between the live and

5We clipped the bottom of the Y-axis in Fig. 3 to focus on performance
gains.

428 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

amazon.com

mmWave
real

mmWave
emulated

Low-Band
real

Low-Band
emulated

−10
0

10
20
30
40
50
60

Re
l.

PL
T

im
pr

ov
em

en
t (

%
)

 Mean
 Median

Figure 4: Comparison of relative PLT improvements in live-
eMBB and emulated-eMBB settings6.

emulated-eMBB settings, albeit the mean PLTs in the former
are higher than those in the latter. The mean PLT for the All-
eMBB scheme in the live-eMBB setting for 5G Low-Band is
1718 ms, while that in the emulated-eMBB setting is 1522 ms.
The high mean PLTs in the emulated-eMBB settings could
be due in part to the limitations of the setup. The emula-
tions do not capture all eMBB network characteristics such
as out-of-order delivery. Moreover, the web server is hosted
on dedicated hardware in the live-eMBB setting, whereas in
the emulated-eMBB setting it runs on the same laptop as the
client. These minor setup differences, however, do not affect
our claims concerning the relative performance improvements
(which are similar across the two settings).

5.5 Evaluating the reordering buffer
We evaluated the effectiveness of the reordering buffer (ROB)
by comparing the web browsing performance of DChannel
with and without the buffer. Along with the other experiments,
this evaluation uses the default TCP CUBIC, which is sen-
sitive to in-order packet delivery. Fig. 5 shows that without
the buffer, the mean PLT improvement is decreased by up to
40% (in LB-D). Overall, DChannel without the buffer will be
worse when the gap between eMBB and URLLC latency in-
creases (implied in the figure as DChannel without the buffer
is performing much worse in 5G Low-Band than mmWave)
because DChannel will be more aggressive in offloading pack-
ets to URLLC, causing more out of order packets.

If ROB is implemented only on the UE (downlink), PLT
improvement is only reduced by 2%. The decrease in PLT
improvement is because DChannel tends to offload most web
browsing uplink traffic to URLLC as the client requests are
generally small such that minimal out-of-order persists. Our
buffer analysis in Tab. 3 confirms that DChannel proxy does
not use the buffer as frequently as the DChannel client (UE).
Tab. 3 also shows that ROB requires only little memory as we
do not have to buffer much URLLC traffic.
DChannel under random packet drop. Since ROB holds
packets from URLLC for a fixed (100 ms) timeout when they
are not in order, DChannel may suffer when packet loss hap-
pens as it may delay the packet loss signal, which can happen
under certain conditions (§3.6). To evaluate this effect, we

6The mean PLT improvements of mmWave is lower than what we reported
on MM-S in Fig.3 because we used 8 ms of URLLC RTT (rather than 5 ms).

mm-s mm-w mm-d lb-s lb-w lb-d
0

10

20

30

40

%
 Im

pr
v.

ov
er

 A
ll-

eM
BB

UE+proxy
UE-only
no-buffer

Figure 5: Adding reorder buffer to DChannel significantly
improves web page load time.

Table 4: PLT under different random packet drop rates.

Loss
All-eMBB (ms) DCHANNEL (ms)

MM-S MM-D MM-S MM-D

0.0% 1108 1899 883 (20%) 1096 (42%)
0.1% 1203 1963 1011 (16%) 1311 (34%)
1.0% 2643 3421 2502 (5%) 3072 (10%)

investigated DChannel performance under stationary and driv-
ing traces in the case of random packet drops. We applied
a stochastic packet drop in the uplink and downlink chan-
nels with packets being dropped in both eMBB and URLLC.
This reflects the case where packet drops happen on the
Internet path. Note that 5G eMBB generally exhibits low
packet loss rates with the 99th percentile being 1.2% [34].
Per Tab. 4, DChannel is quite resilient to random packet loss,
offering better performance than All-eMBB even under high
loss rates. We also investigated the interplay between DChan-
nel and latency-based congestion control algorithms in Ap-
pendix A.3.5.

5.6 Bulk download performance
Although our primary focus is latency-sensitive applications,
we also evaluated how DChannel performed for a bandwidth-
intensive use–bulk HTTP transfer of a file. Fig. 6 shows the
download time for various file sizes using the mmWave driv-
ing (MM-D) trace. As expected, DChannel gets the largest
improvement for small objects. But interestingly, DChannel
also usefully improves large object download. This is be-
cause all control packets including TCP ACKs are acceler-
ated in URLLC, which reduces the control loop delay, helping
the transport layer adapt to bandwidth changes more quickly.
Specifically, we found DChannel resulted in better utilization
of the available eMBB throughput by ≈ 10% when there are
large throughput variations (e.g., in the driving scenario).

5.7 Mobile application performance
Fig. 7 shows the application response time improvement of
DChannel across three common user interactions that require
communication to the server. On average, DChannel improves
the response times of application launch (15%), query search-
ing (12%), and information (e.g., product or news) loading
(21%). It is unsurprising that query searching gives lower im-
provement since it incurs higher server-side delay. The overall

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 429

0.3KB
1KB

10KB
50KB

100KB
1MB

5MB
10MB

50MB
100MB

1GB
0

20

40

60

80
Lo

ad
 ti

m
e

im
pr

v.
ov

er
 a

ll-
eM

BB
 (%

)
DChannel
all-urllc

Figure 6: Download time improvement of variable-sized data
under HTTP. The experiment used the MM-D trace with the
buffer set to 800 packets (≈ 2× trace BDP).

mm-s mm-d lb-s lb-d
0

2

4

6

8

M
ea

n
IR

T
(s

)

4.6
5.7

5 5.5

4.1 4.6 4.2 4.5

launch app
search info

load info
all-embb

DChannel

Figure 7: Android mobile application interaction response
time (IRT) of All-eMBB and DChannel when performing three
different tasks. We averaged the result from three applications.

mobile apps improvement is lower than the web browsing in
part to our experimental setup (§5.2).

6 Discussions and Future Work
Deployment for 5G networks: DChannel requires cellu-
lar operator support, to allow URLLC for non-critical traffic
and to perform stateful packet steering. However, operators
may omit some of the DChannel implementations to make
deployment easier, such as eliminating the reordering buffer
(ROB) on the core gateway since DChannel shows only mi-
nor performance degradation without ROB in the proxy-side
(§5.5). DChannel stateful packet steering may not be simple
to implement especially when there are multiple gateways.
We leave this to future work.
URLLC scalability: The number of users that can send gen-
eral traffic to URLLC is an important matter which deserves
to be evaluated quantitatively in the future. At the time of writ-
ing, URLLC is not yet deployed in public. However, based on
the white paper [7], URLLC is targeted to support a relatively
high connection density with modest per-user bandwidth. For
instance, one of the URLLC use cases (discrete automation)
requires a user-experienced data rate of 10 Mbps, traffic den-
sity of 1 Tbps/km2, connection density of 100,000/km2, and
max end-to-end latency of 10ms. Thus, the 2 Mbps maximum
bandwidth per user for general application traffic used in our
experiments is still reasonable based on others’ proposed use
cases for URLLC, even in a dense urban area.
Disrupting URLLC native traffic: URLLC is primarily built

to serve latency-sensitive critical applications. To ensure we
do not compromise the performance of these applications, the
network operator can limit the per-user bandwidth and even
choose to deprioritize non-critical packets as our approach
does not require 99.999% reliability and is resilient to small
increases in URLLC latency (§A.3.2).
Resource contention among applications: Multiple applica-
tions inside a user device may compete to use URLLC. We
can regulate them using prioritization. One simple approach
is to prioritize applications running in the foreground since
mobile phone users are typically single-tasking.
Incentives for operators: While URLLC targets critical
applications, it is up to the network providers to open URLLC
for general mobile applications like web browsing. This is
possible as 5G chipsets are typically designed to support
multiple bands including the sub-6GHz bands for URLLC [6].
Expanding URLLC applications can encourage providers to
foster a faster and broader deployment of URLLC as it brings
a smoother experience to their major customers – mobile
phone users; especially as the current market for URLLC
applications like self-driving cars and remote surgery is still
in its infancy.
Emulation uncertainty: The real URLLC performance
might not match our emulated URLLC that follows the 5G
NR white paper. However, we have performed several exper-
iments to show the robustness of DChannel under variable
URLLC conditions. Emulating the real behavior of a cellu-
lar network (eMBB) is also a known hard problem [51], and
our approach of using two phones to capture both eMBB la-
tency and bandwidth might not be perfect. We have compared
DChannel performance with the emulated eMBB and live
eMBB in stationary conditions and conclude that DChannel
offers the same performance benefit (§5.4). However, we have
not yet evaluated DChannel under non-stationary live eMBB
due to the environment limitation (§4.1).
Other applications: LLC and HBC combination can also
properly support applications from different domains that
require high bandwidth and low latency, something that can-
not be satisfied by utilizing a single channel. For instance,
cloud gaming, which allows users to play games from remote
servers, requires high bandwidth to stream content and low
latency to remain responsive to user input. Since these appli-
cations can be vastly different than web browsing, a superior
steering scheme may exist. We plan to analyze them further
to determine an effective way of leveraging LLC and HBC.
Beyond mobile networks: Our insights may apply to other
LLC and HBC combinations with analogous bandwidth and
latency trade-offs. Examples include quality of service (QoS)
differentiation providing separate latency- and bandwidth-
optimized services [17, 39]; and routing traffic among mul-
tiple ISPs where one is more expensive but provides better
latency, as may happen with very low Earth orbit satellite-
based [24] or specialty [18] ISPs. To achieve the optimum
cost-to-performance ratio, we can route only the latency-

430 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sensitive traffic to the low-latency ISP.
Future wireless design: The 5G URLLC is only equipped
with limited user bandwidth, and hence it is not suitable to
serve general application traffic. The bandwidth is severely
compromised because it needs to provide both low latency
and very high reliability (99.999%). However, general appli-
cations do not need the almost-perfect reliability that URLLC
guarantees. Future wireless networks (such as 6G) may recon-
sider this trade-off and provide a low-latency channel with
somewhat greater bandwidth and somewhat lower reliability.

7 Related work
There have been multiple works that try to exploit the multi-
access connectivity on the client.
Application layer multipath: Socket Intents [42] and In-
tentional networking [28] both expose custom APIs to ap-
plications and offer OS-level support for managing multiple
interfaces. Both of them regulate application traffic based on
application-specific information. Our work, in contrast, does
not require application inputs or modifications, although in
the future we might consider giving input to the steerer to
support more specific applications.
Transport layer multipath: There are already numerous
efforts to design multipath transport protocols such as R-
MTP [33], pTCP [30], mTCP [52], SCTP multihoming [31],
and MPTCP [49]. These protocols deliver application traf-
fic through multiple paths to achieve better throughput and
reliability. Due to the bandwidth aggregation focus, multi-
path transport protocols give notable benefits to long-flow
dominated applications but not to short-flow dominated ap-
plications such as web browsing [20]. Our approach works
transparently with single-path transport protocols (e.g., TCP
and UDP).
Network layer multipath: Tsao and Sivakumar [46] pro-
posed a super aggregation concept where TCP can achieve
better WiFi throughput by selectively steering packets to 3G.
ASAP [29] steers network packets over satellite ISP and lower-
latency terrestrial networks to improve HTTPS. We compared
DChannel against ASAP in our evaluation and found that
DChannel is better for eMBB and URLLC pairs as it benefits
from finer-grained decisions.

An early version of DChannel was presented in [43]. This
work comes with a new and better-performing packet steering
algorithm, a more robust evaluation with real-world traces
and live 5G eMBB, and new use cases including mobile apps
and bulk transfer.

Acknowledgements
We thanked the anonymous reviewers and our shepherd Fadel
Adib for their valuable inputs. This work was supported by
a gift from T-Mobile and NSF CNS Awards 1763742 and
1763841.

References

[1] mitmproxy. https://mitmproxy.org/. [Last ac-
cessed on April 18, 2022].

[2] Multipath TCP in the Linux Kernel v0.94. http://www.
multipath-tcp.org, March 2018. [Last accessed on
June 16, 2020].

[3] MWC: Are Your 5 Fingers Blocking Your 5G?
https://www.eetimes.com/mwc-are-your-5-
fingers-blocking-your-5g/, February 2018. [Last
accessed on June 24, 2020.

[4] 3GPP Release 15. https://www.3gpp.org/release-
15, April 2019. [Last accessed on May 24, 2020].

[5] 3GPP TR 23.725 version 16.2.0 Release 16.
https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.
aspx?specificationId=3453, June 2019. [Last
accessed on January 20, 2022].

[6] 3GPP TR 38.824 Release 16. https://www.3gpp.
org/release-16, March 2019. [Last accessed on June
16, 2020].

[7] 3GPP TS 22.261 version 15.7.0 Release 15. https://
www.etsi.org/deliver/etsi_TS/122200_122299/
122261/15.07.00_60/ts_122261v150700p.pdf,
March 2019. [Last accessed on January 20, 2021].

[8] 3GPP Release 16 Description; Summary of Rel-16 Work
Items. https://www.3gpp.org/release-16, March
2020. [Last accessed on June 16, 2020].

[9] AT&T: 5G Coverage Map. https://www.att.com/
5g/coverage-map/, 2020. [Last accessed on June 13,
2020].

[10] T-Mobile: The Only Nationwide 5G Network Cover-
age Map. https://www.t-mobile.com/coverage/
5g-coverage-map, 2020. [Last accessed on June 13,
2020].

[11] Verizon: 5G Coverage Map. https://www.verizon.
com/5g/coverage-map/, 2020. [Last accessed on June
13, 2020].

[12] Scenecut extractor. https://github.com/slhck/
scenecut-extractor, December 2021. [Last accessed
on April 15, 2022].

[13] AndroidViewClient. https://github.com/
dtmilano/AndroidViewClient, March 2022. [Last
accessed on April 15, 2022].

[14] FFmpeg. https://ffmpeg.org/, January 2022. [Last
accessed on April 15, 2022].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 431

https://mitmproxy.org/
http://www.multipath-tcp.org
http://www.multipath-tcp.org
https://www.eetimes.com/mwc-are-your-5-fingers-blocking-your-5g/
https://www.eetimes.com/mwc-are-your-5-fingers-blocking-your-5g/
https://www.3gpp.org/release-15
https://www.3gpp.org/release-15
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3453
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3453
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3453
https://www.3gpp.org/release-16
https://www.3gpp.org/release-16
https://www.etsi.org/deliver/etsi_TS/122200_122299/122261/15.07.00_60/ts_122261v150700p.pdf
https://www.etsi.org/deliver/etsi_TS/122200_122299/122261/15.07.00_60/ts_122261v150700p.pdf
https://www.etsi.org/deliver/etsi_TS/122200_122299/122261/15.07.00_60/ts_122261v150700p.pdf
https://www.3gpp.org/release-16
https://www.att.com/5g/coverage-map/
https://www.att.com/5g/coverage-map/
https://www.t-mobile.com/coverage/5g-coverage-map
https://www.t-mobile.com/coverage/5g-coverage-map
https://www.verizon.com/5g/coverage-map/
https://www.verizon.com/5g/coverage-map/
https://github.com/slhck/scenecut-extractor
https://github.com/slhck/scenecut-extractor
https://github.com/dtmilano/AndroidViewClient
https://github.com/dtmilano/AndroidViewClient
https://ffmpeg.org/

[15] 3rd Generation Partnership Project. Study on scenarios
and requirements for next generation access technolo-
gies. Technical report, 2017.

[16] Waqar Aqeel, Balakrishnan Chandrasekaran, Anja Feld-
mann, and Bruce M Maggs. On landing and internal
web pages: The strange case of jekyll and hyde in web
performance measurement. In Proceedings of the ACM
Internet Measurement Conference (IMC), 2020.

[17] Jozef Babiarz, Kwok Chan, and Fred Baker. Configu-
ration guidelines for diffserv service classes. Network
Working Group, 2006.

[18] Debopam Bhattacherjee, Waqar Aqeel, Sangeetha Abdu
Jyothi, Ilker Nadi Bozkurt, William Sentosa, Muham-
mad Tirmazi, Anthony Aguirre, Balakrishnan Chan-
drasekaran, P. Brighten Godfrey, Gregory Laughlin,
Bruce Maggs, and Ankit Singla. cISP: A Speed-of-
Light Internet Service Provider. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2022.

[19] Eduardo Cuervo. Beyond reality: Head-mounted dis-
plays for mobile systems researchers. GetMobile: Mo-
bile Computing and Communications, 21(2), 2017.

[20] Shuo Deng, Ravi Netravali, Anirudh Sivaraman, and
Hari Balakrishnan. WiFi, LTE, or both? Measuring
multi-homed wireless internet performance. In Pro-
ceedings of the ACM Internet Measurement Conference
(IMC), 2014.

[21] Yoav Einav. Amazon found every 100ms of latency cost
them 1% in sales, January 2019.

[22] A El Gamal, James Mammen, Balaji Prabhakar, and
Devavrat Shah. Throughput-delay trade-off in wireless
networks. In IEEE INFOCOM 2004, volume 1, 2004.

[23] M. Giordani, M. Polese, A. Roy, D. Castor, and M. Zorzi.
A Tutorial on Beam Management for 3GPP NR at
mmWave Frequencies. IEEE Communications Surveys
& Tutorials, 21(1), 2019.

[24] Giacomo Giuliari, Tobias Klenze, Markus Legner, David
Basin, Adrian Perrig, and Ankit Singla. Internet back-
bones in space. ACM SIGCOMM Computer Communi-
cation Review, 50(1), 2020.

[25] Sergio Gomes. Resource prioritization –
getting the browser to help you. https:
//developers.google.com/web/fundamentals/
performance/resource-prioritization, June
2020. [Last accessed on June 12, 2020].

[26] Matthew Halpern, Yuhao Zhu, and Vijay Janapa Reddi.
Mobile cpu’s rise to power: Quantifying the impact of

generational mobile cpu design trends on performance,
energy, and user satisfaction. In 2016 IEEE Interna-
tional Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 64–76. IEEE, 2016.

[27] Haitham Hassanieh, Omid Abari, Michael Rodriguez,
Mohammed Abdelghany, Dina Katabi, and Piotr Indyk.
Fast Millimeter Wave Beam Alignment. In Proceedings
of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2018.

[28] Brett D Higgins, Azarias Reda, Timur Alperovich, Jason
Flinn, Thomas J Giuli, Brian Noble, and David Watson.
Intentional networking: opportunistic exploitation of
mobile network diversity. In Proceedings of the 16th
annual international conference on Mobile computing
and networking (MobiCom), 2010.

[29] Se Gi Hong and Chi-Jiun Su. ASAP: fast, controllable,
and deployable multiple networking system for satellite
networks. In IEEE Global Communications Conference
(GLOBECOM), 2015.

[30] Hung-Yun Hsieh and Raghupathy Sivakumar. pTCP:
An end-to-end transport layer protocol for striped con-
nections. In Proceedings of the 10th IEEE International
Conference on Network Protocols (ICNP), 2002.

[31] Janardhan R Iyengar, Paul D Amer, and Randall Stewart.
Concurrent multipath transfer using SCTP multihoming
over independent end-to-end paths. IEEE/ACM Trans-
actions on networking (ToN), 14(5), 2006.

[32] Adrian Loch, Irene Tejado, and Joerg Widmer. Potholes
Ahead: Impact of Transient Link Blockage on Beam
Steering in Practical mm-Wave Systems. In The 22nd
European Wireless Conference, May 2016.

[33] Luiz Magalhaes and Robin Kravets. Transport level
mechanisms for bandwidth aggregation on mobile hosts.
In Proceedings of the 9th IEEE International Confer-
ence on Network Protocols (ICNP), 2001.

[34] Arvind Narayanan, Eman Ramadan, Jason Carpenter,
Qingxu Liu, Yu Liu, Feng Qian, and Zhi-Li Zhang. A
First Look at Commercial 5G Performance on Smart-
phones. In Proceedings of The Web Conference, 2020.

[35] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ah-
mad Hassan, Shuowei Jin, Xiao Zhu, Xiaoxuan Zhang,
Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley Mao,
et al. A variegated look at 5G in the wild: performance,
power, and QoE implications. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM), 2021.

432 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://developers.google.com/web/fundamentals/performance/resource-prioritization
https://developers.google.com/web/fundamentals/performance/resource-prioritization
https://developers.google.com/web/fundamentals/performance/resource-prioritization

[36] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. Mahimahi: Accurate record-and-
replay for HTTP. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2015.

[37] Jan Odvarko. Har 1.2 spec, 2007.

[38] Tommy Pauly, Brian Trammell, Anna Brunstrom, Gorry
Fairhurst, Colin Perkins, Philipp S Tiesel, and Christo-
pher A Wood. An architecture for transport services.
Internet-Draft draft-ietf-taps-arch-00, IETF, 2018.

[39] Maxim Podlesny and Sergey Gorinsky. RD network
services: differentiation through performance incentives.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM),
2008.

[40] Murali Ramanujam, Harsha V Madhyastha, and Ravi
Netravali. Marauder: synergized caching and prefetch-
ing for low-risk mobile app acceleration. In Proceedings
of the 19th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2021.

[41] Sanae Rosen, Haokun Luo, Qi Alfred Chen, Z Morley
Mao, Jie Hui, Aaron Drake, and Kevin Lau. Discover-
ing fine-grained RRC state dynamics and performance
impacts in cellular networks. In Proceedings of the 20th
annual international conference on Mobile computing
and networking (MobiCom), 2014.

[42] Philipp S Schmidt, Theresa Enghardt, Ramin Khalili,
and Anja Feldmann. Socket intents: Leveraging ap-
plication awareness for multi-access connectivity. In
Proceedings of the 9th ACM Conference on Emerging
Networking Experiments and Technologies (CoNEXT),
2013.

[43] William Sentosa, Balakrishnan Chandrasekaran,
P Brighten Godfrey, Haitham Hassanieh, Bruce Maggs,
and Ankit Singla. Accelerating mobile applications
with parallel high-bandwidth and low-latency channels.
In Proceedings of the 22nd International Workshop on
Mobile Computing Systems and Applications, pages
1–7, 2021.

[44] M Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang,
and Jia Wang. Characterizing geospatial dynamics of
application usage in a 3G cellular data network. In
Proceedings IEEE INFOCOM, 2012.

[45] Srikanth Sundaresan, Nick Feamster, Renata Teixeira,
and Nazanin Magharei. Measuring and mitigating web
performance bottlenecks in broadband access networks.
In Proceedings of the ACM Internet Measurement Con-
ference (IMC), 2013.

[46] Cheng-Lin Tsao and Raghupathy Sivakumar. On effec-
tively exploiting multiple wireless interfaces in mobile
hosts. In Proceedings of the 5th International Confer-
ence on Emerging Networking Experiments and Tech-
nologies (CoNEXT), 2009.

[47] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Kr-
ishnamurthy, and David Wetherall. Demystifying page
load performance with wprof. In 10th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2013.

[48] Xiao Sophia Wang, Aruna Balasubramanian, Arvind
Krishnamurthy, and David Wetherall. How Speedy is
SPDY? In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2014.

[49] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and
Mark Handley. Design, implementation and evaluation
of congestion control for multipath tcp. In 8th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2011.

[50] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, Guixian Wang,
Xi Liu, Congkai An, Yiming Shi, Liang Liu, and
Huadong Ma. Understanding operational 5G: A first
measurement study on its coverage, performance and
energy consumption. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communi-
cation (SIGCOMM), 2020.

[51] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Ragha-
van, Riad S Wahby, Philip Levis, and Keith Winstein.
Pantheon: the training ground for internet congestion-
control research. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 731–743, 2018.

[52] Ming Zhang, Junwen Lai, Arvind Krishnamurthy,
Larry L Peterson, and Randolph Y Wang. A Transport
Layer Approach for Improving End-to-End Performance
and Robustness Using Redundant Paths. In USENIX
Annual Technical Conference (ATC), 2004.

[53] Torsten Zimmermann, Benedikt Wolters, Oliver
Hohlfeld, and Klaus Wehrle. Is the web ready for
http/2 server push? In Proceedings of the 14th ACM
Conference on Emerging Networking Experiments and
Technologies (CoNEXT), 2018.

[54] Baiqing Zong, Chen Fan, Xiyu Wang, Xiangyang Duan,
Baojie Wang, and Jianwei Wang. 6g technologies: Key
drivers, core requirements, system architectures, and en-
abling technologies. IEEE Vehicular Technology Maga-
zine, 14(3), 2019.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 433

�� �� �� �� ���
H0%%�577��PV�

�

�

�

�

3/
7�
�V
�

�F�
$OO�H0%%
'&KDQQHO

� � �� �� �� �� ��
85//&�577��PV�

�

��

��

��

��
�E�

'&KDQQHO

� � � �
85//&�%DQGZLGWK��0ESV�

�

��

��

��

��

�
�,P
SU
Y�
�R
YH
U�$
OO�
H0
%% �D�

'&KDQQHO

Our URLLC
latency
baseline

Our URLLC
bandwidth
baseline

Figure 8: DChannel under varying eMBB and URLLC net-
work conditions, conducted using the baseline (RTT (ms) /
bandwidth (Mbps) for eMBB and URLLC are 40 / 200 and 5
/ 2) with a single varying parameter.

A Appendix

A.1 Algorithm Listing
The packet steering algorithm is listed as Algorithm 1. Note
that since HBC bandwidth (Bhbc) is typically large and rela-
tively hard to measure, for simplicity, we omitted the queueing
delay caused by (size(Pn)+Qhbc(tn))/Bhbc.

Algorithm 1: DChannel steering algorithm
Result: Send a packet to either HBC or LLC
c_llc = t_now + llc_prop + (size(packet) + queue_llc) /
band_llc;

c_hbc = t_now + hbc_prop;
rewards = c_hbc - max(prev_c, c_llc);
cost = (size(packet) + queue_llc) / band_llc;
if rewards > alpha * cost then

send(pkt, LLC);
prev_c = max(prev_c, c_llc);

else
send(pkt, HBC);
prev_c = max(prev_c, c_hbc);

end

A.2 Parameter Calibration
The results of our parameter sweep are shown in Table 5.

A.3 Understanding DChannel Performance
Below, we investigated how DChannel performs under tightly
controlled network variables. We used a fixed network latency
and bandwidth for the experiments below.

0.0 0.25 0.5 0.75 1.0 1.5 2.0
URLLC RTT coefficient of variation

0

10

20

30

%
 Im

pr
v.

ov
er

 A
LL

-e
M

BB

Figure 9: DChannel PLT improvement under time-varying
URLLC RTT randomly generated according to a Gaussian
distribution.

.
A.3.1 Performance under high eMBB RTT
We evaluated DChannel under eMBB RTT inflation and found
it to be resilient towards the RTT increase (Fig. 8c). Specifi-
cally, DChannel is 2× faster than the baseline when eMBB
RTT is held at 100 ms, which is possible in device mobility as
Tab. 1 shows. As eMBB RTT increases, DChannel web PLT
degrades at a slower rate compared to All-eMBB because it
uses eMBB primarily for bandwidth-sensitive (low rewards)
traffic that is not affected as severely by the increased latency.
Inline with our trace-based evaluation under mobility, the par-
allel channel setup can be extremely effective when the eMBB
channel quality degrades.

A.3.2 Varying URLLC latency
Although URLLC is expected to deliver consistent low la-
tency, we evaluated latency inflation on URLLC to reflect sce-
narios where web traffic is de-prioritized in favor of critical
traffic. DChannel is still superior even when URLLC latency
increases up to 30 ms and eMBB held at 40 ms (Fig. 8b). As
expected, as URLLC latency increases and becomes closer
to eMBB, the PLT improvement rapidly diminished because
LLC no longer offers a competitive resource despite its higher
cost.

To evaluate DChannel sensitivity to URLLC latency insta-
bility, we changed URLLC propagation latency over time to
random values that follow Gaussian distribution. We kept the
URLLC mean to 10 ms and ran experiments with an increas-
ing amount of variation, controlled with the Gaussian distri-
bution’s coefficient of variation (CoV). We set the URLLC
bandwidth to 2 Mbps while the eMBB RTT and bandwidth are
40 ms and 200 Mbps. We found that DChannel performance
is relatively robust to the URLLC latency change (Figure 9);
the PLT improvement only drops from 27.18% to 23.31%
when the URLLC latency CoV changes from 0 to 2.

A.3.3 Varying URLLC bandwidth
The URLLC bandwidth is generally limited to ensure its
reliable and low latency service. We tested DChannel under
varying URLLC and summarize that its improvement flattens
as URLLC bandwidth increases past 2 Mbps (Fig. 8a). As

434 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 5: Percentage of improvement or ‘speedup’ in PLT (%ps.) along with the percentage of bytes (%sz.) sent via URLLC for
various values of the eMBB channel RTT. The table also shows how the different values of α affect the performance benefits.

RTT α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1 α = 2 α = 3
(ms) %ps. %sz. %ps. %sz. %ps. %sz. %ps. %sz. %ps. %sz. %ps. %sz. %ps. %sz.

20 16.7 13.3 16.6 10.7 18.4 5.9 18.9 5.7 18.5 5.5 15.6 4.7 14.2 4.1
40 31.1 18.8 33.2 16.2 34.0 13.9 34.7 11.9 34.0 11.1 32.8 8.5 31.8 5.8
60 37.5 22.6 40.9 19.5 41.2 17.4 42.1 14.9 40.8 14.2 40.6 11.1 37.4 9.8
80 43.2 26.3 46.3 22.9 46.3 19.9 46.3 17.7 47.1 16.5 45.6 13.3 45.1 11.6
100 47.1 29.4 48.6 26.1 49.7 22.5 50.2 19.9 50.7 18.3 49.8 14.9 48.5 13.1

20 40 60 80 100
eMBB RTT (ms)

0

20

40

%
 Im

pr
v.

ov
er

 A
ll-

eM
BB

eMBB RTT prediction = 20ms
eMBB RTT prediction = 100ms
Correct prediction

Figure 10: Effect of underestimating and overestimating
eMBB latency on the mean PLT improvement.

URLLC bandwidth increases, DChannel aggressively offloads
packets belonging to a larger transfer (e.g., HTTP response)
to URLLC. It may not affect the completion time, however,
as it still needs to wait for the remaining part to be transferred
over the eMBB.

A.3.4 Working with Incorrect Latency Estimates
DChannel requires estimates of eMBB and URLLC latency
to calculate rewards and cost (§3.4). While URLLC latency
is predictable, it can be hard to get an accurate measurement
of eMBB latency, especially under mobility. To better under-
stand the sensitivity of DChannel to the latency estimates,
we evaluated DChannel under underestimated and overesti-
mated latency. Fig. 10 shows that underestimating eMBB
latency is safer: When DChannel underestimates eMBB la-
tency as 20 ms (from 100 ms, which is 5× higher), the PLT
improvement only decreases by 8%. Underestimating eMBB
latency will underestimate the rewards, causing a more conser-
vative use of URLLC and ensuring that the offloaded packets
are high rewards packets. Overestimating the latency will, in
contrast, overestimate the rewards, resulting in unnecessary
packets being offloaded to URLLC, and slowing down the
channel. Per Fig. 10, overestimating eMBB latency by 5×,
DChannel gets worse performance than the baseline.

A.3.5 DChannel under TCP BBR
Since DChannel steers packets over two channels, the sender
may notice an abrupt change in the flow RTT. We evaluated

Table 6: Mean PLT with TCP BBR under different eMBB
RTTs. The URLLC RTT is set to 5 ms

.

RTT=20ms RTT=100ms

All-eMBB 915 ms 2661 ms
DChannel 716 ms (21%) 2713 ms (-2%)
pkt-uplink 860 ms (6%) 1628 ms (39%)

DChannel in TCP BBR, which uses RTT measurement to
determine whether a path is congested. Tab. 6 shows the re-
sult when low (RTT=20 ms) and high (RTT=100 ms) eMBB
latency are used. When the eMBB RTT is 20 ms, BBR works
perfectly with DChannel because eMBB and URLLC laten-
cies are not that different. As the latency gap widens, however,
BBR starts to treat abrupt latency inflation as a congestion
signal, reduces its windows rate, and increases PLT. We found
that for 20% of the web page loads, DChannel performs worse
than All-eMBB. These sites rely on a single TCP connection
to deliver most web objects, and that flow suffers from a low
sending rate. This can happen as DChannel accelerates the
early packets (such as TCP SYN) to URLLC and suddenly
switches back to eMBB once it sees large traffic. The abrupt
RTT change gives a wrong congestion signal to the sender.
One possible solution is to modify BBR to be aware of eMBB
and URLLC use so that it can tolerate a change in RTT and
maintain its sending rate. We leave this as future work. Alter-
natively, we can use different heuristics (pkt-uplink) that will
send all uplink packets to URLLC and downlink packets to
eMBB. This heuristic is based on the observation that client
traffic is generally small and accelerating those packets will
accelerate the flow RTT in a more consistent way. Table 6
shows we can get 39% improvement in PLT under BBR from
this scheme.

A.4 DChannel rewards calculation accuracy
We evaluated DChannel packet rewards (R) calculation accu-
racy by comparing the calculated rewards and the real rewards.
As we used a trace-based emulated network, we knew both
network bandwidth, latency, and the link’s queue depth at any
given time. Leveraging this information, we can calculate the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 435

0 50 100 150
rewards_error (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

mmWave-stationary
mmWave-driving

Figure 11: DChannel calculates rewards error distribution
(Rreal −Rest) across individual packets. A positive value de-
notes R underestimation. We limited the x-axis due to the high
rewards error in the tail (155 ms and 604 ms at the 99th and
100th percentile).

real rewards before we commit a packet to a link. Figure 11
shows the rewards calculation error for the mmWave station-
ary (MM-S) and driving (MM-D) network traces. DChannel
is able to accurately estimate R with just 12 ms of error in
the 90th percentile in the stationary network traces due to
the network latency being relatively stable and the bandwidth
being large. In the driving traces, the error is noticeably higher
with a long tail. However, 90% of the time the error is less
than 37 ms. The R error mainly arises from the less accurate
network eMBB latency estimation and the impact of ignoring
the eMBB queueing delay (§A.1), since eMBB bandwidth
may be low, and the delay becomes more significant).

The above is also why, as can be seen in the figure, R is
rarely overestimated. Underestimation is the preferred direc-
tion of error, as we have shown that DChannel can tolerate
some incorrect latency estimates and rewards underestimation
(§A.3.4). However, better network measurement may improve
DChannel performance; we leave this as future work.

436 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SkyPilot: An Intercloud Broker for Sky Computing

Zongheng Yang∗, Zhanghao Wu∗, Michael Luo, Wei-Lin Chiang, Romil Bhardwaj,
Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam Mittal, Scott Shenker§, Ion Stoica

University of California, Berkeley §UC Berkeley and ICSI

Abstract
To comply with the increasing number of government regu-
lations about data placement and processing, and to protect
themselves against major cloud outages, many users want
the ability to easily migrate their workloads between clouds.
In this paper we propose doing so not by imposing uniform
and comprehensive standards, but by creating a fine-grained
two-sided market via an intercloud broker. These brokers will
allow users to view the cloud ecosystem not just as a collec-
tion of individual and largely incompatible clouds but as a
more integrated Sky of Computing. We describe the design
and implementation of an intercloud broker, named SkyPilot,
evaluate its benefits, and report on its real-world usage.

1 Introduction
The modern information infrastructure is built around three
components. The Internet provides end-to-end network con-
nectivity, cellular telephony provides nearly ubiquitous user
access via increasingly powerful handsets, and cloud com-
puting makes scalable computation available to all. These
ecosystems obviously have many superficial differences, but
perhaps their most fundamental difference lies in the degree of
compatibility between providers in each of these ecosystems.

The Internet and the cellular infrastructure were designed
with the goal of universal reachability. This required both
uniform and comprehensive industry standards and broadly-
adopted interconnection agreements (for Internet peering and
cellular roaming) that led to a globally connected federation of
competing providers. The cloud ecosystem has very different
origins, emerging as a replacement for dedicated on-premise
computing clusters rather than serving as an interconnected
communication infrastructure. As a result, cloud providers
began by emphasizing their differences rather than their simi-
larities; though the clouds are all based on the same basic con-
ceptual units (e.g., VMs, containers, and now FaaS), they ini-
tially differed greatly in their orchestration interfaces. These
orchestration interfaces have become more similar over time,

*Equal contribution.

but some clouds continue to differentiate themselves through
numerous proprietary service interfaces, such as for storage or
key-value stores. In addition, clouds typically impose much
higher charges on data leaving than on data entering, resulting
in “data gravity” (i.e., the difficulty of moving jobs to another
cloud due to the expense of transferring the data). The combi-
nation of proprietary service interfaces and data gravity have
led to significant customer lock-in: it is hard for companies
who have established their computational workloads on one
cloud to move them to another.

However, as cloud computing has become a critical part of
our computational infrastructure, enterprises are increasingly
worried about how difficult it is to migrate workloads between
clouds. There are two compelling reasons for wanting more
freedom in workload placement. First, no business wants any
critical part of their infrastructure tied to a single provider
because such lock-in reduces their negotiating leverage and
also makes the business vulnerable to large-scale outages at
the provider. Second, there are now strict regulations about
data and operational sovereignty that dictate where data can
be stored and computational jobs run. Not all cloud providers
have datacenters in all countries, so the inability to migrate
jobs between cloud providers could be a painful roadblock
to satisfying these new regulations. These two reasons are
not theoretical problems whose solutions would be “nice-to-
have”; the recent occurrence of large-scale cloud outages and
the increasing number of government regulations are quickly
making such a solution a “must-have” for large-scale users of
the cloud. This paper is about how we can ease the migration
of workloads through the rise of Sky Computing, a concept
first introduced in [81] but significantly extended and more
deeply explored here. Sky Computing is when users, rather
than directly interacting with the cloud, submit their jobs to
what we call intercloud brokers who handle the placement
and oversee the execution of their jobs.

To explain our approach in more depth, we first review
related concepts and recent developments (§2). We then (§3)
describe our vision of Sky Computing and its transformative
possibilities. We present the requirements, architecture, and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 437

implementation of an intercloud broker, named SkyPilot, that
focuses on computational batch jobs (§4). We then demon-
strate its benefits on several applications (§5). Finally, we
share our experiences with early deployments (§6), survey
related work (§7), and conclude (§8). While the body of this
paper is devoted the technical characteristics of our system, in
the appendix (§A.1) we speculate on how the cloud ecosystem
might evolve once Sky Computing is more widely adopted.

SkyPilot is open source and available at https://
github.com/skypilot-org/skypilot.

2 Related Concepts and Recent Developments
In this section we first review two concepts related to the
ability to migrate workloads – standards and multicloud – and
then discuss the recent progress towards compatibility.

2.1 Why Not Just Adopt Standards?

The first question one might ask is if seamless migration is
the goal, why not adopt a set of uniform and comprehensive
cloud standards, as was done for the Internet and cellular? In
fact, a decade ago IEEE proposed a set of Intercloud standards
for portability, interoperability, and federation among cloud
providers [88] involving an Intercloud Service Catalog and
an Intercloud federation layer. There are two fundamental
problems with this and other proposals for such uniform and
comprehensive cloud standards. First, there is no incentive
for the dominant clouds (i.e., those with large market shares)
to adopt such standards; it would decrease their competitive
advantage and make it easier for customers to move their
business to other clouds. Second, users interact with clouds
at many levels, using high-level service interfaces such as
PyTorch [76] or TensorFlow [53] in addition to low-level
orchestration interfaces such as Kubernetes [36]. If the goal
is to make workload migration seamless, then all of these
interfaces would need to be standardized. Requiring every
cloud to standardize every interface is both unrealistic (as
noted in the first objection) and unwise (because these higher-
level interfaces have changed significantly over time, and
standardizing them would greatly hinder innovation).

2.2 Why Isn’t This Just Multicloud?

Multicloud is now an industry buzzword, and there are re-
ports [33, 52] that most enterprises have, or will soon have,
multicloud deployments; this would seemingly imply that
our goal of seamless workload migration has already been
realized. However, the common use of the term multicloud
only requires that an enterprise have workloads on two or
more clouds (e.g., the finance team runs their backend func-
tions on Amazon while the analytics team runs their ML jobs
on Google), not that they can easily move those workloads
between clouds. It is clear, from everyone we have talked
to in the industry, that moving many workloads between
clouds remains difficult. The exceptions to this are the recent
third-party offerings (e.g., by Trifacta, Confluent, Snowflake,
Databricks, and others) that run on multiple clouds; users can

indeed migrate their workloads that only use these services be-
tween clouds relatively easily (BigQuery, offered by Google,
offers similar cross-cloud support). However, these are for
specific workloads, and do not provide general support for
workload migration.

In addition, there are several programming or management
frameworks that support multiple clouds. JClouds [8] and
Libcloud [10] offer portable abstractions over the compute,
storage, and other services of many providers. However, the
user still does the placement manually, whereas automatic
placement is a key feature of Sky Computing. On the manage-
ment front, Terraform [51] provisions and manages resources
on different clouds, but requires the usage of provider-specific
APIs, and also does not handle job placement. Kubernetes [36]
orchestrates containerized workloads and can be run across
multiple clouds (e.g., Anthos [5]). These frameworks, while
quite valuable, focus on providing more compatibility in the
lower-level infrastructure interfaces offered by the clouds
(see §2.3), and as such are nicely complementary with Sky
Computing but do not obviate the need for Sky Computing.

2.3 Growth In Interface Compatibility

Turning away from related concepts, we now discuss a recent
development that Sky Computing will leverage. As noted
before, users of cloud computing invoke a wide variety of
computational and management interfaces. Many of these are
open source systems that have become the de facto standards
at different layers of the software stack, including operating
systems (Linux), cluster resource managers (Kubernetes [36],
Apache Mesos [63]), application packaging (Docker [27]),
databases (MySQL [41], Postgres [43]), big data execution
engines (Apache Spark [93], Apache Hadoop [89]), stream-
ing engines (Apache Flink [57], Apache Spark [93], Apache
Kafka [9]), distributed query engines and databases (Cas-
sandra [7], MongoDB [39], Presto [44], SparkSQL [48], Re-
dis [45]), machine learning libraries (PyTorch [76], Tensor-
Flow [53], MXNet [58], MLflow [38], Horovod [79], Ray
RLlib [66]), and general distributed frameworks (Ray [71],
Erlang [55], Akka [1]). In addition, some of AWS’s interfaces
are increasingly being supported on other clouds: Azure and
Google provide S3-like APIs for their blob stores to make it
easier for customers to move from AWS to their own clouds.
Similarly, APIs for managing machine images and private
networks are converging.

These trends increase what we call limited interface com-
patibility, where both of these qualifiers are crucial. This
compatibility applies only to individual interfaces and these
interfaces are typically not supported by all clouds but by
more than one. Our contention, based on what we see in the
ecosystem, is that the number and the usage of these inter-
faces that have this limited compatibility – i.e., are supported
on more than one cloud – is increasing, largely but not exclu-
sively due to open-source efforts.

We are basing our approach on the belief that this trend will

438 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/skypilot-org/skypilot
https://github.com/skypilot-org/skypilot

continue, and that leveraging this trend is far preferable to pur-
suing uniform and comprehensive standards. To paraphrase
a quote attributed to Lincoln, we know that all interfaces are
supported by some clouds, and some interfaces may be sup-
ported by all clouds, but we cannot and should not require
that all interfaces be supported by all clouds.1

3 The Vision of Sky Computing
We first describe what Sky Computing is, and articulate why
we see it as not just tactical but transformative.

3.1 What Is Sky Computing?

Given this increasing level of limited interface compatibility,
how do we leverage it to ease workload migration? There are
two key components. First, in order to reduce data gravity,
clouds can enter into reciprocal free data peering; i.e., two
clouds can agree to let users move data from one cloud to an-
other without charge. With high-speed connections prevalent
(many clouds have 100 Gbps connections to various intercon-
nection points where they can peer with other clouds), we
think such free peering can easily be supported, with its costs
more than offset by the increase in computational revenue that
it enables. One might worry about the delay that such transfers
incur, but if the resulting computation times are superlinear in
the data size (or linear with a reasonably high constant) then
no matter how large datasets become, the networking delays
will not be a major bottleneck.

The second component, and the one we focus on for the
rest of this paper, is what we call intercloud brokers. In this
paper we describe our intercloud broker, which is designed
specifically for computational batch jobs (§4). While batch
jobs (e.g., ML, scientific jobs, data analytics) represent only a
fraction of today’s diverse cloud use cases, their computation
demands are growing quickly [74] and are responsible for
the recent surge of specialized hardware [15, 22, 23]. Thus,
we have started with a broker designed for batch jobs as a
tractable but common and rapidly growing workload. We
expect future versions of the broker will address a wider range
of workloads, and provide a broader set of features, but that
is not our focus here. In addition, we expect that eventually
there will be an open market in intercloud brokers that charge
a small fee for their brokerage service; some of those brokers
will be general purpose and others more tailored to specific
workloads, as ours is.

An intercloud broker takes as input a computational request
that is is specified as a directed acyclic graph (DAG) in which
the nodes are coarse-grained computations (e.g., data pro-
cessing, training).2 For lack of a better term we call these
computations “tasks”. The request also includes the user’s
preferences about price and performance.

1The following adage is widely but incorrectly attributed to Lincoln: “You
can fool part of the people some of the time, you can fool some of the people
all of the time, but you cannot fool all the people all of the time.”

2This is informed by workflow systems [6] that are now the de facto
standard for orchestrating complex batch applications.

ML Pipeline

Intercloud Broker

Data
proc Training Serving

Training ServingSecure
Data proc

Figure 1: An ML pipeline running on top of Sky. The goal is to
minimize cost while processing the input data securely.

The intercloud broker is then responsible for placing these
tasks across clouds. Unlike existing multicloud applications
which run an application instance per cloud, an intercloud
broker can run a single application instance across several
clouds. For example, Figure 1 shows a machine learning (ML)
pipeline with three tasks: data processing, training, and serv-
ing. The user may wish to minimize the total cost while pro-
cessing data securely. The intercloud broker might decide to
run data processing on Azure Confidential Computing [16] to
anonymize data and thus protect data confidentiality, training
on GCP to take advantage of TPUs [23], and serving on AWS
to take advantage of the Inferentia accelerator [15].

The ability to partition applications enables the emergence
of specialized clouds. For example, a cloud provider can build
a successful business by just focusing on a single task, such
as ML training, and offering the best price-performance for
that task; see §A.1 for a more detailed discussion of this.

In addition, the intercloud broker provides benefits even
when the application (i) entirely runs on a single cloud, by
automatically choosing the cloud that best matches the user’s
preferences and choosing the best region and zone within that
cloud, or (ii) uses services3 provided only by a single cloud,
by placing a task on that cloud but still having the freedom to
use other clouds for the other tasks.

3.2 Why Is This Transformational?

There are three reasons, each from a different perspective, why
we see this as a transformational change in cloud computing,
not as merely a tactical mechanism for workload migration.

User’s Perspective: When using an intercloud broker, users
are no longer interacting with individual clouds, but with a
more integrated “Sky” of computing. They merely specify
their computation and their criteria, and the broker then places
the job. This makes it significantly easier to use the cloud,
and may lead to increased cloud adoption. Note that such an
interface hides the heterogeneity between and within clouds.
Users no longer need to research which clouds have the best
prices, or offer a particular service. This also applies within
individual clouds, because different regions within a cloud

3By “service” we mean the compute services or a hosted service provided
by one or more clouds, such as hosted Apache Spark (e.g., EMR [4], HDIn-
sight [17]) and hosted Kubernetes (e.g., EKS [3], GKE [32], or AKS [18]).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 439

can offer different hardware options and different prices.
Competitive Perspective: Note that by serving as an in-

termediary between users and clouds, the intercloud broker
is creating a fine-grained two-sided market for computation:
users specify their tasks and requirements, and clouds of-
fer their interfaces with their pricing and performance. Job
placement is no longer driven mostly by measures to pro-
mote lock-in (e.g., proprietary interfaces and data gravity),
but increasingly by the ability of each cloud to meet the user’s
requirements through faster and/or more cost-efficient imple-
mentations. This means that the clouds, in order to increase
their market, will likely start supporting interfaces that are
commonly used in jobs, driving the market towards increased
compatibility.

Ecosystem Perspective: Once there is a two-sided market
established, the cloud ecosystem can transition from one in
which all clouds offer a broad set of services and try their
best to lock customers in, to one in which many clouds focus
on becoming part of a computational Sky, where they can
specialize in certain tasks because the intercloud broker will
automatically direct computations to them if they best meet
user needs for those particular tasks; the economic analysis
in the appendix (§A.1.2) makes this case more precisely.

This vision should be tempered with several doses of reality.
First, while we envision some clouds will embrace the vision
of Sky Computing by focusing on compatible interfaces and
adopting reciprocal free data peering, we expect others, partic-
ularly those with dominant market positions, to continue with
lock-in as a market strategy. Nonetheless, the presence of a
viable alternative cloud ecosystem will set the bar for innova-
tion and meeting user requirements, so all users will benefit.
Second, we assume that the creation of Sky Computing will
be a lengthy process that will start slowly and gradually gather
momentum. Our goal in this paper is to investigate how to
start this transformation, not to define its ultimate form. As
such, we start with with an intercloud broker for batch jobs—a
small but important set of workloads. Third, given our focus
on the early stages of the Sky, we do not provide solutions
to several problems that must eventually be addressed, such
as how to troubleshoot failures that occur with applications
running across multiple clouds.

4 Intercloud Broker
We now present an intercloud broker that targets batch ap-
plications. We first review the requirements of such a broker,
and then propose an architecture. Finally, we describe our
implementation of the resulting design, called SkyPilot.

4.1 Requirements

Cataloging cloud services and instances. There is a huge
and growing number of services, instances, and locations4

across clouds. As shown in Table 1, the top three public clouds
alone provide hundreds of compute VM types in dozens of

4We use “locations” to refer to regions and zones, collectively.

Cloud Regions Zones VM types

AWS 20 (US: 4∗) 64 (US: 15∗) ≥ 558
Azure 51 (US: 8∗) 124 (US: 23∗) ≥ 714
GCP 35 (US: 9) 106 (US: 28) ≥ 155

Table 1: Top public clouds with their myriad choices of locations
and compute instance types. Data is gathered from each cloud at
the time of writing. ∗Not counting government cloud regions.

0 1 2 3 4 5 6 7 8
Elapsed Time (days)

0
100
200
300
400

Cumulative number of preemptions

Figure 2: Dynamic resource unavailability: preemptions over time
from a real-world bioinformatics workload trace. The workload ran
for 8 days, using 24 large-CPU spot VMs on GCP, us-west1.

regions across the globe. Even for a simple request of a 4-
vCPU VM in the “compute-optimized” family—advertised by
all three clouds—there are at least 90 choices within the US
in terms of region and VM type. Furthermore, each cloud has
hundreds of software services (e.g., hosted Kubernetes/Spark,
blob storage, SQL databases) to choose from. This is clearly
beyond what can be navigated manually by ordinary users.

To provide the automatic placement of jobs, the broker
must catalog the variety of instances and services, the APIs
to invoke these services, and the subset of clouds and regions
where these offerings are available.

Even after they have been cataloged, these many options
are hard to navigate. Thus, the broker should expose filters
on common attributes to applications so that they can easily
narrow down the many options across clouds. For compute
instances, filters may include the number of vCPUs, RAM,
and accelerator types. For managed services (e.g., hosted ana-
lytics), filters may include the service or the package version
(e.g., AWS EMR 6.5, or Apache Spark 3.1.2). Moreover, the
broker should allow an application to choose specific services
or instances supported only by one cloud.

Tracking pricing and dynamic availability. The price
and availability of resources can vary dramatically across
clouds and even regions or zones in the same cloud, often, but
not always, following a diurnal pattern [73]. The variations
are especially acute for scarce resources (§5.4), such as GPUs
or preemptible spot instances that many applications use due
to their lower costs, and change over time.

To illustrate the potential changes in resource availabil-
ity, consider a real user’s application: a bioinformatics task
running for 8 days on 24 spot VMs on GCP (see §5.2 for
more detail). When a VM is preempted, it waits for another
spot VM to become available. Figure 2 shows the cumula-
tive number of preemptions over time. Note that preemptions
happened every day and at unpredictably different rates (e.g.,

440 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

compare day 3–4 vs. day 4–5). The application experienced
319 preemptions, a preemption every 36 minutes on average.

Thus, the broker should track the availability and pricing
to provide applications with the best choices at run time. One
challenge is that clouds do not publish availability information
explicitly. The broker may have to learn about availability
implicitly by observing preemptions or allocation failures of
both on-demand and spot resources in different locations.

Dynamic optimization. Recall that the goal of the broker is
to meet the application’s cost and performance requirements
under various constraints, such as data residency. This means
the broker should choose the types of instances or services,
clouds, and locations to run the tasks in the application DAG.
This is a challenging optimization problem because of (1)
the sheer number of choices (Table 1), (2) DAG topologies
becoming complex (Figure 10), and (3) the unpredictable re-
source availability and price changes during the application’s
provisioning or run time (Figure 2).

As a result, the broker should implement a dynamic op-
timizer that can reflect the current resource availability and
prices, and quickly find an optimal execution plan out of
the large search space. To use up-to-date prices, the broker
needs to compute the execution plan whenever an application
starts. In addition, when a task in an application DAG can-
not run as the broker originally planned due to availability
changes, the broker needs to generate a new execution plan
by re-optimization during the application’s run time.

Managing resources and applications. Once the opti-
mizer decides the placement of an application, the broker
must provision the resources and free them when the applica-
tion terminates. This involves starting and reliably shutting
down instances on various clouds, or creating and terminating
services (e.g., sending requests to a hosted service like AWS
EMR). While these lifecycle operations may seem straight-
forward, bugs or failures can easily lead to inconsistencies
between the broker state and the cloud provider state (e.g.,
leaking instances or intermediate data), which can be costly.

In addition, the broker must manage the execution of the
application, i.e., start an application’s task when its inputs are
available, possibly restart it in case of failures or preemptions,
and move the task’s inputs across clouds/regions, if remote.

4.2 Architecture

Given these requirements, we propose an intercloud broker ar-
chitecture consisting of the following components (Figure 3).

Catalog. The catalog records the instances and services
available in each cloud, detailed locations that offer them, and
the APIs to allocate, shut down, and access them. It also stores
the long-term prices for on-demand VMs, data storage, egress,
and services (typically these prices do not change for months).
The catalog can provide filtering and searching functionalities.
The catalog can be based on information published by the
clouds, listed by a third party, or collected by the broker.

Job specification (e.g., DAG),
User preferences (e.g., minimize cost,
latency, …)

Service
publisher

Cloud B
Compatibility Set

Intercloud
Broker

Service
publisher

Cloud A
Compatibility Set

Optimizer

Provisioner

Executor

Service
Catalog

Tracker

APIs, prices, ...

Figure 3: Architecture of the intercloud broker.

Tracker. This component tracks spot prices (which can
change more frequently, e.g., hourly or daily) as well as re-
source availability across clouds and their locations.

Optimizer. The optimizer takes as inputs (1) the applica-
tion’s DAG and its requirements, and (2) the instance and
service availability as well as their prices provided by the
catalog and tracker, and then computes an optimal placement
of the tasks. Upon resource availability and price changes, the
optimizer may perform re-optimization.

Provisioner. This component manages resources (§4.1) by
allocating the resources required to run the execution plan
provided by the optimizer, and freeing them when each task
exits. To handle unpredictable capacity and user quota errors,
the provisioner implements automatic failover, where it asks
the optimizer for a new placement plan if the provision fails.
Failures are also reported to the tracker.

Executor. The executor manages the application (§4.1) by
packaging each application’s tasks and running them on the
resources allocated by the provisioner.

In the future, we imagine intercloud brokers will offer more
sophisticated services such as troubleshooting across clouds,
providing more detailed performance measurements for spe-
cific applications on each cloud, the equivalent of spot-pricing
but across clouds, reselling services at lower than listed prices
(similar to the travel industry), and advanced configuration
features for security and/or networking.

Furthermore, we expect a commercial broker to provide
billing support to enable a user to have a single account with
the provider of the intercloud broker, which then pays for
the services rendered by each cloud on behalf of the user,
and charges the user back. In our current deployment, our
users have direct accounts with the three major clouds, so this
functionality is not needed.

4.3 SkyPilot: An Implementation

We have implemented SkyPilot, which follows the architec-
ture described in §4.2 with one difference: instead of imple-
menting the tracker as a centralized component, SkyPilot dis-
tributes it between the catalog that refreshes prices daily, and
the provisioner that tracks and caches provisioning failures.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 441

SkyPilot is written in ≈21,000 lines of Python code, and
has involved several person-years so far. It currently supports
AWS, Azure, and GCP. It is being used by users from 3 uni-
versities and 4 other organizations; we report our deployment
experience in §6. Next, we first describe SkyPilot in detail,
then discuss the services in the compatibility set it uses.

Application API. As mentioned earlier, an application is
specified as a DAG of coarse-grained tasks. Example tasks
include a Spark job to process data, a Horovod [79] job to
train a model, or an MPI job for HPC computations. A task
starts when all of the tasks that provide its inputs have finished.
Each task is self-contained and includes its executable and all
library dependencies (e.g., packaged as a Docker image).

A task specifies its input and output locations in the form
of cloud object store URIs. Optionally, a task can provide the
size estimates of its inputs and outputs to help the optimizer
estimate the cost of data transfers across clouds.

Each task specifies the resources it requires. For flexi-
bility, resources are encoded as labels, such as “cpu: 4” or
“accelerator: nvidia-v100”, an idea we borrow from cluster
managers such as Borg [85], Mesos [63], and Condor [82].
The optimizer uses these resource labels to search the service
catalog for a set of feasible candidates for each task. If de-
sired, the user can short-circuit the optimizer’s selection by
explicitly specifying a cloud and an instance type.

The user optionally specifies the number of instances for
each task by a “num_nodes: n” label, which defaults to 1.
Since we target coarse-grained batch jobs, our users have not
found this a burden. In the future, we plan to support autoscal-
ing or intelligently picking the number of instances [54, 84].

Finally, the user supplies an optional time estimator for
each task, which estimates how long it will run on each speci-
fied resource. These estimates are used by the optimizer for
planning the DAG. The user could determine these estimates
by benchmarking the task on different configurations. If a
time estimator is unspecified for a task, currently the opti-
mizer defaults to the heuristic of choosing the resource with
the lowest hourly price.5

Example. Listing 1 shows an application consisting of two
tasks. The train task trains a model. It reads the input data
from S3 and writes the output (the trained model) to the
object store of the cloud it is assigned to run on, which is
determined by the optimizer. By using Resources, a dictio-
nary of resource labels, the user specifies that this training
task requires either an nvidia-v100 accelerator or a google-tpu-
v3-8 accelerator with 4 host vCPUs. The user also provides
a train_time_estimator_fn lambda that estimates the task’s
run time on these two accelerators. For example, one can com-
pute a rough estimate by dividing the total number of floating
operations required for training the model by the accelerator’s
performance in FLOPS (floating point operations per second),

5Prior work [83] have considered performance prediction for analyt-
ics [84] and machine learning [78] workloads, which can also be leveraged.

A simple application: train -> infer.
with Dag() as dag:

train = Task('train', run='train.py',
arg='--data=$INPUT[0] --model=$OUTPUT[0]')

.set_input('s3://my-data', size=150 * GB)
'?': saves to the cloud this op ends up running on.
.set_output('?://my-model', size=0.1 * GB)
Required resources. A set ({}) means pick any Resources.
.set_resources({

Resources(accelerator='nvidia-v100'),
Resources(accelerator='google-tpu-v3-8', cpu=4)})

A partial function: Resources -> time.
.set_time_estimator(train_time_estimator_fn)

infer = Task('infer', run='infer.py',
arg='--model=$INPUT[0]')

.set_input(train.output(0))

.set_resources({
Resources(accelerator='nvidia-t4'),
Resources(accelerator='aws-inferentia', ram=16 * GB)})

.set_time_estimator(infer_time_estimator_fn)
Connect the tasks.
train >> infer

Listing 1: API to express a simple application.

or use a more accurate benchmarking-based predictor.
The infer task performs model serving. It takes the trained

model as input (set_input(train.output(0))). The Airflow-
like statement, train >> infer, enforces this dependency.
These two tasks are encapsulated in a Dag object. The DAG is
passed to the optimizer to output an execution plan, which is
then passed to the provisioner and the executor.

Figure 4a visualizes the DAG. (I/O data are task attributes
and not nodes in the DAG; we show them for clarity.) While
simple, this basic API already exposes many degrees of free-
dom. For example, while train’s input is on S3, the optimizer
may choose to assign the task to a different cloud. In doing
so, the optimizer must take into account the possible transfer
costs, while satisfying the task’s requirements.

For convenience, SkyPilot also offers a YAML interface to
specify an application in addition to the programmatic API.

Catalog. SkyPilot implements a simple catalog to support
three services (IaaS, object stores, managed analytics) on
AWS, Azure, and GCP. These offerings are sufficient for our
target workloads. We use the clouds’ public APIs to obtain
details about these offerings. Pricing is refreshed periodically.

Optimizer. The optimizer assigns each task to a cloud, lo-
cation, and hardware configuration to best satisfy the user’s
requirements, e.g., minimize the total cost or time. It achieves
this by filtering the offerings in the service catalog and solving
an integer linear program (ILP) to pick an optimal assignment.

Before the actual optimization takes place, the opti-
mizer first translates the high-level resource requirements
into a set of feasible configurations, i.e., tuples of 〈cloud,
zone, instance type〉, that can be used to run each task.6

We call such a configuration a cluster. For example,

6This also applies to most hosted analytics offerings (e.g., EMR, Dat-
aproc) as they allow users to specify the cluster size and instance types.

442 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

AWS
s3://

my-data train

? ?
?://

my-model infer

(a) The declared application DAG.

AWS
s3://

my-data
train

GCP AWS
gs://

my-model
inferegress egress

n1-standard-8
tpu v3-8

inf1.2xlarge

(b) DAG, after optimization.
Figure 4: An application, before and after optimization.

Resources(accelerator='nvidia-v100') can be mapped to a
cluster of AWS instances 〈AWS, us-west-2a, p3.2x〉 or Azure
instances 〈Azure, westus2-1, NC6s_v3〉. To perform this trans-
lation, the optimizer filters the offerings in the service catalog
to check if they satisfy the Resources required by each task.
Each task is then annotated with the list of feasible clusters.

The optimizer computes execution plans at a zone level
rather than a region level. This is because even in the same
region, different zones can have different instance types and
prices, and the data transfer between zones is not free.

ILP-based optimization. Consider a DAG with N tasks,
each with C feasible clusters. Because C is typically in the 10s
and can be up to 100s,7 naively enumerating all CN possible
assignments is infeasible even for modest values of N. To
solve this, we formulate the assignment problem as a 0-1 ILP.

SkyPilot supports two types of optimization objectives: ei-
ther total running cost or end-to-end run time. Our ILP formu-
lation is inspired by Alpa [94], but we additionally consider
the parallelism between tasks that do not have dependency on
each other. This is critical for minimizing the DAG run time.

Given a DAG (V,E) where V is the set of the tasks and
E is the set of the edges representing the data dependencies
between the tasks, our goal is to find an optimal mapping
from each task in V to one of its annotated feasible clusters.
For each task v ∈V , we denote the set of the feasible clusters
by Cv. Then we use a task time estimator to obtain a time
vector tv ∈ R|Cv|, where each element is the time estimate for
running task v on a cluster in Cv. The time estimator can be
either provided by the user or set to a default value of 1 hour.
In addition, we get a cost vector cv ∈ R|Cv| by multiplying tv
by the hourly price of each cluster. To account for the data
transfer overhead between two tasks (u,v) ∈ E, we define a
matrix Puv ∈R|Cu|×|Cv| whose (i, j) element is the data transfer
time when the parent task u is mapped to the i-th cluster of
Cu and the child task v is mapped to the j-th cluster of Cv.
Similarly, we define Quv ∈R|Cu|×|Cv| for the data transfer cost
between u and v.

7For instance, the previous example that requires one V100 GPU maps to
79 feasible clusters globally across AWS, Azure, and GCP.

When minimizing the total cost, we have:

min
s ∑

v∈V
sT

v cv︸ ︷︷ ︸
computation cost

+ ∑
(u,v)∈E

sT
u Quvsv︸ ︷︷ ︸

data transfer cost

(1)

where sv ∈ {0,1}|Cv| is a one-hot vector that selects a cluster
from Cv. The objective explicitly considers the two types of
cost: the first term represents the total cost spent in executing
all tasks on the selected clusters, while the second term repre-
sents the total data transfer cost. After we linearize [61] the
second term, we get a 0-1 ILP, which SkyPilot solves using
an off-the-shelf solver, CBC [60].

Similarly, when minimizing the end-to-end time, we have:

min
s

fsink (2)

s.t. fv ≥ fu︸︷︷︸
parent

finish time

+ sT
u Puvsv︸ ︷︷ ︸

data transfer
time

+ sT
v tv︸︷︷︸

computation
time

∀(u,v) ∈ E (3)

where sv ∈ {0,1}|Cv| is the one-hot decision vector and fv ∈R
is the finish time of the task v. The optimization constraint
ensures that a task finishes no earlier than its parents, the input
data arrive, and the task produces its outputs. Under these
constraints, the running time of the DAG becomes the finish
time of its sink.8 Again, as we can linearize the second term,
this problem can be efficiently solved by 0-1 ILP solvers.

While we cover the two representative objectives above,
our ILP formulation allows any combination of cost and time
to be used for the optimization. For example, we can minimize
the cost under a time budget (or vice versa), by augmenting
Equation 1 with the constraint in Equation 3 and bounding
fsink by the time budget. Future work can incorporate carbon
footprint of cloud regions [21] into placement decisions.

Provisioner. SkyPilot implements a provisioner that reads
the optimized plan and allocates a cluster for the next task
ready to execute. As discussed, allocations may fail due to
either insufficient capacity in a cloud’s location or insufficient
quota of the user’s account. On such failures, the provisioner
kicks off failover as follows. First, the failed location is tem-
porarily blocked for the current allocation request with a time-
to-live. Then, the optimizer is asked to re-optimize the DAG
with this new constraint added. The provisioner then retries
in the newly optimized location (another location of the same
cloud or a different cloud). If all available locations fail to
provide the resource, either an error is returned to the user or
the provisioner can be configured to wait and retry in a loop.

We found failover to be especially valuable for scarce re-
sources (e.g., large CPU or GPU VMs). For example, depend-
ing on request timing, it took 3–5 and 2–7 location attempts
to allocate 8 V100 and 8 T4 GPUs on AWS, respectively.

8 If the DAG has multiple sinks, we create a dummy sink that has a fake
dependency on the real sinks.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 443

Executor. After a cluster is provisioned, the executor or-
chestrates a task’s execution, e.g., setting up the task’s depen-
dencies on the cluster, performing cross-cloud data transfers
for the task’s inputs, and running the task (which can be a
distributed program utilizing a multi-node cluster). We built
an executor on top of Ray [71], a distributed framework that
we use for intra-cluster task execution with fault tolerance sup-
port. Using Ray, rather than building a new execution engine,
allowed us to focus on building the higher-level components
new to the broker. For example, our executor implements
a storage module that abstracts the object stores of AWS,
Azure, and GCP and performs transfers. The executor also
implements status tracking of task executions for resource
management. On execution failures, the executor optionally
exposes cluster handles to allow login and debugging.

The executor interface is modular. We envision other execu-
tors will be added in the future, e.g., for Kubernetes [36]. In
addition, while our system formulation is generic enough to
support arbitrary DAGs, our implementation of the executor
has focused on supporting pipelines (sequential DAGs).

Compatibility set. One of the distinguishing features of
Sky is leveraging the already existing services and APIs across
clouds (i.e., compatibility set; §2.3), rather than building uni-
form services and APIs across all clouds. However, a broker
still needs to develop some glue-code to handle similar but not
identical services supported by different clouds. The natural
question is what is the effort to implement such glue-code?
The answer for our applications so far is “minimal”.

To manage clusters, SkyPilot uses Ray’s cluster launcher,
which already supports AWS, GCP, and Azure. (Other frame-
works could also be used, e.g., Terraform [51].) The main
functionality we added is the control for automatic failover.

One of the most important components of any Sky applica-
tion is storage. While the APIs provided by the object stores
of the three major clouds are similar, they are not identical.
Fortunately, all have libraries [20,30,46] exposing the POSIX
interface, which allows us to mount different object stores as
directories. Providing this functionality required only 400–
500 lines of code (LoC) per object store.

Finally, for analytics applications we use high-level APIs,
e.g., hosted analytics services provided by AWS (EMR) and
GCP (Dataproc). Abstracting these services required us to
implement just two methods: provisioning and termination.
This involved only 200 LoC for EMR and Dataproc together.

5 Experiments
We conduct a series of experiments to evaluate the benefits of
our intercloud broker. Overall, we found that:
• SkyPilot enables batch applications to take advantage of

unique hardware, unique managed services, and improved
availability across locations and clouds.

• On three applications (ML pipelines, scientific jobs, and
data analytics), SkyPilot saves up to 2.7× in time, 80%

Workload Uses Benefits from

ML IaaS unique hardware

Bioinformatics IaaS (spot VMs) improved availability

Analytics managed analytics unique software service
& unique hardware

Table 2: Evaluated workloads, cloud services used, and benefits.

in cost, and 2× in makespan, compared to using a single
cloud or location.

• Even for single-cloud applications, the broker improves
availability by migrating jobs across regions, a policy not
supported by cloud providers’ own solutions (§5.2).

Table 2 shows all workload types and their respective benefits.

5.1 Machine Learning Pipelines

We start with running two ML pipelines on SkyPilot to lever-
age the strengths of different clouds. In both pipelines, the
goal is to minimize the total cost. We consider two scenarios:

• Single-cloud: all tasks are constrained to a single cloud;
• Broker: each task runs according to the plan generated by

SkyPilot’s optimizer, possibly on different clouds.

Overall, both pipelines benefit from SkyPilot’s flexibility to
run compute-intensive tasks on clouds with unique hardware
accelerators (e.g., Inferentia, TPUs) that can provide speedups
which offset the cost and latency of moving the data.

Due to space limit, we show in appendix (§A.2) an addi-
tional experiment on SkyPilot leveraging spot instances across
clouds to run ML training with improved availability and cost.

5.1.1 Vision Pipeline

The vision pipeline consists of two tasks: train and infer (see
Listing 1). The train task trains a ResNet-50 model on the
ImageNet dataset (150 GB, stored on AWS S3). The infer
task runs offline inference on 108 images (e.g., nightly photo
categorization for services like Instagram or Google Photos).

Since training deep learning models often requires iterative
and heavy computations, we demonstrate a large reduction in
cost and run time by moving the training data from AWS to
GCP to leverage its TPU accelerators for training [23].

Setup. We specify resource candidates for each task as:

• train: 'nvidia-v100', 'google-tpu-v3-8'
• infer: 'google-tpu-v3-8', 'nvidia-t4', 'aws-inferentia'

For train, we use a V100 (common high-end GPU for training)
or a TPU. For infer, we use a TPU, a T4 GPU (marketed as the
most cost-effective GPU for model inference), or an Inferentia
accelerator designed by AWS for cost-effective inference [15].

The best single-cloud plans are shown in Figure 5, termed
{AWS, GCP, Azure}-only. The Broker plan is SkyPilot’s opti-
mizer output that minimizes the total cost. In this experiment,
we used a simple time estimator that divides the total FLOPs

444 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20 40 60 80 100

Cost ($)

Broker

Azure-only

GCP-only

AWS-only

13

13

13

〈GCP, TPU v3-8〉
44

NC6s v3 (V100)
87

TPU v3-8
44

p3.2xl (V100)
85

〈AWS, inf1.2xl〉
5

NC8as T4 v3 (T4)
17

T4
19

inf1.2xl (Inferentia)
5

egress train infer

Figure 5: Vision pipeline: hardware and costs of each deployment.
For simplicity, the zones chosen for the plans are omitted. For train-
ing we use mixed-precision and the XLA compiler [50] with Ten-
sorFlow Keras 2.5.0. For inference we use half-precision. On GCP,
accelerators are attached to an n1-standard-8 VM.

required to train the model by the hardware FLOPS:9

def train_time_estimator_fn(resource):
train_tflops = ... # Obtained from model analysis.
if resource.accelerator == 'nvidia-v100':

hardware_tflops = 120
if resource.accelerator == 'google-tpu-v3-8':

hardware_tflops = 420
return train_tflops / hardware_tflops

We used a similar FLOPs-based time estimator for infer.

Results. We show the plan generated by SkyPilot’s opti-
mizer in Figure 4b and the results in Figure 5.

While this pipeline is simple, its search space is already
large, with a total of 2,170 possible assignments (details
in §5.4), as we have multiple choices in hardware, cloud, and
location. The optimizer successfully finds an optimal solution.
Compared with the three single-cloud plans, the Broker plan
lowers the total cost by 18%–47%, by taking advantage of the
unique hardware capabilities across two clouds.

For train, the optimizer decides that, despite the input being
stored on AWS, it is better to incur an egress cost and ship it to
GCP to use the TPU. This choice leads to a cost of $57 ($44
compute, $13 egress) which is less than training on AWS, at
$85.10 SkyPilot’s storage module uses GCP’s storage transfer
service [31] to copy the data in about 3 minutes.

For infer, the optimizer estimates that AWS’s Inferentia
is more cost-effective than the T4 GPU, after factoring in
a small data egress cost (shipping the first task’s output, a
0.1 GB model, from GCP to AWS with a cost of $0.01).

To understand the cost savings, we compare the detailed
time and cost per task. For training (Figure 6a), SkyPilot’s
choice of GCP TPU takes 5.4 hours and costs $57 with egress
included, which is 5.2× faster and 33% cheaper than the AWS
V100 plan. (Azure V100 is similar but has $13 for egress;
hence omitted.) To make the hardware more comparable, we

9While crude, this estimate is a reasonable approximation for throughput-
bound models with intensive matrix operations, such as ResNet.

10If we set the input 4× as large, at 600 GB, the optimizer decides against
transferring the data as the egress cost will dominate.

0 30 60 90

Cost ($)

0

10

20

30

Ti
m

e
(h

ou
rs

)

TPU

V100

4x V100

AWS
GCP (compute)
GCP (w/ egress)

(a) Training

GCP
TPU

Azure
T4

AWS
Inferentia

0

10

20

C
os

t(
$)

20
17

5
0

10

20

Ti
m

e
(h

r)

(b) Serving

Figure 6: Vision pipeline: detailed breakdown per task.

submitted the task again requesting 4 V100s on AWS to match
the FLOPS performance of a TPU v3-8: still, TPU is 1.5×
faster and 42% cheaper than 4 V100s. For serving (Figure 6b),
AWS’s custom Inferentia chip saves both cost (71%) and time
(1.8× faster) compared to the widely available T4 GPU.

Thus, clouds offer unique hardware incentives to different
tasks, even if the data is stored on a different cloud.

Optimizing for time vs. cost. To test SkyPilot’s ability to
minimize the total time rather than cost (§4.3), we resubmit
this pipeline to SkyPilot with the time-minimizing objective.
The resource selection for train remains the same. For infer,
SkyPilot now chooses GCP TPU (estimated to take 2.5 hours
and cost $21, per 108 images) over AWS Inferentia (which
was cost-optimal; estimated to take 8.2 hours and cost $3).
The estimates reflect the actual ranking in Figure 6b. Even
though the TPU costs 4× more in total than Inferentia, it
reduces inference time by 5.7×. This example shows that
optimal placements can change based on user preferences.

5.1.2 NLP Pipeline

We next run a natural language processing (NLP) pipeline
that emulates an increasingly prevalent workload: fine-tuning
“foundation models” [56]. It consists of three tasks (Figure 1):
• Confidential data processing: remove sensitive informa-

tion from raw data using Intel SGX hardware enclaves. We
use the Amazon Customer Reviews Dataset [2] and treat it
as if it contained personally identifiable information (PII)
and thus must be processed securely. To remove sensitive
data, we run Opaque [95] on an SGX-enabled instance
to filter on a column (i.e., the filtered-out information is
assumed sensitive), and output only the review texts and
star ratings. The size of the output dataset is 1 GB.

• Train: fine-tune BERT-base [59], a popular natural lan-
guage understanding model, on the preprocessed and now
non-sensitive data. This model predicts a rating given a
review text. We fine-tune the model for 10 epochs.

• Infer: use the model to classify 1M new reviews.

Setup. The first task requires Resources(intel_sgx=True),
which is currently only offered by Azure [16]. For training,
we consider either 4 V100s, or a TPU v3-8. For serving, we
consider either a T4 GPU, or AWS’s Inferentia.

Due to the confidential computing requirement, the only
possible single-cloud plan is to run all three tasks on Azure:

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 445

proc train infer egress Total

Time Azure 0.6 13.3 1.5 – 15.4
(hr.) Broker 0.6 3.8 -71% 1.4 -7% 0.03 5.8 -62%

Cost Azure 0.8 163 1.2 – 165
($) Broker 0.8 32 -80% 0.5 -58% 0.1 33.4 -80%

Table 3: NLP pipeline: run time and cost of each deployment plan.

a DC8 VM for SGX, an NC24s VM with 4 V100 GPUs for
training, and an NC8as instance with a T4 GPU for serving.

Results. Table 3 shows the time and cost comparison be-
tween the single-cloud and Broker plans. Different from be-
fore, the Broker plan for this pipeline uses all three clouds.
The search space is larger, with over 16K possibilities (§5.4).

As expected, the single-cloud plan restricts its choices of
hardware to Azure and thus results in suboptimal cost and
performance. While Azure’s Intel SGX offering is unique
for secure processing, SkyPilot allows this pipeline to lever-
age different clouds for other tasks of the same application.
SkyPilot’s optimizer picks the TPU (GCP) over 4 V100s for
training, and the Inferentia (AWS) over the T4 GPU for serv-
ing. This considerably reduces both the total run time (by
62%) and cost (by 80%) compared with the Azure-only plan.

5.2 Bioinformatics

The intercloud broker should dynamically respond to the
changing availability of resources (§4.1). We evaluate SkyP-
ilot’s handling of availability changes by modeling a real
user’s workload: A bioinformatic task of mapping DNA cells
of sequencing data [67, 92]. The jobs are independent, have
variable-sized inputs and variable run times, with each using
all CPUs within one machine. Jobs are not checkpointable
and failures require recomputation from scratch. Finally, these
jobs are recurring: there are 10s to 100s of jobs to run every
week based on incoming data. Due to long run times, this
user exclusively uses spot VMs on GCP to save costs, and has
been continuously using SkyPilot to do so for several months.

We submit 40 jobs to SkyPilot, each running on an n1-
highmem-96 spot VM on GCP for 8–12 hours. We imple-
ment and compare two policies in SkyPilot: (1) SingleRe-
gion, which retries each preempted job in other zones of the
same region—this models providers’ managed instances solu-
tions [35]; (2) Broker, which retries each preempted job in the
next cheapest region chosen by the optimizer. We start two
sets of 40 jobs together (to minimize variance due to time)
in the region with the cheapest price for this VM (us-west1).
We ensure the jobs are within quotas so all job migrations are
due to preemptions.

Overall, the Broker policy finishes significantly faster than
the SingleRegion baseline, due to experiencing fewer preemp-
tions. Figure 7 (top) shows that Broker completed 75% of
the jobs 1.6× or 7 hours faster than SingleRegion. At around
T = 16 hours, all Broker jobs finished, while 30% (12) of
SingleRegion jobs were still running. The last SingleRegion

0 4 8 12 16 20 24 28 32
0

10
20
30
40

Number of jobs completed

Broker
SingleRegion

0 4 8 12 16 20 24 28 32
Elapsed Time (hours)

0

40

80

120
Cumulative number of preemptions

Figure 7: Dynamically adjusting to availability on a bioinformat-
ics workload of 40 jobs on spot CPU VMs. Broker moves preempted
jobs to a new region, while SingleRegion moves preempted jobs to
other zones in the same region. Note the shared x-axis. Cloud: GCP.

job finished at T = 32 hours, yielding a 2× longer makespan.
Figure 7 (bottom) shows the speedup comes from Broker

incurring 5× fewer preemptions. Since both policies started
in the same region, the preemption curves initially overlapped.
Broker swiftly moved the 22 preempted jobs to another region,
which remained non-preemptive for the entire duration (e.g.,
last preemption occurred before T = 8 hours). The original
region continued to experience a high preemption rate in all
zones, causing SingleRegion to have far more stragglers.

While this example represents a good case (moving from
a region with a high preemption rate to a region with a low
preemption rate), it shows that SkyPilot can dynamically use
multiple regions to improve availability when needed. Man-
aged solutions from cloud providers, e.g., spot fleets [49] or
managed instances [35], are confined within a region and thus
cannot support such a cross-region (or cross-cloud) policy.

Finally, note that this policy is not always better than Sin-
gleRegion. For example, if the jobs started in a region with a
low preemption rate, some unlucky jobs could be preempted
and moved to a region with a higher preemption rate, which
could be worse than SingleRegion. Importantly, SkyPilot al-
lows new policies (cross-cloud/region) to be implemented
easily, and we expect this to be an area of future research.

5.3 Managed Data Analytics

So far, we demonstrated SkyPilot’s ability to use IaaS (VMs)
on different clouds. We now use the broker to run an analytics
workload on the managed analytics services of two clouds:
AWS EMR [4] and GCP Dataproc [29]. While VMs with the
same hardware on different clouds should have mostly the
same performance, we expect hosted services to exhibit more
performance variations due to differences in software. We run
TPC-DS [72] on the following (scale factor 100, or 33 GB of
data in Parquet, generated locally on each cloud):

• GCP Dataproc: which runs vanilla Spark 3.1.2, on a 3-node
n2-standard-16 cluster. Version 2.0.29-debian10.

• AWS EMR: which runs an optimized runtime [42] for

446 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

GCP
Dataproc

AWS
EMR

AWS
EMR

Graviton

0.0

0.5

1.0

C
os

t(
$)

0.98

0.56
0.43

0

10

20

Ti
m

e
(m

in
ut

es
)

(a) Data is local (99 queries)

1K 2.5K 10K
Number of queries

0

25

50

75

100

C
os

t(
$)

Dataproc
EMR
EMR Graviton
Data egress

(b) Data shipped from GCP

Figure 8: Using managed analytics services with SkyPilot. TPC-
DS. (a) Cost (left y) and time (right y) of two hosted services in three
configurations, where data is generated locally. Benefits of software
and hardware offerings can combine. Mean of 3 runs. (b) Assuming
data is stored in GCP, running more queries offsets the egress cost.

Spark 3.1.2, on a 3-node m5.4xlarge cluster. Version 6.5.0.
• AWS EMR Graviton: like above, but on a 3-node

m6g.4xlarge cluster, which uses the Graviton2 ARM-based
processors custom-designed by AWS [14]. Due to its cost-
performance benefits, several large companies such as
Netflix and Snap have moved some of their workloads
to Graviton2 from traditional x86 instances [13].

Figure 8a shows AWS EMR finishes 34% faster and 43%
cheaper than GCP Dataproc. We ensured that GCP’s n2 clus-
ter has the same or better hardware than AWS’s m5.4x cluster.
Thus, the speedup is due to EMR’s optimized software run-
time [42] for Spark, representing a unique software incentive
for users with similar analytics workloads.

In addition, AWS EMR Graviton improves both the cost
and run time over AWS EMR by 23% and 6%, respectively.
Thus, this is a case of combining the unique software and
hardware advantages to attract such workloads even more.

To understand the tradeoff between better services vs. data
gravity, Figure 8b shows the cost of running more queries
from the benchmark, assuming the data is not generated lo-
cally but initially resides in GCP and has to be copied. (Here,
we simply execute the TPC-DS benchmark’s 99 queries mul-
tiple times to increase the number of queries we ran.) With
1K queries, EMR’s speed advantage already offsets the data
transfer cost ($2.8). Running 2.5K queries yields a cost saving
of 32% for EMR and 46% for EMR Graviton, while running
10K queries yields 42% and 55% savings, respectively.

To request a managed service for a task, we specify

task.set_managed_service(
AnalyticsService(
dependencies={'Spark': '3.1.2', 'Hadoop': '3.2.1', ...},
resources=Resources(cpu=16, ram=64 * GB, num_nodes=3)))

where AnalyticsService is backed by concrete implemen-
tations such as EMR or Dataproc. The dependencies field
specifies the desired package versions for the hosted service;
such version lists are published by the cloud providers [11,26]
and recorded in SkyPilot’s service catalog.

On-demand $ Spot $

Type Hardware Zones Max/Min CV Max/Min CV

CPU
AMD (8 cores) 146 2.5× 16% 7.3× 59%
Arm (8 cores) 88 2.1× 12% 2.5× 17%
Intel (8 cores) 248 1.6× 12% 9.4× 39%

GPU

K80 (1 chip) 56 9.5× 48% 5.9× 60%
T4 (1 chip) 146 1.7× 12% 10.8× 29%
V100 (1 chip) 79 1.6× 14% 1.9× 19%
A100 (8 chips) 46 1.9× 23% 6.4× 84%

TPU
v2 (8 cores) 5 1.2× 6% 1.2× 6%
v3 (8 cores) 4 1.1× 4% 1.1× 4%

Table 4: Capturing the large heterogeneity of locations and pric-
ing in the catalog. We show for a subset of offerings, the number
of zones that provide them (out of 294 zones globally across the top
3 clouds), the pricing ratios of the most costly to the cheapest zone,
and the coefficients of variation (CV) of prices across zones. CPUs
are the latest generation in the “general-purpose” family.

5.4 Analyzing the Broker

Location and pricing heterogeneity in the catalog. We
analyze SkyPilot’s service catalog (over 76K entries) to see
how well it captures the heterogeneity in locations and prices
for all three clouds. Table 4 shows the results. We see that not
all offerings (VMs, accelerators) are present in all zones, and
there can be large price differences across zones.

Among the 294 zones across the three clouds, the latest
Intel CPUs are widely offered, but AMD is only offered in
50% of the zones, while ARM is in only 30%. CPU workloads,
e.g., bioinformatics (§5.2) and analytics (§5.3), can suffer
from up to 2.5× price premiums if run in the most expensive
zone, which increase to 9.4× if spot instances are used. These
differences are even larger for NVIDIA GPUs, which are
present in just 16–50% of all zones, and their prices vary by
up to 9.5× for on-demand and 10.8× for spot. Finally, despite
TPUs being offered only in 4–5 (or 5%) GCP zones, there is
still a 10%–20% price difference across those zones.

This significant heterogeneity in locations and pricing
makes it hard for users to manually find the best placement.
By capturing this heterogeneity, SkyPilot’s catalog enables
the optimizer to automatically exploit these differences.

Optimizer overhead. We evaluate SkyPilot’s optimizer
overhead on a variety of DAGs. Figure 9 shows the search
space sizes and the optimization time for the two ML pipelines
in §5.1 and 3 other DAGs (see below). Despite the pipelines’
simple structures (Vision, NLP), their search spaces already
have 2K–16K possible assignments, making them non-trivial
or infeasible to optimize by hand. Using the ILP, however, our
optimizer can find an optimal solution in under 1.4 seconds.

Additionally, we test on three larger and more complex
DAGs, found in Airflow’s repository [6]: the first two (Fig-
ure 10a, Figure 10b) are commonly used in the real world [68],
while the third (Figure 10c) has a more complex structure.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 447

Vision
NLP Seq

Fork

Complex
100

1020

1040

1060

1080

S
iz

e
[lo

g]

2K 16K

1034

1073

1066

(a) Search space sizes

Vision
NLP Seq

Fork

Complex
0

20

40

60

Ti
m

e
(s

ec
on

ds
)

0.9 1.4

15.7

48.246.3

(b) Optimization time

Figure 9: Search spaces and optimization times. Timing is mea-
sured on an M1 MacBook Pro; mean of 3 runs. Objective is cost.
Locations of feasible clusters are limited to all US zones on 3 clouds.

(a) Sequential (b) Fork-Join (c) Complex

Figure 10: Larger DAGs found in Airflow’s repository. (a) Se-
quential: |V | = 20, |E| = 19. (b) Fork-Join: |V | = 42, |E| = 44. (c)
Complex: |V |= 38, |E|= 53.

We assume each task requires an 8-vCPU Intel VM in US
zones, which leads to 55 feasible clusters for each task. We
assign random time estimates (sampled from U(0,1) hours)
to each task and a random data transfer size (sampled from
U(0,100) GB) to each edge. While the search spaces for the
DAGs are combinatorially large (1034–1073 possible assign-
ments), optimization takes at most 48.2 seconds. Since each
task in a DAG is coarse-grained (e.g., can take hours), this
optimization time is a negligible portion of the DAG run time.

If resource availability changes during run time, the DAG
may need to be re-optimized to generate a revised execution
plan. As the process of re-optimization involves updating the
list of feasible clusters and restarting the ILP optimization, its
overhead is comparable to that of the initial optimization.

6 Deployment Experience
We have deployed SkyPilot to dozens of users from 3 universi-
ties and 4 other organizations, who have been using the broker
to run both adhoc and recurring batch jobs in the clouds for
many months. These users have switched to the intercloud
broker from their prior solutions of manually interacting with
specific clouds, either via web consoles or low-level APIs.
Below, we discuss our experiences with the system so far
based on user feedback.

Benefits of an intercloud broker. By surveying our users,
we found that users value the broker not only for cost re-
duction, but also for improved availability (see §5.2) and in
general for improving their productivity. For example, users
like the broker’s ability to automatically provision scarce

resources across clouds or regions, the easy access to best-
of-breed hardware (e.g., TPUs), and the simple packaging
of existing programs. Moreover, by interacting with the bro-
ker rather than the clouds, they value the ability to run the
same jobs on different clouds with no change to their code or
workflow.

Cluster reuse for faster development and debugging.
Users have reported that the typical provisioning time of sev-
eral minutes for a new cluster is too long, especially during
the iterative code development phase. To alleviate this, we
added the ability to reuse existing clusters for running a new
application. This also helps the debugging of Sky applications
as the users can log into a cluster to inspect and troubleshoot.

Moving data is acceptable for many workloads. Data
gravity can prevent workloads from being moved across
clouds. However, we found that for many batch workloads,
cross-cloud data transfers are not as slow or costly as we
expected. In fact, moving data can be profitable even after
factoring in the egress (Figure 5; Figure 8).

There are several reasons for this. First, the computation
complexity of many batch jobs, such as ML training, is typi-
cally super-linear in the input size. Second, many datasets are
not excessively large. For example, a study from Microsoft
reports that most production ML datasets are between 1 GB
to 1 TB [75]. Our results (§5.1.1) suggest that a 1 TB dataset
can likely be moved in ∼20 minutes with a cost of ∼$90. De-
pending on the job, this delay and cost can be easily offset by
the destination offering better hardware, software, or pricing.

On-premise clusters as part of the Sky. Users have re-
quested the support for running jobs on on-premise clusters
through the broker. There are several benefits. First, this would
enable users to take advantage of idle local clusters and burst
to the cloud when they are overloaded. Second, the broker
would offer the same interface that hides the heterogeneity (to
the extent possible), so the same Sky applications could run
both in the cloud and locally. Challenges include designing
spillover policies and handling compatibility and storage.

7 Related Work
Sky Computing. We are not the first to use the name “Sky
Computing” as several papers, dating back to 2009, also used
this term [62, 69, 70]. However, these papers focus on par-
ticular technical solutions, such as running middleware (e.g.,
Nimbus) on a cross-cloud Infrastructure-as-a-Service plat-
form, and target specific workloads such as high-performance
computing (HPC). This paper takes a broader view of Sky
Computing, seeing it as a change in the overall ecosystem and
considering how technical trends and the market forces can
play a critical role in the emergence of Sky Computing.

The work most closely related to this paper is [81], but
here we significantly extend that work by refining the vision,
designing and building a broker, demonstrating its benefits in
several applications, and reporting on early adoption.

448 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Cross-cloud compute, storage, and egress. Super-
cloud [65] is a virtual cloud that can span multiple zones and
clouds, using nested virtualization and live VM migration
to move stateful workloads across locations. Our proposal
shares the goal of easing workload migration, but supports
migrating higher-level jobs (not VMs), considers a broader
set of cloud services in addition to IaaS, and focuses on batch
jobs by optimizing for price, performance, and availability.

There have been several proposals for cross-cloud storage
solutions. CosTLO [91] and SPANStore [90] use request re-
dundancy and replication to minimize storage access latencies.
Perhaps the most comprehensive is Gaia-X, a European ef-
fort to create a federated open data infrastructure that enables
data sharing with strong governance properties and respect-
ing data and cloud sovereignty [28]. These efforts are largely
orthogonal to our focus on computational tasks.

Several industry efforts have been started to reduce cross-
cloud data egress fees. The Bandwidth Alliance [19] is one
such effort, consisting of several cloud providers who agree
to reduce or even eliminate egress fees from their clouds to
Cloudfare or other members. Closely related is Cloudfare
R2 [24], an object store that promises to charge zero egress
fees. Naturally, Sky Computing benefits from these efforts to
combat data gravity, and the intercloud broker can be extended
to support zero-egress storage systems.

Middleware. Middleware solutions (e.g., CORBA [25], Mi-
crosoft BizTalk [37], IBM WebSphere [34], etc.) bear some
resemblance to our work. While these solutions allow sys-
tems from different vendors to communicate and interoperate,
our proposal allows an application to utilize cloud services
offered by different cloud providers.

There are several differences between these efforts and the
intercloud broker. First, we consider satisfying requirements
such as minimizing costs which have not been a concern
of these systems. Second, the intercloud broker focuses on
placing the components of the same application rather than
on how systems from different vendors interoperate. Finally,
we are operating in a cloud setting rather than a traditional
distributed system setting.

Differences aside, middleware solutions that allow cloud
services to interoperate (e.g., connect an AWS S3 bucket
with GCP Dataproc) could be considered as being part of the
compatibility set, which the intercloud broker can leverage.

Integration Platform-as-a-Service (iPaaS). Like the mid-
dleware systems discussed above, iPaaS solutions [40, 47]
also integrate distinct systems but are often run as managed
services on the cloud. iPaaS solutions provide adaptors to con-
nect APIs from different services and systems (e.g., APIs for
Snowflake, Jira, or Stripe). Developers can build workflows
on top (e.g., on receiving a new case in Salesforce, call Jira’s
API to open a ticket) and deploy them through the iPaaS.

While iPaaS can run integration workflows on the cloud,
our proposal places and runs compute-intensive jobs on the

most suitable cloud based on price, performance, and avail-
ability. Similar to middleware, iPaaS is complementary as we
can leverage these adaptors to expound the compatibility set.

Optimization for geo-distributed analytics. A line of
work has optimized the performance of geo-distributed ana-
lytics [64, 77, 86]. This setting is similar in spirit to ours: it
considers running a MapReduce-style job (an analytics query)
across many sites, while we consider running a DAG of coarse-
grained computations potentially across several clouds.

There are three main differences. First, these techniques
are system-specific optimizations, and we in general do not
assume as much knowledge about the application. Second,
these techniques mostly assume different sites to differ only
in their WAN bandwidths and otherwise have identical hard-
ware, while we exploit the inherent differences in hardware,
software, pricing, and resource availability of several clouds
or regions/zones within a cloud. Third, these solutions op-
timize for faster completion times, while we also consider
minimizing costs and improving resource availability.

That said, we note that the intercloud broker could poten-
tially leverage system-specific optimizations if it is told that
the application is of a certain type (e.g., MapReduce).

8 Conclusion
This paper describes the design, implementation, applications,
and early deployment of an intercloud broker, SkyPilot. SkyP-
ilot enables users to seamlessly run their batch jobs across
clouds to minimize cost and/or delay. We see this as the first
step towards a paradigm we call Sky Computing, which we
hope will transform the cloud computing ecosystem to better
meet user needs.

Acknowledgements. We thank the NSDI reviewers and our
shepherd, Paolo Costa, for their valuable feedback. This work
is in part supported by NSF CISE Expeditions Award CCF-
1730628 and gifts from Astronomer, Google, IBM, Intel, Lace-
work, Microsoft, Nexla, Samsung SDS, Uber, and VMware.

References
[1] Akka. https://akka.io/.

[2] Amazon customer reviews dataset. https://

s3.amazonaws.com/amazon-reviews-pds/readme.html.

[3] Amazon Elastic Kubernetes Service. https://

aws.amazon.com/eks/.

[4] Amazon EMR. https://aws.amazon.com/emr/.

[5] Anthos. https://cloud.google.com/anthos.

[6] Apache Airflow. https://airflow.apache.org/.

[7] Apache Cassandra. https://cassandra.apache.org/.

[8] Apache jclouds. https://jclouds.apache.org/.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 449

https://akka.io/
https://s3.amazonaws.com/amazon-reviews-pds/readme.html
https://s3.amazonaws.com/amazon-reviews-pds/readme.html
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/emr/
https://cloud.google.com/anthos
https://airflow.apache.org/
https://cassandra.apache.org/
https://jclouds.apache.org/

[9] Apache Kafka. https://kafka.apache.org/.

[10] Apache Libcloud. https://libcloud.apache.org/.

[11] Application versions in Amazon EMR 6.x re-
leases. https://docs.aws.amazon.com/emr/latest/

ReleaseGuide/emr-release-app-versions-6.x.html.

[12] Artificial Intelligence: From the Public Cloud
to the Device Edge. https://www.equinix.com/

resources/whitepapers/nvidia-distributed-ai-

cloud-infrastructure-edge.

[13] AWS and Arm. https://www.arm.com/why-arm/partner-
ecosystem/aws.

[14] AWS Graviton Processor. https://aws.amazon.com/ec2/
graviton/.

[15] AWS Inferentia. https://aws.amazon.com/machine-

learning/inferentia/.

[16] Azure confidential computing. https://

azure.microsoft.com/en-us/solutions/confidential-

compute/.

[17] Azure HDInsight. https://azure.microsoft.com/en-

us/services/hdinsight/.

[18] Azure Kubernetes Service. https://

azure.microsoft.com/en-us/services/kubernetes-

service/.

[19] Bandwidth Alliance. https://www.cloudflare.com/

bandwidth-alliance/.

[20] BlobFuse - A Microsoft supported Azure Storage FUSE
driver. https://github.com/Azure/azure-storage-

fuse.

[21] Carbon free energy for Google Cloud regions. https:

//cloud.google.com/sustainability/region-carbon.

[22] Cerebras. https://cerebras.net/.

[23] Cloud TPU. https://cloud.google.com/tpu.

[24] Cloudflare R2. https://www.cloudflare.com/products/
r2/.

[25] Common Object Request Broker Architecture
(CORBA). https://www.omg.org/spec/CORBA.

[26] Dataproc 2.0.x release versions. https:

//cloud.google.com/dataproc/docs/concepts/

versioning/dataproc-release-2.0.

[27] Docker. https://github.com/docker.

[28] Gaia-X: A Federated Secure Data Infrastructure. https:
//www.gaia-x.eu/.

[29] Google Cloud Dataproc. https://cloud.google.com/

dataproc/.

[30] Google Cloud Storage FUSE. https:

//cloud.google.com/storage/docs/gcs-fuse.

[31] Google Cloud, Storage Transfer Service. https://

cloud.google.com/storage-transfer-service.

[32] Google Kubernetes Engine. https://cloud.google.com/
kubernetes-engine.

[33] HashiCorp State of Cloud Strategy Survey. https://

www.hashicorp.com/state-of-the-cloud.

[34] IBM WebSphere Application Server. https:

//www.ibm.com/products/websphere-application-

server.

[35] Instance groups, Google Compute Engine. https://

cloud.google.com/compute/docs/instance-groups.

[36] Kubernetes. https://github.com/kubernetes/

kubernetes.

[37] Microsoft BizTalk Server documentation. https://

learn.microsoft.com/en-us/biztalk/.

[38] MLFlow. https://mlflow.org/.

[39] MongoDB. https://github.com/mongodb/mongo.

[40] MuleSoft CloudHub. https://www.mulesoft.com/

platform/saas/cloudhub-ipaas-cloud-based-

integration.

[41] MySQL. https://www.mysql.com/.

[42] Optimize Spark performance, Amazon EMR. https:

//docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-

spark-performance.html.

[43] PostgreSQL. https://www.postgresql.org/.

[44] Presto. https://github.com/prestodb/presto.

[45] Redis. https://github.com/redis/redis.

[46] s3fs. https://github.com/s3fs-fuse/s3fs-fuse.

[47] SAP Integration Suite. https://www.sap.com/products/
technology-platform/integration-suite.html.

[48] SparkSQL. https://spark.apache.org/sql/.

[49] Spot Fleet, AWS EC2. https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/spot-fleet.html.

[50] TensorFlow XLA. https://www.tensorflow.org/xla.

[51] Terraform. https://www.terraform.io/.

450 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://kafka.apache.org/
https://libcloud.apache.org/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-app-versions-6.x.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-app-versions-6.x.html
https://www.equinix.com/resources/whitepapers/nvidia-distributed-ai-cloud-infrastructure-edge
https://www.equinix.com/resources/whitepapers/nvidia-distributed-ai-cloud-infrastructure-edge
https://www.equinix.com/resources/whitepapers/nvidia-distributed-ai-cloud-infrastructure-edge
https://www.arm.com/why-arm/partner-ecosystem/aws
https://www.arm.com/why-arm/partner-ecosystem/aws
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/services/hdinsight/
https://azure.microsoft.com/en-us/services/hdinsight/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.cloudflare.com/bandwidth-alliance/
https://www.cloudflare.com/bandwidth-alliance/
https://github.com/Azure/azure-storage-fuse
https://github.com/Azure/azure-storage-fuse
https://cloud.google.com/sustainability/region-carbon
https://cloud.google.com/sustainability/region-carbon
https://cerebras.net/
https://cloud.google.com/tpu
https://www.cloudflare.com/products/r2/
https://www.cloudflare.com/products/r2/
https://www.omg.org/spec/CORBA
https://cloud.google.com/dataproc/docs/concepts/versioning/dataproc-release-2.0
https://cloud.google.com/dataproc/docs/concepts/versioning/dataproc-release-2.0
https://cloud.google.com/dataproc/docs/concepts/versioning/dataproc-release-2.0
https://github.com/docker
https://www.gaia-x.eu/
https://www.gaia-x.eu/
https://cloud.google.com/dataproc/
https://cloud.google.com/dataproc/
https://cloud.google.com/storage/docs/gcs-fuse
https://cloud.google.com/storage/docs/gcs-fuse
https://cloud.google.com/storage-transfer-service
https://cloud.google.com/storage-transfer-service
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://www.hashicorp.com/state-of-the-cloud
https://www.hashicorp.com/state-of-the-cloud
https://www.ibm.com/products/websphere-application-server
https://www.ibm.com/products/websphere-application-server
https://www.ibm.com/products/websphere-application-server
https://cloud.google.com/compute/docs/instance-groups
https://cloud.google.com/compute/docs/instance-groups
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://learn.microsoft.com/en-us/biztalk/
https://learn.microsoft.com/en-us/biztalk/
https://mlflow.org/
https://github.com/mongodb/mongo
https://www.mulesoft.com/platform/saas/cloudhub-ipaas-cloud-based-integration
https://www.mulesoft.com/platform/saas/cloudhub-ipaas-cloud-based-integration
https://www.mulesoft.com/platform/saas/cloudhub-ipaas-cloud-based-integration
https://www.mysql.com/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-performance.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-performance.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-performance.html
https://www.postgresql.org/
https://github.com/prestodb/presto
https://github.com/redis/redis
https://github.com/s3fs-fuse/s3fs-fuse
https://www.sap.com/products/technology-platform/integration-suite.html
https://www.sap.com/products/technology-platform/integration-suite.html
https://spark.apache.org/sql/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html
https://www.tensorflow.org/xla
https://www.terraform.io/

[52] The Cloud Imperative For Software and Platforms,
Accenture. https://www.accenture.com/_acnmedia/

PDF-139/Accenture-The-Cloud-Imperative-Software-

Platforms-Industry.pdf.

[53] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: A system for large-scale machine learn-
ing. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI).
Savannah, Georgia, USA, 2016.

[54] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 469–482, 2017.

[55] Joe Armstrong. Making reliable distributed systems in
the presence of software errors. PhD thesis, Mikroelek-
tronik och informationsteknik, 2003.

[56] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S Bern-
stein, Jeannette Bohg, Antoine Bosselut, Emma Brun-
skill, et al. On the opportunities and risks of foundation
models. arXiv preprint arXiv:2108.07258, 2021.

[57] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi,
Stefan Richter, and Kostas Tzoumas. State management
in Apache Flink: Consistent stateful distributed stream
processing. Proc. VLDB Endow., 10(12):1718–1729,
August 2017.

[58] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. MXNet: A flexible and efficient
machine learning library for heterogeneous distributed
systems. In NIPS Workshop on Machine Learning Sys-
tems (LearningSys’16), 2016.

[59] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805, 2018.

[60] John Forrest and Robin Lougee-Heimer. Cbc user guide.
In Emerging theory, methods, and applications, pages
257–277. INFORMS, 2005.

[61] Richard J Forrester and Noah Hunt-Isaak. Computa-
tional comparison of exact solution methods for 0-1
quadratic programs: Recommendations for practitioners.
Journal of Applied Mathematics, 2020, 2020.

[62] José A.B. Fortes. Sky computing: When multiple clouds
become one. In 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing,
pages 4–4, 2010.

[63] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In Pro-
ceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, NSDI’11, pages
295–308, Berkeley, CA, USA, 2011. USENIX Associa-
tion.

[64] Chien-Chun Hung, Ganesh Ananthanarayanan, Leana
Golubchik, Minlan Yu, and Mingyang Zhang. Wide-area
analytics with multiple resources. In Proceedings of the
Thirteenth EuroSys Conference, pages 1–16, 2018.

[65] Qin Jia, Zhiming Shen, Weijia Song, Robbert Van Re-
nesse, and Hakim Weatherspoon. Supercloud: Opportu-
nities and challenges. ACM SIGOPS Operating Systems
Review, 49(1):137–141, 2015.

[66] Eric Liang, Richard Liaw, Robert Nishihara, Philipp
Moritz, Roy Fox, Ken Goldberg, Joseph E. Gonzalez,
Michael I. Jordan, and Ion Stoica. RLlib: Abstractions
for distributed reinforcement learning. In International
Conference on Machine Learning (ICML), 2018.

[67] Hanqing Liu, Jingtian Zhou, Wei Tian, Chongyuan Luo,
Anna Bartlett, Andrew Aldridge, Jacinta Lucero, Ju-
lia K Osteen, Joseph R Nery, Huaming Chen, Ange-
line Rivkin, Rosa G Castanon, Ben Clock, Yang Eric Li,
Xiaomeng Hou, Olivier B Poirion, Sebastian Preissl, An-
tonio Pinto-Duarte, Carolyn O’Connor, Lara Boggeman,
Conor Fitzpatrick, Michael Nunn, Eran A Mukamel,
Zhuzhu Zhang, Edward M Callaway, Bing Ren, Jesse R
Dixon, M Margarita Behrens, and Joseph R Ecker. DNA
methylation atlas of the mouse brain at single-cell reso-
lution. Nature, 598(7879):120–128, October 2021.

[68] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick
Shankar, Sameh Elnikety, Somali Chaterji, and Saurabh
Bagchi. ORION and the three rights: Sizing, bundling,
and prewarming for serverless DAGs. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 303–320, 2022.

[69] A. Matsunaga, J. Fortes, K. Keahey, and M. Tsugawa.
Sky computing. IEEE Internet Computing, 13(05):43–
51, sep 2009.

[70] André Monteiro, Joaquim S. Pinto, Cláudio J. V. Teix-
eira, and Tiago Batista. Sky computing: Exploring the
aggregated cloud resources - part i. In Conference: In-
formation Systems and Technologies (CISTI), 2021.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 451

https://www.accenture.com/_acnmedia/PDF-139/Accenture-The-Cloud-Imperative-Software-Platforms-Industry.pdf
https://www.accenture.com/_acnmedia/PDF-139/Accenture-The-Cloud-Imperative-Software-Platforms-Industry.pdf
https://www.accenture.com/_acnmedia/PDF-139/Accenture-The-Cloud-Imperative-Software-Platforms-Industry.pdf

[71] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for emerg-
ing AI applications. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), Carlsbad, CA, 2018. USENIX Association.

[72] Raghunath Othayoth Nambiar and Meikel Poess. The
Making of TPC-DS. In Proceedings of the 32nd Inter-
national Conference on Very Large Data Bases, VLDB
’06, page 1049–1058. VLDB Endowment, 2006.

[73] Deepak Narayanan, Keshav Santhanam, Fiodar
Kazhamiaka, Amar Phanishayee, , and Matei Zaharia.
Analysis and exploitation of dynamic pricing in the
public cloud for ml training. VLDB DISPA Workshop
2020.

[74] OpenAI. AI and Compute. https://openai.com/blog/

ai-and-compute/, 2018.

[75] Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit
Sen, Matteo Interlandi, and Konstantinos Karanasos.
End-to-end optimization of machine learning prediction
queries. In Proceedings of the 2022 International Con-
ference on Management of Data, SIGMOD ’22, page
587–601, New York, NY, USA, 2022. Association for
Computing Machinery.

[76] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Auto-
matic differentiation in PyTorch. 2017.

[77] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik,
Srikanth Kandula, Aditya Akella, Paramvir Bahl, and
Ion Stoica. Low latency geo-distributed data analytics.
ACM SIGCOMM Computer Communication Review,
45(4):421–434, 2015.

[78] Hang Qi, Evan R Sparks, and Ameet Talwalkar. Paleo:
A performance model for deep neural networks. Interna-
tional Conference on Learning Representations (ICLR),
2016.

[79] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. arXiv
preprint arXiv:1802.05799, 2018.

[80] Statista. Infographic: Amazon leads $150-billion
cloud market. https://www.statista.com/chart/

18819/worldwide-market-share-of-leading-cloud-

infrastructure-service-providers/.

[81] Ion Stoica and Scott Shenker. From cloud computing to
sky computing. In Proceedings of the Workshop on Hot
Topics in Operating Systems, HotOS ’21, page 26–32,

New York, NY, USA, 2021. Association for Computing
Machinery.

[82] Douglas Thain, Todd Tannenbaum, and Miron Livny.
Distributed computing in practice: the condor experi-
ence. Concurrency and computation: practice and ex-
perience, 17(2-4):323–356, 2005.

[83] Alexey Tumanov, Angela Jiang, Jun Woo Park,
Michael A Kozuch, and Gregory R Ganger. Jamaisvu:
Robust scheduling with auto-estimated job runtimes.
Parallel Data Laboratory, Carnegie Mellon University,
Tech. Rep., 2016.

[84] Shivaram Venkataraman, Zongheng Yang, Michael
Franklin, Benjamin Recht, and Ion Stoica. Ernest: Effi-
cient performance prediction for large-scale advanced
analytics. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
363–378, 2016.

[85] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with borg. In Pro-
ceedings of the Tenth European Conference on Com-
puter Systems, pages 1–17, 2015.

[86] Raajay Viswanathan, Ganesh Ananthanarayanan, and
Aditya Akella. Clarinet: Wan-aware optimization for
analytics queries. In OSDI, volume 16, pages 435–450,
2016.

[87] Sarah Wang and Martin Casado. The Cost
of Cloud, a Trillion Dollar Paradox. https:

//a16z.com/2021/05/27/cost-of-cloud-paradox-

market-cap-cloud-lifecycle-scale-growth-

repatriation-optimization/.

[88] Joe Weinman. Intercloudonomics: Quantifying the
value of the intercloud. IEEE Cloud Computing,
2(5):4047, September 2015.

[89] Tom White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 2012.

[90] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan
Katz-Bassett, and Harsha V. Madhyastha. Spanstore:
Cost-effective geo-replicated storage spanning multi-
ple cloud services. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, page 292–308, New York, NY, USA,
2013. Association for Computing Machinery.

[91] Zhe Wu, Curtis Yu, and Harsha V. Madhyastha.
CosTLO: Cost-Effective redundancy for lower latency
variance on cloud storage services. In 12th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 15), pages 543–557, Oakland, CA,
May 2015. USENIX Association.

452 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/

[92] Zizhen Yao, Hanqing Liu, Fangming Xie, Stephan Fis-
cher, Ricky S Adkins, Andrew I Aldridge, Seth A Ament,
Anna Bartlett, M Margarita Behrens, Koen Van den
Berge, Darren Bertagnolli, Hector Roux de Bézieux,
Tommaso Biancalani, A Sina Booeshaghi, Héctor Cor-
rada Bravo, Tamara Casper, Carlo Colantuoni, Jonathan
Crabtree, Heather Creasy, Kirsten Crichton, Megan
Crow, Nick Dee, Elizabeth L Dougherty, Wayne I Doyle,
Sandrine Dudoit, Rongxin Fang, Victor Felix, Olivia
Fong, Michelle Giglio, Jeff Goldy, Mike Hawrylycz,
Brian R Herb, Ronna Hertzano, Xiaomeng Hou, Qi-
wen Hu, Jayaram Kancherla, Matthew Kroll, Kanan
Lathia, Yang Eric Li, Jacinta D Lucero, Chongyuan
Luo, Anup Mahurkar, Delissa McMillen, Naeem M
Nadaf, Joseph R Nery, Thuc Nghi Nguyen, Sheng-Yong
Niu, Vasilis Ntranos, Joshua Orvis, Julia K Osteen,
Thanh Pham, Antonio Pinto-Duarte, Olivier Poirion, Se-
bastian Preissl, Elizabeth Purdom, Christine Rimorin,
Davide Risso, Angeline C Rivkin, Kimberly Smith,
Kelly Street, Josef Sulc, Valentine Svensson, Michael
Tieu, Amy Torkelson, Herman Tung, Eeshit Dhaval
Vaishnav, Charles R Vanderburg, Cindy van Velthoven,
Xinxin Wang, Owen R White, Z Josh Huang, Pe-
ter V Kharchenko, Lior Pachter, John Ngai, Aviv Regev,
Bosiljka Tasic, Joshua D Welch, Jesse Gillis, Evan Z Ma-
cosko, Bing Ren, Joseph R Ecker, Hongkui Zeng, and
Eran A Mukamel. A transcriptomic and epigenomic
cell atlas of the mouse primary motor cortex. Nature,
598(7879):103–110, October 2021.

[93] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, pages 2–2. USENIX Association, 2012.

[94] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. Alpa: Automating inter- and
Intra-Operator parallelism for distributed deep learning.
In 16th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 22), pages 559–578,
Carlsbad, CA, July 2022. USENIX Association.

[95] Wenting Zheng, Ankur Dave, Jethro G. Beekman,
Raluca Ada Popa, Joseph E. Gonzalez, and Ion Stoica.
Opaque: An oblivious and encrypted distributed analyt-
ics platform. In Proceedings of the 14th USENIX Con-
ference on Networked Systems Design and Implemen-
tation, NSDI’17, page 283–298, USA, 2017. USENIX
Association.

A Appendix
A.1 Implications and Economics of the Sky

While the body of this paper was firmly rooted in what an
intercloud broker could offer now, we turn our attention to
the future and ask: what are the implications of the Sky for
the future cloud ecosystem? This section is inherently more
speculative, so we have included it as an appendix to provide
some context for where we think this approach could take us.

A.1.1 Embracing Diversity

While there is an increase in limited interface compatibility,
in the overall ecosystem there is an increasing diversity in
terms of location and hardware. The aforementioned regu-
latory concerns require greater flexibility in location; Sky
Computing provides an easy way to specify the necessary
location constraints. However, there are two other important
location considerations. First, some tasks should be run on
nearby edge clouds to lower latencies between client and
cloud. Second, some tasks should be on on-premise clusters,
rather than public clouds, to lower costs (see [87] for an ar-
gument as to why this is crucial). These concerns can be met
by bringing edge and on-premise clouds into the Sky. The
intercloud broker could then automatically send jobs to the
closest edge cloud (if lowering latency is important) or to the
on-premise cloud (if lowering costs is important and there is
enough capacity).

In addition, by allowing users to specify specific hardware
requirements in their request, one can automatically seek out
clouds that have the appropriate hardware support. Or one can
merely ask for high performance, and the intercloud broker
will find the highest-performing cloud for that task, regardless
of how they achieve it. Thus, Sky Computing turns the diver-
sity of the current clouds from an impediment to an advantage:
as long as one cloud meets a user’s needs in terms of location
or hardware or other constraints, the intercloud broker will
find it.

A.1.2 Economic Analysis

For analytical convenience here we assume that in the future
clouds will fall into two categories. Some clouds will remain
proprietary, offering their own APIs for some tasks and charg-
ing for data egress in an attempt to keep customers tied to
their cloud. However, others will join the Sky and become a
commodity cloud in that they fully embrace the open source
interfaces and do reciprocal data peering with other clouds
that have joined the Sky. The economic choice facing clouds
is which of these alternatives they choose. Note that even
proprietary clouds can be used by the intercloud broker, but
doing so may entail data egress charges.

The choice facing consumers is which of these two types
of clouds they choose to use: do they send their workloads to
a single proprietary cloud, or do they let the intercloud broker
find which clouds to run on? In what follows, we assume
that users attempt to optimize some measure of price and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 453

performance of each task; we will denote this metric by P2,
and define it so that smaller values are better. The relative
importance of price and performance will differ between users,
but we do not address that here as it overcomplicates the
analysis without adding much insight; instead, we assume
all users attempt to minimize the same measure P2. We now
analyze, in a vastly oversimplified model, how the ecosystem
of clouds might evolve given this consumer behavior.

Denote by R the set of proprietary clouds and denote by
S the set of commodity clouds (i.e., the Sky). Assume that
the workload from user α consists of a set of tasks j, with a
weight or frequency wα

j that represents the fraction of their
workload that consist of task j. Note that this analysis can
either apply to individual applications (which involve a DAG
of tasks), or an overall workload.

The P2 of task j on cloud c is denoted by Pc
j . If a cloud

does not support that task, Pc
j is set to be infinite. Let P̃c

j be the
P2 taking into account the delays (and perhaps egress charges,
if a proprietary cloud is used) in sending data between dif-
ferent clouds. We then define Pj and P̃j as the minimal P2’s
achievable (the latter taking into account the extra inter-cloud
delays and cost, and the former not): Pj = minc∈S∪R[Pc

j] and
P̃j = minc∈S∪R[P̃c

j].
Assume for simplicity that these workloads are either sent

to the Sky (i.e., placement determined by the intercloud bro-
ker), or to a single proprietary cloud. Given these assumptions,
if the workload is sent to a proprietary cloud, the user α will
choose the cloud c ∈ R that minimizes ∑ j wα

j Pc
j ; call this

cloud c(α). If sent to the Sky, then the overall P2 is ∑ j wα
j P̃j.

Given our assumptions, a user will pick between c(α) and
the Sky, depending on whether the sum ∑ j wα

j [P
c(α)
j − P̃j] is

positive (Sky) or negative (proprietary cloud c(α)). Note that
since by definition Pj ≤ Pc(α)

j this can only be negative if the
inter-cloud delays or costs are significant.

The question a cloud faces is whether to join the Sky or
not. If it remains a proprietary cloud, the only customers it
gains are those for whom its overall average P2 is best: i.e.,
for those users for whom it is c(α). If it joins the Sky, it gains
revenue for each task j where its performance is best among
the clouds (taking into account the inter-cloud delays).

Assuming most users have a broad workload including
many tasks, this analysis suggests that a cloud should only
remain proprietary if it can compete across a broad collection
of tasks. Joining the Sky becomes the rational choice for
clouds who realize they cannot compete broadly, but can find
narrower market niches (i.e., sets of tasks) where they excel.

Note that two proprietary clouds compete in a zero-sum
manner: for users sending their workloads to proprietary
clouds, either one gets the business or the other. Sky clouds
compete in a much different way. Of course, they all compete
to provide the best P2 implementations for each task. How-
ever, a cloud providing a superior solution for one type of
task helps a cloud focusing on other types of tasks, because

users will only use the Sky if the overall service they get is
better than that on proprietary clouds. Thus, the ecosystem
of Sky clouds combines competition on each task type with
collaboration to provide high-quality support across a broad
spectrum of tasks. This is the interdependence in the Sky.

This analysis is obviously oversimplified in many dimen-
sions. For instance, users make different tradeoffs between
cost and delay, and workloads are more complicated than
just a linear combination of tasks. However, none of these
considerations undercut the general observation above that
proprietary clouds must be prepared to compete across a wider
range of tasks (since their egress charges and proprietary in-
terfaces purposely reduce the likelihood of users offloading
to other clouds).

For a fledging cloud provider, it seems clear that joining
the Sky is the preferable choice. These new clouds can con-
centrate on narrow sets of tasks where they can compete
favorably with existing commodity and proprietary clouds,
and they need not worry about marketing as the intercloud
brokers will seek out the best P2 available.

None of these results are surprising, as the intercloud broker
effectively sets up a two-sided market. Two-sided markets
are common, and they are typically opposed by market actors
who have high margins and want to preserve them, but are
welcomed by those struggling to get a foothold in the market
and who cannot otherwise overcome the inherent advantages
of the dominant market players (such as much better name
recognition, much larger sales forces, etc.). In the current
cloud market only Amazon and perhaps Azure can be seen as
having dominant market positions; all other cloud providers
have less than 10% of the market [80]. For all of these other
cloud providers, which comprise roughly half of the current
cloud market, the Sky may be the preferable choice.

A.1.3 Speculation

In many ways, the intercloud broker is merely a mechanism
that turns cloud computing into a more competitive market.
However, efforts to create the Sky will be for naught if the cur-
rently dominant clouds remain dominant and proprietary even
after the intercloud broker is put in place. Here we speculate
briefly on the factors that will play a critical role in how the
competition plays out. We start with four basic assumptions:
Sky-based clouds may innovate faster: Sky clouds need
not market their technologies; they merely need to post faster
speeds and/or lower prices for various workloads. Thus, the
intercloud broker itself speeds innovation because workloads
will automatically follow the better P2s, no matter how they
arose. In addition, Sky clouds can focus their innovative ener-
gies on narrow classes of tasks where they might have special
expertise (e.g., Oracle for databases) or special hardware (e.g.,
Samsung for storage, Google for TPUs, NVIDIA for GPUs).
In fact, this is already happening; see the recent announce-
ments by Nvidia, Equinix, and Cirrascale [12].
Large clouds have economies of scale: There are undeni-

454 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

able advantages to operating a cloud at scale, such as greater
leverage with suppliers and the ability to amortize various in-
frastructure costs over larger deployments. These advantages
may be the single biggest barrier to the success of Sky.
Infrastructure providers might provide smaller clouds
with better economies of scale: Infrastructure providers,
such as Equinix, who have experience in building out clouds
and who can amortize infrastructure costs, can help smaller
clouds with deployment. This will not match the economies
of scale of the largest clouds, but will allow small clouds to
be deployed with reasonable efficiency.
Small clouds are not necessarily small companies: One
worry is that the proprietary clouds would engage in predatory
pricing to prevent the Sky from emerging. However, many
companies that will deploy Sky-based clouds will be using
them as showcases for their technology (Samsung for storage,
Oracle for database workloads, etc.), and they have very deep
pockets. So predatory pricing will actually hurt the large
clouds more than the smaller ones (because they have smaller
market share, their losses are smaller).

Based on these assumptions, the crucial question is whether
the rate of innovation of the smaller clouds (which can be
more narrowly targeted) is sufficient to compensate for their
disadvantage in economies of scale (which is mitigated by
infrastructure providers). We have no wisdom to offer on this
central but speculative question. However, with innovative
companies like Google, IBM, and Alibaba counted as “small
clouds” likely to join the Sky rather than remain proprietary,
we believe that there is a significant chance that the Sky could
emerge as an economically viable alternative to the current
cloud ecosystem.

A.2 ML Training on Spot Instances Across Clouds

In §5.1 we evaluated SkyPilot’s benefits for ML pipelines;
here, we show an additional experiment to demonstrate that
SkyPilot can run a single ML training job on spot instances
across clouds, improving resource availability and reducing
costs. In the event of spot instance preemptions, SkyPilot
supports migrating a job to another zone, region, or cloud
where spot instances are available. We consider training a
BERT model with a V100 GPU on a subset of Wikipedia,
WikiText-103 (0.5 GB), for 30 epochs. For failure recovery,
we save the current model checkpoint (1.5 GB) periodically to
a persistent storage. Each epoch runs for around 40 minutes
and each checkpointing incurs an overhead of 0.5 minutes.

We evaluate three different strategies to run the job:
• On-Demand: runs on an on-demand instance on AWS.
• SingleRegion: runs on a spot instance in a single AWS

region, us-east-1.11

• Broker: runs on a spot instance, with SkyPilot having the
freedom to choose among all US regions of AWS or GCP.

11We chose it as it had the lowest preemption rate at the time of experiment
among all US regions. Spot hourly price was $0.91, vs. on-demand’s $3.06.

5 10 15 20 25 30 35
Wall Time (hours)

2.5

3.0

3.5

V
al

id
at

io
n

L
os

s AWS (us-east-1)

GCP (us-central1)

On-Demand

SingleRegion

Broker

Figure 11: Loss curves of training BERT on V100 for 30 epochs.
Each x marker is a preemption event; gaps between segments are
the time periods when spot instances are not available. After the first
preemption event, Broker migrates the job from AWS us-east-1 to
GCP us-central1, while SingleRegion waits in the same region.

Cost Makespan
On-Demand $61.2 20 hrs
SingleRegion $21.8 34 hrs
Broker $18.4 21 hrs

Table 5: Costs and makespan for the three strategies to finish BERT
training. Data transfer and checkpointing overheads are included.

For a fair comparison, we launch all strategies at the same
time and in the same starting region. With SingleRegion, if no
spot instances are available in the region when a preemption
happens, it waits until they become available again and then
resumes the job from the latest checkpoint. With Broker, if
no spot instances are available it immediately triggers re-
optimization and searches for availability in other regions and
clouds; if found, SkyPilot transfers the data/model checkpoint
to the new location and resumes the job there. The cost of
each data and checkpoint egress across clouds is $0.2.

Figure 11 plots the validation loss curve for each strategy.
Around hour 6, the spot instances used by both the SingleRe-
gion and Broker strategies get preempted. SingleRegion sticks
with the same region (us-east-1), but needs to wait for 3
hours (dashed line) to get a new spot instance. In contrast,
Broker searches for spot instances in other AWS regions,
which fail to provide capacity, before finding availability in
GCP’s us-central1 region. After hour 6, the SingleRegion
job experiences several more preemptions which cause further
delays. Overall, the delays from using a single region adds
more than 10 hours to the completion time.

Table 5 shows the total cost and makespan for the three
strategies. Broker finishes∼40% faster than SingleRegion be-
cause it can leverage spot instance availability across regions
and clouds. Moreover, Broker is 10% cheaper than SingleRe-
gion: despite the cross-cloud data egress costs incurred by
Broker, the faster recovery time and fewer preemptions (thus,
less lost progress) reduce the overall cost compared to Sin-
gleRegion. Compared to On-Demand, Broker saves 70% cost
due to lower spot prices, while incurring a minimal overhead
in makespan (∼5%) due to job recovery and checkpointing.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 455

Unlocking unallocated cloud capacity for long, uninterruptible workloads

Anup Agarwal†, Shadi Noghabi‡, Íñigo Goiri§, Srinivasan Seshan†, Anirudh Badam‡

†Carnegie Mellon University, §Azure Systems Research, ‡Microsoft Research

Abstract

Cloud providers auction off unallocated resources at a low
cost to avoid keeping hardware idle. One such mechanism is
Harvest VMs (HVMs). These VMs grow and shrink as the
unallocated resources in a server change. While HVMs are
larger in size and less prone to eviction compared to other
low-cost VMs, their resource variations severely slow down
long-running, uninterruptible (hard to checkpoint/migrate)
workloads. We characterize HVMs from a major cloud
provider and discover large spatial variations in their stabil-
ity and resources. We leverage this diversity by predicting
which HVMs will be stable enough to run tasks without pre-
emptions. We use the predictions to inform scheduling and
resource acquisition decisions. Our evaluation with real work-
loads shows that we can reduce mean and tail (90th percentile)
job completion times by 27% and 44% respectively, at 75%
lower cost than regular VMs.

1 Introduction

Motivation. Failure to monetize idle hardware in cloud de-
ployments is a huge opportunity cost for cloud providers.
Providers typically provision hardware for peak demand, with
little over-subscription, to deliver an illusion of elastic re-
sources with strong isolation and performance guarantees.
Due to variations in demand, 25–30% hardware sits idle [3].
Many proposals try to address this problem, including better
resource packing using abstractions like FaaS (Function-as-
a Service), and auctioning unallocated capacity (unreliably)
using Spot or Burstable VMs [2, 18, 49, 74]. A latest advance-
ment towards isolating and exposing unallocated resources is
Harvest Virtual Machines [3].

Harvest VMs (HVMs) are variable-sized VMs co-located
with other regular (on-demand, high-priority) VMs. When
a new regular VM is allocated to a server, the HVM shrinks
in capacity, and when a regular VM finishes, it grows. This
agility allows HVMs to gather 2.5–7.5× more resources com-
pared to other low-priority low-cost fixed-sized VMs (e.g.,
Spot VMs) at lower eviction rates (§2.1, [3]). This creates a
new opportunity and a new challenge.

Large harvested capacity overcomes a major capacity bot-
tleneck [21, 60] allowing many large-scale applications [15,
16, 34, 47, 67, 68, 81, 89] in the financial, scientific, ge-
nomics, energy and meteorology sectors to run economically
in the cloud. However, HVM’s resource variations can signif-

icantly slow down these long, uninterruptible (hard to check-
point/migrate) applications due to preemptions (§2.3).

Prior efforts try to mask such overheads using scheduling,
resource acquisition, and load-balancing techniques (§5). Un-
fortunately, these efforts do not fit well for the combination
of HVMs and long, uninterruptible workloads. They either
address only VM evictions (not resource variations exhibited
by HVMs), or rely on the unique properties of Spot markets.
On the workload side, they often use a combination of check-
pointing, migration, replication, or application level changes.
These are prohibitive or impractical as uninterruptible work-
loads have large working sets, run at large scale, and rely on
many domain-specific libraries and frameworks with complex
state stored in memory (§2.2).

Our work. We seek to answer: “How can we best use HVMs
to run long, uninterruptible workloads?” We begin by char-
acterizing HVMs and a collection of long, uninterruptible
production workloads from a major cloud provider. We find
large spatial diversity in the stability and resources of HVMs,
i.e., some HVMs are more stable (change less often) or get
more resources than others. Simultaneously, we observe large
diversity in the runtimes of tasks in our workloads.

We leverage our observations in two ways to build
SLACKSCHED. First, we build a scheduling component that
avoids preemptions by better matching tasks to HVMs, i.e.,
runs longer tasks on more stable HVMs and vice versa. Sec-
ond, we build a resource acquisition component that improves
overall stability of the HVM pool by retaining relatively stable
HVMs and continuously de-allocating unstable HVMs.

In building SLACKSCHED, a key technical challenge is
identifying which HVMs are going to remain stable in the
future. Resource variations in HVMs can depend on a number
of factors which are hard to predict or control (e.g., the arrivals,
lifetimes, and placement of regular VMs). We work around
this using our insight that the distribution of time between
HVM resource changes is relatively stationary over time. We
use this to estimate when new resource changes are likely to
occur and match tasks to HVMs that are likely to not change
during task lifetimes.

We implement our scheduler as a pluggable component
of YARN [5], a popular cluster orchestrator, and the acqui-
sition component as a module that manages resource nego-
tiation between the cloud provider and YARN. We evalu-
ate SLACKSCHED under a variety of production workloads,
operating conditions, and HVM environments considering

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 457

HVM traces collected from multiple regions and time periods.
We find that SLACKSCHED reduces mean and tail (90th per-
centile) job completion times by 27% and 44%, respectively.

We note that our system does not make any assumptions
about, nor is reliant on, the cloud provider’s allocation pol-
icy. The diversity of unallocated resources is fundamentally
tied to the diversity in regular VM workloads. As evidence,
we consider future sources of resource variability, e.g., if un-
allocated resources change in capacity based on variations
in power supply to the data center due to renewable energy
sources [13, 23], in addition to variations due to regular VM
arrival/departure. We find SLACKSCHED has similar perfor-
mance in this new environment.

Summary. We make the following contributions:
• We characterize the behavior of real-world production

HVMs and long, uninterruptible cloud workloads (§2).
• We build a practical method to estimate future variations in

HVMs (§3.1.1, §3.1.2).
• We design and implement SLACKSCHED, a system that

enables the use of HVMs for large-scale, long-running,
uninterruptible workloads (§3, §3.3).

• We show that our scheduling and resource acquisition de-
cisions are effective in mitigating the overheads of HVMs
for varied workloads and environments (§4).

2 Characterization & Motivation
We first characterize HVMs (§2.1) and long-running uninter-
ruptible workloads (§2.2). Then, we focus on the overheads of
running these workloads on HVMs (§2.3). Our characteriza-
tion reveals two opportunities that motivate our design (§2.4).
We detail in §5 and Appendix B.1 why past efforts at man-
aging resource variability and building reliable infrastructure
out of unreliable services are ineffective for the combination
of uninterruptible workloads and Harvest VMs.

2.1 Harvest VMs

Background. HVMs dynamically expand and contract to
leverage the unallocated resources left by regular VMs. As
more (or fewer) on-demand VMs are placed on a server, an
HVM will shrink (or grow) its core count. We focus on HVMs
that harvest CPU cores but our work can be leveraged when
harvesting other resources (e.g., memory [32] and storage).
For Spot VMs to expose the same capacity as HVMs, one
needs to provision more and/or larger size Spot VMs. This
significantly increases the number of evictions to handle and
the management overheads (e.g., more copies of the OS).

HVMs are configured with a minimum size (e.g., {2,4,8}
CPU cores and {16GB, 32GB, 64GB} of memory). If an
HVM needs to shrink below its minimum size (e.g., because
of on-demand VMs), it will be evicted. HVMs are overall
cheaper in price than both Spot and on-demand VMs. Today,
HVM’s minimum size is charged at the Spot VM discount
(e.g., 48% to 88% cheaper than regular VMs [87]), and each
harvested core has a further discounted price.

10−3 10−2 10−1 100 101 102 103

(b) Inter-change time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(C

h
a

n
g

e
In

te
rv

a
ls

)

C1 (0.44)

C2 (0.98)

C3 (1.02)

C4 (1.39)

C5 (3.04)

C6 (3.74)

C7 (8.12)

C8 (10.23)

1s 10s 1m 10m 1h 6h 1d 4d 1month

−40 −30 −20 −10 0 10 20 30 40

(a) Change size (SMT cores)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(C

h
a

n
g

e
In

te
rv

a
ls

) C1 (12.84)

C2 (11.43)

C3 (13.75)

C4 (9.78)

C5 (8.01)

C6 (6.91)

C7 (5.16)

C8 (5.14)

Figure 1: Resource variation in HVMs across clusters. The paren-
thesis in the legend lists (a) the mean magnitude of change size and
(b) mean inter-change time (hrs). The clusters are sorted in increas-
ing order of the mean inter-change time (C1–C8).

Overview. Prior work has studied properties of HVMs at an
aggregate level [3, 87]. However, to understand how broader
workloads might be impacted, we analyse HVMs at an indi-
vidual level and answer: (1) stability of HVMs: how often
and by how much do HVMs change?1 (2) spatial and tem-
poral diversity of HVMs: how do different HVMs compare
and how do they change over time? (3) impact of workloads:
how do the runtimes of long, uninterruptible workloads com-
pare to the resource variations of HVMs? With this goal, we
study HVM traces (from March 2019 and August 2021) for 8
clusters across 5 regions of a major cloud provider.

Stability. We measure the resource changes in terms of size:
number of added/removed cores, and frequency: time between
two consecutive changes (inter-change time or change inter-
val). We count HVM evictions as a resource change to size 0.2

We observe that different clusters witness different amounts
of activity from regular VMs, so we order the clusters, with
lower activity clusters on the bottom (C7–C8 in Figure 1).

Size of changes. Figure 1(a) shows the size of changes in
HVM resources across clusters. Positive changes signify re-
source growths and negative changes signify shrink events.
The mean magnitude of change is between ≈ 5 and 13 SMT
cores (simultaneous multi-threaded cores or hardware threads)
for different clusters. These are large variations, given the typ-

1While this aspect has been considered in [87], it was in the context of
short-running FaaS workloads and considered only a single cluster. Hence,
we revisit it in the context of our target workloads for more clusters.

2We do not separately study HVM evictions as these occur rarely relative
to task durations in our workloads ([3], §2.2).

458 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 20 30 40

(a) Average SMT cores

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(H

V
M

s
x

1
h

r)

100 101

(b) Total resource changes

0.2

0.4

0.6

0.8

1.0

Min size (cores)

2

4

8

Figure 2: Spatial Variation — HVMs on different servers differ in
amount of resources harvested and stability.

ical minimum size of 2–8 SMT cores for an HVM and given
that 1–2 cores is a popular regular VM size [25, 41].3 Such
large variations can have significant performance implications
on applications (both positive and negative).

Frequency of changes. Figure 1(b) shows that the inter-
change times have high variance and long tails. For higher
activity clusters (C1–C6), we see 93–72% of changes within
an hour, a mean inter-change time of 26–224 minutes, and
a 95th percentile of 1.2–11.2 hours. For the lower activity
clusters (C7–C8), we see 61–55% changes within one hour, a
mean of 8–10 hours, and 95th percentile of a few days.

There are long time intervals without any resource changes
(e.g., multiple days) as well as short intervals (e.g., 84%
within one hour, 40% within 10 minutes, 16% within 1 minute
for cluster C2). Ideally, we want to get the most out of long
intervals without resource changes while coping with short
change intervals. To this end, we analyse how the change
intervals are distributed across space (HVMs) and time. This
helps understand if there are periods of high activity or if
changes are spread spatially. We show this analysis for a high
activity cluster (C2). Other clusters exhibit similar trends but
differ in the frequency and magnitude of variations.

Spatial diversity. The behavior of Spot and on-demand VMs
is determined by the VM configuration and the region. How-
ever, HVMs with the same configuration (e.g., minimum size)
can behave differently depending on the server they land on
(even within the same region). This diversity is directly tied to
competing VMs on the server as an HVM shrinks when new
competing VMs are allocated and grows when competing
VMs are deallocated.

For each HVM, for each 1-hour time window, we measure
the harvested cores (time-averaged over the 1 hour) and sta-
bility (number of changes), shown in Figure 2. HVMs with
a minimum size of 2, 4, and 8 get an average of 15, 17, and
20 cores respectively, which is 2.5–7.5× more resources than
the minimum size. At the same time, the top 10% HVMs get
a minimum of 36, 38, and 39 total cores while the bottom
10% get at most 3, 3, and 2 additional cores beyond the mini-
mum size. Given that the additional harvested cores have an

3A VM advertised with 2 cores may be mapped to a fractional amount
of SMT cores, e.g., 1.5 or 2.5 SMT cores, depending on the VM’s over-
subscription or headroom.

13 15 17 19 21 23 25 27

Day

0

20

40

T
o

ta
l

re
so

u
rc

e
ch

a
n

g
es

in
6

h
r

p
er

io
d

10

20

A
ve

ra
g

e
S

M
T

co
re

s

Figure 3: Temporal Variation in a single HVM.

additional cost, HVMs will also exhibit a wide cost diversity.
All HVM minimum sizes show similar trends in terms

of stability. Figure 2(b) shows that larger minimum size
HVMs tend to be slightly more stable than smaller ones on
average. However, a specific larger minimum size instance
is not guaranteed to be stable. The worst 10% HVMs can
witness tens of changes in an hour while the relatively stable
50% HVMs witness up to one change in an hour.
Temporal variation. The stability and resources of a partic-
ular HVM can also change over time (e.g., a stable HVM
can start changing resources frequently). Figure 3 shows
an example HVM over a 15 day period (aggregated over 6h
windows to gauge longer term stability). For the first ≈ 4
days the HVM is very stable with over 40 harvested cores.
However, towards the end, the HVM witnesses large number
of resource variations.

2.2 Target Workloads
We focus on long-running and uninterruptible (hard to check-
point or migrate) workloads. Many applications fall into this
category, such as workloads in genomics, oil and gas, weather
& financial simulations, geo-spatial workloads, and many sci-
entific computing tasks [15, 16, 34, 47, 67, 68, 81, 89]. The
market for these workloads is worth tens of billions of dollars
with all major cloud providers pushing towards bringing them
to cloud environments [35, 45–47, 59, 67, 68].

These workloads are often run at large scale. Thus, cur-
rently they are predominantly run in on-premise clusters that
are perceived to be cheaper (compared to regular VMs) and
more reliable (compared to Spot VMs, due to evictions).
HVMs with their high resource availability and lower evic-
tion rates pave the way for economically and reliably running
these workloads in cloud environments. However, tasks in
these workloads tend to be long relative to the typical change
intervals of HVMs, hence a single task may see multiple re-
source variations leading to thrashing/preemptions. These
workloads often use domain-specific libraries in containerized
environments with large working sets [19, 34], making check-
pointing entire containers prohibitive and making tailored
checkpoints impractical due to the domain-specific nature of
the code coupled with a rich ecosystem where new libraries
are continuously added. Further, users of these applications
are typically reluctant to modify applications [30, 61].

For concreteness, we study two large-scale production ap-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 459

25 50 75

0.00

0.25

0.50

0.75

1.00

C
D

F
(T

a
sk

s)

Genomics

25 50 75

Task runtime (mins)

Seismic A

stage1

stage2

10 20

Seismic B

Figure 4: Analysis of task runtimes for two workloads (Genomics
analysis and Seismic simulations).

plications from a major cloud provider: (1) an application in
the oil and gas domain that performs seismic imaging simula-
tions [15, 81, 89], and (2) a genomics application that analyses
genetic material to identify various properties (e.g., disease
susceptibility for humans and physical traits of plants) [34].

To understand the impact of HVMs on these workloads,
we contrast the HVM resource change intervals (represent-
ing supply variability) with the task execution times of these
workloads (representing demand requirements). Figure 4
shows that tasks in both example applications are long, with a
median of tens of minutes, and tails of over 75 minutes. Task
distributions for different applications have various shapes
(e.g., Uniform and Gaussian for Seismic A & B, and Bounded
Pareto for Genomics). Task runtimes range from a few min-
utes to an hour either within a single job or across different
jobs (for Seismic B, not shown). In other words, there is a
sizable overlap in the range of the task runtimes and the range
of HVM inter-change times. This means that tasks in these
workloads are likely to witness a few resource change events
during their execution on typical Harvest VMs.

While Gaussian-distributed runtimes are common in typi-
cal cloud workloads, Pareto and Uniform distributions show
up because of concurrent tasks being heterogeneous. In the ge-
nomics applications, some tasks do the actual analysis while
others do verification or data transformation. In the seismic
simulations, different tasks perform imaging at different reso-
lution or area/volume depending on the analysis requirements.

2.3 Running Workloads on HVMs
The unpredictable and arbitrary resource changes, especially
shrink events, can cause tasks to slow down, thrash (for mem-
ory harvesting VMs [32]), or get preempted altogether. This
leads to execution time overheads and resource wastage since
preempted tasks need to be restarted from scratch (under un-
interruptible workloads) wasting any previous progress. We
measure these overheads comparing HVMs to on-demand
VMs running a mix of our target workloads. We use trace-
driven simulation for this analysis (methodology in §4).

Figure 5(a) shows the slowdown of jobs running on HVMs.
We define job slowdown as:

Slowdown(Job) =
ExecutionTime(Job) on HVMs

ExecutionTime(Job) on regular VMs

1 2 3 4

(a) Slowdown

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(J

o
b

s)

0 1 2 3 4

(b) Tasks preempted
Tasks successful

Figure 5: Impact of HVM resource variations on workloads. (a)
HVM resource variations slow down jobs. Geometric mean slow-
down is 1.5× with some jobs even slowing down by more than 4×.
(b) HVM resource shrinks cause the preemption of a third of all
launched tasks, i.e., for each successful task, there are 0.5 failed
tasks on average. The same task might be preempted multiple times
causing preemptions per successful task to grow beyond 1.

When running on out-of-the-box HVMs, the geometric mean
job slowdown is 1.5× while some jobs are delayed by more
than 4×. Such high slowdowns make HVMs impractical for
many scenarios. This slowdown is caused by tasks being
preempted when the HVM shrinks. For instance a task that
needs 4 cores is preempted when the HVM shrinks to 2 cores
(or when the HVM evicts, i.e., shrink to size 0). Figure 5(b)
shows the distribution of tasks preempted across jobs. Around
a third of all tasks fail which leads to an additional resource
consumption of ≈ 20%. This directly translates into 20%
more cost. SLACKSCHED’s goal is to make the execution
of long uninterruptible workloads on HVMs similar to their
execution on regular VMs.

2.4 Opportunities for Improvement
To improve the efficiency of our target workload on HVMs,
we build on the following observations:
• There is a large diversity in both task runtimes (within a

job or across jobs) and HVM inter-change times and they
have significant overlap in their ranges. This provides an
opportunity to match long tasks to more stable HVMs and
short tasks to unstable HVMs, thus allowing efficient use
of HVMs by minimizing preemptions and reducing costs.

• Some HVMs are more stable than others and the stability
of a HVM can change over time. There is an opportunity
to improve workload execution times by acquiring and
retaining a higher fraction of instantaneously stable HVMs.

These two implications motivate our design for two HVM-
tailored components: (1) Scheduler that matches tasks to
HVMs and (2) Acquirer that continuously maintains a rela-
tively stable mix of HVMs. Leveraging these insights is not
straightforward as the behavior of HVMs depends on multiple
unknown factors (e.g., regular VM arrivals and departures).

3 SLACKSCHED Design
SLACKSCHED manages application execution on HVM clus-
ters rented by a cloud user. Many applications running in the
cloud run on top of cluster orchestrators like YARN, SLURM,

460 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RM Scheduler
Job

Manager(s)
Resource Manager

Node
Manager

Resource
Requests

Allocations

Heartbeat
Node(s)
(HVM)

Containers,

Data, Binaries,

Match MakerPrediction
Engine Provider

VM Requests

Node Statistics
(Utilization, Resource

changes)

HVM Distributions

SlackSched Acquirer
Cost

SlackSched Scheduler

Figure 6: SLACKSCHED architecture with new components in
blue and modifications shown in red and red .

Mesos, and others [5, 48, 53, 73], or their managed variants
(e.g., Azure Batch [14], AWS Batch [9], GCP Batch [36],
AKS [11], AWS EKS [55], and GKE [54]). SLACKSCHED
works within such orchestrators, replacing key components
to support more efficient use of HVMs. Cloud users can in-
stall modified version of orchestrator and/or providers can
incorporate SLACKSCHED within managed variants of the or-
chestrators. Since SLACKSCHED mostly improves execution
of individual jobs (§4) (in addition to improving aggregate job
execution), providers can use SLACKSCHED to even manage
workloads from different cloud users.

Figure 6 shows the architecture of SLACKSCHED and the
coordination of three main entities (shown in purple). (1) A
per-node Node Manager, running on each node in the cluster,
that is responsible for reporting the health of the node and
running tasks on the node. In the case of HVMs, this is also
responsible for conveying instantaneous resource availability
on the HVM.4 (2) A per-job Job Manager (or “Application
Master” in YARN terminology) that is responsible for manag-
ing the progress of the tasks in a single job. (3) A cluster-wide
Resource Manager (RM) that receives requests for resources
from the Job Managers, schedules and maps these requests to
nodes, and conveys resource allocations to the job managers.
Then, the Job Managers launch containerized programs on
nodes based on the allocations. Additionally, we assume that
Job Managers annotate their requests with resource require-
ments and task runtimes. These can be estimated based on
input parameters and the type of computation (similar to [25,
50]). The Genomics and Seismic workloads that we consider
already have resource requirement annotations. We measure
sensitivity to errors in runtime estimates in §4.2.1.

SLACKSCHED consists of two key components (shown in
blue): the Scheduler (§3.1) and the Acquirer (§3.2). The

Scheduler extends the default orchestrator scheduler and ex-
ploits the diversity in task runtimes and HVM resource varia-

4The hypervisor exposes the same number of logical cores to HVMs and
only changes their mapping to physical cores at runtime. User programs can
query the hypervisor for the core assignment anytime.

tions to match tasks to HVMs. The Acquirer interacts with the
Provider and the Resource Manager to acquire and maintain
a set of HVMs that are low cost, harvest more resources, and
are stable enough for the workload.

3.1 SLACKSCHED Scheduler
Typically, cluster schedulers decide on (1) the order of jobs,
(2) the order of tasks within a job, and (3) the placement
of tasks onto nodes. SLACKSCHED only affects the third
decision and uses the default orchestrator mechanisms for
the first two. The SLACKSCHED Scheduler tries to minimize
preemptions and improve completion times by intelligently
matching tasks to HVMs. Based on the task duration and
the stability of HVMs, the Scheduler assigns longer tasks to
more stable HVMs (predicted to maintain their resources for
a longer time) and shorter tasks to less stable HVMs. Our
design splits the operation into: (1) the Prediction Engine
(§3.1.1) that predicts the stability of each HVM in the future,
and (2) the Match Maker (§3.1.2) that matches tasks to HVMs
based on task duration and HVM stability.

3.1.1 Prediction Engine

Challenges. For match making, we need fine granularity
models that predict the resource availability of an individ-
ual HVM, e.g., “when will an HVM change its resources?”
or “how many resources will it harvest?”. This is very chal-
lenging since the resource availability of individual HVMs
depends on several unknown and uncontrollable factors such
as: (1) the arrivals and lifetimes of on-demand VMs, (2) the
placement/VM allocation policy of the provider, and (3) the
requested configuration of the HVM (e.g., minimum size).
Even the cloud provider does not have full future knowledge,
especially about when the on-demand VMs will come and go.

Prior efforts at modeling HVM resource availability [3]
are not sufficient since they only make predictions at an ag-
gregate level, rather than an individual level. For instance,
they provide estimates such as “X% of HVMs will survive
in the next hour”, or “HVMs will expose on average Y num-
ber of cores in a specified time window”. In addition, point
prediction approaches similar to [25, 43, 78, 88], which use
various machine learning models including SVMs, CNNs,
and LSTMs [62, 75] to model resource availability, are not
a good fit for HVM environments for two main reasons: (1)
similar historic resource variations may provide widely dif-
ferent behaviors in the future, which makes point estimates
inaccurate; (2) HVMs depict large skews in their behavior
(§2.1) which makes the use of computational methods such
as machine learning hard.

Key insights. Instead of making point estimations, we take an
alternate approach of distribution-based predictions and con-
ditional probabilities. This was inspired by prior work on task
scheduling with unknown runtimes [63, 69, 83]. These make
probabilistic estimates instead of exact predictions, leverag-
ing the fact that the distribution of task runtimes is known

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 461

10−2 100 102

Inter-change time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

C
o

m
p

le
m

en
ta

ry
C

D
F

day-0

day-1

day-2

day-3

10−2 100 102

Inter-change time (hours)

0-6hr

6-12hr

12-18hr

18-24hr

Figure 7: The inter-change-time distribution varies only slightly
at different time scales. The legend lists the time period within the
trace for which the CDF was computed. The historical inter-change
time distribution is a good estimate of the future distribution.

even though the exact runtime is unknown. They proceed by
computing the expected remaining runtime by conditioning
on the task’s progress or age. For instance, given a task has
been running for 1 hour, what is the probability that it will
run for 30 more minutes.

Similar to prior work, we condition on the inter-change
time distribution to estimate the remaining time until the next
change for a specific HVM. We find that the inter-change
time distribution is relatively stationary over time. Thus, even
though the exact times when resource changes will occur is
unknown, the distribution of time between changes is known.
Figure 7 shows the inter-change time distribution at multi-
ple time scales. There are little changes in the distribution
over multiple hours/days. As validated in Section 4.5, this
approach generalizes to other future sources of variability
in unallocated capacity, such as using renewable energy to
power a data center, an emerging approach for sustainable
cloud computing [12, 76, 77].

Workflow. The Prediction Engine maintains a rolling snap-
shot of the inter-change time distribution in the past D days
(D = 1 in our implementation) for estimating the completion
probability, i.e., the probability that a task will complete suc-
cessfully on an HVM without getting preempted. We use
completion probability as a proxy for HVM stability as it
allows us to rank if an HVM is stable enough for a task.

We approximate the completion probability for a task and
HVM as the probability that the HVM will not shrink during
the lifetime of the given task. In reality, tasks can complete
successfully despite witnessing resource shrinks, e.g., if the
node is underutilized and has enough resources even after
shrinking. However, since we only use the completion proba-
bility to obtain a relative ranking of nodes, its absolute value
is of little consequence. This approximation also allows ro-
bustness to inaccuracies in task runtime estimates. Future
work can consider predicting shrink size for more accurate
estimation of completion probability and potentially better
job execution on HVMs.

We compute completion probability in two steps. First, we
estimate the likelihood that there will be a resource change
event during the lifetime of a task on a particular HVM. Sec-

10−3 10−2 10−1 100 101 102

X = Inter-change time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

P
(X

>
x

)

e+d

e

0.8
0.6

Figure 8: We use the inter-change time distribution for computing
the probability that a resource change will occur during a task’s
lifetime. Say e time has elapsed since the HVM has seen a resource
change, and d is the duration of the task. Then, from the comple-
mentary CDF, we get: P(X ≤ e+d|X > e) = 1−P(X > e+d|X >

e) = 1− P(X>e+d)
P(X>e) = 1− 0.6

0.8

ond, we estimate the likelihood that this resource change
event will be a shrink event. Finally, the Match Maker com-
bines these likelihoods (§3.1.2). Note, there are other ways to
compute completion probability (Appendix B.2).
Likelihood of resource change. To estimate the probability of
a change during the lifetime of a task, we condition on the
inter-change time distribution (Figure 8). Given that e time
has elapsed since the last resource change event, we compute
the probability that the next change event will occur within d
time from now, where d is the duration of the task.
Likelihood of shrink. To compute the probability for the next
event to be a shrink, we perform an n-gram (bigram) analy-
sis [17] on the sequence of resource changes. Specifically, we
look at a historical sequence of resource changes and calcu-
late how often a shrink occurs after a growth and how often
a shrink occurs after another shrink. We use this to compute
the probability that the next event will be a shrink given that
the last one was a growth (or shrink) event. We find that such
shrink probabilities are also relatively stationary over time.

3.1.2 Match Maker

To minimize task preemption likelihood, the Match Maker
places tasks on HVMs with a high completion probability for
the task. When no HVMs with available resources yield a
high completion probability, the Match Maker may wait for
occupied HVMs to free up resources (“delayed scheduling”).
We now describe how we calculate the completion probability,
perform delay scheduling, and our matching logic.

Completion probability. The Prediction Engine maintains
the inter-change-time and shrinking probability distributions
(§3.1.1). The Match Maker uses these distributions to com-
pute the completion probability as follows:

Pc(x,e,d) = 1−P
[

shrink occurs during
task lifetime

]
= 1−P

[
resource change ∧ change occurs

is shrink during task lifetime

]
= 1−Ps(x) · (1−P(X > e+d|X > e)) (1)

462 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1 shows the definition for each symbol. Recall that
tasks are annotated with their estimated runtimes (§3).

Delayed scheduling. In certain situations, waiting for a more
stable node (i.e., with better completion probability) might
be a better choice than picking from the currently available
resources. For example, rather than launching a task on a node
with low completion probability, it might be better to wait for
old tasks to complete on a node that is relatively stable but
may be fully occupied with previous tasks. This implies a
non–work–conserving schedule where the scheduling of tasks
may be delayed even when resources are available.

It is challenging to decide whether to wait or run with cur-
rent the best resource without future knowledge. A strawman
approach is to launch tasks on an HVM only when it provides
a threshold completion probability. However, this may cause
the scheduler to delay indefinitely. To tackle this, we formu-
late the cost and benefit of waiting by estimating the expected
completion time obtained from various decision choices. We
derive expected completion time as follows:

Ewc(x,a,e,d)

= E
[

time spent waiting
for node to free up

]
+E

[
time for completion

and preemptions

]
= a+ p ·d

+(1− p) ·
(

E
[

time wasted
to preemption

]
+E

[
time after

restart

])
= a+ p ·d +(1− p) · (w+Ewc(g,0,0,d)) (2)

e′ = e+a

p = Pc(x,e′,d)

w = E
(
X− e′|(X > e′)∧ (X < e′+d)

)
This equation incorporates when will the node free up

resources (a), the duration of the task (d) if it completes
succesfully (with probability p), time potentially wasted (w)
in case the task fails (with probability 1− p), and the cost of
rescheduling the task (Ewc(g,0,0,d)). Note that this is the
worst-case expected completion time since we reschedule
a task on the worst-case node that has just started (has not
remained stable at all, i.e., e = 0). In reality, after preemption,
the task may be started on a stable node. Since we know the
estimated duration of tasks, their resource requirements, and
how long they have been running, we can deterministically
compute when the node will have enough resources to run
a given task (a). The time wasted (w) is the expected time
between when the task starts and when the node shrinks, given
that the node does shrink during the lifetime of the task.

Workflow. The Match Maker uses the above formulation
(Equation 2) to schedule the task on the node which gives
the best expected completion time. If this node does not
have resources at the moment, then it waits and reconsiders
the decision at the next scheduling iteration. This automati-
cally includes both preferring nodes with higher completion
probability and considering to wait for nodes to free up. For

Symbol Interpretation
Pc Probability of completion
X Inter-change time distribution
x ∈ {g,s} Denotes whether last change event was growth or shrink.

Default is growth for a newly started node
e Time elapsed since last resource change event
d Remaining duration of the task under consideration
Ps Probability that the next resource change event is a shrink
Ewc Expected worst case completion time of the task
a Time between now and when the node will have enough

resources to run the task under consideration. If the node
currently has enough resources, then a = 0

w Expected time wasted due to a shrink occurring before task
completion

Table 1: Symbol definitions.

completeness, we list the pseudo-code for the Match Maker
in Algorithm 1 in the Appendix.

3.2 SLACKSCHED Acquirer

Challenges. Ideally, we want to maintain a set of HVMs
whose stability matches the runtime of the tasks. However, in
addition to task runtime information, this requires full knowl-
edge on: (1) how unallocated resources are distributed across
servers in a data center, and (2) how stable these resources
are at any point in time. As a user (or cluster orchestrator),
this information is not available or possible to model. Even as
the provider, these metrics are only instantaneously available
while HVM patterns may change over time (Figure 3).

Approach. We use a simple “exploration-exploitation” strat-
egy to navigate the set of potential HVMs that the provider
can offer to maintain a stable pool of HVMs. The Acquirer
starts with a random mix of HVMs and periodically identifies
the worst HVMs and decommissions them, gradually con-
verging to a more stable pool of HVMs. The Acquirer defines
“worst” as the most recently changed HVMs. This simple
strategy works when there the HVM pool is unstable relative
to the HVMs that can be returned by the provider (4.3).

In our implementation, the Acquirer runs hourly and deal-
locates 10% of allocated HVMs. Concurrently, it requests an
equal number of new HVMs from the provider to maintain the
same amount of cluster resources.5 To avoid getting a HVM
on the same server as the one just deallocated, the Acquirer
first requests new HVMs and then deallocates the unwanted
ones. To avoid task preemptions, it gracefully decommissions
HVMs before deallocating them. The scheduler stops send-
ing new tasks to the decommissioning HVMs and once all
running tasks complete, the Acquirer deallocates them.

To maintain a target set of resources in the midst of load
variations, the Acquirer works with a scaling policy that main-
tains the cluster utilization between a lower and upper bound
(i.e., 60 to 80%). It requests or deallocates VMs whenever the
utilization falls outside of this target range. When scaling-in,
we decommission and deallocate the worst HVM first. The

5Currently, we consider mixes with only HVMs. One can consider a mix
of both HVMs and regular VMs.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 463

Acquirer can work with different scaling policies [8, 10], and
the scaling can be decoupled from the intentional dealloca-
tions/allocations. In our implementation, scaling is triggered
every hour coupled with the Acquirer. Scaling also allows
maintaining resources as HVMs grow/shrink.6 Algorithm 2
in the Appendix shows the pseudo-code for the Acquirer.

We studied different choices for the Acquirer’s trigger pe-
riod. We found that trigger periods in half to two hours range
yield similar performance as 1 hour. Longer periods can
lead to a stale cluster (with unstable HVMs) and shorter peri-
ods can operate on limited historical information (especially
for HVMs allocated in the previous trigger) leading to erro-
neously deallocating potentially stable HVMs. In general, the
trigger period should be chosen based on the range of HVM
inter-change times and task runtimes.

3.3 Implementation
We implement SLACKSCHED within YARN [5] version 3.3.0.
This includes the changes by [3] that make YARN aware of
HVM resource variations. We added an Acquirer module
that interfaces with the provider’s VM request API and mon-
itors statistics about allocated nodes. We updated Job Man-
agers to convey task runtime estimates as part of Resource
Requests and updated the matching logic to use our design
(§3.1). These changes (highlighted in Figure 6) preserve
compatibility with other scheduling features, e.g., reserva-
tions [27], delay scheduling [86], affinity [4], etc. Specifically
for multi-dimensional packing [38], the affinity between tasks
and nodes can be defined as a combination of resource match
and stability match. We believe that our implementation can
be easily ported to other cluster managers.

4 Evaluation
We evaluate SLACKSCHED to answer the following questions:
1. How much benefit do we gain solely from scheduling

under different HVM resource profiles? (§4.2)
2. How robust is our design to various workload characteris-

tics, operating conditions and estimation errors? (§4.2.1)
3. How much do we benefit from resource acquisition? (§4.3)
4. How does SLACKSCHED handle time varying arrival rate

and compare with other VM types? (§4.4)
5. How does SLACKSCHED compare to prior techniques for

addressing VM evictions? (Appendix B.1 and §5).
6. What happens under future and more extreme sources of

resource variability (e.g., as a result of using renewable
energy)? (§4.5)

4.1 Methodology

Setup. Since HVMs are highly variable and our method is
probabilistic, to reach any conclusive results, we needed to
run each experiment at a large scale: ≈ 50 jobs, where each
job lasts hours and requires 100s of regular VMs. However,

6Due to growth/shrinks/evictions, instantaneous cluster utilization can
fall outside our target range in the time between two scaling triggers.

running such long and large-scale experiments was imprac-
tical on a real testbed. Thus, we evaluated our system using
Hadoop’s discrete time simulator [1, 6]. This simulator ac-
curately mimics real-world setups, with only ≈ 1.3% error
on completion times and ≈ 1.5% error on resource utiliza-
tion [24]. The simulator runs actual YARN Resource Man-
ager [5] code and only simulates the Node Managers, Job
Managers, and clock and communication layers. Using a sim-
ulator also allows us to maintain the exact same trace of HVM
availability, ensuring fair A/B testing across experiments.

Resource traces. We use two sets of production resource
traces from Microsoft Azure: (1) HVM traces: time series of
HVM resource availability that includes the time and sizes
of growth/shrink events for each HVM; (2) On-demand VM
traces: VM arrival times, lifetimes, and placement decisions
made by the provider’s production allocator. Our dataset
includes traces from 8 clusters (700− 2000 servers each)
across 5 regions from two time periods (March 2019 and
August 2021). For our experiments, we randomly select 64
HVMs for each cluster. This translates to 160–480 regular
VMs in terms of resources as each HVM gets 2.5–7.5× more
resources than their minimum size (§2.1).

Extensions to the simulator. To ensure different scheduling
schemes witness the same HVM changes, we extend the
simulator to replay HVM traces. When an HVM shrinks,
containers are killed (in increasing order of their start time)
until the available resources on the node exceed or equal the
used resources on the node. When an HVM grows, new
containers may be allocated to the node. These are the default
Resource Manager behaviors. In other words, a task does not
benefit from cores beyond what it asked for and is killed as
soon as it gets fewer than its requested cores.

In addition, for resource acquisition experiments (that con-
tinually request new HVMs), we want every experiment to
receive the same HVMs when requesting the same configura-
tion at the same time. To ensure this, we replay the on-demand
VM allocation traces to reconstruct the state of the unallocated
resources. Alongside, we add a simulated HVM allocator to
place HVMs on servers with unallocated resources. We study
different allocation policies including random, load-balancing,
and packing. Note that we use the simulated HVM allocator
only for the resource acquisition experiments (§4.3, §4.4).

Workloads. Our traces are based on a collection of two work-
load categories running in a production environment: Seismic
and Genomics [16, 22, 34, 58, 59]. We log their execution
to build distributions of task runtimes, number of tasks, and
resource requirements. We sample from these distributions to
build traces of jobs/tasks. We model job arrival as a Poisson
process (similar to [38–40, 56]) and study a variety of mean
inter-arrival times.

Schemes. For scheduling, we compare SLACKSCHED (4)
against the three schemes (1-3 below):
1. CapacityScheduler (or CapS): The default scheduler in

464 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

C1 C2 C3 C4 C5 C6 C7 C8

Cluster

0.4

0.6

0.8

1.0

G
eo

m
ea

n
n

JC
T

.8 .84

.69
.76

.81 .83 .85 .89
.95 .96 .94 .97 1. 1. 1. 1.

Oracle SlackSched

Figure 9: Normalized job completion time (nJCT) relative to
CapacityScheduler across HVM traces from different clusters.
SLACKSCHED improves JCT across different clusters.

YARN. Considers resource requirements (cores and mem-
ory) of tasks to select nodes [7].

2. Oracle: Uses future knowledge to schedule a task on an
HVM only if it is guaranteed to complete before any future
resource shrinks, and skips allocation otherwise. Skip-
ping implicitly delegates scheduling to other nodes or later
times. This provides an upper-bound for SLACKSCHED.

3. SLACKSCHEDNODELAY (or SSNODELAY): Only uses
current resources to make decisions and does not wait for
nodes to free up resources. It places tasks on nodes with
the highest completion probability.

4. SLACKSCHED (or SLACKS): Uses expected completion
time to match tasks to nodes and can wait for nodes to free
up resources (§3).

Oracle is a good proxy for job completion time on a regular
VM cluster that has same total resources as the HVM cluster.
This is because Oracle does not cause any task preemptions
and the clusters are sized to ensure little to no task queuing.

Metrics. We study job completion time (JCT), normalized
job completion time (nJCT), and dollar cost, where,

nJCT(Job) =
JCT(Job) with scheme
JCT(Job) with baseline

JCT distributions show absolute and tail completion times,
while the normalization allows us to study the impact on jobs
with different runtimes. A smaller nJCT i.e., nJCT ∈ (0,1) is
better, while nJCT ∈ (1,∞) is worse. nJCT of 0.7 translates
to (1− 0.7) ∗ 100 = 30% reduction in JCT (cf. [40]), and
1/0.7 = 1.43× factor of improvement or speedup (cf. [39]).
For computing nJCT, we use baseline as CapacityScheduler
unless mentioned otherwise.

For aggregating across jobs, we study (a) mean reduction
in JCT (1−GeometricMean(nJCT)), (b) reduction in mean
JCT (1− mean JCT with scheme

mean JCT with baseline), (c) reduction in tail (90th per-
centile or p90) JCT.

We delegate a subset of these metrics to Appendix B.5.

4.2 Scheduler Evaluation
We evaluate SLACKSCHED on the production clusters from
our dataset under the same workload trace. Figure 9 shows the
geomean nJCT relative to CapacityScheduler. Mean reduc-
tion from SLACKSCHED ranges from 0 to 24% (i.e., geomean
nJCT from 1 to 0.76). Improvements from SLACKSCHED are

10.5 0.6 0.7 0.8 0.9

nJCT [log scale]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(J

o
b

s)

Geomean nJCT
0.79

0.80

0.80

50 100

JCT (mins)

Mean JCT
77

58

58

58

CapS Oracle SSNoDelay SlackS

(a) High-activity cluster (C2, frequent resource changes) with shorter tasks.

10.3 0.4 0.6 2

nJCT [log scale]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(J

o
b

s)

Geomean nJCT
0.60

0.79

0.73

400 600 800 1000

JCT (mins)

Mean JCT
542

311

422

393

(b) Low-activity cluster (C8, infrequent resource changes) with longer tasks.

Figure 10: SLACKSCHED’s mean reduction in JCT is 20–27%.
Waiting for more stable nodes provides a further 0–7.5% reduction.
SLACKSCHED reduces mean JCT by 25–27% and p90 JCT by 20–
44%. We use Seismic A workload (§2.2) for this experiment which
has uniformly distributed task runtimes.

close (within 13%) to the Oracle.
The frequency of resource changes relative to the task du-

rations govern how much overhead HVMs impose and in turn
govern how much benefit we can get from SLACKSCHED. We
observe that benefits are greater in clusters that witness more
activity from regular VMs (i.e., more HVM resource changes).
Specifically, for the last two clusters (C7 and C8) which have
the least amount of activity from regular VMs (§2.1), HVMs
cause little slowdown for the particular workload.

We zoom into the JCT and nJCT distributions for a high-
activity cluster (C2). We also study a low-activity cluster (C8)
with longer tasks. These represent cases when HVMs impose
non-trivial overhead. Figure 10 shows that SLACKSCHED’s
mean reduction in JCT is 20–27%. 40% of the jobs see
more than 30% reduction in their completion times. 0–15%
jobs have nJCT > 1, implying their JCT increases. Since
our method is probabilistic, SLACKSCHED can make poor
decisions for some individual tasks compared to a random
matching decision (taken by CapacityScheduler). However,
on average, SLACKSCHED’s matching decisions are better
than random. SLACKSCHED reduces mean JCT by 25–27%
and p90 JCT by 20–44%. In §4.2.1, we vary various aspects
of the workload.

Impact of “waiting” for stable nodes. Figure 10 also quanti-
fies the impact of waiting for stable, but currently busy nodes
(§3.1.2). As shown, SLACKSCHED provides an additional

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 465

10.4 0.6

nJCT [log scale]

0.00

0.25

0.50

0.75

1.00

C
D

F
(J

o
b

s)

(a) Gaussian (Seismic B)

Oracle (0.70)

SlackS (0.76)

10.5 0.6 0.7 0.8 0.9

nJCT [log scale]

(b) Bounded Pareto (Genomics)

Scheme (Geomean nJCT)

Oracle (0.81)

SlackS (0.82)

Figure 11: nJCT for workloads with different task runtime distribu-
tions. SLACKSCHED consistently improves JCT.

0–6% mean reduction in JCT compared to when this fea-
ture is disabled (SLACKSCHEDNODELAY). Specifically, for
the high-activity cluster (C2), SLACKSCHEDNODELAY is
already close to Oracle and there is little scope of further
improvement from waiting.

Resource waste reduction. We compare the fraction of
resource waste (i.e., work wasted due to preemptions di-
vided by total work done). We find that CapacityScheduler,
SLACKSCHED, and Oracle waste 20–40%, 3–20%, and 0%
work respectively, i.e., SLACKSCHED reduces resource waste
by ≈ 20% compared to CapacityScheduler. This saving
comes from the better task-to-HVM matching that avoids
preemptions and reduces wasted work or resources.

4.2.1 Improvement Conditions and Robustness

SLACKSCHED’s gains depend on the range and distribution
of task runtimes relative to the inter-change times of HVMs.
We find that SLACKSCHED provides benefits in JCT when:
• There is spatial variation in stability of HVMs and spatial

variation in runtime of concurrently running tasks. Other-
wise, different mappings from tasks to nodes are equivalent.

• The range of HVM inter-change times is similar to the
range of task runtimes. If tasks are too short, there is not
much room for improvement as there are few preemptions.
If tasks are too long, preemptions cannot be avoided.

Both conditions hold for a large set of workloads and HVM
resource profiles (regions/clusters) (§2). We now describe our
robustness experiments that led to these findings.

Task runtime distribution. We change the task runtime dis-
tribution in accordance with different workloads (§2.2) under
the same HVM resource variations (high activity cluster, C2).
This is shown in Figures 10a (Uniform), 11a (Gaussian),
and Figure 11b (Bounded Pareto). Workloads with higher
variance (Uniform and Pareto) see more improvements from
SLACKSCHED since they benefit more from matching of tasks
to resource variability.

Task duration. We analyzed the impact of varying the
range of task runtimes. We use uniformly distributed task
runtimes between 1 and X minutes (max task time) and
vary X . Figure 12 shows that the improvements in both
SLACKSCHED and Oracle diminish with short tasks (< 20
min) as they are rarely preempted (no scope for improvement).

0 20 40 60 80 100 120

Max task time (mins)

0.7

0.8

0.9

G
eo

m
ea

n
n

JC
T

Oracle

SlackSched

Figure 12: nJCT with varying task runtimes. SLACKSCHED is
effective for a wide range of task runtimes.

0 20 40 60 80 100

Task duration (mins)

0

50

100

150

S
ta

b
il

it
y

re
q

u
ir

ed
(t

im
e

si
n

ce
la

st
ch

a
n

g
e

in
m

in
s)

Pcompletion

0.6

0.7

0.8

Figure 13: HVM stability required for different task durations at
different confidence levels. To obtain 70% confidence in completion
without preemption for a task with duration d, we roughly need a
node to have been stable for 2.6× d time. We compute “stability
required” using inverse CDF of inter-change-time distribution.

SLACKSCHED’s improvements also diminish when tasks be-
come too long as it becomes harder to find stable nodes. This
is because SLACKSCHED relies on past history to predict the
future, e.g., to schedule a task of duration d with 70% confi-
dence, it needs a node which has remained stable for roughly
2.6d time (Figure 13). On the other hand, Oracle can identify
future stable nodes even if they have been unstable in the past,
allowing it to find matching nodes for long tasks.

Cluster load. We increase the load by reducing the mean inter-
arrival time of jobs while keeping the same set of HVMs, task
runtime distributions, and task resource requirements. Fig-
ure 14 shows that when load becomes very high (≈ 100% at
3 mins mean inter-arrival, as shown in the first data point), the
benefits of SLACKSCHED diminish, since the relative number
of stable nodes decrease and SLACKSCHED has a harder time
finding nodes for longer tasks (same reason as shown before
with Figure 13). Oracle still provides improvement since it
has full future knowledge and can still find stable nodes.

Task runtime misestimates. SLACKSCHED uses estimates
of task runtimes to compute completion probabilities and
expected completion times. We evaluate SLACKSCHED’s sen-
sitivity to misestimates by injecting errors into the runtimes
reported while still running tasks with their original runtimes.
To inject errors, for each task, we deviate its duration estimate
by a number sampled uniformly between 0 and some max
percentage error. Negative error implies underestimates and
positive error implies overestimates. Figure 15 shows there is
little impact of misestimates on SLACKSCHED. Completion
times inflate when runtimes are underestimated. This is be-

466 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 20 30 40

Mean inter-arrival time (mins)

0.7

0.8

0.9

G
eo

m
ea

n
n

JC
T

Oracle

SlackSched

Figure 14: nJCT with varying job inter-arrival rates. SLACKSCHED

improves JCT at different cluster loads.

−80 −60 −40 −20 0 20 40 60 80

Max percentage error in task runtimes

0.70

0.75

0.80

0.85

0.90

G
eo

m
ea

n
n

JC
T

Oracle

SlackSched

Figure 15: nJCT with varing errors in task runtimes estimates.
SLACKSCHED improves JCT even under modest errors.

cause runtime underestimation results in overestimating the
completion probabilities and matching tasks to nodes which
may not remain stable through the lifetime of the task. We see
more impact on Oracle, as it makes many close calls which
are rendered incorrect due to inaccurate duration estimates.

4.3 Acquirer Evaluation
We study benefits from SLACKSCHED-Acquirer considering
settings where there is room for improvement in job comple-
tion time between Oracle and SLACKSCHED-Scheduler.
Methodology. Different experiments differ in their schedul-
ing and acquisition logic. In all cases, HVMs are continu-
ously (minimum size chosen uniformly randomly) requested
to maintain ≈ 64 HVMs worth of resources. For these experi-
ments, we do not use the scaling policy (§3.2) and consider a
constant job arrival rate. Our baseline uses the CapacitySched-
uler with no intentional HVM deallocations.

These experiments require a simulated HVM allocator and
we test our system with three policies to decide which server
to place an HVM on: (1) Balancing, picks the server with
the most amount of unallocated resources, (2) Packing, picks
the server with the least amount of unallocated resources, (3)
Random, picks a random server. All policies only consider
servers which have enough resources to support the minimum
size of the HVM at the time of allocation.
Results. Figure 16 shows qualitatively similar improvements
across different HVM allocation policies solely from the
SLACKSCHED-Scheduler (16–24% mean reduction). We also
obtain 8–23% mean reduction solely from the SLACKSCHED-
Acquirer. The Scheduler and the Acquirer complement each
other to provide a mean reduction of 27–32%.
Improvement conditions. In addition to the improvement

Balancing Packing Random

HVM Allocation Policy

0.4

0.6

0.8

1.0

G
eo

m
ea

n
n

JC
T .92

.76 .73 .7
.77

.84

.68

.44

.78
.72 .7

.6

AcquirerOnly SchedulerOnly Acquirer+Scheduler Oracle

Figure 16: nJCT relative to baseline. SLACKSCHED’s scheduling
and resource acquisition complement each other to reduce JCT.

0 5 10 15 20 25 30

Hours

0

50

100

150

$/
h

r

SpotVM ($858)

HVM ($518)

HVM-SlackSched ($444)

RegularVM ($2149)

Figure 17: Cluster size over time in terms of cost ($) per hour.
Acquisition logic adapts to time-varying job arrival rate. HVMs are
cheaper than Spot and Regular VMs due to the discounted harvested
cores. Legend lists the total cost ($) in parentheses.

conditions in §4.2.1, resource acquisition is useful when there
is room for improving the stability of HVMs in the cluster.
This happens if (1) there are not enough stable HVMs in the
cluster and (2) there are better HVMs that can be returned
by the allocation policy. For instance, when most HVMs are
allocated on buffer servers, there is little scope to improve
the HVM mix. Providers typically reserve buffer servers to
satisfy sudden demand for regular VMs. In the absence of
sudden demand changes for regular VMs, HVMs on buffer
servers witness few resource variations and cause little to
no job slowdown. In our implementation, we disallow the
Balancing policy from placing HVMs on buffer servers (≈ 5%
of all servers). This is because, in practice, multiple users
will request HVMs from the cloud provider and a single user
will only get a small portion of HVMs allocated on buffer
servers. In general, we expect individual users to see HVMs
that behave closer to those allocated by the Random policy.

4.4 Scaling and Cost Comparison
We study how SLACKSCHED adapts to a workload that varies
over time. For such a workload, we compare the performance
(JCT) and cost of maintaining homogeneous pools of HVMs,
Spot VMs, and regular (on-demand) VMs.

Methodology. To generate the time-varying workload, we
vary the mean job arrival rate between 1× and 4× the base
rate every 6 hours. For the environment, the Acquirer main-
tains a homogeneous cluster of Spot VMs, HVMs or regular
VMs in separate runs. Runs without SLACKSCHED (i.e.,
SpotVM, HVM, RegularVM in Figures 17 and 18) use Ca-
pacityScheduler. For these cases, the Acquirer does not inten-
tionally deallocate servers and only uses the scaling policy to

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 467

10.2 0.3 0.4 0.6 2

nJCT [log scale]

0.00

0.25

0.50

0.75

1.00

C
D

F
(J

o
b

s)

Scheme (Geomean nJCT)

HVM (0.80)

HVM-SlackSched (0.67)

RegularVM (0.46)

Figure 18: nJCT relative to Spot VM. SLACKSCHED improves
JCT over out-of-the-box HVMs under a time-varying job arrival rate.
Vanilla HVMs yield better JCT than Spot VMs.

tune the cluster size in response to changing job arrival rate,
randomly choosing which VMs to deallocate.

We use the Random allocation policy (from §4.3) to deter-
mine the placement of HVMs and Spot VMs. Spot VMs are
fully evicted if resources are needed for competing regular
VMs allocations (i.e., they do not shrink like HVMs). We ob-
tain the cost of regular and Spot VMs from [74]. For HVMs,
we follow the same pricing scheme as [3, 87] and charge their
minimum size at the same price as Spot VMs of the same size
and charge additional harvested cores at a 50% discount.7

Scaling results. Figure 17 shows that the SLACKSCHED-
Acquirer scales the cluster in and out in response to the chang-
ing job arrival rate for all VM types. It maintains a rela-
tively constant core utilization over time (not shown). Across
schemes, the Acquirer maintains similar core utilization and
amount of resources. Different schemes have different num-
ber of preemptions and resource waste.

Cost results. Figure 17 also shows that HVMs are 40%
(1.67×) and 75% (4×) cheaper than Spot and regular VMs
respectively. The≈ 14.2% difference in cost with and without
SLACKSCHED ($444 vs. $518) mainly comes from (1) less
resource waste, and (2) intentional deallocations that move
utilization closer to the upper bound (80% threshold §3.2).

JCT results. Figure 18 shows that HVMs without
SLACKSCHED already provide mean reduction of 20% com-
pared to Spot VMs as HVMs shrink instead of getting evicted.
The Scheduler+Acquirer in SLACKSCHED provide a mean
reduction of 33% over Spot VMs even under a time-varying
arrival rate and without incurring extra cost.

4.5 Case Study: Renewable Energy Sources
To further test the generality of our approach, we consider
a future source of resource variability: renewable energy
sources (e.g., wind and solar power). Power generated from
renewable energy sources typically fluctuates over time as
these sources are driven by weather conditions that are in

7We are only interested in price variations across space but not across
time. Temporal variations in price would affect all HVMs (at least within the
same region) symmetrically and would not significantly affect our acquisition
decisions. Thus, we pick costs from [74] at a single point in time. In reality,
Spot VM prices, and in turn HVM prices, are volatile over time and can
range between 48% and 88% of the regular VM price.

10.4 0.5 0.6 0.7 0.8 0.9

nJCT [log scale]

0.00

0.25

0.50

0.75

1.00

C
D

F
(J

o
b

s)

Scheme (Geomean nJCT)

Oracle (0.72)

SlackSched (0.85)

Figure 19: SLACKSCHED improves completion times even under
power variations due to renewable energy sources.

turn variable over time. We study the case of HVMs that
vary in resources due to a changing power supply in addition
to on-demand VM arrivals/departures. In these scenarios,
leveraging an unreliable resource supply is a necessity rather
than an optimization.

Methodology. We use the same simulation environment and
workloads as before. For generating HVM traces under re-
newable energy variations, we use wind power generation
traces from the ELIA dataset [66]. We scale the power trace
such that the cluster is fully powered at the max power in
the trace. For simplicity, we also assume that cores pow-
ered on a server are proportional to the power supplied to
the server. We replay the on-demand VM allocation traces
and the power generation traces. Whenever power drops, we
reduce the power supply to servers that have unallocated re-
sources, effectively reducing the size of the HVMs. When no
such servers exist, we evict on-demand VMs (assuming they
are migrated out). When power rises, we increase the power
supply to servers that have a lower supply than the max power,
effectively increasing the size of the HVMs. Additionally, we
relaunch previously-evicted on-demand VMs to maintain the
cluster load (assuming they are migrated in).

Results. We observe that the inter-change time and shrink dis-
tributions are still relatively stationary when taken for a day.
However there are more variations at smaller time scales (e.g.
when taken for a window of 6 hours). Since SLACKSCHED
maintains a large enough snapshot (i.e., 1 day) of the HVM
distributions, it still prevents preemptions and improves com-
pletion times. Figure 19 shows that SLACKSCHED provides
a mean reduction in JCT of 15%. Similar to Figure 10, ≈
25% jobs degrade (nJCT > 1) relative to their execution with
CapacityScheduler.

5 Related Work
Related work not covered in §3.1 can be classified into:

Checkpointing, migration, and replication. Work like [71,
80] use a combination of these techniques to mitigate the
impact of preemptions caused by Spot VM evictions. These
are prohibitive for long uninterruptible workloads. In Ap-
pendix B.1, we empirically show that SLACKSCHED outper-
forms these techniques for our target workloads by profiling
their checkpointing overheads.

468 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Multiple markets. [20, 43, 70, 71, 80, 84] mitigate the im-
pact of VM evictions by picking Spot VMs from different VM
types/sizes and regions (i.e., markets). Different markets can
have different prices and eviction rates. These efforts estimate
Spot VM eviction likelihoods based on spot prices and bids.
However, pricing-based prediction techniques may not neces-
sarily predict resource changes (e.g., HVMs shrinking) which
cause workload preemptions. Further, SLACKSCHED yields
improvements even for a cluster of HVMs taken from a single
market (i.e., the same minimum size and region) as shown in
Figure 10b. For such setting, we expect multi-market tech-
niques will perform similar to the CapacityScheduler as they
will not distinguish between VMs taken from a single market.

[44, 70, 80, 84] use an ensemble of on-demand and Spot
VMs. SLACKSCHED provides improvements without requir-
ing on-demand VMs that cost 2–10× more than HVMs.

Bidding, pricing, and admission control. [57, 85] use bid-
ding strategies to control VM eviction likelihoods. These
may not control HVM resource variations which can preempt
workloads. Further, pricing-based techniques only work when
evictions and pricing are related. These methods do not gen-
eralize to flat pricing models [51, 74]. Many of these efforts
are also scoped to different workloads (e.g., machine learning
training [44], database queries [84]) and do not generalize to
long uninterruptible workloads.

In a setting where jobs have different levels of importance,
admission control [65] techniques may be useful. This is
orthogonal to SLACKSCHED.

Scheduling and task placement. Most prior work assumes
fixed resources over time [33, 37–40, 52, 64, 79, 86]. They
leverage multi-dimensional packing, locality, fairness, and
workload properties (e.g., dependencies). These ideas are
orthogonal to our work and SLACKSCHED can leverage them
to further improve scheduling objectives including efficiency,
fairness, and completion times. However, HVMs incur large
resource variations which are not addressed by this prior work.

Other proposals [3, 56, 87] adapt cluster scheduling frame-
works to address resource variability. However, they are
scoped to specific workloads that are less challenging than
long-running uninterruptible workloads. [56] only considers
elastic query processing workloads, [87] considers server-
less functions with short tasks, and [3] just reacts to resource
variations rather than avoiding preemptions. The closest to
our work is SciSpot [51] that schedules tasks using a time-to-
eviction distribution for Spot VMs. It does not consider wait-
ing for VMs to free up resources. Waiting (delayed schedul-
ing) provides better performance (§4.2). SciSpot also does
not provide any empirical evaluation and only estimates po-
tential for improvement using theoretical analysis. It does not
consider resource acquisition and only works with bathtub-
shaped time-to-eviction distributions.

Addressing underutilization. Prior work has also looked at
underutilization in cloud environments [78, 88]. These try

to co-locate latency critical services and batch workloads to
reduce resource fragmentation and improve cluster utilization.
These techniques often also leverage the fact that jobs do
not use their peak resources all the time and thus oversub-
scribe resources. However, such oversubscription is typically
only done for first party workloads and not customer facing
services [3, 42, 72, 88]. Hence, providers still deal with
unallocated resources [3, 88].

Serverless computing or FaaS (Function-as-a-Service) give
up on the VM abstraction and allow providers more flexibil-
ity to dynamically spread computation and reduce resource
fragmentation. HVMs try to preserve the VM abstraction
allowing use of harvested capacity for workloads that are not
suited for serverless computing, e.g., workloads that maintain
state, need the abstraction of a machine, shared libraries, or
operating system, or require significant software engineering
effort for porting to FaaS abstractions.

While HVMs expose unallocated resources, SmartHar-
vest [82] also opportunistically exposes allocated but unused
resources. It uses machine-learning techniques to decide
when and how many resources can be harvested without harm.
SmartHarvest resource variations are fine-grained (millisec-
ond level) and would require additional scheduling solutions.

6 Conclusion
Cloud providers have started using new mechanisms like Spot
VMs and Harvest VMs (HVMs) to monetize their unallocated
resources. After a characterization of HVMs and workloads,
we identified that prior work falls short at running long, un-
interruptible workloads in such variable environments. To
enable these workloads, we propose SLACKSCHED, which
leverages distribution-based predictions to maintain a stable
pool of HVMs and intelligently match tasks to their ideal
resources. SLACKSCHED successfully enables running work-
loads on HVMs as if they were run on regular VMs.

We experimentally demonstrated that our proposal reduces
resource waste by 20% and improves mean and tail (90th

percentile) completion time by 27% and 44% respectively,
at 75% lower cost than regular VMs. We also show that our
system generalizes to cases where resource variations are
caused by a variable power supply. We plan to contribute our
code to the Apache YARN project [5].

Acknowledgments
We would like to thank anonymous reviewers, our shepherd
John Wilkes, and Srikanth Kandula for feedback that helped
us improve this work. We would also like to thank Peeyush
Kumar for useful discussions, Philipp Witte and Roberto
Lleras for help with workloads, and Shivkumar Kalyanaraman
and Srinivasan Iyengar for help with the renewable energy
case study.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 469

References
[1] [YARN-1187] Add discrete event-based simulation to

yarn scheduler simulator - ASF JIRA. [Online; ac-
cessed 17. Mar. 2021]. 2021. URL: https://issues.
apache.org/jira/browse/YARN-1187.

[2] Amazon EC2 Spot – Save up-to 90% on On-Demand
Prices. [Online; accessed 12. Sep. 2021]. URL:
https : / / aws . amazon . com / ec2 / spot /
?cards . sort - by = item . additionalFields .
startDateTime&cards.sort-order=asc.

[3] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper
Gun, Ke Wang, Brian Dolan, Brian Corell, Sekhar Pa-
supuleti, Thomas Moscibroda, Sameh Elnikety, Mar-
cus Fontoura, and Ricardo Bianchini. “Providing SLOs
for Resource-Harvesting VMs in Cloud Platforms”. In:
OSDI. 2020.

[4] Apache Hadoop 3.3.1 – YARN Node Labels. [On-
line; accessed 13. Sep. 2021]. URL: https : / /
hadoop . apache . org / docs / current / hadoop -
yarn/hadoop-yarn-site/NodeLabel.html.

[5] Apache Software Foundation. Apache Hadoop YARN.

[6] Apache Software Foundation. Hadoop. Version 0.20.2.
Feb. 19, 2010.

[7] Apache Software Foundation. Hadoop: Capacity
Scheduler.

[8] AWS Auto Scaling. [Online; accessed 17. Apr. 2022].
Apr. 2022. URL: https : / / aws . amazon . com /
autoscaling.

[9] AWS Batch — Easy and Efficient Batch Computing
Capabilities - AWS. [Online; accessed 13. Sep. 2021].
URL: https://aws.amazon.com/batch.

[10] Azure Autoscale |Microsoft Azure. [Online; accessed
17. Apr. 2022]. Apr. 2022. URL: https://azure.
microsoft.com/en-us/features/autoscale.

[11] Azure Kubernetes Service (AKS) | Microsoft Azure.
[Online; accessed 13. Sep. 2021]. URL: https :
/ / azure . microsoft . com / en - us / services /
kubernetes-service/#overview.

[12] Azure Sustainability—Sustainable Technologies |Mi-
crosoft Azure. [Online; accessed 15. Sep. 2021]. URL:
https://azure.microsoft.com/en-us/global-
infrastructure/sustainability/#overview.

[13] Noman Bashir, Tian Guo, Mohammad Hajiesmaili,
David Irwin, Prashant Shenoy, Ramesh Sitaraman,
Abel Souza, and Adam Wierman. “Enabling Sustain-
able Clouds: The Case for Virtualizing the Energy
System”. In: SoCC. 2021.

[14] Batch - Compute job scheduling service | Microsoft
Azure. [Online; accessed 13. Sep. 2021]. URL: https:
/ / azure . microsoft . com / en - us / services /
batch/#overview.

[15] Edip Baysal, Dan D. Kosloff, and John W. C. Sher-
wood. “Reverse Time Migration”. In: GEOPHYSICS
48.11 (1983), pp. 1514–1524. eprint: https://doi.
org/10.1190/1.1441434.

[16] Broad Institute. cromwell. [Online; accessed 30. Aug.
2021]. Aug. 2021. URL: https://github.com/
broadinstitute/cromwell.

[17] Andrei Z Broder, Steven C Glassman, Mark S Man-
asse, and Geoffrey Zweig. “Syntactic Clustering of
the Web”. In: Computer networks and ISDN systems
29.8-13 (1997), pp. 1157–1166.

[18] Burstable performance instances. [Online; accessed
12. Sep. 2021]. URL: https://docs.aws.amazon.
com / AWSEC2 / latest / UserGuide / burstable -
performance-instances.html.

[19] A.W. Camargo, J. Ribeiro, N. Okita, C. Benedicto,
T.A. Coimbra, J.H. Faccipieri, and M. Tygel. “Fault-
Tolerant Wave Propagation Assisted By Independent
Checkpointing Strategy”. In: 2020.1 (2020), pp. 1–5.

[20] Marcus Carvalho, Walfredo Cirne, Franciso Brasileiro,
and John Wilkes. “Long-term SLOs for reclaimed
cloud computing resources”. In: SoCC. 2014.

[21] Chameleon - Texas Advanced Computing Center. [On-
line; accessed 14. Sep. 2021]. URL: https://www.
tacc.utexas.edu/systems/chameleon.

[22] ChevronETC. Examples. [Online; accessed 30. Aug.
2021]. Aug. 2021. URL: https://github.com/
ChevronETC/Examples.

[23] Andrew A. Chien, Richard Wolski, and Fan Yang.
“The Zero-Carbon Cloud: High-Value, Dispatchable
Demand for Renewable Power Generators”. In: The
Electricity Journal 28.8 (2015), pp. 110–118.

[24] Andrew Chung, Subru Krishnan, Konstantinos Karana-
sos, Carlo Curino, and Gregory R. Ganger. “Un-
earthing inter-job dependencies for better cluster
scheduling”. In: OSDI. 2020.

[25] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bian-
chini. “Resource Central: Understanding and Predict-
ing Workloads for Improved Resource Management in
Large Cloud Platforms”. In: SOSP. 2017.

[26] CRIU. [Online; accessed 23. Mar. 2022]. Feb. 2022.
URL: https://criu.org/Main_Page.

[27] Carlo Curino, Djellel E. Difallah, Chris Douglas,
Subru Krishnan, Raghu Ramakrishnan, and Sriram
Rao. “Reservation-Based Scheduling: If You’re Late
Don’t Blame Us!” In: SoCC. 2014.

470 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://issues.apache.org/jira/browse/YARN-1187
https://issues.apache.org/jira/browse/YARN-1187
https://aws.amazon.com/ec2/spot/?cards.sort-by=item.additionalFields.startDateTime&cards.sort-order=asc
https://aws.amazon.com/ec2/spot/?cards.sort-by=item.additionalFields.startDateTime&cards.sort-order=asc
https://aws.amazon.com/ec2/spot/?cards.sort-by=item.additionalFields.startDateTime&cards.sort-order=asc
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/NodeLabel.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/NodeLabel.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/NodeLabel.html
https://aws.amazon.com/autoscaling
https://aws.amazon.com/autoscaling
https://aws.amazon.com/batch
https://azure.microsoft.com/en-us/features/autoscale
https://azure.microsoft.com/en-us/features/autoscale
https://azure.microsoft.com/en-us/services/kubernetes-service/#overview
https://azure.microsoft.com/en-us/services/kubernetes-service/#overview
https://azure.microsoft.com/en-us/services/kubernetes-service/#overview
https://azure.microsoft.com/en-us/global-infrastructure/sustainability/#overview
https://azure.microsoft.com/en-us/global-infrastructure/sustainability/#overview
https://azure.microsoft.com/en-us/services/batch/#overview
https://azure.microsoft.com/en-us/services/batch/#overview
https://azure.microsoft.com/en-us/services/batch/#overview
https://doi.org/10.1190/1.1441434
https://doi.org/10.1190/1.1441434
https://github.com/broadinstitute/cromwell
https://github.com/broadinstitute/cromwell
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://www.tacc.utexas.edu/systems/chameleon
https://www.tacc.utexas.edu/systems/chameleon
https://github.com/ChevronETC/Examples
https://github.com/ChevronETC/Examples
https://criu.org/Main_Page

[28] J.T. Daly. “A higher order estimate of the optimum
checkpoint interval for restart dumps”. In: Future
Generation Computer Systems 22.3 (2006), pp. 303–
312.

[29] Jeffrey Dean and Sanjay Ghemawat. “MapReduce:
Simplified Data Processing on Large Clusters”. In:
6th Symposium on Operating Systems Design & Imple-
mentation (OSDI 04). San Francisco, CA: USENIX
Association, Dec. 2004.

[30] Yanlei Diao, Abhishek Roy, and Toby Bloom. “Build-
ing Highly-Optimized, Low-Latency Pipelines for Ge-
nomic Data Analysis.” In: CIDR. 2015.

[31] docker checkpoint. [Online; accessed 23. Mar. 2022].
Mar. 2022. URL: https://docs.docker.com/
engine/reference/commandline/checkpoint.

[32] Alexander Fuerst, Stanko Novaković, Íñigo Goiri,
Gohar Irfan Chaudhry, Prateek Sharma, Kapil Arya,
Kevin Broas, Eugene Bak, Mehmet Iyigun, and Ri-
cardo Bianchini. “Memory-Harvesting VMs in Cloud
Platforms”. In: ASPLOS. 2022.

[33] M. R. Garey, D. S. Johnson, and Ravi Sethi. “The
Complexity of Flowshop and Jobshop Scheduling”. In:
Mathematics of Operations Research 1.2 (May 1976),
pp. 117–129.

[34] GATK. [Online; accessed 30. Aug. 2021]. Aug. 2021.
URL: https://gatk.broadinstitute.org/hc/
en-us.

[35] Genomic data processing reference architecture. [On-
line; accessed 13. Sep. 2021]. URL: https : / /
cloud . google . com / architecture / genomic -
data-processing-reference-architecture.

[36] Get started with Batch | Google Cloud. [Online; ac-
cessed 13. Sep. 2022]. URL: https : / / cloud .
google.com/batch/docs/get-started.

[37] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. “Domi-
nant Resource Fairness: Fair Allocation of Multiple
Resource Types”. In: NSDI. 2011.

[38] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. “Multi-
resource Packing for Cluster Schedulers”. In: SIG-
COMM. 2014.

[39] Robert Grandl, Mosharaf Chowdhury, Aditya Akella,
and Ganesh Ananthanarayanan. “Altruistic Scheduling
in Multi-Resource Clusters”. In: OSDI. 2016.

[40] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya
Akella, and Janardhan Kulkarni. “GRAPHENE:
Packing and Dependency-Aware Scheduling for Data-
Parallel Clusters”. In: OSDI. 2016.

[41] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek
Pan, David Dion, Esaias E Greeff, Star Dorminey,
Shailesh Joshi, Yang Chen, Mark Russinovich, and
Thomas Moscibroda. “Protean: VM Allocation Ser-
vice at Scale”. In: OSDI. 2020.

[42] James Hamilton. AWS Innovation at Scale. Nov. 2014.
URL: www.youtube.com/watch?v=JIQETrFC_SQ.

[43] Aaron Harlap, Andrew Chung, Alexey Tumanov, Gre-
gory R. Ganger, and Phillip B. Gibbons. “Tributary:
spot-dancing for elastic services with latency SLOs”.
In: USENIX ATC. 2018.

[44] Aaron Harlap, Alexey Tumanov, Andrew Chung, Gre-
gory R. Ganger, and Phillip B. Gibbons. “Proteus:
Agile ML Elasticity through Tiered Reliability in Dy-
namic Resource Markets”. In: EuroSys. 2017.

[45] Helping the financial services industry transform with
Google Cloud | Google Cloud Blog. [Online; accessed
13. Sep. 2021]. URL: https://cloud.google.com/
blog / topics / financial - services / helping -
the-financial-services-industry-transform.

[46] High Burst CPU Compute for Monte Carlo Simula-
tions on AWS | Amazon Web Services. [Online; ac-
cessed 13. Sep. 2021]. URL: https://aws.amazon.
com/blogs/hpc/high-burst-cpu-compute-for-
monte-carlo-simulations-on-aws.

[47] High-Performance Computing for Financial Services
| Microsoft Azure. [Online; accessed 13. Sep. 2021].
URL: https : / / azure . microsoft . com / en -
us/solutions/high- performance- computing/
financial-services/#features.

[48] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. “Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center”. In:
NSDI. 2011.

[49] Introducing B-Series, our new burstable VM size. [On-
line; accessed 12. Sep. 2021]. URL: https://azure.
microsoft.com/en- us/blog/introducing- b-
series-our-new-burstable-vm-size.

[50] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,
Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Íñigo Goiri, Subru
Krishnan, Jana Kulkarni, and Sriram Rao. “Morpheus:
Towards Automated SLOs for Enterprise Clusters”. In:
OSDI. 2016.

[51] Jcs Kadupitiya, Vikram Jadhao, and Prateek Sharma.
“SciSpot: Scientific Computing On Temporally Con-
strained Cloud Preemptible VMs”. In: IEEE Trans-
actions on Parallel and Distributed Systems (2022),
pp. 1–1.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 471

https://docs.docker.com/engine/reference/commandline/checkpoint
https://docs.docker.com/engine/reference/commandline/checkpoint
https://gatk.broadinstitute.org/hc/en-us
https://gatk.broadinstitute.org/hc/en-us
https://cloud.google.com/architecture/genomic-data-processing-reference-architecture
https://cloud.google.com/architecture/genomic-data-processing-reference-architecture
https://cloud.google.com/architecture/genomic-data-processing-reference-architecture
https://cloud.google.com/batch/docs/get-started
https://cloud.google.com/batch/docs/get-started
www.youtube.com/watch?v=JIQETrFC_SQ
https://cloud.google.com/blog/topics/financial-services/helping-the-financial-services-industry-transform
https://cloud.google.com/blog/topics/financial-services/helping-the-financial-services-industry-transform
https://cloud.google.com/blog/topics/financial-services/helping-the-financial-services-industry-transform
https://aws.amazon.com/blogs/hpc/high-burst-cpu-compute-for-monte-carlo-simulations-on-aws
https://aws.amazon.com/blogs/hpc/high-burst-cpu-compute-for-monte-carlo-simulations-on-aws
https://aws.amazon.com/blogs/hpc/high-burst-cpu-compute-for-monte-carlo-simulations-on-aws
https://azure.microsoft.com/en-us/solutions/high-performance-computing/financial-services/#features
https://azure.microsoft.com/en-us/solutions/high-performance-computing/financial-services/#features
https://azure.microsoft.com/en-us/solutions/high-performance-computing/financial-services/#features
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size

[52] Ian A. Kash, Greg O’Shea, and Stavros Volos. “DC-
DRF: Adaptive Multi-Resource Sharing at Public
Cloud Scale”. In: SoCC. 2018.

[53] Kubernetes. [Online; accessed 13. Sep. 2021]. URL:
https://kubernetes.io/docs/reference.

[54] Kubernetes - Google Kubernetes Engine (GKE) |
Google Cloud. [Online; accessed 13. Sep. 2022].
URL: https://cloud.google.com/kubernetes-
engine.

[55] Kubernetes on AWS | AWS. [Online; accessed 13.
Sep. 2021]. URL: https://aws.amazon.com/
kubernetes.

[56] Kshiteej Mahajan, Mosharaf Chowdhury, Aditya
Akella, and Shuchi Chawla. “Dynamic Query Re-
Planning using QOOP”. In: OSDI. 2018.

[57] Sharmistha Mandal, Sunirmal Khatua, and Rajib K.
Das. “Bid Selection for Deadline Constrained Jobs
over Spot VMs in Computational Cloud”. In: Dis-
tributed Computing and Internet Technology. Cham,
Switzerland: Springer, Nov. 2016, pp. 118–128.

[58] Microsoft. AzureClusterlessHPC.jl. [Online; accessed
30. Aug. 2021]. Aug. 2021. URL: https://github.
com/microsoft/AzureClusterlessHPC.jl.

[59] Microsoft. CromwellOnAzure. [Online; accessed 30.
Aug. 2021]. Aug. 2021. URL: https://github.
com/microsoft/CromwellOnAzure.

[60] National Energy Research Scientific Computing Center.
[Online; accessed 14. Sep. 2021]. URL: https://
www.nersc.gov.

[61] Frank Austin Nothaft, Matt Massie, Timothy Danford,
Zhao Zhang, Uri Laserson, Carl Yeksigian, Jey Kot-
talam, Arun Ahuja, Jeff Hammerbacher, Michael Lin-
derman, Michael J. Franklin, Anthony D. Joseph, and
David A. Patterson. “Rethinking Data-Intensive Sci-
ence Using Scalable Analytics Systems”. In: SIGMOD.
2015.

[62] Keiron O’Shea and Ryan Nash. “An Introduction To
Convolutional Neural Networks”. In: arXiv preprint
arXiv:1511.08458 (2015).

[63] Jun Woo Park, Alexey Tumanov, Angela Jiang,
Michael A. Kozuch, and Gregory R. Ganger. “3Sigma:
Distribution-Based Cluster Scheduling for Runtime
Uncertainty”. In: EuroSys. 2018.

[64] David C. Parkes, Ariel D. Procaccia, and Nisarg Shah.
“Beyond Dominant Resource Fairness: Extensions,
Limitations, and Indivisibilities”. In: ACM Transac-
tions on Economics Computation 3.1 (Mar. 2015).

[65] Florentina I. Popovici and John Wilkes. “Profitable
Services in an Uncertain World”. In: SC. 2005.

[66] Power generation. [Online; accessed 12. Sep. 2021].
URL: https://www.elia.be/en/grid- data/
power-generation.

[67] Request real-time and forecasted weather data using
Azure Maps Weather services. [Online; accessed 13.
Sep. 2021]. URL: https://docs.microsoft.com/
en- us/azure/azure- maps/how- to- request-
weather-data.

[68] Running Geospacial Workloads On AWS. [Online;
accessed 14. Sep. 2021]. URL: https : / /
anz - resources . awscloud . com / aws - summit -
sydney - 2019 - analyse / room5 - day1 - 1745 -
runninggeospacialworkloadsonaws-v3-3.

[69] Ziv Scully, Mor Harchol-Balter, and Alan Scheller-
Wolf. “Soap: One Clean Analysis of All Age-Based
Scheduling Policies”. In: SIGMETRICS. 2018.

[70] Prateek Sharma, Stephen Lee, Tian Guo, David Ir-
win, and Prashant Shenoy. “SpotCheck: Designing a
Derivative IaaS Cloud on the Spot Market”. In: Eu-
roSys. 2015.

[71] Supreeth Shastri and David Irwin. “HotSpot: Auto-
mated Server Hopping in Cloud Spot Markets”. In:
SoCC. 2017.

[72] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim
Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vah-
dat. “Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter Network”.
In: SIGCOMM. 2015.

[73] Slurm Workload Manager - Documentation. [Online;
accessed 13. Sep. 2021]. URL: https://slurm.
schedmd.com/documentation.html.

[74] Spot Virtual Machines – Spot Pricing and Features |
Microsoft Azure. [Online; accessed 12. Sep. 2021].
URL: https://azure.microsoft.com/en- us/
services/virtual-machines/spot/#overview.

[75] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
“LSTM neural networks for language modeling”. In:
INTERSPEECH. 2012.

[76] Sustainability | Google Cloud. [Online; accessed 15.
Sep. 2021]. URL: https://cloud.google.com/
sustainability.

[77] Sustainability in the Cloud. [Online; accessed 15.
Sep. 2021]. URL: https : / / sustainability .
aboutamazon . com / environment / the - cloud ?
energyType=true.

472 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://kubernetes.io/docs/reference
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/kubernetes
https://aws.amazon.com/kubernetes
https://github.com/microsoft/AzureClusterlessHPC.jl
https://github.com/microsoft/AzureClusterlessHPC.jl
https://github.com/microsoft/CromwellOnAzure
https://github.com/microsoft/CromwellOnAzure
https://www.nersc.gov
https://www.nersc.gov
https://www.elia.be/en/grid-data/power-generation
https://www.elia.be/en/grid-data/power-generation
https://docs.microsoft.com/en-us/azure/azure-maps/how-to-request-weather-data
https://docs.microsoft.com/en-us/azure/azure-maps/how-to-request-weather-data
https://docs.microsoft.com/en-us/azure/azure-maps/how-to-request-weather-data
https://anz-resources.awscloud.com/aws-summit-sydney-2019-analyse/room5-day1-1745-runninggeospacialworkloadsonaws-v3-3
https://anz-resources.awscloud.com/aws-summit-sydney-2019-analyse/room5-day1-1745-runninggeospacialworkloadsonaws-v3-3
https://anz-resources.awscloud.com/aws-summit-sydney-2019-analyse/room5-day1-1745-runninggeospacialworkloadsonaws-v3-3
https://anz-resources.awscloud.com/aws-summit-sydney-2019-analyse/room5-day1-1745-runninggeospacialworkloadsonaws-v3-3
https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/documentation.html
https://azure.microsoft.com/en-us/services/virtual-machines/spot/#overview
https://azure.microsoft.com/en-us/services/virtual-machines/spot/#overview
https://cloud.google.com/sustainability
https://cloud.google.com/sustainability
https://sustainability.aboutamazon.com/environment/the-cloud?energyType=true
https://sustainability.aboutamazon.com/environment/the-cloud?energyType=true
https://sustainability.aboutamazon.com/environment/the-cloud?energyType=true

[78] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E.
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. “Borg: The next Generation”.
In: EuroSys. 2020.

[79] Alexey Tumanov, Timothy Zhu, Jun Woo Park,
Michael A. Kozuch, Mor Harchol-Balter, and Gre-
gory R. Ganger. “TetriSched: Global Rescheduling
with Adaptive Plan-Ahead in Dynamic Heterogeneous
Clusters”. In: EuroSys. 2016.

[80] Prateeksha Varshney and Yogesh Simmhan. “Autobot:
Resilient and Cost-Effective Scheduling of a Bag of
Tasks on Spot Vms”. In: TPDS 30.7 (2019).

[81] Jean Virieux and Stéphane Operto. “An Overview of
Full-Waveform Inversion in Exploration Geophysics”.
In: GEOPHYSICS 74.6 (2009), WCC1–WCC26.
eprint: https://doi.org/10.1190/1.3238367.

[82] Yawen Wang, Kapil Arya, Marios Kogias, Manohar
Vanga, Aditya Bhandari, Neeraja J Yadwadkar, Sid-
dhartha Sen, Sameh Elnikety, Christos Kozyrakis, and
Ricardo Bianchini. “SmartHarvest: harvesting idle
CPUs safely and efficiently in the cloud”. In: EuroSys.
2021.

[83] Adam Wierman and Misja Nuyens. “Scheduling De-
spite Inexact Job-Size Information”. In: SIGMETRICS.
2008.

[84] Zichen Xu, Christopher Stewart, Nan Deng, and Xi-
aorui Wang. “Blending On-Demand and Spot In-
stances to Lower Costs for in-Memory Storage”. In:
IEEE INFOCOM 2016 - The 35th Annual IEEE Inter-
national Conference on Computer Communications.
San Francisco, CA, USA: IEEE Press, 2016, pp. 1–9.

[85] Murtaza Zafer, Yang Song, and Kang-Won Lee. “Opti-
mal Bids for Spot VMs in a Cloud for Deadline Con-
strained Jobs”. In: 2012 IEEE Fifth International Con-
ference on Cloud Computing. 2012, pp. 75–82.

[86] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. “De-
lay Scheduling: A Simple Technique for Achieving
Locality and Fairness in Cluster Scheduling”. In: Eu-
roSys. 2010.

[87] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry,
Sameh Elnikety Rodrigo Fonseca, Christina Delim-
itrou, and Ricardo Bianchini. “Faster and Cheaper
Serverless Computing on Harvested Resources”. In:
SOSP. 2021.

[88] Yunqi Zhang, George Prekas, Giovanni Matteo Fu-
marola, Marcus Fontoura, Íñigo Goiri, and Ricardo
Bianchini. “History-Based Harvesting of Spare Cycles
and Storage in Large-Scale Datacenters”. In: OSDI.
2016.

[89] Hua-Wei Zhou, Hao Hu, Zhihui Zou, Yukai Wo, and
Oong Youn. “Reverse Time Migration: a Prospect of
Seismic Imaging Methodology”. In: Earth-Science
Reviews 179 (2018), pp. 207–227.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 473

https://doi.org/10.1190/1.3238367

A Pseudocode
For completeness, we list the pseudocode for the algorithms
used by the SLACKSCHED Scheduler and SLACKSCHED Ac-
quirer. Algorithm 1 is used by the scheduler to match tasks
to nodes, and Algorithm 2 is used by the acquirer to select
nodes to deallocate.

Note, in our implementation we ensure that the allocations
and deallocations by the Acquirer do not nullify those done
by the scaling policy by considering the net change in number
of nodes that needs to be there. We also let the scaling policy
scale out the cluster after intentional deallocations instead
of Acquirer directly requesting VMs after decommissioning
VMs (i.e., lines 6, 7, 8 of Algorithm 2 are coupled in our im-
plementation). The implementation can be done in a way that
avoids this coupling. Decoupling would actually be needed
for cases when scaling and acquisition are triggered indepen-
dently.

SLACKSCHED for heartbeat-based scheduling. In some
cluster managers (e.g., Apache YARN [5]) scheduling is trig-
gered on heartbeats [7]. In these cases, the node to schedule
on is implicitly decided based on the node which sent the
heartbeat. However, SLACKSCHED needs to explicitly decide
which node a task should be mapped to. Thus, we adapt the
scheduling logic so that the scheduler can wait for heartbeats
from other nodes rather than necessarily assigning tasks to
the random node that sent a heartbeat. Specifically, for the
node that sent the heartbeat, if the task meets a threshold
completion probability, we directly schedule the task on that
node, otherwise, we look at the expected completion times
offered by all the other nodes and wait for more heartbeats if
there are better nodes. The pseudocode for this logic is listed
in Algorithm 3. This adds negligible overhead to the time
complexity of the scheduler.

Algorithm 1: SLACKSCHED Scheduler
1 Function MatchMaker(Task t, Nodes N)
2 W ← []
3 d← duration(t)
4 for n ∈ N do
5 x← lastChangeDirection(n)
6 a← nextAvailTime(n, t)
7 e← timeSinceLastChange(n)
8 // Using formulation in §3.1
9 c← expectedCompletionTime(x,a,e,d)

10 W.append((c,n))
11 end
12 (c∗,n∗)← min(W)
13 if feasible(t, n∗) then
14 schedule(t, n∗)
15 end
16 // Otherwise re-visit decision
17 // at the next scheduling event

18 end

Algorithm 2: SLACKSCHED Acquirer
1 deallocateFraction = 0.1
2 Function OnEpochEnd(Nodes N)
3 N.sort()
4 // increasing order of timeSinceLastChange
5 toDeallocate← N[: N.size()∗deallocateFraction]
6 requestNVMs(toDeallocate.size())
7 gracefullyDecommission(toDeallocate)
8 // trigger scaling

9 end
10

Algorithm 3: SLACKSCHED Scheduler
1 Function ScheduleOnNodeUpdate(Tasks T, Machine m)
2 w← []
3 x← lastChangeDirection(m)
4 e← timeSinceLastChange(m)
5 for t ∈ T do
6 if ¬ feasible(t, m) then
7 continue
8 end
9 d← duration(t)

10 p← completionProbability(x,e,d)
11 if p > threshold then
12 w.append((p, t))
13 end
14 end
15 if w is not empty then
16 (p∗, t∗)← max(w)
17 schedule(t∗, m)

18 end
19 else
20 N← getAllNodes()
21 t← shortestTask(T)
22 MatchMaker (t, N) // (Algorithm 1)
23 end
24 end

474 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10.4 0.5 0.6 0.7 0.8 0.9

nJCT [log scale]

0.00

0.25

0.50

0.75

1.00

C
D

F
(J

o
b

s)

Scheme (Geomean nJCT)

CapacityScheduler-Chk-2min (0.99)

CapacityScheduler-Chk-1min (0.92)

Oracle-ChkptOff (0.78)

SlackSched-ChkptOff (0.81)

Figure 20: nJCT relative to CapacityScheduler without check-
pointing. SLACKSCHED outperforms the checkpoint-migrate tech-
nique. We set the time-per-checkpoint as 1 min and 2 min in the two
schemes with checkpointing.

B Additional Evaluation
B.1 Comparison to prior work for Spot VMs
Prior work [28, 29, 71, 80] employs checkpointing, migra-
tion, and replication techniques to mitigate the impact of
preemptions. We empirically show that these techniques are
insufficient to curb the overheads imposed by HVMs on our
target workloads.

Checkpointing and migration. A common approach to
handle Spot VM preemptions is to periodically checkpoint
tasks [28] and when they get evicted, restore them in other
servers. Universal checkpointing techniques like the one
docker uses based on CRIU [26, 31] only handle effects in-
side the container and ignores any external ones (e.g., external
storage for intermediate outputs). The workloads we study do
not perform checkpointing. On preemptions, tasks are simply
restarted inside a new container with reinitialized external
storage for intermediate results and outputs. Implementing ef-
ficient and complete checkpointing would require application
specific insights and expensive engineering.

For the sake of evaluation, we measure overhead for check-
pointing memory and processor state using the docker mecha-
nism [31]8. This checkpointing delays tasks by≈ 1–2 minutes
per checkpoint even for containers with less than 1 GB of
memory9. This relatively large delay is because our appli-
cations rely on stateful shared libraries, open multiple TCP
connections, and open a number of files in memory. These
findings are consistent with [19].

To study the end-to-end impact of checkpointing, we extend
our simulation framework to stall tasks being checkpointed.
We delay each task by X=1,2 minute(s) per checkpoint (inde-
pendent of container memory size) and run checkpoints every
10 minutes. On preemptions, tasks are restarted from the
latest checkpoint and assume no overhead to migrate check-
points. Figure 20 shows the normalized job completion time.
We find that even with such optimistic checkpoint-migrate
overheads, SLACKSCHED outperforms checkpoint-migrate

8These checkpoints are not restorable, a complete checkpoint would
include local files and external storage/effects.

9The checkpointing latency (i.e., time when the checkpoint is available
for restoration) is typically larger than the delay added to the task.

10.4 0.5 0.6 0.7 0.8 0.9 2

nJCT [log scale]

0.00

0.25

0.50

0.75

1.00

C
D

F
(J

o
b

s)

Scheme (Geomean nJCT)

CapacityScheduler-3replicas (0.94)

Oracle-1replicas (0.76)

SlackSched-1replicas (0.82)

Figure 21: nJCT relative to CapacityScheduler without replication.
Replication only slightly improves job completion time.

10.4 0.5 0.6 0.7 0.8 0.9

nJCT [log scale]

0.00

0.25

0.50

0.75

1.00

C
D

F
(J

o
b

s)

Scheme (Geomean nJCT)

Oracle (0.79)

SlackSched-default (0.81)

SlackSched-alternate (0.83)

Figure 22: nJCT relative to CapacityScheduler. There may be
multiple ways to define affinity between a task and an HVM and/or
compute completion probability.

techniques.

Replication. Another alternative to handle preemptions is
to launch multiple tasks replicas and once one completes,
kill the rest. This technique is common in MapReduce sys-
tems [29]. In our implementation, we launch 3 replicas for
each task and kill other replicas as soon as any replica com-
pletes. Figure 21 shows that while replication reduces JCT
for the CapacityScheduler, SLACKSCHED outperforms both
CapacityScheduler with and without replication. In addition,
replicas lead to a higher number of total preemptions and a
much higher load.

B.2 Alternate method for computing the com-
pletion probability

There are other ways of computing completion probability
beyond the method presented in §3.1.1. One notable way is
to construct the distribution of time between consecutive re-
source change and resource shrink events10 and then compute
completion probability as:

Pc(e,d)

= P
[

shrink does not occur
during task lifetime

]
= P

[
shrink occurs

after task lifetime

]
= P(Y > e+d|Y > e) (3)

where Y is the distribution of time between resource change
and resource shrink events, e is the time elapsed since the

10Note, the inter-change time distribution also captures the time between
two consecutive resource growth events.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 475

10.96 0.97 0.98 0.99

nJCT [log scale]

0.00

0.25

0.50

0.75

1.00

C
D

F
(J

o
b

s)

Scheme (Geomean nJCT)

Oracle (0.99)

SlackSched (0.99)

(a) Interruptible jobs.

10.4 0.5 0.6 0.7 0.8 0.9

nJCT [log scale]

0.00

0.25

0.50

0.75

1.00

C
D

F
(J

o
b

s)

Scheme (Geomean nJCT)

Oracle (0.83)

SlackSched (0.86)

(b) Uninterruptible jobs.

Figure 23: SLACKSCHED improves JCT in a cluster serving a mix
of interruptible and uninterruptible workloads.

last resource change event, and d is the (remaining) duration
of the task being considered for scheduling. We observe
that using this alternate method provides similar benefits as
SLACKSCHED as shown in Figure 22. The default method of
SLACKSCHED provides mean reduction of 19% compared to
CapacityScheduler, while the alternate method provides mean
reduction of 17% compared to CapacityScheduler. The main
difference is that SLACKSCHED also conditions on whether
the previous resource change event was growth or shrink to
compute completion probability, which gives slightly better
completion probability estimates.

B.3 Mixing interruptible and uninterruptible
We study how SLACKSCHED performs in a cluster serving
a mix of interruptible and uninterruptible jobs. Interruptible
jobs are those that have negligible checkpointing and migra-
tion overhead.

Methodology. We simulate interruptible workloads by run-
ning checkpoints every minute and add zero overhead for
checkpointing and migration. On preemption, the tasks restart
from the latest checkpoint. No checkpointing or migration is
done for uninterruptible jobs. The cluster serves a 50-50 mix
of uninterruptible and interruptible jobs that arrive according
to a Poisson process. We use the same distribution to generate
task runtime and resource requirements for uninterruptible
and interruptible jobs. Recall, these distributions were based
on genomics and seismic workloads, which are hard to check-
point and migrate. As such the interruptible jobs are synthetic
— they do not necessarily resemble a real workload — unlike
the uninterruptible jobs.

Results. Figure 23 shows the distribution of nJCT relative

0 5 10 15 20 25 30

Hours

0

10

20

30

40

50

N
u

m
b

er
o

f
n

o
d

es Unstable

Stable

(a) Without SLACKSCHED-Acquirer

0 5 10 15 20 25 30

Hours

0

10

20

30

40

50

N
u

m
b

er
o

f
n

o
d

es

Unstable

Stable

(b) With SLACKSCHED-Acquirer

Figure 24: SLACKSCHED-Acquirer converges to a set of relatively
more stable HVMs.

to CapacityScheduler separately for the uninterruptible and
interruptible jobs. SLACKSCHED shows qualitatively similar
improvement as before for uninterruptible workloads. For
interruptible workloads, there is no significant difference in
completion times across schemes.

B.4 Acquirer with known ground truth
To verify the operation of SLACKSCHED-Acquirer and to
study its convergence properties, we study its operation on
HVMs with known ground truth stability. To establish the
ground truth, we generate a synthetic regular VM arrival and
placement trace such that HVMs on half the servers are unsta-
ble (i.e., witness frequent regular VM arrivals and departures);
while HVMs on other half are stable (i.e., witness infrequent
regular VM arrivals and departures). We use the scaling pol-
icy that maintains a fixed resource budget and use the random
policy for HVM allocation. We measure and compare the
number of stable and unstable HVMs with and without using
SLACKSCHED-Acquirer. Figure 24 shows that the Acquirer
converges to a mix with a larger portion of stable HVMs.

B.5 Absolute JCT metrics
Due to space constraints we show normalized JCT for most
experiments in the main text. Here we show graphs for ab-
solute JCT. In all our experiments, we observe that mean
reduction in JCT follows similar trends as reduction in mean
JCT. We compute reduction in mean and p90 JCT relative to
CapacityScheduler unless mentioned otherwise.

476 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

C1 C2 C3 C4 C5 C6 C7 C8

Cluster

0

20

40

60

80

%
R

ed
u

ct
io

n
in

M
ea

n
,

p
9

0
JC

T Oracle

SlackSched

Figure 25: All clusters. cf. Figure 9. The bars correspond to mean
JCT and whiskers correspond to p90 JCT.

20 40 60 80 100 120 140

JCT (mins)

0.00

0.25

0.50

0.75

1.00

C
D

F
(J

o
b

s) Scheme (Mean JCT)

CapacityScheduler (77)

Oracle (58)

SlackSchedNoDelay (58)

SlackSched (58)

Figure 26: Stable cluster. cf. Figure 10b.

300 400 500 600 700 800 900 1000

JCT (mins)

0.00

0.25

0.50

0.75

1.00

C
D

F
(J

o
b

s) Scheme (Mean JCT)

CapacityScheduler (542)

Oracle (311)

SlackSchedNoDelay (422)

SlackSched (393)

Figure 27: Volatile cluster. cf. Figure 10a.

50 100 150

JCT (mins)

0.00

0.25

0.50

0.75

1.00

C
D

F
(J

o
b

s)

(a) Gaussian (Seismic B)

Scheme (Mean JCT)

CapS (66)

Oracle (43)

SlackS (47)

50 100 150

JCT (mins)

(b) Bounded Pareto (Genomics)

CapS (89)

Oracle (69)

SlackS (71)

Figure 28: Different task runtime distributions. cf. Figure 11.

0 20 40 60 80 100 120

Max task time (mins)

20

40

60

%
R

ed
u

ct
io

n
in

M
ea

n
,

p
9

0
JC

T

Oracle

SlackSched

Figure 29: Varying max task time. cf. Figure 12. The lines corre-
spond to mean JCT and whiskers correspond to p90 JCT.

10 20 30 40

Mean inter-arrival time (mins)

0

20

40

%
R

ed
u

ct
io

n
in

M
ea

n
,

p
9

0
JC

T

Oracle

SlackSched

Figure 30: Varying load (job arrival rate). cf. Figure 14. The lines
correspond to mean JCT and whiskers correspond to p90 JCT.

−80 −60 −40 −20 0 20 40 60 80

Max percentage error in task runtimes

60

80

100

p
9

0
JC

T
(m

in
s)

CapacityScheduler

Oracle

SlackSched

Figure 31: Robustness to errors in task runtime estimates. cf. Fig-
ure 15.

Balancing Packing Random

HVM Allocation Policy

0

20

40

60

80

%
R

ed
u

ct
io

n
in

M
ea

n
,

p
9

0
JC

T

AcquirerOnly SchedulerOnly Acquirer+Scheduler Oracle

Figure 32: Resource acquisition evaluation. cf. Figure 16.

20 40 60 80 100

JCT (mins)

0.00

0.25

0.50

0.75

1.00

C
D

F
(J

o
b

s) CapS-ChkptOff (59)

CapS-Chk-2min (57)

CapS-Chk-1min (53)

Oracle-ChkptOff (45)

SlackSched-ChkptOff (47)

Figure 33: Comparison with checkpointing and migration. cf.
Figure 20. Time in legend shows time-per-checkpoint for Capaci-
tyScheduler.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 477

0 20 40 60 80 100 120

JCT (mins)

0.00

0.25

0.50

0.75

1.00

C
D

F
(J

o
b

s) Scheme (Mean JCT)

CapS-1replicas (61)

CapS-3replicas (57)

Oracle-1replicas (44)

SlackSched-1replicas (49)

Figure 34: Comparison with replication. cf. Figure 21.

20 40 60 80 100 120 140 160

JCT (mins)

0.00

0.25

0.50

0.75

1.00

C
D

F
(J

o
b

s)

Scheme (Mean JCT)

CapacityScheduler (85)

Oracle (56)

SlackSched (69)

Figure 35: Renewable energy setting. cf. Figure 19.

478 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Invisinets: Removing Networking from Cloud Networks

Sarah McClure⋆, Zeke Medley⋆, Deepak Bansal∗, Karthick Jayaraman∗, Ashok Narayanan†,
Jitendra Padhye∗, Sylvia Ratnasamy⋆†, Anees Shaikh†, and Rishabh Tewari∗

⋆UC Berkeley †Google ∗Microsoft

Abstract

Cloud tenant networks are complex to provision, configure,
and manage. Tenants must figure out how to assemble, con-
figure, test, etc. a large set of low-level building blocks in
order to achieve their high-level goals. As these networks
are increasingly spanning multiple clouds and on-premises
infrastructure, the complexity scales poorly. We argue that the
current cloud abstractions place an unnecessary burden on the
tenant to become a seasoned network operator. We thus pro-
pose an alternative interface to the cloud provider’s network
resources in which a tenant’s connectivity needs are reduced
to a set of parameters associated with compute endpoints. Our
API removes the tenant networking layer of cloud deploy-
ments altogether, placing its former duties primarily upon the
cloud provider. We demonstrate that this API reduces the com-
plexity experienced by tenants by 80-90% while maintaining
a scalable and secure architecture. We provide a prototype
of the underlying infrastructure changes necessary to support
new functionality introduced by our interface and implement
our API on top of current cloud APIs.

1 Introduction
Almost all large cloud customers use multiple cloud providers
to improve reliability and avoid provider lock-in [57]. Unfor-
tunately, splitting a workload among large cloud providers is
not as seamless as it should be. One major problem is that
today’s tenant networking abstractions are essentially virtual-
ized versions of the low-level building blocks used to build
physical networks and hence customers are required to craft
complex topologies using subnets, virtual links, gateways, a
myriad of virtual appliances, etc.

While an individual virtual network or simple deployment
may not be overly complex, for larger tenants, reasoning about
the scalability, availability, security, etc. of their virtual net-
works requires detailed knowledge and configuration of a
range of networking technologies, and the problem is particu-
larly acute when considering transit between clouds.

In response to this underlying complexity, our goal is
to make multicloud architectures simple by making this
inter-virtual-network transit trivial. We achieve this primarily
through leveraging existing “publicly-routable but default-off”
addresses for all endpoints. These addresses are publicly-
routable, but the cloud provider will deny all traffic not specif-
ically permitted by the tenant. With this choice, connectivity
becomes trivial with only minor infrastructure changes.

With this connectivity assumption, we develop a new API
for cloud tenants to reserve networking resources based on
high-level abstractions. Ultimately, this results in a declarative
approach that allows tenants to essentially associate SLOs
to endpoints, without concern for how to achieve their net-
working goals. In other words, we believe that the best way
for tenants to think about networking is to not think about
networking at all.

Today’s tenant networking abstractions are largely relics of
the early cloud era, with a 1:1 mapping between datacenter
physical network devices and cloud networking abstractions.
This appealed to early cloud customers who wanted the same
management experience as they shifted infrastructure from
private datacenters to the cloud, but these abstractions are
not fundamentally necessary nor especially accurate to what
occurs in the cloud provider’s network underneath. A key
contribution of our paper is to show that even a modest refac-
toring of the existing functionality and modification of the
underlying network virtualization platform can result in a far
simpler higher-level API.

Such an API is beneficial to cloud providers as well as it
allows them to offer their customers a seamless multicloud
experience, and yet retain the ability to differentiate (e.g.,
through performance, options, etc.). Furthermore, and perhaps
more importantly, the API is far less complex than the low-
level APIs offered today. A simpler API means fewer mistakes
and thus fewer resources dedicated to customer support.

We recognize that our proposed cloud interface may not
be immediately appropriate for all cloud tenants. Fortunately,
the abstractions we propose can coexist with those available
today so that tenants may choose the tradeoff they desire.

This paper presents the rationale (§2), design (§3-5), imple-
mentation (§6), and evaluation (§7) of a new API – which we
refer to as Invisinets – for tenant networking. This work builds
on our earlier workshop paper [41], refining and expanding
the API as well as adding a complete implementation and
evaluation. Our evaluation applies this API to several deploy-
ment case studies and measures several metrics to capture
complexity. Accordingly, we show that Invisinets can reduce
the number of network components that a tenant must interact
with by ∼80%-90% in these scenarios.

2 Motivation
In this section, we discuss the status quo to motivate the
need for a simpler tenant networking API. Throughout this
paper, we default to Azure terminology for cloud network

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 479

components, though equivalent ones are typically available in
other clouds.

2.1 Deployment Walkthrough
Consider an enterprise tenant whose workloads span multi-
ple regions within a cloud, multiple clouds, and an on-prem
deployment. To highlight the complexity that enterprise net-
work engineers encounter, we will walk through the steps to
construct such a virtual network today. At a high level, tenants
must complete the following 5 steps to create a deployment.
(1) Create virtual networks. The basic construct in a tenant’s
network is a virtual network (or VPC in the terminology of
AWS and GCP) which builds on the traditional concept of a
subnet – a portion of the network whose hosts share a com-
mon IP address prefix. The tenant’s first step, creating their
virtual networks (or vnets), involves assigning IP prefixes
to each vnet based on the anticipated number of instances,
whether they should be IPv4 or IPv6, public or private, etc.
These are important decisions as a particular choice (e.g.,
IPv4 vs. IPv6) leads to a separate path down the decision
tree of subsequent connectivity options. As a tenant’s deploy-
ment scales, managing non-overlapping subnets across 100s
of vnets becomes challenging, prompting special address plan-
ner tools [9]. Beyond address management, defining a vnet
involves configuring a range of additional parameters such
as security groups, ACLs, route tables, and individual VM
interfaces. For simple deployments, this complexity can be
hidden via default configurations but this approach rapidly
breaks down with larger deployments.
(2) Connectivity in/out of the virtual network. Next, the ten-
ant must define how instances within a vnet access resources
outside the vnet. Options include setting up a “NAT Gateway”
(for address translation), a “VPN Gateway“ (for private VPN
connectivity), or a “Virtual Network Gateway” (which can be
configured for VPN or to terminate a direct link). AWS has
even more gateway options, some simply to allow the virtual
network to access the Internet [8]. Each gateway must be
configured with the appropriate routing and access policies.
(3) Networking multiple virtual networks. Next, the tenant
must interconnect these virtual network. Within a cloud, this
generally requires a virtual network peering and installing the
necessary routes, though these links often have some regional
limitations. To connect virtual networks across clouds, VPN
gateways or Internet access (via necessary gateways or secu-
rity rules) will be necessary. Each of these connections come
with their own specific configuration parameters.
(4) Specialized Connections. An increasingly common com-
ponent in large tenant networks are dedicated connections
that promise higher bandwidth, lower latency, and/or more
consistent performance than seen on the public Internet (e.g.,
ExpressRoute [44], Dedicated Interconnect [28], or Direct
Connect [7]). These allow tenants to reserve a physical, ded-
icated link between their virtual network and a colocation
facility. From there, the enterprise may complete the circuit to

their on-prem resources or stitch the connection together with
one from another cloud. Provisioning and managing these
links requires low-level networking knowledge such as BGP
configuration and coordination between the enterprise, cloud
provider, and the colocation point. Since these dedicated con-
nections are expensive, tenants might configure their routers
to schedule higher priority or sensitive traffic over these links,
while routing other traffic over the public Internet.
(5) Appliances. The above steps establish a basic topol-
ogy and connectivity between the tenant’s instances, but ten-
ants also deploy a range of virtual appliances such as load
balancers and firewalls. Each cloud offers both first-party
and third-party appliances for many of these purposes. Even
within the first-party selection, there are often multiple op-
tions for a single appliance. The tenant must select appliances,
place them in their virtual topology, configure routing to steer
traffic through the right appliances, and finally configure each
appliance (e.g., DPI rules, load-balancing rules, etc.).

Once the tenant has completed all of these steps, the job is
not done. The tenant must continue to respond to changing
requirements, application and network migrations, inevitable
configuration mistakes, and outages caused by any other is-
sue. When determining their procedure for confronting these
issues, tenant network operators must keep all details from
the above steps in mind, acting as a seasoned network expert.

2.2 Problems
We briefly highlight the main sources of complexity that we
observe from the above walkthrough.
(1) Abstractions are too low-level. Provisioning and man-
aging a virtual network involves many of the same steps as
in a physical datacenter. Tenants are essentially given virtual
versions of the low-level abstractions found in a physical net-
work (e.g., links, gateways, subnets) and must assemble these
(which involves topology planning, routing policies, etc.) to
achieve their higher-level intents for the overall deployment.
Many of these abstractions require addressing configuration
in particular to achieve basic connectivity between tenant
applications/endpoints.
(2) Complex planning. Beyond determining the topology of
the deployment, cloud marketplace options can make it diffi-
cult to determine the correct virtual appliance. For example,
Azure offers four load balancing options and the flow chart
to guide the decision is five layers deep [43] and this does
not consider other third-party (i.e., non-Microsoft) options.
Cloud appliance marketplaces also feature third-party options
(e.g., firewalls from Palo Alto Networks) that vary in features
and price points. A cottage industry of businesses offering
answers on how to minimize cloud costs has appeared to help
tenants with this problem in recent years [10, 17–19, 66].
(3) Fragmentation across clouds. As each cloud has its own
similar yet different abstractions and appliances, tenants with
multicloud deployments end up with siloed stacks for each
cloud. This often results in teams dedicated to each cloud

480 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

with their own expertise, scripts, and approaches.
(4) Complex to maintain and evolve. As the requirements
for their applications change, tenants will evolve their own
deployments. Likewise, tenants must adapt as cloud providers
evolve their offerings. This adds complexity and manage-
ment overhead to the existing challenge of keeping applica-
tions modern and performant for tenants. Misconfigurations
are common causes of network incidents [36] and outages
([35, 62] provide recent high-profile examples). With 1:1 ab-
stractions, virtual networks suffer many of the same issues.
The cloud providers also suffer from this as well, as they
are obligated to provide support to a wide array of clients
with unique deployments. Further, management complexity
increases as the deployment size increases, so large enterprise
tenants suffer significant management burdens.

In summary, tenant networks today are constructed from
low-level building blocks that are unique to a given cloud.
With the growing popularity of large, multicloud deployments,
this complexity can compound and become even more diffi-
cult.

2.3 Current Solutions
In our experience, many enterprises undertake this complexity
themselves using an array of per-vendor controllers and DIY
scripts. This often requires a team that understands network-
ing in all its gore: BGP, address management, VPN config, etc.
These teams must understand multiple cloud environments,
which change frequently and outside of their control.

Other tenants are turning to a new generation of 3rd-party
multi-cloud management solutions [5, 12, 67, 68]. Some of
these solutions are essentially a shim on top of the various
cloud networking abstractions. They provide a unified “pane
of glass” via which the tenant manages individual devices
across clouds [12, 67] but do not fundamentally change the
level of abstraction; e.g., a key component in Aviatrix de-
ployments is a transit router abstraction that interconnects
virtual networks. Yet other 3rd-party solutions essentially run
a virtual network as a service for tenants [5,68], which allows
tenants to completely outsource the problem. This shifts the
burden but does not fundamentally solve it.

Anthos [22] integrates k8s and service meshes in a manner
that frees app developers from having to reimplement com-
mon networking related tasks on a per-app basis. With Anthos,
every service container is integrated with a “sidecar” con-
tainer that implements common network-related tasks such as
TLS termination, HTTP load balancing, tracing, and so forth.
This clean separation between app and networking concerns
gives app developers a cloud-agnostic (and hence multicloud
friendly) approach to implementing network-related features.
However, it is important to note that Anthos does not address
the problem of network virtualization that we address here:
in Anthos, sidecars are L7 proxies and (like all k8s services)
they assume L3 addressing and connectivity has already been
established. Implementing that L3 connectivity still requires

a network engineer to set up the virtual networks, links, VPN
gateways, etc. that we have been discussing [30,33]. Thus we
view the goals of Anthos and Invisinets as complementary:
Anthos simplifies the construction of multicloud deployments
for app developers, while Invisinets does the same for infras-
tructure operators.

2.4 It’s Time for Simplification
Network virtualization technologies were originally designed
to allow cloud providers to virtualize their physical network
infrastructure [34, 53]. In this context, providing the user (in
this case, the datacenter operator) with virtualized equiva-
lents of their physical network is appropriate, and we do not
question the approach.

Extending the same approach to cloud tenants also made
sense in the early days of cloud adoption when enterprises
with well-established on-prem datacenters often used the so-
called “lift-and-shift” strategy: creating a networking struc-
ture that mimics the on-premises network that previously
served the workload. This strategy was justifiably appealing
as it allowed tenants to use familiar tools and tested configura-
tions in their new cloud deployments. However, we see this ap-
proach as neither desirable nor necessary as tenants embrace
the cloud more fully in both the scope of their deployments
and in (re)designing applications for cloud environments.

Nonetheless, we recognize that certain enterprises may
choose to continue with building virtual networks for reasons
that range from satisfying compliance requirements (e.g., with
data protection laws [55,65]), to familiarity with existing tools,
and the perception of greater security. Fortunately, this need
not be an either-or decision: the architecture we propose can
be deployed alongside existing solutions allowing tenants to
choose whether and when to migrate their workloads.

Our approach requires new support from cloud providers,
but we believe this is reasonable since the current situation is
non-ideal even for cloud providers. The current complexity
imposes a steep learning curve for onboarding new customers,
and plenty of room for configuration errors that will, regard-
less of fault, result in unhappy customers. Simplification can
decrease the number of tenant errors and therefore decreases
the support burden on the cloud provider. Further, the cloud
provider could likely achieve higher resource efficiency by
taking control of networking and orchestration from tenants.

3 Approach
Our guiding philosophy in designing a simplified network-
ing API is that the right way for a tenant to think about the
network is to not think about it at all. I.e., ideally, the net-
work should be invisible. When diagnosing the root cause of
today’s complexity, we arrive at the observation that the prob-
lem starts with the fact that tenant endpoints live in a private
IP address space. Given private addresses, tenants must then
establish (virtual) connectivity between them which necessar-
ily implies managing subnets, constructing a virtual topology

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 481

with links, routers, and appliances, running routing protocols
that must be configured, and so on.

Seeking to avoid this leads us to an alternate proposal: can
we give every endpoint a public IP address? This makes con-
nectivity trivial, notably even across clouds. Essentially, this
allows virtual networks to reuse the connectivity of the under-
lying (physical) network rather than recreating it. Importantly,
we must assume IPv6 so that address scarcity is not an issue.

At first glance, our proposal might seem concerning from
the viewpoint of security: if any host on the Internet can reach
any tenant endpoint, then surely we’re exposing a tenant’s
endpoints to attack, including DDoS. Yet, our intuition was
that security should not be a concern for public endpoints that
are hosted in the cloud. This is because cloud providers (or
CPs for brevity) have already addressed this problem with
their own address management architectures. As we elaborate
on in the next section, within a CP’s infrastructure, when an
endpoint is assigned a public IP address P1, this address is
not actually routable within the CP’s regional datacenters. I.e.,
the endpoint associated with P is not actually hosted on a
server with the address P. Instead, the server at which the
endpoint runs has an internal/private address D and the CP
uses solutions to translate P to D with appropriate security
and access control checks at the point of translation.

Thus, instead of the typical public vs. private address trade-
off, P represents a new form of address that is publicly
routable but default off (PRDO), with the important prop-
erty that a packet destined to a PRDO address is delivered to
the CP ’s domain but will not be delivered to an endpoint until
the CP has explicitly taken action to associate P to a physical
endpoint’s D. Thus our intuition was that we can leverage the
PRDO addressing architecture to spare tenants from having
to solve the connectivity problem in their virtual networks.

Given this, our next step was to verify our intuition and
understand whether CP address management infrastructure
could indeed be leveraged and extended to serve all tenant
endpoints. To answer these questions, we engaged with two
major CPs (Azure and GCP) and found that, perhaps surpris-
ingly, our proposal could be supported with little modification
to their existing infrastructure and raises no new scaling or
security challenges. We elaborate on existing CP address
management infrastructure and the implications of PRDO ad-
dressing in §4. Thus our contribution lies not in devising novel
techniques or radical clean-slate designs but rather in propos-
ing a radically simplified tenant abstraction and showing how
we can repurpose existing infrastructure to implement this
abstraction.

With PRDO addressing as our starting point, what API can
we offer tenants? We observe that, for the vast majority of
cloud tenants, the network is a means to an end: i.e., tenants
care that their application endpoints (i.e., VMs or containers)

1By which we mean an address from the address space the CP advertises
into the Internet’s routing infrastructure - e.g., [27] for GCP

Figure 1: Cloud addressing as it is done today (top) and our proposed
changes (circled, bottom). Black packets show the translation and
path of packets between VMs in the same virtual network while the
blue path shows an external connection using the VM’s public IP.

can communicate with each other with high availability, a
certain level of performance (e.g., latency, throughput), secu-
rity against unwanted access, and scalable mechanisms for
management. These are the goals that a tenant is trying to
achieve when they set up and manage a virtual network topol-
ogy with firewalls, links, and routers. Hence, we design an
API that allows tenants to express what they want the net-
work to accomplish, rather than how it does so. Moreover, we
note that the parameters that specify a tenant’s goals are as-
sociated with how endpoints – VMs/containers – experience
the network. Hence, our general approach is to assign PRDO
addresses to all tenant endpoints and then provide tenants a
high-level API that associates SLOs (for availability, secu-
rity, and performance intents) with these endpoints (or groups
of endpoints), thus completely eliminating today’s low-level
"links and boxes" abstractions.

We do not require that CPs cooperate to implement the API,
nor even that all CPs adopt the API. Likewise, CPs don’t have
to implement identical versions of the API. Converging on a
single API across all CPs would certainly be ideal but, even
if each CP adopts their own flavor of the API we propose,
tenants will benefit from the simplification in configuring that
CP, and the high-level nature of the API will make it easier
to port deployments across clouds.

4 PRDO Addressing
In this section, we first review the addressing architecture
commonly implemented by CPs today (§4.1). This discussion
reiterates information published before [20,21,54] but distills

482 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the aspects relevant to Invisinets. We then discuss how this
addressing infrastructure can be used to support Invisinets
(§4.2) and the security implications of the same (§4.3).

4.1 Addressing in Today’s Clouds
A cloud provider’s infrastructure involves a few different
address spaces. Public IP addresses (PIPs) are drawn from
public prefixes that the CP advertises into the Internet at
large. CPs vary in the details but, generally speaking, a packet
destined to a PIP will be delivered to a specific datacenter or
region in the CP’s global infrastructure.

In addition, each cloud datacenter has a private address
space of “direct” IP addresses (DIP) – a DIP is the actual IP
address of the physical server and the basis for routing within
a datacenter fabric. It is used internally to the CP and is never
exposed to the tenant, providing a layer of indirection and
allowing the CP to place/move VMs as needed.

Finally, at the virtualization layer, tenants see a virtual IP
(VIP) for their VM or endpoint. A VIP may be public or
private (a VM may have both) but crucially is not actually
assigned to the server and therefore is not routable in the
datacenter fabric. Instead, it is used at the tenant-layer for
virtual network-level routing, etc. For packets sent between
two VMs with private VIPs in the same virtual subnet (Ai
addresses), the source and destination fields are translated
in the vswitch/NIC at the VMs; the vswitch/NIC translates
from the private VIP address space to the corresponding DIPs
(Ai ↔ Di) [25, 54] as shown in Figure 1 with the blue series
of packets. The fabric only understands how to forward traffic
with DIPs and is unaware of the tenant address space (giving
the virtualized layer full flexibility in assigning addresses).

Endpoints with public VIPs are assigned an IP address
drawn from the CP’s public address space (Pi). However, this
address is not directly assigned to the VM. Instead, any in-
coming traffic destined to Pi is first routed through a software
load balancer (SLB) in the datacenter (see Figure 1 black
series of packets) that maintains a binding from Pi to Di.2 The
mapping between public VIPs and DIPs are installed when
the public IP is provisioned and associated with an endpoint.
Thus the SLB advertises all public VIPs under its control
and translates incoming traffic to the endpoints DIP to route
to the endpoint. For traffic exiting the VM, no translation is
necessary as the source is the public VIP and default routes
are used to exit the datacenter.

Thus in the terminology introduced earlier, all PIP ad-
dresses (including ones assigned as public VIPs) act as PRDO
addresses, requiring explicit SLB and vswitch/NIC configura-
tion before packets can be delivered to an actual endpoint.

4.2 Applied to Invisinets
The core proposal in Invisinets is that we will no longer use
private VIPs at all and instead give all endpoints a public VIP

2The SLB is often implemented as a distributed scale-out software system
capable of high-speed address translation [21, 54].

(Figure 1). Thus, tenant addresses will be drawn from a CP’s
public IP address space and we will leverage the CP’s PRDO
addressing infrastructure to ensure that a tenant’s endpoints
are not exposed to unwanted access.

To leverage existing CP solutions, we propose a division
of labor in which tenants specify permit lists: for each end-
point Pi, this is the list of other endpoints that are allowed
to communicate with Pi (with the possibility for extension
parameters for more specificity) .3 The CP is responsible for
enforcing this permit list: ensuring that only traffic explicitly
permitted to access the endpoint may do so. Any packet not
cleared by the permit list should be dropped.

Ensuring these semantics to the tenant requires minimal
changes to the CP’s infrastructure. The CP simply programs
SLB bindings for external connections only as necessary
based on the tenant’s permit list. We use “external” to mean
outside any boundary necessary to meet the CP’s addressing
constraints; e.g., DIPs may only be unique within a region,
therefore “external” connections are those spanning beyond
the region. We call the boundary within which a DIP is unique
the DIP scope. The DIP scope determines when an address
must be added to the SLB bindings as any connections to end-
points outside the DIP scope may be in overlapping address
space and will not be reachable without address translation.

To support this in the datacenter fabric, we first modify
the address translation for traffic which typically uses private
VIPs (the blue process in Figure 1). Now, packets are trans-
lated from the public VIP space to the corresponding DIPs
in the vswitch/NIC. Second, the SLB translation process for
packets incoming from external endpoints must be slightly
modified. The translation between public VIPs and DIPs in
the SLB remains the same, but the time at which the SLB
binding is installed is changed. Instead of installing when the
IP is associated with the VM, the binding is only instantiated
when the VM’s permit list allows traffic external to the data-
center. When no mapping exists for an incoming packet, the
SLB simply drops the traffic (as it does today). This provides
an initial coarse layer of protection for PRDO endpoints. Im-
portantly, each endpoint’s permit list is enforced at the host
as well, so dropping at the SLB is not strictly necessary but
offers some defense-in-depth for endpoints.

We assume that in order to support this model, the CP
can allocate addresses arbitrarily as is convenient (e.g., the
CP isn’t required to assign addresses from predetermined
prefixes of the address space). The tenant should not expect
any particular addressing scheme for the IPs they are assigned.
Thus, our API takes reachability (L3) between endpoints as a
given from the CP and builds directly on the underlay routing
and address translation rather than requiring every tenant to
reconstruct their own L3 network.

3For convenience, we will introduce the ability to specify groups of
endpoints in §5.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 483

4.3 Security Implications
We argue that Invisinets does not fundamentally alter the
security posture of either the tenant or CP.

Consider first the public exposure of a tenant’s endpoints.
Today, the tenant has 3 types of endpoints: (1) public (e.g.,
a VM associated with a public IP), (2) “semi-private ” (e.g.,
a VM with only a private VIP, but behind a VPN/NAT that
restricts access to the VM), and (3) private (e.g., a VM with a
private VIP). Under our proposal, nothing changes for end-
points in (1). For endpoints in (3), they are equally unavailable
to outside connections in Invisinets (since no SLB bindings
will be programmed for them). 4 For endpoints in (2), access
is still limited however Invisinets does change how this access
control is implemented. In Invisinets, access to a semi-private
endpoint is restricted by the permit list and SLB bindings;
effectively, we’re replacing the tenant’s VPN/NAT with the
CP’s SLB/NAT infrastructure.5

This change does however, modify the trust boundary be-
tween the tenant and the CP. Today, the tenant trusts the cloud
provider to implement the network architecture they specify
faithfully. In Invisinets, the tenant trusts the cloud provider
to construct the necessary network architecture to achieve
their connectivity requirements and accordingly trusts that
any connectivity not explicitly permitted will not be enabled.

From a CP viewpoint, a potential concern is that the larger
number of allocated public IP addresses increases the risk or
impact of a DDoS attack on their infrastructure. We found
that this was not a concern for CPs because they currently
advertise entire IP prefixes, independent of what subset of
those addresses are actually allocated: e.g., Azure advertises
>1.4 · 1020 [46] while GCP advertises > 7.1 · 1026 IPv6 ad-
dresses [27]. Any of these addresses can be used as the target
of a DDoS attack and this remains unchanged with Invisinets.

Furthermore, CPs today deploy cloud DDoS mitigation
systems [45] to thwart high-volume traffic attacks targeting
a specific endpoint (since these might overwhelm specific
links in their WAN). Notably, only one public IP is sufficient
for an attacker to attempt such an attack and hence Invisinets
does not materially increase the likelihood of such attacks. A
final concern might be attacks that spread traffic over multiple
endpoints. However, such attacks are already possible today
(given the large advertised address space) and handled through
filtering at the destination datacenter where SLB mappings
reveal what traffic is valid. In such cases, attack traffic is
carried over the CP’s wide-area links, however the extensive
use of load-balancing in these networks is effective in this case
(since the attack comprises many smaller flows) and hence
the increase in backbone traffic volume is not problematic,
akin to a general increase in valid traffic volume.

4However, if a private endpoint today is in a virtual network which spans
across more than one DIP scope, it would be installed in the SLB.

5In some cloud SLB implementations [21], tenant-level NATs are imple-
mented in the SLB. In this case, the only change is that each endpoint has its
own binding in the cloud SLB.

API Description
request_eip(vm_id) Grants endpoint IP
request_sip() Grants service IP
bind(eip, sip) Binds EIP to SIP
set_permit_list(eip, permit_list) Sets access list for EIP
annotate(eip, middlebox) Adds middlebox to EIP’s traffic
set_qos(region, dest, bandwidth) Sets (region, dst) BW allowance
set_qos_class(class, five_tuple) Defines tenant QoS class
tag(eip, tag) Associates endpoint with tag

Table 1: Proposed cloud tenant network API.

5 API Design

In this section, we outline the Invisinets API and and describe
how it achieves each of its goals. The design implications for
each piece of the API are discussed as necessary. We expect
the listed arguments to be the minimum required parameters
and deliberately leave room for cloud providers to differen-
tiate their services with additional extension parameters. A
complete list of our proposed API is shown in Table 1.

5.1 Connectivity

Rationale. As explained in §3, we modify the CP infrastruc-
ture to support PRDO addressing for all endpoints and enable
trivial connectivity. By giving all endpoints publicly-routable
IP addresses, we can abandon the virtual network altogether.
Accordingly, tenants are not obligated to construct the net-
works to facilitate communication outside of a given virtual
network, as is required by the inherent isolation of the virtual
network abstraction.
API. Connectivity between the tenant’s VMs/storage end-
points/etc. in the same cloud, across clouds, and to their on-
prem network (provided they expose public endpoints) is
trivially achieved given that tenant instances have public IP
addresses. Thus our basic request_eip API allows the ten-
ant to request and receive an endpoint IP address (EIP) for
each of its instances. A tenant must be prepared to treat its
EIP as a flat address with no assumptions about whether its
addresses can be aggregated, drawn from certain prefixes,
etc. This gives providers flexibility in assigning addresses
from their overall pool (e.g., to maximize the ability to aggre-
gate for routing, etc.) and with effective tagging mechanisms
should not affect tenants in any way (since tenants are no
longer configuring routing with mechanisms such as BGP).
Design. As discussed in §3, the infrastructure necessary to
support PRDO addresses requires only minor modifications
to the SLB in the datacenter fabric and otherwise the existing
vswitch/NIC functionality is sufficient. When an external
endpoint is added to a permit list, only then is the EIP of the
local endpoint installed in the SLB.

IPv6 will be necessary to support PRDO-only addressing
as the IPv4 address space is too small to feasibly give all
cloud endpoints an address. Since these addresses will be
allocated arbitrarily from the tenant’s perspective, grouping
mechanisms will be critical to managing a flat address space.
We address this need directly in §5.5.

484 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.2 Availability
Rationale. Tenants often build highly-available services us-
ing multiple backend instances. The service is associated with
a service IP address (SIP) and an in-network load balancer
maps traffic destined for SIP to an available backend instance.
We’d like to support this use-case without requiring that ten-
ants engage with the lower-level details of load balancers.
API. We allow tenants to request a SIP and introduce a bind
API that allows tenants to associate EIPs with a SIP (Table 1).
This SIP address is globally routable, however, traffic destined
for the SIP is routed / load-balanced across the EIPs bound
to it and we place the responsibility of load balancing on
the cloud provider. Hence, the bind call allows the tenant
to inform the cloud provider of how load-balancing should
be implemented, with optional parameters that guide load-
balancing policy (e.g., associating a weight with each EIP,
akin to weighted fair queuing policies).
Design. Requesting SIPs can be supported today and is in
fact somewhat similar to service mesh integrations with cloud
load balancers today [29]. The bind call only requires changes
to the interface tenants use request load balancing services.

5.3 Security
Rationale. In §4.3, we addressed the security implications for
the network fabric. We now discuss how tenant-level security
concerns are addressed in the Invisinets API. We assume the
tenant is primarily concerned about service-level attacks and
targeted resource exhaustion. To address potential attacks, our
architecture will implement tenant-level security in two main
pieces: middlebox annotations on endpoints and network-
level permit lists. Both of these are specified by the tenant but
implemented/enforced by the CP.

Today, tenants protect their services through a combina-
tion of per-VM/virtual network permit lists and by deploying
various security appliances such as first-party firewalls and
third-party DPI systems (e.g., [52]). Network permit lists
are specified by the tenant but implemented by the cloud
provider (typically through filtering in the vswitch/NIC at
each endpoint) while security appliances may be deployed
and managed by the tenant. Together, these mechanisms pro-
tect the tenant from both service-level attacks (e.g., intrusion
or exfiltration attacks caught by DPI firewalls or proxies) as
well as resource exhaustion attacks that specifically target the
tenant (e.g., overwhelming the tenant’s service).

Ideally, we would remove middleboxes from the cloud of-
ferings altogether and instead implement security measures
in an API gateway in the service itself [6, 63]. However, we
acknowledge that some applications may have strict secu-
rity requirements that demand middleboxes and therefore we
expand our API to include those available today.
API. The per-host tenant-level permit lists can be naively im-
plemented at the endpoint with the access lists used today such
as Network Security Groups in Azure. To the tenant, our API

will look similar to these access lists. To permit from another
host, the tenant simply uses the set_permit_list function to
update the given endpoint’s allowed hosts.

The tenant may use the annotate API to apply the desired
middlebox to an endpoint’s traffic. The cloud provider is re-
sponsible for the instantiation and placement of the middlebox
and the routing necessary to direct the relevant traffic. The
tenant will provide the type of middlebox (could be their own
VM as seen with some third-party network appliances today)
and configure it as done today. Additional parameters to the
annotate API could specify a subset of the traffic to be sent
through the middlebox (i.e., by destination) or specify the
ordering of a series of middleboxes.
Design. We propose a two-pronged approach to protect ten-
ants from attacks. First, we allow tenants to continue their
use of cloud middlebox offerings by annotating endpoints.
Therefore, they may continue to use their DPI firewalls, ID-
S/IPS appliances, etc. as they do today. However, the tenant
does not have to manage the placement of these appliances in
their networks and route relevant traffic. The cloud provider
will install the necessary routing in the vswitch/NIC. By in-
cluding security-focused middlebox functionality in our API,
tenants can continue their defense-in-depth best practices as
they do today. Secondly, we propose that the cloud provider
protect the tenant from network-level resource exhaustion
attacks by reusing the same infrastructure it already imple-
ments to protect itself. In addition to the above, we assume the
cloud provider will continue to enforce the tenant’s permit list
through filtering at the endpoint’s vswitch/NIC. These permit
lists are essentially available today as NSGs (Azure) and Se-
curity Groups (AWS), so we adopt the underlying architecture
unchanged.

5.4 Performance
Rationale. Today, cloud providers offer rather limited net-
work performance/QoS guarantees. Tenants are generally
not promised any minimum bandwidth and are instead throt-
tled above a certain threshold. However, some tenants seek-
ing high availability and reliability may reserve a dedicated
link [7,28,44] which the tenant must then provision, configure
and operate as discussed in §2.

The abstraction of a dedicated link is fundamentally at odds
with our goal of a high-level endpoint-centric API since a link
implies a topology that incorporates it and routing that steers
select traffic over the link. Our goal is to avoid this complexity
and hence we instead ask: can we approximate the benefits of
these dedicated links without obligating the tenant to worry
about the many details they do today? 6

The point-to-point link abstraction offered today requires
coordination between the entities on either end of the link and

6One might ask whether the performance of dedicated links justify their
cost and complexity in the first place. In Appendix 11, we present early
results showing that these links may not always offer a performance benefit
but leave a full evaluation to future work.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 485

is not offered directly between clouds. To avoid the coordina-
tion and low-level configuration of direct links, our proposal
is to approximate the effect of dedicated links by guaranteeing
some amount of dedicated egress bandwidth to another do-
main to tenants who purchase it at a predefined granularity (in
this paper, we will assume regional granularity). We hope that
since clouds already have an incentive to be highly connected
with one another, this guaranteed bandwidth when leaving a
region is enough to roughly estimate the effect of dedicated
links stitched together at a colocation facility. With this over-
all goal, we then ask how to provide such an abstraction to
the tenant as a service.

The service model we assume is in terms of bandwidth
reservations, rather than point-to-point links with a specified
bandwidth as is available today. Tenants will specify to the
cloud provider their desired amount of dedicated egress band-
width to another domain (e.g., another cloud) for some region.
Then, we seek to make the traffic management necessary to
use this link as simple as possible by allowing tenants to de-
fine traffic classes and map them to strictly ordered priorities.
These priorities will define which traffic gets to use the dedi-
cated bandwidth if/when the aggregate traffic for the tenant in
that region is greater than the allowed dedicated bandwidth.
API. Ultimately, the tenant will define their own traffic
classes (in terms of five-tuples). The CP will then label traffic
as necessary and map these classes to their own high (“dedi-
cated”) and low (“best-effort”) priority classes in the fabric
of the datacenter. To the tenant, reserving the regional aggre-
gate egress bandwidth will simply require calling set_qos

and setting the priority of traffic via set_qos_class.
Design. Our set_qos API is based on the assumption that
clouds are reasonably well-connected with one another so
that dedicated egress bandwidth between a cloud region and
another domain can approximate a direct link between the two
clouds. If not, congestion between the clouds could impact the
available bandwidth beyond the control of either CP. Further,
we require that the CP can classify egress traffic into reserved
bandwidth packets and best effort-packets. Reserved-class
packets are guaranteed to not experience congestion on egress
(up to their reserved bandwidth) while best-effort may.

In offering the set_qos API, the CP has two primary goals:
(1) enforce that the tenant does not consume more than its
aggregate egress guarantee and (2) make it easy for the ten-
ant to use all of their promised bandwidth without requiring
low-level traffic engineering (as is required today to utilize
dedicated links). Since the bandwidths are offered at a per-
tenant, per-destination-domain, per-region level, the CP must
monitor usage across multiple endpoints in a region and en-
force the cumulative bandwidth limit at each endpoint. In
doing so, there will be a tradeoff between reactivity and cost
as enforcing the limit strictly will impose higher overheads.
Scalability is also a challenge as performing distributed rate
limiting across all tenant endpoints (in the 10s of millions)
must be done with minimal resource consumption.

Figure 2: QoS enforcer example. The tenant sends traffic in two
classes: red (dashed) and orange (solid), prioritized in that order. The
reserved egress bandwidth is 10Gbps.

Our approach to enforce the set_qos API is as follows: we
assume that tenants define traffic classes each with a different
priority level and the cloud provider marks their traffic accord-
ingly. The cloud provider then determines whether a particular
traffic class (or what fraction of it) should be assigned reserved
vs. best-effort bandwidth based on the tenant’s current traffic
demand aggregated across all its endpoints (collected at the
host and reported to the controller). This mapping between
tenant traffic classes and reserved vs. best-effort bandwidth is
computed by a per-tenant QoS controller. The QoS controller
communicates the appropriate mappings to a QoS enforcer
module at each endpoint (implemented in the NIC or vswitch)
which accordingly marks egress packets and rate limits re-
served priority flows according to their current bandwidth
allocation. Finally, the egress router classifies packets based
on these markings and (priority) schedules them accordingly.
Hence, the additional infrastructure that our API imposes on
the cloud provider is the per-tenant QoS controllers and the
QoS enforcer modules (Figure 2).

Using per-tenant controllers mitigates potential scaling is-
sues since each controller need only scale to the number of
endpoints per tenant (vs. all endpoints) per region, thus divid-
ing the regional rate limiting into reasonably-sized problems.

Figure 2 shows an example of this design for a single tenant.
The tenant has two traffic classes, red and orange, which are
prioritized in that order. The communication between only
one enforcer and the controller is shown for clarity, though
each VM would participate. The controller determines that the
red class does not use the full egress reservation and allows
1/3 of the orange traffic into the dedicated class. For a more
formal discussion of the QoS controller, see Appendix 12.

This model requires cloud providers to engage with an un-
derlying capacity provisioning problem (i.e., how does one
ensure that the total reserved bandwidth across all customers
is actually there?). For the purpose of this API, we assume
that the CP has some policy for installing and allocating band-
width, but we do not address the specifics of the policy.

5.5 Grouping
Rationale. One noticeable advantage of today’s abstractions
over a purely endpoint-centric view is that virtual networks
can serve as a helpful and simplifying grouping mechanism
(e.g., to apply an identical policy or configuration to all VMs

486 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

running a Spark job). Without a method to group hosts, rea-
soning at an endpoint-level may be difficult, especially since
tenants are not given EIPs from a continuous address space.

We support the convenience of grouping via tags that can be
associated with EIPs such that tenants may use tags in place
of a list of EIPs in permit lists. This ensures cleaner semantics
for the tenant while the cloud provider can “compile” these to
IP addresses for filtering on packets at the end host associated
with the permit list. Similar features, called service tags, are
available today for Network Security Groups [48] while AWS
offers general purpose tagging across resources [59]. Our use
of tags is limited to EIPs as they are known across clouds
while specific resources are not.
API. To provide the benefits of grouping, we adopt a method
for tagging as a means of convenience for tenants in our API
with tag. Here, tenants may associate an EIP with a given tag
as shown in Table 1. Tags can be used in other APIs such as
set_permit_list in place of addresses.

6 Implementation
To demonstrate the feasibility of our proposed API itself,
we have developed an implementation using existing APIs
for AWS and Azure to expose our simplified API ; i.e., it
effectively builds a shim layer on top of existing APIs. As
discussed in earlier sections, most of our API requirements
map onto existing abstractions and hence can be implemented
in a straightforward manner. The key new addition is the
QoS API for which we provide a partial implementation as
described below. This approach – i.e., building on top of
existing APIs – is unfortunately deeply tied to specific cloud
implementations. In the long term, we hope/expect the shim
layer to thin over time as clouds provide the Invisinets API as
a first-party implementation.

Implementing the QoS API requires three infrastructure
components: (i) per-host enforcement modules, (ii) QoS con-
trollers, and (iii) modifications to egress routers to appropri-
ately classify and prioritize traffic. We built a prototype of the
first two components but lack the access to realize (iii); in this
sense, our implementation of the QoS API is only a partial
one. At the same time, such classification and priority schedul-
ing is standard on high-end routers and hence we anticipate
no problem in realizing the API more fully in production.

For the enforcer module, the rate limiting is done through
Linux tc operations and a bpf filter implemented as a bcc
program [3]. This approach was chosen to fit easily into any
host-based approach, though in a production deployment we
expect this logic would reside in the hypervisor or virtual
switch [25]. The bcc programs monitor outgoing traffic vol-
umes on a per-traffic-class basis and reports to a reporting
process on the host. The host sends usage to a per-tenant
controller via RPCs [31]. The controller calculates per-host
mappings to each traffic class and reports back to all hosts
which reported in the last time interval. The host process then
inserts this data into bpf tables for the rate limiter to observe.

The rate limiter classifies traffic based on the tenant to cloud
provider class mapping. The cloud provider classes corre-
spond to classes in a tc hierarchical token bucket which rate
limits the egress traffic from the node.

7 Evaluation
In our evaluation, we focus on answering two questions: (i)
to what degree does Invisinets simplify a tenant’s experience
when networking their workloads? and, (ii) is implementing
the Invisinets API technically feasible for cloud providers?

We evaluate simplicity using a two-pronged approach. First,
we consider three sample tenant deployments and compare
the complexity of implementing each deployment using In-
visinets versus doing so with existing solutions (§7.1). This
approach allows us to do a deep-dive evaluation for specific
deployment scenarios and solutions. For a broader view on
tenant deployments, we also analyzed 677 publicly available
deployment scenarios as captured by their Terraform files on
GitHub and quantify the extent to which existing network
abstractions contribute to the overall setup and configuration
complexity that a tenant faces, and the extent to which In-
visinets can remedy this complexity (§7.2).

When considering the feasibility of implementing In-
visinets, we focus primarily on scalability. This is because, as
discussed earlier, cloud providers already implement (close
approximations for) the individual building blocks needed to
implement our Invisinets API – e.g., address translators, load
balancers, rate limiters. Hence, the main question is whether
extending their use of these components to a larger fraction
of their tenant pool will create new and problematic scaling
bottlenecks. Thus, in §7.3, we evaluate scalability using a
combination of system microbenchmarks and deployment
statistics from cloud providers.

7.1 Evaluating Simplicity via Case Studies
Methodology. We compare the complexity of tenant net-
working using Invisinets versus existing solutions. For the
latter we consider: (i) a DIY tenant that writes scripts directly
atop existing "first-party" cloud APIs, and (ii) Aviatrix [12]
as representative of third-party multi-cloud solutions.7

Given that there is no best practice for measuring sim-
plicity, we propose a metric which we believe is reasonable,
though we do not claim that it perfectly captures all notions
of complexity. We measure simplicity in terms of the number
of network components that the tenant must consider within
three main categories: network boxes, links, and configuration
points. Network boxes refers to device abstractions such as
transit gateways, VPN devices, firewalls, and so forth. Links
refers to various forms of virtual link abstractions including
dedicated egress links (e.g., Azure ExpressRoute [44]), vnet

7As mentioned earlier, Aviatrix offers tenants a management layer built
atop per-cloud abstractions and optimized cloud appliances. Tenants view
their multicloud deployments through a “single pane of glass”, but must still
be fluent in per-cloud building blocks as well as Aviatrix-specific constructs.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 487

peerings [42], and private internal links [47]. Finally, config-
uration points counts any abstraction that exposes network
configuration parameters for the tenant to consider. We count
the number of configuration points (e.g., a firewall) rather
than lines of code or configuration (e.g., number of firewall
rules) since the latter can often be arbitrarily scaled in our
scenarios and hence may be misleading.

We further clarify certain aspects of how we account for
configuration points. First, every box is also counted as a
configuration point: e.g., a gateway is both a box (must be
placed in a topology) and a configuration point (must be con-
figured with routes, tunnels, etc.). Second, while boxes are
always configuration points, the inverse is not true: e.g., ab-
stractions such as virtual networks or subnets are not boxes but
do require configuration and hence are counted as configura-
tion points. Invisinets in particular has multiple configuration
points but few boxes so both measures are needed for a fair
comparison. Finally, we ignore security groups/permit lists
and endpoint IP addresses when counting configuration points
as these are present in all solutions and depend on the number
of endpoints which can be scaled arbitrarily.

We compare solutions using three case studies: one is a
validated design published by Aviatrix [11] and the other
two were defined by us to represent extremes of simple vs.
sophisticated deployments.
Case Study 1: A Simple Tenant Network. We start with
a rather contrived, simple deployment in which a single VM
in one cloud (Cloud A) must communicate with a service in
another cloud (Cloud B) in a shared address space as shown
in Figure 3a. The service in Cloud B uses two VMs which are
load balanced. Table 2 shows the complexity of implementing
this scenario with each of the three solutions we consider.

Metric First-Party Aviatrix Invisinets
Boxes 3 (VPN, LB) 3 (GW, LB) 0

Config. Point 7 (vnet, subnet, VPN) 7 (vnet, subnet, VPN) 1 (SIP)

Table 2: Complexity analysis for a Simple Tenant Network. In
parentheses, we list the "top three" abstractions in terms of their
contribution to complexity (see Fig. 3 for abbreviations).

We see that even this simple scenario incurs non-trivial
complexity with existing solutions. With the DIY approach,
tenants must still consider virtual network gateways, a load
balancer, backend pools, local network gateways, route prop-
agation parameters, and more, leading to a total complexity
of 10 network components. Aviatrix is similar, though it uses
2 Aviatrix gateways in lieu of the first-party VPN gateways.

Invisinets, however, completely eliminates the virtual net-
work layer and instead requires just one configuration point
(the SIP in Cloud B), allowing the deployment to be expressed
in just 9 lines of code as shown below:
e i p 1 = c l o u d _ a . r e q u e s t _ e i p (vm1_id , name="vm1")
e i p 2 = c loud_b . r e q u e s t _ e i p (vm2_id , name="vm2")
e i p 3 = c loud_b . r e q u e s t _ e i p (vm3_id , name="vm3")
s i p = c loud_b . r e q u e s t _ s i p (name=" s e r v i c e ")
b ind (e ip2 , s i p)
b ind (e ip3 , s i p)

s e t _ p e r m i t _ l i s t (e ip1 , [e ip2 , e i p 3])
s e t _ p e r m i t _ l i s t (e ip2 , [e i p 1])
s e t _ p e r m i t _ l i s t (e ip3 , [e i p 1])

By contrast, our DIY script using the AWS and Azure
Python APIs requires over 45 lines of code (snippets shown
in Appendix 13) even assuming IPs and the underlying virtual
network have already been provisioned.
Case Study 2: (Aviatrix) Multi-Region Design. We con-
sider a design from Aviatrix [11], as seen in Figure 3b. This
deployment involves 3 virtual networks running different ser-
vices in two different cloud regions. They are connected to
one another via a transit virtual network which contains fire-
walls for security. These transit virtual networks also contain
direct links to on-prem datacenters. Table 3 summarizes the
complexity costs in implementing this design.

Metric First-Party Aviatrix Invisinets
Boxes 4 (GW, FW) 18 (GW, FW) 2 (FW)
Links 9 (peering, DL) 2 (DL) 0

Config. Point 29 (peering, subnet, vnet) 36 (GW) 2 (egress BW)

Table 3: Complexity analysis for the Aviatrix design. See Fig. 3 for
abbreviations.

We see that, compared to our first case study, complexity
rises significantly with both the DIY and Aviatrix solutions.
The majority of this complexity comes from the gateway and
virtual network peering abstractions. Interestingly, Aviatrix
incurs greater complexity than a DIY implementation due
to its recommended redundant gateways, though first-party
peerings cannot be redundant. In contrast, Invisinets requires
only 4 network components (egress reservations to approxi-
mate the direct links and middlebox annotations for firewalls),
which represents a more than 90% reduction in complexity
relative to the DIY and Aviatrix solutions. Creating this de-
ployment with the available first-party APIs would take over
45 lines of code even assuming all instances and their IPs
have been provisioned and the out-of-band coordination to
set up the direct links has been performed. In addition, we
do not count lines only defining configuration, otherwise the
script is well over 200 lines. A significant portion of this code
sets up the necessary routes to get traffic from each virtual
network to the appropriate firewall and/or gateway.
Case Study 3: A Heterogeneous Tenant Network. Our
third scenario showcases a network deployment that involves
a range of connectivity requirements, as shown in Figure 3c.
This scenario is representative of virtual networks constructed
by larger cloud tenants, though we chose to scale it down
for understandability. For the sake of demonstration, in Fig-
ure 3c, the Azure network is depicted in some detail while the
GCP deployment is unrealistically simple. In this scenario,
the tenant’s cloud deployments in GCP and Azure are each
connected to the tenant’s on-prem datacenter via direct links
to an Internet exchange point where the tenant has reserved
a virtual router and an MPLS link to their datacenter. In the
Azure deployment, the ExpressRoute terminates at a VPN
gateway which must reside in its own subnet [49]. From there,
user-defined routes send traffic to the appropriate subnet or

488 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) CS1: A simple ten-
ant network. (b) CS2: Aviatrix multi-region design [11]. (c) CS3: A heterogeneous tenant network.

Figure 3: Generalized (not taking the form of any particular current approach) network topologies for each case study. (LB = load balancer,
GW = gateway, FW = firewall, PL = private link, DL = Direct Link)

onto the ExpressRoute for egress traffic to GCP or On-Prem.
The other subnets in the virtual network contain VMs and a
private link to an Azure service such as storage on the left and
load-balanced VMs on the right. In another virtual network
in Azure, a VPN gateway tunnels to a branch office. Ingress
traffic is directed to a subnet containing a firewall which then
allows traffic to reach VMs or another private link to a Mi-
crosoft service. Table 4 summarizes the complexity costs in
this design. A script to create this deployment (again, ignoring
instances, IPs, and some ExpressRoute setup) would require
over 80 lines of code. While coming in the form of many dif-
ferent components, achieving basic connectivity via gateways,
links, etc. continues to be the main source of complexity.

Metric First-Party Aviatrix Invisinets
Boxes 6 (GW, FW, LB) 6 (GW, FW, LB) 2 (FW)
Links 5 (DL, PL, MPLS) 5 (DL, PL, MPLS) 0

Config. Point 22 22 4
(vnet, subnet, GW) (vnet, subnet, GW) (egress BW, FW)

Table 4: Complexity analysis for the heterogenous tenant network.
See Fig. 3 for abbreviations.

7.2 Terraform Complexity
For a broader perspective, we now consider the impact of
Invisinets on a larger pool of deployment scenarios. Specifi-
cally, we evaluate the scope for simplification in the Terraform
files that a network administrator maintains. Terraform [32]
is a popular language for specifying cloud infrastructure as
declarative code directly using the first-party abstractions.
Methodology. We scraped GitHub for Terraform files cre-
ating virtual networks, selecting files that mention an AWS
VPC and omitting files that only defined Terraform variables
or outputs. For a scrape conducted on 9/15/2022, our filtering
yielded 677 files for analysis.8 We use these configurations
since they are publicly available but recognize that they may
not fully represent the tenant use-cases that Invisinets targets
(e.g., mid/large scale enterprises). We believe our analysis
could be easily repeated on large production deployments.
Results. We parse each Terraform file, identifying whether
a code block corresponds to a virtual network component.
Table 5 lists the components we identified and how often

8Github API search results are limited to the first 1000 results. Additional
filtering on returned files reduced the number further.

Virtual Network Component Occurrence Count Line Count
VPC 2,493 26,731

Route Table 1,839 13,317
Subnet 1,514 14,677

Security Group 456 9,704
Internet Gateway 445 2,802

Route 339 2,184
NAT Gateway 209 1,661
Network ACL 141 2,841

Transit Gateway 82 587
VPN Gateway 40 316
Load Balancer 22 207

Network Interface 16 123
VPN Peering Connections 5 27

Customer Gateway 4 58
VPN Route 2 10

VPN Connections 1 13

Table 5: Breakdown of Terraform lines removed (across all 677
scraped files) by virtual network component.

they occurred in our files.9 We also calculate the lines of
code within each of these code blocks and show the total
per-component line count in the last column of Table 5. Un-
surprisingly, VPCs are the most common component. Beyond
this, we see that abstractions used to establish basic connec-
tivity – e.g., Internet Gateway, Subnet, Route Table, Route
– constitute a significant fraction of the networking abstrac-
tions that an administrator must deal with. Moreover, even
complex routing abstractions such as Transit Gateways are
not uncommon. These findings thus support our thesis that an
approach such as Invisinets, which altogether eliminates the
need for virtual topologies and their routing configurations,
can substantially simplify networking configurations.

The lines of code identified in Table 5 can be viewed as
an upper bound on the lines of code that can be omitted
by using Invisinets. To evaluate whether this is a significant
portion of the overall Terraform configuration, Figure 4 shows
a histogram of the percentage of lines-of-code that can be
omitted from the Terraform files we consider.

While the fraction of omitted configuration lines may be
surprising, these resource definitions rarely carry information
critical to the four tenant goals around which the Invisinets
API is designed. Instead, many of these lines specify details
of unnecessary abstractions such as virtual networks and the
gateways required to reach external endpoints. (We show an

9We believe this estimate is approximately equivalent to the set of network
components (boxes, links, and configuration points) that we measure in §7.1.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 489

Figure 4: Histogram of percent lines of Terraform resource files that
can be omitted with Invisinets API.

example of such a configuration in Appendix 14). Accord-
ingly, the streamlined Invisinets API does not require much
of this configuration.

We note that our estimates for omitted code in this section
are an upper bound since we do not account for the lines of
configuration that would be added by using Invisinets’s API.
Nonetheless, our evaluation in the previous section suggests
that Invisinets requires far fewer (90+% fewer) components
to configure and hence we expect to be left with significant
savings. Moreover, the permit lists that Invisinets requires
contain information that is necessary even without Invisinets;
e.g., in the form of VPN access lists, firewall rules, NSG
configurations, and so forth.

7.3 Scalability
As mentioned earlier, we focus on the scalability of the In-
visinets API. Implementing the Invisinets API implies change
along two main fronts: address management to support PRDO-
only addressing, and enforcing per-tenant egress bandwidth
reservations. We consider each in turn.
PRDO addressing. PRDO-only addressing changes the num-
ber of endpoints that are assigned public IP addresses and
hence a natural question is whether cloud providers have a
large enough public IP addresses to give one to every VM.
From discussions with Azure operators, we learnt that Azure
advertises over 1.4 · 1020 addresses in total [46] and hosts
O(10M) VMs. Thus we can safely conclude that Azure has
sufficient public addresses to support PRDO addressing. Simi-
larly, GCP has over 7.1 ·1026 advertised addresses in total [27],
presumably plenty to allocate to all endpoints.

The next scalability concern may be the impact on the ad-
dress translation infrastructure – specifically, the vswitch/NIC
and SLBs used to translate PRDO addresses to internal pri-
vate addresses and to enforce permit lists. Fortunately, the
PRDO-only infrastructure does not increase the number or
complexity of vswitch/NIC lookup operations, as every packet
is translated to DIPs even today. Similarly, in considering the
impact on the SLB, we note that Invisinets does not change
the number of internal endpoints that need to be reachable
from endpoints outside the cloud provider (defined as semi-
private addresses in §3) since this depends on the tenant’s
workload requirements rather than the addressing architecture.
Today, the bindings and permit-list rules for these endpoints
are programmed in per-tenant VPNs/NATs while Invisinets
implements the same in the cloud provider’s SLB. Since
cloud SLBs [21, 54] are already designed for elastic horizon-

Figure 5: CPU utilization of QoS controller for different reporting
intervals over 5 experiments. The report collection (solid) is the
bottleneck over aggregation and reporting (dotted).

tal scaling, we do not anticipate any scaling challenges due to
semi-private addresses.
QoS Enforcer. Invisinets adds per-tenant, per-region QoS
controllers to a cloud provider’s infrastructure. We now bench-
mark the QoS components of our implementation to demon-
strate that these QoS controllers could reasonably scale in a
production setting. Our implementation consumes additional
network bandwidth for communication between the QoS con-
troller and enforcer modules. (The volume of tenant traffic
remains unchanged with only ToS fields modified to reflect
the class of traffic.) Using 32 traffic classes (chosen to be
expressive), we record a worst-case overhead of only 800
bytes per host in one reporting interval for one reservation.
For a VM with a 5 Gbps link, communication with the QoS
controller consumes less than 0.00001% of its link bandwidth
when reporting at 10 second intervals. At the QoS controller,
this overhead is n×800 bytes per interval where n is the num-
ber of VMs per tenant per region. Discussions with a major
cloud provider CP−X revealed that, for their deployments,
n is under 50,000 per region in the worst case, and O(10) on
average. Hence, for a 10 second reporting interval, the total
bandwidth consumed at the QoS controller is around 32Mbps
in the worst-case and far lower for average tenant sizes.

Next, we measure the CPU utilization at our QoS controller
for increasing numbers of reporting hosts, shown in Figure 5.
Our QoS controller is comprised of two main processes: a
gRPC [31] server to collect bandwidth reports and an aggre-
gation process to calculate the mapping and report back to
hosts. We run our QoS controller on a t3.small instance in
AWS with 2 vcpus, 2 GB of memory, and 5 Gbps bandwidth,
chosen to ensure that network capacity is not a bottleneck.
One hundred t2.small instances were used as hosts, with many
host processes per instance. As shown in the figure, stress-
ing our 2vCPU instance requires 1000s of reporting hosts.
We believe this is a reasonable expectation for region-scale
deployments since the average number of VMs per tenant
is O(10). Depending on the interval, with enough hosts, the
collection process cannot keep up with incoming reports at
which point the controller size (i.e., vcpus) can be scaled
as necessary. Scaling up to support a tenant with potentially
millions of hosts in one region would pose an additional chal-
lenge in aggregating bandwidth measurements; we leave that
challenge to future work.

Finally, we consider the total resource consumption due

490 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

to QoS controllers (across all tenants). In Azure, there are
roughly an average of 16,000 tenants in each region. Accord-
ingly, we expect the QoS enforcer to consume fewer than
1,600 cores in each region on average (since the total utiliza-
tion for 100 hosts and 5 s intervals is <10%).

Despite the additional packet-processing logic due to the
enforcer, no significant overheads are seen in processing host
traffic. We measured the latency and throughput of outbound
traffic from a host with the QoS enforcer enabled and disabled.
Neither metric demonstrated a noticeable overhead. Through-
put measurements using iperf [1] between two t2.medium
instances for 10 second flows produced an average of 64.9
Mbps across 100 flows with the rate limiting (though set to
allow many Gbps to not interfere) and 64.8 Mbps without.
Latency was tested with 200 pings to a remote host. With
the rate limiter enabled, the average was 0.46 ms (σ = 0.12)
while the average was 0.48 ms (σ = 0.258) without it.

Thus we conclude that Invisinets’s QoS infrastructure in-
troduces little overhead for cloud providers.

8 Limitations
We acknowledge that Invisinets may not satisfy infrastructure
requirements for all cloud tenants. Despite the layers of protec-
tion from the cloud provider, the tenant may deem public IPs
to be an unacceptable risk for their endpoints. While addresses
in Invisinets are default-off, this choice removes the layer of
isolation provided by virtual network private address spaces.
We note, however, that default-off semantics are present in
both Invisinets and today’s virtual network abstractions. Only
the placement of these parameters differ (e.g., endpoint permit
list vs. gateway rules). In addition, the workload may have
security requirements defined in terms of today’s network-
ing abstractions. Accordingly, we do not expect this interface
to appeal to all tenants and target specifically cloud-native
applications.

As mentioned in 5.4, our QoS API’s ability to simulate the
effects of a direct link is dependent on the level of connectivity
between the clouds. This assumption may be particularly
precarious in areas with smaller cloud footprints.

Since our primary goal with the Invisinets API was to sim-
plify the tenant interface, our evaluation is inherently limited.
Complexity is a multifaceted issue and cannot be completely
captured in any one metric. We proposed a variety of metrics
to evaluate simplicity as fairly as we could, though the values
are not necessarily exact.

9 Related Work
We build on the extensive literature on cloud and network
virtualization [20, 24, 53, 54, 60]. As mentioned in §5, most
of our API leaves this underlying architecture unchanged or
extends it in relatively straightforward ways.

Distributed rate limiting has also been extensively stud-
ied [37, 39, 56, 58, 64]; e.g., with work on optimizing end
host traffic shaping [58, 64]. Systems such as [39, 56] make

network-wide rate limiting decisions similarly to the model
we adopt, though [56] primarily seeks to limit traffic aggre-
gates rather than provide a minimum guarantee. Such guaran-
tees are provided by [40] with strategic resource placement
while [37] modifies the end host networking stack.

We take the large body of work in network verification
[14, 23, 26, 36, 38] as evidence of the overwhelming man-
agement complexity in networking. While verification has
focused more on datacenter environments, virtual networks
suffer similar complexity since they use similar abstractions.
Generally, compiling high-level network intents into low-level
device configs remains difficult and error prone [15].

This paper joins others in advocating a forward-looking
view of cloud networking though prior proposals focused
on performance guarantees [13, 50, 51] or declarative con-
trol [16] rather than the simplification we target. In [4], a
platform to unify cloud services is developed by creating
a substrate infrastructure across clouds. The vision in [61]
takes the extreme stance of proposing a unified interface for
all clouds. Invisinets can be viewed as an instantiation of their
vision for networking, though we focus less on unification
and instead hope that simpler APIs across clouds will result
in some homogenization over today’s highly-siloed APIs.

10 Conclusion
To simplify networking for cloud tenants, we proposed a
declarative and endpoint-centric API which takes L3 connec-
tivity as a given and removes the burden of deep networking
knowledge from tenant operators. We acknowledge that our
model may not initially meet the requirements of all tenants.
However, our proposed API can coexist with existing abstrac-
tions and, in fact, can provide a spectrum of simplicity where
deployments may include both today’s building blocks as
well as our proposed architecture. Our API requires consid-
eration of fewer network components and obviates the need
for network topologies to be constructed at all. Supporting
this simple API requires minimal infrastructural changes to
cloud datacenters and the new systems should be easily scaled.
We believe the Invisinets API for virtual networking follows
the evolution seen in cloud compute and storage from virtual
replicas of physical components to higher-level services.

References
[1] iperf. https://iperf.fr/.

[2] tcpping. http://www.vdberg.org/~richard/tcpp
ing.html.

[3] BPF Compiler Collection (BCC), 2022. https://gi
thub.com/iovisor/bcc.

[4] M. Alaluna, E. Vial, N. Neves, and F. M. V. Ramos. Se-
cure and dependable multi-cloud network virtualization.
In Proceedings of the 1st International Workshop on

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 491

https://iperf.fr/
http://www.vdberg.org/~richard/tcpping.html
http://www.vdberg.org/~richard/tcpping.html
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc

Security and Dependability of Multi-Domain Infrastruc-
tures, XDOMO’17, New York, NY, USA, 2017. Associ-
ation for Computing Machinery.

[5] Alkira. Alkira, 2022. https://www.alkira.com/.

[6] Amazon Web Services. Amazon api gateway, 2022.
https://aws.amazon.com/api-gateway/.

[7] Amazon Web Services. Aws direct connect, 2022. ht
tps://aws.amazon.com/directconnect/.

[8] Amazon Web Services. Connect your vpc to other net-
works, 2022. https://docs.aws.amazon.com/vpc/
latest/userguide/extend-intro.html.

[9] Amazon Web Services. Vpcs and subnets, 2022. https:
//docs.aws.amazon.com/vpc/latest/userguide
/VPC_Subnets.html.

[10] Aurea. Cloudfix, 2022. https://cloudfix.com/.

[11] Aviatrix. Aviatrix multi-region high-availability cloud
network design. https://aviatrix.com/aviatrix-
multi-region-high-availability-cloud-netwo
rk-design/.

[12] Aviatrix. Aviatrix, 2022. https://aviatrix.com/.

[13] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Towards predictable datacenter networks. In Proceed-
ings of the ACM SIGCOMM 2011 Conference, SIG-
COMM ’11, page 242–253, New York, NY, USA, 2011.
Association for Computing Machinery.

[14] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A
general approach to network configuration verification.
In Proceedings of the Conference of the ACM Special In-
terest Group on Data Communication, SIGCOMM ’17,
page 155–168, New York, NY, USA, 2017. Association
for Computing Machinery.

[15] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and
D. Walker. Don’t mind the gap: Bridging network-
wide objectives and device-level configurations: Brief
reflections on abstractions for network programming.
SIGCOMM Comput. Commun. Rev., 49(5):104–106, nov
2019.

[16] T. Benson, A. Akella, A. Shaikh, and S. Sahu. Cloud-
naas: A cloud networking platform for enterprise appli-
cations. In Proceedings of the 2nd ACM Symposium
on Cloud Computing, SOCC ’11, New York, NY, USA,
2011. Association for Computing Machinery.

[17] Cerba. Densify, 2022. https://www.densify.com/.

[18] CloudBolt Software. Cloudbolt cost security manage-
ment platform, 2021. https://www.cloudbolt.io/k
umolus/.

[19] CloudZero. Cloudzero, 2022. https://www.cloudz
ero.com/.

[20] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta,
B. Fahs, D. Rubinstein, E. C. Zermeno, E. Rubow,
J. A. Docauer, J. Alpert, J. Ai, J. Olson, K. DeCa-
booter, M. de Kruijf, N. Hua, N. Lewis, N. Kasinadhuni,
R. Crepaldi, S. Krishnan, S. Venkata, Y. Richter, U. Naik,
and A. Vahdat. Andromeda: Performance, isolation, and
velocity at scale in cloud network virtualization. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 373–387, Renton, WA,
Apr. 2018. USENIX Association.

[21] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,
B. Cheyney, W. Shang, and J. D. Hosein. Maglev: A
fast and reliable software network load balancer. In 13th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), pages 523–535, Santa Clara,
CA, Mar. 2016. USENIX Association.

[22] J. L. Eric Brewer. Application modernization and the
decoupling of infrastructure services and teams, 2019.
https://services.google.com/fh/files/blogs
/anthos_white_paper.pdf.

[23] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Mill-
stein, V. Sekar, and G. Varghese. Efficient network reach-
ability analysis using a succinct control plane representa-
tion. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 217–232,
Savannah, GA, Nov. 2016. USENIX Association.

[24] A. D. Ferguson, S. Gribble, C.-Y. Hong, C. Killian,
W. Mohsin, H. Muehe, J. Ong, L. Poutievski, A. Singh,
L. Vicisano, R. Alimi, S. S. Chen, M. Conley, S. Mandal,
K. Nagaraj, K. N. Bollineni, A. Sabaa, S. Zhang, M. Zhu,
and A. Vahdat. Orion: Google’s Software-Defined net-
working control plane. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 83–98. USENIX Association, Apr. 2021.

[25] D. Firestone. Vfp: A virtual switch platform for host
sdn in the public cloud. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI)
2017, March 2017.

[26] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan,
R. Govindan, R. Mahajan, and T. Millstein. A general
approach to network configuration analysis. In 12th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 469–483, Oakland,
CA, May 2015. USENIX Association.

[27] Google. cloud.json, 2022. https://www.gstatic.co
m/ipranges/cloud.json.

492 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.alkira.com/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/directconnect/
https://docs.aws.amazon.com/vpc/latest/userguide/extend-intro.html
https://docs.aws.amazon.com/vpc/latest/userguide/extend-intro.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://cloudfix.com/
https://aviatrix.com/aviatrix-multi-region-high-availability-cloud-network-design/
https://aviatrix.com/aviatrix-multi-region-high-availability-cloud-network-design/
https://aviatrix.com/aviatrix-multi-region-high-availability-cloud-network-design/
https://aviatrix.com/
https://www.densify.com/
https://www.cloudbolt.io/kumolus/
https://www.cloudbolt.io/kumolus/
https://www.cloudzero.com/
https://www.cloudzero.com/
https://services.google.com/fh/files/blogs/anthos_white_paper.pdf
https://services.google.com/fh/files/blogs/anthos_white_paper.pdf
https://www.gstatic.com/ipranges/cloud.json
https://www.gstatic.com/ipranges/cloud.json

[28] Google. Dedicated interconnect overview, 2022. https:
//cloud.google.com/network-connectivity/do
cs/interconnect/concepts/dedicated-overvie
w.

[29] Google. Load balancer overview, 2022. https://clou
d.google.com/anthos/clusters/docs/multi-cl
oud/aws/how-to/load-balancers.

[30] Google. Secure and encrypted communication between
anthos clusters using anthos service mesh, 2022. https:
//cloud.google.com/architecture/encrypt-se
cure-communication-between-multiple-anthos
-clusters-concept.

[31] gRPC Authors. gRPC, 2022. https://grpc.io/.

[32] Hashicorp. Terraform, 2022. https://www.terrafor
m.io/.

[33] Istio Authors. Vpn connectivity, 2019. https://isti
o.io/v1.1/docs/setup/kubernetes/install/mu
lticluster/vpn/.

[34] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4: Experi-
ence with a globally-deployed software defined wan. In
Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, SIGCOMM ’13, page 3–14, New York,
NY, USA, 2013. Association for Computing Machinery.

[35] S. Janardhan. Update about the october 4th outage, oct
2021. https://engineering.fb.com/2021/10/04/
networking-traffic/outage/.

[36] K. Jayaraman, N. Bjørner, J. Padhye, A. Agrawal,
A. Bhargava, P.-A. C. Bissonnette, S. Foster, A. Hel-
wer, M. Kasten, I. Lee, A. Namdhari, H. Niaz, A. Parkhi,
H. Pinnamraju, A. Power, N. M. Raje, and P. Sharma.
Validating datacenters at scale. In Proceedings of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’19, page 200–213, New York, NY, USA,
2019. Association for Computing Machinery.

[37] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar,
A. Greenberg, and C. Kim. EyeQ: Practical network
performance isolation at the edge. In 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 13), pages 297–311, Lombard, IL, Apr.
2013. USENIX Association.

[38] P. Kazemian, G. Varghese, and N. McKeown. Header
space analysis: Static checking for networks. In 9th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), pages 113–126, San Jose,
CA, Apr. 2012. USENIX Association.

[39] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasi-
nadhuni, E. C. Zermeno, C. S. Gunn, J. Ai, B. Carlin,
M. Amarandei-Stavila, M. Robin, A. Siganporia, S. Stu-
art, and A. Vahdat. Bwe: Flexible, hierarchical band-
width allocation for wan distributed computing. In Pro-
ceedings of the 2015 ACM Conference on Special In-
terest Group on Data Communication, SIGCOMM ’15,
page 1–14, New York, NY, USA, 2015. Association for
Computing Machinery.

[40] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M.
Kang, and P. Sharma. Application-driven bandwidth
guarantees in datacenters. In Proceedings of the 2014
ACM Conference on SIGCOMM, SIGCOMM ’14, page
467–478, New York, NY, USA, 2014. Association for
Computing Machinery.

[41] S. McClure, S. Ratnasamy, D. Bansal, and J. Padhye.
Rethinking networking abstractions for cloud tenants. In
Proceedings of the Workshop on Hot Topics in Operating
Systems, HotOS ’21, page 41–48, New York, NY, USA,
2021. Association for Computing Machinery.

[42] Microsoft. Virtual network peering. https://learn.
microsoft.com/en-us/azure/virtual-network/
virtual-network-peering-overview, year = 2022,
lastaccessed = March 2, 2023.

[43] Microsoft. Overview of load-balancing options in azure,
2021. https://docs.microsoft.com/en-us/azu
re/architecture/guide/technology-choices/l
oad-balancing-overview.

[44] Microsoft. What is azure expressroute?, 2021. https:
//docs.microsoft.com/en-us/azure/expressro
ute/expressroute-introduction.

[45] Microsoft. Azure ddos protection standard overview,
2022. https://docs.microsoft.com/en-us/azure
/ddos-protection/ddos-protection-overview.

[46] Microsoft. Azure ip ranges and service tags – public
cloud, 2022. https://www.microsoft.com/en-us/
download/details.aspx?id=56519.

[47] Microsoft. Private link, 2022. https://azure.micr
osoft.com/en-us/products/private-link/.

[48] Microsoft. Virtual network service tags, 2022. https:
//docs.microsoft.com/en-us/azure/virtual-n
etwork/service-tags-overview.

[49] Microsoft. What is vpn gateway?, 2022. https://do
cs.microsoft.com/en-us/azure/vpn-gateway/v
pn-gateway-about-vpngateways.

[50] J. C. Mogul and L. Popa. What we talk about when
we talk about cloud network performance. SIGCOMM
Comput. Commun. Rev., 42(5):44–48, sep 2012.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 493

https://cloud.google.com/network-connectivity/docs/interconnect/concepts/dedicated-overview
https://cloud.google.com/network-connectivity/docs/interconnect/concepts/dedicated-overview
https://cloud.google.com/network-connectivity/docs/interconnect/concepts/dedicated-overview
https://cloud.google.com/network-connectivity/docs/interconnect/concepts/dedicated-overview
https://cloud.google.com/anthos/clusters/docs/multi-cloud/aws/how-to/load-balancers
https://cloud.google.com/anthos/clusters/docs/multi-cloud/aws/how-to/load-balancers
https://cloud.google.com/anthos/clusters/docs/multi-cloud/aws/how-to/load-balancers
https://cloud.google.com/architecture/encrypt-secure-communication-between-multiple-anthos-clusters-concept
https://cloud.google.com/architecture/encrypt-secure-communication-between-multiple-anthos-clusters-concept
https://cloud.google.com/architecture/encrypt-secure-communication-between-multiple-anthos-clusters-concept
https://cloud.google.com/architecture/encrypt-secure-communication-between-multiple-anthos-clusters-concept
https://grpc.io/
https://www.terraform.io/
https://www.terraform.io/
https://istio.io/v1.1/docs/setup/kubernetes/install/multicluster/vpn/
https://istio.io/v1.1/docs/setup/kubernetes/install/multicluster/vpn/
https://istio.io/v1.1/docs/setup/kubernetes/install/multicluster/vpn/
https://engineering.fb.com/2021/10/04/networking-traffic/outage/
https://engineering.fb.com/2021/10/04/networking-traffic/outage/
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/load-balancing-overview
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/load-balancing-overview
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/load-balancing-overview
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/en-us/azure/ddos-protection/ddos-protection-overview
https://docs.microsoft.com/en-us/azure/ddos-protection/ddos-protection-overview
https://www.microsoft.com/en-us/download/details.aspx?id=56519
https://www.microsoft.com/en-us/download/details.aspx?id=56519
https://azure.microsoft.com/en-us/products/private-link/
https://azure.microsoft.com/en-us/products/private-link/
https://docs.microsoft.com/en-us/azure/virtual-network/service-tags-overview
https://docs.microsoft.com/en-us/azure/virtual-network/service-tags-overview
https://docs.microsoft.com/en-us/azure/virtual-network/service-tags-overview
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways

[51] J. C. Mogul and J. Wilkes. Nines are not enough: Mean-
ingful metrics for clouds. In Proceedings of the Work-
shop on Hot Topics in Operating Systems, HotOS ’19,
page 136–141, New York, NY, USA, 2019. Association
for Computing Machinery.

[52] Palo Alto Networks. Palo alto networks, 2022. https:
//www.paloaltonetworks.com/.

[53] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg,
D. A. Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu,
C. Kim, and N. Karri. Ananta: Cloud scale load balanc-
ing. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, page 207–218,
New York, NY, USA, 2013. Association for Computing
Machinery.

[54] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg,
D. A. Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu,
C. Kim, and N. Karri. Ananta: Cloud scale load balanc-
ing. 43(4):207–218, aug 2013.

[55] PCI Security Standards Council. Pci security standards
council, 2022. https://www.pcisecuritystandar
ds.org/.

[56] B. Raghavan, K. Vishwanath, S. Ramabhadran,
K. Yocum, and A. C. Snoeren. Cloud control with
distributed rate limiting. In Proceedings of the 2007
Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications,
SIGCOMM ’07, page 337–348, New York, NY, USA,
2007. Association for Computing Machinery.

[57] D. Ramel. Research brief summarizes trends in multi-
cloud deployments, October 2019. https://virtua
lizationreview.com/articles/2019/10/21/clo
ud-trends.aspx.

[58] A. Saeed, N. Dukkipati, V. Valancius, T. Lam, C. Con-
tavalli, and A. Vahdat. Carousel: Scalable traffic shaping
at end-hosts. In ACM SIGCOMM 2017, 2017.

[59] A. W. Services. Tagging aws resources, 2022. https:
//docs.aws.amazon.com/general/latest/gr/aw
s_tagging.html.

[60] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armis-
tead, R. Bannon, S. Boving, G. Desai, B. Felderman,
P. Germano, A. Kanagala, H. Liu, J. Provost, J. Sim-
mons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and
A. Vahdat. Jupiter rising: A decade of clos topologies
and centralized control in google’s datacenter network.
Commun. ACM, 59(9):88–97, aug 2016.

[61] I. Stoica and S. Shenker. From cloud computing to sky
computing. In Proceedings of the Workshop on Hot
Topics in Operating Systems, HotOS ’21, page 26–32,

New York, NY, USA, 2021. Association for Computing
Machinery.

[62] Strickx, Tom and Hartman, Jeremy. Cloudflare outage
on june 21, 2022, jun 2022. https://blog.cloudfl
are.com/cloudflare-outage-on-june-21-2022/.

[63] The Kubernetes Authors. Ingress controllers, 2021. ht
tps://kubernetes.io/docs/concepts/services
-networking/ingress-controllers/.

[64] K. To, D. Firestone, G. Varghese, and J. Padhye. Mea-
surement based fair queuing for allocating bandwidth to
virtual machines. In Proceedings of the 2016 Workshop
on Hot Topics in Middleboxes and Network Function Vir-
tualization, HotMIddlebox ’16, page 14–19, New York,
NY, USA, 2016. Association for Computing Machinery.

[65] U.S. Department of Health and Human Services Office
for Civil Rights. Hipaa administrative simplification,
March 2013.

[66] Virtana. Virtana, 2022. https://www.virtana.com/.

[67] VMWare. Multi cloud operations: Visibility & control,
2022. https://www.vmware.com/cloud-solutio
ns/multi-cloud-ops.html.

[68] Volterra. Volterra, 2022. https://www.volterra.i
o/.

494 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.paloaltonetworks.com/
https://www.paloaltonetworks.com/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://virtualizationreview.com/articles/2019/10/21/cloud-trends.aspx
https://virtualizationreview.com/articles/2019/10/21/cloud-trends.aspx
https://virtualizationreview.com/articles/2019/10/21/cloud-trends.aspx
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://blog.cloudflare.com/cloudflare-outage-on-june-21-2022/
https://blog.cloudflare.com/cloudflare-outage-on-june-21-2022/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://www.virtana.com/
https://www.vmware.com/cloud-solutions/multi-cloud-ops.html
https://www.vmware.com/cloud-solutions/multi-cloud-ops.html
https://www.volterra.io/
https://www.volterra.io/

Appendix
11 Benefits of dedicated links.
Further, we conducted a small experiment to determine the
benefit of these dedicated links. We provisioned an Express-
Route from Azure in Northern California to a colocation fa-
cility in Silicon Valley and connected it to Direct Connect to
AWS in Northern California. A diagram is shown in Figure 6.
Both dedicated links were 50Mpbs and the virtual router in the
colocation facility can handle up to 500Mbps. In parallel to
this dedicated connection between clouds, we connected two
hosts in each deployment via the public Internet. We collected
throughput measurements using iperf [1] every 5 minutes for
a week and performed tcppings [2] every minute. We found
that at these low bandwidths, the primary performance benefit
is consistent throughput (see summary in Table 6). Notably,
the latency can even be worse across these dedicated links,
though not significantly so considering the variability.

Figure 6: Direct link measurement setup.

Client Cloud Direct Link? Measurement Mean Std. Dev.
AWS Yes Throughput 51 Mbps 0.23 Mbps
AWS No Throughput 169 Mbps 85 Mbps
Azure Yes Throughput 50 Mbps 1.4 Mbps
Azure No Throughput 117 Mbps 80 Mbps
AWS Yes Latency 4.89 ms 1.74 ms
AWS No Latency 3.38 ms 1.73 ms
Azure Yes Latency 12.53 ms 9.36 ms
Azure No Latency 7.45 ms 4.39 ms

Table 6: Summary of direct link measurements.

12 QoS Controller
More formally, the job of a QoS controller is as follows. Each
tenant, t, can have n classes of traffic, decreasing in priority:
C1, C2 . . . Traffic in these classes must be mapped to the
cloud provider best-effort and dedicated classes B and D. The
tenant reserves some dedicated egress bandwidth, rt . To map
the classes, each host x reports xt

i , the bandwidth tenant t
consumed in class Ci every interval of k seconds to the per-
tenant controller. Every interval, the controller calculates the
total bandwidth for each class, Ci. Starting with the highest
priority class, C1, the controller adds xt

i to the running total
dedicated bandwidth, xD, and maps the class to the dedicated
cloud provider class, D. When xD > rt , the controller maps the
current class Cs to a split class, S. All subsequent classes C j>s
are mapped to B. The fraction of the bandwidth used by Ci
which would fit into the reserved bandwidth fs = (xD−rt)/Cs
is calculated as well. The controller sends fs and Cs to all hosts
that reported in the previous interval.

The (enforcement module at) hosts then install the cal-
culated mapping between tenant and cloud provider classes.
Traffic belonging to Ci <Cs is simply marked as reserved (D)
while traffic in Ci >Cs is marked as best-effort (B). For traffic
belonging to Cs, the host calculates the maximum allowed
dedicated bandwidth in the split class bd = fs · xt

i . This value
is used for per-flow admission to D for traffic in Cs. When
a new flow in Cs arrives, a timestamp is recorded. After m
time has passed, the flow is eligible for promotion to D. Its
bandwidth over the last m seconds, b f low, is compared against
bd . If b f low < bd the flow is mapped to D and bd is updated
(bd = bd − b f low), otherwise the flow is mapped to B. This
evaluation is performed every m seconds for each flow in
Cs which has not been admitted to D. Accordingly, this pro-
cess requires per-flow state, though only proportional to the
number of flows in Cs during a single reporting interval.

13 Case Study 1 Code
In Figure 7 is an excerpt of the code required to implement
Case Study 1 using first-party cloud APIs.

Figure 7: Excerpt of the code necessary to setup the Azure side of
Case Study 1.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 495

14 Terraform Example
Below is a code snippet from one of our scraped Terraform
files.

Figure 8: Code snippet from a scraped Terraform file.

496 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Bamboo: Making Preemptible Instances Resilient for Affordable Training
of Large DNNs

John Thorpe†♣ Pengzhan Zhao†♣ Jonathan Eyolfson† Yifan Qiao† Zhihao Jia‡

Minjia Zhang§ Ravi Netravali∗ Guoqing Harry Xu†

UCLA† CMU‡ Microsoft Research§ Princeton University∗

Abstract
DNN models across many domains continue to grow in size,

resulting in high resource requirements for effective training,
and unpalatable (and often unaffordable) costs for organi-
zations and research labs across scales. This paper aims to
significantly reduce training costs with effective use of pre-
emptible instances, i.e., those that can be obtained at a much
cheaper price while idle, but may be preempted whenever
requested by priority users. Doing so, however, requires new
forms of resiliency and efficiency to cope with the possibility
of frequent preemptions – a failure model that is drastically
different from the occasional failures in normal cluster set-
tings that existing checkpointing techniques target.

We present Bamboo, a distributed system that tackles these
challenges by introducing redundant computations into the
training pipeline, i.e., whereby one node performs compu-
tations over not only its own layers but also over some lay-
ers in its neighbor. Our key insight is that training large
models often requires pipeline parallelism where “pipeline
bubbles” naturally exist. Bamboo carefully fills redundant
computations into these bubbles, providing resilience at a low
cost. Across a variety of widely used DNN models, Bamboo
outperforms traditional checkpointing by 3.7× in training
throughput, and reduces costs by 2.4× compared to a setting
where on-demand instances are used.

1 Introduction
DNNs are becoming progressively larger to deliver improved
predictive performance across a variety of tasks, including
computer vision and natural language processing. For in-
stance, recent language models such as BERT [66] and GPT
[50] already have a massive number of parameters, and their
newer variants continue to grow at a rapid pace. For example,
BERT-large has 340 million parameters, GPT-2 has 1.5 bil-
lion, and GPT-3 increases to 175 billion; the next generation
of models embed upwards of trillions of parameters [17].

Of course, model growth also entails larger training costs.
For instance, GPT-3 consumes several thousand petaflop/s-
days, costing over $12 million to train on a public cloud
(needing hundreds of GPU servers) [6]. Unfortunately, such
costs are prohibitive for small organizations. Even for large
tech firms, training today’s models incurs an exceedingly
high monetary cost that eventually gets billed to the training

♣ Contributed equally.

department. While pretrained models may be reused and fine-
tuned for different applications, training new models is often
required to keep pace with changing or emerging workloads
and datasets.

Although there exists a body of work on improving the
training of large models [38, 39, 26, 9, 7, 11, 12, 18, 54, 53,
64, 72, 24, 28, 31], existing techniques focus primarily on
scalability and efficiency, with monetary costs often being
neglected. However, when affordability and accessibility are
considered, resource usage becomes a key concern and none
of these techniques were targeted at improving cost-efficiency
(e.g., performance-per-dollar) for training.
Preemptible Instances. This paper explores the possibil-
ity of using preemptible instances—a popular class of cheap
cloud resources—to reduce the cost of training large models.
There are several kinds of preemptible instances. For exam-
ple, major public clouds provide spot instances with a price
much cheaper than on-demand instances—e.g., the hourly
rate of a GPU-based spot instance is only ∼30% of that for
its on-demand counterpart on Amazon EC2 [3]. As another
example, large datacenters often maintain certain amounts of
compute resources that can be allocated for any non-urgent
tasks but will be preempted as urgent tasks arise [41, 5]. Simi-
larly, recent ML systems [27, 69, 4] allow training jobs to use
inference-dedicated machines to fully utilize GPU resources
but preempts those machines when high-priority inference
jobs arrive. The presentation of this paper focuses on spot
instances, but we note that our techniques are generally appli-
cable to any type of preemptible resources.

Despite their substantial cost benefits, preemptible in-
stances pose major challenges in reliability and efficiency
due the frequent and unpredictable nature of their preemp-
tions. When and how many instances get preempted depends
primarily on the number of priority jobs/users in a cluster. In
a public spot market, preemption can also result from the mar-
ket price exceeding the user’s bid price. While price-based
preemption can be avoided via a high bid price (e.g., the
on-demand price), capacity-based preemption is unavoidable.
Preemption patterns vary drastically across clouds and even
across families/zones on the same cloud (§3).

Given the unpredictable nature of spot instances, users can
often only run short, stateless jobs and simply restart these
jobs if they get preempted. Model training, on the contrary,
is stateful and time-consuming. Discarding the state (e.g.,
learned weights) upon each instance preemption not only

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 497

wastes computation but also prevents training from making
progress. Checkpointing-based techniques can reduce wasted
computation to a degree, but still spend a significant fraction
of the training time (e.g., 77% when training GPT-2 with 64
EC2 spot instances, see §3) on restarting and redoing prior
work in the presence of frequent preemptions [20, 21]—a
largely different scenario compared to conventional clusters
where failures are rare.
Bamboo. This paper presents Bamboo, a distributed system
that provides resilience and efficiency for DNN training over
preemptible instances. Bamboo supports both pipeline par-
allelism and (pure) data parallelism with the same approach.
Since pipeline parallelism is a more complex and general ap-
proach (for training large models), our discussion focuses on
pipeline parallelism; we briefly discuss our support for pure
data parallelism in §B. Bamboo currently does not support
model parallelism.
Redundant Computation. Key to the success of Bamboo
is a set of novel techniques centered around redundant com-
putation (RC), inspired by how disk redundancies such as
RAID [45] provide resilience in the presence of disk fail-
ures. A training system that uses pipeline parallelism runs a
set of data-parallel pipelines, each training on a partition of
the dataset. Each node1 in a data-parallel pipeline performs
(forward and backward) computations over a shard of NN
layers with a microbatch of data items [24]. Bamboo lets
each node in each data-parallel pipeline carry its own shard
of layers as well as its successor’s shard. Each node performs
normal computation over its own layers and redundant com-
putation over its successor’s layers. The reason why we use a
neighbor node (as opposed to a random node) to run RC is
to exploit data locality in pipeline parallelism (see §5). Upon
a node preemption, its predecessor has all the information
(e.g., layers, activations) needed for the training to progress;
continuing training requires running a failover schedule on
the predecessor node without wasting prior computations.

At first glance, running RC on every node appears infea-
sible due to concerns with both time and memory. Bamboo
overcomes these challenges by taking into account pipeline
characteristics to carefully reduce/hide these overheads.

First, to minimize the time overhead from RC, Bamboo
leverages a key insight that bubbles [24, 51] inherently exist in
systems using synchronous pipeline parallelism (§2). Bubbles
are idle times on each node due to the gaps between the
forward and backward processing of microbatches (Figure 1).
Bamboo schedules the forward redundant computation (FRC)
on each node asynchronously into the bubble. FRC entails
a node doing the forward pass over its successor’s layers
using the output of its own active layers and is the main
way Bamboo achieves redundancy. For the part of FRC that
cannot fit into the bubble, Bamboo overlaps it with the normal
computation. As a result, FRC incurs a tolerable overhead

1In this paper, “instance” and “node” both refer to a spot instance.

(i.e., no extra communication is needed due to locality, and
it can overlap with normal computation), and hence Bamboo
performs it eagerly in each epoch. If a node is preempted
during a forward pass, the pipeline continues after a node
rerouting step whose overhead is negligible.

In addition to FRC, the system must find a way to gen-
erate the redundant version of the intermediate data related
to backwards passes for the successor node. This can be ac-
complished by using the backward redundant computation
(BRC), or a backwards pass over the node’s redundant lay-
ers (its successor’s layers). Unfortunately, for BRC, such
a corresponding bubble does not exist. Eager BRC would
require much extra work and data-dense communication on
the critical path, which could delay training significantly (§5).
As such, Bamboo runs BRC lazily only when a preemption
actually occurs. If a node is preempted in a backward pass,
continuing the pipeline requires a pause for the node’s pre-
decessor to perform BRC to restore the lost state. However,
since FRC is performed eagerly, when BRC runs, much of
what it needs is already in memory, keeping pauses short.

Second, performing RC increases each node’s GPU mem-
ory usage. Note that the major source of the memory overhead
is storing intermediate results (activations and optimizer state)
from FRC, not the redundant layers, which take only little
extra memory. To mitigate the memory issue, we leverage
Bamboo’s unique way of performing RC described above.
Note that the purpose of saving intermediate results of a
forward pass is that these results are used by its backward
computation. However, in Bamboo, BRC is performed lazily
upon preemptions and the intermediate results of FRC are
thus not needed in normal backward passes. Hence, Bamboo
swaps out the intermediate results of each node’s FRC into
the node’s CPU memory, leading to substantial reduction in
GPU memory usage. These results are swapped back into
GPU memory for BRC only upon preemptions.

Bamboo continues normal training with the help of RC in
the presence of non-consecutive preemptions, i.e., preempted
instances are not neighbors in the same data-parallel pipeline.
Once consecutive instances are preempted, RC can no longer
provide resilience. More redundancies could be added to
provide stronger resilience, but this would incur (compute
and communication) overheads that are too significant to hide.
Instead, based on our empirical observation that most con-
current preemptions come from the same allocation group
(e.g., a zone), Bamboo takes care to ensure that consecutive
nodes in each pipeline come from different zones, minimiz-
ing the chance of consecutive preemptions at a small (<5%)
overhead (see §6.5).
Results. We built Bamboo atop DeepSpeed [51] and eval-
uated it by training 6 representative DNN models using
EC2 spot clusters comprised of p3 instances. Compared
to a baseline using on-demand instances, Bamboo delivers
a 3.6× cost reduction. Bamboo also outperforms a check-
pointing approach by 3.7×. We developed a simulation

498 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 1 1 2 2 3 3 4 4

1 2 3 4 1 1 2 2 3 3 4 4

1 2 3 4 1 1 2 2 3 3 4 4

1 2 3 4 1 1 2 2 3 3 4 4

Node 0

Node 1

Node 2

Node 3

Forward Backward

1 2 3 4 1 1 5 2 2 6 3 3 7 4 4

1 2 3 4 1 1 2 2 5 3 3 6 4 4 7 5

1 2 3 4 1 1 2 2 3 3 5 4 4 6 5 5 7

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6

Node 0

Node 1

Node 2

Node 3

Forward Backward

(a) Pipeline parallelism (b) GPipe scheduling (c) PipeDream scheduling
Figure 1: Illustration of pipeline parallelism on a 4-node cluster: (a) the model is divided into 4 shards, each with 2 layers; (b)
and (c) show the scheduling of two recent systems GPipe [24] and PipeDream [38].

framework that takes preemption traces from real spot clus-
ters and training parameters to simulate how training pro-
gresses with larger numbers of nodes. A deep-dive with
BERT across a wide range of preemption probabilities shows
that the value (i.e., performance-per-dollar) Bamboo pro-
vides stays constant and is much higher (2.48×) than that
of on-demand instances. Bamboo is publicly available at
https://github.com/uclasystem/bamboo.

2 Background

This section discusses necessary background for parallelism
strategies. Data parallelism keeps a replica of an entire DNN
on each device, which processes a subset of training sam-
ples and iteratively synchronizes model parameters with other
devices. This strategy is often used with models that can
fit entirely within a single GPU and used to both increase
throughput or expand to batch sizes that cannot fit within a
single GPU. Data parallelism can be combined with pipeline
and/or model parallelism to train large models that do not fit
on a single device. Model parallelism [13] partitions model
operators across training devices. For example, the weights
for a single matrix multiplication may reside across two sep-
arate GPUs, each performing a part of the full computation
and then combining the results. This technique allows the
model to expand beyond a single GPU by reducing the mem-
ory requirements of each operator. However, efficient model
parallelism algorithms are extremely hard to design, requir-
ing difficult choices among scaling capacity, flexibility, and
training efficiency. As such, model-parallel algorithms are
often architecture- and task-specific.

Pipeline parallelism [38, 24, 71] has gained much traction
recently due to its flexibility and applicability to a variety of
neural networks. Pipeline parallelism divides a model at the
granularity of layers and assigns a shard of layers to each
device. Figure 1(a) shows an example where the model is
partitioned into four shards and each worker hosts one shard
(with two layers). Each worker defines a computation stage
and the number of stages is referred to as the pipeline depth
(e.g., 4 in the example). One worker only communicates with
nodes holding its previous stage or next stage. Each input
batch is further divided into microbatches. In each iteration,
each microbatch goes through all stages in a forward pass
and then returns in an opposite direction in a backward pass.
There are often multiple microbatches residing in the pipeline

and different nodes can process different microbatches in
parallel to improve utilization.

A key challenge in efficient pipeline parallelism is how
to schedule microbatches. GPipe [24] schedules forward
passes of all microbatches before any backward pass, as
shown in Figure 1(b) where each node processes four mi-
crobatches. This approach leaves a "bubble" (i.e., white cells)
in the middle of the pipeline, leading to inefficient use of
compute devices. PipeDream [38] proposes the one-forward-
one-backward (1F1B) schedule to interleave the backward
and forward passes, as shown in Figure 1(c). 1F1B can reduce
the bubble size and the peak memory usage.

However, even with carefully-designed schedules, the
pipeline bubble is still hard to eliminate. A fundamental
reason is that it is extremely difficult to find the optimal
layer partitioning to have each stage processed at the same
rate. There exists a body of algorithms proposed recently
to optimize layer partitioning and most of them are model-
and hardware-specific [38, 16]. These algorithms are often
time-consuming for large models, unsuitable for preemptible
instances where the number of nodes keeps changing [2].

PipeDream [38] proposes asynchronous pipelining to elimi-
nate the bubble—a node is allowed to work with stale weights
to reduce the wait time. However, asynchronous microbatch-
ing introduces uncertainty in model convergence. In general,
the effectiveness of synchronous v.s. asynchronous training
is still open to debate. Furthermore, asynchronous training
introduces inconsistencies in model state, which can create
a more significant convergence issue when training occurs
on preemptible instances, due to the need of frequent recon-
figurations. For example, under synchronous microbatching,
a reconfiguration can be performed at the end of each opti-
mizer step (i.e., parameter update), and hence the reconfigured
pipelines can start with the up-to-date parameters. This is
impossible to do under asynchronous microbatching.

As a result, we built Bamboo atop synchronous micro-
batching where model state is always consistent. Instead of
attempting to reduce the bubble, we explore an orthogonal
direction—how to leverage the bubble to run RC efficiently.

3 Motivation
This section motivates Bamboo from two aspects: (1) high
preemption rates and unpredictability of spot instances, and
(2) high performance overheads of strawman approaches.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 499

https://github.com/uclasystem/bamboo

(a) P3 @ EC2 (b) G4dn @ EC2

(c) n1-standard-8 @ GCP (d) a2-highgpu-1g @ GCP

Figure 2: Preemptions traces for a target cluster of size 64
instances on EC2 and 80 instances on GCP. Each graph shows
a full-day trace for a GPU family in a cloud.

Preemptions of Spot Instances. We first studied failure
models with spot instances on major public clouds. Figure 2
shows a set of real preemption traces collected from running
spot instances in two public clouds: Amazon EC2 and Google
Cloud Platform (GCP). For EC2, we used two GPU families:
P3 (NVIDIA V100 GPUs with 32GB of memory) and G4dn
(NVIDIA T4 GPUs with 16GB of memory). For GCP, we
used n1-standard-8 (NVIDIA V100 GPUs with 16GB
GRAM) and a2-highgpu-1g (NVIDIA A100 GPUs with
40GB GRAM). For each family, we collected traces for a
24-hour window. In each experiment, we used an autoscal-
ing group to maintain a cluster of 64 with an exception of
us-east1-c in GCP, whose cluster size is 80. The autoscal-
ing group, provided by each cloud, automatically allocates
new instances upon preemptions to maintain the size (though
without any guarantee).

From both families, node preemptions and additions are
frequent and bulky (i.e., many nodes get preempted at each
time). This can make a checkpointing-based approach restart
many times in a short window of time, leading to large in-
efficiencies (discussed shortly). Furthermore, both preemp-
tions and allocations are unpredictable. While the autoscaling
group attempts to allocate new nodes to maintain the user-
specified size, allocations are committed incrementally; new
allocations are mixed with preemptions of existing instances,
making the spot cluster an extremely dynamic environment.

To understand the nature of the nodes that are preempted at
the same time, we carefully analyzed two 24-hour preemption
traces collected respectively from EC2 and GCP. For the EC2
trace, preemptions occur at 127 distinct timestamps, each of
which see many preempted nodes. Of these 127 timestamps,
only 7 see preemptions from multiple zones; at each of the
remaining 120 timestamps, all nodes preempted come from

Figure 3: Training GPT-2 using checkpointing/restart with
an autoscaling group of 64 P3 spot instances. Each color rep-
resents time spent in a distinct state,including Blue: training
actively made progress; Orange: the cluster made progress
that was then wasted; and Red: cluster restarting.

the same zone. A similar observation was made on the GCP
trace (12 out of 328 timestamps see cross-zone preemptions).
These results confirmed the observations made by existing
works [21, 20]: preemptions tend to be independent based on
each individual spot market and each availability zone has a
different and independent spot market—this is because each
availability zone maintains capacity separately and therefore
capacity preemptions in one zone are not associated with
capacity preemptions in another.

These observations motivate our design—even with 1-node
redundancies, Bamboo can recover from a majority of pre-
emptions if consecutive nodes are not preempted at the same
time; we maximize this possibility with a best-effort approach
that makes consecutive nodes in each pipeline come from dif-
ferent zones. Although this may increase communication
costs, it does not lead to visible performance impacts for
Bamboo because Bamboo only sends (small amounts of) acti-
vations data between nodes.
Strawman #1: Checkpointing. We next show why a tech-
nique based on checkpointing and restarting does not work.
We developed a new checkpointing system on top of Deep-
Speed [51], providing checkpointing and restarting functional-
ities similar to TorchElastic [47] and Varuna [2]. We modified
DeepSpeed to checkpoint continuously and asynchronously.
In particular, each worker moves a copy of any relevant model
state to CPU memory whenever the state is generated; the
CPU then asynchronously writes it to remote storage so that
training and checkpointing can fully overlap. During restart-
ing, our system automatically adapts the prior checkpoints to
the new pipeline configurations.

To understand how well this technique performs, we used
it to train GPT-2 over 64 p3.2xlarge GPU spot instances on
EC2. We profiled the training process and collected the check-

500 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: Effects of sample dropping under different rates.

pointing times, reconfiguration overheads, and total execution
time. Figure 3 reports these results. The blue sections repre-
sent the times the system spent making actual progress for
training. The red sections represent the times on reconfig-
uring (i.e., restarting) while the orange sections show the
times for wasted work—the computation that was done but
not saved in checkpoints; the system ended up redoing these
computations after restarting. This is because preemptions
often occur during checkpointing, and hence, the system must
roll back to a previous checkpoint. Frequent rollbacks slows
down the training significantly. Note that systems such as
Varuna and TorchElastic share this property and would have
similar training patterns when facing regular preemptions.
As shown, although checkpointing itself can be done effi-
ciently, the restarting overheads (i.e., for adapting existing
checkpoints to new pipeline configurations) and the wasted
computations take 77% of the training time.
Strawman #2: Sample Dropping. An alternative approach
that has shown promise is to take advantage of the statistical
robustness of DNN training and allow some samples to be
dropped so that training can continue without significant loss
of accuracy [67, 36]. These techniques are also known as
elastic batching because dropping samples is equivalent to
changing the effective batch size at a training iteration (with
the learning rate dynamically adjusted).

In the case of pipeline parallelism, we implemented sample
dropping by suspending a pipeline upon losing an instance
while letting other data-parallel pipelines continue to run.
The system performs optimizer steps with the gradients of
whichever data-parallel pipelines are able to complete that
training step. Learning rate was adapted linearly with respect
to the effective batch size to make sure that the only effect on
the accuracy is the lost samples, but not a mismatch between
hyperparameters and training configurations. In doing so, the
training can continue for sometime without a reconfiguration
(which is needed upon allocations).

We conducted a set of experiments to simulate the effect of
sample dropping on model accuracy with a range of drop rates.

Note that we could not obtain these results with the actual
spot instances because we could not control the preemption
rate. We ran a pre-training benchmark with GPT-2 using
16 on-demand instances from the same EC2 family, which
form four data-parallel pipelines, each with four stages. To
consider a range of different failure models, we used different
rates of preemption to generate preemption events. Upon a
preemption event, we randomly selected a pipeline and zero
out the pipeline’s gradients in that iteration. We measured
the model’s evaluation accuracy every 5 training steps. These
results are shown in Figure 4 where each curve represents the
function of the number of steps needed to reach a given loss
for a particular drop rate.

Similarly to checkpointing, sample dropping works well for
low preemption rates, but when frequent preemptions occur,
many samples can be lost quickly and its impact on model ac-
curacy quickly grows to be too significant to overlook. While
this experiment was not an exact recreation of a sample drop-
ping scenario, these results represent an under-approximation
of the effect of the actual sample dropping (which can lose
more accuracy than reported by Figure 4). This is because
the actual sample dropping rate should be higher than the
instance preemption rate—a preempted instance would likely
be down for some time and consecutive samples would be
dropped in a real setting. Note that training samples are shuf-
fled before loading; hence, the effects of randomly dropping
consecutive samples (i.e., the actual scenario) and dropping
random samples sporadically (i.e., our experiment) should be
similar.

4 Overview

Goal and Non-Goal. Our goal is not to automatically de-
termine the cheapest way to train a given model (e.g., which
parallelism model can lead to the largest cost savings). In-
stead, Bamboo aims to enable efficient and preemption-safe
training over cheap spot instances.

User Interface. To use Bamboo, a user specifies two sys-
tem parameters D and P , as they normal would to use other
pipeline-parallel systems, where D is the number of data-
parallel pipelines and P is the pipeline depth. Due to the
need of storing redundant layers, Bamboo requires a larger
pipeline depth P than a normal pipeline-parallel system such
as PipeDream [38]. We observed, empirically, that to avoid
swapping data between CPU and GPU memory on the critical
path, Bamboo’s pipeline should be ∼1.5× (see §6.4) longer
than an on-demand pipeline due to the extra memory needed
to (1) hold the redundant layers and (2) accommodate poten-
tial pipeline adjustments. Given that spot instances are much
cheaper (e.g., 3-4× on EC2) than on-demand instances, train-
ing with 1.5× more nodes still leads to significantly reduced
costs. While we recommend 1.5× more nodes, the number
of active instances in a cluster is often much smaller due to
preemptions and incremental allocations.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 501

Bamboo
Agent

Bamboo
Worker

Monitors
Creat

es

Bamboo
Agent

Bamboo
Worker

Monitors
Creates

etcdKubernetes
Creates

…

Node 1

Node N

Figure 5: Bamboo runs one agent process per node (i.e.,
spot instance). An agent monitors worker processes (each
running a training script) that use our modified DeepSpeed.
All workers and agents coordinate through etcd [42].

Schedule
Generator

Bamboo
Runtime[instruction]

Pipeline Configuration

GPU
[kernel]

Exception

Figure 6: Bamboo worker.

P × D will be the size of the spot cluster Bamboo at-
tempts to maintain throughout training. Preemptions can
cause Bamboo to reduce the pipeline depth and/or the num-
ber of pipelines; in such cases, Bamboo would request more
instances to bring the size of the cluster back to P ×D. How-
ever, Bamboo would never try to scale the training beyond
P × D. In other words, P and D are the upper bound of
the pipeline depth and number of pipelines. It is important
to note that the goal of the autoscaling framework we build
for Bamboo is to adjust the pipelines passively in response to
node preemptions and additions that we cannot control, rather
than proactively finding an optimal cluster configuration to
achieve better performance. This distinguishes Bamboo from
existing works on autoscaling distributed training [43, 2, 25],
whose goal was to find better configurations.
System Overview. Figure 5 shows an overview of our system.
We built Bamboo on TorchElastic [47] and DeepSpeed [51].
In particular, we built the Bamboo agent, which runs on each
node to kill/add a data-parallel pipeline, on top of TorchElas-
tic. The agent monitors a Bamboo worker process on the
same node, which is a DeepSpeed application enhanced with
our support for redundant computation. Bamboo workers run
D data-parallel pipelines that use an all-reduce phase to
synchronize weights at the end of each iteration. Our spot in-
stances are managed by Kubernetes [33], which is configured
to automatically scale by launching a Bamboo agent on each
new allocation. Our agents communicate and store cluster
state on etcd [42], a distributed key-value store.

Each Bamboo worker uses a runtime to interpret the sched-
ule, which produces a sequence of instructions, as shown in
Figure 6. The schedule is generated statically based on the
stage ID of the current worker and pipeline configurations,
including the depth of pipeline and total number of micro-

batches. The instructions consist of a computation component
(i.e., forward, backward, and apply gradient), and a communi-
cation component (i.e., send/receive activation, send/receive
gradient, and all-reduce). The Bamboo runtime interprets
these instructions by launching their corresponding kernels
on GPU. Communication instructions can fail due to preemp-
tions. Upon a failure, the runtime throws an exception and
falls back to use a failover schedule.

5 Redundant Computation
For ease of presentation, our discussion focuses on one node
running one stage in the pipeline. Support for multi-GPU
nodes will be discussed shortly.

Preemption of a node is detected by its neighboring nodes
in the same pipeline during the execution of communication
instructions. If a node on one side of the communication is
preempted, the node on another side will catch an IO excep-
tion due to broken socket and update cluster state on etcd.
Bamboo detects preemptions based on socket timeout. Al-
though we could let a node to be preempted actively notify
its neighbors in the grace period before the preemption, the
length of this period varies across different clouds and hence
Bamboo does not use it currently.

Since the victim node communicates with two nodes in
the pipeline, both of its neighbors can catch the exception.
The observed exception will be shared between these two
nodes through etcd. This two-side detection is necessary
for Bamboo to understand which node fails and generate the
failover schedule. In addition to the two neighbors, nodes
in other pipelines involved in the all-reduce operation
also need to be informed. To safely perform all-reduce,
each node participating in all-reduce reads the up-to-date
cluster state on etcd and, if another pipeline has a failure,
waits until the failure is handled.

5.1 Redundant Layers and Computation

To quickly recover from preemptions, Bamboo replicates the
model partition on each worker node in each data-parallel
pipeline. Instead of saving these replicas to a centralized
remote storage (like checkpointing), Bamboo takes a decen-
tralized approach by letting each node replicate its own model
partition (i.e., layer shard) on its predecessor node in the same
pipeline. The first node has its layer replica stored on the last
node in the pipeline. Conceptually, the last node is considered
the “predecessor” of the first node. For simplicity of presen-
tation, we use forward stage IDs to identify nodes, that is, a
node that runs the forward stage n+1 is always considered as
a successor of a node running the forward stage n (although
in the backward pass, n+ 1 is a stage before n).

Our key idea is to let each node run normal (forward
and backward) computation over its own layers and redun-
dant (forward and backward) computation over the replica
layers for its successor node. Let FRCm

n /BRCm
n denote

the forward/backward redundant computation that is per-

502 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

formed on node m for node n, respectively. In Bamboo,
n = (m + 1) mod P where P is the pipeline depth. Let
FNCn/BNCn denote the forward/backward normal computa-
tion on node n. In Bamboo’s pipeline, FRCn

n+1/BRCn
n+1 is

exactly the same computation as FNCn+1/BNCn+1, working
with the same model parameters and optimizer states. To
enable the last node to perform RC for the first node, we let it
fetch input samples directly.

FNC1 FNC2 FNC3 FNC4

BNC1 BNC2 BNC3 BNC4

Input

Figure 7: Dependencies between normal pipeline stages.

Why Neighboring Nodes? Due to our focus on pipeline
parallelism, Bamboo performs RC on predecessor nodes to
exploit locality for increased efficiency. To see this, we first
need to understand the dependencies between different (back-
ward and forward) pipeline stages that a microbatch goes
through, as illustrated in Figure 7. For each forward stage
FNCn, it depends only on the output of its previous stage
FNCn−1. However, for each backward stage BNCn, it has
two dependencies: one on the output of stage BNCn+1 and
a second on its corresponding forward stage FNCn. The
first is a hard dependency without which BNCn cannot be
done, while the second is a soft dependency primarily for
efficiency—intermediate results produced by FNCn can be
reused to accelerate BNCn. Without such cached results,
BNCn has to recompute many tensors (i.e., tensor rematerial-
ization [8]), leading to inefficiencies.

Figure 8 shows dependencies on an RC-enable pipeline
where each node performs both normal and redundant (back-
ward and forward) computation. Here solid/dashed arrows
represent inter/intra-node dependencies. By running FRC for
node n+ 1 on node n, locality benefit can be clearly seen
because FRC only creates intra-node dependencies, which
do not incur any extra communication overhead. However,
in a backward pass, such a locality benefit does not exist for
BRCn

n+1, which requires the output of BNCn+2 and incurs
much extra communication. This motivates our eager-FRC-
lazy-BRC design which does not perform BRC until a pre-
emption occurs and hence eliminates the extra communication
cost in normal executions.

Note that we could also perform FRC lazily, but this would
significantly increase the pause time for recovery. This is
because (1) recovering from preemptions at both forward and
backward pass now require a pause; and (2) lazy FRC would
not produce intermediate results that can be used to speed up
BRC and hence BRC’s pause would be much longer. Since
FRC can be scheduled in the pipeline bubble and overlap with
FNC, performing it eagerly is a better choice.

The careful reader may think of an alternative approach
that places node n’s layer replica on node n+1 as opposed to

FNC1 FRC2 FNC2 FRC3 FNC3 FRC4 FNC4 FRC1
Input

Input

BNC4 BRC1BNC3 BRC4BNC2 BRC3BNC1 BRC2

Node1 Node2 Node3 Node4

Figure 8: Dependencies between RC-enabled pipeline stages:
solid/dashed arrows represent inter/intra-node dependen-
cies; for simplicity, FRCn/BRCn in the figure represents
FRCn−1

n /BRCn−1
n .

node n−1 (i.e., its successor rather than its predecessor). This
approach is symmetric to our design in that it turns inter-node
dependencies for BRC into intra-node dependencies, but intra-
node dependencies for FRC into inter-node dependencies. As
a result, it eliminates the extra backward communication at the
cost of increased forward communication. However, unlike
Bamboo’s design that can use lazy BRC to eliminate the extra
backward communication, it is not as easy to eliminate the
extra forward communication with lazy FRC—if FRC is not
done eagerly in each iteration, BRC (regardless of whether
it is eager or lazy) must perform tensor re-materialization,
which incurs a long delay.

Level of Redundancy. As with any redundancy-based sys-
tems, the more redundancies, the higher level of resilience.
For example, since Bamboo performs redundant computa-
tions only for one node, it cannot provide resilience when
preemptions occur on consecutive nodes in a pipeline, in
which case a reconfiguration is needed (see §A). However,
enabling RC for multiple nodes can significantly increase the
FRC time, making it much longer than what the bubbles can
accommodate. Furthermore, the locality benefit (i.e., FRC
only incurs intra-node dependency) does not hold anymore,
because FRC now depends on the outputs of multiple nodes.
This can slow down the training substantially.

Takeaway. Storing each node’s replica layers on its predeces-
sor and running eager-FRC-lazy-BRC achieves low-overhead
RC for pipeline parallelism. While this design does not sup-
port consecutive preemptions, Bamboo takes care to make
consecutive nodes come from different zones. As discussed
in §3, if multiple preemptions occur at the same time, the pre-
empted nodes are highly likely to be from the same zone. As
a result, our node assignment reduces the chance of consecu-
tive preemptions, making RC effective for most preemptions.
Although cross-zone data transfer can incur an overhead, this
overhead is negligible (e.g., <3%), as reported in Appendix
§6.5, because in pipeline-parallel training, each node only
passes a small amount of activation data to its neighbors.

We refer to the preempted node as the victim node, and the
node saving the replica of the victim as its shadow node.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 503

B

F

F

B

INode i

Node i+1

Barrier Barrier

B

F

2t t

1.2t 2.4t

0.6t

...

...

Forward Backward Idle

Figure 9: A closer examination of the pipeline bubble. Here
we assume the forward pass on node i and i+ 1 takes time t
and 1.2t, respectively. Hence, a bubble of 0.6t exists before
each communication barrier.

5.2 Schedule Redundant Computation

It is straightforward to see that RC incurs an overhead in both
time and memory. We propose to (1) schedule FRC into the
pipeline bubble to reduce forward computation overhead, (2)
perform BRC lazily to reduce backward computation/com-
munication overhead, and (3) offload unnecessary tensors to
CPU memory to reduce memory overhead.
Eager FRC. As discussed in §2, the pipeline bubble
can come from either imperfect scheduling or unbalanced
pipeline partitioning. To illustrate, consider Figure 9 with
PipeDream’s 1F1B schedule. Suppose there are two consec-
utive nodes in the pipeline where both the forward and the
backward computation of node i + 1 run 1.2× slower than
those of node i. The communication between these two nodes
serves as a barrier. Since node i runs faster, it always reaches
the barrier earlier and waits there until node i + 1 arrives.
This wait period is where we should schedule FRC.

Bamboo builds on the 1F1B schedule (Figure 1(a)) due to
its additional efficiency compared to GPipe’s schedule (Fig-
ure 1(b)). However, even for 1F1B, bubbles widely exist in a
pipeline—as a microbatch passes different pipeline stages, the
later a stage, the longer the (backward and forward) computa-
tion takes. This is because for the 1F1B schedule, the number
of active microbatches in a later stage is always smaller than
that in an earlier stage. In Figure 1 (c), for example, node 1
has 3 active microbatches while node 2 only has 2. Conse-
quently, later stages often consume less memory. To balance
memory usage, the layer partition on a later node is often
larger that that on an earlier node in the pipeline, and hence a
later stage runs slower. A detailed analysis of bubble size can
be be found in Appendix §C.1.
Scheduling. Based on this observation, we schedule FRC
on a node before the node starts communicating with its
successor node. This is where a bubble exists. In cases
where the FRC cannot fit entirely into the bubble (i.e., for the
last four stages in Figure 14), we overlap FRC and FNC as
much as we can. However, for the same microbatch, FRCn

n+1

depends on FNCn and they cannot run in parallel. To resolve
this dependency issue, we focus on different microbatches
for FNC and FRC. That is, Bamboo schedules FNCn for
the k-th microbatch and FRCn

n+1 for its previous (k − 1)-th

3

5

6

4

Node 1

Node 2

31 52 6142Node 1

Forwardstage Backwardstage Communication

Figure 10: An example of merged instruction sequences in
a failover schedule. We use PipeDream’s 1F1B schedule as
shown Figure 1(c), and assume node 2 is the victim node and
node 1 is the shadow node.

microbatch to run in parallel. Since there is no dependency
between them, their executions can overlap.

To reduce memory overhead, Bamboo follows a well-
known principle to offload less frequently used tensors to
CPU memory. Specially, since BRC is not performed in
normal training passes, FRC’s outputs and intermediate re-
sults are not needed until a preemption occurs and BRC is
triggered. As a result, we swap out these data after FRC is
done for each microbatch on each node. These data take the
majority of FRC’s memory consumption; swapping them out
significantly reduces FRC’s GPU memory usage [52]. How-
ever, we leave the redundant weights in GPU memory for
efficient FRC because these weights are needed for FRC on
each microbatch.

Lazy BRC and Recovery. BRC is executed by a failover
schedule which a node runs when detecting its successor node
fails. In particular, for the current iteration, all the lost gradi-
ents must be re-computed, while for the following iterations,
all instructions of the victim node must be executed by its
shadow node (until a reconfiguration occurs). Nodes that
originally communicate with the victim node are transpar-
ently rerouted to the shadow node. The failover schedule is
generated by merging the schedules of the victim and shadow
node. In particular, a schedule consists of a sequence of in-
structions and we divide it into two groups—(1) continuous
communication instructions, which is placed at the head of a
group and (2) computation instructions that can be executed
without remote data dependencies.

When the two instruction groups (from the victim and
shadow nodes) are merged, the instructions are interleaved
with the following rules. (1) Communication instructions are
still placed in the beginning of the merged groups. (2) Com-
munications that used to be inter-node between the victim
and the shadow are removed. (3) External communications
from the victim node are first performed. (4) Computation
instructions are ordered such that backward computation is
always executed earlier; after the backward computation is
done, the memory occupied by intermediate results is freed.
Figure 10 shows an example of merged instruction sequences
if node 2 is the victim node and node 1 is the shadow node.

504 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Model Dataset Samples D P
ResNet-152 [22] ImageNet [32] 300,000 4 12
VGG-19 [63] ImageNet [32] 1,000,000 4 6
AlexNet [32] ImageNet [32] 1,000,000 4 6
GNMT-16 [68] WMT16 EN-De 200,000 4 6
BERT-Large [15] Wikicorpus En [15] 2,500,000 4 12
GPT-2 [49] Wikicorpus En [15] 500,000 4 12

Table 1: Our models, datasets, pipeline configurations.

Support for Multi-GPU Nodes. Bamboo’s RC works for
multi-GPU settings—this requires replicating all layers that
belong to the GPUs of one node in the GPUs of its prede-
cessor node. In other words, we use “group replicas” as
opposed to individual replicas. However, in the presence of
frequent preemptions, using multi-GPU would yield poorer
performance—losing one node (with multiple GPUs) is equiv-
alent to losing multiple nodes in the single-GPU setting. Our
evaluation (§6) shows that it is much harder to allocate new
multi-GPU nodes during training than single-GPU nodes.

Once Bamboo loses too many nodes or there are many
idle nodes (i.e., new allocations) waiting to join the pipelines,
Bamboo launches a reconfiguration. Details of the reconfigu-
ration process can be found in §A.
Support for Pure Data Parallelism. Bamboo supports
pure data parallelism (without model partitioning). Due to
space constraints, here we briefly discuss how it is supported.
We use the same redundant computation strategy—Bamboo
replicates the parameter and optimizer state of each node on
a different node and uses these replicas as redundancies to
provide quick recovery. For pure data parallelism, there is
no bubble time to schedule RC. Eager FRC would be equiv-
alent to overbatching (i.e., each node processes its original
minibatch plus a redundant minibatch). To reduce the FRC
overhead and make RC fit into the GPU memory constraints,
we over-provision spot instances (by 1.5×, in the same way as
discussed in §5) to make each node process a smaller batch.

Enabling eager FRC doubles the batch size. However, it
results only in a ∼1.5× increase in the computation time due
to the parallelism provided by GPUs. This overhead can be
effectively reduced by slightly over-provisioning (1.5 ×D)
nodes, increasing the degree of parallelism and decreasing the
impact of overbatching. This enables us to run FRC eagerly
without incurring much overhead (i.e., <10%).

Once Bamboo loses too many nodes or there are many
idle nodes (i.e., new allocations) waiting to join the pipelines,
Bamboo launches a reconfiguration. Details of the reconfigu-
ration process can be found in Appendix §A.

6 Evaluation
Bamboo is implemented in ∼7K LoC as a standard Python li-
brary. We evaluated Bamboo by pretraining a range of popular
vision and language models, as shown in Table 1. For the first
four (smaller) models that were also used in PipeDream [38]
(which actually used smaller versions of these models), we

took the values of D (the number of data-parallel pipelines)
and Pdemand (pipeline depth) from PipeDream [38]’s config-
urations.

As discussed earlier in §4, to avoid swapping Bamboo
needs 1.5× more instances for each pipeline and hence each
P reported in Table 1 equals 1.5×Pdemand. For BERT and
GPT2, we used 4 and 8×1.5=12 as D and P . We have
also evaluated with another pipeline depth Ph = Pdemand ×
Pricedemand

Pricespot
; these results can be found in §6.2.

We trained these models on a spot cluster from EC2’s p3
family where each instance has V100 GPU(s) with 16GB
GPU memory and 61GB CPU memory. Each on-demand
instance costs $3.06/hr per GPU while the price of its spot
counter-part (at the time of our experiments) is $0.918/hr. Our
evaluation uses two on-demand baselines: (1) p3 instances
each with four V100 GPUs (Demand-M) and (2) p3 instances
each with a single GPU (Demand-S). For both baselines,
the pipeline configuration was the same and all nodes were
obtained from one availability zone.

For all experiments, we trained each model to a target val-
idation accuracy, which is a particular number of samples
for the model. We did not train them to higher accuracies
because large models take a huge amount of time to train (e.g.,
weeks) to reasonable accuracies; using such a large amount
of resources (even spot instances) goes beyond our financial
capabilities. Furthermore, Bamboo uses synchronous train-
ing where the time per iteration is fixed; hence, training for
extended time would not change our results.

For on-demand instances, we used the largest per-GPU
minibatch that fits in one GPU’s memory—anything larger
yields out-of-memory exceptions. This ensures that we hit
peak achievable FLOPs on a single device. For data-parallel
runs with n workers, the global minibatch size is n× g where
g is the minibatch size. The global minibatch sizes we used
are consistent with those used by the ML community and
reported in the literature for these models. We used a per-GPU
minibatch size of 256 per GPU for VGG-19, 512 for AlexNet,
2048 for ResNet-152, 32 for GNMT-16, 256 for BERT-Large,
and 256 for GPT-2. For microbatch size, we always selected
a small value and tuned it for different models/configurations.
We trained the vision models with an initial learning rate of
0.001, respectively, with a vanilla SGD optimizer [29]. For
language models, we used the Adam optimizer [30] with an
initial learning rate of 6e−3. We used half (fp16) precision in
all our experiments.

6.1 Training Performance and Costs

Overall Performance. To thoroughly and deterministically
evaluate Bamboo’s performance over spot instances under
different preemption rates, we first ran a 48-node cluster (i.e.,
the configuration for ResNet, BERT, and GPT) and a 32-node
cluster (i.e., for VGG, AlexNet, and GNMT) on AWS and
collected a 24-hour preemption trace for each. On these traces,
the hourly preemption rate varies significantly, ranging from

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 505

Model System Time (Hours) Throughput Cost ($/hr) Value

ResNet D-M 2.78 30.00 97.92 0.31
D-S 2.60 32.00 97.92 0.33
B-M [4.31, 5.31, 10.14] [19.35, 15.69, 8.22] [44.33, 40.01, 37.21] [0.43, 0.39, 0.22]
B-S [3.85, 4.29, 6.87] [21.67, 19.41, 12.13] [42.23, 40.39, 36.72] [0.51, 0.48, 0.33]

VGG D-M 1.41 197.00 48.96 4.02
D-S 1.66 167.00 48.96 3.41
B-M [2.98, 3.67, 4.33] [93.34, 75.75, 64.22] [21.31, 19.55, 18.43] [4.38, 4.11, 3.48]
B-S [1.81, 2.22, 2.83] [153.31, 124.88, 98.21] [20.19, 19.28, 18.36] [7.59, 6.48, 5.35]

AlexNet D-M 0.77 359.00 48.96 7.33
D-S 0.78 336.00 48.96 6.86
B-M [1.02, 1.34, 1.93] [271.06, 207.43, 143.57] [21.31, 19.55, 18.43] [12.72, 10.61, 7.79]
B-S [0.82, 0.86, 0.99] [340.32, 321.65, 280.42] [20.19, 19.28, 18.36] [16.86, 16.68, 15.27]

GNMT D-M 2.06 27.00 48.96 0.55
D-S 2.31 24.00 48.96 0.49
B-M [3.98, 5.13, 8.78] [13.95, 10.82, 6.33] [21.31, 19.55, 18.43] [0.65, 0.55, 0.34]
B-S [2.94, 3.41, 6.31] [18.92, 16.31, 8.8] [20.19, 19.28, 18.36] [0.94, 0.85, 0.48]

BERT D-M 5.89 118.00 97.92 1.21
D-S 6.43 108.00 97.92 1.10
B-M [9.75, 12.31, 16.66] [71.22, 56.41, 41.68] [44.33, 40.01, 37.21] [1.61, 1.41, 1.12]
B-S [7.02, 8.3, 11.46] [98.87, 83.70, 60.59] [42.23, 40.39, 36.72] [2.34, 2.07, 1.65]

GPT D-M 4.34 32.00 97.92 0.32
D-S 4.63 30.00 97.92 0.30
B-M [7.83, 9.92, 12.04] [17.73, 14.00, 11.54] [44.33, 40.01, 37.21] [0.40, 0.35, 0.31]
B-S [4.64, 6.12, 10.08] [29.92, 22.68, 13.78] [42.23, 40.39, 36.72] [0.71, 0.56, 0.38]

Table 2: Comparisons between training with DeepSpeed over on-demand instances and Bamboo over spot instances. For
Bamboo, we trained each model three times, and their results are explicitly listed in the form of [a, b, c] for the 10% (average),
16%, and 33% preemption rates, respectively.

no preemption all the way to 16 nodes preempted (33%), with
an average rate of 4-6 nodes per hour (8-12%). To account for
such changes, we extracted from each trace three segments,
each with a different hourly preemption rate: 10%, 16%, and
33%. We used AWS’ fleet manager to trigger preemptions
by replaying these segments. Note that if we were to run
Bamboo over the uncontrolled spot cluster, there would be no
way to enable a direct comparison.

We trained ResNet, BERT, and GPT by replaying the three
segments from the 48-node trace, and VGG, AlexNet, and
GNMT by using the segements from the 32-node trace. These
results are reported in Table 2. In addition to the time and
monetary costs, we used a metric called value, which mea-
sures performance-per-dollar. Value is computed as V = T

C
where T is the training throughput, measured in terms of the
number of samples per second, and C is the monetary cost
per hour. Throughout the evaluation, we used both value and
throughput as our metrics.

Our first observation is Demand-M slightly outperforms
Demand-S due to reduced cross-node communication. How-
ever, the difference is marginal as the amount of data
(i.e., only activations) transferred over the network is small.
Bamboo-S significantly outperforms Bamboo-M (i.e., 1.4×
higher throughput and 1.5× higher value) because (1) multi-
GPU nodes are subject to more GPU failures with the same
number of preemptions and (2) it is much harder to to allocate
new nodes in a timely fashion.

For Bamboo-S, the results in each bracket of the form [a, b,
c] show Bamboo’s performance under the three preemption
rates. The higher the preemption rate, the worse Bamboo’s
throughput and value. Given that the average preemption
rate is ∼10%, the first number in each bracket (highlighted)
represents Bamboo’s performance on the used spot cluster.

On average, Bamboo’s throughput (under the 10% preemption
rate) is 15% lower than DeepSpeed running over D×Pdemand

instances. There are three major reasons.

First, the number of active instances in the spot cluster is
actually lower than the requested size D × P . For ResNet,
for example, the average number of instances throughout the
training is only 25.58 although the requested cluster size is
48 (and the on-demand cluster always has 32 nodes). The
autoscaling group keeps attempting to add new instances but
the total number of active instances only reaches the requested
size for a small period of time.

Second, Bamboo’s reconfiguration contributes to reduced
throughput—these overheads vary with environments and
take an average of 7% of the total training time.

Third, the time for each iteration increases due to eager
FRC. This is the major source of overhead for language mod-
els such as GPT-2. A detailed evaluation of RC’s overhead
can be found in §6.4.

Despite the small throughput reduction, Bamboo delivers
an overall of 1.95× higher value compared to training with
on-demand instances. The benefit in value remains clear
for five models (ResNet, VGG, AlexNet, BERT and GPUT)
even when the preemption rate increases to 33% (i.e., the
worst-case segment of the collected trace).

To have a closer examination of Bamboo-S’ training, we
showed the traces for BERT-large and VGG-19, and plotted
them in Figure 11. The two rows show (a) preemption traces
(under the 10% rate), (b) training throughputs, (c) monetary
costs, and (d) values, for BERT-large and VGG-19, respec-
tively. Since Bamboo-M underperforms Bamboo-S, we focus
on Bamboo-S in the rest of the evaluation.

506 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Trace (b) Training Throughput (c) Monetary Cost (d) Value

Figure 11: Bamboo’s training performance for BERT (top) and VGG (bottom), compared to on-demand instances (red lines).

Prob. Prmt (#) Inter. (hr) Life (hr) Fatal Fail. (#) Nodes (#) Thruput Cost ($/hr) Value
0.01 8.50 2.08 15.20 0.06 45.18 87.99 41.11 2.10
0.05 48.15 0.44 10.14 0.23 43.65 76.35 39.73 1.90
0.10 99.77 0.23 6.71 0.29 41.69 72.12 37.94 1.88
0.25 276.52 0.10 3.13 1.04 35.80 60.12 32.58 1.82
0.50 709.83 0.06 1.49 5.98 26.96 40.37 24.53 1.59

(a) Results of simulating training BERT until completion; each preemption probability ran
1,000 times.

Prob. Thruput Cost ($/hr) Value
0.01 54.87 90.73 0.60
0.05 50.66 87.43 0.58
0.10 49.18 83.23 0.59
0.25 40.59 71.24 0.57
0.50 26.24 53.05 0.49

(b) Simulation results of training
BERT-large with pipeline depth Ph

(which is 3.3×Pdemand).
Table 3: Simulation results for more configurations.

6.2 Different Failure Models

This section demonstrates Bamboo’s ability to affordably train
large DNNs across a wide range of failure models. To this
end, we developed an offline simulation framework that takes
as input (1) the preemption probability (including preemption
frequency and the number of preemptions in each bulk), (2)
per-iteration training time, and (3) Bamboo’s recovery and
reconfiguration time, automatically calculating training per-
formance, costs, and values. Here we focus on BERT-large
and simulated its training until completion.

We experimented using 5 different preemption probabili-
ties (i.e., preemption rate per hour), and kept the preemption
probability constant throughout the entire run (as opposed to
replaying traces). To mimic realistic spot instance creation
and preemption, we randomly generated different creation
probabilities per hour and also randomly picked zones for
allocations. For each preemption probability, Table 3a reports
the average numbers of preemptions, intervals (i.e., average
time, in hours, between preemption events), average lifetime
of an instance (in hours), average numbers of fatal failures
(which require a restart from a checkpoint), average num-
bers of instances in the cluster, throughput (i.e., #samples per
second), costs, and values, across 1,000 simulations.

Our simulations show that Bamboo’s values match our real-
world runs as just reported in §6.1. Further, regardless of the
preemption probability, the value of Bamboo remains stable
and is constantly higher than that of training with on-demand
instances (which is 1.1). This is because most preemptions
can be quickly recovered without introducing much overhead.

The higher the preemption probability, the less the active
instances running training jobs; this is the major source of the
performance slowdown. However, the cost is reduced also
proportionally, leading to stable values.
Simulation for Ph. To understand the tradeoff in choosing
P , we experimented with another value of P for BERT-large:
Ph, which is 3.06

0.918 × Pdemand. This configuration represents
the upper-bound of the spot training resources that can be
obtained within the cost of training with Pdemand on-demand
instances (while D remains unchanged). Note that in practice
the number of active instances can barely reach the requested
size and hence the cost of using a spot cluster of size Ph ×D
is often still much lower than training with an on-demand
cluster of size Pdemand ×D.

To avoid incurring a large monetary cost, we used the same
simulator to run this experiment. These results are reported
in Table 3b. As shown, using Ph actually decreases both
throughput (compared to 84 under P in Table 2) and value
(due to significantly increased costs). This is because using
too a large pipeline leads to poorer partitioning, underutilized
resources and inferior performance.

6.3 Comparisons with Other Systems

We have reported the performance of training GPT-2 with
asynchronous checkpointing and restart in Figure 3—the
checkpointing-based approach spent only 23% on actual train-
ing, while Bamboo increases this percentage to 84%. In fact,
as shown in Table 3a, even for the preemption rate of 0.5, there
are only 5.98 fatal failures that would require checkpoint-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 507

ing/restart under Bamboo. On the contrary, a checkpointing-
based approach would need to restart the pipeline for every
one of the 709.83 preemptions. Similarly, sample dropping
significantly slows down the training when the preemption
rate increases, as shown in Figure 4.
Varuna. Varuna [2] is a system developed concurrently
with Bamboo to enable training on spot instances. As with
other existing techniques, Varuna provides resilience with
checkpointing. We set up Varuna on the same spot cluster
on AWS EC2 as we used in § 6.1. We ran Varuna with
a D × P pipeline (i.e., the same as on-demand instances)
because Varuna does not use redundancies and hence not
need to over-provision resources.

We trained BERT on Varuna with the same configurations,
including the same datasets, model architectures, float preci-
sion, preemption rates, and hyperparameters. Varuna hung
under the 33% preemption rate. For the 10% and 16% pre-
emption rates, comparisons between Varuna and Bamboo-S
are reported in Figure 12. As shown, Bamboo-S outperforms
Varuna by 2.5× and 2.7× in throughput, respectively, under
the 10% and 16% rates; and by 1.67× and 1.64×, in value,
under the two rates. Note that value benefits are lower than
throughput benefits due to Varuna’s use of fewer instances. To
understand the cause of Varuna’s slowdown, see §3. Varuna
follows a similar pattern, having to frequently restart and redo
lost computations.

Figure 12: Throughput and value for Bamboo-S and Varuna
running BERT at different preemption levels. Varuna hung at
the 33% preemption rate.

6.4 Microbenchmarks of Redundant Computation

To fully understand the overhead introduced by RC, we com-
pared time and memory among three versions of RC: eager-
FRC-lazy-BRC (EFLB, Bamboo’s approach), eager-FRC-
eager-BRC (EFEB), and lazy-FRC-lazy-BRC (LFLB), when
training BERT and ResNet. Since the focus here is the RC
overhead, we ran this experiment over on-demand instances.

Table 4 reports RC’s time overheads for the three RC set-
tings. As expected, LFLB incurs the lowest per-iteration
overhead because neither FRC nor BRC is performed with
normal training iterations. The ∼7% overhead comes pri-
marily from the extra code executed to prepare for a failover

Redundancy Mode BERT ResNet
Lazy-FRC-Lazy-BRC 7.01% 7.65%
Eager-FRC-Lazy-BRC (Bamboo) 19.77% 9.51%
Eager-FRC-Eager-BRC 71.51% 64.24%
Table 4: Time overhead with different RC settings.

schedule. However, the recovery time is much longer under
LFLB than the other two settings (discussed shortly). On the
contrary, EFEB has the highest per-iteration overhead due
to the eager execution of both FRC and BRC. The overhead
incurred by EFLB, as used in Bamboo, is slightly higher than
LFLB but much lower than EFEB. This is because eager FRC
does not incur extra communication overhead and much its
computation overhead can be hidden by scheduling it into the
pipeline bubble and overlapping it with FNC.

Another interesting observation is the overhead for ResNet
is lower than for BERT. This is because ResNet’s layer parti-
tioning is much more imbalanced than that of BERT (which
is a transformer model where most the middle layers are
equivalent). As a result, the bubble in ResNet’s pipeline is
much larger and hence it can accommodate a more significant
fraction of FRC.

Eager FRC incurs an overall ∼1.5× overhead in GPU
memory (that is why Bamboo recommends creating pipelines
with 1.5× more nodes) while lazy FRC does not incur any
memory overhead.

(a) BERT (b) ResNet

Figure 13: Relative pause time for BERT and ResNet un-
der different RC settings. Bamboo runs into a pause when
a pipeline stops training and waits for the shadow node to
recover the lost state on the victim node.

To understand the pause time under these different RC set-
tings, Figure 13 shows the relative pause time (i.e., the actual
pause time relative to the time of each training iteration with-
out preemptions). As shown, lazy FRC reduces pause time
by ∼35% despite the slightly higher per-iteration overhead
it introduces. In summary, eager-FRC-lazy-BRC strikes the
right balance between overhead and pause time.

Model Config Throughput Total Transferred Bytes
BERT Spread 148.923 16.39 GiB
BERT Cluster 151.124 16.39 GiB

VGG19 Spread 160.12 11.213 GiB
VGG19 Cluster 165.77 11.213 GiB

Table 5: Comparison of throughput when running across
availability zones compared to running within a single zone.

508 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6.5 Cross-Zone Communication

Because Bamboo allocates workers across availability zones
to minimize the probability of reconfigurations, we measured
the overhead incurred by cross-zone communication. We ran
Bamboo in two configurations: (1) with nodes distributed
across all zones (i.e., Spread) and (2) in a single availability
zone with AWS’ “Placement Group” option set to “Cluster”
(i.e., Cluster), and measured their performance differences.
As reported in Table 5, the differences between these two
configurations are quite low (i.e., usually less than 5%). This
demonstrates Bamboo’s choice of assigning nodes from dif-
ferent availability zones as consecutive nodes in each pipeline
has little impact on training performance.

7 Related Work
Parallel Training. Data parallelism [28, 14, 32, 7, 12, 72,
35, 72] is the most common parallelism model that partitions
the dataset and trains on each partition. The learned weights
are synchronized via either an all-reduce approach [7] or pa-
rameter servers [35, 10]. Model parallelism [14, 31, 43, 60,
62] partitions the operators in a DNN model across multiple
GPU devices, with each worker evaluating and performing
updates for only a subset of the model’s parameters for all
inputs. Recently, pipeline parallelism [24, 38, 71, 65] has
been proposed to train large models by partitioning layers
across workers and uses microbatches to saturate the pipeline.
Popular DL training libraries such as DeepSpeed [51] and
Megatron [40] support 3D parallelism, which combines data
parallelism, model parallelism, and pipeline parallelism to
train models at extremely large scale with improved com-
pute and memory efficiency. Furthermore, DeepSpeed offers
ZeRO-style data parallelism [52], which partitions model
states across GPUs and uses communication collectives to
gather individual parameters when needed.
Elastic Training. Distributed training experiences frequent
resource changes. There are a number of systems [43, 21, 47,
23, 48, 25] built to provide elasticity for training over chang-
ing resources. TorchElastic [47] is a PyTorch [44]-based
tool that can dynamically kill or add data-parallel workers.
Huang et al. [23] considers elasticity for declarative ML on
MapReduce, which does not work for modern deep learning
workloads. Litz [48] is a system that provides elasticity in the
context of CPU-based machine learning using the parameter
servers. Or at al. [43] presents an autoscaling system built on
top of TensorFlow [1] and Horovod [55], which dynamically
adapts the batch size and reuses existing processes.
Exploiting Spot Instances. Proteus [21] exploits dynamic
pricing on public clouds in order to lower costs for machine
learning workloads through elasticity. Since Proteus does not
explicitly consider modern deep learning workloads, Proteus
simply reprocesses the input of a preempted node with another
node. Varuna [2] is a system built concurrently with Bamboo
for distributed training over spot instances. However, Varuna

focuses on elasticity, not quick recovery from preemptions.
Bamboo, on the contrary, is designed specifically to deal with
frequent preemptions.

There exists a body of work on enabling low latency
and/or SLO guarantees when using preemptible spot instances.
Tributary [20] is an elastic control system that exploits pre-
emptible resources to reduce cost with SLO guarantees. King-
fisher [59] proposes a cost-aware resource acquisition scheme
that uses integer linear programming to determine a ser-
vice’s resource footprint among a heterogeneous set of non-
preemptible instances with fixed prices. Flint [56] is a system
that runs batch-based data-intensive jobs on transient servers.
SpotCheck [58] selects spot markets to acquire instances in
while always bidding at a configurable multiple of the spot
instance’s corresponding on-demand price. BOSS [70] hosts
key-value stores on spot instances by exploiting price differ-
ences across pools in different data-centers. ExoSphere [57]
is a virtual cluster framework for spot instances. These sys-
tems are all orthogonal to Bamboo that is built specifically
for deep learning training.
GPU Scheduling. There is also a large body of work on
GPU scheduling [61, 69, 74, 46, 37, 19, 39, 40, 34, 73] for
ML workloads. These techniques are orthogonal to Bamboo
—they all focus on efficiency and throughput while Bamboo
aims to perform redundant computation at a low cost.

8 Conclusion
Bamboo is the first distributed system that uses redundant
computation to provide resilience and fast recovery for train-
ing DNNs over preemptible instances. An evaluation with 6
representative models shows that Bamboo provides a much
higher value than (1) training on on-demand instances and (2)
training with checkpointing/restart on spot instances.

Acknowledgement
We thank the anonymous reviewers for their valuable and
thorough comments. We are grateful to our shepherd Yiting
Xia for her feedback. This work is supported by NSF
grants CNS-1703598, CNS-1763172, CNS-1907352, CNS-
2007737, CNS-2006437, CNS-2128653, CNS-2106838,
CNS-2147909, CNS-2152313, CNS-2151630, CNS-
2140552, and CNS-2153449, ONR grant N00014-18-1-2037,
a Sloan Research Fellowship, and research grants from
Cisco.

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P.
Warden, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: a system for
large-scale machine learning. In OSDI, pages 265–283, 2016.

[2] S. Athlur, N. Saran, M. Sivathanu, R. Ramjee, and N. Kwatra. Varuna:
scalable, low-cost training of massive deep learning models. In Eu-
roSys, 2021.

[3] AWS. Amazon ec2 spot instances pricing.
https://aws.amazon.com/ec2/spot/pricing/, 2021.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 509

[4] Z. Bai, Z. Zhang, Y. Zhu, and X. Jin. PipeSwitch: fast pipelined
context switching for deep learning applications. In OSDI, pages 499–
514, 2020.

[5] S. Boucher, A. Kalia, D. G. Andersen, and M. Kaminsky. Lightweight
preemptible functions. In USENIX ATC, pages 465–477, 2020.

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A.
Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I.
Sutskever, and D. Amodei. Language Models are Few-Shot Learners.
In NIPS, 2020.

[7] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz. Revisiting dis-
tributed synchronous sgd. In ICLR Workshop Track, 2016.

[8] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with
sublinear memory cost, 2016.

[9] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer. cuDNN: efficient primitives for deep learning,
2014.

[10] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project
Adam: building an efficient and scalable deep learning training system.
In OSDI, pages 571–582, 2014.

[11] C. Coleman, D. Kang, D. Narayanan, L. Nardi, T. Zhao, J. Zhang, P.
Bailis, K. Olukotun, C. Ré, and M. Zaharia. Analysis of dawnbench, a
time-to-accuracy machine learning performance benchmark. SIGOPS
Oper. Syst. Rev., 53(1):14–25, 2019.

[12] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing. GeePS:
scalable deep learning on distributed GPUs with a gpu-specialized
parameter server. In EuroSys, 2016.

[13] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le,
M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng.
Large scale distributed deep networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems
- Volume 1, NIPS’12, pages 1223–1231, Lake Tahoe, Nevada. Curran
Associates Inc., 2012.

[14] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le,
M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng.
Large scale distributed deep networks. In NIPS, pages 1223–1231,
2012.

[15] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805, 2018. URL: http://arxiv.org/abs/1810.
04805.

[16] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G.
Long, J. Yang, L. Xia, L. Diao, X. Liu, and W. Lin. DAPPLE: a
pipelined data parallel approach for training large models. In PPoPP,
pages 431–445, 2021.

[17] W. Fedus, B. Zoph, and N. Shazeer. Switch Transformers: Scaling to
Trillion Parameter Models with Simple and Efficient Sparsity. CoRR,
2021.

[18] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He. Accurate, large minibatch
SGD: training ImageNet in 1 hour. CoRR, abs/1706.02677, 2017.
URL: http://arxiv.org/abs/1706.02677.

[19] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,
and C. Guo. Tiresias: a gpu cluster manager for distributed deep
learning. In NSDI, pages 485–500, 2019.

[20] A. Harlap, A. Chung, A. Tumanov, G. R. Ganger, and P. B. Gibbons.
Tributary: spot-dancing for elastic services with latency SLOs. In
USENIX ATC, pages 1–14, 2018.

[21] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons.
Proteus: agile ML elasticity through tiered reliability in dynamic
resource markets. In EuroSys, 2017.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In CVPR, pages 770–778, 2016.

[23] B. Huang, M. Boehm, Y. Tian, B. Reinwald, S. Tatikonda, and F. R.
Reiss. Resource elasticity for large-scale machine learning. In SIG-
MOD, pages 137–152, 2015.

[24] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and Z.
Chen. Gpipe: efficient training of giant neural networks using pipeline
parallelism. CoRR, abs/1811.06965, 2018. URL: http://arxiv.
org/abs/1811.06965.

[25] C. Hwang, T. Kim, S. Kim, J. Shin, and K. Park. Elastic resource
sharing for distributed deep learning. In NSDI, pages 721–739, 2021.

[26] P. Jain, A. Jain, A. Nrusimha, A. Gholami, P. Abbeel, J. Gonzalez,
K. Keutzer, and I. Stoica. Checkmate: breaking the memory wall with
optimal tensor rematerialization. In MLSys, pages 497–511, 2020.

[27] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and F.
Yang. Analysis of Large-Scale Multi-Tenant GPU clusters for DNN
training workloads. In USENIX ATC, pages 947–960, 2019.

[28] Z. Jia, M. Zaharia, and A. Aiken. Beyond data and model parallelism
for deep neural networks. In MLSys, 2019.

[29] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of
a regression function. Annals of Mathematical Statistics, 23:462–466,
1952.

[30] D. P. Kingma and J. Ba. Adam: a method for stochastic optimization,
2014.

[31] A. Krizhevsky. One weird trick for parallelizing convolutional neural
networks. CoRR, abs/1404.5997, 2014. URL: http://arxiv.
org/abs/1404.5997.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. Commun. ACM, 60(6):84–
90, May 2017.

[33] Kubernetes: an open-source system for automating deploy-
ment, scaling, and management of containerized applications.
https://kubernetes.io/, 2021.

[34] Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio, M. Weimer, and
M. Interlandi. PRETZEL: opening the black box of machine learning
prediction serving systems. In OSDI, pages 611–626, 2018.

[35] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josi-
fovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed ma-
chine learning with the parameter server. In OSDI, pages 583–598,
2014.

[36] H. Lin, H. Zhang, Y. Ma, T. He, Z. Zhang, S. Zha, and M. Li. Dynamic
Mini-batch SGD for Elastic Distributed Training: Learning in the
Limbo of Resources. CoRR, 2019.

[37] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman, A.
Akella, A. Phanishayee, and S. Chawla. Themis: fair and efficient
GPU cluster scheduling. In NSDI, pages 289–304, 2020.

[38] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia. PipeDream: generalized
pipeline parallelism for DNN training. In SOSP, pages 1–15, 2019.

[39] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia. Heterogeneity-aware cluster scheduling policies for deep
learning workloads. In OSDI, pages 481–498, 2020.

[40] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V.
Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia. Efficient large-scale language model
training on gpu clusters using Megatron-LM. In SC, 2021.

510 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1404.5997

[41] A. Newell, D. Skarlatos, J. Fan, P. Kumar, M. Khutornenko, M.
Pundir, Y. Zhang, M. Zhang, Y. Liu, L. Le, B. Daugherty, A. Samu-
dra, P. Baid, J. Kneeland, I. Kabiljo, D. Shchukin, A. Rodrigues, S.
Michelson, B. Christensen, K. Veeraraghavan, and C. Tang. RAS:
continuously optimized region-wide datacenter resource allocation.
In SOSP, pages 505–520, 2021.

[42] Operating etcd clusters for Kubernetes.
https://kubernetes.io/docs/tasks/administer-cluster/configure-
upgrade-etcd/, 2021.

[43] A. Or, H. Zhang, and M. Freedman. Resource elasticity in distributed
deep learning. In I. Dhillon, D. Papailiopoulos, and V. Sze, editors,
MLSys, volume 2, pages 400–411, 2020.

[44] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E.
Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: an imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32,
2019.

[45] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant
arrays of inexpensive disks (RAID). In SIGMOD, pages 109–116,
1988.

[46] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. Optimus: an efficient
dynamic resource scheduler for deep learning clusters. In EuroSys,
2018.

[47] PyTorch Developers. TorchElastic. 2021. URL: https : / /
pytorch.org/docs/stable/distributed.elastic.
html.

[48] A. Qiao, A. Aghayev, W. Yu, H. Chen, Q. Ho, G. A. Gibson, and
E. P. Xing. Litz: elastic framework for High-Performance distributed
machine learning. In USENIX ATC 18, pages 631–644, 2018.

[49] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.
Language models are unsupervised multitask learners. In 2019.

[50] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.
Language Models are Unsupervised Multitask Learners, 2019.

[51] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. ZeRO: memory
optimizations toward training trillion parameter models. In SC, 2020.

[52] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. Zero: memory
optimizations toward training trillion parameter models. In SC20:
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–16. IEEE, 2020.

[53] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. On parallelizability of
stochastic gradient descent for speech dnns. In ICASSP, pages 235–
239, 2014.

[54] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient
descent and application to data-parallel distributed training of speech
dnns. In Interspeech 2014, Sept. 2014.

[55] A. Sergeev and M. D. Balso. Horovod: fast and easy distributed deep
learning in tensorflow. CoRR, abs/1802.05799, 2018. URL: http:
//arxiv.org/abs/1802.05799.

[56] P. Sharma, T. Guo, X. He, D. E. Irwin, and P. J. Shenoy. Flint: Batch-
Interactive Data-Intensive Processing on Transient Servers. In Eu-
roSys, 2016.

[57] P. Sharma, D. Irwin, and P. Shenoy. Portfolio-driven resource man-
agement for transient cloud servers. In SIGMETRICS, page 59, 2017.

[58] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy. SpotCheck:
designing a derivative IaaS cloud on the spot market. In EuroSys,
2015.

[59] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A cost-aware elasticity
provisioning system for the cloud. In ICDCS, pages 559–570, 2011.

[60] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanan-
takool, P. Hawkins, H. Lee, M. Hong, C. Young, R. Sepassi, and B. A.
Hechtman. Mesh-TensorFlow: Deep Learning for Supercomputers.
In NIPS, 2018.

[61] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Kr-
ishnamurthy, and R. Sundaram. Nexus: a GPU cluster engine for
accelerating DNN-based video analysis. In SOSP, pages 322–337,
2019.

[62] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B.
Catanzaro. Megatron-LM: Training Multi-Billion Parameter Lan-
guage Models Using Model Parallelism. CoRR, 2019.

[63] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. In Y. Bengio and Y. LeCun, editors,
ICLR, 2015.

[64] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective
communication operations in mpich. Int. J. High Perform. Comput.
Appl., 19(1):49–66, 2005.

[65] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia, J. Wei, K. Vora,
R. Netravali, M. Kim, and G. H. Xu. Dorylus: affordable, scalable, and
accurate GNN training with distributed CPU servers and serverless
threads. In OSDI, pages 495–514, 2021.

[66] I. Turc, M. Chang, K. Lee, and K. Toutanova. Well-Read Students
Learn Better: The Impact of Student Initialization on Knowledge
Distillation. CoRR, 2019.

[67] T. Wang, J. Huan, and B. Li. Data dropout: optimizing training data
for convolutional neural networks. In ICTAI, pages 39–46, 2018.

[68] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M.
Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa,
K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J.
Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean.
Google’s neural machine translation system: bridging the gap between
human and machine translation. CoRR, abs/1609.08144, 2016. URL:
http://arxiv.org/abs/1609.08144.

[69] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin, and
Y. Jia. AntMan: dynamic scaling on GPU clusters for deep learning.
In OSDI, pages 533–548, 2020.

[70] Z. Xu, C. Stewart, N. Deng, and X. Wang. Blending on-demand and
spot instances to lower costs for in-memory storage. In INFOCOM,
pages 1–9, 2016.

[71] B. Yang, J. Zhang, J. Li, C. Ré, C. R. Aberger, and C. D. Sa. PipeMare:
Asynchronous Pipeline Parallel DNN Training. In MLSys, 2019.

[72] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J.
Wei, P. Xie, and E. P. Xing. Poseidon: an efficient communication
architecture for distributed deep learning on GPU clusters. In USENIX
ATC, pages 181–193, 2017.

[73] H. Zhang, L. Stafman, A. Or, and M. J. Freedman. SLAQ: quality-
driven scheduling for distributed machine learning. In SoCC,
pages 390–404, 2017.

[74] Q. Zhang, R. Zhou, C. Wu, L. Jiao, and Z. Li. Online scheduling
of heterogeneous distributed machine learning jobs. In MobiHoc,
pages 111–120, 2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 511

https://pytorch.org/docs/stable/distributed.elastic.html
https://pytorch.org/docs/stable/distributed.elastic.html
https://pytorch.org/docs/stable/distributed.elastic.html
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1609.08144

A Pipeline Reconfiguration
Reconfiguration introduces a much longer pause to the train-
ing process than recovering using RC. The goal of recon-
figuration is to rebalance pipelines so they can withstand
more failures as training progresses and continue to yield
good performance. Reconfiguration also attempts to allocate
more instances to maintain the cluster size. As shown in §3,
asynchronous checkpointing is very efficient (but frequent
restarting is not), and hence, Bamboo periodically check-
points the model state. These checkpoints will not be used
unless Bamboo restarts the training from a rare fatal failure
(i.e., too many nodes are preempted so that training cannot
continue).
Reconfiguration Triggering. Reconfiguration is triggered
immediately when (1) consecutive preemptions occur simul-
taneously and (2) Bamboo determines that there is an urgent
need to rebalance the pipelines at the end of an optimizer step.
To do (2), the workers retrieve the cluster state from etcd,
allowing them to see how many preemptions have occurred
and in which pipeline they have occurred. They can also
see how many workers are currently waiting to join the next
rendezvous.

There are two main conditions for triggering reconfigu-
ration at the end of an optimizer step: (a) the cluster has
gained enough new nodes to reconstruct a new pipeline, and
(b) Bamboo has encountered many preemptions and is close
to a critical failure in the next step (e.g., encountering another
preemption would cause us to suspend training), in which
case we must pause the training to allocate more nodes.
Reconfiguration Policy. Bamboo attempts to maintain the
pipeline depth P specified by the user. Therefore, our top
priority at a reconfiguration is to reestablish a full pipeline of
depth P . In this case, if we have had F failures and J (> F)
nodes are waiting to join the cluster (i.e., new allocations
arrive as Bamboo runs on the “spare tire”), we can fully
recover all pipelines to depth P . The remaining (J−F) nodes
are placed in a standby queue to provide quick replacement
upon future failures. However, if the number of nodes joining
is smaller than F , we may end up having a number of N
nodes such that N%P ̸= 0. In this case, instead of creating
asymmetric pipelines (which complicates many operations),
we move some nodes into the standby queue and decrease the
total number of data-parallel pipelines. A final case is that the
number of nodes joining, together with those in the standby
queue, can form a new pipeline, and in this case we add a
new pipeline to the system. In all these cases, the redundant
layers are redistributed among the set of nodes participating
in the updated pipelines.
How to Reconfigure. Once a reconfiguration is triggered,
each node must be assigned a new stage (with new layers,
state, and redundancies); it also needs to figure out if it will
need to send or receive model and optimizer state from other
nodes. Whichever nodes hits the rendezvous barrier first

decides the new cluster configuration and puts the decision
on etcd for all other nodes to read. To minimize the amount
of data sent in layer transfer, Bamboo transfers layers in such
a way that each node can reuse its old model and optimizer
state as much as possible.

B Support for Pure Data Parallelism
Bamboo supports pure data parallelism (without model par-
titioning). Due to space constraints, here we briefly discuss
how it is supported. We use the same redundant computation
strategy—Bamboo replicates the parameter and optimizer
state of each node on a different node and uses these replicas
as redundancies to provide quick recovery. For pure data
parallelism, there is no bubble time to schedule RC. Eager
FRC would be equivalent to overbatching (i.e., each node
processes its original minibatch plus a redundant minibatch).
To reduce the FRC overhead and make RC fit into the GPU
memory constraints, we over-provision spot instances (by
1.5×, in the same way as discussed in §5) to make each node
process a smaller batch.

Enabling eager FRC doubles the batch size. However, it
results only in a ∼1.5× increase in the computation time due
to the parallelism provided by GPUs. This overhead can be
effectively reduced by slightly over-provisioning (1.5 ×D)
nodes, increasing the degree of parallelism and decreasing the
impact of overbatching. This enables us to run FRC eagerly
without incurring much overhead (i.e., <10%).

C Additional Experiments
C.1 Bubble Size

Figure 14: Comparison between bubble sizes and forward
computations.

We measured the sizes of the pipeline bubble and forward
computation of BERT with the same configuration as men-
tioned in Section 6, running on on-demand instances each
with a single GPU. We manually inserted a barrier before
each peer-to-peer communication, treating the time spent on
the corresponding NCCL kernel as the bubble size. These
results are reported in Figure 14.

To make memory evenly distributed across stages, more
layers are placed on the last few stages. This explains the
growth of forward computation. In this pipeline, for the first
4 stages, the bubble time is long enough to fit the entire FRC

512 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(i.e., the bubble at stage 1 should run the forward computation
for stage 2). For the last 4 stages, the bubble time is shorter
than the forward computation time—it can still cover ∼60%
of its FRC. The rest of the FRC on these nodes is run in
parallel with their regular forward computation, as discussed
in §5.2.

C.2 Bamboo for Pure Data Parallelism

We ran two relatively small models such as VGG and ResNet
using pure data parallelism with 8 workers (i.e., we parti-
tion the data but not the model). For Bamboo, we similarly
over-provisioned 1.5× additional workers. We implemented
another baseline Checkpoint, which periodically checkpoints
model state for each worker and restarts the worker on another
node when its original node is preemption. We used the same
global batch size for these models as reported in §6. The
comparisons between Bamboo, Checkpoint, and on-demand
training are shown in Table 6.

Note that our implementation of Checkpoint assumes that
there is always a standby node that is ready to join and load
the checkpoint (which is a unrealistic over-approximation of
the allocation model on any spot market); as such, the training
cost remains unchanged and its throughput is reduced as the
preemption rate increases.

Model System Throughput Cost ($/hr) Value

ResNet
Demand 24.51 24.48 1.01
Checkpoint [12.26, 8.42, 5.03] [7.34, 7.34, 7.34] [1.67, 1.15, 0.68]
Bamboo [21.22, 18.31, 12.31] [10.56, 10.09, 9.18] [2.01, 1.84, 1.34]

VGG
Demand 144.28 24.48 5.89
Checkpoint [83.21, 67.21, 45.31] [7.34, 7.34, 7.34] [11.33, 9.15, 6.17]
Bamboo [125.59, 96.51, 73.73] [10.56, 10.09, 9.18] [11.89, 9.56, 8.03]

Table 6: Comparison between pure data-parallel training over
on-demand instances, a checkpoint-based approach on spot
instances, Bamboo on spot instances. For Checkpoint and
Bamboo, we trained each model three times, and their re-
sults are explicitly listed in the form of [a, b, c] for the 10%
(average), 16%, and 33% preemption rates, respectively.

As shown, Bamboo outperforms Checkpoint by 1.64× and
1.22× in throughput and value. Both Checkpoint and Bamboo
deliver a higher value than on-demand training (by 2× and
1.79×).

We make two observations on these numbers. First, Bam-
boo incurs a higher cost than Checkpoint due to resource
over-provisioning. However, as discussed above, Checkpoint
assumes the availability of standby nodes. In practice, guar-
anteeing such availability requires over-provisioning as well,
but we did not take this into account when calculating costs
(because it is hard to know exactly how many nodes we
should over-provision). Hence, the cost and value reported
for Checkpoint are the lowerbound and upperbound of those
that can be achieved by any practical implementation of a
checkpoint-based approach.

Second, Checkpoint works much better for pure data paral-
lelism than for pipeline parallelism (as discussed in §3). This

is because recovering from a checkpoint in pure data-parallel
training is much easier than pipeline-parallel training where a
pipeline reconfiguration process is needed for each restart.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 513

ONEWAN is better than two: Unifying a split WAN architecture

Umesh Krishnaswamy*, Rachee Singh*†, Paul Mattes*, Paul-Andre C Bissonnette*, Nikolaj Bjørner*,
Zahira Nasrin*, Sonal Kothari*, Prabhakar Reddy*, John Abeln*, Srikanth Kandula*, Himanshu Raj*, Luis

Irun-Briz*, Jamie Gaudette*, Erica Lan*

*Microsoft, †Cornell University

Abstract
Many large cloud providers operate two wide-area networks
(WANs) — a software-defined WAN to carry inter-datacenter
traffic and a standards-based WAN for Internet traffic. Our
experience with operating two heterogeneous planet-scale
WANs has revealed the operational complexity and cost in-
efficiency of the split-WAN architecture. In this work, we
present the unification of Microsoft’s split-WAN architec-
ture consisting of SWAN and CORE networks into ONEWAN.
ONEWAN serves both Internet and inter-datacenter traffic
using software-defined control. ONEWAN grappled with the
order of magnitude increase in network and routing table sizes.
We developed a new routing and forwarding paradigm called
traffic steering to manage the increased network scale using
existing network equipment. Increased network and traffic
matrix size posed scaling challenges to SDN traffic engineer-
ing in ONEWAN. We developed techniques to find paths in
the network and chain multiple TE optimization solvers to
compute traffic allocations within a few seconds. ONEWAN
is the first to apply software-defined techniques in an Inter-
net backbone and scales to a network that is 10× larger than
SWAN.

1 Introduction

The large-scale commercialization of cloud computing led
cloud providers to provision private wide-area networks
(WANs). These initial deployments connected both datacen-
ters and Internet peering edges of the cloud using a unified
cloud WAN. For instance, Microsoft’s cloud WAN, called the
CORE (AS8075) network, interconnected Microsoft’s data-
centers and Internet peering edges. However, as the cloud
workloads evolved, inter-datacenter traffic began to dominate,
shrinking the capacity available for carrying Internet traf-
fic to peering edges. In response, Microsoft built a second
WAN to offload inter-datacenter traffic. This WAN, called
the software-defined WAN or SWAN (AS8074) used software-
defined traffic engineering (TE) and bandwidth brokering to
achieve higher network utilization [14] than RSVP-TE [2] in
CORE. Deployment of two cloud WANs (Figure 1), one for
Internet traffic and the other for inter-datacenter traffic is an

industry-wide trend with Google [17] and Meta [9] operating
similar split-WAN architectures.

SWAN CORE

Datacenter edge

Datacenter edge

Peering edge
inter-
datacenter
flow

Internet
flow

Figure 1: Before ONEWAN, there were two wide area networks,
CORE (AS8075) and SWAN (AS8074). Datacenter edge connected to
both networks, and peering edge only connected to CORE. Internet
traffic was served by CORE and inter-datacenter traffic by SWAN.
CORE used RSVP-TE and SWAN used SDN based traffic engineering.

Why is one WAN better than two? Maintaining two hetero-
geneous WANs specialized for inter-datacenter (SWAN) and
Internet (CORE) traffic led to several operational challenges.
First, the two-WAN architecture requires that datacenter edges
connect to both SWAN and CORE routers (see Figure 1). The
dual WAN connectivity from datacenter edges led to wasteful
use of expensive network equipment and limited power supply.
This problem was made worse by massive build outs of new
datacenter regions and edge sites. Second, the split-WAN ar-
chitecture makes capacity planning hard. At a given time, one
WAN can be under-utilized while the other is over-utilized.
Moreover, acquiring optical capacity for both WANs in every
geographical region and building the required redundancy on
each network, became prohibitively expensive. Finally, CORE
and SWAN used routers with completely different protocol
stacks. As a result, engineers were trained to configure, moni-
tor and manage two distinct networks. Deploying new WAN
sites took more time since different routers had to be deployed
for the two networks.

In 2020, we observed a steady growth in Internet traffic
from peering edges due to increased use of collaboration
tools spurred by remote work (Figure 2). While the network
capacity between Internet peering edges and the cloud WAN
is scare and expensive, it was not in the purview of TE in the
split-WAN architecture. Thus, it became important to engineer

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 515

the growing traffic on WAN-facing links from peering edges
but the key protocol of the CORE network, RSVP-TE, was not
up to this task as it had reached scaling limits in our network.

2017 2018 2019 2020 2021 2022

5x

10x

2017 2018 2019 2020 2021 2022

0.0

0.5

1.0

core rsvp

swan onewan

Figure 2: WAN traffic growth, the portions carried by CORE and
SWAN when they were separate networks, and the portions of RSVP-
TE and ONEWAN-TE traffic in the unified network.

Software-defined control in ONEWAN. Due to these op-
erational challenges, we consolidated the split-WAN archi-
tecture into a unified ONEWAN. We decided to implement
ONEWAN using SDN principles (like SWAN) instead of a
standards-based approach (like CORE) for three main rea-
sons. First, the key protocol of the CORE network, RSVP-TE,
was reaching scale limits due the existing size of the CORE
network topology. Second, RSVP-TE needed network-wide
configuration changes which have a global blast radius. In
contrast, we had deployed BLASTSHIELD to control the blast
radius of faults in the SWAN network [22]. Finally, despite
the earlier intention of using SWAN only for discretionary
workloads, SWAN had evolved to carry mission-critical appli-
cation traffic (e.g., Azure, Bing, Office, and Teams) in addition
to discretionary inter-datacenter workloads (e.g., replication,
backup). We measure our service level objectives (SLOs) as
the daily average over percentage of successfully transmitted
bytes in an hour. The SLOs of SWAN exceeded 99.999% for
customer traffic, and 99.9% for discretionary traffic.

Challenges in evolving from SWAN to ONEWAN. In this
work, we discuss the main technical challenges we overcame
to unify the split-WAN architecture into ONEWAN (Table 1):

Increased routing table sizes. SWAN was responsible for
routing datacenter prefixes only, which were few enough for
all SWAN routers to run BGP and store the datacenter routing
tables in the router memory. ONEWAN routers had to contend
with Internet routing tables and it would be cost prohibitive to
make every ONEWAN router hold the entire Internet routing
table. Hence, ONEWAN assigned two roles to routers: (1)
aggregation routers that hold full IP routing tables, and (2)
backbone routers that act as forwarding only nodes that do
not run BGP. We develop a new SDN function in ONEWAN
called traffic steering on aggregation routers to encapsulate

WAN packets with information needed by backbone routers
to do TE without IP routing (§ 3).

Fast failure repair. One of RSVP-TE’s strengths is fast
reroute, which enables it to switch from primary to backup
paths within milliseconds of a failure. This fast convergence is
essential for performance-sensitive services like video stream-
ing and virtual desktop over the WAN. Local repair is SWAN’s
equivalent function of detecting and repairing failed paths us-
ing agents that run on the routers. Improving convergence
times in ONEWAN required significant enhancements and
was an area of new learnings (§ 4).

Scaling TE optimization. ONEWAN has ten times the num-
ber devices of SWAN. The traffic engineering optimization
techniques used in SWAN had to scale to a network size that
is ten times larger. We developed scalable path and linear
programming optimizations to deal with the increased scale
of traffic engineering in ONEWAN (§ 5).

Estimating Internet traffic matrices. Accurate estimation
of traffic matrices is crucial for engineering Internet traffic.
Existing mechanisms for traffic matrix estimation fell short
for ONEWAN since they did not contend with Internet-facing
traffic. We developed a scalable pipeline for accurate traffic
matrix measurement for ONEWAN (§ 6).

Hitless transition in the live network. Finally, the transition
to ONEWAN was done in the live cloud network as it con-
tinued to carry user traffic. We devised techniques to enable
both SWAN and CORE networks to undergo a hitless transition
to ONEWAN (§ 7).

2 ONEWAN Architecture

The consolidation of SWAN and CORE networks into
ONEWAN was a large undertaking that took years of en-
gineering effort in planning, testing, implementing and veri-
fying the new WAN architecture. In this section we motivate
the design choices that led to the ONEWAN architecture.

Figure 3 shows a simplified view of ONEWAN with two
datacenter regions and two edge sites. Datacenter regions are
large campuses with routers at the root of the datacenter net-
work connecting to aggregation routers in regional network
gateways (RNGs). RNGs connect multiple datacenters in a
geographical region with a maximum fiber distance under
100 kilometers. Backbone routers are present in all RNGs and
additional transit gateways that are hubs for long-haul optical
links. Peering edge routers at edge sites connect to aggrega-
tion routers in the same site. Aggregation routers connect to
backbone routers in RNGs and gateways. ONEWAN traffic
engineering (ONEWAN-TE) applies to inter-datacenter flows
between datacenter regions, and Internet flows between edge
sites and datacenter regions. The set of traffic engineered links
consists of all backbone–backbone and aggregation–backbone
links. The Clos interconnect between edge and aggregation

516 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Challenge Techniques used
Route scale increase Only aggregation routers hold full IP routing tables. Controllers add routes for BGP

next hops instead of BGP prefixes (§ 3).
Avoid costly new builds Develop ONEWAN agents for four firmware versions to cover all existing routers.

Interconnect CORE and SWAN with aggregation routers (§ 3 and § 4).
TE optimization scale increase Traffic matrix-aware path computation. Optimize LP solvers (§ 5.1 and § 5.2).
Route convergence time Fast local repair using diverse backup paths. Tunnel liveness probes that return to

sender using controller routes (§ 4 and § 5.3).
Measuring real-time traffic matrix Use IPFIX sampling with a high throughput pipeline. Anycast source-specific

destinations determined from IPFIX flow records (§ 6).
Minimize risk of outages Divide ONEWAN into geographies managed by separate controllers. Steering

routes control what traffic is migrated ([22], § 7).
Table 1: Summary of ONEWAN challenges and our approaches for solving them.

routers is always intra-site or intra-campus, is built to high
capacity, and hence is not a part of traffic engineering.

ONEWAN

Datacenter edge

aggregation router

backbone router

Datacenter edge

Pe
er

in
g

ed
ge

Pe
er

in
g

ed
ge

inter-
datacenter
flow

Internet
flow

Internet
flow

Figure 3: ONEWAN is a unified network that serves Internet and
inter-datacenter flows using SDN TE. ONEWAN consists of aggre-
gation routers at its boundary and backbone routers in its interior
(gray dots). Datacenter and peering edge routers (black dots) con-
nect to aggregation routers using a Clos interconnect. ONEWAN-TE

applies to any inter-site flow between aggregation routers, be they
inter-datacenter or between edge site and datacenter.

In-place conversion to ONEWAN. Since both CORE and
SWAN networks carry mission-critical customer traffic, the
unification of the two networks had to be done in-place with
no visible impact to client performance. This goal necessi-
tated incremental changes to both physical connectivity and
network configuration to unify SWAN and CORE networks.
The first step for the unification was to physically connect
CORE and SWAN. Figure 4 shows new links that connect CORE
aggregation routers to SWAN backbone routers. When CORE
and SWAN were separate networks, they each had a set of
aggregation routers. In the second step, we eliminated one
set of aggregation routers and their links to save power. We
merged the routing domains of the interior gateway protocol,
which IS-IS [16] in CORE and SWAN, but did not merge the

BGP autonomous systems of the two networks to allow each
network to carry its original traffic.

CORE SWAN ONEWAN

(a) Connect CORE and SWAN (b) Consolidate aggregation
Figure 4: (a) Physically connect CORE and SWAN using aggregation
routers (shown as thick lines). (b) Consolidate two sets of aggrega-
tion routers into one.

Leverage existing network hardware. Our goal was to re-
purpose the WAN routers in SWAN and CORE networks as
opposed to building a clean-slate ONEWAN from the ground-
up with an entirely new fleet of routing hardware to reduce
the capital expenditure in the consolidation process. SWAN
had O(100) routers and O(105) datacenter routes while CORE
had O(1000) routers and O(106) Internet routes. To leverage
existing hardware for the increased scale in ONEWAN, only
aggregation routers run BGP with the full Internet and datacen-
ter routing tables. This allows the remaining backbone routers
to be simpler commodity switches with smaller routing table
memory.

Choice of tunneling mechanism. ONEWAN uses Multipro-
tocol Label Switching (MPLS) [31] to transport IP packets in
a tunnel across the backbone. We note that ONEWAN does
not use any TE protocols like RSVP-TE or TE extensions in
the interior gateway protocols like IS-IS. We use MPLS for
its efficient implementation of label stack encapsulation on
existing routers in SWAN and CORE. Our approach could be
generalized to other tunneling abstractions though it is outside
the scope of this work.

Router roles. Aggregation routers implement a key function
in ONEWAN, called traffic steering, described in detail in
§ 3. Aggregation routers are also used as transit routers in
ONEWAN-TE tunnels. This enables the large number of legacy

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 517

devices in CORE and SWAN to make full use of available
bandwidth in either network. Edge routers are sources or
sinks for traffic. They are either datacenter routers or peering
routers. These routers continue to perform the same function
before and after the consolidation of SWAN and CORE.

3 ONEWAN Traffic Steering

Routing in ONEWAN occurs in three parts (see Figure 5).
First, a steering route on the aggregation router encapsulates
IP packets entering ONEWAN. Second, backbone routers
forward packets received from aggregation routers along traf-
fic engineered tunnels. In the final step, the egress backbone
router uses a segment routed [10] path to route packets to the
network destination. ONEWAN-TE controller computes and
ONEWAN router agents program traffic steering and engi-
neering routes on routers. IS-IS updates the segment routes.

Steering routes. BGP on aggregation routers receives routes
announced by BGP route reflectors or its clients and chooses
a set of one or more equal-cost BGP next hops for each pre-
fix. The BGP next hops are typically aggregation routers at
network egress sites though they could also be endpoints a
few hops beyond the network egress site in legacy portions of
ONEWAN. All ONEWAN sites are assigned a static identifier
called the site label. When BGP looks up the route for the next
hop, the highest preference route is the steering route added
by the ONEWAN-TE controller. The steering route pushes a
stack of two MPLS labels onto packets entering the backbone.
The top label in the stack is the egress site label. The bot-
tom label in the stack is the segment routing node segment
identifier (node SID) of the BGP next hop learned from IS-IS.

The egress site label refers to the backbone exiting site on
the shortest path to the packet’s destination. It is the same site
as the egress aggregation router, though it can be different
in legacy portions of ONEWAN. Ingress backbone routers
use the egress site label to determine the set of traffic engi-
neered tunnels to use. IP flows are weighted load balanced to
a specific tunnel based on their 5-tuple and traffic class. Once
the tunnel is selected, the ingress backbone router swaps the
egress site label with the traffic engineered tunnel label.

The bottom label serves two purposes. First, it provides
forwarding from the egress backbone router towards the end-
point. Second, it provides a fallback if no traffic engineered
tunnel for the egress site is up due to failures. When the
ingress backbone router has no operationally up traffic engi-
neered tunnels to a particular egress site, ONEWAN agent
automatically adds a route to pop the egress site label and
forward the packet using the segment route for the BGP next
hop node SID. The advantage of this design is that failures
in the network are quickly and transparently handled by the
routers without immediate intervention of the controller.

Steering route weights. The steering route sprays packet
flows to connected backbone routers using unequal load bal-

ancing. Although aggregation routers are directly connected
with equal capacity to backbone routers, each backbone router
is not an equal choice for ingress. For example, a backbone
router may have a longer path to the endpoint or may have less
available bandwidth to an egress site. Latency increases in the
former and congestion can occur in the latter. The ONEWAN-
TE controller excludes backbone routers with the shortest path
latency from the ingress aggregation router to the egress site
exceeding the best latency by a threshold. It then calculates
weights using single commodity maximum flow from the
ingress aggregation router to the egress site. Weights are re-
calculated whenever the topology changes. Figure 6 illustrates
the weight calculation for flows from aggregation router a to
endpoint f . Both backbone routers b and c are used to spread
the load because they have similar shortest path latency to the
egress site. The weight to b is 33% because the maximum
flow bandwidth of a−b−T is proportionately less.

Why have two stages of traffic splits? ONEWAN calculates
traffic steering splits using single commodity max-flow and
calculates traffic engineering splits using priority max-min
fairness optimization (§ 5.2) for the following reasons. We
were concerned that the TE optimization and path computa-
tion algorithms may not scale to the full size of ONEWAN
and operating on a subgraph of backbone routers would ease
the scaling challenges. Moreover, aggregation routers are con-
nected with high capacity links to backbone routers and so
do not need traffic engineering. Finally, we wanted steering
routes to be updated quickly in case of failures and did not
want the updates to be slowed down by an optimization phase.

In hindsight, the two traffic splitting mechanisms in
ONEWAN can be unified since our improvements to the TE
optimization (§ 5) enable it to handle the full ONEWAN
topology of backbone and aggregation routers. Aggregation
routers are transits for ONEWAN-TE tunnels between CORE
and SWAN devices and so have to be part of TE optimization.
ONEWAN agents in aggregation routers react to network
topology changes faster than the controller.

Segment routing at the egress backbone router. TE tunnels
terminate at the backbone router instead of the aggregation
router for a separate reason. Segment routing implementations
on vendor routers only allow penultimate hop popping, mean-
ing that the penultimate router must remove the node SID
before delivering the packet to the intended node. Routers do
not easily support popping a label stack. This necessitated
at least one segment routed hop and is why the TE tunnel is
between backbone routers. Support for ultimate hop popping
would eliminate the last segment routed hop.

4 ONEWAN Agent and Local Repair

ONEWAN agents are responsible for installing routes pro-
vided by ONEWAN-TE controllers. ONEWAN agents also
perform local repair. The local repair mechanism detects

518 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Ingress
edge router

Ingress
aggregation

router

Ingress
backbone

router

Egress
backbone

router

Egress
aggregation

router

Egress
edge router

BGP Traffic steering
Traffic

engineering
Segment
routing BGP

IP

Egress
site label
BGP NH
node SID

IP

TE path
label

BGP NH
node SID

IP

BGP NH
node SID

IP IP

Figure 5: ONEWAN routing occurs in three parts. The first part is the steering route in the aggregation router, the second is the traffic engineered
tunnel between backbone routers, and the third is the segment routed path from the egress backbone router to the network egress point. The
traffic steering and engineering routes are added by the ONEWAN-TE controller.

a
b

c
S

0.33

0.67

f
d

e
T

0.2

0.8

0.9

0.1

1

1

TE weights

Default

Scavenger
Steering weights

SPF Dynamic
distance max-flow

a→ b→ T 25 10
a→ c→ T 26 20

Figure 6: ONEWAN-TE example of flows from aggregation router a to
endpoint f . Steering route load balances flows to selected backbone
routers based on shortest-path distance and maximum flow from the
backbone router to the egress site. The backbone routers perform
full traffic engineering optimization.

the forwarding state of tunnels and reprograms actions to
send traffic on surviving tunnels thereby minimizing transient
packet loss due to route blackholes or congestion.

The ONEWAN agent runs as a process on all aggrega-
tion and backbone routers, optionally inside a Docker con-
tainer. It is supported on four different firmware operating
systems. To support the heterogeneity of firmware, the agent
is structured as separate platform-independent and platform-
dependent components, with well-defined APIs between them.
The platform-independent portion has the bulk of the com-
plexity in the agent. Figure 7 shows the agent organization.

Route programming. ONEWAN agents communicate with
ONEWAN-TE controllers using an HTTPS server; no routing
protocol is required. We use OpenFlow [28] match actions and
groups to represent routes. Groups represent the set of traffic
steering and engineering tunnels originating at ingress routers,
tunnel weights for unequal load balancing, traffic class to in-
dicate what type of traffic the tunnel is meant for, whether the

HTTPS server Pop route add

Route manager Tunnel manager

Router programmer Tunnel prober

Target groups

Dynamic groups

Local gRPC
endpoints BFD

Raw
socket

Routes

Liveness
changes

Platform independent

Platform dependent

Figure 7: ONEWAN agent has platform dependent and independent
components. The agent installs routes provided by ONEWAN-TE

controller and switches off tunnels experiencing forwarding faults.

tunnel is primary or backup, and attributes for probing tunnel
liveness. Transit routes use unary actions without groups.

The route programmer implements dynamic route opera-
tions through an internal gRPC or equivalent connection pro-
vided by the router firmware. It converts groups to weighted
cost multipath (WCMP) next hops with 32 members and du-
plicates each tunnel in proportion to its weight.

The target group is the set of tunnels received from the
controller and the dynamic group is the set of tunnels that are
alive, with original weights redistributed among them. When
a group has no primary tunnels alive, the backup tunnels are
elevated to primary. A tunnel is associated with a traffic class,
default matching any traffic class. When a group has no tun-
nels of default traffic class alive, the tunnels of the next traffic
class are modified to be the default traffic class. In Figure 8,
the target group has six tunnels A-F. The backup tunnels E and
F become primary when A and B fail. If A comes back up, it
is the sole primary default tunnel. We explain how ONEWAN-
TE calculates diverse backup and class-aware tunnels in § 5.2
and § 5.3.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 519

If no tunnels are alive, the agent replaces the dependent
egress site label routes with pop-and-forward (on a backbone
router) or removes the dependent BGP next hop steering routes
(on an aggregation router). Part of agent initialization is the
creation of pop-and-forward routes for the entire allocated
egress site label space, to cover any stray traffic received.

0.75

0.25

A

B

0.5

0.5

C

D

0.8

0.2

E

F

0.8

0.2

E

F

1.0 A

0.5

0.5

C

D

site label →
pop-forward

Primary default

Primary scavenger

Backup default

Primary default after local repair

(a) A, B fail

(b) A is up

(c) A, B, E, F
fail

(d) All fail

Figure 8: Local repair. The ONEWAN agent automatically adjusts
the composition and weights of tunnels based on liveness. (a) If
primary default tunnels A and B fail, then backup tunnels E and
F become primary. (b) If A comes back up, it is the sole primary
default tunnel. (c) If only scavenger tunnels C and D survive, they
become primary. (d) If all tunnels fail, the site label route is replaced
with a pop-and-forward action.

Tunnel probing. Aggregation routers use single-hop tunnel
probing using Bidirectional Forwarding Detection [21] to
check the links to backbone routers. Ingress backbone routers
perform end-to-end tunnel probing using a labeled self-ping
mechanism via a raw socket. Tunnel probes use the same
routes as data packets in the forward direction.

Tunnel probes in SWAN relied on IS-IS in the return path.
This caused backup tunnels to fail even though they did not
use failed links in the forward path because the probe return
path was affected by IS-IS route convergence. Without pri-
mary and backup tunnels, the agent removed the controller
route and traffic reverted to IS-IS. Client traffic experienced
IS-IS convergence times and congestion losses as long as
the tunnels were still down. This significantly degraded user
experience. Therefore, probes in ONEWAN return from the
tunnel destination to the tunnel source using controller routes.
The return hops are the reverse of the forward hops and thus
do not share fate with links unrelated to the data tunnel. In
Figure 9, the probe packets return on d−b−a, not d− c−a
even though the latter is shorter. The ONEWAN-TE controller
reuses available data tunnels in the reverse direction when
possible, and creates new tunnels otherwise.

Multiple probe packets can be in flight and the probing
interval is independent of the path round-trip time. A loss of
a configured number of probes marks a tunnel down, and a
successful probe marks a tunnel up. We send probes at 100ms

a

b

dc

Tunnel probe

Data flow

data label reverse label dstIP: a srcIP: d
Figure 9: Tunnel probes use the same routes as the data packets in
the forward direction and return from the destination using the same
links to avoid false failures. The transit routes are programmed by
the controller and agents of transit routers.

intervals and mark the tunnel down after loss of 3 probes.
Fault detection time is thus 300ms plus the distance to the
fault which in the worst case is the tunnel latency.

Local repair. In the split-WAN architecture, Internet traffic
was handled by RSVP-TE in the CORE network. Standards-
based RSVP-TE in the CORE network implements a fast
reroute (FRR) [29] mechanism that allows it to recover from
link failures in O(10) ms. Fault detection time is the distance
to the fault, which in the worst case is the link latency, plus
a small delay for the optical transponder to notify the router.
FRR switches to precomputed bypass tunnels at the point of
fault and runs in or near the line card network processing unit.
Switching times are a few milliseconds.

In contrast with FRR, ONEWAN’s local repair happens at
the ingress router of the tunnel not the point of fault. Faults in
the first hop link are detected by interface down events and
faults in subsequent hops are detected by lost probes. Repair
is initiated in the route processor and subject to greater inter-
process communication and scheduling delays. The route
programmer modifies the WCMP in place to decrease the
number hardware writes performed at the time of repair. As
a result, ONEWAN convergence time is under one second.
Although slower than FRR, ONEWAN meets the convergence
time requirements of video streaming, video conferencing and
other interactive applications currently served by the network.
ONEWAN tunnel probes also validate forwarding because
they exercise the routes used by data packets. The backup tun-
nels are chosen based on diversity and residual bandwidth and
hence experience less transient packet loss due to congestion
(described in § 5.3).

Route programming. ONEWAN is divided into geograph-
ical regions and regional ONEWAN-TE controllers program
routes on devices in their region [22]. All routers program
steering routes in parallel, in a single phase. The pop-and-
forward routes on the backbone routers eliminate the need to
synchronize programming steering and TE routes.

TE routes are also updated in parallel, using three phases
with a barrier between each. A make-before-break sequence
ensures that no route blackholes or loops form during pro-
gramming. The set of routes for all routers is logically divided
into two sets: the transit and tunnel egress routes T , and the

520 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Metric ONEWAN-TE

Per-device steering + TE routes O(103)

Network level tunnels O(104)

Per-device FIB update (p95) 2.0 sec
Network level FIB update (p95) 3.7 sec

Table 2: ONEWAN-TE scale in terms of routes, tunnels, and update
times per device and for the entire network.

tunnel ingress routes G. Since the G routes depend on the T
routes, make-before-break ensures that traffic cannot enter a
tunnel until each subsequent hop has been programmed. An
important property of ONEWAN-TE route generation is that
the label spaces between successive iterations do not overlap,
except where the paths they represent are identical. The label
range is large enough to allocate unique labels in the worst
case.

The phases of replacing the routes of iteration n, Tn∪Gn,
with routes of iteration n+1, Tn+1∪Gn+1, are as follows:
• The initial state in all routers is Tn∪Gn.
• Tn∪Tn+1∪Gn is sent to agents which perform their route

update and report success or error.
• Tn∪Tn+1∪Gn+1 is programmed. During this phase there

may be a mix of Gn and Gn+1 routes in the network, but
all the T routes they depend on will be present.

• Tn+1∪Gn+1 is programmed.
Traffic shifts in the second phase. Since a phase completes

in under 4 seconds, a moderate scratch capacity avoids tran-
sient congestion. We reserve 15% scratch capacity to handle
transients from programming and traffic microbursts. If an
agent reports an error or connection is lost, the controller rolls
back to the initial state in a single phase. Any inconsistencies
after the rollback are corrected by the ONEWAN agent local
repair.

4.1 Evaluation

Route scale. The number of traffic engineering tunnels was a
significant scaling issue with RSVP-TE in CORE. Large num-
ber of RSVP-TE tunnels increased network convergence time
after link failures and exceeded hardware resources in older
aggregation routers. Table 2 shows that ONEWAN-TE uses 10
times fewer tunnels than RSVP-TE. When ONEWAN-TE opti-
mizes, it simply reserves more bandwidth in existing tunnels,
or creates new and destroys unused tunnels. On the other hand,
RSVP-TE signals new tunnels with incremental bandwidth
reservation, which it combines less frequently. Second, RSVP-
TE requires a full mesh of label switched paths between nodes,
but ONEWAN-TE only creates tunnels for nodes within a ge-
ography, and inter-geography flows reuse the intra-geography
tunnels.

Steering routes scale with number of endpoints, and traffic
engineering routes scale with number of backbone nodes.
Both forwarding information bases of routes (FIB) have small
sizes even for a large network. Time to update the FIB is

affected by the round-trip distance between the controller and
router, and the number of routes in the FIB (see Figure 10).

Class based forwarding. An objective of ONEWAN-TE is
to use underutilized links on longer paths for replication or
backup traffic which are marked as scavenger traffic class but
use diverse shortest paths for best-effort and higher traffic
classes. ONEWAN agent installs the egress site label route
with an intermediate policy lookup that is indexed by traffic
class to change from default class WCMP to a class specific
WCMP. Figure 11 shows that ONEWAN-TE assigns 55% of
scavenger traffic to longer paths. Differentiated paths decrease
scavenger drops due to microbursts in higher traffic classes.
When best-effort and scavenger queues use weighted round-
robin queue scheduling, differentiated paths also decrease
best-effort transient drops due to scavenger microbursts. Fig-
ure 12 shows the successful transmission rate SLO for best-
effort and scavenger traffic classes for a 3-month period in
2022.

0 500 1000 1500 2000 2500

Time in milliseconds

0.0

0.5

1.0
C

D
F

Time to update a device FIB

TE

Steering

Figure 10: Per-device FIB update times for steering and TE routes.

0 5 10 15 20 25 30

Latency difference in milliseconds

0.0

0.5

1.0

C
D

F

Bandwidth assigned to longer paths

Best-Effort

Scavenger

Figure 11: Class based forwarding uses paths for scavenger traffic
class that are different from best-effort and higher classes. Longer
paths carry 55% of scavenger bandwidth.

≤ 99.9999

99.99995

100.0

Best-Effort

Jul’22 Aug’22 Sep’22

≤ 99.99

99.995

100.0

Scavenger

Successful transmission rate SLO

P
er

ce
n
ta

g
e

Figure 12: Successful transmission rate SLO for best-effort and
scavenger traffic classes for a 3-month period in 2022.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 521

5 Traffic Engineering Optimization

The ONEWAN TE optimizer has two inputs – predicted traf-
fic matrix (TM) (described in § 6) and dynamic topology. A
traffic trunk is an aggregate traffic flow from a source back-
bone router to a destination site for a specific traffic class, and
the traffic matrix is a collection of predicted bandwidths for
traffic trunks. The dynamic topology consists of sites, nodes
and links. Nodes and links have tens of different attributes, in-
cluding interface addresses, device role, link operational band-
width, bandwidth reserved for RSVP-TE, link metric, whether
a link or node should be avoided due to maintenance activity,
and link reliability information. Each node is associated with
a site, and all nodes in a site are equivalent destinations for a
traffic trunk destined to the site. The TE optimizer operates in
two phases: path computation phase and optimization phase.

In the path computation phase, we perform online compu-
tation of paths on the dynamic topology for all traffic trunks
using efficient path finders (§ 5.1). We compute enough paths
to enable the optimization phase to have adequate choices
when allocating traffic.

In the optimization phase, the priority fairness optimization
solver (§ 5.2) allocates traffic trunks to paths using the path
formulation of multi-commodity flow problem. The TM is
divided based on the traffic class of trunks and each traffic
class is optimized differently. The priority fairness solver
allocates demands of high priority trunks (best-effort and
higher traffic classes) with the objective of minimizing the
cost-bandwidth product. In contrast, it allocates low priority
scavenger traffic trunks with the goal of minimizing maximum
link utilization. The rationale to minimize maximum link
utilization objective for low priority traffic is to decrease
congestion drops in the scavenger class from microbursts
in higher traffic classes, and to allow bandwidth broker [14]
to serve more requested bandwidth using under-utilized links.
High priority users expect the best latency the network can
offer.

The priority fairness solver chains four solvers, max-min
fairness, minimize cost, minimize maximum utilization, and
diverse path, in different combinations based on traffic classes.
The inputs to all solvers are paths computed in the first phase,
TM, and upstream solver constraints.

5.1 Path computation

Path finders in ONEWAN implement techniques for exploring
paths in the network topology. Over the years, we have de-
veloped many path finders. Today, we accumulate paths from
two paths finders in ONEWAN— penalizing and maximum
flow path finders. The union of paths from the two finders has
a mix of diverse shortest and maximum flow paths.

The penalizing path finder returns risk diverse paths with
policies to never reuse a risk group for paths between the same
source–sink pair or reuse only if necessary. Risk group is an

identifier for shared optical infrastructure used by two or more
links. A link can have zero or more risk groups. The finder
uses Dijkstra’s algorithm by setting link weights to penalties
for risk groups used in previous shortest paths. Penalties are
either infinity or a large value like the sum of all edge weights.
The first path returned by the solver is the shortest path. Each
subsequent path is the shortest path in the graph with modified
weights. The finder operates on a graph where the risks groups
have been expanded into virtual links (see Figure 13 (a)).

The maximum flow path finder uses maximum flow algo-
rithms [11] and converts the augmenting paths into network
paths. Link bandwidth is set to the reservable bandwidth for
ONEWAN-TE. Link distance is not used in this finder.

Recall from § 3 that traffic engineered routes are not to indi-
vidual routers, but to a group of routers in the destination site.
Therefore, ONEWAN path finders compute paths from source
nodes to destination sites using the technique of sink aggrega-
tion. In sink aggregation, we add a super sink node (ss) to the
graph and connect sink nodes to it using directed edges of zero
weight and infinite bandwidth (see Figure 13 (b)). Sink aggre-
gation reduces the number of paths that ONEWAN-TE needs
to allocate traffic on. Work is further reduced by computing
paths only for source-sink pairs in the traffic matrix, instead
of all pairs of nodes. This is called TM-aware source sinks.
Figure 14 shows that these techniques reduce the path counts
by a factor of 30. The resulting speed-ups extend into the op-
timization phase because fewer paths mean fewer columns in
the linear programming constraint matrix. The average time
to compute paths in ONEWAN is only 5 seconds.

s t{a,b,c}

s t{a} {b} {c}
ss

0/∞

5
5

(a) Risk group virtual links (b) Sink aggregation

(c) ONEWAN intra-
site cross links

Figure 13: Path computation: (a) penalizing path finder expands risk
groups to virtual links, (b) sink aggregation finds paths to all nodes
in a site in the same exploration using a super sink, (c) cross-links
within a site complicate k-shortest path exploration.

Why does ONEWAN not use k-shortest paths? Path com-
putation using maximum flow algorithms works better than
k-shortest path algorithms on the ONEWAN topology. This
is because ONEWAN sites have a Clos or cross-link structure
that requires k to increase exponentially with the number of
inter-site hops (see Figures 3 and 13 (c)). There is dissimilar
link bandwidth and cost for nodes in a site that make optimiza-
tions difficult. Switching from k-shortest paths to maximum
flow algorithms gave a significant boost in path choice and
speed.

522 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Not
aggregated

TM-aware Sink
aggregation

Sink agg +
TM-aware

10−2

10−1

100

R
a
ti

o

Path count reduction

Figure 14: Path count reduction when paths are computed for traffic
matrix aware source sinks and aggregated by sink nodes in a site.

5.2 Priority fairness solver

The priority fairness solver assigns priorities to traffic trunks
based on their traffic class. Best-effort and higher traffic
classes map to priority 0 (highest) and scavenger traffic class
trunks are priority 1. Cloud network operators set a committed
data rate for each priority. Committed data rate is the mini-
mum percentage of link bandwidths guaranteed to a priority.
If excess network bandwidth is available for use, traffic trunks
receive more than the guaranteed allocation in priority or-
der. By pre-committing link bandwidths based on priority, we
ensure that lower priority trunks do not starve in the network.

The priority fairness solver runs in two stages. In the first
stage, starting with the highest priority, it sets link bandwidths
in proportion to the committed rate of the priority. This ex-
cludes the bandwidth committed to lower priorities, guarantee-
ing that lower priority demands are not starved for bandwidth.
The fairness solver then allocates bandwidth for demands in
this priority. It repeats this process for each lower priority
demand set and accumulates all the downstream solver results
into a single priority-aware solver result.

During the second stage, the solver walks through each
set of demands in a priority and identifies fully satisfied de-
mands. These demands are marked as frozen. For unsatisfied
demands, it adds the credit allocated in the first stage back
to the available link bandwidth. Adding the credits back to
the links enables these demands to be run again as if none
were allocated. In the first stage the demands were limited to
available bandwidth after excluding committed rates of lower
priorities. In this stage, unused committed rates are available
and can be used for unsatisfied or partially allocated demands.

Solver chaining. ONEWAN-TE has multiple objectives. It
allocates priority 0 traffic to achieve max-min fairness and
minimum cost using a diverse set of network paths. It allocates
priority 1 traffic to achieve max-min fairness and minimize
the maximum link utilization. The priority fairness solver
achieves these TE objectives by chaining multiple solvers to
compute traffic allocations. Traffic allocations from upstream
solvers in the chain constrain the solution space of subsequent
solvers, achieving one TE objective per link of the solver
chain. Solver chaining breaks ONEWAN’s TE problem into
reconfigurable linear programming (LP) steps. The priority
fairness solver (see Figure 15) uses four solvers. For brevity,

Priority fairness

Max-min fairness

Max ∑i xi s.t.

l≤
[

D
L

]
x≤ u

Multiple iterations

Max-min fairness

Min-cost

Min ∑i cixi
Update lD,uD

Diverse path

Min ∑i cixi
Add ε≤ xi, i ∈ P∪Q
(from Algorithm 1)

Min-max-util

Min xz s.t.
Update lD,uD

Add ∀ℓ ∈ {links}
bℓxz− ∑

i uses ℓ
xi ≥ aℓ

pri 0 pri 1

x̂

x̂

x̂

Figure 15: The priority fairness solver reserves bandwidth for traffic
classes based on their priorities. It then invokes the chain of max-min
fairness, min-cost and diverse path solvers for high priority traffic.
High priority traffic does not consume bandwidth reserved for low
priority traffic. After allocating high priority traffic, it invokes the
max-min and min-max util solvers for lower priority traffic. Unused
bandwidth after both high and low priority chains is made available
for unmet demands in the second round of priority fairness solver.

we omit a detailed discussion of the optimization problems
in the solvers, previously described in [3, 14, 19, 27]. x has an
element for each path and its solution x̂ is the allocation of
bandwidths requested by trunks to paths. The solvers share a
common core of demand and link constraints (D,L).
Chain of solvers. The Max-min fairness solver optimizes
throughput using approximate max-min fairness. It uses mul-
tiple iterations of maximizing throughput with adjustments to
demand constraint bounds. Min-cost solver uses the solution
of max-min fairness to minimize the dot product of cost and
allocations. For ONEWAN-TE, cost ci is path metric, which is
the sum of link metrics. It uses the solution of the max-min
fairness to adjust the bounds in demand constraints. Diverse
path solver solves the same objective but with diverse path
constraints described in § 5.3. Priority 1 trunks are optimized
with max-min fairness using the residual link capacity after
deducting the allocations of priority 0. Min-max-utilization
solver uses the upstream solution to adjust the bounds in de-
mand constraints. To minimize maximum utilization with
a linear objective, it adds a new variable xz that represents
maximum utilization, and utilization constraints where aℓ is
previously allocated link bandwidth and bℓ is link capacity.
LP solvers. ONEWAN integrates two LP solvers, CLP [5]
and GLOP [12]. They provide a 5× speedup over the original
solver used in SWAN. We achieve additional speedup by reduc-
ing the constraints sent to the solvers: the use of destination
sites reduces the number of paths, and therefore columns in
the constraint matrix are reduced 7-fold (§ 5.1). The biggest

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 523

gain in constraint reduction was achieved by pruning small
traffic trunks that are under 500 Mbps. This decreased the
constraint matrix rows and columns by factors of 5 and 7
respectively. The small trunks represent only 2.5% of net-
work traffic (described in § 6.2) and get optimized within five
minutes of growing large. Practicality of using LP solvers
also depends on settings: dual simplex is superior to primal
simplex for our LP models. Furthermore, pure cycling is pos-
sible as the max-min fairness models have high degeneracy —
many columns are the same because the non-zero elements
in the constraint matrix and the cost vector coefficients are 1.
Cost perturbation is used to jiggle the values out of cycles.

5.3 Diverse path solver

A collection of paths is risk diverse if the intersection of risk
groups of all paths in the collection is an empty set. ONEWAN
applies diverse path protection to best-effort and higher traffic
classes. In the ONEWAN-TE solver chain, the diverse path
solver computes diverse paths using the primary paths from
the min-cost solver. The goal of the diverse path solver is to
decrease transient congestion in the interval between local
and global repairs. ONEWAN agents perform local repair at
the ingress router and ONEWAN controllers perform global
repair based on the new topology. Spreading traffic on mul-
tiple paths without considering risk diversity can result in
transient packet loss due to route blackholes or congestion
since local repair is forced to use IS-IS routes.

The diverse path solver uses a greedy weighted set cover
to find the minimum weight set of diverse paths that protects
the shared risks in primary paths. Algorithm 1 outlines di-
verse path constraint generation. The WEIGHT function is
configurable. Diverse paths can be configured to not exceed
the primary path latency by a configurable jitter threshold,
or diverse paths with more residual bandwidth can be pre-
ferred. We define jitter as a normalized ratio of path latencies,
(max−min)/

√
min. Since high priority users expect the best

latency in non-failure conditions, diverse paths with excess
jitter are excluded. The diverse path solver re-solves the mini-
mum cost objective with diversity constraints (see Figure 15).
Diverse paths usually get the smallest possible weight since
using them pulls the solution away from the minimum cost
solution.

Figure 16 shows the percentage of total traffic on risk
diverse paths. Without diverse path solver, any diversity is
purely accidental, and was measured at 10%. When the agent
only supported primary tunnels, jitter threshold of 5 was used
to not adversely impact the latency of flows using the diverse
paths. This constrained the choice of diverse paths and risk
diverse traffic percentage was 75%. Once the agent imple-
mented primary-backup tunnels, the jitter threshold was not
required, and the protected traffic increased to 99%. The re-
maining 1% is due physical constraints on diversity of optical
circuits.

Algorithm 1 Adds diverse path constraints

1: procedure DIVERSITYCONSTRAINTS(P,U)
P is the set of primary paths.
U is the set of computed paths.

2: risks← SHAREDRISKS(P)
3: ss← SOURCESINKS(P)
4: candidates← PATHS(U,ss)\P
5: for all q in candidates do
6: protect[q]← risks\SHAREDRISKS(q)
7: residual← residual bandwidth of q
8: jitter← latencies of q and P
9: w[q]← WEIGHT(residual, jitter)

10: end for
11: Q←WEIGHTEDSETCOVER(protect,w)
12: for all i in P∪Q do
13: ADDCONSTRAINT(ε≤ xi)
14: end for
15: end procedure

00 03 06 09 12 15 18 21

Time of day

25

50

75

100
T

o
ta

l
tr

a
ffi

c
p

er
ce

n
ta

g
e

Trunks on risk diverse paths

Without jitter threshold

With jitter threshold

No diverse solver

Figure 16: Percentage of total traffic on risk diverse paths in a typical
day. 10% of the traffic is protected without diverse path solver, 75%
with jitter threshold, and 99% without jitter threshold.

6 Measuring WAN Traffic Matrices

The traffic matrix (TM) is a key input to the traffic engineering
optimizer. A traffic trunk is an aggregate traffic flow from a
source backbone router to a destination site for a specific traf-
fic class. There are four primary traffic classes in ONEWAN:
voice, interactive, best-effort, and scavenger. The WAN TM is
a collection of traffic trunks and bandwidths for each trunk. A
trunk’s bandwidth can be a requested value for discretionary
traffic, a measured value for Internet or non-discretionary traf-
fic, or a prediction based on measured values. Bandwidth bro-
ker is a service that measures discretionary traffic at sending
hosts and aggregates it into trunk-level requested bandwidth.
The input to the traffic engineering optimizer is the complete
traffic matrix that is a combination of the requested TM and
predictions based on the measured TM.

Measured TMs are computed by sampling packets as they
enter the WAN. SWAN sampled traffic using sFlow [30] at

524 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

backbone routers. On the other hand, ONEWAN sampled
traffic using IPFIX [33] at aggregation routers. The sampling
point and technique were dictated by which router exported
the fields required for identifying traffic trunks. Flow record
attributes such as sampling router address, input and output
interfaces, BGP next hop, traffic class, and packet 5-tuple are
used to identify the traffic trunk. ONEWAN required a high
throughput data pipeline to process flow records from a larger
number of devices at a faster sampling rate compared to
SWAN. Since ONEWAN-TE re-optimizes traffic allocations
every 5 minutes, TMs are measured at short, minute-level
timescales.

aggregation
router

backbone entering
interface

IPFIX
collectors

IPFIX records

Primary
data stream

Secondary
data stream

Flow
collectors

Demand
predictor

ingest gRPC traffic
matrix

Figure 17: ONEWAN’s high throughput data pipeline for TM mea-
surement. Aggregation routers export flow information to IPFIX

collectors which process and store them in redundant data streams.
Flow collectors query the data stream to compute bandwidths of
traffic trunks. The demand predictor predicts the complete TM.

Challenges in measuring anycast traffic volumes. A large
fraction of the traffic in CORE is anycast — traffic towards
destination prefixes advertised by multiple sites in the WAN.
Anycast traffic is routed to the router nearest to the source
router using standard BGP path selection rules. Correctly iden-
tifying the destination of an anycast traffic trunk requires
knowledge of the BGP route lookup result, which is different
for each source. One way of solving this in software is to
acquire copies of the routing tables of all aggregation routers
and replay the route lookup. To avoid the overhead of copy-
ing tables and replaying routes, ONEWAN leverages IPFIX
sampling where routers store the route lookup result in the
BGP next hop attribute of IPFIX flow records.
IPFIX data pipeline to measure traffic matrices. In Fig-
ure 17, aggregation routers sample one in 4,096 IP packets,
and export flow records using anycast to the nearest IPFIX
collector cluster. The IPFIX collectors write the statistics to
redundant data streams. Flow collectors query the data stream
for flow records from aggregation routers to the connected
backbone routers and build a traffic matrix. They also iden-
tify and tag discretionary traffic in the measured TM to help
in combining with the requested TM. The demand predictor
aggregates traffic matrices from all collectors and uses lin-
ear regression and autoregressive moving average models on

measured TMs to make predictions.

6.1 Error correction in measured TMs
We calculate the accuracy of traffic matrices measured us-
ing aggregations of IPFIX data against packet counters like
interface counters, output queue counters, and RSVP-TE used
bandwidth counters. Early versions of the IPFIX data pipeline
had issues like invalid or missing attributes in flow records
e.g., missing BGP next hop attribute for IPv6 flows, or incor-
rect egress interface in certain flows. We detected and fixed
such issues over time.

Flow record exporters use UDP, even though it is unreliable,
because it needs less router resources. Hence, it is important
that the data pipeline does not lose flow records due to traffic
surges, unequal load distribution, or systemic or fault induced
capacity crunch. The first generation of the data pipeline
was lossy. The second generation of the pipeline used gRPC
streaming from the data stream to the flow collectors (see
Figure 17) and was not lossy. While operating with the first
generation, we developed an error correction that gave simi-
lar results as the second generation. Since there is potential
of failures in any pipeline, we outline the error correction
technique used to improve reliability of our TM estimation.

We define the interface error rate as the ratio of input in-
terface bit rate on the backbone entering interface measured
by SNMP and calculated by IPFIX. Values greater than one
indicate underestimation, and less than one indicate overesti-
mation by IPFIX. The flow collector continuously calculates
interface error rate, and scales the IPFIX measured bandwidths
of individual traffic trunks in proportion to the interface error
rate. The flow collector scales the bandwidth of each trunk
separately based on its input interface error.

6.2 Traffic matrix characteristics
Figure 18 (a) shows typical diurnal and weekly traffic patterns
seen in service provider networks. Interestingly, the number
of traffic trunks in ONEWAN is 8× the trunks in SWAN due
to the doubling of source backbone routers, and increase in
destination sites in ONEWAN.

In Figure 18 (b), 82% of trunks are under 100 Mbps and
represent 1.3% of total traffic in WAN. The small trunks are
uniformly distributed across the network, consist of many flow
types, and do not pathologically contend for specific links.
We take advantage of this distribution to speed up traffic
engineering optimization by letting the smallest trunks go
unengineered.

In Figure 18 (c), trunk distance is calculated based on fiber
distance of the shortest path from source to destination. The
largest traffic trunks have source and destination close to each
other. 25th-percentile by distance is 95% of total traffic. We
use this to define ONEWAN geographies such that 75% of
the WAN traffic is intra-geography.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 525

M T W T F S S

Time of day

30k

35k

40k

45k

50k

C
o
u
n
t

(a) Traffic trunks

1 Mbps 1 Gbps 1 Tbps

Trunk bandwidth log scale

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) Trunk bandwidths

Count

Total traffic

0.0 0.2 0.4 0.6 0.8 1.0

Normalized fiber distance

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) Trunk distances

Count

Total traffic

Figure 18: Traffic matrix characteristics for a typical week: (a) count of trunks by time of day, (b) distribution of trunks by bandwidth, (c)
distribution of trunks by normalized fiber distance from source to destination.

7 Operational Experience

In this section we share lessons learned from the unification
of SWAN and CORE networks into ONEWAN.

Traffic migration. We migrated traffic from RSVP-TE to
ONEWAN-TE in the production network. So, it was important
to perform this migration in a hitless manner. We used steering
routes to migrate traffic from a specific set of source routers to
another specific set of endpoints. We began by migrating traf-
fic that was sourced and destined within the same geography
because the configuration changes required for this are local
to that geography. We used RSVP-TE maximum reservable
bandwidth configuration on routers to control the percentage
of link bandwidth made available to ONEWAN-TE. Initially,
ONEWAN-TE had a small fraction of link bandwidth, sufficient
to initiate traffic migration. We gradually increased ONEWAN-
TE traffic and reduced the RSVP-TE maximum reservable
bandwidth until RSVP-TE configuration could be entirely re-
moved from the router.

Merging IS-IS routing domains. Merging the SWAN and
CORE IS-IS domains posed a high risk for SWAN routers,
whose IS-IS would observe a 7-fold increase in link state
advertisements after the merge. IS-IS uses backoff timers to
pace the shortest path first (SPF) execution. The purpose of
backoff timers is to react quickly to the first few events but
under constant churn, slow down to prevent the router from
collapsing. The interactions of TE extensions still using IS-IS
with interoperability issues caused IS-IS SPF to be persistently
in backoff state slowing convergence. This prompted the de-
sign change to make ONEWAN-TE tunnel probing completely
independent of IS-IS by using controller routes to return from
the tunnel destination to the tunnel source (§ 4).

Cost savings with ONEWAN. ONEWAN brings the benefits
of SDN TE to Internet traffic which was previously managed
by RSVP-TE in the CORE network. SDN TE is known to make
efficient use of network capacity, thereby reducing the need
for capacity augmentation in the network. In Figure 19, we
compare projected capacity augments needed with ONEWAN
vs. SWAN + CORE to meet the organic traffic growth. We ex-
pect to reduce capacity augments by 10% of current installed

capacity in the next few years, which is of significant value
for the size of our network. This does not include savings on
inorganic growth like building new regions.

2024 2025 2026 2027

0

10

P
er

ce
n
ta

g
e

Reduction in capacity augments

Figure 19: Reduction in capacity augments with ONEWAN com-
pared to SWAN + CORE as a percentage of current installed capacity.

8 Related Work

We are the first to apply SDN techniques to replace RSVP-TE
in an Internet backbone. SDN based traffic engineering was
first used in inter-datacenter networks [9,14,15,17,20,24,25].
An inter-datacenter network has fewer points of presence,
simpler scaling requirements, and easily built from scratch.
We show that the challenges of scalability, reliability, feature
parity, and migration can be overcome and replace RSVP-TE
in an Internet backbone. This leads to unification of the cloud
network with a single SDN controlled backbone.

SDN controllers for Internet peering have been discussed
in [4, 7, 13, 34, 35, 37]. They tackle an important adjacent
problem of Internet traffic engineering at the peering edge.
These controllers enable performance-aware egress peer se-
lection and inbound traffic engineering between autonomous
systems. Our work focuses on the dynamic path selection
and load balancing of this traffic between the peering edge
and the end host in a datacenter, as it transits the backbone
within the autonomous system. Microsoft peering edge uses a
similar SDN controller that is outside the scope of this paper.
ONEWAN controllers measure peering traffic and adapt the
backbone to the needs of the peering edge traffic.

Traffic matrix estimation through models and link data
have been studied in [8, 26, 32, 38]. In our experience, direct
measurement of traffic matrices is, unfortunately, necessary
for online TE in operational networks. We extend prior work

526 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

with an evaluation of our IPFIX sampling based measurement
system, and present data on real world traffic matrices.

Prior work [14, 18, 23] states that programming end-to-end
paths in WANs takes minutes, and the size of tables to store
traffic engineering rules is a constraint. Our work shows that
network updates take seconds, even in very large networks. A
key reason for this difference is that prior work used TCAM-
based policy engines that are flexible but limited resources,
and our work uses IP and MPLS lookup tables, which are op-
timized and large even in commodity switches, and program-
ming in parallel using make-before-break semantics. Path
selection is usually done offline [6] and load balancing over
selected paths is online. In ONEWAN-TE, both are done online
using the dynamic topology and traffic matrix. Traffic engi-
neering is studied as the optimization of one objective like
minimizing link utilization [36]. ONEWAN-TE optimizes each
traffic class with different objectives, and uses class based for-
warding to achieve the intent in the data plane. [1, 25] study
the TE problem with faults. ONEWAN-TE formulation is tuned
for a larger network. It protects faults at the granularity of
optical risk groups and balances the opposing requirements
of proactive fault protection without increasing latency in
non-failure conditions.

9 Conclusion

Our journey with using SDN for traffic engineering has com-
pleted a full circle. SDN-TE technology matured in our net-
work while managing inter-datacenter traffic, and has now
replaced legacy TE in the Internet backbone. ONEWAN repre-
sents a 1000× increase in traffic volume and a 100× increase
in network size compared to SWAN a decade ago. Some key
elements of SWAN have withstood the test of time. For exam-
ple, traffic engineering optimization retains the same structure
and formulation. We still use router agents on WAN routers
which run on multiple firmware operating systems, but have
modified them to deal with greater scale and functionality.
ONEWAN brings the benefits of smaller fault-domains from
BLASTSHIELD to the Internet backbone, making it more reli-
able. We hope ONEWAN expands the scope of future work in
wide-area TE, standardization of the controller-agent program-
ming abstraction, and analysis of traffic matrix characteristics
of cloud WANs. ONEWAN marks the progression of SDN
into an Internet backbone. It is driven by scaling our backbone
to serve today’s users. We continue to expand the roles and
functionality of ONEWAN as new opportunities emerge with
the growth of network demands.

Acknowledgements. We thank our colleagues in Azure wide
area networking team who made significant contributions to
make ONEWAN successful, our shepherd Ram Durairajan,
and NSDI reviewers for their comments that improved this
paper.

References

[1] David Applegate, Lee Breslau, and Edith Cohen. Coping
with network failures: Routing strategies for optimal
demand oblivious restoration. In Proceedings of the
Joint International Conference on Measurement and
Modeling of Computer Systems, pages 270–281. 2004.

[2] Daniel O. Awduche, Lou Berger, Der-Hwa Gan, Tony
Li, Vijay Srinivasan, and George Swallow. RSVP-TE:
Extensions to RSVP for LSP tunnels, December 2001.
RFC 3209.

[3] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai
Menache, Nikolaj Bjørner, Asaf Valadarsky, and
Michael Schapira. TEAVAR: striking the right
utilization-availability balance in WAN traffic engineer-
ing. In Proceedings of ACM SIGCOMM, pages 29–43.
August 2019.

[4] Matthew Caesar, Donald Caldwell, Nick Feamster, Jen-
nifer Rexford, Aman Shaikh, and Jacobus van der
Merwe. Design and implementation of routing con-
trol platform. In Proceedings of USENIX NSDI, pages
15–28, May 2005.

[5] COIN-OR linear programming solver. https://
github.com/coin-or/Clp.

[6] Anwar Elwalid, Cheng Jin, Steven H. Low, and Indra
Widjaja. MATE: MPLS adaptive traffic engineering.
In Proceedings of IEEE INFOCOM, volume 3, pages
1300–1309, 2001.

[7] Nick Feamster, Jay Borkenhagen, and Jennifer Rex-
ford. Guidelines for interdomain traffic engineering.
ACM SIGCOMM Computer Communication Review,
33(5):19–30, October 2003.

[8] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick
Reingold, Jennifer Rexford, and Fred D. True. Deriving
traffic demands for operational IP networks: methodol-
ogy and experience. IEEE/ACM Transactions on Net-
working, 9(3):265–279, 2001.

[9] Mikel Jimenez Fernandez and Henry Kwok. Building
Express backbone: Facebook’s new long-haul network,
May 2017. https://engineering.fb.com/2017/
05/01/data-center-engineering/building-
express-backbone-facebook-s-new-long-haul-
network/.

[10] Clarence Filsfils, Stefano Previdi, Les Ginsberg, Brune
Decraene, Stephane Litkowski, and Rob Shakir. Seg-
ment routing architecture, July 2018. RFC 8402.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 527

https://github.com/coin-or/Clp
https://github.com/coin-or/Clp
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/2017/05/01/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/

[11] Andrew V. Goldberg, Éva Tardos, and Robert E. Tarjan.
Network flow algorithms. In Bernhard Korte, Lásló
Lovász, Hans Jürgen Prömel, and Alexander Schrijver,
editors, Paths, Flows, and VLSI Layout (Algorithms and
Combinatorics), volume 9, pages 101–164. Springer-
Verlag, 1990.

[12] OR-Tools – Google optimization tools. https://
github.com/google/or-tools.

[13] Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz,
Sean P. Donovan, Brandon Schlinker, Nick Feamster,
Jennifer Rexford, Scott Shenker, Russ Clark, and Ethan
Katz-Bassett. SDX: A software defined internet ex-
change. In Proceedings of ACM SIGCOMM, pages
551–562, 2014.

[14] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
WAN. In Proceedings of ACM SIGCOMM, pages 15–26,
August 2013.

[15] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-
Fares, Min Zhu, Richard Alimi, Kondapa Naidu B.,
Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu
Liang, Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat
Ray, Malveeka Tewari, Matt Tierney, Monika Zahn,
Jonathan Zolla, Joon Ong, and Amin Vahdat. B4 and
after: Managing hierarchy, partitioning, and asymmetry
for availability and scale in Google’s software-defined
WAN. In Proceedings of ACM SIGCOMM, pages 74–87,
August 2018.

[16] Intermediate System to Intermediate System intra-
domain routeing information exchange protocol for
use in conjunction with the protocol for providing
the connectionless-mode network service (ISO 8473).
ISO/IEC 10589:2002, November 2002. https://www.
iso.org/standard/30932.html.

[17] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Expe-
rience with a globally-deployed software defined WAN.
In Proceedings of ACM SIGCOMM, pages 3–14, August
2013.

[18] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth
Kandula, Ratul Mahajan, Ming Zhang, Jennifer Rexford,
and Roger Wattenhofer. Dynamic scheduling of network
updates. In Proceedings of ACM SIGCOMM, pages 539–
550, August 2014.

[19] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna
Charny. Walking the tightrope: Responsive yet stable

traffic engineering. In Proceedings of ACM SIGCOMM,
pages 253–264. 2005.

[20] Srikanth Kandula, Ishai Menache, Roy Schwartz, and
Spandana Raj Babbula. Calendaring for wide area net-
works. In Proceedings of ACM SIGCOMM, pages 515–
526, August 2014.

[21] Dave Katz and Dave Ward. Bidirectional Forwarding
Detection, June 2010. RFC 5880.

[22] Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner,
and Himanshu Raj. Decentralized cloud wide-area net-
work traffic engineering with BLASTSHIELD. In Pro-
ceedings of USENIX NSDI, pages 325–338, April 2022.

[23] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster,
Robert Kleinberg, Petr Lapukhov, Chiun Lin Lim, and
Robert Soulé. Semi-oblivious traffic engineering: The
road not taken. In Proceedings of USENIX NSDI, pages
157–170. April 2018.

[24] Nikolaos Laoutaris, Michael Sirivianos, Xiaoyuan Yang,
and Pablo Rodriguez. Inter-datacenter bulk transfers
with NetStitcher. In Proceedings of ACM SIGCOMM,
pages 74–85. 2011.

[25] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, and David Gelernter. Traffic engineering
with forward fault correction. In Proceedings of ACM
SIGCOMM, pages 527–538, August 2014.

[26] Alberto Medina, Nina Taft, Kavé Salamatian, Supratik
Bhattacharyya, and Christophe Diot. Traffic matrix es-
timation: Existing techniques and new directions. In
Proceedings of ACM SIGCOMM, pages 161–174. 2002.

[27] Debasis Mitra and K.G. Ramakrishnan. A case study
of multiservice, multipriority traffic engineering design
for data networks. In IEEE GLOBECOM, volume 1B,
pages 1077–1083, 1999.

[28] OpenFlow switch specification, March 2015.

[29] Ping Pan, George Swallow, and Alia Atlas. Fast reroute
extensions to RSVP-TE for LSP tunnels, May 2005.
RFC 4090.

[30] Peter Phaal and Marc Levine. sFlow version 5, July
2004.

[31] Eric C. Rosen, Arun Viswanathan, and Ross Cal-
lon. Multiprotocol label switching architecture, January
2001. RFC 3031.

[32] Matthew Roughan, Mikkel Thorup, and Yin Zhang. Traf-
fic engineering with estimated traffic matrices. In Pro-
ceedings of the 3rd ACM SIGCOMM Conference on
Internet Measurement, pages 248–258. 2003.

528 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/google/or-tools
https://github.com/google/or-tools
https://www.iso.org/standard/30932.html
https://www.iso.org/standard/30932.html

[33] Ganesh Sadasivan, Nevil Brownlee, and Benoit Claise.
Architecture for IP flow information export, March 2009.
RFC 5470.

[34] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan
Katz-Bassett, Harsha V. Madhyastha, Italo Cunha,
James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi
Zeng. Engineering egress with Edge Fabric: Steering
oceans of content to the world. In Proceedings of ACM
SIGCOMM, pages 418–431, 2017.

[35] Rachee Singh, Sharad Agarwal, Matt Calder, and
Paramvir Bahl. Cost-effective cloud edge traffic en-
gineering with Cascara. In Proceedings of USENIX
NSDI, pages 201–216, April 2021.

[36] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang,
Yin Zhang, and Albert Greenberg. Cope: Traffic engi-

neering in dynamic networks. In Proceedings of ACM
SIGCOMM, pages 99–110. August 2006.

[37] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve
Padgett, Matthew Holliman, Gary Baldus, Marcus Hines,
Taeeun Kim, Ashok Narayanan, Ankur Jain, et al. Tak-
ing the edge off with Espresso: Scale, reliability and
programmability for global internet peering. In Proceed-
ings of ACM SIGCOMM, pages 432–445, 2017.

[38] Yin Zhang, Matthew Roughan, Nick Duffield, and Albert
Greenberg. Fast accurate computation of large-scale IP
traffic matrices from link loads. In Proceedings of ACM
SIGMETRICS, pages 206–217, 2003.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 529

RHINE: Robust and High-performance Internet Naming with E2E Authenticity

Huayi Duan, Rubén Fischer, Jie Lou, Si Liu, David Basin, and Adrian Perrig
ETH Zürich

Abstract
The variety and severity of recent DNS-based attacks under-
score the importance of a secure naming system. Although
DNSSEC provides data authenticity in theory, practical de-
ployments unfortunately are fragile, costly, and typically lacks
end-to-end (E2E) guarantees. This motivates us to rethink au-
thentication in DNS fundamentally and introduce RHINE, a
secure-by-design Internet naming system.

RHINE offloads the authentication of zone delegation to
an end-entity PKI and tames the operational complexity in an
offline manner, allowing the efficient E2E authentication of
zone data during online name resolution. With a novel log-
ging mechanism, Delegation Transparency, RHINE achieves
a highly robust trust model that can tolerate the compromise
of all but one trusted entities and, for the first time, coun-
ters threats from superordinate zones. We formally verify
RHINE’s security properties using the Tamarin prover. We
also demonstrate its practicality and performance advantages
with a prototype implementation.

1 Introduction

The importance of DNS as an integral part of the Internet can-
not be overstated. If DNS is corrupted, so would be all relying
Internet services [33]. Yet, this critical system has no built-in
protection for data at rest or in transit. The infamous Kamin-
sky attack [57] raised worldwide awareness of the severity
of DNS cache poisoning and thereafter spurred the deploy-
ment of several protocol-level defense mechanisms. Recent
years have, however, witnessed a flurry of new vulnerabili-
ties [17, 66, 67, 90] that revive the threat of cache poisoning
and DNS hijacking in general [50].

The implications of these attacks are profound: they enable
the sabotage of a wide spectrum of online systems, ranging
from web applications and email to time synchronization and
cryptocurrencies [33]. One of most alarming facts is that DNS
plays an essential role in bootstrapping the Internet’s secu-
rity. In the modern web PKI, certificate issuance relies on

DNS-based channels for domain validation. If such channels
are unauthenticated, attackers can manage to acquire fraud-
ulent TLS certificates and impersonate domains [25, 27, 81].
Hence, an end-to-end (E2E) authenticated naming system is
necessary for E2E secure communication.

DNS Security Today. Strengthening plain DNS with security
guarantees has been a decades-long but still largely ongoing
endeavor. DNSSEC [18] is by far the most important security
extension to DNS. It allows a zone owner to cryptographically
sign DNS records which, at least in theory, averts the threat
of DNS hijacking. However, the deployment of DNSSEC is
still far from complete (e.g., it is estimated that only 25% of
DNS responses worldwide are validated as of mid-2022 [15]),
and years’ of practical experience indicates that it is highly
fragile and fraught with problems.

The complexity of DNSSEC makes its operation an error-
prone and expensive process. It requires each zone to synchro-
nize its keying materials with its parent. Any inconsistency
in an authentication chain will cause validation and hence
resolution failure. This has caused frequent outages at all
levels of the DNS hierarchy [54]. Validation failure can in-
cur severe overhead to DNS servers and the name resolution
process [53]. Partly because of these factors, and partly by
design [88], end hosts rarely validate signed records by them-
selves but rely on validating recursive resolvers at best [64].
As a result, DNSSEC fails to provide E2E data authentication
in practice, despite pervasive DNS interception [65, 71, 77].

The trust model of DNSSEC is also controversial. DNS is
not designed for security, and mismanagement of DNSSEC
by DNS operators is commonplace [29, 82]. Compromising a
zone’s secret key implies the control of all its subzones. This
raises the concern that DNSSEC consolidates the power of the
few Internet governance bodies and state governments over
the DNS namespace [83]; in fact, large-scale DNS hijacking
campaigns sponsored by state agencies have already been
observed in the wild [46]. DNSSEC requires a validating
entity to trust all zones on an authentication chain; any one of
them can provide correctly signed yet bogus data [2].

These issues have their root in DNSSEC’s underlying ar-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 531

chitecture, which mirrors the hierarchical namespace, and
therefore they cannot be resolved within DNS. This poses the
question: Is it possible to build a DNS-compatible yet robust
naming system that enables efficient E2E authentication?

Introducing RHINE. We provide an affirmative answer to
this question with the design, verification, implementation,
and evaluation of a system called RHINE. Our key insight is
that the authentication of zone data and zone delegation in
DNS, while treated identically by DNSSEC, should be decou-
pled. The latter form of authentication, which is more delicate
and costly, can be performed by external trusted entities in an
offline manner. Specifically, we employ certificate authorities
(CAs) from the web PKI to certify zone delegation, allowing
clients that already rely on these CAs to efficiently validate
zone data during online name resolution.

Despite its promising opportunities, this architecture also
raises unique challenges. Certifying a zone’s authority with
CAs creates a circular dependency, because, as mentioned
earlier, secure certificate issuance hinges on a secure naming
system in the first place. On a different front, the corruption
of a single CA may put the entire DNS namespace at risk.
Moreover, malicious DNS and PKI authorities can interact in
subtle ways to subvert a zone’s authenticity.

What we strive for is a system of checks and balances
where the parties involved (zone owners, CAs, and loggers)
watch over each other so that no single party or partial collu-
sion between them can undermine a zone’s authority. RHINE
systematically addresses security threats arising from the en-
visioned architecture, offering a set of protocols for secure
zone management and E2E-authenticated name resolution.
At its core is Delegation Transparency (DT), a novel public
logging mechanism to maintain global zone delegation status.

It is essential to rigorously establish the expected security
properties for our design. Using a state-of-the-art security
protocol verifier, Tamarin [68], we have formally proved that
RHINE guarantees E2E data authenticity for legitimately
delegated zones in a highly robust trust model.

Our evaluation with a prototype implementation shows that
RHINE can cope with real-world certificate issuance rates
(millions per day) and, compared with DNSSEC, achieve
lower resolution latency and higher resolver performance.

2 Problem Statement
We start by introducing the basic concepts of DNS. After-
wards, we contextualize the data authentication problem and
analyze the intrinsic weaknesses of DNSSEC.

2.1 Name Resolution Basics
The global DNS namespace is organized as a tree structure,
where each node is a zone that manages resource records
mapping names to IP addresses and other data. Delegating a
portion of a zone creates another node in the tree and hence a
(sub)zone. Below the root zone lie top-level domains (TLDs)

16

Recursive
Resolver

Recursive
ResolverResolver

Name Server
.

Name Server
.

Root
Nameserver

Name Server
.

Name Server
.

com.
Nameserver

Name Server
.

Name Server
.

example.com
Nameserver

Client

Client

Root
Owner

com.
Owner

example.com
Owner

Off-path
Attacker

Interceptor

Figure 1: A simplified DNS infrastructure. Components in red
and dotted lines indicate various threats to data authenticity.

such as .com and .org, second-level domains (SLDs) such
as a.com, and so forth. A zone should be authoritative for
all names under it except those under its delegated subzones.
For example, assuming the zone b.a.com exists but c.a.com
does not, then the zone a.com is authoritative for c.a.com
and d.c.a.com but not b.a.com or d.b.a.com. A zone’s
apex is the name identifying the zone itself.

DNS runs on a distributed infrastructure. We consider a
simplified infrastructure with four types of entities depicted
in Figure 1. The owner of a zone is a logical entity with
legitimate authority over it. When the context is clear, we
extend the term “zone” to also indicate its owner. A zone
hosts its data on multiple (authoritative) nameservers, which
in many cases are not under the control of the zone owner [58,
76]. In the name resolution process, a (recursive) resolver
handles name lookup queries from clients (aka stub resolvers),
by iteratively asking nameservers for matching record(s) in
a top-down manner. Caching at resolvers reduces the overall
lookup costs and helps DNS operate at Internet scale.

2.2 Authentication in DNS
Plain DNS offers no authentication of resource records. They
can be corrupted anywhere before reaching a client, as high-
lighted in Figure 1. Any on-path network node can access,
modify, and fabricate DNS messages. An off-path adversary
can also intervene in the resolution process and inject bogus
data, as demonstrated by the Kaminsky attack and its vari-
ants [66, 67]. Nameservers and resolvers may deviate from
their expected behavior due to domain hijacking [85], mal-
ware infection [32], business incentives [87], or regulatory
pressure [72]. Less obvious threats are posed by malicious
zone owners themselves, who can surreptitiously (and some-
what rightfully) manipulate their subzones [2, 83].

Network attackers can be thwarted by secure channels.
DNSCurve [23] was proposed to protect the communication
between a resolver and nameservers using an in-band key ex-
change scheme. More recent and widely deployed protocols
include DNS over TLS (DoT) [52] and DNS over HTTPS
(DoH) [47], which focus on securing the last-mile communi-
cation between a client and a resolver. These solutions fail to
mitigate risks arising from nameservers, resolvers, and any
intermediary servers on the resolution path.

As the most prominent security addition, DNSSEC en-
hances DNS with data integrity and origin authentication.

532 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Zone A

Zone B

CAClient

DT
Logger

DT
Logger

Distribution
Infrastructure

Name resolution

DT retrieval

offlineonline

Delegation
setup & update

Data
publishing

DT
Logger Sync

DT retrieval

Figure 2: The high-level architecture of RHINE, where operational complexity (e.g., the authentication and management of zone
authority) is pushed towards an offline phase. The arrows represent interactions between (groups of) entities.

It allows a zone to cryptographically sign its records using a
secret key, with the corresponding public key signed by the
parent zone. A security-aware resolver can verify a signed
record by following an authentication chain all the way up to
the root zone (key), without trusting any on-path servers.

2.3 Problems with DNSSEC
Since the signing of the root zone’s key in 2010, DNSSEC has
seen gradual uptake, but the deployments are not all smooth.
It is often cited by practitioners as overly complicated and not
worth the costs it exacts [54]. We analyze its drawbacks in
practical operation and from a security perspective.

Fragile Operation. DNSSEC requires synchronization be-
tween each pair of adjacent nodes in an authentication chain.
Any inconsistency (e.g., missing or mismatching keys or se-
curity parameters) between a zone and its parent will cause
validation and hence resolution failure, blocking not only the
failed zone but also all its subzones. It is thus unsurprising that
Internet outages caused by DNSSEC happen frequently at all
levels including the root, TLDs and SLDs, and across various
organizations including DNS governance bodies themselves
(e.g., ICANN and RIPE) as well as large service providers
(e.g., Verisign, Dyn, and Google) [54].

While DNSSEC already imposes significant performance
overhead with respect to plain DNS resolution, validation
failure can further boost its costs. It is estimated that with fail-
ure factored in, the authoritative nameservers of a DNSSEC-
signed zone should be prepared to handle 10 times the query
traffic volume and 100 times the response traffic volume
of their unsigned counterparts for an Internet-wide deploy-
ment [53]. The potential of abusing DNSSEC for denial of
service (DoS) is well-recognized and many real-world attacks
have been reported [1].

The operational complexity, high failure rate, and perfor-
mance overhead all contribute to the fact that end hosts rarely
validate DNSSEC-signed records [64]. It is actually by design
that end hosts should rely on validating recursive resolvers
to verify records [88]. As a result, DNSSEC almost never
provides E2E data authentication in practice.

Fragile Security. The security of DNSSEC rests on DNS
itself. However, unlike PKIs, DNS is not designed for secu-
rity; and unlike CAs, zone owners and operators may not
be security-savvy. Real-world measurements have revealed
widespread mismanagement of DNSSEC with flawed secu-
rity practices (using weak keys, reusing keys for multiple
zones, etc.) [29, 82]. The compromise of a zone’s secret key
endangers not only the zone itself but also all its subzones.

A common criticism of DNSSEC is that it consolidates
the Internet’s governance [83]. The root zone is governed
by ICANN, the most important TLD .com is managed by
Verisign under the jurisdiction of US law, and each country-
code TLD is ultimately controlled by the corresponding
sovereign state. Large-scale DNS hijacking campaigns spon-
sored by state agencies have been observed in real world [46].

While the governance model of DNS remains a subject
of controversy, from a technical point of view, DNSSEC’s
trust model is fundamentally fragile in that it provides clients
with no option but to trust all zones on a delegation chain. A
malicious zone can surreptitiously claim and serve authenti-
cated data for names belonging to any subzone. This problem
has just begun to gain attention from the Internet commu-
nity, and there is a proposal to mark the root zone and TLDs
as delegation-only so that their ability to serve authoritative
data is limited [2]. However, implemented within DNS, this
mechanism cannot solve the inherent limitations of DNSSEC.

2.4 Desired Properties
Our analysis of DNSSEC reveals the following properties
desired by an ideal authenticated Internet naming system.

• P1: End-to-end (E2E) data authenticity. A validating
client must be assured that any verified resource record is
indeed generated by the genuine authoritative zone.

• P2: Authentication efficiency. The computation and com-
munication costs of authenticating resource records, espe-
cially in case of failure, are lower than DNSSEC.

• P3: Operational robustness. The authentication of a
zone’s data is unaffected by any superordinate zone’s op-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 533

erational faults in managing security, e.g., misconfigured
security policies or keying materials.

• P4: Robust trust model. If a zone relies on a group of en-
tities (including its parent and any external trusted parties)
to establish its authority, then no single entity or partial
collusion between them can claim authority over the zone.

3 RHINE Overview
RHINE is a naming system with built-in security, satisfying
all the properties listed in Section 2.4. Our starting point is
the observation that the authentication of a DNS zone consists
of two parts: authenticating resource records during name res-
olution and, when the zone is created, authenticating the dele-
gation’s legitimacy. The latter can be offloaded from clients
to external trusted entities: in particular, the CAs in today’s
web PKI that billions of clients already rely on. Once a zone
is delegated and certified, it can serve authenticated data and
manage its security independently, without synchronizing
with its parent as in the case of DNSSEC. This isolates the
failures caused by a zone’s security mismanagement from its
subzones. The reduction in validation failure and authentica-
tion chain length also improves name resolution performance.

This new security architecture simultaneously achieves the
desired properties P1, P2, and P3. Yet, it introduces both un-
precedented opportunities and challenges to meet P4, without
which the system can be broken in many ways. This is the
main focus of our design (Section 3.3).
RHINE Architecture. We depict our architecture in Figure 2.
It consists of two parts. In the offline part, zone owners es-
tablish new delegations by acquiring publicly logged RHINE
certificates (RCert) from a CA and loggers (Section 5.1).
An existing zone can update its RCert or delegation status
(Section 5.2). It also periodically retrieves delegation status
proofs (DSP) (Section 5.3) from a public transparency log
(Section 4). A zone signs its resource records using its RCert
and publishes them to a distribution infrastructure. During
online name resolution, a client who already relies on the
web PKI can easily verify an answer’s authenticity using the
associated RCert and DSP (Section 5.4).

This architecture shifts much of DNSSEC’s complexity to
offline operations, minimizing the risk of failure during the
name resolution process. It also clearly separates the distri-
bution and authentication of DNS data. While we intend to
reuse the existing DNS infrastructure consisting of authorita-
tive nameservers, recursive resolvers, forwarders, etc., RHINE
can be instantiated with other distribution architectures such
as a peer-to-peer network [14], or enable client authentication
of records received through DoT or DoH.

3.1 Notation and Primitives
We use uppercase letters (e.g., X) to identify entities (zone
owners, CAs, and loggers) that run RHINE protocols, and
lowercase letters in the subscript to identify zones (e.g., ZNx)

Table 1: Summary of Notation.

Notation Definition

pkX , skX The key pair of entity X (in uppercase)
ZNx A zone identified by x (in lowercase)

RCrtx, zpkx, zskx The RCert and associated key pair of ZNx
:= Definition/assignment operator

(a,b, . . .) A tuple of values encoded as a string
H(·) A secure hash function

⟨m⟩X or ⟨m⟩x A message signed with skX or zskx
Σ.Vf(k,m) Verify a signed message m with a key/cert k

Acc.Vf(ac, p) Verify a membership proof p with digest ac

and their associated data (e.g., RCrtx). For brevity, we some-
times refer to the pair of zones related by delegation and their
corresponding owners simply as the parent and child.

We use standard cryptographic primitives including secure
hash functions and digital signatures. The public keys of CAs
and loggers are known to all entities. To design succinct data
structures, we also use cryptographic accumulators [34] that
can commit sets of values into small digests and generate
compact membership proofs. Classic constructions include
the Merkle hash tree (MHT) [69] and its variants. Table 1
summarizes our notation.

3.2 Threat Model
Table 2 summarizes the adversaries we consider in the design
of RHINE and the expected security properties.

A1 is a conventional Dolev-Yao network attacker [37] (who
can eavesdrop, modify, and inject messages transmitted over
the network) augmented with the ability to control the entire
DNS distribution infrastructure.

The next two types of adversaries pertain to today’s web
PKI ecosystem: A2 can issue arbitrary certificates by compro-
mising a CA; A3 can compromise some loggers and provide
fake or inconsistent log data to users. Since we repurpose the
web PKI to authenticate delegated zone authority, RHINE
must also deal with these adversaries.

For the first time, we systematically address an adversary
(A4) that controls a zone and attempts to subvert its subzones
by declaring authoritative data for them. This capability is
inherent in the hierarchical naming structure of DNS, i.e., a
name under a zone is also under its parent zone. For an authen-
ticated naming system where zone data is cryptographically
signed, A4 has access to the private key of the zone it controls.
As an example, an A4 attacker compromising the TLD xyz
can generate valid records for abc.example.xyz, despite that
the SLD example.xyz has been legitimately delegated.

Overall, we consider attackers that seek to, given the stated
capabilities, break the naming system’s data authenticity but
not availability—that is, tricking clients into accepting mali-
cious data rather than preventing clients from receiving any
answer. We assume that the attackers cannot break the cryp-
tography primitives used by RHINE, and that privacy aspects
of DNS are outside this paper’s scope.

534 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 2: Summary of adversaries considered in DNS and the web PKI. We also list the corresponding security properties and
representative defense mechanisms to achieve them.

Adversary Capability Security property (informal) Defense mechanisms

Dolev-Yao controls communication networks channel security DoT/DoH/DoQ, DNSCurve
A1 + DNS distribution infrastructure data authenticity DNSSEC, GNS [14]
A2 controls some CA(s) certificate misissuance prevention ARPKI [21], F-PKI [28]
A3 controls some logger(s) tolerating all but one compromises LogPicker [36], CTng [63]
A4 controls a DNS zone (e.g., a TLD) authority independence (of subzones) -

A1 + A2 + A3 + A4 (strongest possible adversary) E2E authenticity with robust trust RHINE

3.3 Design Rationale
RHINE strives to counter the strongest possible adversary
that combines all capabilities as shown in Table 2. Before
fleshing out RHINE’s design, we discuss the main aspects
to be considered, analyze why existing approaches fail, and
highlight the intuitions behind our solutions.

3.3.1 Validating Zone Ownership (A1)
Secure delegation in RHINE requires the expected zone owner
to request an RCert from a CA. The issuing CA must ver-
ify that a requesting entity indeed controls the zone to be
certified. Commonly known as domain validation (DV), this
process is mandatory for the issuance of TLS certificates. In
standard practice [20], the requester proves its ownership of
a domain by publishing a challenge token specified by the
contacted CA. A network attacker can exploit an insecure
channel in this process to obtain a fraudulent certificate. Un-
fortunately, all practical DV channels hinge on DNS and are
therefore exploitable by an A1 attacker [24, 27, 81]. Applying
these standard DV methods to our case will lead to a circular
dependency: the CA depends on an authenticated zone for
ownership validation and RCert issuance, but meanwhile, the
zone needs an RCert to authenticate its data in the first place.

RHINE solves this dilemma by engaging the parent to
approve the delegation. This is indeed necessary, as the parent
still legitimately controls the child before it is established.
Specifically, the parent must sign a delegation request using
its own RCert. The CA can then verify that the current owner
of the child zone approves the delegation. In doing so, RHINE
creates an implicit offline authentication chain of delegated
authority, as opposed to what is explicitly constructed by
DNSSEC, and shifts the heavy authentication workload away
from the client side of DNS.

3.3.2 Preventing Certificate Misissuance (A2 & A3)
Security breaches of CAs [49] spurred the deployment of
Certificate Transparency (CT) [61], which employs public
logs to make misissued certificates detectable. Mainstream
browsers have mandated public logging for TLS certificates
to be valid [3, 6]. One limitation of CT is that it provides
deterrence rather than prevention. Fraudulent certificates may
still be used before being detected and revoked. CT loggers

passively accept certificates that meet basic validity criteria
(properly formatted and signed, non-expired, etc.) but never
validate domain ownership as CAs do. Also, the compromise
of loggers has already occurred in practice [79].

RCerts are more critical than TLS certificates in terms of se-
curity, because the naming service is one of the weakest links
in many Internet systems including the web PKI itself [33]. In
addition, the detection of fraudulent RCerts is more involved
in that it requires investigating delegation chains rather than
individual domains. Therefore, we need preventive measures
to foil the misissuance and logging of unauthorized RCerts.

There are proposals to make today’s web PKI more resilient
to the compromise of CAs and loggers [21, 28, 36, 63]. Yet,
they are not applicable to the new security architecture we
envision for RHINE. This is because: (1) they are designed for
TLS certificates and so they will suffer from the bootstrapping
dilemma discussed earlier (Section 3.3.1), and (2) their log
data models, either reusing or building upon CT, do not meet
our security and performance requirements (Section 3.3.3).

We address the A2 and A3 adversaries from several aspects:
(1) integrating loggers into the certificate issuance process for
proactive verification of the data to be logged, (2) enabling
a zone to choose its own trusted loggers rather than relying
on whichever loggers are chosen by CAs (as in the case of
CT), and (3) enforcing loggers and CAs to crosscheck each
other throughout the certificate issuance and logging process.
This allows RHINE to defeat attackers that can compromise
multiple trusted entities designated by a zone.

3.3.3 Countering Parental Attacks (A4)
A zone gains authority independence if its ancestors cannot
claim authoritative data under its authority. The cryptography
of DNSSEC makes the situation even worse than in regular
DNS. Our new security architecture does not immediately
address this challenge. In particular, a malicious parent can
still serve authentic records for delegated children, using its
own RCert or alternative child RCerts acquired by it. In order
to counter such parental attacks, we must enable a dependent
entity (client or CA) to verify the status of the delegations in
question without trusting zone owners themselves.

Since delegation status can be inferred from logged RCerts,
it seems plausible to design a solution atop CT. A closer

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 535

(a, !"#a, c) (c, !"#c, g) (w, !"#w, a)

(Delegation Status Accumulator)

$%!x

(A summary of zone ’s delegations)

$!&&x
'(x

 $%)*x := ('(x, !+#x, !),x, -(./012x), $!&&x) $%)*a.x

(Global Delegation Accumulator)

3$!T

(A summary of the DT log in epoch)

3!&&T
T

 $%)*ab.c.x

Figure 3: The data structures used by DT.

look reveals several pitfalls. First, a dependent entity needs to
ascertain that a zone in question does not exist, but CT has no
native support for absence proofs. Second, such proofs must
have global coverage, but CT loggers operate independently
and maintain only partial views of all issued certificates. It
would be onerous to assemble and synchronize data from all
CT logs with correctness and performance guarantees. Third,
the data structures used by CT are too heavy to represent and
authenticate global delegation status.

These inefficiencies motivate us to create a more efficient
transparency mechanism dedicated to keeping track of the
entire namespace’s delegation structure.

4 Delegation Transparency
At the heart of RHINE is Delegation Transparency (DT), a
lightweight verifiable log design. In contrast to CT, which
maintains the history of all certificates ever issued, DT offers
an up-to-date snapshot of global zone delegation status. A
single DT log is replicated to a consortium of loggers. The
loggers receive requests to update delegation status and peri-
odically synchronize with each other to maintain a consistent
log. They also provide publicly verifiable delegation informa-
tion. Below we introduce the basics of DT. Its operation as an
integral part of RHINE is described in Section 5.

Log Data. Figure 3 depicts DT’s data model. We define the
delegation status of a zone ZNx as a tuple (ALvx,Auxx,CSetx),
where the first item is the authority level of ZNx (explained
below), the second is auxiliary information for ZNx (e.g., ex-
piration time or revocation status of the delegation), and the
third is a set representing ZNx’s child zones and their authority
levels: CSetx := {(c1,ALvc1),(c2,ALvc2) . . . ,}.

We encode the delegation status of ZNx into a data struc-
ture called DSumx (delegation summary). DSumx contains a
cryptographic digest of the zone’s RCert. This ensures that
at any time there is only one valid RCert per zone, captur-
ing that the authority over a zone should be unique. Since
a zone may have many delegations, DSumx stores the digest
(DAccx) of an accumulator DSAx over CSetx rather than CSetx
itself. This reduces the cost of authenticating a specific child’s
(non)existence. Each input element of DSAx contains the label

!"#

¬!"#

$%& #'(¬$%& ∧ ¬#'(
%'!

¬%'!
(1, 0)*

(1, 0)*

(0, 1)*

(0, 2)*

(1, 1)*

(1, 2)

(1, 1)* (0, 1)*

Figure 4: The authority level matrix derived from the interac-
tion of constraint flags. The shaded area indicates the division
caused by the EOI flag. In each pair (a,b), a ∈ {0,1} encodes
a zone’s ability to serve authoritative data for all its names
excluding those of its independent subzones; b ∈ {0,1,2}
encodes a zone’s delegation capability (0: not allowed; 1:
non-independent child only; 2: any child). The cases marked
with * permit fast data validation (see Section 5.4).

and authority level of one child as well as the label of the
next child in a canonical order [19]. This allows a single
membership proof from the accumulator to prove either the
presence or absence of a child zone.

For efficient synchronization and auditing of the DT log, we
introduce a global accumulator GDA over all DSumxs. Loggers
can commit GDA’s digest (GAcc), along with the necessary
data to replay logged changes, into an authenticated data
structure that supports succinct consistency proofs [62].

Authority Level. While we envision that authority indepen-
dence is desired by many zones (including all TLDs and
SLDs), this may not always be the case, for instance when the
parent and child are managed by the same entity. To enable
fine-grained control over zone authority, we introduce the
concept of authority level, which places constraints on what
a zone can do to its data and delegation. We define authority
levels using constraint flags, as depicted in Figure 4.

The flag IND indicates a zone’s authority independence. By
definition, an independent zone has the sole authority over
its names, whereas a non-independent (¬IND) zone’s names
are also under the authority of its parent. The data served
by a zone comes in two types: authoritative and delegation.
A terminating (TER) zone can serve only authoritative data;
all leaf zones are by default terminating. A delegation-only
(DOL) zone can serve only delegation data (i.e., NS records in
DNS); all TLDs are supposed to be delegation-only. Note that
these two flags cannot be set simultaneously as this would
lead to an empty and useless zone. Since a non-independent
zone can never delegate to an independent child, authority
independence can end at some non-leaf zone on a delegation
path; such a zone is marked as end-of-independence (EOI).

Delegation Status Proof (DSP). Clients make use of the
DT log in the form of DSP, which consists of a timestamped
DSumx signed by loggers and, if necessary, a membership
proof from DSAx for some child zone ZNy of ZNx. A DSP en-
ables clients to determine a zone’s realm of authority and
hence whether to accept an answer signed with the corre-
sponding RCert. A malicious parent may use an outdated

536 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Parent Zone

Child Zone

CA

Logger 1

Logger mDe
le

ga
tio

n
Ap

pr
ov

al

(0
-5

)

Request Validation

(6-7)

Log Attestation

(8-11)

Log Confirmation

(12-14)

Certificate Issuance

(15-17)

Figure 5: Overview of the delegation setup protocol.

DSP to trick clients into accepting fraudulent data for the
names belonging to a delegated child. Prudent clients should
accept only DSPs that are recent enough.

5 RHINE Protocols
We specify RHINE’s core functions with a set of protocols,
including the secure management of zone delegation, the
maintenance and usage of DT, and E2E-authenticated name
resolution. The entire system operates in epochs, which are
consecutive time windows of a predetermined length. This
is necessary to keep DT loggers in synchrony and to estab-
lish the system’s security. In each epoch, zone owners can
securely set up new delegations or update existing ones until
a cut-off time. The resulting changes in these zones’ dele-
gation status will be applied to the DT log within the same
epoch and take effect from the next epoch. Zone owners can
actively monitor the log for unexpected events like attacks
or operational faults, and take action accordingly. They also
regularly retrieve signed log entries to prove their authority
over answers served during name resolution.

5.1 Secure Delegation Setup
In RHINE, delegating a zone ZNc begins with the intended
owner C negotiating the delegation with P, the owner of the
parent zone ZNp. This follows standard DNS practices, e.g.,
domain registration. Afterwards, C should run the secure dele-
gation setup protocol specified in Figure 6 to obtain an RCert.
This protocol follows the design intuitions presented in Sec-
tion 3.3. An overview of its flow is depicted in Figure 5.

In the initial phase (Steps 0-5), C asks for a signed approval
(apv) for its delegation request (sdr) from P. The request
encodes the trusted entities selected by C, the delegation pa-
rameters negotiated with P, and most importantly, the public
key to be certified. The corresponding private key is also used
to sign the request. There must be a way for P to authenticate
the association between C and the key. This is done using
an initial secure out-of-band key registration procedure (Step
0), for example, via a secure web portal with account-based
client authentication when P is a domain name registrar.

Next, C sends the request to a CA for validation (Steps 6-7).
In addition to verifying the parent’s approval, the CA checks
the delegation’s legitimacy using the DT log. If everything
is correct, the CA sends a pre-logging request (prl), which
includes a to-be-signed certificate, to the designated loggers
for crosschecking (Steps 8-11). After assembling the loggers’

attestations, the CA randomly picks one of them to store the
logging request (lreq) as an input to the later aggregation
process (Steps 12-14). Finally, C receives an RCert accom-
panied by attestations and a confirmation that the zone ZNc’s
delegation status will be added to the DT log (Steps 15-17).

Our design ensures that the entire delegation setup process
is witnessed by multiple parties and any misbehaving party
will be held accountable for the messages it signs. Any ver-
ification failure will cause the protocol execution to abort,
broadcasting a failure message to all the involved parties. It is
impossible to obtain a valid logged RCert without faithfully
following the protocol. Even in the presence of an omnipo-
tent attacker whose capabilities go beyond our threat model,
RHINE still allows a zone owner to detect and counter attack
attempts before harm is caused (see Section 6).

Secure Bootstrapping. The delegation setup protocol as-
sumes the parent’s RCert already exists. A bootstrapping
problem arises at the top of the namespace. Representing a
critical Internet authority in itself, the root zone should not
depend on another CA. Therefore, we treat the root zone as a
root CA that signs its own RCert. Similarly, TLDs resemble
intermediate CAs with their RCerts signed by the root RCert.
This allows the root zone and TLDs to retain their innate
power over the namespace, effectively restricting an external
CA’s influence over the namespace to SLDs and below.

5.2 Secure Delegation Update
Once delegated, a zone can manage itself mostly indepen-
dently of its parent. This includes updating its RCert and
other delegation parameters. Similarly to delegation setup,
processing an update request involves some CA and loggers
as witnesses. The parent’s involvement is required only for a
request to extend the delegation’s validity period or to change
the child’s authority level from non-independent to indepen-
dent. RHINE has built-in support for certificate revocation.
An updated RCert automatically revokes the old one, because
by design a zone can only have one valid RCert at any time;
a zone can also request for explicit revocation.

The update protocol is similar to the delegation setup pro-
tocol for the message flow and verification procedures. The
major difference is that a zone should now sign the update
request using its own RCert (instead of the parent’s) to prove
its authority. We provide further details in Appendix A.2.

5.3 DT Aggregation and Retrieval
In each epoch, loggers will receive disjoint sets of requests
to update the DT log. To ensure the log’s global consistency,
they must aggregate all requests by synchronizing with each
other. Wanner et al. formalized this problem as secure log
replication—a special case of state machine replication—and
proposed Logres, a formally verified log replication protocol
with Byzantine fault tolerance that is optimal in terms of
round complexity and the number of tolerable faults [86].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 537

0. C generates a key pair (zpkc,zskc) and register zpkc to
P via a secure out-of-band channel.

1. C : select A (a CA) and Lc (a set of loggers)
// t0 is a timestamp within the current epoch T, al is the
requested authority level, aux is auxiliary information.

: rid := H(ZNc,zpkc,A,Lc, t0,al,aux)
// rid is implicitly included in all subsequent messages

2. C → P : sdr := ⟨rid,SDReq(ZNc,zpkc,A,Lc,al,aux)⟩c
3. P : Verify Σ.Vf(zpkc,sdr) and whether al,aux

: match what are agreed upon with C.
4. P →C : RCrtp, apv := ⟨SDApprvl(H(sdr))⟩p
5. C : Verify Σ.Vf(RCrtp,apv) ∧ Match(apv,sdr)
6. C → A : sdr, apv, RCrtp
7. A : Verify Σ.Vf(RCrtp,apv) ∧ Σ.Vf(zpkc,sdr)

: ∧ Match(apv,sdr)
: Retrieve dsp := (⟨DSump,T

′⟩Lc ,mem)
: from local cache or the loggers Lc.

// Check if DSP is valid and the delegation is legit
: Verify Σ.Vf(pkLc ,⟨DSump,T

′⟩Lc)
: ∧ Match(RCrtp,DSump) ∧ T′ = T ∧
: Acc.Vf(DAccp,mem) ∧ Legal(ALvp,al)
: tbsrc := TBSCert(ZNc,zpkc,A)

// Pre-logging requests to all designated loggers

8. A → Lc : prl := ⟨PreLog(sdr,apv, tbsrc)⟩A, RCrtp
9. Li : Verify Σ.Vf(pkA, prl) ∧ Li ∈ Lc

: ∧ Σ.Vf(RCrtp,apv) ∧ Σ.Vf(zpkc,sdr)
// Check if the to-be-signed cert matches the requested

: ∧ Match(apv,sdr) ∧ Match(sdr, tbsrc)
// Check the delegation’s legitimacy using local DT log

: ∧ ZNc not delegated ∧ Legal(ALvp,al)
: nds := (T,A,Lc,ZNc,al,aux,H(tbsrc))

10. Li → A : atti := ⟨LogAttest(Li,H(nds))⟩Li

11. A : Verify Σ.Vf(pkLc ,{atti}) ∧ Match(prl,{atti})
// L is randomly selected from Lc by A

12. A → L : lreq := ⟨LogReq(L,nds,{atti}Li∈Lc)⟩A
13. L : Verify Σ.Vf(pkA, lreq) ∧ Match(nds,{atti})

: ∧ Σ.Vf(pkLc ,{atti}) ∧ L ∈ Lc
: Add lreq to a pending pool for aggregation

14. L → A : lc := ⟨LogCfm(L,H(nds))⟩L
15. A : Verify Σ.Vf(pkL, lc) ∧ Match(lc, lreq)

: RCrtc := ⟨FinalRCert(TbsRCc,Lc)⟩A
16. A →C : RCrtc, {atti}Li∈Lc , lc
17. C : Verify Σ.Vf(pkA,RCrtc) ∧ Match(sdr,RCrtc)

: ∧ Σ.Vf(pkLc ,{atti}) ∧ Match(sdr,{atti})
: ∧ L ∈ Lc ∧ Σ.Vf(pkL, lc) ∧ Match(sdr, lc)

Figure 6: The secure delegation setup protocol. A party stores the messages it sends and receives whenever necessary. The
function Match() checks the consistency between two data objects and Legal() checks a delegation’s legitimacy. Other functions,
such as SDReq() and TBSCert(), construct proper data objects from the input parameters.

This protocol however cannot be directly applied to our case,
because it is agnostic to the validity of inputs: a malicious
logger that participates in the consensus process faithfully can
still inject arbitrary bogus data into the log.

To this end, we enhanced Logres with input validation
(among other technicalities), requiring each logging request to
be attested by the specified trusted entities (Steps 10-13, Fig-
ure 6). Using the modified version as a core consensus routine,
we designed a secure aggregation protocol (Appendix A.3)
that allows a majority of honest DT loggers to efficiently
maintain a consistent log even in case of Byzantine faults.

Within an epoch, DT loggers can run the aggregation pro-
tocol multiple times according to some system-wide policies,
e.g., at regular intervals or whenever their pools of pending
request become filled up. Pipelining log aggregation with del-
egation setup and update improves overall system efficiency.
Loggers should stop accepting new requests when the num-
ber of pending requests is estimated to exceed what they can
aggregate after the cut-off time. This ensures that all requests
confirmed in an epoch (Step 15, Figure 6) can be applied to
the DT log by the end of the epoch.

After a successful execution of the delegation setup or
update protocol in epoch T, the owner of a zone ZNx should
actively monitor the DT log. Once the change to its delegation
status has been admitted, it can retrieve from its designated
loggers Lx a signed log entry ⟨DSumx,T+1⟩Lx (and DSAx as
well if it is updated), which will be used to generate DSPs in

epoch T+1. Each zone should retrieve its (re-)signed log en-
try once per epoch, even if its delegation status is not changed.
Note that using the epoch counter, instead of higher-precision
time units, to timestamp log requests and DSPs effectively
guarantees RHINE’s synchrony while reducing the system’s
reliance on secure global time synchronization (e.g., [40]).

Parameter Selection. Epoch length is an important system-
wide parameter and its selection comes with trade-offs. A
large value means long waiting time for zones’ delegation
status changes to take effect. A small value leads to frequent
retrieval of the DT log and thereby performance issues. On
balance, we suggest a practical epoch length of 48 hours and a
cut-off time 24 hours before the end of an epoch. This is based
on our evaluation results as well as CT’s Maximum Merge
Delay of 24 hours [62]—the longest time period within which
CT loggers must add promised certificates to their logs. We
consider doubling the waiting time in DT acceptable because
the administration of zone delegation happens less frequently
than the management of TLS certificates for domains in al-
ready established zones. With the suggested parameters, it
takes 24–48 hours to set up an operational zone.

5.4 Authenticated Name Resolution
With only minor changes, RHINE can augment the plain name
resolution of unprotected DNS (or any other distribution in-
frastructure) with E2E data authentication. A zone owner

538 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Answer
from !"#

¬$"% ∨
'() ∨ (*$

∈ ,-.#

 %*-
∈ ,-.#

 !"/
∉ %1,#

 ¬$"%
∈ ,-./

Accept

Reject

The record is verified
with a valid RCert, which matches

a valid DSP.

YY

Y

YY

N

N N N N

Figure 7: The flow of validating an answer received from zone
ZNx, which has a potential child ZNy that encloses the queried
name. Dashed arrows indicate shortcuts for verification.

needs to sign its resource records using the zone’s RCert
before publishing them to nameservers. Whenever an authori-
tative answer is to be provided, a nameserver will also return
the corresponding RCert and DSP to the querying client.

Figure 7 depicts the data validation flow. It starts with the
verification of the signed records using RCert, similarly to
DNSSEC. The client then additionally verifies whether the
RCert matches the cryptographic digest contained in the DSP.
Afterwards, the client decides whether the queried name falls
within ZNx’s realm of authority by checking its authority level
ALvx. In most cases (Figure 4), a shortcut can be taken to
make a quick decision: an answer for a non-apex name from
a delegation-only zone is always rejected by definition; an
answer from a non-independent, end-of-independence, or ter-
minating zone is always accepted because there exists no fur-
ther independent subzone. If none of these applies, the client
will examine ZNx’s potential child zone ZNy that encloses the
queried name, which involves verifying a membership proof
from DSAx, and accepts the answer only if ZNy does not exist
or is non-independent.

6 Formal Security Analysis
The overall security goal of RHINE is to preserve a zone’s
data authenticity against powerful adversaries. This can be
broken down into two concrete objectives: (1) preventing
attackers from obtaining a valid RCert to take over a zone
that is not yet delegated, and (2) preventing the forgery of
authoritative data from an already delegated zone. In the first
case, a victim zone is still under the legitimate control of
its parent, and therefore the parent must be assumed trusted
for a meaningful notion of security. In the second case, the
additional protection of a zone from its malicious parent leads
to the notion of authority independence.

We define these two objectives with the following theorems
(presented informally). Table 3 summarizes the main security
parameters in RHINE. The constraint f < n/2 is required by
Logres [86]. We additionally require that m ≤ f +1 holds for
any zone, as otherwise an attacker with the A3 capability can
inject arbitrary data into the DT log.

Table 3: Main Security Parameters in RHINE

Definition Constraint

n Number of loggers in a global DT setup -
f Number of tolerable faulty loggers f < n/2

m Number of loggers chosen by a zone m ≤ f +1

Theorem 1 If a zone ZNx is delegated with RCrtx issued and
logged in epoch T, then a corresponding secure delegation
request must have been approved by the parent earlier in
epoch T, even if an A1+A2+A3 attacker formed by the entities
specified in RCrtx is present throughout epoch T.

The security guarantee provided by Theorem 1 resembles
that of the ACME protocol, which also concerns unauthorized
certificate issuance [24], but RHINE deals with much stronger
attackers. In fact, RHINE allows even better security than is
promised by this theorem. We discuss the following situations
where the threat assumptions are violated.

It may happen that an adversarial parent, despite having
approved a legitimate delegation for a child, front-runs the
delegation setup protocol for the child zone with different
parameters (in particular the key to be certified) in the current
epoch. Yet, the expected owner of the child zone can detect
from the DT log the misissued RCert, which will remain
unusable until the associated DSP becomes valid in the next
epoch (see Section 5.3). The owner being impersonated can
then request to revoke the illegitimate delegation before it
takes effect, by presenting the parent’s approval as evidence
to the relevant CA and loggers.

An even worse, though unlikely, case is that an attacker
manages to control a CA and m loggers. This enables it to
issue an RCert for a target zone and log the corresponding
entry to DT. Still, the zone’s real owner can actively monitor
the log and take action to defeat such attack attempts.

Theorem 2 For a DT-logged zone ZNx with RCrtx in epoch T
and its delegation status not updated between T and T+k (k >
0), if a client accepts an answer for a name under ZNx using
RCrty in epoch T+k, then it must be that RCrtx=RCrty, even
if an A1+A2+A3+A4 attacker formed by the entities specified
in RCrty is present between epoch T and T+ k.

There are several technicalities in the definition above. First,
between epoch T and T+ k (k > 0), RCrtx is zone ZNx’s only
valid certificate whose secure digest is logged in DT; ZNx may
have been delegated and updated before T. Second, because
of the hierarchical naming structure, ZNy is either ZNx or its
ancestor, but not an arbitrary zone. Third, the attacker is de-
fined with respect to the RCrty received by the client instead
of RCrtx. This captures the reality that a client has no prior
knowledge of an RCert’s validity.

Theorem 2 formalizes data authenticity for established
zones. It covers various scenarios where an attacker may
acquire and use invalid, fraudulent or outdated RCerts to trick
clients into accepting bogus data. RHINE maintains security

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 539

Table 4: Summary of our implementation in Go.

Component LoC Supporting System Used by

librhine 2.2K gRPC, CBOR [26] Common
rmanager 0.6K BadgerDB [4] Zone owner
rhine-ca 0.68K BadgerDB CA
dt-log 0.76K BadgerDB, SMT [10] Log operator
rserver 0.35K CoreDNS [7] DNS operator
rresolv 0.7K SDNS [16] DNS operator
rdig 1K miekg/dns [41] End user

as long as one of the involved loggers stays non-compromised.
This assumption is much weaker than that of DNSSEC, which
rests on every node on the chain being honest.

Formal Verification. An informal argument or even pen-
and-paper proof of these theorems can hardly lead to high
assurance of RHINE’s security guarantees. We have formally
proved them using the Tamarin prover [68], an advanced tool
for the verification of security protocols [22, 31, 42]. This
approach helped us identify many subtle flaws in our early
designs. We have modeled all the core protocols of RHINE,
covering the secure setup and update of a zone delegation,
the aggregation and retrieval of the DT log, as well as the
authenticated distribution and resolution of the zone’s data.
This amounts to around 1500 lines of formal specification.
We refer the reader to Appendix B for further details.

7 Implementation
We developed a prototype of RHINE. Table 4 summarizes
our implementation efforts and the system’s dependencies.
The lines of code (LoC) reported do not count the supporting
systems. Our prototype provides two software suites.

Offline Management. This suite includes four components.
The library librhine defines common data structures and
utilities. rmanager is intended to be an all-in-one toolbox
for zone owners: key registration and delegation approval
(in parent mode), request generation and validation (in child
mode), log data retrieval, etc. rhine-ca offers all functions
needed by a CA. dt-agg realizes a DT logger. It implements
a self-balancing MHT for DSA (the per-zone accumulator)
and a sparse MHT for GDA (the global accumulator).

These components operate in synchronous mode. For every
protocol instance, they each create a goroutine that blocks
itself after sending out a request and resumes upon receiving a
response. All components can handle concurrent requests up
to the available computing, memory, and bandwidth resources.

Name Resolution. We implement our nameserver (rserver)
and recursive resolver (rresolv) with existing DNS frame-
works. RHINE introduces new data types, RCert (encoded in
the X.509 format) and DSP. We store them using TXT records
encoded as base64 strings and call them RoA (realm-of-
authority) records. For DSP we store DSum and the member-

ship proofs from DSA separately, as the latter are not required
in most cases. Each zone has just one DSum, whereas the num-
ber of membership proofs equals the number of delegated
child zones. Below are example records for zone eg.com.
_rcert.eg.com 60 IN TXT "Ed25519 MIIBITCB..."
_dsum.eg.com 60 IN TXT "rZXAwGzEZMBcGA1U..."
eg.com 60 IN DNSKEY 257 3 15 8fcCpq...
eg.com 60 IN RRSIG DNSKEY 15 2 60 2...
abc.eg.com 60 IN TXT "DSAPf u+EuVu6xX+..."
xyz.eg.com 60 IN TXT "DSAPf t9GsbAeavK..."

We do not use the private key of an RCert to directly sign
regular records but instead treat this key as an equivalent of
DNSSEC’s key signing key (KSK). A KSK authenticates a
zone signing key (ZSK), which in turn signs regular records.
The record eg.com of type DNSKEY in the example above is a
ZSK, followed by a RRSIG record authenticating it using the
RCert. This layer of indirection in key usage allows a zone
owner to securely store an RCert’s private key offline and
fetch it on demand, reducing the risk of security breaches.

We modified two built-in plugins of CoreDNS for rserver
to serve RHINE-related data: the file plugin parses RoA
records loaded from a zone file and, when processing a query,
places them in the additional section of a response message;
the sign plugin provides signing functions using RCerts.
rresolv augments SDNS with the functions to query, cache,

validate and serve RoA records, reusing most of its codebase
for the resolution of regular DNS records. rresolv always
validates authoritative answers received from nameservers us-
ing RoA records and caches only verified data. It also always
attaches the corresponding RoA records in the response mes-
sage to a client, enabling E2E data authentication by default.

On the client side, we developed rdig, a dig-like tool for
DNS-style name lookup with mandatory data validation.

8 Performance Evaluation
We evaluated our RHINE prototype in a private cloud network
with 2Gbps bandwidth, using cloud servers with dedicated
8-core CPU (2.6GHz) and 16GB RAM running Ubuntu 22.
Unless otherwise specified, the round-trip time (RTT) as re-
ported by ping between any pair of servers is expanded to
100 ms using the tc utility. For the cryptographic algorithms
in both RHINE and DNSSEC, we use Ed25519 for digital
signatures and SHA256 for secure hash functions. In line
with RHINE’s architecture, the evaluation consists of two
independent parts for offline and online operations.

8.1 Offline Management Performance
The first part of our evaluation aims to answer two questions.
(1) Can RHINE’s offline protocols cope with real-world cer-
tificate issuance rates? (2) Is DT practical and scalable in
terms of computation, communication, and storage cost?
RCert Issuance. We measured the throughout of the secure
delegation setup protocol, using two servers to run rmanager

540 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6
Request rate (K request/s)

0

1

2

3

Iss
ua

nc
e

ra
te

 (K
 R

Ce
rts

/s
) 1-core CA, 1-core loggers

3-core CA, 1-core loggers
6-core CA, 2-core loggers
8-core CA, 8-core loggers

Figure 8: RCert issuance throughput.

(one for the child and the other for the parent), one server
to run rhine-ca, and two servers to run dt-log. The child
server generates delegation setup requests for predefined child
zones whose keys have been registered at the parent server.
The log maintained at the logger servers is initialized with
an entry for the parent zone without any child. We limit the
number of CPU cores used by the most critical CA and logger
servers to understand their scaling behavior.

Figure 8 reports the results. With one core, the CA is the
slowest server capping the issuance rate at around 600 RCerts
per second. Using three cores, it can catch up with the loggers
for a throughput of 1.4K RCerts per second. Doubling this
configuration also doubles the achievable throughput. The
decay in throughput with increasing request rates is due to
the child server overwhelming itself with too many pending
requests. Overall, our setup with these 8-core servers can issue
a maximum of 3.3K RCerts per second.

To put this number in context, we consider the performance
requirement of Let’s Encrypt, the largest ACME-backed CA
that accounts for around 80% (5M) of all daily logged CT
entries [11]. Our test servers with moderate resources can
already issue nearly 12M RCerts per hour. This indicates that
our design can easily cope with real-life certificate issuance
workloads. Such a performance is explained by RHINE’s
streamlined issuance process, which unlike ACME does not
involve a time-consuming challenge-response procedure.
DT Consensus. We evaluate the performance-critical DT con-
sensus process with different numbers of loggers (each on a
separate server). We consider only delegation setup requests
as the main consensus routine is agnostic to the type of re-
quests. We limit the bandwidth between each pair of loggers
to 1Gbps to simulate a common network setup. Each server
pre-loads 50K requests into its memory before the protocol
starts. With n = 5 and f = 2, it takes merely 54 seconds for
the honest loggers to achieve consensus. The time increases
slightly to 71 seconds with two more honest loggers. When
considering one more faulty node (n = 7, f = 3), the consen-
sus process finishes after 208 seconds. This trend in perfor-
mance is expected as more faulty nodes mean more rounds of
message exchanges in the consensus routine. Assuming the
loggers run instances of the protocol consecutively with input
batches of size 50K, it will take roughly 2.5 hours to process

50

100

150

200

500

1000

1500

3 4 5 6 7 8
10

20

30

3 4 5 6 7 8
100

200

300

0.0 0.2 0.4 0.6 0.8 1.0

Delegation chain length

0.0

0.2

0.4

0.6

0.8

1.0

Re
so

lu
tio

n
la

te
nc

y
(m

s)

DNS-U DNSSEC-U RHINE-U DNS-L DNSSEC-L RHINE-L

Figure 9: Upper and lower bounds of resolution latency under
two network settings (left: RTT=10 ms; right: RTT=100 ms).
The similar trends on the left and right plots suggest that
network delay dominates the overall resolution latency.

2M requests. This meets the above-mentioned requirement
for daily certificate issuance.

We observe that bandwidth is the determining factor for
the overall performance, as the protocol runs n consensus
routines in parallel. Yet, the bottleneck in our experiment
setup is the memory size of individual servers, each of which
needs to cache the input from all others. With more memory,
the servers can exchange larger batches of requests. We can
thus expect higher performance in a production environment
with more powerful hardware.
Log Size. We estimate the DT log’s overall size by taking into
account the DSums and DSAs of all zones as well as the GDA.
The size is determined by the distribution of zone delegations.
The number of children of each TLD is publicly known from
domain registries (e.g., 159M for .com) [13], but zone enu-
meration is required to learn the exact number of children for
SLDs and further subzones. Developing an accurate view of
the global DNS delegation tree is a challenging task in itself,
and we leave it for future work.

Our estimation uses the statistics collected by enumerating
sample zones from the Tranco list [74] and assumes an expo-
nential decay in delegation: on average, x% of all SLDs have
4 children (and the rest of them have no child), x% of all third-
level domains have 3 children, and so forth. The DT log’s size
is estimated to be 48GB with x = 1, 75GB with x = 10, and
779GB with x = 50 (which is likely an overestimation). This
is only a fraction of the space requirement of CT logs, each
of which can consume TBs of storage [5].

8.2 Name Resolution Performance

The second part of our evaluation investigates how E2E au-
thentication affects name resolution performance from the
perspectives of end users and naming service operators.

We compare RHINE with plain DNS and DNSSEC. For the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 541

0.0 0.1 0.2 0.3 0.4 0.5
Probability of misconfiguration

0
5

10
15
20
25
30
35

Re
so

lv
er

 th
ro

ug
hp

ut
 (K

 q
ry

/s
)

DNS: 31.8

RHINE: 20.7

7.4 5.8 4.9 4.0 3.3 2.7

Figure 10: The resolver’s query processing capacity in differ-
ent systems. For DNSSEC (data shown as bars), we vary the
probability of inconsistency between a zone and its children.

latter two, we use the unmodified CoreDNS as the nameserver
and SDNS as the resolver. For DNSSEC, we implement a
validating client and modify SDNS to always return a complete
authentication chain. For RHINE, we consider fast validation
without membership proof as this covers the vast majority
of cases (Section 5.4). The resolver is preloaded with a root
zone key for DNSSEC and a CA certificate that is used to sign
RCerts. The experiments used synthetic zone files populated
with random resource records. Each record’s name contains
one more label than its residing zone. All labels have a fixed
length of 6, the average calculated from the Tranco list [74].

Resolution Latency. End users are sensitive to the latency
of name lookup queries. We inspect the bounds of resolution
latency as determined by the resolver’s cache. The upper
bound is obtained when a resolver iteratively queries all the
relevant nameservers for a non-cached record. The lower
bound is obtained when a resolver returns an answer directly
from its cache. We set up eight nameservers, which host a
delegation chain of zones, one client, and one resolver. We
run the experiments with two network settings: one with the
RTT between the cloud servers expanded to 10 ms, and the
other to 100 ms. The data reported for each experiment is
averaged over 100 trials. Figure 9 depicts the results.

As can be seen, RHINE constantly outperforms DNSSEC,
and its performance edge comes mainly from the savings in
network communication. If a UDP message carrying a DNS
response exceeds the size limit (512 bytes by default [35]), the
client will retry the query using TCP. Since RHINE has fewer
data authenticating records than DNSSEC, retransmission is
triggered less frequently. This advantage is most pronounced
in case of cache hits. RHINE can sustain its negligible cost
over plain DNS for longer delegation chains than DNSSEC.
The performance gap will further increase should more expen-
sive cryptographic algorithms be used. In fact, most DNSSEC-
signed zones still use RSA signatures [70], which are much
larger than the Ed25519 signatures used in our evaluation.

Resolver Overhead. Since augmenting regular name resolu-
tion with E2E data authentication requires the most changes
to a resolver’s behavior, we focus on analyzing the perfor-

0.0 0.1 0.2 0.3 0.4 0.5
Probability of misconfiguration

0

2

4

6

8

Nu
m

 o
f r

es
ol

ve
r q

ue
rie

s DNS: 1.90
RHINE: 2.96

Figure 11: The average number of resolver queries per client
request in case of cache miss. DNSSEC data is shown in bars.

mance overhead of a validating resolver. Our experiments use
separate cloud servers for one client (running dnsperf [8]
as the load generator), four nameservers each hosting a level
of zones from the root to third-level zones (aka subdomains,
which are common in modern cloud-based web services [45]),
and one resolver under test. More specifically, we generate 15
TLDs each with 8K SLDs; each SLD further delegates to one
third-level zone with one A record for a terminal name. The
client’s query trace contains 480K names randomly sampled
from the 120K terminal names. The resolver’s cache size is
set as 100K1 and the cache is warmed up by querying all
terminal names once before each experiment. With this setup,
we manage to maintain a typical cache hit ratio of around
80% for client queries [30, 56]. For DNSSEC, we simulate
common security mismanagement that causes inconsistencies
in authentication chains and hence validation failure [54], by
programming the nameservers to return incorrect DS records
with a given probability.

Figure 10 reports the resolver’s throughput in terms of the
number of client queries processed per second. The results
indicate that RHINE has a moderate impact on the resolver’s
processing capacity, with a reduction of 34.9% in the over-
all throughput. Suffering from higher costs to retrieve and
validate authentication chains, DNSSEC already reduces the
throughput by 76.7% with successful validation and by even
wider margins as the failure rate rises.

Figure 11 reports the average number of queries that the
resolver sends to authoritative nameservers in case a client
query cannot be directly answered from the cache. RHINE
introduces roughly one additional query per client request
(35.8% increase); this is attributed to the retrieval of RoA
records (Section 7). DNSSEC increases the resolver’s query
load by 2× even in the absence of validation failure. Such
overhead is higher than expected and can be explained by the

1SDNS has several cache instances for different purposes. What matter
in our experiments are the primary PCache for A and RRSIG records as
well as the NSCache for NS and DS records; for RHINE we have another
RoACache. All their sizes are set as 100K. The only exception is that for
the evaluation of DNSSEC we set the size of PCache as 190K, in order to
maintain the 80% client query cache hit ratio for fair comparison. This is
because SDNS also stores DNSSEC’s DNSKEY records in PCache. With this
setup, our measurements show that for DNSSEC, half of all the attempts to
look up DNSKEY records in PCache fail and thereby trigger extra queries.

542 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

contention between DNSKEY and A records in the cache.
Our measurement results suggest that a fine-grained cache

design, which separates security-related records from regular
records, is crucial to a validating resolver’s performance.

9 Related Work
Authenticated Naming Services. Building a decentralized
naming service over a peer-to-peer (P2P) network was first
attempted by CoDoNS [75]. It adopts DNSSEC for data au-
thentication and thus suffers from the same drawbacks. The
GNU Name System (GNS) [14] is a modern incarnation of
this idea. It allows one to define a zone using a unique key
and create its own namespace rooted at the zone. However,
when used for a global consistent namespace, GNS will es-
tablish a chain of trust similarly to DNSSEC with the same
fragility problems. Deploying these radical systems is well
recognized as a practical challenge [43]. In contrast, RHINE
can be deployed on the existing DNS infrastructure.

Several projects use blockchain to design tamper-proof
naming systems [9, 12, 55], but whether they can achieve the
same level of performance and scalability as DNS remains
open. Donovan and Feamster [38] propose to reduce the over-
head of DNSSEC by letting resolvers trust each other for
signed records, but this does not provide E2E authentication.

In an early position paper [39], Fetzer et al. re-purpose SSL
certificates to sign DNS records, each with a separate certifi-
cate. Yet, the authors only sketched a preliminary scheme,
without thoroughly exploring the challenges and large design
space of authenticating DNS with the web PKI as we do.
DNS and PKI. The interplay between DNS and PKIs has a
long history. DANE allows a DNS domain to certify its own
certificates using DNSSEC [48]. To reduce the risk of users
accepting misissued certificates, a domain can also specify
the CA authorized by it using the CAA record [44]. A funda-
mental problem with these designs is that they move users’
trust from CAs to DNS authorities. It is unlikely that the latter
are more trustworthy, since they are not even in the security
business as CAs are. RHINE does not simply reverse the flow
of trust, i.e., relying on CAs for the authentication of name
data, but rather creates a robust system where all authorities
counterbalance each other’s power over the namespace.
Transparency Logs. With the widespread deployment of CT,
transparency logs have proven to be an integral part of modern
PKIs. Many enhancements to their functionality, security, and
performance have been proposed. CIRT [80] extends CT to
store certificate revocation information. CTng [63] and Log-
Picker [36] aim to relax the trust assumptions in CT by having
multiple entities (loggers or monitors) attest log entries. DT’s
design also follows this generic approach. F-PKI [28] intro-
duces a map server to provide a global view of all certificates
and associated policies; this role is akin to a DT logger. New
authenticated data structures are proposed to improve the effi-
ciency of transparency logs [51, 84]. They can be potentially

incorporated into DT for performance improvement.
Formal Analysis of PKI. Bhargavan et al. formally model
an early draft of the ACME protocol and discovered several
attacks [24]. Our formal approach has also helped us identify
many subtle flaws in RHINE’s early designs. ARPKI [21] and
DTKI [89] are PKI designs formally verified with Tamarin.
Compared with them, RHINE involves more subtly interact-
ing entities and hence is more challenging to model and verify.

10 Conclusion and Discussion
After much recent activity in the DNS space (e.g., discovery
of new attacks, frequent service outages, and growing con-
cerns about privacy), a window of opportunity is opening up
for a fundamental re-design of DNS to achieve high levels
of security. We revisit the existing security architecture of
DNS through a modern lens, pinpointing the intrinsic limita-
tions therein and proposing RHINE as our solution to these
long-standing problems. It offloads the heavy and error-prone
authentication task away from the client-facing side of DNS,
enabling efficient authenticated name resolution all the way
to end hosts. The deployment of RHINE can bootstrap the
security of today’s web PKI and Internet at large.

Deployment. We briefly discuss the incentives and costs for
different entities to deploy RHINE. There is no doubt that
the global Internet community shares a common interest for
E2E-authenticated name resolution.

From the perspective of DNS zone owners and operators,
RHINE can offer better security, lower failure rate and opera-
tional costs, and more robust naming services than DNSSEC;
RHINE indeed requires fewer changes to their existing hard-
ware and software, because it obviates the need to frequently
maintain, distribute, and validate DNSSEC-style authentica-
tion chains in regular operation. The extra investments in
operating the offline part of RHINE, which can be fully au-
tomated with our well-defined protocols similarly to ACME,
are comparable to what is already required by the web PKI.

CAs are likely among the most enthusiastic proponents
of RHINE, because the issuance of RCerts will significantly
expand and consolidate their security services. The operators
of transparency logs have the same motivations; DT loggers
will be a select subset of CT loggers.

For end users, RHINE is easier to adopt than DNSSEC
because they already rely heavily on the web PKI. For in-
stance, the RCert-based data validation function can be easily
integrated into web browsers, which have built-in support for
name lookup (e.g., DoT and DoH) and certificate validation.

Acknowledgment
We would like to thank the reviewers and our shepherd,
Matthew Caesar, for their valuable comments that help us
substantially improve the paper. We gratefully acknowledge
support from ETH Zurich, and from the Zurich Information
Security and Privacy Center (ZISC).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 543

References

[1] DNSSEC Targeted in DNS Reflection, Amplification
DDoS Attacks. https://community.akamai.com/,
2016.

[2] The DELEGATION_ONLY DNSKEY flag. Internet-
Draft draft-ietf-dnsop-delegation-only-02, Internet En-
gineering Task Force, 2021.

[3] Apple’s Certificate Transparency Policy. https://
support.apple.com/en-us/HT205280, 2022.

[4] BadgerDB: Fast key-value DB in Go. https://
github.com/dgraph-io/badger, 2022.

[5] Cert Spotter Stats. https://sslmate.com/
resources/certspotter_stats, 2022.

[6] Chrome Certificate Transparency Pol-
icy. https://googlechrome.github.io/
CertificateTransparency/ct_policy.html,
2022.

[7] CoreDNS: DNS and Service Discovery. https://
coredns.io, 2022.

[8] DNS-OARC/dnsperf: DNS Performance Testing Tools.
https://github.com/DNS-OARC/dnsperf, 2022.

[9] Ethereum Name Service. https://ens.domains,
2022.

[10] FPKI/SMT Implementation. https://github.com/
netsec-ethz/fpki/tree/smt, 2022.

[11] Merkle Town. https://ct.cloudflare.com, 2022.

[12] Namecoin. https://www.namecoin.org, 2022.

[13] Registrar Stats. https://www.domainstate.com/
registrar-tld-breakup.html, 2022.

[14] The GNU Name System. https://www.gnunet.org/
en/gns.html, 2022.

[15] Use of DNSSEC Validation for World. https://stats.
labs.apnic.net/dnssec/, 2022.

[16] Yasar Alev. SDNS: Privacy important, fast, recursive dns
resolver server with dnssec support. https://github.
com/semihalev/sdns, 2022.

[17] Eihal Alowaisheq, Siyuan Tang, Zhihao Wang, Fatemah
Alharbi, Xiaojing Liao, and XiaoFeng Wang. Zom-
bie Awakening: Stealthy Hijacking of Active Domains
through DNS Hosting Referral. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), 2020.

[18] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose. DNS Security Introduction and Requirements.
RFC 4033 (Proposed Standard), March 2005. Updated
by RFCs 6014, 6840.

[19] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose. Resource Records for the DNS Security Ex-
tensions. RFC 4034 (Proposed Standard), March 2005.
Updated by RFCs 4470, 6014, 6840, 6944, 9077.

[20] R. Barnes, J. Hoffman-Andrews, D. McCarney, and
J. Kasten. Automatic Certificate Management Environ-
ment (ACME). RFC 8555 (Proposed Standard), March
2019.

[21] David Basin, Cas Cremers, Tiffany Hyun-Jin Kim,
Adrian Perrig, Ralf Sasse, and Pawel Szalachowski.
Design, Analysis, and Implementation of ARPKI: an
Attack-Resilient Public-Key Infrastructure. IEEE Trans-
actions on Dependable and Secure Computing (TDSC),
2017.

[22] David Basin, Ralf Sasse, and Jorge Toro-Pozo. The
EMV Standard: Break, Fix, Verify. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P),
2021.

[23] Daniel J. Bernstein. DNSCurve: Usable Security for
DNS. https://dnscurve.org.

[24] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and
Nadim Kobeissi. Formal Modeling and Verification for
Domain Validation and ACME. In Processings of the
International Conference on Financial Cryptography
and Data Security (FC), 2017.

[25] Kevin Borgolte, Tobias Fiebig, Shuang Hao, Christopher
Kruegel, and Giovanni Vigna. Cloud Strife: Mitigating
the Security Risks of Domain-Validated Certificates. In
Proceedings of the Symposium on Network and Dis-
tributed Systems Security (NDSS), 2018.

[26] C. Bormann and P. Hoffman. Concise Binary Object
Representation (CBOR). RFC 8949 (Internet Standard),
December 2020.

[27] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shul-
man, and Michael Waidner. Domain Validation++ For
MitM-Resilient PKI. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS),
2018.

[28] Laurent Chuat, Cyrill Krähenbühl, Prateek Mittal, and
Adrian Perrig. F-PKI: Enabling Innovation and Trust
Flexibility in the HTTPS Public-Key Infrastructure. In
Proceedings of the Symposium on Network and Dis-
tributed Systems Security (NDSS), 2022.

544 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://community.akamai.com/
https://support.apple.com/en-us/HT205280
https://support.apple.com/en-us/HT205280
https://github.com/dgraph-io/badger
https://github.com/dgraph-io/badger
https://sslmate.com/resources/certspotter_stats
https://sslmate.com/resources/certspotter_stats
https://googlechrome.github.io/CertificateTransparency/ct_policy.html
https://googlechrome.github.io/CertificateTransparency/ct_policy.html
https://coredns.io
https://coredns.io
https://github.com/DNS-OARC/dnsperf
https://ens.domains
https://github.com/netsec-ethz/fpki/tree/smt
https://github.com/netsec-ethz/fpki/tree/smt
https://ct.cloudflare.com
https://www.namecoin.org
https://www.domainstate.com/registrar-tld-breakup.html
https://www.domainstate.com/registrar-tld-breakup.html
https://www.gnunet.org/en/gns.html
https://www.gnunet.org/en/gns.html
https://stats.labs.apnic.net/dnssec/
https://stats.labs.apnic.net/dnssec/
https://github.com/semihalev/sdns
https://github.com/semihalev/sdns
https://dnscurve.org

[29] Taejoong Chung, Roland van Rijswijk-Deij, Balakr-
ishnan Chandrasekaran, David Choffnes, Dave Levin,
Bruce M. Maggs, Alan Mislove, and Christo Wilson. A
Longitudinal, End-to-End View of the DNSSEC Ecosys-
tem. In Proceedings of the USENIX Security Symposium,
2017.

[30] Secure64 Software Corporation. Lies, Damn Lies and
DNS Performance Statistics. White paper, 2017.

[31] Cas Cremers, Jaiden Fairoze, Benjamin Kiesl, and Au-
rora Naska. Clone Detection in Secure Messaging:
Improving Post-Compromise Security in Practice. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2020.

[32] David Dagon, Chris Lee, Wenke Lee, and Niels Provos.
Corrupted DNS Resolution Paths: The Rise of a Mali-
cious Resolution Authority. In Proceedings of the Sym-
posium on Network and Distributed Systems Security
(NDSS), 2008.

[33] Tianxiang Dai, Philipp Jeitner, Haya Shulman, and
Michael Waidner. From IP to Transport and beyond:
Cross-Layer Attacks against Applications. In Proceed-
ings of the ACM SIGCOMM Conference, 2021.

[34] David Derler, Christian Hanser, and Daniel Slamanig.
Revisiting Cryptographic Accumulators, Additional
Properties and Relations to Other Primitives. In Topics
in Cryptology — CT-RSA 2015, 2015.

[35] J. Dickinson, S. Dickinson, R. Bellis, A. Mankin, and
D. Wessels. DNS Transport over TCP - Implementation
Requirements. RFC 7766 (Proposed Standard), March
2016. Updated by RFCs 8490, 9103.

[36] Alexandra Dirksen, David Klein, Robert Michael,
Tilman Stehr, Konrad Rieck, and Martin Johns. Log-
Picker: Strengthening Certificate Transparency Against
Covert Adversaries. Proceedings on Privacy Enhancing
Technologies, 2021(4):184–202, 2021.

[37] D. Dolev and A. Yao. On The Security of Public Key
Protocols. IEEE Transactions on Information Theory,
29(2):198–208, 1983.

[38] Sean Donovan and Nick Feamster. Alternative Trust
Sources: Reducing DNSSEC Signature Verification Op-
erations with TLS. ACM SIGCOMM Computer Com-
munication Review, 45(4):353–354, 2015.

[39] Christof Fetzer, Gert Pfeifer, and Trevor Jim. Enhancing
DNS security using the SSL trust infrastructure. In
Proceedings of the IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems, 2005.

[40] Marc Frei, Jonghoon Kwon, Seyedali Tabaeiaghdaei,
Marc Wyss, Christoph Lenzen, and Adrian Perrig. G-
sinc: Global synchronization infrastructure for network
clocks. In Proceedings of the Symposium on Reliable
Distributed Systems (SRDS), 2022.

[41] Miek Gieben. DNS library in Go. https://github.
com/miekg/dns, 2022.

[42] Guillaume Girol, Lucca Hirschi, Ralf Sasse, Dennis
Jackson, Cas Cremers, and David A. Basin. A Spectral
Analysis of Noise: A Comprehensive, Automated, For-
mal Analysis of Diffie-Hellman Protocols. In Srdjan
Capkun and Franziska Roesner, editors, Proceedings of
the USENIX Security Symposium, 2020.

[43] Christian Grothoff, Matthias Wachs, Monika Ermert,
and Jacob Appelbaum. Toward Secure Name Resolution
on The Internet. Computers & Security, 77:694–708,
2018.

[44] P. Hallam-Baker and R. Stradling. DNS Certification
Authority Authorization (CAA) Resource Record. RFC
6844 (Proposed Standard), January 2013. Obsoleted by
RFC 8659.

[45] Shuai Hao, Haining Wang, Angelos Stavrou, and Evge-
nia Smirni. On the DNS Deployment of Modern Web
Services. In Proceedings of the IEEE Conference on
Network Protocols (ICNP), 2015.

[46] Muks Hirani, Sarah Jones, and Ben Read. Global
DNS Hijacking Campaign: DNS Record Manipula-
tion at Scale. https://www.fireeye.com/blog/
threat-research/, 2019.

[47] P. Hoffman and P. McManus. DNS Queries over HTTPS
(DoH). RFC 8484 (Proposed Standard), October 2018.

[48] P. Hoffman and J. Schlyter. The DNS-Based Authen-
tication of Named Entities (DANE) Transport Layer
Security (TLS) Protocol: TLSA. RFC 6698 (Proposed
Standard), August 2012. Updated by RFCs 7218, 7671,
8749.

[49] Hans Hoogstraaten, Ronald Prins, Daniël Niggebrugge,
Danny Heppener, Frank Groenewegen, Janna Wettink,
Kevin Strooy, Pascal Arends, Paul Pols, Robbert Kou-
prie, Steffen Moorrees, Xander van Pelt, and Yun Zheng
Hu. Black Tulip: Report of the Investigation into the
DigiNotar Certificate Authority Breach. Technical re-
port, August 2012.

[50] Rebekah Houser, Shuai Hao, Zhou Li, Daiping Liu,
Chase Cotton, and Haining Wang. A Comprehensive
Measurement-based Investigation of DNS Hijacking. In
Proceedings of the International Symposium on Reliable
Distributed Systems (SRDS), 2021.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 545

https://github.com/miekg/dns
https://github.com/miekg/dns
https://www.fireeye.com/blog/threat-research/
https://www.fireeye.com/blog/threat-research/

[51] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Se-
ung Jin Yang, and Raluca Ada Popa. Merkle2: A Low-
Latency Transparency Log System. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P),
2021.

[52] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels,
and P. Hoffman. Specification for DNS over Transport
Layer Security (TLS). RFC 7858 (Proposed Standard),
May 2016. Updated by RFC 8310.

[53] Geoff Huston. Measuring DNSSEC Performance.
https://labs.apnic.net, 2013.

[54] IANIX. Major DNSSEC Outages and Validation Fail-
ures. https://ianix.com/pub/dnssec-outages.
html, 2021.

[55] Lin Jin, Shuai Hao, Yan Huang, Haining Wang, and
Chase Cotton. DNSonChain: Delegating Privacy-
Preserved DNS Resolution to Blockchain. In Proceed-
ings of the IEEE Conference on Network Protocols
(ICNP), 2021.

[56] Jaeyeon Jung, E. Sit, H. Balakrishnan, and R. Morris.
DNS Performance and The Effectiveness of Caching.
IEEE/ACM Transactions on Networking, 10(5):589–
603, 2002.

[57] Dan Kaminsky. It’s the end of the cache as we know it.
Presented at Black Hat USA, 2008.

[58] Aqsa Kashaf, Vyas Sekar, and Yuvraj Agarwal. Analyz-
ing Third Party Service Dependencies in Modern Web
Services: Have We Learned from the Mirai-Dyn Inci-
dent? In Proceedings of the ACM Internet Measurement
Conference (IMC), 2020.

[59] Cyrill Krähenbühl, Seyedali Tabaeiaghdaei, Christelle
Gloor, Jonghoon Kwon, Adrian Perrig, David Hausheer,
and Dominik Roos. Deployment and scalability of an
inter-domain multi-path routing infrastructure. In Pro-
ceedings of the International Conference on Emerging
Networking Experiments and Technologies (CoNEXT),
2021.

[60] Jonghoon Kwon, Juan A. García-Pardo, Markus Leg-
ner, François Wirz, Matthias Frei, David Hausheer, and
Adrian Perrig. SCIONLab: A next-generation Inter-
net testbed. In Proceedings of the IEEE International
Conference on Network Protocols (ICNP).

[61] B. Laurie, A. Langley, and E. Kasper. Certificate Trans-
parency. RFC 6962 (Experimental), June 2013. Obso-
leted by RFC 9162.

[62] B. Laurie, E. Messeri, and R. Stradling. Certificate
Transparency Version 2.0. RFC 9162 (Experimental),
December 2021.

[63] Hemi Leibowitz, Haitham Ghalwash, Ewa Syta, and
Amir Herzberg. CTng: Secure Certificate and Revoca-
tion Transparency. Cryptology ePrint Archive, Paper
2021/818, 2021.

[64] Wilson Lian, Eric Rescorla, Hovav Shacham, and Stefan
Savage. Measuring the Practical Impact of DNSSEC
Deployment. In Proceedings of the USENIX Security
Symposium, 2013.

[65] Baojun Liu, Chaoyi Lu, Haixin Duan, Ying Liu, Zhou
Li, Shuang Hao, and Min Yang. Who Is Answering My
Queries: Understanding and Characterizing Interception
of the DNS Resolution Path. In Proceedings of the
USENIX Security Symposium, 2018.

[66] Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng
Zheng, Youjun Huang, and Haixin Duan. DNS Cache
Poisoning Attack Reloaded: Revolutions with Side
Channels. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2020.

[67] Keyu Man, Xin’an Zhou, and Zhiyun Qian. DNS Cache
Poisoning Attack: Resurrections with Side Channels. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2021.

[68] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David Basin. The TAMARIN Prover for the Symbolic
Analysis of Security Protocols. In Proceedings of the In-
ternational Conference on Computer Aided Verification
(CAV), 2013.

[69] Ralph C. Merkle. A Digital Signature Based on a Con-
ventional Encryption Function. In Proceedings of Ad-
vances in Cryptology (CRYPTO), 1988.

[70] Moritz Müller, Willem Toorop, Taejoong Chung, Jelte
Jansen, and Roland van Rijswijk-Deij. The Reality of
Algorithm Agility: Studying the DNSSEC Algorithm
Life-Cycle. In Proceedings of the ACM Internet Mea-
surement Conference (IMC), 2020.

[71] Jeman Park, Aminollah Khormali, Manar Mohaisen, and
Aziz Mohaisen. Where Are You Taking Me? Behavioral
Analysis of Open DNS Resolvers. In 2019 49th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2019.

[72] Paul Pearce, Ben Jones, Frank Li, Roya Ensafi, Nick
Feamster, Nick Weaver, and Vern Paxson. Global Mea-
surement of DNS Manipulation. In Proceedings of the
USENIX Security Symposium, 2017.

[73] Adrian Perrig, Peter Müller, Samuel Hitz, David
Hausheer, David Basin, Markus Legner, and Laurent
Chuat. The Complete Guide to SCION. Springer, 2022.

546 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://labs.apnic.net
https://ianix.com/pub/dnssec-outages.html
https://ianix.com/pub/dnssec-outages.html

[74] Victor Le Pochat, Tom van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczynski, and Wouter Joosen.
Tranco: A Research-Oriented Top Sites Ranking Hard-
ened Against Manipulation. In Proceedings of the Sym-
posium on Network and Distributed Systems Security
(NDSS), 2019.

[75] Venugopalan Ramasubramanian and Emin Gün Sirer.
The Design and Implementation of a next Generation
Name Service for the Internet. In Proceedings of the
ACM SIGCOMM Conference, 2004.

[76] Venugopalan Ramasubramanian and Emin Gün Sirer.
Perils of transitive trust in the domain name system. In
Proceedings of the ACM Internet Measurement Confer-
ence (IMC), 2005.

[77] Audrey Randall, Enze Liu, Gautam Akiwate, Geof-
frey M Voelker, Stefan Savage, and Aaron Schulman.
Home is Where the Hijacking is: Understanding DNS
Interception by Residential Routers. In Proceedings
of the ACM Internet Measurement Conference (IMC),
2021.

[78] rhine-team. https://github.com/rhine-team/
RHINE-Prototype, 2022.

[79] Jeremy Rowley. CT2 Log Compromised via Salt Vulner-
ability. https://groups.google.com/a/chromium.
org/g/ct-policy/c/aKNbZuJzwfM, 2020.

[80] Mark Dermot Ryan. Enhanced Certificate Transparency
and End-to-End Encrypted Mail. In Proceedings of
the Symposium on Network and Distributed Systems
Security (NDSS), 2014.

[81] Lorenz Schwittmann, Matthäus Wander, and Torben
Weis. Domain Impersonation is Feasible: A Study of CA
Domain Validation Vulnerabilities. In Proceedings of
the IEEE European Symposium on Security and Privacy
(EuroS&P), 2019.

[82] Haya Shulman and Michael Waidner. One Key to
Sign Them All Considered Vulnerable: Evaluation of
DNSSEC in the Internet. In Proceedings of the USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2017.

[83] Thomas and Erin. Against DNSSEC.
https://sockpuppet.org/blog/2015/01/15/
against-dnssec/, 2015.

[84] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopou-
los, Charalampos Papamanthou, Nikos Triandopoulos,
and Srinivas Devadas. Transparency Logs via Append-
Only Authenticated Dictionaries. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), 2019.

[85] Thomas Vissers, Timothy Barron, Tom Van Goethem,
Wouter Joosen, and Nick Nikiforakis. The Wolf of Name
Street: Hijacking Domains Through Their Nameservers.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2017.

[86] Joel Wanner, Laurent Chuat, and Adrian Perrig. A For-
mally Verified Protocol for Log Replication with Byzan-
tine Fault Tolerance. In 2020 International Symposium
on Reliable Distributed Systems (SRDS), 2020.

[87] Nicholas Weaver, Christian Kreibich, and Vern Paxson.
Redirecting DNS for Ads and Profit. In Proceedings of
the USENIX Workshop on Free and Open Communica-
tions on the Internet (FOCI), 2011.

[88] B. Wellington and O. Gudmundsson. Redefinition of
DNS Authenticated Data (AD) bit. RFC 3655 (Proposed
Standard), November 2003. Obsoleted by RFCs 4033,
4034, 4035.

[89] Jiangshan Yu, Vincent Cheval, and Mark Ryan. DTKI:
A New Formalized PKI with Verifiable Trusted Parties.
The Computer Journal, 59(11):1695–1713, 2016.

[90] Xiaofeng Zheng, Chaoyi Lu, Jian Peng, Qiushi Yang,
Dongjie Zhou, Baojun Liu, Keyu Man, Shuang Hao,
Haixin Duan, and Zhiyun Qian. Poison Over Troubled
Forwarders: A Cache Poisoning Attack Targeting DNS
Forwarding Devices. In Proceedings of the USENIX
Security Symposium, 2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 547

https://github.com/rhine-team/RHINE-Prototype
https://github.com/rhine-team/RHINE-Prototype
https://groups.google.com/a/chromium.org/g/ct-policy/c/aKNbZuJzwfM
https://groups.google.com/a/chromium.org/g/ct-policy/c/aKNbZuJzwfM
https://sockpuppet.org/blog/2015/01/15/against-dnssec/
https://sockpuppet.org/blog/2015/01/15/against-dnssec/

0. X (the owner of ZNx) publishes RCrtx, DSumx, DSAx
to the infrastructure D to be queried by client U .

1. U → D : QUERY(qname,qtype)
2. D : rec := ⟨RRset(qname,qtype)⟩x

: dsp := ⟨DSumx,T ⟩Lx

// ALv is encoded with four bits: DOL, IND, TER, EOI
// The only case requiring a membership proof

: If ALvx = (IND, ¬DOL, ¬TER, ¬EOI):
// ZNy is a (potential) child zone enclosing qname

: ZNy := GetChild(ZNx,qname)
// Get the membership proof for ZNy’s (non-)existence

: mem := Acc.GenPf(DAccx,ZNy)
: dsp := dsp ∪ {mem}

3. D →U : ANSWER(rec,RCrtx,dsp)
// ZNx is extracted from RCrtx

4. U : Verify ZNx encloses qname
: ∧ Σ.Vf(RCrtx,rec) ∧ Σ.Vf(pkLx ,dsp)
: ∧ T is the current epoch
: ∧ ZNx is not revoked (from Auxx)
: ∧ Match(DSumx,RCrtx)
: // Short-cut cases:
: If DOL in ALvx and qname ̸= Apex(ZNx):
: Reject the answer
: Else if ¬IND or TER or EOI in ALvx:
: Accept the answer
: Else : // Otherwise, check ZNy’s status
: If mem is for absence :
: Accept if Acc.Vf(DAccx,mem)
: Else : // ZNy already delegated
: Verify Acc.Vf(DAccx,mem)
: Accept the answer if ¬IND in ALvy

Figure 12: Authenticated name resolution protocol.

A Protocol Specifications

A.1 Authenticated Name Resolution

RHINE’s name resolution protocol is presented in Figure 12.
It is agnostic to the underlying distribution infrastructure
D, which can be instantiated, for example, with the existing
DNS infrastructure (consisting of authoritative nameservers,
recursive resolvers, forwarders, etc.) or a P2P network such
as GNUnet [14]. RHINE mandates that each answer to a
client query contains, in addition to the authoritative resource
records, the RCert and DSP of the zone that claims the au-
thority, and that a client always validates answers by itself,
thereby enforcing E2E authentication.

A.2 Secure Delegation Update

Figure 14 describes RHINE’s secure delegation update proto-
col. An established zone uses its own RCert and the associated

0. Each Li ∈ G has a set Xi of requests (lreq) as input.
1. Run n rounds of Oi := LogresConsensus+(Li,Xi)

with each Li as the leader proposing input data in a
round. After that, all loggers obtain the same set O
:=

⋃n
i=1 Oi as output.

2. Each Li filters the requests in O by keeping only the
earliest one in case of conflicts, applies the resulting
operations to its local GDAT , and computes a new
digest GAccT+1. Broadcast ⟨GAccT+1⟩Li to L

3. Each Li accepts and finalizes the aggregation result
if it receives f valid signatures over GAccT+1.

Figure 13: DT aggregation protocol.

DSP to prove its realm of authority. The protocol’s overall
flow resembles the delegation setup process, except that the
parent’s involvement is needed only in a few cases.

A zone can freely update its RCert and DT entry within
the validity period of the delegation. The parameter to update
must not include a delegation expiration time beyond what is
currently specified in the zone’s DSum. To extend the validity
period before the delegation expires, a zone must negotiate
with its parent (e.g., renewing the business contract) and get
the latter’s approval. Another type of update that requires
the parent’s consent is changing a non-independent zone to
an independent one, as this affects the parent’s realm of au-
thority. The update of authority level is subject to additional
restrictions. For example, a zone cannot change itself to ter-
minating unless all its existing delegations become invalid
(expired or revoked); similarly, a zone cannot change itself to
end-of-independence if it still has any independent child. A
zone can only update its delegation status (except its DAcc,
which is affected by the changes to its subzones’ delegation
status) once per epoch. For ease of presentation, we abstract
away these checks of an update request’s legitimacy in the
protocol specification.

It is possible for a zone to update the CA and loggers it
relies on, which is important after security breaches of these
trusted entities. In this case, the zone will run the update
protocol with a set of new trusted entities.

The revocation of a secure delegation comes in two forms.
Since RHINE mandates one RCert per zone at any time, the
issuance of a new RCert for a zone implicitly revokes the
old one. A zone can also make an explicit revocation request
through the update protocol. This will fail the validation of
the zone’s data signed with its current RCert. The operation
is irreversible, meaning that a revoked zone can only be re-
established through the secure delegation setup protocol.

One caveat in enforcing one RCert per zone is that the
loss of a zone’s private key may lock up the zone until the
existing delegation expires. This conundrum can be addressed
by having a zone pre-generate a signed revocation request,
preferably immediately after the delegation setup. The zone

548 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0. C prepares a data object Upd that encodes the parame-
ters to be updated.
// A and Lc may be different from those in RCrtc

1. C : Select A and Lc
// rid is implicitly included in all subsequent messages

: rid := H(t0,ZNc,Upd,A,Lc)
: sur := ⟨rid,SUReq(ZNc,Upd,A,Lc)⟩c
: [Get apv := ⟨SUApprvl(H(sur))⟩p
: and RCrtp from the parent P].

2. C → A : sur, RCrtc, [apv, RCrtp]
3. A : Retrieve dspc [, dspp] from Lc

: Verify sur with RCrtc and dspc
: [, apv with RCrtp and dspp]
: Verify the validity of Upd
: [, create a new tbsrc according to Upd]
: prl := ⟨PreLog(sur, [apv, tbsrc])⟩A

4. A → Lc : prl, RCrtc, [apv, RCrtp]
5. Li : Verify prl, sur, [and apv,] using the

: corresponding certificates and the local log
: Verify the validity of Upd
: uds := (T,A,Lc,ZNc,Upd, [H(tbsrc)])

6. Li → A : atti := ⟨LogAttest(Li,H(uds))⟩Li

7. A : Verify {atti} against prl
// L is randomly selected from Lc by A

8. A → L : lreq := ⟨LogReq(L,uds,{atti}Li∈Lc)⟩A
9. L : Verify lreq and {atti} and their consistency

: Add lreq to the pending pool for aggregation
10. L → A : lc := ⟨LogCfm(L,H(uds))⟩L
11. A : Verify lc against lreq

: [, RCrt′c := ⟨FinalRCert(TbsRCc,Lc)⟩A]
12. A →C : prl, {atti}Li∈Lc , lc, [RCrt′c]
13. C : Verify all received data against sur

Figure 14: Secure delegation update protocol (simplified). Messages and operations in square brackets [m] are optional.

can then revoke the existing delegation in case of key loss.
Clearly, the pre-generated revocation request itself should be
stored separately from the private key in a secure place.

A.3 DT Aggregation with Modified Logres

Figure 13 presents the DT aggregation protocol, with the core
modified Logres consensus routine depicted in Figure 15.
Logres obviates the need for leader selection by having each
participating node lead and run an instance of the consensus
routine in parallel with all others. Each consensus instance
contains up to f + 1 rounds of message exchanges among
the nodes, where f is the number of Byzantine faulty nodes
tolerable by the system. In normal situations where the leader
is honest and correctly operates, the consensus routine will
terminate in just two rounds.

Our main modification of Logres is in lines 13–17 of Fig-
ure 15, which describes the additional data validation required
by RHINE. Only valid input values will be added to the output
set. Another important change is that we refine the algorithm
to allow taking sets of values as input, as the original version
abstracts the input data as a single value. This entails several
technicalities including whether to have nodes’ witness on
valid values that may only constitute a subset of the input. For
simplicity, we always treat the witnesses on the original input
set even it may contain invalid data. This results in redundant
data validation in each round. Optimizing performance in this
regard is an interesting future work.

The final output set O from the consensus process may
contain duplicate or conflicting operations as a result of at-
tacks (when RHINE’s threat assumptions are violated; see
Section 6) or operational faults. For example, two requests
may contain different parameters to create a new log entry for
a just delegated zone. This is possible because there is a delay
for the DT log to be synchronized across loggers. In such

situations, the loggers will keep the earliest operation and dis-
carding other conflicting operations for the zone in question;
any potential attacks and faults will become detectable once
the current execution of the aggregation protocol ends.

B Formal Verification of RHINE

This section introduces important aspects of our formal speci-
fication of RHINE and the security properties we verify. We
refer the reader to the project repository [78] for full details.
Abstractions. The formalization of non-trivial protocols us-
ing Tamarin can run into the state explosion problem, which
makes the analysis intractable. To this end, we use several
abstractions to reduce the complexity of our model while still
faithfully capturing the essence of RHINE protocols.

First, rather than modeling the entire namespace, we focus
on a few zones represented symbolically that suffice to de-
scribe generic zone delegation. This includes a parent zone
that can be malicious, a child zone in question (i.e., ZNx in
Theorem 1 and 2), and another child zone (of the same parent)
serving to validate our model’s correctness. We consider all
of them to be independent zones for meaningful a security
analysis. This also obviates the need to model the processing
of authority level.

For the time dimension, we model three epochs. In T0,
the pre-established parent zone can publish data for name
resolution and approve delegation requests. Only one child
zone can be delegated in T0 and the other in T1; the first child
zone can also be updated in T1. Zone delegation or update is
not permitted in the last epoch T2. These symbolic epochs are
intended to enforce the sequence of events and they are not
necessarily consecutive. This arrangement allows the model
to capture security threats throughout a zone’s life cycle.

For the DT aggregation process, we model only RHINE-
specific input validation without specifying the Logres con-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 549

0. This is one of the |L | parallel runs of the consensus
process with Li being the leader. The code is for L j.

1. If j = i:
2. broadcast ⟨Xi,Li⟩Li to all other loggers
3. return Oi := Xi
4. Else:
5. W := /0 // witnessed values
6. Oi := /0 // agreed-upon output

// Start f +1 rounds of message exchanging
7. For round r = 1, . . . , f +1 :

// A timeout is needed to stop waiting for the mes-
sages from faulty nodes.

8. M := received messages
9. V := /0 // valid input values

10. For ⟨X ,Li⟩LW ∈ M
// Logres-specific checking

11. If |LW | ≥ r ∧ Σ.Vf(pkLw ,⟨X ,Li⟩LW)
12. Y := /0

// RHINE-specific data validation. A, Lc are from op
13. For lreq ∈ X :
14. lreq := ⟨LogReq(L,op,attset)⟩A
15. If Σ.Vf(pkA, lreq) ∧ L = Li

∧ Σ.Vf(pkLc ,attset)
∧ Match(op,attset)

16. Y := Y ∪ {lreq}
17. V := V ∪ {Y }

// Continue Logres processing on valid RHINE input
18. If V \ W ̸= /0:
19. If |V ∪W |= 1 :
20. Oi := V // Only one element in V
21. Else :
22. Oi := /0 // No agreed-upon value yet
23. N := /0 // Messages for next round

// Add witness to the original input
24. For Y ∈ V \ W :
25. Find ⟨X ,Li⟩LW ∈ M s.t. Y ⊂ X
26. N := N ∪ {⟨X ,Li⟩LW∪{L j}}
27. multicast N to all non-leader loggers

// Update witnessed value
28. W := V

// In the end of this protocol run, all honest loggers
will have the same Oi, which contain all valid log
operations as a subset of Xi.

29. return Oi

Figure 15: The LogresConsensus+(Li,Xi) protocol.

sensus routine, as its security has been formally verified by
its authors [86] and is inherited by our enhanced version. For
the update protocol, we consider updating the certified key
as well as the designated CA and loggers without the need
for parental approval. This reflects a zone owner’s ability to
independently manage the zone’s security.

We refrain from modeling explicit servers and the name
resolution algorithm, as this would result in a overcomplicated
model. Instead, we create an abstract distribution infrastruc-
ture by taking advantage of Tamarin’s underlying pattern
matching mechanism. Moreover, we represent all data struc-
tures (RCerts, DT log, resource records, etc.) as sets of values
and omit non-essential data such as Aux.

B.1 Protocol Specification
Tamarin models a security protocol as a labeled transition
system (LTS) where a state of the LTS consists of the local
states of the protocol participants, the adversary’s knowledge,
and messages on the network. States are modeled as a finite
multiset of facts. The system’s dynamics are specified by
labeled multiset rewriting rules that transform the facts.
Protocol Roles. Our model introduces five roles: P is the
owner of an established parent zone, C is an entity wishing
to securely establish a child zone, CA is an RCert issuer, L is
a DT logger, and U is an end user trying to resolve a name
under a child zone. The state space of a protocol in a sym-
bolic Tamarin model generally grows exponentially with the
number of involved actors, which are instances of roles in
interleaved protocol sessions. We model P as a singleton that
is instantiated only once. No limitation is imposed on other
roles. RHINE allows a zone to choose the number m of relying
loggers. We set m = 2 for all zones in the model. This keeps
the complexity of verification manageable without weaken-
ing the security properties we verify. The other parameters
f and n are irrelevant in the model because of the simplified
aggregation process.
Adversary. Tamarin provides a built-in network model with
a Dolev-Yao adversary: any outbound message is added to
the adversary’s permanent knowledge; any inbound message
is constructed by the adversary from its knowledge. We lever-
age this feature to create an adversary-controlled distribution
infrastructure without any explicit servers: publishing a zone
simply means sending its signed records to the network, and
name resolution is realized by sending a query to and receiv-
ing the matching record (and associated RCert and DSP) from
the network. To model the compromise of an entity, we reveal
its private key to the network, which enables the adversary
to impersonate the entity by forging its signatures. We also
allow malicious child zone owners so that the adversary’s
capability is not limited by the model itself.
Protocol Rules. We use several example rules to explain
our modeling style and choices. Figure 16 lists two rules
modeling the CA’s processing of an initial request in the
secure delegation protocol. A rule is defined in the form of
[state facts] --[event facts]-> [state facts].
(premise) (conclusion)

The lines in a let ... in block defines macros that are
expanded in the respective rule.

550 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

rule CA_Preissuance_1:
let

sdr_data = <’SDReq’, epoch, zone, $C,
zpkC, $P, $CA, $L1, $L2>

sdr = <sdr_data, sig>
apv_data = <’SDApproval’, h(sdr)>

in
[

In(<$C, $CA, sdr, apv, rcP>)
, !CA_St_0($CA, ~skCA)
, !ZPk_P($P, zpkP)
, Fr(~dsrid)
]
--[

NotEq($CA, $L1)
, NotEq($CA, $L2)
, NotEq($L1, $L2)
, Eq(verify(apv, apv_data, zpkP), true)
, Eq(verify(sig, sdr_data, zpkC), true)
]->

[
CA_St_1($CA, ~skCA, sdr, apv, rcP,

~dsrid, epoch)
, DSPReq(~dsrid, epoch, $CA,

zone(’Parent’), $L1, $L2)]

rule CA_Preissuance_2:
let
sdr_data = <’SDReq’, epoch, zone, $C,

zpkC, $P, $CA, $L1, $L2>
sdr = <sdr_data, sdr_sig>
rcP = <’RCert’, <tbsP, $L1_P, $L2_P>, rcP_sig>
dsum_P = <’DSum’, zone(’Parent’), htbsP,

<’Delegations’, dlgt1, dlgt2>>
dsp_P = <’DSP’, epoch, dsum_P, dsp_sig1, dsp_sig2>
tbsrc = <’TBSCert’, zone, $C, zpkC, $CA>
prl_data = <’PreLog’, sdr, apv, rcP, tbsrc>
prl = <prl_data, sign(prl_data, ~skCA)>

in
[DSPResp(~dsrid, $L1, $L2, $CA, dsp_P)
, CA_St_1($CA, ~skCA, sdr, apv, rcP, ~dsrid, epoch)
, !Pk($L1, pkL1), !Pk($L2, pkL2)
]
--[Eq(verify(dsp_sig1, <dsum_P, epoch>, pkL1), true)
, Eq(verify(dsp_sig2, <dsum_P, epoch>, pkL2), true)
, Eq(htbsP, h(tbsP))
, NotEq(dlgt1, zone), NotEq(dlgt2, zone)
, CAPreissued(epoch, $P, $C, zpkC, $CA, $L1, $L2)
]->

[CA_St_2($CA, ~skCA, sdr, tbsrc)
, Out(<$CA, $L1, $L2, prl>)]

Figure 16: Two rules from our model describing the CA’s actions in Step 7, Figure 6

A fact F(t1, t2, ...) involves symbolic terms t1, t2,
... that contain variables, constants, functions, network mes-
sages, etc. The execution of a rule consumes facts in the LTS’s
current state that match the rule’s premise, and produces new
facts that are added to the state. Persistent facts of the form
!F(t1, t2, ...) are never removed from the state, once
added. A public variable $t (often used to identify an actor)
or a constant ’t’ is always known to the adversary. A fresh
variable ~t is typically used to model random numbers such
as keys. We use several Tamarin’s built-in functions, includ-
ing pair (<t1, t2>), hashing (h(t)), and signing (sign(t1,
t2) and verify(t1, t2, t3)). We also defined our own
functions including zone(t), name(t), and epoch(t). Al-
though we use them to simply record constants in our current
model, it is possible to introduce equational theories for them
to capture a hierarchical naming structure and unlimited epoch
transition.

The rule CA_Preissuance_1 models $CA receiving a
secure delegation request from $C over the insecure net-
work using Tamarin’s built-in In() fact. Facts !CA_St_0(),
CA_St_1() record $CA’s local state. !ZPk_P() models the
access to the parent zone’s public key. The event facts Eq()
and NotEq() specify equality and inequality checks using
Tamarin’s restriction mechanism. We apply them to model
the bulk of an actor’s local processing of a message, including
signature verification and consistency checking. According
to the protocol specification (Figure 6), the CA needs to re-

trieve the parent zone’s DSP from the designated loggers
over an out-of-band secure channel. The facts DSPReq() and
DSPResp() model such a channel. At the end of the rule
CA_Preissuance_1, the CA makes a retrieval request with a
random id generated using the built-in fact Fr().

In the rule CA_Preissuance_2, the CA continues to verify
the received DSP and send out a pre-logging message over
the insecure network using the built-in Out() fact. Event
facts such as CAPreissued() there facilitate the definition of
properties in a model-independent way.

One of the most important event facts we consider is
ZoneDelegated(), which signifies the successful establish-
ment of a child zone. It should not be placed at the last step of
the secure delegation protocol, but where the zone owner has
verified the updated DT log (within the distribution window
of an epoch). Our model precisely captures this consideration
in the rule Child_Accept_T0 shown in Figure 17.

A zone delegated in an epoch can publish its data in the
subsequent epochs. To model this, we introduce a linear fact
ZonePublishable() that allows a zone to publish at most
once in an epoch. The rule Child_Accept_T0 states that a
zone delegated in T0 can publish once in T1 and once in T2.
The parent zone is initialized in T0 and so it can publish in all
three epochs.

The reason why we model three epochs instead of two is
to cover the scenario where an attacker attempts to acquire an
RCert in T1 for a zone delegated in T0. Such an attack sce-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 551

rule Child_Accept_T0:
let // The following are macros used to improve the specification’s readability

sdr_data = <’SDReq’, epoch(’T0’), zone, $C, zpkC, $P, $CA, $L1, $L2>
sdr = <sdr_data, sdr_sig>
tbsrc = <’TBSCert’, zone, $C, zpkC, $CA>
rcert_data = <tbsrc, $L1, $L2>
rcert = <’RCert’, rcert_data, rcert_sig>
lcfm_data = <’LogCfm’, $L1, hnds>
lcfm = <lcfm_data, lcfm_sig>
nds = <epoch(’T0’), $CA, $L1, $L2, zone, h(tbsrc)>

in
[C_St_2($C, ~zskC, sdr)
, In(<$CA, $C, rcert, att1, att2, lcfm>)
, !Pk($CA, pkCA), !Pk($L1, pkL1), !Pk($L2, pkL2)
, DTMonitor(epoch(’T0’), ’Setup’, logged_htbs) // Monitor the updated DT log
]

--[Eq(verify(rcert_sig, rcert_data, pkCA), true) // The cert is issued by the designated CA
, Eq(verify(att1, <’LogAttest’, h($L1, nds)>, pkL1), true) // and attested by the loggers
, Eq(verify(att2, <’LogAttest’, h($L2, nds)>, pkL2), true)
, Eq(verify(lcfm_sig, lcfm_data, pkL1), true) // The logging operation is confirmed
, Eq(h(nds), hnds) // and matches the previous logging request
, Eq(h(tbsrc), logged_htbs) // The monitored log entry is correct
, ZoneDelegated(epoch(’T0’), zone, $P, $C, ~zskC, $CA, $L1, $L2) // Successful delegation event
]->
[ZonePublishable(epoch(’T1’), zone, $C, ~zskC, rcert)
, ZonePublishable(epoch(’T2’), zone, $C, ~zskC, rcert)]

Figure 17: A rule modeling the child zone owner’s acceptance of an RCert in epoch T0.

nario is different from acquiring an RCert for a non-existent
child zone of an existing zone. The former case is captured
by Theorem 2 and the latter case by Theorem 1.

As mentioned, our model uses constants to encode zones
and names. There must be a way to specify the relations
between them. We employ a few hard-coded rules and restric-
tions to model and enforce a hierarchical name structure.

rule Zone_Record_Generator_PX:
[GenRecord(zone(’Parent’))] --[]->
[Record(zone(’Parent’), name(’NameX’))]

rule Zone_Record_Generator_CX:
[GenRecord(zone(’ChildX’))] --[]->
[Record(zone(’ChildX’), name(’NameX’))]

restriction Naming_Structure:
"All z n #i.

NameInZone(z, n)@i ==>
(z = zone(’Parent’) & n = name(’NameX’)) |
(z = zone(’ChildX’) & n = name(’NameX’)) "

These two rules state that the name ’NameX’ is under both
zone ’Parent’ and zone ’ChildX’, and both of them can
publish records for the name. This allows the model to capture
attack scenarios where a malicious parent zone serves bogus

records for an existing child zone.

B.2 Property Specification

In Tamarin, the execution of a protocol generates a trace—
a sequence of event facts, associated with timepoints, from
rules triggered during the execution. A trace property is a
set of traces defined using guarded first-order logic formulae
over event facts and timepoints (denoted as terms of the form
#t). We specify the security theorems introduced in Section 6
as trace property (defined using keyword lemma) shown in
Figure 18. The formal specification is self-explanatory with
the event facts serving as predicates that encode the informally
presented theorems. We discuss a few technicalities.

Using the Compromised() fact, we can flexibly configure
the adversary’s capabilities. The adversary by default has
the A1 capability and can compromise any actor except an
entity requesting the delegation for a child zone. Not allowing
the compromise of the parent zone owner and at least one
of the designated loggers leads to an A1+A2+A3 attacker.
Imposing only the latter constraint gives the adversary the
A1+A2+A3+A4 capabilities.

In the lemma E2E_Authenticity, we do not specify the
order of the event ZoneDelegated and UserAccept, as the
order is implied by the epochs they occur, i.e., the latter hap-

552 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

lemma Delegation_Security:
"All epoch zone P C zskC

CA L1 L2 #i1 #i2.
(RCertRequested(epoch, zone, P, C,

zskC, CA, L1, L2)@i1
& ZoneDelegated(epoch, zone, P, C,

zskC, CA, L1, L2)@i2
& not (Ex #j. Compromised(P)@j & j<i2)
& (not (Ex #j. Compromised(L1)@j & j<i2)

| not (Ex #j. Compromised(L2)@j & j<i2)
)

==>
(Ex #k. SDApproved(epoch, zone, P,

C, pk(zskC), CA, L1, L2)@k
& k < i2)"

lemma E2E_Authenticity:
"All P czone C_0 epoch zone U qid qname #i1 #i2

zskC_0 CA_0 L1_0 L2_0 zskC CA L1 L2.
(ZoneDelegated(epoch(’T0’), czone, P, C_0,

zskC_0, CA_0, L1_0, L2_0)@i1
& UserAccept(epoch, zone, U, qid, qname,

pk(zskC), CA, L1, L2)@i2
& (epoch = epoch(’T1’) | epoch = epoch(’T2’))
& not (Ex #j. UpdateLogged(epoch(’T1’),

czone)@j)
& (not (Ex #j. Compromised(L1)@j & i1<j) |

not (Ex #j. Compromised(L2)@j & i1<j)))
==>
(zone = czone & zskC_0 = zskC
& CA_0 = CA & L1_0 = L1 & L2_0 = L2)"

Figure 18: The specification of Theorem 1 (left) and Theorem 2 (right) we proved for RHINE.

pens only in T1 and T2. For the adversary, we do not limit its
capabilities in epoch 0, which ends at i1 when the concerned
zone czone is delegated. This does not affect security analy-
sis, because our model allows only one zone to be delegated
per epoch and disallows the adversary to obtain a child zone
owner’s private key.

To capture the update protocol’s security, we also formal-
ize the following property. It states that once a zone is dele-
gated, its RCert (in particular, the certified key zskC_1 and
trusted entities C1_1, L1_1, L2_1) can be updated only by
the zone owner generating a signed request using the genuine
key (zskC = zskC_0), even if an A1+A2+A3+A4 is present
after the initial delegation setup.

lemma Update_Security:
"All P C_0 zskC_0 CA_0 L1_0 L2_0 #i1

C_1 zskC_1 CA_1 L1_1 L2_1 #i2
zone zskC.

(ZoneDelegated(epoch(’T0’), zone, P,
C_0, zskC_0, CA_0, L1_0, L2_0)@i1

& ZoneUpdated(epoch(’T1’), zone,
C_1, zskC, zskC_1, CA_1, L1_1, L2_1)@i2

& (not (Ex #j. Compromised(L1_1)@j & i1<j) |
not (Ex #j. Compromised(L2_1)@j & i1<j)))

==>
(Ex #i3. UpdateRequested(epoch(’T1’), zone,

C_1, zskC, zskC_1, CA_1, L1_1, L2_1)@i3
& zskC = zskC_0
& i3 < i2) "

All these properties are defined over all traces. Tamarin
also supports proving lemmas that hold when there exists a
fulfilling trace. This is commonly used for sanity checks of
the specification. We have defined multiple such lemmas to
test whether our model implements the expected semantics.
The following example checks whether the parent zone can
legitimately serve records in T0 when no child is delegated.

lemma Normal_Resolution_Parent_T0:
exists-trace
"Ex P zpk CA L1 L2 U

qid qname #i1 #i2 #i3.
ParentInit(zone(’Parent’), P, zpk,

CA, L1, L2)@i1
& UserSentQuery(U, qid, qname)@i2
& UserAccept(epoch(’T0’), zone(’Parent’),

U, qid, qname, zpk, CA, L1, L2)@i3
// no compromise of any actor
& not (Ex A #k. Compromised(A)@k)"

C Achieving High Availability
DNS is a frequent target of (distributed) DoS attacks [58]. A
massive DNS outage can make a wide swath of online ser-
vices unavailable, for example the historic Facebook outage
in October 2021. By decoupling the authentication and dis-
tribution of a naming system’s data (see Section 3), RHINE
also separates the concerns of data authenticity and service
availability, allowing them to be addressed independently.

One promising direction to ensure the naming service’s
availability, even amid large-scale DDoS attacks, is to pro-
tect the distribution infrastructure with SCION [73], a next-
generation secure Internet architecture. With an array of or-
chestrated mechanisms, including high-speed packet (source)
authentication, traffic monitoring and filtering, as well as
lightweight bandwidth reservation, SCION can defend against
all types of network-level DoS attacks that target network
links and nodes and end hosts, offering guaranteed control-
plane operation and data delivery. SCION has seen real-world
deployments with proven scalability and performance [59].

We plan to deploy RHINE in SCIONLab [60], a full-
fledged global Internet testbed, and thoroughly evaluate its
practicality, usability, and availability against DDoS attacks.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 553

Enabling Users to Control their Internet
Ammar Tahir, Radhika Mittal

University of Illinois at Urbana-Champaign

Abstract
Access link from the ISP tends to be the bottleneck for

many users. However, users today have no control over how
the access bandwidth (which is under the ISP’s control) is
divided across their incoming flows. In this paper, we present
a system, CRAB, that runs at the receiver’s devices – home
routers and endpoints – and enforces user-specified weights
across the incoming flows, without any explicit support from
the ISP or the senders. It involves a novel control loop that
continuously estimates available downlink capacity and flow
demands by observing the incoming traffic, computes the
max-min weighted fair share rates for the flows using these
estimates, and throttles the flows to the computed rates. The
key challenge that CRAB must tackle is that the demand
and capacity estimated by observing the incoming traffic at
the receiver (after the bottleneck) is inherently ambiguous
– CRAB’s control loop is designed to effectively avoid and
correct these ambiguities. We implement CRAB on a Linux
machine and Linksys WRT3200ACM home router. Our eval-
uation, involving real-world flows, shows how CRAB can
enforce user preferences to achieve 2× lower web page load
times and 3× higher video quality than the status quo.

1 Introduction
This paper tackles a common and seemingly simple problem:
how can users control how their Internet access link gets
shared across their incoming flows? For instance, how can a
user ensure that their Youtube video streaming is not impacted
when the Dropbox app on their device starts downloading
large files at the same time, and the two flows compete at the
user’s Internet access link?

At a glance, a plausible solution is to exploit the traffic
shaping features provided in many home routers (e.g. mecha-
nisms for weighted fair queuing or prioritization) [1, 15, 18].
However, these mechanisms are effective only when the bot-
tleneck is at (and queues build up at) the home router – this
happens when the bottleneck is the uplink from the router to
the Internet Service Provider (ISP) for outgoing flows or the
downlink from the router to the end-devices for the incoming
flows [1]. Our work targets a different problem as illustrated
in Figure 1, where the bottleneck for the incoming flows is
the downlink from the ISP to the home router, and queues
build up in the ISP. This is a common scenario [36, 50], with
the Internet access bandwidth being governed by contractual
agreements between an end-user and their ISP, and the median
broadband download speed being less than 35Mbps in more
than half the countries worldwide [3].

Existing literature provides us with two options for man-

Device 3

Device 2

Device 1

Receiver

Device

running

CRAB

Home Router

ISP ...

Access Link
(Bottleneck)

Figure 1: CRAB’s Target Scenario. The user may own multiple
devices, each downloading multiple flows over the Internet. These
flows arrive at the user’s home router via the access link from the
ISP, from where they get routed to individual devices. The Internet
access link is often the bottleneck for the incoming flows [3, 36].

aging flow shares at the Internet access link, both of which
are beyond the receiving user’s control. The first option is to
directly schedule or shape traffic at the bottleneck (e.g. via pri-
oritization or weighted fairness) [17,25,43,49]. However, the
access bottleneck is controlled by the ISP. ISPs are unaware
of user preferences and do not deploy any mechanisms that
enable end users to configure how their traffic is scheduled
and shaped at the access bottleneck. 1 The second option is
for the senders to appropriately control the rate at which flows
arrive at the bottleneck. For example, low-priority senders can
use “scavenger” protocols that yield bandwidth more readily
to higher priority flows [34, 38, 41, 48]. This is again outside
the receiving user’s control – it is up to the sender to use and
configure such protocols.

We design a system, CRAB, 2 that enables users (receivers)
to control how their Internet access bandwidth gets shared
across their incoming flows without any explicit support from
external entities (i.e. the ISPs and the senders). Here we use
the term receiver to collectively refer to devices in the receiv-
ing domain that an end user can directly access and configure
– these include end devices (phones and computers) as well
as home routers (attached to the access link). More generally,
CRAB provides a mechanism to control flow shares exclu-
sively from a vantage point that is topologically placed after
the bottleneck – where queues don’t build up naturally, and
where one has seemingly zero control.

CRAB allows a user (i) to configure the home router with
weights across each end-device, and (ii) to optionally con-
figure end-devices with weights across their incoming flows

1Although a few research proposals of this form exist [19, 24, 27, 35,
54], they have not been realized in practice, given the inherent difficulty of
coordinating across multiple domains.

2For Customizable Receiver-driven Allocation of Bandwidth.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 555

(defined based on application, web domain, etc). It then strives
to throttle the incoming flows at the home router (grouped
by destination device) and individually at the end devices (if
enabled) to their respective max-min weighted fair share rates.
CRAB’s key challenge lies in correctly computing these rates
after the bottleneck (as discussed below). While this after-the-
bottleneck throttling cannot directly control how the access
bandwidth is divided across the incoming flows, it signals the
senders (which typically run some form of congestion con-
troller [22, 26, 30, 32, 39, 46, 52]) to lower their sending rates
to the throttled values, thus enabling the flows to eventually
converge to their desired shares.

So what makes it difficult to compute the weighted fair
share rates after the bottleneck? Given flow weights, comput-
ing the correct (max-min) weighted fair rates for each flow
requires knowing the bottleneck link capacity and the flow
demands. Once the absolute weighted share of a flow has been
computed from the link capacity and flow weight, the max-
min weighted fair rates can be computed by re-allocating any
excess capacity, that is unused by flows with demands smaller
than their absolute share, to other flows in the proportion of
their weights. While the capacity and the flow demands are
naturally available at the bottleneck, CRAB (placed after the
bottleneck) must estimate them by observing the incoming
traffic at the receiver. This introduces multiple challenges:
(1) It is not possible to distinguish whether the total traffic
observed at the receiver is limited by the access link capacity
or by the flows’ cumulative demands – the latter would result
in underestimating capacity.
(2) The arrival rate of a flow at the receiver depends on the
rate at which it was served at the bottleneck. A flow that got
a small share of bandwidth at the bottleneck (less than its
weighted share or demand) could be wrongly perceived as
having low demand.
(3) If the receiver incorrectly throttles flows to rates lower
than their weighted shares (due to spuriously low capacity
or demand estimates), the flows’ sending rates (and their ob-
served arrival rates at the receiver) would end up matching
the throttled rates. As a result, the link capacity and demand
estimates would stay unchanged and the system will not self-
correct. Similar reasoning makes it difficult to adapt to an
increase in link capacity and flow demands.

The centerpiece of CRAB is a control loop that is designed
to tackle the above challenges (§3). It continuously loops
between (i) measuring flow arrival rates (over timescales of
hundreds of milliseconds) to estimate link capacity and flow
demands, and (ii) re-computing and enforcing weighted fair-
share rates based on these estimates. By waiting for rates mea-
sured over long enough timescales before reacting, CRAB
avoids fast reaction to spuriously low demand estimates – it
allows for the impact of any flow throttling to kick in, and
for the sending (and observed) rates for the remaining flows
to grow to their true demands (or weighted shares), before
reallocating any unused capacity. When re-allocating capacity

from a flow with low demand, CRAB leaves some headroom
to detect growing demand, at which point it immediately re-
claims all of the flow’s re-allocated bandwidth, again allowing
the flow to grow to its true demand or its weighted share. To
self-correct capacity underestimation, it periodically probes
for more bandwidth by explicitly increasing the total rate as-
signed to flows and checking for any consequent increase in
observed rates.

CRAB runs the same logic at the home router and at the
end-points, without requiring any explicit coordination among
them CRAB at the home router enforces per-device shares
based on estimated access link capacity and per-device de-
mands. CRAB at the end-point independently adapts its capac-
ity estimate to the per-device rate enforced by the home router
and controls per-flow shares. When directly attached to the
ISP’s link (without a home router) or when the router and end-
device are owned by different entities (e.g. in airports, cafes,
etc), an end-device with CRAB enabled can self-sufficiently
enforce its desired shares across its incoming flows.

CRAB’s cautious re-allocation of unused capacity can leave
the bottleneck link under-utilized at times. As we illustrate in
§2, some amount of link under-utilization is inevitable when
shaping traffic after the bottleneck (maximally utilizing the
link would imply no flow gets throttled at the receiver, and
consequently no impact on how the bottleneck bandwidth
is shared). The link under-utilization with CRAB typically
manifests as transient dips in the throughput for lower priority
(throttled) flows, below their max-min weighted shares. This
is a reasonable price to pay for better performance for higher
priority traffic that is achieved by enforcing user-specified
flow shares with CRAB.

We implement CRAB (§4) on a Linux endhost and a
Linksys WRT3200ACM router. Our end-host implementa-
tion also includes hooks for classifying flows that are broadly
defined by users based on applications and web domains,
and involve cross-origin requests (e.g. to CDNs and ad net-
works). Our experiments involving real-world flows with dif-
ferent sender-side congestion controllers (YouTube videos,
web browsing, and bulk downloads), show how CRAB comes
close to achieving the desired weighted fair share rates. In
particular, CRAB achieves 2.5-3× higher video quality and
2× lower web page load times in presence of lower-priority
bulk flows than the status-quo (that cannot enforce desired
preferences), with 10-20% decrease in overall link utilization.

2 Overview
CRAB enables the user to manage how their Internet access
link (that is often the bottleneck for downloads [3, 36]) gets
shared across the incoming flows. Figure 1 illustrates a typical
target scenario. CRAB at the home router controls how the
access bandwidth is shared across traffic destined to each
end-device. CRAB at the end-device (if enabled) controls
how its router-enforced bandwidth share is divided across its
incoming flows. Note that all end devices need not run CRAB

556 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Throughput

Measurement

Ingress

Traffic

Shaped

Traffic

rates

filters

Flow Filter
Manager

Browser
2

3 4

5
Rate Computation

Rate Enforcement

User

Config

1

Flow

Identifiers

Flow Group

Weights

Figure 2: CRAB’s high-level workflow (detailed in §2.1).

– only an end device that wishes to control the bandwidth
sharing across its own flows needs to enable CRAB.

2.1 CRAB Framework

We provide an overview of the CRAB framework at the end-
device (noting the small differences in CRAB’s router design
towards the end). CRAB sits in front of the ingress interface,
where it intercepts and shapes the incoming traffic before
forwarding it to the kernel’s TCP/IP stack. Figure 2 shows
the key elements in CRAB’s architecture.
1. User Interface. Our current prototype allows users to de-
fine flows based on three criteria: (i) all traffic destined to a
specified application running on the end-device, (ii) all traffic
associated with a specified web-domain, and (iii) all traffic
originating from a specified source address. 3 The user can
group multiple flows into a flow-group, and specify a weight
for each flow-group. Users can also specify a weight for a
default flow group, where traffic not classified in any other
flow group is mapped. Henceforth, we use the terms flow and
flow-group interchangeably.
2. Flow Filter Manager. It maps high-level flow identifiers
(as specified by the user) into TCP/IP header fields that the
system can use to classify packets as and when they arrive
at the interface. Mapping a web-domain into header fields
requires some inputs from the browser (we detail this in §4).
3. Throughput Measurement. CRAB sniffs the incoming
traffic to measure (i) throughput of each flow group to estimate
demands, and (ii) the cumulative throughput over all flows to
estimate link capacity. The link capacity estimated by CRAB
at the end-device corresponds to the device’s bandwidth share
as enforced by the home router.
4. Rate Computation. CRAB computes weighted fair share

3Future extensions of our system can support more criteria.

rates for each flow, based on user-specified weights and the
capacity and demand estimates obtained from flow throughput
measurements (as detailed in §3).
5. Rate Enforcement. CRAB uses the mappings from the
flow filter manager to classify incoming traffic into user-
defined flow groups. It puts the traffic for each group into
separate queues, and throttles each queue to its computed
weighted fair share rate. Since CRAB throttles traffic after
the bottleneck, it cannot directly control how flows are sched-
uled at the bottleneck. However, it induces packet losses and
queuing delay at the receiver, which signals the senders to ad-
just their rates to the throttled value, thus eventually achieving
the desired bandwidth shares at the bottleneck.

We considered a few other alternatives for signalling send-
ing rates from the receiver, e.g. by adjusting TCP receive
windows. We decided to use throttling for rate enforcement
because of its generality – all senders that run some form of
congestion controller (either over TCP [22, 26, 30, 32, 52] or
UDP [39, 46]) would naturally react to queue buildups and/or
packet drops induced by throttling.

CRAB framework at the home router is same as that at the
end-device. The only difference is that since users configure
the home router with weights across each end-device (directly
identified by the destination IP address), an explicit flow filter
manager is not required.

Note that, in principle, one could have managed flow-group
shares directly at the home router, instead of the end-device.
But then classifying the incoming traffic based on flow-groups
at the router would have required explicit coordination with
the applications running at the end-device in real-time (as
explained in §4), which would have complicated system de-
ployment. Our current division of functionality between the
home-router and end-points requires no explicit coordination
among them, which greatly simplifies CRAB’s deployment
and use, and extends CRAB’s utility to other contexts beyond
home users (as discussed in §7). It also reduces computational
complexity at the router, with the router managing only per-
device queues, and each device then managing the rates for
their own flows.

2.2 Goals and Challenges

We use a series of experiments to illustrate some of the chal-
lenges that CRAB must tackle. We consider a scenario where
a Linux end-host is directly attached to the access link from
the ISP (without a home router). For repeatable experiments,
we emulate an ISP-controlled access link by routing all traffic
for the end-host via a router that mimics the ISP and throttles
the traffic to 30Mbps. When we only stream a 4K YouTube
video on the end-host, we find that the video quality stays
at the maximum level (Figure 3a). We then stream the same
video in presence of two long-lasting bulk downloads 4 over

4Bulk downloads of games and movies are fairly common among users
with limited bandwidth because of inaccessibility of high quality video
streaming or cloud gaming [29, 31].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 557

0 20 40 60 80 100 120 140

Time (s)

0

5

10

15

20

25

30

35

40

T
hr

ou
gh

pu
t

(M
bp

s)

Video Flow

240p

360p

480p

720p

1080p

1440p

2160p

Q
ua

lit
y

Video Quality

(a) Video plays at highest quality level
alone.

0 20 40 60 80 100 120 140

Time (s)

0

5

10

15

20

25

30

35

40

T
hr

ou
gh

pu
t

(M
bp

s)

Video Flow

Bulk Flows

240p

360p

480p

720p

1080p

1440p

2160p

Q
ua

lit
y

Video Quality

(b) Video quality suffers greatly
in presence of bulk downloads.

0 20 40 60 80 100 120 140

Time (s)

0

5

10

15

20

25

30

35

40

T
hr

ou
gh

pu
t

(M
bp

s)

Video Flow

Bulk Flows

240p

360p

480p

720p

1080p

1440p

2160p

Q
ua

lit
y

Video Quality

(c) WFQ at the bottleneck in 5:1 ensures bulk flows
do not affect video quality.

0 20 40 60 80 100 120 140

Time (s)

0

5

10

15

20

25

30

35

40

T
hr

ou
gh

pu
t

(M
bp

s)

Video Flow

Bulk Flows

240p

360p

480p

720p

1080p

1440p

2160p

Q
ua

lit
y

Video Quality

(d) Instant reaction fully utilizes the link,
but cannot enforce desired weights.

0 20 40 60 80 100 120 140

Time (s)

0

5

10

15

20

25

30

35

40
T

hr
ou

gh
pu

t
(M

bp
s)

Video Flow

Bulk Flows

240p

360p

480p

720p

1080p

1440p

2160p

Q
ua

lit
y

Video Quality

(e) Indefinitely throttling bulk flows results severely
under-utilizes the link.

0 20 40 60 80 100 120 140

Time (s)

0

5

10

15

20

25

30

35

40

T
hr

ou
gh

pu
t

(M
bp

s)

Video Flow

Bulk Flows

240p

360p

480p

720p

1080p

1440p

2160p

Q
ua

lit
y

Video Quality

(f) CRAB ensures high video quality at cost of slight
link underutilization

Figure 3: Video quality suffers in presence of bulk download flows, we look at different possible ways to ensure this does not happen. In all
experiments, link bandwidth is set to 30 Mbps.

the Internet, and evaluate the results under different settings.
Status Quo. Today, there is no way for a user to enforce how
their access bandwidth gets divided across their flows. We
find that with the bulk downloads consuming a large share of
the access bandwidth, the status-quo achieves very low video
quality (Figure 3b).

This degradation in video quality is clearly undesirable and
can be mitigated if the user can specify and enforce a higher
weight (say 5×) for the video flow.
Impractical Ideal: WFQ at the bottleneck. We next model
the ideal, but impractical scenario where the ISP enforces
user preferences at the bottleneck via WFQ. For this, we
configure the router in our setup (that mimics the ISP) to
use weighted deficit round-robin (DRR) [49], with the video
flow to bulk flows ratio set to 5:1. As shown in Figure 3c, the
video flow is able to use its absolute share of 25Mbps, and
achieve the highest video quality, while bulk downloads get at
least 5Mbps. WFQ is work-conserving – whenever the video
flow consumes less than its share of 25Mbps (e.g. when its
playback buffer is full), the remaining capacity is used by the
bulk downloads, keeping the link maximally utilized.
Impossible to mimic WFQ after the bottleneck. CRAB
strives to mimic the ideal WFQ-enforced rates. However,
while WFQ at the bottleneck can achieve both desired band-
width shares and maximal link utilization, there is an inherent
trade-off between the two when shaping traffic after the bottle-
neck. We highlight this trade-off by illustrating two extreme
strawmen for rate computation at the receiver.

(i) Work-conserving re-allocation cannot enforce weighted
fairness after the bottleneck. In order to maximally utilize the
link, whenever the video flow’s demand becomes less than
its absolute share, any unused capacity should be explicitly
reallocated to the bulk flows. It is natural to use the arrival
rate of the video flow at the receiver as an estimate of its
demand. However, if the video flow gets a small share of
bandwidth at the bottleneck due to competing flows, it will
have a low arrival rate at the receiver and will be incorrectly
perceived as having low demand. We now evaluate the effects
of instantaneously re-allocating unused capacity based on
such spurious demand estimates.

For this, we configure the end-device to use Linux HTB (Hi-
erarchical Token Bucket) [5] to throttle the incoming flows to
their absolute shares (25Mbps for video and 5Mbps for bulk),
and enable HTB’s “bandwidth borrowing” feature which im-
mediately re-allocates any capacity that is unused by a flow
with a smaller arrival rate. Since the total arrival rate at the
receiver is already capped by bottleneck link capacity, such
instantaneous re-allocation induces no throttling – while this
achieves maximal link utilization, it cannot enforce desired
bandwidth shares and produces the same outcome as the
status-quo (Figure 3d). For the setup in Figure 1, enabling
WFQ for the incoming flows at the home router (after the
bottleneck), will produce the same effect.

More generally, maintaining maximal link utilization is
fundamentally at odds with CRAB’s mechanism of enforcing
desired rates. In order to signal any change in the sending

558 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

rates, CRAB must throttle some flows at the receiver – the
link under-utilization thus induced is what gives room to the
remaining flows to grow to their true demands or absolute
weighted shares.
(ii) No re-allocation leads to severe under-utilization. At the
other extreme, indefinitely throttling bulk flows to their ab-
solute weighted fair rates, oblivious of video flow demand
estimates, allows the video flow to grow to its true demand and
ensure high video quality, but decreases the link utilization
by 46% compared to the status quo (Figure 3e).
CRAB achieves desired shares with high link utilization.
CRAB navigates the above trade-off by re-allocating unused
capacity more cautiously (at timescales of a few hundred
milliseconds) – this allows the impact of any throttling to kick
in, and for the flows to grow to their true demands or absolute
shares, before the unused capacity is re-allocated. For flows
consuming less than their absolute shares, CRAB provisions
for detecting a growth in demand, upon which it immediately
reclaims all lent out capacity. This cautious reallocation and
aggressive reclamation may under-utilize the link at times,
which is inevitable (as discussed above) and primarily affects
the bulk flows. On the whole, as shown in Figure 3f, we find
that CRAB can effectively enforce the desired shares while
lowering the link utilization by only 19% with respect to the
status quo. CRAB has 2× higher link utilization than the
extreme alternative of no re-allocation or of the user explicitly
pausing the bulk flow while the video lasts.
Other Challenges. CRAB was able to correctly estimate
link capacity in the above experiments. However, link capac-
ity estimation can be more challenging in other scenarios.
In particular, if the total incoming traffic at the receiver is
limited by flows’ cumulative demand (as opposed to the ac-
cess link capacity), it would result in underestimation of link
capacity – CRAB should be able to self-correct its capacity
estimate to ensure correct bandwidth shares if flows’ demands
increase. Link capacity could also vary over time – CRAB
should be able to detect any changes and accordingly recom-
pute weighted share rates. What makes such self-correction
and adaptation particularly difficult is that once flows have
been throttled to a spuriously low rate, their sending rates
(and, consequently, their arrival rates and CRAB’s capacity
estimates) could stay stuck at the throttled values. CRAB
handles this by explicitly probing for more bandwidth.

We detail CRAB’s control loop, i.e. its re-allocation, recla-
mation, and bandwidth estimation logic in §3.

The specific control loop we describe in this paper is one
way of using CRAB’s framework for controlling flow shares
at the receiver. There can be alternative ways of using our
framework while complying with our observation that some
amount of link under-utilization is inherently needed to con-
trol flow shares from the receiver. For instance, we can di-
rectly throttle the cumulative rate of all incoming traffic at the
receiver to a value lower than the overall link capacity that
CRAB estimates (via its throughput observation and band-

width probing logic). This creates an artificial bottleneck at
the receiver where we can enforce the desired scheduling pol-
icy (prioritization, weighted fair queuing, etc) across the flow
classes maintained by CRAB. While effective at controlling
flow shares, such an approach would be more sensitive to
precise bandwidth estimation and may lead to unnecessary
wastage of bandwidth due to consistent link under-utilization.
We evaluate this alternative in §5.4.

2.3 CRAB’s Scope

CRAB’s scope is limited in the following key ways:
1. CRAB relies on the fact that flows have a sender-side rate
control mechanism that is responsive to throttling. This holds
for most of the traffic on the Internet that either uses TCP’s
congestion control mechanism or runs adaptive rate control
over UDP [39]. CRAB is not effective in scenarios where a
flow is not responsive to throttling.
2. CRAB cannot directly control the fine-grained queuing
behavior at the bottleneck. It can only influence the rates
achieved by different flows over long-enough timescales (a
few hundred milliseconds), as it requires the senders to react
to the throttled rates or the increased room for growth in
rates. This allows CRAB to effectively control bandwidth
shares across long-lived flow groups, e.g. video streaming,
conferencing, web browsing sessions, bulk downloads, etc.
However, CRAB cannot effectively control the queuing delay
experienced at the bottleneck by short intermittent downloads
that terminate before CRAB gets a chance to react (e.g. a flow
group comprising of only interactive chats). Though CRAB
cannot actively help such flows, it will not hurt them either.
3. CRAB can only actively control how a user’s incoming
flows share their common bottleneck (at the ISP’s access link
or at the access router). If a flow is bottlenecked elsewhere
(e.g. at the sender’s uplink), it is simply perceived by CRAB
as having a lower demand at the shared access bottleneck,
and CRAB accordingly reallocates the access link capacity
unused by this flow across the remaining flows.
4. Since CRAB must react at slow timescales (of hundreds
of ms) to build correct capacity and demand estimates, it is
not a good fit for volatile cellular networks where link capac-
ity changes by large magnitudes at much smaller timescales
due to high mobility, hand-overs, etc [23, 37, 51, 57]. In com-
parison, we found broadband connectivity and home WiFi
networks to be significantly more stable (see Appendix B).

3 CRAB Control Loop
We now describe CRAB’s control loop that continuously it-
erates between (i) measuring flow throughput to estimate
capacity and demand, and (ii) computing and applying new
per-flow rates. Table 1 lists different attributes that CRAB
maintains for each flow and uses for rate computations.

3.1 Throughput Measurement

Two parameters govern the granularity of our throughput
measurement: the observation period (t) and the number of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 559

Flow Attribute Description
weight The weight assigned by the user
observed_t pt The measured throughput of the flow (its arrival rate at the ingress)
true_bw The absolute weighted fair share of the flow computed from estimated link capacity and flow weight
lent_bw The unused bandwidth the flow lends out to other flows
borrowed_bw The amount of bandwidth the flow borrowed from other flows
assigned_bw The rate assigned to a flow (set to true_bw+borrowed_bw)
saturating (bool) set to true if the flow’s demand is potentially higher than its assigned bandwidth
non_saturating (bool) set to true if the flow’s demand is smaller than its assigned bandwidth
growing (bool) set to true if the flow needs to reclaim its lent bandwidth

Table 1: Attributes of a flow in CRAB

observations (n). In each observation, CRAB measures the
throughput (or arrival rate) for each flow over time t (i.e. num-
ber of bytes received in t time divided by t). It makes n such
observations and picks the maximum value as the observed
throughput of a flow. We use the max filter instead of mean or
median to capture bursts which are common for applications
like web browsing and video streaming.

The values of t and n govern how long we wait before mak-
ing any changes to flow rates. A very small value of t would
result in inaccurate throughput measurements, whereas a very
high value can mask spikes in demand. 5 A very small n will
not give flows enough time to adjust to new rates skewing de-
mand estimates, and a very large n would induce much slower
reactions to changes in demands and capacity. In practice,
n× t should be as high as a few RTTs to allow the senders
enough time to react. We find that setting t to 200ms and n
to 5 works well across different scenarios. We evaluate the
impact of these parameter settings in §5.6.

After every throughput measurement (over n× t s), CRAB
sets following flags of each flow f :
Growing: A flow is determined to be growing if f had
previously lent out bandwidth but its observed throughput
indicates an increase in its demand (i.e. it is using more
than what it was using earlier). f .growing = (f .lent_bw >
0) and (f .observed_t pt ≥ f .assigned_bw− f .lent_bw).
Saturating: If the flow f is either growing or it is utiliz-
ing almost all of its assigned bandwidth, i.e., f .saturating =
f .growing or (f .observed_t pt +δ≥ f .assigned_bw). Here,
δ masks noise in throughput observations, and is set to
max(0.1× f .observed_t pt,0.25Mbps). Note that we con-
sider all growing flows to be saturating, but a saturating flow
(that is simply utilizing all of its assigned bandwidth) may
not necessarily be growing.
Non-saturating: If f is under-utilizing its assigned
bandwidth (after subtracting its lent out band-
width): f .non_saturating = (f ,observed_t pt + δ) <
(f .assigned_bw− f .lent_bw).

5The value of t should be at least as high as the inter-arrival time between
multiple consecutive 64KB chunks to correctly compute throughput (with
TSO/LRO enabled, packets arrive in bursts of 64KB).

3.2 Rate Computation Overview

Figure 4 shows a simplified state diagram for CRAB’s control
loop. Followed by a throughput measurement, we take one of
the four actions in the exact priority order.
(1) If there exists any growing flow, we do reclamation for it
(i.e. reclaim any bandwidth it has lent out to other flows).
(2) Otherwise, if there is at least one non-saturating and one
saturating flow, we reallocate (or lend out) bandwidth unused
by non-saturating flows to saturating flows.
(3) If observed throughput has dropped and there does not
exist any saturating flow, we decrease the bandwidth estimate
and divide it between flows according to their weights.
(4) In all other cases, we try to probe for more bandwidth.
We return to the throughput measurement after each action.
The following sub-sections describe these actions and their
triggers in more detail.

3.3 Reallocation

Reallocation takes place if there is at least one non-saturating
flow (which can lend out bandwidth) and at least one saturat-
ing flow (which can potentially utilize this lent bandwidth).

CRAB first computes the bandwidth each flow f can lend:

f .lent_bw = f .assigned_bw− f .observed_t pt−headroom

We keep a small headroom (set to 0.25Mbps) to enable de-
tecting when the flow needs to grow back (§5.6 evaluates the
impact of this parameter).

If f .lent_bw > f .borrowed_bw, this means that the flow
can no longer make use of the bandwidth it has previously bor-
rowed and instead has extra unused bandwidth to lend. In this
case, CRAB subtracts f .borrowed_bw from f .lent_bw and
resets f .borrowed_bw to zero. CRAB computes the global
excess (unused) bandwidth by summing up the lent band-
width across all such flows. It then resets the assigned band-
width for each flow f to f .true_bw, after which it reallo-
cates the excess bandwidth across all flows in proportion
to their weights until their demands are satisfied, accord-
ingly updating f .borrowed_bw and f .assigned_bw (set to
f .true_bw+ f .borrowed_bw) for each flow. The algorithm
for this redivision is given in AppendixA.

560 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

at least one non-
saturating & one
saturating flow

exists

Wait &

MeasureReclamation

Decrease
Bandwidth
Estimate

Reallocation

increase a saturating
flow f's assigned rate

by inc

Redivide new
bandwidth estimate

between flows,
double the value of

inc

Reset flow f's rate
and inc's value

Wait &
Measure

1

2 3

any flow
growing1

2
observed throughput

dropped & no
saturating flow

3

Bandwidth

Probing

no increase
in observed
throughput

increase in
observed

throughput

any flow
growing

Figure 4: State diagram of CRAB’s control loop.

3.4 Reclamation

Notice that we do not decrease the assigned bandwidth of
the non-saturating flow during reallocation. This, combined
with the lent bandwidth headroom, ensures that CRAB can
detect growth in a flow’s demand, and classify such a flow
as growing (as noted in §3.1). To enable faster reclamation,
CRAB terminates the throughput measurement sooner than
n× t s, once it detects that any flow f is growing. It reclaims
all bandwidth lent out by the flow f by setting f .lent_bw = 0.
It reduces the global excess if f .lent_bw (before updating to
0) was greater than f .borrowed_bw, and accordingly recom-
putes how the updated excess bandwidth is redivided across
flows (using the same logic from §3.3). Note that when re-
dividing excess bandwidth, we consider a growing flow to
be a saturating flow because it can potentially utilize more
bandwidth as its demand is still unknown.

3.5 Bandwidth Estimation

CRAB keeps track of estimated bandwidth (estimated_bw)
based on the overall observed throughput across all flows
(total_observed_t pt). We now discuss CRAB’s mechanism
for detecting a change (increase or decrease) in capacity. This
is required for (i) correcting spuriously low capacity estimates
caused by limited demand, and (ii) adapting to potential ca-
pacity variations (e.g. due to change in an end-device’s share
of bandwidth triggered by changes in another device’s de-
mands).
Decrease in Bandwidth. A drop in total_observed_t pt can
happen due to two reasons – either the total bandwidth has
dropped, or a flow’s demand has decreased. Bandwidth esti-
mate should not be decreased in the latter case – reallocating
the bandwidth now unused by the flow can increase observed
throughput. Since there is no way to tell these two scenar-

ios apart, we first let reallocation try to fix things before we
reduce estimated_bw. More specifically, as long as there is
a saturating flow (that can potentially use more bandwidth),
CRAB keeps trying to reallocate excess capacity. If no flow
can be classified as saturating and total_observed_t pt re-
mains lower than estimated_bw, 6 it can assume that the
bandwidth has dropped and reduces estimated_bw to the
total_observed_t pt. This assumption can still be incorrect
because it is possible that it is not the bandwidth, but the de-
mand for all the flows that have actually decreased. However,
in such a case, decreasing estimated_bw does not hurt the
flows, and later when flows grow back, we can re-estimate
bandwidth through bandwidth probing as discussed ahead.

After updating estimated_bw, CRAB resets global excess
bandwidth to zero and assigns each flow its absolute weighted
share of the new bandwidth estimate. This eradicates the effect
of erroneous reallocations that happen before decreasing the
bandwidth estimate. Correct reallocation (if needed) can then
take place in subsequent iterations of the control loop.
Increase in Bandwidth. Detecting an increase in bandwidth
is particularly tricky because CRAB itself limits the arrival
rates of flows by throttling them. Thus, it needs to explic-
itly probe for more bandwidth. To do so, CRAB increases
the assigned rate of a saturating flow and then waits to take
a throughput measurement. If it detects any significant in-
crease in total_observed_t pt, 7 it updates estimated_bw to
total_observed_t pt. It accordingly computes the absolute
weighted share for each flow (setting it as the flow’s true and
assigned bandwidth). It then accordingly increases the global
excess bandwidth and redivides the bandwidth across all flows
in proportion to their weights until their demands are satisfied
(as in §3.3).

The above requires careful consideration of two aspects –
which saturating flow should we select for bandwidth probing
and what should the increment value be. We select a new
saturating flow in a round-robin fashion in each bandwidth
probing round, such that any one flow does not get an advan-
tage over the other. We calculate the increment in proportion
of estimated_bw i.e. increment = inc× estimated_bw. To
prevent large disruptions in flow shares, we start off with a
small value of inc (0.125), but every time bandwidth probing
results in an increase in estimated bandwidth, we double the
value of inc. When probing does not result in an increase, we
reset the increment to its starting value. We continuously keep
probing for bandwidth until this happens. The only time we
terminate bandwidth probing prematurely is if we detect a
flow to be growing, in which case we skip to reclamation.
Bootstrapping. CRAB bootstraps by calculating weighted
fair share rates of flows based on an arbitrary initial estimate of
bandwidth. By keeping this estimate large, we can avoid doing

6To be robust against minor throughput changes, the precise condition we
check for is total_observed_t pt < 0.9× estimated_bw.

7If the increase in total_observed_t pt is greater than max(0.1 ×
total_observed_t pt, 1Mbps)

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 561

Ingress

Traffic

fast queue

filters

flow

queues

flow

rates

Round Robin

Scheduler high priority

dequeue

Shaped Traffic

Figure 5: Linux’s HTB scheduler.

bandwidth probing at startup time. Once the first measurement
interval is over, CRAB is able to fix this estimate. CRAB can
maintain a historical average estimate of bandwidth in the
persistent state to feed as an initial value for more efficient
bootstrapping.

3.6 CRAB’s Router Control Loop

CRAB runs the same control loop at the home router, except
for one change: each throughput measurement takes 3n ob-
servations, so the length of throughput measurement is 3n× t
s. This ensures that CRAB in end-devices is able to adjust
their flow rates to per-device rate changes made by the home
router, before the router’s next measurement.

4 System Implementation
We implement CRAB’s end-host logic on a 2.4GHz 8-core
Ubuntu 20.04 machine with Linux 5.11 kernel, and its home-
router logic on a 1.8GHz dual-core Linksys WRT3200ACM
router running Linux-based OpenWRT firmware. We start
with discussing the end-host implementation (§4.1-§4.5), and
then discuss router implementation (§4.6).

4.1 CRAB’s Placement

The inbound traffic arrives at an ethernet (eth) or wireless
(wlan) interface. Since Linux does not have rich options to
shape ingress traffic, we redirect the inbound traffic to an
intermediate function block (ifb) [6] interface, where CRAB
can shape traffic using Linux TC [10] (§4.3). The shaped
traffic then gets picked up by the receiver’s TCP/IP stack for
further (normal) processing.

4.2 Throughput Measurement

We measure the flow throughputs (or arrival rates) by using
scapy [16] to sniff and record the incoming traffic at the origi-
nal ingress interface (eth or wlan).

4.3 Rate Enforcement

We enforce the computed weighted fair share rates for each
flow group at the ifb interface using Linux’s HTB (Hierarchi-
cal Token Bucket) scheduler [5].

Flow Groups : {

	 Video Streaming: {

	 	 flow identifiers: ["app>netflix", "web>youtube.com", "web>hulu.com"],

	 	 weight: 5

	 },
	 Work: {

	 	 flow identifiers: ["app>dropbox", "ip>1.2.3.4"]

	 	 weight: 5

	 },
	 Default:{

	 	 weight: 1

	 }

}

Figure 6: An Example of a CRAB Config File.

Primer on HTB. Figure 5 shows the basic working of HTB.
HTB allows a user to classify traffic into different classes
(based on filters defined by packet header fields such as IP
address, protocol type, TCP/UDP ports, etc) and specify dif-
ferent rates for throttling each class. If an incoming packet
cannot be classified into a class defined by the filter rules, it is
put into a special queue called the fast queue. Each class con-
sists of a FIFO queue (to buffer packets) and a token bucket
filter. Tokens are added to the bucket at the specified rate. If
the amount of tokens in the bucket is greater than or equal to
the size of the head packet in the queue, then the packet is
dequeued. Otherwise, the queue blocks. If the queue is full,
new incoming packets for that class are dropped.

A round-robin scheduler moves between classes to dequeue
packets. If a class cannot dequeue a packet because it does
not have enough tokens, the scheduler moves to the next class
without blocking. The scheduler prioritizes dequeuing from
the fast queue before any of the HTB classes.

HTB supports work-conserving traffic shaping by allowing
unused tokens to be borrowed by other classes – we do not
enable this feature in CRAB for reasons discussed in §2.2,
and use the re-allocation logic described in §3 instead.
HTB in CRAB. We maintain a class for each flow group. The
flow filter manager (detailed in §4.5) installs the filter rules for
classifying incoming packets into their respective classes. We
set the throttling rate for each class to the weighted fair share
rate of its respective flow-group (as computed by CRAB’s
control loop), and accordingly adjust the queue size. 8

4.4 User Interface

The user specifies their preferences in a config file. Figure 6
shows a sample config file. It contains different flow groups,
where each flow group consists of a list of flow identifiers and
a weight associated with the flow group. Our current imple-
mentation allows a user to give three kinds of flow identifiers
– ip (for traffic coming from the specified IP address), app
(for traffic destined to the specified application), and web (for
traffic destined for webpages from the specified web domain).

4.5 Flow Filter Management

Flow filter manager (FFM) maps user-specified high-level
flow identifiers into packet header fields that can be used for

8Queue size is adjusted to 2BDP = 2 × rate × RTT, where we assume
RTT to be 50ms.

562 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 25 50 75 100 125 150 175 200

Time (s)

0

10

20

30

40

T
hr

ou
gh

pu
t

(M
bp

s)

f1:0 to ∞
f2:0 to ∞

f3:0 to ∞
f4:0 to ∞

f4:∞ to 0
f3:∞ to 10.5

f2:∞ to 10.5

f1

f2

f3

f4

Link Utilization

Link Bandwidth

Demand Changes

(a) WFQ@bottleneck

0 25 50 75 100 125 150 175 200

Time (s)

0

10

20

30

40

T
hr

ou
gh

pu
t

(M
bp

s)

f1:0 to ∞
f2:0 to ∞

f3:0 to ∞
f4:0 to ∞

f4:∞ to 0
f3:∞ to 10.5

f2:∞ to 10.5

f1

f2

f3

f4

Link Utilization

Link Bandwidth

Demand Changes

(b) Status Quo

0 25 50 75 100 125 150 175 200

Time (s)

0

10

20

30

40

T
hr

ou
gh

pu
t

(M
bp

s)

f1:0 to ∞
f2:0 to ∞

f3:0 to ∞
f4:0 to ∞

f4:∞ to 0
f3:∞ to 10.5

f2:∞ to 10.5

f1

f2

f3

f4

Link Utilization

Link Bandwidth

Demand Changes

(c) CRAB@end-host
Figure 7: Weighted sharing of 30 Mbps bottleneck between 4 flows in a ratio of 4:3:2:1, where f1 has a weight of 1 and f4 has a weight of 4.

The bottom part of each graph shows flow demand changes in Mbps, where ∞ means unknown demand.

filtering packets at HTB. When we encounter a packet from
an unknown source IP address (that does not correspond to an
installed filter rule), we copy the packet header to FFM. FFM
determines the mapping for the packet (as detailed below) and
installs a new filter rule for it. Note that FFM installs filter
rules asynchronously, and we do not block traffic while this
happens. Instead, the unclassified packet is put (and served) in
HTB’s fast queue. Once FFM installs the corresponding rule,
it is used to correctly classify future packets from that flow.
This ensures that if the unclassified packets are of a potentially
important flow, their service is not degraded. Typically, FFM
is able to install new filter rules fast enough, such that only
the first couple of packets for an unclassified flow land up in
the fast queue. FFM installs filter rules as follows:
(i) Source IP Mapping: If the source IP address of a packet
arriving at the ingress matches with an ip field in the config
file, we install the corresponding filter simply based on that.
(ii) Application: If the source IP is not found in the config
file, we use psutil [7] to reverse map the destination port on
the packet header to find which application has opened that
port. If the application is specified in any flow group in the
config file, we install a filter that maps traffic from the packet’s
source IP address to this flow group. If the application does
not match any identifier in the config file, we map it to the
default flow group (unless the app is the web browser, which
we handle as a special case as discussed below)
(iii) Web Domain: Mapping packets to the web pages (identi-
fied by web domains) is tricky for multiple reasons:
(a) Web pages from the same web domain may be hosted on
several different machines.
(b) Web pages make many cross-origin requests e.g. to CDNs
and ad servers. Since these requests are often dynamic (e.g.
due to load balancing in CDNs or real-time bidding in ad net-
works), it is not possible to pre-populate a list of IP addresses
a webpage from a certain web domain would access.
(c) Packet headers do not carry any information about which
web domain the packet belongs to. The packet payload of
HTTPS traffic, which does carry some information, is en-
crypted at the ingress (where CRAB sniffs) and is decrypted
only at the browser.

Thus, if the application using the destination port is a web
browser, FFM needs more context from the browser to cor-
rectly classify the packet. We built a Google Chrome plugin

that provides this context. As soon as the browser starts re-
ceiving an HTTPS response, the plugin prepares and sends
a message to FFM that contains the source IP address of the
response, and the URL of the webpage that initiated the cor-
responding HTTPS request. Using this mapping, the FFM
can extract the web domain from the URL and find its match
in the config file. If there is a match, we install a filter for
the source IP address, mapping it to the corresponding flow
group. Otherwise, we map it to the default flow group.

FFM may not be able to correctly classify packets if the
relevant packet header fields are encrypted (as in the case of
VPNs). In such cases, application integration similar to the
plugin we built for Google Chrome can help remove FFM’s
dependency on encrypted packet headers and enable the clas-
sification of non-encrypted fields. Note that DNS encryption
does not affect FFM, as it does not rely on DNS packets.

4.6 Home Router Implementation

Similar to our end-host implementation, CRAB at the router
sniffs incoming traffic (using tcpdump [12]) at the ingress
(eth) interface, and redirects the traffic to the ifb interface. It
classifies the traffic based on the destination IP address at the
ifb interface and enforces the per-destination rates computed
by CRAB’s control loop using Linux HTB.

5 Evaluation
We now evaluate the following:
• CRAB’s ability to adapt to changes in flow demands and
link capacity in synthetic scenarios involving real-world bulk
flows (§5.1).
• Performance (QoE) improvement enabled by CRAB for
real-world video streaming (§5.2) and web browsing (§5.3),
when competing with bulk downloads.
• An alternative way of using CRAB’s framework to enforce
user preferences, and the trade-offs involved (§5.4).
• The need for CRAB’s home router logic with multiple active
devices in the user’s domain (§5.5).
• The impact of changing CRAB’s key parameters, i.e.
throughput observation length and lending headroom (§5.6).
• CRAB’s robustness to diverse traffic characteristics and its
overheads (summarized in §5.7, and detailed in the appendix).

We use the same setup as in §2.2, that models a single
end-host directly attached to the ISP’s link (for repeatable
experiments, we emulate a 30Mbps access link by throttling

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 563

traffic at our home router). The only exception is §5.5, where
we extend the home router logic to implement CRAB after
the throttle point.

Unless otherwise specified, we compare CRAB with two
baselines: (i) ideal WFQ (implemented at the access link emu-
lated by our router), and (ii) status quo (i.e. no traffic shaping).
We also conducted experiments using HTB with bandwidth
borrowing after the bottleneck – since this produces almost
exactly the same outcome as the status quo (as discussed in
§2.2), we omit presenting those results.

Our workloads span real-world flows with a diverse set
of sender-side rate control mechanisms: (i) bulk download
flows that likely use TCP Cubic [30], (ii) YouTube video
streaming that uses BBR [11, 22] along with an adaptive
bitrate (ABR) algorithm for adapting video quality, and (iii)
web page-loads over Google Chrome that potentially use a
mix of BBR [22, 33] and Cubic [30] over QUIC [33, 39] and
TCP 9.

5.1 CRAB in action

We design synthetic scenarios to visualize CRAB’s fine-
grained reaction to changes in flow demands and/or link band-
width, using real-world flows that download large Linux im-
ages from different servers. We configure each download as a
separate flow group with different weights. Each flow individ-
ually has a demand higher than 30 Mbps as it is a backlogged
flow with no server-side bottleneck.
Testing Reallocation and Reclamation. We test a scenario
with 4 flows sharing a 30 Mbps link, with a desired sharing
ratio of 4:3:2:1 between them. We emulate dynamic flow
demands by shaping traffic at two interfaces in the home
router. The first interface throttles rates of individual flows
(to emulate flow demands limited by low sending rates or
other upstream bottlenecks). The second interface then cumu-
latively throttles all the traffic to 30 Mbps, emulating an ISP’s
access link (as mentioned before).

Figure 7a shows the flow shares when we do WFQ at the
ISP, which sets a perfect, but impractical baseline. Flow 1,
which has the lowest weight of 1, starts at 0 seconds. Because
there is no other active flow, it gets to utilize the entire link
bandwidth. Flows 2, 3, and 4 become active after every 30
seconds respectively, and at each point, the link is shared
in the proportion of active flows’ weights. At 125 seconds,
flow 4 stops, and link bandwidth is redivided between the
remaining three flows in the proportion to their weights. At
about 155 seconds, flow 3’s demand drops to 10.5 Mbps, and
its remaining share is taken up by flow 1 and flow 2. At 185
seconds, flow 2’s demand also drops to 10.5 Mbps, at which
point flow 1 gets all the remaining unused share.

Figure 7b shows how the flows share the link arbitrarily
without any shaping with the status quo.

Figure 7c shows that, on the whole, CRAB is able to imitate

9We can only guess the protocols used by different content providers
based on public knowledge.

0 20 40 60 80 100 120 140 160

Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
(M

bp
s)

f1:0 to 10
f2:0 to∞

f1:10 to∞
f1:∞ to 0

f1
f2

Link Utilization Link Bandwidth Demand Changes

Figure 8: 2 flows sharing a link in 2:1 ratio with CRAB. Flow 1’s
demand and link bandwidth vary over time.

the ideal WFQ baseline very closely despite being at the other
side of the bottleneck (although there are some transient, and
inevitable, dips in link utilization).
Testing Bandwidth Estimation. In Figure 8, we evaluate
CRAB’s reallocation and reclamation, in addition to band-
width estimation due to varying link bandwidth. We have two
flows configured to share a 30Mbps link in the ratio of 2:1.
CRAB builds a spuriously low estimate of bandwidth when
flow 1 (with demand limited to 10Mbps) starts at 0 seconds.
CRAB is able to probe for more bandwidth once flow 2 (with
a demand more than 20Mbps) starts at 30s. It reallocates the
unused bandwidth of flow 1 to flow 2 as well. Flow 1’s de-
mand then increases at 60 seconds, CRAB reclaims its lent
bandwidth and the link bandwidth is correctly shared in a
ratio of 2:1 between flows 1 and 2 respectively. Then the
link bandwidth drops to 10Mbps at 90 seconds, CRAB de-
tects this change and adjusts the flows’ rates to 6.66Mbps and
3.33Mbps respectively. When bandwidth increases again to
30Mbps at 125 seconds, CRAB is able to probe for more band-
width and divide it according to the flows’ weights. Finally,
when flow 1 stops at 155 seconds, its bandwidth is reallocated
to flow 2. Appendix D presents a similar experiment, except
that instead of starting a single flow f2 at 30s with a demand of
more than 20Mbps, we start 3 new flows, each with a demand
of 10Mbps.

5.2 Video Streaming

We repeat the experiment in §2.2 with 7 different Youtube
videos of varying playtime 10, competing with bulk download.
Figure 9a reports the average video quality and link utiliza-
tion across all experiments. We record the quality of each
video over time using Youtube’s API [13]. We then calcu-
late the average video quality for each video by averaging
the video quality weighted by the amount of time played at
that quality. We calculate the average link utilization as the
sum of data received during the video playback, divided by
playback time. For CRAB and WFQ, we also try different
weight assignments between video flow and bulk downloads,
5:1, 1:1, and 1:5 respectively. Figure 9a shows how CRAB
maintains comparable video quality to WFQ for each weight
assignment setting (i.e. within [92-94]% of WFQ), but with
[15-20]% lower link utilization compared to status quo. The

10shortest video is 1 minute, while longest is 10 minutes

564 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10 15 20 25 30

Link Utilization (Mbps)

240p

360p

480p

720p

1080p

1440p

2160p

V
id

eo
Q

ua
lit

y

WFQ@bottleneck

Status Quo

CRAB@end-host

Link Sharing Ratio

video 1:5 bulk

video 1:1 bulk

video 5:1 bulk

(a) Average video quality vs
Average throughput

WFQ
@bottleneck

Status Quo CRAB
@end-host

0

1000

2000

3000

4000

5000

6000

7000

D
at

a
D

ow
nl

oa
de

d
(M

B
)

Video flow

Bulk download flow

(b) Distribution of downloaded
data

Figure 9: Video streaming in presence of bulk downloads.

video quality achieved by status quo is worse than that with
CRAB even with weighted sharing of 1:5 between video and
bulk flows (this indicates that the video flow gets less than
17% of bandwidth share with the default status quo). 11. Fig-
ure 9b shows the cumulative amount of video and bulk flow
data downloaded across all videos for the experiment with a
weighted sharing of 5:1 between video and bulk download.
With CRAB and WFQ, video flow consumes almost half of
the data which translates to much higher video quality. In
comparison, with status-quo, video amounts to only 3% of
total downloaded data.

5.3 Web Browsing

In this experiment, we show how CRAB helps improve web
page load times despite background download flows. We em-
ulate a user’s browsing behavior by visiting 125 webpages
(around 300 MBs of data) in total from 4 popular web do-
mains (facebook.com, google.com, bbc.com, yahoo.com) in
different sessions of browsing using Selenium [8] 12. We sep-
arate each session by a Poisson inter-session time determined
with a mean of 60 seconds. Within each browsing session,
we separate each web page’s download by a Poisson distri-
bution with a mean of 5s to emulate a user’s page read-time.
We download two competing large files from two different
servers. We throttle the access downlink to 10 Mbps at the
router for these experiments and configure weights in the ratio
of 7:3 between web traffic and bulk downloads. To fairly com-
pare link utilization, we run the experiment for each baseline
for the same amount of time. Figure 10a shows the CDF of
page load times with CRAB, ideal WFQ, and status quo. The
median page load time with CRAB is 2× smaller than with
the status-quo and is within 15% of ideal WFQ. Figure 10b
shows that CRAB under-utilizes the link by about 13%.

5.4 Alternative way of using CRAB’s framework

We now evaluate the alternative mechanism for using CRAB’s
framework (referred to earlier in §2), where we directly throt-
tle the cumulative rate of all flows arriving at the ingress
to a value lower than the overall link capacity that CRAB

11Lower video throughput translated to lower resolution in all cases, and
we did not notice any re-buffering events.

12Selenim allows us to automate webpage loads and user clicks.

5 10 15 20 25 30 35 40 45 50 55

Page Load Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

WFQ@bottleneck
Status Quo
CRAB@end-host

(a) Page Load Times

WFQ
@bottleneck

S.Q. CRAB
@end-host

0

2

4

6

8

10

A
ve

ra
ge

L
in

k
U

ti
liz

at
io

n
(M

bp
s)

(b) Link Utilization

Figure 10: Page load times vs link utilization for CRAB, WFQ and
Status quo

estimates (via its throughput observation and slightly modi-
fied bandwidth probing logic), and then enforce the desired
scheduling policy on the artificial bottleneck that gets created.
To understand the trade-offs involved with this approach, we
evaluate it under two different scenarios. We emulate (and as-
sume) a static link capacity of 30Mbps, and do not implement
bandwidth estimation for the alternative approach for sim-
plicity. We also disable bandwidth estimation in the original
CRAB implementation for a fairer comparison.
(a) We first consider the scenario from §5.2, where a YouTube
video competes with bulk download on a bottleneck link with
a capacity 30Mbps. We prioritize the video flow at the receiver
without throttling the flows in one case, and after throttling
the incoming flows to a cumulative rate of 25Mbps in the
other. We compare these strategies with the status-quo (that
does not enforce user preferences) and the original CRAB
design. Figure 11a shows the results. Prioritizing the video
flow without throttling cannot enforce user preferences very
effectively (for reasons discussed in §2). However, prioritizing
the video flow after throttling the incoming traffic to a rate of
25Mbps (which is lower than the link capacity) is effective. It
results in slightly higher video quality but slightly lower link
utilization than the original CRAB design. 13

(b) We next evaluated a scenario where the 30Mbps band-
width is to be divided across three backlogged flows in the
ratio 1:2:3. We now apply weighted fair queuing at the re-
ceiver without throttling, and after throttling the incoming
traffic to 25Mbps, and compare the outcomes with original
CRAB and the status-quo (Figure 11b). Again, we observe
that the desired shares could not be effectively enforced with-
out throttling the flows to a rate lower than the link capacity.
WFQ applied after throttling at 25Mbps was able to enforce
the desired flow shares similar to the original CRAB. How-
ever, the original design achieved 19% higher link utilization

13The difference in video quality potentially stems from the difference
in scheduling policy – strict prioritization vs 5:1 weighted fair sharing with
original CRAB.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 565

0 5 10 15 20 25 30

Link Utilization (Mbps)

240p

360p

480p

720p

1080p

1440p

2160p

V
id

eo
Q

ua
lit

y

PQ without throttling

PQ after throttling to 25 Mbps

Status Quo

Original CRAB

(a)

Unthrottled &
WFQ

Throttled to
25 Mbps &

WFQ

Status Quo Original CRAB
0

50

100

150

200

D
ow

nl
oa

de
d

da
ta

(M
B

s)

flow 1

flow 2

flow 3

(b)
Figure 11: Creating chokepoint by throttling to less than known

link capacity (a) helps control traffic (e.g. by using priority queues)
(b) but results in avoidable bandwidth wastage.

(which was very close to the status quo).
These results highlight that the original CRAB design

strives to achieve maximal link utilization. The link under-
utilization is transient and less notable when flow demands
are stable (as in the second scenario), and is more notable
when flow demands vary due to more frequent re-allocation
and reclamation (as in the first scenario). In contrast, the alter-
native approach of throttling the cumulative rate of incoming
flows will consistently suffer from lower link utilization by
design. The amount of link underutilization can be reduced
by reducing the gap between the throttling rate and the link
capacity, but this would also impact how effectively user pref-
erences get enforced (e.g. resulting in lower video quality for
the first scenario). This makes it difficult to correctly config-
ure the cumulative throttling rate, especially as link capacity
varies or is estimated imprecisely. Nonetheless, this alterna-
tive design effectively demonstrates the potential of using
CRAB’s framework in more than one way.

5.5 Multiple end-devices need CRAB at home-router

In this section, we show the need for CRAB at the home router
to ensure proper enforcement of bandwidth shares when there
are multiple devices actively using the Internet in the user’s
domain. We connect two machines (M1 and M2) to the home
router. M1 runs CRAB to enforce 2:1 weights between two
bulk download flows, while M2 does not run CRAB. Initially,
we just have two flows from M1 sharing the bottleneck link
in the 2:1 ratio enforced by CRAB. When the flow from M2
starts at around 40 seconds, in absence of CRAB support at
the home router, it ends up stealing M1’s bandwidth share
(as shown in Figure 12a). When CRAB at M1 throttles its
lower weight flow, the bandwidth yielded by this flow at the
access link is taken up by the flow from M2, instead of the
other higher-weighted flow at M1. 14 With CRAB enabled at
the home-router, CRAB at an individual device can correctly
control how its router-enforced bandwidth share is divided
between its flows (as shown in Figure 12b). Thus, in case
of multiple devices sharing the home Internet connection, it
is important to enable CRAB at the home router to enforce

14Note that sender side protocols to yield bandwidth [41, 48] would suffer
from a similar issue.

0 20 40 60 80 100

Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
(M

bp
s)

flow 1
flow 2

Traffic from other device Link Utilization Link Bandwidth

(a) Without CRAB@Router

0 20 40 60 80 100

Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
(M

bp
s)

flow 1
flow 2

Traffic from other device Link Utilization Link Bandwidth

(b) With CRAB@Router
Figure 12: With multiple active devices, CRAB at the home router

is required to ensure correct working of CRAB at the end-host.

bandwidth shares across different devices, and to prevent the
devices from stealing bandwidth from one another.

5.6 Impact of CRAB’s Parameters

The value of n (number of observations)× t (observation inter-
val) determines how long we spend in estimating throughput,
before making a change in assigned rates. Figure 13 shows
the effect of changing it from its default value of (5×0.2s)
to higher (10×0.3s) and lower (5×0.1s) value for the video
streaming experiment from §5.2. Higher value of n× t means
we are much slower in our reactions – we reallocate late
which improves video quality (very slightly) but at the cost
of greater link under-utilization. In contrast, a smaller value
of n× t implies quicker decisions – we have slightly better
link utilization, but video quality also slightly drops. If we
keep making observation length smaller, it would boil down
to doing instantaneous reallocation similar to bandwidth bor-
rowing with HTB (which, like status-quo, can maintain high
link utilization, but cannot enforce bandwidth shares).

We also experimented with changing CRAB’s lending head-
room parameter from its default value of 0.25Mbps to higher
(0.5Mbps) and lower (0.05Mbps) values. This had no signifi-
cant impact on CRAB’s performance – we present detailed
results in Appendix E.

5.7 Other Results

We briefly summarize some of our other results, providing
the details in the appendix:
• CRAB is quite robust to differences in RTTs and congestion
control algorithms across flows, and it scales well with the
increasing number of flow groups (Appendix C).
• CRAB has a negligible impact on packet delay and forward-
ing rates. It has a CPU utilization of 10.74% on a 2.4GHz

566 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10 15 20 25 30

Link Utilization (Mbps)

240p

360p

480p

720p

1080p

1440p

2160p

V
id

eo
Q

ua
lit

y

n× t = 5× 0.2s = 1s (Default)

n× t = 10× 0.3s = 3s

n× t = 5× 0.1 = 0.5s

Instantaneous Reallocation

Figure 13: Effect of observation length (n× t) on video quality vs
link utilization.

8-core machine, which largely stems from the throughput
measurement module (Appendix F). This is because our cur-
rent implementation uses Scapy [16], a Python-based packet
sniffer. Using a more efficient sniffer (e.g. libtins [4]) would
reduce this overhead.

6 Related Work
There have been a number of proposals for enabling differ-
entiated services (in the form of weighted fair sharing or
prioritization) at network switches [17, 21, 25, 49, 53, 56].
However, these policies must be applied at the bottleneck,
which is controlled by the ISP and not the users. There exist
proposals that allow a user to send their preferences to the
ISP [19, 24, 27, 35, 54] which are difficult to deploy in prac-
tice. CRAB allows the user to control the access bottleneck
without seeking any support from the ISP.

There exist mechanisms for the device to control the uplink
bandwidth usage when sending data [5, 44, 45], e.g. priori-
tizing latency-sensitive uploads over file backups [14] – the
bottleneck occurs at the user device in these cases. Another
category of work allows the end user to configure their home
routers to do traffic prioritization [18, 40, 47], assuming that
the bottleneck is at the wireless link in the home network.
CRAB tackles the harder problem of controlling downlink
bandwidth usage by shaping traffic after the bottleneck (that
is likely to occur at the access link from the ISP), and naturally
helps in scenarios where the bottleneck is at the home-router.

With bottlenecks at the ISP, it can even be challenging to
do sender-side traffic prioritization. Bundler [20] solves this
problem in context of site-to-site traffic by estimating the
bottleneck rate in the ISP and enforcing that rate at the sender.
This shifts the bottleneck at the sender’s site instead of the ISP,
which lets the sender enforce its desired scheduling policies.
CRAB enforces desired bandwidth shares solely from the
receiving domain, without seeking any explicit coordination
with the senders.

Receiver-driven protocols [28, 42, 55] provide a receiver
with greater control over their downlink bandwidth, by letting
them explicitly dictate the sending rates. Some senders can
also use bandwidth-yielding protocols (e.g. [41, 48]), if they
know their flow has a relatively lower priority. However, the

onus of using these receiver driven or yielding protocols is
on the senders – a receiver can use these protocols only if
the senders also support them. CRAB allows receivers to
unilaterally control their access bandwidth shares.

7 Conclusion and Discussion
This paper presents CRAB, a system that enables end-user
to unilaterally control how their Internet access bandwidth
is shared across their incoming flows. In particular, we show
how home users can exploit CRAB to enforce their prefer-
ences and achieve better performance for their video and web
flows. Our source code is publicly available. 15 Our work
opens up several interesting future directions:
Theoretical analysis of performance. Formal characteriza-
tion of CRAB’s performance, e.g. by analyzing the upper-
bound on link utilization for effective enforcement of user-
specified shares under different scenarios, can inform future
designs for improved performance.
Other deployment modes. CRAB does not require any ex-
plicit coordination among the home router and the endpoints.
This extends CRAB’s utility to scenarios where multiple users
share a common Internet connection, e.g. in coffee shops,
enterprises, airports, etc. The domain owners can advertise
their use of CRAB at the access routers for enforcing fairness
across users (they can also use other scheduling mechanisms
at the routers [1, 15, 18] if it is known that the bottleneck is at
the downlink from the router to the end-devices). Each user
can then use CRAB at the endpoint to independently control
how their share of bandwidth is divided across their flows.
Setting Flow Weights. It might be difficult for users to set the
appropriate weight for a flow group that CRAB requires as an
input. Future work can explore how to design a more intuitive
user interface. For instance, we can auto-classify incoming
flows across broad categories (video streaming vs browsing vs
downloads, etc), and then automate weight assignments based
on coarse-grained user preferences across these categories
and learned estimates of bandwidth requirements for differ-
ent flows. Such bandwidth requirements are already known
for many standard applications, e.g. video streaming [2, 9].
CRAB can also ship with some default configurations for
popular traffic classes, which can be further customized by
users according to their needs.
Support for phones. We currently implement CRAB on a
Linux PC. We plan on porting our system to Android phones.

8 Acknowledgements
We would like to thank our shepherd, Srikanth Kandula, and
the anonymous NSDI reviewers for their insightful comments.
We would also like to thank Sachin Ashok, Hari Balakrish-
nan, Brighten Godfrey, Akshay Narayan, Aurojit Panda, Scott
Shenker, Deepak Vasisht, and Tianyin Xu, for their helpful
feedback on the paper. This work was supported by Intel,
Facebook, and AG NIFA under grant 2021-67021-34418.

15https://projectcrab.web.illinois.edu.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 567

https://projectcrab.web.illinois.edu

References
[1] How qos improves performance? https://bit.ly/

3f7IdXO.

[2] Internet connection speed recommendations. https:
//help.netflix.com/en/node/306.

[3] Internet speed around the world. https://www.
speedtest.net/global-index.

[4] Libtins. http://libtins.github.io/benchmark/.

[5] Linux hierarchical token buckets. http://luxik.cdi.
cz/~devik/qos/htb/.

[6] networking:ifb [wiki]. https://wiki.
linuxfoundation.org/networking/ifb.

[7] Psutil. https://pypi.org/project/psutil/.

[8] Selenium with python¶. https://selenium-python.
readthedocs.io/.

[9] System requirements - youtube help. https:
//support.google.com/youtube/answer/78358?
hl=en.

[10] tc(8) - linux manual page. https://man7.org/linux/
man-pages/man8/tc.8.html.

[11] Tcp bbr congestion control comes to gcp – your internet
just got faster | google cloud blog. https://bit.ly/
3qRKCsv.

[12] Tcpdump/libcap. https://www.tcpdump.org/.

[13] Youtube data api. https://developers.google.
com/youtube/v3.

[14] 5 benefits and 3 drawbacks of using cloud storage for
your baas offering. https://bit.ly/3qQSBGe, Mar
2018.

[15] Re: R6700v2 - where is downstream bandwidth control?
https://bit.ly/3BYMAha, Dec 2018.

[16] Philippe Biondi and the Scapy community. Scapy.
https://scapy.net/.

[17] Sj Blake, David Black, Mark Carlson, Elwyn Davies,
Zheng Wang, and Walter Weiss. An Architecture for
Differentiated Services. RFC 2475, 1998.

[18] Ilker Nadi Bozkurt and Theophilus Benson. Contextual
router: Advancing experience oriented networking to
the home. In The Symposium on SDN research, 2016.

[19] Ilker Nadi Bozkurt, Yilun Zhou, and Theophilus Benson.
Dynamic prioritization of traffic in home networks. In
CoNEXT Student Workshop, 2015.

[20] Frank Cangialosi, Akshay Narayan, Prateesh Goyal,
Radhika Mittal, Mohammad Alizadeh, and Hari Balakr-
ishnan. Site-to-site internet traffic control. In EuroSys,
2021.

[21] Zhiruo Cao and E.W. Zegura. Utility max-min: an
application-oriented bandwidth allocation scheme. In
IEEE INFOCOM, 1999.

[22] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. Bbr:
Congestion-based congestion control. ACM Queue,
2016.

[23] Pedro Casas, Michael Seufert, Florian Wamser, Bruno
Gardlo, Andreas Sackl, and Raimund Schatz. Next to
you: Monitoring quality of experience in cellular net-
works from the end-devices. IEEE Transactions on
Network and Service Management, 2016.

[24] Saoussen Chaabnia and Aref Meddeb. Slicing aware
qos/qoe in software defined smart home network. In
IEEE/IFIP Network Operations and Management Sym-
posium, 2018.

[25] Alan Demers, Srinivasan Keshav, and Scott Shenker.
Analysis and Simulation of a Fair Queueing Algorithm.
ACM SIGCOMM CCR, 1989.

[26] Sally Floyd, Tom Henderson, and Andrei Gurtov. The
newreno modification to tcp’s fast recovery algorithm.
1999.

[27] Hassan Habibi Gharakheili, Jacob Bass, Luke Exton,
and Vijay Sivaraman. Personalizing the home network
experience using cloud-based sdn. In IEEE Interna-
tional Symposium on a World of Wireless, Mobile and
Multimedia Networks, 2014.

[28] Rajarshi Gupta, Mike Chen, Steven McCanne, and Jean
Walrand. A receiver-driven transport protocol for the
web. Telecommunication Systems, 2002.

[29] Gabe Gurwin. Should you stick with console gaming,
or make the jump into the cloud? https://bit.ly/
3LxrHfX, Oct 2019.

[30] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a
new tcp-friendly high-speed tcp variant. ACM SIGOPS
Operating Systems Review, 2008.

[31] Ada Ivanova. Streaming vs. downloading: Which
one should you use? https://bit.ly/3QWgWox, Aug
2022.

[32] Van Jacobson. Congestion avoidance and control. ACM
SIGCOMM CCR, 1988.

568 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://bit.ly/3f7IdXO
https://bit.ly/3f7IdXO
https://help.netflix.com/en/node/306
https://help.netflix.com/en/node/306
https://www.speedtest.net/global-index
https://www.speedtest.net/global-index
http://libtins.github.io/benchmark/
http://luxik.cdi.cz/~devik/qos/htb/
http://luxik.cdi.cz/~devik/qos/htb/
https://wiki.linuxfoundation.org/networking/ifb
https://wiki.linuxfoundation.org/networking/ifb
https://pypi.org/project/psutil/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://support.google.com/youtube/answer/78358?hl=en
https://support.google.com/youtube/answer/78358?hl=en
https://support.google.com/youtube/answer/78358?hl=en
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://bit.ly/3qRKCsv
https://bit.ly/3qRKCsv
https://www.tcpdump.org/
https://developers.google.com/youtube/v3
https://developers.google.com/youtube/v3
https://bit.ly/3qQSBGe
https://bit.ly/3BYMAha
https://scapy.net/
https://bit.ly/3LxrHfX
https://bit.ly/3LxrHfX
https://bit.ly/3QWgWox

[33] Matt Joras, Matt Joras, and Yang Chi. How facebook is
bringing quic to billions. https://bit.ly/3UoGRZ5,
Apr 2022.

[34] Ravi Kokku. {TCP} nice: A mechanism for background
transfers. In OSDI, 2002.

[35] Himal Kumar, Hassan Habibi Gharakheili, and Vijay
Sivaraman. User control of quality of experience in
home networks using sdn. In IEEE International Con-
ference on Advanced Networks and Telecommunications
Systems (ANTS), 2013.

[36] Ralf Kundel, Joerg Wallerich, Wilfried Maas, Leonhard
Nobach, Boris Koldehofe, and Ralf Steinmetz. Queue-
ing at the telco service edge: Requirements, challenges
and opportunities. In Workshop on Buffer Sizing, 2019.

[37] Eymen Kurdoglu, Yong Liu, Yao Wang, Yongfang Shi,
ChenChen Gu, and Jing Lyu. Real-time bandwidth pre-
diction and rate adaptation for video calls over cellular
networks. In International Conference on Multimedia
Systems, 2016.

[38] Aleksandar Kuzmanovic and Edward W Knightly. Tcp-
lp: A distributed algorithm for low priority data transfer.
In IEEE INFOCOM, 2003.

[39] Adam Langley, Alistair Riddoch, Alyssa Wilk, Anto-
nio Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fe-
dor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton,
Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi. The
quic transport protocol: Design and internet-scale de-
ployment. In ACM SIGCOMM, 2017.

[40] Jake Martin and Nick Feamster. User-driven dynamic
traffic prioritization for home networks. In ACM SIG-
COMM workshop on Measurements up the stack, 2012.

[41] Tong Meng, Neta Rozen Schiff, P Brighten Godfrey, and
Michael Schapira. Pcc proteus: Scavenger transport and
beyond. In ACM SIGCOMM, 2020.

[42] Venkata Padmanabhan. Coordinating congestion man-
agement and bandwidth sharing for heterogeneous data
streams. In NOSSDAV, 1999.

[43] Abhay K Parekh and Robert G Gallager. A generalized
processor sharing approach to flow control in integrated
services networks: The multiple node case. IEEE/ACM
Transactions on Networking, 1994.

[44] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar
Jeyakumar, Abdul Kabbani, George Porter, and Amin
Vahdat. {SENIC}: Scalable {NIC} for end-host rate
limiting. In USENIX NSDI, 2014.

[45] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius,
Vinh The Lam, Carlo Contavalli, and Amin Vahdat.
Carousel: Scalable traffic shaping at end hosts. In ACM
SIGCOMM, 2017.

[46] Henning Schulzrinne, Stephen Casner, Ron Frederick,
and Van Jacobson. Rtp: A transport protocol for real-
time applications, 1996.

[47] M Said Seddiki, Muhammad Shahbaz, Sean Donovan,
Sarthak Grover, Miseon Park, Nick Feamster, and Ye-
Qiong Song. Flowqos: Qos for the rest of us. In HotSDN,
2014.

[48] Sea Shalunov, Greg Hazel, Janardhan Iyengar, and Mirja
Kuehlewind. Low extra delay background transport
(ledbat). In RFC 6817, 2012.

[49] Madhavapeddi Shreedhar and George Varghese. Effi-
cient fair queuing using deficit round-robin. IEEE/ACM
Transactions on Networking, 1996.

[50] Srikanth Sundaresan, Nick Feamster, and Renata Teix-
eira. Home network or access link? locating last-mile
downstream throughput bottlenecks. In International
Conference on Passive and Active Network Measure-
ment, 2016.

[51] Keith Winstein, Anirudh Sivaraman, and Hari Balakr-
ishnan. Stochastic forecasts achieve high throughput
and low delay over cellular networks. In USENIX NSDI,
2013.

[52] Gary R Wright and W Richard Stevens. TCP/IP Il-
lustrated, Volume 2 (paperback): The Implementation.
Addison-Wesley Professional, 1995.

[53] Haikel Yaiche, Ravi Mazumdar, and Catherine Rosen-
berg. A game theoretic framework for bandwidth allo-
cation and pricing in broadband networks. IEEE/ACM
Transactions on Networking, 2000.

[54] Yiannis Yiakoumis, Sachin Katti, Te-Yuan Huang, Nick
McKeown, Kok-Kiong Yap, and Ramesh Johari. Putting
home users in charge of their network. In ACM Confer-
ence on Ubiquitous Computing, 2012.

[55] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshmi-
narayanan Subramanian, and Carmelita Görg. Adaptive
congestion control for unpredictable cellular networks.
In ACM SIGCOMM, 2015.

[56] Lixia Zhang. Virtual Clock: A New Traffic Control
Algorithm for Packet Switching Networks. ACM SIG-
COMM CCR, 1990.

[57] Xuan Kelvin Zou, Jeffrey Erman, Vijay Gopalakrishnan,
Emir Halepovic, Rittwik Jana, Xin Jin, Jennifer Rexford,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 569

https://bit.ly/3UoGRZ5

and Rakesh K Sinha. Can accurate predictions improve
video streaming in cellular networks? In HotMobile,
2015.

570 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Appendix
A Pseudocode for Redivision of Excess Band-

width
We first calculate the demand of each flow based on the
amount of bandwidth it lends out. Then excess is divided
based on this demand. If a flow’s demand is fulfilled with
bandwidth less than its share of excess, we can redivide this
residual excess share between other flows.

Algorithm 1 Redividing Excess Bandwidth between all flows

1: procedure REDIVIDE(excess)
2: // First we calculate demand of each flow based on

the bandwidth it lends out
3: for f in flows do
4: if f.lent_bw > 0 then
5: f.demand ← f.true_bw + f.borrowed_bw -

f.lended_bw
6: else
7: f.demand← ∞

8: f.assigned_bw← f.true_bw
9: if f.demand > f.assigned_bw then

10: f.lent_bw← 0
11: f.borrowed_bw← 0
12: // Based on the calculated demand, we divide excess

between all flows. When a flow’s demand is met, its
residual excess is again divided between other flows.

13: while excess > 0 do
14: residual_excess = 0
15: for f in flows do
16: if f.demand > f.assigned_bw then
17: excess_share ← excess × (f.weight

/weight_sum)
18: f.assigned_bw ← f.assigned_bw + ex-

cess_share

19: f.borrowed_bw ← f.borrowed_bw + ex-
cess_share

20: if f.assigned_bw > f.demand then
21: residual_excess← residual_excess +

(f.assigned_bw - f.demand)
22: f.lent_bw ← f.lent_bw +

(f.assigned_bw - f.demand)

23: excess← residual_excess

B Stability of Wifi Connection
Cellular networks are known to be highly unstable due to
factors like high mobility and handovers. Wifi connections
are relatively more stable. We evaluated this by sending IPerf
data over UDP at a fixed rate of 30Mpbs to a Linux machine
via a WiFi router. We measured the throughput over 200ms
granularity at the ingress of the Linux end-host using tcpdump.
Figure 14 shows the results. The observed throughput was

0 100 200 300 400 500 600 700

Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
(M

bp
s)

f1

(a)

0 20 40 60 80 100

Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
(M

bp
s)

f1

(b) Zoomed into first 100 seconds.
Figure 14: Throughput of a 30 Mbps flow over Wifi measured in

200ms intervals.

largely stable with minor fluctuations around 30Mbps and
only a handful of dips.

C Robustness to Different Traffic Characteris-
tics

We now evaluate CRAB’s performance under diverse traffic
characteristics – flows with different RTTs, using different
congestion controllers, and varying the number of flow groups.
For these experiments, we generated iPerf flows with different
characteristics using a local server, which then arrived at our
receiver side setup used in our other experiments so far.

In the first experiment, we vary the RTT of flows by adding
artificial delay in packet delivery using Linux tc at the server
that generates flows. We start three backlogged flows sharing
a 30 Mbps link in a 1:2:3 ratio. We fix the delay of the first
flow (with weight 1) and the third flow (with weight 3) to 1ms
and 50ms respectively, and vary the delay of the second flow
(with weight 2) from 1ms to 500ms. We stop the third flow
after 30 seconds and continue to run the other two flows until
100 seconds. We then study the effect of different RTTs for
the first two flows as CRAB redivides the third flow’s share
between them in a 1:2 ratio. As shown in figure 15a, CRAB is
pretty robust to the difference in RTTs. The slight mismatch
in flow shares seen with an extremely high RTT difference of
200-500ms stems from the natural RTT unfairness that occa-
sionally manifests in CRAB during the bandwidth probing
phase when both flows share the bandwidth increment in a
non-isolated manner.

We use a similar setup as above for our second experiment,
except that the flows now have the same RTTs (20ms), but use
different congestion control algorithms. The third flow uses

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 571

1 ms 20 ms 50 ms 100 ms 200 ms 500 ms

RTT of flow 2

0.0

0.2

0.4

0.6

0.8

1.0 flow 1

flow 2

(a) Varying RTT difference

Cubic &
Cubic

BBR &
BBR

Cubic &
BBR

BBR &
Cubic

0.0

0.2

0.4

0.6

0.8

1.0 flow 1

flow 2

(b) Different congestion control algorithms for both
flows

3 flows 6 flows 12 flows 24 flows

Number of CRAB flow groups

0.0

0.2

0.4

0.6

0.8

1.0

(c) Number of active CRAB flow groups

Figure 15: CRAB maintains weighted sharing despite different characteristics of flows.

0 20 40 60 80

Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
(M

bp
s)

f1: 0 to 10 f2, f3, f4: 0 to 10 f2, f3, f4: 0 to 10

f1
f2

f3
f4

Link Utilization
Link Bandwidth

Demand Changes

Figure 16: CRAB is able to estimate link capacity even with finite
demand flows.

TCP Cubic and stops after 30 seconds. We vary the congestion
control algorithms used by the other two flows as shown in
figure 15b and observe how that impacts their flow shares.
We find that CRAB’s enforcement of weighted fair shares is
robust to different congestion controllers. [New] CRAB is
unaffected by the unfairness that could manifest because of
RTT and congestion controller difference because it reacts
at super-RTT time scales thus forcing underlying flows to
adhere to throttled rates.

In the last experiment, we test CRAB’s robustness as we
increase the number of flow groups from 3 to 24. In the
first run, we have three flows sharing a 60 Mbps link in a
3:2:1 ratio. In the next run, we double the number of flows
associated with each weight, and so on. Figure 15c shows the
bandwidth share received by each flow, with different colors
indicating flows with different weights. We find that CRAB
can effectively tackle a large number of flows. [new] As long
as flows are large enough to react to CRAB, any number of
flows can be handled by it. The only breaking point may
be when a flow group consists of a large number of short-
lived flows which finish before reacting to CRAB’s throttling.
However, such a case is unlikely to exist in our target scenario
of a home network.

D Bandwidth Probing with Limited Demand
Flows

Extending on our discussion in §5.1, here we evaluate the
scenario when we do not have a convenient infinite demand
flow to rely on for bandwidth probing. CRAB is still able to
quickly probe for bandwidth by alternating between different
finite demand flows for bandwidth probing. Figure 16 shows
a scenario where we initially have one flow with a demand
of 10 Mbps, at 30 seconds, 3 new flows each with a 10 Mbps
demand start. Since their cumulative demand is more than 30
Mbps, the bandwidth probing algorithm is able to estimate
link capacity by alternatively picking a flow for bandwidth
probing and dividing capacity equally between them.

E CRAB’s Sensitivity to Lent Bandwidth
Headroom

The lent bandwidth headroom ensures that a flow has some
room in the link to send at least a few packets so CRAB can
detect it to be growing and reclaim for it. When the bandwidth
of a flow is detected to be exceeding this headroom, CRAB
quickly reclaims for it. Figure 17 shows CRAB’s sensitivity
to this parameter through the video experiment discussed in
§5.2. Overall, CRAB is not very sensitive to this parameter,
but

A larger value of headroom ensures better guarantees on
early detection for reclamation, thus, slightly better video qual-
ity. However, overprovisioning may result in under-utilization,
especially if we have a much higher number of flow groups.
This effect can be avoided easily by having a cap on the col-
lective headroom of all flow groups combined. A smaller
value of headroom may not guard very well against pressure
from other flows, which may result in CRAB not being able to
detect flow growth in time and therefore slightly worse video
quality. Another hidden effect that deteriorates link utilization
in case of small headroom is spurious reclamations. Small
values of headroom are not able to mask minor fluctuations
and noise, which results in spurious reclamation, as a result,

572 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10 15 20 25 30

Link Utilization (Mbps)

240p

360p

480p

720p

1080p

1440p

2160p

V
id

eo
Q

ua
lit

y

headroom=0.25Mbps (Default)

headroom=0.5mbps

headroom=0.05mbps

Figure 17: Effect of lent bandwidth headroom on video quality vs
link utilization.

With CRAB No CRAB
Throughput 28.93 Mbps 28.98 Mbps

Delay 0.94 ms 0.88 ms
CPU Usage@end-host 10.74% N/A

Table 2: Overheads of CRAB

we see slight link under-utilization. Overall CRAB is not very
sensitive to this parameter.

F Overhead of CRAB
We evaluate CRAB’s overhead by measuring the throughput
and delay of a single bulk download flow with and without
CRAB. To measure throughput, we record the flow’s rate
at ifb’s egress (i.e. after shaping) with CRAB, and at eth0’s
ingress (as the raw arrival rate) without CRAB. We measure
processing delay by recording the difference between times-
tamps for when a packet arrives at the eth0 and when its
acknowledgment passes through eth0. Since CRAB’s compo-
nents are placed after the eth0 interface on the path of ingress
traffic, this calculation captures any extra delay inflicted by
CRAB. Table 2 shows that CRAB does not induce any sig-
nificant overhead (the throughput remains largely unchanged,
and the processing delay increases by only 0.06ms (i.e. 6.8%
over baseline).

We also measure the CPU utilization of all CRAB threads
during the experiment using Linux utility top. On a 2.4GHz
8-core machine, CRAB has an overall utilization of 10.34%.
Almost all of the CPU usage stems from the throughput mea-
surement thread of CRAB due to traffic sniffing. This is be-
cause Scapy, the Python-based packet sniffing library we use,
copies the entire packet even though we just need access to a
few packet header fields. The corresponding CPU overhead at
the home router, which uses tcpdump for sniffing, is 16.65%
on two cores at 1.8GHz. Writing a custom sniffer for CRAB
that copies only a few packet header fields can potentially
reduce the CPU overhead. We are working on shifting our
throughput measurement module to a faster packet sniffing
library like libtins [4].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 573

xBGP: Faster Innovation in Routing Protocols

Thomas Wirtgen∗

ICTEAM, UCLouvain
Tom Rousseaux

ICTEAM, UCLouvain
Quentin De Coninck

ICTEAM, UCLouvain
Nicolas Rybowski

ICTEAM, UCLouvain

Randy Bush
Internet Initiative

Japan & Arrcus, Inc

Laurent Vanbever
NSG, ETH Zürich

Axel Legay
ICTEAM, UCLouvain

Olivier Bonaventure
ICTEAM, UCLouvain

Abstract

Internet Service Providers use routers from multiple ven-
dors that support standardized routing protocols. Network
operators deploy new services by tuning these protocols. Un-
fortunately, while standardization is necessary for interoper-
ability, this is a slow process. As a consequence, new features
appear very slowly in routing protocols.

We propose a new implementation model for BGP, called
xBGP, that enables ISPs to innovate by easily deploying BGP
extensions in their multivendor network. We define a vendor-
neutral xBGP API which can be supported by any BGP im-
plementation and an eBPF Virtual Machine that allows ex-
ecuting extension code within these BGP implementations.
We demonstrate the feasibility of our approach by extending
both FRRouting and BIRD.

We demonstrate seven different use cases showing the ben-
efits that network operators can obtain using xBGP programs.
We propose a verification toolchain that enables operators to
compile and verify the safety properties of xBGP programs
before deploying them. Our testbed measurements show that
the performance impact of xBGP is reasonable compared to
native code.

1 Introduction

Internet Service Providers (ISP) are continuously challenged
by their users and customers to provide value-added services
that go beyond best-effort connectivity. Among others, these
new services include traffic engineering techniques to pri-
oritize some flows over others and improve network load,
fast reroute mechanisms to swiftly retrieve connectivity upon
failures, or anycast routing. In addition, ISPs are trying to
improve their internal operations in order to provide an ever
better service to their customers. This can be done by imple-
menting a monitoring system, re-architecting or tuning the
internal network.

∗Thomas Wirtgen is supported by a grant from F.R.S.-FNRS FRIA.

Almost invariably deploying these services require extend-
ing routing protocols. And among all protocols, the Border
Gateway Protocol (BGP) is probably the most used one given
its flexibility: for many network operators, BGP has become
a true “Swiss-army knife”. Originally designed to distribute
interdomain routes, BGP has been extended several times to
support different types of services [41, 55].

While extending BGP is possible, it is certainly not easy, for
two main reasons. First, ISP networks often include routers
from different vendors [17, 69]. This diversity is inherent
and required for technical, safety, and economic reasons. Un-
fortunately, this diversity means that operators can only use
the intersection of the features set across all their routers,
hindering flexibility.

Second, it can take years for even a subset of the vendors to
implement new features as these need to be first standardized
by the Internet Engineering Task Force (IETF). Many view
this as a form of ossification of the routing protocols. As
an illustration, a recent paper [79] showed that the median
delay before RFC publication of BGP extensions is 3.5 years,
and that some features required up to ten years before being
standardized.1 This is only the tip of the iceberg though: only
a small subset of the BGP extensions proposed by network
operators have been discussed and later adopted by the IETF.

Of course, this is not a new story. Frustrated by these delays
and the difficulty to innovate in networks, researchers have
argued for Software-Defined Networks (SDN) [48] for more
than a decade. Instead of relying on a myriad of distributed
protocols and features, SDN assumes that switches and routers
expose their forwarding tables through a standardized API.
This API is then used by logically centralized controllers to
“program” routers and switches.

While SDN has enabled countless new research works [21,
42], it has not been widely adopted by ISPs. One of the
main hurdles is that deploying SDN requires a major net-
work overhaul, both at the control-plane level, to deploy scal-
able and robust logically-centralized controllers, and at the

1Note that this delay ignores the time elapsed between the initial idea and
its first adoption by the working group, making the actual delay even longer.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 575

data-plane level, to deploy compatible network devices. Thus
far, only large cloud providers managed to perform this over-
haul [36, 39].

Of course, instead of relying on commercial routers, net-
work operators could decide to adopt open-source implemen-
tations of routing protocols [16, 23, 33, 67] running on servers
or custom hardware [3]. A network operator could for in-
stance fork a BGP implementation to add a desired feature.
Maintaining this fork requires a lot of software development
effort though. Such an approach is feasible for large cloud
providers [62] but not for ISPs. Another approach is to use
a modular routing implementation to take full control of the
protocol. The network operator is responsible for the entire
routing implementation. Unfortunately, it is too difficult to
maintain and evolve because the network operator must have a
complete understanding of the routing protocol and must have
software programming skills, which they often do not have.
To provide flexibility in the administration and automation of
their routers, router vendors have added a Python interpreter
to their operating systems [40]. However, the interpreter only
handles the administration part of the router and does not
provide an interface to add or modify protocol features. Fi-
nally, the use of active networks with centralized approaches
or descriptive configuration languages [10, 27] is not possible
in today’s Internet, as autonomous systems still use decentral-
ized protocols to establish peering links.

In this paper, we argue for much lighter weight and prac-
tical approach to network control plane programmability by
allowing the network operators to easily extend the distributed
routing protocols that they already use. Our new approach,
which we call xBGP, is inspired by the success of the ex-
tended Berkeley Packet Filter (eBPF) in Linux [26, 35] and
Windows [49]. eBPF is an in-kernel Virtual Machine (VM)
that relies on a custom instruction set. Thanks to eBPF, pro-
grammers can easily (and securely) deploy new programs that
can access a subset of the kernel functions and memory [26].
Similarly, in xBGP, different BGP implementations expose an
API and an in-protocol VM with a custom instruction set to
access and modify the intrinsic protocol functions and mem-
ory. Thanks to this API and the VM, the same code can be
executed on different implementations. Note that the instruc-
tions set and the in-protocol VM still need to be adopted and
implemented by each vendor, but this is a one-time effort,
instead of a per-feature effort.

Naturally, opening up BGP implementations to external
programs opens the door to many (research) questions: Which
API should BGP expose? How to implement this API effi-
ciently or What about the correctness and the safety of these
extensions? We answer these questions in this paper and make
four main contributions.

First, we introduce the xBGP API which defines a set of
functions that should be supported by an extensible BGP
implementation. We present this API in Section 2 and describe
how we modified two different BGP implementations, BIRD

and FRRouting, to support xBGP.
Second, we present a complete validation workflow that

enables operators to validate that their extensions correctly
terminate, do not interfere with the memory of the host imple-
mentation, produce syntactically valid BGP messages, or only
use the xBGP API functions authorized by the network op-
erator. We envision this workflow to become one element of
the qualification tests that operators already carry out before
deploying any new BGP feature in their network.

Third, we showcase the practicality of xBGP by imple-
menting eleven use cases with xBGP to: support a new BGP
attribute; introduce new selection rules; restrict the set of
paths it can compute; detect unused routes (zombies); or mon-
itor BGP operations. Each use case involves the same xBGP
bytecode running on both FRRouting and BIRD.

Fourth, we demonstrate the practicality of xBGP by measur-
ing its overhead compared to native implementations. Even
for complex extensions (re-implementing BGP Route Reflec-
tion), our benchmarks show that the overhead of xBGP is
always under 13%, a reasonable value given the flexibility
benefits.

Similarly to what OpenFlow [48] achieved, we believe that
programmable distributed routing protocols have the potential
to open up many promising avenues for research, while being
fundamentally more practical and deployable.

2 Architecture

At a high level, xBGP enables network operators to customize
or extend any compatible BGP implementation by injecting
and directly executing xBGP programs. As an illustration, we
consider how to expand a BGP implementation to support a
new BGP attribute, GeoLoc, that stores the geographic loca-
tion (i.e., longitude and latitude) of where each BGP route
was learned. Among others, this attribute can be used to adapt
router decisions, e.g., by filtering away routes learned more
than x kilometers away. Supporting such an attribute has been
discussed within the IETF but never standardized [13]. Yet,
large-scale ISPs reportedly use iBGP filters [71] to achieve
the same effect. Using iBGP filters is risky though as doing
so can lead to permanent oscillations [71].

To implement the GeoLoc extension, we need to support
several operations in a BGP implementation. (1) When a
route is received over an eBGP session, the router adds a
new attribute, Geo_Originator that contains the geographic
coordinates of the router that learns the BGP route in an
import filter. (2) If the BGP route already contains the
Geo_Originator attribute, the router needs to decode it. (3)
When exporting the route to another peer, the router can use
the Geo_Originator attribute to filter routes that are too far
away. (4) To be usable by other iBGP peers, the attribute
needs to be added to the BGP Update message.

To add this extension, we need to understand how BGP im-
plementations are designed. There are many ways to organize

576 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Adj-RIB
IN
 Loc-RIB Adj-RIB

OUT
Im
po

rt
fil

te
rs

Ex
po

rt
fil

te
rs

RIB

BGP Decision
Process

Background
Tasks

FIB

BGP
Messages
to Peers

BGP Control Plane

Data Plane

1BGP
Messages
from Peers

2
3

4

6

xBGP Program

VM

xBGP Program

VM

xBGP Program

VM

xBGP Program

VM

xBGP Virtual Machine Manager

xBGP API

Insertion
Point

5

Figure 1: An xBGP compliant implementation exposes the abstract BGP data structures defined in RFC4271 through a generic
API and uses libxbgp’s Virtual Machine Manager to attach the bytecode that implements extensions to specific insertion points
(green circles). The four bytecodes in this example support a simple GeoLoc BGP attribute. For each xBGP program, we provide
the set of helper functions used to retrieve data from the host implementation.

a BGP implementation. Each implementer selects a partic-
ular software architecture and the associated data structures
based on their own requirements. However, all BGP imple-
mentations must adhere to the protocol specification [54].
This specification defines the format of the BGP messages, an
abstract BGP Finite State Machine that manages each BGP
session, and also an abstract workflow and data structures that
describe how BGP update and withdrawal messages should
be processed. This workflow is illustrated in black in Figure 1.
Starting from the left, a received BGP message is stored in
the Adj-RIB-in 2. It then passes through the import filters
that may decide to discard the message or modify attributes
such as local-pref. If the route is accepted by the import
filters, it is inserted in the Loc-RIB. The Loc-RIB contains
all the BGP routes accepted by the router. The BGP decision
process extracts from the Loc-RIB the best routes that are
placed in the RIB. These routes then pass through the export
filters before being advertised over BGP sessions.

Going back to our GeoLoc extension, we can see that it
can be added to the different parts of the BGP workflow. (1)
needs to be added to the part that parses a BGP attribute. (2)
and (3) must be designed as import and export filters respec-
tively. And (4) will be added to the serialization part of the
BGP implementation. The question now is how to add those
subcomponents to the main BGP implementation. To answer
this, we defined the insertion points depicted in Figure 1 with
the green circles on which functionalities can be added or
modified. These insertion points correspond to the major BGP
events. It is now easy to add the four components of our simple

2Some implementations do not explicitly maintain a separate
Adj-RIB-{in,out} to reduce their memory consumption and store every-
thing in the Loc-RIB. We ignore this implementation detail in this paper.

extension to the BGP implementation in their respective inser-
tion points. (1) is attached to the BGP_RECEIVE_MESSAGE 1⃝
insertion point. First, it queries the BGP neighbor’s table and
determines the type of the eBGP session. Then, it retrieves the
contents of the received BGP update in network byte order.
Finally, it attaches the new GeoLoc attribute to the route. The
second program (2) is attached to the BGP_INBOUND_FILTER
2⃝ insertion point. It retrieves the router coordinates from the

router configuration to add them to the attributes of the route.
The program (3) attached to the BGP_OUTBOUND_FILTER 4⃝
retrieves the neighbor information and the GeoLoc attribute
to check if the route can be advertised to the peer. Finally, the
fourth program (4) is attached to the BGP_ENCODE_MESSAGE
5⃝ insertion point. It uses the BGP GeoLoc attribute received

over an iBGP session decoded by the first program and sends
it to the peer.

To be able to dynamically augment the BGP implementa-
tion, the four xBGP programs are executed inside a Virtual
Machine and are attached to specific insertion points in the
BGP implementation. An xBGP program is composed of
eBPF bytecode executed by a user space virtual machine that
is included in any xBGP compliant implementation. Thanks
to this eBPF virtual machine, the same xBGP program can be
executed on the CPUs used by different router platforms.

An xBGP program is not a standalone executable that per-
forms computations autonomously. It can interact with the
underlying BGP implementation, access its data structures,
and call some of its functions. In contrast with operating sys-
tem kernels such as Linux, FreeBSD or macOS that expose
a similar POSIX interface, there is no standard API for BGP
implementations. xBGP must then propose a common API
to support several BGP implementations. If we take our ex-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 577

tension, when the GeoLoc program has finished decoding
the Geo_Originator attribute, it must update the BGP route
stored in the BGP implementation. Thus, our extension needs
to fetch or set data from the host implementation. For this,
the BGP implementation must propose a set of functions, the
xBGP API [75], that enable the interactions between the ex-
tension and the internal data structures. For example, with a
call to the function set_attr, the extension can add a new
attribute to the BGP route being processed.

An important data structure of a BGP implementation is
its Routing Information Base (RIB). It contains the routes
selected by the BGP decision process and pushed in the For-
warding Information Base (FIB). The BGP RIB stores, for
each known destination prefix, its BGP route containing its
BGP attributes, including its AS-path and the address of the
BGP next hop. The RIB also contains information from the
intradomain routing protocol such as the cost to reach each
next hop. BGP implementations use various data structures to
store their RIB. Some implementations simply store the BGP
attributes as they were received from the wire. Others use a
specific structure for each type of attribute. To ensure that
the same xBGP program can be executed on any compliant
implementation, xBGP defines its own representation for IP
prefixes, next hops, and BGP attributes. For the latter, xBGP
simply relies on the wire format [54]. xBGP also defines a neu-
tral representation of the BGP neighbor’s table. With these
representations, xBGP programs can access the data struc-
tures of the underlying BGP implementation. When required,
xBGP converts the internal representation to its own format
before returning data to xBGP programs and vice versa.

The remaining of this section describes the composition
of the xBGP API enabling xBGP programs to interact with
BGP implementations in Section 2.1. Section 2.2 shows how
we execute an xBGP program inside the BGP implementa-
tion. We explain in Section 2.3 which challenges we faced
to make two BGP implementations, BIRD and FRRouting,
xBGP compatible.

2.1 The xBGP API

Besides some utility functions (memory management, con-
version between network and host byte orders, simple math
functions, etc.), most of the xBGP API is specific to BGP [75].

To modify internal BGP data structures, xBGP programs
rely on getters and setters to access data structures stored
on the host implementation. This ensures (i) an isolation layer
between the host and the xBGP program and (ii) a uniform
method of accessing data regardless of the BGP implemen-
tation. These functions convert the internal representation
into a universal one understood by xBGP programs. In ad-
dition, extension codes require access to the BGP internal
state (e.g., list of peers, the route attributes, the route next
hop). Hence, xBGP requires BGP implementations to provide
routines translating their internal data structures into xBGP

ones. These include getters and setters to access/modify
a BGP route including its attributes, next hop and the data that
identifies a BGP peer. We also provide functions to iterate
the RIB. These enable searching for a route other than those
provided by the insertion points, and therefore for searching
routes already installed in the BGP routing table.

Existing router OSes do not provide a common way to ac-
cess internal routing data. The xBGP API provides functions
to access IGP data, e.g., to retrieve the next hop for routes and
use them in use cases described in Section 5.

An xBGP program can deliberately send a custom BGP
message to any peer it wants. Instead of relying on an inser-
tion point to generate the message, the xBGP API contains
functions to send BGP messages allowing a program to send
an urgent message like a BGP notification because the xBGP
program detected a problem with a given peer.

To access non-standard data such as the geographic coordi-
nates of the router, an extension code may require additional
configuration. One approach is to directly include the data
inside the code of the xBGP program. However, this is not
scalable if the operator wants to deploy it on a large number
of routers. This induces a recompilation of the code for each
of its router. Instead, the xBGP API proposes to the network
operator to include a configuration data part in a structured
textual file accompanying xBGP programs called manifest.
The xBGP program uses it later to retrieve what it needs. This
extra configuration part is not directly accessible to the xBGP
program but can be accessed through a set of API functions.

Finally, xBGP programs can be executed as background
tasks 6⃝ that are called when a timer expires. These tasks are
not triggered by a specific BGP event like an insertion point
but are rather executed when a timer expires. Background
tasks are only used for processes that do not interact with the
BGP workflow. Each task controls its timer and xBGP delib-
erately restricts one timer per task to avoid timer explosions.
However, the task may ask to queue forever as long as the
BGP router is alive. This is particularly interesting for xBGP
programs that make routine maintenance for example. Each
background task is executed in a dedicated thread to allow
the original BGP implementation to run in parallel. If the
xBGP program must access or update data, the xBGP API
must be thread safe. This constraint must be respected when
implementing the xBGP API.

2.2 Executing xBGP programs

An xBGP program is a set of eBPF bytecodes, either attached
to different insertion points or executing background tasks.
Each xBGP bytecode has its own dedicated memory, includ-
ing a stack and a heap that are automatically freed after ex-
ecution. This memory isolation between extension codes is
guaranteed by the eBPF virtual machine. This ensures that
orthogonal extensions will not interfere with each other. Yet,
xBGP programs may need to keep persistent storage or to

578 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

exchange data between the different bytecodes that compose
a program. For this, the xBGP API provides a key-value store
that is similar to the BPF maps used in the Linux kernel.

Each xBGP implementation includes userspace eBPF vir-
tual machines that are controlled by a manager. The Virtual
Machine Manager (VMM) attaches bytecode with an associ-
ated virtual machine to one specific insertion point exposed
by the host implementation. Each xBGP program includes a
manifest listing the extension codes and their insertion point.
Different extension codes can be attached to the same in-
sertion point, and the manifest defines in which order they
are executed. The manifest also lists the different xBGP API
functions that the bytecode may use.

An xBGP program can be attached at different insertion
points, i.e., specific code locations in a BGP implementation
from where the program can be called. These insertion points
correspond to specific operations that are performed during
the processing of BGP messages, enabling xBGP programs
to modify the router’s behavior. xBGP defines six generic
insertion points (green circles in Fig. 1) based on the original
definition of BGP [54]. The sixth insertion point is dedicated
for background tasks.

By default, the VMM only runs one xBGP program per
insertion point. xBGP programs must explicitly tell the host
implementation to run the next xBGP program if any through
the next() function. This mechanism avoids executing use-
less code. For example, if we attach two xBGP programs
that parse different BGP attributes into the insertion point
that processes a single BGP attribute, and the first program
successfully parses the message, there is no need to run the
second one.

2.3 Adding xBGP to BGP implementations
To demonstrate the feasibility of xBGP, we have adapted
two open-source implementations: BIRD v2.0.7 [16] and
FRRouting v7.3 [23].
Adding the xBGP API. Implementing the API induced a
total of 400 and 589 additional lines of code [78] on BIRD
and FRRouting, respectively. The difference between both is
their internal representations of the BGP data structures. The
xBGP functions that deal with BGP messages and attributes
always manipulate them in network byte order (xBGP’s neu-
tral representation), performing the translation to the storage
format used by the implementation if required. FRRouting
uses an internal representation that is different from our neu-
tral one. We thus had to implement several functions to do
the conversion between the two representations. Another dif-
ference is the handling of BGP attributes. BIRD includes a
flexible API to manage BGP attributes. xBGP simply extends
this API. FRRouting does not include such an API, so we had
to implement one to be able to manipulate BGP attributes in
BGP updates.

Integrating libxbgp. libxbgp is a portable library, im-

plemented as 432 lines of header code, which consists of two
parts: (i) the utility functions of the xBGP API; and (ii) the
VMM. The VMM is in charge of executing the right extension
code according to the state of the host implementation. This
layer acts as a multiplexer. To include xBGP operations, the
BGP implementation calls the VMM to execute the associated
extension codes. Then, the VMM proceeds as follows. It first
checks if there are attached extension bytecodes to the called
xBGP operation. If not, the VMM executes the default func-
tion provided by the implementation. Otherwise, it runs the
first extension code mentioned in the manifest. Two outcomes
are possible. First, the extension code provides a result for
the operation and the VMM returns the output to the caller.
Second, the extension code delegates the outcome to another
one by calling the special next() function. In that case, the
VMM checks whether there are remaining codes in the or-
dered queue. If there are, the VMM runs the next extension
code in its virtual machine. Otherwise, the behavior of the
xBGP operation falls back to the default function provided by
the BGP implementation. For instance, two extensions can
attach bytecode to the BGP_RECEIVE_MESSAGE operation that
processes their own dedicated BGP attribute, calling next()
once they are done.
Technical challenges. While adding the xBGP API and inte-
grating libxbgp, we encountered some interesting technical
issues. To successfully use the xBGP API, data must be avail-
able when the function is called. In some cases, data in the
host implementation was not available when the insertion
point was called to execute the extension code. For example,
in FRRouting, export filters are applied to a set of peers shar-
ing the same type of outbound policies. This set is not passed
to the code checking the outbound policies but is required to
implement the helper function that retrieves data about the
BGP peers of the router. We had to write 5 extra lines of
code to get the set of peers before calling the insertion point.
Also, some data structures were not flexible enough to fully
support the xBGP API such as the function that adds or modi-
fies a new attribute to a BGP route. However, the internals of
FRRouting do not allow adding unsupported attributes that
are not defined by any standard (e.g., ORIGINATOR_ID). We
rewrote this part of FRRouting. To address those issues, we
had to add 30 and 10 lines of code to FRRouting and BIRD
respectively.

Each API function is called within a context of execution.
This context is hidden within the extension code but visible
in the host BGP implementation. This makes it possible to
control which extension code has called the function. The con-
text is also used to retrieve variables that cannot be directly
used inside the extension code. For example, if an extension
code needs to allocate extra memory (ephemeral or not), the
ephemeral memory is also automatically freed when the ex-
tension code terminates its execution. Similarly, the context
enables helper functions to access data structures that are out
of the extension code’s scope. For instance, a dedicated helper

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 579

function enables an extension to add a new route to the RIB.
When setting an insertion point, the BGP implementation can
pass a set of arguments. While some are visible inside the ex-
tension code, others are not. The RIB function leverages such
hidden arguments to access the data structure while being
transparent to the extension code.
Limitation of xBGP. To better understand what can and
cannot be done with xBGP, we analyzed the complete list
of RFCs, which defines extensions to BGP, that have been
published since the publication of RFC4271 [54]. The RFCs
can be classified into two different types. (1) The RFCs that
modify the original definition of RFC 4271 (6 RFCs) and
(2) those that add features on top of BGP (30 RFCs). For
(1), xBGP cannot be used to implement these types of RFCs
because it requires a direct modification of the underlying
BGP implementation. For example, increasing the internal
buffer size of the BGP message size [9] is not feasible with
xBGP. For (2), xBGP can be used. However, it turns out that
our current prototype focuses only on the messages that BGP
speakers exchange once the session is established (BGP Up-
dates and BGP Withdraw). Not all session-level extensions to
BGP can be handled by xBGP. For example, our current proto-
type cannot extend the BGP Open or BGP Route-Refresh [12]
message. However, xBGP contains a generic insertion point,
DECODE_BGP_MSG, that can handle future types of BGP mes-
sages. If the underlying BGP implementation does not support
route refresh, we can implement it as an xBGP program. Mod-
ifying xBGP to allow it to support the session level could
be implemented at a later time, but xBGP cannot change the
architectural design of the underlying implementation. This
is an important limitation of our solution. For example, no
xBGP program can increase the size of the BGP transmit and
receive buffers as defined in the corresponding RFC [9]. The
internal structure of an implementation cannot be modified
on the fly by a program since the definition of the structures
is strongly integrated in the program binaries.

In addition to the limitation of the features that can be im-
plemented, xBGP focuses mainly on the internal network, we
assume that the network operator enables the necessary xBGP
programs on the relevant routers. However, if the BGP routers
decode an unknown message, it will be silently discarded and
will not harm the router but will compromise the other router’s
computation. BGP capability negotiation messages can be
exchanged to indicate whether the extension implemented by
the xBGP program is supported by both routers implied in the
BGP session. Capability support is beyond the scope of this
paper.

3 Ensuring the safety of xBGP programs

BGP implementations generally run 24/7 and never stop.
When operators deploy a new router or a new version of
a router operating system, they typically run extensive tests

to verify that the new feature will not break their network.
From an operator’s viewpoint, injecting an xBGP program is
always risky since the program will be executed within the
BGP implementation. A simple approach would consist in let-
ting the VMM monitor their execution and stop them in case
of error. This could be too late for errors that could disrupt
BGP sessions. Network operators typically need some safety
guarantees from the xBGP program. The Linux kernel copes
with a similar problem by using a custom online verifier [1]
that checks different aspects of eBPF programs before they
are injected into the kernel.
Verifying xBGP programs. xBGP also relies on verification
techniques to ensure that programs can be safely injected.
However, instead of developing a custom verifier [24], we (i)
establish a list of properties that an xBGP program should
respect to be considered as safe and (ii) we build a toolchain
embedding three existing and well-tested software verification
tools allowing the verification of our properties. Our xBGP
toolchain receives the xBGP programs as input. They consist
of C code that uses the xBGP API and a manifest provided by
the network operator containing the configuration data. This
code is by nature untrusted and must be manually augmented
with various annotations providing hints to the code verifiers,
given the specificities of each one. Such annotated extensions
can then enter the xBGP toolchain which executes in paral-
lel each verifier. The bytecode is produced only if the code
passes all of them. Once the bytecode is generated, it is added
to the integrated xBGP store. A network operator can safely
select and load xBGP programs coming from this store. We
expect that initially each ISP will have its own store. Later,
third parties or router vendors could also develop their own
stores. We consider this toolchain as trusted, i.e., we select
a particular compiler, clang, and specific verifiers, all con-
sidered as correct. Therefore, we do not need to reason about
the produced bytecode and ignore problems such as handling
maliciously formatted bytecode.
Embedded verification tools. The whole xBGP toolchain,
illustrated in Figure 2, is designed to prevent four types of
problems that a program can cause. First, if an xBGP pro-
gram enters an infinite loop, it will block the underlying BGP
implementation. We use the Terminator 2 (T2) automated
termination checker [15] to verify the termination of xBGP
programs.

The second set of possible problems is the way xBGP pro-
grams interact with the memory of the underlying BGP im-
plementation. We use CBMC [43] and SeaHorn [31] to verify
memory-related properties.

The third type of problem is related to xBGP and BGP
themselves. xBGP programs can create new BGP attributes or
messages that are sent over a BGP session. We use SeaHorn
to verify that the BGP messages emitted by xBGP programs
are fully compliant with the BGP RFCs and that their return
values respect the xBGP requirements.

Finally, operators may want to be able to impose restric-

580 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

xBGP
Program

Annotated

T2

Sea
Horn

CBMC

clang xBGP
Store∩

Pass
All

Archive
Generation

 Verifiers

xBGP
Program

Manifest

+

xBGP Toolchain

TrustedUntrusted

Figure 2: High-level view of the xBGP verification toolchain.

Property Verifier Type
Termination T2 Safety
Reads/Writes within
xBGP program’s memory space CBMC Safety

No buffer overflow, use after
free memory, invalid read, etc. CBMC Safety

All strings must be
null terminated SeaHorn Safety

Correct size/buffer combination SeaHorn Safety
RFC-compliant syntax
of BGP attributes SeaHorn BGP

Valid return value SeaHorn Safety
Checking attribute reads/writes SeaHorn BGP
Checking API function
accesses libxbgp

Safety
+ BGP

Call the next() function to
trigger the next xBGP program SeaHorn Safety

Table 1: Properties that xBGP programs must satisfy.

tions on the xBGP functions and data structures that a given
xBGP program can use. For example, a customer filter should
only be able to set a local-pref value in a chosen range and
to change nothing else. So it could never add a new BGP at-
tribute to a route it filters. These restrictions are enforced with
(i) SeaHorn that checks the validity of the arguments of the
API functions and (ii) libxbgp which restricts the available
API functions at loading time.

To be considered valid, any xBGP program must satisfy the
properties listed in Table 1. If every xBGP bytecode satisfies
this list, the router is guaranteed (i) not to crash and (ii) to
still follow the definition of the protocol. These properties
ensure the local stability of each router. Ensuring the global
stability of BGP [28–30, 46] is a problem that goes beyond
the scope of this paper.
Verification macros. Because of their diversity, the verifica-
tion tools do not offer a common way to annotate programs.
In the case of xBGP, this would mean annotating the plugin 3
times with different annotations and running the 3 tools man-
ually. For a network operator, manually using several tools
can be a long, tedious, and error-prone process. To ease the
annotation process, we define a set of multipurpose macros
PROOF_INSTS_*() abstracting the annotation syntax of the
verifiers. Those are only expanded if the corresponding veri-
fier is invoked. When the extension programs are compiled

buf [0] = a t t r i b u t e −> f l a g s ;
buf [1] = a t t r i b u t e −>code ;
buf [2] = a t t r i b u t e −> l e n g t h ;
buf [3] = a t t r i b u t e −> d a t a ;

CHECK_ORIGIN(buf) ;

(a) Annotated Code.

a s s e r t (buf [0] == ATTR_TRANSITIVE) ;
a s s e r t (buf [1] == ORIGIN_ATTR_ID) ;
a s s e r t (buf [2] == 1) ;
a s s e r t (((buf) [3] == 0 | | \

(buf) [3] == 1 | | \
(buf) [3] == 2))) ;

(b) Expanded Code (verifier).

Figure 3: Example of a verification macro that checks the
origin attribute of a BGP route. The macro can be extended
or not according to its use. (a) is the original source code and
(b) is the code viewed by a verifier.

for routers, the annotations are not expanded and thus will not
interfere with the normal BGP execution. Figure 3 shows an
example of such verification macro.

Aside from the verifier syntax abstraction, we mainly bring
two contributions. First, we define a set of macros helping
network operators to verify the properties listed in Table 1.
Network operators can use them to annotate their xBGP pro-
grams. The macros are translated to their corresponding an-
notation to the right software verifier. For example, a network
operator can use the BUF_CHECK_* macros to verify if the
BGP attributes sent to a BGP peer are formatted as stated in
the RFCs.

Second, we set up a verification toolchain that automati-
cally performs verification on the xBGP programs. It auto-
matically and transparently calls all the verification tools and
verifies the annotations contained in the source code of the
programs. If all properties are satisfied, the system stores the
verified plugins in a “plugin store”, which the programmer
or network operator can use to inject into their routers. The
routers will only accept plugins that have been verified and
signed by the plugin store.

Those macros, in conjunction with our verification
toolchain, allow a complete abstraction of the verification
process. This makes the usage of xBGP simpler for network
operators. The entire set of verification macros is defined in
Appendix B.

3.1 Proving xBGP Programs’ Termination
T2 (TERMINATOR 2) is a program analysis tool for termi-
nation [15] and temporal property [7] verification. We were

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 581

successfully able to prove the termination of every xBGP
program that implements the use cases defined in this pa-
per. Table 3 reports the total time taken by the verification
toolchain to verify all the properties defined for the xBGP pro-
grams, including the termination checks. However, to check
the termination we had to slightly modify the source code
since some specific features of the C language were not sup-
ported by the prover. First, when using fixed-width integer
types (e.g., uint8_t), T2 was not able to generate the proof of
termination. We had to convert those types to their primitive
type. Second, all the loops of the program must be explicitly
bounded. For example, if the xBGP program needs to parse a
BGP attribute, we must explicitly bound it to 4096 iterations,
the maximum size of a BGP message [54]. Third, T2 does not
handle bit shift operations. To solve this issue, we encapsu-
lated the bit shift computation in a non-deterministic function.
This is a function that is not defined in the source code of
the xBGP program but simply tells T2 that it returns an arbi-
trary integer value that T2 can handle. Such non-deterministic
function is also considered to terminate by T2.

3.2 Preventing Memory and C Errors

C is a permissive language and programmers can easily make
mistakes in their programs while handling memory. A bug in
an xBGP program that causes a buffer overflow or leads to
using freed memory could crash the underlying BGP imple-
mentation. An earlier prototype automatically instrumented
the eBPF code to verify these properties online [79]. The
verification was made at runtime by adding memory check
instructions to the xBGP bytecode. However, this had a per-
formance impact. Our new xBGP toolchain uses the CBMC
bounded model checker [43] to verify the absence of sim-
ple memory-related issues and SeaHorn [31] to detect more
complex issues. That being said, the online verification of the
memory bounds remains in xBGP and the operator can enable
it or not at xBGP bytecode load time.

CBMC is a C Bounded Model Checker that uses loop
unwinding methods. It requires that loops are strictly
bounded [43] which implies that the code of xBGP programs
must be adapted. It automatically annotates code, generates a
formula and proves it via an integrated SAT solver. It can spot
common C programming errors [14]. However, more com-
plex properties cannot be checked automatically. For example,
xBGP programs can log data to syslog. The functions used
for that take a string as arguments. Nevertheless, C strings
are not safe by design. We must ensure that each string is
correctly null-terminated to prevent buffer overflows. Another
example is the alteration of BGP attributes. An xBGP pro-
gram needs to call an API function that takes as arguments a
pair <buffer, length>. Those two values must correlate: if
the actual buffer length is shorter than the announced length,
the host implementation is vulnerable to a buffer overflow.
We use SeaHorn [31] to prove properties written directly in

the code as assertions.
We provide a set of C macros that operators call in the

xBGP programs they verify. The first one is verified by search-
ing for a null byte within the string. For the second one, we
verify before each API call if the length passed to the func-
tion matches the buffer length. This is achieved by inserting
custom annotations in the xBGP programs and passing them
to SeaHorn.

3.3 Ensuring BGP and xBGP Compliance
xBGP programs can (i) send new BGP messages or (ii) mod-
ify the internal representation of BGP routes. If such a pro-
gram sends a message deviating from the standardized BGP
syntax [54], it could disrupt BGP sessions and have a huge
impact [47]. For (i), we verify that the syntax of the BGP
message generated by an xBGP program conforms to the
BGP RFCs. For (ii), we check that the modification is cor-
rectly formatted. A corrupted BGP route accessed outside
the xBGP program could result in a crash of the xBGP im-
plementation. For this, the code is annotated with assertions
representing BGP invariants that are checked by SeaHorn.
We also created a set of C macros verifying that standard
attributes comply with their definitions (correct flags, size,
etc.). For non-standard attributes, we check that they respect
a TLV format. For BGP messages, we check that the buffer
containing the message conforms to the BGP syntax [54].

In addition, xBGP programs also have to comply to xBGP
requirements. Some insertion points require a “communica-
tion channel” with libxbgp to change the behavior of the host
BGP implementation. This is achieved by using the return
values of the executed bytecode. Therefore, bytecodes cannot
deviate from predefined values. For example, an xBGP filter
returns a specific value to tell the host to reject the current
route. This property is verified with SeaHorn by considering
the xBGP program as a function called inside a “fake” main.
The return value is then retrieved and verified using a custom
assertion.

3.4 Enforcing Operator-Imposed Restrictions
Thanks to the manifest, the operator can list the xBGP API
functions and the data structures that each xBGP program can
use. Imagine a filter that only checks the validity of the route
without modifying any data related to this route. To decrease
the risk of introducing bugs in xBGP programs, the operator
can restrict the set of API functions the program can call. In
this example, the filter should have a read-only view, and thus
should not call any function altering BGP data structures.

To settle this, we implemented a permission manager inside
libxbgp that verifies, at load time, the functions that a given
xBGP program calls according to its manifest. Just before
being loaded, libxbgp checks the xBGP bytecode to look for
unauthorized API function calls.

582 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Network operators use BGP communities [20, 64] to en-
able their customer to activate specific features such as set-
ting local-pref, AS-path prepending, or selective advertise-
ments on a per-route basis. With xBGP they could provide
even more advanced services. Imagine you are a network
provider that proposes to attach filters developed by its clients
to their eBGP sessions. You define a set of BGP attributes
the client can modify such as MED, local-pref, etc. When
they use communities, operators establish policies on the at-
tributes which can be modified in a BGP route. For example,
they define ranges of possible values for the local-pref
attribute [20]. To modify an attribute for a route, an xBGP
program calls the set_attr API function. When the xBGP
toolchain processes such a program, SeaHorn verifies if the
arguments of the API functions respect the policies defined in
the manifest, i.e., if both the argument to change and its new
value are legitimate. This is done by adding assertions in the
source code of the xBGP program supplied by the customer.

4 Overhead of the current xBGP prototype

Using xBGP in BGP implementations brings flexibility for a
network operator since they can use a simple abstraction to
program their router. However, this flexibility has a price in
terms of performance. To evaluate the overhead of libxbgp,
we consider three different features that are already imple-
mented in both native FRRouting and Bird to have a fair
comparison with xBGP. The first is a simple filter adding
an arbitrary MED value to all exported routes. The second
provides support for extended communities [59]. The third
is a complete implementation of Route Reflection [4]. While
we expect operators to mostly develop simple plugins such
as the first two, the Route Reflection extension demonstrates
the of flexibility xBGP by covering the whole BGP workflow
described in Section 2. Furthermore, since Route Reflection
is supported by both FRRouting and BIRD, this extension en-
ables us to compare the overhead of an xBGP implementation
with native ones.

To evaluate the performance impact of xBGP, we use the
simple network described in Figure 4. We measure the delay
between the first BGP update sent by the Upstream router
and the last update received by the Downstream one. This re-
flects the time needed for the Device under Test (DuT) router
to process the routes sent by the Upstream router. The Up-
stream and Downstream routers are running an unmodified
implementation of BIRD v2.0.8 while the DuT router is run-
ning the xBGP version of BIRD or FRRouting according to
the test. The DuT router is running an Intel® Xeon® X3440
@2.53GHz with 16 GB of RAM, Linux kernel v5.15.29 and
Debian 11.

The Upstream router sends a full routing table from a recent
RIPE RIS snapshot (June 3, 2021, at 4:15 PM) containing
873k IPv4 routes and 120k IPv6 routes. We consider multiple
executions of the BGP daemon located in the DuT router.

Upstream DuT Downstream

Figure 4: Simple network used for xBGP evaluations.

Use Case Processing Time
xFRR xBIRD

No xBGP program +1.05% +1.6%
Filter Set MED +6.67% +2.59%

Extended
Communities +5.93% -0.67%

Route Reflection +12.97% +7.43%

Table 2: Performance impact of running xBGP programs to
xBIRD and xFRR.

Table 2 shows the relative performance impact of running
the extensions with xBGP programs compared to their na-
tive implementation in both BIRD and FRRouting. For each
xBGP compatible implementation, we run 10 times the xBGP
programs and compute the convergence time. The conver-
gence time is the time between the first BGP update message
is received from Upstream to DuT and the last BGP update
message sent from router DuT to Downstream.

Before even loading any xBGP extensions, bringing sup-
port of xBGP in a BGP implementation involves an initial
overhead. More specifically, the host implementation must
first construct the argument to be passed to the xBGP program,
then request execution of the corresponding insertion point,
and finally execute the xBGP termination routine. These addi-
tional steps increase the total number of instructions to be ex-
ecuted compared to the native non-xBGP implementation. To
quantify the cost that libxbgp takes in BIRD and FRRouting,
we ran both implementations of xBIRD and xFRR without
plugins and compared them to their non-xBGP compatible
versions. Making both implementations of xBGP compatible
adds a cost in the convergence time of 1% and 1.6% in FRR
and BIRD respectively.

We now consider the MED filter (one insertion point) and
the extended communities (two insertion points) extensions.
When implemented as xBGP programs, these slightly increase
the convergence time compared to their native version. The
Just-In-Time compiler used inside the virtual machine does
not optimize as efficiently as the one producing native code.
In particular, computation-intensive bytecode involving addi-
tions, subtractions, and multiplications take 50% more time
to run than native code. This overhead is even worse when
considering division and modulo operations.

Yet, we observe a higher convergence time increase for
FRRouting than BIRD. By analyzing the execution of each
xBGP bytecode with a code profiler, we identified two main
reasons for this difference. First, to communicate with the
host implementation, the xBGP program must pass through
a dedicated xBGP API. For security reasons and because of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 583

the internal mechanism of libxbgp, the data of the host im-
plementation are first translated into a neutral representation,
then copied into a dedicated memory area, accessible in writ-
ing and reading by the bytecode. Translation and copying play
an important role in the execution of a plugin but are needed
to run the same xBGP program in several BGP implementa-
tion. BIRD internally uses data structures that are closer to the
xBGP neutral representation than the FRRouting ones, hence
involving less translation overhead. Second, FRRouting and
BIRD have different internal architectures. The interactions
between the libxbgp API and the BGP implementations are
different. FRRouting is less flexible as its implementation
is not designed to be quickly extended with new functional-
ities. While in BIRD, most of the insertion points map to a
specific place, in FRRouting some insertions points must be
repeated at different code places, involving up to four times
more xBGP program calls than BIRD.

We now consider the Route Reflection extension covering
the whole BGP workflow. Supporting this feature requires a
list of all iBGP client peers. Routers’ implementations use
their dedicated CLI syntax to define all their iBGP client
peers. libxbgp does not have access to this CLI configura-
tion since it is implementation-dependent. Instead, it relies
on its configuration data within the manifest that can be ac-
cessed at any time by the xBGP program. On average, the
BIRD’s convergence time is 7.5% slower than the native
code while FRRouting’s one is 13% slower. The previous
elements still hold to explain the difference between BIRD
and FRRouting. In particular, there are more calls to xBGP
programs in FRRouting due to its code architecture than in
BIRD (BGP_ENCODE_MESSAGE is called 4 times more), and
the translation time to convert data structures is non-negligible
in FRRouting (up to 40% overhead for the import filter). Still,
the performance overhead of xBGP remains in acceptable
bounds.

5 Use Cases

Section 2 presented the GeoTLV feature to demonstrate that
xBGP programs can create new attributes that influences the
router. Section 4 presented the MED filter, extended commu-
nities, and route reflectors to make a performance comparison.
This section presents other use cases, which are not imple-
mented natively in FRRouting and BIRD, that illustrate the
advantages of xBGP for various classes of problems that the
operator wants to solve. It is true that the features of this sec-
tion can be implemented in any BGP implementation without
xBGP. However, feature support depends on the pace of im-
plementation by all vendors. Thanks to the xBGP design, an
operator can quickly design its features and introduce them
into the network before they are implemented by the vendor.
xBGP is the first step to bring extensibility to the network.
The first use case defines an xBGP program (Section 5.1)
to influence the decision process and the import and export

Use Case C
LoC

eBPF
Insts

Total
Verif

Time(s)
Geo TLV (§2) 388 1340 664
MED Filter (§4) 55 149 79
Extended Communities (§4) 196 322 86
Route Reflection (§4) 509 3853 27
Route Selection (§5.1) 62 148 27
Zombie Detection (§5.2) 1071 5697 277
Decision Monitor (§5.3) 306 437 29
Propagation Time (§5.4) 560 805 73
Valley Free (§A.1) 143 960 182
Prefix Origin (§A.2) 150 661 57
IGP Data (§A.3) 36 149 3

Table 3: Verification of the xBGP programs supporting our
use cases.

filters from the BGP client point of view. The second use
case detects zombie routes (Section 5.2). These are routes
that are installed in the routing table but are no longer reach-
able. Third, operators always try to understand the state of
their network to improve it as much as possible. We present
two use cases (Section 5.3 and 5.4), where BGP is monitored
using communities. Due to space limitations, we detail three
other extensions in appendix. The fifth use case is related to
route filtering in data-centers (Section A.1). It demonstrates
that xBGP can provide a programmable interface to design
complex import and export filters. Our sixth xBGP program
(Section A.2) gives another example of a special filter that
checks the origin of a route. Finally, our seventh use case (Sec-
tion A.3) shows that an xBGP compatible implementation can
leverage IGP information to make routing decisions.

Table 3 reports the size of the xBGP bytecode, the number
of lines of code and the time taken to validate every xBGP
program according to the properties defined in Section 3.

5.1 Customer Selecting Routes

A BGP router only selects one route for each prefix even
though it learns multiple routes. As a result, it will only send
one route to each BGP neighbor, which decreases the path
diversity. Consider Figure 5 to illustrate the situation. AS1, a
multihomed stub network having peering links with Transit
1 and AS2. We are interested in the propagation of the routes
to the destination network depicted in gray. To maximize path
diversity in AS1, it should learn the purple path from AS2
to leverage the two different transits. However, AS1 cannot
influence the decision process of AS2’s routers.

Enabling the dissemination of multiple routes can bring
several benefits such as load-balancing [45], avoiding route
oscillation [29] and faster local recovery upon a network fail-
ure [61]. With xBGP it becomes possible to influence the
border router to announce the route the client prefers. To de-
sign such an xBGP program, all edge routers must enclose
their BGP client to one Virtual Routing and Forwarding table

584 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

AS 2

Transit 1

Transit 2AS 1

Destination

Figure 5: Path Diversity in a Network.

(VRF) [70]. All the routes learned from all neighbors will
be exported to the main BGP-VPN RIB’s router and then
exported to the VRF of each client so that they can have a
full view of the routes. Since all clients are in their respective
VRFs, the BGP decision process is different for each of them
and can therefore be influenced by an xBGP program that
decides which route to advertise.

We designed a simple xBGP program that randomly se-
lects one of the available routes in the VPN RIB thanks to
the xBGP API function get_vrf. It demonstrates that xBGP
allows the operator to create a customized and more powerful
route selection compared to the traditional router CLI. Ac-
cessing the VPN RIB through a simple router configuration
is something that cannot be done with traditional BGP imple-
mentation. Furthermore, an xBGP program has access to the
entire BGP route and the internal data structure of the BGP
router. xBGP therefore provides greater flexibility compared
to the classical CLI.

We were successfully able to check the termination with
T2, the C errors with CBMC, its compliance to the xBGP
return values. We also verified that the program does not use
API functions altering the BGP internal state.

5.2 Detecting BGP Zombies

When a route becomes unavailable, a BGP router sends a with-
draw message to all its peers. Because of software bugs [22],
it may happen that one of these BGP peers fails to process
such a withdraw message. As a result, the route is still con-
sidered reachable by the failed router. This is an operational
problem because the withdrawal is not propagated, and part
of the network still believes that the route is available. If pack-
ets still follow this zombie route, they will be black holed.
Measurements indicate that these zombie routes are common
and affect many ASes [50].

To detect zombie routes, we designed an xBGP program
that is executed periodically. It uses the timestamp of the
arrival of a route in the RIB to detect the routes that are
older than x days. Our threshold is arbitrarily fixed to a day.
Our xBGP program is configured to be executed during the
maintenance window. It parses the entire BGP RIB thanks to
the API functions *_rib_iterator. If a route is older than
the configured threshold, it is flagged as a possible zombie.

To confirm the status of the route, the router needs to request
it again from the peer that announced it. This could be done
with standardized mechanisms such as Graceful Restart [58]
or Route Refresh [12, 51]. However, those two approaches
require the remote router to announce again its entire BGP
routing table. For the sake of performance, we decided to only
ask the remote peer to reannounce the routes flagged by the
xBGP program. We introduce a new type of BGP message
called BGP Refresh. It contains a list of prefixes that the
router wants to confirm. The peer receiving the BGP Refresh
message will announce a withdraw or an update message if
the routes are not available anymore or still in its BGP routing
table respectively. xBGP allows sending BGP messages via
the schedule_bgp_message API function.

It is difficult with a traditional BGP implementation to de-
tect such a zombie route. Indeed, there is no mechanism to
analyze and perform an action according to the state of the
BGP routing table. To include this feature, the network opera-
tor must convince each router vendor to add this feature into
its implementation. This use case demonstrates that xBGP can
outperform the current configuration method that is proposed
in classical BGP implementation.

This xBGP program successfully passes the T2 and CBMC
verifications. As it manages BGP messages, we verified their
compliance to the RFC. We also checked that the size of the
buffers announced to the API function matches their real size.
This program xBGP is an example of functionality that cannot
be performed with the traditional router CLI while the router
is running.

5.3 Monitoring the BGP Routing Decision

Currently, if a network operator would like to debug its BGP
routers, he only has monitoring information from the routers
it directly controls. This is due to the fact that the traditional
BGP specification only provides the exchange of local routing
information but does not provide any abstraction to send mon-
itoring information about the routing process. Yet, a support
of a dedicated monitoring channel has been proposed [60]
but this is still not implemented on all vendor’s routers. In a
nutshell, a BGP router can ask its neighbor to give different
metrics such as its number of reachable prefixes, its ADJ-
RIB-IN, its current state, etc. This shows that many network
operators need to monitor the BGP session to enable better
control of routing information in the network. Some router
vendors actually provide commands to retrieve the local state
of a router. However, the information is restricted to the router
view only and does not include the status of routers that are
outside the operator’s management scope. Having statistics
from other routers could bring many benefits such as the se-
lection of a better route. More specifically, if the BGP router
sends its best routes with the step at which routes have been
decided, the remote BGP router can learn much information
about the route diversity in a network. If the routes are al-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 585

ways decided at the very end of the BGP decision process, it
indicates a lack of diversity in the remote network. On the
contrary, if the routes are decided early in the process such
when the AS_PATH is shorter than the previous best route,
it can indicate a higher level of diversity. Thanks to this in-
formation, the BGP router can adapt its behavior to prefer a
path with more diversity to be more resilient to a router or
link failure.

We leverage xBGP to instrument the BGP implementation
to retrieve at which step of the BGP decision process the
route has been chosen. Each time it runs, an xBGP program
retrieves the reason of the decision in the process. It can be
retrieved through the arguments passed to the xBGP program.
To inform other BGP routers, this information is added as a
BGP community when sent to other BGP speakers. This is
done by the API function set_attr_to_route. This way,
other routers can parse and use this information to adapt their
routing strategies. This xBGP program also collects statistics
about the other steps of the BGP decision. Each time a route
is selected, the xBGP program increments an internal counter.
It repeats the operation for each decision step. When a route is
sent to any peer, these statistics are attached as a community.
The BGP router receiving the statistics can have a broader
view of the current routing table of its peer. If all the routes
have been decided by the BGP tiebreaker that compares the IP
address of the router that sends the route then it shows a lack
of path diversity. The network operator could then attribute a
lower preference to the route advertised by the remote router.

This xBGP program successfully passes all the verifiers.
Since it handles the BGP community attribute, we verified if
the format is respected according to the corresponding RFC.

Since this information cannot be retrieved with traditional
router CLI, this new approach could enable more fine-grained
routing decisions. Indeed, this new type of active monitoring
cannot be achieved with traditional monitoring tools such as
BMP, SNMP, etc. as these later tools do not modify the BGP
message they sent to the BGP neighbor. Network operators
have thus at their disposal new information from outside their
network.

5.4 Measuring BGP Route Propagation Times

For mission critical systems, the convergence time of a rout-
ing protocol is an important metric to know. It helps to better
understand what could be the cause of a slow convergence.
Discussions with network operators indicated that commer-
cial router vendors provide undocumented CLI commands
to access profiling points. However, this profiling informa-
tion is local to each router. It could be useful to exchange
such information within an entire network. This could open
new opportunities to better understand the current state of
the network. One example of such monitoring is the time
taken by a BGP route to traverse an AS. To support such
monitoring information, BGP must be augmented to add in

each route its arrival time at each AS border router. Our xBGP
program defines a new non-transitive BGP attribute, called
RECEIVED_TIME. It adds this attribute when a route is re-
ceived over an eBGP session (thanks to the set_attr xBGP
API function family). It traverses the AS with the BGP route
until it reaches an edge router. The RECEIVED_TIME attribute
is removed when the associated route is sent over an eBGP
session and the border router computes the difference between
its current NTP time and the one of the attribute. As for the
previous use case, exchanging such monitoring information
is not currently feasible with traditional routers. These two
use cases show that xBGP can perform a new type of active
monitoring by exposing the internal data of the BGP imple-
mentation itself to inform the other neighbor of the current
BGP routing state.

6 Related Work

Protocol programmability. In the late nineties active net-
works were proposed as a solution to bring innovation back
inside the network that was perceived as being ossified [65].
Most of the work in this area focused on the possibility of
placing bytecode inside network layer packets. PLAN [66],
ANTS [73] and router plugins [19] are examples. In the con-
trol plane, researchers built upon this idea to propose new
solutions such as the 4D architecture [25], the Routing Con-
trol Platform that centralizes routing [11] or Metarouting [27]
that proposed to open the definition of routing protocols using
a declarative language. While these previous works propose
configuration languages or centralized approaches to deal
with network programmability, xBGP relies on an existing
decentralized control plane protocol on which an operator can
add its new functionality to locally influence the routing.

Bringing flexibility to an implementation of a network
protocol has been studied in the literature. Researchers have
proposed using extension codes to extend transport protocols
like STP [52], QUIC [18] and the FRRouting implementation
of OSPF and BGP [80]. However, the architecture of these
pluginized approaches is close to the internal architecture
of a single protocol implementation and does not offer the
flexibility to pluginize different implementations of the same
protocol. xBGP goes one important step further by enabling
very different implementations to execute the same xBGP
program. xBGP tries to determine what all implementations
of a protocol have in common to try to find a common usable
interface.

To ease the automation and the configuration of their de-
vices, routers vendors added scripting languages that enable
the network operator to execute recurrent tasks [6]. However,
this acts as a simple shell that cannot be used to extend the
router implementation. Other vendors integrated the python
language into their router OS [40] to perform automation task
more easily, such as configuring the router or executing a
monitoring routine when a particular event occurs.

586 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Reducing the BGP implementation to its minimum has
been studied with CoreBGP [74]. However, it only manages
the basic BGP Finite State Machine on which plugins written
in the Go language are inserted. The remainder of the BGP
logic such as sending BGP messages or managing the routing
table is passed to the plugins. CoreBGP plugins react to an
FSM events while xBGP programs react to protocol events
defined by the insertion points depicted in Figure 1.

XORP [33, 34] was introduced to propose an open-source
software router platform. This solution has been designed to
allow researchers to easily develop their own extensions to a
routing protocol. Other open-source routing stacks have been
developed such as Quagga [2], FRRouting [23] or BIRD [16].
While these open-source stacks allow modifying the source
code of the routing software, xBGP goes one step further by
introducing a simple API to interact with the routing soft-
ware. There is no need to look directly in the code of the
implementation to understand how to integrate an extension.
Anyone who wants to add their own extension will interact
with the router through xBGP. Throughout this paper, we
demonstrated that an xBGP extension code written only once
can be successfully executed by two open-source routing
stacks, FRRouting and BIRD.

Virtual Machines. libxbgp is based on a user-space im-
plementation of the kernel eBPF VM [53]. In recent years,
Linux kernel developers have integrated a virtual machine
called eBPF [63] which enables programs to inject executable
bytecode at specific locations inside the kernel. It was initially
targeted at monitoring kernel operations [35], but also for
fast packet processing [35]. Researchers have used eBPF to
support networking programming with IPv6 Segment Rout-
ing [83] and extend TCP [68]. Other frameworks could have
been used such as WebAssembly [32] or lua [38] that is widely
used in industrial systems. Using another type of VM can be
studied to measure its performance and its relevance to rout-
ing protocols.

Verification tools. The PDS (Plugin Distribution Sys-
tem) [57] provides secure verification and distribution of
extension code for Pluginized QUIC [18]. It allows the au-
tomation of different types of verification for several extension
codes at the same time. Our xBGP toolchain includes more
verifiers and checks more properties. While the PDS uses a
Merkel tree to secure the distribution of plugins, the xBGP
toolchain simply keeps them in a store that is used by the
network operator.

7 Conclusion

We presented xBGP, a new paradigm that enables network
operators to innovate in routing protocols. xBGP allows them
to write their extensions or modifications in the form of an
xBGP program that can be executed inside the protocol im-
plementation. This programmability could help network op-
erators innovate with existing distributed routing protocols

as Software Defined Networking lead to the development of
programmable switches. Our solution has been proposed for
BGP but could also be adapted to support other routing proto-
cols. We further introduced the xBGP toolchain that allows
operators to annotate xBGP programs to verify their safety. It
checks if the xBGP program meets the local properties of the
router such as the termination, the memory constraints and if
the xBGP program meets the definition of BGP. If it passes
the verification step, the xBGP program can be safely added
to the BGP implementation and is guaranteed not to corrupt
the router. Finally, we demonstrated xBGP’s capabilities by
proposing several use cases that have been implemented with
our solution. Among them, xBGP enables the operator to add
new attributes to a BGP route, implementing complex filters,
allowing a client to influence the BGP decision process and
executing background tasks.

Future Directions. We see two directions to improve
xBGP. The first would be to look at how to structure an exist-
ing BGP implementation to support xBGP more efficiently.
The second is related to the virtual machine used. eBPF was
the most mature virtual machine during the development of
xBGP. However, other virtual machines such as WebAssem-
bly seem more promising and start to perform well. It might
be interesting to see the advantages of using them in the
context of xBGP.

Software artifacts
To encourage other researchers to reproduce and extend our re-
sults we provide the entire source code of libxbgp [78] com-
posed of 3506 LoC, the eBPF virtual machine we use (2236
LoC), the two versions of FRRouting [77] (+2675 LoC) and
BIRD [76] (+2083 LoC) xBGP compatible, the whole xBGP
programs (15 programs) we developed on top of xBGP [81],
the experimental scripts we use to evaluate the impact of
the performance with our approach (853 LoC) [78] and our
verification toolchain based on the PDS [56]. We will also
provide the set of annotation to verify xBGP programs (1121
LoC) [82].

Acknowledgments

This work has been partially supported by the French Com-
munity of Belgium through the funding of a FRIA (Fund
for Research training in Industry and Agriculture) grant. We
thank the anonymous reviewers and our shepherd, Phillipa
Gill, whose helpful comments improved the quality of this
paper.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 587

References

[1] The linux kernel static checker. https://github.com/
torvalds/linux/blob/master/kernel/bpf/verifier.
c.

[2] Quagga software routing suite. https://www.nongnu.org/
quagga/.

[3] "Microsoft Azure". Software for open networking in the cloud.
https://azure.github.io/SONiC/.

[4] T. Bates, E. Chen, and R. Chandra. BGP Route Reflection:
An Alternative to Full Mesh Internal BGP (IBGP). RFC 4456
(Draft Standard), April 2006. Updated by RFC 7606.

[5] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye,
and David Walker. Network configuration synthesis with ab-
stract topologies. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation, pages 437–451, 2017.

[6] Raymond Blair, Arvind Durai, and John Lautmann. Tcl script-
ing for Cisco IOS. Cisco Press, 2010.

[7] Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf,
and Nir Piterman. T2: temporal property verification. In In-
ternational Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 387–393. Springer,
2016.

[8] R. Bush and R. Austein. The Resource Public Key Infras-
tructure (RPKI) to Router Protocol. RFC 6810 (Proposed
Standard), January 2013.

[9] R. Bush, K. Patel, and D. Ward. Extended Message Support
for BGP. RFC 8654 (Proposed Standard), October 2019.

[10] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer
Rexford, Aman Shaikh, and Jacobus van der Merwe. Design
and implementation of a routing control platform. In Pro-
ceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2, pages 15–28.
USENIX Association, 2005.

[11] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer
Rexford, Aman Shaikh, and Jacobus van der Merwe. Design
and implementation of a routing control platform. In Pro-
ceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2, pages 15–28,
2005.

[12] E. Chen. Route Refresh Capability for BGP-4. RFC 2918
(Proposed Standard), September 2000. Updated by RFC 7313.

[13] Enke Chen, Naiming Shen, and Robert Raszuk. Carrying
Geo Coordinates in BGP. Internet-Draft draft-chen-idr-geo-
coordinates-02, Internet Engineering Task Force, October 2016.
Work in Progress.

[14] Edmund Clarke and Daniel Kroening. Ansi-c bounded model
checker user manual. School of Computer Science, Carnegie
Mellon University, 2006.

[15] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Ter-
minator: beyond safety. In International Conference on Com-
puter Aided Verification, pages 415–418. Springer, 2006.

[16] CZ.NIC, z.s.p.o. BIRD internet routing daemon. https://
gitlab.nic.cz/labs/bird.

[17] Guy Davies. Designing and Developing Scalable IP Networks.
John Wiley & Sons, 2004.

[18] Quentin De Coninck, François Michel, Maxime Piraux, Flo-
rentin Rochet, Thomas Given-Wilson, Axel Legay, Olivier
Pereira, and Olivier Bonaventure. Pluginizing QUIC. In Pro-
ceedings of the ACM Special Interest Group on Data Commu-
nication, pages 59–74. 2019.

[19] Dan Decasper, Zubin Dittia, Guru Parulkar, and Bernhard
Plattner. Router plugins: A software architecture for next
generation routers. SIGCOMM Comput. Commun. Rev.,
28(4):229–240, October 1998.

[20] Benoit Donnet and Olivier Bonaventure. On BGP communities.
ACM SIGCOMM Computer Communication Review, 38(2):55–
59, 2008.

[21] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to
SDN: an intellectual history of programmable networks. ACM
SIGCOMM Computer Communication Review, 44(2):87–98,
2014.

[22] Romain Fontugne, Esteban Bautista, Colin Petrie, Yutaro No-
mura, Patrice Abry, Paulo Gonçalves, Kensuke Fukuda, and
Emile Aben. BGP zombies: An analysis of beacons stuck
routes. In International Conference on Passive and Active
Network Measurement, pages 197–209. Springer, 2019.

[23] The Linux Foundation. FRRouting project. https://
frrouting.org/.

[24] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodyt-
ska, Jorge A Navas, Noam Rinetzky, Leonid Ryzhyk, and
Mooly Sagiv. Simple and precise static analysis of untrusted
linux kernel extensions. In Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pages 1069–1084, 2019.

[25] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy
Myers, Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan,
and Hui Zhang. A clean slate 4D approach to network con-
trol and management. SIGCOMM Comput. Commun. Rev.,
35(5):41–54, October 2005.

[26] Brendan Gregg. BPF Performance Tools. Addison-Wesley
Professional, 2019.

[27] Timothy G. Griffin and Joäo Luís Sobrinho. Metarouting.
SIGCOMM Comput. Commun. Rev., 35(4):1–12, August 2005.

[28] Timothy G Griffin and Gordon Wilfong. An analysis of bgp
convergence properties. ACM SIGCOMM Computer Commu-
nication Review, 29(4):277–288, 1999.

[29] Timothy G Griffin and Gordon Wilfong. Analysis of the med
oscillation problem in bgp. In 10th IEEE International Confer-
ence on Network Protocols, 2002. Proceedings., pages 90–99.
IEEE, 2002.

[30] Timothy G Griffin and Gordon Wilfong. On the correctness of
ibgp configuration. ACM SIGCOMM Computer Communica-
tion Review, 32(4):17–29, 2002.

[31] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and
Jorge A Navas. The SeaHorn verification framework. In In-
ternational Conference on Computer Aided Verification, pages
343–361. Springer, 2015.

588 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c
https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c
https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c
https://www.nongnu.org/quagga/
https://www.nongnu.org/quagga/
https://azure.github.io/SONiC/
https://gitlab.nic.cz/labs/bird
https://gitlab.nic.cz/labs/bird
https://frrouting.org/
https://frrouting.org/

[32] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L.
Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon
Zakai, and JF Bastien. Bringing the web up to speed with
webassembly. SIGPLAN Not., 52(6):185–200, June 2017.

[33] Mark Handley, Orion Hodson, and Eddie Kohler. Xorp: An
open platform for network research. SIGCOMM Comput. Com-
mun. Rev., 33(1):53–57, jan 2003.

[34] Mark Handley, Eddie Kohler, Atanu Ghosh, Orion Hodson,
and Pavlin Radoslavov. Designing extensible ip router soft-
ware. In Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation-Volume 2, pages
189–202, 2005.

[35] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Bork-
mann, John Fastabend, Tom Herbert, David Ahern, and David
Miller. The EXpress Data Path: Fast programmable packet pro-
cessing in the operating system kernel. In Proceedings of the
14th International Conference on Emerging Networking EX-
periments and Technologies, CoNEXT ’18, page 54–66, New
York, NY, USA, 2018. Association for Computing Machinery.

[36] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang,
Vijay Gill, Mohan Nanduri, and Roger Wattenhofer. Achieving
high utilization with software-driven wan. In Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM, pages
15–26, 2013.

[37] G. Huston and G. Michaelson. Validation of Route Origina-
tion Using the Resource Certificate Public Key Infrastructure
(PKI) and Route Origin Authorizations (ROAs). RFC 6483
(Informational), February 2012.

[38] Roberto Ierusalimschy. Programming in lua. Roberto Ierusal-
imschy, 2006.

[39] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Jun-
lan Zhou, Min Zhu, et al. B4: Experience with a globally-
deployed software defined WAN. ACM SIGCOMM Computer
Communication Review, 43(4):3–14, 2013.

[40] Junos. Junos PyEZ developer guide. https:
//www.juniper.net/documentation/en_US/
junos-pyez/information-products/pathway-pages/
junos-pyez-developer-guide.html, July 2021.

[41] K. Kompella, B. Kothari, and R. Cherukuri. Layer 2 Virtual Pri-
vate Networks Using BGP for Auto-Discovery and Signaling.
RFC 6624 (Informational), May 2012.

[42] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo,
Christian Esteve Rothenberg, Siamak Azodolmolky, and Steve
Uhlig. Software-defined networking: A comprehensive survey.
Proceedings of the IEEE, 103(1):14–76, 2014.

[43] Daniel Kroening and Michael Tautschnig. CBMC–C bounded
model checker. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages
389–391. Springer, 2014.

[44] P. Lapukhov, A. Premji, and J. Mitchell (Ed.). Use of BGP
for Routing in Large-Scale Data Centers. RFC 7938 (Informa-
tional), August 2016.

[45] Petr Lapukhov and Jeff Tantsura. Equal-Cost Multipath Con-
siderations for BGP. Internet-Draft draft-lapukhov-bgp-ecmp-
considerations-07, Internet Engineering Task Force, June 2021.
Work in Progress.

[46] Ratul Mahajan, David Wetherall, and Tom Anderson. Under-
standing bgp misconfiguration. ACM SIGCOMM Computer
Communication Review, 32(4):3–16, 2002.

[47] Robert Mc Millan. Research experiment disrupts inter-
net, for some. Computerworld, pages August, 28, 2010.
https://www.computerworld.com/article/2515036/
research-experiment-disrupts-internet--for-some.
html.

[48] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and
Jonathan Turner. OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[49] Microsoft Corporation. ebpf for windows. https://github.
com/microsoft/ebpf-for-windows.

[50] Porapat Ongkanchana, Romain Fontugne, Hiroshi Esaki, Job
Snijders, and Emile Aben. Hunting BGP zombies in the wild.
In Proceedings of the Applied Networking Research Workshop,
ANRW ’21, page 1–7, New York, NY, USA, 2021. Association
for Computing Machinery.

[51] K. Patel, E. Chen, and B. Venkatachalapathy. Enhanced Route
Refresh Capability for BGP-4. RFC 7313 (Proposed Standard),
July 2014.

[52] Parveen Patel, Andrew Whitaker, David Wetherall, Jay Lep-
reau, and Tim Stack. Upgrading Transport Protocols using
Untrusted Mobile Code. ACM SIGOPS Operating Systems
Review, 37(5):1–14, 2003.

[53] IO Visor Project. Userspace eBPF VM.
https://github.com/iovisor/ubpf.

[54] Y. Rekhter (Ed.), T. Li (Ed.), and S. Hares (Ed.). A Border
Gateway Protocol 4 (BGP-4). RFC 4271 (Draft Standard),
January 2006.

[55] E. Rosen and Y. Rekhter. BGP/MPLS IP Virtual Private Net-
works (VPNs). RFC 4364 (Proposed Standard), February 2006.
Updated by RFCs 4577, 4684, 5462.

[56] Nicolas Rybowski. Plugin Distribution System. https://
github.com/nrybowski/SPMS.

[57] Nicolas Rybowski, Quentin De Coninck, Tom Rousseaux, Axel
Legay, and Olivier Bonaventure. Implementing the plugin dis-
tribution system. In Proceedings of the SIGCOMM ’21 Poster
and Demo Sessions, page 39–41. Association for Computing
Machinery, New York, NY, USA, 2021.

[58] S. Sangli, E. Chen, R. Fernando, J. Scudder, and Y. Rekhter.
Graceful Restart Mechanism for BGP. RFC 4724 (Proposed
Standard), January 2007. Updated by RFC 8538.

[59] S. Sangli, D. Tappan, and Y. Rekhter. BGP Extended Com-
munities Attribute. RFC 4360 (Proposed Standard), February
2006. Updated by RFCs 7153, 7606.

[60] Rob Shakir, Robert Raszuk, Rob Shakir, and David Freedman.
BGP OPERATIONAL Message . Internet-Draft draft-frs-bgp-
operational-message-00, Internet Engineering Task Force, July
2011. Work in Progress.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 589

https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.computerworld.com/article/2515036/research-experiment-disrupts-internet--for-some.html
https://www.computerworld.com/article/2515036/research-experiment-disrupts-internet--for-some.html
https://www.computerworld.com/article/2515036/research-experiment-disrupts-internet--for-some.html
https://github.com/microsoft/ebpf-for-windows
https://github.com/microsoft/ebpf-for-windows
https://github.com/nrybowski/SPMS
https://github.com/nrybowski/SPMS

[61] M. Shand and S. Bryant. IP Fast Reroute Framework. RFC
5714 (Informational), January 2010.

[62] Rachee Singh, Muqeet Mukhtar, Ashay Krishna, Aniruddha
Parkhi, Jitendra Padhye, and David Maltz. Surviving switch
failures in cloud datacenters. ACM SIGCOMM Computer
Communication Review, 51(2):2–9, 2021.

[63] A Starovoitov. BPF-in-kernel virtual machine. Linux Kernel
Developers’ Netconf, 2015.

[64] Florian Streibelt, Franziska Lichtblau, Robert Beverly, Anja
Feldmann, Cristel Pelsser, Georgios Smaragdakis, and Randy
Bush. BGP communities: Even more worms in the routing can.
In Proceedings of the Internet Measurement Conference 2018,
pages 279–292, 2018.

[65] David L. Tennenhouse and David J. Wetherall. Towards an
active network architecture. SIGCOMM Comput. Commun.
Rev., 37(5):81–94, October 2007.

[66] D.L. Tennenhouse and D.J. Wetherall. Towards an active
network architecture. In Proceedings DARPA Active Networks
Conference and Exposition, pages 2–15, 2002.

[67] The OpenBSD Project. Openbgpd. http://openbgpd.com/.

[68] Viet-Hoang Tran and Olivier Bonaventure. Beyond socket
options: making the linux TCP stack truly extensible. In 2019
IFIP Networking Conference (IFIP Networking), pages 1–9,
2019.

[69] Yves Vanaubel, Jean-Jacques Pansiot, Pascal Mérindol, and
Benoit Donnet. Network fingerprinting: Ttl-based router sig-
natures. In Proceedings of the 2013 conference on Internet
measurement conference, pages 369–376, 2013.

[70] Laurent Vanbever. Customized BGP route selection using
BGP/MPLS VPNs. In Routing Symposium, Cisco Systems,
2009.

[71] Stefano Vissicchio, Luca Cittadini, and Giuseppe Di Battista.
On iBGP routing policies. IEEE/ACM Transactions on Net-
working, 23(1):227–240, 2014.

[72] Matthias Wählisch, Fabian Holler, Thomas C Schmidt, and
Jochen H Schiller. Rtrlib: An open-source library in c for rpki-
based prefix origin validation. In Presented as part of the 6th
Workshop on Cyber Security Experimentation and Test, 2013.

[73] D.J. Wetherall, J.V. Guttag, and D.L. Tennenhouse. Ants: a
toolkit for building and dynamically deploying network proto-
cols. In 1998 IEEE Open Architectures and Network Program-
ming, pages 117–129, 1998.

[74] Jordan Whited. Corebgp - plugging in to bgp. https://
github.com/jwhited/corebgp, July 2020.

[75] Thomas Wirtgen. xBGP api documentation. https:
//github.com/pluginized-protocols/xbgp_plugins/
blob/master/xbgp_compliant_api/xbgp_plugin_api.
h.

[76] Thomas Wirtgen. xBGP bird. https://github.com/
pluginized-protocols/xbgp_bird.

[77] Thomas Wirtgen. xBGP frrouting. https://github.com/
pluginized-protocols/xbgp_frr.

[78] Thomas Wirtgen. xBGP source code. https://github.com/
pluginized-protocols/libxbgp.

[79] Thomas Wirtgen, Quentin De Coninck, Randy Bush, Laurent
Vanbever, and Olivier Bonaventure. xBGP: When you can’t
wait for the ietf and vendors. In Proceedings of the 19th ACM
Workshop on Hot Topics in Networks, HotNets ’20, page 1–7,
New York, NY, USA, 2020. Association for Computing Ma-
chinery.

[80] Thomas Wirtgen, Cyril Dénos, Quentin De Coninck, Mathieu
Jadin, and Olivier Bonaventure. The case for pluginized rout-
ing protocols. In 27th International Conference on Network
Protocols (ICNP), pages 1–12. IEEE, 2019.

[81] Thomas Wirtgen and Tom Rousseaux. xBGP plugins source
code. https://github.com/pluginized-protocols/
xbgp_plugins.

[82] Thomas Wirtgen and Tom Rousseaux. xBGP verifi-
cation. https://github.com/pluginized-protocols/
xbgp_plugins/tree/master/prove_stuffs.

[83] Mathieu Xhonneux, Fabien Duchene, and Olivier Bonaventure.
Leveraging eBPF for programmable network functions with
ipv6 segment routing. In Proceedings of the 14th Interna-
tional Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’18, page 67–72, New York, NY, USA,
2018. Association for Computing Machinery.

A Additional use cases

This section describes some additional use cases for xBGP.

A.1 BGP in data centers
Although BGP was designed as an interdomain routing proto-
col, it is now widely used as an intradomain routing protocol
in data centers [44]. This is mainly because BGP scales better
since it does not rely on flooding in contrast with OSPF or
IS-IS. Another benefit of BGP is its ability to support a wide
range of configuration knobs and policies. However, BGP suf-
fers from several problems that forces the network operators
to tweak their BGP configurations [44]. These tweaks make
BGP configurations complex and more difficult to analyze
and validate [5]. To illustrate this complexity, let us consider
the data center shown in Fig. 6. Routers S1 and S2 are the
Spine routers, L10 . . .L13 the leaf routers, and T 20 . . . the top-
of-the rack routers. In such a data center, there is no direct
connection between the routers at the same level in the hier-
archy. Data center operators usually want to avoid paths that
include a valley (e.g. L10 → S1 → L11 → S2). To achieve
this, they usually run eBGP between routers, but configure
the same AS number on S1 and S2 (even if these routers are
not connected). Similarly, L10 and L11 (resp. L12 and L13)
use the same AS number. With this configuration, when S2
receives a BGP update with an AS-Path through S1, it recog-
nizes its AS number and rejects the route. This automatically
blocks paths that include a valley and also helps to prevent
path hunting.

Unfortunately, using the same AS number on separate
routers can cause problems. First, operators can no longer

590 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://openbgpd.com/
https://github.com/jwhited/corebgp
https://github.com/jwhited/corebgp
https://github.com/pluginized-protocols/xbgp_plugins/blob/master/xbgp_compliant_api/xbgp_plugin_api.h
https://github.com/pluginized-protocols/xbgp_plugins/blob/master/xbgp_compliant_api/xbgp_plugin_api.h
https://github.com/pluginized-protocols/xbgp_plugins/blob/master/xbgp_compliant_api/xbgp_plugin_api.h
https://github.com/pluginized-protocols/xbgp_plugins/blob/master/xbgp_compliant_api/xbgp_plugin_api.h
https://github.com/pluginized-protocols/xbgp_bird
https://github.com/pluginized-protocols/xbgp_bird
https://github.com/pluginized-protocols/xbgp_frr
https://github.com/pluginized-protocols/xbgp_frr
https://github.com/pluginized-protocols/libxbgp
https://github.com/pluginized-protocols/libxbgp
https://github.com/pluginized-protocols/xbgp_plugins
https://github.com/pluginized-protocols/xbgp_plugins
https://github.com/pluginized-protocols/xbgp_plugins/tree/master/prove_stuffs
https://github.com/pluginized-protocols/xbgp_plugins/tree/master/prove_stuffs

L10 L11

T20 T21 T22 T23

L12 L13

S1 S2Level 0

Level 2

Level 1

Figure 6: A simple data center.

look at the AS Paths to troubleshoot routing problems since
different routers use the same AS number. Second, by pro-
hibiting valley-free paths, the operator implicitly agrees to
partition the network when multiple failures occur. Con-
sider again Figure 6. If both links L10− S1 and L13− S2
fail, then the only possible path between L10 and L13 is
L10 → S2 → L12 → S1 → L13. If the same AS number is
used on S1 and S2, this path will never be advertised.

With xBGP, a network operator can use different AS num-
bers for their routers and implement specialized filters on the
spine and leaf routers. For example, if S1 and S2 are both con-
nected to transit providers and can reach the same prefixes,
then L10 should never reach S2 via S1 and L11. However, this
path should remain valid if the final destination is a prefix
attached to below R13.

To implement such a filter, we load a manifest containing
every eBGP session from a router of level i to a router of level
i+1 in a pair having the following form: (ASli,ASl(i+1)). For
each route, the filter checks each consecutive pair of the AS-
Path. If a pair of this manifest is included in the AS-Path, the
filter rejects the route since it is not valley-free.

This xBGP program successfully passes T2 and CBMC
checks. SeaHorn confirms its xBGP compliance relative to its
use of the API functions and the return values.

A.2 Validating BGP Prefix Origins
The interdomain routing system is regularly affected by dis-
ruptions caused by invalid BGP advertisements originated
from ISPs. Examples include the AS7007 incident in 1997,
the announcement of a more specific prefix covering the
YouTube DNS servers by Pakistan Telecom in 2008, or BGP
prefixes leaked by Google in 2017 that disrupted connectivity
in parts of Asia. These problems and many similar ones were
caused by configuration errors.

To illustrate the flexibility of xBGP, we consider a RPKI-
based route origin [37] validation variant. The network op-
erator includes in the configuration data of the manifest all
prefixes it knows the origin. We assume the operator has them-
self validated the ROA signatures before generating the file.
This file is used by the xBGP program each time a BGP route
is received by a peer to check if the origin AS of the route
matches with the one contained in the file.

To evaluate the performance of our prefix origin validation,

we use the same testbed as in Section 4 excepted that we use
eBGP sessions for links L1 and L2. Our DuT does not imple-
ment the RPKI-Rtr protocol [8, 72] but loads configuration
data that considers 75% of the injected prefixes as valid. For
this test, our extension code checks the validity of the origin
of each prefix but does not discard the invalid ones.

Table 2 compares our extension codes running on BIRD
and FRRouting to their native implementations without any
prefix validation. We do not compare our solution with the
RPKI-Rtr protocol since we do not totally implement the
RPKI protocol. We only check the origin of the route. The
difference in execution between the two implementations is
also explained by the difference in the internal representation
of the data structures used.

The termination and absence of C errors were proved with
T2 and CBMC. SeaHorn also confirms that the xBGP program
does not write any data in the memory of the host implemen-
tation and its compliance on the return values.

A.3 Filtering Routes Based on IGP Costs

Since the xBGP API provides access to the data structures
maintained by a BGP implementation, network operators can
leverage it to implement new filters. As a simple example,
consider an ISP having a worldwide presence that wants to
announce to its peers the routes that it learned in the same
continent as the advertising BGP. This policy can be im-
plemented by tagging routes with BGP communities on all
ingress routers and then filtering them on export. While being
frequently used [20], this solution is imperfect. Consider an
ISP having two transatlantic links terminated in London, UK,
and Amsterdam in The Netherlands. This ISP has a strong
presence in Europe and two links connect the UK to other
European countries. If these two links fail, packets between
Germany and London will need to go through Amsterdam, the
USA, and then back to the UK. When such a failure occurs,
the ISP does not want to advertise the routes learned in the
UK to its European peers. With BGP communities, it would
continue to advertise these routes after the failure.

Using the xBGP API, the operator could implement this
policy as follows. First, he configures the IGP cost of the
transatlantic links at a high value, say 1000 to discourage
their utilization. Second, he implements a simple export filter
that checks the IGP cost of the next-hop before announcing
a route. The complete source code of such a filter is shown
in Listing 1. It is attached to the BGP_OUTBOUND_FILTER 4⃝
insertion point. If the IGP cost to the BGP next hop distance
is acceptable, the function calls the special function next().
This informs the VMM to execute the next bytecode attached
to the insertion point. If the extension code is the last to
be executed, the insertion point proposes to fall back to the
native code. To reject the route, the extension code returns the
special value FILTER_REJECT to the host implementation.

For this xBGP program, we used SeaHorn to ensure return

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 591

Flag Enables
PROVERS Verification macros.
PROVERS_ARGS next() call verification macros.
PROVERS_T2 T2 related macros.
PROVERS_CBMC CBMC related macros.
PROVERS_SEAHORN SeaHorn related macros.

Table 4: Verification flags.

Macro Code only provided to
PROOF_INSTS_SEAHORN SeaHorn.
PROOF_INSTS_CBMC CBMC.
PROOF_INSTS_T2 T2.

Table 5: Macro allowing to provide pieces of code for a spe-
cific verifier.

values were meaningful to libxbgp. T2 and CBMC are also
used to check the termination and the absence of any C errors.
We also verify that the xBGP program has only a read-access
to the host implementation.
u i n t 6 4 _ t e x p o r t _ i g p (b p f _ f u l l _ a r g s _ t * a r g s UNUSED) {

s t r u c t u b p f _ n e x t h o p * nex thop = g e t _ n e x t h o p (NULL) ;
s t r u c t u b p f _ p e e r _ i n f o * p e e r = g e t _ p e e r _ i n f o () ;
i f (peer −> p e e r _ t y p e != EBGP_SESSION) {

n e x t () ; / / Do n o t f i l t e r on iBGP s e s s i o n s
} i f (nexthop −> i g p _ m e t r i c <= MAX_METRIC) {

n e x t () ; / / t h e r o u t e i s a c c e p t e d by t h i s f i l t e r ;
} / / n e x t f i l t e r w i l l d e c i d e t o e x p o r t r o u t e
re turn FILTER_REJECT ;

}

Listing 1: An export filter rejecting BGP routes having a too
large IGP nexthop metric.

B Verification macros

This appendix provides in Tables 5, 6, and 7 exhaustive lists
of our custom-made verification macros. Those are enabled
at compile time with different flags described in Table 4.

Macro prefix Attribute name/macro suffix Check
BUF_CHECK_* LENGTH The correct formatting

ORIGIN of the attribute which
ASPATH is stored in a buffer.
NEXTHOP
MED
LOCAL_PREF
ATOMIC_AGGR
AGGREGATOR
COMMUNITY
ORIGINATOR
CLUSTER_LIST
EXTENDED_COMMUNITIES
AS4_PATH
AS4_AGGREGATOR
AIGP
LARGE_COMMUNITY

CHECK_* LENGTH The correct formatting
ORIGIN of the attribute which
ASPATH is stored in a
NEXTHOP path_attribute
MED structure.
LOCAL_PREF
ATOMIC_AGGR
AGGREGATOR
COMMUNITY
ORIGINATOR
CLUSTER_LIST
EXTENDED_COMMUNITIES
AS4_PATH
AS4_AGGREGATOR
AIGP
LARGE_COMMUNITY

CHECK_IN_BOUNDS_* LOCAL_PREF The given attribute
MED lies in the range

specified by the
operator.

CHECK_* ARG The next() function is
ARG_CODE called if the xBGP
OUT program cannot parse
RET_VAL_FILTER the current attribute.

Table 6: BGP attributes verification macros used by SeaHorn.

Macro prefix Target Check
CHECK_* BUFFER The given buffer respects

the specified size.
STRING The given string is null-byte terminated.
COPY The copied buffer is unchanged.

Table 7: Memory check macros used by SeaHorn.

592 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

TACCL: Guiding Collective Algorithm Synthesis using Communication Sketches
Aashaka Shah⇤

University of Texas at Austin
Vijay Chidambaram

University of Texas at Austin and VMware Research

Meghan Cowan
Microsoft Research

Saeed Maleki
Microsoft Research

Madan Musuvathi
Microsoft Research

Todd Mytkowicz
Microsoft Research

Jacob Nelson
Microsoft Research

Olli Saarikivi
Microsoft Research

Rachee Singh
Microsoft and Cornell University

Abstract
Machine learning models are increasingly being trained
across multiple GPUs and servers. In this setting, data is trans-
ferred between GPUs using communication collectives such
as ALLTOALL and ALLREDUCE, which can become a signifi-
cant bottleneck in training large models. Thus, it is important
to use efficient algorithms for collective communication. We
develop TACCL, a tool that enables algorithm designers to
guide a synthesizer into automatically generating algorithms
for a given hardware configuration and communication collec-
tive. TACCL uses a novel communication sketch abstraction
to get crucial information from the designer to significantly
reduce the search space and guide the synthesizer towards
better algorithms. TACCL also uses a novel encoding of the
problem that allows it to scale beyond single-node topologies.
We use TACCL to synthesize algorithms for three collectives
and two hardware topologies: DGX-2 and NDv2. We demon-
strate that the algorithms synthesized by TACCL outperform
the Nvidia Collective Communication Library (NCCL) by up
to 6.7⇥. We also show that TACCL can speed up end-to-end
training of Transformer-XL and BERT models by 11%–2.3⇥
for different batch sizes.

1 Introduction

Machine-learning models have been dramatically increas-
ing in size over the past few years. For example, the lan-
guage model MT-NLG has 530 billion parameters [31] and
the Switch-C mixture-of-experts model has 1.6 trillion pa-
rameters [18]. Model sizes are expected to further grow to
increase model accuracy and perform more complex tasks.
These models are too large for the resources of a single GPU
and have to be distributed across multiple servers, each with
several GPUs, using different parallelism strategies like data,
model, pipeline, and expert parallelism [18, 27, 43] for train-
ing and inference. Intermediate data and parameters of the
model at each GPU are accumulated, shuffled, and transferred
over the network between other GPUs for distributed machine
learning, depending on the type of parallelism strategy used.

⇤Work was partially done during an internship at Microsoft Research.

The inter-GPU communication bottleneck. Recent work
has shown that GPU idle time spent waiting for network com-
munication can be significant in practice [2, 19, 26, 28]. For
instance, BERT [15] and DeepLight [14] spent 11% and 63%
of time, respectively, with GPUs idle on a 100 Gbps Ethernet
cluster of P100 GPUs [2]. Newer generations of faster GPUs
will only make this problem worse. This inefficient use of
GPUs shows that there is significant model performance to
be gained by optimizing inter-GPU communication.
Collective communication primitives and algorithms. Ef-
ficient communication between GPUs is the key to enabling
fast distributed ML training and inference. Modern GPU
systems use message passing interface (MPI)-based collec-
tive communication primitives, such as ALLREDUCE, ALL-
GATHER, and ALLTOALL to perform inter-GPU communica-
tion (Figure 2 in §2). Collective algorithms implement collec-
tive communication primitives. They route data along various
paths in the network and schedule the necessary computation
(e.g., a sum in ALLREDUCE) while optimizing for latency
and bandwidth characteristics of each link in the network. For
example, a common collective algorithm for ALLGATHER
(all GPUs gather data from all GPUs) is a Ring algorithm,
in which all GPUs are logically arranged in a ring and each
GPU receives data from its predecessor in the ring and sends
a previously received data to its successor. Inefficiencies in
collective communication algorithms can cause poor network
utilization, causing GPUs to remain idle until inter-GPU trans-
fers complete [53], and thus reducing the overall efficiency of
distributed training and inference.
Challenges in designing GPU communication algorithms.
Designing algorithms for efficient collective communication
on GPU topologies is challenging. First, these algorithms have
to strike the right balance between latency and bandwidth op-
timality. For instance, the commonly used Ring algorithm for
ALLREDUCE is not efficient for small input sizes as it has a
high latency. Second, GPU communication algorithms have
to manage the heterogeneity of connectivity in the underlying
topology. For instance, GPUs within a machine (also referred
to as a node) are usually connected using fast NVLinks [38]
(up to 300 GBps aggregate bidirectional bandwidth per GPU)
while GPUs across nodes are connected using slow Infini-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 593

Communication Sketch

Profiled Topology

Target Collective

Algorithm
ImplementationRouting Heuristic

Ordering
Contiguity and

Exact Scheduling

Synthesizer

Hyperparameters

Backend

Figure 1: TACCL’s novel synthesizer takes as input a communication sketch, profiled topology, and target collective along
with synthesizer hyperparameters to generate an algorithm for the collective. The synthesized algorithm is implemented on the
hardware cluster using TACCL’s backend.

Band [36] links (12.5-25 GBps per NIC). Moreover, these
topologies vary significantly between vendors. And finally,
searching over the entire space of routing and scheduling algo-
rithms to find optimal ones for communication collectives is
computationally prohibitive. In fact, previous approaches that
synthesize collective communication algorithms are limited
to single-node topologies [9] or 8 GPUs at most [51].
Managing scale for automated algorithm design. Our
goal is to automatically obtain efficient algorithms for a given
hardware configuration and communication collective. We
encode the problem of finding optimal algorithms for com-
munication collectives into a mixed integer linear program
(MILP) with the goal of minimizing the overall execution
time. Unfortunately, this problem is NP-hard; state-of-the-
art commercial solvers like Gurobi [20] can spend several
days exploring the search space without finding an optimal
algorithm. In this work, we propose a human-in-the-loop ap-
proach that incorporates high-level inputs of an algorithm
designer to efficiently synthesize collective communication
algorithms for heterogeneous GPU topologies. We argue that
it is easy for algorithm designers to provide a few simple
inputs that constrain the search space of algorithms which
allows synthesis engines to scale to large GPU topologies.
Communication sketches as user input. It is crucial that
the input required from algorithm designers is simple and
intuitive. For this, we introduce a new abstraction: communi-
cation sketches (§3). Inspired by the technique of program
sketching [47] from program synthesis, in which developers
supply a partially specified program with holes that capture
the high level structure of the desired program, communica-
tion sketches allow algorithm designers to provide high-level
intuitions that constrain the search space of algorithms. A syn-
thesis engine fills in the remaining details such as routing and
scheduling of the final collective communication algorithm,
analogous to how a constraint solver in program synthesis
searches the reduced space to fill the holes.
Our solution. We develop TACCL (Topology Aware Col-
lective Communication Library), a system that synthesizes
communication algorithms for a given topology and a tar-
get collective communication primitive. Algorithm designers
can use communication sketches to guide TACCL into syn-
thesizing efficient algorithms for a large range of hardware

topologies. We develop a novel encoding of the problem in
TACCL’s synthesizer to scale beyond single-node topologies.
Figure 1 shows an overview of TACCL’s design.
Synthesizing algorithms from communication sketches.
TACCL’s synthesis approach builds on the solver based syn-
thesis approach in SCCL [9], where the space of possible algo-
rithms is directly encoded in a satisfiability modulo-theories
(SMT) solver. SCCL does not scale to the sizes of clusters
used by modern machine learning workloads. We present a
novel mixed integer linear programming (MILP) encoding
of the collective algorithm synthesis problem that improves
scalability by first solving a bandwidth-relaxed version of the
problem to decide on routing, followed by ordering heuris-
tics and a second bandwidth-constrained problem to find a
valid scheduling (§5). In addition to improving scalability,
TACCL’s MILP formulation allows modeling of heteroge-
neous links with different per-message overhead characteris-
tics. This overcomes the limitation in SCCL [9] that prevents
it from faithfully targeting distributed GPU clusters.
Results. We use TACCL to synthesize efficient algorithms
for a range of collectives like ALLGATHER, ALLTOALL, and
ALLREDUCE, and for different hardware backends like Azure
NDv2 [6] and Nvidia DGX-2 [35] (§7). We compare TACCL
to the state-of-the-art Nvidia Collective Communication Li-
brary (NCCL). TACCL synthesized an ALLGATHER algo-
rithm for two Nvidia DGX-2 nodes (32 GPUs). This algorithm
is up-to 6.7⇥ faster than NCCL for small-to-moderate input
sizes. For large input sizes on the same hardware, TACCL
synthesized a different ALLGATHER algorithm that nearly
saturates the inter-node bandwidth and is up-to 25% faster
than NCCL. TACCL synthesized an ALLTOALL algorithm
for two Azure NDv2 nodes (16 GPUs) that is up-to 66%
faster than NCCL. Finally, we replaced NCCL with TACCL
using only a two-line code change in PyTorch and found that
TACCL achieves a speed-up of 17% in end-to-end training of
a mixture-of-experts model that uses ALLTOALL and ALLRE-
DUCE, and a speed-up of 11% - 2⇥ in end-to-end training
of a Transformer-XL model distributed over 16 GPUs for
varying batch sizes. TACCL’s codebase is open-source and is
actively in use by researchers at universities and practitioners
at Microsoft for Azure’s GPU virtual machines. 1

1https://github.com/microsoft/taccl

594 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 Background and Motivation

Collective communication in distributed ML workloads.
Multi-GPU ML workloads typically communicate using MPI-
style collectives like ALLGATHER, ALLTOALL, and ALLRE-
DUCE shown in Figure 2. These primitives capture the applica-
tion’s intent behind the communication, thus allowing collec-
tive communication libraries to optimize for specific hardware
configurations. In ALLGATHER, every GPU receives the data
buffers of all other GPUs (left diagram in Figure 2). In ALL-
TOALL, every GPU receives different parts, or chunks, of the
data buffers present on all GPUs. This effectively transposes
the data chunk from buffer index to GPU index as can be
seen in center diagram in Figure 2. In ALLREDUCE, every
GPU ends up with a data buffer that has the results of per-
forming a point-wise computation (e.g., sum in right diagram
in Figure 2) over the same data index of all GPUs.

The parallelism strategy for the distributed ML workload
determines which collective communication primitive is used.
Data parallelism and some tensor model parallelisms [43]
make use of the ALLREDUCE collective to aggregate gradi-
ents and intermediate data respectively from multiple GPUs.
Expert parallelism [18, 27] and common deep learning rec-
ommendation models (DLRM) [32] make use of the ALL-
TOALL collective to shuffle intermediate data between experts
and embedding lookup data between GPUs respectively. DL-
RMs [32] also make use of the ALLGATHER collective and
another REDUCESCATTER collective to perform embedding
lookups from embedding tables sharded over multiple GPUs.
Existing approaches to collective algorithms. Collective
algorithms must be designed considering the target input sizes
and the heterogeneity of the target topology. However, most
collective communication libraries used for distributed ML
today, including the state-of-the-art NCCL, use pre-defined
templates of collective algorithms superimposed onto a tar-
get topology. For example, for collectives like ALLGATHER
and REDUCESCATTER, NCCL identifies rings in the target
topology and uses the Ring algorithm. For n GPUs, this algo-
rithm requires n�1 link transfer steps per data chunk and is
not ideal for smaller data sizes where link transfer latencies
dominate. Further, this algorithm treats the slow inter-node
and fast intra-node links similarly, scheduling equal number
of data transfers across both. The communication is thus bot-
tlenecked on the slower inter-node links, when it could have
benefitted by sending more node-local data (i.e. data of GPUs
local to the node) over the faster intra-node links instead.

For the ALLTOALL collective, NCCL implements the col-
lective algorithm as peer-to-peer data transfers between all
pairs of GPUs. This algorithm is topology-agnostic and often
inefficient. For the ALLREDUCE collective, NCCL chooses
between two algorithms — Double-Binary-Tree [34] and
Ring. This decision is made according to the communica-
tion input size and number of nodes, but might not be most
accurate, as it is based on hardcoded latency and bandwidth

profiling done previously by Nvidia on their machines.

Designing efficient collective algorithms requires careful
analysis of the topology and its performance with different
buffer sizes. Recent work [9, 51] has shown that synthesis
is a promising approach for generating collective algorithms
for different topologies and to achieve bandwidth and latency
optimality. However, scaling these approaches to multi-node
(i.e. multi-machine) distributed GPU topologies has been a
challenge. We measured the synthesis time for ALLGATHER
and ALLTOALL collectives on topologies of two Azure NDv2
nodes and two Nvidia DGX2 nodes (Figure 5) using SCCL [9,
30]. We modified the codebase to include both topologies
and attempted to synthesize the collectives with a 24-hour
time limit set for each synthesis query. Given a 24-hour time
limit, SCCL’s pareto-optimal solver strategy did not finish
synthesis for any combination of collective and topology. The
only algorithm that SCCL could synthesize within the time
limit was a latency optimal algorithm for ALLGATHER on
two NDv2 nodes.

Low-effort inputs from algorithm designers. The search
space of possible algorithms to implement a collective is
intractably large and cannot be explored via brute-force. De-
ciding whether or not to route data chunks from n GPUs over
l links in a topology has O(2n⇥l) combinations. As we scale
to multi-node topologies, n as well as l will also scale, increas-
ing the exponent quadratically. The search space explodes
further if we consider the problem of ordering data sends at
each link along with deciding routing for the data. We ar-
gue that high-level inputs from a human algorithm designer
help reduce the search space to make algorithm synthesis
more tractable. In the most extreme case, the designer would
hand-write the entire algorithm. However, handcrafting data
routing and scheduling over links to implement a collective
is complex and requires many design choices. Instead, de-
signers only provide input in the form of a communication
sketch around which TACCL synthesizes an algorithm. Our
goal is to ensure that providing inputs is a low-effort activ-
ity, but can discard large parts of the search space to achieve
improvements in running-time of the synthesis engine.

Synthesis technique. TACCL synthesizes a collective al-
gorithm by deciding the route that each data chunk in the
collective should take in the topology as well as the ordering
of chunks at every link. Even with communication sketches
which reduces the search space for the synthesizer, this deci-
sion problem is NP-hard and the complexity increases expo-
nentially with number of GPUs. To make the problem more
tractable, we first relax the synthesis problem to solve just
the routing of all data chunks and then heuristically order
chunks sent over the same links according to bandwidth con-
straints. TACCL’s synthesizer design along with communi-
cation sketches help TACCL synthesize efficient collectives
for multi-node topologies.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 595

0 1 2 3

0 1 2 3

(i) AllGather (ii) AllToAll (iii) AllReduce (sum)

= + + +()
0 1 2 3 0 1 2 3 0 1 2 3

Figure 2: The initial and final data buffers on four GPUs participating in different collectives.

3 Communication Sketches

This paper proposes a new form of sketching [47] as an ef-
fective tool for users to communicate interesting aspects of
collective communication algorithms to synthesis backends.
Sketching approaches must strike a balance between allow-
ing users to omit implementation details while still providing
enough direction for the synthesis to scale. In our experience,
routing is an aspect of collective communication that we often
have intuitions about, while reasoning about scheduling tends
to be tedious and better left to synthesis. Moreover, proper-
ties about scheduling are routing dependent since the order
of operations is only relevant when routes intersect, which
makes them harder to express. Meanwhile, interesting proper-
ties about routing are expressible globally, e.g., “never send
over the InfiniBand NIC from this GPU”. Therefore, we ask
the algorithm designer (user) for four low-effort inputs as a
part of the communication sketch:
• Specify the logical topology as a subset of the actual

physical topology that the algorithm will operate on. This
constrains the routes chosen by the communication algo-
rithm and alleviates over-subscription of low-bandwidth
links. For example, the outgoing links of all but one GPU
can be removed in the logical topology to force all data
going to remote GPUs to be relayed through one GPU.

• The logical topology abstracts away switches (e.g.,
NVSwitches, IBSwitches) in the GPU network. Users can
annotate switches in the topology for the synthesizer to
use certain switch-hyperedge policies, enabling it to apply
synthesis policies that help algorithms avoid contention.

• Provide algorithm symmetry based on the symmetries in
the topology and the collective.

• Specify the expected input size of the data, which is used
as a part of the synthesis engine’s built-in cost model.

We explain all parts of the communication sketch and provide
an example sketch written for TACCL in Appendix A.

3.1 Logical Topology
The core of TACCL’s communication sketch is a logical
topology consisting of a subset of the physical topology af-
ter excluding links that the user prefers TACCL to avoid. A
logical topology has as many nodes as the physical topology
and inherits the cost model produced by TACCL’s profiler

for the physical topology. Logical topologies omit NICs and
switches and use switch-hyperedges (Section 3.2), abstracting
them away into links between GPUs. The reason is two-fold:
TACCL runtime is embedded in NCCL runtime and NCCL
has no direct control over NIC or switch use, and it allows
TACCL to reason over a smaller graph thus enhancing scala-
bility. Section 3.2 discusses implications of this abstraction.

Example 3.1 (Sketching inside an NDv2). Consider the phys-
ical topology of an Azure NDv2, given by the union of Fig-
ure 5a and Figure 5b. While NCCL is able to communicate
over both the NVLink and PCIe connections, the bandwidth
offered by the NVLinks is much higher than that of PCIe,
and thus it is reasonable to set the logical topology to just the
NVLink subgraph in Figure 5a.

Example 3.2 (Distributed sketching for NDv2 clusters). It is
essential to use PCIe connectivity for distributed collective
communication with multiple NDv2 systems since the NIC
is connected to GPUs over PCIe (Figure 5b). Due to lack of
GPUDirect RDMA [1] on these systems, all communication
over PCIe must pass through host memory. Therefore, care
must be taken in choosing which links to use, as the PCIe
links between PCIe switches and the CPU are oversubscribed.
Obtaining maximum throughput communication requires a
logical topology that avoids conflicting flows on the oversub-
scribed PCIe links. To build a logical topology for a cluster of
NDv2 systems, a pair of receiver and sender GPUs is selected
for each NDv2 such that the selected GPUs and the NIC are
connected to the same PCIe switch.

3.2 Switch-Hyperedges
In a switched fabric with full bisectional-bandwidth, like the
NVSwitch or IBSwitch fabrics in DGX-2 and NDv2 systems,
nodes can simultaneously communicate at the full bandwidth
of their ingress or egress links. However, as the number of
connections through a switch, originating from a single GPU
or NIC increases, the resulting queuing delays increase the
latency. Figure 4 plots the accumulated ingress/egress band-
width of exchanging varying volume of data (up-to 200-400
MB) for different number of connections over NVSwitches in
a DGX2 node (left) and over IBSwitches among four DGX2
nodes (right). In both cases, the bandwidth drops as the num-
ber of connections increases despite the volume of data re-

596 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Physical topology with a switch.

GPU0 GPU1

GPU2

Switch

GPU0 GPU1

GPU2

Switch

(b) Max. connections strategy.

GPU0 GPU1

GPU2

Switch

(c) Min. connections strategy.

Figure 3: Effects of switch-hyperedge policies.

maining constant. However, for small input sizes, the differ-
ence for different number of connections is not significant.
TACCL’s logical topology does not model switches and does
not capture the effect of number of connections.

TACCL incorporates the effect of multiple connections
using switch-hyperedges in the synthesizer to control the num-
ber of connections between GPUs and switches. A switch-
hyperedge replaces a switch with a set of direct links in the
logical topology for the entire runtime of an algorithm. The
synthesizer still has the freedom to select which direct links
are imposed. To control the number of direct links for each
switch-hyperedge, TACCL provides three policies for a user:
(1) maximize the number of links, (2) minimize the number
of links, and (3) freely choose any number of links. These
policies are enforced by adding the number of Connections
to the objective function (see Appendix B.1 for details).

Example 3.3 (Sketching for congestion). Figure 3a shows
a physical topology of three GPUs connected by a switch,
where each GPU can communicate with any other GPU.

Figure 3b shows a logical topology with a switch-
hyperedge that TACCL may choose with maximizing number
of connections policy. This is desirable for small data sizes
that result in low likelihood of congestion at the switch with
large number of connections as shown in Figure 4.

In Figure 3c TACCL has minimized the number of connec-
tions, effectively resulting in a Ring topology. This is desir-
able for larger data sizes, as restricting the number of logical
connections limits the congestion in the switch (Figure 4).

3.3 Algorithm Symmetry
Many collective communication algorithms are symmetric
in a variety of ways. For example, ring algorithms follow a

ring symmetry or in hierarchical algorithms, the local phases
inside all machines are symmetric to each other. Inspired by
this, TACCL offers a generic way to enforce algorithms to
be symmetric.

The user may enforce a symmetry by supplying an auto-
morphism of the logical topology and collective, i.e., a permu-
tation of the ranks and chunks that maintains the structure of
the topology and the collective pre- and post-conditions, and a
partition of the ranks such that the automorphism maps each
subset of ranks to some subset of the partition. TACCL will
then restrict synthesis to algorithms with the same symmetry
for all chunk transfers.

Example 3.4. Consider a cluster of two NDv2 systems and
the task of synthesizing an ALLGATHER. A hierarchical sym-
metry may be specified with an automorphism composed of a
the permutation [8, . . . ,15,0, . . . ,7] for both chunks and ranks,
and a partition {{0, . . . ,7},{8, . . . ,15}}. Now if an algorithm
performs a send of chunk 0 from rank 0 to rank 1, then it must
also include a send of chunk 8 from rank 8 to rank 9. However,
sends between GPUs in different NDv2s, e.g., between 0 and
8, are not affected by the symmetry.

Since the internal topologies of NDv2 systems are identical,
enforcing this symmetry is reasonable and helps TACCL
scale to larger distributed topologies. Meanwhile, TACCL
still has the freedom to synthesize the top-level algorithm and
connect the systems to each other as it best can.

4 Physical Topologies of GPU systems

ML engineers use a variety of multi-GPU systems to meet
the scaling challenges posed by growing ML models. Before
users can effectively sketch algorithms for TACCL to synthe-
size, they must understand the physical topology of the target
multi-GPU system. However, the performance characteristics
of their heterogeneous links are sparsely documented and for
some cloud offerings [5] even the topology is not given. To
address this, TACCL includes a physical topology profiler
to measure performance characteristics of links (§4.1) and
to disambiguate the topology of some multi-GPU systems
(§4.2). This section also serves as a concrete introduction into
two target systems: Azure NDv2 and Nvidia DGX-2.

4.1 a-b Cost Model and Link Profiling
In the well-known a-b [21] cost model, a is the latency of a
link and b is the inverse of its bandwidth. The cost of sending
a chunk of size s along a link is a+b · s. TACCL’s synthe-
sizer adopts the a-b cost model for simplicity of encoding and
tractability, but TACCL’s communication sketches expose
features that provide users additional control to avoid exces-
sive concurrency and congestion (see Section 3), which are
not modeled by the a-b cost model. a and b are affected by
both the interconnect hardware and the software stack running

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 597

Figure 4: Multi-connection with varying number of GPU neighbors and data volume.

19/LQNV

1RGH�� 1RGH��

(a) NVLink connectivity of a NDv2.

1,&

3&,H�
VZLWFK

(b) PCIe connectivity of a NDv2.

196ZLWFKHV

(c) NVLink connectivity of a DGX-2.

Figure 5: Aspects of physical topologies in various GPU systems.

the collective algorithm (for example software thread fences).
TACCL’s topology profiler measures and infers the a and b
costs of different types of links in a GPU system.

Modern GPU systems, e.g., Azure NDv2 (Figure 5a)
and Nvidia DGX-2 (Figure 5c), have the following types
of interconnects: (1) Peripheral Component Interconnect
Express (PCIe), (2) NVLink [38], (3) Infiniband (IB)
NICs [36]. A PCIe bus connects GPUs to CPUs with lim-
ited shared bandwidth (PCIe Gen3 offers ⇡ 13 GBps). PCIe
connections often form a hierarchy with PCIe switches (Fig-
ure 5b). NVLink [38], however, is a GPU to GPU intra-node
connection with dedicated bandwidth. NVLinks are either
directly connected to other GPUs (NDv2 in Figure 5a) or they
are connected to other GPUs via NVSwitches [39] (DGX2 in
Figure 5c). NVSwitches enable fully-connected GPU-GPU
communication through NVLinks. IB is an inter-node inter-
connect which allows GPUs to communicate with GPUs in
other nodes like in the Azure NDv2 (Figure 5b). IB NICs are
usually connected to PCIe switches and GPUs may communi-
cate directly with the NICs through Remote Direct Memory
Access (RDMA) or indirectly via host memory.

The profiler empirically derives the a and b parameters of
different links in the network by performing peer-to-peer data
transfers between GPUs. We send n chunks one after another
on a link and measure the time to transfer. As per the a�b
cost model, the time to transfer is n · (a+b · s). We then send
n chunks all at once on the link and attribute that time to be
a+n ·b · s. Using several measurements of time to transfer,
we solve for a and b. Table 1 shows the a and b values for

Azure NDv2 Nvidia DGX-2
Link a (us) b (us/MB) a (us) b (us/MB)
NVLink 0.7 46 0.7 8
InfiniBand 1.7 106 1.7 106

Table 1: Experimentally obtained a and b costs for Azure
NDv2 and Nvidia DGX-2 nodes.

NDv2 and DGX-2 systems. Using these values, we expect that
for transfers between two Azure NDv2 nodes over InfiniBand
(IB), a sending two 32 KB chunks together as a single 64 KB
chunk will be 17% faster as compared to sending two 32 KB
chunks one after the other. However, chunks sent together can
only be forwarded once the last chunk is received. Based on
the a-b values, TACCL’s synthesizer determines if and when
to send chunks together on a link.

The a-b cost model causes TACCL’s synthesizer to for-
mulate an MILP formulation as opposed to an LP since an
algorithm has to be expressed in terms of discrete chunks.

4.2 Inferring Multi-GPU Topologies
For Azure NDv2 systems the physical topology was not
fully documented: while the NVLink topology (Figure 5a)
is known to match that of Nvidia DGX1, we did not know
how GPUs and the one 12.5 GBps Infiniband NIC were con-
nected with PCIe. PCIe peer-to-peer communication (and thus
GPUDirect RDMA [1]) is not enabled on these machines,
meaning that all communication happens through buffers in

598 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CPU memory over potentially shared PCIe links. Further, vir-
tualization obscures the true PCIe topology (all 8 GPUs and
the NIC appear directly connected to one CPU) and NUMA
node and GPU IDs are not assigned consistently from VM
to VM. This means that, without additional information, soft-
ware cannot avoid contention over shared PCIe links, creating
interference and high variance in performance.

To determine the PCIe topology, TACCL’s profiler sends
bandwidth and latency probes between the two CPUs, be-
tween pairs of GPUs, and between CPUs and the NIC. It
answers the following questions:
• Which CPU is nearest to the NIC? We answer this using

the latency of loopback operations between the NIC and
each CPU.

• Which GPUs share a PCIe switch? We find all pairs of
GPUs that get low bandwidth in a simultaneous copy to
the CPU, indicating contention.

• Which GPUs share a PCIe switch with the NIC? We find
which GPUs get low GPU to CPU bandwidth while the
CPU is doing a loopback with the NIC. The CPU in this
case is the one that is closer to the NIC.

With this profiling information we were able to deduce the
PCIe topology (Figure 5b). Each CPU has two PCIe switches
connecting to two GPUs each, and the Infiniband NIC is
connected to one of these switches. Additionally, by running
the profiler on every new NDv2 VM TACCL is able to select
one of the NVLink topology’s four automorphisms and set
the CUDA_VISIBLE_DEVICES environment variable such that
the NIC is always placed close to GPU 0.

5 TACCL Synthesizer

Once the user has written a communication sketch, they are
ready to call TACCL’s synthesizer. This section describes
the synthesis process TACCL uses, as well as additional
hyperparameters available to the user.

5.1 Problem Formulation
GPUs participating in a communication collective partition
their initial data into C equal chunks where C is a hyperpa-
rameter selected by the user. TACCL’s synthesizer routes and
schedules these chunks. Given a communication sketch and a
collective, the synthesizer decides chunk transfer schedules
across every link in the network, such that each chunk reaches
its destination GPUs as specified by the collective.

TACCL encodes this problem as a mixed integer linear pro-
gram (MILP) with binary and continuous decision variables.
The encoding has a continuous variable called start_time for
every chunk and GPU to indicate when a chunk is available at
a GPU. A binary variable is_sent for all chunk and link pairs
denotes if a chunk is sent over a link. Another continuous
variable send_time indicates when a chunk is sent over a link.

The encoding has bandwidth and correctness constraints to
ensure the correctness of a chunk transfer schedule. The ob-
jective of the MILP is to minimize time which is a continuous
variable indicating the maximum time among all chunks that
must reach their destination GPUs. Details of these variables
and constraints are in Appendix B.

Additionally, TACCL’s synthesizer also decides if it should
merge some chunks and transfer them contiguously as one
large buffer over a link. Sending n chunks contiguously in one
send instruction over a link requires paying only one a latency
cost whereas sending n chunks one after the other requires
paying n⇥a latency costs. Note that this does not change the
b bandwidth cost. However, sending n chunks separately over
a link enables TACCL to order them such that subsequent
dependent sends from the destination of the link could be
scheduled earlier. TACCL’s synthesizer navigates this trade-
off to minimize the time. TACCL uses this feature only for IB
transfers due to their high a cost and ignores it for NVLinks
due to their lower latency.

MILP problems in general are NP-hard. Luckily, there are
solvers such as Gurobi [20] that apply heuristics to solve
MILPs in a feasible way. However, this requires careful con-
sideration regarding the number of variables and constraints
in the formulation. In TACCL’s formulation, transferring
chunks over a link cannot overlap and an ordering among
them is required. Therefore, potentially a binary decision is
needed for every pair of chunks that may traverse a link. If we
assume there are C chunks for a collective problem, there are
O(C2) such decisions per link. Moreover, as the number of
nodes increase, the number of links increase linearly (larger
topology) and the number of chunks for a collective increases
linearly (ALLGATHER) or even quadratically (ALLTOALL).
This large set of variables and constraints leads to infeasible
solver time and memory requirements.

To solve this problem, we divide the synthesis into three
parts. First, the synthesizer solves an optimization problem
to determine the path used by every chunk without fixing any
ordering among chunks, then it heuristically orders the chunks
over every link, and finally, it solves another optimization
problem to determine chunk contiguity. Complete formal
descriptions of each step are in Appendix B.
Step 1: Routing solves a MILP for finding the path of each
chunk independent of other chunks, allowing chunks sent over
a link to overlap. The objective of this MILP is to minimize
the time, which we constrain to be the maximum of two sets
of variables. (1) for each link, the number of chunks that tra-
verse that link multiplied by the transfer time of a chunk over
that link. (2) for the path of each chunk, the summation of
transfer times of the chunk along every link in the path. Note
that this is only a lower bound on the time since we do not
consider link contention or chunk ordering. TACCL also con-
strains each chunk’s path to be via GPU ranks that are on the
shortest paths from their sources to their destinations using
the links the user decided to include in the logical topology. If

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 599

the communication sketch specifies an algorithm symmetry,
TACCL adds the constraints for the symmetric sends. Replac-
ing switches with switch-hyperedges is also applied in this
step. For each switch-hyperedge, a user-provided policy on
the number of unique connections to/form a switch is applied
(see Section 5.2).

TACCL uses Gurobi [20] to solve this MILP and the so-
lution gives every chunk a start_time for each GPU along
its path. Clearly this step solves chunk routing, but only par-
tially solves the chunk scheduling and contiguity problem
and requires follow-up steps (explained next) to account for
ordering the chunks sent over a link as well as minimizing a
costs of sends. However, by using this technique, TACCL’s
synthesizer is able to reduce binary variables needed from
O(C2) to O(C) per link.
Step 2: Heuristic Ordering decides the chunk ordering sent
on each link based on a heuristic. Note that this step is not an
MILP and solely solved by a greedy algorithm. Regardless
of when each chunk becomes available at a GPU, this step as-
signs a total order on the chunks sent over a link l = (src,dst).
This is decided by two heuristic functions. (1) chunks which
need to traverse the longest path from src to their final GPU,
have higher priority. (2) In case there is tie in (1), chunks
which have traversed the shortest path from their initial GPU
to src, have higher priority. This ordering will be used in Step
3 to assign the final schedules.
Step 3: Contiguity and Exact Scheduling solves an MILP
problem to decide which chunks to send contiguously and
gives the exact schedule. The path to be taken by chunks and
their ordering over links have already been determined by the
previous steps which are added as constraints to this MILP.
The start_time and send_time variables are reassigned in this
step by considering both the a and b costs for each transfer.
In this step, the synthesizer allows either sending one chunk
at a time or sending multiple chunks contiguously. This offers
a trade-off between (1) sending the chunks that are available
at the same time for a link according to the ordering in step
2 so that the subsequent sends can be scheduled earlier or
(2) sending the chunks contiguously in one send instruction
to save the latency cost. The objective of this MILP is to
minimize the total time by enforcing all constraints which in
TACCL solved by Gurobi [20]. The solution gives the exact
schedule for each chunk. The details of these constraints and
their formulation are in Appendix B.

5.2 Synthesizer Hyperparameters
TACCL’s synthesizer has some additional parameters that
control the synthesis process. These are provided by the user
to the synthesizer (see Figure 1) through the communication
sketch. Details of each parameter is described in Appendix A.
Buffer Size. TACCL needs the size of input/output buffers
of a collective for the a-b cost model. In ML workloads the
input/output buffer size is a known fixed value.

Chunk Partitioning. The data buffer at each GPU at the start
of the collective can be partitioned into multiple equal chunks.
Each chunk is considered as an atomic scheduling unit by the
synthesizer and different chunks of the same data buffer can
be routed over different links. The semantics of a collective
forces a minimum number of chunks such as ALLTOALL
which needs at least as many chunks as the number of GPU
for each buffer. On one hand, using the minimum number
of chunks is often times ideal for finding latency-optimal
algorithms. On the other hand, providing a higher number of
chunks allows the synthesizer to better utilize the links that
might be idle otherwise which is better for finding bandwidth-
optimal algorithms.

Switch-Hyperedge Policy. TACCL can enforce policies for
the number of connections established over a set of links
in a switch-hyperedge by counting links utilized for data
transfer and setting this count as a part of the MILP objective.
The uc-max policy will maximize the number of connections,
which performs best for small data sizes, while uc-min will
minimize the number of connections, which works well when
the data size is large and congestion is a concern.

5.3 Synthesizing combining collectives
TACCL synthesizes combining collectives (i.e., collectives
that combine chunks like REDUCESCATTER and ALLRE-
DUCE) by utilizing synthesis of non-combining collectives,
similar to the technique used by SCCL [9]. REDUCESCATTER
can be implemented as an “inverse” of ALLGATHER— a send
from a source GPU in ALLGATHER is instead received and
reduced on the source GPU. However, simply inverting the
sends does not work — a GPU may simultaneous send on
different links in an ALLGATHER, but it cannot reduce all re-
ceives together in the inverse case. We thus order the inverse
sends using heuristic ordering followed by contiguity encod-
ing in order to synthesize REDUCESCATTER. ALLREDUCE
is synthesized directly by concatenating REDUCESCATTER
with an ALLGATHER algorithm.

6 Backend

The synthesizer described above generates an abstract algo-
rithm that specifies the order in which the nodes communicate
the various chunks. The goal of the backend is to implement
this abstract algorithm. To do so, we extend NCCL [37] with
an interpreter which we call TACCL runtime. While any
communication algorithm can be trivially implemented using
NCCL’s point-to-point sends and receives, TACCL runtime
enables us to execute the entire algorithm in a single kernel
launch, eliminating multiple launch overheads. In addition,
by reusing NCCL transport mechanisms, TACCL runtime is
able to support all of NCCL’s communication backends such
as IB, Ethernet, NVLink, and PCIe.

600 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6.1 TACCL runtime
The input to TACCL runtime2 is a TACCL-EF program,
which is an XML format for representing collective algo-
rithms. TACCL-EF programs operate on three buffers: input,
output and scratch. For each buffer, the program specifies the
number of chunks it will be sliced into such that all chunks
are equal size. Every step of the algorithm is expressed in
terms of these chunks.

The program is divided into a set of GPU programs made
up of threadblocks. Each threadblock is made up of a se-
ries of steps that are executed sequentially, with each step
specifying an instruction and operands as indices into the
input/output/scratch buffers. The current instruction set in-
cludes sends, receives (with optional reduction), and local
copies. To simplify the implementation of TACCL runtime,
each threadblock can send to and receive from at most one
GPU. Additionally, threadblocks within a GPU can synchro-
nize by indicating that one step depends on another step,
which will cause the interpreter to wait until the dependency
has completed before executing the dependent step.

The TACCL runtime extends NCCL and it is backward
compatible with its API. Therefore, integrating TACCL run-
time into machine learning frameworks such as PyTorch is a
single line change wherein that change swaps the third-party
NCCL library for TACCL runtime. This allows TACCL to
dynamically swap in collective algorithms generated for any
training/inference workload using torch.distributed.

6.2 Lowering to TACCL runtime
To target TACCL-EF, abstract algorithms are lowered to the
executable format. The sets of sends operating on abstract
chunks that comprise the steps of the algorithm are trans-
formed into pairs of send and receive operations operating
on concrete buffer indices. Furthermore, these operations are
placed sequentially into threadblocks and any necessary de-
pendencies recorded between them.
Buffer allocation. Input and output buffers are preallocated
by the user and passed to the collective. Scratch buffers are
allocated by the TACCL runtime per TACCL-EF. Chunks
are indices in the input, output and scratch buffers. For chunks
that are common for both the input and the output buffers (e.g.
as in ALLGATHER) a local copy from input to the output
buffer is performed at the end.
Instruction generation. The operations of the abstract algo-
rithm are split into two instructions for the sender and receiver
GPU, and chunks are translated into buffer references and in-
dices according to the buffer allocation.
Dependency insertion. TACCL transforms a synthesized
algorithm into the asynchronous execution model of TACCL-
EF and dependencies for each buffer index are inserted to

2Link to code: https://github.com/microsoft/msccl

ensure that the data dependencies present in the abstract algo-
rithm are honored.
Threadblock allocation. Instructions are grouped such that
all of them are either sending to at most one GPU and/or re-
ceiving from at most another GPU (possibly different). Order
of the instructions inside a group should follow the order of
the abstract algorithm. TACCL allocates a threadblock for
each group of instructions.
Instances. NCCL and consequently TACCL runtime cannot
saturate the bandwidth of a link in a topology using a single
threadblock. Thus, TACCL generates multiple instances of
the algorithm to maximize the performance. This is done by
subdividing each chunk into n subchunks that follow the same
path as the parent chunk. All groups of instructions and their
threadblocks are duplicated n times and executed in parallel.
§7.2 explores the performance implications of choices of n.

7 Evaluation

We evaluate algorithms obtained with TACCL for ALL-
GATHER, ALLTOALL, and ALLREDUCE collectives on a clus-
ter of 32 GPUs comprised of two Nvidia DGX-2 nodes or up-
to four Azure NDv2 nodes. To compare performances, algo-
rithm bandwidth [33] measurement is used which is calculated
by input buffer size divided by execution time. We synthesize
TACCL algorithms by exploring different communication
sketches and compare them against the popular Nvidia Collec-
tive Communication Library (NCCL) (v.2.8.4-1). This section
analyzes how different communication sketches impact the
performance of the algorithms synthesized by TACCL. In par-
ticular, we perform ablation studies by varying the inter-node
connections in the logical topology, changing synthesizer hy-
perparameters, and changing the number of instances used
when lowering to TACCL-EF. To evaluate how TACCL’s
speedups translate to end-to-end performance, we use algo-
rithms generated by TACCL in two large language models,
Transformer-XL and BERT. Finally, we discuss the synthesis
time required by TACCL to generate these algorithms.

We believe our focus on up to 32 GPUs covers a large
section of important use cases: in an internal cluster of DGX-
2 nodes at Microsoft, the sum of GPUs in jobs of at most 32
was 93.7% of all jobs in the second half of 2021.

7.1 Standalone Experiments
All our communication sketches for DGX-2 and NDv2 use a
hierarchical symmetry like the one in Example 3.4.

7.1.1 ALLGATHER

ALLGATHER on DGX-2. Figure 6(i) shows the algorithm
bandwidth for TACCL’s synthesized algorithms on two DGX-
2 nodes for each output buffer size and plots it against that of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 601

Figure 6: ALLGATHER comparisons of NCCL to TACCL’s
best algorithm at each buffer size.

NCCL. We show the speedup of TACCL’s algorithms over
NCCL on the right Y-axis of the plot. We used two different
sketches for this topology which will be explained next.

A DGX-2 node has 16 V100 GPUs (Figure 5c) where each
pair of GPUs share a PCIe switch with a NIC. This makes
it natural to assign one GPU in a pair to be a receiver and
the other to be a sender by eliminating outgoing and incom-
ing links, respectively, in the logical topology. We design a
sketch (dgx2-sk-1) that uses this logical topology, sets chunk
size to 2MB, uses two chunk partitions for each buffer, and
the sets switch-hyperedge policy to uc-min. With this sketch,
TACCL synthesizes an ALLGATHER algorithm for two DGX-
2 nodes. This algorithm almost saturates the inter-node band-
width during the entire run of the algorithm and provides a
20%�25% speedup over NCCL for large buffer sizes in the
256MB - 1GB range.

Next, we design a sketch (dgx2-sk-2) for smaller sizes.
This sketch allows both GPUs in a pair to utilize the shared
NIC. However, local GPU i on each node is only allowed to
send/receive to/from local GPU i on the other node. Since
the IB is shared, we double the b cost for each IB transfer
to 2 ⇤bIB cost. In this sketch, chunk size is set to 1KB and
the switch-hyperedge policy is uc-max. Using this sketch
TACCL synthesizes an algorithm that is 4.9⇥�6.7⇥ faster
than NCCL in the 1KB - 1MB range, and 10%�3.8⇥ faster
than NCCL in the 2MB - 64MB range. On inspecting this al-
gorithm, we found that TACCL’s synthesized algorithm over-
laps inter-node sends with intra-node all-pair ALLGATHER
of node-local data chunks followed by an intra-node all-pair
ALLGATHER of the node-external chunks received over IB.

Figure 6(i) shows the algorithm bandwidth and the speedup
over NCCL baseline for the best of these two sketches for
each output buffer size.

Figure 7: ALLTOALL comparisons of NCCL to TACCL’s
best algorithm at each buffer size.

ALLGATHER on NDv2. The sketch we used, ndv2-sk-1, uses
the logical topology discussed in Example 3.2, in which a
sender and a receiver GPU were dedicated such that they are
on the same PCIe switch as the NIC. We use a single instance
when lowering algorithms into TACCL-EF for data sizes
1MB and below, and use 8 instances for larger data sizes.
Figure 6(ii) compares the synthesized algorithms to NCCL
on two Azure NDv2 nodes. TACCL’s synthesized algorithms
are 12%� 35% faster than NCCL for buffer sizes of 1KB
- 1MB, and 61%� 3.4⇥ faster than NCCL for sizes larger
than 1MB. These algorithms better saturate the inter-node
bandwidth thanks to the dedicated send/receiver GPUs.

We similarly synthesize ALLGATHER algorithms for four
NDv2 nodes and present the results in Figure 11(i) in Ap-
pendix C. These algorithms are 10%�2.2⇥ faster than NCCL
depending on buffer size.

7.1.2 ALLTOALL

ALLTOALL on DGX-2. We explore the synthesis of ALL-
TOALL algorithms by reusing the dgx2-sk-2 communication
sketch designed in the previous section. Figure 7(i) compares
the resulting algorithm on two DGX-2 nodes. The synthe-
sized algorithm using this sketch performs up-to 15% faster
than NCCL for batch sizes of 2MB and larger. For this sketch,
TACCL’s synthesizer coalesces chunks sent in inter-node
transfer in this algorithm, which reduces the latency of trans-
fers over IB. TACCL also uses a communication sketch with
chunk size set as 1KB and a logical topology where GPUs
have links to all other GPUs connected via the NIC (dgx2-sk-
3). This algorithm is up-to 55% faster than NCCL for small
buffer sizes ranging from 1KB to 16KB.

602 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 8: ALLREDUCE comparisons of NCCL to TACCL’s
best algorithm at each buffer size.

ALLTOALL on NDv2. Figure 7(ii) shows a comparison of
TACCL’s best algorithms for ALLTOALL on two Azure NDv2
nodes against NCCL. We reuse the communication sketch
ndv2-sk-1 and set the chunk size to 1MB. The generated
algorithms run 53%�66% faster than NCCL for buffer sizes
between 16MB - 1GB We explore another sketch (ndv2-sk-2)
with a logical topology in which all GPUs in a node are fully-
connected to all the GPUs in the other node and set chunk
size as 1KB. The algorithm generated by TACCL using this
sketch performs up-to 12% faster than NCCL for buffer sizes
from 1KB to 128KB.

For four NDv2 nodes, TACCL’s synthesized algorithms
uses communication sketch ndv2-sk-1 and they are up-to 46%
faster than NCCL for buffer size greater than 1MB, as shown
in Figure 11(ii) in Appendix C.

7.1.3 ALLREDUCE

ALLREDUCE on DGX-2. As discussed in Section 5.3,
TACCL composes REDUCESCATTER with ALLGATHER to
implement ALLREDUCE and an algorithm for REDUCESCAT-
TER can be constructed by inverting an ALLGATHER algo-
rithm. Figure 8(i) shows the performance of TACCL al-
gorithms on two DGX-2 nodes. The ALLREDUCE synthe-
sized from the ALLGATHER using dgx2-sk-2 is 49%�6.4⇥
faster than NCCL for buffer sizes ranging from 1KB - 4MB.
TACCL’s generated algorithms by using other communica-
tion sketches like dgx2-sk-1 are 2%�37% faster than NCCL
for buffer sizes ranging from 16MB - 256MB. For buffer
sizes of 512MB and greater, our algorithms are at most 9%
slower than NCCL. This is because NCCL uses the more
optimized fused communication instructions (such as receive-
reduce-copy-send) in its ALLREDUCE communication which

are unavailable in TACCL’s lowering. We leave these such
further optimizations for future work.
ALLREDUCE on NDv2. These algorithms are based on the
ALLGATHER synthesized from the ndv2-sk-1 sketch and use
two versions with 1 and 8 instances. Figure 8(ii) compares
them to NCCL on two NDv2 nodes. The single instance
TACCL algorithm outperforms NCCL’s ALLREDUCE by up
to 28% for buffer sizes of up to 1MB, while the 8 instance
algorithm outperforms NCCL by 28%�2.7⇥ for larger sizes.

On 4 NDv2 nodes, as shown in Figure 11(iii) in Ap-
pendix C, the TACCL algorithms are up to 34% faster than
NCCL for small buffer sizes and 1.9⇥�2.1⇥ faster than
NCCL for larger buffer sizes.

7.2 Impact of Varying Synthesizer Inputs
In this section, we explore modifications to communication
sketches, as well as the synthesizer hyperparameters and the
instances for the lowering, in order to understand their impact
on the performance of the synthesized algorithms. Our aim is
to demonstrate that the controls offered by TACCL have in-
tuitive effects on the resulting algorithms, which is necessary
for effectively communicating user intuition to TACCL.

We present our analysis for the ALLGATHER collective on
two Nvidia DGX-2 nodes. Unless mentioned otherwise, we
use the following communication sketch as the baseline: same
logical topology as dgx2-sk-1, chunk size set to 1MB, data
partitioning set to 1, and the switch-hyperedge policy set to
uc-max.
Changing logical topology. We create a logical topology
with a dedicated sender and receiver GPU similar to dgx-sk-
1 except we allow a sender to be connected to n different
receivers in the other node. Figure 9a shows the algorithm
bandwidth of ALLGATHER obtained by varying n, the number
of IB connections per GPU, for a fixed chunk size of 1KB,
32KB, and 1MB. For a 1KB chunk size, we found the algo-
rithm that uses 8 IB connections per NIC performs better
than algorithms using fewer connections. As the chunk size
increases to 32KB and 1MB, the optimal number of IB con-
nections per NIC reduces to 4 and 1, respectively. The benefits
of link sharing shrink as the chunk size increases and b-cost
starts dominating over the a-cost.
Changing transfer cost using chunk size. We analyze the
sensitivity of TACCL’s synthesizer to the data size provided
in the communication sketch when its algorithms are applied
on a communication using a different data size. Figure 9b
shows the performance of ALLGATHER algorithm for three
different chunk sizes (1KB, 32KB, and 1MB). Algorithms
generally perform well for a range of data sizes close to what
they have been synthesized for. We recommend trying a small
set of nearby sizes to ensure the best performance.
Changing data partitioning. Figure 9c shows the algorithm
bandwidth of algorithms generated by partitioning data on

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 603

(a) Logical topology (b) Chunk size

(c) Data partition (d) Switch-hyperedge strategies (e) Runtime instances

Figure 9: Algorithm bandwidth of ALLGATHER algorithms on DGX-2 by varying different inputs to TACCL

each GPU into a single or two chunks. We set the switch-
hyperedge policy to uc-min and fix number of instances to
8. At a large buffer size of 1GB, the algorithm generated for
two data chunks utilizes bandwidth better as compared to the
algorithm generated for a single data chunk per GPU.

Changing switch-hyperedge policy. Figure 9d shows the
algorithm bandwidth for algorithms generated and evaluated
for 1KB, 32KB, and 1MB chunks. The algorithm bandwidth is
displayed in log-scale. We vary the switch-hyperedge policy
between uc-max and uc-min. For smaller buffer sizes, the
uc-max configuration performs better than uc-min, whereas
for larger buffer sizes, uc-min performs better than uc-max.

Changing number of instances. Figure 9e shows algorithm
bandwidth with instances ranging from 1 to 8. The switch-
hyperedge policy for these algorithms is set to uc-min. In-
creasing the number of instances improves bandwidth utiliza-
tion — multiple threadblocks seem to be needed to keep the
six NVLinks in a V100 busy. However, a larger number of
threadblocks also increases latency, which we suspect is due
to unfavorable scheduling of synchronization related mem-
ory operations onto the NVLinks at the start of each send.
Since latency cost dominates for small buffer sizes, using a
large number of instances only increases the latency cost. As
the buffer size increases, the bandwidth improvements due to
more instances become predominant. Since switch-hyperedge
policy and number of instances have a similar relation with
chunk sizes, we always run uc-max algorithms with a single
instance and uc-min algorithms with 8 instances.

(a) Transformer-XL

(b) BERT

Figure 10: Training throughput using TACCL’s collective
algorithms on Transformer-XL and BERT compared against
NCCL on 2 and 4 Azure NDv2 nodes. Speedup over NCCL
is mentioned on top of the bars.

7.3 End-to-End Training.

We evaluate TACCL on distributed training of two large lan-
guage models, Transformer-XL [4, 13] and BERT [3, 15], on
two (and four) Azure NDv2 nodes, i.e. 16 (and 32) GPUs.
Transformer-XL uses data parallelism and whereas BERT
uses model parallelism. The typical transfer sizes for ALLRE-
DUCE in Transformer-XL is in the 20 - 40MB range, and
for BERT it is about 2MB. Both models communicate with
torch.distributed and, as explained in Section 6, using
TACCL algorithms in them is quite straightforward.

We lower the algorithm synthesized by the synthesizer

604 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

AllGather
Sketch Time(s)

dgx2-sk-1 35.8
dgx2-sk-2 11.3
ndv2-sk-1 2.6

AlltoAll
Sketch Time(s)

dgx2-sk-2 92.5
ndv2-sk-1 1809.8
ndv2-sk-2 8.4

AllReduce
Sketch Time(s)

dgx2-sk-1 6.1
dgx2-sk-2 127.8
ndv2-sk-1 0.3

Table 2: Synthesis time for TACCL algorithms for different
collectives using different communication sketches.

into TACCL-EF with 1 and 8 instances, and show the per-
formance of both against NCCL. Figure 10a and Figure 10b
show the training throughput obtained by using TACCL’s
collective algorithms for communication instead of NCCL for
Transformer-XL and BERT respectively for different batch
sizes. TACCL speeds up training of Transformer-XL by
11%� 1.94⇥ on 2 nodes and by 2%� 1.44⇥ on 4 nodes.
The speedup for BERT is 12% � 2.36⇥ on 2 nodes and
7%�1.74⇥ on 4 nodes. Depending on the memory available
per GPU and on how the batch size affects model accuracy,
any of these batch sizes might be chosen for use in practice.

We also use algorithms synthesized by TACCL for ALL-
TOALL and ALLREDUCE collectives for training an inter-
nal Microsoft’s mixture-of-experts workload on two NDv2
nodes. The ALLTOALL and ALLREDUCE sizes required for
this model are ⇡ 6MB and ⇡ 256MB, respectively. TACCL
improves the end-to-end throughput of this model by 17%.

7.4 Synthesis Time
Table 2 shows the total time it takes for TACCL to synthe-
size algorithms for different collectives using some of the
communication sketches mentioned in Section 7.1. In most
cases synthesis takes from seconds to a few minutes, making
it amenable to a human-in-the-loop approach. When synthe-
sizing an ALLTOALL collective using some communication
sketches, TACCL’s contiguity encoding may take more time
in proving the optimality of a feasible solution. We put a time
limit of 30 minutes on the contiguity encoding in these cases.
The contiguity encoding for sketch ndv2-sk-1 reaches this
timeout, but a feasible solution was already found in 4min
14s. We have also been able to synthesize an ALLGATHER
for 80 GPUs (10 NDv2 nodes) in under 8 minutes.

8 Related Work

The MPI standard provides a set of collective communication
algorithms that enable efficient distributed computations of
interconnected nodes [16]. The HPC community has focused
on the efficient implementation of these MPI collective al-
gorithms [40, 50] and demonstrated how to build optimized
algorithms for specific interconnects, like mesh, hypercube, or
fat-tree [7,8,41]. In contrast to TACCL, these prior works as-
sume homogeneous interconnects and are often only focused
on bandwidth optimality. Hybrid algorithms [7, 10] combine

bandwidth- and latency-optimal algorithms based on input
sizes, but only qfor mesh networks.

NCCL [37] is a GPU implementation of a subset of the
standard MPI collectives, optimized for NVLINK and Infini-
band interconnects. While NCCL uses the topology of GPU
connections and NIC placement along with buffer size to de-
cide between two main types of communication algorithms —
Ring and Tree, it is agnostic to the exact performance profile
of the links, and thus (as we show) is often multiple times
slower than TACCL’s topology aware collectives.

Recent works like SCCL [9], Blink [51], and Plink [29] spe-
cialize algorithms for the underlying topology. SCCL solves
an integer programming encoding based on discrete-time val-
ues in the form of steps and rounds of the algorithm in order to
achieve the pareto-frontier of latency- and bandwidth-optimal
algorithms. SCCL is able to synthesize a novel pareto-optimal
ALLGATHER algorithm for an Nvidia DGX1 node, but its re-
strictive formulation constrains it to only only synthesize
algorithms for single-node topologies. TACCL on the other
hand synthesizes collective algorithms for multi-node topolo-
gies. Blink uses a heuristic spanning-tree packing algorithm
to maximize bandwidth utilization within a node and a hier-
archical approach across. Blink has good performance over
NCCL in the case when NCCL cannot create rings spanning
all GPUs inside a node. TACCL, on the other hand, outper-
forms NCCL when using the entire node of GPUs. Plink
constructs a logical topology based on bandwidth and latency
probes of the physical topology to avoid oversubscribed and
congested links and searches for a reasonable clustering of
nodes for a two-level hierarchical reduction strategy. Plink
builds that hierarchical reduction from known primitives and
does not search over the space of possible algorithms.

There are also hierarchical approaches to implement col-
lectives [12, 29, 42, 51]. For example, Horovod [42] imple-
ments an ALLREDUCE by a local ReduceScatter, a global
ALLREDUCE, and then a local ALLGATHER. These meth-
ods do not search over possible algorithms, but instead pick
from a known set of decompositions. Concurrent to our work,
Ningning et al. [52] use syntax guided synthesis to combine
base MPI primitives among a subset of nodes to hierarchi-
cally generate larger MPI primitives for the entire network. In
contrast, TACCL uses a fine grained approach for algorithm
synthesis while using communication sketches for scalabil-
ity. Combining these two complementary approaches is an
interesting opportunity for future work.

Program sketching [24, 47, 49] is a popular technique that
has been applied to a variety of problems from synthesizing
stencil computations [48], converting hand drawings to im-
ages [17] to social media recommendations [11]. Our work
builds on this body of work to use sketching to effectively
search a large space of communication algorithms.

Lastly, network flow problems have used linear program-
ming to solve routing and scheduling problems for traffic
engineering [22, 23, 25,44,46] and topology engineering [45].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 605

These techniques, however, cannot be used for generating col-
lective algorithms since communication collectives do not fol-
low all flow properties. Non-source GPUs in a collective can
send the same chunk over different links in parallel while hav-
ing received that chunk only once, which violates an important
flow-conservation property used extensively in network flow
problem literature. TACCL on the other hand makes use of
communication sketches and an encoding relaxation tech-
nique to solve a continuous-time integer linear programming
that faithfully models communication collectives.

9 Conclusion and Future Work

TACCL is a topology and input-size aware collective commu-
nication library for multi-node distributed machine learning
training and inference. TACCL uses user-provided commu-
nication sketches to guide synthesis of collective algorithms.
Using a three-step technique of relaxed routing, heuristic or-
dering, and contiguity and exact scheduling, TACCL gener-
ates efficient collectives for multi-node topologies. We also
make some brief observations about TACCL below:

Scalability. TACCL can synthesize algorithms for large-
scale nodes - we have been able to synthesize an ALLGATHER
algorithm for 8 Azure NDv2 nodes using TACCL in under
5 minutes. As compared to NCCL, this algorithm has up-
to 1.7⇥ higher algorithm bandwidth for different data sizes.
We also evaluated TACCL’s synthesis for 8 Nvidia DGX-2
nodes (128 GPUs) and found a solution in around 11 hours.
While TACCL scales to multi-node topologies, the synthesis
technique is still based on solving an NP-hard problem that
grows exponentially with a quadratic power with scale. As
a future work, we would like to scale TACCL further by
hierarchically composing synthesized algorithms.

Generality across different topologies. Apart from hier-
archical topologies like Nvidia DGX-2 and Azure NDv2,
TACCL can also be applied to non-hierarchical topologies
like a 2D-Torus. We were able to synthesize an ALLGATHER
algorithm for a 2D 6⇥8 Torus using TACCL. We made use of
the symmetry attribute in communication sketches to explore
synthesis for this topology. However, the amount of explo-
ration we can do with different communication sketches may
be more limited in these cases than for hierarchical topologies.

Exploring communication sketches. Communication
sketches have proven effective in narrowing the search space
of algorithms. Interestingly, different communication sketches
can optimize different ranges of input sizes. Communication
sketches reflect the intuition of developers, and by intelli-
gently exploring the space of communication sketches we can
obtain a range of collective algorithms with different perfor-
mance characteristics. Learning an automated controller for
exploring communication sketches is an interesting direction
for collective algorithm synthesis in the future.

To conclude, TACCL uses the abstraction of communica-
tion sketches and a novel problem formulation to generate
efficient algorithms for collectives like ALLGATHER, ALL-
TOALL, and ALLREDUCE. The algorithms thus generated are
up-to 6.7⇥ faster than the state-of-the-art NCCL and result
in 11%�2.4⇥ faster end-to-end training time.

Acknowledgements

We would like to thank our shepherd, Aurojit Panda, the
anonymous reviewers at NSDI’23, and the members of the
Systems and Storage Lab at UT Austin for their insightful
comments and suggestions. This work was partially sup-
ported by NSF CAREER #1751277, the UT Austin-Portugal
BigHPC project (POCI-01-0247-FEDER-045924), and dona-
tions from VMware.

References

[1] GPUDirect RDMA, 2021.
https://developer.nvidia.com/gpudirect.

[2] Scaling distributed machine learning with In-Network
aggregation. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages
785–808. USENIX Association, April 2021.

[3] Megatron-LM. https://github.com/NVIDIA/
Megatron-LM, 2022.

[4] Transformer-XL. https://github.com/NVIDIA/
DeepLearningExamples/tree/master/PyTorch/
LanguageModeling/Transformer-XL, 2022.

[5] Azure ND-series, 2021. https://docs.microsoft.com/en-
us/azure/virtual-machines/nd-series.

[6] Azure NDv2-series, 2021.
https://docs.microsoft.com/en-us/azure/virtual-
machines/ndv2-series.

[7] Michael Barnett, Rick Littlefield, David G Payne, and
Robert van de Geijn. Global combine on mesh archi-
tectures with wormhole routing. In [1993] Proceedings
Seventh International Parallel Processing Symposium,
pages 156–162. IEEE, 1993.

[8] Shahid H Bokhari and Harry Berryman. Complete ex-
change on a circuit switched mesh. In 1992 Proceed-
ings Scalable High Performance Computing Conference,
pages 300–301. IEEE Computer Society, 1992.

[9] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal
Musuvathi, Todd Mytkowicz, Jacob Nelson, and Olli
Saarikivi. Synthesizing optimal collective algorithms.
In Proceedings of the 26th ACM SIGPLAN Symposium

606 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

on Principles and Practice of Parallel Programming,
pages 62–75, 2021.

[10] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and
Robert Van De Geijn. Collective communication: the-
ory, practice, and experience. Concurrency and Com-
putation: Practice and Experience, 19(13):1749–1783,
2007.

[11] Alvin Cheung, Armando Solar-Lezama, and Samuel
Madden. Using program synthesis for social recom-
mendations. In Proceedings of the 21st ACM Inter-
national Conference on Information and Knowledge
Management, CIKM ’12, page 1732–1736, New York,
NY, USA, 2012. Association for Computing Machinery.

[12] Minsik Cho, Ulrich Finkler, Mauricio Serrano, David
Kung, and Hillery Hunter. Blueconnect: Decomposing
all-reduce for deep learning on heterogeneous network
hierarchy. IBM Journal of Research and Development,
63(6):1:1–1:11, 2019.

[13] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell,
Quoc V Le, and Ruslan Salakhutdinov. Transformer-
xl: Attentive language models beyond a fixed-length
context. arXiv preprint arXiv:1901.02860, 2019.

[14] Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong,
Aaron Flores, and Guang Lin. Deeplight: Deep
lightweight feature interactions for accelerating ctr pre-
dictions in ad serving. In Proceedings of the 14th ACM
International Conference on Web Search and Data Min-
ing, WSDM ’21, page 922–930, New York, NY, USA,
2021. Association for Computing Machinery.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

[16] Jack Dongarra et al. MPI: A message-passing interface
standard version 3.0. High Performance Computing
Center Stuttgart (HLRS), 2(5):32, 2013.

[17] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama,
and Josh Tenenbaum. Learning to infer graphics pro-
grams from hand-drawn images. Advances in neural
information processing systems, 31, 2018.

[18] William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with
simple and efficient sparsity. CoRR, abs/2101.03961,
2021.

[19] Nadeen Gebara, Manya Ghobadi, and Paolo Costa. In-
network aggregation for shared machine learning clus-
ters. In A. Smola, A. Dimakis, and I. Stoica, editors, Pro-
ceedings of Machine Learning and Systems, volume 3,
pages 829–844, 2021.

[20] Gurobi Optimization, LLC. Gurobi Optimizer Refer-
ence Manual, 2022.

[21] Roger W. Hockney. The communication challenge for
mpp: Intel paragon and meiko cs-2. Parallel Computing,
20(3):389–398, 1994.

[22] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
wan. SIGCOMM Comput. Commun. Rev., 43(4):15–26,
August 2013.

[23] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. B4: Expe-
rience with a globally-deployed software defined wan.
SIGCOMM Comput. Commun. Rev., 43(4):3–14, August
2013.

[24] Jinseong Jeon, Xiaokang Qiu, Jeffrey S Foster, and Ar-
mando Solar-Lezama. Jsketch: sketching for java. In
Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, pages 934–937, 2015.

[25] Srikanth Kandula, Ishai Menache, Roy Schwartz, and
Spandana Raj Babbula. Calendaring for wide area net-
works. In SIGCOMM’14.

[26] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael Swift.
ATP: In-network aggregation for multi-tenant learning.
In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 741–761.
USENIX Association, April 2021.

[27] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. CoRR, abs/2006.16668, 2020.

[28] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee,
and Arvind Krishnamurthy. Parameter hub: A rack-scale
parameter server for distributed deep neural network
training. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC ’18, page 41–54, New York,
NY, USA, 2018. Association for Computing Machinery.

[29] Liang Luo, Peter West, Jacob Nelson, Arvind Krishna-
murthy, and Luis Ceze. Plink: Discovering and exploit-
ing locality for accelerated distributed training on the
public cloud. In Proceedings of Machine Learning and
Systems 2020, pages 82–97. 2020.

[30] Microsoft SCCL, 2021.
https://github.com/microsoft/sccl.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 607

[31] Using deepspeed and megatron to train megatron-turing
nlg 530b, the world’s largest and most powerful genera-
tive language model. https://www.microsoft.com/en-
us/research/blog/using-deepspeed-and-megatron-to-
train-megatron-turing-nlg-530b-the-worlds-largest-
and-most-powerful-generative-language-model/.
Accessed October 2021.

[32] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, et al. Software-
hardware co-design for fast and scalable training of deep
learning recommendation models. In Proceedings of
the 49th Annual International Symposium on Computer
Architecture, pages 993–1011, 2022.

[33] NCCL Tests, 2021. https://github.com/NVIDIA/nccl-
tests.

[34] NCCL Tree Algorithm, 2019.
https://developer.nvidia.com/blog/massively-scale-
deep-learning-training-nccl-2-4.

[35] Nvidia DGX Systems, 2021.
https://www.nvidia.com/en-us/data-center/dgx-
systems/.

[36] Nvidia InfiniBand, 2021. https://www.nvidia.com/en-
us/networking/infiniband-adapters/.

[37] Nvidia NCCL, 2021. https://github.com/nvidia/nccl.

[38] Nvidia NVLink and NVSwitch, 2021.
https://www.nvidia.com/en-us/data-center/nvlink/.

[39] NVIDIA NVSWITCH The World’s
Highest-Bandwidth On-Node Switch , 2021.
https://images.nvidia.com/content/pdf/nvswitch-
technical-overview.pdf.

[40] Jelena Pješivac-Grbović, Thara Angskun, George
Bosilca, Graham E Fagg, Edgar Gabriel, and Jack J Don-
garra. Performance analysis of mpi collective operations.
Cluster Computing, 10(2):127–143, 2007.

[41] David S Scott. Efficient all-to-all communication
patterns in hypercube and mesh topologies. In The
Sixth Distributed Memory Computing Conference, 1991.
Proceedings, pages 398–399. IEEE Computer Society,
1991.

[42] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow, 2018.

[43] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language
models using model parallelism. CoRR, abs/1909.08053,
2019.

[44] Rachee Singh, Sharad Agarwal, Matt Calder, and
Paramvir Bahl. Cost-effective cloud edge traffic en-
gineering with cascara. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 201–216. USENIX Association, April 2021.

[45] Rachee Singh, Nikolaj Bjorner, Sharon Shoham, Yawei
Yin, John Arnold, and Jamie Gaudette. Cost-Effective
Capacity Provisioning in Wide Area Networks with
Shoofly. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, SIGCOMM ’21, page 534–546, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[46] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster,
Mark Filer, and Phillipa Gill. Radwan: Rate adaptive
wide area network. In Proceedings of the 2018 Confer-
ence of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’18, page 547–560, New York,
NY, USA, 2018. Association for Computing Machinery.

[47] Armando Solar-Lezama. Program Synthesis by Sketch-
ing. PhD thesis, USA, 2008. AAI3353225.

[48] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau,
Rastislav Bodik, Vijay Saraswat, and Sanjit Seshia.
Sketching stencils. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’07, page 167–178, New
York, NY, USA, 2007. Association for Computing Ma-
chinery.

[49] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik,
Sanjit Seshia, and Vijay Saraswat. Combinatorial sketch-
ing for finite programs. In Proceedings of the 12th
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS XII, page 404–415, New York, NY, USA, 2006.
Association for Computing Machinery.

[50] Rajeev Thakur, Rolf Rabenseifner, and William Gropp.
Optimization of collective communication operations in
mpich. The International Journal of High Performance
Computing Applications, 19(1):49–66, 2005.

[51] Guanhua Wang, Shivaram Venkataraman, Amar Phan-
ishayee, Nikhil Devanur, Jorgen Thelin, and Ion Stoica.
Blink: Fast and generic collectives for distributed ml. In
I. Dhillon, D. Papailiopoulos, and V. Sze, editors, Pro-
ceedings of Machine Learning and Systems, volume 2,
pages 172–186, 2020.

[52] Ningning Xie, Tamara Norman, Dominik Grewe, and
Dimitrios Vytiniotis. Synthesizing optimal parallelism
placement and reduction strategies on hierarchical sys-
tems for deep learning. CoRR, abs/2110.10548, 2021.

608 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[53] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang,
Raman Arora, and Xin Jin. Is network the bottleneck of
distributed training? In Proceedings of the Workshop on
Network Meets AI & ML, pages 8–13, 2020.

Appendix

A Communication Sketch Input

TACCL adopts a user-in-the-loop approach where algorithm
designers provide a communication sketch to guide communi-
cation algorithm synthesis by TACCL. TACCL’s synthesizer
takes in a profiled topology provided by TACCL profiler
along with a communication sketch provided by a human-
in-the-loop. A communication sketch comprises of a logical
topology, switch-hyperedge strategy, symmetry information,
input size, and other hyperparameters. Listing 1 gives an ex-
ample of how users can provide a communication sketch input
to the TACCL synthesizer. Here, we show an example of the
communication sketch dgx2-sk-1 used in the evaluation to
synthesize an ALLGATHER algorithm for 2 Nvidia DGX-2
nodes (each node has 16 GPUs and 8 NICs, every two GPUs
in the node share a NIC).

The sketch annotates the NVSwitch in each node and sets
a uc-min switch-hyperedge strategy. Further, the inter-node
sketch fixes the sender and receiver GPUs in a node for inter-
node data transfers. In our example, the odd-numbered GPUs
sharing a NIC are chosen as senders and the even-numbered
GPUs are chosen as receivers for inter-node communication.
The user also annotates how the inter-node relay GPUs would
split the inter-node bandwidth using a beta_split attribute.
Since only a single GPU per NIC is chosen in our example to
perform inter-node send and similarly receive, the bandwidth
is not split. Optionally, the user can also map chunks to sender
GPUs so that only mapped GPUs are used for inter-node trans-
fers for the chunk. The chunk_to_relay_map attribute defines
the parameters for the mapping function. The communication
sketch also allows users to play with rotational symmetry for
data routing. Given a symmetry offset and a group size, a
chunk transfer over a link is set to be equivalent to a rota-
tionally symmetric chunk over a rotationally symmetric link.
In our example of the symmetry_offset attribute, using [2,16]
fixes an intra-node symmetry with an offset of two, and using
[16,32] fixes a symmetric data transfer pattern between the
two DGX-2 nodes. Hyperparameters like input data partition-
ing and input size can also be provided via the communication
sketch.

Listing 1: Example sketch dgx2-sk-1 for ALLGATHER

{
// sketch for intra-node policy
"intranode_sketch": {

"strategy": "switch",

"switches":
[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]],

"switch_hyperedge_strategy": ["uc-min"]
},

// sketch for communication policy between any
two nodes

"internode_sketch": {
"strategy": "relay",
"internode_conn": {"1" : [0], "3" : [2], "5"

: [4], "7" : [6], "9" : [8], "11" :
[10], "13" : [12], "15" : [14]}, // "i":
[j1, j2] implies GPU i in a node will
only send data to GPU j1 and j2 of
another node

"beta_split": {"1": 1, "3": 1, "5": 1, "7" :
1, "9" : 1, "11" : 1, "13" : 1, "15" :
1}, // "i": n implies inter-node sends
from a GPU i of a node will use 1/n-th
of the inter-node bandwidth

"chunk_to_relay_map": [2,1] // maps chunk to
a sender relay GPU. [r1,r2] means chunk
c will be send to another node via GPU
(rp//r1)*r1 + r2, where rp is the
precondition GPU for chunk c

},

// enforces rotational symmetry.
// [(o,g), ..]: o is the rotational offset and

g is the group size for the rotational
symmetry.

// : eg. send(c,src,r) == send((c + o)%g, (src
+ o)%g, (r + o)%g)

"symmetry_offsets": [[2, 16], [16, 32]],

"hyperparameters": {
"input_chunkup": 2, // Data at each GPU is

partitioned into 2 chunks that can be
independently routed

"input_size": "1M"
}

}

B TACCL Synthesizer in Detail

As explained in Section 5, TACCL’s synthesizer has rout-
ing, heuristic ordering, and contiguity and exact scheduling
stages. We provide a detailed description of each of these
stages in this section. We first formally introduce some terms
that we will use later. Let C denote the set of chunks that
are required to be routed in the algorithm for collective coll.
Let R denote the set of GPU ranks involved in coll. Let
coll.precondition and coll.postcondition denote the precon-
dition and post-condition of the collective respectively.The
tuple (c,r) 2 coll.precondition,c 2 C ,r 2 R , if chunk c is
present at rank r at the start of the collective. Similarly, the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 609

(c,r) 2 coll.postcondition if chunk c has to be present at rank
r at the end of the collective. Further, let L denote the set of
links, such that (r1,r2) 2 L ,r1 2 R ,r2 2 R if there exists
a link from rank r1 to rank r2 in the logical topology deter-
mined by the topology and communication sketch. Let S send

r
denote the set of switched destinations for rank r, such that
dst 2 S send

r if link (r,dst) is a part of a switch-hyperedge. Sim-
ilarly, S recv

r denotes the set of switched sources for rank r, such
that src 2 S recv

r if link (src,r) is a part of a switch-hyperedge.
a(r1,r2), b(r1,r2) are the alpha and beta costs respectively
of the link (r1,r2) 2 L . The term lat(r1,r2) is the sum of
a(r1,r2) and b(r1,r2) cost of the link, which denotes the
total transfer cost of a single chunk over link (r1,r2). Table 3
lists the variables that the TACCL’s synthesizer solves for.
We will describe each variable in detail in this section.

B.1 Routing
The main aim of the routing stage is to give us the path
that every chunk takes in the collective. Our objective is to
minimize the time (denoted by continuous variable time) it
takes to reach the post-condition of the collective.

Minimize time (1)

The time taken for the collective algorithm is the latest time
at which a chunk becomes available on a rank that is in the
post-condition of the collective. We use a continuous variable
start[c,r] to denote the time that chunk c becomes available
on rank r, and end up with the following constraints for time

time � start[c,r] 8(c,r) 2 coll.postcondition (2)

For chunks on ranks that belong to the collective’s precon-
dition, we set the start time to zero.

start[c,r] = 0 8(c,r) 2 coll.precondition (3)

We also add correctness constraints in our formulation for
routing - chunks are sent from a GPU rank only after they
have been received on that rank. We introduce a continuous
variable send[c,src,r] to denote the time of sending chunk c
from rank src to rank r and add the following constraint to
our formulation:

send[c,src,r]� start[c,src] 8c 2 C 8(src,r) 2 L (4)

We use a binary variable is_sent[c,src,r] to indicate if
chunk c is sent over the link (src,r) in our algorithm. We
note that the routing stage does not strictly respect bandwidth
constraints of any link - the generated solution may send two
chunks simultaneously over a link at the time cost of one
chunk. The chunk start time on a rank will be determined
only by the chunk send time on the source, independent of
other chunk transfers on the link (eq. 5). LHS!RHS in the

equation signifies an indicator constraint, i.e., if LHS is 1,
RHS will hold.

is_sent[c,src,r]!start[c,r] = send[c,src,r]+ lat(src,r)
8c 2 C 8(src,r) 2 L

(5)

Instead of bandwidth constraints, this encoding uses relaxed
bandwidth constraints. They are expressed by aggregating
the link transfer time of all chunks sent over a link and using
it to to lower bound the total time of the algorithm (eq. 6). For
switched connections, the total time is lower bounded by the
sum of link transfer times of all chunks sent over all switched
outgoing links from a source, and also by the sum of link
transfer times for chunks received from all incoming links to
a destination (eq. 7 and eq. 8).

time � Â
c2C

(lat(src,r)⇤ is_sent[c,src,r]) 8(src,r) 2 L

(6)

time � Â
c2C

Â
dst2S send

r

(lat(r,dst)⇤ is_sent[c,r,dst]) 8r 2 Ssend

(7)

time � Â
c2C

Â
src2S recv

r

(lat(src,r)⇤ is_sent[c,src,r]) 8r 2 Srecv

(8)

Based on the communication sketch, we also add con-
straints for uc-max and uc-min strategies for switch-
hyperedges to maximize and minimize the number of links
utilized in a switch respectively. We introduce a new binary
variable is_util[src,r] for links (src,r) that are a part of a
switch-hyperedge. This variable is 1 if any chunk is sent over
link (src,r), and 0 otherwise.(eq. 9 and eq. 10). According to
the switch-hyperedge strategy, we add this variable, weighted
with a small constant g, to the objective function (eq. 11). g is
negative for uc-max and positive for uc-min.

is_util[src,r]>= is_sent[c,src,r] 8c 2 C8(src,r) 2 L
(9)

is_util[src,r]<= Â
8c2C

is_sent[c,src,r] 8(src,r) 2 L (10)

Minimize time+ g⇥ (Â
(src,r):switched links

is_util[src,r])

(11)

We also add symmetry constraints according to the symme-
try offsets provided by user in the communication sketch. For
a chunk c and link (src,r), we identify a rotationally symmet-
ric chunk ĉ and link (ˆsrc, r̂) and add the following constraints:

start[c,r] = start[ĉ, r̂] (12)
send[c,src,r] = send[ĉ, ˆsrc, r̂] (13)

is_sent[c,src,r] = is_sent[ĉ, ˆsrc, r̂] (14)

610 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

MILP Variables Explanation
Routing
time time spent in the collective algorithm
start[c,r] time at which chunk c becomes available at GPU r
send[c,src,r] time at which chunk c is sent from GPU src to GPU r
is_sent[c,src,r] indicates if chunk c is sent from GPU src to GPU r
is_util[src,r] indicates if any chunk is sent from GPU src to GPU r

Contiguity
is_together[c,o,r] indicates if chunks c and o are sent to GPU r together

from the same source, thus sharing the bandwidth and
reducing the latency cost of transfer

Table 3: Variables used in TACCL’s MILP formulation. Vari-
ables with prefix is_ are binary variables and others are con-
tinuous variables.

Further, for chunks that start on one node and have a final
destination on another node, we add inter-node transfer con-
straints which specify that at least one inter-node link will be
used to transfer that chunk.

Â
(r1,r2)2L :r12node1,r22node2

is_sent[c,r1,r2]� 1 (15)

B.2 Ordering Heuristics
We start the heuristic ordering by determining the paths each
chunk takes using the solution of the path encoding. We then
consider the first link in every path as a candidate for schedul-
ing a chunk transfer. Using heuristics like chunk-with-shortest-
path-until-now-first and chunk-with-longest-path-from-now-
first, we select a path (and thus a chunk) which should be
scheduled in this round. We keep a running estimate of link
time, which is the earliest time at which a chunk can be sched-
uled over the link. We also keep a running estimate of chunk
time, which is the earliest time at which the next link transfer
can be scheduled for a chunk. At the start, the link time for ev-
ery link is 0 and the chunk time for every chunk is 0. When a
path is chosen in the first round, the chunk associated with the
path is scheduled to traverse the first link in the path. The link
time of that link increases by link latency and chunk time of
that chunk increases by link latency. The link candidate from
the selected path is also updated to be the next link in the path.
For the next rounds, we decide which path’s candidate link to
schedule next using the tracked link and chunk times along
with the scheduling heuristics. This keeps going until we have
scheduled a data transfer over all the links in all the paths.
We find that the best heuristics differ for architectures with
NVLinks and those with NVSwitches, in terms of whether to
start selecting links to schedule in the same order as the paths
or in the opposite order of the paths. The heuristic ordering
has the following three outputs:

• chunk_order(r1,r2), an ordered list of chunks trans-
ferred along each link (r1,r2). If chunk c1 is present

before chunk c2 in chunk_order(r1,r2), it denotes that
c1 is scheduled to be sent before c2 over link (r1,r2).

• switch_send_order(r), an ordering on the chunks sent
from a switch source r to any of the switch destinations
dsts. If (c1,dst1) is present before tuple (c2,dst2) in
switch_send_order(r), it means that a send of c1 over
link (r,dst1) should be scheduled before a send of chunk
c2 over link (r,dst2).

• switch_recv_order(r), an ordering on the chunks re-
ceived on a switch destination r from any of the
switch sources srcs. If (c1,src1) is present before tu-
ple (c2,src2) in switch_recv_order(r), it means that a
receive of c1 over link (src1,r) should be scheduled be-
fore a receive of chunk c2 over link (src2,r).

B.3 Contiguity and Exact Scheduling
Finally, we describe the formulation for the contiguity and
exact scheduling stage. Given the link and switch ordering
from the heuristic ordering stage, the aim of this stage is
to find the sweet spot in the trade-off between lower link
latency by sending multiple data chunks contiguously as a
big data chunk and reduced pipelining benefits due to the big
data-chunk transfer. We provide the main set of constraints
in our formulation below, leaving out other less important
constraints.

Our objective is still to minimize the time of the collective
and constraints eq. 1-eq. 4 must still hold in this formulation.
We add a new binary variable is_together(c1,c2,r) for all
chunks c1 and c2 that are sent over the same link to rank r.
If is_together(c1,c2,r) is 1, chunks c1 and c2 are sent as a
single data-chunk over a link to rank r.

is_together[c,o,r]!send[c,src,r] = send[o,src,r]
8c,o 2 chunk_order(src,r) 8(src,r) 2 L

(16)

The transfer time of a data chunk c along a link (src,r) will
be determined by all other data chunks that it has to travel
together with:

lat[c,src,r] =a(src,r)+b(src,r)⇤
(Â

o2chunk_order(src,r)
is_together[c,o,r])

8c 2 chunk_order(src,r) 8(src,r) 2 L
(17)

start[c,r] =send[c,src,r]+ lat[c,src,r]
8c 2 chunk_order(src,r) 8(src,r) 2 (L)

(18)

We also add strict bandwidth constraints for this formu-
lation, allowing only one data chunk per link transfer time

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 611

if the data chunks are not sent contiguously over the link.
Let pos(c,src,r) determine the position of chunk c in the
chunk_order(src,r), then

¬is_together[c,o,r]!send[o,src,r]�send[c,src,r]
+lat[c,src,r] 8c 2 chunk_order(src,r)

8o 2 chunk_order(src,r)
if pos(o,src,r)� pos(c,src,r) 8(src,r) 2 L

(19)

Similarly, we add bandwidth constraints for switch, allow-
ing a source to send data to only one switched destination at
a time, and a receiver to receive data from only one switched
sender at a time. Let sw� pos� send(c,r,dst) determine the
position of tuple (c,dst) in the switch_send_order(r), and
let sw� pos� recv(c,src,r) determine the position of tuple
(c,src) in the switch_recv_order(r), then,

send[o,r,dsto]�send[c,r,dstc]+ lat[c,r,dstc]
8(c,dstc) 2 switch_send_order(r)
8(o,dsto) 2 switch_send_order(r)

if sw-pos-send(o,r,dsto)� sw-pos-send(c,r,dstc)

8r 2 S send

(20)

send[o,srco,r]�send[c,srcc,r]+ lat[c,srcc,r]
8(c,srcc) 2 switch_recv_order(r)
8(o,srco) 2 switch_recv_order(r)

if sw-pos-recv(o,srco,r)� sw-pos-recv(c,srcc,r)
8r 2 S recv

(21)

C Standalone Experiments on Four Azure
NDv2 Nodes

Figure 11 shows additional algorithm bandwidth and the
speedup over NCCL graphs of TACCL for ALLGATHER,
ALLTOALL, and ALLREDUCE on 4-node NDv2 cluster. We
synthesize all collectives using the ndv2-sk-1 communication
sketch (see Section 7.1 for details), and lower them using 1
or 8 instances. We plot the best of the two algorithms over
different buffer sizes.

TACCL’s ALLGATHER algorithms are 10%�2.2⇥ faster
than NCCL across all buffer sizes. For ALLTOALL, the ndv2-
sk-1 sketch is most effective for large buffer sizes, and helps
generate algorithms that are up-to 46% faster than NCCL for
buffer size greater than 1MB. TACCL ALLREDUCE algo-
rithms are up-to 34% faster than NCCL for small buffer sizes
and 1.9⇥�2.1⇥ faster than NCCL for larger buffer sizes.

Figure 11: Algorithm bandwidth of TACCL algorithms compared
against NCCL (left Y-axis) and their speedup over NCCL (right
Y-axis) for ALLGATHER, ALLTOALL, and ALLREDUCE collectives
on four NDv2 nodes.

612 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Synthesizing Runtime Programmable Switch Updates
Yiming Qiu Ryan Beckett† Ang Chen

Rice University †Microsoft

Abstract
We have witnessed a rapid growth of programmable switch
applications, ranging from monitoring to security and offload-
ing. Meanwhile, to safeguard the diverse network behaviors,
researchers have developed formal verification techniques
for high assurance. As a recent advance, network devices
have become runtime programmable, supporting live program
changes via partial reconfiguration. However, computing a
runtime update plan that provides safety guarantees is a chal-
lenging task. FlexPlan is a tool that identifies step-by-step
runtime update plans using program synthesis, guaranteeing
that each transition state is correct with regard to a user speci-
fication and feasible within switch memory constraints. It de-
velops novel, domain-specific techniques for this task, which
scale to large, real-world programs with sizable changes.

1 Introduction
Programmable switches accelerate the velocity of change and
facilitate innovation [11, 12, 14]. The community’s ideal is
to develop and deploy new features quickly in the network,
without upgrading switch hardware. This has led to two syn-
ergistic lines of pursuit. On one hand, researchers have seized
this opportunity to develop a slew of switch applications, such
as monitoring [24,48], security [31,54,55,58], advanced rout-
ing [25, 33, 41], and offloading [27, 28]. On the other hand, to
mitigate the potential risks of frequent changes, formal ver-
ification of switch programs promises to eliminate network
bugs and provide high assurance [13, 18, 38, 51]. Combined,
the two lines of work pave the way toward a featureful and
reliable network infrastructure.

As of late, network programmability is at a new inflection
point. Whereas traditional P4 programmable switches [10]
require offline procedures for program updates (e.g., draining
user traffic, reflashing the data plane with a new program, and
undraining traffic), runtime programmable switches [4, 19, 52,
53] increase the benefits of programmability even further by
supporting live program changes. Upon an update request
(e.g., due to tenant requirements or infrastructure upgrades),
the switch program is modified online to effect the change, by
incrementally adding and removing match/action tables in a
running program based on the “delta” [19, 53]. Compared to
the approach of recompiling the changed program and reflash-
ing the data plane from scratch, runtime updates enable rapid
deployment of new features. Runtime programmability has
become available in a variety of targets [19, 52, 53], including
commercial off-the-shelf switch ASICs [3, 5, 9].

However, runtime programmability introduces another

layer of correctness concerns. It is known that live net-
work updates come with risks—they result in intermediate
states with different behaviors from the initial and final net-
works [29, 44, 45]. Even in a traditional network, updates
must be carefully staged to ensure that the transition is free of
error [36]. This risk and the challenges it raises are only mag-
nified in programmable switch updates. A step-by-step update
to a deployed P4 program, while the switch is in use, could
expose partial and potentially unsafe program snapshots to
user traffic. For instance, if not careful, an old ACL table may
have been removed before the updated ACL is installed, lead-
ing to a transient program snapshot without access control.
Although we could attempt to make all changes in a single
step and avoid intermediate states, in practice, this is only
feasible for minuscule updates. The “delta” corresponding to
the update needs to be prepared in the switch scratch memory
before activated [6, 53]; thus, this leads to a resource utiliza-
tion peak that may exceed the available memory. A large delta
often needs to be broken down into smaller steps, where each
step prepares and applies only a fraction of the change [53].

To safeguard runtime network updates, we must again rely
on formal reasoning techniques. Existing work in runtime
programmability either asks the user to prescribe step-by-
step updates [19] or employs algorithms that do not provide
semantic guarantees [53]; thus, they do not offer the same
level of assurance. Existing verification work, on the other
hand, focuses on certifying the correctness of a single P4
program [18, 38, 51], but cannot help identify a correct-by-
construction sequence for program transition. Thus, these
verification techniques cannot guarantee the correctness of
intermediate program snapshots during a transition, and bugs
could be unwittingly introduced into the network. We believe
that customizing program synthesis techniques to this new
problem domain will bear much fruit. If we can formally
synthesize a safe (i.e., conforming to a specification) and
feasible (i.e., within switch resource limits) transition plan,
then we can be confident about its effect on the network.

We develop such a tool called FlexPlan. It takes in a P4
program with annotated changes and a user specification, and
produces such a transition plan. FlexPlan draws inspirations
from a powerful approach to program synthesis—CEGIS, or
counterexample-guided inductive synthesis [47]—and devel-
ops a variety of domain-specific techniques for our problem
at hand. At a high level, the CEGIS algorithm navigates the
search space by iterating between a “proposal” phase, which
suggests potentially correct programs (e.g., transition plans),
and a “verification” phase, which proves or disproves the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 613

proposals. The verification phase also produces counterex-
amples (i.e., packets) upon failure, which are learned by the
next proposal to guide the search. CEGIS has found success
in many synthesis problems [17] and more recently, in net-
working [13, 22, 59]. However, runtime programmable switch
updates raise distinct challenges that require novel designs.

The first challenge stems from the fact that FlexPlan needs
to synthesize not just one single program but a sequence of
program snapshots; further, each snapshot must successively
modify the previous one safely and stay within the resource
constraints. To cast this into a CEGIS framework, we de-
velop two concise encodings that articulate the essence of
this synthesis. A version sketch is derived from the switch
program with annotated changes, adding version variables at
change sites to represent the change progress. This building
block provides a uniform representation for any intermediate
program state that could appear in the transition. Further, a se-
quence sketch concatenates multiple version sketches, while
constraining them to modify each other and make progress
toward the final program. The synthesis target, therefore, is
correct assignments to the version variables across snapshots—
these are the program “holes” in the verbiage of the program
sketching [47] synthesis framework.

The scalability bottlenecks of this synthesis represent the
second challenge. Existing verification efforts are already
challenged by the large SMT formulas produced by complex
switch programs [38, 50, 51], but FlexPlan needs to reason
about stacks of these formulas in each proposal/verification
phase. To accelerate the synthesis, we develop two domain-
specific techniques to shrink the problem sizes whenever
possible—to as close as that of single program snapshots.
Snapshot learning extracts insights about the synthesis from
a single snapshot, and generalizes that knowledge to all sub-
sequent snapshots. Snapshot verification shatters a proposed
transition sequence into individual snapshots for divide-and-
conquer. We arrange these techniques carefully to ensure that
reasoning about the safety of a sequence from snapshot-based
properties still produces a sound analysis.

Finally, we also leverage a unique property in the FlexPlan
synthesis problem—its diagnosability—to perform introspec-
tion into the synthesis process. For a traditional CEGIS prob-
lem, the synthesis tool cannot know beforehand whether or
not a correct solution exists. FlexPlan, however, can check
the initial and final programs against the safety specification
to see whether or not some safe transitions exist. If both pro-
grams are correct, then a safe transition must exist; a safe
transition may not be feasible, however, due to resource con-
straints. To check feasibility, FlexPlan incrementally grows
the transition sequence length—so that each step in the transi-
tion sequence makes smaller and smaller changes to approach
feasibility—while performing another introspection to decide
when to stop trying longer sequences. Finally, when FlexPlan
concludes that no safe transition is feasible under the current
switch headroom, it introspects on how much resource release

is needed for feasibility, as another assistance to the operator.
We prototype FlexPlan [2] and show that it scales to real-

world switch programs and sizable changes, and supports a
rich set of safety properties including but going beyond those
in existing work [53]. With FlexPlan, operaters can synthesize
transition plans quickly and automatically (e.g., within a few
minutes for sizable changes to switch.p4), while being assured
of the correctness of the transition process.

2 Motivation
Analogues of our motivation can be found in existing work
on OpenFlow network updates, summarized as follows: Net-
work changes are a constant [23], but they often come with
risks [36] due to intermediate states during transition [21, 45].
Rigorous approaches are needed to safeguard against transient
disruption [44] to satisfy security requirements and stringent
service-level objectives [16]. Ensuring transactional updates
at each step [44], and formally guaranteeing the correctness
of an update plan [39] is essential. These arguments hold true
still, and are further amplified, for P4 programmable networks.

2.1 Runtime programmable switch updates
Programmable switches enable new network features to be
quickly developed in-the-field [24,27,28,35,48,56]; however,
in earlier designs, deploying new features to the switch was
an intrusive process. To update the switch program (e.g., add,
remove, or modify a feature), the traditional approach was to
completely recompile the changed program and reflash the
data plane [60]. This results in device disruption, so program
updates had to be conducted offline—user traffic is drained
from the device and diverted elsewhere in the network, after
which the switch is re-imaged, and finally, reactivated again.

Recognizing its cumbersomeness and risk for downtime,
researchers and practitioners have made a concerted effort
toward runtime programmability [4, 19, 52, 53, 57]. That is,
switch programs are updated using partial reconfiguration
without taking down the device for maintenance. Since P4
programs have modular table boundaries, runtime reconfigu-
rations on specific match/action tables and their control flow
logic need not disrupt other parts of the program. A feature
update can be decomposed into a series of table and branch
changes to transform a deployed program to a desired state.

Runtime programmability is not just an academic ideal.
In response to the perennial call for both “feature veloc-
ity and cloud availability” [16], major switch vendors have
embraced this trend with ASIC support. Nvidia’s Spectrum
switches [53] and Broadcom’s Trident [9] and Jericho [3]
switches are commercially available off-the-shelf, and aca-
demic prototypes [19, 52] are also exploring this design. Use
cases of runtime programmable switches include real-time
security defense [53], multi-tenancy [52], adaptive teleme-
try [19], where live switch updates afford higher flexibility
not found in earlier programmable switches.

614 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.2 A motivating example
We will consider a simple example to illustrate the flexibility
of runtime switch updates as well as the challenges they raise.
The following program snippet uses @add and @del annota-
tions to demarcate change boundaries in a control block:

1 /* Ex1: ipv4_ipv6 */
2 control ingress {
3 apply {
4 if (ipv4.isValid()) {
5 @del acl_v4.apply();
6 @add nat_acl_v4.apply();
7 } else if (ipv6.isValid()) {
8 @del acl_v6.apply();
9 @add nat_acl_v6.apply();

10 }
11 @add stats.apply();
12 }}

We remove two older versions of ACL tables for both IPv4
and IPv6 (Lines 5+8), and add two new tables that perform
both NAT and ACL (Lines 6+9); we also add a statistics table
for monitoring (Line 11). Since P4 is a target-independent
language, operators can specify a desired change with such
annotations without worrying about hardware details. Indeed,
the mechanisms for implementing a live update depend upon
the underlying switch platforms [19, 53]:

• FlexCore [53] relies on pointer swaps to achieve transac-
tions, adding and removing a group of tables atomically.
In our example above, we can first add nat_acl_v4,
nat_acl_v6, and stats to scratch memory, and then
use a transaction to make them visible to network traffic,
while deleting the two older tables acl_v4 and acl_v6.

• rP4 [19] also adds and removes MA tables leveraging
scratch memory, but it relies on temporarily pausing traf-
fic to achieve transactional effects. Before making the up-
date, packets are paused and stored in a front buffer, and
the respective tables are modified to effect the change.
Buffered packets are then let out into the pipeline.

The careful reader may have noticed that this update appears
to have completed within a single transaction, so no interme-
diate states are exposed. However, this is because we have yet
to consider the resource constraints of the switch hardware.
Switches have severe memory capacity bottlenecks, and they
are easily packed to the brim with large MA tables [32, 53].
Thus, this logically simple update may be physically infeasi-
ble if the switch memory has high utilization.

The potentially infeasible operation is preparing the three
new tables (nat_acl_v4, nat_acl_v6, and stats) in scratch
memory before their old counterparts have been deleted. As-
sume without loss of generality that every MA table has the
same size (say, of U, one unit of table entries), then the net re-
source increase after the change is only U. However, preparing
the transaction causes a resource peak of 5×U, which might
exceed the available switch headroom. One workaround is to

ensure that the switch always has a low utilization [6], but this
is obviously undesirable. Thus, recent work [53] proposes to
break a larger update into multiple smaller batches to reduce
the resource peak. For instance, if we first add nat_acl_v4
and delete acl_v4 in a transaction, it only requires 3×U head-
room; the second transaction adds nat_acl_v6 and deletes
acl_v6, also within 3×U headroom; a final transaction adds
the stats table, again within 3×U headroom. As tradeoff,
after the first transaction, IPv4 traffic is processed with new ta-
bles for NAT and ACL, whereas IPv6 traffic is still processed
with the old, and it only encounters new tables after the sec-
ond transaction; further, the statistics table is only applied
after the third transaction completes. Nevertheless, this may
still be a reasonable sacrifice in order to achieve a feasible
update, as long as the intermediate states are “well-behaved.”

2.3 Computing a safe and feasible transition
It is far from clear, however, how to conjure up a transition
plan for a desired change. rP4 [19] relies on the user to supply
this plan, and FlexCore [53] algorithms only analyze whether
changes are “reachable” to each other in the table graph. Nei-
ther represents a formal approach that can provide semantic
guarantees on the transitional behavior. In general, the notion
of correctness is scenario-specific and should be encoded in
a user specification in a granular manner, going beyond the
three fixed definitions in FlexCore [53], summarized below:

• Program consistency: Only one-step updates without
intermediate states are allowed.

• Element consistency: Intermediate states are acceptable
as long as reachable regions (e.g., changes that eventually
reach the same table) are changed together atomically.

• Execution consistency: Reachable tables can be changed
independently as long as no packets will mix them.

This cannot, for instance, capture user intention on “traffic
classes” (e.g., IPv4 vs. IPv6); nor can it support more gran-
ular correctness definitions (e.g., for any intermediate state,
packets must go through an ACL table, or packets must be
sent to the same outgoing port). For some cases, the three
fixed consistency definitions conflate into the same. For the
above change, execution and element consistency will find
the same plan as program consistency, because all changes
eventually reach the stats table, forcing a 5×U peak despite
the desire to relax the requirements for a feasible update.

2.4 FlexPlan: A program synthesis perspective
We believe that a principled solution should instead rest upon
a firmer foundation, grounded in formal synthesis. Such a
solution would satisfy three key goals:

• Automated: Beyond expressing a desired property, hu-
man reasoning is not required to identify a plan.

• Completeness: If a safe and feasible transition exists, we
will guarantee to find it.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 615

Verification Proposal

…
Sequence sketch

(Sec 4.1.2)

Diagnosis
(Sec 4.3) Accelerations

(Sec 4.2)

if v1 => old …

Version sketch
(Sec 4.1.1)

Anno. Program Safety spec
(Sec 3)

FlexPlan

Figure 1: FlexPlan and its key techniques.

• Soundness: Once we output a transition, it is guaranteed
to be safe and feasible.

The FlexPlan approach. We formulate this problem as
follows. Given a P4 program p with a set of change annota-
tions A, a safety specification φ, and resource headroom δ,
identify a transition sequence {p1→ p2→ ··· → pt}, where
pi’s are the intermediate program snapshots, and at the end
of the sequence, all changes in A have been applied. Further,
we require that a) each pi satisfies φ, and b) each transition
step pi→pi+1 makes positive progress and stays within the
resource headroom, initialized to δ. Our synthesis relies on
a CEGIS approach (cf. [46, 47] for more background): In
each iteration, the proposal phase generates a candidate tran-
sition sequence that satisfies φ and δ on the current set of
counterexamples (that is, packets), which is initialized to the
empty set. The verification phase will try to extract a new
counterexample packet that causes violation, which will be
consumed by the proposal phase in the next iteration, and so
on. This continues until no counterexample packets can be
generated—in which case we have a correct sequence—or
until no candidate sequences can be generated—in which case
no update plan exists. Figure 1 illustrates the workflow of
FlexPlan, with several key milestones in Sections 3 and 4.

3 Specifying Safe Updates
Users provide a P4 program with annotated changes, as well
as a specification to constrain intermediate states.

Update annotations. FlexPlan provides three intuitive an-
notation primitives for users to express a desired update: @add,
@del, and @mod. A source P4 program can be annotated with
these primitives, where each annotation site captures a set of
changes. In Section 2.2, we have already provided an anno-
tated program in this syntax, and here we used another exam-
ple to describe several other aspects of the annotations.

1 /* Ex2: acl_ecmp_flowlet */
2 control ingress {
3 apply {
4 //modify acl into nat_acl
5 if (ipv4.isValid()) {
6 @mod acl.apply(), nat_acl.apply();
7 }
8 //add ECMP, delete flowlet switching
9 @del { if (ipv6.isValid()) flowlet.apply(); }

10 @add ecmp.apply();
11 }}

First, the syntax is similar to “P4 annotations” [7] in the
P4 language standard. Our annotations target the common
intersection of the reconfiguration primitives in existing
work [19,53]—an annotation may specify individual table up-
dates (e.g., Line 10) or a code block update (e.g., tables with
their control flow, as in Line 9). The hardware mechanisms
are abstracted away from the annotations, but are assumed
to provide atomicity for each change annotation, as in recent
switches [19, 53]. The @mod primitive achieves similar effects
as @del+@add, but @mod must complete in a single atomic
step whereas the latter could occur in two separate steps. The
entire update finishes when all annotations have been applied.

Specification language. Specifying resource constraints
is as simple as providing a number δ that denotes the current
switch headroom. Thus, our specification language focuses
on the consistency properties, which constrain the relation
between a program snapshot and the initial and final pro-
grams. FlexPlan refines the fixed consistency levels in existing
work [53] in two ways: (1) a consistency property may refer to
specific traffic classes, and (2) new consistency levels can be
programmatically defined. Consider the following examples.

S1: Execution consistency for IPv4 traffic that hits ACL.
Any IPv4 packet that hits the acl table must not mix old and
new code blocks in any intermediate state. However, two IPv4
packets traversing different execution paths in the program do
not need to use the same program version—e.g., TCP traffic
may be processed by old code blocks, but UDP traffic by the
new. We do not constrain the behaviors of other traffic classes.

1 specification {
2 // create new ghost variables for the program
3 // these are used for verification only
4 ghost bit<1> sawOld = false;
5 ghost bit<1> sawNew = false;
6 ghost bit<1> acl_hit = false;
7 // update ghost state when tables are applied
8 @old => { sawOld = true; }
9 @new => { sawNew = true; }

10 @hit('acl') => { acl_hit = true; }
11 // define: no path mixes old and new nodes
12 // $cur: the current/transitional program state
13 execution_consistency_ipv4 = {
14 $cur.in.ipv4.isValid() & $cur.eg.acl_hit =>
15 !($cur.eg.sawOld && $cur.eg.sawNew);
16 }
17 assert execution_consistency_ipv4;
18 }

Lines 4-6 define “ghost variables” that track meta-level prop-
erties of a program execution—specifically, whether a packet
has encountered an old code block, a new block, or the ACL
table, respectively. Lines 8-10 describe how ghost variables
should be updated for an execution: whenever a packet trig-
gers an old code block, a new block, or a table named acl,
assign the respective ghost variable to be true. Lines 13-17
are the consistency assertion, where $cur represents a packet
traversing the current program snapshot. If such a packet con-
tains a valid IPv4 header when it arrives at the ingress, and

616 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

if it has hit the ACL table before it exits the egress, then we
assert that it should not be processed by a mix of code blocks.

S2: Field consistency for egress_spec. We define a new
consistency level that only constrains the processing outcomes
of specific header fields. The following example specifies
that any intermediate states should preserve the processing
outcome for the packet’s egress port—i.e., a packet should
either go to the same port as the old program or as the new one.
The $new and $old variables denote two packets traversing
the old and new programs, respectively.

1 specification {
2 // preserve processing outcome of egress_spec
3 field_consistency_espec = {
4 $cur.in == $old.in == $new.in =>
5 ($cur.eg.espec == $new.eg.espec ||
6 $cur.eg.espec == $old.eg.espec);
7 }
8 assert field_consistency_espec;
9 }

S3: Program consistency for TCP traffic: We require that
TCP packets must not encounter any intermediate state. The
all_old assertion states that if at the ingress a packet carries
a valid TCP header, then at the egress it must only have been
processed by old tables. Analogously, the all_new assertion
states the opposite. Their disjunction implies that TCP traffic
will only be processed by one version of the program. The
primary difference between this specification and S1 is that
execution consistency only constrains the behaviors of each
individual packet, whereas program consistency constrains
the behaviors across all packets of a certain kind (e.g., TCP).

1 specification {
2 // same ghost variables as before
3 ghost bit<1> sawOld = false;
4 ghost bit<1> sawNew = false;
5 @old => { sawOld = true; }
6 @new => { sawNew = true; }
7 // define whether all packets use the old program
8 all_old = {
9 $cur.in.tcp.isValid => !$cur.eg.sawNew;

10 }
11 // define whether all packets use the new program
12 all_new = {
13 $cur.in.tcp.isValid => !$cur.eg.sawOld;
14 }
15 // all packets use old program or all use new
16 assert all_old || all_new;
17 }

These granular consistency levels require program seman-
tic analysis and cannot be captured by fixed definitions [53].
We describe several more examples in Appendix 9.1 and sum-
marize them in Table 1. Figure 2 presents the grammar of the
specification language. Like existing work [18, 50, 51], the
specifications are eventually translated into assertions in the
source P4 program. Appendix 9.2 shows one such translation.

spec ::= specification{stmt∗} Specification
stmt ::= gvar∗ Ghost vars

| instr∗ Instrumentation
| property∗ Property
| assert∗ Assertion

gvar ::= ghost bit < n > gv Ghost vars
gexpr ::= $cur | $old | $new Network version

| gexpr. f ield Field dereference
| gexpr+gexpr Addition
| ... Other expr

instr ::= label => assignment∗ Ghost update
assignment ::= gv = gexpr Assignment
label ::= @new |@old |@hit Annotation
property ::= name = {gexpr∗} Consistency
assert ::= assert name Assertion

Figure 2: FlexPlan specification language grammar.

Specifications LoC
S1. Execution consistency for IPv4 [53] 13
S2. Field consistency for egress_spec 8
S3. Program consistency for TCP [53] 13
S4. Element consistency for ACL [53] 15
S5. Table consistency for ECMP 10
S6. VLAN table access [51] 8
S7. Correct TTL decrement [51] 6

Table 1: FlexPlan supports granular consistency specifications
that go beyond existing work [53] (e.g., S1-S5). Although
our primary focus is consistency, FlexPlan can also support
general program snapshot correctness (e.g., S6-S7) guarantees
addressed by existing verification work [18, 51].

4 Update Plan Synthesis
Next, we describe how FlexPlan synthesizes an update plan
from the annotated program and specification. We denote
these inputs as ⟨p[A],φ,δ⟩, where p[A] is an annotated P4 pro-
gram with a set of change sites A = {a1, · · · ,ak}, and φ and δ

are the safety and resource constraints, respectively. FlexPlan
outputs an update sequence s = {pold = p1 → p2 → ··· →
pt = pnew}, where two special states pold and pnew represent
the initial and final programs, respectively. We ask that each
intermediate state pi must be safe (i.e., satisfying φ) and each
transition from pi→ pi+1 is feasible (i.e., the resource spike
for this transition stays within δi, as computed from the initial
headroom δ after applying transitions before pi). If no such
s can be found, FlexPlan outputs diagnostic information on
whether the safety or feasibility constraints have caused the
failure, and in the latter case, it analyzes how much resource
release would enable a feasible synthesis.

4.1 Synthesizing a program sequence
Our CEGIS formulation uses program sketching [47], a clas-
sic framework for synthesis. This formulation views the syn-
thesis task as filling “holes” in an incomplete program (i.e.,
a “sketch”), and it has been successfully applied to network

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 617

1 control ingress {
2 apply {
3 /* annotation site 1: acl->nat_acl */
4 if(ipv4.isValid()) {
5 if (! vsk.v1) { // @mod
6 acl.apply();
7 } else {
8 nat_acl.apply();
9 }

10 }
11 /* annotation site 2: delete flowlet */
12 if(! vsk.v2) { // @del
13 if (ipv6.isValid())
14 flowlet.apply();
15 }
16 /* annotation site 3: add ecmp */
17 if(vsk.v3) { // @add
18 ecmp.apply();
19 }
20 }}

Figure 3: A version sketch that is derived from the
acl_ecmp_flowlet example in Section 3. Version variables
vsk.v are the sketch holes. The safety specification will also
be instrumented into the version sketch (cf. Appendix 9.2)

programs [13, 22]. However, the objective in FlexPlan differs
from existing work as it must identify a correct sequence of
program snapshots that successively build upon each other
toward the final program. To cast this into the CEGIS frame-
work, we develop two novel encodings: a version sketch to
represent any valid program snapshot during transition, and a
sequence sketch to string together multiple version sketches
and constrain them to make progress toward our final state.

4.1.1 Version sketch: Encoding program snapshots

The version sketch is a uniform and expressive encoding
that can capture any transitional program snapshots derived
from p[A]. As its name suggests, it introduces a “version vari-
able” vi at the annotation site ai ∈ A. The annotation is then
substituted with two version control branches guarded by
vi. Without loss of generality, consider ai={@mod si → ti},
a modification from si to ti. It will be transformed into if
(vi) then {ti} else {si}, or simply ite(vi, ti,si). That is,
a version sketch with vi turned on encodes a program snapshot
where annotation ai has been applied; on the other hand, a ver-
sion sketch with vi turned off represents a snapshot where the
change ai is yet to be applied. The @add and @del annotations
are handled analogously, with one of the branches control-
ling an empty statement: ite(vi, ti,noop) for adding ti and
ite(vi,noop,si) for deleting si. Across all annotation sites,
by turning version variables on or off, the resulting snapshot
seamlessly reflects any combination of applied changes.

Figure 3 shows the version sketch for acl_ecmp_flowlet,
where version variables are added to the input program as
instrumentations. From this instrumented program, FlexPlan
derives an SMT formula, where ξ represents the unchanged
components without annotations, and the i-th ite formula

represents annotation ai. Constraining the version sketch with
the safety specification would give an SMT encoding:

vsk(ξ,
k∧

i=0

ite(vi, ti,si)) ∧ φ

FlexPlan obtains SMT formulas in a similar way as existing
work [18]. φ is instrumented into the version sketch. Then,
FlexPlan converts all statements into static single assignment
form and SMT formulas. It then computes the weakest pre-
conditions based on the control flow logic.

The version sketch is expressive enough to encode any in-
termediate snapshot and constrain its safety with φ. However,
it cannot capture the resource constraint δ, because it is a
sequence property defined over a series of snapshots and their
relations. As a version sketch only represents an individual
snapshot, it cannot easily reason about end-to-end feasibility
for a snapshot sequence. By itself, it only enables an awkward
workaround—start with an empty version sketch, synthesize
a safe snapshot as its immediate next step, and iterate based
on the new snapshot. More concretely, one could ask that the
next snapshot must fill more holes than the current one, while
staying safe with respect to φ and within the current headroom
δ. This would result in a new snapshot where a subset (but
likely not all) of version variables have been turned on. This
serves as the new “initial” state for another synthesis, until
the final state has been reached. However, this results in a
difficult search process, as it can only be guided with some
greedy heuristics—e.g., maximizing the progress for each
step by filling as many holes as possible, or minimizing the
resource spike for each step while ensuring some progress. Ei-
ther way, the lack of a global view could corner the search into
a difficult or infeasible state (e.g., no more headroom), where
it must backtrack and probe again in the very large search
space—all possible permutations of change annotations, to-
gether with all possible combinations of adjacent changes in
each permutation. This greedy synthesis also cannot easily
conclude that no feasible solution exists.

4.1.2 Zooming in on resource constraints

Thus, resource constraints must be encoded explicitly to en-
able a cross-snapshot, end-to-end synthesis. Recall that δ

denotes the initial switch headroom, which is obtained by sub-
tracting the total table sizes of pold from the overall switch
memory. From there, each transition from one snapshot vsk to
the next vsk′ adds and removes some tables—thus, we must
keep track of the changes to δ and two metrics “spike” and
“release” at each transition. Consider the version variable v1 in
Figure 3, which modifies an acl table (2Mb) into a nat_acl
table (3Mb). To achieve atomicity, this is done by first adding
nat_acl in switch memory, resulting in a transient resource
spike of 3Mb, and then deleting acl and freeing 2Mb in the
same transaction. We record this as add1= 3 and del1= 2 for
turning on v1. Thus, across all vi we define the spike:

vsk′.spike = ∑
i

ite(vsk′.vi∧¬vsk.vi, addi, 0)

618 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

That is, if the transition from vsk to vsk′ has turned on vi,
then the transient resource spike increases by addi; otherwise,
if vi is not changed in this step, it does not contribute to the
spike. We can therefore define the resource release after the
transaction completes and the spike comes down:

vsk′.rel = ∑
i

ite(vsk′.vi∧¬vsk.vi, deli - addi, 0)

In our example, the net release is del1-add1 =−1. This re-
flects in the overall headroom update to δ after this step:

vsk′.headroom = vsk.headroom + vsk′.rel

The feasibility constraint can therefore be stated as
vsk.headroom ≥ vsk′.spike for any two adjacent snap-
shots, across the entire transition sequence from pold to pnew.

4.1.3 Sequence sketch: Encoding a transition plan

Based on the above resource constraint analysis, we develop a
sequence sketch encoding that enables an end-to-end CEGIS.
A sequence sketch ssk is the conjunction of t version sketches
{vsk1,vsk2, · · · ,vskt} as well as their sequential relations to
each other. vsk1 and vskt encode the initial and final pro-
grams, respectively, and other states represent the transitions.

∀i ¬vsk1.vi ; initial program pold

∀i vskt.vi ; final program pnew

∀ j (∀i vsk j−1.vi =⇒ vsk j.vi) ; progress
∀ j SpikeAndHeadroom(vsk j−1, vsk j) ; feasibility

That is, all version variables in the initial sketch are turned off,
equating it to pold ; all variables in the final sketch are turned
on, resulting in pnew. A later sketch in the sequence must
monotonically advance the version variables to make progress
toward the final state. Furthermore, each transition’s spike
must be feasible within its current headroom (Section 4.1.2).

Sequence synthesis. This encoding enables an end-to-end
CEGIS by filling the ssk holes (i.e., all v variables in all
version sketches vsk) in a way that satisfies φ for all snapshots
and δ across all adjacent snapshots. The sketch holes are
H ∈ Bk×t , a two-dimensional matrix of binary variables.

Hk×t =


vsk1.v1 vsk1.v2 · · · vsk1.vk
vsk2.v1 vsk2.v2 · · · vsk2.vk

...
...

...
...

vskt .v1 vskt .v2 · · · vskt .vk


In this matrix, k is the number of annotations, and t is the
number of transitional states; and we will synthesize all holes
in an end-to-end CEGIS, as shown in Figure 4. The proposal
phase (Lines 7-11) identifies a potentially correct program
(i.e., values in H) by solving for H that exhibits correct be-
haviors on all counterexamples collected so far (Line 9). The
verification phase strengthens the check to test against the
full specification (Lines 12-17). If no further violations are

1: function SEQUENCECEGIS(ssk, φ, δ)
2: for t = 1..k do //Iteratively increase seq length � Opt-Diag
3: ssk.H← RAND(Bk×t) //Init w/ random H
4: ce_set← /0 //No counterexample so far
5: // Next, enter main CEGIS loop � Opt-SnapL
6: while ¬ Timeout do
7: // Proposal: Identify candidate H=h
8: ssk.H← SYMBOLIC(Xk×t)
9: {ssk.H := h}← SMTSOLVE(ssk, φ, δ, ce_set)

10: if ssk.H == /0 then // No solution exists, t++
11: break
12: // Verification: Verify H=h
13: ce← SMTVERIFY(ssk.H, φ, δ) � Opt-SnapV
14: if ce ̸= /0 then // Obtain counterexample
15: ce_set← ce_set ∪ {ce}
16: else // Verifies, solution found!
17: return ssk.H

Figure 4: The end-to-end CEGIS algorithm on the sequence
sketch. Later subsections will further develop three optimiza-
tion techniques, labeled as ‘Opt-’, to scale this analysis.

found, we have obtained a correct solution; otherwise, coun-
terexamples are added to ce_set and we continue with a
new proposal. The power of CEGIS lies in the fact that with
more counterexamples, SMT solvers learn from violations
and eliminate entire classes of proposals in the search. Notice
also that at Line 2, we iteratively deepen the search based
on the sequence sketch length, so it does not need to reason
about a larger problem instance unless absolutely necessary.

In the acl_ecmp_flowlet example (Figure 3), suppose
that we require program consistency for IPv4 and that the
current headroom is 1Mb. A correct ssk could give a two-
step transition denoted by:

H3×3 =

F F F
F T F
T T T


The first transition deletes flowlet (3Mb) for IPv6 traffic.
This causes a resource spike of 0Mb and a release of 3Mb; and
the headroom becomes 4Mb after this transaction. Next, the
second transition modifies acl (2Mb) into nat_acl (3Mb)
and adds ecmp (1Mb) for IPv4 traffic, which causes a resource
spike of 4Mb and a release of -2Mb.

4.2 Accelerating the CEGIS loop
We have now obtained a sequence CEGIS algorithm that
is guaranteed to be sound (i.e., a synthesized transition is
correct) and complete (i.e., if a correct transition exists, it will
be found); it also produces the shortest transition due to the
iterative deepening search. (More discussions in Section 4.4)
However, in terms of performance, this algorithm has a series
of scalability bottlenecks. A traditional CEGIS problem only
has to reason about SMT formulas generated from a single
program, but FlexPlan produces formulas many times larger as
they are derived from program sequences. Thus, we develop

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 619

two domain-specific optimizations to accelerate the proposal
and verification phases, respectively, based upon a divide-and-
conquer approach. Our observation is that, for specific CEGIS
steps, we can avoid reasoning about ssk directly but instead
reason about its comprising vsk instances individually. Since
SMT algorithms tend to grow exponentially with the formula
size, dividing a large instance (i.e., ssk) into many smaller
ones (i.e., vsk) and reasoning about the smaller formulas
individually is more efficient than reasoning about the larger
instance in a single shot.

Snapshot learning and generalization. We extract in-
sights from a single snapshot before entering the main CEGIS
loop (Line 5, ‘Opt-SnapL’; Figure 4). This algorithm learns
what a “bad” snapshot might look like, and then generalizes
the knowledge for the entire sequence. We observe that, if a
snapshot vsk violates the safety property φ, then no matter
where this snapshot appears in the transition sequence ssk, it
still constitute a violation. Thus, there is much to learn from
an individual vsk before we have to stitch many such snap-
shots together. Stated in another way, resource constraints
δ force us to perform end-to-end reasoning in general, but
the safety aspect of the reasoning is still decomposable to
individual snapshots.

This is achieved by operating a loop that extracts as many
unsat cores as possible (within timeout threshold) from a
single snapshot vsk, but only asserting safety properties φ

and ignoring resource concerns δ. Each iteration produces
one counterexample that witnesses a specific violation for
any snapshot in the sequence. For instance, a counterexample
might say that {v1(T), v2(T), v3(F)} violates IPv4 execution
consistency, so this snapshot should never appear anywhere
in the sequence. After producing many counterexamples, we
aggregate and feed such knowledge into the main CEGIS loop,
so that the proposal phase will not err in the same way on
the larger sequence sketches. Further, for efficiency, FlexPlan
distills counterexamples into “minimum unsatisfiable cores”
(unsat cores) [20], which is a subset of assignments to vsk.v
as the root cause. In our running example, the unsat core
{v1(T), v3(F)} articulates the essence of the violation—the
two IPv4 related blocks are not updated together. The main
CEGIS loop ingests this condensed knowledge, avoiding the
larger formulas from full-blown counterexamples.

Snapshot verification. The ‘Opt-SnapV’ optimization re-
duces the task of verifying a proposed ssk against φ into
smaller tasks of verifying each individual vsk in it. The in-
tuition still stems from the fact that φ can be reasoned per
snapshot, whereas δ is a sequential property and needs to be
synthesized end-to-end. The proposal phase (Line 9; Figure 4)
must already ensure end-to-end feasibility in its proposal; so
a subsequent verification may only fail due to violation of φ.
Thus, when verifying ssk, we check individual vsk snapshots
separately. If any snapshot produces a violation, its counterex-
ample is used in the next round of synthesis.

Figure 5 shows the pseudocode for both optimizations.

1: function SNAPSHOTLEARN(vsk, φ)
2: uc_set← /0 // Aim to learn unsat cores from vsk
3: while ¬ Timeout do
4: // Solve for a new violation by negating φ

5: {vsk.v, pkt}← SYMBOLIC(Bk, Packet)
6: {vsk.v := v, pkt := p}← SMTSOLVE(vsk, uc_set, ¬φ)
7: if {v, p} == /0 then // Exhausted all ce’s
8: return uc_set
9: else // New violation, extract unsat core

10: uc_set← uc_set ∪ EXTRACTUC(v, p, φ)
11: return uc_set
12: function SNAPSHOTVERIFY(ssk, φ) // Verify a proposed ssk.
13: ce_set← /0 // Counterexample set
14: for vsk ∈ ssk do
15: ce← SMTVERIFY(vsk, φ)
16: if ce ̸= /0 then
17: ce_set← ce_set ∪ {ce}
18: return false
19: return true // All snapshots verify!

Figure 5: The snapshot learning (Opt-SnapL) and snapshot
verification (Opt-SnapV) algorithms. Note that the snapshot
learning algorithm does not need to enumerate all counterex-
amples or unsat cores, as it serves as an optimization for the
main CEGIS loop. If the learning times out (Line 3), the
collected uc_set is still useful in the main CEGIS.

4.3 Diagnosing the synthesis
Another domain-specific property of our synthesis lies in its
diagnosability. In traditional synthesis, even if the tool strug-
gles to find a solution, it may not mean that a valid solution
does not exist—unless it has exhausted the search space. Thus,
the search in the worst-case scenario may spend a significant
amount of time only to conclude at the end with a failure. In
contrast, we observe that FlexPlan can obtain three types of
conclusive proof early in the game. This helps us to determine
whether or not a continued search will be fruitful, and enables
further optimizations. We call these techniques introspection.

Existence? A basic type of introspection is to determine
whether or not a safe transition exists at all, regardless of the
resource headroom. We observe that FlexPlan can determine
this by checking pold and pnew against the safety specification
φ. If both programs are correct, then some safe transition must
exist—the degenerate case is to make a one-step transition
{pold→pnew}, exposing no intermediate state (but potentially
causing a very large resource spike and thus may not be feasi-
ble). However, if even this check fails, FlexPlan aborts with
the conclusion that no solution exists.

Deepening the search? Once we pass this smell test, we
are faced with a harder introspection task—what should be
the upperbound of t, the length of the sequence sketch? The
algorithm in Figure 4 uses a naïve upperbound, where t it-
eratively deepens from one to k, the total number of change
annotations. It first searches through all possible t-step transi-
tions; if no such transition is both feasible and safe, it attempts

620 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a longer transition sequence with t+1 steps. Failures are only
conclusive at t = k, where each transition only applies one
change thus no further breakdown is possible. However, this
deepening search gets significantly more expensive with every
increment to t—at each t, we need to perform a full round of
CEGIS with a sequence of t sketches. Thus, it is beneficial to
reflect on the usefulness of a larger t before we deepen the
search, potentially stopping far earlier than the naïve bound.
This introspection relies on the following property:
Introspection theorem. Assume that the switch has infinite
resources. Without resource constraints, if there does not exist
a t-step safe transition plan, then there cannot exist any safe
transition plan with more than t steps.
Proof sketch: The intuition is that, if a t-step transition exists
that satisfies φ but not δ, we can potentially make more gran-
ular changes in a longer transition sequence to stay within
δ; thus, attempting a (t +1)-step transition could be fruitful.
On the other hand, if a t-step transition that satisfies φ does
not exist to begin with, then any t ′-step transition where t ′ > t
cannot exist either. We can prove this by contradiction: if
a t ′-step transition exists, repeatedly combine any adjacent
transitions into a larger transition until it becomes a t-step
transition. This resulting transition must satisfy φ as it exposes
strictly a subset of the states in the t ′-step transition. 2

Thus, when FlexPlan concludes that no t-step transitions
exist, before it attempts a (t +1)-step CEGIS, it performs the
above introspection. The introspection may conclude that a)
some safe solution exists but b) no safe solution is feasible
under the current resource constraints. This may be disap-
pointing, but all is not lost—runtime programmable switches
make it possible to deallocate resources to make extra room
(e.g., by deleting certain tables or table entries).

Resource release? Whether to deallocate resources and
which tables to delete are up to the network operator, but
FlexPlan performs a third introspection to diagnose how much
resource release would be sufficient for a t-step transition
(where the search has stopped). This relies on an SMT opti-
mization primitive max-smt, which can maximize an objec-
tive function while solving for a solution. Recall that each step
causes a resource spike during the transition, and a headroom
change after it. We track the the minimum headroom across a
t-step transition, and ask for a solution that maximizes it:

min_headroom = min
∀ j

vsk j.headroom

δ
∗= max-smt(min_headroom) s.t. ssk ∧ φ

δ∗ will be the smallest headroom possible to maneuver a
t-step transition, and δ∗−δ is the amount of resource release
that is required to achieve a feasible update.

4.4 Remarks
We discuss several properties of the synthesis techniques.

Introspection. An important property of the introspection
algorithms is that they work with sequence sketches of the

current length of the search (i.e., t steps). Thus, they do not
lead to new scalability bottlenecks. Furthermore, the combi-
nation of the second and third introspection techniques also
enables a synthesis goal of identifying a safe transition plan
with minimized resource spikes—first determine the sequence
length upperbound for a safe transition (with the second intro-
spection), and then synthesize a transition while minimizing
resource spikes at this length (with the third introspection).

Guarantees. The completeness of the synthesis is derived
from the fact that the candidate solution space is finite and that
CEGIS will eventually finish an exhaustive search [26]. Con-
cretely, the solution space is defined by the two-dimensional
matrix Hk×t . k is the number of annotations, and therefore
finite. t is the sequence length, initially undetermined, but we
know that it is upperbounded by k, because applying one an-
notation per step will result in the longest possible sequence.
This is because we ask that each transition step makes positive
progress, so no reverts are allowed once a change has been
made. The synthesis is also sound, because FlexPlan always
verifies the correctness of a proposed candidate plan.

5 Discussions and Limitations
P4 intermediate states. Intermediate states when the data
plane is under change have been considered in the P4Runtime
standard (cf. DATAPLANEATOMICS) [6]. However, the current
standard focuses on the atomicity and intermediate states
when adding or removing a batch of table entries for existing
MA tables. Runtime table additions and removals, as a recent
development, have not yet been captured in P4Runtime. Nev-
ertheless, for table entry changes, P4Runtime describes how
atomic pointer swaps can be used for transactional changes
(when available in the target), and discusses the headroom
requirement for preparing the changes in scratch area. This
results in a similar range of considerations as recent designs
for runtime programmable switches [19, 53]. We hope that
FlexPlan will further the research in handling date plane inter-
mediate states and the standardization process in P4Runtime.
Change annotation primitives. In the spirit of target-
independence, our change annotations capture the intersection
of hardware reconfiguration primitives between FlexCore [53]
and rP4 [19]. Reconfiguration primitives that are not yet fully
supported across platforms (e.g., parser changes [19] and ta-
ble swap operations [53]) are considered out of scope for the
current paper. These are interesting avenues for future work.
Switch architectures. Recent designs of runtime pro-
grammable switches [19, 53] employ disaggregation to split
memory from compute. Thus, FlexPlan models memory
resources as a global constraint—e.g., when a table is re-
moved, the released resources can be used anywhere. How-
ever, future runtime programmable switches might adopt al-
ternative architectures—e.g., RMT switches [12] with fixed
stage boundaries would require a different model on mem-
ory reusability. Similarly, for SmartNIC targets with software
and hardware pipelines [1], atomic transactions may become

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 621

Programs LoC Tables Synthesis results Programs (α) Specification Headroom # Steps Time(s) Greedy
time(s) c.e.(u.c.)

flowlet 216 6 5.61 0(0) switch (20%) IPv4 exec. consistency 80% 2 (✓) 110.32 132.37
simple_nat 362 6 6.02 1(1) switch (20%) IPv4 exec. consistency 50% 3 (✓) 160.25 timeout

ndp 275 7 5.73 1(1) switch (20%) IPv4 exec. consistency 20% 5 (×) 318.95 timeout
beamer 448 7 6.79 2(2) switch (40%) IPv4 exec. consistency 50% 3 (✓) 197.53 timeout

vpc 272 10 6.48 2(2) switch (40%) Espec field consistency 20% 4 (✓) 263.38 timeout
sai_p4 697 14 7.18 2(2) switch (40%) L2/L3 field consistency 20% 4 (✓) 436.44 timeout

linear_road 846 24 13.48 4(4) switch+meter-stat L2/L3 field consistency 20% 2 (✓) 186.24 552.82
nethcf 822 30 14.71 6(6) switch+meter-stat IPv4 exec. consistency 20% 2 (×) 93.90 105.51

netcache 1845 96 37.59 14(14) switch+ipv4-ipv6 L2/L3 field consistency 20% 2 (✓) 249.99 749.78
switch 5599 120 199.43 27(24) switch+ipv4-ipv6 IPv4 exec. consistency 20% 2 (✓) 102.35 124.46

Table 2: FlexPlan scales to real-world programs. The left-hand side uses a range of popular programs, ranked by the number of
MA tables they contain. It uses an update ratio of 20% with 50% resource headroom. The right-hand side focuses on case studies
with switch.p4, including synthetic and realistic changes. For each change, we denote resource peak needed to atomically update
the entire program in a single step as S, and set the headroom to β×S (β = 20%,50%,80%). The greedy synthesis times out in 5
out of 10 cases, and it is much slower than FlexPlan for the rest of the cases.

harder due to the need to synchronize across pipelines. Thus,
as alternative architectures become available in the future,
FlexPlan may need to incorporate a new set of constraints.
Safety properties. The FlexPlan consistency specifications
capture safety (but not liveness) properties that are defined
over multiple program executions, or k-safety hyperproper-
ties [15,49]—specifically, 3-safety, as FlexPlan reasons about
the old, new, and current snapshots. Among safety properties,
it does not analyze stateful packet processing, where program
behaviors may mutate based on the input packets [30]. Fur-
ther, FlexPlan only reasons about a single network device, so
extending it for network-wide updates is future work.
Resource utilization. FlexPlan considers switch memory con-
straints as the main bottleneck resource. In a P4 program, each
MA table has a ‘size’ field that specifies the maximum num-
ber of entries it could contain. This provides coarse-grained
information as input to FlexPlan. However, the number of
entries in a table is not the same as physical memory con-
sumption, which further depends on the match types and their
target-specific implementation (e.g., TCAM vs. SRAM). To
obtain exact information, FlexPlan would need the compiler
to produce such data for the old and new programs. Modeling
other types of resource constraints is left to future work.
Synthesis delay. Requiring each runtime update to go through
a formal synthesis phase will incur delay to the change. As we
will show, the latency is a few minutes across our evaluation.
We believe that reliability gains outweigh the resulting delay.

6 Evaluation
Prototype. We have built FlexPlan in ∼5000 lines of code
(available at [2]). Our prototype consists of two components:
(1) a frontend translator building upon an existing tool [18],
which takes in the annotated P4 program and the specifica-
tion, and converts them into an instrumented sequence sketch
and SMT formulas; and (2) the main CEGIS backend which
searches for a transition and performs introspection whenever
needed. We use Z3 [8] as the SMT solver.
Methodology. Our program corpus is based upon popular

programmable switch applications, representing use cases in
monitoring, security, offloading—similar as recent P4 verifica-
tion projects [18, 38, 50]. It contains real-world P4 programs,
with sizes ranging from 200+ to 5000+ LoC. Further, FlexPlan
uses two methods to generate program changes. Synthetic
changes are generated using a similar strategy as existing
work [53], which controls the number of changes with a pa-
rameter α. If a program has M tables, an update ratio α will
generate M×α table additions, deletions, or modifications. To
test realistic changes, we use switch.p4 as the basis to perform
manual modifications based on its control block boundaries
(e.g., remove or add back the egress statistics control block
process_egress_bd_stats()), mimicking feature changes
in realistic deployments. To analyze headroom, we assume
that each table has the same size, denoted as U.
Evaluation objectives. Our evaluation primarily focuses on
various dimensions of scalability: (1) How well does FlexPlan
scale to real-world programs and sizable changes? (2) How
well do the granular consistency levels work? and (3) How
effective are the FlexPlan optimization and introspection tech-
niques? We note that existing P4 verification projects [18, 38]
analyze the correctness of single program snapshots, so they
are not suitable as baseline solutions for comparison. Thus, we
have created several FlexPlan variants as baseline solutions,
where specific optimization techniques are disabled.

6.1 Macrobenchmarks
We start with the macrobenchmarks summarized in Table 2.

Scalability. The first macrobenchmark (left four columns)
tests the scalability of FlexPlan with popular switch programs.
We use “L2/L3 field consistency” (i.e., intermediate snapshots
should preserve the same L2/L3 processing outcome) with a
fixed update ratio of 20%. Further, we set the headroom to
50% of what would be required for the most straightforward
plan that updates the entire program in a single step, which in
turn would lead to the highest possible resource peak. There
are two high-level takeaways. First, as the program size in-
creases from 200+ to 5000+ LoC, synthesis time also grows

622 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

significantly, as larger programs produce bigger SMT formu-
las. However, even for the largest program, FlexPlan was able
to finish within 3.4 minutes. Second, the number of learned
counterexamples (‘ce’) also grows with the program size, and
FlexPlan effectively learned from a relatively few number of
counterexamples (varying from 0 for the smallest programs
to 27 for the largest) before finding a correct transition. We
further break it down by showing the number of counterex-
amples learned from a single snapshot (i.e., in the process
of enumerating unsat cores with SnapL, labeled as ‘uc’). Ex-
cept for switch.p4, FlexPlan enumerated all unsat cores in the
SnapL phase, so the main CEGIS loop identified a correct
solution in the first attempt. For switch.p4, FlexPlan performs
3 CEGIS iterations in the main loop to identify the transition.

Synthesized switch.p4 changes. The second macrobench-
mark (right-hand side) zooms in on modifications to
switch.p4, a datacenter switch implementation. We first test
six synthesized changes with different control parameters—
resource headrooms (rows 1-3), update ratios (rows 2+4),
specification types (rows 5-6)—and examine their influence
on the transition sequence lengths and synthesis time. As we
can see, more severe headroom constraints lead to longer syn-
thesis time (rows 1-3). FlexPlan had to try longer transition
sequences to find a solution or conclude that no solution exists
(shown as ×). Larger update ratios also lead to longer synthe-
sis time (e.g., 23% increase when changing from α = 20% to
α = 40% in rows 2 and 4). Moreover, the specification type
also has a direct influence on synthesis. Field consistency on
egress_spec is easier to check compared to L2/L3 header
checks. FlexPlan took 1.8-7.3 minutes across all cases.

Hand-crafted switch.p4 changes. Next, we analyze a set
of hand-crafted changes to switch.p4, by adding, removing, or
modifying well-defined control blocks. We also vary the spec-
ifications across data points. The switch+meter-stat case
removes all statistics tables (5 tables overall) in switch.p4,
and adds in meter related tables (4 tables). For L2/L3 field
consistency, FlexPlan identifies an update plan with 2 transi-
tions. A closer look at the update plan shows that FlexPlan
first removes all statistics tables, then adds meter tables—this
is possible because statistics tables do not manipulate L2/L3
packet headers. On the other hand, IPv4 execution consistency
fails to generate a update plan because most of the modified
tables share some execution paths, which means they must
be updated together. The required headroom goes beyond the
available resources (20%). The switch+ipv4-ipv6 update
removes IPv6 processing tables (10 tables in total) and adds
IPv4 processing tables (8 tables). IPv4 execution consistency,
on the other hand, could find a update plan with 20% head-
room. This is because IPv4 and IPv6 tables can be updated
separately as they do not share execution paths. All experi-
ments with realistic changes finished within 4.2 minutes.

FlexPlan vs. greedy synthesis. We also test the greedy
synthesis algorithm (Section 4.1.1), which either maximizes
progress (‘Greedy MinSeq’) or minimizes resource spikes

7UDQVLWLRQ�VWHSV

5
HV
RX
UF
H�
XV
DJ
H

�

�

��

��

� � � � �� �� �� ��

*UHHG\�0LQ6SLNH��)OH[3ODQ�0LQ6SLNH��
*UHHG\�0LQ6HT��)OH[3ODQ�0LQ6HT��

-5

10

5

0

R
es
ou
rc
e
In
cr
ea
se
(U
)

Figure 6: A NetCache case study showing step-by-step transi-
tions and the headroom changes. The greedy synthesis pro-
duces suboptimal transitions whtn it is able to finish; it times
out under more severe resource constraints.

(‘Greedy MinSpike’) for each step locally. As Table 2 shows,
it times out after 30 minutes for five out of ten cases. When it is
able to produce a transition, it only finds suboptimal solutions.
Figure 6 visualizes a case study on NetCache, where greedily
maximizing per-step progress results in a transition in seven
steps with 80% headroom, whereas FlexPlan produces a much
shorter transition in four steps (‘FlexPlan MinSeq’). Similarly,
FlexPlan when minimizing resource usage (cf. Section 4.4)
leads to much lower peak usage than greedily minimizing
resource spikes per step. This demonstrates the benefits of the
sequence sketch encoding for end-to-end synthesis.

6.2 Consistency levels vs. headroom
Next, we show that the granular consistency specifications
in FlexPlan can lead to lower resource requirements when
rolling out an update. We use “program consistency” and
“execution consistency” as baselines, which are the strongest
and weakest guarantees developed in existing work, respec-
tively [53]. We chose three large switch programs (NetHCF,
NetCache, switch.p4), and generated 50 changes with α rang-
ing from 5% to 40%. For each change, we ask FlexPlan to
find the transition sequence that minimizes the peak resource
usage under each specification. We then averaged across all
changes with the same α and show the results in Figure 7.

Our first takeaway is the inflexibility of heuristic-based def-
initions in FlexCore [53]. Although “execution consistency”
is a weaker requirement than “program consistency,” it un-
fortunately does not reduce the resource peak by much and
the two corresponding curves are closely coupled together
(i.e., ‘FC-Prog’ vs. ‘FC-Exec’). It can reduce the resource
peaks for specific cases, but aggregating over all cases the
reduction is only 5%. We found that this is highly correlated
to the program shapes and where the changes are made. A
common root cause can be attributed to the bottleneck table
problem. If a change modifies some tables that are shared
by many or all execution paths, then it forces all changes to
be made in the same step, equating “execution consistency”
to “program consistency.” Since FlexCore [53] only relies
on “reachability” information at table level and does not ana-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 623

 0

 5

 10

 15

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Re
so

ur
ce

 in
cr

ea
se

 (U
)

Update ratio

FC-Prog
FC-Exec

FP-Exec
FP-Field

(a) NetHCF.p4

 0
 5

 10
 15
 20
 25
 30
 35

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Re
so

ur
ce

 in
cr

ea
se

 (U
)

Update ratio

FC-Prog
FC-Exec

FP-Exec
FP-Field

(b) NetCache.p4

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Re
so

ur
ce

 in
cr

ea
se

 (U
)

Update ratio

FC-Prog
FC-Exec

FP-Exec
FP-Field

(c) Switch.p4

Figure 7: The granular consistency specifications in FlexPlan can effectively reduce peak resource usage. FC-Prog and FC-Exec
represent program consistency and execution consistency properties as defined in FlexCore [53], which only analyzes reachability
across tables without considering program semantics. FP-Exec refines execution consistency to consider specific traffic classes in
FlexPlan. FP-Field is a new consistency definition in FlexPlan that constrains the processing outcomes of specific header fields.

 0
 20
 40
 60
 80

 100
 120

0.20 0.30 0.40

C
om

pl
et

io
n

tim
e

(s
ec

)

Update ratio

ver. syn. u.c.

(a) NetHCF.p4

 0
 50

 100
 150
 200
 250
 300
 350
 400

0.20 0.30 0.40

C
om

pl
et

io
n

tim
e

(s
ec

)

Update ratio

ver. syn. u.c.

(b) NetCache.p4

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

0.20 0.30 0.40

C
om

pl
et

io
n

tim
e

(s
ec

)

Update ratio

ver. syn. u.c.

(c) Switch.p4

Figure 8: The snapshot-based optimizations are effective. Each group of bars plots the turnaround times, from left to right, for
FlexPlan, NoSnapV (no snapshot verification), NoSnapL (no shapshot learning), and NoSnapVL (disabling both optimizations),
respectively. On switch.p4, both techniques are necessary for sizable changes; otherwise the analysis will time out after 30
minutes. We further break down each bar by the time the solution spends in verification, synthesis, and unsat core extraction.

lyze program semantics, it cannot distinguish whether or not
a change actually affects a particular traffic class, conflating
the two guarantees whenever bottleneck tables are modified.

In contrast, the granular consistency levels in FlexPlan are
effective in reducing the peak resource usage by capturing
program semantics. First, FlexPlan refines “execution con-
sistency” even further by defining it over traffic classes of
interest. Specifically, we have tested three variants of “ex-
ecution consistency” defined over traffic classes (shown as
‘FP-Exec’). For switch.p4, we specify it only for IPv4 traf-
fic without tunneling; for NetCache, only for read requests
to the cache data structure; and for NetHCF, only packets
that establish TCP sessions. Thus, if a table change does
not affect how these traffic classes are processed—even at a
bottleneck table—FlexPlan is still able to produce granular
transitions with lower peak resource usage. The reductions for
NetHCF, NetCache, and switch.p4 are 47%, 64%, and 45%,
respectively, compared to the fixed execution consistency in
FlexCore. Further, we have also tested “field consistency,” to
showcase FlexPlan’s ability to define new consistency lev-
els beyond tuning traffic classes (shown as ‘FP-Field’). This
states that L2/L3 headers and standard metadata must be pro-
cessed with the same outcome during transition. This leads to
even lower peak usage: the reduction is 46%, 67%, and 68%,
respectively, compared to the granular execution consistency
levels above. This is because it allows a mix of old and new

tables to co-exist on execution paths, as long as this does not
change the processing behaviors for specific header fields.

6.3 Snapshot learning and verification
Next, we evaluate the effectiveness of the snapshot learning
(SnapL) and verification (SnapV) optimizations. We create
three baseline solutions from FlexPlan where one or both opti-
mizations are turned off: NoSnapV, NoSnapL, and NoSnapVL.
Figure 8 compares the four solutions with different update
ratios and programs. Across all data points, FlexPlan outper-
forms NoSnapVL in terms of completion time by 70% on
average, demonstrating the effectiveness of the two snapshot-
based optimizations. On switch.p4, the NoSnapVL baseline
times out when α > 20%. Further decomposition shows that
the SnapL and SnapV optimizations lead to 58% and 37%
improvements on average, respectively.

Both SnapL and SnapV are more effective with larger pro-
grams (which lead to larger SMT formulas per snapshot) and
higher update ratios (which lead to a larger update plan search
space). For instance, at α = 40%, SnapL reduces the comple-
tion time by up to 81% for NetCache. With smaller update
ratios, the number of possible update sequences is already
small, so the time spent in learning unsat cores with SnapL
does not afford as much improvement. The trend for SnapV is
similar. For smaller formulas (e.g., NetHCF and NetCache),
it is possible for FlexPlan to iterate through all unsat cores,

624 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 50

 100

 150

 200

 2 4 6 8 10 12 14
 0
 1
 2
 3
 4
 5
 6
 7
 8

C
om

pl
et

io
n

tim
e

(s
)

Re
so

ur
ce

 in
cr

ea
se

 (U
)

Sequence Length

Time Resource

(a) NetHCF.p4

 0
 200
 400
 600
 800

 1000
 1200

 5 10 15 20
 0

 2

 4

 6

 8

 10

C
om

pl
et

io
n

tim
e

(s
)

Re
so

ur
ce

 in
cr

ea
se

 (U
)

Sequence Length

Time Resource

(b) NetCache.p4

 0

 500

 1000

 1500

 2000

 5 10 15 20
 0
 2
 4
 6
 8
 10
 12
 14

C
om

pl
et

io
n

tim
e

(s
)

Re
so

ur
ce

 in
cr

ea
se

 (U
)

Sequence Length

Time Resource

(c) Switch.P4

Figure 9: The FlexPlan introspection technique is effective in determining whether the synthesis should continue to try longer
sequences. The vertical lines denote the stopping points for FlexPlan, which significantly outperforms a solution with introspection
turned off, which naïvely increases the sequence length beyond the vertical lines until the maximal upper bound or timeout.

so the main CEGIS phase could bypass the verification com-
pletely since the first proposal attempt will identify a correct
plan. Its impact is stronger on larger programs like switch.p4.

6.4 Introspection and diagnosis

We now evaluate the three CEGIS introspection techniques.
Existence. We first generate a set of program modifications

that are guaranteed to violate the safety specification. For
instance, if the specification requires that egress_spec pro-
cessing outcomes should be preserved, we ensure that it is
modified in a different way. For all cases, FlexPlan correctly
rejects the annotated change as unsafe within 90 seconds.

Sequence length. Figure 9 evaluates the FlexPlan intro-
spection for determining whether to attempt a longer sequence.
We create cases where the resource constraints will guarantee
an eventual failure, and test how soon FlexPlan can detect this
inevitability. We also compare against a version of FlexPlan
without this introspection. For NetHCF (α=40%), NetCache
(α=20%), and switch.p4 (α=20%), FlexPlan concludes that
the synthesis will fail when the sequence lengths are six, five,
and five, respectively, within several minutes. However, the
solution without introspection will keep increasing the se-
quence lengths (and running time) until the maximal upper
bound (i.e., the total number of changes) or timeout, with-
out being able to decrease resource usage further. It took 3×
and 12× more time to conclude that the resources are insuffi-
cient for NetHCF and NetCache, respectively; for switch.p4,
it times out before producing any useful results. Thus, the
introspection technique helps determine failures efficiently.

Resource release. After each failure, we further ask Flex-
Plan to produce diagnostic results on the least amount of
resource release that will enable a safe and feasible transition.
This is achieved by introspecting the sequence upper bound
for a safe transition, and then solving for a transition with
minimized resource peak. This diagnosis took less than ten
minutes across all update ratios and programs—the longer
completion time is due to the need for trying the longest
possible safe transition. We then emulated the release by in-
creasing the switch headroom by the suggested amount, and
re-attempted another synthesis and verified that it succeeded.

7 Related Work
Runtime programmability. Network switches have become
programmable at runtime [3, 4, 9, 19, 52, 53], where switch
programs can be modified with partial reconfiguration without
downtime. Runtime programmability has also been studied in
host networking [40,42]. FlexPlan develops a formal approach
to synthesizing runtime programmable switch updates.
Safe network updates. Ensuring the safety of network up-
dates [34, 43] is a key goal in cloud datacenters [37]. In
the context of OpenFlow-based SDN, consistent update al-
gorithms have been extensively studied [21, 44, 45]. Flex-
Plan considers an analogous problem for programmable data
planes, with new definitions on correctness and intermediate
states, and uses program synthesis to achieve this goal.
Synthesis and verification. Program synthesis has found
many applications in the networking domain [13, 22, 59],
including for identifying safe configuration updates in Open-
Flow SDN [39]. For programmable switches, existing projects
have developed many formal verification techniques for P4
programs [18,38,50,51,61]. Compared to these lines of work,
FlexPlan aims at synthesizing a correct-by-construction up-
date sequence, which in turn requires new techniques.

8 Conclusion
Programmable networks enable the development of new fea-
tures “in the field,” without relying on slow-paced vendors. To
safeguard network behaviors, formal verification has proven
essential. Runtime programmable networks [57], in contrast,
emphasize that the deployment of these features must also be
seamless and “in the field”—without requiring slow-paced
maintenance operations. However, live program modifications
necessitate new techniques for providing formal assurance.
FlexPlan is a synthesis tool that can identify a safe and feasi-
ble program transition sequence automatically. It introduces
domain-specific techniques for synthesizing switch program
updates. With comprehensive evaluation, we demonstrate the
scalability of FlexPlan on real-world programs.
Acknowledgments: We thank our shepherd Muhammad
Shahbaz and all reviewers, as well as Jiarong Xing and Kuo-
Feng Hsu for their insightful comments and suggestions. This
work was supported by NSF in part by CNS-2214272.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 625

References
[1] BlueField SmartNIC Ethernet. https://www.mellanox.com

/products/BlueField-SmartNIC-Ethernet.

[2] FlexPlan code repository. https://github.com/824728350
/FlexPlan.

[3] Jericho2. https://www.broadcom.com/products/ethern
et-connectivity/switching/stratadnx/bcm88850.

[4] The NPL network programming language. https://github
.com/nplang.

[5] Nvidia/Mellanox Spectrum Ethernet Switches. https://www.
nvidia.com/en-us/networking/ethernet-switching
/spectrum-sn4000/.

[6] P4 Runtime Specification: Atomicity, Batch and Ordering of
Updates: DataPlaneAtomic. https://p4.org/p4-spec/p4r
untime/main/P4Runtime-Spec.html#sec-batching-an
d-ordering-of-updates.

[7] P4 Specification: Annotations. https://p4.org/p4-spec
/docs/P4-16-v1.0.0-spec.html#sec-annotations.

[8] The Z3 Theorem Prover. https://github.com/Z3Prover/
z3.

[9] Trident4 boosts enterprise switch capacity to 12.8 terabit. ht
tp://www.gazettabyte.com/home/2019/7/11/trident
-4-boosts-enterprise-switch-capacity-to-128-te
rabit.html.

[10] Wedge 100bf-32x 100gbe data center switch. https://www.
edge-core.com/productsInfo.php?cls=1&cls2=180&c
ls3=181&id=335.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rex-
ford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and
D. Walker. P4: Programming protocol-independent packet
processors. ACM SIGCOMM CCR, 44(3), 2014.

[12] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz. Forwarding metamor-
phosis: Fast programmable match-action processing in hard-
ware for SDN. ACM SIGCOMM Computer Communication
Review, 43(4):99–110, 2013.

[13] E. H. Campbell, W. T. Hallahan, P. Srikumar, C. Cascone,
J. Liu, V. Ramamurthy, H. Hojjat, R. Piskac, R. Soulé, and
N. Foster. Avenir: Managing data plane diversity with control
plane synthesis. In Proc. NSDI, 2021.

[14] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Var-
gaftik, A. Berger, G. Mendelson, M. Alizadeh, S.-T. Chuang,
I. Keslassy, et al. dRMT: Disaggregated programmable switch-
ing. In Proc. SIGCOMM, 2017.

[15] M. R. Clarkson and F. B. Schneider. Hyperprop-
erties. Cornell University Tech. Report, 2009.
https://hdl.handle.net/1813/11660.

[16] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta,
B. Fahs, D. Rubinstein, E. C. Zermeno, E. Rubow, J. A. Do-
cauer, et al. Andromeda: Performance, isolation, and velocity
at scale in cloud network virtualization. In Proc. NSDI, 2018.

[17] C. David and D. Kroening. Program synthesis: challenges and
opportunities. Philosophical Transactions A: Mathematical,
Physical and Engineering Sciences, 2017.

[18] D. Dumitrescu, R. Stoenescu, L. Negreanu, and C. Raiciu. bf4:
Towards bug-free P4 programs. In Proc. SIGCOMM, 2020.

[19] Y. Feng, Z. Chen, H. Song, W. Xu, J. Li, Z. Zhang, T. Yun,
Y. Wan, and B. Liu. Enabling in-situ programmability in net-
work data plane: From architecture to language. In Proc. NSDI,
2022.

[20] Y. Feng, R. Martins, O. Bastani, and I. Dillig. Program synthe-
sis using conflict-driven learning. In Proc. PLDI, 2018.

[21] K.-T. Foerster, S. Schmid, and S. Vissicchio. Survey of consis-
tent software-defined network updates. IEEE Communications
Surveys Tutorials, 21(2):1435–1461, 2019.

[22] X. Gao, T. Kim, M. D. Wong, D. Raghunathan, A. K. Varma,
P. G. Kannan, A. Sivaraman, S. Narayana, and A. Gupta.
Switch code generation using program synthesis. In Proc.
SIGCOMM, 2020.

[23] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat.
Evolve or die: High-availability design principles drawn from
Google’s network infrastructure. In Proc. SIGCOMM, 2016.

[24] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford,
and W. Willinger. Sonata: Query-driven streaming network
telemetry. In Proc. SIGCOMM, 2018.

[25] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, P. Tammana, and
D. Walker. Contra: A programmable system for performance-
aware routing. In Proc. NSDI, 2020.

[26] S. Jha and S. A. Seshia. Are there good mistakes? A theoretical
analysis of CEGIS. In Proc. SYNT, 2014.

[27] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soule, C. Kim,
and I. Stoica. NetChain: Scale-free sub-RTT coordination. In
Proc. NSDI, 2018.

[28] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim,
and I. Stoica. NetCache: Balancing key-value stores with fast
in-network caching. In Proc. SOSP, 2017.

[29] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
M. Zhang, J. Rexford, and R. Wattenhofer. Dynamic schedul-
ing of network updates. In Proc. SIGCOMM, 2014.

[30] Q. Kang, J. Xing, Y. Qiu, and A. Chen. Probabilistic profiling
of stateful data planes for adversarial testing. In Proc. ASPLOS,
2021.

[31] Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, and X. Luo.
Programmable in-network security for context-aware BYOD
policies. In Proc. USENIX Security, 2020.

[32] N. Katta, O. Alipourfard, J. Rexford, and D. Walker. Cacheflow:
Dependency-aware rule-caching for software-defined networks.
In Proc. SOSR, 2016.

[33] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford. Hula:
Scalable load balancing using programmable data planes. In
Proc. SOSR, 2016.

[34] N. P. Katta, J. Rexford, and D. Walker. Incremental consistent
updates. In Proc. HotNets, 2013.

[35] G. Li, M. Zhang, C. Liu, X. Kong, A. Chen, G. Gu, and H. Duan.
NetHCF: Enabling line-rate and adaptive spoofed IP traffic
filtering. In Proc. ICNP, 2019.

626 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.mellanox.com/products/BlueField-SmartNIC-Ethernet
https://www.mellanox.com/products/BlueField-SmartNIC-Ethernet
https://github.com/824728350/FlexPlan
https://github.com/824728350/FlexPlan
https://www.broadcom.com/products/ethernet-connectivity/switching/stratadnx/bcm88850
https://www.broadcom.com/products/ethernet-connectivity/switching/stratadnx/bcm88850
https://github.com/nplang
https://github.com/nplang
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html#sec-batching-and-ordering-of-updates
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html#sec-batching-and-ordering-of-updates
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html#sec-batching-and-ordering-of-updates
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html#sec-annotations
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html#sec-annotations
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
http://www.gazettabyte.com/home/2019/7/11/trident-4-boosts-enterprise-switch-capacity-to-128-terabit.html
http://www.gazettabyte.com/home/2019/7/11/trident-4-boosts-enterprise-switch-capacity-to-128-terabit.html
http://www.gazettabyte.com/home/2019/7/11/trident-4-boosts-enterprise-switch-capacity-to-128-terabit.html
http://www.gazettabyte.com/home/2019/7/11/trident-4-boosts-enterprise-switch-capacity-to-128-terabit.html
https://www.edge-core.com/productsInfo.php?cls=1&cls2=180&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=180&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=180&cls3=181&id=335

[36] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and
D. Maltz. zUpdate: Updating data center networks with zero
loss. In Proc. SIGCOMM, 2013.

[37] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and
D. Maltz. zUpdate: updating data center networks with zero
loss. In Proc. SIGCOMM, 2013.

[38] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, C. C.
Robert Soulé, Han Wang, N. McKeown, and N. Foster. p4v:
Practical verification for programmable data planes. In Proc.
SIGCOMM, 2018.

[39] J. McClurg, H. Hojjat, P. Cerny, and N. Foster. Efficient syn-
thesis of network updates. In Proc. PLDI, 2015.

[40] S. Miano, A. Sanaee, F. Risso, G. Rétvári, and G. Antichi.
Domain specific run time optimization for software data planes.
In Proc. ASPLOS, 2022.

[41] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching
ASICs. In Proc. SIGCOMM, 2017.

[42] L. Molnár, G. Pongrácz, G. Enyedi, Z. L. Kis, L. Csikor,
F. Juhász, A. Kőrösi, and G. Rétvári. Dataplane specialization
for high-performance OpenFlow software switching. In Proc.
SIGCOMM, 2016.

[43] T. D. Nguyen, M. Chiesa, and M. Canini. Decentralized con-
sistent updates in SDN. In Proc. SOSR, 2017.

[44] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In Proc. SIG-
COMM, 2012.

[45] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consistent
updates for software-defined networks: Change you can believe
in! In Proc. HotNets, 2011.

[46] A. Solar Lezama. Program Synthesis By Sketching. PhD
thesis, EECS Department, University of California, Berkeley,
Dec 2008.

[47] A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. Se-
shia. Combinatorial sketching for finite programs. In Proc.
ASPLOS, 2006.

[48] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith.
Scaling hardware accelerated network monitoring to concur-
rent and dynamic queries with *flow. In Proc. ATC, 2018.

[49] M. Sousa and I. Dillig. Cartesian hoare logic for verifying
k-safety properties. In Proc. PLDI, 2016.

[50] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and
C. Raiciu. Debugging P4 programs with Vera. In Proc. SIG-
COMM, 2018.

[51] B. Tian, J. Gao, M. Liu, E. Zhai, Y. Chen, Y. Zhou, L. Dai,
F. Yan, M. Ma, M. Tang, J. Lu, X. Wei, H. H. Liu, M. Zhang,
C. Tian, and M. Yu. Aquila: A practical usable verification
system for production-scale programmable data planes. In
Proc. SIGCOMM, 2021.

[52] T. Wang, X. Yang, G. Antichi, A. Sivaraman, and A. Panda. Iso-
lation mechanisms for high-speed packet-processing pipelines.
In Proc. NSDI, 2022.

[53] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krish-
namurthy, and A. Chen. Runtime programmable switches. In
Proc. NSDI, 2022.

[54] J. Xing, K.-F. Hsu, Y. Qiu, Z. Yang, H. Liu, and A. Chen.
Bedrock: Programmable network support for secure RDMA
systems. In Proc. USENIX Security, 2022.

[55] J. Xing, Q. Kang, and A. Chen. Netwarden: Mitigating net-
work covert channels while preserving performance. In Proc.
USENIX Security, 2020.

[56] J. Xing, A. Morrison, and A. Chen. NetWarden: Mitigating
network covert channels without performance loss. In Proc.
HotCloud, 2019.

[57] J. Xing, Y. Qiu, K.-F. Hsu, H. Liu, M. Kadosh, A. Lo, A. Akella,
T. Anderson, A. Krishnamurthy, T. S. E. Ng, and A. Chen. A
vision for runtime programmable networks. In Proc. HotNets,
2021.

[58] J. Xing, W. Wu, and A. Chen. Ripple: A programmable, de-
centralized link-flooding defense against adaptive adversaries.
In Proc. USENIX Security, 2021.

[59] Q. Xu, M. D. Wong, T. Wagle, S. Narayana, and A. Sivaraman.
Synthesizing safe and efficient kernel extensions for packet
processing. In Proc. SIGCOMM, 2021.

[60] L. Yu, J. Sonchack, and V. Liu. Mantis: Reactive programmable
switches. In Proc. SIGCOMM, 2020.

[61] N. Zheng, M. Liu, E. Zhai, H. H. Liu, Y. Li, K. Yang, X. Liu,
and X. Jin. Meissa: scalable network testing for programmable
data planes. In Proc. SIGCOMM, 2022.

9 Appendix
This appendix includes more details on the safety specifica-
tions as summarized in Table 1 in the main paper.

9.1 Specifications
S4: Element consistency for ACL. This specification is similar
as program consistency, but only constrains traffic that goes
through a particular ACL table. For all packets that have been
processed by the ACL table, their execution paths must be of
the same version (i.e., either old or new).

1 specification {
2 ghost bit<1> sawOld = false;
3 ghost bit<1> sawNew = false;
4 ghost bit<1> acl_hit = false;
5 @old => { sawOld = true; }
6 @new => { sawNew = true; }
7 @hit('acl') => { acl_hit = true; }
8 all_old = {
9 $cur.in.acl_hit => !$cur.eg.sawNew;

10 }
11 all_new = {
12 $cur.in.acl_hit => !$cur.eg.sawOld;
13 }
14 assert all_old || all_new;
15 }

S5: Table consistency for ECMP. We introduce a new
consistency definition that is not available from existing

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 627

work [53], which we call “table consistency.” It states that for
each packet, the table (in this case ECMP) hit/miss behavior
in the intermediate state should be either the same with the
old or the new processing logic.

1 specification {
2 ghost bit<1> ecmp_hit = false;
3 @hit('ecmp') => { ecmp_hit = true; }
4 // preserve processing behavior across states
5 table_consistency_ecmp = {
6 $cur.in == $old.in == $new.in =>
7 ($cur.eg.ecmp_hit == $new.eg.ecmp_hit ||
8 $cur.eg.ecmp_hit == $old.eg.ecmp_hit);
9 }

10 assert table_consistency_ecmp;
11 }

Although FlexPlan’s primary focus is consistency guaran-
tees during the program transition, its specification language
can naturally support general program correctness properties
that are used in P4 program verification [18, 38]. We show-
case two of them below. At a high level, general program
correctness properties are expressed by constraining a single
snapshot using $cur, without referring to $old or $new.

S6: VLAN table access. Packets should go through VLAN
table during any intermediate state.

1 specification {
2 ghost bit<1> vlan_hit = false;
3 @hit('vlan') => { vlan_hit = true; }
4 table_access_vlan = {
5 $cur.eg.vlan_hit == true;
6 }
7 assert table_access_vlan;
8 }

S7: Modification on ipv4.ttl. Any intermediate program
snapshot should always decrement the ipv4.ttl header by one
when the packet leaves the egress.

1 specification {
2 decrement_ipv4_ttl = {
3 $cur.eg.ipv4.ttl == $cur.in.ipv4.ttl - 1;
4 }
5 assert decrement_ipv4_ttl;
6 }

9.2 Instrumentations
Figure 10 includes an illustrative example that shows how a
specification is translated into instrumentations in the input P4
program. This uses our running example acl_flowlet_ecmp,
building upon the version sketch in Figure 3 and adding the
instrumentations from the specification S1.

As we can see, the sawOld, sawNew and acl_hit variables
are directly inserted into source program. We then add in-
strumentation that checks whether there exists a packet that
violates the execution consistency after going through exe-
cution path. We then compute the weakest preconditions for

1 control ingress {
2 apply {
3 ghost_ipv4_valid = ipv4.isValid();
4 /* annotation site 1: acl->nat_acl */
5 if(ipv4.isValid()) {
6 if (! vsk.v1) { // @mod
7 acl.apply(); ghost_saw_old = 1;
8 ghost_acl_hit = 1;
9 } else {

10 nat_acl.apply(); ghost_saw_new = 1;
11 ghost_acl_hit = 1;
12 }
13 }
14 /* annotation site 2: delete flowlet */
15 if(! vsk.v2) { // @del
16 if (ipv6.isValid())
17 flowlet.apply(); ghost_saw_old = 1;
18 }
19 /* annotation site 3: add ecmp */
20 if(vsk.v3) { // @add
21 ecmp.apply(); ghost_saw_new = 1;
22 }
23 if (ghost_ipv4_valid && ghost_acl_hit) {
24 if (ghost_saw_old && ghost_saw_new){
25 violation();
26 }
27 }
28 }
29 }

Figure 10: Instrumenting the version sketch in Figure 3 with
safety specification, and also adding statements that check the
safety properties.

the reachability of the violation nodes. This is achieved by
iterating through CFG nodes and propagating stronger con-
ditions to all their neighbors based on the transition relation.
We then check whether the predicate is valid using the Z3
theorem prover. In the example, the combined program and
safety formula to check would be derived as:

gso = (ipv4.isValid∧¬vsk.v1)∨ (¬vsk.v2∧ ipv6.isValid)
gsn = (ipv4.isValid∧vsk.v1)∨vsk.v3
gah = ipv4.isValid

check = ¬(ipv4.isValid∧gah∧gso∧gsn)

where gso represents the logical formula for when
ghost_saw_old is assigned true, and similarly for gsn as
ghost_saw_new and gah for ghost_acl_hit. The logical
variable gso, for example, captures the path conditions re-
quired to set the ghost variable to true as well as any interme-
diate assignments on the path to variables that might affect
these path conditions/branches.

628 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Practical Intent-driven Routing Configuration Synthesis

Sivaramakrishnan Ramanathan
Meta

Ying Zhang
Meta

Mohab Gawish
Meta

Yogesh Mundada
Meta

Zhaodong Wang
Meta

Sangki Yun
Meta

Eric Lippert
Meta

Walid Taha
Meta

Minlan Yu
Harvard University

Jelena Mirkovic
USC/ISI

Abstract
Configuration of production datacenters is challenging due
to their scale (many switches), complexity (specific policy
requirements), and dynamism (need for many configuration
changes). This paper introduces Aura, a production-level syn-
thesis system for datacenter routing policies. It consists of a
high-level language, called RPL, that expresses the desired
behavior and a compiler that automatically generates switch
configurations. Unlike existing approaches, which generate
full network configuration for a static policy, Aura is built
to support frequent policy and network changes. It generates
and deploys multiple parallel policy collections, in a way that
supports smooth transitions between them without disrupt-
ing live production traffic. Aura has been deployed for over
two years in Meta datacenters and has greatly improved our
management efficiency. We also share our operational require-
ments and experiences, which can potentially inspire future
research.

1 Introduction

Stable and efficient routing in large data centers is crucial
for many online service providers. Routing misconfiguration
can lead to packet drops, traffic black holes, performance
degradation, and service downtime [2, 3, 9, 22]. Traditionally
at Meta datacenters, routing configuration relied on human
operator expertise to manually translate high-level routing
policies into low-level switch configurations. This approach
has two key problems.

First, manual generation of policies is often error-prone,
especially with the enormous increase in scale (thousands
of switches across multiple data centers), complexity (poli-
cies that describe specifications unique to a network), and
dynamism (configuration changes to accommodate failures
or maintenance of switches) of modern datacenters [10, 14].

Second, manually crafting configurations for datacenters
is a time-consuming process. Earlier data centers at Meta
were uniform and the similar configurations could be used
to provision new data centers. However, there is a need to

support diverse topologies required for various AI applica-
tions or existing topologies that are modified to accommodate
resource shortages caused by supply chain bottlenecks. With
the need to support diverse topologies, existing configurations
can no longer be reused and each new topology implies a long
process of manual configuration.

Recently, researchers have proposed configuration synthe-
sis [7, 8, 12], which automatically generates switch configu-
rations based on high-level policies. These systems usually
provide a declarative language for operators to define the
intended routing policies and then automatically synthesize
low-level routing configurations, which implement these poli-
cies. While these solutions work well in principle, there are
still a few challenges that are not handled by one-shot auto-
mated configuration synthesis.

Challenge 1: Handling dynamic configurations. Con-
figuration changes are frequent in networks, because of many
dynamic events. The dynamism is driven by different business
objectives (shifting services from one data center to another),
making network operations more efficient (e.g., smarter load
balancing or more redundancy to failure), safely testing new
protocols, or even performing regular routine maintenance of
switches. Configuration synthesis should be able to generate
configurations that natively handle dynamism.

Challenge 2: Expressing conditional policies. Current
declarative languages express routing policies in a way that is
not aligned with the realities of a production network. First,
they treat each switch as live and ready to serve traffic. Yet,
in large-scale data centers, switches can be in different opera-
tional states at the same time, and thus we need to be able to
express routing policies that depend on these states. Second,
current declarative languages specify all switches at a fixed
granularity (e.g., one specific switch [7] or all switches in the
specific role [8]). However, operational needs require speci-
fications at a flexible granularity. Some intents in high-level
policies may require specific switch or set of switches in one
location, while others may require all switches in a given role.

Challenge 3: Reconfigurations at scale. Existing brown-
field migration systems, plan out the configuration change

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 629

without disrupting production traffic by creating intermediate
configurations that would help transitioning the network from
old configuration to a new one [18, 23]. Although such tech-
niques provide a safe, non-disruptive mechanism to change
configurations, they can be expensive to carry out migrations.
Our experiences show that deploying a new configuration in
switches often takes a much longer time (minutes to hours)
than computing the configuration (e.g., seconds), primarily
because of the scale of the network. Given this constraint,
migrating configurations via transitioning would take a very
long time, hindering network operations.

In this paper, we introduce our configuration synthesis sys-
tem Aura1, which supports flexible granularity of policy in-
tents, conditional intents and scalable synthesis to BGP con-
figurations, to smoothly aid network dynamics. Our contribu-
tions are as follows:
• We propose a novel configuration synthesis approach,

which pre-compiles a set of possible paths for the datacen-
ter, called “base paths”, given a set of high-level policies.
Our insight is that given datacenter regularity and sym-
metry, any path can be expressed as one of a small set of
base paths. Network operators can use these base paths to
support dynamic configuration.

• We define a new declarative language called RPL (routing
policy language), which allows operators to define policy
intents with flexible switch granularities and activation
conditions, based on switch states.

• Aura leverages configuration staging and uses labels to ac-
tivate them. When there is a need to change configurations,
routes are announced with appropriate labels (e.g., BGP
community tags). Switches on receiving the labels, check
the appropriate configuration that match the conditions and
activate the configuration. This minimizes the need to re-
configure the network every time there is a need to change
the configuration.
In addition to our contributions, Aura has been partially

deployed in Meta datacenters for over two years, compiling
all policies on hundreds of thousands of switches daily. To the
best of our knowledge, we are the first to share operational
experiences in building and deploying a configuration syn-
thesis system. Our work unveils a unique set of challenges to
academia, which we hope may inspire future research.

2 Background and Challenges

As discussed earlier, large-scale datacenters need automated
configuration synthesis. Even with fully automated configura-
tion synthesis, carrying out a data center-wide policy change
still requires careful planning at every step, to ensure that
the network remains operational throughout the change. We
need to gradually roll out a policy change, with minimum

1We chose the name Aura, because it represents the essence (of an indi-
vidual).

FADU

SSW
SSW

FAUUOFAUU1

FADU1 FADUO

SSW1 SSWM

Rack
Switches

Fabric
Switches

Spine
Switches

Fabric
Aggregate
Switches

SLclient

Intents
I1: Client should reach service SL
running on the same pod

I2: As a backup, client can reach same
service SG running on a different pod

I3: Client should prefer primary local over
global

I4: Stop announcing route to peer that is
in DRAINED state

I5: Peers in WARM state should be less
preferred than LIVE state

I6: Carry traffic from infrastructure
prefixes even in DRAINED state

I7: Rack prefix should be propagated only
within the pods

I4 ,I5 ,I6

SG

I4 ,I5 ,I6

RSW1 RSW2 RSW3

FSWMFSW1

Pod1

I1, I3I7
RSW1 RSW2 RSW3

FSWMFSW1

Pod2

rack
prefix

rack
prefix I7 I2, I3

I4 ,I5 ,I6 I4 ,I5 ,I6

Figure 1: Data center topology with sample intents.

disruptions and safe fallback mechanisms. And we need to
support such rollout across hundreds of thousands of switches,
in different states of readiness. In this work, we stress one
overlooked goal of configuration synthesis: producing con-
figuration changes that lead to the shortest time to complete
the reconfiguration, and making the process automated, non-
disruptive to production traffic and with minimal operator
burden. In this section, we start by describing our data center
topology and routing intents. We then discuss the operational
challenges of configuration synthesis in large data centers.

2.1 Background
We use Figure 1 to illustrate our production network topol-
ogy [6,29], a few sample intents (I1 to I7) used in our network,
and the remaining open challenges, which our work addresses.
Data Center Topology: It consists of a hierarchy of four lay-
ers with thousands of switches at each layer. Switches at the
same layer share the same switch role. The servers are con-
nected to leaf rack switches (RSW). RSWs are connected to
fabric switches (FSW). RSWs and FSWs are grouped into
pods. Spine switches (SSW) connect the pods and provide
several disjoint paths between pods. Data centers are dis-
tributed over multiple buildings and are interconnected via
the Fabric Aggregation (FA) layer. The FA consists of two lay-
ers: FAUU (uplink) and FADU (downlink). FAUU connects
to data-center-external networks (i.e., the backbone planes),
while FADU aggregates downstream-data-center networks
by connecting to SSWs. In this work, we limit our scope of
configuration synthesis till the FAUU layer, and leave the con-

630 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

figuration synthesis of external switches for future work. This
topology enables several disjoint end-to-end paths between
any two server racks for failure resilience. Other topologies
in Meta datacenters share the same properties with different
numbers of layers and switch roles. Other large production
data centers exhibit similar symmetry of roles and hierarchy
of switch roles [24], and likely face similar challenges to
configuration synthesis.
Routing: We use the Border Gateway Protocol (BGP) to
disseminate routing information through the network and pro-
vide connectivity to end servers [5]. BGP is a highly scalable
routing protocol that can support large topologies with many
prefixes. BGP is also commonly supported many network
switch vendors, and network operators are typically familiar
with BGP operation. We configure BGP policies to manage
how routing information is shared across the network and to
control traffic flow objectives, such as traffic load-balancing,
redundancy, and path preference. At Meta, BGP configura-
tions within network tiers are homogeneous. We configure
BGP to use Equal Cost Multipath (ECMP), where each switch
forwards traffic equally to its neighboring peers based on the
routing policy. Meta data centers are also experimenting with
our own routing protocols such as OpenR [15] that is being
rolled out into parts of the data center. OpenR policies can
coexist with BGP policies. Currently, we use OpenR policies
for infrastructure prefixes (those prefixes belonging to the
management plane) and BGP for traffic prefixes.
Intents, policies, and configurations: We define an intent
as a high-level description of a routing goal, e.g., all rack
prefixes should be propagated within pods. Intents are closely
tied to our operational needs of service reachability, main-
tainability and reliability. [5]. Figure 1 shows seven intent
examples to achieve our needs in traffic control. I1, I2 and
I3 define reachability goals for a client to a service, that is, a
service should be reachable even when an instance of the ser-
vice is added, removed or migrated. Intents I4 and I5 help in
managing networks during such events without disrupting pro-
duction traffic, as switches often undergo maintenance when
they fail, reboot, or even crash. I6 is an exception to I4 that
aims to provide reliability under failure, and I7 confines the
propagation scope of a route. We will elaborate more about
these intents from §2.2 to §2.4. We define a policy to be a
collection of intents, e.g., a combination of intents I1 to I7. At
Meta, there are many data centers, and we define a collection
of policies known as configurations for every data center. For
example, the datacenter in Utah (EAG) has 53 policies with
each policy containing upto 5 intents. The synthesis process
starts with a policy specified by a domain-specific language
and produces a set of switch configurations.

2.2 Handling Dynamic Configurations

Configuration changes are frequent in production and often
impose a high operational burden to ensure live production

traffic is not affected. Previous synthesis systems focus on
generating one snapshot of the entire network’s configura-
tions [7, 8]. When changes happen, they have to rerun the en-
tire synthesis and generate another snapshot. There are three
common scenarios that necessitate configuration changes:

Intent changes: Intents describe high-level objectives of
reachability, aggregation, and route propagation (see [5] for
routing objectives). They can change due to various opera-
tional needs – a service migrating from one data center to an-
other, a better load balancing strategy (e.g., adding new paths
to a destination in the ECMP pool), a more resilient failure
recovery (e.g., adding a new backup path) or changing prefer-
ence strategy (e.g., when we would move from location-based
path selection to client-based preference, where the client can
themselves set a preference of which server they would like
to reach). The underlying routing configuration should reflect
these intent changes. To support changes between existing
intent collections, we need a synthesis approach that can gen-
erate multiple configurations in a switch and control when
each would activate. The same approach can add new policies
by enriching existing switches with new, inactive configu-
rations. New configurations can then be activated gradually
throughout the production network.

Policy implementation changes: We can implement intents
expressed by operators in different ways, by using different
protocols, or different mechanisms in one protocol. For exam-
ple, in BGP, one can carefully set MED values, IGP values,
or local preference values to achieve the same intents. In our
data centers, we are exploring alternative routing protocols
for better scalability, e.g. our home-grown intra-domain rout-
ing OpenR [15]. Thus, the same network-wide intents can be
supported in OpenR with a completely different set of con-
figurations compared to BGP. To facilitate testing, we need
to gracefully roll out OpenR configurations and replace old
BGP configurations. Such evolution requires a large amount
of changes to configurations on all switches. To minimize
impact to business, we need a way to gracefully migrate be-
tween configurations, and even roll back changes should they
prove inefficient.

Switch state changes: Switches constantly undergo changes
due to failures, new builds, and regular maintenance. In all of
these scenarios, we need to gracefully remove the impacted
switches from serving traffic, to minimize disruptions to ser-
vices. Switch state changes are common in our production
network. In the month of August 2022, there were about 745K
drain events with about 8K drain events on average per day.

2.3 Expressing Conditional Policies

Conditional policies require different configurations for a
given switch, depending on network conditions. There are
three common classes of network conditions:

Intents that apply to a subset of switches: Operators need

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 631

the flexibility to specify the groups of switches where a policy
intent is applied. Some intents should be applied globally,
while others may be relevant only for a specific service in a
particular region to have customized routing solution. It is
often needed during migration or deployment to accomodate
the changing capacity. For example, intents I1 to I3 specify
preference for local service SL over global service SG only for
RSWs in Pod1 and Pod2, whereas intent I7 applies to all RSWs
and restricts rack prefixes to pods. This means our intent
specification and synthesis should support conditions that
define groups of switches at different topological granularity.

Intents that apply to switches in a certain state: Data
center topologies support multiple paths between any pair
of server racks. Path selection depends on switch states.
We define three operational states for each switch: LIVE,
DRAINED, and WARM. A LIVE switch is in operation; it al-
lows all traffic and announcements to go through. Conversely,
a DRAINED switch is brought down for maintenance; it
should not carry any live production traffic. A switch being
drained goes through an intermediate WARM state when pre-
fixes are gradually removed from its announcements. In this
state, the switch could carry traffic for any prefix if the pre-
fix does not have other paths involving only LIVE switches.
Switch configurations should suppress announcements from
DRAINED switches (reflected in intent I4), and favor an-
nouncements from LIVE switches over those from WARM
switches (reflected in intent I5). To keep the production net-
work operational with these requirements, one method is to
synthesize, which generates multiple configurations, for dif-
ferent switch states. Only one configuration is active at the
time at a given switch, depending on the current state of the
switch. For instance, intent I4 specifies to stop announcing a
route to peers in DRAINED states and intent I5 specifies that
we prefer peers in LIVE states than those in WARM states.

Exceptions to policies: Network operators need to specify
exceptions to their policies for failure resilience. For instance,
as per intent I4, DRAINED switches do not carry any live traf-
fic. However, an exception to this intent is I6, which requires
DRAINED switches to carry traffic towards infrastructure
prefixes. Intent specification language needs to support excep-
tions for critical prefixes (e.g., infrastructure prefixes), and our
synthesis process must generate corresponding configurations
that treat those specific prefixes differently from others.

2.4 Reconfigurations At Scale
It is challenging to support dynamic policies and conditional
policies at production scale. Switch reconfiguration in a live
production network is expensive, because it typically requires
transferring away all the services that use the network and
draining all routes from the switch. After these actions, we
can bring down the switch, change the configurations, and
then bring up the switch again. Finally, the switch would be
tested before reintroducing the routes that it carried before

0 20 40 60 80

0

100

200

300

400

500

600

% of policies

tim
e

in
 h

ou
rs

(a) Configuration update times.

20 40 60 80 100

0

10

20

30

40

50

60

70

% of policies

%
 o

f s
w

itc
he

s

(b) Reconfigured switches.

Figure 2: Switch reconfiguration metrics.

reconfiguration. Typically, not all switches in the data center
are reconfigured at the same time. Instead, reconfiguration
is achieved in a phased manner, where only a portion of the
network is reconfigured at a time. This process could take
many weeks to update all switches, given the scale of a pro-
duction network, as well as the complexity of the phased
deployment [10]. Figure 2(a), shows the configuration update
times for policies that were changed at Meta in the last three
months of 2021. On average, switches can take upto 4.5 hours
to update. Most of the switches are updated immediately, but
some switches take very long to configure. The 95th percentile
of configuration update can take as much as 20 hours. This is
mainly caused due to switch failures that require additional
time to make them operational again.

Changing policies (e.g., switching between collections of
intents) can also have a large footprint, that is, it involves
the configuration of many switches. For instance, configuring
backbone policies typically involves changing configurations
for a few FA switches. On the other hand, introducing a new
technique to handle infrastructure prefixes (such as I6), would
involve a lot more switches, as they can go into a DRAIN
state. Figure 2(b) shows the percentage of switches in our
network that required configuration update for different policy
changes. An average policy change requires configuration of
at least 25.6% of switches. Reconfigurations are only going
to get longer as we typically double the number of switches
every five years [10]. Moreover, the time and complexity
taken for configuring switches differ depending on a switch’s
role. On one hand, FSW switches carry only a small por-
tion of traffic in our network. Given the redundancies of our
network, a failure in a FSW switch usually does not cause
issues in the network. On the other hand, aggregate switches,
such as fabric aggregators, carry a larger portion of traffic,
so their changes should be planned more carefully. Failures
during reconfiguration of these aggregator switches can be of
a higher consequence as they can disconnect buildings within
datacenters.

3 Aura Design

To address the outlined challenges, we present Aura in Fig-
ure 3. The goal of Aura is to allow network operators to

632 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Determine
Base Paths

Policy
Compiler &
Verification

Topology
Simplification

Reachability
Analysis

RPL
(operator specified)

Per Device
Configuration

Figure 3: Aura architecture.

express flexible policies that are capable of handling various
network reconfiguration scenarios at scale while minimizing
disruption to production traffic. Aura handles the challenges
outlined in §2 as follows:
• To support multiple configurations in a switch (as seen

in § 2.2), Aura uses a set of base paths to pre-configure
the network. Base paths are a collection of paths across
different types of switches, which have the property that
any propagation path in the network can be expressed as
the base path or a sub-path of the base path. In §3.1, we
explain how Aura uses topological features such as sym-
metry and hierarchy, along with reachability requirements
to determine the set of base paths.

• To handle dynamic policies (as seen in § 2.2), Aura uses a
labeling mechanism. If we are synthesizing into BGP con-
figurations, Aura generates configurations that match on
dedicated community tags and maps them to a correspond-
ing policy. This results in multiple configurations defined
in a single configuration file. In §3.2, Aura uses dedicated
community tags that are attached by every switch to indi-
cate its current state. Together with staging, this behaves as
if there is a change between an old and a new configuration
without the need for switch reconfiguration. Minimizing
reconfigurations helps in supporting changes in policies at
scale (as seen in §2.4).

• To express conditional policies (as seen in § 2.3), we intro-
duce conditions that depend on switch state.

• We design a routing policy language (RPL) for Aura (§4),
which uses base paths, switch conditions, route propaga-
tion conditions, and route preferences to express a set of
policies.

• Finally, a compiler generates BGP configurations from
RPL and tests configurations in the network (§5).

3.1 Base Paths: Minimizing Reconfiguration
Aura minimizes reconfiguration of large production networks
by pre-compiling the network with a set of paths known as
the base paths. Base paths are similar to pathlets, which are
fragments of paths representing nodes that are willing to
route [13]. The base path concept stems from the following
two insights.
• Policies can be defined on abstract paths: Modern data

center topologies are usually hierarchical, symmetric, and

Pod1

Data

center1

Pod2

Data

center1

Pod1

Data

center 2

RSW

Pod1

Data

center1

Pod2

Data

center1

Pod1

Data

center2

Reach RSW in the
same pod

Reach RSW in a
different pod (same

data center)

Link failureReach RSW in a
different pod

(different data
center)

Device
failure

FSW

SSW

FADU

FAUU

Backup PathPrimary Path

Figure 4: Extracting base paths.

uniform. To be resilient to failures and ease the operation,
most data centers classify switches into different roles ac-
cording to their layers in the FAT-tree like topology [24].
For example, every switch in the lowest layer (RSW in
our topology) has a south bound connection to servers in
a rack, and a north bound interface up to the aggregate
switches (FSW in our topology). Switches of the same
role are functionally equivalent. Thus, base paths can be
defined as abstract paths using these abstract switch roles.
In turn, policy intents can be expressed by using the base
path or a sub-path of the base path.

• Staging policies for dynamic scenarios: Our base path set
contains not only the preferred paths under a regular, static
scenario, but also alternative paths under many dynamic
scenarios, such as failures, migration, or maintenance as
discussed in §2.2. When these changes occur, we simply
need to select configurations that correspond to a different
subset of base paths. Aura’s synthesis has already deployed
all configurations in the individual switches, and we just
need to deactivate one configuration and activate the other.
We identify base paths by first simplifying datacenter topol-

ogy and then performing comprehensive reachability analysis
on that topology.

Topology simplification. We simplify a datacenter topol-
ogy by abstracting multiple switches that share some given
characteristic as a single switch. We can make abstractions at
different granularities. For example, we can abstract all RSWs
into a single node, or abstract all RSWs in the same pod into
a single node. It is important to find the right granularity to
maintain reachability without jeopardizing scale. Abstractions
at too fine granularity create many paths and jeopardize syn-
thesis scalability and operational maintainability. Abstractions
at too coarse granularity (e.g., single role – single switch [7])
do not allow us to stage paths at different scenarios, such as
intents I1 and I2, which requires traversing through specific
switches in the network. Moreover, role-based abstraction can

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 633

express these policies, but configuring switches to support
them is a challenge. For example, intent I2 requires visiting
the same switch role multiple times. Aura’s compiler needs a
way to keep track of propagating the announcement through
such paths (see §5).

Reachability analysis. We find a balanced abstraction by
performing a primary reachability analysis between RSW
switches on the minimal topology. We then extend these
paths to support alternative paths, to accommodate cases when
nodes on a primary path fail. Any duplicate paths will be col-
lapsed into a single path. Figure 4 illustrates this process. We
start with three primary paths: one between two RSWs in the
same pod, the second between two RSWs in different pods,
and the third between two RSWs in different datacenters.
Then we consider the failure of the direct FSW, direct SSW,
or direct FA switch (or links connecting them) on the primary
paths. For each failure we add nodes to express the backup
path. Note that we first consider single switch or link failures
on each primary path. Further, we consider larger failure sce-
narios such as regional failures and disasters. For example,
we consider backbone failure and craft the paths to provide
intra-region paths by traversing the FA layer. Currently, we
generate base paths according to our reachability objective,
which is, providing reachability of intents in the presence of
at most two failures (either link or device or both)2. Note that
the process of generating base paths is not unique to Meta’s
network. Any datacenter network can exploit its symmetry
and hierarchical nature to derive its base paths.

3.2 Staging and Labeling: Supporting Dy-
namic Configurations

We support network changes, while minimizing reconfigu-
ration via staging and labeling. These mechanisms help us
support parallel configurations in switches (with only one
configuration being active) and to support conditional intents.

• Staging configuration snippets and activating them with
labels are the two key techniques to allow coexistence
of multiple policies. Each policy is implemented as a set
of configurations and loaded onto the switches. A policy
may have a condition expressed as a combination of labels.
Only when the conditions are satisfied, the policy will be
activated.

• Propagating label with routes is the way we achieve con-
ditional policies. The labels are translated into BGP com-
munity tags in our synthesis process, and are attached to
routes and propagated through switches. Each switch can
match the conditions based on the current switch state, at-
tach its own state as community tags, and announce it to
downstream switches.

2We determined any failures beyond that would degrade capacity, thus
this would no longer be a reachability problem. We deploy other measures to
handle such large-scale failures, which are beyond the scope of this work.

We provide two examples to show how staging and labeling
support dynamic scenarios.

Supporting OpenR deployment. In our data centers, we
are developing an alternative routing protocol known as
OpenR [15] for better scalability. One challenge of applying
Aura to production is how to gracefully migrate the switch
configurations from an old to a new set of configurations.
BGP and OpenR configurations are completely different and
switching between them requires drastic changes to the fleet.
We use Aura to support this process with no disruptions, as
illustrated in Figure 5.

Prefix 1
Prefix 2

Prefix 1

Prefix 2 Prefix 1
Prefix 2

Old
Config

New
Config

Figure 5: Staging and subscription used for migration.

Both versions of configurations are staged on all switches3,
each snippet starts with an activating condition, mapped into
different BGP community tags. In Figure 5, we illustrate
this as red and blue tags. Network operators can then attach
tags to prefixes (prefix 1 or 2) to implement the policy for
that particular prefix. By this, Aura simultaneously supports
both the old and new policy. This technique also gives the
network operator the flexibility to shift traffic in any order
they like, and it also offers the fallback opportunity, should
the new policy have some unforeseen effects on traffic when
it is deployed.

Initially, all prefixes (prefix 1 and 2) use the old configu-
ration (blue). We start with prefixes of less critical services
first to avoid business disruptions. At the origin, Pre f ix2 is an-
nounced with the red tag, so when the announcement arrives
at intermediate switches, the corresponding red configura-
tion is activated and the blue configuration becomes inactive.
Other prefixes are gradually on-boarded to the new configu-
ration by switching their tags in announcements. If the new
configuration has any issue, we can safely switch back to the
old version by controlling community tags at the origin.

Handling switch maintenance. As explained in §2.2, routes
from LIVE switches are preferred over those from WARM
switches (intent I5), and routes from DRAINED switches
should not be used (intent I4). To reflect this policy, we stage
parallel configurations on each switch4 Each configuration
describes actions for a given state of this switch and a given

3FBOSS (Facebook Open Switching System [10]) supports concurrent
deployment of BGP and OpenR configurations.

4FBOSS supports parallel configurations for each device state via in-
stances. Each FBOSS instance contains a local control place and communi-
cates with the central network management system via thrift based service.
Although there can be several instances, only the active instance uses the
switch’s hardware resources [10]. We believe any other switch could also
achieve this by pushing necessary configurations from the control plane.

634 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RSW3 FSW1 RSW1

SSW1FSW1RSW3SG

SL

LIVE LIVE LIVE

DRAIN LIVE,

DRAIN

LIVE,

DRAIN

client

SL preferred over SG
(Intent I3)

Intent I1

Intent I2

Pod2 Pod2 Pod2

Pod1 Pod1 Pod1

RSW3
Pod2

rack

prefix

PC:1:2 PC:1:2 PC:1:3

SC:1:2 SC:1:2

Intent I7

SC: STOPCOMM

PC: PATHCOMM

Figure 6: Supporting conditional policies.

state of the neighboring switch sending announcements to
this switch. The actions could be adding/removing commu-
nity tags, setting preferences, and accepting/rejecting routes.
Taking intent I1 and I2 as an example, as shown in Figure 6,
there are two paths to the client to reach the local service SL
and the global service SG. Intent I3 specifies that I1 (primary)
is preferred over I2 (backup). The RSW switch along the
primary path is going through a DRAINED state, therefore
it attaches the DRAINED tag to its announcement. On the
other hand, the backup path contains all live switches and the
announcement only contains the LIVE tag. The downstream
switches on receiving both the announcements would prefer
the backup path to global prefix over the primary path to the
local prefix. To support this, switches in both primary and
backup paths should be configured to match the DRAINED
tag and allocate a lower preference to the primary path. In §5,
we show how to implement it with concrete BGP attributes.

4 RPL: Expressing Conditional Policies

Our routing policy language – RPL – allows a network oper-
ator to express high-level routing intents, by defining paths
and path preferences. We had two choices while designing
RPL – to make it a domain specific language (DSL), that is,
its syntax is designed from scratch or to make it an embedded
language based on Python. Embedded languages typically
benefit from existing IDE, debugger, type ahead assistant and
error messages, which allows for quick adoption by network
operators. However, embedded languages are hard to verify.
For instance, in Python, users can override basic operators
making it hard to verify a program without running it. On the
other hand, with DSL, the language itself can be defined in a
way that it can reject wrong programs and enforce invariants
we care about. We could also apply any number of static anal-
ysis techniques to determine the effect without running the
program. Therefore, we traded-off the flexibility provided by
embedded languages for correctness and verifiablity of DSL.

Syntax
name ::= string
rx ::= regular exp
lit ::= name | ∼name names
comp ::= <| >| = comp
bp ::= name {hops lit (->lit)*} base path
Bbp ::= base-paths {bp+} base path block
loc ::= name {regex-def rx (. rx)*} location
Bloc ::= locations {loc+} location block
tag ::= name rx tag
Btag ::= tags {tag+} tags block

Btop ::=

topology {
name {

Bloc | Btag | Bbp
}

}

topology block

Brout ::= routing {topology lit} routing block
o ::= origins {location lit} origin

pc ::=
propagate-condition {

lit (,lit)*
}

propagation
condition

p ::= name {hops lit (->lit)*} path
Bpath ::= paths {p+} path block
Bprop ::= propogation {pc Bpath} propagation block
pref ::= preference {lit (comp lit)+} preference

pol ::=

policies {
name {

Brout | o |
Bprop | pref

}
}

policy

Table 1: RPL block and leaf statements.

RPL’s syntax is designed from scratch and is based on
ANTLR [1] – an engine that provides basic syntax parsing.
ANTLR also allows us to easily extend the support of RPL
as and when our operational needs change. Table 1 shows
the collection of statements supported by RPL. Statements
are used to identify base paths, location of switches, describe
tags and define policies with their preferences and conditions.
Groups of these statements, known as “blocks,” are used to
describe different components of the policy. For example, the
topology block (Btop), describes the topology containing the
locations of switches, tags and base paths. The RPL program
required to support all policies discussed in Figure 1 is shown
in Figure 7. To handle the challenges of expressing flexible
policies (§2.3), RPL supports the following features.

Minimizing reconfigurations: RPL allows network opera-
tors to specify topology block (shown in lines 1–23) that helps
in pre-compiling the network. Specifically, in the topology
block, the operator can specify scopes of devices (§3.2), tags
(§3.2) and base paths (§3.1) that could be used by policies.
For example, to support intents I1 to I7, topology block f16
is sufficient. As described in §3.1, network operators are free

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 635

to specify any number of intents that could be supported by
this topology block. If operators want to support other intents,
they could always extend the topology block, but would re-
quire reconfiguration. From our operational experience, we
show in §6 that these changes configure much lesser number
of switches than competing approaches.

Supporting dynamic configurations: Network operators
can specify different policy in the policies block of an RPL
configuration file. This allows them to dynamically change
policy over time. Each policy block, contains the name of the
policy (e.g., RSW_REACHABILITY), routing (topology
block used by the policy), origin (origination location of
routes), propagation (set of paths used by the policy) and
preference (preference among paths or tags). In Figure 7,
policy RSW_REACHABILITY implements the intents I1 to
I5, policy ALLOW_INFRA implements intent I6 and policy
LIMIT_RACK_PREFIX implements intent I7. A network
operator may choose to apply any one of these policies for ap-
propriate prefixes. For instance, as described in an example in
§3.2, network operators may apply RSW_REACHABILITY
for services SL and SG and apply ALLOW_INFRA for infras-
tructure prefixes.

Expressing conditions with scopes: To support flexible
granularity of intents, RPL introduces the notion of a loca-
tions, i.e., one can define a switch in RPL at different levels
of granularity, such as switch role, switch ID, switch plane,
fabric, region, and the datacenter. A location can be defined
in the topology block (as shown in lines 3–12 in Figure 7).
Location definition consists of the switch role, followed by
switch number, pod number, fabric number, and datacenter
name. Some elements can also be replaced by wildcards. The
naming convention for our production network leverages the
symmetry of the network to keep it simple and uniform. For
example, the first spine plane in every data center would have
the same identification number [5]. Network operators can
leverage these naming conventions to define a scope. For
example, I1 requires the route to propagate through the first
RSW present in Pod1, present in the first fabric in the Altoona
(ATN) datacenter, scope RSW.3.2.1.1.ATN can be used.

Expressing different switch states: RPL introduces the
tags block to indicate tags that will be used to identify
switches in a given state. An example of the tags block is
shown from lines 13–17 in Figure 7, which defines tags
LIVE, DRAINED and WARM. These tags will eventually
be mapped in the synthesis process into BGP community
tags, which would be attached from every switch to com-
municate the state of the switch to its neighbors (see §5 for
implementation details). RPL also allows network operators
to limit the propagation of a route announcement by using
prop-condition statement. In Figure 7, we limit the prop-
agation of announcements based on the switch state to only
LIVE and WARM switches (line 29).

Handling exceptions: As per I6, DRAINED state switches

are required to carry traffic for infrastructure prefixes. Net-
work operators can define a new policy ALLOW_INFRA,
that allows DRAINED switches to propagate routes. Network
operators can use the ALLOW_INFRA policy for applicable
prefixes (as described in §3.2).

1 topology{
2 f16{
3 locations{
4 R1P1 { regex-def: RSW.1.1.1.1.ATN }
5 R3P1 { regex-def: RSW.3.1.1.1.ATN }
6 R3P2 { regex-def: RSW.3.2.1.1.ATN }
7 F1P1 { regex-def: FSW.1.1.1.1.ATN }
8 F1P2 { regex-def: FSW.1.2.1.1.ATN }
9 S1PL2 { regex-def: SSW.1.2.1.1.ATN }

10 FSW { regex-def:: FSW* }
11 RSW { regex-def:: RSW* }
12 }
13 tags{
14 LIVE L
15 WARM W
16 DRAIN D
17 }
18 base-paths{
19 B1 {hops RSW → FSW → RSW}
20 B2 {hops RSW → FSW → SSW → FSW → RSW}
21 }
22 }
23 }
24 policies{
25 RSW_REACHABILITY{
26 routing{topology f16}
27 origin{location RSW}
28 propagation{
29 prop-condition (L or W)← I4
30 paths{
31 path P1 R1P1 → F2P1 → R3P1 ← I1
32 path P2 R1P1 → F2P1 → S1PL2 → F2P2 → R3P2 ← I2
33 }
34 }
35 preference{
36 P1 > P2 ← I3
37 L > W ← I5
38 }
39 }
40 ALLOW_INFRA{
41 # Same routing, origin, paths as RSW_REACHABILITY
42 propagation{
43 prop-condition (L or W or D)← I6
44 }
45 preference{
46 L > W > D← I6
47 }
48 }
49 LIMIT_RACK_PREFIX{ ... } ← I7
50 }

Figure 7: RPL configuration describing policies.

5 Compiler Implementation

In this section, we discuss how Aura takes RPL specifica-
tion and synthesizes BGP configurations for various switches.
Aura uses properties of BGP to flexibly map the RPL specifi-
cation to switch configurations.

636 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.1 Supporting Base Paths

The production network would need to be pre-compiled to
support the base paths (specified in the topology block in
RPL). To achieve this, Aura utilizes reserved community tags
and generates rules to match these community tags. The key
idea of using community tags is similar to that of source
routing [26]. To implement a policy for a prefix, appropriate
community tags are attached to the prefix while announcing
it. On receiving the announcement, switches match on the
community tags and take appropriate action of allowing or
denying the route or modifying the tags. Although the idea
seems straightforward, the challenge is how to come up with
systematic community assignment that can be interpretable
and maintainable at scale. Our key idea is an easy to interpret
and debug encoding scheme that translates the base paths
and other intents directly into different bits in the community
attribute.

Encoding paths: Aura encodes the base paths into a struc-
ture called path community tags (PathComm for short). De-
pending on the number of base paths, Aura allocates a unique
PathComm with a format of PATHCOMM:P(1-10):H(1-6),
where numbers in parentheses denote the bit sizes of the fields.
The 10 most significant bits denote the unique base path ID P
and the least significant 6 bits denote the hop number H. Some
paths have switch roles that occur multiple times, e.g., intent
I2, where switch roles RSW and FSW occur twice. For such
paths, the hop count field is used to keep track of where the
announcement is on the path. Aura configures the switches
to support intent I2 as follows. At RSW on the first hop,
the switch matches announcements that contain the PATH-
COMM:1:1, modifies the community tag to PATHCOMM:1:2,
(i.e., increments the hop count), and allows the announcement
to be advertised to FSW. Similarly, Aura configures FSW to
match, modify and advertise the announcement to the corre-
sponding next-hop, that is RSW. When the announcement
reaches RSW again at the last hop, the switch matches PATH-
COMM:1:3, it stops announcing the announcement further.
Therefore at RSW, there are two sets of rules, one that matches
the announcement on the first hop (PATHCOMM:1:1) and
the other that matches the announcement on the third hop
(PATHCOMM:1:3). The use of the community tag ensures
the abstraction of the switch role is maintained without need-
ing to split roles of switches further to support multiple hops
over the same switch type on the same path.

Containing announcements: Some intents require an-
nouncements to be contained to a specific location. For in-
stance, intent I7 limits rack prefix to pods (Figure 6). To sup-
port this, Aura uses a dedicated community tag known as
stop community (StopComm for short). Similar to PathComm,
StopComm follows the format of STOPCOMM:P(1-10):H(1-
6), where P and H are used to denote the path ID and the
hop number to stop announcement respectively. For intent
I7, Aura appropriately configures RSW to stop propagating

MATCH:

RSW_REACHABILITY_TAG

GOTO: RSW_REACHABILITY

MATCH:

ALLOW_INFRA_TAG

GOTO: ALLOW_INFRA

RSW_REACHABILITY

..

..

..

TERMINATE

ALLOW_INFRA

..

..

..

TERMINATE

RSW_REACHABILITY

....

MATCH: HIGH_PREFCOMM

GOTO: HIGH_LOCALPREF

MATCH: MEDIUM_PREFCOMM

GOTO: MEDIUM_LOCALPREF

MATCH: LOW_PREFCOMM

GOTO: LOW_LOCALPREF

SET LOCALPREF 200

TERMINATE

SET LOCALPREF 150

TERMINATE

SET LOCALPREF 75

TERMINATE

Figure 8: Aura generated configuration.

the announcement when it receives STOPCOMM:1:2 and
restricts the announcement to pods.

During configuration synthesis, Aura generates appropriate
match action rules to match on the corresponding communi-
ties and take appropriate action. That is, for PATHCOMM,
the action would be to modify the PATHCOMM to reflect the
hop changes and for STOPCOMM, it would remove the com-
munity tags and prevent the forwarding of the announcement.

5.2 Supporting Dynamic Network

Staging: Aura has reserved community tags to accommodate
different policies. Aura’s compiler incrementally allocates the
community tags based on the order in which they are specified
in RPL. For instance, from Figure 7, a dedicated community
tag known as policy community (PolComm) will be allocated
for RSW_REACHABILITY and ALLOW_INFRA policies.
Similar to PathComm and StopComm, PolComm follows the
format of POLCOMM:POL(1-16), where POL denotes the
policy ID. Figure 8, illustrates how the staged community tags
are used as a pointer to different segments of the BGP con-
figuration file. BGP configurations are processed sequentially
by switches. At the beginning of the configuration are match
statements, matching the staged community tags. The corre-
sponding action on a match is a GOTO statement pointing
to the section of the configuration implementing the policy.
At the end of the section is the TERMINATE command that
terminates the processing of the configuration. We discuss
consistency guarantee from a practical perspective in §7.

Supporting preferences among paths: Within each policy,
network operators may specify preferences among intents
(see §4). To accommodate this, Aura uses preference com-
munity (PrefComm) with a format of PREFCOMM:X, where
X denotes the preference value. For every X value there is a
one-to-one mapping to a local preference value. Currently, at
every switch, there are twelve preferences matching twelve
local preference values. If a switch receives an announcement
with PrefComm, the configuration generated by the compiler
contains a rule that matches on X and the action is a GOTO
statement that implements the appropriate localpref. This is

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 637

0

100

200

300

ZAZ
DKL

PCI
RVA

CCO

0

10

20

Policy Configurations

of

 c
ha

ng
es

(a) Region changes.

0
100
200
300
400

Sep 2021

Nov 2021

Jan 2022

Mar 2022

May 2022

Jul 2022

Sep 2022

5

10

Policy Configurations

of

 c
ha

ng
es

(b) Changes over time.

Figure 9: Intents/policies generated by Aura.

also illustrated in Figure 8, where there are match statements
for setting high, medium, and low local preference values.

5.3 Validating Configuration

To verify the correctness of the BGP compiler output, Aura
uses an emulation-based, routing policy validation framework.
We run a container-based high-fidelity emulation of FBOSS
switch [10], which constructs an overlay network among con-
tainers emulating a small-scale data center without relying on
hardware switches. The topology contains multiple switches
of the same role to mimic cross-POD and cross-DC route
propagation. We load the configurations generated by Aura
to the BGP agent on the emulation switches. The switches
exchange routes according to the rules in the BGP policy
and broadcast End-of-Rib (EoR) messages on convergence.
On receiving all EoR messages, the verification framework
collects Routing Information Base (RIB) from all switches
for validation. The validation algorithm verifies whether the
routing status is identical to the RPL policy. Here, the basic
idea is to traverse the switch network graph as specified in the
RPL propagation path, and check whether all routing paths
are correctly present as specified in RPL (Algorithm in Ap-
pendix §A). First, the algorithm checks whether the prefixes
are originated as intended. It mines the originated prefixes
from the first hop switches of the RPL propagation path and
inserts the found switch and prefix information into a queue
for Breadth-First Search (BFS) traversal. Then, it pops data
from the queue, looks up the given switch and prefix and
collects the RIBs from the switches. From the next switches’
RIBs, the algorithm searches for the matching prefix and com-
munity tag and checks if the next hop of the path is the current
switch. If so, it marks the routing path as visited and pushes
the next path information into the queue to continue traver-
sal. This procedure is repeated until the algorithm traverses
all propagation paths in RPL. We also perform additional
verification on the RPL (described in Appendix C).

6 Evaluation

We first measure the configuration changes made in our pro-
duction data center, and use these measurements to evaluate
Aura by showing how it minimizes switch re-configurations
(§5.1), has a flexible language to express policies (§4) and
overall reduces operator burden. Aura’s compiler is imple-
mented in Python, and has around 13.8 K lines of code. The
routing policy verification is developed in Python with around
1,200 lines of code.

We capture the intent changes made by network operators
for a year from Sept, 2021 to Sept, 2022. During this time,
Aura supported five different data center regions, where each
region has a separate configuration. Figure 9(a) shows the
number of configuration and policy versions generated by net-
work operators across all Aura-supported regions. We intro-
duced Aura to CCO and RVA datacenter regions in September
2021 and thus these two regions have the highest number of
changes. We eventually rolled it out to the remaining regions
this year, with ZAZ being the most recent data center running
Aura. Over time, across these data center regions, there were
54 different versions of configurations and 840K different
policies. On average, there were 10.8 versions of the config-
urations and 168 versions of policies per region. There are
fewer configuration changes than policy changes as not all
policy change would require reconfiguration. Many policies
would have already been pre-compiled by Aura in the network
(as seen in §3.1 and §3.2).

Figure 9(b) shows a timeline of the policy and configuration
changes that occurred across all Aura-supported data center
regions every month. Every month on average, we changed
5 configurations and 87.3 policies. The largest frequency of
updates was observed in July 2022, where we made several
updates to introduce a new propagation path from the back-
bone network to our data centers. We discuss our experience
of this roll-out in Section 7.

6.1 Minimize Switch Changes
To show the benefits of pre-compiling the network, we com-
pare Aura with Propane [7]. Aura creates snapshots of poli-
cies and configures the network to support multiple common
policies in parallel, as opposed to Propane, which compiles
the configuration as and when there is a policy that needs
to be supported in the network. A key drawback of Propane
is that a change in policy may lead to reconfiguration of a
large number of switches. We use simulation to quantify the
benefit of our base path design in practice. We simulate a
scenario where we replay all the policy changes made by
network operators as shown in Figure 9(b). That is, whenever
a policy is changed, we determine the switches that require
re-configuring in case when Aura is run versus the case when
Propane is run, to synthesize switch configurations.

Propane involves too many switch re-configurations: Fig-

638 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Sep 2021

Nov 2021

Jan 2022

Mar 2022

May 2022

Jul 2022

Sep 2022

0

20

40

60

80

100

P10 P50 P90 Aura P90

%
 s

w
itc

he
s

(a) Percentage of switches reconfigured.

20 40 60 80 100

1

10

100

RPL BGP config

% of policies

tim
e

in
 d

ay
s

(lo
g)

(b) Time taken to review.

20 40 60 80 100

1

10

100

RPL BGP config

% of policies

of

 d
ay

s
(lo

g)

(c) Number of revisions.

Figure 10: Aura performance.

ure 10(a), shows the number of switches in all datacenter re-
gions supported by Aura that are reconfigured by Propane.
For every month, we show the 10th, 50th and 90th percentile of
switch re-configurations that are needed. As described in §2.4,
this is time-consuming and disruptive to production traffic.
Even the median number of policy changes on average can
reconfigure 46.8% of all switches. Given the size of our net-
works, this could be in order of tens of thousands of switches.
On the other hand, Aura reconfigures the network only when
new policies cannot be supported by the pre-compiled con-
figurations. Even for the 90th percentile of cases, Aura only
reconfigures 2.1% of the switches on average.

6.2 Aura Reduces Operational Burden

During policy generation, Meta adopts a peer review process,
where network operators generate a configuration and ask
other operators to review the changes. In case of non-Aura-
supported regions, network operators send the new BGP con-
figuration for review. On the other hand, for Aura-supported
regions, network operators send the new RPL configuration
for review.

Non-Aura regions take longer to evaluate: Figure 10(b)
shows the time (log scale) taken in peer review for Aura and
non-Aura regions. On average, we find that non-Aura regions
take 8 days per policy and Aura-regions take 3.6 days per
policy. Some policies can take much longer to review than
others. For instance, the most amount of review time taken for
a policy by non-Aura-region was about 108 days. This policy
introduced a new fairness goal in the fabric aggregation layer,
which was carried out in phases where multiple policies in
non-Aura-regions had to be implemented before the given
policy. On the other hand, for Aura-generated policies, the
maximum review time was about 47 days. Similar to the
non-Aura case, this specific policy involved introducing new
backup paths and had to be extensively tested along with other
Aura-generated policies.

Non-Aura regions generate many more code revisions:
One key factor for reviewing configurations from non-Aura-
supported regions are code revisions. Once the reviewer gives
feedback via code review, the author addresses the comments
and gets back to the reviewer. This process goes on until
the author has addressed all the comments and the reviewer
has no other feedback. Since the raw BGP configurations are
much harder to understand than RPL, revision process tends
to be error prone. Figure 10(c) shows the number of days
taken to generate a revision for Aura and non-Aura regions.
On average, Aura-supported regions take 1.1 day per revision
and non-Aura-supported regions have 3.2 days per revision.
This difference is pronounced at the tail, where the maximum
time taken for a revision was 22 days for Aura-supported re-
gion. However, for non-Aura-supported region, the maximum
number of revisions was 107 days.

6.3 Aura Configuration Properties

Breakdown of RPL policies. All policy versions were en-
coded in 83.2 K lines of RPL by network operators. The most
common statements used to define the policies include the
propagation condition, propagation policy, origin and rout-
ing – this constitutes 1.9K–2.5K lines of code. There are also
382 preference statements. A large number of origin (2.5K),
routing (2.5K) and path (2.3K) statements reflect the support
for multiple backup paths in the network. Similarly, a large
number of prop-condition statements, reflects the frequent
need to restrict the scope of propagation in the network. Other
statements including location, signature, base path, routing
protocols and device states are used only once per configura-
tion, and there were only 54 such statements.

Aura’s Performance. Aura can be broken down into three
stages: time taken to process and validate RPL, compiler
execution time and the per-switch configuration generation
time. On average, RPL processing and validation takes 4.3
seconds and the compiler contributes 2.9 seconds, both of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 639

which are negligible in the entire process. The majority of
the time is taken by BGP configuration generation, which
takes about 88 seconds on average. This is expected, as the
complexity of Aura mainly lies in the BGP compiler, which
must synthesize BGP configurations for every switch in the
network. Before Aura, network operators manually encoded
intents into switch configurations. Based on our interviews
with network operators, these configurations took about 26
weeks to generate, validate and safely deploy. Aura also scales
when the number of policies increases, which typically occurs
as the network grows. We artificially increase the number of
policies to test the configuration synthesis times. We find that
the synthesis times are about the same (about 90 seconds) for
50, 100 and 150 policies.

7 Operational Experience

RPL supporting verification for non-Aura regions. Dur-
ing Aura deployment, for the regions that are not Aura ready,
i.e., those using legacy BGP configurations, operators still
craft the intent in RPL. In this case, although RPL-based
intent is not used to generate BGP policies, it is used for veri-
fication. The existing verification tool uses RPL as the source
of truth and verifies it against manually generated BGP config-
uration. From this experience, RPL enables global verification
before and during Aura deployment, which guarantees the cor-
rectness of the policy migration. There are other tools which
uses RPL as an input. For instance, after the policy has been
deployed, we constantly verify the routes in the produciton
network and alert when unintended behaviors are observed.
This tool uses RPL as the source of truth for verifying the
intents.

Identifying latent failures. The verification approach
helped identifying several errors during the Aura deployment,
such as intent specification errors, faulty compiler logic, BGP
agent bugs, etc. We summarize the identified issues in Table 2
in Appendix B. We now look into two issues. First, when we
configured multiple backup paths to reach RSW within the
same pod – a primary path (RSW → FSW → RSW), a backup
path via a different FSW, and a second longer backup path
(RSW → FSW → RSW → FSW → RSW). When the primary
path fails, the wrong configuration was used, resulting in using
the longer backup path, instead of the shorter one, causing per-
formance degradation. The second issue was a drained FSW
switch, which did not announce the infrastructure prefixes to
the connected RSWs. When another FSW switch failed, the
external world lost connectivity to the RSW’s management
plane, which should have existed through the drained FSW
switch. Such latent failures are hard to detect in production as
they only manifest themselves during certain scenarios and
the verification helped fix these errors before deployment.

The verification approach is not perfect and has failed to
prevent some issues. In one instance, a operator created a pol-
icy to inject a route to server using virtual IPs. The verification

framework verified the propagation of the path to the server,
but did not check the IP address usage. It turned out that the
operator specified an incorrect IP address which actually be-
longed to a switch. This resulted in traffic destined towards
the switch to be wrongly routed to the server. To prevent this,
the verification approach is now planning to validate the IP
address usage along before validating route propagation.

Consistency guarantee in practice: One concern for policy
update is the consistency during convergence. Aura tackles
the problem in a practical manner with three steps. First, we
always drain a switch by moving the live traffic away, which
is also called disruptive config update [10]. This prevents
packet loss during transient state. Second, after the new path
is enabled, we wait for a time period that is long enough for
BGP convergence at a DC level. We conducted experiments
to evaluate the convergence time scaling with the size of the
network and chose the window to be tens of minutes. Finally,
we use BMP monitoring to guarantee that the new routes are
propagated in place before removing the drain configuration.
The convergence time depends on the amount of traffic a
switch carries. On one hand, switches that carry less traffic
such as FSWs can take upto 6 seconds, but on the other hand,
switches that carry more traffic such as FAUU can take 92
seconds.

Ease of operation: After implementing Aura in some data-
center regions, we see significant improvement in experiences
of network operators. For instance, after the last year’s out-
age [3], we wanted to provide additional backup paths which
included allowing routes over DRAINED switches with a
lower preference. In Aura, we can support it with only 4
lines of RPL code change (details shown in Appendix D, Fig-
ure 11). This change took less than an hour to implement.
On the other hand, we still had to support this change for
non-Aura-supported regions, and it took three experienced
engineers 30 days to make manual changes. During this time,
the policy went through 6 rounds of review with over 40
comments for changes in the peer review process.

Supporting new networks: Our data center topology is con-
stantly evolving to react to various deployment constraints
and to new business requirements. For example, the recent
global supply chain shortage pressed us to have a more con-
densed topology to reuse available ports. To accommodate the
growing AI workload, we are developing a new AI backend
topology. Adapting routing policy to a new topology is not
trivial. Before Aura’s deployment, it took network engineers
up to 6 months to support a new topology. As an anecdotal
example, in a recent deployment topology with Aura in June
2022 (ZAZ) took only 3 weeks by a single engineer.

Unsupported policies: Aura currently does not support
UCMP (Unequal Cost Multi-Paths). Typically, UCMP is used
in traffic migration scenarios, where we add additional planes
to the backbone layer. Under regular operations, the FAUU
uses ECMP to equally distribute traffic to available backbone

640 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

planes. During migration, we would like to test the newly
introduced backbone planes, before running them in full ca-
pacity. In such cases, we make use of UCMP to manipulate
the amount of traffic going towards the backbone planes. This
is an area of potential future work for Aura to support UCMP.

Coordination with non-routing policies: Aura focuses on
specification and validation of routing policies. However,
there are other policies that impact forwarding decisions. First,
there are policies that are specific to services. Services have
their own policies about the use of network resources (e.g.,
load balancing, replication) and can create varying traffic
patterns that could lead to a routing policy adjustment. Fu-
ture research is needed to streamline and coordinate intent
changes between service and network layers. Second, there
are the access control lists (ACLs) that restrict the flow of
traffic across different network domains at Meta, which in
turn affects routing policies. These ACLs also have a policy
specification that is maintained by a different team. Detecting
conflict and maintaining consistency across different intent
management systems is an unsolved problem. Finally, while
Aura manages all the data center routing policies, there are
outside domains such as backbone and edge networks at Meta.
These networks run different routing protocols and have their
own policy intents. One of the extension of Aura is to support
backbone routing intent using RPL, so that we can perform
end-to-end verification. In the future, we plan to explore how
to adapt Aura to other non-routing policies.

8 Related Works

Configuration synthesis: Propane [7], Propane/AT [8] and
SyNet [11] use their own DSL or existing techniques to ex-
press intents. Then the intents are synthesized into low level
configurations. Alternatively, rather than specifying intents,
operators can partially specify the BGP configuration, and
the synthesis approach can fill in the holes. Although these
techniques help reduce operational burden, they cannot han-
dle dynamic changes at scale without requiring constant re-
configurations. Propane [7] and Propane/AT [8] are also lim-
ited to BGP protocol, while Aura supports multiple routing
protocols (BGP and OpenR). Finally, some configuration syn-
thesis systems like SyNet [11] and ConfigAsure [21] are hard
to scale to the size of large datacenter networks, like Meta.
Beyond BGP configuration synthesis, Robotron [25] uses
high-level intents to low-level device configurations with min-
imal human intervention. This involves, designing a network,
generating appropriate switch configurations for the network
and monitoring them. Aura also uses some Robotron com-
ponents such as FBNet, and extends the flexibility of BGP
configuration generation via synthesis.

Supporting dynamic configurations: Typically, systems
focus on supporting dynamic configurations by switching
from one configuration to the other. For instance, zUpdate [18]
and Snowcap [23] determine a transition plan from one con-

figuration to the other. However, these techniques involve
shifting from one configuration to the other via several in-
termediate configurations. As seen in § 2.4, configuration
updates to switches in a large network can take a lot of time,
and transitioning across different configuration would only
exacerbate this issue. Our technique of supporting multiple
policies is similar to fast failover [17] and MPLS reroute [4]
techniques, where backup options are pre-configured without
the need of operator intervention. Alternatively, support for
parallel configuration can be done via virtual routers such as
VROOM [28] which is similar to FBOSS instances where
each instance has its own control plane. However, the key
difference is that only the active instance in FBOSS use the
switch hardware resources, whereas all VROOM instances
use the switch hardware resources.

There have been several other works in SDN [16, 19, 20],
that help in transitioning from one configuration to the other.
However, re-configuring in SDN context is different, than
switch reconfiguration, as forwarding state is changed di-
rectly from a centralized controller, avoiding the challenges
of a large distributed network. Moreover, there are problems
unique to a SDN setting which are not applicable to BGP. For
instance, planning rule updates [19] in SDN is crucial to avoid
packet drops and unintended network behavior. However, in
our setting, configuration change happens a phased manner,
where traffic is drained from switches before a configuration
update. This ensures that the transition between configuration
do not intefere with traffic.

Expressing intents: In recent years, there have been many
efforts to raise the level of abstraction for low level config-
urations. Jinjing [27] introduces LAI to express ACL up-
date synthesis and Propane [7] introduces RIR to express
constraints on policy. Propane’s RIR cannot express intents
across different scopes, whereas both LAI and RIR do not
support device state specifications and preferences based on
these specifications (e.g., I4, I5 and I6).

9 Conclusion
Providing stable and efficient routing in large data centers
is crucial. Existing synthesis systems generate configuration
only once, but production networks require multiple recon-
figuration to support their scale and dynamics. We present
Aura, that enables network operators to express high-level
intents to be automatically configured into the switch policy
implementation with minimal reconfiguration.

Acknowledgment We would like to thank many of Meta
colleagues who have contributed to this work over the years
and toward this paper. These include Jason Wilson, Yan Cai,
Maaz Mohiuddin, Hyojeong Kim, Jingyi Yang, Michael Liu
and many others. We also thank our shepherd Dr. Soudeh
Ghorbani and the anonymous reviewers to help making a
better version of this paper. This work is supported by the
National Science Foundation grants NeTS-2211383.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 641

References

[1] Antlr (another tool for language recognition). https:
//www.antlr.org/.

[2] United airlines jets grounded by computer
router glitch. https://www.bbc.com/news/
technology-33449693, 2015.

[3] Update about the 4 october outage. https:
//www.facebook.com/business/news/
update-about-the-october-4th-outage, 2021.

[4] Mpls traffic engineering fast reroute. https://www.
cisco.com/en/US/docs/ios/12_0st/12_0st10/
feature/guide/fastrout.html#wp1015327, 2023.

[5] Anubhavnidhi Abhashkumar, Kausik Subramanian,
Alexey Andreyev, Hyojeong Kim, Nanda Kishore Salem,
Jingyi Yang, Petr Lapukhov, Aditya Akella, and Hongyi
Zeng. Running BGP in data centers at scale. In 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 65–81. USENIX As-
sociation, April 2021.

[6] Alexey Andreyev, Xu Wang, and Alex Eckert.
Reinventing facebook’s data center network.
https://engineering.fb.com/2019/03/14/
data-center-engineering/f16-minipack/.

[7] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra
Padhye, and David Walker. Don’t mind the gap: Bridg-
ing network-wide objectives and device-level configu-
rations. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 328–341, 2016.

[8] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jiten-
dra Padhye, and David Walker. Network configura-
tion synthesis with abstract topologies. SIGPLAN Not.,
52(6):437–451, June 2017.

[9] Richard Chirgwin. Google routing blunder
sent japan’s internet dark on friday. https:
//www.theregister.com/2017/08/27/google_
routing_blunder_sent_japans_internet_dark/,
2017.

[10] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang,
Saman Kazemkhani, Rob Sherwood, Ying Zhang, and
Hongyi Zeng. Fboss: building switch software at scale.
In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages
342–356, 2018.

[11] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. Network-wide configuration syn-
thesis. In International Conference on Computer Aided
Verification, pages 261–281. Springer, 2017.

[12] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. Netcomplete: Practical network-
wide configuration synthesis with autocompletion. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 579–594, Renton,
WA, April 2018. USENIX Association.

[13] P Brighten Godfrey, Igor Ganichev, Scott Shenker, and
Ion Stoica. Pathlet routing. ACM SIGCOMM Computer
Communication Review, 39(4):111–122, 2009.

[14] Ramesh Govindan, Ina Minei, Mahesh Kallahalla,
Bikash Koley, and Amin Vahdat. Evolve or die: High-
availability design principles drawn from googles net-
work infrastructure. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 58–72,
New York, NY, USA, 2016. Association for Computing
Machinery.

[15] Saif Hasan, Petr Lapukhov, Anuj Madan,
and Omar Baldonado. Open/r: Open
routing for modern networks. https://
engineering.fb.com/2017/11/15/connectivity/
open-r-open-routing-for-modern-networks/,
2017.

[16] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth
Kandula, Ratul Mahajan, Ming Zhang, Jennifer Rexford,
and Roger Wattenhofer. Dynamic scheduling of network
updates. ACM SIGCOMM Computer Communication
Review, 44(4):539–550, 2014.

[17] Ying-Dar Lin, Hung-Yi Teng, Chia-Rong Hsu, Chun-
Chieh Liao, and Yuan-Cheng Lai. Fast failover and
switchover for link failures and congestion in software
defined networks. In 2016 IEEE International Confer-
ence on Communications (ICC), pages 1–6, 2016.

[18] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua
Yuan, Roger Wattenhofer, and David Maltz. zupdate:
Updating data center networks with zero loss. In Pro-
ceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, pages 411–422, 2013.

[19] Ratul Mahajan and Roger Wattenhofer. On consistent
updates in software defined networks. In Proceedings of
the Twelfth ACM Workshop on Hot Topics in Networks,
pages 1–7, 2013.

[20] Jedidiah McClurg, Hossein Hojjat, Pavol Černỳ, and
Nate Foster. Efficient synthesis of network updates.
Acm Sigplan Notices, 50(6):196–207, 2015.

[21] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram
Kaul. Declarative infrastructure configuration synthe-
sis and debugging. Journal of Network and Systems
Management, 16(3):235–258, 2008.

642 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.antlr.org/
https://www.antlr.org/
https://www.bbc.com/news/technology-33449693
https://www.bbc.com/news/technology-33449693
https://www.facebook.com/business/news/update-about-the-october-4th-outage
https://www.facebook.com/business/news/update-about-the-october-4th-outage
https://www.facebook.com/business/news/update-about-the-october-4th-outage
https://www.cisco.com/en/US/docs/ios/12_0st/12_0st10/feature/guide/fastrout.html#wp1015327
https://www.cisco.com/en/US/docs/ios/12_0st/12_0st10/feature/guide/fastrout.html#wp1015327
https://www.cisco.com/en/US/docs/ios/12_0st/12_0st10/feature/guide/fastrout.html#wp1015327
https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack/
https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack/
https://www.theregister.com/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.com/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.com/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://engineering.fb.com/2017/11/15/connectivity/open-r-open-routing-for-modern-networks/
https://engineering.fb.com/2017/11/15/connectivity/open-r-open-routing-for-modern-networks/
https://engineering.fb.com/2017/11/15/connectivity/open-r-open-routing-for-modern-networks/

[22] Jenni Ryall. Facebook, tinder, instagram suffer
widespread issues. https://mashable.com/
archive/facebook-tinder-instagram-issues,
2015.

[23] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever.
Snowcap: synthesizing network-wide configuration up-
dates. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, pages 33–49, 2021.

[24] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim
Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vah-
dat. Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network. In
Proceedings of the 2015 ACM Conference on Special In-
terest Group on Data Communication, SIGCOMM ’15,
page 183–197, New York, NY, USA, 2015. Association
for Computing Machinery.

[25] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong,
and Hongyi Zeng. Robotron: Top-down network man-
agement at facebook scale. In Proceedings of the 2016
ACM SIGCOMM Conference, pages 426–439, 2016.

[26] Carl A Sunshine. Source routing in computer networks.
ACM SIGCOMM Computer Communication Review,
7(1):29–33, 1977.

[27] Bingchuan Tian, Xinyi Zhang, Ennan Zhai,
Hongqiang Harry Liu, Qiaobo Ye, Chunsheng
Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming
Zhang, et al. Safely and automatically updating
in-network acl configurations with intent language. In
Proceedings of the ACM Special Interest Group on
Data Communication, pages 214–226. 2019.

[28] Yi Wang, Eric Keller, Brian Biskeborn, Jacobus Van
Der Merwe, and Jennifer Rexford. Virtual routers on the
move: live router migration as a network-management
primitive. ACM SIGCOMM Computer Communication
Review, 38(4):231–242, 2008.

[29] Zhiping Yao, Hany Morsy, and Jasmeet Bagga. Open-
ing designs for 6-pack and wedge 100. https://
engineering.fb.com/data-center-engineering/
opening-designs-for-6-pack-and-wedge-100/.

A Routing Policy Validation Algorithm

Algorithm 1 shows the algorithm used during emulation to
verify Aura generated configuration.

Algorithm 1 RPL-based routing policy validation
1: procedure traverse(path, tag)
2: . path: a propagation path from RPL
3: . tag: a community tag that identifies policy

4: . Enqueue the originated prefixes into BFS queue
5: Q = Queue()
6: for sw in get_switches(path[0], all) do
7: for R in RIB(sw) do
8: if tag in R.tag then
9: visited_sw = [sw]

10: L = 0
11: N = node(sw, route.prefix, L, visited_sw)
12: Q.enque(N)

13: . Check if the prefix exists in RIBs
14: while !Q.isEmpty() do
15: N = Q.pop()
16: L = N.L + 1
17: for sw in get_switches(path[L], N.sw) do
18: if sw in N.visited_sw then continue
19: route_found = False
20: for R in RIB(sw) do
21: if R.prefix == N.prefix
22: and tag in R.tag
23: and R.nexthop == N.sw then
24: route_found = True
25: R.visited = True
26: if L < length(path) then
27: visited_sw.append(sw)
28: Nnew = node(sw,R.prefix, L, visited_sw)
29: Q.enque(Nnew)
30: assert route_found == True

31: procedure routing_policy_validation(tag)
32: prop_paths = get_propagation_paths_from_rpl(tag)
33: for path in prop_paths do
34: traverse(path, tag)
35: . Verify if there is any prefix leakage
36: for sw in get_switches(all, all) do
37: for R in RIB(sw) do
38: if tag not in R.tag then continue
39: assert R.visited == True

B Issues detected via emulation

We show the issues detected during emulation in Table 2.
Broadly, they are categorized into compiler errors and BGP
agent errors.

C Detecting Ambiguous Statements

Once RPL specification is complete, we use it as input into
a compiler, which generates switch configurations. To avoid
ambiguity, Aura compiler performs certain verification steps
on the RPL specification.

Rule 1: Explicitly specify preference across all paths. It is
possible that an operator designing a policy does not specify
preferences across all the paths. For example, if there were
four paths, P1–P4, and the preference rule stated P1 >P2 >P4,
preference for P3 is unspecified. One possible approach would
be to assign a default preference value. However, depending
on the preference values assigned to the other three paths, the
total ordering of paths is unpredictable. For instance, if the
default preference value is 100, there could exist two sets of or-
dering, P1(100) = P3(100)> P2(50)> P4(25) or P1(200)>

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 643

https://mashable.com/archive/facebook-tinder-instagram-issues
https://mashable.com/archive/facebook-tinder-instagram-issues
https://engineering.fb.com/data-center-engineering/opening-designs-for-6-pack-and-wedge-100/
https://engineering.fb.com/data-center-engineering/opening-designs-for-6-pack-and-wedge-100/
https://engineering.fb.com/data-center-engineering/opening-designs-for-6-pack-and-wedge-100/

Category Identified Issues

Compiler

Leaked intra-fabric prefix to FA
Announced FA loopback address to unwanted scope
VIP prefixes not withdrawn from drained devices
VIP priority misconfigured
Prefix originated from SSWs in one DC was
not propagated to another DC
Drained SSW did not forward default route to FSWs
Prefixes from backbone not propagated to FADUs
Drained FAUU does not withdraw default route
FA loopback addresses leaked to RSW

BGP Unsupported BGP action
agent Config parsing crash in switches

Table 2: Identified issues by emulation.

P2(100) = P3(100) > P4(50). This non-determinism could
make debugging routing behavior more challenging, and even
worse, result in a hidden intent violation. Our solution is to de-
tect underspecified preferences during verification and prompt
the operator to explicitly define each preference.

A similar issue arises when the operator specifies two
parallel preferences: P1 > P2,P3 > P4. The order between
paths in these different preferences can be interpreted as
P1 > P2 > P3 > P4 or P3 > P4 > P1 > P2, and in several other
ways. When verifying a RPL specification, Aura notifies op-
erators to define ordering between all paths.

Rule 2: Detect hidden conditions. RPL supports adding
a condition to a preference (Section 4). For example, the
preference P1(BB_DEFAULT _ROUT E) > P2 > P3 > P4
means that for an announcement containing a community
BB_DEFAULT _ROUT E, P1 should have higher preference
than other paths. However, there is an ambiguity. If the
(BB_DEFAULT _ROUT E) community is not attached, then
the preference for P1 is not specified, and the order of P1
(¬BB_DEFAULT _ROUT E) and the rest of paths is unspeci-
fied as well. During verification, the operator is prompted to
clear this ambiguity by explicitly specifying the preference
for P1 with and without the attached condition, and ensuring
that the partial ordering is maintained.

D RPL changes to change intent

Figure 11 shows the RPL change done by network operators
to allow DRAINED switches to propagate routes with a lower
preference.

Figure 11: Aura changes to support I2.

644 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Formal Methods for Network Performance Analysis

Mina Tahmasbi Arashloo
University of Waterloo

Ryan Beckett
Microsoft Research

Rachit Agarwal
Cornell University

Abstract
Accurate and thorough analysis of network performance is
challenging. Network simulations and emulations can only
cover a subset of the continuously evolving set of workloads
networks can experience, leaving room for unexplored corner
cases and bugs that can cause sub-optimal performance on live
traffic. Techniques from queuing theory and network calculus
can provide rigorous bounds on performance metrics, but
typically require the behavior of network components and the
arrival pattern of traffic to be approximated with concise and
well-behaved mathematical functions. As such, they are not
immediately applicable to emerging workloads and the new
algorithms and protocols developed for handling them.

We explore a different approach: using formal methods to
analyze network performance. We show that it is possible to
accurately model network components and their queues in
logic, and use techniques from program synthesis to automat-
ically generate concise interpretable workloads as answers
to queries about performance metrics. Our approach offers a
new point in the space of existing tools for analyzing network
performance: it is more exhaustive than simulation and emu-
lation, and can be readily applied to algorithms and protocols
that are expressible in first-order logic. We demonstrate the
effectiveness of our approach by analyzing packet scheduling
algorithms and a small leaf-spine network and generating con-
cise workloads that can cause throughput, fairness, starvation,
and latency problems.

1 Introduction
New network functionality is often analyzed, both empirically
and analytically, to predict how it would perform under differ-
ent kinds of input traffic. However, it is growing increasingly
difficult to do such analysis in a manner that is reasonably
exhaustive, i.e., does not miss traffic patterns that are probable
to occur in production, and general, i.e., is not only applicable
to a limited set of network functionality.

To see why, consider the existing empirical approaches,
i.e., using simulators, emulators, and testbeds [1–3]. These ap-
proaches allow operators to realize a model of their network in
software and/or hardware, push a concrete sequences of pack-
ets through it, and measure how well the network performs
for that specific input traffic pattern. As such, operators have
to pick and choose which input traffic patterns to try. This

leaves room for unexplored traffic patterns that may experi-
ence poor performance because of overlooked corner cases
and bugs. The problem is only exacerbated as new networked
applications emerge, expanding the set of traffic patterns that
a network may face in production.

On the analytical side, there is a substantial body of work
that applies techniques from queuing theory and network
calculus to derive bounds on performance metrics such as
throughput, delay, and loss [4–9]. However, to obtain tight
and useful bounds, the network functionality and the arrival
pattern of traffic need to be closely approximated with concise
and well-behaved mathematical functions. This limits the
set of network functionality and traffic patterns that can be
reasoned about using these frameworks [10], a problem that is,
again, aggravated with the continuous evolution of networked
applications and the network functionality that supports them.

This paper explores an alternative approach: using formal
methods to analyze network performance. That is, we would
like to use logical formulas to model packets, how packets
are processed by each piece of network functionality as they
traverse the network, and how performance metrics such as
throughput and delay change over time. We can then use
verification and synthesis techniques from the formal methods
community to exhaustively explore the space of all possible
traffic patterns and find those for which the network cannot
provide satisfactory performance.

Why use formal methods? Because they can nicely com-
plement existing empirical and analytical approaches for per-
formance analysis. Unlike empirical approaches, they do not
need to explicitly try out every single traffic pattern to find
ones that experience performance problems. Moreover, they
enable us to reason about network functionalities that are
expressible in logical formulas, many of which may be not
feasible to approximate in a way that is suitable for existing
analytical approaches. Finally, past efforts in using formal
methods to solve networking problems have proven quite suc-
cessful. Over the past decade, researchers and practitioners in
both academia and industry have coupled advances in formal
methods tools and techniques with domain-specific optimiza-
tions to rigorously reason about the functional correctness of
various aspects of networks [11–28]. This provides further en-
couragement that formal methods could bring similar benefits
to reasoning about performance.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 645

Realizing this vision is not without its own unique chal-
lenges. First, performance metrics (e.g., throughput and delay)
are statistics over packet streams and are affected by the order
and the time at which packets from competing traffic enter
and exit network components. As such, reasoning about per-
formance requires reasoning about the enormous space of
possible packet-level interactions and finding those that can
lead to unsatisfactory performance. For that, we have found
efficient ways to encode interactions that can significantly
affect performance, e.g., interactions across network queues,
in Satisfiability Modulo Theories (SMT) formulas and over a
bounded number of time steps.

Second, when it comes to performance analysis, finding
a single counter-example is not always useful. In this case,
a counter-example is an assignment to the model’s logical
variables that leads to poor performance, where the model
variables describe packets and the order and time at which
they enter the network. Such a detailed packet trace is not
easily interpretable. Moreover, unlike counter-examples for
correctness properties, it may not even point to a bug, but an
extremely rare scenario where providing sub-optimal perfor-
mance does not have tangible consequences.

We argue that a more useful output (also a more challeng-
ing one to produce) is a traffic pattern or workload that can
succinctly capture the commonality between a whole set of
packet traces that can experience poor performance. To gen-
erate such workloads efficiently, our main insight is to use
syntax-guided synthesis (SyGuS) [29]. That is, we define a
language for specifying workloads. Then, we systematically
search through the space of all workloads to find one such
that all packet traces represented by it experience poor per-
formance. The search algorithm, inspired by prior work on
invariant synthesis [30], is based on Markov Chain Monte
Carlo (MCMC), with a cost function that guides the algorithm
towards the parts of the search space where there is a higher
chance of finding an answer.

To demonstrate the effectiveness of our approach, we apply
it to packet scheduling algorithms as well as a small leaf-
spine network and ask queries about throughput, fairness,
latency, and starvation. The fact that packet sequences are
bounded, as well as other optimizations in our SMT encoding,
enables our framework to analyze each workload in < 1s on
average. Moreover, our search algorithm can successfully
find workloads that convey high-level insights about traffic
classes that can experience transient or persistent performance
problems in 6-18 minutes.

These results provide an encouraging indication that using
formal methods to analyze network performance has the po-
tential to grow into a valuable tool for understanding network
behavior and making networks more robust. Our proof-of-
concept prototype can analyze compositions of a few tens
of network components, modeling small-scale networks or
host-based scenarios where flows from different applications
or VMs contend for end-host resources across a few layers of

classifiers and packet schedulers. That said, we recognize that,
similar to data and control-plane verification tools that have
matured over a decade to scale to large-scale networks [31],
much work needs to be done to improve the scalability of
formal methods tools for network performance analysis. We
discuss potential future research directions in §9.

2 Overview and Motivation
In this section, we use a buggy packet scheduler to demon-
strate our approach in using formal methods to reason about
performance.
The scheduler. FQ-CoDel [32] is the default queuing dis-
cipline in Linux. It is a hybrid packet scheduler and active
queue management (AQM) algorithm. Flows are classified
into queues which are managed by the CoDel AQM algorithm.
The scheduler decides which queue gets to transmit next. It
prioritizes the transmission of the first few packets of new
flows so that short latency-sensitive flows with a few packets
are not blocked by longer flows.

Our motivating example is inspired by the scheduler in
FQ-CoDel. When a packet comes in, it is first classified (e.g.,
based on its 5-tuple) and assigned to a queue. For simplic-
ity, let’s assume hash collisions are rare and each queue is
holding packets of one flow at any point in time. The sched-
uler maintains a list of pointers to queues with potential short
flows called new_queues, and another list called old_queues
with pointers to all the other queues with outstanding pack-
ets. At a high level, queues in new_queues are prioritized over
those in old_queues, and the queues in the same list are ser-
viced using a deficit-round-robin (DRR)-like algorithm [33].

How does the scheduler determine which list each queue
belongs to? Suppose the incoming packet is assigned to qi. If
qi is in neither of the lists, it means it has not received packets
recently and this could be the start of a short flow. So, the
scheduler will add a pointer to qi to the end of new_queues.
Otherwise, the queue will remain in its current list. In both
cases, the packet is enqueued in qi.

On dequeue, the scheduler first looks at new_queues. Sup-
pose qh is the queue at the head of the list. It will be selected
to send a packet unless (1) it is empty, in which case it is
removed from the newqueues and marked as inactive, or (2)
it has packets but has already sent at least a (configurable)
quantum of bytes, in which case it is not considered a short
flow, is removed from new_queues and is inserted at the end
of old_queues. If qh is not eligible, the scheduler moves on to
the next queue in new_queues.
The bug. When a queue in new_queues is empty, it is immedi-
ately deactivated. When it receives another packet, it is placed
in new_queues and gets priority over the queues in old_queues.
This can potentially cause starvation for queue in old_queues.
When proposing the separation between new and old queues,
the FQ-CoDel RFC [32] warns against this bug: “the queue
could reappear (the next time a packet arrives for it) before
the list of old queues is visited; this can go on indefinitely,

646 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Overview of workload synthesis.

even with a small number of active flows, if the flow providing
packets to the queue in question transmits at just the right rate.”
To avoid this problem, the RFC suggests that when a queue in
new_queues becomes empty, it should be first demoted to the
old_queues, and only deactivated if it still stays empty after
all the old queues are visited on subsequent dequeues.

This is a subtle bug that is difficult to catch with existing
approaches for performance analysis. The traffic pattern that
reveals the bug consists of a flow sending packets at a very
specific rate, which could depend on the number and traffic
pattern of other active flows that traverse the scheduler. As
such, it is not likely to be part of the common traffic patterns
that are tried out in simulation and emulation and can be over-
looked in empirical experiments. Similarly, approaches based
on queuing theory and network calculus focus on schedulers
and arrival patterns that have concise and well-defined mathe-
matical approximations and cannot be readily applied to this
specific variation of DRR scheduler or this traffic pattern.

2.1 Using Synthesis to Analyze Performance
Figure 1 shows an overview of our approach using formal
methods and workload synthesis to reason about the perfor-
mance of network components like our example scheduler.
Modeling contention points (§3). First, the users specify
which network component(s) they are interested in, and if
there are more than one, how those components are connected
together. Given this input, the verification engine generates
logical variables and constraints that model the network com-
ponents and their interactions. Each component is modeled
as one or more queuing modules, each with n input queues,
m output queues, and a processing block in the middle. The
processing block takes packets from input queues, processes
them, and puts the resulting packets into output queues.

Here, we model the scheduler as a queuing module with five
input queues and one output queue (Figure 2). Specifically,
in the verification engine, we generate SMT formulas that
model these queues and their content for T consecutive time
steps, where time advances on every dequeue operation. Every
time step, each input queue receives a bounded number of
packets. Moreover, the processing block selects one input
queue according to the scheduler’s dequeue logic, dequeues
a packet from it, and places the packet into the scheduler’s
output queue. The formulas describe how the scheduler state,
e.g., new_queues and old_queues lists, and queue contents at
time t connects with those at time t +1.
Performance queries (§4). Next, the user asks a query about
a performance metric of interest such as throughput, latency,
or fairness. Since the FQ-CoDel scheduler is supposed to

Figure 2: An example trace.

provide fairness, suppose the user asks whether or not one
queue can take more than its share of the bandwidth:(
∧4

i=1 ∀t ∈ [1,T], cenq(Qi, t)≥ t
)︸ ︷︷ ︸

assuming other queues are backlogged

→ cdeq(Q5,T)> 2⌊T/5⌋︸ ︷︷ ︸
can Q5 get more than its fair share?

where cenq(q, t) and cdeq(q, t) are the number of packets re-
spectively enqueued into and dequeued from queue q by the
end of time step t. The query can be read as “if queues Q1 to
Q4 are backlogged the entire T time steps, is it possible for
Q5 to dequeue more than twice its fair share (i.e., ⌊T/5⌋)?”.
Note that we use lower case letters for variables and upper
case letters for literals and constants.
Introducing workloads (§5). At this point, we can ask the
verification engine to use an SMT solver like Z3 [34] to find
an input packet trace that satisfies the query. A packet trace
is simply an assignment to the variables that represent how
many packets enter each queue in every time step. Figure 2
shows an example trace, found by the verification engine, that
satisfies the query. While the trace does provide a concrete
scenario in which Q5 receives more than its fair share of
the bandwidth, it is not easy to interpret as it specifies the
ordering and timing of the entry of every single packet: is
the fact that three packets entered Q1 in the same time step
in the beginning crucial to Q5 getting a larger share of the
bandwidth or is it just an arbitrary choice? Would the query
still be satisfied if instead Q2 had received three packets in
the first time step? Even if these details actually do matter,
it is not clear if the trace is actually pointing to a subtle but
prominent performance problem, or just an extremely rare
and uninteresting scenario.

Rather than output a single packet trace, our search engine
synthesizes a workload that can concisely describe a set of
packet traces that can cause performance problems:

∀t ∈ [1,6] : cenq(Q5, t)≤ 1
∧∀t ∈ [7,14] : aipg(Q5, t)≥ 2
∧∀t ∈ [13,14] : cenq(Q5, t)≥ 5
∧
(
∧4

i=1 ∀t ∈ [1,14], cenq(Qi, t)≥ t
)︸ ︷︷ ︸

backlog assumption from the query

cenq(q, t) is the total number of packets that enter q by t +1,
and aipg(q, t) is the inter-packet gap between the last two pack-
ets entering q by t +1. Such an answer is more interpretable
as it captures the commonality of a set of traces that satisfy
the query. Moreover, the fact that a set of similar packet traces
all cause the same performance problem is a preliminary
indication that it represents more than just a rare scenario.

We define workloads as a conjunction of constraints, each
specifying a traffic pattern for one or a subset of queues over

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 647

a period of time. For T = 14, the above workload specifies a
traffic pattern that will always satisfy the query, i.e., cause Q5
to dequeue at least five packets when it should not have de-
queued more than three. The first constraint states that at most
one packet enters Q5 in the first 6 timesteps, so that unlike the
other four queues, Q5 is not demoted to the list of old queues.
After that, the second constraint ensures that Q5 receives traf-
fic at a specific rate, at most one packet every other time step.
This ensures Q5 becomes empty and gets deactivated after
dequeuing each packet (the bug). So, it is activated as a new
queue when it receives its next packet and is prioritized over
others for dequeue. The third constraint ensures that Q5 re-
ceives at least five packets by T = 14, so it has enough packets
to dequeue and satisfy the query. The final constraint ensures
that the other queues are always backlogged, which comes
from the assumption specified in the query.
Synthesizing workloads (§6). The search engine is respon-
sible for generating a workload that satisfies the query. It
first uses the verification engine to generate a set of example
traces that can guide the search towards finding a suitable
workload. Next, inspired by prior work on program and in-
variant synthesis [30, 35], it starts a stochastic search process
based on Markov Chain Monte Carlo (MCMC) that synthe-
sizes a candidate workload and asks the verification engine to
verify if all traces in that workload satisfy the query. If not,
the violating trace is returned to the search engine and added
to the example traces to help guide finding the next candidate
workload. This process repeats until an answer is found and
returned to the user, who can either terminate the analysis or
ask for other workloads that satisfy the query.
User Interface. Similar to many other existing work that
use formal methods for networks, our queries and workloads
are specified as logical expressions. Moreover, the encoding
of packet processing algorithms and protocols into logic is
done manually. To enable widespread adaptation of formal
approaches, it is important to develop front ends that interface
with these “logical backends”, abstract away the details of
logical expressions and formulas, and enable users to interact
with them using higher-level and more familiar interfaces. In
fact, there are several ongoing efforts for providing higher
level query interfaces and automated generation of logical
models and SMT formulas from implementations [36–40].
With the right interface in the middle, the front-end and the
logical back-end can evolve independently. As such, for our
case study in §8, we create a simple front-end to demonstrate
an example of one such interface, and leave the design of a
more general front-end for future work.

3 Modeling Contention Points
Queues are an integral part of networks. In fact, networks
can be viewed as multiple layers of queues with well-defined
functionality in between that describes how to deliver data
from one layer to the next. From source to destination, pack-
ets go from socket buffers, to queues in packet schedulers

Figure 3: A queueing module.

in the end-host stack (e.g., Linux qdiscs), to NIC transmit
queues on the sender. Then, they traverse switch input and
output queues in the network, and the NIC, qdisc, and socket
buffers on the receiving end. Network contention points, e.g.,
switches, NICs, and network stacks, heavily rely on queues to
decide how to allocate network resources to competing traf-
fic streams. Indeed, performance metrics of a packet stream
are significantly affected by the queues it traverses and the
frequency at which those queues are selected to pass on their
traffic. As such, queues are a fundamental part of our model.

Figure 3 shows a simple yet expressive building block
for modeling layers of queues: a queuing module with n ≥ 1
input queues, m ≥ 1 output queues, and a processing block
in the middle. Every timestep, the processing block takes a
batch of packets from the input queues, processes them, and
puts the resulting packets into the output queues. To keep
track of performance metrics, we designate extra variables
per queue for each metric that get updated as packets enter and
exit queues, and ask queries about their values for different
queues (see §4 for examples).
Composition. Queuing modules can be easily composed by
feeding the output queues of one module to the input queues of
another (e.g., figures 6 and 9). So, one could start by modeling
a single bottleneck, e.g., a qdisc, or a NIC/switch scheduler,
and compose them together to reason about segments or paths
in the network (§7 and §8). We can even close the loop by des-
ignating a queuing module for congestion control algorithms,
with one input queue receiving acks and other control packets
and one output queue transmitting data packets. While we
have not explored this last direction in this paper, we believe
it is a very interesting avenue for future work.
Modeling Time. We define a time step as the time between
the dequeue operations of the slowest output queue. That is,
time advances when a new dequeue happens. Modeling time
based on dequeues is a natural choice. It is coarser-grained
than wall-clock time, and since our verification engine per-
forms bounded model checking over time, this helps perfor-
mance problems manifest over fewer time steps. It is also
fine-grained enough for capturing the arrival order of pack-
ets within and across time steps. To capture the arrival order
within a time step, we put an upper bound K on the number of
packets that can enter a queue between dequeues. This bound
allows us to create K variables pt1 , · · · , ptK to capture the order
at which those K packets enter the queue at time t (pti comes
before pt j if i< j). It also helps us avoid finding “trivial” work-
loads that simply flood the queuing module every time step
with an unrealistically large number of packets.
Modeling Packets. We model packets as tuples consisting

648 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of multiple “metadata” variables. Depending on the query,
these variables can include the arrival and departure time of
the packet into and out of different queues of interest, flow id,
application id, or packet size.
Modeling Queues. A queue is specified with two parameters,
its size S and the maximum number of enqueues K allowed
at every time step. We define three sets of variables for each
queue for every time step t: (1) enqs[t][1 : K] consists of K
tuples to capture the packets that are sent to the queue at
time t, (2) elems[t][1 : S], consists of S tuples to capture the
packets that are inside the queue at time t, and (3) an integer
variable deq_cnt[t] that captures how many packets will be de-
queued from this queue at time t. We constrain these variables
such that they collectively behave like a FIFO. Finding the
right constraints to model FIFOs in a scalable manner is not
straightforward, especially when there are multiple enqueues
and dequeues per time step. We describe our encoding of
FIFOs in SMT in Appendix A.

When two modules are composed, we need extra con-
straints to move packets from the output queue of one to
the input queue of the other. Suppose the first output queue
of module A (A.out1) is connected to the first input queue of
module B (B.in1). B decides how many packets to dequeue
from A.out1 at time t and sets its deq_cnt[t] to, say, k. We add
constraints to enqueue the first k packets in A.out1 into B.in1.
We provide two different kinds of composition. In sequen-
tial composition, B.in1.enqs[t][1 : k] = A.out1.elems[t][1 : k], that
is, packets from A.out1 will appear in B.in1 at time t + 1. In
contrast, in immediate composition, packets leaving A.out1
at time t will be visible in B.in1 in the same time step. We
discuss examples of different kinds of composition and their
implications in our case studies in §7 and §8.
Modeling packet-processing algorithms. The packet-
processing algorithm in a queuing module sets the deq_cnt[t]
variables of the module’s input queues to denote how many
packets will be dequeued from each input queue at time t.
It also decides which one of those packets to move to the
enqs[t] of which of the output queues, potentially changing,
dropping, or cloning some packets in the process. As long as
an algorithm’s logic can be expressed in SMT, we can plug it
into our framework.

4 Performance Queries
Performance queries are logical formulas over one or more
performance metric. Users can define their metrics of interest
to be tracked for all or a subset of queues in the queuing
modules. They can then ask queries about the value of a
certain metric for one queue or a set of queues, or compare
the values of metrics between different queues.
Performance metrics. A performance metric m(q, t) is a func-
tion that computes a value over the packets that have entered
or departed the queue q until the end of time step t. Most
metrics can be defined as recursive functions over time. For
instance, metric d that tracks the maximum delay experienced

qry := wl→ tr : qlhs⊕ rhs

tr := {∀ |∃}t ∈ [T1,T2]

qlhs := lhs |m(Q1, t)−m(Q2, t)

wl := true | con∧wl

con := ∀t ∈ [T1,T2] : lhs⊕ rhs

lhs := m(Q, t) |Σq∈S m(q, t)
rhs :=C · t |C

Figure 4: Syntax for queries (§4) and workloads (§5).

by packets in a queue, can be defined in the following way:
d(q,0) = 0
d(q, t) = max(t −a, d(q, t −1))

where a = minp∈depart(q,t) arrival(p,q)

where depart(q, t) is the set of packets that depart from queue
q at time t, and arrival(p,q) is packet p’s arrival time into
q. In defining metrics, one can use simple operations such
as addition, subtraction, multiplication with a constant, and
taking the maximum and minimum between values.
Queries. Queries are logical formulas over performance met-
rics. As shown in Figure 4, they ask questions about the values
of metrics for one queue or a set of queues, or compare the
values of metrics for two queues, over a certain period of time.

For instance, using the metric d defined above, we can ask
if packets could face significant delay in queue Q with the
following query: ∃t ∈ [1,T] : d(Q, t)> D. Moreover, as part of
the query, users can specify base_wl, a workload (formally
defined in Figure 4 and §5) that constrains the space of traces
the user is interested in. That is, the final workload returned
by the search algorithm should be a subset of base_wl. For
instance, suppose we want to know, assuming a minimum
input rate R for a queue Q, whether it will transmit fewer
than K packets during T time steps. For that, we can use the
following query:

∀t ∈ [1,T] : cenq(Q, t)≥ R · t︸ ︷︷ ︸
base_wl

→∃t ∈ [T,T] : cdeq(Q, t)< K

where cenq(q, t) and cdeq(q, t) track the total number of pack-
ets that have entered and exited q by end of t.

Similarly, we can investigate fairness between two queues
by assuming minimum input rates for both in base_wl and
comparing the number of packets they transmit:

base_wl= ∀t ∈ [1,T] : cenq(Q1, t)≥ R1 · t
∧ ∀t ∈ [1,T] : cenq(Q2, t)≥ R2 · t

base_wl→∃t ∈ [T,T] : cdeq(Q1, t)− cdeq(Q2, t)≥ T/2

Thus, queries can ask about many performance metrics,
including latency, throughput, fairness, and starvation.

5 The Workload Language
Workloads are also specified as logical formulas over a set of
metrics. A workload is a set of constraints, each specifying
the traffic pattern for a subset of queues over a period of
time. Workloads only constrain input queues, i.e., queues that
receive packets from “outside” as opposed to another queuing
module. This can help users analyze how a contention point
will perform under different classes of external traffic.

More formally, as shown in Figure 4, a workload wl is
a conjunction of constraints (con). Each con is of the form

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 649

Algorithm 1: Workload synthesis search.

Input: User query (qry) from Figure 4.
Output: Workload formula (wl) from Figure 4.

1 Procedure Search(qry)
2 if (not feasibleBaseWorkload(qry)) return BadQuery
3 wl = true; G = goodSet(qry); B = badSet(qry)
4 c1 = cost(wl,G,B)
5 while (true) do
6 (found,bad_trace) = verify(wl,qry)
7 if (found) break else B.insert(bad_trace)
8 op = randomOperation()
9 next_wl = wl.apply(op)

10 c2 = cost(next_wl,G,B)
11 if (c1 > c2) then wl = next_wl;c1 = c2

12 else if (e−λ·(c2−c1) > rand()) wl = next_wl;c1 = c2

13 shrink(wl); broaden(wl); return wl

∀t ∈ [T1,T2] : lhs⊕ rhs, where T1 and T2 are integers denoting
the interval of time over which con constrains the input traffic,
lhs is either a metric for one queue, or the aggregate of a
metric over a set of queues, and ⊕ is a comparison operator
(>,≥,<,≤,=) that shows how the lhs will be constrained by
the rhs, which is time, or a constant.

Workloads can describe sets of traces in a concise and
intuitive manner. Consider the single-constraint workload:
∀t ∈ [1,10] : cenq(Q1, t) ≥ t. Any trace that satisfies this con-
straint, that is, sends at least t packets into Q1 by time t and, as
a result, does not leave the queue idle, is part of this workload.
It does not matter if the traffic enters one packet at a time, or
if 10 packets all come in at time step 1, or if 5 packets enter in
the beginning, and 5 more at time step 5. That is, workloads
can abstract away small details of packet traces as long as a
higher-level property, as specified with a metric, is satisfied.
Workload metrics. The search algorithm explores the space
of all workloads to find one that satisfies the query. When
synthesizing candidate workloads, it decides how many con-
straints to include in the workload, and what metrics and
queues to include in each constraint (§6).

While we leave the metrics that can be used in queries
unconstrained, deciding the set of metrics that are used in
synthesizing workloads requires careful consideration. We
want the set to be small to keep the search space tractable
but expressive to enable specifying common workloads in a
concise and intuitive manner. We define our workloads over
two metrics: (1) cumulative enqueues (cenq(q, t)), the total
number of packets that enter q by the end of time step t, and
(2) arrival inter-packet gap (aipg(q, t)), the inter-packet gap
between the last two packets that enter q by time t.

While small, this is a quite expressive set. cenq constrains
the total number of packets entering the queue, independent
of the exact time they arrive. So, it can abstract away the
timing details of traces when they are not important for the
query. aipg, on the other hand, constrains the gap between
packets and their arrival pace. So, it can capture low-level
timing details if necessary in answering the query. Together,
they create a good balance in capturing the commonalities

of traces that satisfy a query, abstracting away unnecessary
details and including necessary ones.

Our experience in the case studies has shown that this set
is capable of expressing a variety of workloads. But, we view
this as a suitable starting point and not necessarily the final an-
swer. We hope that as using formal methods, and specifically
workload synthesis, for performance analysis evolves, the set
of metrics will mature as well. In fact, our search algorithm is
parametrized over the set of metrics and, if needed, any metric
that can be encoded in SMT can be easily added to our search
algorithm (see §8 for examples).

6 Synthesizing Answers
The search engine uses a guided randomized search over the
space of workloads to find one that satisfies the query. The
search algorithm (Algorithm 1) is based on the Metropo-
lis Hastings Markov Chain Monte Carlo (MCMC) sampler,
which combines random walks with hill climbing and has
been successfully used for synthesizing optimized programs
and loop invariants [20, 30, 35]. Starting from an initial work-
load wl= true (line 3), which imposes no constraints on the
input queues, the search algorithm asks the verification en-
gine to verify the workload, i.e., check if all the traces in the
workload satisfy the query (line 6). If yes, the search engine
returns the workload as the answer to the query (line 7). If not,
using the feedback from the verification engine, the search
algorithm moves on to synthesize and try another candidate
workload until a suitable workload is found (lines 8-12).

6.1 Verifying workloads
Given a workload wl, and a query base_wl→ qry, the verifica-
tion engine uses an SMT solver [34] to check if the following
formula is satisfiable

model∧base_wl∧wl∧¬qry

where model is the logical encoding of the queueing modules
the user is interested in (§3).

If the formula is satisfiable, there is at least one trace that is
(1) valid, i.e., satisfies the constraints specified in model such
as the maximum number of packets that are allowed to enter a
queue between dequeues, (2) satisfies both base_wl (the space
of traces in which user is interested (§4)) and wl, and (3) does
not satisfy the query. This means that our current candidate
workload, wl, is not a suitable answer to the query. So, this
trace is returned to the search algorithm to guide the synthesis
of the next candidate workload.

If the formula is not satisfiable, either (1) base_wl or wl or
their combination with respect to model is infeasible, meaning
that no valid trace can satisfy their constraints and they actu-
ally represent the empty set, or (2) there are no valid traces in
base_wl∧wl that do not satisfy the query. Only in the second
case wl is a valid and non-trivial answer to the query.

To distinguish between these two cases, the search engine
asks the verification engine if model∧base_wl is satisfiable
(line 2). If not, the set of valid traces specified by base_wl is

650 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

empty. So, the search engine does not start the search and
notifies the user to modify base_wl. Moreover, when verifying
a candidate workload wl (verify on line 6), the verification
engine checks whether model∧base_wl∧wl is satisfiable. If
not, the fact that wl is infeasible is also returned as feedback
to guide the selection of the next candidate.

6.2 Generating the next candidate
If a candidate workload is not the final answer, the search
algorithm synthesizes another workload to try. The next can-
didate workload, next_wl, is a mutation of the previous one, wl.
Suppose the previous candidate is wl= ∧k

i=1coni. The search
algorithm chooses one of the following operations at random
(line 8), and applies it to wl (line 9), to obtain next_wl:

• Add a new random constraint con, so next_wl= con∧wl.
• Remove a random constraint con j from wl. That is,
next_wl= (∧ j−1

i=1 coni)∧ (∧k
i= j+1coni).

• Modify a random constraint con j. Suppose con j = ∀t ∈
[T1 j ,T2 j] : lhs j ⊕ j rhs j. The search algorithm randomly picks
whether to change one of T1 j , T2 j , lhs j, ⊕ j, or rhs j to obtain
con′j, so that next_wl= (∧ j−1

i=1 coni)∧ con′j ∧ (∧k
i= j+1coni).

These operations are motivated by prior work that has empir-
ically shown MCMC to work well with a mixture of major
(add and remove) and minor (modify) changes to the current
candidate to obtain the next one [30, 35].

Next, the search algorithm uses a cost function (§6.3) to
decide whether it is “worth” transitioning to next_wl and try
it out. If next_wl has a lower cost compared to wl, next_wl be-
comes the current candidate (line 11). If next_wl has a higher
cost, to avoid getting stuck in local minima, the algorithm
may still choose to make the transition with a probability
proportional to the difference in next_wl and wl’s costs (line
12). The algorithm repeats this process until it finds the next
candidate workload.

6.3 The Cost Function
Intuitively, a good cost function should (1) favor workloads
when they include a large number of packet traces that satisfy
the query, and (2) penalize those that include traces that do
not satisfy the query. Inspired by prior work [30], we quantify
these criteria into a cost function using example traces.

We create two sets of traces before starting the search (line
3): a set of good example traces (G), all of which satisfy the
query, and a set of bad examples (B), none of which satisfy
the query. Suppose match(wl,E) is the number of traces in E

that are also in wl. The cost function is then defined as:
costE(wl,G,B) =match(wl,B)−match(wl,G).

Recall that if a workload is feasible but does not satisfy the
query, the verification engine returns a trace in that workload
that does not satisfy the query as feedback. These traces are
added to B as the search goes on, further refining the cost
function (line 7).

In our experience, costE can effectively guide the search to-
ward workloads that satisfy the query. But there could be
multiple such workloads. So, we define another function
costS(wl) that favors concise workloads, i.e., those with fewer
constraints that constrain fewer queues over longer, less frag-
mented periods of time (details in Appendix B). We define our
final cost function as cost(wl) = CE · costE(wl)+CS · costS(wl).
We set CE > CS so that in the beginning, the search algorithm
probes the space of workloads for any answer that satisfies
many good examples and no bad ones. Once the algorithm
has reduced costE(wl) and is in the “right” part of the space,
costS(wl) helps direct it towards a more concise answer.

Note that even if a workload matches some bad examples, it
can still have a low cost and get selected as the next candidate.
This is acceptable because the search algorithm may need to
go through “obviously” bad workloads to explore different
regions of the search space and find the answer. Also, exam-
ple traces are used only to guide the search; each candidate
workload is verified in the verification engine to ensure that
every trace represented by the workload satisfies the query.

6.4 Generating The Example Sets
Before the search starts, the search engine asks the verification
engine to generate traces for G and B. A trace eg is a 2D array
that concretely specifies how many packets enter each queue
at each time step. For example, if eg[Q1][5] = 3, it means that
in this trace, Q1 receives 3 packets at time 5.
The bad examples set (B). The ith bad example is a trace that
satisfies the following formula:

model∧base_wl∧¬qry∧¬(∨i−1
j=1egi ̸= eg j)∧ local_modsi.

Having ¬(∨i−1
j=1egi ̸= eg j) ensures that the trace is different

from the previous i−1 traces. local_modsi ensures that there
is variety across the traces in B so that the search algorithm
can prune the search space faster. For that, we pick P random
points (q1, t1), · · · ,(qP, tP) in the (i−1)th trace and P random
integers v1, · · · ,vP such that egi−1[q j][t j] ̸= v j. Then, we define
local_modsi = ∧P

j=0egi[q j][t j] = v j. This way, the ith trace is
different from the previous one in at least P points. If no such
trace could be found after two tries, we decrement P and retry
until a new trace is found.
The good examples set (G). Generating G is more compli-
cated. To see why, consider the diagram in Figure 5 and an
arbitrary workload ans that satisfies the query. No matter how
we choose B, ans cannot not include any of its traces. So,
by minimizing match(wl,B) in the cost function, the search
algorithm is always moving in the direction of an answer.
However, depending on how we pick G, ans may include all
(ans1 in Figure 5), a subset (ans2), or none (ans3) of G’s traces.
There may not even exist a workload like ans1 that can express
all the traces in G without including any bad traces. So, if we
do not pick G’s traces carefully, by maximizing match(wl,G),
the algorithm may repeatedly be directed towards a part of
the search space where there are no suitable answers.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 651

Figure 5: Relationship between answer workloads and G and B.

Intuitively, we want to pick traces for G that are (1) not
radically different from each other, so that the majority of
them can be represented with a single workload, and (2) not
too similar, so that the workload found by the search algorithm
is sufficiently general. To do so, the search engine asks the
verification engine to create a base trace that it will use as the
basis of generating the rest. Specifically, it asks for a trace eg0
that satisfies model∧base_wl∧qry while using Max-SMT to
minimize the following criteria in the specified order:
1. Total number of queues with traffic, i.e., ΣqIq, where

Iq = 1 if Σteg0[q][t] = 0, and is zero otherwise. This helps
keep the search focused. To see why, suppose we find an
eg0 that satisfies the query and in which only Q1, Q2, and
Q3 have traffic. When generating the rest of G, we add
constraints that make sure the queues that have no traffic in
eg0 stay empty in the rest of the traces as well. So if there is
another set of traces with traffic in, say, Q2, Q4, and Q5, that
satisfy the query, they will not be included in G, making
sure G’s traces are not radically different from each other.

2. Total number of time steps queues do not receive traf-
fic, i.e., Σq,t Iq,t , where Iq,t = 1 if eg0[q][t] = 0 and is zero
otherwise. This means that in the base trace, every queue
receives at least one packet every time step as long as it is
“harmless”, i.e., it does not stop the trace from satisfying
the query. This smooth background traffic in the base trace
can be randomly changed in the rest of the traces to ensure
diversity in the good examples set.

3. Total traffic in the trace, i.e., Σq,teg0[q][t]. Given the above
optimization criteria, this ensures that the background traf-
fic is not flooding the contention point with too many pack-
ets and only allows more than one packet per time step in
the base trace if necessary for satisfying the query.

The rest of G’s traces are generated from eg0. Similar to gen-
erating B, the search engine asks for a trace that satisfies the
query, is not any of the previous traces, and is different from
the previous trace in at least P random places. There are two
differences: for the ith trace egi, we add extra constraints so
that queues that have no traffic in eg0 (see optimization criteria
1) have no traffic in egi either, and we minimize the “distance”
between egi and eg0, i.e., minimize Σq,tdq,t , where dq,t = 1 if
egi[q][t] ̸= eg0[q][t] and zero otherwise.

6.5 Optimizations
We have employed several optimizations to improve the syn-
thesis process and the final answer. We discuss some of the
major ones here and the rest in Appendix C.
Reducing the search space. If a queue q has no traffic in

our base trace eg0 (§6.4), it means that as long as the other
“non-idle” queues have traffic, its traffic is either not important
or has to be zero for satisfying the query. So, we temporarily
add ∀t ∈ [1,T] : cenq(q, t) = 0 to base_wl and only look for
workloads that constrain the rest of the queues during search.
This reduces the space of workloads the search algorithm
needs to explore. These constraints will be removed in post-
processing if not necessary.
Post-processing. Once the search engine finds a workload
wl that satisfies the query, it creates a new workload ans that
includes all the constraints from wl and base_wl. It then per-
forms “workload shrinking” (Algorithm 1, line 13) by remov-
ing the constraints in ans one at a time and checking if ans

still satisfies the query. This helps remove any constraint that
is added to base_wl during example generation or to wl during
search but is not necessary for satisfying the query. Next, we
try “workload broadening”. For a queue Qi that is not in ans

and a constraint con in ans, if con’s left hand side is m(Q j, t),
it is changed to Σq∈{Qi,Q j} m(q, t), and if it is Σq∈S m(q, t), it is
changed to Σq∈S∪{Qi} m(q, t). If the workload still satisfies the
query, this helps include even more traces in the workload.
Reducing calls to the verification engine. Each call to the
verification engine can be expensive as it checks the satisfiabil-
ity of non-trivial formulas. So, if the search algorithm selects
a candidate workload that matches a trace in B, it moves on
to finding the next candidate without consulting with the veri-
fication engine, as it already knows that the current candidate
includes a trace that does not satisfy the query.
Escaping local minima. To avoid getting stuck in local min-
ima, the search algorithm keeps track of its progress, i.e., the
difference between the cost of the previous candidate work-
load and the next one. If the progress is below a threshold
for a number of rounds, it “looks ahead” a couple of hops
when generating the next candidate by applying a sequence of
moves in §6.2 to generate the next workload. If it still cannot
make enough progress in another several rounds, it restarts
the search from a workload with no constraints.

7 Case Study: Packet Scheduling
We have prototyped our techniques in a tool we call FPerf
in ∼10K lines of C++ code, which is publicly available [41].
We use Z3 [34] in the verification engine for checking the
satisfiability of SMT formulas. In this section, we describe
our experience in using FPerf to analyze packet scheduling al-
gorithms. Our goal is to explore expressiveness, i.e., whether
our workload language can express a wide range of work-
loads in answering queries, interpretability, i.e., whether the
final workloads are concise, intuitive, and interpretable, and
tractability, i.e., whether workloads are generated in reason-
able human timescales (i.e., minutes).

7.1 Stand-alone Schedulers
The priority scheduler is a single queuing module with four
input queues and one output queue. Qi has a higher prior-

652 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ity than Q j if i < j. Every time step, the scheduler picks the
highest-priority non-empty input queue, dequeues a packet
from it, and puts the packet in the output queue. In a strict pri-
ority scheduler, lower priority queues may get starved, which
we quantify with the metric blocked(q, t) defined as the number
of consecutive time steps that q has packets but is not chosen
for transmission. We then ask ∃t ∈ [1,T] : blocked(Q3, t)> 5.

Starting from T = 5, we increment T until the verifica-
tion engine finds a satisfying trace in the example gen-
eration phase at T = 7. Then, the search algorithm finds
∀t ∈ [1,7] : Σq∈{Q1,Q2}cenq(q, t)≥ t ∧ ∀t ∈ [1,7] : cenq(Q3, t)≥ 1.
That is, to satisfy the query, Q1 and Q2, which have higher
priorities than Q3, should collectively receive a consistent flow
of traffic (constraint 1), and Q3 should at least have one packet
to be considered blocked (constraint 2). While the answer is
not surprising, it demonstrates FPerf’s ability to abstract away
the details of which higher priority queue receives packets at
exactly what time step, only capturing the necessary details.
The round-robin scheduler is a single queuing module with
five input queues and one output queue. The input queues
are serviced in a round-robin fashion (independent of packet
size, see §9). If every queue receives steady traffic over a time
period T , each should be selected for dequeue at least T/5
times. So, when we ask if Q3 can dequeue more packets than
Q2 with query ∀t ∈ [10,10] : cdeq(Q3, t)− cdeq(Q2, t) ≥ 3 and
base workload ∧5

i=1 ∀t ∈ [1,10] : cenq(Qi, t)≥ t, the verification
engine cannot find any traces that satisfy the query.

Now suppose we relax base_wl to restrict the average
rate of traffic every 5 time steps as opposed to every time
step, i.e., have the queues receive at least 4 packets ev-
ery 5 time steps: base_wl =

(
∧5

i=1 ∀t ∈ [5,5] : cenq(Qi, t) ≥
4
)
∧
(
∧5

i=1 ∀t ∈ [10,10] : cenq(Qi, t) ≥ 8
)
. FPerf finds ∀t ∈

[1,4] : Σq∈{Q1,Q2,Q4,Q5}cenq(q, t) ≤ 0∧ ∀t ∈ [1,4] : cenq(Q3, t) ≥
t ∧ base_wl, which describes a workload where all queues ex-
cept Q3 receive no packets in the first four time steps and
receive a burst of at least 4 packets at time 5, while Q3 contin-
uously receives traffic. So, while the average input rate of all
queues is the same, other queues temporarily fall behind Q3
in terms of dequeues due to the burstiness of their traffic.
FQ-Codel. This case study analyzes the buggy scheduler in-
spired from the FQ-Codel qdisc [32]. The scheduler’s logic,
the query, and the workload are described in §2 as our moti-
vating example. Here, we only report that the same workload
was overwhelmingly returned as the answer across all runs.

7.2 Composing Host and NIC Schedulers
Modern NICs expose multiple transmit queues to the host, so
that CPU cores can concurrently send traffic to the NIC, each
through a dedicated transmit queue [42–44]. This provides
significant performance benefits but makes it difficult to en-
force policies about how applications on the same host should
share network resources. Prior work [44] demonstrates this
using an example, which we analyze in this case study.

Suppose two tenants reside on a server with multiple CPU

Figure 6: Setup for the case study in §7.2.

cores. Tenant 1 runs spark [45], and tenant 2 runs both spark
and memcached [46]. All applications are multi-threaded and
can use all the cores. We want to ensure that the two tenants
fairly share the network bandwidth, and tenant 2’s memcached
traffic is prioritized over its own spark traffic. One option, de-
scribed in [44], is to use software packet schedulers (e.g.,
Linux qdiscs) to enforce fair sharing between the tenants on
the host, and a priority scheduler on the NIC to enforce prior-
itization of memcached traffic. Note that to avoid overhead,
software schedulers enforce policies per core not across cores.

Figure 6 shows how we model this in FPerf for 4 CPU cores.
There is one input queue for traffic from each application on
each core. That is, Q3(i−1)+1, where i is the core number, are
for tenant 1’s spark, Q3(i−1)+2 for tenant 2’s spark, and Q3i

for tenant 2’s memcached traffic. For each core, a queuing
module first classifies traffic from that core’s input queues
into two output queues, one for each tenant. Then, a round-
robin scheduler shares bandwidth between the two tenants
into the NIC’s transmit queue. On the NIC, a module classifies
traffic from the cores into two output queues, one for spark
and one for memcached traffic. Finally, a priority scheduler
that prioritizes memcached traffic decides what packet to send
out of the NIC. We add a “dummy” module that takes the
output from the NIC and “demultiplexes” it into Qout1 queue
for tenant 1 and Qout2 for tenant 2 to use in our queries.

Since the final scheduler always prioritizes memcached
traffic over spark, it is easy to see how the second half of the
policy is always enforced. So, we ask whether tenant 1 and
tenant 2 will get equal access to the NIC output link:

base_wl→∀t ∈ [10,10] : cdeq(Qout2, t)− cdeq(Qout1, t)≥ 3
base_wl= (∀t ∈ [1,10] : Σq∈Stenant1 cenq(q, t)≥ t)∧

(∀t ∈ [1,10] : Σq∈Stenant2 cenq(q, t)≥ t)

Stenant1 are Q3(i−1)+1 (1 ≤ i ≤ 4), which carry tenant 1’s spark
traffic, and the rest of the queues are in Stenant2. That is, in
base_wl, we ensure that both tenants receive a steady stream
of packets. For this query, FPerf finds the workload

∀t ∈ [1,10] : cenq(Q4, t)≥ t ∧ ∀t ∈ [1,10] : cenq(Q9, t)≥ t
∧ (∧i∈Srest∀t ∈ [1,10] : cenq(Qi, t)≤ 0),

where Srest is {1, · · · ,3,5, · · · ,8,10, · · ·12}. That is, if tenant 2’s
memcached runs on core 3 and tenant 1’s spark on core 2, they

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 653

Phases Prio RR FQ-C Comp LS-T LS-L

Example
Generation

Generating base trace (s) 0.3 1.0 3.1 70.3 59.5 71.5
Generating good set (G) (s) 6.8 309 346 321 310 632
Generating bad set (B) (s) 1.2 3.0 7.1 179 74.1 69.6

Verification
Engine

Verifying workload (avg) (s) 0.02 0.02 0.11 0.65 0.73 0.94
Verifying workload (max) (s) 0.04 0.13 0.86 7.60 3.26 2.18
Verifying query (avg) (s) 0.03 0.04 0.10 0.81 1.66 1.46
Verifying query (max) (s) 0.06 0.18 0.73 9.90 4.09 2.26

Search
(see §6.5)

Rounds 65 268 769 361 949 117
Rounds w.o/verification 39 107 537 131 836 65
Rounds w/“look-ahead” 1 11 44 20 162 1
Total search time (s) 2.4 59 223 461 420 121

Post
Processing

Workload shrinking (s) 0.2 0.0 0.9 107 25.9 16.4
Workload broadening (s) 1.0 0.0 0.1 45 0.0 2.6

Total Time (min.) 0.2 6.2 9.6 18.5 13.8 14.0

(a) Statistics from running FPerf 10 times for each case study. Parameters: Queue
parameters are S = 10 and K = 4 packets. For example sets, |G| = |B| = 50, and P =
min(10, trace_size

5). During search, the maximum number of constraints in the workload is
set to twice the number of input queues, threshold for slow progress is 0.03 ·max(costE),
CE
CS

= 10, and number of rounds of slow progress tolerated before look-ahead and restart
is 10 and 20 respectively.

Prio RR FQ-C Comp LS-T LS-L

Queuing Modules 1 1 1 11 23 23
Queues 5 6 7 29 66 66
Boolean Vars (×1000) 0.8 0.2 2.6 10.6 21.3 21.3
Integer Vars (×1000) 0.6 1.1 1.9 7.3 23.2 23.2
Constraints (×1000) 7.2 13 2.2 93.8 45.8 45.5
Max timesteps 7 10 14 10 10 10

(b) Case study statistics

(c) Workload synthesis statistics for the latency query on leaf-
spine networks of increasing size. Si-L j-Hk has i spines, j leaves,
and i hosts per leaf to avoid oversubscription (k = i× j). Param-
eters are same as figure 7a except |G|= |B|= 25 (see §9).

Figure 7: Case study statistics and results (§7 and §8).

will only compete in the priority scheduler in the NIC, where
memcached traffic is prioritized over spark traffic, and tenant
2 is favored to access the link. The same phenomena can
happen as long as tenant 2’s memcached traffic and tenant1’s
spark traffic come from two different cores.

Next, we modify the base workload to see if the prob-
lem still exists if there is no memcached traffic. We add∧

i∈{3,6,9} cenq(Qi, t) = 0 to the base workload and repeat the
query. This time, we get the following workload as answer:

∀t ∈ [1,10] : cenq(Q8, t)≥ t ∧ ∀t ∈ [1,10] : cenq(Q11, t)≥ t
∧∀t ∈ [1,10] : Σq∈{Q2,Q5}cenq(q, t)≥ t

∧∀t ∈ [1,10] : cenq(Q10, t)≥ t
∧ (∧i∈rest∀t ∈ [1,10] : cenq(Qi, t)≤ 0).

where rest = {1,3,4,6,7,9,12}. Here tenant 2’s spark runs on
all cores and tenant 1’s spark only on core 4. The first three
constraints ensure that there are three different concurrent
streams of traffic from tenant 2’s spark. Since there is only
one stream of spark traffic for tenant 1, that is, because the
spark flows are not uniformly spread across cores, tenant 1
gets access to the link less frequently than tenant 2. Both
workloads are consistent with the empirical results in [44].

7.3 Tractability
Tables 7a and 7b summarize statistic about different phases
involved in workload synthesis for the packet scheduling case
studies across 10 runs. We use a server with 4-socket NUMA-
enabled Intel Xeon Gold 6128 3.4GHz CPU with 6 cores per
socket. For Comp, we only include the results for the second
query as, compared to the first query, its analysis is more
involved in all synthesis phases.
Generating G is expensive. This is not surprising: when
generating trace egi, we constrain it to have different randomly

chosen values from egi−1 in p = P random places. If no trace
is found in two tries, we decrement p and try again. Each time,
we also ask the verification engine to minimize the distance
between egi and the base trace (§6.4). The more such calls,
either due to the sheer size of G, or because we have to retry
a lot for each trace, the longer generating G will take.

Compared to Prio and Comp, it takes more tries to find a
trace for RR and FQ-Codel (average of 16 and 6 tries, respec-
tively). This is because the answers to their queries are more
sensitive to the timing of packets in the trace: RR needs a
specific kind of burstiness and FQ-CoDel needs a specific rate.
So, making p random modifications to egi−1 for larger values
of p makes it improbable to satisfy the query for egi, increas-
ing the number of retries. By default, P = min(10, trace_size

5),
which is 10 for RR and FQ-CoDel, translating to a maximum
of 20 tries per example trace. Instead, we can potentially set P
to the moving average of the p that has worked for the previ-
ous traces and reduce the number of retries, and consequently,
the total time for generating G.

Another option is to reduce |G|, potentially increasing
search time as shown in Figure 10 (Appendix). For all but FQ-
Codel, the decrease in example generation time outweighs the
increase in search time, and workload synthesis is fastest for
|G|= 25. For FQ-CoDel the sweetspot is |G|= 50. One could
execute workload synthesis in parallel for different values of
|G| and use the results from whichever finishes first. Moreover,
once we have the base trace eg0, we can potentially parallelize
the generation of G into x threads, each generating |G|

x traces.
Our randomized changes from one trace to the next reduces
the risk of getting duplicate traces across threads, and even if
there are a few, it will not affect the correctness of the search.
The verification engine is efficient. The verification engine
can verify a workload in < 1sec on average. The worst case

654 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

is ∼ 10sec. for Comp, and < 1sec. in other case studies. The
efficiency of the verification engine is thanks to the advances
in SMT solvers [34], our efficient encoding of queues (Ap-
pendix), and our choice to use immediate composition.

In immediate composition, packets leaving output queues
at time t are visible in the input queues of the next module at
time t, as opposed to t +1 in sequential composition (§3). So,
if we have a chain of L queuing modules, a packet arriving at
time t is processed by all the queuing modules one-by-one but
in the same time step and appears in the final output queue
at t +1, as opposed to t +1+L. In Comp, all the paths from
input to output queues through the queuing modules have the
same length. So, if we use immediate composition across all
modules, it will not change the relative ordering of packets
across queuing modules and allows us to analyze the model
in 10 as opposed to 15 time steps and get the same output.
Optimizations (§6.5) are effective. For instance, when a can-
didate workload matches one of the bad example traces, we
can move on to the next candidate without calling the verifica-
tion engine. Using this optimization, we avoided calling the
verification engine in ∼ 40 to 70% of the rounds, which trans-
lates to saving ∼ 113 and 192 seconds in FQ-CoDel and Comp
that are more complex. Moreover, The “look-ahead” strategy
is used in 5% of the rounds, helping the search algorithm to
avoid local minima and plateaus.

8 Case Study: A Small Leaf-Spine Network
In this section, we use FPerf to analyze a small leaf-spine net-
work (Figure 8). Our goal is to demonstrate the expressiveness
of our model and the generality of our techniques.
Modeling switches. We model our switches after input-
queued switches with virtual output queues (VOQs). Suppose
the switch has P ports. Each input port i has P VOQs, where
the jth VOQ stores packets that are destined for output port j.
The switch crossbar decides which input ports can simultane-
ously send packets to which output ports without interfering
with each other, and delivers packets from the corresponding
VOQs at those input ports to their destination output ports.

Figure 9 shows how we model this in FPerf. A switch with
P ports is a composition of P+ 1 queuing modules. There
are P forwarding modules, one for each input port. The ith
forwarding module takes a packet from input port i, decides
the destination port j it should be forwarded to, and places
the packet in the jth VOQ for port i. The crossbar queuing
module models the switch crossbar. In each time step, using
the iSlip algorithm [47], it matches input ports and output
ports such that each input port is matched with at most one
output port and vice versa. If an input port i is matched with
an output port j, the crossbar moves a packet from the jth
VOQ at port i to the output queue for port j. iSlip and its
variants are widely used in switching fabrics as they provide
high throughput in the crossbar and fairness across inputs.
Packet metadata and workload metrics. The per-packet
metadata variables include dst, a variable representing the fi-

Figure 8: A small leaf-spine network as case study (§8).

nal destination of the packet, and ecmp, a variable with values
in [0,S] where S is the number of spines switches, representing
the result of the ECMP hash of the packet’s flow id modulo
the number of spines. We extend example traces and our algo-
rithms for generating them (§6.4) to include packet metadata
(details are in Appendix D.1). Moreover, we add two cor-
responding metrics, dst(q, t) and ecmp(q, t), to our workload
language to track the values of these variables for packets
entering q at time t. These metrics, together with cenq(q, t)
and aipg(q, t), can be used in the synthesized workloads to
describe a range of traffic patterns and flows.
User Interface. To create a model of a network of switches,
the users need to specify the topology (switches and links)
and the forwarding rules (mapping per-packet metadata to an
output port) for each switch. For a leaf-spine network, FPerf
provides a special interface that only requires specifying the
number of leaves and spines. For the base workload, the users
can provide a list of constraints using an interface that ab-
stracts away the logical operators and expressions in Figure 4.
Each constraint is either (1) [t1, t2] q.m ⊕ c, constraining metric
m for queue q against a constant (⊕ is any comparison opera-
tor), (2) [t1, t2] (q1.m + ... + qn.m) ⊕ c, (3) [t1, t2] q1.m ⊕ q2.m, or
(4) [t1, t2] (q1.m + ... + qn.m)/t ⊕ c, constraining a metric’s value
for one or more queues over time. Queues are identified by
switch id and port number.

For queries, the users provide a list of questions with a
similar interface, asking if the value of a metric over a time
period for one or more queues can go above or below a thresh-
old. There are two special shorthands for common queries:
q.avg_rate is the average input rate for queue q, which trans-
lates to q.cenq/t, and lat(s1, ..., sn) is the latency through the
specified sequence of switches, which translates to sum of
queue sizes (q1.qsize + ... + qn.qsize) along the path. Ap-
pendix D.2 includes more details on the translation between
this interface and the syntax in Figure 4.
The throughput query (LS-T). Since there is no oversub-
scription in our leaf-spine network, we first ask whether the
throughput between hosts 1 and 6 can drop below line-rate:

base_wl→∀t ∈ [10,10] : cenq(Out6, t)< 5
base_wl= (∀t ∈ [1,10] : dst(In1, t) = 6)∧

(∧i, j∈[1,6],i ̸= j∀t ∈ [1,10] : dst(Ini, t) ̸= dst(In j, t))

Ini and Outi are the queues host i uses to send traffic into and
receive traffic from the network, respectively. The query asks
whether the total number of packets received by host i at time
10 is less than half of what it should have received at line rate.
The base workload ensures that host 1 sends a steady stream

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 655

Figure 9: Modeling an input-queued switch with VOQs in FPerf.

of traffic to host 6 (at least 1 packet per time step), and no
two hosts send traffic to the same destination so there is no
traffic concentration at the hosts. For this query, FPerf finds
the following workload:

∀t ∈ [1,10] : dst(In3, t)≥ 5 ∧ ∀t ∈ [1,7] : ecmp(In1, t) = 1
∧∀t ∈ [1,7] : ecmp(In3, t) = 1 ∧ ∀t ∈ [1,10] : cenq(In4, t)≤ 0.

That is, if there is another flow from host 3 to the third pod
(constraint 1) with the same ecmp as the flow from host 1 to
6 (constraints 2 and 3), the two flows have to compete for
bandwidth on the link from S1 to L3 (Figure 8) and host 6 will
not receive traffic from host 1 at line rate. The last constraint
ensures that the flow from host 3 has all the bandwidth from
the second pod to itself to compete with the flow from host 1.

The latency query (LS-L). In the absence of queuing delay,
it takes packets three time steps to go from a host in one pod
to a host in a different pod. We want to know if it can take
much longer, say, 13 time steps, for packets to go from host 1
to 6. To do so, we ask if it is possible to have a queue build
up of at least 10 packets along the path of the flow:
base_wl→∀t ∈ [10,10] : Σq∈path qsize(q, t)≥ 10
base_wl= (∀t ∈ [1,10] : dst(In1, t) = 6)∧
(∀t ∈ [1,10] : ecmp(In1, t) = 1)∧ (∀t ∈ [1,10] : cenq(In1, t)≤ t)

Here, the base workload ensures there is a flow from host 1 to
6 (constraints 1 and 2), and that the flow sends at most at line
rate (constraint 3), so that there is no artificial queue build up
from the flow’s own packets. path is the set of queues the flow
visits as it traverses L1, S1 (since in base_wl, ecmp(Int , t) = 1),
and L3 (see Figure 8).

For this query, FPerf finds the following workload:
∀t ∈ [1,8] : dst(In3, t) = 6∧ ∀t ∈ [1,8] : ecmp(In3, t) = 1

∧∀t ∈ [1,10] : ecmp(In5, t) = 6∧ ∀t ∈ [1,10] : cenq(In4, t)≤ 0.

That is, if hosts 3 and 5 (from pods 2 and 3) send traffic to
host 6 at the same time (constraints 1 to 3), there will be a
queue build up of at least 10 packets along the path of the
flow and its packets will experience high latency. Similar to
the throughput query, the last constraint ensures that the flow
from host 3 has all the bandwidth from the second pod to
itself to contribute to quickly building up the queues.

Tractability. Tables 7b and 7a summarize statistics about dif-
ferent phases of workload synthesis for the queries about the
leaf-spine network. The results are consistent with our obser-
vations in §7.3. Generating the good example set is expensive
but there are opportunities for parallelization and further op-
timizations. The verification engine is efficient, verifying

workloads in < 1.7sec. on average and ∼ 4sec. in the worst
case. Beyond what is described in §7.3, we employ other
optimizations that contribute to this efficiency. Specifically,
we use the forwarding rules in the leaf-spine topology to (1)
remove certain VOQs from the switch crossbar if their corre-
sponding input and output ports are not expected to commu-
nicate (e.g., a packet entering a leaf from a spine is expected
to go to one of the output ports connected to the hosts and not
other spines), and (2) constrain the values of the per-packet
metadata to reduce the search space (e.g., all packets going
into S1 have ecmp set to 1). Finally, our search optimizations
remain effective, avoiding calls to the verification engine in
∼ 55 to 89% of the rounds, and the example traces effectively
guide the search towards workloads that satisfy the query.
Takeaways. Queuing modules and their composition are
expressive enough to model a variety of network compo-
nents, from packet schedulers and classifiers to a network
of switches. We did not need to make any changes to how
we model contention points (§3) to model the leaf-spine net-
work. Similarly, our workload synthesis techniques generalize
beyond packet scheduling. Our example generation strategy
and workload metrics need only minor changes to include the
packet metadata needed for forwarding over the network, and
our search algorithm can find workloads for the queries as
effectively without any modifications.

9 Discussion and Future Directions
Scaling to large networks. Figure 7c shows how example
generation, search, and workload verification times increase
for the latency query on leaf- spine networks of increasing
size. As the network size increases, the number of variables
and constraints go from 45k and 46k to 182k and 181k, and au-
tomated theorem provers (e.g., Max-SMT and SMT solvers)
which we use in example generation and workload verifica-
tion, can take exponentially longer as the problem size in-
creases. For our largest evaluated network (not shown in the
figure) with 4 spines, 4 leaves, and 16 servers (56 modules
and 288 queues), it takes 224 minutes to find an answer.

There is room for more optimizations, some of which we
have implemented for this experiment and discuss in Ap-
pendix D.3. But, as with any other approach that relies on
similar formal methods tools, there is a limit to how many vari-
ables and constraints we can jointly reason about within a rea-
sonable amount of time. As such, similar to data and control-
plane verification tools that have matured over a decade to
scale to large-scale networks, much work needs to be done to
improve the scalability of formal methods tools for network
performance analysis.

For example, we may need to develop new techniques,
e.g., domain-specific algorithms for reasoning about network
properties to replace SAT/SMT solvers [12, 48] or decom-
pose global properties into local properties for modular anal-
ysis [15, 31]. Specifically, given that performance queries and
properties such as latency lend themselves well to decomposi-

656 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tion over regions and paths, we believe modular analysis to be
key in scaling automated formal reasoning about performance
and an important direction for future work.
Bounded Time. We model queuing modules for a bounded
number of time steps, starting with empty queues and every
module in its initial state. Nevertheless, the workloads in our
case studies often include “repeatable” patterns. For instance,
in FQ-CoDel, Q5 can continue causing fairness problems after
14 timesteps if it keeps sending at the rate specified in the
workload. Prior work explores how to find periodic adver-
sarial input patterns for P4 programs [49], and it would be
interesting to explore similar ideas in our context. Moreover,
to cover different portions of the time horizon, we can explore
ways to compute a subset set of reachable states in queuing
modules and start from those as opposed to the initial state.
Finally, exploring verification techniques for reasoning about
unbounded time [50] is an interesting avenue for future work.
Packets vs. bits. In our prototype, metrics, and therefore,
queries and workloads, are defined in terms of packets rather
than bits. We plan to extend FPerf to include packet sizes as
extra variables, so they can be used in defining metrics and
potentially reveal even more interesting workloads.
Generating traces from workloads. We can use the ver-
ification engine to generate example traces from the final
workloads. Transforming these traces or the traces in G to
concrete packets that can be injected into real-world networks
(e.g., see Adapters in [37]) is an interesting future direction.

10 Related Work
Network Calculus. Network Calculus [6, 51] offers a uni-
form mathematical framework for analyzing performance
guarantees. To use network calculus, one needs to model the
input workload as an “arrival curve”, which bounds the arrival
pattern of bits into a network component, and the network
component as a “service curve”, which bounds the number of
serviced bits. Using these curves and (min,+) algebra, one can
then derive bounds on performance metrics such as through-
put, latency, jitter, and loss [4, 52–54]. However, these curves
need to be reasonably concise and provide tight bounds on
the behavior of the network component and the input traffic
pattern for the final bounds to be tight and useful. Deriving ar-
rival and service curves is challenging, particularly for today’s
complex network functionality and traffic patterns [10].
Quantitative Reasoning. There is a line of work for rea-
soning about quantitative network properties: Some extend
dataplane verifiers to reason about quantities such as link
loads and hop counts [55–57]. Others reason about probabilis-
tic aspects of networks (e.g., weighted ECMP) and answer
probabilistic questions (e.g., the probability that packets reach
a destination) [58,59]. Our work is similar in that performance
properties are quantitative. However, these tools focus on veri-
fication, whereas, we propose to use synthesis to automatically
generate not just one counter-example, but a workload that vi-
olates user-defined performance-related properties. Moreover,

these tools abstract away many low level network details as
nondeterministic, which we are able to model more precisely
in SMT in our queueing modules.
Automated protocol analysis. Recent work uses techniques
such as bounded model checking and guided search to check
if congestion control algorithms can be driven into undesir-
able states or underutilize the network [60–62]. Khan et al.
propose to train Markov models that capture the temporal be-
havior and throughput and delay distributions of delay-based
congestion control protocols [63]. Gilad et al. use reinforce-
ment learning (RL) to train agents that generate adversarial
traces for protocols and use it to demonstrate sub-optimal
performance in some RL-driven protocols [64]. We propose
generating workloads describing sets of traces in response to
user-defined queries about performance problems.
Synthesis. Syntax-Guided Synthesis (SyGuS) is a general ap-
proach to program synthesis that uses a verifier together with
a candidate program grammar. There are various ways to do
SyGuS; there are enumerative [65, 66], stochastic [20, 30, 35],
and logical approaches [67]. Our work is based on stochas-
tic search. Moreover, recent work explores using synthesis
in networking to generate packet processing code [19, 20],
network configuration [21–23], configuration updates [24], or
control-plane repairs [25, 26]. We use synthesis to generate
workloads to reason about network performance.

11 Conclusion
Over the past decade, a large body of academic and industry
work has demonstrated the feasibility and benefits of using
formal methods to reason about the functional correctness of
networks. Inspired by their success, we set out to bring the
same benefits to analyzing network performance.

Along the way, we have developed efficient encodings of
packet-level interactions that affect network performance. We
have also found that when it comes to performance analysis,
returning isolated packet traces that violate performance prop-
erties is not always useful. Instead, we argue that a more use-
ful output is a workload that can concisely describe the com-
monality of a set of traces that can experience performance
problems. We have shown how to apply existing synthesis
techniques to generating such workloads and demonstrated
the tractability of our approach using case studies.

This is only the start; as with other applications of formal
methods to systems and networking, much work needs to be
done to make such formal performance analysis approaches
suitable for analyzing real-world networks, some of which
we have outlined in this paper as future research directions.

Acknowledgments
We thank Laurent Vanbever, our shepherd, the anonymous
reviewers, Jennifer Rexford, Shir Landau-Feibish, and Nate
Foster for their helpful feedback. This work was supported
in part by NSF grants CNS-2047283 and CNS-1704742, a
Google faculty research award, and a Sloan fellowship.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 657

References
[1] NS3 Network Simulator. https://www.nsnam.org/. Accessed: 09-

2022.

[2] Mininet. http://mininet.org/. Accessed: 09-2022.

[3] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapra-
gada, Nuno P Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua
Yuan. CrystalNet: Faithfully emulating large production networks. In
ACM SOSP, 2017.

[4] Victor Firoiu, J-Y Le Boudec, Don Towsley, and Zhi-Li Zhang. The-
ories and models for internet quality of service. Proceedings of the
IEEE, 2002.

[5] Rayadurgam Srikant. The mathematics of Internet congestion control.
Springer, 2004.

[6] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: A theory
of deterministic queuing systems for the internet. Springer, 2001.

[7] Steven H Low. A duality model of TCP and queue management
algorithms. IEEE/ACM Transactions On Networking, 2003.

[8] Jiayue He, Mung Chiang, and Jennifer Rexford. TCP/IP interaction
based on congestion price: Stability and optimality. In 2006 IEEE
International Conference on Communications, 2006.

[9] Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. Analysis
of DCTCP: Stability, convergence, and fairness. ACM SIGMETRICS,
2011.

[10] Florin Ciucu and Jens Schmitt. Perspectives on network calculus: No
free lunch, but still good value. In ACM SIGCOMM, 2012.

[11] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar,
P Brighten Godfrey, and Samuel Talmadge King. Debugging the data
plane with Anteater. In ACM SIGCOMM, 2011.

[12] Peyman Kazemian, George Varghese, and Nick McKeown. Header
space analysis: Static checking for networks. In USENIX NSDI, 2012.

[13] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
P Brighten Godfrey. Veriflow: Verifying network-wide invariants in
real time. In USENIX NSDI, 2013.

[14] Alex Horn, Ali Kheradmand, and Mukul Prasad. Delta-Net: Real-time
network verification using atoms. In USENIX NSDI, 2017.

[15] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal,
Ashish Bhargava, Paul-Andre C Bissonnette, et al. Validating dat-
acenters at scale. In ACM SIGCOMM. 2019.

[16] Announcing Network Intelligence Center – towards proactive net-
work operations. https://cloud.google.com/blog/products/
networking/announcing-network-intelligence-center. Ac-
cessed: 09-2022.

[17] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan Tian,
Qiaobo Ye, Chunsheng Wang, et al. Accuracy, scalability, coverage: A
practical configuration verifier on a global WAN. In ACM SIGCOMM,
2020.

[18] Siva Kesava Reddy Kakarla, Ryan Beckett, Behnaz Arzani, Todd Mill-
stein, and George Varghese. GRoot: Proactive verification of DNS
configurations. In ACM SIGCOMM, 2020.

[19] Xiangyu Gao, Taegyun Kim, Michael D Wong, Divya Raghunathan,
Aatish Kishan Varma, Pravein Govindan Kannan, Anirudh Sivaraman,
Srinivas Narayana, and Aarti Gupta. Switch code generation using
program synthesis. In ACM SIGCOMM, 2020.

[20] Qiongwen Xu, Michael D Wong, Tanvi Wagle, Srinivas Narayana, and
Anirudh Sivaraman. Synthesizing safe and efficient kernel extensions
for packet processing. In ACM SIGCOMM, 2021.

[21] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and
David Walker. Don’t mind the gap: Bridging network-wide objectives
and device-level configurations. In ACM SIGCOMM, 2016.

[22] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and
David Walker. Network configuration synthesis with abstract topolo-
gies. In ACM SIGPLAN PLDI, 2017.

[23] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin
Vechev. Netcomplete: Practical network-wide configuration synthesis
with autocompletion. In USENIX NSDI, 2018.

[24] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever. Snowcap:
synthesizing network-wide configuration updates. In ACM SIGCOMM,
2021.

[25] Aaron Gember-Jacobson, Aditya Akella, Ratul Mahajan, and
Hongqiang Harry Liu. Automatically repairing network control planes
using an abstract representation. In ACM SOSP, 2017.

[26] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya
Akella. Aed: incrementally synthesizing policy-compliant and manage-
able configurations. In ACM CoNEXT, 2020.

[27] VMware to Advance Network Monitoring with Acquisition of
Veriflow. https://blogs.vmware.com/management/2019/08/
vmware-to-advance-network-monitoring-with-acquisition-
of-veriflow.html. Accessed: 09-2022.

[28] Intentionet. https://www.intentionet.com/. Accessed: 09-2022.

[29] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin,
Mukund Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-Guided
Synthesis. In FMCAD, 2013.

[30] Rahul Sharma and Alex Aiken. From invariant checking to invariant
inference using randomized search. Formal Methods in System Design,
2016.

[31] Ryan Beckett and Ratul Mahajan. Capturing the state of research on
network verification. https://netverify.fun/2-current-state-
of-research/. Accessed: 09-2022.

[32] Toke Høeiland-Jøergensen, Paul McKenny, Dave Taht, Jim Gettys, and
Eric Dumazet. The Flow Queue CoDel packet scheduler and active
queue management algorithm. RFC 8290, 2018.

[33] Madhavapeddi Shreedhar and George Varghese. Efficient fair queueing
using deficit round robin. In ACM SIGCOMM, 1995.

[34] Z3. https://github.com/Z3Prover/z3. Accessed: 09-2022.

[35] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superopti-
mization. In ACM ASPLOS, 2013.

[36] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin
Vechev. Net2Text: Query-Guided summarization of network forward-
ing behaviors. In USENIX NSDI, 2018.

[37] Tiago Ferreira, Harrison Brewton, Loris D’Antoni, and Alexandra Silva.
Prognosis: closed-box analysis of network protocol implementations.
In ACM SIGCOMM, 2021.

[38] Richard Uhler and Nirav Dave. Smten with satisfiability-based search.
In ACM OOPSLA, 2014.

[39] Emina Torlak and Rastislav Bodik. A Lightweight symbolic virtual
machine for solver-aided host languages. In ACM SIGPLAN PLDI,
2014.

[40] CBMC. https://www.cprover.org/cbmc/. Accessed: 09-2022.

[41] FPerf Github Repository. https://github.com/minmit/fperf. Ac-
cessed: 09-2022.

[42] Nvidia ConnectX SmartNICs. https://www.nvidia.com/en-us/
networking/ethernet-adapters/. Accessed: 09-2022.

[43] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar, Ab-
dul Kabbani, George Porter, and Amin Vahdat. SENIC: Scalable NIC
for end-host rate limiting. In USENIX NSDI, 2014.

[44] Brent Stephens, Aditya Akella, and Michael Swift. Loom: Flexible and
Efficient NIC Packet Scheduling. In USENIX NSDI, 2019.

658 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.nsnam.org/
http://mininet.org/
https://cloud.google.com/blog/products/networking/announcing-network-intelligence-center
https://cloud.google.com/blog/products/networking/announcing-network-intelligence-center
https://blogs.vmware.com/management/2019/08/vmware-to-advance-network-monitoring-with-acquisition-of-veriflow.html
https://blogs.vmware.com/management/2019/08/vmware-to-advance-network-monitoring-with-acquisition-of-veriflow.html
https://blogs.vmware.com/management/2019/08/vmware-to-advance-network-monitoring-with-acquisition-of-veriflow.html
https://www.intentionet.com/
https://netverify.fun/2-current-state-of-research/
https://netverify.fun/2-current-state-of-research/
https://github.com/Z3Prover/z3
https://www.cprover.org/cbmc/
https://github.com/minmit/fperf
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://www.nvidia.com/en-us/networking/ethernet-adapters/

[45] Apache Spark. https://spark.apache.org/. Accessed: 09-2022.
[46] Memcached: a Distributed Memory Object Caching System. http:

//www.memcached.org/. Accessed: 09-2022.
[47] Nick McKeown. The iSLIP scheduling algorithm for input-queued

switches. IEEE/ACM Transactions on Networking, 1999.
[48] Todd Millstein. Toward modular network verification. https://

netverify.fun/toward-modular-network-verification/. Ac-
cessed: 09-2022.

[49] Qiao Kang, Jiarong Xing, Yiming Qiu, and Ang Chen. Probabilistic
profiling of stateful data planes for adversarial testing. In ACM ASPLOS,
2021.

[50] Anthony Lin. Model Checking Infinite-State Systems: Generic and
Specific Approaches. PhD thesis, 2010.

[51] Rene L Cruz. A calculus for network delay. parts I and II. IEEE
Transactions on Information Theory, 1991.

[52] Jorg Liebeherr, Yashar Ghiassi-Farrokhfal, and Almut Burchard. On
the impact of link scheduling on end-to-end delays in large networks.
IEEE Journal on Selected Areas in Communications, 2011.

[53] Jörg Liebeherr, Almut Burchard, and Florin Ciucu. Delay bounds
in communication networks with heavy-tailed and self-similar traffic.
IEEE Transactions on Information Theory, 2012.

[54] C-S Chang. Stability, queue length and delay. II. Stochastic queueing
networks. In IEEE Conference on Decision and Control, 1992.

[55] Garvit Juniwal, Nikolaj Bjorner, Ratul Mahajan, Sanjit Seshia, and
George Varghese. Quantitative network analysis. Technical report,
2016.

[56] Ying Zhang, Wenfei Wu, Sujata Banerjee, Joon-Myung Kang, and
Mario A Sanchez. SLA-verifier: Stateful and quantitative verification
for service chaining. In IEEE INFOCOM, 2017.

[57] Kim G Larsen, Stefan Schmid, and Bingtian Xue. WNetKAT: A
weighted SDN programming and verification language. In Interna-
tional Conference on Principles of Distributed Systems (OPODIS),
2017.

[58] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt,
and Alexandra Silva. Probabilistic NetKAT. In European Symposium
on Programming, 2016.

[59] Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal
Wiesmann, and Martin Vechev. Bayonet: Probabilistic inference for
networks. In ACM SIGPLAN PLDI, 2018.

[60] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad
Alizadeh, and Hari Balakrishnan. Toward formally verifying congestion
control behavior. In ACM SIGCOMM, 2021.

[61] Wei Sun, Lisong Xu, Sebastian Elbaum, and Di Zhao. Model-Agnostic
and efficient exploration of numerical state space of real-world TCP
congestion control implementations. In USENIX NSDI, 2019.

[62] Samuel Jero, Md Endadul Hoque, David R Choffnes, Alan Mislove, and
Cristina Nita-Rotaru. Automated attack discovery in TCP congestion
control using a model-guided approach. In NDSS, 2018.

[63] Muhammad Khan, Yasir Zaki, Shiva Iyer, Talal Ahamd, Thomas Pötsch,
Jay Chen, Anirudh Sivaraman, and Lakshmi Subramanian. The case
for model-driven interpretability of delay-based congestion control
protocols. ACM SIGCOMM Computer Communication Review, 2021.

[64] Tomer Gilad, Nathan H Jay, Michael Shnaiderman, Brighten Godfrey,
and Michael Schapira. Robustifying network protocols with adversarial
examples. In ACM HotNets, 2019.

[65] Peter-Michael Osera and Steve Zdancewic. Type-and-Example-
Directed program synthesis. In ACM SIGPLAN PLDI, 2015.

[66] Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve
Zdancewic. Example-directed synthesis: A type-theoretic interpre-
tation. In ACM SIGPLAN-SIGACT POPL, 2016.

[67] Sumit Gulwani and Ramarathnam Venkatesan. Component-Based
synthesis applied to bitvector circuits. Technical report, 2009.

A Efficient Encoding of FIFOs in SMT
A queue is specified with two parameters, its size S and the
maximum number of enqueues K allowed at every time step.
We define the following variables for each queue for every
time step t:

1. enqs[t][1 : K] consists of K tuples, where each tuple repre-
sents a packet. This captures the packets that are sent to
the queue at time t. These packets will enter that queue at
time t +1,

2. elems[t][1 : S], consists of S tuples, where each tuple repre-
sents a packet. This captures the packets that are inside the
queue at time t, and

3. an integer variable deq_cnt[t] that captures how many pack-
ets will be dequeued from this queue at time t.

We also define a set of helper boolean variables val_elem[t][i].
val_elem[t][i] is true if there is a packet in elems[t][1 : S] and is
false if elems[t][i] is empty. val_enq[t][1 : K] is defined similarly.

Our queues can have up to K enqueues and up to S dequeues
in every time step. To model that, we take care of the dequeues
first. We define an extra set of helper variables tmp_val[t][1 : S]
to denote which indexes in the queue would still have packets
and which ones would become empty at t +1 if we were to
only do deq_cnt(t) number of dequeues and not any enqueues.
Specifically, tmp_val[t][i] is true if the ith element of the queue
will still contain a packet after the dequeues in that time step
assuming no enqueues happen.

To capture that, for every 1 ≤ i ≤ S and 1 ≤ d ≤ S, if i+d ≤ S,
we add(

deq_cnt[t] = d
)
→

(
tmp_valid[t][i] = val_elem[t][i+d]

)
Otherwise, we add(

deq_cnt[t] = d
)
→

(
¬tmp_val[t][i]

)
.

We also have some standard constraints to shift the packets
in elem forward depending on the deq_cnt(t).

The next set of constraints handle the enqueues in a “sliding
window” fashion. That is, starting from the head of the queue,
we consider all possible K + 1 consecutive positions in the
queue to find a window where the first element has a packet
and the next K are empty. This will be the tail of the queue
and where we will be enqueuing the new packets.

Specifically, for every 1 ≤ i ≤ S−K and 1 ≤ j ≤ K, we add
the following constraint:
tmp_val[t][i]∧¬tmp_val[t][i+1]→ elem[t][i+ j] = enqs[t −1][j]

We add extra constraints for the start and end of the queue
and when there is not enough space for K packets.

Finally, we add constraints to make sure there is no “hole”
in the queue. That is, suppose the queue has a packet at index
i and no packets at index i+1. Then, there is a packet at any
index j ≤ i queue. Moreover, at any index j > i, the queue is
empty. Specifically, for every 1 ≤ i < S, we add:

val_elem[t][i]∨¬val_elem[t][t]

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 659

https://spark.apache.org/
http://www.memcached.org/
http://www.memcached.org/
https://netverify.fun/toward-modular-network-verification/
https://netverify.fun/toward-modular-network-verification/

B Defintion of costS
Consider a workload wl=∧k

i=1coni, where coni = ∀t ∈ [T1i ,T2i] :
lhsi ⊕i rhsi. costS(wl) is defined in the following way:

costS(wl) =Σk
i=1queue_cnt(speci)+ interval_cnt(wl)

where queue_cnt(speci) is the number of queues constrained
by coni, which is equal to the number of queues specified in
lhsi. interval_cnt(wl) captures the degree of time fragmenta-
tion in the workload and is defined as the number of non-
overlapping time intervals with unique sets of constraints.

As an example, suppose wl has three constraints, ∀t ∈
[1,15] : cenq(Q1, t) ≥ 2, ∀t ∈ [3,7] : cenq(Q2, t) ≤ 5, and ∀t ∈
[5,10] : aipg(Q5, t) = 3. These three constraints are specify-
ing a traffic pattern over five non-overlapping time intervals
([1,2], [3,4], [5,7], [8,10], [11,15]) each with a unique set of con-
straints. So, interval_cnt is equal to five in this example. We
favor workloads that cause less time fragmentation as they
are less likely to overfit to the example sets, more concise,
and more interpretable.

C Details on Search Engine Optimizations
Reducing the search space. We have described one of our
optimizations to reduce the search space in §6.5. Another
optimization is detecting and ignoring “duplicate” workloads.
Our workload language allows for easy mutation of work-
loads with simple operations during search to generate new
candidates. So, it is possible for a workload’s mutation to
represent the same set of traces while being syntactically dif-
ferent. We perform several checks to detect such workloads
and avoid generating them as candidates, reducing the space
of workloads the search algorithm needs to explore.
Reducing calls to the verification engine. As we describe
in §6.5, if the search algorithm selects a candidate workload
that matches a trace in B, it can move on to finding the next
candidate without consulting with the verification engine, as
it already knows that the current candidate includes a trace
that does not satisfy the query. Note that the search algorithm
selects these candidates despite that fact that they match traces
in B as they could help it explore different regions of the
search space. Similarly, if a workload is rejected because it is
infeasible (§6.1), the search engine will keep track of it and
avoid a potentially expensive call to the verification engine if
that workload comes up in the future.
Other optimizations. Instead of only applying one of the
operations in §6.2 and generating one candidate workload, we
apply all of them one at a time, generate a set of candidates,
and pick one randomly from the ones with the lowest cost.
This helps the algorithm explore the lower-cost regions of the
search space earlier. Moreover, we introduce a new operation,
replace, which replaces a randomly-chosen constraint in the
workload with a new random constraint. Replace is equivalent
to a remove followed by an add, but it helps the algorithm
to generate a more diverse set of candidates faster. Finally,

Figure 10: Search and example generations times for |G|= |B|= 25,
50, and 100. Prio results are not shown as the total time was less
then 20s for Prio and would not be visible in the plot.

if the search algorithm selects a candidate workload that is
infeasible, adding or modifying constraints in the workload
to generate the next one are likely to yield another infeasible
candidate. So, the algorithm backtracks to the last known
feasible candidate and continues from that point.

D More Details on the Leaf-Spine Case Study

D.1 Introducing New Packet Metadata
In the leaf-spine case study §8, packets have two metadata
variables: dst, representing the final destination of the packet,
and ecmp, with values in [0,S] where S is the number of spines
switches, representing the result of the ECMP hash of the
packet’s flow id modulo the number of spines.

We define the metrics dst(q, t) as the destination of packets
that enter q at time t and ecmp(q, t) as the ECMP hash mod-
ulo number of spines for those packets. So, our workloads
describe traffic patterns in which packets entering a queue at
the same time have the same dst and ecmp.

For generating the base example, we add another optimiza-
tion criteria, to maximize the “smoothness” of flows. That is,
for the traffic entering from the hosts, the trace should not
introduce new flows or go back and forth between flows with
different dst and ecmp if not needed for satisfying the query.
When generating the rest of the good examples, we maintain
the same “smoothness” criteria, and when minimizing the
distance between eg0 and egi, we include the difference in
per-packet metadata in the computing the distance.

D.2 From User Interface to Logical Formulas
In the user interface described in §8, for the base workload,
the users can provide a list of constraints using an interface
that abstracts away the logical operators and expressions in
Figure 4. Here, we describe how these constraints are trans-
lated to the logical formulas in Figure 4.

• [t1, t2] q.m ⊕ c becomes ∀t ∈ [t1, t2] : m(q, t)⊕ c.
• [t1, t2] (q1.m + ... + qn.m) ⊕ c becomes ∀t ∈ [t1, t2] :

Σq∈{q1,··· ,qm}m(q, t)⊕ c.
• [t1, t2] q1.m ⊕ q2.m becomes ∀t ∈ [t1, t2] : m(q1, t)⊕m(q2, t)

660 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• [t1, t2] (q1.m + ... + qn.m)/t ⊕ c becomes ∀t ∈ [t1, t2] :
Σq∈{q1,··· ,qm}m(q, t)⊕ c · t

For queries, the users provide a list of questions with
a similar interface, asking if the value of a metric over a
time period for one or more queues can go above or be-
low a threshold. A single question [t1, t2] lhs ⊕ rhs becomes
∃t ∈ [t1, t2] : trans(qlhs ⊕ rhs), where trans(qlhs ⊕ rhs) is the trans-
lation of the left hand side similar to what is described above.
A list of questions will translate to the conjunction of their
equivalent logical formulas. Note that queries in the form of
∀t ∈ [t1, t2]lhs⊕ rhs are still possible in the user interface by
creating a separate question for each time step between t1 and
t2. It is also possible to extend the user interface to directly
specify ∀ queries.

D.3 Example Generation Optimizations
For our scalability experiments in Figure 7c, we started with
the default |G| = |B| = 50. However, example generation is
expensive, and automated theorem provers (e.g., Max-SMT
and SMT solvers) which we use in example generation and
workload verification, can take exponentially longer as the
problem size increases. So, to be able to observe the trends
for larger networks, we used |G|= |B|= 25

We also employed extra optimizations when generating G.
Recall that when generating the base example, we minimize
the number of queues that have traffic in them. If a queue
does not receive any traffic in the base example trace eg0, it
will stay empty in the rest of the traces in G. So, once eg0 is
generated, we create a “reduced” model in which remove the
input queues that are marked as empty in eg0 as they would be
empty in the rest of the examples anyway. This helps reduce
the number of variables and constraints, specifically in the
crossbar modules of the leaf switches.

Moreover, recall that when generating trace egi, we con-
strain it to have different randomly chosen values from egi−1
in p = P random places. If no trace is found in two tries, we
decrement p and try again. Instead of fixing the starting point
to p = P, we set it to the moving average of the ps the worked
when generating the last K examples.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 661

Flattened Clos: Designing High-performance Deadlock-free Expander Data Center
Networks Using Graph Contraction

Shizhen Zhao1,∗, Qizhou Zhang1,∗, Peirui Cao1, Xiao Zhang1, Xinbing Wang1, Chenghu Zhou1,2

1Shanghai Jiao Tong University, 2Chinese Academy of Sciences

Abstract
Clos networks have witnessed the successful deployment

of RoCE in production data centers. However, as DCN band-
width keeps increasing, building Clos networks is becoming
cost-prohibitive and thus the more cost-efficient expander
graph has received much attention in recent literature. Unfor-
tunately, the existing expander graphs’ topology and routing
designs may contain Cyclic Buffer Dependency (CBD) and
incur deadlocks in PFC-enabled RoCE networks.

We propose Flattened Clos (FC), a topology/routing co-
designed approach, to eliminate the PFC-induced deadlocks
in expander networks. FC’s topology and routing are designed
in three steps: 1) logically divide each ToR switch into k
virtual layers and establish connections only between adjacent
virtual layers; 2) generate virtual up-down paths for routing;
3) flatten the virtual multi-layered network and the virtual
up-down paths using graph contraction. We rigorously prove
that FC’s design is deadlock-free and validate this property
using a real testbed and packet-level simulation. Compared to
expander graphs with the edge-disjoint-spanning-tree (EDST)
based routing (a state-of-art CBD-free routing algorithm for
expander graphs), FC reduces the average hop count by at
least 50% and improves network throughput by 2−10× or
more. Compared to Clos networks with up-down routing, FC
increases network throughput by 1.1−2× under all-to-all and
uniform random traffic patterns.

1 Introduction

Driven by the need of low latency, high throughput and low
CPU overhead, large Internet service providers such as Mi-
crosoft and Alibaba have deployed RDMA over Commodity
Ethernet (RoCE) [14, 20] in their Clos data centers. RoCE
requires a lossless network for optimal performance. To avoid
packet loss in Ethernet, Priority-based Flow Control (PFC) is
usually enabled to perform a hop-by-hop flow control to avoid
exhausting switch buffers by upstreaming flows. However,

*These authors contribute equally to this work.

enabling PFC introduces the risk of deadlocks, especially for
the large-scale deployment of RoCEv2. Thanks to the layered
structure of Clos data centers, the up-down routing in Clos net-
works can prevent deadlocks with proper safety mechanisms
under normal operations [20] and failure scenarios [24].

However, as the data center traffic and the network band-
width keep increasing, building Clos topologies is becom-
ing cost-prohibitive [4]. In order to reduce the network cost,
flatter expander graphs, such as Jellyfish [46], SlimFly [5],
Xpander [50], FatClique [54], etc., have been proposed to
build data centers. A recent study [36] shows that a full
throughput expander uses 25% fewer switches than a full
throughput Clos. Note that the throughput values of expander
graphs are attained using a multi-commodity flow formula-
tion based on the K-Shortest Path (KSP) routing [53]. Un-
fortunately, the KSP routing in expander graphs may contain
Cyclic Buffer Dependency (CBD), and thus could incur se-
vere PFC deadlocks. Therefore, the performance-gain or cost-
reduction of expander graphs over Clos becomes questionable
for RoCEv2 traffic.

The key to supporting RoCE in expander graphs is to
eliminate CBD. Approaches to eliminate CBD can be gen-
erally grouped into three classes. The first approach is to
assign different lossless priorities for packets at different
hops [12, 15, 27]. This approach has been widely adopted
in HPCs, in which the underlying Infiniband network sup-
ports 15 lossless priorities (a.k.a. Virtual Channel). However,
due to the limited switch buffer space, data center switches
can support at most two or three lossless priorities [20]. The
second approach is to disable PFC and redesign RoCE to work
with lossy networks, e.g., NDP [21], IRN [35], FatPaths [6],
etc. However, lossy RoCE requires hardware support. For
example, Mellanox ConnectX-4 onwards NICs support lossy
RoCE, but Mellanox ConnectX-3 NICs do not. In addition,
lossy RoCE may incur higher latency for mice flows, espe-
cially when a sender has to rely on a timeout to retransmit
a lost packet. iWarp [41] is another RDMA technology that
runs on lossy networks. However, its performance is poor
because it relies on TCP to guarantee lossless delivery.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 663

The third approach is to design a routing solution that is
fundamentally free of CBD, just as the up-down routing in
Clos. Along this direction, TCP Bolt [48] and DF-EDST [47]
were proposed, and the key idea is to find as many edge dis-
joint spanning trees (EDST) in an expander graph as possible
and then route each packet in one of the spanning tree from
its source to its destination. The EDST-based routing is CBD-
free, but its throughput performance is poor. The key reason is
that the EDST-based routing cannot effectively utilize all the
network resources: 1) the average path length is usually large
and increases quickly with network size; 2) some network
links could remain idle as they do not belong to any EDST.

Our work called Flattened Clos (FC) offers a novel
topology-routing co-design to eliminate CBDs in RoCE net-
works. FC’s topology is essentially a random regular graph
that is mappable to a multi-layered topology. We construct
FC’s topology in two steps: 1) virtually split each ToR switch
into k virtual switches, each of which belongs to a virtual layer,
and 2) randomly interconnect the layer-i (i = 2, ...,k−1) vir-
tual switches to the layer-(i−1) and the layer-(i+1) virtual
switches. The multi-layered virtual structure of FC allows per-
forming up-down routing based on virtual layers. To this end,
we propose the Edge-Disjoint Virtual Up-Down Routing for
FC. For every source-destination pair, FC’s routing transforms
the path-finding problem into a min-cost-flow problem and
then finds the maximum number of edge-disjoint paths. We
analyze FC’s design as follows to demonstrate its feasibility:

1. We offer a theoretical guidance for choosing the right
number k of virtual layers when constructing FC’s topol-
ogy (see the strategy (*) in Section 3.2.3), and validate
the strategy via numerical analysis.

2. We prove that FC’s routing is CBD-free, and thus is
deadlock-free. In fact, FC’s topology and routing paths
can be viewed as contracted graphs of a virtual multi-
layered network and virtual up-down paths. This graph
contraction operation preserves the CBD-free property.

3. We show that FC’s cabling complexity can be dramati-
cally reduced by introducing a layer of Patch Panels (PP)
or Optical Circuit Switches (OCS) to interconnect all
the ToR switches. Admittedly, having this PP/OCS layer
increases cable length and cable cost. As network size be-
comes large, the overall network cost of FC is still lower
than that of Clos under similar bisection bandwidth.

4. We demonstrate that FC outperforms expander graphs
with EDST routing [47, 48] (the state-of-art CBD-free
routing for expanders). Specifically, FC reduces the av-
erage hop count (AHC) by at least 50% and increases
network throughput by 2−10× or more.

5. We compare the throughput performance between FC
and Clos networks with up-down routing, built using
the same number of hosts and electrical switches. FC

achieves 1.1−2× throughput for all-to-all and uniform
random traffic patterns, but its near-worst throughput is
lower. We argue that when OCSs are used to construct
FC, vendors do not have to worry much about FC’s near-
worst throughput. By simply generating a different FC’s
topology, one can avoid matching an FC’s topology with
its near-worst traffic patterns.

6. We validate that FC is deadlock free using a small test
bed and a packet-level simulator, even under extreme
(but practical) cases where congestion control is disabled
and switches are misconfigured with a very small PFC
PAUSE threshold. In contrast, we see deadlocks trig-
gered under shortest-path routing and thus ECMP&KSP
routing is not safe.

2 Background & Motivation

2.1 Deploy RDMA over Ethernet in Clos

Clos network, a.k.a. fat-tree, was proposed for data center net-
work (DCN) architecture in [3], and has become the de-facto
standard for large service providers, such as Google [45], Mi-
crosoft [19], Facebook [44], etc. TCP/IP is the dominant trans-
port/network stack in today’s data centers. However, the tradi-
tional TCP/IP stack cannot offer high throughput (> 40Gbps
or more) and ultra-low latency (< 10us per hop) for modern
data center applications such as cloud storage, deep learning
framework and database [20, 30, 57]. Therefore, data center
operators, e.g., Microsoft [20], Alibaba [30], etc., have started
large-scale deployment of RDMA in Clos data centers to
attain better network performance.

RDMA is a hardware offloading technology that offers sev-
eral benefits such as high throughput, low latency and low
CPU overhead by bypassing the host networking stack. HPC
community has long used RDMA in special-purpose clus-
ters, and deployed RDMA using Infiniband (IB) technology.
However, modern data centers are built with IP and Ethernet
technologies. For technical and economical reasons, RoCE
was proposed for RDMA deployment in data centers.

The commonly used RoCE protocol is RoCEv2. RoCEv2
encapsulates an RDMA transport packet within a UDP packet
to be compatible with the existing networking infrastructure
of data centers. RoCEv2 was initially designed to run on a
lossless network, which can be guaranteed by enabling the
Priority-based Flow Control (PFC) [25]. Admittedly, there
have been advanced RoCE designs, e.g., Resilient RoCE,
IRN [35], etc., that could work with a lossy network. However,
supporting RoCE in lossy networks requires handling packet
retransmission using time out, selective ack, etc., which may
not only complicate the NIC design, but also hurt network la-
tency and throughput performance. As a result, lossy RDMA
may not be able to substitue lossless RDMA in all cases. In
this paper, we focus on lossless networks to support RoCEv2.

664 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Packet

Generator

Control

Unit

XOFF XON

PAUSE / RESUME

DATA PACKET

Draning

Upstream Port Downstream Port

(a) Priority-based flow control.

PAUSEPAUSE

PAUSE PAUSE

PFC Threshold

(b) PFC-induced deadlock.

Allowed
Allowed

Disallowed

(c) Up-Down routing in a Clos network.

Figure 1: Key technologies of supporting RoCE in a lossless Clos network.

2.1.1 Priority-based Flow Control (PFC)

PFC is a hop-by-hop flow control approach to prevent switch
buffer overflow, which is the primary cause of packet loss in
data centers. As shown in Fig. 1(a), the downstream switch
sends a PAUSE frame to its upstream switch when its ingress
queue length exceeds a certain threshold (XOFF). The up-
stream switch stops transmission after receiving the PAUSE
frame. A RESUME frame is sent when the downstream queue
drains below another threshold (XON). It takes some time
for the upstream switch to react to the PAUSE frame and
stop transmission. So the downstream switch needs to re-
serve some buffer space to accommodate the packets sent
by the upstream switch during this time. The buffer space is
called headroom. PFC can guarantee zero packet loss when
the headroom size is configured correctly. Typically, data
center switches can support at most two or three lossless pri-
orities [20] due to the buffer size limit. Although the switch
buffers keep increasing, the data center link bandwidth has
been increasing much faster and the buffer/bandwidth ratio
is actually decreasing over time [18]. Hence, we believe that
supporting more lossless priorities can be even more difficult
for the foreseeable future.

2.1.2 PFC-induced Deadlocks

PFC can raise some performance issues such as unfairness,
PFC storms and deadlocks [14, 20, 30, 57]. Specifically, the
PFC-induced deadlocks may hinder the large-scale deploy-
ment of RoCEv2. When cyclic buffer dependency (CBD)
exists, deadlocks can be triggered by PFC PAUSEs [23], caus-
ing packets to wait indefinitely for buffer resources [48]. As
shown in Fig. 1(b), four switches SA,SB,SC,SD have reached
the PFC threshold and start to send PAUSE frames; then the
network is trapped into a deadlock and no switch can make
any progress. Note that, the PFC-induced deadlock cannot go
away once it occurs even if we restart all the servers.

Deadlock recovery is a common approach to combat dead-
locks. It contains two steps: deadlock detection and deadlock
resolution. Traditional approaches detect deadlocks in the
control plane [34]. However, these solutions cannot react to
deadlocks quickly enough due to the large communication

latency between data planes and control planes. A recent
work, ITSY [51], could detect deadlocks in the data plane
and achieve at least 3.2× faster detection speed. However,
ITSY requires programmable switch hardware (e.g., P4) sup-
port. As for deadlock resolution, temporary rerouting [34] is a
common approach, but may create new congestion and dead-
locks. ITSY [51] tried to resolve deadlocks completely in the
data plane without rerouting, but the proposed solutions either
incur packet loss or cannot efficiently handle concurrent dead-
locks. To sum up, existing deadlock recovery mechanisms are
not ideal. As a result, deadlock prevention has received much
attention in the recent literature.

2.1.3 Avoiding Deadlocks in Clos Networks

Large vendors have gained years of experience in deploying
RDMA in Clos data centers [20]. The following strategies are
adopted to avoid deadlocks:

1. Perform up-down routing, which is CBD and deadlock-
free under normal network conditions in Clos networks.
(Note that containing a CBD is a necessary condition
to have deadlocks.) As shown in Fig. 1(c), the paths of
h1 → h5 and h2 → h4 obey the “up-down” rule and are
allowed; but the path of h6 → h10 contains a “down-up”
segment and thus is not allowed.

2. Do not put multicast and broadcast packets into lossless
classes. It was reported in [20] that ARP broadcasts+up-
down routing can cause PFC deadlocks.

3. Use a different lossless class for rerouted packets upon
network failures. [24] shows that packet rerouting may
break the “up-down” rule and trigger PFC deadlocks.

2.2 From Clos to Expander
Despite of the success of deploying Clos data centers, how-
ever, a Clos network is inherently suboptimal in terms of
bandwidth provision. As the Ethernet speed keeps increas-
ing, the network cost, especially the power consumption of
Clos networks, is becoming prohibitively high [4]. To reduce

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 665

the network cost, researchers have started seeking for more
cost-effective network architectures.

One of the promising alternative for DCNs is expander
graph. As shown in Fig. 2, expander graphs adopt a flat topol-
ogy design: servers connect to ToR switches and these ToRs
are directly interconnected without a layered structure. Exam-
ples of expander graphs include Jellyfish [46], SlimFly [5],
Xpander [50], FatClique [54], etc. Expander graphs is more
cost-effective for bandwidth provision than Clos networks.
Using KSP routing, a full throughput expander uses 25%
fewer switches than a full throughput Clos [36]. The network
performance of expander graphs was also studied under other
routing protocols, including ECMP, Valient Load Balancing
(VLB) and a hybrid of the two [28]. However, none of these
widely studied routing strategies is CBD-free.

2.2.1 ECMP/KSP are not CBD-free in Expanders

Servers

Servers
Servers Servers Servers

Servers

Servers

ServersServers
Servers

B

A

C

D

Figure 2: An expander graph.

Consider the expander graph in Fig. 2. This expander is a
random regular graph with 4 inter-ToR links per ToR. Con-
sider the four ToRs A,B,C,D and the shortest paths for A→C,
B → D, C → A, D → B. Assume that there is a flow routed
along the shortest path A → B →C. Then, if the egress port
at link (B,C) is paused, the egress port at link (A,B) will
be paused. If there is another flow routed along the short-
est path D → A → B, since the egress port at link (A,B) is
paused, the egress port at link (D,A) will also be paused. Sim-
ilarly, if we have another two flows routed along the shortest
paths C → D → A and B → C → D, then the egress ports
at link (C,D) and link (B,C) will be paused. Now, we find
a CBD in this expander graph under shortest-path routing.
To sum up, when there are 4 flows routed along the paths
A → B → C,D → A → B,C → D → A and B → C → D, if
one of the egress ports (A,B),(B,C),(C,D),(D,A) is paused
for a sufficiently long time, a deadlock will be triggered.

The above analysis indicates that shortest-path routing is
not CBD-free. Now we consider ECMP and KSP routings.
ECMP uniformly split traffic among all the shortest paths,
while KSP split traffic among the first K shortest paths. (To
improve network performance under ECMP/KSP, one can
also optimize the path weights using a multi-commodity flow
formulation.) Under ECMP or KSP routing, it is still possible

to have four flows taking the paths A → B → C,D → A →
B,C → D → A and B →C → D in the above example. There-
fore, both ECMP and KSP routings are not CBD-free. Using
the same approach, we can prove that the VLB routing and
the hybrid of ECMP&VLB in [28] are not CBD-free, either.

2.2.1.1 Probability of Containing CBDs
We further analyze the probability of an expander graph con-

taining CBDs under different traffic patterns. We generate two
classes of expander graphs, Jellyfish [46] and Xpander [50].
In each expander graph, each ToR switch has 5 ports con-
nected to other ToRs. For each expander graph, we evaluate
two classes of traffic patterns under shortest-path routing (the
algorithm that determines if a set of paths is CBD free in a
given topology is offered in Appendix A.2):
All to All: Every source-destination pair has an on-going
flow. This represents the most-likely case of having CBDs.
Uniform Random-p: Every ToR randomly picks p fraction
of ToRs to communicate. This represents practical DCN traf-
fic patterns in which the majority of traffic of a server is often
destined to a few racks [44].

15 20 25 30 35 40 45
Number of ToR Switches

0.0
0.2
0.4
0.6
0.8
1.0
1.2

CB
D

 P
ro

ba
bi

lit
y

all-to-all
uniform-random-10
uniform-random-20
uniform-random-30

(a) Jellyfish CBD probability.

15 20 25 30 35 40 45
Number of ToR Switches

0.0
0.2
0.4
0.6
0.8
1.0
1.2

CB
D

 P
ro

ba
bi

lit
y

all-to-all
uniform-random-10
uniform-random-20
uniform-random-30

(b) Xpander CBD probability.

Figure 3: Jellyfish and Xpander CBD analysis.

The results are depicted in Fig. 3. We can see that as the
number of ToRs increases, the CBD probability quickly in-
creases to one and Xpander graphs are more likely to en-
counter CBDs than Jellyfish graphs. Note that even under
shortest-path routing (ECMP), the CBD probability becomes
one with only tens of ToR switches. Other routing algorithms,
including KSP, VLB, etc., contain even higher CBDs.
Remark on the necessity of eliminating CBDs: Even if the
probability that the ECMP/KSP/VLB routing policies lead to
CBDs is close to 1, the possibility that these CBDs eventu-
ally turn into deadlocks may not be that high. Nevertheless,
eliminating CBDs can be still important. Some network appli-
cations requires five-nines availability, which means that the
maximum downtime in a month must be less than 26.3 sec-
onds. As long as the deadlock probability is non-zero, when a
data center runs for a long time, a deadlock may be triggered
eventually and hurts the overall system availability.
Remark on Tagger’s approach: Given any routing paths,
Tagger [24] offered a generic approach to eliminate CBDs.
The key idea is to break each path into several segments

666 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and assign each segment a lossless priority. As long as the
path segments belonging to the same lossless priority are
CBD-free, the entire network is CBD-free. Unfortunately, this
approach may require too many lossless priorities to eliminate
CBDs in large expander networks.

3 Flattened Clos

We propose a new class of expander graphs, called Flattened
Clos (FC), for efficient deadlock prevention. Our design is
motivated by the CBD-free up-down routing in Clos networks
and the flattened butterfly topology [29]. FC is a topology built
on top of ToR switches. The key idea of FC is to split each
ToR switch into a few virtual switches, and assign each virtual
switch a virtual layer id. By creating links only between vir-
tual switches in adjacent virtual layers, FC can adopt virtual
up-down routing to avoid deadlocks. The detailed topology
and routing designs of FC are described below.

3.1 Topology
We study a data center network with N ToR (Top of Rack)
switches S = {S1,S2, ...,SN}. Each switch has p = s+h ports,
h of which connected to the hosts and s of which connected
to other ToRs. We construct an FC topology in two steps:
Step 1: Splitting Virtual Switches. To create an FC with k
virtual layers, we logically split each switch Si, i = 1,2, ...,N
into k virtual switches, and label these virtual switches as
S1

i ,S
2
i , ...,S

k
i . The virtual switch S j

i belongs to the j-th layer,
and has l j number of links to connect to other switches. The
total link count of the virtual switches S1

i ,S
2
i , ...,S

k
i is equal to

the total link count of Si that connect to other ToRs, i.e.,

k

∑
j=1

l j = s. (1)

Step 2: Random Wiring. For each j = 1,2, ...,k − 1, we
randomly generate a bipartite graph between the virtual
switches in layer j and the virtual switches in layer j + 1.
Let a j, j = 1,2, ...,k−1 be the degree of each virtual switch
in the j-th random bipartite graph. We must have

l1 = a1, l2 = a1 +a2, ..., lk−1 = ak−2 +ak−1, lk = ak−1. (2)

When we generate random bipartite graphs, we never create
links between S j

i and S j+1
i for i = 1,2, ...,N, j = 1,2, ...,k−1.

The reason is that S j
i and S j+1

i actually belong to the same
switch, and there is no need to create a link in between.

3.1.1 Theoretical Topology Properties of FC

In an FC’s topology, each ToR switch has s links connected to
other ToRs. Thus, FC falls into the category of random regular
graphs (RRG). Here, we restate some useful theoretical results
for RRGs in literature, which also applies to FC.

We represent a network by G = (V,E), where V is the
vertex set and E is the edge set. The bisection bandwidth of G
can be characterized by Edge Expansion, which is defined as
EE(G) = min|S|≤N

2

|∂S|
|S| , where N is the number of vertices in

V , S is a subset of V , |S| is the size of S, ∂S is the set of edges
leaving S. The Edge Expansion of an s-regular graph is upper
bounded by s/2 [50]. The following theorem indicates that
random regular graphs attain near-optimal edge expansion.

Theorem 1 (Near-optimal Edge Expansion [7]) For every
s ≥ 3 and 0 < η < 1 satisfying 24/s < (1−η)1−η(1+η)1+η,
almost every s-regular graph G has its edge expansion

EE(G)≥ (1−η)s/2.

Given a traffic matrix T = [tuv], where tuv is the amount
of requested flows from ToR switch u to ToR switch v. The
throughput α(G,T) of a network G under the traffic matrix
T is defined as the maximum value θ(T) for which T ·θ(T)
is feasible in G. The following two theorems guarantee that
random regular graphs achieve good throughput under both
uniform and adversarial patterns.

Theorem 2 (High throughput under all-to-all pattern [50]):
For the all-to-all traffic pattern Tall-to-all, almost every s-
regular graph G achieves a throughput

α(G,Tall-to-all)≥
1

O(logs)
α(G∗,Tall-to-all),

where G∗ is the s-regular graph that attains the optimal
throughput under Tall-to-all.

Theorem 3 (Resilience to adversarial patterns [50]): For
almost every s-regular graph G and every traffic pattern T ,
the throughput α(G,T)≥ 1

O(logN)α(G∗,T), where G∗ is the
s-regular graph that attains the optimal throughput under T .

3.2 Routing
3.2.1 Edge-disjoint Virtual Up-down Routing

Although FC’s topology exhibits high network throughput
in theory, such a throughput may not be achievable in PFC-
enabled RoCE networks due to the potential risk of deadlocks.
To completely eliminate the risk of deadlocks, we propose the
CBD-free Edge-disjoint Virtual Up-down Routing. This
routing strategy computes paths in three steps:
Step 1: Construct a Multi-layered Virtual Topology. Ac-
cording to the construction of FC’s topology, each FC’s topol-
ogy is mappable to a multi-layered topology. Consider the
toy example in Fig. 4(a). While we construct this topology,
we have virtually divided each ToR switch Si into k = 3 sub-
switches S1

i ,S
2
i and S3

i . The first port of Si belongs to S1
i ; the

second and the third ports belong to S2
i ; the fourth port belongs

to S3
i . It is easy to check that each edge in Fig. 4(a) corre-

sponds to a solid line in Fig. 4(b). Note that the k sub-switches

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 667

e1
e5

e4 e3

e2

e6

e7e8

(a) Flattend Clos.

4 4 4 4

1 1 1 1

3 3 3 3

2 222

(b) Virtualized topology. (c) Directed virtual up-down topology.

Figure 4: FC’s topology and routing design.

S1
i ,S

2
i , ...,S

k
i can communicate with each other, because they

belong to the same physical switch. Hence, we also create an
edge between S j

i and S j+1
i for every j = 1,2, ...,k−1 (see the

dashed lines) in Fig. 4(b).
Step 2: Construct a Directed Virtual Up-Down Topology.
Our objective is to find the maximum number of virtual up-
down paths in the multi-layered virtual topology. To enforce
this “up-down” constraint, we further convert the undirected
multi-layered graph in Fig. 4(b) to a directed virtual up-down
graph in Fig. 4(c). Specifically, we first split each virtual node
S j

i (j < k) into one “up node” Si, j
u and one “down node” Si, j

d in
the directed up-down graph. (Note that we do not split the top
layer virtual nodes Sk

i .) We then map each link in Fig. 4(b) to
two directed links in Fig. 4(c): each undirected link (Sk−1

i1 ,Sk
i2)

in the top layer (see the red line in Fig. 4(b) as an example) is
mapped to two directed links (Si1,k−1

u ,Sk
i2) and (Sk

i2 ,S
i1,k−1
d);

each undirected link (S j−1
i1 ,S j

i2) (j = 2, ...,k−1) (see the blue
line in Fig. 4(b) as an example) is mapped to two directed
links (Si1, j−1

u ,Si2, j
u) and (Si2, j

d ,Si1, j−1
d).

Step 3: Compute CBD-free Paths. For every source-
destination pair (Si,S j), we first find a path set Pi j with the
maximum number of virtual up-down paths from the node
Si,1

u to the node S j,1
d in the directed virtual up-down topology

using min-cost max-flow (see Appendix A.1 for more details).
In this set Pi j of paths, each solid link is used at most once
while each dashed link can be used multiple times. Then,
for every path P ∈ Pi j, we map it to a path in FC’s topology
(Fig. 4(a)). For example, as shown in Fig. 4(c), we find one
up-down path S2,1

u → S2,2
u → S3

3 → S3,2
d → S3,1

d (marked with
green) for the source-destination pair (S1,S2). Since S2,1

u , S2,2
u

are from the ToR switch S2 and S3
3, S3,2

d , S3,1
d are from the ToR

switch S3, this path can be contracted to S2 → S3 in the FC’s
topology. Since each solid link is used at most once in Pi j, the
resulting paths in the FC’s topology must be edge-disjoint.

3.2.2 FC’s Routing is CBD Free

In FC’s edge-disjoint virtual up-down routing, we first com-
pute an up-down path set Pi j based on the directed virtual

up-down topology, and then contract all the paths in Pi j to
obtain the final paths for FC’s topology. Let P = ∪i, jPi j be
the set of virtual up-down paths obtained from the directed
virtual up-down topology. According to Theorem 8 in Ap-
pendix A.2, P is CBD free. In order to prove that the final set
of paths in FC’s topology is CBD free, we need the following
definition and lemma (see Appendix A.2.1 for the proof).

Definition 1 Given a set of nodes V , {V1,V2, ...,Vm} is called
a partition of V , if the following conditions are met: 1) Vm1 ∩
Vm2 = /0 for every m1 ̸= m2; 2) V1 ∪V2 ∪·· ·∪Vm =V .

Lemma 4 Given a graph G(V,E), a path set P and a
partition {V1,V2, ...,Vm} of V , a graph and path set pair
(Ĝ(V̂ , Ê), P̂) is called a contraction of (G(V,E),P) if

1. every node in v̂i ∈ V̂ corresponds to the vertex set Vi;

2. the number of edges between v̂i and v̂ j is the same as the
total number of edges between Vi and Vj in G(V,E);

3. each path P̂ ∈ P̂ is a contraction of a path P ∈ P , i.e., P̂
is obtained by first replacing each vertex in P by a vertex
in V̂ and then removing cycles and duplicated vertices.

Then, if the path set P is CBD-free in G(V,E), the path set P̂
must be CBD-free in Ĝ(V̂ , Ê).

Apparently, FC’s topology and routing path set can be
viewed as a contraction of the directed virtual up-down topol-
ogy and the corresponding virtual up-down path set P . Since
the path set P is CBD free in the directed virtual up-down
topology, then according to Lemma 4, we immediately know
that FC’s routing path set is CBD free.

3.2.3 How Routing Affects FC’s Topology Design?

We have described FC’s routing and topology designs. Note
that there is a critical parameter k in the design. If k is not
properly chosen, FC’s routing policy may not be able to find a
path for some switch pair, thus hurting the connectivity of FC.
In this section, we offer a theoretical guideline to determine
the number of virtual layers in FC.

668 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Number of Switches Number of Servers kmin k
Average Number of Edge
Disjoint Up-down Paths

Average Path Length of Edge
Disjoint Up-down Paths

Minimum Number of
Edge Disjoint Up-down Paths

500 12000 3 3 10.05 4.29 4.00
4 16.08 4.57 12.00

1000 24000 3 3 7.10 4.43 1.00
4 14.01 4.86 9.00

2000 48000 4 4 11.85 5.13 7.00
5 15.77 5.36 11.00

3000 72000 4 4 10.63 5.30 6.00
5 14.66 5.54 10.00

5000 120000 4 4 9.17 5.52 3.00
5 13.28 5.75 9.00

Table 1: Choosing the right k for FC.

Lemma 5 Let x be the number of ancestors in the virtual
layer k for each layer-1 virtual node. If x >

√
(2+ ε)N lnN,

where ε > 0 is an infinitesimal value, then as N →+∞, with
probability 1, every pair of layer-1 virtual nodes has a com-
mon ancestor in the virtual layer k.

Proof 1 We use Ai j to denote the event that the virtual nodes
S1

i and S1
j have no common ancestor in the virtual layer k.

Then, the probability that Ai j happens is

P(Ai j) =
Cx

N−x

Cx
N

≤ (1− x
N
)x

<

(
1−

√
(2+ ε) lnN√

N

)√(2+ε)N lnN

=

(1−
√
(2+ ε) lnN√

N

) √
N√

(2+ε) lnN


(2+ε) lnN

< (1/e)(2+ε) lnN = N−(2+ε).

Let A be the event that at least one pair of virtual nodes in
layer 1 has no common ancestor in layer k. Then,

P(A) = P(∪i ̸= jAi j)≤ ∑
i̸= j

P(Ai j)

=
N(N −1)

2
×N−(2+ε) <

1
2

N−ε.

Then, limN→+∞ P(A) = 0. This completes the proof.

Based on FC’s routing, it is easy to calculate that the num-
ber of distinct up-paths from a virtual node in layer 1 is
(a1 + 1)(a2 + 1) · · ·(ak−1 + 1), which is an upper bound of
the number of ancestors in layer k. According to Lemma 5,
we can choose a k such that

(a1 +1)(a2 +1) · · ·(ak−1 +1)>
√
(2+ ε)N lnN. (3)

According to Equation (1) and (2), it is easy to obtain
∑

k−1
i=1 ai = s/2. We could choose a1,a2, ...,ak−1 to maximize

the left hand side of (3), and obtain(
1+

s
2(k−1)

)k−1

>
√
(2+ ε)N lnN. (4)

Let kmin be the smallest integer solution of (4). We could
choose a k value around kmin. As shown in Fig. 5, kmin does
not grow fast with respect to N.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of ToR Switches

3
4
5
6
7
8
9

10

k m
in

s = 18
s = 24
s = 40

Figure 5: Relationship between kmin and network size N.

Numerical Verification: To verify the above theoreti-
cal result, we perform a numerical analysis using 64-port
ToR switches. Each ToR switch has h = 24 ports con-
nected to the hosts and s = 40 ports connected to other
ToR switches. For different number of ToR switches (N =
500/1000/2000/3000/5000), we choose k = kmin,kmin + 1,
generate an FC’s topology and count the number of distinct
virtual up-down paths. As shown in Table 1, as we increase
k, more paths can be found for every source-destination ToR
switch pairs. Note that the average path length increases with
respect to k. Hence, it is better to choose a smaller k. On the
other hand, if we choose k to be too small, some ToR switch
pairs may not have sufficient number of distinct paths. Here
we suggest a simple strategy that works well for FC:

Strategy (*): Try kmin first; if not working, try kmin +1.

For example, in the case where N = 1000,k = kmin = 3, the
minimum number of distinct paths between ToR pairs is 1.
This creates a bottleneck in the network. Hence, k = kmin +
1 = 4 will be chosen instead.

3.2.4 Computational Complexity of FC’s Routing

The main complexity comes from using the min-cost max-
flow solver to find edge-disjoint virtual up-down paths. Given
a graph G = (V,E) with n vertices and m edges, the com-
putational complexity of the min-cost max-flow algorithm

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 669

OCS/PP 4OCS/PP 1 OCS/PP 2 OCS/PP 3

L-1 L-2 L-3

(a) Uniform cabling through OCSs/PPs. Any inter-ToR topology is realizable
by properly configuring the s OCSs/PPs one by one.

OCS/PP 2OCS/PP 1

3 41 2 3 41 2 3 41 2 3 41 2

L-1 L-2 L-3

Group-1 Group-2

L-1 L-2 L-3 L-1 L-2 L-3 L-1 L-2 L-3

(b) Virtual-layered cabling through OCSs/PPs. There is 1 port for virtual layer-
1 (L-1), 2 ports for L-2, and 1 port for L-3 in every switch. OCSs/PPs are
divided into 2 groups.

Figure 6: Example of cabling with the help of optical circuit switches (OCS) / patch panels (PP).

implemented in Ortools is O(m · n2 · log(n ·C)), where C is
the value of the largest link cost in the graph [1] (in our case,
C = 1). If we choose the parameters k and a1,a2, ...,ak−1 such
that (a1 +1)(a2 +1) · · ·(ak−1 +1) = Θ(

√
N logN), each vir-

tual node in the first virtual layer will be able to reach at most
Θ(k

√
N logN) virtual nodes through at most Θ(k

√
N logN)

edges. When we compute edge disjoint paths from Si to S j,
we only need to focus on a subgraph of the directed virtual
up-down topology, which contains all the nodes reachable
from Si,1

u and S j,1
d . This subgraph has Θ(k

√
N logN) nodes

and edges. Thus, the overall computational complexity is
Θ((k

√
N logN)3 · log(k

√
N logN)) = Θ(k3N3/2(logN)5/2).

3.3 Cabling

FC adopts random wiring for its topology design. However,
random wiring has long been criticized for its high cabling
complexity [50, 54]. Indeed, if we directly connect different
ToR switch pairs, the number of distinct fiber lengths would
be in the order of Θ(N2). Directly connecting ToR switches
could also increase the management complexity when we
perform data center expansion [56].

To reduce cabling complexity, motivated by TROD [9] and
Google’s Jupiter data center [40], we propose to use a set of
co-located optical circuit switches (OCS) or patch panels (PP)
to interconnect different ToR pairs and form FC’s topology.
Since these PPs/OCSs are co-located, the number of distinct
fiber lengths reduces to Θ(N). Next, we offer two strategies
to interconnect PPs/OCSs with ToR switches.
Uniform Cabling (see Figure 6(a)): Note that each ToR
switch has s ports to be connected to other ToR switches.
We use s OCSs/PPs, and construct a uniform bipartite graph
between ToR switches and OCSs/PPs. Under this cabling
strategy, it was proven in [55] (see Lemma 4 and Theorem
5 therein) that any inter-ToR topology is realizable by prop-
erly configuring the s OCSs/PPs one by one. According to
this fact, we could first generate an FC topology without con-
sidering the layer of OCSs/PPs, and then decomposite this
topology into s sub-topologies that can be mapped to each

OCS/PP. This approach reduces cabling complexity. However,
it encounters scalability challenge. Specifically, the port count
of the commercially available OCSs/PPs is on the order of a
few hundred. For example, a Calient s320 OCS [8] can offer
320 TX/RX ports. Thus, the number of ToR switches can
be at most a few hundreds. Since each ToR switch typically
connects to tens of servers, this uniform cabling strategy can
support at most a few thousands of servers.
Virtual-Layered Cabling (see Figure 6(b)): Note that FC’s
topology is designed based on the concept of virtual layers.
Assume that there are a1 ports for layer-1, a1 +a2 ports for
layer-2, ..., ak−1 +ak ports for layer-(k−1), and ak ports for
layer-k. We group all the OCSs/PPs into k− 1 groups, and
connect 2ai ports of each ToR switch to the i-th OCS/PP
group. In the i-th OCS/PP group, each OCS/PP have half of
its ports connected to ToR switches’ layer-i ports and half
of its ports connected to ToR switches’ layer-(i+1) ports. If
we enforce that every OCS/PP should connect to all the ToR
switches, we will encounter the same scalability challenge as
the uniform cabling strategy. In the virtual-layered cabling
strategy, 2ηai number of OCSs/PPs are used in the i-th group,
and each ToR switch will randomly choose 2ai OCSs/PPs in
group-i to connect its layer-i and layer-(i+1) ports. Under
this cabling strategy, the total number of ToR switches that
can be supported becomes “η× port count of an OCS/PP”.
This strategy scales well. For example, if we use 320-port
OCSs, 64-port ToR switches (assume that each ToR connects
to 24 servers), and choose η = 20, then the maximum num-
ber of servers would be 20×320×24 = 153600, which can
definitely support a large-scale data center.
Remark on the parameter η: When η > 1, a cabling con-
straint is imposed to FC when we generate the topology be-
tween adjacent virtual layers, i.e., not all topologies are real-
izable because the interconnection between ToRs and each
group of OCSs/PPs is not uniform. Fortunately, Appendix
A.5.1 shows that enabling this cabling constraint when gener-
ating FC’s topology has little impact on FC’s routing statistics.
Remark on the network cost: Compared to traditional ex-
pander graphs, having a layer of OCSs in FC reduces the

670 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

700 1400 2100 2800 3500 4200 5600 7000
Number of Servers

0.0

0.4

0.8

1.2

Th
ro

ug
hp

ut

EDST
DISJOINT UP-DOWN

ECMP
KSP-32

CLOS

(a) Throughput of the all to all traffic matrix. (The
ECMP and KSP curves overlap together.)

700 1400 2100 2800 3500 4200 5600 7000
Number of Servers

0.0

0.4

0.8

1.2

Th
ro

ug
hp

ut

EDST
DISJOINT UP-DOWN

ECMP
KSP-32

CLOS

(b) Throughput of uniform random traffic matrices
(averaged over 10 runs).

700 1400 2100 2800 3500 4200 5600 7000
Number of Servers

0.0

0.4

0.8

1.2

Th
ro

ug
hp

ut

EDST
DISJOINT UP-DOWN

ECMP
KSP-32

CLOS

(c) Throughput of the near-worst permutation traffic
matrix.

Figure 7: Throughput simulation results under ECMP, EDST, Edge-disjoint Virutal Up-down and 32-way KSP routing.

number of distinct cable lengths, but unfortuanately increases
the total cable length. We compare the total network cost
between FC and Clos in Appendix A.4. To achieve similar
bisection bandwidth, FC and Clos have similar network cost
when the network size is small and FC’s cost becomes lower
as the network size increases to a point where 4 switch lay-
ers are required to build a Clos. In addition, FC uses fewer
number of electrical switches and thus its network power
consumption is lower.
A potential future direction: Using OCSs introduces another
interesting problem: how to design deadlock-free and traffic-
aware topology & routing policies. As reconfiguring OCSs
incurs non-negligible delay, it may not be possible to recon-
figure OCSs for every traffic-pattern change. Google’s Jupiter
data center [40] and our prior work [9, 49] both showed that
low-frequency reconfiguration might be sufficent, because the
traffic patterns in real data centers do not change arbitrarily.
Low-frequency reconfiguration may also work for lossless
RDMA networks, but requires further investigation.

4 Numerical Throughput Analysis

We numerically evaluate the throughput for FC in this section.
We evaluate two scenarios. Due to space constraints, we only
present one here and put the other one in Appendix A.5.2.

We generate FC’s topologies of different sizes using up
to 500 32-port ToR switches. Each ToR switch has 18 ports
connected to other switches and 14 ports connected to servers.
The number of virtual layers k is chosen based on the strat-
egy (*) in Section 3.2.3. For each FC’s topology, we evaluate
four routing strategies: 1) FC’s edge-disjoint virtual up-down
routing, 2) EDST routing, 3) ECMP or Shortest-Path rout-
ing, and 4) KSP routing. Given a traffic matrix T , we use a
multi-commodity flow formulation to calculate the maximum
throughput value θ(T) such that T ·θ(T) is feasible under the
given topology and routing paths. (For ECMP, the throughput
is also calculated based on the multi-commodity flow formu-
lation. Evenly spreading traffic among all the shortest paths
may yield very poor throughput.) In addition, for each FC’s
topology, we also compare it with a Clos network generated
using roughly the same number of switches with throughput

optimized (see Appendix A.3).
We compute throughput values under all-to-all traffic pat-

terns, uniform random traffic patterns and near-worst traffic
patterns. In an all-to-all pattern, each server sends an equal
amount of traffic to all other servers. In a uniform random
pattern, each ToR randomly picks 10% of ToRs to communi-
cate. To generate near-worst patterns, we 1) first construct a
complete bipartite graph B with N source nodes and N desti-
nation nodes, where the weight of the edge (s,d) is the length
of the shortest path from ToR s to ToR d; 2) and then find the
permutation matrix with the maximum weight. This approach
was also adopted in [26, 36] to generate near-worst patterns.
We believe that the above three classes of traffic patterns of-
fer an adequate coverage of real data center traffic patterns.
The uniform random pattern is highly representative in real
data centers. Indeed, Google’s data center traffic patterns are
approximately uniform random [40]. The all-to-all pattern is
widely used in MPI communication. The near-worst pattern
allows us to understand network’s performance lower bound.

4.1 FC’s Routing vs EDST Routing

The EDST routing is CBD-free for expander graphs. A ran-
dom s-regular graph has s/2 edge-disjoint spanning trees with
high probability [38]. Thus, EDST is a direct competitor of
the Edge-disjoint Virtual Up-down Routing for FC’s topology.

As shown in Fig. 7, FC’s edge-disjoint virtual up-down
routing (denoted by “DISJOINT UP-DOWN”) performs con-
sistently better than EDST for all the traffic patterns. When the
network is small (N = 50), FC’s routing achieves 2× through-
put of the EDST routing. As the network size increases, the
performance of the EDST routing deteriorates quickly. When
N = 500, the performance gain of FC’s routing becomes 10×
and the gain keeps increasing with the network scale.

There are two reasons that lead to the poor performance of
the EDST routing. First, existing edge-disjoint spanning tree
(EDST) algorithms [42, 43] can find the maximum number
of spanning trees, but there is no guarantee that the height of
each spanning tree found is small. When we perform routing
in a tall spanning tree, the average hop count would be large.
This is also justified in the following routing-path analysis.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 671

Number of Switches Number of servers k
Port Count of

Virtual Switches Routing
Average Number

of Paths
Average Path

Length
Average Shortest

Path Length

50 700 4 [3, 6, 6, 3] Edge Disjoint Up-down 8.02 3.86 2.68
EDST 9.00 7.69 3.12

100 1400 4 [3, 6, 6, 3] Edge Disjoint Up-down 6.43 4.22 3.04
EDST 9.00 10.01 4.04

200 2800 4 [3, 6, 6, 3] Edge Disjoint Up-down 4.99 4.56 3.44
EDST 9.00 14.01 5.50

300 4200 4 [3, 6, 6, 3] Edge Disjoint Up-down 4.24 4.75 3.70
EDST 9.00 16.70 6.52

500 7000 5 [2, 4, 4, 5, 3] Edge Disjoint Up-down 4.55 5.22 4.00
EDST 9.00 21.96 8.14

Table 2: Edge-Disjoint Virtual Up-down Routing vs. the EDST Routing (32-port Switches are Used).

Second, some links remain unused in the EDST routing. In
an expander graph with N ToR switches, each spanning tree
contains N − 1 links. Note that the total number of ToR-to-
ToR links is Ns/2. When Ns/2 is not divisible by N−1, there
must be links not used by any spanning tree.
Routing-Path Analysis: For several FC’s topologies of dif-
ferent sizes (N = 50/100/200/300/500), we analyze the rout-
ing paths under FC’s routing and the EDST routing. We calcu-
late three metrics, including average number of paths, average
length of paths and average length of the shortest paths. As
shown in Table 2, although the EDST routing could find more
paths than FC’s routing, its average path length is much higher.
When N = 50, the average path length under FC’s routing is
1−3.86/7.69≈ 50% lower than that under the EDST routing.
As N increases to 500, the reduction of average path length
becomes 1−5.22/21.96 ≈ 76%. We expect that this number
will continue to increase for larger networks. The EDST rout-
ing cannot guarantee a small routing path length. In contrast,
the parameter k restricts that FC’s routing path length cannot
exceed 2k and k increases slowly with N.

4.2 FC’s Routing vs ECMP/KSP Routing
ECMP/KSP are widely-used routing protocols for expander
graphs. In FC’s topology, ECMP’s throughput fluctuates sig-
nificantly because ECMP cannot provide enough path diver-
sity; KSP’s throughput is more stable under different traffic
patterns. This coincides with the findings in Jellyfish [46].

Fig. 7 shows that KSP’s throughput is consistently higher
than that of the FC’s edge-disjoint virtual up-down routing.
However, deploying KSP routing in expander networks poses
a deadlock risk. We have shown in Section 2.2.1.1 that the
probability that ECMP/KSP routing contains CBDs is close
to 1. Although containing CBDs is not sufficient to trigger
deadlocks, we will show in Section 6.1 that ECMP/KSP could
indeed trigger deadlocks in certain cases in a real testbed.
How to close the throughput gap: FC uses only one lossless
queue, and its throughput performance is lower than that of
the KSP routing. The reason is that FC’s routing has lower
path diversity than the KSP routing. To improve path diversity,
we could let FC use more than one lossless queues. We will
explore this further in our future work.

4.3 FC vs Clos
Clos is the de facto standard topology for data centers and has
witnessed the successful deployment of RDMA in produc-
tion [20]. To ensure fair comparisons, given an FC’s topology
with N ToR switches and H servers, we choose a Clos net-
work that offers the maximum throughput to the H servers
using roughly the same number of switches (Appendix A.3).

As shown in Fig. 7(a) and 7(b), FC attains 1.1− 2× the
throughput of Clos networks. Note that there is a decrease in
throughput when the network size changes from 700 to 1400.
The reason is that when the switch port count is 32, we can
build a two-layered Clos to support 700 servers, but at least 3
layers are required in order for a Clos to support 1400 servers.

However, under near-worst traffic patterns, Fig. 7(c) shows
that FC’s throughput can be 15%−50% lower than that of the
Clos networks. We argue that this issue can be resolved when
a layer of OCSs is used to interconnect different ToRs. If the
real traffic pattern is close to a near-worst pattern of the current
topology, we can reconfigure the OCSs to generate a topology
that matches this traffic pattern. Then, a natural question arises.
How frequent should we reconfigure the topology? Certainly,
the answer to this question depends on the traffic patterns.
If the traffic patterns exbihit some long-term stability [40],
occasional reconfigration might be sufficient. We will study
this problem further in our future work.

5 Packet-Level Simulation

We cross-validate our throughput analysis using a packet-
level simulator [22]. We generate an FC’s topology using 144
32-port switches. Each switch has 8 ports connected to hosts
and 24 ports connected to other switches. In total, there are
1152 hosts. On top of this topology, we run FC’s routing or
the EDST routing. We also generate a Clos network using
148 32-port switches with throughput optimized. This Clos
network has 64 ToR switches, 56 aggregation switches and
28 spine switches. Each ToR has 18 ports connected to hosts
and 14 ports connected to the aggregation switches. The toal
number of hosts is still 1152. For this Clos topology, we use
up-down routing. The port speed is set as 25Gbps.

672 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We generate three sets of flows based on the all-to-all traffic
pattern, a uniform random traffic pattern (each ToR choose
12.5% of ToRs to communicate) and the near-worst traffic
pattern. In Facebook’s data centers, the median link utilization
varies between 10% to 20% and the busiest 5% utilization of
links is between 23% to 46% [44]. Here, we set the network
load as 0.3, meaning that the maximum ingress/egress traf-
fic of each ToR is 0.3×Number of Hosts per ToR×25Gbps.
For all the flows, we enable DCQCN for congestion control.
We adopt dynamic PFC threshold such that the PFC is trig-
gered when an ingress queue consumes more than 11% of the
free switch buffer as suggested by HPCC [30]. We evaluate
performance based on the flow completion time (FCT).

We summarize the FCT results in Table 3. FC attains higher
throughput under the all-to-all pattern and the uniform random
patterns. Correspondingly, FC achieves lower FCT in the
packet-level simulation. FC’s near-worst-case throughput is
lower than that of Clos. But Fortunately, FC has lower average
hop count and thus its FCT performance is not much worse.
More detailed results are available in Appendix A.5.4.

6 Formation and Impact of Deadlocks

We study how to trigger deadlocks and understand the impact
of deadlocks via both testbed experiments and simulations.
We will show that under extreme but practical cases, FC’s
edge-disjoint virtual up-down routing is still deadlock-free;
but ECMP/KSP could trigger deadlocks.

6.1 Trigger Deadlocks in a Real Testbed
We build a small testbed using four switches, each with 8
50Gbps ports. (The four switches are virtualized from a single
CE12800 switch. The original port speed is 100Gbps and we
limit the port speed as 50Gbps.) This testbed has 16 servers,
each equipped with one Mellanox CX5 NIC with maximum
rate configured as 50Gbps. (We use PCIE-3.0×8 to connect to
the NICs, and thus these NICs cannot run at a rate higher than
64Gbps.) Each switch in this testbed has four ports connected
to other switches and four ports connected to four servers.
We virtually split each switch into 3 virtual switches, with
1,2,1 number of ports respectively. The connections between
FC’s virtual switches are shown in Fig. 4(b), and the resulting
topology is shown in Fig. 4(a). This topology can be also
viewed as a subgraph of a large expander graph (see switches
A,B,C,D in Fig. 2). If a deadlock occurs in this subgraph, a
PFC storm will quickly propogate to the entire network.

We implement ECMP, edge-disjoint virtual up-down and
EDST routings using ACL rules in our testbed. We enable
PFC to guarantee that the network is loss-free. The PFC-pause
threshold XOFF is set to 50KB and the PFC-resume thresh-
old XON is set to 47KB. Note that these PFC thresholds are
lower than the recommended values. This allows the network
to trigger more PFC pauses. As we will see shortly, the virtual

1 3 5 7 9 11 13 15 17 19
Seconds

0
1
2
3
4
5

Av
e.

 T
hr

ou
gh

pu
t

 (G
b/

s)

EDST DISJOINT UP-DOWN ECMP

Figure 8: Average throughput of the testbed experiment.

up-down routing is deadlock-free even in this extreme situa-
tion. Note that this setup can be viewed as a misconfiguration
of network switches. Microsoft reports that switch misconfig-
uration accounts for 38% of the high-impact failures in their
data centers [52]. In a PFC-storm incident reported also by
Microsoft [20], a switch parameter was misconfigured such
that PFC PAUSE frames could be triggered more easily.

We generate RoCEv2 traffic using the “ib_write_bw [31]”
command. For every NIC, we establish an RDMA connection
with every NIC under a different ToR switch. For example,
NIC1 under the first ToR switch sends traffic to NIC5, NIC6,
..., NIC16. In total, we establish 16×12 = 192 RDMA con-
nections. We configure the “- -run_infinitely” parameter at
the client side of each connection to run the test indefinitely
until interrupted by external.
Results: In the first experiment, we apply ECMP routing.
ECMP is not CBD-free in this testbed. We see a deadlock after
running our testbed for just a few seconds. (KSP typically
generates more paths than ECMP, and thus KSP could also
trigger deadlocks.) When deadlock happens, a large number of
RDMA connections are broken. We deep dive into the source
code of “ib_write_bw” to understand why many connections
are tear down abnormally. We found that the PFC-deadlocks
cause the verbs API “ibv_post_send” to fail and return an error
code to the main program of “ib_write_bw”. Once the main
program catch the exception code, “ib_write_bw” will stop
sending traffic and clean up the resources. Note that, if we use
dynamic PFC thresholds or use the recommended values to
set static PFC thresholds (XOFF = 800KB,XON = 797KB),
we could not observe PFC deadlocks under ECMP routing.
However, this does not eliminate the deadlock risk for ECMP.

In the second and third experiments, we set up the edge-
disjoint virtual up-down and the EDST routing respectively
to run the same test. In this case, we do not see any deadlock
even under low PFC pause/resume thresholds and all RDMA
connections can work continuously. This experiment demon-
strate that both the virtual up-down routing and the EDST
routing can avoid PFC-deadlock in lossless Ethernet.

Finally, we track the average throughput for all the 192
RDMA connections under different routing strategies over
one minute, and plot the results in Fig. 8. The virtual up-
down routing attains the highest average throughput, which
is about 50% higher than that of the EDST routing. Under
ECMP routing, the average throughput drops quickly at the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 673

Network
Setup

Num. of
Hosts

Num. of
Switches

Copper / Fiber
Cable (km)

Num. of
Transceivers

Network Cost
(Million $)

All-to-All (load= 0.3) Uniform Random (load= 0.3) Near-Worst (load= 0.3)
Tput P50 FCT P99 FCT Tput P50 FCT P99 FCT Tput P50 FCT P99 FCT

FC 1152 144 2.3 / 55.5 3456 13.98 1.49 6.11 32.03 1.25 4.30 18.62 0.55 35.48 121.55
FC+EDST 1152 144 2.3 / 55.5 3456 13.98 0.48 12.42 99.88 0.39 196.46 509.73 0.16 7081.40 9889.53

Clos 1152 148 2.3 / 10.8 3584 10.77 0.78 11.65 44.68 0.78 6.95 39.55 0.78 42.67 118.74

Table 3: FCT Results vs. Throughput Analysis. (“Tput” is short for “Throughput”.)

first 5 seconds due to PFC deadlocks. Although the average
throughput of ECMP increases after deadlock recovery, 66%
of the RDMA connections have already failed.

6.2 Understanding Deadlocks via Simulation
We perform packet-level simulation to understand how a dead-
lock is triggered. We use the same testbed topology (Fig. 4(a))
in our simulation. We generate 192 flows at time 0, and set all
the flow sizes as 100MB. For different flows, we either disable
congestion control or enable DCQCN for congestion control.
When DCQCN is enabled, we set the ECN-marking related
parameters as Kmin = 5KB,Kmax = 200KB,Pmax = 0.01 as
suggested by the DCQCN paper [57]. To simulate the ex-
treme cases where lots of PFC pauses are triggered, we set a
small PFC-pause threshold and a small PFC-resume threshold
(XOFF = 50KB,XON = 47KB).

We evaluate ECMP and FC’s edge-disjoint virtual up-down
routing. For adjacent switch pairs, there are two paths un-
der both ECMP and FC’s edge-disjoint virtual up-down rout-
ing. For non-adjacent switch pairs, there are 8 shortest paths
(4 clock-wise paths and 4 counter-clock-wise paths) under
ECMP routing and 2 edge-disjoint virtual up-down paths (1
clock-wise path and 1 counter-clock-wise path) under FC’s
routing. We assign a path to each flow using two strategies:
Balanced Allocation: There are 16 flows generated between
every switch pair and we assign the same number of flows to
each path under both routing strategies. In this case, every link
between adjacent switch pair is shared by exactly 16 flows.
Imbalanced Allocation: Flows between adjacent switch pairs
are still equally assigned to all the paths; but flows between
non-adjacent switch pairs are only assigned to the clock-wise
paths. This situation could happen due to hashing imbalance.
In this case, every clock-wise link is shared by 24 flows,
which becomes the bottleneck of the network. Incast can thus
happen at the 4 switches. In addtion, under ECMP routing,
the following paths {[e1,e2], [e2,e3], [e3,e4], [e4,e1]} form a
CBD (actually there are more CBDs), which makes ECMP
prone to deadlocks.
Results: Under balanced allocation, we do not see deadlocks
even if we use a small static PFC threshold and disable DC-
QCN. In Fig. 9, we compare the CDFs of the FCTs (Flow
Completion Time) under both ECMP and FC’s edge-disjoint
virtual up-down routing with and without DCQCN. Both rout-
ing strategies yield similar FCT performancce.

Under imbalanced allocation, FC’s routing can still finish
all the flows and the FCT performance is shown in Fig. 9.

325 345 365
FCT(ms)

0.00
0.25
0.50
0.75
1.00

CD
F

Balanced Case
UP-DOWN + DCQCN
UP-DOWN
ECMP + DCQCN
ECMP

300 450 600 750
FCT(ms)

Imbalanced Case
UP-DOWN + DCQCN
UP-DOWN

Figure 9: CDF of the FCTs of ECMP and FC’s routing under
balanced/imbalanced allocation in the testbed topology.

In contrast, the ECMP routing triggers a deadlock even if
we enable DCQCN. To rootcause this issue, we record all
the PFC pauses and PFC resumes. We find 4 critical PAUSE
signals that lead to the deadlock: 1) at time 531 us, S1 sends a
PAUSE to the link e4; 2) at time 537 us, S4 sends a PAUSE to
the link e3; 3) at time 543 us, S3 sends a PAUSE to the link
e2; 4) at time 552 us, S2 sends a PAUSE to the link e1. These
events happen within just 21 us.
Takeaway: A DCN suffers from a high risk of deadlocks,
when the following three conditions are met: 1) there exist
CBDs in the network; 2) links in the CBDs are congested;
3) PFCs are triggered more frequently than usual. If we ap-
ply ECMP/KSP routing in an expander graph, we may have
to constantly monitor the congested links and the abnormal
switch behaviors. FC’s design completely eliminates CBDs,
and thus could significantly simplify the RoCEv2 deployment.

7 Discussion

7.1 Handling Link/Node Failures

Link/node failures are common in practical data centers [16].
When a link/node fails, to avoid packet drop, local rerout-
ing is performed to forward the affected packets along a
different path to the destination [32]. Unfortunately, local
rerouting may introduce CBDs and cause deadlocks even if
the original network is CBD-free [24]. Consider the Clos
network in Fig.10(a). Initially, packets from ToR A to ToR
E follow an up-down path A → B → C → D → E. When
the link DE fails, packets that arrived at the switch D can-
not find an alternative downstream path to E and thus are
bounced back to F . Then, the path from A to E becomes
A → B →C → D → F → G → E. This path contains a down-
up bounce, which could introduce CBDs into Clos networks.

To avoid deadlocks in Clos networks under link/node fail-

674 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Servers

c

Layer-1

Layer-2

Layer-3

A

B

C

D

E

F

G

Original Path Rerouted Path

(a) Clos topology.

Servers

Virtual Layer-1

Virtual Layer-2

G

Virtual Layer-3

Virtual Layer-4

A

B

C

D

E

FH

Original Path Rerouted Path

(b) FC’s topology.

Figure 10: Rerouting under link failures.

ures, Tagger [24] adds a tag to all the packets, increases the
tag on the bounce and puts packets with different tags into
different lossless queues. This approach should also work for
FC because we can treat FC as a virtual multi-layered net-
work. Nevertheless, better approach may exist for FC. In Clos
networks, every top-layer switch has a unique path to every
ToR switch and thus every packet affected by a downstream
link/node failure has to be bounced back to another top-layer
switch. In contrast, every packet affected by a link/node fail-
ure in FC can freely choose any virtual layer as long as there
is a link to forward this packet, because every virtual switch in
the same column (see Fig. 10(b)) belongs to the same physical
switch. For example, there is a flow from A to G in Fig. 10(b)
and the original path is A → B → C → D → E → F → G.
When the link EF fails, the affected packets can be rerouted
to A → B →C → D → E → H → G. This new path is still an
up-down path and thus tagging is not required. (Admittedly,
if the rerouted path contains a down-up bounce, we still need
to update the packet tags.) Based on the above analysis, we
suspect that FC could be more efficient in handling link/node
failures than a Clos network. We will explore this further in
our future work.

7.2 Handling Route Reconfiguration
Route reconfiguration is common in data centers, which could
happen when 1) new flows join/leave the network; 2) DCN

topology changes; 3) Traffic Engineering is enabled; 4) an
SDN controller reoptimizes routing paths after link/node fail-
ures. FC’s design makes it easy to handle route reconfigura-
tion. FC performs virtual up-down routing. As long as the
virtual layers remain unchanged (i.e., which ToR port belongs
to which virtual layer), the combined set of the original paths
and the post-reconfiguration paths is CBD-free. This could
dramatically simplify the workflow of route reconfiguration,
because any transient state during route reconfiguration is
guaranteed to be deadlock-free.

In rare cases, e.g., after data center expansion, we may need
to change the virtual layers because the original number of
layers may not be able to support a larger-scale network. In
this case, there could be a CBD in a transient state during
route reconfiguration. Existing solutions on deadlock-free
route reconfiguration [11, 24, 33, 39] can be applied here.

7.3 The Scalability of Routing Tables
Expander graphs, including FC, Jellyfish [46], Xpander [50],
FatClique [54], etc., face a common scalability challenge
in the switch routing tables. Unlike Clos, expander graphs
cannot easily aggregate IP addresses in the switch routing
tables due to the increased routing complexity. To resolve this
challenge, one potential solution is to design a hierachically
routing strategy, e.g., divide ToRs into groups based on their
IP prefixes and then perform intra-group and inter-group rout-
ing separately. This approach could increase the chance of
IP aggregation in the switch routing tables, but may also hurt
path diversity and load balancing efficiency. We will explore
this tradeoff further in our future work.

8 Conclusion

We present FC, a topology-routing co-designed methodol-
ogy to eliminate PFC-induced deadlocks, for cost-effective
and safe deployment of RoCEv2 over expander networks.
Motivated by the fact that the up-down routing paths of multi-
layered Clos networks are CBD-free, we design FC’s topology
to exhibit a virtual layered structure, and propose an edge-
disjoint virtual up-down routing for FC that is guaranteed
to be CBD-free. We evaluate FC against several competitors
using throughput analysis, testbed implementation and packet-
level simulation. Our evaluation results demonstrate that 1)
FC is deadlock-free while ECMP/KSP may trigger deadlocks;
2) FC significantly reduces average hop count and improves
network throughput over the state-of-art EDST-based routing
strategy; 3) FC attains higher throughput than Clos networks
built using the same number of switches under all-to-all and
uniform random patterns. These properties make FC a promis-
ing design for deadlock prevention in expander graphs.
Acknowledgement: This work was supported by the NSF
China (No. 61902246, 62272292 and 61960206002). We also
thank our shepherd Brent Stephens and the NSDI reviewers.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 675

References

[1] Mincostflow solver of ortools. https://developers.
google.com/optimization/reference/graph/
min_cost_flow.

[2] 32×400Gbps Switch Price. https://www.fs.com/
products/158704.html.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In SIG-
COMM, 2008.

[4] H. Ballani, P. Costa, R. Behrendt, D. Cletheroe, I. Haller,
K. Jozwik, F. Karinou, S. Lange, K. Shi, B. Thomsen,
and H. Williams. Sirius: A flat datacenter network with
nanosecond optical switching. In SIGCOMM, 2020.

[5] M. Besta and T. Hoefler. Slim fly: A cost effective
low-diameter network topology. In SC, 2014.

[6] M. Besta, M. Schneider, M. Konieczny, K. Cynk, E. Hen-
riksson, S. D. Girolamo, A. Singla, and T. Hoefler. Fat-
paths: Routing in supercomputers and data centers when
shortest paths fall short. In SC, 2020.

[7] B. Bollobás. The isoperimetric number of random
regular graphs. European Journal of combinatorics,
9(3):241–244, 1988.

[8] CALIENT Technologies. https://www.calient.
net/resources/#documents.

[9] P. Cao, S. Zhao, M. Y. The, Y. Liu, and X. Wang. Trod:
Evolving from electrical data center to optical data cen-
ter. In ICNP, 2021.

[10] Copper Cable Price. https://www.fs.com/
products/149316.html.

[11] J.-J. Crespo, J. L. Sánchez, F. J. Alfaro-Cortés, J. Flich,
and J. Duato. Upr: deadlock-free dynamic net-
work reconfguration by exploiting channel dependency
graph compatibility. The Journal of Supercomputing,
77:12826–12856, 2021.

[12] W. J. Dally and C. L. Seitz. Deadlock-free message rout-
ing in multiprocessor interconnection networks. 1988.

[13] Fiber Price. https://www.fiber-mart.com/12-fibers-
singlemode-smf-12-strands-flat-mtp-breakout-cable-
lcscfcst-flat-fiber-cable-lszhriser-p-16935.html.

[14] Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng, B. Li,
Y. Wu, S. Liu, L. Yan, et al. When cloud storage meets
rdma. In NSDI, 2021.

[15] M. Gerla and L. Kleinrock. Flow control: A compar-
ative survey. IEEE Transactions on Communications,
28(4):553–574, 1980.

[16] P. Gill, N. Jain, and N. Nagappan. Understanding net-
work failures in data centers: Measurement, analysis,
and implications. In SIGCOMM, 2011.

[17] A. V. Goldberg and M. Kharitonov. On implementing
scaling push-relabel algorithms. Network Flows and
Matching: First DIMACS Implementation Challenge,
1993.

[18] P. Goyal, P. Shah, K. Zhao, G. Nikolaidis, M. Alizadeh,
and T. E. Anderson. Backpressure flow control. In
NSDI, 2022.

[19] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-
gupta. Vl2: A scalable and flexible data center network.
In SIGCOMM, 2009.

[20] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and
M. Lipshteyn. Rdma over commodity ethernet at scale.
In SIGCOMM, 2016.

[21] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W.
Moore, G. Antichi, and M. Wójcik. Re-architecting
datacenter networks and stacks for low latency and high
performance. In SIGCOMM, 2017.

[22] HPCC. https://github.com/alibaba-edu/
High-Precision-Congestion-Control.

[23] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and
K. Chen. Deadlocks in datacenter networks: Why do
they form, and how to avoid them. In Proceedings of the
15th ACM Workshop on Hot Topics in Networks, 2016.

[24] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and
K. Chen. Tagger: Practical pfc deadlock prevention in
data center networks. In CoNEXT, 2017.

[25] IEEE. https://1.ieee802.org/dcb/802-1qbb/.

[26] S. A. Jyothi, A. Singla, P. B. Godfrey, and A. Kolla.
Measuring and understanding throughput of network
topologies. In SC, 2016.

[27] M. Karol, S. J. Golestani, and D. Lee. Prevention of
deadlocks and livelocks in lossless backpressured packet
networks. IEEE/ACM Transactions on Networking,
11(6):923–934, 2003.

[28] S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and
A. Singla. Beyond fat-trees without antennae, mirrors,
and disco-balls. In SIGCOMM, 2017.

[29] J. Kim, W. J. Dally, and D. Abts. Flattened butterfly:
a cost-efficient topology for high-radix networks. In
ISCA, 2007.

676 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://developers.google.com/optimization/reference/graph/min_cost_flow
https://developers.google.com/optimization/reference/graph/min_cost_flow
https://developers.google.com/optimization/reference/graph/min_cost_flow
https://www.fs.com/products/158704.html
https://www.fs.com/products/158704.html
https://www.calient.net/resources/#documents
https://www.calient.net/resources/#documents
https://www.fs.com/products/149316.html
https://www.fs.com/products/149316.html
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://1.ieee802.org/dcb/802-1qbb/

[30] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang,
Z. Cao, M. Zhang, F. Kelly, M. Alizadeh, et al. Hpcc:
High precision congestion control. In SIGCOMM, 2019.

[31] Linux Rdma. https://github.com/linux-rdma/
perftest.

[32] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson.
F10: A fault-tolerant engineered network. In NSDI,
2013.

[33] O. Lysne, T. M. Pinkston, and J. Duato. A methodology
for developing deadlock-free dynamic network reconfig-
uration processes. part ii. IEEE Transactions on Parallel
and Distributed Systems, 16(5):428–443, 2005.

[34] P. López, J. M. Martínez, and J. Duato. A very efficient
distributed deadlock detection mechanism for wormhole
networks. In HPCA, 1998.

[35] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krish-
namurthy, S. Ratnasamy, and S. Shenker. Revisiting
network support for rdma. In SIGCOMM, 2018.

[36] P. Namyar, S. Supittayapornpong, M. Zhang, M. Yu,
and R. Govindan. A throughput-centric view of the
performance of datacenter topologies. In SIGCOMM,
2021.

[37] Optical Transceiver Price. https://www.fs.com/
products/128242.html.

[38] E. Palmer. On the spanning tree packing number of a
graph: A survey. Discrete Mathematics, 2001.

[39] T. M. Pinkston, R. Pang, and J. Duato. Deadlock-free
dynamic reconfiguration schemes for increased network
dependability. IEEE Transactions on Parallel and Dis-
tributed Systems, 14(8):780–794, 2003.

[40] L. Poutievski, O. Mashayekhi, J. Ong, A. Singh,
M. Tariq, R. Wang, J. Zhang, V. Beauregard, P. Con-
ner, S. Gribble, et al. Jupiter evolving: Transforming
google’s datacenter network via optical circuit switches
and software-defined networking. In SIGCOMM, 2022.

[41] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia.
A remote direct memory access protocol specification.
Technical report, RFC 5040, October, 2007.

[42] J. Roskind. Application of Edge Disjoint Trees to Failure
Recovery in Data Communication Networks. PhD thesis,
PhD thesis, Department of Electrical Engineering and
Computer Science, 1983.

[43] J. Roskind and R. E. Tarjan. A note on finding minimum-
cost edge-disjoint spanning trees. Mathematics of Oper-
ations Research, 10(4):701–708, 1985.

[44] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.
Inside the social network’s (datacenter) network. In
SIGCOMM, 2015.

[45] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armis-
tead, R. Bannon, S. Boving, G. Desai, B. Felderman,
P. Germano, et al. Jupiter rising: A decade of clos
topologies and centralized control in google’s datacenter
network. 2015.

[46] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jel-
lyfish: Networking data centers randomly. In NSDI,
2012.

[47] B. Stephens and A. L. Cox. Deadlock-free local fast
failover for arbitrary data center networks. In INFO-
COM, 2016.

[48] B. Stephens, A. L. Cox, A. Singla, J. Carter, C. Dixon,
and W. Felter. Practical dcb for improved data center
networks. In INFOCOM, 2014.

[49] M. Y. Teh, S. Zhao, P. Cao, and K. Bergman. Enabling
quasi-static reconfigurable networks with robust topol-
ogy engineering. IEEE/ACM Transactions on Network-
ing, 2022.

[50] A. Valadarsky, G. Shahaf, M. Dinitz, and M. Schapira.
Xpander: Towards optimal-performance datacenters. In
CoNEXT, 2016.

[51] X. Wu and E. T. Ng. Detecting and resolving pfc dead-
locks with itsy entirely in the data plane. In INFOCOM,
2022.

[52] X. Wu, D. Turner, C.-C. Chen, D. A. Maltz, X. Yang,
L. Yuan, and M. Zhang. Netpilot: Automating datacenter
network failure mitigation. In SIGCOMM, 2012.

[53] J. Y. Yen. Finding the k shortest loopless paths in a
network. management Science, 17(11):712–716, 1971.

[54] M. Zhang, R. N. Mysore, S. Supittayapornpong, and
R. Govindan. Understanding lifecycle management
complexity of datacenter topologies. In NSDI, 2019.

[55] S. Zhao, P. Cao, and X. Wang. Understanding the perfor-
mance guarantee of physical topology design for optical
circuit switched data centers. In SIGMETRICS, 2021.

[56] S. Zhao, R. Wang, J. Zhou, J. Ong, J. C. Mogul, and
A. Vahdat. Minimal rewiring: Efficient live expansion
for clos data center networks. In NSDI, 2019.

[57] Y. Zhu, Y. Zhu, H. Eran, D. Firestone, D. Firestone,
C. Guo, M. Lipshteyn, Y. Liron, J. Padhye, S. Raindel,
M. H. Yahia, M. Zhang, and J. Padhye. Congestion con-
trol for large-scale rdma deployments. In SIGCOMM,
2015.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 677

https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://www.fs.com/products/128242.html
https://www.fs.com/products/128242.html

A Appendix

A.1 Finding Edge-Disjoint Paths Using Min-
Cost Max-Flow

Definition 2 (Min-Cost Max-Flow Problem) Given a flow
network G(V,E) with

• u(v,w), upper bound on flow from node v to node w;

• c(v,w), cost of a unit of flow on (v,w),

and a source-destination pair (s, t), [f (v,w)](v,w)∈E is called
a flow assignment from s to t if the following constraints are
met:

1. Capacity constraints: 0 ≤ f (v,w)≤ u(v,w);

2. Flow conservation constraints: ∑u f (u,v) = ∑w f (v,w)
for any node v ̸= s, t and ∑w f (s,w) = ∑u f (u, t) = F.
Here F is called the total amount of flow from s to t.

The objective of the min-cost max-flow problem is to find a
flow assignment [f (v,w)](v,w)∈E with the maximum flow that
minimizes

∑
(v,w)

c(v,w) · f (v,w).

Note that the constant parameters u(v,w) are all positive
and c(v,w) can be either positive or negative. In addition,
the min-cost max-flow problem has a very nice property that
guarantees integer solutions:

Theorem 6 (Integral Flow Theorem) Given a min-cost max-
flow problem, if u(v,w)’s are all integers, then there exists
an integer solution, i.e., f (v,w)’s are all integers, such that
[f (v,w)](v,w)∈E attains the maximum flow with minimum cost.

In fact, when we solve a min-cost max-flow problem with
integer bounds using the Scaling Push-Relabel algorithm [1,
17], the resulting optimal solution is guaranteed to be an
integer solution.
Finding Edge-Disjoint Paths: As a consequence of Theorem
6, we can find the maximum number of edge-disjoint paths
from s to t using min-cost max-flow. Specifically, let E0 be
the set of links that can be used at most once (see the solid
links in Fig. 4(c)), and E \E0 be the set of links that can
be used multiple times (see the dashed links in Fig. 4(c)).
If we set the upper bound as u(v,w) = 1 for all the links
(v,w) ∈ E0 and set the upper bound as u(v,w) = ∞ for all the
links (v,w) ∈ E \E0, then the resulting min-cost max-flow
solution [f (v,w)](v,w)∈E can be decomposed into F (F is the
maximum flow) paths where links in E0 can be used at most
once. The F paths can be found by performing Depth First
Search F times (see Algorithm 1). Note that when we perform
DFS in line 5 of Algorithm 1, we will never encounter a cycle.
Otherwise, by removing this cycle we could obtain another
flow assignment with lower cost. Having this observation
could slightly simplify the DFS implementation. We do not
need to track the set of visited nodes during the DFS search.

Algorithm 1: Find Edge-Disjoint Paths in the Di-
rected Virtual Up-Down Graph

Input :A directed virtual up-down graph (see Fig.
4(c)) and a source-destination pair (s, t).

Output :Maximum number of edge-disjoint up-down
paths from s to t.

1 Let E0 be the set of solid lines in the directed virtual
up-down graph. Construct a flow graph by setting the
link capacity and the link cost as 1 for all links in E0,
and setting the link capacity as ∞ and the link cost as
ε (an infinitesimal value) for all links not in E0.

2 Solve the min-cost max-flow problem. Let
[f (v,w)](v,w)∈E be the optimal solution and let F be
the maximum flow from s to t.

3 Use P to store the set of paths, and initialize P = /0.
4 for i in {1,2,...,F} do
5 Use Depth First Search to find a path P from s to t

such that f (e)≥ 1 for every edge e in P.
6 Store P in P .
7 For every edge e in P, decrement f (e) by one.
8 end
9 Return P .

A.2 A Sufficient and Necessary Condition for
CBD-Free Routing

We first introduce the concept of link dependency graph.

Definition 3 Given a network G(V,E) and a path set P =
{P1,P2, ...,PK}, a link dependency graph G′(V ′,E ′) can be
constructed as follows:

1. V ′ is the set of directed links used by at least one path
P ∈ P ;

2. For any e1,e2 ∈V ′, there is a directed link from e1 to e2
in E ′ if and only if e1 is the next hop of e2 in one path
P ∈ P .

Then, the following theorem offers a sufficient and neces-
sary condition for a set of paths to be CBD-free.

Theorem 7 Given a network G(V,E), a path set P =
{P1,P2, ...,PK} is CBD free if and only if the corresponding
link dependency graph G′(V ′,E ′) contains no loops.

Proof 2 Necessity ⇒: If the path set P is CBD free, we prove
that G′(V ′,E ′) contains no loops. We prove this by contra-
diction. Suppose that G′(V ′,E ′) contains a loop v

′
1 → v

′
2 →

...→ v
′
s → v

′
1. Let ei be the link in G(V,E) that corresponds

to v
′
i. Since e1 is the next hop of e2 in a path, if e1 is paused,

e2 will be paused. Based on the same argument, e3, ...,es will
be paused. Since es is the next hop of e1 in a path, the pause
of es will in turn pause e1. Then, a CBD is formed, which
contradicts the assumption that the path set P is CBD-free.

678 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Sufficiency ⇐: If G′(V ′,E ′) contains no loops, we prove that
the path set P is CBD free. We again prove this by contradic-
tion. Suppose that P contains a CBD. Then, there must exist
a sequence of links e1,e2, ...,es such that ei is the next hop
of ei+1 in a path and es is the next hop of e1 in a path. Then,
the corresponding vertices of e1,e2, ...,es in G′(V ′,E ′) forms
a loop, which contradicts to the assumption that G′(V ′,E ′)
contains no loop.

According to Theorem 7, we design Algorithm 2 to check
if a set of paths is deadlock-free.

Algorithm 2: Check if a set of paths is deadlock-free
Input :A set of paths P = {P1,P2, ...,PK} and a

network G(V,E).
Output :Whether P is deadlock-free.

1 Construct a link dependency graph G′(V ′,E ′) based on
Definition 3.

2 Use deep first search to check if G′(V ′,E ′) has a loop.
3 Return true if G′ has no loop; return false otherwise.

A B

C

(a) An example network. (b) Link dependency graph.

Figure 11: Deadlock detection with a link dependency graph.

We use the example in Fig. 11 to illustrate the idea of the
deadlock detection algorithm. Given a path set P = {A →
B → C,B → C → A,C → A → B}, we can construct a link
dependency graph with three vertices: e1(A → B),e2(B →
C),e3(C → A). It is easy to see that this link dependency
graph contains a loop. Thus, the path set P contains a CBD.

Using Theorem 7, we can prove that up-down routing is
CBD-free in a multi-layered network.

Theorem 8 In a multi-layered network, the path set gener-
ated by up-down routing is CBD-free.

Proof 3 For all the links in a multi-layered network, we can
define a partial order as follows. A link e1 is considered
smaller than another link e2 if either of the following three
conditions is met:

1. e1 is an up link while e2 is a down link;

2. e1, e2 are down links and e1 is at a higher layer than e2;

3. e1, e2 are up links and e1 is at a lower layer than e2.

Then, when we construct a link dependency graph based on
up-down paths, it is easy to verify the following fact: if there is
a directed link from e1 to e2, we must have e2 < e1. Therefore,
the link dependency graph cannot contain a loop. As a result,
the path set generated by up-down routing is CBD-free.

A.2.1 Proof of Lemma 4

Proof 4 Since the path set P is CBD free in G(V,E), the
corresponding link dependency graph G′(V ′,E ′) must con-
tain no loop. In this case, we could construct a new graph
G′′(V ′,E ′′) by adding a link from v1 ∈V ′ to vk ∈V ′ whenever
there exists a sequence of node v2,v3, ...,vk−1 ∈V ′ such that
(vi,vi+1) ∈ E ′ for every i = 1,2, ...,k−1. It is easy to check
that G′′(V ′,E ′′) is also loop-free.

Now we consider the contraction process. Let Ĝ′(V̂ ′, Ê ′)
be the link dependency graph of (Ĝ(V̂ , Ê), P̂). We can prove
that Ĝ′(V̂ ′, Ê ′) is a subgraph of G′′(V ′,E ′′). First, in Ĝ(V̂ , Ê),
the edges within each vertex set Vi (i=1,2,...,m) are removed.
Thus, V̂ ′ ⊆V ′. Second, for any edge (e1,e2) ∈ Ê ′, there must
be a path P̂ ∈ P̂ , such that e1 is the next hop of e2 in P̂. Note
that P̂ is obtained by contracting a path P ∈ P . We must have
e1 as a down-streaming hop (not necessarily next hop) of
e2 in P. Based on the construction of G′′(V ′,E ′′), we know
that (e1,e2) ∈ V ′′. Therefore, Ê ′ ⊆ V ′′. Based on the above
analysis, we immediately know that Ĝ′(V̂ ′, Ê ′) is a subgraph
of G′′(V ′,E ′′). Since G′′(V ′,E ′′) is loop-free, Ĝ′(V̂ ′, Ê ′) must
also be loop-free. Then, according to Theorem 7, we must
have that the path set P̂ is CBD free in the topology Ĝ(V̂ , Ê).

A.3 Generating a Clos Network with H Hosts
Using N p-Port Switches

Given N p-port switches and H hosts, we study how to con-
struct a Clos network with the maximum throughput.

We first consider a 2-layered Clos Network. For each
switch, let h be the number of ports connected to hosts. Then,
the total number of switches in the first layer (i.e., the ToR
layer) is ⌈H/h⌉. As long as ⌈H/h⌉ ≤ p, we can put p− h
switches in the second layer and create a complete bipar-
tite graph between the ToR switches and the switches in the
second layer. In total, ⌈H/h⌉+ p− h switches are used. To
maximize throughput, we only need to find the smallest h by
solving the following optimization problem:

min h such that ⌈H/h⌉ ≤ p,⌈H/h⌉+ p−h ≤ N. (5)

In many cases, it may not be feasible to construct a 2-
layered Clos network or a 2-layered Clos network may not
be throughput optimal. Hence, we also need to study how to
construct a multi-layered Clos network.

We adopt a trial-and-error approach to find the throughput
optimal L-layered Clos network (L = 3,4, ...). Starting from
h = 1, we try if it is possible to construct an L-layered Clos

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 679

Number
of Servers

Servers
per ToR

Number
of Switches

Number
of OCSs

Copper / Fiber
Cable (km)

Number of
Transceivers

Network Cost
(Million $)

Bisection
Bandwidth

FC Clos FC Clos FC FC Clos FC Clos FC Clos FC Clos

2400
8 16 300 406 24 4.8 / 158.3 4.8 / 40.6 7200 10560 27.58 29.76 1292 1280

12 22 200 220 20 4.8 / 75.1 4.8 / 15.2 4000 4480 17.89 15.71 684 560
16 25 150 166 16 4.8 / 40.2 4.8 / 8.7 2400 2688 12.93 11.62 396 336

4800
8 16 600 860 48 9.6 / 424.7 9.6 / 107.7 14400 19456 55.19 61.52 2526 2432

12 21 400 482 40 9.6 / 202.4 9.6 / 48.7 8000 10560 35.80 34.70 1358 1320
16 25 300 332 16 9.6 / 110.1 9.6 / 22.9 4800 5376 24.90 23.23 772 672

7200
8 16 900 1170 72 14.4 / 760.4 14.4 / 201.5 21600 29696 82.80 85.45 3786 3712

12 21 600 761 40 14.4 / 361.2 14.4 / 88.4 12000 15488 52.50 54.13 2018 1936
16 25 450 526 32 14.4 / 196.6 14.4 / 40.6 7200 8046 37.84 36.50 1156 1008

24000
8 16 3000 5500 240 48.0 / 4513.5 101.3 / 1393.5 72000 97008 276.29 383.53 12716 12288

12 22 2000 2885 140 48.0 / 2047.1 71.6 / 493.8 40000 44298 175.53 199.58 6788 6400
16 25 1500 2052 80 48.0 / 1102.0 62.3 / 268.8 24000 26880 124.60 140.70 3826 3584

48000
8 16 6000 12152 456 96.0 / 13571.0 227.0 / 5065.5 144000 192512 551.85 850.55 25614 24576

12 21 4000 6691 260 96.0 / 5762.6 156.4 / 2071.1 80000 100958 350.11 465.72 13612 12672
16 25 3000 4104 160 96.0 / 3002.8 124.7 / 940.8 48000 53760 249.32 282.75 7674 7168

72000
8 16 9000 21300 696 144.0 / 26774.9 406.1 / 11090.5 216000 288768 829.49 1471.83 38638 36864

12 21 6000 10018 380 144.0 / 10830.7 234.1 / 4480.7 120000 151360 524.91 702.92 20626 19712
16 25 4500 6828 240 144.0 / 5462.5 201.3 / 2021.8 72000 80640 374.11 468.66 11714 10752

Table 4: Cost Analysis: FC vs. Clos.

Switch [2] OCS [8] 2m Copper
Cable [10]

Fiber Cable [13] Transceiver [37]
2m 5m 10m 15m 20m 30m 50m 100m (100 + 50x)m 100m 500m 2000m

$ 59099 $ 60000 $ 189 $ 4.29 $ 4.71 $ 5.29 $ 5.71 $ 6.38 $ 7.38 $ 9.46 $ 16.54 $ (16.54 + 6.3x) $ 499 $ 799 $ 1099

Table 5: Unit Price of Different Network Components.

network using at most N switches. If it is possible, we obtain
the optimal h for the L-layered Clos network; otherwise, we
increase h by one and retry the construction.

Starting from L = 2, we could use the above approach to
find the best h(L) for every L (h(L) = ∞ if it is not feasible
to construct an L-layered Clos network). h(L) may decrease
at the beginning, but will eventually increase with respect
to L. Whenever we see h(L) < h(L+ 1), we can stop and
return the minimum value of h, denoted by h∗. With h∗, the
optimal throughput is (p− h∗)/h∗. When h∗ ≤ ⌊p/2⌋, the
optimal throughput becomes larger than 1. In this case, the
DCN offers abundant capacity while the access links between
servers and ToRs become the bottleneck.

A.4 Network Cost Analysis
We offer a rough estimate about the total network cost for FC
and Clos in this section. The network cost includes the elec-
trical switch cost, the OCS cost and the cabling cost. Given
an FC and a Clos with the same number of servers, we vary
the number of servers per ToR switch and compute the num-
ber of required electrical switches and OCSs (only FC uses
OCSs). To compute the cabling cost, we assume that intra-
rack connections use direct attach copper cables, and inter-
rack connections use optical fibers. An optical fiber requires
an optical transceiver to connect to an electrical switch. The
number of optical transceivers is easy to compute, which is
equal to the total number of connected electrical switch ports

(some switch ports may be unused) minus the total number
of hosts. In contrast, the copper/fiber cable length depends on
the detailed network layouts.

A.4.1 FC’s Layout

In order to estimate the cable length, we make the following
assumptions about FC’s layout. On a data center floor, all the
servers, switches and OCSs are hosted in racks. We use 2d
coordinates (x,y) to represent a rack location.

• The i-th ToR switch is located at
((−1)⌊i/Nr⌋(⌊i/(2Nr))⌋ + 1), i%Nr), where Nr is
the number of racks per column;

• A rack can host four OCSs, and the i-th OCS is located
at (0,⌊i/4⌋).

Fig. 12(a) shows FC’s layout. For FC, the server-ToR connec-
tions use 2-meter copper cables and the ToR-OCS connections
use fiber cables. We use Manhattan distance to compute the
cable length between two racks. We vary Nr so that the total
fiber cable length is minimized.

A.4.2 Clos’s Layout

We focus on 3-layered and 4-layered Clos networks below.
Both the 3-layered and 4-layered Clos networks follow the
ToR-Aggregation-Spine architecture. In a 3-layered Clos,

680 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Number of Switches Number of Servers k
Port Count of

Virtual Switches η Cabling Constriant Average Number of Paths Average Path Length Minimum Number of Paths

500 12000 4 [7, 13, 13, 7] 4 N 16.08 4.57 12.00
Y 16.10 4.57 12.00

1000 24000 4 [7, 13, 13, 7] 7 N 14.01 4.86 9.00
Y 14.01 4.86 9.00

2000 48000 5 [5, 10, 10, 10, 5] 13 N 15.77 5.36 11.00
Y 15.77 5.36 11.00

3000 72000 5 [5, 10, 10, 10, 5] 19 N 14.66 5.54 10.00
Y 14.66 5.53 10.00

5000 120000 5 [5, 10, 10, 10, 5] 32 N 13.28 5.75 9.00
Y 13.28 5.75 9.00

Table 6: Using virtual-layered cabling has little impact on FC’s routing statistics (64-port switches are used).

OCS
Legend

ToR

...

x

y

(a) FC cabling.

Aggr
Spine
Legend

ToR

...
x

y

(b) Clos cabling.

Figure 12: Layouts of FC and Clos. The red lines are the cable
paths. To avoid visual clutter, most cable paths are omitted.

each spine is an electrical switch; in a 4-layered Clos, each
spine is a 2-layered folded Clos built with electrical switches.
We make the following assumptions about Clos’ layout.

• The aggregation swtches in the i-th PoD are located at
((−1)i(⌊i/2⌋+1),0);

• The j-th ToR switch in the i-th PoD is located at
((−1)i(⌊i/2⌋+1),(−1) j(⌊ j/2⌋+1));

• For a 3-layered Clos, a rack can host 24 spine switches,
and the i-th spine is located at (0,(−1)⌊i/24⌋(⌊(i +
24)/48⌋)). For a 4-layered Clos, we use 2 co-located
racks to host a gigantic spine. Each gigantic spine is a
folded Clos network, with 32 32-port switches in the first
layer and 16 32-port switches in the second layer. The
i-th gigantic spine is located at (0,2(−1)i(⌊(i+1)/2⌋))
and (0,2(−1)i(⌊(i + 1)/2⌋) + 1). Note that the intra-
spine links use copper cables.

Fig. 12(b) shows Clos Network’s layout. For Clos, the ToR-
Aggregation and Aggregation-Spine connections use fiber
cables. The Server-ToR connections use 2-meter copper ca-
bles. For 4-layered Clos, the intra-Spine connections also use
2-meter copper cables. Again, we use Manhattan distance to
compute the cable length between two racks.

A.4.3 Comparison Results

Table 4 compares the number of electrical switches/optical
transceivers/OCSs and the copper/fiber cable length for FC

and Clos networks. For each row, the number of servers per
ToR in a Clos network has been carefully chosen such that its
bisection bandwidth is equal to or slightly lower than that of
FC. Generally speaking, given an FC and a Clos with the same
number of hosts and similar bisection bandwidth, FC requires
fewer number of electrical switches and optical transceivers,
but it requires more fiber cables and additional OCSs.

Next, we offer a rough estimate on the total network cost
for FC and Clos. The unit prices of different network compo-
nents are summarized in Table 5. A 32×400Gbps electrical
switch costs about $59000 [2] and a 320×320 optical circuit
switch costs about $60000 [8]. Intra-rack connections, includ-
ing server-ToR connections and intra-spine connections, use
2-meter 400Gbps copper cables, which cost about $189 [10].
The price of fiber cables increases sub-linearly with respect
to the fiber length [13]. (The prices listed in [13] are the
prices for 12-fiber bundles. We have divided the original price
numbers by 12 in Table 5.) Hence, for each fiber cable used,
we pick the shortest fiber in Table 5 that is longer than this
fiber cable and use its price as the cost. The price of optical
transceivers also varies depending on the transmission dis-
tance [37]. For FC, we use 2km optical transceivers because
the adopted transceivers must have enough power budget to
traverse an OCS. Note that traversing an OCS typically in-
curs about 1.5dB loss (at most 3dB) [8]. For Clos, we choose
between 100m or 500m optical transceivers depending on the
fiber cable length. We compare the total network cost in Table
4. When the network size is small (3-layered Clos is used),
FC and Clos have similar network cost; when the network
size is large (4-layered Clos is used), FC’s network cost is
smaller. In addition, under similar bisection bandwidth, FC
uses fewer number of electrical switches and thus its network
power consumption is lower (the power consumption of an
OCS is only 50watts [8], which is negligible).

A.5 Additional Results

A.5.1 Impact of Cabling on FC’s Routing

We generate FC’s topology of different sizes & η values and
evaluate if the virtual-layered cabling strategy has any impact
on FC’s routing. From Table 6, we cannot see clear difference

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 681

2400 4800 7200 9600 12000 14400
Number of Servers

0.0

0.4

0.8

1.2

Th
ro

ug
hp

ut

EDST DISJOINT UP-DOWN CLOS

(a) Throughput of the all to all traffic matrix.

2400 4800 7200 9600 12000 14400
Number of Servers

0.0

0.4

0.8

1.2

Th
ro

ug
hp

ut

EDST DISJOINT UP-DOWN CLOS

(b) Throughput of uniform random traffic matrices.

2400 4800 7200 9600 12000 14400
Number of Servers

0.0

0.4

0.8

1.2

Th
ro

ug
hp

ut

EDST DISJOINT UP-DOWN CLOS

(c) Throughput of the near-worst traffic matrix.

Figure 13: Throughput simulation results using 64-port switches.

Number of Switches Number of servers k
Port Count of

Virtual Switches Routing
Average Number

of Paths
Average Path

Length
Average Shortest

Path Length

500 12000 4 [7, 13, 13, 7] Edge Disjoint Up-down 16.08 4.57 3.20
EDST 20 18.34 5.26

1000 24000 4 [7, 13, 13, 7] Edge Disjoint Up-down 14.01 4.86 3.50
EDST 20 26.52 6.99

2000 48000 4 [7, 13, 13, 7] Edge Disjoint Up-down 11.85 5.13 7.00
EDST 20 33.49 9.12

3000 72000 4 [7, 13, 13, 7] Edge Disjoint Up-down 10.63 5.30 6.00
EDST 20 39.82 10.45

Table 7: Edge-Disjoint Virtual Up-down Routing vs. the EDST Routing (64-port Switches are Used).

when we enable/disable the cabling contraints.

A.5.2 Throughput Analysis

Clos, FC and Expander+EDST are three network architectures
that are guaranteed to be deadlock-free. For networks built
using 32-port switches, we demonstrate in Section 4 that

1. FC consistently outperforms Expander+EDST;

2. FC achieves higher throughput than Clos networks under
all-to-all and uniform random traffic patterns.

In this section, we generate FC’s topologies of different
sizes using up to 600 64-port ToR switches. Each ToR switch
has 40 ports connected to other switches and 24 ports con-
nected to servers. The number of virtual layers k is chosen
based on the strategy (*) in Section 3.2.3. We evaluate both
FC’s edge-disjoint virtual up-down routing and the EDST
routing. For each FC’s topology, we also compare it with a
Clos network generated using roughly the same number of
switches with throughput optimized. From Fig. 13, we can
see that the above conclusions on FC’s throughput benefits
also hold for networks built using 64-port switches.

A.5.3 Routing-Path Analysis

We then perform the same routing-path analysis for FC’s
edge-disjoint virtual up-down routing and the EDST rout-
ing. We generate FC’s topologies of different sizes (N =
500/1000/2000/3000) using 64-port ToR switches with s =
40. As shown in Table 7, the average path length under FC’s
routing is still much shorter than that under the EDST routing.

A.5.4 More Packet-Level Simulation Results

In Section 5, we perform packet-level simulation for three
network setups: FC, FC+EDST, and Clos. Here, we present
the detailed simulation results. We plot the CDFs for FCTs in
Fig. 14. Apparently, the FCT performance under FC’s routing
is much better than that under the EDST routing. Hence, we
mainly focus on the comparison between FC and Clos.

Under the all-to-all traffic pattern and the uniform random
traffic pattern, FC achieves clearly better FCT performance
than Clos because it has higher throughput. This coincides
with our throughput analysis in Section 4.3.

However, under the near-worst traffic pattern, we find that
FC’s FCT performance is just slightly worse than the Clos net-
work’s FCT performance. In contrast, our throughput analysis
in Section 4.3 suggests that FC’s throughput is lower than the
corresponding Clos network’s throughput. (In this case, FC’s
throughput under the near-worst pattern is about 0.5, while
the Clos network’s throughput is about 0.78.) The reason is
that, the average hop count under FC is shorter than that under
a Clos network; when the network is not congested, having a
smaller average hop count compensates for the throughput gap
between FC and Clos. Nevertheless, as network load increases,
FC will encounter more severe congestion than Clos. We per-
form another simulation for the near-worst traffic pattern with
network load increased from 0.3 to 0.7. (More specifically,
we increase the size of each flow by 7/3 times.) As shown in
Fig. 14(d), we can see that FC’s FCT performance is much
worse than the Clos network’s FCT performance. In fact, we
see a large amount of PFC PAUSE frames in FC’s network.
But the good news is, there is no deadlock.

682 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20 40 60
FCT(ms)

0.00
0.25
0.50
0.75
1.00

CD
F

CLOS
DISJOINT UP-DOWN

0 50 100 150
FCT(ms)

EDST

(a) All-to-all traffic pattern (Network Load= 0.3).

0 40 80 120
FCT(ms)

0.00
0.25
0.50
0.75
1.00

CD
F

CLOS
DISJOINT UP-DOWN

0 200 400 600
FCT(ms)

EDST

(b) Uniform random traffic pattern (Network Load= 0.3).

0 40 80 120
FCT(ms)

0.00
0.25
0.50
0.75
1.00

CD
F

CLOS
DISJOINT UP-DOWN

0 3000 6000 9000
FCT(ms)

EDST

(c) Near-worst traffic pattern (Network Load= 0.3).

0 500 1000 1500
FCT(ms)

0.00
0.25
0.50
0.75
1.00

CD
F

CLOS
DISJOINT UP-DOWN

(d) Near-worst traffic pattern (Network Load= 0.7).

Figure 14: Compare FCTs for FC, Clos and Expander+EDST.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 683

Scalable Tail Latency Estimation for Data Center Networks

Kevin Zhao

University of Washington
Prateesh Goyal

Microsoft Research
Mohammad Alizadeh

MIT CSAIL
Thomas E. Anderson

University of Washington

Abstract
In this paper, we consider how to provide fast estimates of

flow-level tail latency performance for very large scale data

center networks. Network tail latency is often a crucialmetric

for cloud application performance that can be affected by a

wide variety of factors, including network load, inter-rack

traffic skew, traffic burstiness, flow size distributions, oversub-

scription, and topology asymmetry. Network simulators such

as ns-3 and OMNeT++ can provide accurate answers, but are

very hard to parallelize, taking hours or days to answer what

if questions for a single configuration at even moderate scale.

Recent work with MimicNet has shown how to use machine

learning to improve simulation performance, but at a cost

of including a long training step per configuration, and with

assumptions about workload and topology uniformity that

typically do not hold in practice.

We address this gap by developing a set of techniques to

provide fast performance estimates for large scale networks

with general traffic matrices and topologies. A key step is

to decompose the problem into a large number of parallel

independent single-link simulations; we carefully combine

these link-level simulations to produce accurate estimates of

end-to-end flow level performance distributions for the entire

network. LikeMimicNet,weexploit symmetrywherepossible

to gain additional speedups, but without relying on machine

learning, so there is no training delay. On a large-scale net-

work where ns-3 takes 11 to 27 hours to simulate five seconds

ofnetworkbehavior, our techniques run inone to twominutes

with accuracy within 9% for tail flow completion times.

1 Introduction
Counterfactual simulation—to answer “what if” questions

about the interaction of network protocols, workloads, topol-

ogy, and switch behavior—has long been used by both re-

searchers and practitioners as a way of quantifying the effect

of design options and operational parameters [2, 16, 21, 23–

26, 36]. As production data center networks have scaled up in

bandwidthandscaledout insize [4, 29],however,networksim-

ulation has failed to keep pace. Although there is ample par-

allelism at a physical level in large scale data center networks,

it has been difficult to realize significant speedupwith packet-

level network simulation [22, 30].As packets flow through the

network, the scheduling decisions at each switch affect the

behavior of every flow traversing that switch, and therefore

the scheduling decisions at every downstream switch, and—

with congestion control—future flow behavior, in a cascading

web of very fine-grained interaction. In our own experiments

using ns-3 [23], for example, simulating a 384-rack, 6,144-host

network on a single thread of amodern desktop CPU took 11

to 27 hours of wall-clock time to advance five seconds of sim-

ulated time. While parallel techniques for discrete event sim-

ulation exist [10], recent work has demonstrated their limited

efficacy for speeding up simulations of highly interconnected

data center networks [34]. As a result, packet-level network

simulation today is mostly used for small scale studies.

The need for faster network simulation has spawned recent

efforts to use machine learning to model how different parts

of the network affect each other [32, 34]. While promising,

these approaches have several limitations.MimicNet requires

hours-long retraining for newworkloads and network con-

figurations, and it only accelerates simulations of uniform

fat trees with uniform traffic among equally-sized clusters of

machines [34]. DeepQueueNet relaxes some of MimicNet’s

restrictions but does notmodel congestion control, which can

be a first-order determiner of performance [32].

This paper aims to address this gap, to develop techniques

for fast approximate simulation of large scale networks with

arbitrary workloads and topologies. Our work involves no

training step, aiming to produce near-real time results even at

scale. In addition to reducing the cost of evaluating new pro-

tocols, another goal is to provide real-time decision support

for network operators, such as warnings of SLO violations if

links fail [17, 20], advice on task placement of communication-

intensive jobs [7], and predicting the performance impact of

planned partial network outages and upgrades [8, 35].

A key observation is that we could achieve high degrees of

parallelism if we could somehow disentangle the interactions

between switch queues, allowing us to study the behavior of

the traffic on each link in isolation. Of course, switch queues

arenot in reality completely disentangled. Thepackets for any

particular flow experience a very specific set of conditions at

each switch, and those conditions are affected by the presence

of upstream bottlenecks which can smooth packet arrivals

for competing flows at downstream switches. The congestion

response for a flow depends on the combination of conditions

at every switch along the path.

However, large scale data center networks are typically

managed with the goal of delivering consistent high perfor-

mance to applications.While congestion events do occur, they

are often chaotic rather than persistent, popping up and then

disappearing in different spots due to the inherent burstiness

and flow size distribution of applications, rather than due to

some long-termmismatch between demand and capacity in

some portion of the network [33]. Further, we are often inter-

ested in aggregate behavior, such as the frequency of poor

flowperformance, rather than the behavior of each individual

packet or flow.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 685

0.80

0.85

0.90

0.95

1.00

CD
F

Smaller than 10 KB 10 KB to 100 KB

2.5 5.0 7.5 10.0
FCT slowdown

0.80

0.85

0.90

0.95

1.00

CD
F

100 KB to 1 MB

2.5 5.0 7.5 10.0
FCT slowdown

Larger than 1 MB

Ground truth model Parsimon

Figure 1. CDF of ns-3 versus Parsimon for flow completion time

(FCT) slowdown across multiple flow size ranges, zoomed into

the tail. While ns-3 took nearly 11 hours to produce these results,

Parsimon took one minute and 19 seconds, end-to-end. Results

were taken on a 6,144-host topology with an industry traffic matrix,

2-to-1 oversubscription, and bursty traffic.

Tomodel aggregate behavior, our hypothesis is thatwe can

approximate the distribution of end-to-end flow performance

for a particular workload running on a large scale network by

modeling the frequency and magnitude of local congestion

events at each link along individual paths. A long flowwill

of course experience multiple congestion events during its

lifetime, but most of these will occur at different points along

the path at different times.Modeling the effect of simultaneous

congestion events, and the response of the congestion algo-

rithm to multiple simultaneous bottlenecks, is second order.

Our hypothesis is related to the concept of product-form

solutions in queuing theory. For certain classes of queueing

networks (e.g., Jackson [12] andBCMPnetworks [6]), the equi-

libriumdistributionofqueue lengths canbewritten inproduct

form, i.e., the state of an individual queue is only dependent

on the traffic it receives and not on the state of the rest of the

network. These results generally require specific assumptions

about job arrival processes (e.g., Poisson), service-time distri-

butions (e.g., Exponential), and queueing/routing disciplines

(e.g., FIFO or processor-sharing queues), and there has been

much theoretical work on identifying classes of queueing

networks that admit product-form solutions [13]. Although

data center networks do not strictly conform to these condi-

tions and the dynamics of each individual queue can be quite

complex (e.g., due to congestion control), our hypothesis is

that product-form solutions are approximately true in most

realistic settings, and therefore we can analyze individual

queues in isolation and combine the results to approximate

end-to-end network behavior.

We built Parsimon to directly test this hypothesis. First,

we deconstruct the network topology into a large number of

simple and fast simulations where each can be run entirely

in parallel by a single hyperthread. Each simulation aims to

collect the distribution of delays that flows of a particular

size would experience through a single link, assuming that

the rest of the network is benign. We then combine these

simulated delay distributions to produce predictions of the

end-to-end delay distribution, again for flows of a given size.

At each step, we make conservative assumptions for how

delays should be computed and combined. In many settings,

researchers and operators are interested in keeping tail behav-

ior well-managed, making a conservative assumption more

appropriate than anoptimistic one. Finally,Parsimon clusters
links with common traffic characteristics, eliminating much

of the overhead of simulating parallel links in the core of the

network as well as edge links used by replicated or parallel

applications, further improving simulation performance.

Because validation against detailed packet-level simulation

at scale is so expensive, we focus our study on a single widely

used transport protocol, DCTCP [2], with FIFO queues with

ECN packet marking at each switch [27]. We also focus on

queue dynamics rather than packet loss; most data center

networks are provisioned and engineered for extremely low

packet loss [28, 29]. We note that these assumptions are not

fundamental to our approach. We show Parsimon general-
izes to two other transport protocols, DCQCN [36] and the

delay-based TIMELY [19]. Validation of other transport pro-

tocols [3, 14, 16, 21], switch queueing disciplines [1, 9, 11, 21],

and packet loss remains future work. We note that modern

data center transport layer protocols are adept at quickly

adapting to the presence and absence of congestion, and so

we caution our results may not extend to older transport

protocols where convergence time is a large factor.

Parsimon speeds up simulations by reasoning about links

independently, which enables massive parallelization, but at

a cost in accuracy. Aswewill see in §3.6, anything that creates
standing congestion both at the core and at the edge, or when

cross traffic is correlated across multiple hops, will result in

less accurate estimates.While ourmethods are designed to fa-

vor overestimating rather than underestimating tail latencies,

this property is only evaluated experimentally (§5). In general
there is no formal guarantee, since factors like congestion

control can in theory behave in arbitrary ways that render

less appropriate the approximation of considering links inde-

pendently. We assume that we can simulate for long enough

for the network to reach equilibrium; studies of short term

transient behavior should not use our approach. We do not

provide predictions at the level of an individual flow, but we

are able to show that Parsimon is accurate for sub-classes of
traffic for mixed workloads. We do not attempt to model end

host scheduling delay of packet processing, even though that

may have a large impact on network performance [14, 15];

we leave addressing that to future work.

To assess accuracy, we compare distributions of flow com-

pletion time (FCT) slowdown, defined as the observed FCT di-

videdby the best achievable FCTonanunloadednetwork, and

we say a flow is completewhen all of its bytes have been deliv-

ered to its destination. Fig. 1 shows a sample of our results for

686 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the 6,144 host networkmentioned above, running a published

industry trafficmatrix [28] andflow size distribution [21], and

with standard settings for burstiness and over-provisioning.

We describe the details of this and other experiments later in

the paper. Depicted are FCT slowdown distributions binned

by flow size. While ns-3 took nearly 11 hours on this con-

figuration, Parsimon was able to match flow-size specific

performance of ns-3 in 79 seconds (a 492 times speedup) on a

single 32-waymulticore server with an error of 9% at the 99th

percentile. Given a small cluster of simulation servers, we

estimate a completion time of 21 seconds using our approach.

In our evaluation, we scan the parameter space to identify

circumstances where our approximations are less accurate.

Link clustering improves performance but hurts accuracy

somewhat; this tradeoff can be avoided by usingmore simula-

tion cores.Without clustering, accuracy suffers when there is

high utilization of links in the core (above 50%), there are high

levels of oversubscription, and a large fraction of network

traffic is due to flows that finish within a single round trip.

Generally, a combination of factors is required for poor accu-

racy. In 85% of the configurations we test, the error relative

to ns-3 is under 10%.

Parsimon source code and evaluation scripts are publicly
available at https://github.com/netiken.

2 ParsimonOverview
This paper describes a set of methods to quickly and scalably

estimate distributions of flow performance in data center

networks. These techniques are implemented in a prototype

called Parsimon, designed to provide the following:

• Fast, scalable estimates.We aim to supply estimates

twoto threeordersofmagnitude faster thanfull-fidelity

simulation. Given enough cores, execution time should

remain bounded regardless of network size.

• Tight latencybounds, including tail performance.
Our approximations bias slightly towards overestima-

tion, but still provide close estimates even for the 95th

or 99th percentile of the distribution for a given flow

length.

• Minimal restrictions on topology andworkload.
Ourmethods are largely independent of both topology

and workload, although some combinations of topol-

ogy and workload will have lower accuracy.

Fig. 2 illustrates the intuition behind its core method, and

Fig. 3 depicts its workflow. The user supplies 1) a description

of the topology, as a set ofnodes and links, and2) theworkload,

as a set of flows and routes. In our implementation, we gen-

erate the flow list by sampling from the traffic matrix and the

flow size distribution, with inter-arrival times determined by

a burstiness parameter. Once inputs are supplied, Parsimon
proceeds in several steps:

Decomposition. To start, flows are assigned to each link

they traverse, e.g., for a fat tree using ECMP. Then, for each

link 𝑙 , Parsimon generates a custom backend simulationwith

a topology selected to determine—as accurately as possible—

the contribution of 𝑙 to the end-to-end flow completion times

(FCTs) of the flows passing through it. Each of these backend

simulations can run in parallel.

Clustering. Depending on the size of the topology, there

may be tens or hundreds of thousands (or more) of link-level

simulations to perform. Fortunately, data center topologies

exhibit notable symmetries, and industry has reported that

the same is true for many of their workloads [28]. Parsimon
can optionally cluster links with similar workloads together.

Only one representative from each cluster need be simulated;

the rest of the link-level simulations are pruned. Clustering

is discussed in more detail in §4.2.
Simulation. The next step is to simulate all cluster repre-

sentatives in parallel. The decomposition step resulted in a

topology and a workload for each link-level simulation, and

we can use any simulation backend. Our prototype supports

two: ns-3 and a custom high-performance link-level simula-

tor (§4.1). This allows us to directly validate our link-level

simulator against ns-3. However, other efficient models, such

as fluid flow [18] or machine learned models could be used

here instead, for different tradeoffs of performance and ac-

curacy. Each link-level simulation produces a distribution of

the delay contributed by that link to the flow completion time

(FCT), bucketed by flow size. Note this is not the link’s propa-

gation delay—we calculate that contribution directly from the

topology. These distributions—described in the next section

(§3)—are organized according to the original input topology,
as depicted in Fig. 2. Recall that only one representative from

each cluster is simulated; every other link is populated with

the distributions of its cluster representative.

Aggregation. The last step is to aggregate the link-level

results into estimates for entire paths through the network.

These estimates are also represented as delay distributions.

Conceptually,Parsimonobtainsadelaydistribution forapath
by convolving together the appropriate distributions from

each of the path’s component links. Since there are multiple

distributions per link and potentially many paths through the

network, we do not compute convolutions up-front. Instead,

convolution is done on-demand via Monte Carlo sampling; a

by-product is that we can efficiently produce estimates for in-

dividual source-destination pairs, virtual networks, or classes

of service (§A). To make a single point prediction for a flow

taking some path through the network, Parsimon uses the
flowsize tofind theappropriatedistribution for each link, sam-

ples a value from each of them, and combines them together.

This process is repeated for each flow.

At a bird’s-eye view, Parsimon’s method is simple: to ac-

celerate FCT estimates, we estimate the effect of each link

independently and inparallel. Then tomakepredictions about

the whole network, we combine the results. However in our

experience, the accuracy of the method hinges tightly on the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 687

https://github.com/netiken

Decomposition & simulation Link-level delay distributions Aggregation

Link-level simulation

Figure 2. Overview of Parsimon. First, for any path, Parsimon estimates the contribution of each component link to delays in flow

completion times, represented as a probability distribution. Parsimon then combines delays along the path using Monte Carlo simulation

(see §3). Further, for added performance, link-level simulations are optimized and redundant simulations (due to e.g., ECMP or symmetries

in workload patterns) are pruned (see §4).

TopologyFlows

Decompose

Link-level

sims (1)

Query

Simulate

Link-level

delays

Aggregate

FCT
distribution

Parsimon

Link-level

sims (2)

Cluster

Generate
flows

Flow size
distribution

Traffic
matrix

Figure 3. An illustration of Parsimon’s workflow. All inputs and
outputs are shown in the top row. Rectangular boxes are inputs

and outputs, rounded boxes are intermediate artifacts, and ovals

are Parsimon’s actions.

quality of the link-level estimates and subsequent aggrega-

tion. For example, when generating the backend simulations,

we have observed that failure to adequately capture perti-

nent features of the network severely degrades the quality

of Parsimon’s estimates. Similarly, link-level results must

be processed and aggregated with care to preserve accuracy

across all flow sizes. §3 describes these techniques in detail.
3 KeyMethods: Decompose and Aggregate
Together, themethods for decomposition and aggregation are

what enables Parsimon’s scaling, and while we later engage
additional techniques for further speed-up, they are a byprod-

uct of—andnot independent from—thesemore essentialmeth-

ods. Decisions made during this step are also the central de-

terminers of accuracy. This section describes these processes

in detail: how link-level topologies are generated, how the

link-level data are post-processed and stored, and finally how

they are aggregated to produce end-to-end estimates.

3.1 Generating Link-LevelWorkloads

To start, Parsimon associates each linkwith the flows passing
through it. Since links are bidirectional, there are two sets

of flows—and consequently two link-level simulations—per

link. Parsimon populates links with flows using flows’ routes.
Then for each link and in each direction, the associated flows

constitute the inputworkload to the link-level simulation.The

sizes and arrival times of the flows pass though unmodified.

3.2 Generating Link-Level Topologies

Once the link-level workloads are in place, we generate the

link-level topologies. In this step, we think of each link as

contributing some amount of delay to end-to-end FCTs. Any

given flow will accrue these delays at each hop, depending

on—for example—howmuch bandwidth is available and how

much queueing is present. Highly-loaded links are expected

to contribute more delay, while rarely utilized links will con-

tribute relatively little.

For each link and in each direction, we generate a topology

and perform a simulation using just the flows traversing that

link. Once the simulation is finished, the delay caused by the

link for a given flow is computed by taking the observed FCT

and removing the ideal FCT for that flow size. (For a flow

of size 𝑠 traversing a link of speed𝐶 and propagation delay

𝑙 , the ideal FCT is 𝑠/𝐶 + 𝑙 .) This intuitively captures all de-

lays incurred due to queueing, congestion control, bandwidth

sharing, and so on at the target link.

In generating a per-link topology, our goal is to isolate and

measure the expected delay contribution of the target link. A

simple but inefficient strategy would be to use the original

topology, but with only the traffic traversing the target link,

without any cross traffic. This would be relatively accurate at

measuring the delay contributed by the target link, albeit a bit

conservative. Upstream cross traffic congestion will slightly

smooth out downstream congestion at the target link, and so

removing cross traffic would make the queue distribution at

the target link slightly worse than in reality.

Although relatively accurate and parallelizable, simulating

every linkon theoriginal network topologywould still be inef-

ficient, as packet-level simulation cost is roughly proportional

to the number of packets simulated times the number of hops

each packet takes through the network. Because we run the

link simulation separately in each direction on every packet

that passes through that link, this would inflate the aggregate

computational cost of the simulationbyamultiplicative factor

of roughlyhalf the averagenetworkpath length—a significant

factor for large-scale networks. Instead, we want to simulate

only a small constant number of hops per target link.

An extreme alternativewould be to simulate only the target

switch queue. This is inaccurate for two reasons. First, we

688 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

3

2

1

0 1 2 3

0

1

2

3

0

1 2

3
A

B

C

A B C

1
1

1 1
3

3

2

2

1

1

3

3

1

Figure 4. An illustration of how Parsimon generates link-level topologies. Simulations are unidirectional, and a different topology is used

for (A) first-hop links, (B) switch-to-switch links, and (C) last-hop links. For illustration purposes, each link in the original topology has

a propagation delay of one. To the left is the original topology; to the right are the corresponding link-level topologies, with new propagation

delays annotated. Bold lines denote links whose bandwidths have been artificially increased during topology generation.

need to preserve end-to-end round trip delays, as these affect

the speed of the congestion control adaptation to congestion

or its absence; hosts closer to the target adapt faster than

those farther away. Second, we need to preserve the spacing

of packets induced by the original topology—a large flowdoes

not immediately dump all of its data into the queue for the

target link; instead, those packets arrive spaced apart by the

edge link capacity. Ignoring this effect would lead to larger

queues andmore delay at the simulated link thanwould occur

at that link in the original network.

Thus, we construct a topology for each link-level simula-

tion that reflects a performance-accuracy tradeoff, attempting

to capture themost important effects for computing the delay

contributed by the target link. Fig. 4 showshow topologies are

minimized. The generated topology takes one of three shapes,

depending on the location and direction of the target link: (i)

a first-hop up-link from a host to a ToR, (ii) a switch-to-switch

link in the middle of the network, or (iii) a last-hop downlink

from a ToR to a host.

Suppose the traffic through the target link originates from

sources 𝑆 and terminates in destinations𝑇 . In case A of Fig. 4,
we connect the target link directly to each host in𝑇 via a ded-

icated link. If the target link is a switch-to-switch link (case

B), we remove intermediate hops and connect the hosts in 𝑆

directly to the input, and the output directly to the hosts in𝑇 .

Lastly, if the target link is a last hop (case C), then the hosts in
𝑆 are connected directly to the input. Rewriting the topology

in thismanner ensures that packets can traverse atmost three

hops, regardless of the size of the original topology.

Modeling round-trip delay. Next, we set the link delays in

each constructed topology to match the round trip delays in

theoriginalnetwork. Forexample, in caseAofFig. 4, the round-
trip time between host 0 and host 2 is 8 in both the original
topology and the generated topology, even though Parsimon
has removed intermediate hops between the switch and host

2. Fig. 4 is meant as illustrative; as with ns-3, Parsimon can
model arbitrary round-trip delays.

In data center networks, congestion controllers play a large

role in determining the extent to which longer flows yield

throughput to benefit the latency of short flows. Most algo-

rithms such as DCTCP [2], DCQCN [36], and TIMELY [19]

are end-to-end in the sense that sources adjust their send-

ing rates based on feedback echoed from destinations [11].

With an end-to-end control loop, a sourcemust wait an entire

round-trip time (RTT) before being able to adapt its sending

rate based on congestion feedback, resulting in longer queue

lengths with higher RTTs. Thus, correctly modeling RTTs is

essential to correctly modeling queue dynamics.

Selecting link bandwidths. In some cases, we artificially

increase the bandwidth of downstream links to ensure that

they do not artificially add congestion. We say such links are

inflated. For example, in cases A and B of Fig. 4, the bandwidths
of the last-hop links are inflated. We want any queueing to be

due to the target link and not the downstream link. By inflat-

ing downstream links, we remove store and forward delay (a

small packet following a large packet would otherwise need

to queue for the downstream link); it also addresses the case

where core links are fatter than downstream links. Queueing

at the downstream link itself is accounted for in case C. By
contrast, we do not inflate first-hop links in cases B and C, as
this would enable a long flow to arrive at the target link at a

higher rate than it would in practice.

A cluster of sources sending simultaneously through an

oversubscribed top-of-rack (ToR) switch in the original net-

workwill be throttled beyondwhat is implied by the edge link

capacity. To improve simulation speed, we ignore this effect

and are therefore slightly conservative in our estimates for

oversubscribed networks.

Correcting for ACK traffic. Since Parsimon only simu-

lates one direction at a time, we must account for the load

induced by acknowledgments due to traffic in the reverse

direction. This is usually small, but can be significant at high

load and where average packet size is small. Instead of model-

ing ACK traffic in detail, we apply a simple rule, mechanically

reducing the forwardbandwidthoneach simulated linkby the

average volume consumed by ACKs for flows in the opposite

direction over the course of the simulation. This correction

is applied to all links but is most necessary for the target link.

Note that Parsimon does not account for extra delay caused
by ACK jitter on the reverse path; this could be an issue when

applying our ideas to networks with bandwidth asymmetry

between forward and reverse paths [5].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 689

3.3 Post-Processing Link-Level Results

Each link-level simulation produces an FCT for each flow in

the link-level workload, and these FCTs are used to compute

delays. Recall from §3.2 that the delay is just the observed

FCTminus the ideal FCT on an unloaded network. For each

flow, we could, theoretically, estimate the end-to-end delay as

some function of the delay contributed by each link for that

flow.We discuss how that function works in Parsimon, along
with its sources of bias, later in this section.

First, we address a different issue. Recall that we cluster

similar links together (§4.2) so thatwe only simulate the flows

through a single representative link for each cluster of links.

Thus, to compute the end-to-end delay for a particular flow,

we take a sample from the delay distributions at each hop in

the path, or from the hop’s standin representative.

In post-processing the link-level results and constructing

these distributions, our primary objective is to support accu-

rate estimates for all flow sizes. It is not enough to produce

the correct FCT distribution across the entire workload; we

must also accurately estimate the FCT distribution for short

flows containing just a few packets as well as for long flows

that last for hundreds of round trips. This extra requirement

necessitates some post-processing before distributions can

be constructed. Here we describe how this is done.

Packet-normalizeddelay. Maintainingaccuracyacross all

flow sizeswould not be possible if we used delays directly. For

example, long flows,whichmay experience variations in their

bandwidth share over time, will almost always experience

more absolute delay than short flows.

As a start, we can address this by normalizing delays by

flow size: after computing the delay for a particular flow, we

can then divide the delay by the flow’s size in packets.We call

the resulting metric the packet-normalized delay, and it has
the intuitive interpretation of summarizing the flow’s aver-

age delay per packet. Link-level distributions are constructed

from packet-normalized delays rather than absolute delays.

We normalize by the number of packets instead of the num-

ber of bytes because flows are discretized into—and therefore

delays are incurred by—packets. Further, normalizing by the

number of bytes loses accuracy for small flows, especially

those smaller than the maximum packet size. For example,

a 10 byte packet would be delayed by the same amount as

would a 100 byte packet if it arrived in the switch queue just

behind a jumbo (9 KB) frame [31].

Bucketing distributions. Even with packet-normalized

delays, we should still expect long flows to have different

delay distributions than short flows. The FCT of a long flow

is mainly determined by the throughput it achieves, while

the FCT of a short flow depends on how much queueing it

encounters. Further, congestion control algorithms trade the

throughput of long flows for the latency of shorter ones to

varying degree. An aggressive congestion control algorithm

could try to keep queues near-empty [16], resulting in smaller

short-flow delay and larger long-flow delay.

To ensure that estimates for different flow sizes are accu-

rate, it is necessary to sample each packet-normalized delay

from the appropriate distribution. We bucket the distribution

of packet-normalized delays by flow size. Buckets need to

contain enough samples to form statistically meaningful dis-

tributions, but they should also be small enough so that the

values come from flowswith similar delay characteristics (i.e.,

similarly-sized flows).

Parsimon uses a simple bucketing algorithm. In brief, we

start with a packet-normalized delay per flow, and we sort

them according to flow size. Then, starting with the short-

est flow, we begin populating buckets. For each bucket 𝑏, let

maxf𝑏 and minf𝑏 be the maximum and minimum flow sizes

associated with 𝑏, respectively, and let 𝑛𝑏 be the number of

elements in 𝑏. Each bucket 𝑏 apart from the last one is locally

subject to two constraints

𝑛𝑏 ≥𝐵 and maxf𝑏 ≥𝑥 ∗minf𝑏,

for some choice of 𝐵 and 𝑥 . Globally, Parsimon also ensures
buckets are contiguous and non-overlapping. For any bucket,

once the two local constraints are satisfied, Parsimon begins
populating the next bucket, and the final bucket is assigned

whatever elements remain.

In practice, we find 𝐵 = 100 and 𝑥 = 2 works well. Data

center workloads have heavy-tailed flow size distributions

in which short flows arrive much more frequently than long

ones. With these parameters, the first buckets will have size

boundaries that are approximately powers of two, and as

flows get larger, buckets will cover larger and larger ranges.

This is the desired behavior. Intuitively, a queueing-sensitive

1 KB flow should not be grouped with a throughput-sensitive

1 GB flow, but a 1 GB flow can be grouped with a 10 GB

flow provided the distribution of throughput is stable on long

timescales. Accuracy across different flow sizes at finer or

coarser resolution can be achieved by modulating 𝑥 . We ex-

amined sensitivity to the number of buckets by decreasing 𝑥

for selected experiments and found no meaningful change in

the predicted distributions.

In summary, each link-level simulation produces FCTs, and

these FCTs are used to construct bucketed distributions of

packet-normalized delay. Since different links have different

workloads, bucketing is performed on a per-link basis. This

means that the links in any given path are likely to have dif-

ferent bucket sizes with different flow size ranges. In the next

subsection (§3.4) we describe how the data are aggregated.

3.4 Aggregating Link-Level Estimates

For any given range of flow sizes, the final distribution of

(packet-normalized) delay for any path through the network

canbe estimatedby selecting an appropriate distribution from

each component link and then performing an n-ary convolu-

tion. However, the efficiency of this step must be considered.

Since there are multiple distributions per link and potentially

690 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5. An illustration of how Parsimon aggregates link-level
results into a path-level point estimate. Parsimon samples a

packet-normalized delay (§3.3) from each link along the path, and

combines these to estimate the end-to-end absolute delay𝐷 .

many paths through the network, performing all convolu-

tions up front and storing one path-level distribution per path,

per flow-size range would be costly in space and in time.

To avoid these costs, Parsimon uses an on-demand sam-

pling strategy to perform the convolution. Recall that the

simulation step resulted in bucketed distributions of packet-

normalized delay per link, organized in a graph isomorphic to

the original topology. Parsimonmakes this graph a queryable

object that is capable of supporting point estimates. Given a

size, a source, and a destination, Parsimon computes a path

from the source to the destination and uses the size to select

a distribution per-link. Then, one packet-normalized delay

is sampled from each distribution and the results are subse-

quently combined into a point estimate. Suppose there are 𝑛

hops and let𝐷∗
1
,𝐷∗

2
,...,𝐷∗𝑛 be the sampled packet-normalized

delays. Then, the end-to-end absolute delay𝐷 is computed as

𝑃

𝑛∑︁
𝑖=1

𝐷∗𝑖 =

𝑛∑︁
𝑖=1

𝐷∗𝑖 𝑃 =

𝑛∑︁
𝑖=1

𝐷𝑖 = 𝐷,

where 𝑃 is the input flow size in packets and𝐷𝑖 is the absolute

delay for hop 𝑖 . Fig. 5 illustrates this process. Finally, to obtain

a distribution of end-to-end delay estimates, we need only

sample enough point estimates for the desired flow size range

and source destination pairs.

3.5 Primary Source of Speedup

Parsimon speeds up large network simulations by consid-

ering the effect of each link in isolation, allowing it to scale

in the size of the simulated network and the number of pro-

cessing cores. Although the link is the unit of decomposition,

Parsimon’s scaling ability is determined not by the total the

number of links, but rather by the fraction of total packets
traversing any link. In other words, Parsimon’s speed-up de-
pends on the number of busy links and howwell the load is

balanced among them. This explains why Parsimon is most

suited for large data center networks, where the total work-

load comprises many source destination pairs with many

paths between them. If a network traffic is heavily skewed

such that most of the workload traverses only a few paths,

the amount of speedup will be limited.

3.6 Primary Sources of Error

To balance accuracy and performance, Parsimon makes a

number of approximations, with some having more of an

effect on accuracy than others. Here we catalog some of the

main sources of error, describing 1) howwe expect the errors

to manifest and 2) what modifications, if any, could be made

to address them.

Bottleneckfan-in. Tosimulateagiventarget link in thenet-

work, Parsimon constructs a topology that connects all of the
source nodes feeding traffic directly into that target. In prac-

tice, of course, there would be multiple stages of fan-in, and

that fan-inwould tend to spreadoutanyburstof arrivingflows

due to upstream bandwidth capacity constraints. Any target

link would experience slightly less queueing and less conges-

tion in reality than in Parsimon. Of course, Parsimon also
simulates the upstream link; because it is closer to the sources,

its traffic and queueing behavior would be a closer model to

what would happen in a full network-wide simulation.

Because Parsimon sums the delay contributed by each hop

along a flow’s path, the lack of fan-inwill tend to slightly over-

estimate the delays caused by downstream links. Put another

way,anydelay inducedbyfan-inconstraints is counted twice—

once whenwe simulate the upstream link and again whenwe

simulate the downstream link. In our evaluation, accuracy is

slightly lower for networks with higher degrees of oversub-

scription, as we would expect. We could potentially remove

this inaccuracy by including the upstream fan-in as part of the

topology for each link simulation. Since simulation time ispro-

portional to the number of hops, this would decrease individ-

ual link simulation efficiency by a small but significant factor.

Lack of traffic smoothing. Similarly, any cross-traffic that

shares a portion of a path with traffic destined for the target

link will tend to smooth out traffic before it reaches the target.

Parsimondoesnot include any cross-traffic in its per-link sim-

ulation, making it slightly overestimate the queueing delay

at the target link. Assuming the simulation is stable—that the

arrival rate does not exceed the service rate for any link—the

target link will experience the correct long-term average rate,

but without as much smoothing as would happen in practice.

We see evidence of this effect in our evaluation, where error

is slightly larger for workloads with a predominance of short

flows which would benefit more from smoothing. Of course,

correctly modeling the effect of cross-traffic on the traffic ar-

riving at a downstream link would be difficult to accomplish

without reverting to a full network simulation.

Link-level independence. Amore fundamental approxi-

mation is that link-level simulationsare treated independently.

This technique enables wholesale parallelization, but its accu-

racy depends on the amount of correlation between the traffic

intensities on the various hops along the path. Themore corre-

lated the traffic, the more error Parsimon’s method produces.

Since Parsimon produces estimates by convolving delay

distributions (adding independent random variables), full ac-

curacy requires the mutual independence of delays among

the links in every path. Consider a single-packet flow that

traverses two hops, both with load 𝑙 . If the delays along the

two hops are independent, the probability that the flowwill

encounter no queueing is simply (1− 𝑙)2. However, if both

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 691

hops tend to have queueing at the same time (i.e., if the traf-

fic intensities and therefore the delays are correlated), then

that probability is closer to 1− 𝑙 . Since Parsimon does not

distinguish between these two scenarios, the difference is not

reflected in its estimates.

In very large networks with thousands of hosts and paths,

and with realistic workloads, we expect the effects of corre-

lation to be small. A basic result of queueing theory is that

under some circumstances it is possible to analyze queues

independently, even when the output of one queue connects

to the input of another, so that queue behaviors are obviously

correlated. One view of our work is that we are empirically

observing that data center networks approximately admit

product-form solutions for their equilibrium state queue dis-

tributions under realistic workloads.

However, somenetworksusePFC [36] to reducepacket loss

due to go-back N error handling in some RDMA network in-

terface cards. Because PFC suffers fromhead-of-line blocking,

PFCcancausecorrelatedcongestionacrossmultiple links, and

so Parsimonwould not be a good choice for modeling such

networks. If correlation is a problem, we could potentially

measure thedegreeofcorrelationandapplyacorrecting factor

during the convolution step, butwe leave that for futurework.

One bottleneck at a time. Estimating the performance of

long flows comes with an additional difficulty which is also

exacerbated by correlated delays. While a single packet flow

can only reside in one queue at a time, a long flow can be back-

logged on multiple links at the same time.Depending on the
specific congestion control mechanism, the throttling back

of a long flow (the delay it experiences) is typically not the
sum of the delays it would experience on individual links (as

Parsimon approximates), but rather only the delay caused by

the true (instantaneous) bottleneck. Since Parsimon sums all

delays, it will overestimate the end-to-end delay for the long

flow that encounters simultaneous cross-traffic congestion

at multiple points along its path. In summary, Parsimon is
more accurate when the congestion is episodic and tempo-

rary, appearing at different links at different times, and less

accurate when congestion is persistent across multiple edge

and core links of a given path.

Congestion on any link (and therefore simultaneous con-

gestion onmultiple links) becomesmore commonwithhigher

network load, and we see this effect in our evaluation. We

can potentially correct for this bias by using a more complex

function for combining link delays when overall network uti-

lization is high. Because network operators are often willing

to over-provision their network hardware to reduce applica-

tion tail latency, this is rare in practice. For example, some

recent end-to-end congestion protocols, such as Homa [21],

simply assume that network congestion predominantly oc-

curs at the last hop of each path. We do not make such an

assumption; we handle congestion equally wherever it might

occur. However, we do assume that congestion events are not

persistent and network wide.

Our approximations are biased toward producing overesti-

mates rather thanunderestimates, becauseweexpectnetwork

operators to be more sensitive to over-promising tail behav-

ior, even if that comes at the cost of being too conservative

with respect to capacity planning. Additional analyses on the

errors induced by these approximations can be found in the

appendix (§C).
4 ComplementaryMethods
The previous section described howwe decompose a single

large network simulation into many small, independent ones

that can be executed in parallel and later combined. This sec-

tion describes additional optimizations that reduce, cluster,

and prune these link-level simulations for better computa-

tional efficiency. These reduce the number of cores needed to

simulate a given network within some time bound, or equiv-

alently, the execution time on a single server machine.

4.1 Fast Link-Level Simulation

By far the largest computational cost in Parsimon are the

link-level simulations. Initially we used ns-3 as our link-level

backend. However, as a general-purpose simulator, ns-3 is

designed to support arbitrary protocols with arbitrary exten-

sions, all the way down to hardware models. This is more

flexible but means that every packet in ns-3 generates events

at everyhost, queue, and link—aswell as throughout thehosts’

modeled network stacks.

Instead, we implemented a custom and minimal simula-

tor optimized for high fidelity single link simulation. This

backend only models the workload, topology, queueing, and

congestion control. For congestion control, our prototype

implements DCTCP’s core algorithm [2] in a few tens of lines

of code. For example, we do not need to model the mecha-

nism for carrying ECN bits from switches back to endpoints.

Switching to a custom simulator speeds up the individual link

simulations by roughly anorder ofmagnitude,withnegligible

loss of accuracy. Reducing the simulation time of the worst

case (most congested) link also reduces the critical path dra-

matically. If more simulation features are needed, Parsimon
can use ns-3 at the cost of using more cores.

4.2 Clustering and Pruning Simulations

Lastly,we recall thatParsimon’s decomposition results in two

simulations per link: one in each direction (§3.1). On a large-
scale 6,144-host topologyweuse for evaluation, there are over

9,000 links, and therefore over 18,000 simulations generated.

Fortunately, data center topologies commonly induce sym-

metries that render some of these simulations redundant. For

example, up-links in the sameECMPgroupingcanbeassumed

to have the same characteristics and traffic patterns. Further-

more, the workloads themselves may also induce symmetries

due to communication patterns and load balancing [28].

We can take advantage of these symmetries by clustering

links that carry similar traffic and only simulating one rep-

resentative from each cluster. Then, in each cluster, all links

692 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1Greedy link clustering
1: unclustered←AllLinks ⊲ links here are unidirectional

2: clusters← [] ⊲ list of list of links

3: while not Empty(unclustered) do
4: members← [] ⊲ new cluster

5: representative← PopFirst(unclustered)

6: Push(members, representative) ⊲with initial member

7: for candidate in unclustered do ⊲ find other members

8: rfeature← Feature(representative)

9: cfeature← Feature(candidate)

10: if IsCloseEnough(rfeature, cfeature) then
11: Push(members, candidate) ⊲ newmember

12: Remove(unclustered, candidate)

13: Push(clusters, members)

14: return clusters

inherit the delay distribution produced by the representa-

tive link. Parsimon’s clustering requirement is quite specific,

which limits the range of popular clustering algorithms that

can be used. Let 𝑙1,𝑙2 ∈ 𝐿 be any two link-level simulations,

and let 𝑑 :𝐿×𝐿→R be a distance function. Ideally,

𝑙1 and 𝑙2 are clustered together⇐⇒ 𝑑 (𝑙1,𝑙2)<𝜖,

where 𝜖 is some bound. The left-to-right direction preserves

accuracy; the right-to-left supports efficiency. Most centroid-

basedanddensity-basedclusteringalgorithmsaren’tdesigned

to provide the left-to-right property. Instead, Parsimon uses
Alg. 1. This algorithm greedily clusters simulations together,

using a distance function that predicts which links will have

similar delay profiles. In our prototype, we check that the

link flow size and inter-arrival time distributions—as well as

their load levels—are close.We find this provides a reasonable

tradeoff between efficiency and accuracy, but users can turn

off the optimization at the cost of using more cores. Further

details about the clustering can be found in the appendix (§D).
5 Evaluation
Parsimon’s goal is to quickly estimate tail latencies for a vari-

etyof largedata centernetworks andworkloads. In evaluating

Parsimon, we would like to assess 1) Parsimon’s accuracy
and performance at the scale of thousands of hosts, and 2)

how accuracy is affected by awide range of variables over the

workload and the topology.

Our strategy is as follows. Using workloads extracted from

industry datasets, we start with a 384-rack, 6144-host topol-

ogy to evaluate Parsimon’s speed and accuracy in one sce-

nario at scale. Then, to evaluate nearly 200 other topology

and workload scenarios, we downsample the workload so

that it can run on a smaller 256-host topology. This allows us

to run enough ns-3 simulations quickly enough to perform

a detailed sensitivity analysis.

To more clearly illustrate sources of error in Parsimon, we
also construct and evaluate Parsimon on syntheticworkloads
on a small-scale parking lot topology in Appendix §C.

Variant Clustering? Link-level backend

Parsimon No custom

Parsimon/C Yes custom

Parsimon/ns-3 No ns-3

Parsimon/inf — custom

Table 1.The Parsimon variants under consideration. Parsimon/inf
is a variant that assumes infinite cores and memory.

5.1 General Setup

Each scenario we consider has six components: 1) a topology

size, 2) an oversubscription factor, 3) a traffic matrix, 4) a flow

size distribution, 5) a burstiness level, and 6) a maximum load

level. Here, we briefly describe how these are specified and

configured.We also discuss which Parsimon variants wewill
assess and howwe establish a baseline.

Topology and oversubscription. To mimic an industry

topology, our topologies are modeled after Meta’s data center

fabric [4]. In brief, there are three layers of switches: hosts

connected to a top-of-rack switch (ToR) with 10 Gbps links

constitute a rack, racks connected to each other via fabric

switches with 40 Gbps links constitute a pod, and pods con-
nected to each other via spine switches with 40 Gbps links

constitute a cluster. Spine switches are organized in planes.
We can modulate the size of a topology (corresponding to a

cluster) by adjusting the number of pods, the number of racks

per pod, and the number of hosts per rack, and we can mod-

ulate the oversubscription factor by adjusting the number of

spines per plane.

Trafficmatrices. The traffic matrices are extracted from

the datasets accompanying Roy et al.’s study of Meta’s data

center network [28]. The data only allow us to construct re-

liable rack-to-rack matrices. When sampling workloads, we

use the matrices to generate rack-to-rack traffic, but once a

rack is chosen, we select its hosts uniformly at random. This

may bear semblance to reality: according to Roy et al., Meta’s

racks typically only contain servers in the same role, and load

balancing is used pervasively. We use traffic matrices from

three different clusters: a database cluster (matrix A), a web

server cluster (matrix B), and a Hadoop cluster (matrix C).

Fig. 6a shows 32-rack samples of the matrices.

Flow sizes and burstiness. We use three flow size distribu-

tions, estimated from published data in Roy et al.’s study [28].
These are reproduced in Fig. 6b. For inter-arrival times,weuse

the log-normal distribution to model bursty traffic, and we

modulate the burstiness by adjusting the log-normal shape

parameter 𝜎 . For low burstiness, we select 𝜎 =1, and for high

burstiness, we choose 𝜎 =2.

Maximumload level. When setting a load level, we ensure

that the offered rate is less than the link capacity for each link

by specifying the maximum load level that any link can have.

Note that a given maximum load level may result in different

link load distributions, depending on the traffic matrix and

the topology. Fig. 6c shows the distribution of normalized link

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 693

Matrix A Matrix B Matrix C

100 104 103 103 105

(a) Traffic matrices (32-rack sample)

100 102 104

Flow size (KB, log scale)

0.0

0.5

1.0

CD
F

CacheFollower
WebServer

Hadoop

(b) Flow size distributions

0.0 0.5 1.0
Normalized load

0.0

0.5

1.0

CD
F

1-to-1 oversubscription

0.0 0.5 1.0
Normalized load

4-to-1 oversubscription
Matrix A Matrix B Matrix C

(c)Normalized link load distributions

Figure 6. In the evaluation, we model workloads using data from Roy et al.’s study of Meta’s data center network [28]. The traffic matrices in

Fig. 6a are extracted from the accompanying dataset, and the flow size distributions in Fig. 6b are estimated from the published data. Lastly, for

a given topology, the distribution of link loads depends on 1) the trafficmatrix and 2) the degree of oversubscription. Fig. 6c shows the link loads

induced by thematrices in Fig. 6a on two 32-rack topologieswith different overprovisioning. The x-axis is normalized to themaximum link load.

Estimator Time Speed-up

ns-3 10h 48m 26s —

Parsimon 4m 13s 154×
Parsimon/C 1m 19s 492×
Parsimon/inf 21s 1864×

Table 2. Running times and speed-up of Parsimon variants

for five seconds of simulated time on a large oversubscribed

network with thousands of hosts. We find that Parsimon estimates

latencies orders of magnitude faster than does ns-3. If there is ample

opportunity for clustering or if there are infinite compute resources,

speed-up is substantially further increased. Measurements were

taken on a 32-core machine.

loads on a 32-rack topologywith the trafficmatrices in Fig. 6a

and two different oversubscription factors. When describing

how loaded a topology is, we will usually specify the average

load of the top 10%most loaded links.

Parsimonvariantsandbaseline. Toestablishabaseline for

Parsimon’s accuracy and performance, we use ns-3 with the

optimized build profile. We also consider several Parsimon
variants, summarized in Table 1. By default, Parsimon uses
the custom link-level backend (§4.1) with clustering turned
off. This expresses a lower bound on Parsimon’s expected
speed-up given a particular machine. Parsimon/C adds clus-

tering to the default variant using the methods described

at the end of §4.2, and Parsimon/ns-3 replaces the default’s
custom backend with ns-3. Lastly, Parsimon/inf provides an
estimate of Parsimon’s performance given infinite cores and

infinite memory, computed by adding the run time of the

longest link-level simulation to the fixed costs of network

setup and convolution sampling. This represents an upper

bound on the Parsimon’s achievable performance. All per-

formance measurements are taken on a 32-core AMD Ryzen

Threadripper 3970X.

5.2 Analysis on a Large-Scale Network

Here we evaluate Parsimon’s accuracy and performance on

a 384-rack, 6144-host topology. The topology has eight pods,

48 racks per pod, and 16 hosts per rack, with 2-to-1 oversub-

scription. For the workload, we use matrix B, theWebServer

flow size distribution, and high burstiness (𝜎 = 2). We set a

maximum link load of about 50%, which gives the 100 most

loaded links an average load of 32%, and the top 10% most

loaded links an average load of about 15%.We configure all

simulations to run for five seconds of simulated time. To es-

tablish a baseline, we first run the scenario in ns-3, then we

run the scenario in Parsimon and Parsimon/C (see Table 1).

Due to memory constraints we omit Parsimon/ns-3 here, but
we include its analysis at smaller scale in §5.3.

Fig. 7 shows the accuracy of Parsimon relative to ns-3

across fourflowsizebins.Wefindthatacrossall bins, bothvari-

ants accurately estimate tail latencies. If we consider all flow

sizes together,wefind thatParsimon andParsimon/C overes-

timate the p99 FCT slowdown by 8.8% and 7.5%, respectively.

Table 2 shows the running time and speed-up for each

estimator, which includes topology generation and convolu-

tion sampling overheads where applicable. While ns-3 took

nearly 11 hours, Parsimonwithout clustering took four min-

utes and 13 seconds, for a speed-up of 154×. If we turn clus-
tering on by using Parsimon/C, the running time is further

reduced to one minute and 19 seconds, for a speed-up of

492×. 1 In this case, only 25% of links were simulated; the rest

were pruned. Lastly, Parsimon/inf estimates Parsimon’s best
possible performance given infinite compute resources. The

longest-running single-link simulation took 11 seconds, and

with the additional 10 seconds required for network setup

and convolution sampling, the fastest projected running time

is 21 seconds.

We chose an oversubscribed topology to slightly disad-

vantage Parsimon’s method, as oversubscription can lower

Parsimon’s accuracy. §5.3 analyzes the effect of oversubscrip-
tion in more detail. We also ran the above experiment on a

topology without oversubscription, which for the same maxi-

mum load setting increased the top 10%average link load from

15% to 25%. We found Parsimon’s p99 accuracy improved

from 9% to about 7%, while Parsimon/C’s accuracy remained

1
We advise caution both in interpreting this number and in generalizing

it to scenarios at large. While our workloads are modeled after industry data,

they are still synthetic. There may be more or less opportunity to cluster and

prune link-level simulations, depending on the structure of real workloads

and the quality of the clustering algorithm.

694 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 10
FCT slowdown

0.8

0.9

1.0

CD
F

Smaller than 10 KB

5 10
FCT slowdown

10 KB to 100 KB

2.5 5.0 7.5 10.0
FCT slowdown

100 KB to 1 MB

2 4 6
FCT slowdown

Larger than 1 MB
ns-3 Parsimon Parsimon/C

Figure 7. CDFs of FCT slowdown estimated by ns-3 and two Parsimon variants (note the y-axis). On a large network with 6,144 hosts,

an industry traffic matrix (matrix B), and 2-to-1 oversubscription in the core, Parsimon’s latency estimates are similar to those produced

by full-fidelity simulation. Table 2 shows the performance of each estimator.

Parameter Sample space

Oversubscription 1-to-1, 2-to-1, 4-to-1

Traffic matrix Matrix A, Matrix B, Matrix C

Flow size distribution CacheFollower, WebServer, Hadoop

Burstiness Low (𝜎 =1), High (𝜎 =2)

Max load 26% to 83% (continuous range)

Table 3. The sample space for the sensitivity analysis in §5.3.

0.0 0.1 0.2 0.3 0.4 0.5
Error of p99 FCT slowdown

0.00

0.25

0.50

0.75

1.00

CD
F

Max load range (max top 10% avg load)
26% - 41% (34%)
56% - 83% (68%)

41% - 56% (50%)
all scenarios

Figure 8. CDFs of p99 error between Parsimon and ns-3 across all
scenarios drawn from the sample space in Table 3. The distributions

are binned by maximum load. In parentheses, we give the maximum

value for the top 10% average load in each bin. Under common

conditions of low to moderate load, Parsimon’s estimates for the

p99 FCT slowdown are reliably within 10% of the ground truth.

approximately the same. However, because aggregate load in-

creased, ns-3 took 27 hours for five seconds of simulated time,

and speed-ups for Parsimon, Parsimon/C and Parsimon/inf
were 152×, 872×, and 3487×, respectively. Parsimon/C bene-

fited from the increased number of links in each ECMP group-

ing, allowing it to prune 85% of the link-level simulations.

5.3 Sensitivity Analysis at Small Scale

Next we turn our attention to how different aspects of work-

loads and topologies affect Parsimon’s accuracy. To be able
to simulate enough scenarios in ns-3 for a sensitivity analysis,

we downsample the topologies and trafficmatrices to 32 racks.

The resulting topologies have two pods, 16 racks per pod, and

eight hosts per rack, and the number of spines per plane varies

to accommodate different oversubscription factors.

Our approach is as follows. First, we construct a sample

space over the parameters defining the workload and the

topology (aside from the number of servers, which is fixed).

The sample space is shown in Table 3. Then, we sample 192

scenarios uniformly at random, and we run ns-3 and the de-

fault Parsimon variant on each of them for several seconds

of simulated time. Next, for each scenario, we take the p99

FCT slowdown estimated by both ns-3 and Parsimon, andwe
compute the error between them. If these values are 𝑛 and

𝑝 respectively, then the error is (𝑝 −𝑛)/𝑛. Negative values
indicate that Parsimon produced an underestimate.

Since we have one error value per scenario, the errors give

rise to distributions of error associated with the original sam-

ple space. Nowwhat remains is to determine how the work-

load and topology parameters affect error distributions. To

start, recall from the discussion in §3.6 that the magnitude

of error is expected to be load-dependent, with higher errors

typically manifesting at higher loads, so we begin by exam-

ining the effect of the maximum load setting on Parsimon’s
accuracy.

Maximumload. Fig. 8 shows the error distributions binned

by maximum load. Among all scenarios, Parsimon’s p99 es-
timates are within 10% of ns-3’s estimates 85% of the time At

high load, we observe larger overestimates of up to 52% in

theworst case. In themost highly-loaded group of scenarios—

with maximum link loads between 56% and 83%—Parsimon
is within 10% of ns-3 62% of the time, with an average error

of about 11%. However, this includes scenarios where 10% of

the links have an average load of up to 68%, which is much

higher than what is reported in the literature. For example,

Roy et al. report that in Meta’s data center network, 99% of

host links are less than 10% loaded, and the top 5% of core

links have loads between 23% and 46% [28]. Among scenar-

ios where the maximum link load is between 26% and 41%,

Parsimon is within 10% of ns-3 100% of the time. If we further

include scenarios with maximum link loads between 41% and

56%, that number falls to 96%. Finally, while Parsimon’s tech-
niques tend to overestimate latencies, in 3% of the scenarios,

Parsimon underestimates p99 slowdown by up to 2%.

Other parameters. We next turn to the effects of all other

workload and topology parameters. We start by only consid-

ering scenarios where the maximum link load is less than or

equal to 50%; this will tell us whether any of the parameters

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 695

Matrix A Matrix B Matrix C
Matrix

0.0

0.1

CacheFollower WebServer Hadoop
Flow size distribution

1-to-1 2-to-1 4-to-1
Oversubscription

0.0

0.1

1.0 2.0
Burstiness (log-normal)

Er
ro

r o
f p

99
 F

CT
 sl

ow
do

wn

(a)Max load ≤ 50%

Matrix A Matrix B Matrix C
Matrix

0.0

0.2

0.4

0.6

CacheFollower WebServer Hadoop
Flow size distribution

1-to-1 2-to-1 4-to-1
Oversubscription

0.0

0.2

0.4

0.6

1.0 2.0
Burstiness (log-normal)

Er
ro

r o
f p

99
 F

CT
 sl

ow
do

wn

(b)Max load > 50%

Figure 9.Distributions of p99 error between Parsimon and ns-3, faceted by different workload and topology parameters. For each distribution

we show the median, the quartiles, and a rotated kernel density estimation. We consider the low-load regime (Fig. 9a) and the high-load

regime (Fig. 9b) separately. At low load, the workload and topology parameters only have a modest effect on Parsimon’s accuracy, but at high
load, the conditions leading to the largest errors come into view: high load, high oversubscription, with very short flows. Note the different

y-axes between the two load regimes.

Error Max load Matrix Sizes Oversub 𝜎

51.9% 77.6% A WebServer 4-to-1 1

30.1% 67.3% A WebServer 4-to-1 2

29.6% 67.0% A WebServer 4-to-1 2

25.6% 65.9% A WebServer 4-to-1 1

24.6% 73.2% B WebServer 4-to-1 1

Table 4. The five scenarios with the highest error values from the

sensitivity analysis in §5.3.

have a large effect on accuracy in the low-load regime. Fig. 9a

shows the median error and error distributions as a violin

plot for low-load scenarios grouped by traffic matrix, flow

size distribution, oversubscription, and burstiness. Overall,

changes to these parameters appear only to have a modest

effect. The choice of traffic matrix has the clearest trend, but

load is a confounder here: recall from Fig. 6c that different

traffic matrices yield different link load distributions for the

same maximum load setting.

When we look at the high load regime in Fig. 9b, a clear

picture comes into view. We see much longer tails in error

distributions for matrix A, theWebServer flow size distribu-

tion, and 4-to-1 oversubscription. Together with Fig. 9a, this

suggests that none of these settings has a strong effect on its

own, but coupled together in the high load regime, they have a
pronounced effect on Parsimon’s accuracy. Matrix A induces

higher average load and hasmore cross-rack traffic,making it

more likely for its flows to encounter multiple simultaneous

bottlenecks. The WebServer flow size distribution is domi-

nated by short flows (Fig. 6b), a third of which are smaller

than 1 KB and 80% of which are smaller than 10 KB. Because

more of the traffic completes within a single round trip, there

is more ephemeral congestion and bandwidth smoothing can

have a larger impact.

Finally, oversubscription has an effect at high load: if we

removed all scenarios with 4-to-1 oversubscription, the max-

imum error would only be 20% rather than 52%, even at high

load. In addition to the double counting of delays described in

§3.6, oversubscription can also increase correlations in link
delays. To achieve 4-to-1 oversubscription in topologies as

small as these, there are only four spine switches per plane

forwarding traffic between groups of 16 racks, leaving rel-

atively few paths through the core. Fewer paths can result

in higher degrees of correlation—especially with matrix A,

whose traffic is primarily inter-rack (Fig. 6a). Finally, this

setting combined with the short flows from theWebServer

distributions gives rise to errors of up to 52%.

Table 4 lists the scenarios with the top five highest error

values. Four have matrix A, all have theWebServer distribu-

tion, and all five have 4-to-1 oversubscription. In this group,

the average maximum load is 70.2%. Since we expect the

combination of all-to-all workload, heavily oversubscribed

topology, and persistently high core utilization to occur rela-

tively infrequently, the data suggest thatParsimonmaintains

good accuracy under common conditions.

MixedWorkloads. Wealso use the small topology to study

the Parsimon prediction error for subsets of traffic in hetero-

geneous workloads in Appendix §A.
5.4 Analysis of One Configuration

We pick one representative scenario to examine in more de-

tail, to test if our approach is robust to alternate definitions

of tail latency, congestion control protocol, workload, and

topology. To pick a scenario whose accuracy is somewhat

worse than the average case, we rank-order all scenarios by

error and select the one at the 85
th
percentile. This has matrix

A, the Hadoop flow size distribution, low burstiness, 2-to-1

oversubscription, and amaximum load of 68% (with a top 10%

average load of 56%).

696 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20
FCT slowdown

0.8

0.9

1.0

CD
F

Smaller than 10 KB

0 20
FCT slowdown

10 KB to 1 MB

0 20
FCT slowdown

Larger than 1 MB
ns-3 Parsimon Parsimon/C Parsimon/ns-3

Figure 10. CDFs of FCT slowdown estimated by ns-3 and

Parsimon for the scenario whose error is at the 85th percentile of
the p99 error distribution. Note the y-axis. Even though the accuracy

here is worse than in the common case, Parsimon’s estimates

remain close across most of the tail. Also shown is Parsimon/ns-3.

Protocol Max load Error in p99 FCT slowdown

< 10 KB 10 KB - 1 MB > 1MB

DCTCP 45% 1.4% 9.2% 15.9%

TIMELY 45% 4.0% 17.9% 13.7%

DCQCN 45% 5.9% 11.6% 12.8%

DCTCP 56% 2.8% 9.2% 14.6%

TIMELY 56% 8.1% 20.0% 11.3%

DCQCN 56% 7.6% 14.6% 12.2%

DCTCP 67% 13.8% 11.3% 13.6%

TIMELY 67% 13.3% 18.2% 5.0%

DCQCN 67% 18.0% 15.2% 13.6%

Table 5. Prediction error of Parsimon/ns-3 for estimated p99 FCT

slowdown with three different congestion control protocols for

the sample configuration at different load levels and for different

request sizes.

Tail distribution. Operators may differ in their definitions

of tail latency, e.g., focusing on the 90th or 99.9th percentile,

rather than just the 99th FCT slowdown. Fig. 10 shows the tail

of the cumulative distribution of FCT slowdown for different

flow sizes for the selected configuration, for ns-3 and each of

the Parsimon variants. The prediction error is similar across

the tail of thedistribution for this scenario,with little accuracy

difference between any of the variants.

Transport protocols. We use the sample scenario to test

the generality of Parsimon to two additional congestion con-
trol protocols, DCQCN [36] and TIMELY [19]. DCQCN is

designed for RDMA traffic, while TIMELY uses network de-

lay, rather than ECN signals, to detect congestion. To focus

on prediction error for our approximation methods, we use

the pre-existing ns-3 implementation of the protocols as the

Parsimon link level simulator for this part of the evaluation.

Note that Parsimon and Parsimon/ns-3 exhibit a few percent

difference in p99 error for DCTCP for this configuration. Be-

cause the prediction error for different congestion control

protocols may depend on the amount of congestion, we also

run the experiment at varying load levels.

Table 5 shows the prediction error for Parsimon/ns-3 rela-
tive to ns-3 in the estimated p99 FCT slowdown at three load

levels for the three transport protocols, aggregated by request

size. For this configuration, Parsimon is most accurate for

small flows and low to moderate maximum link utilization,

and that is true for all three congestion control protocols.

DCTCP has somewhat lower error for small and medium size

flows at low to moderate utilization. Relative error is higher

for larger transfers and highermaximum link utilization,with

no clear pattern in the error for different protocols.

Simulated link failures. We also use the sample configu-

ration to examine the prediction accuracy for topologies with

simulated link failures in Appendix §B.
6 Conclusion
In this paper, we propose and evaluate a newmethod for com-

puting a conservative estimate of flow-level tail latency for

large scale data center networks, given an arbitrary trafficma-

trix, topology, flow size distribution, and inter-arrival process.

Our approach decomposes the problem into a large number of

individual link simulations, specially constructed to produce

accurate estimates of the probability distribution of delay

contributed by congestion at each link.We thenmechanically

combine these link-level delay distributions to produce flow-

level estimates. On a large-scale network using a commercial

workload, our approach outperforms ns-3 by a factor of 492

on a single multicore server with a loss of accuracy of less

than 9% in the tail of the latency distribution.

Acknowledgments. We are grateful to Vincent Liu, Jeff

Mogul, our shepherdArpitGupta, and the anonymous review-

ers for their feedback and useful comments. This work was

supported inpartbyNSFgrantsCNS-2006346,CNS-2006827, a

CiscoResearchCenterAward, and aGoogle ResearchAward.

References
[1] A. G. Alcoz, A. Dietmüller, and L. Vanbever. SP-PIFO:

Approximating Push-In First-Out Behaviors using

Strict-Priority Queues. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 59–76, 2020.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,

P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.

Data Center TCP (DCTCP). In Proceedings of the ACM
SIGCOMM 2010 Conference, pages 63–74, 2010.

[3] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,

A. Vahdat, and M. Yasuda. Less Is More: Trading a Little

Bandwidth for Ultra-Low Latency in the Data Center.

In 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), pages 253–266, 2012.

[4] A. Andreyev. Introducing Data Center Fabric, the

Next-Generation Facebook Data Center Network.

https://engineering.fb.com/2014/11/14/production-
engineering/introducing-data-center-fabric-the-
next-generation-facebook-data-center-network/, 2014.

[5] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz.

The Effects of Asymmetry on TCP Performance. Mobile

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 697

https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/

Networks and Applications, 4(3):219–241, 1999.
[6] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios.

Open, Closed, and Mixed Networks of Queues with

Different Classes of Customers. Journal of the ACM
(JACM), 22(2):248–260, 1975.

[7] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and

J. Wilkes. Borg, omega, and kubernetes. ACM Queue,
14:70–93, 2016.

[8] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta,

B. Fahs, D. Rubinstein, E. C. Zermeno, E. Rubow, J. A.

Docauer, et al. Andromeda: Performance, Isolation, and

Velocity at Scale in Cloud Network Virtualization. In

15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 373–387, 2018.

[9] A.Demers, S.Keshav, andS. Shenker. Analysis andSimu-

lationof a FairQueueingAlgorithm. InProceedings of the
ACM SIGCOMM 1989 Conference, pages 514–528, 2020.

[10] R. M. Fujimoto. Parallel Discrete Event Simulation.

Communications of the ACM, 33(10):30–53, 1990.

[11] P. Goyal, P. Shah, K. Zhao, G. Nikolaidis, M. Alizadeh,

and T. E. Anderson. Backpressure Flow Control. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 779–805, 2022.

[12] J. R. Jackson. Networks of Waiting Lines. Operations
Research, 5(4):518–521, 1957.

[13] F. P. Kelly. Networks of Queues. Advances in Applied
Probability, 8(2):416–432, 1976.

[14] G. Kumar, N. Dukkipati, K. Jang, H. M.Wassel, X. Wu,

B.Montazeri, Y.Wang,K. Springborn,C.Alfeld,M.Ryan,

et al. Swift: Delay is Simple and Effective for Congestion

Control in the Datacenter. In Proceedings of the ACM
SIGCOMM 2020 Conference, pages 514–528, 2020.

[15] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble. Tales

of the tail: Hardware, os, and application-level sources

of tail latency. In Proceedings of the ACM Symposium
on Cloud Computing, SOCC ’14, page 1–14, 2014.

[16] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang,

Z.Cao,M.Zhang, F.Kelly,M.Alizadeh, andM.Yu. HPCC:

High Precision Congestion Control. In Proceedings of
the ACM SIGCOMM 2019 Conference, page 44–58, 2019.

[17] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson.

F10: A Fault-Tolerant Engineered Network. In 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pages 399–412, 2013.

[18] V. Misra, W.-B. Gong, and D. Towsley. Fluid-Based

Analysis of a Network of AQMRouters Supporting TCP

Flows with an Application to RED. In Proceedings of the
ACM SIGCOMM 2000 Conference, pages 151–160, 2000.

[19] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel,

M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and

D. Zats. TIMELY: RTT-Based Congestion Control for

the Datacenter. In Proceedings of the ACM SIGCOMM
2015 Conference, page 537–550, 2015.

[20] J. C. Mogul and J. Wilkes. Nines are Not Enough: Mean-

ingfulMetrics forClouds. In Proceedings of theWorkshop
on Hot Topics in Operating Systems, pages 136–141, 2019.

[21] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.

Homa: A Receiver-Driven Low-Latency Transport

Protocol Using Network Priorities. In Proceedings of the
ACM SIGCOMM 2018 Conference, pages 221–235, 2018.

[22] D. Nicol and R. Fujimoto. Parallel Simulation Today.

Annals of Operations Research, 53(1):249–285, 1994.
[23] ns-3 Network Simulator. https://www.nsnam.org, 2020.
[24] OpenSim. OMNeT++. https://www.omnetpp.org, 2018.
[25] OPNET Network Simulator, 2015.

[26] V. Paxson and S. Floyd. WhyWe Don’t Know How to

Simulate the Internet. In Proceedings of the 1997Winter
Simulation Conference, pages 1037–1044, 1997.

[27] K. Ramakrishnan and S. Floyd. A Proposal to Add

Explicit Congestion Notification (ECN) to IP. Technical

report, RFC 2481, January, 1999.

[28] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.

Inside the Social Network’s (Datacenter) Network. In

Proceedings of the ACM SIGCOMM 2015 Conference,
pages 123–137, 2015.

[29] A. Singh, J. Ong,A.Agarwal, G.Anderson,A.Armistead,

R. Bannon, S. Boving, G. Desai, B. Felderman, P. Ger-

mano, A. Kanagala, J. Provost, J. Simmons, E. Tanda,

J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat. Jupiter

Rising: A Decade of Clos Topologies and Centralized

Control in Google’s Datacenter Network. In Proceedings
of the ACM SIGCOMM 2015 Conference, page 183–197,
2015.

[30] B. K. Szymanski, A. Saifee, A. Sastry, Y. Liu, and

K. Madnani. Genesis: A System for Large-scale Parallel

NetworkSimulation. InProceedings of the 16thWorkshop
on Parallel and Distributed Simulation (PADS), 2002.

[31] R. Winter, R. Hernandez, G. Chawla, A. Faustini, C. Sol-

der, T. Scheibe, D. Law, S. Ayandeh, B. Booth, B. Kohl,

C. Lavacchia, S. Krishnamurthy, R. Karthikeyan, E. Mul-

tanen, andM.Wadekar. Ethernet Jumbo Frames. http:
//www.ethernetalliance.org/wp-content/uploads/
2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf, 2009.

[32] Q. Yang, X. Peng, L. Chen, L. Liu, J. Zhang, H. Xu, B. Li,

and G. Zhang. DeepQueueNet: Towards Scalable and

Generalized Network Performance Estimation with

Packet-Level Visibility. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 441–457, 2022.

[33] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy. High-

ResolutionMeasurement ofDataCenterMicrobursts. In

Proceedings of the 2017 Internet Measurement Conference,
pages 78–85, 11 2017.

[34] Q. Zhang, K. K. Ng, C. Kazer, S. Yan, J. Sedoc, and V. Liu.

MimicNet: Fast Performance Estimates for Data Center

Networks with Machine Learning. In Proceedings of the
ACM SIGCOMM 2021 Conference, pages 287–304, 2021.

698 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.nsnam.org
https://www.omnetpp.org
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf

Name Matrix Sizes Max load 𝜎

W0 A CacheFollower ~20% 2

W1 B WebServer ~20% 2

W2 C Hadoop ~20% 2

Table 6. The three workloads mixed together in §A.

[35] S. Zhao, R. Wang, J. Zhou, J. Ong, J. C. Mogul, and

A. Vahdat. Minimal Rewiring: Efficient Live Expansion

for Clos Data Center Networks. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 221–234, 2019.

[36] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,

Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and

M. Zhang. Congestion Control for Large-Scale RDMA

Deployments. In Proceedings of the ACM SIGCOMM
2015 Conference, page 523–536, 2015.

A MixedWorkloads
Parsimon’s methods are designed to estimate performance

distributions rather thanper-flowmetrics.However, it is often

useful to aggregate FCT performance estimates in different

ways. For example, an operator may wish to estimate the

performance of individual virtual networks or individual ser-

vices. In this section,weconduct a simple experiment to assess

Parsimon’s ability to estimate performance for separate ag-

gregates.

We start bymixing three differentworkloads—eachwith its

own traffic matrix and flow size distribution—into one work-

load. Table 6 summarizes their differences. Eachworkload has

a maximum load setting of 20% and a high burstiness setting

(𝜎 =2), and their combination results in a maximum link load

of about 50%. We run the combined workload on the small-

scale topology with 2-to-1 oversubscription from §5.3, and
we observe the accuracy for each workload faceted by flow

size. Fig. 11 shows the cumulative distribution function (CDF)

of FCT slowdown for ns-3 and Parsimon. We observe that

across all workloads and flow size bins, Parsimonmaintains

good accuracy.

B Link Failures
One operational use case for Parsimon is to estimate counter-

factual network performance in the presence of potential

link failures or planned outages. In this section, we use the

sample scenario from §5.4 (matrix A, the Hadoop flow size

distribution, low burstiness, 2-to-1 oversubscription, and a

maximum link load of 68%) to evaluate Parsimon for this

use case. For this configuration, the error in estimated p99

FCT slowdown between ns-3 and Parsimonwas around 10%.
Since link failures increase the load on the remaining links,

we should expect some decreased accuracy for Parsimon in
this case. On the other hand, simulating all possible network

failures in ns-3 would be prohibitively expensive.

0.8

0.9

1.0

CD
F

W0 | Smaller than 10 KB W0 | 10 KB to 1 MB W0 | Larger than 1 MB

0.8

0.9

1.0

CD
F

W1 | Smaller than 10 KB W1 | 10 KB to 1 MB W1 | Larger than 1 MB

0 10 20
FCT slowdown

0.8

0.9

1.0

CD
F

W2 | Smaller than 10 KB

0 10 20
FCT slowdown

W2 | 10 KB to 1 MB

0 10 20
FCT slowdown

W2 | Larger than 1 MB

ns-3 Parsimon

Figure 11. CDFs of FCT slowdown for ns-3 and Parsimon,
bucketed by workload and flow size. Note the y-axes. When mixing

workloads in a single simulation, Parsimon can accurately estimate

performance distributions for individual workloads in addition to

full-network aggregates.

0.10

0.12

0.14

0.16

Er
ro

r o
f p

99
 F

CT
 sl

ow
do

wn

(a) p99 errors

0 10 20 30
FCT slowdown

0.80

0.85

0.90

0.95

1.00

CD
F

ns-3
Parsimon

(b) CDF with the max p99 error (0.144)

Figure 12. Errors between ns-3 and Parsimon in estimated FCT

slowdowns when there is a link failure. Fig. 12a shows the error

distribution for p99 estimates from ten trials—eachwith one random

link failure—with the dashed line showing the error with no link

failure. Fig. 12b shows the CDF of FCT slowdowns for the trial with

the highest p99 error. For the small oversubscribed topology used in

this experiment, a link failure modestly increases estimation error.

In selecting links to fail, we only consider links in ECMP

groupings, such that the failure of one link causes traffic to be

routed to the other links in the group. In Meta’s data center

fabric [4], this corresponds to links between fabric switches

and spine switches and links betweenToR switches and fabric

switches. In the small 32-rack topology used here (§5.3 for
details), there are 96 such links. We run ten trials, each time

picking a randomoneof the links to fail, keeping theworkload

constant. We note that this setting represents a particularly

bad case for Parsimon: in addition to the high link loads, the
scenario uses an all-to-all communication pattern on a small

and oversubscribed topology, which means each link failure

in the core can have an outsized effect on other core links.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 699

0

1

2

3

4

5

6

Figure 13. The parking lot topology used in §C. In this topology,
zero sends to six, one sends to two, three sends to four, and five

sends to six. We refer to the traffic from zero to six asmain traffic
and to all other traffic as cross traffic. The bolded red links contain
both main traffic and cross traffic, and we call them congested links.

1.0 1.5 2.0 2.5
FCT slowdown

0.0

0.5

1.0

CD
F

With cross traffic

1.0 1.1 1.2 1.3
FCT slowdown

Without cross traffic
ns-3 Parsimon

Figure14.CDFsof FCTslowdownestimatedbyns-3 andParsimon
for themain traffic, bothwith andwithout cross traffic.When there is

cross traffic, errors arising from first-hop delays are second-order, as

most delays are cause by queueing on the congested links. However,

when there is no cross traffic, those errors become dominant. The

graph on the right uses the same workload as the one on the left,

except the cross traffic is removed. Note the different x-axes.

Fig. 12a shows the distribution of errors in p99 estimates.

With a single link failure, the errors range from 11% to 14%,

with amedian error of 12%. Fig. 12b shows the estimatedCDFs

of FCT slowdown for the trial with the highest error.

C Studying Error Sources
Recall from §3.6 that Parsimon’s approximations induce er-

rors in its end-to-end estimates. In this appendix, we use

microbenchmarks to study the effects of some pathological

cases on Parsimon’s accuracy. For an initial discussion on

these topics, please refer to §3.6.
Throughout, we use the parking lot topology shown in

Fig. 13 with 40 Gbps links. The flow of traffic through the

topology is shown with arrows and described in the caption.

We refer to the traffic fromnode zero tonode six asmain traffic
and to all other traffic as cross traffic. The bolded red links

contain both main traffic and cross traffic, and we call them

congested links. In all experiments, we set the load of the main

traffic to 25%.When there is cross traffic, its load is also 25%,

yielding a total load of 50% on all three congested links. Lastly,

to isolate the effects on the main path from zero to six, we

measure FCT slowdowndistributions only for themain traffic.

C.1 First-Hop Delays

First, consider the case where all traffic in Fig. 13 originates

from node zero and is destined to node six, and recall that

all links have the same capacity. In a real network, all queue-

ing in this scenario would occur at the first hop. Subsequent

hops would see traffic completely smoothed, and they would

therefore contributing zero queueing delay.

If we re-examine how link-level topologies are constructed

in Fig. 4,we see that this smoothing effect is captured, since all

trafficpasses throughedge linkswith theoriginal edge-linkca-

pacities. However, for the link-level topologies in cases B and

C of Fig. 4, it is possible for first-hop edge links to contribute

delays thatwill be (erroniously) attributed to the target link. In

most cases,weexpect themagnitudeof this error tobe small.A

target linkwill almost always havemultiple sources, and only

the traffic passing through the target link is simulated. Con-

sequently, the first-hop delays in link-level simulation are ex-

pected to be small compared to delays accrued at target links.

The scenario which we first described—in which all traf-

fic on a path originates from a single source—represents the

worst case. Here, all target links (aside from the first hop) con-

tribute no queueing delay, thus magnifying the error induced

by repeatedly counting the first-hop delays for each target

link. Fig. 14 shows this effect. In this experiment, the main

traffic consists of one kilobyte flows, and the cross traffic con-

sists of 10 kilobyte flows. All traffic follows a Poisson arrival

process. With cross traffic, we see from the graph on the left

that Parsimon accurately estimates the FCT slowdown dis-

tribution of the main traffic. However, when we remove the

cross traffic, as done to produce the graph on the right, we see

substantial error in Parsimon’s estimates due to the first-hop

delayspreviouslydescribed.Wenote that this error exists even
when there is cross traffic, but the error contributes so little to
total delays—which are dominated by queueing at congested

links—that Parsimon still maintains good accuracy.

C.2 Correlated and Simultaneous Delays

Next we examine the effect of correlated and simultaneous

delays on Parsimon’s accuracy.We begin by artificially corre-

latingdelays and examining the effect on estimated slowdown

distributions.Note that if thedelays alongapatharepositively

correlated—for example, if the probability of encountering

delay at hop 𝑖+1 is higher given there is delay at hop 𝑖—then
we also expect to see more simultaneous delays along the

path. We create these correlated delays by modulating the

cross traffic. For regular unmodified cross traffic, we use the

same setup as in the previous subsection (§C.1). To artificially
correlate delays,we replicate the exact sequence of flows from

source one on sources three and five in Fig. 13, so that all three

sources of cross traffic send the same flows at the same time.

This produces an extreme case of correlation.

Because short-flow and long-flow estimates have different

sources of error, we separate the two cases when generating

the main traffic. For short flows we use the same one kilobyte

flows as before, and for long flows we generate flows that

are 10 times the maximum bandwidth-delay product, or 400

700 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1.0 1.5 2.0 2.5
FCT slowdown

0.0

0.5

1.0

CD
F

Regular cross traffic

1.0 1.5 2.0 2.5 3.0
FCT slowdown

Identical cross traffic
ns-3 Parsimon

(a) Short flows (1 KB), Poisson cross traffic

5 10
FCT slowdown

0.0

0.5

1.0

CD
F

Regular cross traffic

5 10 15
FCT slowdown

Identical cross traffic
ns-3 Parsimon

(b) Long flows (400 KB), Poisson cross traffic

Figure 15. CDFs of FCT slowdown estimated by ns-3 and

Parsimon for the main traffic with regular or identical cross traffic.

The main traffic consists either of short flows (Fig. 15a) or long

flows (Fig. 15b). When delays are artifically correlated by replicating

the same cross traffic across hosts, accuracy decreases for both

short and long flows, with long flows seeing larger errors. In fact,

long-flow estimates have significant error even when delays are not

explicitly correlated; this is due to the simultaneous delays induced

by the smooth Poisson cross traffic.

5 10 15 20
FCT slowdown

0.0

0.5

1.0

CD
F

Regular cross traffic

0 5 10 15 20
FCT slowdown

Identical cross traffic
ns-3 Parsimon

Figure 16. CDFs of FCT slowdown for the same scenario as in

Fig. 15b, but with bursty cross traffic (log-normal inter-arrival times,

𝜎 =2). When the cross traffic is bursty, long flows experience fewer

simultaneous delays with regular cross traffic. This results in less

error in Parsimon’s estimates.

kilobytes. Fig. 15 shows the effect of correlating delays on

Parsimon’s accuracy for short and long flows.

Short-flowmaintraffic. In the caseof shortflows (Fig. 15a),

a chief effect of increased correlation is to alter the probability

that a flow will encounter queueing. For example, suppose

a short flow traverses only two links at 50% utilization. If

the delays of the two links are independent, we can estimate

the probability that the flow encounters no delay (i.e., no

queueing) as 50% × 50% = 25%. However, if the delays are

perfectly positively correlated, then the probability that the

flowencounters no delay increases to 50%. Parsimon does not
capture this effect because it treats all links independently;

in this experiment, this manifests as slight overestimates in

FCT slowdown distributions.

Long-flowmain traffic. While the total delay for a short

flow can be thought of as the sum of individual link delays,

the same reasoning does not straightforwardly extend to long

flows. Unlike a short flow, a long flow occupies multiple hops

at the same time, and only the bottleneck at each instant con-

tributes to end-to-end delay. Summing link delays is therefore

onlyappropriate if differenthops contribute significantdelays

at largely different times. However, Parsimon always aggre-
gates individual link contributions by adding them, regardless

of whether a link was the bottleneck when the delay was in-

curred.Whenwe turnour attention to Fig. 15b,we see that not

only is the effect of identical cross trafficmore severe, but also

there is significant error evenwith regular cross traffic. This is

because the cross traffic is smooth (recall that it uses uniform

flowsizes andaPoissonarrival process). Smooth traffic results

in small but frequent delays at congested links, increasing the

chance that long flows will experience simultaneous delays.

In Fig. 16, we duplicate the scenario in Fig. 15b, except we

make the cross traffic bursty by using a log-normal inter-

arrival time distribution with shape parameter 𝜎 =2. Because

the cross traffic is bursty, there is less simultaneous delay

in the regular case, and the induced error is less dominant.

Consequently, Parsimon’s estimates are closer to the ground

truth in the graph on the left. Identical cross traffic still in-

duces large and frequent simultaneous delays, so the errors

remain in the graph on the right.

D Clustering Details
Here we briefly describe the distance function and the thresh-

olding critera we use in the evaluation (§5) for clustering link-
level simulations. First, recall from §4.2 that the link features
we extract are 1) the average load, 2) the flow size distribution,

3) the inter-arrival time distribution. For any two links, we

compute distances between their features, and we cluster the

links together if the distances are under some threshold.

Distance functions. To compute a distance between link

loads, we compute the error. If𝑎 and𝑏 are two link loads, error

𝑒 is computed as

𝑒 =
|𝑎−𝑏 |
𝑎

.

To compare distributions, there are many options. We opt for

a function that is 1) easily interpretable, 2) scale-independent,

and 3) adequately captures differences in the tail. To com-

pute a distance between two distributions, we extract 1,000

percentiles from each of them, and we compute a weighted

mean absolute percentage error (WMAPE) between them.

Suppose𝐴 and 𝐵 are the sequences of extracted percentiles.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 701

Then, WMAPE is computed as

WMAPE =

∑𝑛
𝑖=1 |𝐴𝑖−𝐵𝑖 |∑𝑛

𝑖=1 |𝐴𝑖 |
.

For our purpose,𝐴𝑖 and 𝐵𝑖 are non-negative for all 𝑖 . We note

it is a bit counterintuitive for our distance functions not to

commute. However, we have found that it is easy to set thresh-

olds for these metrics, and they produce adequate clustering

for the workloads under study.

Distance thresholds. Recall that we only want to cluster

two links together if we expect their simulation outputs to be

similar. Consequently, when setting a threshold for link loads

we must consider the network and the workload being as-

sessed. At high load, small differences in link loads can yield

large differences in the tails of FCT distributions; in these

cases, we typically set tighter thresholds to preserve accuracy

(as usual, this is subject to a speed-accuracy trade-off). For

highly-loaded networks, we commonly require 𝑒 <0.001 or

𝑒 <0.002 for links to be clustered together. Ideally, this deci-

sion would be made on a link-by-link basis, so that tighter

thresholds would be set only for high-load links—doing so

may allow for more liberal clustering of the low-load links

contributing little delay, resulting in more pruned simula-

tions. However, the current prototype sets a single threshold

per simulation. To set a threshold between distributions, we

typically requireWMAPE<0.1.

702 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Shockwave: Fair and Efficient Cluster Scheduling for Dynamic Adaptation in
Machine Learning

Pengfei Zheng1, Rui Pan1, Tarannum Khan2, Shivaram Venkataraman1 and Aditya Akella2

1University of Wisconsin-Madison, 2The University of Texas at Austin

Abstract
Dynamic adaptation has become an essential technique in
accelerating distributed machine learning (ML) training. Re-
cent studies have shown that dynamically adjusting model
structure (e.g., lottery ticket hypothesis [16]) or hyperparame-
ters (e.g., batch size [1]) can significantly accelerate training
without sacrificing accuracy. However, existing ML cluster
schedulers are not designed to handle dynamic adaptation.
We show that existing schemes fail to provide fairness and de-
grade system efficiency when the training throughput changes
over time under dynamic adaptation. We design Shockwave,
a scheduler with future planning that builds on two key ideas.
First, Shockwave extends classic market theory from static
settings to dynamic settings to co-optimize efficiency and
fairness. Second, Shockwave utilizes stochastic dynamic pro-
gramming to handle dynamic changes. We build a system
for Shockwave and validate its performance with both trace-
driven simulation and cluster experiments. Results show that
for traces of ML jobs with dynamic adaptation, Shockwave im-
proves makespan by 1.3× and fairness by 2× when compared
with existing fair scheduling schemes.

1 Introduction
GPU-powered deep neural network (DNN) training is rapidly
becoming a core workload in data centers [25, 28, 29]. Due to
the sheer volume of training data and massive, ever-increasing
model sizes, many DNN models cannot be trained on a single
GPU device, and distributed, multi-GPU training has become
the norm. The increasing demand for GPU devices motivates
enterprises to consolidate their hardware resources and run
their workloads in a shared GPU cluster [25]. Thus, building
scheduling mechanisms that can fairly arbitrate among jobs
competing for GPU resources and efficiently schedule them
for high cluster utilization is important.

While there has been a plethora of work in designing sched-
ulers for DNN workloads, they do not use a rigorous ap-
proach to co-optimize system efficiency and fairness. Systems
like Gandiva [41] and Tiresias [21] optimize makespan and
average JCT (Job Completion Time) with techniques such

as dynamic scaling, time-slicing, and over-subscription, but
do not consider fairness. Processor sharing [40] based ap-
proaches such as DRF [17] and Gavel (Weighted Max-Min
Fairness) [33] provide instantaneous fair share of (dominant)
resources in each scheduling round, but this can significantly
undermine efficiency [20, 35]. Stride [39] scheduling-based
approaches such as Gandiva-Fair [10] require cluster opera-
tors to explicitly specify an individual job’s share (e.g., A 20%
and B 80% of GPUs), and manually specified fixed shares
can violate long-term fairness for ML jobs [29]. Finally, Al-
loX [28] and Themis [29] aim to provide long-term fairness
by adopting a filter-based approach where within each round,
a subset of jobs that are furthest from the fair share are filtered,
and among the filtered jobs the ones which maximize effi-
ciency are chosen by the scheduler. However, the filter value
requires onerous hand-tuning; furthermore, even with careful
tuning, using a fixed filter can lead to sub-optimal efficiency
and fairness (§2).

We design Shockwave, a scheduler that leverages market
theory to jointly optimize efficiency and fairness for ML train-
ing jobs in a systematic and principled fashion. We formulate
a Fisher market [5] where every job receives an equal budget
to purchase resources from a central arbiter. The arbiter then
computes prices such that the market reaches an equilibrium;
i.e., each job’s budget is spent to maximize its performance
(e.g., training throughput) and all resources are completely
sold. Formulating resource allocation using market theory
is powerful because achieving market equilibrium guaran-
tees both fairness and efficiency. Each job has equal purchas-
ing power in acquiring resources, ensuring fairness. Further,
market-clearing equilibrium ensures work conservation and
that each job’s performance is maximized given its budget.

While economic theory has been the basis of many prior
systems (e.g., DRF [17], Themis [29], and REF [43]), they
all assume jobs have known static resource requests. This
assumption is no longer true for elastic ML training jobs [24,
30,36] whose resource requirements dynamically change over
time; further, the changes in resource requirements depend
on model update patterns, and thus they are unknown apriori.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 703

For example, training jobs can dynamically scale their batch
size by computing the gradient noise scale (GNS) [30, 31].
OpenAI has used batch size scaling (from 32 to 32M) to
accelerate GPT-3 training by 500x [7] and similarly, BERT-
Large training uses dynamic batch sizes (256 to 4096) to
achieve a 2.5x speedup [37]. In this paper, we extend market
theory to develop an efficient and fair scheduler for ML jobs
with elastic resource requirements.

Existing schedulers are either agnostic or reactive to dy-
namic changes and our experiments show (§3) that they fail
to guarantee fairness or significantly degrade efficiency. The
key reason for this is that an optimal schedule or weight as-
signment [10] at the current instant can be suboptimal in the
future, and reactively re-prioritizing jobs can be too late to
compensate for the under-prioritization in the early phases.
State-of-the-art schedulers that accommodate dynamism, e.g.,
Pollux [36] do so automatically on behalf of jobs, e.g., by
automatically scaling batch sizes. We find that this can hurt
training accuracy [1, 11] (§2.3); thus, our aim is to let users
perform elastic changes as their algorithms demand. Achiev-
ing fair allocation under dynamism without assuming any
control over said dynamism is challenging, and is not studied
in existing research. We present a detailed comparison be-
tween Shockwave and other schedulers such as Themis [29],
AFS [24] and Pollux [36] in Section 2.

To support dynamic changes in resource requirements over
time, we extend the classic, static Fisher market and propose
a new discrete-time, dynamic market that can ensure long-
term efficiency and fairness. Using discrete time helps us
capture the effects of running a market repeatedly over many
rounds and a dynamic market helps us capture time-varying
utility1 for jobs. For example, consider a scenario where we
are running 20 rounds of scheduling for a job. If a job’s per-
GPU batch size increases by 2× after 10 rounds due to GNS
scaling, its utility from being allocated one GPU (𝑢0) will also
double after 10 rounds (𝑢1 = 2𝑢0). A static market will assume
time-invariant utility, and will compute the accrued utility over
20 rounds for the job as 20𝑢0; in contrast, a dynamic market
can capture the change in utility for the job over time, and can
accurately compute the accrued utility over 20 epochs as 30𝑢0.
Accurately computing the utility can enable the dynamic
market to optimize fairness and efficiency over time. We prove
that our dynamic market formulation (§4.2) guarantees long-
term efficiency and fairness properties such as maximized
Nash social welfare over time, Pareto optimality over time,
and sharing incentive.

Implementing the dynamic market formulation in real sys-
tems is challenging for two main reasons. First, the market for-
mulation needs to know utility values in the future to compute
market equilibrium. Dynamic adaptations in jobs are non-
deterministically triggered, as they are dependent on gradient
values that vary across models and datasets, which makes

1A utility function maps a job’s allocated resource (e.g., GPU) to the
resulting performance (e.g., throughput).

it challenging to predict utility in the future. Second, solv-
ing the dynamic market equilibrium for an (infinitely) long
time horizon is difficult and impractical. It is computation-
ally prohibitive and requires forecasting every job’s future
performance characteristics. Further, as jobs arrive and com-
plete online, we need to periodically solve for the market
equilibrium while maintaining low scheduling overheads.

To bridge the gap between theory and systems, Shockwave
addresses these challenges and implements a dynamic adap-
tation predictor and an approximate dynamic market. First,
we observe that dynamic adaptation for real-world ML work-
loads follows a handful of patterns, and these patterns can be
predicted using Bayesian statistics. We then develop methods
to integrate these predictions into our dynamic market for-
mulation. Second, while performing round-based scheduling,
we find that planning a schedule for an (infinitely) long time
horizon can introduce significant overheads. To maintain low
scheduling overheads, Shockwave only plans the schedule for
a finite length window (e.g, 30-60 minutes), and we design
estimators that can capture the effects on long-term fairness
and long-term efficiency that arise from short-term planning.
This design helps us balance the system overheads without
sacrificing long-term objectives.

We evaluate Shockwave on a 32-GPU cluster testbed and
use a simulator to study large-scale GPU clusters. Using multi-
ple workloads derived from prior, real-world systems [33,36],
we find that Shockwave improves makespan by 1.3× and
fairness by 2× compared to existing fair DNN cluster sched-
ulers including Themis [29], Gavel [33], AlloX [28], etc. We
further evaluate Shockwave on differently sized clusters. Us-
ing a simulator built with the same scheduler as in a phys-
ical cluster we find that Shockwave scales to schedule 900
active DNN training jobs on 256 GPUs and maintains the
benefits in makespan (1.26-1.37×) and fairness (2.5-3.1×)
when compared to existing schedulers. We show that our
solver overhead remains low and is less than 12.5% of a two-
minute-long round duration.2 Shockwave is open sourced at
https://github.com/uw-mad-dash/shockwave.

2 Motivation
We begin by motivating the need to design a new cluster
scheduler for machine learning workloads.

Filter 𝑓 Worst FTF-𝜌 SI Avg. JCT Makespan
Adaptive - 1/ 1

3 / 2
3 0.83 ✓ 5 7

Fixed - 1/3 1.0 ✓ 5.7 7
Fixed - 2/3 1.1 × 5.7 7
Fixed - 1 1.1 × 6.0 7

Table 1: Themis example: using a fixed filter yields subop-
timal JCT and/or fairness compared with an adaptive filter.
Figure 1 visualizes the schedule for 𝑓 = 2/3, showing the
cluster and job setting, and demonstrates how a filter works.

2The solver runs asynchronously in a separate thread and does not block
the main scheduling loop.

704 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/uw-mad-dash/shockwave

GPU ID \ round ID 0 1 2 3 4 5 6
0 A B A A B A A
1 A B A A B A A
2 B C C B C A A
3 B C C B C
f 2/3 2/3 2/3 2/3 2/3 2/3 2/3

Cluster setting: 4 GPUs. Jobs: A, B, C are three DNN training jobs with one iteration.
Serial (1-GPU) iteration times for A, B, and C are 12, 8, and 6.

The number of requested GPUs per iteration for A, B, and C are 3, 2, and 2.

Figure 1: Example - Themis [29] with a static filter (𝑓 = 2/3).
In each round of allocation, the filter (grey color) selects 2/3
of the jobs unfairly treated so far. The resulting FTF-𝜌 values
for jobs (A, B, C) are (0.78, 0.83, 1.1), showing a static filter
hurts fairness. As in Themis, we assume a linear slowdown
when the number of allocated GPUs is less than requested.

2.1 Jointly Optimizing Fairness and Efficiency

Existing scheduling mechanisms lack a systematic approach
to jointly optimize fairness and efficiency. We first formally
define a fairness metric: we adopt the definition of fairness
used in recent work such as Themis [29], Gavel [33], and
Pollux [36]: Finish Time Fairness (FTF) 𝜌(𝐺) = 𝑡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒

𝑡𝑒𝑔𝑎𝑙𝑖𝑡𝑎𝑟𝑖𝑎𝑛
;

where 𝑡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 represents the job finish time resulting from
a policy 𝐺, and 𝑡𝑒𝑔𝑎𝑙𝑖𝑡𝑎𝑟𝑖𝑎𝑛 is 𝑡𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 ·𝑁; 𝑁 indicates the
number of contending jobs, 𝑡𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 indicates run time when
running exclusively with requested resources. FTF 𝜌 > 1
(𝜌 <= 1) indicates that a job is unfairly (fairly) scheduled.
Note that while we focus on FTF, Shockwave’s underlying
market formulation can be extended to support other fairness
metrics. For example, by assigning different budgets to jobs
we can support weighted proportional fairness [27] with the
budgets encoding priorities.

Second, we define a policy as efficient if it minimizes
makespan, or correspondingly, maximizes cluster utilization
given a sequence of jobs.
Instantaneous fair-share sacrifices efficiency. Existing fair
sharing policies, such as Processor-Sharing (PS) [40] and its
multi-dimensional extension, Dominant Resource Fairness
(DRF) [17], guarantee that at each instant, any job in the sched-
ule obtains exactly a 1/𝑁 share of the (dominant) resources.
However, restricting schedulers to instantaneous fair share
can adversely degrade long-term efficiency. Previous work
in Altruistic Scheduling (AS) [20] has shown that sacrificing
instantaneous fair share and letting some jobs altruistically
contribute resources can improve efficiency by 26% [20].
Using filters to balance fairness and efficiency is sub-
optimal. Given the limitations of instantaneous fair sharing
schemes, recent work [28,29] has proposed using round-based
schemes that optimize instantaneous efficiency and long-term
fairness. Within each round of scheduling, AlloX [28] and
Themis [29] select for allocation a fixed fraction (𝑓) of jobs
that have attained the least resource share in the past. Within
these filtered jobs, the scheduler tries to maximize efficiency.
Across rounds, the filter compensates for jobs unfairly sched-
uled in the past and thus pursues fairness in the long run.

Existing studies pre-specify a fixed value for filter 𝑓 across

rounds, but we find that adopting a fixed filter can incur a
loss in average JCT or makespan [29], and filter tuning is
challenging. Table 1 uses a simple example with three jobs
to show how different filters yield very different performance
outcomes: fixed filter values 𝑓 = 1 and 𝑓 = 2

3 violate finish
time fairness (𝜌 > 1) while 𝑓 = 1/3 leads to worse JCT. We
included the full toy examples in Appendix B. Tuning the
hand-crafted fairness filter is challenging without any insight
into the resulting performance outcomes, and it is more diffi-
cult when the workload varies.

Overall, this argues for a rigorous, systematic approach that
jointly and intrinsically (i.e., without knob-tuning) optimizes
efficiency and fairness in resource sharing.

2.2 Handling Dynamic Batch Size Scaling

The above goal of optimizing for fairness and efficiency is
made further challenging in the presence of dynamism. Dy-
namism can result in a number of different scenarios. For
example, dynamism can result from job arrivals leading to
time-variant cluster contention, and systems like AFS [24]
are designed to improve JCT by adjusting shares based on job
arrivals. On the other hand, dynamism can arise from training
jobs that can change their training configurations dynamically.
For example, if a job uses gradient noise scale (GNS) [30,31],
the batch size used can change dynamically. This can affect
fair scheduling because when a job switches to using a large
batch size, the per epoch time will decrease, and thereby its re-
maining running time will also decrease (Figure 2(a)). Unlike
prior systems which only handle dynamism that arise from
job arrivals, Shockwave (and prior work in Pollux [36]) focus
on handling dynamic changes in batch sizes of training jobs.
Being agnostic or reactive to dynamic adaptation breaks
finish time fairness. We show that being agnostic or reactive
to dynamic changes (or dynamic adaption) can yield severe
unfairness. Finish time fairness (FTF) implies a soft dead-
line 𝑡𝑒𝑔𝑎𝑙𝑖𝑡𝑎𝑟𝑖𝑎𝑛 = 𝑡𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 ·𝑁 for job completion; the later
the job finishes after the deadline, the more unfair the sched-
ule is. Computing FTF requires computing the exclusive run
time (i.e.,𝑡𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒), which is straightforward for static jobs
since run time roughly equals training throughput (samples
per second) times the remaining amount of work (remain-
ing number of epochs). However, for jobs that use dynamic
adaptation, future training epochs could be significantly faster
because of using a larger batch size. Agnostic scheduling and
reactive scheduling are both unaware of future speedups and
hence overestimate run time, and thus mistakenly extend the
deadline 𝑡𝑒𝑔𝑎𝑙𝑖𝑡𝑎𝑟𝑖𝑎𝑛 leading to significant unfairness.

Figure 2b uses a job from our trace to show the difference
between Themis, which uses a reactive approach, and Shock-
wave, which uses a proactive approach. The job dynamically
doubles batch size three times from 32 to 256, and gradually
boosts training speed by up to 1.7× (Figure 2a). Themis is
notified and updates the job’s throughput immediately after
each batch size scaling, and recomputes the estimated finish

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 705

(a) Dynamic Adaptation
(b) 𝑇𝑒𝑔𝑎𝑙𝑖𝑡𝑎𝑟𝑖𝑎𝑛 - Interpolated finish time
under 1/𝑁 cluster share (c) GPU Allocation

Figure 2: Example - Reactive scheduling (Themis [29]) for dynamic adaptation breaks finish time fairness. Proactive scheduling
(Shockwave) for dynamic adaptation preserves finish time fairness.

Figure 3: Comparing model accuracy (ResNet18-CIFAR-10)
for vanilla training, expert-set batch size scaling, and Pollux
autoscaling. The legends in the bottom figure indicate batch
size.

time based on that (red dashed line in Figure 2b). Changes in
the estimated finish time lead Themis to detect that the job
has received less than its fair share and Themis attempts to
prioritize this job in future scheduling rounds. However, the
job has already suffered from under-prioritization in its early
phases and misses the fairness deadline by 2.07× (Figure 2c).
Agnostic scheduling is even worse and increases the job’s
FTF 𝜌 to 3.07; we omit this from the figure.
Being agnostic or reactive to dynamic adaptation degrades
system efficiency. Many makespan-minimizing algorithms,
such as Mixed Integer Linear Programming (MILP), Longest
Processing Time (LPT) [14], and JCT (Job Completion Time)
minimization algorithms such as Shortest Remaining Time
(SRPT) and AlloX [28], rely on the exact job run time, or the
ordering of jobs’ run time to derive a schedule.

However, dynamic adaption adaptively changes a job’s
throughput, and thus a job’s run time can be reduced (when
batch size is increased) or prolonged (when batch size is de-
creased) on the fly. This means that when making scheduling
decisions, the job run time estimated using initial or current
throughput is only valid for the current instant, and if it is used
beyond that system efficiency can be significantly undermined.
In Figure 4, the example shows that for MILP makespan mini-
mization, being reactive to dynamic adaptation yields a 22.3%

Job 1 vanilla training, bs=16

bs=16 bs=128

Job 3 vanilla training, bs=32

Job 2 vanilla training, bs=40

bs=40

1 1
32 2

1
1

3
2 2

1 1
3

2 2

⬇

⬇

G
PU

1
G

PU
0

G
PU

1
G

PU
0

G
PU

1
G

PU
0

(b) Agnostic scheduling

(c) Reactive scheduling

(d) Proactive scheduling

(a) Jobs 1 & 2 apply dynamic
adaptation after 2s,
accelerating training

0 1 2 3 4 5 6 7 8 9 10 t

0 1 2 3 4 5 6 7 8 9 10 t

0 1 2 3 4 5 6 7 8 9 10
t

0 1 2 3 4 5 6 7 t

bs=80

Figure 4: Being agnostic and/or reactive to dynamic adapta-
tion undermines efficiency while proactive scheduling mini-
mizes makespan and maximizes efficiency.

worse makespan and 28% worse cluster utilization compared
to proactive scheduling. Reactive scheduling considers 𝐽1
and 𝐽2 as long-running jobs from their initial throughput and
prioritizes them to minimize makespan. But due to dynamic
adaptation, 𝐽1 and 𝐽2 become shorter than 𝐽3 in their second
epoch, and it is too late to compensate and re-prioritize 𝐽3.
Being completely agnostic to dynamic adaption is even worse,
yielding a 30% worse makespan.

Overall, the above points motivate the need for a scheduler
that can model future dynamic adaptation and account for this
uncertainty while optimizing for both fairness and efficiency.

2.3 Supporting User-defined Dynamic Ddaptation

While dynamic adaptation with batch size scaling is a key
enabler for efficient training of large-scale DNNs, improper
changes to the batch size can adversely impact convergence
properties and degrade model accuracy. Thus, unlike systems
such as Pollux [36] which automatically modify the batch
size of training jobs, we argue that schedulers should support
user-defined dynamic adaptation schedules to avoid affect-
ing training accuracy. This is mainly because no adaptive
batch size scaling technique works consistently well across
all datasets and optimizers. As a result, ML researchers have
developed many different batch sizing scaling policies includ-
ing linear scaling rule [7], Accordion [1], Gradient Noise scale
(GNS) [36], SimiGrad [37], Hessian eigenspectrum [42], etc.

706 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We next study an example of how choosing an incorrect
batch size schedule can affect accuracy. In Figure 3, we con-
sider a CIFAR-10 training job on 2 GPUs with ResNet18 with
an initial batch size of 32. When using Pollux [36], the end-to-
end training time reduces by 5× as Pollux scales up the batch
size from 32 to 64 at epoch 1, and then up to 314 at epoch 2,
then to 690 at epoch 30, and finally up to 1682 at epoch 70 till
completion. However, this aggressive scaling leads to a 2-3%
accuracy loss. Plotting the statistical efficiency (as defined in
Pollux [36]), we find that using large batch sizes in the first 30
epochs leads to accuracy degradation. Our conversation with
the authors of Pollux suggests that the accuracy degradation
depends on the initial batch size used (32 in this case) and
can thus vary across jobs.3

We also tested an expert heuristic for batch size scaling
of ResNet18 training on CIFAR-10. The heuristic scales up
the batch size when the gradient norm [1] has insignificant
(<50%) changes, and does not scale in the initial epochs 20
epochs and the 10 epochs before and after each learning rate
decay. This expert-defined scaling schedule has minimal ac-
curacy loss and is 3× faster than vanilla training. Such expert
heuristic and the associated thresholds vary across models and
datasets; the above heuristic is specific to ResNet-18-CIFAR-
10 training and is not easily transferable. For example, for
ResNet-50-ImageNet training, the experts propose a different
heuristic that scales up the batch size by a factor of ten at the
30th, 60th, and 80th epoch, respectively [38]. Thus, while
prior work has developed scheduling mechanisms for specific
dynamic adaptation techniques, in Shockwave, on the other
hand, we assume no preference for any technique and respect
any choice made by users regarding how to dynamically scale
a training job’s batch size.

In summary, we find that automatically performing dy-
namic adaptation runs the risk of accuracy degradation. Hence
in this work, we aim to develop a scheduler that can observe
and forecast future scaling events but treats dynamic adapta-
tion as a part of the user’s program that cannot be modified.

3 Overview
We next present an overview of Shockwave, a new scheduling
framework that jointly optimizes efficiency and fairness for
machine learning workloads in shared clusters.
Using Market Theory for Efficiency and Fairness In Shock-
wave we propose using market theory to provably guaran-
tee efficiency and fairness for resource sharing. While prior
schedulers [29, 44] have also leveraged market theory for
fair sharing, they are built on static market models which
assume that resource requests for a job don’t change over
time. We find that the fairness and efficiency guarantees of a
static market do not hold when jobs dynamically change over
time [15]. Thus, Shockwave extends the classic, static market

3We also found that the statistical efficiency metric in Pollux can be
incorrect for Neural-MF models [22]. We include details of this experiment
in Appendix A.

to a discrete-time, dynamic market, to support efficient and
fair resource sharing under dynamic adaptation.
Predicting Dynamic Adaptation Building a dynamic market
alone is not enough as it presumes perfect future knowledge of
jobs’ dynamic adaptation behavior; that is, the market needs
to know when and how much jobs’ performance (e.g., train-
ing throughput) is changed by dynamic adaptation as training
progresses. As ML training itself is a stochastic process, the
trajectory of dynamic scaling is intrinsically uncertain. We
address this problem in Shockwave by forecasting the trajec-
tory of dynamic adaptation and developing methods to use
these forecasts in the dynamic market.
Scalable System Implementation Solving a dynamic mar-
ket and predicting dynamic adaptation introduces scheduling
overhead. We build a centralized, round-based scheduler [33]
and incorporate tractable approximations that can ensure the
overhead remains low even as we scale the number of GPUs
and cluster size. We find that Shockwave can maintain low
overhead while scheduling every 120 seconds and scale to
handle 900 active jobs running on a cluster of 256 GPUs.

4 Dynamic Market Theory Formulation
We begin by describing our theoretical formulation of a
discrete-time, dynamic market and the properties it provides.

4.1 Volatile Fisher Market

Market theory provides a fundamental approach to provably
guarantee efficiency and fairness in resource sharing. The
equilibrium of a Fisher Market [5], which is solved by max-
imizing Nash Social Welfare (NSW) [8], is a strong condi-
tion that implies all fairness guarantees used in prior sys-
tems. It is known that Fisher market equilibrium (under equal
endowment) implies Pareto Optimality (PO), Envy-freeness
(EF), and Proportionality (PR), which are fairness properties
adopted by existing systems like DRF [17].

We define efficiency in terms of the utility of a job, where
utility is a function that maps allocated resources to the result-
ing job progress (e.g., throughput improvement if we allocate
more resources). The market equilibrium for a Fisher market
has also been shown to maximize efficiency [6]. Thus, we
explore the applicability of Fisher markets for DL jobs.
From static market to dynamic markets: Volatile Fisher
Market. Classic Fisher Market assumes static, time-invariant
utility for jobs, and a recent study [15] shows that efficiency
and fairness guarantees can be violated for dynamic, time-
variant utilities. Prior work [2,3] on dynamic markets has also
studied settings where goods (resources) arrive online, while
our market considers a different setting where buyers in the
market have time-variant utilities over goods.

To perform efficient fair sharing under dynamic adapta-
tion, we extend the static Fisher market to a discrete-time,
dynamic market. We name this new market Volatile Fisher
Market (VFM). We prove that maximizing Nash Social Wel-
fare Over Time (i.e., NSWOT in Equation 1) solves the market

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 707

equilibrium of VFM and establishes long-term efficiency and
fairness properties, such as Proportionality Over Time, i.e.,
PROT, which has strong implications for finish time fairness
and sharing incentive. We leave the formulation and related
proofs of VFM in Appendix C-D, and provide a succinct
description below.

VFM operates at discrete time intervals 𝑡 = 1, . . . ,𝑇 . At each
time instant, a central seller (the scheduler) sells resources
(e.g., GPUs and/or CPUs) to buyers (jobs). All resources are
volatile. That is, resources bought by a job at time 𝑡′ cannot be
carried over to the future time steps 𝑡 > 𝑡′. To model dynamic
adaptation, the utility for any job 𝑖 is a sequence of time-
variant functions 𝑢𝑖𝑡 (𝑡 = 1, . . . ,𝑇). For example, a job might
have a utility 𝑢0 when the batch size is 16 and its utility
could double 𝑢1 = 2𝑢0 when the batch size doubles at 𝑡 = 1.
Since jobs’ utilities can change over time, this creates dynamic
changes in demands over time, and thus, resource price, which
is achieved at equilibrium, is also time-variant. We assume
that each job is endowed with an initial budget to spend across
rounds. The budget for a job reflects its purchasing power and
different budgets can reflect scheduling priority.

Given the resource demands, budget, and utility for each
job, at every time instant, the VFM solves for an allocation
and assignment of prices that can lead to market equilibrium.
We define the market to have reached an equilibrium when
two conditions are satisfied. (a) Optimal Spending: Each
job’s utility accrued over time, i.e,

∑𝑇
𝑡=1 𝑢𝑖𝑡 , is maximized

under its budget. (b) Work-conserving: There are no leftover
resources if the price for the resources is non-zero.

4.2 Equilibrium Properties

The market equilibrium achieved by VFM has a number of
powerful properties that we define below. Proofs for them are
in Appendix C-E.
Cluster-level performance. The equilibrium of VFM maxi-
mizes Nash Social Welfare Over Time(NSWOT) which is an
indicator of cluster-level performance.

NSWOT (𝑈1 (𝑋𝑋𝑋111), . . . ,𝑈𝑁 (𝑋𝑋𝑋𝑁𝑁𝑁)) =
∏
𝑖

𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖)
𝐵𝑖∑
𝑖 𝐵𝑖 ,

𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖) =
∑︁
𝑡

𝑢𝑢𝑢𝑖𝑡 (𝑥𝑖𝑡)
(1)

Let 𝑈𝑖 (𝑋𝑖) =
∑
𝑡 𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡) represent the utility (e.g., epoch

progress) for a job 𝑖 accrued over rounds 𝑡 = 1, . . . ,𝑇 , 𝑋𝑋𝑋 𝑖𝑖𝑖
represent the sequence of allocations 𝑥𝑥𝑥𝑖1, . . . , 𝑥𝑥𝑥𝑖𝑡 , . . . , 𝑥𝑥𝑥𝑖𝑇
received for individual rounds, and 𝐵𝑖 represent the budget
provided for the job. Maximized NSWOT guarantees that the
(weighted) geometric mean of job progress is maximized for a
𝑇-round-long time horizon. In effect, this property guarantees
that the overall cluster-wide utility is maximized across all
jobs, thus leading to improved utilization.
Pareto Optimality over time. We prove that maximized
NSWOT also implies Pareto Optimality Over Time (POOT),
which guarantees resource allocation efficiency. Specifically,
POOT ensures that each job has no surplus resources at each

instant; i.e., we cannot increase one job’s training progress
without depriving that of another job.
Finish Time Fairness (FTF) over time. We also show that
maximized NSWOT minimizes the product of FTF across all
jobs and that this directly leads to sharing incentive (assuming
budgets are equal). A formal statement is in Corollary 4.0.1
and the proof is in Appendix E.

Corollary 4.0.1. The equilibrium of the Volatile Fisher Mar-
ket with linear or Leontief utility at each instant (a) minimizes
the product of FTF (𝜌) across all jobs (i.e.,

∏
𝑖 𝜌𝑖); (b) when

the budgets assigned to jobs are equal, the equilibrium prov-
ably guarantees Sharing Incentive (SI), i.e., all jobs’ FTF 𝜌

are no greater than 1, i.e., 𝜌𝑖 ≤ 1, ∀𝑖.
Thus, our formulation of volatile Fisher markets can cap-

ture time-varying utility for jobs while providing a number of
powerful guarantees in terms of fairness and efficiency.

4.3 Handling Uncertainty

The Volatile Fisher Market model described above assumes
perfect knowledge of the future. That is, the model requires
knowing at which time point 𝑡 will the throughput change due
to dynamic adaptation. However, dynamic adaptation in jobs
is non-deterministically triggered, as they are dependent on
stochastic gradient values and can thus vary across models and
datasets. To handle this, in §5, we develop methods to predict
dynamic adaptation in jobs. But given that the predictions are
random variables, we further extend our above formulation
to derive a VFM that can handle uncertainty in future request
demands. We show that this extension guarantees Maximized
Nash Social Welfare Over Time in Expectation (MNSWOTE).
Details are provided in Appendix F.

5 Predicting Dynamic Adaptation
In this section, we develop techniques to predict the dynamic
adaptation of the batch size that occurs in elastic ML training
workloads. Our key insight in developing a predictor is to
leverage our knowledge about techniques that are used for
batch size scaling [1, 31] and thereby restrict the search space
of possible batch size changes. We next define how changes
in batch size over time can be viewed as trajectories and then
describe how we can use Bayesian statistics to predict which
trajectories are most likely.
Dynamic adaption, regimes, and randomness. We define a
regime of training 𝑅 as a tuple 𝑅 = (𝑐, 𝑓); where 𝑐 indicates
the job configuration (e.g., batch size) used in the regime and
𝑓 represents the duration (as a fraction of the total epochs)
that this regime lasts. For example, if a 100-epoch-long DNN
training job starts with batch size 32 (denoted 𝐵𝑆32) for epoch
1-20, then the first regime is denoted as 𝑐1 = 𝐵𝑆32, 𝑓 1 = 0.2.
We define a trajectory as a sequence of regimes. For example,
if the same job scales up to 𝐵𝑆64 for epoch 21-80, and finally
scales down to 𝐵𝑆32 for epoch 81-100, then its trajectory
is represented as (𝑐1 = 𝐵𝑆32, 𝑓 1 = 0.2)→(𝑐2 = 𝐵𝑆64, 𝑓 2 =

0.6)→(𝑐3 = 𝐵𝑆32, 𝑓 3 = 0.2). Thus, given a new job, each

708 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5: Shockwave Dynamic Adaptation Modeling Error.

regime 𝑐𝑖 , 𝑓𝑖 is a tuple of random variables.
Leveraging domain knowledge. We leverage domain knowl-
edge about techniques used for batch size scaling to constrain
the random variables. Techniques for scaling batch size have
deterministic patterns. (a) Accordion [1] only alternates be-
tween two configurations 𝑐1 for small batch size and 𝑐2 for
large batch size. When gradient values change slowly (below
a threshold) during training, Accordion scales up the batch
size from 𝑐1 to 𝑐2, and when gradient values change rapidly,
Accordion scales from 𝑐2 back to 𝑐1. (b) GNS [31] only scales
up the batch size up to the pre-specified limit and never scales
down. Existing studies show that the gradient noises tend to
grow throughout training, implying that GNS will gradually
scale up the batch size and never scale down [30, 31]. We use
a simple model of GNS scaling where, as the gradient noise
grows above a relative threshold, the batch size doubles.

We choose Accordion and GNS as representative batch size
scaling patterns as they have been used in prior systems like
KungFu [30] and Pollux [36]. Further, their scaling decisions
are completely determined by gradient states (i.e., gradient
norms and noises), which encode the stochasticity induced
in back-propagation algorithms. Most other dynamic batch
sizing policies also adapt to gradient states and we plan to
add support for more policies in the future.
Prior for regime transition. Given that batch size scaling
rules have deterministic configuration transitions, the only
random variable is a regime’s duration. For a job with 𝐾
regimes, we define a probabilistic model 𝑃(𝑓1, . . . , 𝑓𝐾) to
represent the probability that regime 𝑘 (𝑘=1, . . . , 𝐾) lasts for
𝑓𝑘 fraction of epochs. We also note that the sum of all regimes’
epoch fractions needs to sum up to 1 4. Given this formulation,
we use an approach based on Bayesian statistics to predict
regime duration. At a high level, our approach is to define
a prior distribution of regime duration and then update the
posterior distribution in real time as training progresses. The
key challenge here is in determining how we can update the
posterior as training progresses.
The restatement posterior update rule. Given our prob-
lem formulation, we adopt the commonly used Dirichlet prior
𝐷𝑖𝑟 (𝑛1, . . . , 𝑛𝐾). A standard Bayesian posterior update rule

4We don’t make any stationary assumptions about the distribution.

assumes the epoch samples of individual regimes are inde-
pendently and randomly drawn as training progresses. But
this does not hold in practice. Epochs of the 𝑘-th regime
can only emerge if the 𝑘 −1-th regime finishes. To deal with
the temporal-dependence issue, we design a simple update
rule, named the restatement rule, for posterior updates. The
restatement rule only updates the prior’s parameters that
correspond to completed epochs, while continuing to be-
lieve that the ongoing and future regimes will evenly split
the remaining epochs. Specifically, suppose a user specifies
that at a maximum, 𝐾 regimes can exist, the prior is set as
𝐷𝑖𝑟 (𝑁/𝐾, . . . , 𝑁/𝐾) for the 𝐾 potential regimes. When the
𝑘-th (𝑘=1, . . . , 𝐾 −1) regime finishes, suppose the observed
epochs for past regimes 1, . . . , 𝑘 are 𝑚1, . . . ,𝑚𝑘−1, we up-
date the posterior distribution to 𝐷𝑖𝑟 (𝑚1, . . . ,𝑚𝑘 , 𝑆𝑘 , . . . , 𝑆𝑘),
where 𝑆𝑘 = (𝑁 − ∑𝐾

𝑘=1𝑚𝑘)/(𝐾 − 𝑘). We compare the
Bayesian update rule with the restatement rule in Figure 5
and find the restatement rule has a lower interpolation error;
the interpolation error is averaged over 200 jobs randomly
drawn from the Gavel workload trace (Section 8.1), each with
a batch size scaling schedule imposed by Accordion or GNS.
Predicting job remaining time. Given the predictions from
the Bayesian model, we next predict the remaining runtime
for a job. This is necessary for estimating finish time fairness.
We sum up individual regimes’ expected duration to calculate
total job runtime. Total job time minus cumulative run time
in the past (i.e., 𝑇𝑗) gives the remaining time.
Computational tractability. Finally, as each job can com-
prise of many possible regime trajectories, at the cluster level,
the trajectory space for all jobs is combinatorially large. To
avoid space explosion, the scheduler only considers a single
regime transition trajectory for each job, which is the mean
(expectation) of its posterior distribution model [4].
Evaluating prediction accuracy. Figure 5 shows the online
prediction (i.e., mean of posterior distribution) accuracy for
regime transition and job run time. We compare Shockwave’s
restatement rule with two baselines. The first is a standard
Bayesian posterior update rule; the second is a greedy ap-
proach that forecasts future job run time only using the most
up-to-date job throughput, which is used by all reactive sched-
ulers. The evaluation includes 200 Accordion and GNS jobs
with real dynamic adaptation trajectories. Shockwave’s re-
statement rule converges to the oracle job run time and the
oracle dynamic adaptation trajectory faster than the baselines.
Throughout the training, the error in modeling the duration
of each regime is on average 6%, which results on average
an 84% accuracy in run time prediction. In summary, we see
that our proposed predictor for elastic training jobs is able to
accurately capture the total run time without prior training
and by only observing job progress across epochs. We next
discuss how our predictor can be integrated with the market
formulation.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 709

6 Shockwave Design
Overview. Figure 6 presents the overall system design of
Shockwave. When a new job arrives (1), the Bayesian predic-
tor will construct a prior model for the job’s batch size scaling
schedule and the job is added to the active pool.

As a job makes progress, upon epoch completion or when
the job triggers a dynamic batch size scaling (2), the job’s
Dirichlet posterior model is updated using the restatement
rule (3). The posterior model then forecasts the future batch
size schedule for this job and delivers it to the scheduler solver.
Further, the posterior model predicts the job’s (remaining) run
time under dynamic batch size scaling and delivers this to the
long-term efficiency and fairness estimator.

We design two estimators: a long-term efficiency estimator
(4) that can estimate the makespan (time to finish all active
jobs) and a long-term fairness estimator (5) that can estimate
FTFs for all active jobs. The schedule solver converts the
predicted batch size schedules into the utility for each job
and synthesizes a generalized Nash social welfare function
(6) that uses jobs’ FTF estimate as weights and the makespan
estimate as a regularizer. Finally, the output of the solver is a
schedule for the next 𝑇 rounds, and this schedule is used by
the cluster manager to launch jobs (more details in §7).

We next discuss some design details of how the generalized
Nash social welfare function is derived from its inputs. We
also present an overview of how the efficiency and fairness
estimators work. We include a more detailed explanation in
Appendix G.

6.1 Schedule Solver

Output. The solver plans the schedule for a configurable
number of future rounds 𝑇 (the default is 20 two-minute-long
rounds). Thus, the output is a 𝑁 ×𝑇 binary matrix X, where
𝑁 is the total number of active jobs available for scheduling.
X[𝑗 , 𝑡] = 1 (X[𝑗 , 𝑡] = 0) represents scheduling (descheduling)
job 𝐽 𝑗 in round 𝑡.
Objective. The inputs to the schedule solver include the batch
size schedule for all jobs, which can be used to derive their
utility (epoch progress) UTIL 𝑗 , the estimated FTFs 𝜌 𝑗 , and
the estimated makespan 𝐻.

The objective of the solver is to maximize the gen-
eralized Nash social welfare as shown in Equation 2.∑
𝑡 UTIL 𝑗 (X[𝑗 , 𝑡]) represents the summed utility of all active

jobs. The utility increases when a job is scheduled for more
rounds within the planning window, and the sum of the loga-
rithm of utilities, across all jobs, represents the Nash social
welfare. We use the k-th (default: 5) power of FTF values 𝜌 𝑗
as weights to prioritize jobs that are at risk of violating FTF
(e.g., jobs that have been waiting in the queue for a long time).
Finally, we add a regularization term that penalizes schedules
(in the planning window) that could potentially increase the
makespan estimate 𝐻 (𝑋). Coefficient 𝜆 (default: 1e−3) con-
trols the magnitude of the regularizer, 𝑍0 is a normalization
factor that renders the regularizer insensitive to the scale of

Figure 6: Design of Shockwave showing how the different
components interact with each other to derive a schedule.

𝐻 (𝑋), and 𝑀 is the total number of GPUs in the cluster:

Maximize
X

∑𝑁
𝑗=1 𝜌̂(𝑗)𝑘 𝑙𝑜𝑔

∑
𝑡 UTIL 𝑗 (X[𝑗 , 𝑡])

𝑁𝑀
− 𝜆H(X)

𝑍0
(2)

We tune the hyperparameters over a large range and find
that Shockwave performs consistently well around the default
hyperparameter values (𝑘 in [1,10] and 𝜆 in [1e−4,1e−2]).
Exceedingly large or small hyperparameters make the reg-
ularization term dominate the Nash social welfare term (or
vice versa) and push Shockwave away from the Pareto frontier
of fairness and efficiency, while the default values strike a
balance between them.

Similar to prior work [29,33,36], the solver recomputes the
program in Equation 2 either when the planned rounds elapse,
or when jobs arrive or complete. If dynamic adaptation is
predicted to occur within the planning window, the scheduler
needs to incorporate dynamic changes in jobs’ throughputs
when computing the utility. To account for dynamic changes,
we decompose a job’s schedule into regimes, where each
regime has a fixed batch size and throughput. The generalized
Nash social welfare (Equation 2) can then be implemented at
a regime level, where the utility of a job equals the summed
utility over all regimes.

6.2 Long-term Fairness and Efficiency Estimators

Finish time fairness estimator. We estimate job 𝐽 𝑗 ’s finish
time fairness (FTF) 𝜌̂(𝑗) as its predicted job completion time
(the sum of attained service time, waiting time, and the pre-
dicted remaining run time), divided by its predicted total job
run time. Note that a job’s predicted runtime is related to its
predicted batch size scaling schedule. Shockwave plugs in
FTF 𝜌s of jobs into social welfare function (see Equation 2)
as weights. The weights in the social welfare function act as
the budgets assigned to jobs in the volatile Fisher market. If
a job is predicted to be unfairly scheduled (large FTF 𝜌) in
long term, VFM correspondingly assigns a higher budget for
it and proactively prioritizes the job in the planning window.
Makespan estimator. The efficiency estimator estimates the
makespan to complete all active jobs and penalizes schedules
in the planning window that increase the makespan. How-
ever, it is challenging to estimate the makespan for all active
jobs at a given instant. Thus, in practice, Shockwave uses a
lower bound [12] of the makespan as a proxy and penalizes

710 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Model Task Dataset Batch Size(s)

ResNet-50
Image
Classification

ImageNet 16 - 128

ResNet-18
Image
Classification

CIFAR-10 16 - 256

LSTM
Language
Modeling

Wikitext-2 5 - 80

Transformer
Language
Translation

Multi30k
(DE-EN)

16 - 256

Recoder
Autoencoder

Recommen-
dation

ML-20M 512 - 8192

Table 2: Workloads used in the evaluation.

increasing the lower bound. More details are in Appendix G.

7 Implementation
Scheduler and worker. Shockwave scheduler and worker im-
plement time-sharing of cluster resources with round-based
scheduling. Each round is a fixed interval (default: 2 minutes).
In each round, the scheduler selects a set of jobs from the ac-
tive job pool to run. The lease manager translates the schedule
to job leases and notifies the workers to launch, suspend, or
resume jobs. Each worker binds to a single GPU device.

We adopt a simple job placement engine along with Gavel.
The placement engine tries to tightly pack jobs’ workers over
the machines to minimize fragmentation, and it also tries to
place scheduled jobs on their previously executed machines
to maximize job locality.
Scheduler solver, lease manager, and model dispatcher. If
a job does not run in round 𝑇 , but is scheduled for round 𝑇 +1,
the scheduler will notify the lease manager to create a new
lease for it, and dispatch the job to GPU workers before the
next round starts. The assigned workers will launch the job
when the next round begins. If a job is actively running in
round 𝑇 and the scheduler continues to schedule it for round
𝑇 + 1, the lease manager will send a lease extension signal
to the job’s workers. This job will stay running on the same
workers in round 𝑇 +1. If a job is actively running in round
𝑇 , but the scheduler decides to suspend it in round 𝑇 +1, the
job’s workers will stop it since its lease will not be renewed.

Shockwave also penalizes frequent restarts as it adds over-
heads in dispatching models and datasets to workers. The
schedule solver prefers to schedule jobs to continuous rounds
in the window and penalizes scattering the job’s execution
across rounds. Furthermore, the underlying device placement
engine prefers mapping a job to its previously allocated work-
ers to reduce restarts.
Dynamic adaptation support. When a training job triggers
dynamic adaption (i.e, batch size scaling), it notifies the sched-
uler solver of the occurrence of the event. The cluster manager
can configure Shockwave’s responsiveness to dynamic scaling.
The reactive mode requires Shockwave to invalidate its cur-
rent schedule and immediately trigger resolving in response
to dynamic adaptation. The lazy mode continues the original

schedule and postpones resolving until the next rescheduling
interval. Shockwave is by default configured in reactive mode.
Prototype. Shockwave is implemented in Python atop ML
cluster manager Gavel [33]. We integrate Shockwave into
Gavel by implementing a schedule solver, meta-data collector,
and schedule translator, which translates Shockwave’s pro-
duced schedule to job leases. Furthermore, Shockwave pro-
vides an interface for users to monitor gradients and trigger
batch size scaling. Scaling requests are sent to the sched-
uler with gRPC. The schedule solver is implemented with
Gurobi [34]. Shockwave uses Linux NFS to store model check-
points. Our checkpointing overhead is less than 3%.

8 Evaluation
We next evaluate Shockwave using ML job traces derived from
real-world clusters and compare Shockwave to state-of-the-art
deep learning schedulers.

8.1 Experiment Setup

Testbed. We conduct experiments using a 32-GPU, 8-node
cluster on TACC [9]. Each node has 4 NVIDIA Quadro RTX
5000 GPUs (16GB GRAM), 2 Intel Xeon E5-2620 v4 “Broad-
well” CPUs, and 128GB DDR4 RAM. The network band-
width is 200 GB/s inter-switch and 100 GB/s inter-node.
Workload. Shockwave ’s evaluation uses two separate work-
loads to reinforce its practical applicability. These traces in-
clude diversity in job sizes, model types, and arrival patterns.
Unless otherwise specified, we use Gavel’s workload genera-
tor [33] to construct synthetic distributed training workloads.
Job information is detailed in Table 2. The jobs used in this
paper range from 0.2 to 5 hours long, with 1, 2, 4, or 8 work-
ers for distributed training, and the arrival of jobs follows a
Poisson arrival process with an inter-arrival rate 𝜆 ranging
from 0.1 to 0.2 [33]. We use a mix of job durations also de-
rived from prior work [36]. We categorized jobs based on
total GPU-time, and similar to prior work, we set the proba-
bility of generating Small (0.2-8 GPU-hours), Medium (8-16
GPU-hours), Large (16-72 GPU-hours), and Extra Large (>72
GPU-hours) jobs to be 0.72, 0.2, 0.05, 0.03, respectively. Each
job is configured with one of the three modes: Static, Accor-
dion [1], or GNS [31]. We increase the total batch size by
increasing the per-GPU batch size while preserving the num-
ber of workers. In addition to traces generated by Gavel, we
also evaluate a production trace of real job duration and ar-
rival timestamps used by Pollux [36] in Appendix J. We also
tune the hyperparameters 𝑘 and 𝜆 with the range discussed in
Section 6.1.

8.2 Baseline Schedulers

We compare Shockwave to six schedulers: OSSP (Open Shop
Scheduling) [18], AlloX [28], Themis [29], Gavel [33], MSS
(Max-Sum-Throughput) [33], Gandiva-Fair [10], and Pol-
lux [36]. All baselines, except Pollux, do not change the num-
ber of workers, whereas Pollux dynamically tunes the number
of workers (and batch size) to adapt to varied resource avail-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 711

0 20000 40000
Makespan (s)

1.0
1.01

1.24
1.37

1.27
1.37

0 10000 20000
Average JCT (s)

1.0
1.7

1.04
1.15

0.91
0.92

0 1 2 3 4 5 6 7 8
Worst FTF (ρ)

1.0
3.17

1.56
1.9

2.54
2.85

0 20 40 60 80
Unfair Job Fraction (%)

1.0
8.5

2.0
3.2
3.0
3.0

Shockwave OSSP Themis Gavel AlloX MST

Figure 7: [Physical] Evaluating Shockwave’s scheduling effi-
ciency and fairness in a 32-GPU physical cluster. The anno-
tated number beside each bar is the relative value compared
to Shockwave.

ability. To perform a fair comparison against the scheduling
policies of most baselines, in our Shockwave prototype, we
only perform time-sharing and maintain a fixed number of
workers through a job’s lifetime, even though the Shockwave
market formulation can be easily re-parameterized to support
worker scaling. Nevertheless, we compare our "constrained"
version of Shockwave to Pollux in §8.7 and show significant
fairness gains and matching efficiency.

Efficiency baseline: makespan. OSSP minimizes
makespan using MILP. As minimizing makespan usually
translates to maximizing cluster utilization, OSSP provides a
baseline for efficiency, but with no guarantee of fairness.

Efficiency baseline: throughput. Max-Sum-Throughput
(MST) maximizes the cluster-level throughput at each instant,
which is the sum of throughput across all training jobs. MST
is an instantaneous efficiency baseline.

Fairness baseline. Gavel [33] implements Max-Min-
Fairness [32], an algorithm that performs fair sharing of clus-
ter resources within each allocation round.

Fairness and responsiveness baseline. AlloX [28] min-
imizes average job completion time with maximal bipar-
tite matching and provides a baseline for responsiveness.
Pollux [36] maximizes cluster-wide goodput and uses the
𝑝−𝑛𝑜𝑟𝑚 of individual jobs’ training goodput for improved
responsiveness, while tuning 𝑝 to penalize unfair allocations.

Fairness and efficiency baseline. Themis [29] uses Par-
tial Allocation [13] for efficient and fair allocation. We use
the default filter value for Themis. We also compare against
Gandiva-Fair [10], a framework that uses lottery scheduling
to guarantee a proportionally fair share of resources and effi-
ciency by being work-conserving.
Performance metrics. We quantify efficiency using
makespan and utilization. We measure fairness using two
metrics: The first is the fraction of unfairly scheduled jobs,
i.e., the fraction of jobs with FTF 𝜌 > 1.0; The second is the
worst-case FTF 𝜌, which is the worst-case slowdown due to
unfair scheduling. The smaller the unfair fraction and worst
FTF 𝜌 are, the better a scheduler is at preserving sharing
incentive. We quantify responsiveness using average JCT.

8.3 Evaluating Efficiency and Fairness

We first study the benefits of Shockwave using experiments
on the physical TACC cluster.

[Cluster - 32 GPUs, 120 Jobs] Efficiency. (cf., Figure 7)
Shockwave is more efficient than existing fair schedulers with
a makespan on average 1.3× less than Themis, Gavel, and
AlloX. Compared to our efficiency baselines that have no
fairness constraints, Shockwave achieves a 37% improvement
in makespan over MST and produces a similar makespan as
OSSP. Analyzing cluster utilization data we also find that
Shockwave outperforms Themis, Gavel, and AlloX in cluster
utilization by 28% on average.

[Cluster - 32 GPUs, 120 Jobs] Finish time fairness (cf.,
Figure 7). Shockwave is fairer than existing fair schedulers.
Shockwave’s worst-case FTF (Finish Time Fairness) 𝜌 is 1.82,
outperforming Themis, Gavel, and AlloX by 2× on average.
OSSP and MST are not fair schedulers, and severely break
finish time fairness, the worst-case FTF 𝜌 of which reach 5.79
and 5.2. In addition, Shockwave keeps the fraction of unfairly
scheduled jobs (i.e., the fraction of jobs with FTF 𝜌>1) low,
outperforming Themis, Gavel, and AlloX by 2.7× on average.
OSSP and MST unfairly schedule jobs, and their fraction of
jobs that have FTF 𝑟ℎ𝑜 larger than 1 are 70.8% and 25%.

[Cluster - 32 GPUs, 120 Jobs] Average job completion
time (cf., Figure 7). Shockwave does not sacrifice system
responsiveness in exchange for improved makespan and fin-
ish time fairness. Shockwave produces a similar average job
completion time when compared with Themis, Gavel, and
MST. AlloX achieves a better average JCT by aggressively
prioritizing short jobs (but at the cost of delaying long jobs),
while in contrast, OSSP achieves the worst average JCT due to
aggressively prioritizing long jobs for tight resource packing
over time (but at the cost of delaying short jobs).

Overall, we find that by solving for the optimal efficiency-
fairness trade-off, Shockwave can improve efficiency and fair-
ness when compared with existing schedulers. By analyzing
the scheduling decisions, we find that with Shockwave, jobs
are opportunistically prioritized to improve long-term effi-
ciency if such prioritization does not affect finish time fairness.
Second, we find that Shockwave’s solver improves fairness
by smart arbitrating. “Rich” jobs (i.e., jobs which have lower
chances of violating FTF) yield resources to “poor” jobs
which have a higher chance of violating FTF. We next take
a closer look at the schedule decisions on a smaller trace to
further distill the benefits of Shockwave.

8.4 A Closer Look at Shockwave’s Schedule

We compare the schedules for a batch of 50 jobs and the FTF
𝜌 between Shockwave and baselines to further understand the
wins in efficiency and fairness. We categorize jobs into four
groups based on their sizes (GPU-time): (X)Large, Medium,
Small, and (X)Small (different colors in Figure 8a).
Understanding efficiency improvement. AlloX optimizes
system responsiveness (average JCT) by prioritizing small
jobs. In Figure 8a, in the first 100 rounds, most of the jobs
scheduled are XSmall jobs. The filter in AlloX ensures
medium and large jobs do not get starved but these jobs are

712 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Visualized schedules.

0.0 0.5 1.0 1.5 2.0
FTF ρ

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Jo

bs

Gavel
OSSP

Allox
Shockwave

(b) FTF 𝜌 CDF
Figure 8: A closer look at how Shockwave prioritizes jobs of different lengths while meeting the fairness constraints.

not prioritized. Large jobs trail until round 230 and leading to
worse makespan and cluster utilization.

Gavel’s max-min fair scheduling prioritizes the least per-
formant jobs. In Figure 8a, throughout the schedule, Gavel
prioritizes neither small nor large jobs; jobs of all sizes evenly
partition GPUs when compared with other policies. However,
restricting scheduling to instantaneous fairness significantly
hurts long-term efficiency, and large jobs run on a mostly idle
cluster from round 170 to round 220.

Shockwave improves efficiency by opportunistically
scheduling (X)Large jobs across rounds but without hurting
small and medium jobs’ sharing incentive (Figure8b shows
the CDF of FTF). In Figure 8a, between round 0 and 50, and
50 to 120, large jobs are opportunistically scheduled by Shock-
wave, and the cluster is tightly packed over the time horizon,
resulting in a low makespan. Note that Shockwave also pre-
serves responsiveness since most XSmall and small jobs are
completed fast (before round 50 and 110, respectively), which
is comparable to AlloX.

OSSP over-prioritizes (X)Large and medium jobs through-
out the timeline, but significantly delays XSmall jobs’ comple-
tion (see delayed blocks at the end of the schedule). Delaying
small jobs significantly breaks the sharing incentive and un-
dermines cluster responsiveness.
Understanding fairness improvement. Figure 8b shows the
FTF 𝜌 CDFs of different policies for the batch of jobs visu-
alized in Figure 8a. Shockwave improves efficiency without
sacrificing the sharing incentive: the worst-case FTF 𝜌 for
the batch of jobs is 1.23, and the fraction of unfair jobs is
low. In Figure 8a, AlloX and Gavel’s CDF grows faster than
Shockwave’s for 𝜌 <= 1, although more than 20% of jobs have
𝜌 > 1. AlloX and Gavel over-prioritize some jobs and this
results in an allocation that exceeds sharing incentive. Shock-
wave avoids over-prioritization and is thus able to have more
jobs meet the sharing incentive. Shockwave also improves
fairness by predicting dynamic adaptation for a more accurate
estimate of the FTF deadline. Figure 2 shows an example
where Shockwave produces an accurate prediction of the FTF
deadline and enables the job to finish on time.

Makespan (s) Average JCT (s) Unfair Fraction (%)
4.97% 4.62% 3.83%

Table 3: Fidelity of Shockwave’s simulator – difference be-
tween simulator and physical cluster.

8.5 Scaling to Large Clusters

We next use simulation to compare Shockwave’s and baseline
algorithms’ efficiency and fairness in larger-scale cluster set-
tings. We scale both the cluster size and the number of jobs
and study 64 GPUs with over 220 jobs, 128 GPUs with over
460 jobs, and 256 GPUs with over 900 jobs. We preserve
the contention factor as roughly three to maintain a constant
level of resource contention regardless of scale. Note that
our physical cluster implementation and the simulator use the
same scheduling code base and solver engine. We begin by
validating our simulator’s fidelity.
Simulation Fidelity

We evaluate the simulation fidelity by comparing our sim-
ulator’s results with the 32 GPU physical cluster results (Ta-
ble 3). We run all policies supported by our system under
different workloads, and the average difference is reported
in Table 3. Overall, the performance difference between a
simulated and physical cluster run is around 5%.
[Simulation - 64-256 GPUs, 220-900 Jobs] Efficiency. As
shown in Figure 9, Shockwave scales to large cluster settings
and preserves the improvement in makespan over baseline
algorithms. Shockwave achieves 1.26-1.35×, 1.3-1.34×, 1.35-
1.37×, and 1.21-1.3× speedup in makespan when compared
with Themis, Gavel, AlloX, and Gandiva-Fair respectively.
Shockwave achieves a marginally worse (5%-9%) makespan
compared with OSSP.
[Simulation - 64-256 GPUs, 220-900 Jobs] Finish time
fairness. The worst-case FTF 𝜌 for Shockwave when scal-
ing to large clusters is on average 1.32, outperforming fair
scheduling policies Themis, Gavel, AlloX, and Gandiva-Fair
by 2.5×, 2.4×, 3.1×, and 3.9× respectively. In addition, Shock-
wave maintains the fraction of unfairly scheduled jobs (FTF
𝜌 > 1) on average at 4%, outperforming other fair scheduling
baselines by 6×.
[Simulation - 64-256 GPUs, 220-900 Jobs] Average job

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 713

0 15000 30000 45000
Makespan (s)

25
6

GP
Us

12
8

GP
Us

64
 G

PU
s

1.0

1.0

1.0

0.91

0.95

0.93

1.26

1.35

1.3

1.3

1.34

1.3

1.37

1.36

1.35

1.39

1.4

1.44

1.22

1.3

1.21

0 7500 15000 22500
Average JCT (s)

25
6

GP
Us

12
8

GP
Us

64
 G

PU
s

1.0

1.0

1.0

1.95

2.12

2.05

1.05

1.06

1.09

0.99

1.02

1.05

0.97

0.97

1.01

0.97

1.0

1.17

1.16

1.19

1.22

0 2 4 6 8 10 12
Worst FTF (ρ)

25
6

GP
Us

12
8

GP
Us

64
 G

PU
s

1.0

1.0

1.0

6.92

7.99

4.94

3.21

2.53

1.77

2.85

2.79

1.78

3.64

3.39

2.13

4.3

4.37

4.64

1.52

1.31

1.08

0 20 40 60 80
Unfair Job Fraction (%)

25
6

GP
Us

12
8

GP
Us

64
 G

PU
s

1.0

1.0

1.0

21.56

26.69

18.75

6.28

7.77

3.88

4.81

6.92

3.25

7.53

9.92

5.12

6.66

9.38

6.13

9.5

11.28

3.61

Shockwave OSSP Themis Gavel AlloX MST Gandiva-Fair

Figure 9: [Simulation] Evaluating Shockwave’s scheduling
efficiency and fairness in differently sized large clusters.

0 15000 30000
Makespan (s)

(S
,D

)=
0.

0,
1.

0
(S

,D
)=

0.
3,

0.
7

(S
,D

)=
0.

6,
0.

4
(S

,D
)=

1.
0,

0.
0

1.0

1.0

1.0

1.0

1.02

1.0

1.0

0.99

1.28

1.22

1.16

1.15

1.3

1.2

1.18

1.17

1.33

1.21

1.19

1.19

0 7500 15000 22500
Average JCT (s)

(S
,D

)=
0.

0,
1.

0
(S

,D
)=

0.
3,

0.
7

(S
,D

)=
0.

6,
0.

4
(S

,D
)=

1.
0,

0.
0

1.0

1.0

1.0

1.0

1.59

1.8

1.88

1.84

0.96

0.98

1.03

0.98

0.95

0.96

1.0

1.0

0.89

0.9

0.94

0.94

0 2 4 6 8
Worst FTF (ρ)

(S
,D

)=
0.

0,
1.

0
(S

,D
)=

0.
3,

0.
7

(S
,D

)=
0.

6,
0.

4
(S

,D
)=

1.
0,

0.
0

1.0

1.0

1.0

1.0

4.26

6.31

5.91

5.92

1.29

1.55

1.63

1.68

1.38

1.56

1.58

1.59

1.69

2.0

1.82

1.95

0 20 40 60 80
Unfair Job Fraction (%)

(S
,D

)=
0.

0,
1.

0
(S

,D
)=

0.
3,

0.
7

(S
,D

)=
0.

6,
0.

4
(S

,D
)=

1.
0,

0.
0

1.0

1.0

1.0

1.0

5.67

8.75

11.67

36.0

2.0

3.0

3.67

8.0

1.5

2.25

3.0

9.0

1.67

2.5

3.0

10.0

Shockwave OSSP Themis Gavel AlloX

Figure 10: [Simulation] Effects of varying the mix of static
and dynamic Jobs. (S, D)=(x, y) indicates x fraction of static
jobs and y fraction of dynamic jobs.

completion time. At a large scale, Shockwave maintains sim-
ilar responsiveness when compared with fair schedulers. One
exception here is Gandiva-Fair which prolongs average JCT
by 16-22%. Gandiva-Fair uses stride scheduling [39] where,
by default, a job’s number of tickets is equal to the job size
(i.e., the number of workers). Thus, large jobs have a higher
proportional share when compared with small jobs, and can
delay small jobs, thereby degrading system responsiveness.

We study the solver overhead with large clusters in §8.9.

8.6 Benefits of Proactive Scheduling

We next compare Shockwave and baseline policies while vary-
ing the mix of static and dynamic jobs in simulation.
All static jobs. We first analyze the case where all jobs disable
dynamic adaptation. This isolates Shockwave’s win due to so-
cial welfare maximization. The results (Figure 10) show that
all fair scheduling policies, i.e., Shockwave, Themis, Gavel,
and AlloX exhibit a relatively low fraction (<18%) of unfairly
scheduled jobs (FTF 𝜌>1.0), but Shockwave outperforms the
baseline algorithms by limiting the unfair fraction to less
than 5%. Shockwave has on average an 18% improvement
in makespan over Themis, Gavel, and AlloX, with no loss in
average JCT. Overall, these results show how maximizing so-
cial welfare over time can achieve a better fairness-efficiency
trade-off when compared to existing approaches.
Fairness and efficiency while being proactive. Shockwave

0 30000
Makespan (s)

1.0
0.93

0 10000
Average JCT (s)

1.0
0.32

0.0 0.5 1.0 1.5 2.0
Worst FTF (ρ)

1.0
1.58

0 10 20 30 40
Unfair Job Fraction (%)

1.0
33.33

Shockwave Pollux

Figure 11: [Simulation] Evaluating Shockwave’s and Pollux’s
efficiency and fairness.

sees a larger win in makespan as the fraction of dynamic
jobs increases. The speedup over Gavel, Themis, and AlloX
increases to 1.3× when the fraction of dynamic jobs grows
from 0.4 to 1.0. Our results also show that existing schedulers
that are reactive to dynamic scaling have suboptimal fairness
outcomes. Both Themis and AlloX exhibit an increased unfair
job fraction as the number of dynamic jobs increases. When
all jobs are dynamic, Themis schedules 28% of jobs unfairly
and AlloX schedules 22% of jobs unfairly, while Shockwave
has a relatively (9%) low fraction of unfairly-scheduled jobs.

8.7 Shockwave versus Pollux

To compare the scheduling policies used by Pollux and Shock-
wave, we run both systems using the same workload trace
provided by Pollux. We also first run the Pollux simulator
to collect the batch size schedule observed at runtime and
use that as an input to the Shockwave simulator. Thus, both
systems see the same set of input jobs and the same batch size
schedule, and hence, job processing times should match even
with dynamic scaling.

JCT. From Figure 11, we see that Pollux has a 3× improve-
ment in average JCT over Shockwave. Pollux can scale the
number of workers of a job, which leads to reduced resource
contention and improved responsiveness. In fact, we found
that Pollux reduces the requested GPU hours per job by 2.4×
when compared to the original trace. As our Shockwave pro-
totype does not change the number of workers used by a job,
it preserves the contention level in the trace (2.4× larger than
Pollux) and thus exhibits inferior responsiveness. We note
that as seen in Figure 7, Shockwave has comparable JCTs
with other baselines and the Pollux paper [36] also reports a
3× speedup over the baselines.

Finish time fairness. Shockwave significantly outperforms
Pollux w.r.t finish time fairness. This is because Pollux fo-
cuses on instantaneous fairness at each allocation but does
not systematically address long-term fairness. At every round,
Pollux’s 𝑝 − 𝑛𝑜𝑟𝑚 formulation penalizes unfair allocations
that lead to low instantaneous throughput for jobs but does not
preserve long-term fairness over multiple allocation rounds.
On the other hand, Shockwave’s dynamic market formulation
provably guarantees long-term fairness.

Makespan. Shockwave benefits from optimizing for long-
term efficiency and has a similar makespan as Pollux despite
not changing the number of workers dynamically.

Finally, we note that as discussed in 2.3 and Appendix A.2,
Pollux’s approach of automatically tuning the batch size and
the number of workers can lead to accuracy loss (e.g., 2% for

714 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 12: Solver Overhead.

0 15000 30000
Makespan (s)

1.0
0.99

1.14
1.22
1.23
1.36

0 5000 10000
Average JCT (s)

1.0
1.01
1.01
1.03
1.03
1.06

0 1 2 3
Worst FTF (ρ)

1.0
1.01
1.11
1.04
1.07

1.51
0 10 20 30 40 50

Unfair Job Fraction (%)

1.0
1.5
1.67
2.0

3.0
3.5

Oracle 0% noise 20% noise 40% noise 60% noise 100% noise

Figure 13: Shockwave’s scheduling efficiency and fairness
under different levels of prediction errors.

ResNet18 and up to 4% for DeepSpeech [36]). We argue that
Pollux’s accuracy loss and poor fairness properties make it
less attractive for practical deployments.

8.8 Varying Cluster Contention and Workload

We also vary the workload contention factor and compare
all policies on a smaller 14-GPU physical cluster. We find
that Shockwave’s fairness and efficiency win over the baseline
schedulers increases (decreases) as cluster contention grows
(drops). We include more details in Appendix I. We also com-
pared Shockwave using arrival patterns from the Pollux [36]
trace. Appendix J includes these results.

8.9 Solver Overhead

Shockwave uses a timeout knob (default 15s) to limit the over-
head of solving our market formulation. Figure 12 uses simu-
lation to show that on a 256 GPU cluster, the solver quality
improves with diminishing returns as we increase the solver
timeout from 1 second to 15 seconds. We measure solver
quality using the bound gap (how far the solution found at
the timeout is from the optimal). The relative bound gap at 15
seconds is small (0.03%, and 0.11%) for 500 and 1000 active
jobs. The bound gap at 15 seconds for 2000 jobs increases to
0.44%. While this exceeds the criterion (0.1%) recommended
by Gurobi [34], our results show a limited impact on effi-
ciency and fairness. We note that our solver runs in a separate
thread and is proactively invoked in the middle of the current
round. Thus, the solver overhead is hidden when it is less than
half-round duration.

8.10 Resilience to Prediction Error

Figure 13 shows Shockwave’s resilience to prediction errors
when varying levels of random noises (i.e., ± p%) are injected
into its interpolated job run time (under dynamic adaptation).
The experiment settings in Figure 13 are similar to those
in Figure 10 with all jobs enabled for dynamic batch size
scaling (i.e., (S, D)=(0, 1.0)). First, we observe that as the
injected errors grow, Shockwave’s worst-case FTF 𝜌 and the
fraction of unfairly scheduled jobs inflate slowly. A similar
steady trend holds for Shockwave’s average JCT. We argue

such robustness originates from the design principle of Nash
social welfare, which emphasizes common ownership and fair
sharing of cluster resources; the penalty is huge if skewed
training progress is present in the cluster and it leads the
scheduler to be conservative to jobs’ interpolated schedule
slacks that are predicated by the biased FTF estimates. Second,
we find that Shockwave’s scheduling efficiency drops as the
errors grow. Shockwave opportunistically prioritizes long-
running jobs over the short ones to improve makespan. Having
100% injected noise affects Shockwave’s estimation of job
length and lowers its scheduling efficiency by over 30%. Note
that this deteriorated efficiency is still on par with the baseline
schedulers (e.g., Themis, Gavel, and AlloX in Figure 10).

9 Related Work
We detail the comparison between Shockwave and exist-
ing schedulers (e.g., Gandiva [41], Optimus [35], DRF [17],
REF [43], Themis [29], AlloX [28], Tiresia [21], Gandivar-
Fair [10]) in Section 2, and spotlight Shockwave’s contribu-
tion from two angles. First, Shockwave is built on Nash social
welfare, a theoretically-grounded approach to co-optimize
long-term, rather than instantaneous, fairness and efficiency.
Second, Shockwave proactively plans schedules for dynamic
adaptation, while most existing schedulers only react to dy-
namic adaptation. Section 2 presented more details on the
limitations of existing DL cluster schedulers.

AFS (Apathetic Future Share) [24] is another elastic shar-
ing mechanism proactive to system dynamics. However, dy-
namic changes in AFS refer to job arrival and time-variant
cluster contention, while jobs themselves do not change.
Shockwave has a different focus: jobs’ resource demands
(and efficiency) dynamically change due to batch size scaling.
Further, AFS primarily focuses on improving average JCT
while Shockwave maximizes social welfare over time.

10 Conclusion
We presented Shockwave, a market-theory-based efficient and
fair scheduling framework for DNN training workloads. We
showed how existing schedulers fail to preserve fairness and
degrade efficiency by being reactive to dynamic adaption. To
address these challenges, we proposed a proactive approach
that uses dynamic markets and Bayesian statistics for schedul-
ing. Our experiments show that Shockwave can improve effi-
ciency and fairness compared to state-of-the-art schedulers.

Acknowledgements: We would like to thank the anony-
mous reviewers and our shepherd Zhihao Jia for their con-
structive comments that helped improve our paper. We would
also like to thank Zhao Zhang for helping us run experiments
on TACC resources and Mosharaf Chowdhury for feedback
on an earlier draft of this paper. This work was supported in
part by a University of Wisconsin Fall Research Competition
grant, by NSF grants CNS-2106199 and CNS-2105890 and
by the CIFellows program, organized by the Computing Re-
search Association and Computing Community Consortium.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 715

References
[1] AGARWAL, S., WANG, H., LEE, K., VENKATARAMAN,

S., AND PAPAILIOPOULOS, D. Adaptive gradient
communication via critical learning regime identifica-
tion. Proceedings of Machine Learning and Systems 3
(2021).

[2] ANGELOPOULOS, S., SARMA, A. D., MAGEN, A.,
AND VIGLAS, A. On-line algorithms for market equi-
libria. In International Computing and Combinatorics
Conference (2005), Springer, pp. 596–607.

[3] AZAR, Y., BUCHBINDER, N., AND JAIN, K. How
to allocate goods in an online market? In European
Symposium on Algorithms (2010), Springer, pp. 51–62.

[4] BARABÃASI, A., ALBERT, R., AND JEONG, H. Mean-
field theory for scale-free random networks. Physica A
272 (1999), 173–187.

[5] BRÂNZEI, S., CHEN, Y., DENG, X., FILOS-RATSIKAS,
A., FREDERIKSEN, S., AND ZHANG, J. The fisher mar-
ket game: Equilibrium and welfare. In Proceedings of
the AAAI Conference on Artificial Intelligence (2014),
vol. 28.

[6] BRANZEI, S., GKATZELIS, V., AND MEHTA, R. Nash
social welfare approximation for strategic agents.
In Proceedings of the 2017 ACM Conference on
Economics and Computation (New York, NY, USA,
2017), EC ’17, Association for Computing Machinery,
p. 611–628.

[7] BROWN, T., MANN, B., RYDER, N., SUBBIAH, M.,
KAPLAN, J. D., DHARIWAL, P., NEELAKANTAN, A.,
SHYAM, P., SASTRY, G., ASKELL, A., ET AL. Lan-
guage models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[8] CARAGIANNIS, I., KUROKAWA, D., MOULIN, H.,
PROCACCIA, A. D., SHAH, N., AND WANG, J. The
unreasonable fairness of maximum nash welfare. ACM
Transactions on Economics and Computation (TEAC)
7, 3 (2019), 1–32.

[9] CAZES, J., EVANS, R. T., DUBROW, A., HUANG, L.,
LIU, S., AND MCLAY, R. Preparing frontera for texas-
cale days. Computing in Science & Engineering (2021).

[10] CHAUDHARY, S., RAMJEE, R., SIVATHANU, M., KWA-
TRA, N., AND VISWANATHA, S. Balancing effi-
ciency and fairness in heterogeneous gpu clusters for
deep learning. In Fifteenth European Conference on
Computer Systems (EuroSys’20) (April 2020), ACM,
pp. 1–16.

[11] CHIN, T.-W., DING, R., AND MARCULESCU, D. Adas-
cale: Towards real-time video object detection using
adaptive scaling. In Systems and Machine Learning
Conference (2019).

[12] COFFMAN, JR, E. G., GAREY, M. R., AND JOHNSON,
D. S. An application of bin-packing to multiprocessor
scheduling. SIAM Journal on Computing 7, 1 (1978),
1–17.

[13] COLE, R., GKATZELIS, V., AND GOEL, G. Mecha-
nism design for fair division: Allocating divisible items
without payments. In Proceedings of the Fourteenth
ACM Conference on Electronic Commerce (New York,
NY, USA, 2013), EC ’13, Association for Computing
Machinery, p. 251–268.

[14] DELLA CROCE, F., AND SCATAMACCHIA, R. The
longest processing time rule for identical parallel ma-
chines revisited. Journal of Scheduling 23, 2 (2020),
163–176.

[15] FIKIORIS, G., AGARWAL, R., AND TARDOS, É. In-
centives in resource allocation under dynamic demands.
arXiv preprint arXiv:2109.12401 (2021).

[16] FRANKLE, J., DZIUGAITE, G. K., ROY, D. M., AND
CARBIN, M. Stabilizing the lottery ticket hypothesis.
arXiv preprint arXiv:1903.01611 (2019).

[17] GHODSI, A., ZAHARIA, M., HINDMAN, B., KON-
WINSKI, A., SHENKER, S., AND STOICA, I. Dom-
inant resource fairness: Fair allocation of multi-
ple resource types. In Proceedings of the 8th
USENIX Conference on Networked Systems Design
and Implementation (USA, 2011), NSDI’11, USENIX
Association, p. 323–336.

[18] GONZALEZ, T., AND SAHNI, S. Open shop scheduling
to minimize finish time. Journal of the ACM (JACM)
23, 4 (1976), 665–679.

[19] GORDON, G., AND TIBSHIRANI, R. Karush-kuhn-
tucker conditions. Optimization 10, 725/36 (2012), 725.

[20] GRANDL, R., CHOWDHURY, M., AKELLA, A., AND
ANANTHANARAYANAN, G. Altruistic scheduling in
multi-resource clusters. In 12th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 16) (Savannah, GA, Nov. 2016), USENIX Asso-
ciation, pp. 65–80.

[21] GU, J., CHOWDHURY, M., SHIN, K. G., ZHU, Y.,
JEON, M., QIAN, J., LIU, H., AND GUO, C. Tiresias:
A {GPU} cluster manager for distributed deep learn-
ing. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19)
(2019), pp. 485–500.

716 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[22] HE, X., LIAO, L., ZHANG, H., NIE, L., HU, X., AND
CHUA, T.-S. Neural collaborative filtering. In
Proceedings of the 26th International Conference on
World Wide Web (Republic and Canton of Geneva,
CHE, 2017), WWW ’17, International World Wide Web
Conferences Steering Committee, p. 173–182.

[23] HOFFER, E., HUBARA, I., AND SOUDRY, D. Train
longer, generalize better: Closing the generalization
gap in large batch training of neural networks. In
Proceedings of the 31st International Conference on
Neural Information Processing Systems (Red Hook,
NY, USA, 2017), NIPS’17, Curran Associates Inc.,
p. 1729–1739.

[24] HWANG, C., KIM, T., KIM, S., SHIN, J., AND PARK, K.
Elastic resource sharing for distributed deep learning.
In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21) (2021), pp. 721–
739.

[25] JEON, M., VENKATARAMAN, S., PHANISHAYEE, A.,
QIAN, U., XIAO, W., AND YANG, F. Analysis of
large-scale multi-tenant gpu clusters for dnn train-
ing workloads. In Proceedings of the 2019 USENIX
Conference on Usenix Annual Technical Conference
(2019), USENIX ATC ’19, p. 947–960.

[26] KESKAR, N. S., MUDIGERE, D., NOCEDAL, J.,
SMELYANSKIY, M., AND TANG, P. T. P. On large-
batch training for deep learning: Generalization gap
and sharp minima. The International Conference on
Learning Representations (ICLR) (2017).

[27] KUSHNER, H. J., AND WHITING, P. A. Convergence of
proportional-fair sharing algorithms under general con-
ditions. IEEE transactions on wireless communications
3, 4 (2004), 1250–1259.

[28] LE, T. N., SUN, X., CHOWDHURY, M., AND LIU, Z.
Allox: Allocation across computing resources for hybrid
cpu/gpu clusters. SIGMETRICS Perform. Eval. Rev.
46, 2 (Jan. 2019), 87–88.

[29] MAHAJAN, K., BALASUBRAMANIAN, A., SINGHVI,
A., VENKATARAMAN, S., AKELLA, A., PHAN-
ISHAYEE, A., AND CHAWLA, S. Themis: Fair and
efficient GPU cluster scheduling. In 17th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 20) (Santa Clara, CA, Feb.
2020), USENIX Association, pp. 289–304.

[30] MAI, L., LI, G., WAGENLÄNDER, M., FERTAKIS, K.,
BRABETE, A.-O., AND PIETZUCH, P. Kungfu: Mak-
ing training in distributed machine learning adaptive.
In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20) (Nov. 2020),
USENIX Association, pp. 937–954.

[31] MCCANDLISH, S., KAPLAN, J., AMODEI, D., AND
TEAM, O. D. An empirical model of large-batch train-
ing. CoRR abs/1812.06162 (2018).

[32] NACE, D., AND PIÓRO, M. Max-min fairness and its
applications to routing and load-balancing in commu-
nication networks: A tutorial. IEEE Communications
Surveys & Tutorials 10, 4 (2008), 5–17.

[33] NARAYANAN, D., SANTHANAM, K., KAZHAMI-
AKA, F., PHANISHAYEE, A., AND ZAHARIA, M.
Heterogeneity-aware cluster scheduling policies for
deep learning workloads. In 14th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 20) (Nov. 2020), USENIX Association,
pp. 481–498.

[34] PEDROSO, J. P. Optimization with gurobi and
python. INESC Porto and Universidade do Porto„
Porto, Portugal 1 (2011).

[35] PENG, Y., BAO, Y., CHEN, Y., WU, C., AND GUO, C.
Optimus: An efficient dynamic resource scheduler for
deep learning clusters. In Proceedings of the Thirteenth
EuroSys Conference (New York, NY, USA, 2018), Eu-
roSys ’18, Association for Computing Machinery.

[36] QIAO, A., CHOE, S. K., SUBRAMANYA, S. J.,
NEISWANGER, W., HO, Q., ZHANG, H., GANGER,
G. R., AND XING, E. P. Pollux: Co-adaptive cluster
scheduling for goodput-optimized deep learning. In 15th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21) (July 2021), USENIX
Association, pp. 1–18.

[37] QIN, H., RAJBHANDARI, S., RUWASE, O., YAN, F.,
YANG, L., AND HE, Y. Simigrad: Fine-grained adap-
tive batching for large scale training using gradient sim-
ilarity measurement. Advances in Neural Information
Processing Systems 34 (2021).

[38] SMITH, S. L., KINDERMANS, P.-J., AND LE, Q. V.
Don’t decay the learning rate, increase the batch size. In
International Conference on Learning Representations
(2018).

[39] WALDSPURGER, C. A. Lottery and stride scheduling:
Flexible proportional-share resource management.
PhD thesis, Massachusetts Institute of Technology,
1995.

[40] WIERMAN, A., AND HARCHOL-BALTER, M. Clas-
sifying scheduling policies with respect to un-
fairness in an m/gi/1. In Proceedings of the
2003 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems
(2003), pp. 238–249.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 717

[41] XIAO, W., BHARDWAJ, R., RAMJEE, R., SIVATHANU,
M., KWATRA, N., HAN, Z., PATEL, P., PENG, X.,
ZHAO, H., ZHANG, Q., YANG, F., AND ZHOU, L. Gan-
diva: Introspective cluster scheduling for deep learn-
ing. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation (USA,
2018), OSDI’18, USENIX Association, p. 595–610.

[42] YAO, Z., GHOLAMI, A., LEI, Q., KEUTZER, K., AND
MAHONEY, M. W. Hessian-based analysis of large
batch training and robustness to adversaries. Advances
in Neural Information Processing Systems 31 (2018).

[43] ZAHEDI, S. M., AND LEE, B. C. Ref: Resource elastic-
ity fairness with sharing incentives for multiprocessors.
In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, Feb. 2014),
p. 145–160.

[44] ZAHEDI, S. M., LLULL, Q., AND LEE, B. C. Am-
dahl’s law in the datacenter era: A market for fair proces-
sor allocation. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA)
(2018), IEEE, pp. 1–14.

718 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Dynamic Batch Scaling Degrades Accuracy
A.1 When does batch size scaling degrade accuracy

Improper batch size scaling can adversely affect convergence
and degrade the accuracy of the trained model. This is known
as generalization gap [23, 26] and its underlying reasons
are still not well understood. We next list different analyses
on when batch size scaling can affect final model quality:
(a) scaling up the batch size by 𝑘× reduces the number of
iterations per epoch by 𝑘×, and given a pre-specified number
of epochs, it reduces the overall iterations of back-propagation
by 𝑘×. Accuracy loss stems from a reduced number of model
updates [23]. (b) Scaling up the batch size reduces the noise
in the gradient estimate, but noise serves to regularize training
and can navigate the optimizer away from local minima. Batch
size scaling thus hurts generalization by reducing healthy
gradient noises. (c) Scaling up the batch size causes training to
converge to sharp minima, and the model outputs are sensitive
to small perturbations in the input. This results in a poorer
generalization [26].

Researchers have developed heuristics [1, 38] and adaptive
batch size scaling techniques (e.g., Gradient Norm [1], GNS
(Gradient Noise Scale) [31] and Heissan Eigenspectrum [42])
to mitigate generalization gap, but no single technique han-
dles all models, datasets and optimizers. Thus, today, there
are many different batch size scaling techniques in the ML
community. Pollux adopts GNS while recent work points out
some of the limitations in applying GNS [37] for batch size
scaling.

A.2 Example: Pollux’s automatic batch size scaling leads
to accuracy loss in NeuMF-m1-lm training

Figure 14: Comparing model accuracy (NCF-ml-1m) for
vanilla training (no batch size scaling), expert-set batch size
scaling, and Pollux’s autoscaling. The legends in the bottom
figure indicate batch size.

Figure 14 shows that statistical efficiency minimally de-
grades when scaling up from a batch size of 256 to 32768, and
that this is true even for early training epochs. Therefore, Pol-
lux immediately scales up the batch size from 256 to 32768
at epoch 1. However, we found that such early, aggressive

scaling leads to inferior validation accuracy, i.e. lower HR
(Hit Rate) and NDCG (Normalized Discounted Cumulative
Gain), when compared with vanilla training where dynamic
batch size scaling is disabled. An expert-set dynamic scaling
schedule that scales up the batch size to 32768 at epoch 3 and
this helps match the validation accuracy of vanilla training.

B Static Filters Degrade Efficiency, Fairness

GPU ID \ round ID 0 1 2 3 4 5 6
0 A A A B A A A
1 B B A B A A A
2 C B A C A B
3 C C C C B B
f 1/3 1/3 1/3 1/3 1/3 1/3 1/3

(a) Themis with 𝑓 = 1/3.

GPU ID \ round ID 0 1 2 3 4 5 6
0 A A A A A A A
1 A B B A B A A
2 B B C B B A
3 C C C C C B
f 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(b) Themis with 𝑓 = 1.0.

GPU ID \ round ID 0 1 2 3 4 5 6
0 B B B A A A A
1 B B B A A A A
2 C C C A A A A
3 C C C B B
f 2/3 2/3 2/3 1/3 1/3 1/3 1/3

(c) Shockwave with a dynamic filter 𝑓 .

Figure 15: Visualizations of schedules produced by using
different filters in Table 1. The cluster and job setting are the
same as those in Figure 1.

C Volatile Fisher Market (VFM)
C.1 Market formulation

VFM is a dynamic market and continues through rounds in-
dexed by 𝑡 = 1, . . . ,𝑇 . Each round is a fixed time interval, e.g.,
120s. Within each round, a central seller (i.e., the scheduler)
sells multiple types of resources (e.g., GPUs and/or CPUs) to
buyers (i.e., the contending jobs). 5 All resources are volatile.
Resources bought by a job in round 𝑡 cannot be carried over to
future rounds. There is a dynamic price for each resource type
in each round, and each job is endowed with an initial budget
to spend across rounds. The amount of endowment reflects
the priority of jobs. VFM assumes divisible resources [8].
(a) Buyers, Seller, and Resources. There exist 𝑁 buyer jobs
competing for 𝐽 different types of resources. (b) Allocation
(Purchase). Let 𝑥𝑖 𝑗𝑡 denote the allocation (purchase) of job 𝑖
for resource 𝑗 in round 𝑡. The resource provision is normalized
to one unit. For brevity, let 𝑥𝑥𝑥𝑖𝑡 denote the allocation vector
[. . . , 𝑥𝑖 𝑗𝑡 . . .] for job 𝑖 in round 𝑡, and let 𝑋𝑋𝑋 𝑖𝑖𝑖 denote the 𝐽 ×𝑇
allocation matrix for job 𝑖 over rounds, with rows and columns
corresponding to the resource types and round indices. (c)

5VFM supports multiple-resource allocation, but evaluation in this paper
is carried out only for GPU allocation.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 719

Budget, Price, and Payment. Job 𝑖 is endowed with a budget
𝐵𝑖 to spend over rounds. The price for resource 𝑗 in round 𝑡 is
𝑝 𝑗𝑡 ; The accrued payment over rounds for job 𝑖 is

∑
𝑗 ,𝑡 𝑝 𝑗𝑡𝑥𝑖 𝑗𝑡 .

Let 𝑃𝑃𝑃 denote a 𝐽 ×𝑇 price matrix, with 𝑃𝑃𝑃[𝑗 , 𝑡] = 𝑝 𝑗𝑡 . (d)
Performance (Utility) Function for Dynamic Adaptation.
We use the performance (utility) function 𝑈𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡) to map
received resources, that is, 𝑥𝑥𝑥𝑖𝑡 , to the performance gain of job
𝑖 (e.g., epoch progress). Note that 𝑈𝑖𝑡 can be different over
rounds to model time-variant performance under dynamic
adaptation. We limit performance functions in the CES family
[5], which are extensively used in system research.6

C.2 Solving Equilibrium of VFM

The market equilibrium captures the optimal allocation for
the 𝑁 jobs in each round, i.e. 𝑋𝑋𝑋∗

111, . . . , 𝑋𝑋𝑋
∗
𝑁𝑁𝑁

, and the op-
timal prices 𝑃𝑃𝑃∗ for different types of resources in each
round. An equilibrium is established if the following two
properties are satisfied. (a) Maximized Performance Un-
der Budget Constraint (Optimal Spending): Each job’s
performance is maximized under budget constraints. 𝑋𝑋𝑋∗

𝑖𝑖𝑖 =

argmax𝑋𝑋𝑋𝑖𝑖𝑖
𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖), 𝑠.𝑡.,

∑
𝑡

∑
𝑗 𝑝 𝑗𝑡𝑥𝑖 𝑗𝑡 ≤ 𝐵𝑖 , ∀𝑖. (b) Work-

conserving (Market Clearing): There is no leftover resource
if the price for the resource type is non-zero. That is, if 𝑝 𝑗𝑡 > 0,
then

∑
𝑖 𝑥𝑖 𝑗𝑡 = 1, ∀ 𝑗 , 𝑡.

Theorem C.1. For Volatile Fisher Market with linear or Leon-
tief (e.g., DRF [17]) utility, the solution of (3) captures the op-
timal allocation in the market equilibrium and the Lagrangian
dual to capacity constraints (i.e.,

∑
𝑖 𝑥𝑖 𝑗𝑡 ≤ 1, ∀ 𝑗 , 𝑡) captures

the equilibrium price.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑋𝑋𝑋111 ,...,𝑋𝑋𝑋𝑁𝑁𝑁

∑︁
𝑖

𝐵𝑖 𝑙𝑜𝑔𝑈𝑖 (𝑋𝑖) 𝑠.𝑡., 𝑈𝑖 (𝑋𝑖) =
∑︁
𝑡

𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡),∀𝑖,{
𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡) =

∑
𝑗 𝑢𝑖 𝑗𝑡𝑥𝑖 𝑗𝑡 ,∀𝑖, 𝑡 (Linear)

𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡) = 𝑚𝑖𝑛 𝑗
𝑥𝑖 𝑗𝑡

𝑎𝑖 𝑗𝑡
,∀𝑖, 𝑡 (Leontief)

,∑︁
𝑖

𝑥𝑖 𝑗𝑡 ≤ 1, ∀ 𝑗 , 𝑡, 𝑥𝑖 𝑗𝑡 ≥ 0, ∀𝑖, 𝑗 , 𝑡

(3)
For VFM with linear and Leontief performance function

at each instant, Theorem C.1 states that the solution of an
Eisenberg-Gale [5] styled program defined in (3) captures
the market equilibrium (cf., proof in Appendix D). Note that
even if the instantaneous utility is Leontief, the summed
utility over time is not Leontief in general.

D Proof of Theorem C.1
D.1 Linear Utility

Volatile Fisher Market (VFM) with linear utilities reduces to
a special case of static Fisher market, if we consider volatile
resource 𝑗 at each different time 𝑡 a unique type of resource.
Upon substituting the tuple of resource and time index (𝑗 , 𝑡)

6Themis [29] and Gavel [33] uses linear utility, Dominant Resource Fair-
ness (DRF) [17] uses Leontief utility, and REF (Resource Elasticity Fair-
ness) [43] uses Cobb-Douglas utility, which are all CES utility functions.

with a new resource index 𝑘 (i.e., (𝑗 , 𝑡) → 𝑘), the Eisenberg-
Gale program defined in (3) is equivalent to the program (4).

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑥𝑥𝑥

∑︁
𝑖

𝐵𝑖 𝑙𝑜𝑔𝑢𝑖 (𝑥𝑥𝑥𝑖𝑖𝑖) 𝑠.𝑡.

𝑢𝑖 (𝑥𝑥𝑥𝑖𝑖𝑖) =
∑︁
𝑘

𝑢𝑖𝑘𝑥𝑖𝑘∑︁
𝑖

𝑥𝑖𝑘 ≤ 1, ∀𝑘

𝑥𝑖𝑘 ≥ 0, ∀𝑖, 𝑘

(4)

Existing work [5] has proven that program (4) captures the
market equilibrium of a static Fisher market, and thus, it also
captures the market equilibrium of the equivalent VFM.

D.2 Leontief Utility

However, VFM with Leontief utilities has no direct link to
the classic static Fisher market. We prove the Eisenberg-Gale
(EG) program defined in (3) captures market equilibrium by
characterizing the Karush–Kuhn–Tucker (KKT) [19] condi-
tions. We rewrite (3) in a standard convex optimization form
and number the constraints as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑋𝑋𝑋111 ,...,𝑋𝑋𝑋𝑁𝑁𝑁

−
∑︁
𝑖

𝐵𝑖 𝑙𝑜𝑔𝑈𝑖 (𝑋𝑖) 𝑠.𝑡. (5a)

𝑈𝑖 (𝑋𝑖) ≤
∑︁
𝑡

𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡), ∀𝑖 (5b)

𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡) ≤ 𝑥𝑖 𝑗𝑡/𝑎𝑖 𝑗𝑡 , ∀𝑖, 𝑗 , 𝑡 (5c)∑︁
𝑖

𝑥𝑖 𝑗𝑡 ≤ 1, ∀ 𝑗 , 𝑡 (5d)

𝑥𝑖 𝑗𝑡 ≥ 0, ∀𝑖, 𝑗 , 𝑡 (5e)
Let 𝛽𝑖 , 𝜆𝑖𝑡 , 𝑝 𝑗𝑡 , 𝜂𝑖 𝑗𝑡 denote the Lagrangian multipliers cor-

responding to constraints (5b), (5c), (5d),(5e), respectively.
The Lagrangian dual function is

𝐿 (𝑥, 𝛽𝛽𝛽,𝜆𝜆𝜆, 𝑝𝑝𝑝,𝜂𝜂𝜂) = −
∑︁
𝑖

𝐵𝑖 𝑙𝑜𝑔𝑈𝑖 (𝑋𝑖)+∑︁
𝑖, 𝑗 ,𝑡

(𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡) −
𝑥𝑖 𝑗𝑡

𝑎𝑖 𝑗𝑡
)𝜆𝑖 𝑗𝑡

+
∑︁
𝑖

(𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖) −
∑︁
𝑡

𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡))𝛽𝑖+∑︁
𝑗 ,𝑡

(
∑︁
𝑖

𝑥𝑖 𝑗𝑡 −1)𝑝 𝑗𝑡 −
∑︁
𝑖, 𝑗 ,𝑡

𝑥𝑖 𝑗𝑡𝜂𝑖 𝑗𝑡

First, KKT requires a first-order condition of the La-
grangian function; the gradients to all primal variables and
Lagrangian multipliers should be zero. This implies that

𝜕𝐿

𝜕𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖)
= 0 =⇒ − 𝐵𝑖

𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖)
+ 𝛽𝑖 = 0 =⇒ 𝛽𝑖 =

𝐵𝑖

𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖)
𝜕𝐿

𝜕𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡)
= 0 =⇒

∑︁
𝑗

𝜆𝑖 𝑗𝑡 − 𝛽𝑖 = 0 =⇒ 𝛽𝑖 =
∑︁
𝑗

𝜆𝑖 𝑗𝑡

𝜕𝐿

𝜕𝑥𝑖 𝑗𝑡
= 0 =⇒ −

𝜆𝑖 𝑗𝑡

𝑎𝑖 𝑗𝑡
+ 𝑝 𝑗𝑡 −𝜂𝑖 𝑗𝑡 = 0

720 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The combination of the first two equations implies that∑︁
𝑗

𝜆𝑖 𝑗𝑡 =
𝐵𝑖

𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖)
, ∀𝑖, 𝑡

Lagrangian multipliers are nonnegative, and thus, 𝜂𝑖 ≥ 0
implies

𝑝 𝑗𝑡𝑎𝑖 𝑗𝑡 ≥ 𝜆𝑖 𝑗𝑡
Combining the last equation and the last inequality implies

that ∑︁
𝑗

𝑝 𝑗𝑡𝑎𝑖 𝑗𝑡 ≥
∑︁
𝑗

𝜆𝑖 𝑗𝑡 =
𝐵𝑖

𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖)
, ∀𝑖, 𝑡

=⇒ 𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖) ≥
𝐵𝑖∑

𝑗 𝑝 𝑗𝑡𝑎𝑖 𝑗𝑡
, ∀𝑖, 𝑡

=⇒ 𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖) =
𝐵𝑖

𝑚𝑖𝑛𝑡 ′ {
∑
𝑗 𝑝 𝑗𝑡 ′𝑎𝑖 𝑗𝑡 ′ }

, ∀𝑖

This states that for any job 𝑖, its overall utility is achieved
by purchasing resources only in certain time periods that
guarantee MBB (Maximal Bang-Per-Buck) [5] for the job,
where

∑
𝑗 𝑝 𝑗𝑡𝑎𝑖 𝑗𝑡 represents the unit cost to obtain one unit

of utility. MBB guarantees that any job’s utility accrued over
time is maximized given a fixed budget 𝐵𝑖 .

We have proved optimal spending (i.e., maximized utility
under budget limit) for each job at the solution of program
(D). The last step is to prove market clearing. KKT conditions
also require complementary slackness:

𝑝 𝑗𝑡 (
∑︁
𝑖

𝑥𝑖 𝑗𝑡 −1) = 0, ∀ 𝑗 , 𝑡 =⇒

if 𝑝 𝑗𝑡 > 0 then
∑︁
𝑖

𝑥𝑖 𝑗𝑡 = 1, ∀ 𝑗 , 𝑡

This implies that if a resource 𝑗 is traded in time period
𝑡, then it must be exhaustively allocated to the jobs and the
amount of leftover resources is zero. Therefore, we prove MC
(Market Clearing). An extra fact implied by the solution of
the EG program (D) is that since the objective is to maximize
social welfare (budget-weighted geometric mean of jobs’ util-
ities), and thus, there should be no money left by a job in the
solution of (D). This proves BC (Budget Clearing). That is,
the budget for all jobs will be completely burnt over periods.

In summary, proving Maximal Bang-Per-Buck, Market
Clearing and Budget Clearing establishes the VFM market
equilibrium produced by solving program (5).

E Proof of Theorem 4.0.1

Proof of (a):
∏
𝑖

𝜌𝑖=
∏
𝑖

𝑈𝑖 (𝐶𝑁) ·
∏
𝑖

𝑈𝑖 (𝑋𝑋𝑋𝑖𝑖𝑖

𝑁
)
−𝐵𝑖
𝐵 =

∏
𝑖𝑈𝑖 (𝐶𝑁)

NSWOT
−1. Since

∏
𝑖𝑈𝑖 (𝐶/𝑁) is a constant independent of

𝑋𝑖 , VFM equilibrium that maximizes NSWOT equivalently
minimizes the product of FTF (Finish Time Fairness) metrics
over all jobs, i.e.,

∏
𝑖 𝜌𝑖 .

Proof of (b). At VFM equilibrium, any job 𝑖 has maximized
utility under budget. When all job have an equal budget, job 𝑖
will not prefer any other jobs 𝑗’s allocation, since job 𝑖 can
afford to buy any other job’s allocation under same budget.
Formally, we get that𝑈𝑖 (𝑋𝑋𝑋 𝑖) ≥ 𝑈𝑖 (𝑋𝑋𝑋 𝑗), ∀𝑖, 𝑗 . Since the mar-

ket clears in VFM equilibrium, it is not possible that all jobs
have a strictly smaller resource share than 𝐶/𝑁 , and there
must exist a job 𝑘 such that its resource share is greater than
or equal to 𝐶/𝑁 , then we know𝑈𝑖 (𝑋𝑋𝑋 𝑗) ≥ 𝑈𝑖 (𝑋𝑋𝑋 𝑘) ≥ 𝑈𝑖 (𝐶𝑁),
and thus, Finish Time Fairness if proved.

F Stochastic Dynamic Program for Efficiency
and Fairness in Expectation

(a) State. Each job has a private, finite set of states.
For dynamic scaling of the batch size, a state is a tuple
(BatchSize,Epoch), which denotes the current batch size and
the current epoch (index). Let 𝑠𝑖𝑡 (𝑠𝑠𝑠𝑡) denote the state of
job 𝑖 in round 𝑡. (b) Policy. Let 𝑥𝑥𝑥𝑖𝑡 (𝑥𝑥𝑥𝑡) denote the resource
allocated to job 𝑖 in round 𝑡. An allocation policy 𝜋(𝑠𝑠𝑠𝑡 , 𝑥𝑥𝑥𝑡𝑡𝑡)
indicates the probability of making allocation 𝑥𝑥𝑥𝑡𝑡𝑡 to the jobs,
conditional on job states 𝑠𝑠𝑠𝑡 , in round 𝑡. We further limit 𝜋 to
be a deterministic policy in this study. (c) Transition Prob-
ability. We model the state transition with a probability ma-
trix 𝑃𝑖 (𝑠𝑖𝑡+1 |𝑠𝑖𝑡 , 𝑥𝑥𝑥𝑖𝑡), which indicates the probability of job 𝑖
transitioning to state 𝑠𝑖𝑡+1 from state 𝑠𝑖𝑡+1, under resource al-
location 𝑥𝑖𝑡 . Let 𝑃(𝑠𝑠𝑠𝑡+1 |𝑠𝑠𝑠𝑡 , 𝑥𝑥𝑥𝑡) denote the transition probabil-
ities for all the jobs. (d) Performance (Utility) Function for
Dynamic Adaptation. Let𝑈𝑖 (𝑠𝑖𝑡 , ·, 𝑠𝑖𝑡+1) denote the perfor-
mance gain (e.g., epoch progress) of job 𝑖 when transitioning
from state 𝑠𝑡 to the next state 𝑠𝑡+1. Let 𝑈𝑖 (𝑠𝑠𝑠𝑡𝑡𝑡 , ·, 𝑠𝑠𝑠𝑡+1) denote
the performance function for all jobs.

Maximized Nash social welfare in expectation. We con-
struct a linear program in (6) to search for an optimal pol-
icy that maximizes Nash social welfare in expectation, i.e.,
NSW𝑂𝑇𝐸 . Maximized NSW𝑂𝑇𝐸 co-optimizes efficiency and
fairness in expectation sense. The first constraint in (6) de-
fines expected cumulative utility under the policy; The second
constrains the summed allocation at each period 𝑡 not exceed-
ing resource provision, and allocation should be non-negative.
The third constrains valid probability transition between states.
Other constraints are omitted.

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜋

∑︁
𝑖

𝐵𝑖 𝑙𝑜𝑔 E𝜋 [𝑈𝑖], 𝑠.𝑡. (6)

E𝜋 [𝑈𝑖] =
𝑇−1∑︁
𝑡=1

∑︁
𝑠𝑠𝑠𝑡𝑡𝑡 ∈𝑆

∑︁
𝑥𝑥𝑥𝑡𝑡𝑡 ∈𝑋

∑︁
𝑠𝑠𝑠𝑡+1∈𝑆

[𝜋(𝑠𝑠𝑠𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑡𝑡𝑡) ·𝑃(𝑠𝑠𝑠𝑡+1 |𝑠𝑠𝑠𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑡𝑡𝑡)

·𝑈𝑖 (𝑠𝑠𝑠𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑡𝑡𝑡 , 𝑠𝑠𝑠𝑡+1)], 𝜋(𝑠𝑠𝑠𝑡 , 𝑥𝑥𝑥𝑡) ≥ 0 and 𝜋(𝑠𝑠𝑠𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑡𝑡𝑡) = 0
if | |𝑥𝑡 | |𝓁1 > 1 or 𝑥𝑡 < 0, ∀𝑠𝑠𝑠𝑡𝑡𝑡 ∈ 𝑆,∀𝑥𝑥𝑥𝑡𝑡𝑡 ∈ 𝑋, 𝑡 = 1, . . . ,𝑇∑︁

𝑥𝑥𝑥111

𝜋(𝑠𝑠𝑠111, 𝑥𝑥𝑥111) = 𝑏(𝑠𝑠𝑠111),∑︁
𝑥𝑥𝑥𝑡

𝜋(𝑠𝑠𝑠𝑡 , 𝑥𝑥𝑥𝑡) =
∑︁
𝑠𝑠𝑠𝑡−1

∑︁
𝑥𝑥𝑥𝑡−1

𝑃(𝑠𝑠𝑠𝑡 |𝑠𝑠𝑠𝑡−1, 𝑥𝑥𝑥𝑡−1)𝜋(𝑠𝑠𝑠𝑡−1, 𝑥𝑥𝑥𝑡−1),

𝑡 = 2, . . . ,𝑇

G Shockwave Design Details
Shockwave plans the schedule for a configurable number (𝑇)
of future rounds (default 𝑇 : 30 two-minute rounds) and re-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 721

computes the schedule when the planned rounds elapse or
when jobs arrive or complete. Shockwave’s solved schedule is
a 𝑁 ×𝑇 binary matrix X[𝑗 , 𝑡]. 𝑁 is the total number of active
jobs available for scheduling. X[𝑗 , 𝑡] = 1 (X[𝑗 , 𝑡] = 0) repre-
sents scheduling (descheduling) job 𝐽 𝑗 in round 𝑡 (𝑡 = 1, . . . ,𝑇).
We next describe the logic in one shot of schedule solving.
Decomposing job schedules to regime schedules. If dy-
namic adaptation is predicted to occur within the future
planning window, the scheduler must incorporate dynamic
changes of jobs’ throughputs when solving the schedule.

Example - A job’s dynamic adaptation process has two
regimes. The job is currently in the first regime at epoch 5 and
the scheduler predicts that the second regime will start from
epoch 15. Suppose the planning window is 30-minute long
and the epoch duration for the first and second regime are 2
minutes and 1 minute, respectively. Then dynamic adaptation
can start as early as the 20th minute in the window, and a 2×
change in throughput should be concerned.

To support dynamic changes in job throughputs, we de-
compose a job’s schedule into its regimes’ schedules, such
that each regime is a micro-job with static throughput. In
our above example, epochs 5 to 14 will be one micro-job
while epoch 15 onward will be the second micro-job. We
build a 𝐾 ×𝑇-dimensional binary matrix Y 𝑗 [𝑘, 𝑡] to represent
the schedule of job 𝐽 𝑗’s 𝐾 regimes that can fit in the plan-
ning window. Y 𝑗 [𝑘, 𝑡] = 1 (Y 𝑗 [𝑘, 𝑡] = 0) indicates scheduling
(descheduling) the 𝑘-th regime of job 𝐽 𝑗 to the 𝑡-th round in
the window. Note that partial order constraints are needed to
preserve the sequential order between regimes.

G.1 Implementing Nash Social Welfare over Time

We compute the utility of job 𝐽 𝑗 under schedule Y 𝑗 [·, ·] as:

UTIL 𝑗 (Y 𝑗 [·, ·]) =
𝐹𝑗

𝐸 𝑗
+

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

Y 𝑗 [𝑘, 𝑡] ·𝐷 ·TH(𝑗 , 𝑘)
𝑄 𝑗 ·𝐸 𝑗

(7)

Job 𝐽 𝑗 ’s utility equals its current epoch progress percentage
(num. finished epochs 𝐹𝑗 divided by total num. epochs 𝐸 𝑗),
plus the resulting epoch progress percentage under allocation;
the latter sums up the progress percentages for the job across
regimes and rounds in the window.7. At the cluster level,
the (logarithm of) Nash social welfare over time (NSWOT)
integrates the utilities of individual jobs. Y[·, ·, ·] is a three-
dimensional array that includes the schedule variable for all
active jobs’ regimes, at all rounds, in the planning window.
As stated in §4.2, maximizing NSWOT yields an equilibrium
and establishes efficiency and fairness guarantees.

WELFARE(Y[·, ·, ·]) =
𝑁∑︁
𝑗=1
𝑙𝑜𝑔UTIL 𝑗 (Y 𝑗 [·, ·]) (8)

7The epoch progress at a single round 𝑡 for the 𝑘-th regime equals the
duration of each round (𝐷 𝑗) times if the regime is scheduled to the round
(Y[𝑘, 𝑡]), then divided by epoch duration Q(𝑗)/THPT(𝑗 , 𝑘)

G.2 Implementing Estimators for Long-Term Effects

As previously stated, maximizing social welfare for an (in-
finitely) long time horizon is difficult due to prohibitive com-
putational overhead and limited predictability. Another rea-
son is that jobs arrive and complete online, and frequent re-
planning is unavoidable. In practice, Shockwave only plans the
schedule for a finite length window (e.g, 30-60 minutes), and
we design estimators that can capture the long-term fairness
and long-term efficiency that arise from short-term planning.
An estimator for long-term fairness.

𝜌̂(𝑗) =
𝐿 𝑗 +𝑊 𝑗 + R̂(j) ·Navg (𝑗)

P̂(j) ·Navg (𝑗)
(9)

We estimate the finish time fairness (FTF) 𝜌̂(𝑗) of job 𝐽 𝑗 as
its predicted job completion time (the sum of attained service
time 𝐿 𝑗 , waiting time 𝑊 𝑗 , and the interpolated remaining
run time R̂(j)𝑁𝑎𝑣𝑔 (𝑗)), divided by its predicted job run time
(P̂(j)𝑁𝑎𝑣𝑔 (𝑗)).

P̂(j) (R̂(j)=P̂(j) − 𝐿 𝑗) is the total (remaining) run time un-
der isolated resources predicted using the Bayesian posterior.
Similarly to prior work [29], we linearly scale the isolated
run time with a contention factor 𝑁𝑎𝑣𝑔 (𝑗) to compute the run
time under contention. In this paper, we define the contention
factor as, within a fixed time range, the ratio between the
number of jobs requesting GPUs and the overall number of
GPUs provisioned in the cluster, and a job’s contention factor
𝑁𝑎𝑣𝑔 (𝑗) only accounts for the time range it is either queued
or running.

Shockwave plugs in the 𝑘-th power of FTF 𝜌s of jobs into
social welfare function (see Equation 11) as weights. The
weights in the social welfare function act as the budgets as-
signed to jobs in the volatile Fisher market. If a job is pre-
dicted to be unfairly scheduled (large FTF 𝜌) in the long
term, VFM correspondingly assigns a higher budget for it and
proactively prioritizes the job in the planning window.
An estimator for long-term efficiency. The efficiency esti-
mator estimates the final makespan to complete all current
jobs’ training epochs and penalizes schedules (in the plan-
ning window) that potentially increase the makespan estimate.
However, the final makespan is unknown at the current instant
and, in practice, Shockwave penalizes increasing the lower
bound of it. Shockwave uses the lower bound given in [12].
Let R(Y 𝑗 [·, ·]) denote the remaining run time of job 𝐽 𝑗 from
the planning window. The lower bound of makespan (for the
remaining epochs) is estimated as the maximum between the
sum of the remaining run time divided by the number of GPUs
in the cluster (i.e., 𝑀), and the longest remaining run time
among jobs. Intuitively this takes the maximum between the
longest job remaining and the makespan if all remaining jobs
were evenly spread out across the cluster.

H(Y[·, ·, ·]) = 𝑚𝑎𝑥{
∑
𝑗 R(Y 𝑗 [·, ·])

𝑀
, 𝑚𝑎𝑥 𝑗R(Y 𝑗 [·, ·])} (10)

Finally, we plug in the long-term efficiency estimator to so-

722 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 15000 30000
Makespan (s)

CF
=3

CF
=2

CF
=1

.5

1.0

1.0

1.0

1.03

0.9

0.92

1.33

1.16

1.07

1.35

1.17

1.07

1.36

1.23

1.11

1.12

1.09

1.1

0 7500 15000 22500
Average JCT (s)

CF
=3

CF
=2

CF
=1

.5

1.0

1.0

1.0

1.67

1.52

1.12

1.01

1.06

0.98

0.96

0.94

0.96

0.86

0.93

0.96

0.93

0.98

1.0

0 2 4 6 8
Worst FTF (ρ)

CF
=3

CF
=2

CF
=1

.5

1.0

1.0

1.0

3.74

4.05

1.6

1.42

1.33

1.16

1.29

1.04

1.14

2.19

1.45

1.15

3.25

3.38

1.83

0 25 50 75 100
Unfair Job Fraction (%)

CF
=3

CF
=2

CF
=1

.5

1.0

1.0

1.0

5.57

17.0

25.0

2.14

10.0

5.0

1.71

6.0

5.0

1.71

5.0

5.0

2.57

3.0

15.0

Shockwave OSSP Themis Gavel AlloX MST

Figure 16: [Physical] Evaluating the scheduling efficiency
and fairness of Shockwave under different contention factors
(CF) in a 14-GPU physical cluster.

cial welfare maximization as a regularizer (See Equation 11).
𝜆 is a tunable coefficient that controls the degree of regular-
ization. Shockwave yields similar makespan and fairness for
different workloads when 𝜆 is between 1e-1 and 1e1.

G.3 An End-to-End Schedule Optimizer

Finally, Equation 11 shows the optimization problem solved
by Shockwave in a given round. The output of the solver is
schedule for each regime and the job schedule for the round
can be simply translated from the regime schedule.

Maximize
𝑌1 ,...,𝑌𝑁

1
𝑁𝑀

𝑁∑︁
𝑗=1
𝜌(𝑗)𝑘 𝑙𝑜𝑔[UTIL 𝑗 (Yj [·, ·])]

− 𝜆

𝑍0
H(Y1 [·, ·], . . . ,YN [·, ·])

(11)

𝑍0 is a normalization coefficient, which is the sum of the
interpolated run time across all jobs. More details about the
constraints can be found in Appendix H.

Handling dynamic job arrival. Similar to existing sched-
ulers, such as Themis [29], Tiresias [21], Pollux [36] and
Gavel [33], Shockwave periodically adds newly arriving jobs
to the schedule solver (Equation 11). The fairness objective
in Shockwave (Equation 9) automatically handles selecting
between newly-arrived short jobs or jobs that have been wait-
ing in the queue for a long time, according to their pressure
on breaking finish time fairness.

H Constraints Of Program 11
Program 11 requires the following constraints (details omit-
ted). (1) Preserving the order of regimes. Any regime is pro-
hibited to run before precedent regimes are complete. (2)
Work-conserving (Market Clearing). Idle resources are not
allowed when there are ready jobs. (3) Capacity Limits. GPUs
assigned to jobs should not exceed the overall provision.

I Varying Contention Factor
We define the contention factor as, within a fixed time range,
the ratio between the number of jobs requesting GPUs and
the overall number of GPUs provisioned in the cluster. A
larger contention factor indicates more jobs competing GPU
resources at an instant. So far, we have assumed a default

0 30000 60000
Makespan (s)

1.0
1.09
1.13
1.15
1.14
1.15
1.1

0 25000 50000
Average JCT (s)

1.0
2.86

1.11
1.12
1.08
1.0

1.32
0 3 6 9 12 15

Worst FTF (ρ)

1.0
8.05

2.37
3.07
3.54
3.47

1.51
0 20 40 60 80 100

Unfair Job Fraction (%)

1.0
10.5

3.17
3.92

5.08
4.75

6.92

Shockwave OSSP Themis Gavel AlloX MST Gandiva-Fair

Figure 17: [Simulation] Evaluating Shockwave’s scheduling
efficiency and fairness for Pollux trace on a 32-GPU cluster.

contention factor (three). We next vary the contention factor
and compare policies on a smaller 14-GPU physical cluster.

Shockwave’s win in efficiency decreases as there is more
resource slack and less contention in the cluster. Shockwave’s
improvement in makespan over Gavel, AlloX, and Themis
decreases (from 35% for contention factor 3) to 19% (8%)
when the contention factor is lowered to 2 (1.5) (cf. Figure 16).
A similar trend for cluster utilization is found. Shockwave’s
improvement in cluster utilization drops to 19% (5%). Al-
though the finish time fairness of all policies improves as the
contention factor decreases, Shockwave still performs better
than the baselines. Shockwave keeps the fraction of unfairly
scheduled jobs (i.e., the fraction of jobs with FTF 𝜌>1) low
when varying the contention factor. The average fraction of
unfairly scheduled jobs for Shockwave is 8.67% when vary-
ing the contention factors, outperforming the baselines by
2.85× (see Figure 16). When the contention factor is lowered
to 2, Shockwave maintains a worst-case FTF 𝜌 of 1.2, out-
performing Themis, Gavel, and AlloX by 1.27×. When the
contention factor is further lowered to 1.5, Shockwave and all
the baselines worst-case FTF approach 1 and the difference
is insignificant.

J Varying the Cluster Trace
In previous subsections, we presented the results of Shock-
wave using synthetic traces generated by the Gavel [33] work-
load generator. In this subsection, we extend the evaluation
using real DNN training traces provided by the Pollux [36]
system. The Pollux trace provides the duration and arrival
timestamps for training jobs and is extracted from a previous
workload analysis [25]. Figure 17 shows the comparison be-
tween Shockwave and the baseline algorithms and we can see
a similar trend as in previous sections. However, the win in
makespan over Themis, Gavel, and AlloX drops from 30-35%
to 20% on the Pollux trace. In previous synthetic traces, the
duration of jobs has a greater diversity (2×) than in the Pol-
lux trace, and thus long-running jobs have a larger impact on
final makespan and cluster utilization. Therefore, opportunis-
tically prioritizing these long-running jobs leads to greater
improvement when there is more diversity among jobs.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 723

Protego: Overload Control for Applications with Unpredictable Lock Contention

Inho Cho1 Ahmed Saeed2 Seo Jin Park1 Mohammad Alizadeh1 Adam Belay1

1MIT CSAIL 2Georgia Tech

Abstract
Modern datacenter applications are concurrent, so they require
synchronization to control access to shared data. Requests
can contend for different combinations of locks, depending on
application and request state. In this paper, we show that locks,
especially blocking synchronization, can squander throughput
and harm tail latency, even when the CPU is underutilized.
Moreover, the presence of a large number of contention points,
and the unpredictability in knowing which locks a request
will require, make it difficult to prevent contention through
overload control using traditional signals such as queueing
delay and CPU utilization.

We present Protego, a system that resolves these problems
with two key ideas. First, it contributes a new admission con-
trol strategy that prevents compute congestion in the presence
of lock contention. The key idea is to use marginal improve-
ments in observed throughput, rather than CPU load or latency
measurements, within a credit-based admission control algo-
rithm that regulates the rate of incoming requests to a server.
Second, it introduces a new latency-aware synchronization
abstraction called Active Synchronization Queue Manage-
ment (ASQM) that allows applications to abort requests if
delays exceed latency objectives. We apply Protego to two
real-world applications, Lucene and Memcached, and show
that it achieves up to 3.3× more goodput and 12.2× lower
99th percentile latency than the state-of-the-art overload con-
trol systems while avoiding congestion collapse.

1 Introduction
One of the key objectives of datacenter operators is to maxi-
mize the utilization of limited resources. While operating a
server close to its capacity maximizes its throughput, it also
makes it susceptible to overload due to surges in demand.
Such surges can occur due to variability in request arrival
patterns and sizes, and service failures. The resulting server
overload can cause receive livelock, where the server builds
up a long queue of requests that get starved because the server
is busy processing new packet arrivals instead of completing
pending requests [22].

The conventional solution is to use overload control to regu-
late incoming requests and shed excess load, ensuring that the
server can achieve both high utilization and low latency. Exist-
ing overload control schemes focus on CPU overload [9, 34]
or end-to-end response time [32]. However, we found these
approaches perform poorly under lock contention, especially
with blocking synchronization (e.g., mutexes) that causes a
thread to yield rather than spinning on the CPU (§2). For these
cases, contention leads to long queues of requests waiting to
acquire a critical section, increasing tail latency and wasting
CPU resources.

To better understand the challenge of managing lock con-
tention, consider a key-value store, where the key-value pairs
are grouped together based on the hashes of their keys. Access
to a bucket (i.e., a group of items with the same hash) is pro-
tected by an item lock. This means that in a key-value store,
the number of locks corresponds to the number of buckets.
However, a GET request acquires only a single lock which
synchronizes access to the bucket holding the data it’s access-
ing. As a specific piece of data becomes popular, the lock
protecting its bucket becomes highly contended, negatively
impacting the latency of all requests attempting to access that
bucket. However, it is important to note that such contention
and high delay impact some but not all of the requests the
application handles. The remainder of the requests can be
accessing different buckets incurring no contention, finishing
with minimal latency.

To maintain good performance under lock contention, one
must reduce the load on the contended lock, and thus the
latency of requests attempting to acquire it. On the other hand,
this should not be done in a way that affects the throughput of
requests not facing contention. The classic tension between
throughput and latency is exacerbated in this case due to the
unpredictability of request behavior: the locks accessed by a
request can only be known after the execution of the request
starts. Thus, the delay faced by different requests, that look
identical when admitted to the server, can be very different
depending on whether they attempt to access a contended
resource or not. This renders overload signals that consider the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 725

request

If (condition)
datapath_1();

Else
datapath_2();

CPU mutexes work

response

1 − 𝑝𝑝

𝑝𝑝

Figure 1: A simple example application with two global mu-
texes. With a probability p, the request takes the first data path
(red arrow).

overall delay of requests ineffective. Furthermore, blocking
locks can prevent the load from saturating the CPU, rendering
CPU-based overload signals ineffective as well.

In this paper, we attempt to answer the following ques-
tion: how should an overload controller decide to admit a
request when it can’t estimate the delay the request will face?
Tackling this challenge is exacerbated by the fact that some
applications have thousands of locks. Moreover, shedding
load after processing a request requires cleaning up the state
and resources touched by that request.

We present Protego, a system that provides overload con-
trol for applications that can experience lock contention (§3).
Instead of using traditional overload control signals, it ad-
mits load as long as it observes throughput improvements.
This approach ensures high throughput for requests not ex-
periencing contention. However, it can exacerbate lock con-
tention. Thus, Protego introduces new latency-aware synchro-
nization primitives that allow applications to maintain low
latency at contended critical sections, aborting requests when
lock contention is too severe. As a result, Protego can of-
fer the right load to maximize a server’s throughput, even if
some requests must be aborted during processing. We imple-
mented Protego and compared it to SEDA and Breakwater,
two state-of-the-art overload schemes, for three applications:
Memcached, Lucene, and a synthetic application (§4). Our
evaluation demonstrates that Protego outperforms SEDA and
Breakwater for a wide range of workloads and applications
(§5). For example, when Memcached is handling a SET-heavy
workload, Protego achieves up to 1.6× more goodput with
5.7× lower 99th percentile latency compared to SEDA.

Protego has some limitations. It requires application-level
code changes to adopt our synchronization API. Furthermore,
existing overload control schemes can achieve slightly higher
throughput than Protego when locks are not the bottleneck
and requests are shorter than a microsecond.

Protego is an open-source software available at https:
//inhocho89.github.io/protego/.

2 Motivation
2.1 Locking Complicates Overload Control
In modern datacenter applications, RPC requests often re-
quire blocking synchronization (e.g., mutexes, semaphores,
and conditional variables) to serialize access to shared data.
However, blocking synchronization primitives can experience

0

1

2

3

0 1 2 3 4 5

T
hr

ou
gh

pu
t (

kR
PS

)

Total Data path 1 Data path 2

Data path 2 saturated

0

5

10

15

0 1 2 3 4 5

p9
9

L
at

en
cy

 (s
)

Offered Load (kRPS)
Figure 2: gRPC performance for the example application of
Figure 1 (p= 20%). After acquiring a mutex, requests busy-loop
for a time sampled from an exponential distribution with 1 ms
average. Four cores are allocated for this experiment, one for
each data path and two to adsorb any system overhead, ensuring
that the CPU is not bottlenecked.

contention when multiple requests attempt to access the same
critical section, leading to a performance bottleneck. This is
further complicated by the fact that the locks required by each
request may be different depending on the request payload
and the program’s state. This makes it hard to know the data
path a request will take before its actual execution.

The crux of this problem is that seemingly identical re-
quests can have different execution paths at the server with
different latency and throughput characteristics. This unpre-
dictable behavior makes admission control hard, leading to
the question: which data path should admission control con-
sider when admitting new requests? To better understand this
dilemma, consider the scenario in Figure 1. Incoming requests
can take one of two paths, each protected with a different mu-
tex. Requests can take the first data path with probability p,
where 0≤ p≤ 1, and the second path with probability 1− p.
We implemented this simple scenario in gRPC running on
Linux. Figure 2 shows the performance of this scenario with
p = 20% under various loads generated by client machines
with an open-loop Poisson arrival process.

The existence of multiple data paths with different lock
bottlenecks creates a dilemma. As shown in Figure 2, dif-
ferent datapaths are saturated at different offered load levels.
Typically, clients and servers can’t predict whether a request
will take the datapath currently bottlenecked (data path 2 in
the example). Here, the admission control dilemma emerges
from the existence of multiple desirable operating points. If
the operator desires low latency for all paths, then they have
to sacrifice throughput, admitting only enough load to sat-
urate the most congestion execution path (i.e., 1.2 kRPS in
this example). On the other hand, if they desire high through-
put, then they have to admit a high load and deal with the
congested path through other means (e.g., dropping a request

726 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://inhocho89.github.io/protego/
https://inhocho89.github.io/protego/

0
0.2
0.4
0.6
0.8

1

0 10 20 30 40 50

N
or

m
. T

hr
ou

gh
pu

t

Offered Load (kRPS)

SEDA Breakwater try_lock

Better

(a) Normalized Throughput

0.1

1

10

100

1000

10000

0 10 20 30 40 50

N
or

m
. p

99
 L

at
en

cy

Offered Load (kRPS)

Better

(b) Normalized 99%-ile latency

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50

D
ro

p
R

at
e

Offered Load (kRPS)

(c) Drop Rate

Figure 3: Performance of Breakwater, SEDA, and trylock for the example application of Figure 1 (p = 20%) with 100 µs average service
time on Shenango. Throughput and 99th percentile latency are normalized by the performance of Protego.

after admitting it). Next, we show that no existing overload
control scheme can navigate this dilemma and produce good
results in such scenarios.

2.2 Problems with Existing Overload Control Schemes
Overload control attempts to operate a server near its capacity
with minimal SLO violations and request drops. The basic
idea behind overload control is to keep track of the load on the
server using a signal, adjusting the admitted load based on that
signal. Multiple signals have been proposed to improve the
accuracy of admission control, including CPU utilization [30],
end-to-end delay [32], and queuing delay [9,19,34]. However,
none of these signals are useful in lock contention scenarios
where the operator attempts to maximize throughput while
maintaining low latency.

For example, Breakwater [9] and Swift [19] use past obser-
vations to predict the amount of queueing delay each request
will face. However, in the presence of thousands of locks, it’s
unclear which queueing delay value (or statistic), if any, can
be used to perform admission control. This is because admis-
sion control doesn’t know in advance which locks requests
will access, making it impossible to decide which value to
react to without overestimating or underestimating overload.
Note that any CPU-based metrics also fail as the CPU might
not be the bottleneck in lock contention scenarios.

One possible approach to handle problematic or unpre-
dictable lock behavior is to leverage existing primitives like
try_lock() or timed_mutex(). Specifically, such primi-
tives will allow requests to fail, avoiding latency, if the lock
cannot be acquired due to congestion. However, overload con-
trol schemes that rely exclusively on request drops do not
scale well due to the large overhead of packet drops. Further-
more, relying on existing primitives is not straightforward;
try_lock() is a very aggressive overload control mechanism
because it causes a request to fail on the first failed attempt
to acquire a lock. On the other hand, timed_mutex() is too
relaxed, forcing a request to wait for the full waiting time
even under severe congestion conditions.

We demonstrate the limitation of existing overload control
schemes, including the usage of try_lock(), by implement-
ing those schemes for the scenario described in Figure 1,
setting the average service time to 100 µs. However, rather

than using gRPC, we leverage the existing implementation of
SEDA and Breakwater [3]. Breakwater spawns a new thread
per incoming request. We limit the number of spawned threads
to bound the memory usage of the system. When a request
is aborted, a failure message is reported to the client. The
results are shown in Figure 3, comparing the throughput, tail
latency, and drop rate of existing schemes, normalized by the
performance of Protego.

SEDA successfully bounds the tail latency as it rate-limits
clients based on the measured tail end-to-end latency. How-
ever, by considering only the tail latency, it reacts to the most
congested path, leading to poor throughput as it underutilizes
the uncongested path. Breakwater reacts only to queueing
delay in the thread queue or the packet queue, reacting only
to CPU and network overload. Thus, it doesn’t perform any
rate-limiting because neither the CPU nor the network is the
bottleneck. Breakwater’s behavior leads to high utilization
and very high latency. Using try_lock() allows the sys-
tem to achieve near-ideal latency while suffering from an
extremely high drop rate and poor throughput. This is caused
by try_lock()’s aggressiveness in dropping requests, wast-
ing CPU and throughput even at low loads. Our proposal
overcomes the shortcomings of existing systems, achieving
the highest throughput while keeping the latency and drop
rate low.

2.3 Challenges
Existing overload control schemes, developed for CPU over-
load scenarios, suffer significant performance degradation
when handling lock contention. The key issue when dealing
with lock contention is the unpredictability of the latency
that a request will face. Particularly, the overload controller
doesn’t know which lock a request will require. This issue
leads to the following challenges:
1. No existing overload control signal is viable. As discussed
earlier, delay reflects the state of the most congested path.
On the other hand, CPU utilization is not helpful when the
bottleneck is not the CPU. Thus, we need a new approach to
assessing the capacity of the server in order to make accurate
admission control decisions.
2. Drops are inevitable to achieve high throughput. An over-
load controller that doesn’t react to the most congested data

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 727

RPC Server

request
CPU

mutex

response

Th
ro

ug
hp

ut

Incoming Loadfailure
Drop Drop

Blocking Queue Management Admission control

credit Credit pool

Figure 4: Protego Overview

path will incur a high delay for requests taking that path. How-
ever, it must offer enough load to keep other, less-congested
paths busy. Therefore, maintaining both an acceptable SLO
and high CPU utilization requires dropping requests on the
most congested paths and reporting failures to the client. Early
failure reporting allows the client to issue the requests to an-
other replica while maintaining the SLO of the request.
3. Any viable solution must scale to a large number of locks.
Modern programs can have thousands of data paths and syn-
chronization primitives. An incoming request can take any of
them depending on the data it carries. Thus, the admission
control scheme needs to scale to a large number of locks with
minimal per-lock overhead.

3 System Design
There is a fundamental tradeoff between throughput and drop
rate in the presence of unpredictable synchronization. To
achieve high throughput, clients should offer enough load for
the server to fully utilize its uncontended data paths. Unfor-
tunately, this permits some congestion to occur in its con-
tended data paths. Thus, our high-level strategy is to use an
admission control scheme that admits enough load to keep
all data paths operating at full capacity, combined with an
Active Queue Management (AQM) mechanism that drops
excess load on the contended data paths. Our admission con-
trol scheme draws insight from network congestion control
algorithms like PCC [12]. Specifically, Protego does not react
to a specific overload signal. Rather, it observes the impact
of its current admission rate on the behavior of the system,
admitting more load only when it improves overall system
performance.

Figure 4 illustrates an overview of Protego combined with
a simple RPC server that uses a global mutex. Protego is com-
posed of two main components: an admission controller and
an AQM mechanism. The admission controller leverages a
credit-based scheme, similar to the scheme used in Breakwa-
ter [9]. Protego only changes the way the number of available
credits is decided, adjusting the number of credits by observ-
ing the impact of increasing the number of available credits
on achieved throughput. The AQM mechanism uses Active
Synchronization Queue Management (ASQM), a novel form
of AQM that drops requests at lock acquisition time to prevent
blocking on a critical section for an excessive amount of time.
When a request is dropped, Protego reports this failure as

quickly as possible to clients, allowing them to resend their
requests to another replica.

3.1 Performance-driven Admission Control
Our goal is to develop an admission control algorithm that
allows a server operator to navigate the tradeoff between
throughput and drop rate. Note that the admission control
algorithm should support scaling to a large number of data
paths. Thus, we avoid developing an algorithm that has to
take into account the state of every data path in the server.

Intuition. To better understand the intuition behind our
algorithm, we go back to the setup in Figure 1. Specifically,
we rerun the experiment discussed in Section 2.2. However,
we use a smaller service time per request (10 µs rather than
100 µs) because these results help to make our point clearer.
Moreover, we don’t use any admission control scheme but
rely on the AQM scheme, discussed in the next section, to
keep latency bounded. The results are shown in Figure 5. The
design of our admission control scheme stems from observing
that as the load increases, the system operates in four different
phases:

Phase I (uncongested) is the phase where none of the locks
or CPUs is congested. Throughput grows linearly with load
increases because the system has capacity to handle all incom-
ing demand. Further, tail latency increases only marginally
because of bursts in the queue caused by the variable request
arrivals, modeled as a Poisson arrival process. With no con-
gestion, AQM does not drop the requests.

Phase II (partially congested) is the phase where a subset of
locks are contended. As load increases, throughput increases
sub-linearly because the system has capacity to handle only a
fraction of incoming demand (i.e., the uncongested path still
has capacity). Incoming requests that take the congested path
will face high queueing delay, leading AQM to start dropping
requests while keeping the tail latency near the target value.
To generalize, different applications will produce a different
concave line like that shown in Figure 5(a), where the slope
of the curve decreases as more paths become congested. The
exact shape of the curve depends on the number of congested
paths, and their capacities along with the load.

Phase III (congested) is the phase where all the data paths
become congested. Thus, as the load increases, the throughput
doesn’t change. However, the increase in load increases CPU
utilization because of the increase in network processing load
and the increasing overhead of dropping requests. Eventually,
the CPU also becomes congested, increasing tail latency.

Phase IV (congestion collapse) is the phase where the system
enters a livelock state, spending more time dropping requests
than processing them. During that phase, throughput degrades
and latency keeps increasing.

Overview. Admission control should bound the incoming
load to make the server operate in Phase II. Note that the
values of latency, drop rate, and CPU utilization do not help

728 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T
hr

ou
gh

pu
t (

kR
PS

)

Offered Load (MRPS)

I II III IV

𝒕𝒕𝒆𝒆 = 𝟏𝟏.𝟎𝟎

𝒕𝒕𝒆𝒆 = 𝟎𝟎𝒕𝒕𝒆𝒆 = 𝟎𝟎.𝟏𝟏

(a) Throughput

0

100

200

300

400

0 0.2 0.4 0.6 0.8 1 1.2 1.4

p9
9

L
at

en
cy

 (u
s)

Offered Load (MRPS)

I II III IV

Target

(b) 99%-ile latency

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1 1.2 1.4

D
ro

p
R

at
e

Offered Load (MRPS)

I II III IV

(c) Drop Rate

Figure 5: Performance of the application in Figure 1 (p = 20%) with 10 µs average service with the latency bounded by ASQM

Algorithm 1 Performance-driven credit management

1: te: efficiency threshold
2: td : maximum drop threshold
3: C: the size of credit pool
4: in{last,cur}: # of incoming requests in {last, current} iteration
5: out{last,cur}: # of outgoing responses in {last, current} iteration
6: dropcur: # of request drops in current iteration
7: a: increment step size
8: d: multiplicative decrement factor
9:

10: repeat Every 4 * end-to-end RTT
11: if dropcur > td · incur then
12: C← (1−d) ·C
13: else if (incur− inlast)(outcur−outlast)> 0 then
14: if |outcur−outlast |> te · |incur− inlast | then
15: C←C+a
16: else
17: C← (1−d) ·C
18: end if
19: else
20: C← (1−d) ·C
21: end if
22: C←max(C,Cmin)
23: C←min(C,Cmax)
24: inlast ← incur
25: outlast ← outcur
26: until Application exits

identify the phase in which the server operates. However, by
observing the slope of the throughput curve, one can identify
the boundaries of Phase II. Specifically, Phase II starts when
the slope of the throughput curve drops from 1 (i.e., the system
can no longer handle all incoming requests) and ends when
the slope reaches 0 (i.e., the system can no longer handle
any additional incoming requests). A server operator that’s
interested in achieving a near-zero drop rate would operate
the server at the leftmost edge of Phase II, where the slope
of the throughput curve is slightly lower than one. On the
other hand, a server operator that’s interested in achieving the
highest possible throughput would operate the server at the
rightmost edge of Phase II, where the slope of the throughput
curve is slightly higher than zero. The server operator can

operate between those two points by choosing desired slope
value. Additionally, the operator could specify the region of
operation further by capping the maximum allowed drop rate.

We propose a performance-driven admission control al-
gorithm with two parameters: efficiency threshold (te) and
maximum drop rate (td). The efficiency threshold represents
the target operating point on the throughput curve in terms
of the slope of the curve at that point. Specifically, te takes
values between zero and one, with zero representing the high-
est possible throughput, and one representing zero drop rate.
The maximum drop rate, td , allows a service operator to cap
the drop rate at the expense of throughput to reduce the ex-
pected number of request drops. Protego uses the maximum
drop rate in addition to the efficiency threshold to determine
whether to accept more incoming load. Protego judges an
RPC server to be overloaded, accepting no further load, if
throughput improvement with additional load is less than the
efficiency threshold or if the drop rate exceeds the maximum
drop rate.

Operation. A Protego server controls the number of incom-
ing requests through the credit-based scheme we developed
for Breakwater [9]. We chose a receiver-driven credit-based
admission control scheme because it was shown to be robust
to incast scenarios, efficiently scaling to a large number of
clients while maintaining its performance [8, 9, 17, 23]. Like
1RMA [29] and Breakwater [9], Protego requires a new client
to declare its intent to send requests to the server by send-
ing an initial Request To Send (RTS) message. For Protego,
this message is needed only when a new client connects to
the server and is not needed for every request. The server
issues credits to clients. A credit represents availability at the
server to process a single request by the client that receives
the credit. A client only sends a request after it receives a
credit. A client disconnecting from the server has to send a
Disconnect message to inform the server to stop allocating
credits to it. Note that credits in Protego provide minimal
commitment as the server cannot know in advance whether
an incoming request will take a congested or an uncongested
path. Protego determines the total number of available credits,
C, before distributing them to individual clients.

The server measures its efficiency (the change in through-
put divided by the change in admitted load). If measured

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 729

efficiency is less than the efficiency threshold (te), the server
reduces the credit pool size, reducing the admitted load; other-
wise, it increases the credit pool size. In particular, the server
operates in iterations, each lasting a few end-to-end RTTs.1

We measure the end-to-end RTT with the elapsed time be-
tween credit issue and the successful response return which is
tracked with an 8B unique credit ID. The server keeps track
of the number of admitted requests from the current itera-
tion and the previous iteration, incur and inlast , respectively.
It also keeps track of the current throughput and the through-
put in the previous iteration, outcur and outlast , respectively.
The efficiency metric e = (outcur−outlast)/(incur− inlast) is
compared to the efficiency threshold te. The server contin-
uously monitors the drop count dropcur and decreases the
admitted load if dropcur exceeds td · incur. Protego uses ad-
ditive increase / multiplicative decrease (AIMD) for credit
management due to its simplicity. The details of the algorithm
are shown in Algorithm 1.

3.2 Active Synchronization Queue Management
(ASQM)

Protego assumes a standard queue abstraction per blocking
synchronization object. However, to ensure scalability, Pro-
tego requires no coordination between queues, no per-queue
parameter setting, and only minimal changes to the exist-
ing implementation of the synchronization API. Specifically,
ASQM caps the total time a request is allowed to spend in a
queue, assigning each request a queueuing delay budget. The
value of the budget represents the maximum queueing delay
a request can tolerate for the server to respond within a target
latency. The queueing delay budget is computed by subtract-
ing the 99th percentile network latency and 99th percentile
service time from the target delay of the request, leaving the
slack time that the request can afford to spend in the server.

When a request arrives at the server, Protego assigns it a
queueing delay budget. Before placing the request in each
queue for a contended resource, it first checks the instanta-
neous queueing delay of the queue and drops the request if the
queueing delay is larger than the request’s remaining queue-
ing delay budget. After the request is dequeued, it deducts
the queueing delay it incurred from its budget. The queueing
delay is measured by computing the difference between the
current timestamp and the enqueue timestamp of the oldest
item in the queue. In this paper, we only consider the runnable
thread queue in the CPU scheduler and the wait queues for
blocking synchronization primitives. However, we believe
the same idea can be applied to other queues for contended
blocking interfaces such as blocking I/O.

Target delay vs. SLO. It’s critical to note that the target delay
used to compute the queueing delay budget is different from
the RPC’s Service Level Objective (SLO). The target delay
is a per-server metric: a single server should finish a request

1We found that four RTTs allows for accurate measurement of all param-
eters while allowing for fast reaction to changes in the workload.

or report failure within the target delay. On the other hand,
an SLO is a per-request metric: a request of a specific type
should finish within its SLO, taking into account that multiple
attempts at multiple servers might be needed for the request
to succeed. In Protego, the target delay is set by default to
SLO divided by the maximum number of retries.

Handling dropped requests. Upon a request drop, the server
returns a failure message immediately to the client. At the
server, a request drop incurs some CPU overhead to partially
process the request and generate the failure message. Fur-
ther, the failure message and retransmission of the request
can incur networking overhead. If the overhead of dropping
requests is large, a service operator can reduce the drop rate
by choosing a higher value for the efficiency threshold (te),
sacrificing throughput. At the clients, the dropped request
may be handled in various ways: retransmission to another
replica, triggering failure handling operations (e.g., online
banking transaction), or degrading the quality of the response
(e.g., search). For systems with replication and auto-scaling,
retransmission is the most common failover mechanism. For
the rest of the paper, we focus on scenarios where an over-
loaded server has a non-overloaded replica which can serve
dropped requests.

Retransmission of dropped requests introduces additional
latency, inflating the overall delay faced by such requests,
potentially harming their SLOs. Protego drops requests before
they consume their delay budget. Thus, clients receive failure
messages within the target delay. In the worst case, for each
retransmission, a request will be delayed by at most the target
delay (§5.3). Alternatively, if the SLO is tight, the client can
send tied or hedged requests to multiple replicas to avoid
the retransmission delay but incur the cost of coordination
overhead and/or CPU wasted by duplicate executions [11].

3.3 System Parameters
In total, Protego has five parameters: four universal param-
eters whose value can be fixed across workloads, and one
workload-specific parameter.

Universal parameters. The efficiency threshold and maxi-
mum drop rate parameters, te and td , do not need to change
per workload. We show that the performance of Protego is not
very sensitive to the choice of te (§5.4). We use an efficiency
threshold of 10% by default. The maximum drop rate puts a
cap on the allowed drop rate. Operators that want to maximize
throughput should set it to 100%, which is the default value
we choose in the paper.

AIMD algorithms have two parameters: an increment step
size (a) and a decrement factor (d). Large values of a and d
make the algorithm more aggressive in reaching the desired
operating point but less stable with large fluctuations. We
choose small values for a and d, preferring stability. We set
a as 0.1% of the number of the client sessions and d as 2%,
which leads to good performance in incast scenarios [9].

Workload-specific parameters. The target delay specifies

730 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the maximum delay allowed in a single server. Its value is
calculated as the SLO divided by the expected number of
attempts that a request can make before it succeeds.

4 Implementation
We implemented Protego as a library that uses Shenango [25]
and builds upon the RPC-layer implementation of Breakwa-
ter [9]. Furthermore, Protego extends Shenango’s synchro-
nization library to implement ASQM, facilitating the adoption
of Protego to Shenango applications.

Performance measurement. Protego adjusts the credit pool
size, once every iteration, based on five measures of efficiency
and drop rate: incur, outcur, dropcur, inlast and outlast . The mea-
sures are updated (i.e., current measures are reset after their
values are assigned to the last measures) after one end-to-end
RTT from the time the credit pool size is updated to accurately
reflect performance during an iteration. This period is selected
because the incoming load changes in correspondence to the
new pool size after at least one end-to-end RTT.

Dispatcher threading model. Protego assigns a queueing
delay budget per request, deducting from it after a request
is serviced from a queue. This operation requires accurately
tracking the time a request spends in various queues, avoiding
any variability that might be introduced due to the operating
system or the network stack. Thus, we implement Protego
with a dispatcher threading model where a dispatcher thread
parses the network payloads into requests, spawning a new
thread for each incoming request. This approach minimizes
the delay requests face in the network stack because packets
are parsed quickly by the dispatcher thread, out of the critical
path of request processing. When a new thread is created
by a dispatcher, it’s assigned a queueing delay budget by
subtracting the 99th percentile network latency and the 99th
percentile service time from the target delay.

Latency-aware Active Synchronization Queue Manage-
ment (ASQM) API. Protego provides the following latency-
aware APIs to enable ASQM:

bool mutex_lock_if_uncongested(mutex_t *);
bool condvar_wait_if_uncongested(condvar_t *,

mutex_t *);

These interfaces are similar to those of a try_lock(), but
their behavior is different. If the queueing delay of a blocking
critical section exceeds a request’s queueing delay budget, it
returns false without waiting. Otherwise, it returns true after
successfully acquiring the lock. An application developer
can leverage the existing synchronization API provided by
Shenango, including mutex_lock() and condvar_wait()
for parts of the program that cannot handle dropping. For
example, a maintenance thread running in the background
may need to acquire a lock no matter how long it has to wait.

Queueing delay measurement. Protego needs to measure
instantaneous queueing delay to compare it against a request’s

remaining budget. We instrument the waiter queue for mu-
texes and conditional variables to measure the queueing de-
lay.When a thread is enqueued to the waiter queue, Protego
timestamps the request. When the blocking synchronization
is queried for the queueing delay, it returns the difference be-
tween the current timestamp and the enqueue timestamp of the
oldest thread in the waiter queue. Using an efficient hardware
timestamp read function, Protego can measure the queueing
delay of blocking synchronization with little overhead.

Identifying contended locks. In order to get the full per-
formance benefits of Protego, developers must identify all
the contended locks to replace with Protego’s ASQM APIs.
A developer needs to hypothesize which locks are likely to
be contended based on the application-specific knowledge
and run experiments to verify which locks introduce a large
queueing delay with per-lock queueing delay measurements.
This process requires iterating multiple times until all the
contended locks are identified and their code is modified to
use the Protego API. Alternatively, a developer can use high-
resolution latency profilers [16] to identify contended locks.

Application modification. Enabling Protego requires replac-
ing blocking synchronization primitives with the ones pro-
vided in the Protego API. Further, Protego allows requests to
be dropped after they have been partially processed by the
server, potentially modifying some states or reserving some
resources. Thus, enabling Protego requires the application to
perform all necessary clean-up after a request is dropped (e.g.,
freeing memory it allocated to the request and releasing other
locks the request currently holds). However, the complexity
of handling request drops can be significantly reduced by uti-
lizing features of modern programming languages, such as
RAII in C++ with smart pointers and scoped locks.

5 Evaluation
Our evaluation answers the following key questions:
1. Can Protego balance high throughput and low latency for

real-world applications?
2. How much code change is required to enable Protego?
3. Does Protego maintain its benefits for different workloads?
4. Can requests maintain their SLO in the presence of drops?
5. How much does each component of Protego contribute to

its overall performance?
6. How sensitive is the performance of Protego to its parame-

ter values?
7. What are the limitations of Protego?

5.1 Evaluation Setup
Testbed: We use eleven xl170 nodes in Cloudlab [13].
Each node has a ten-core (20 hyper-threads) Intel E5-2640v4
2.4GHz CPU, 64GB ECC RAM, and a Mellanox ConnectX-4
25GbE NIC. Nodes are connected through a single Mellanox
2410 switch. The average and 99th percentile network RTT be-
tween any pair of two nodes are 10 µs and 20 µs, respectively.
We use one node as an RPC server and the other ten nodes

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 731

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

G
oo

dp
ut

 (k
R

PS
)

Clients' Demand (kRPS)

SEDA Breakwater Protego

(a) Goodput

0

200

400

600

800

1000

0 0.5 1 1.5 2 2.5 3

p9
9

L
at

en
cy

 (m
s)

Clients' Demand (kRPS)

target

(b) 99%-ile latency

0%

5%

10%

15%

20%

25%

0 0.5 1 1.5 2 2.5 3

D
ro

p
R

at
e

Clients' Demand (kRPS)

(c) Drop rate

Figure 6: Performance of SEDA, Breakwater, and Protego for Lucene

as RPC clients. The server application uses up to ten hyper-
threads for real-world applications and four hyper-threads for
synthetic application. Each client machine simulates one hun-
dred RPC client connections with sixteen dedicated, spinning
hyper-threads. Requests are generated following an open-loop
Poisson arrival process.

Workloads: We evaluate Protego using three workloads: 1)
Lucene, a search application with significant lock contention
overhead, 2) Memcached, a latency-sensitive in-memory key-
value store that exhibits both locking bottlenecks and CPU
bottlenecks, and 3) a synthetic workload with its execution
time drawn from an exponential distribution.

Baseline: We compare Protego to SEDA, a latency-based
overload control system, and Breakwater, a queueing delay-
based one. SEDA controls the load at the server by rate-
limiting the clients. Each SEDA client adjusts its request
sending rate based on the 99th percentile end-to-end latency
faced by requests. Breakwater controls the load at the server
through a credit-based mechanism, adjusting the credit pool
size based on the sum of packet queueing delay and CPU
thread queueing delay. To ensure low latency, Breakwater
drops a request if the queueing delay exceeds a workload-
based threshold.

Evaluation metrics: To incorporate throughput, latency,
and the target latency into one single metric, we compute
goodput as the throughput of the requests whose latency is
below the target delay. For Breakwater and Protego, we report
the drop rate as the ratio of the number of dropped requests
to the number of requests received by the server during an
experiment. SEDA does not drop the request at the server. We
run the experiments for 8 seconds and collect the data for the
last 4 seconds to capture the steady-state behavior.

Parameter settings: We tune the parameters of all systems
to allow each system to achieve its best goodput for each
workload. For SEDA, we adjust timeout (request sending rate
update interval), ad ji (rate increase factor), and ad jd (rate
decrease factor). We use the default configuration from [32]
for all other parameters. For Breakwater, we tune the target
queueing delay and the drop threshold which we set to 40%
and 80% of Protego’s target delay, respectively, for all work-
loads. We use the default configuration from [9] for all other

parameters. For Protego, we use an efficiency threshold (te)
of 10%, a maximum drop rate (td) of 100%, an increment step
size (a) of 1, and a decrement factor (d) of 2% for all work-
loads. We determine the queueing delay budget for ASQM
by deducting 99th percentile service time and 99th percentile
network delay (20 µs) from the target delay for each work-
load. We determine the target delay as the maximum value
between 10× the sum of average network RTT (10 µs) plus
the average service time, and 2× the sum of 99th percentile
network RTT (20 µs) plus the 99th percentile service time.
For example, for the exponential service time distribution
with 10 µs average whose 99th percentile is 46 µs, we set
the target delay to 200 µs because 10 · (10+10) = 200 µs is
higher than 2 · (20+46) = 132 µs. The way we set the target
delay is comparable to how the SLO is calculated in recent
proposals [9,10,26]. We set the SLO as twice the target delay,
assuming that a request fails at most once.

5.2 Mutex-intensive Application: Lucene
Lock contention inside Lucene: Lucene is a search engine
library that maintains two main types of structures: 1) inverted
indices, called Segments, and 2) per-term scores of all indexed
documents, called TermDocs. Every Segment and TermDocs
is protected by its own mutex. Every request performs a binary
search over all Segments to find the documents corresponding
to its search query. Then, documents are ranked based on
the information found in the TermDocs corresponding to the
identified documents.

As load increases on the server, the per-Segment lock be-
comes contended because every request needs to search over
all the Segments. Segments containing more entries are more
likely to be contended because it takes more time to perform
a binary search over their entries. Further, if a specific docu-
ment becomes popular, the per-TermDocs lock protecting its
data becomes contended.

Application modification: We ported the C++ version of
Lucene, Lucene++ [31], to Shenango and built a simple in-
memory search application, where all the data is stored in
memory with RAMDirectory. We replaced the per-Segment
lock and per-TermDocs lock with Protego’s latency-aware
synchronization API to allow request drops. In total, we mod-
ified 40 LOC of Lucene++ after porting it to Shenango. Note
that, while Lucene allows for reporting partial search results,

732 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

200

400

600

0 200 400 600 800

G
oo

dp
ut

 (k
R

PS
)

Clients' Demand (kRPS)

SEDA Breakwater Protego

(a) Goodput

0

200

400

600

800

0 200 400 600 800

p9
9

L
at

en
cy

 (u
s)

Clients' Demand (kRPS)

target

(b) 99%-ile latency

0%

10%

20%

30%

40%

0 200 400 600 800

D
ro

p
R

at
e

Clients' Demand (kRPS)

(c) Drop rate

Figure 7: Performance of SEDA, Breakwater, and Protego for Memcached with VAR workload

we don’t allow that to provide a fair comparison between
overload control schemes that don’t drop requests. The re-
sponse contains either the complete search result or a failure
notification.

Workload and configuration: We populate the server with
a dataset of 403,619 COVID-19-related tweets [6] in English
posted between 27th and 29th November 2021. The clients
generate single-term search queries. The search term (or word)
is sampled from the word distribution in the data set exclud-
ing stop words like “a”, “the”, “and”, etc. All the tweets are
loaded to the server before serving clients, and tweets are
not modified or deleted during an experiment. This workload
yields an average processing time of 1.7 ms and a 99th per-
centile latency of 20 ms on a lightly-loaded server. Thus, we
set the target delay to 40 ms. For SEDA, we set timeout = 1 s,
ad ji = 0.1, and ad jd = 1.3. For Protego, we use an initial
queueing delay budget of 20 ms.

Overall performance: Figure 6 shows the goodput, 99th
percentile latency, and drop rate for all three overload control
schemes. Note that Lucene does not suffer from any CPU
congestion. Thus, Breakwater’s admission control and AQM
are never triggered, leading to congestion collapse as mutexes
become congested with demand exceeding 600 RPS. SEDA
reduces clients’ request sending rate as soon as it measures
high latency due to a mutex congestion, reacting to the most
congested data path, which limits the system’s goodput to 500
RPS. SEDA’s tail latency is bounded but more than 10 times
higher than the target latency because of incast. By better
utilizing uncongested data paths and dropping the excess
load, Protego achieves up to 3.3 times higher goodput and 17
times lower 99th percentile latency than SEDA.

5.3 Latency-critical Application: Memcached
Lock contention inside Memcached: The key-value pairs
are stored in a giant hash table, composed of multiple hash
buckets. Memcached has two main types of locks that may
be contended. First, each hash bucket is protected by a mutex
called item_lock, and this mutex may get contended not only
by concurrent accesses (i.e., reads or rights) to the same key
but also by accesses on different keys sharing the same key
hash. Thus, it’s difficult to predict which item_lock a request
will need before executing it. Second, Memcached manages
its memory by assigning items memory from a global pool,

0

200

400

600

800

0 200 400 600 800

G
oo

dp
ut

 (k
R

PS
)

Server 1 Server 2 Total

0
50

100
150
200
250

0 200 400 600 800

p9
9

L
at

en
cy

 (u
s)

Clients' Demand (kRPS)

End-to-end Failure Delivery

Single server target

SLO

Figure 8: Service-level performance of Protego for the Mem-
cached VAR workload with retransmission

which is protected by a global lock called slabs_lock. Ev-
ery SET and UPDATE request must grab the slabs_lock to
allocate memory for the new value.

Application modification: We replaced the item_locks and
slabs_lock with Protego’s latency-aware mutexes. When
a request is dropped, Protego delivers a failure message to
the client immediately. Furthermore, it cleans up the inter-
mediate state processed by the request, freeing up the chunk
allocated to the request before the thread handling that request
exits. We don’t allow drop when a request tries to reacquire
slabs_lock to free up the memory to avoid memory leaks.
In total, we modified 50 LOC in Memcached [4], excluding
the modifications to port it to Shenango.

Workload and configuration: For Memcached experiments,
we use the VAR workload from Facebook Memcached clus-
ter [33]. VAR is a SET-heavy workload for server-side browser
information where 82% of the requests are SET requests. The
key distribution of the workload is skewed with 10% of the
keys used by 90% of the requests. With a SET-heavy work-
load, slabs_lock becomes the bottleneck as all SET requests
require slabs_lock to allocate memory region. We approx-
imately follow the key and value size distribution for each
workload as described in [33]. We generate 100,000 key-value
pairs and use the hash power of 17, providing 131,072 buckets
in the hash table, which is sufficient to avoid severe hash col-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 733

0
50

100
150
200
250

0 100 200 300 400G
oo

dp
ut

 (k
R

PS
)

Clients' Demand (kRPS)

SEDA Breakwater Protego

(a) Goodput

0%
20%
40%
60%
80%

100%

0 100 200 300 400

C
PU

 U
sa

ge

Clients' Demand (kRPS)

(b) CPU usage

0
200
400
600
800

0 100 200 300 400p9
9

L
at

en
cy

 (u
s)

Clients' Demand (kRPS)

target

(c) 99%-ile latency

0%
10%
20%
30%
40%
50%

0 100 200 300 400

D
ro

p
R

at
e

Clients' Demand (kRPS)

(d) Drop rate

Figure 9: Performance of SEDA, Breakwater, and Protego for synthetic workload with p = 50% and 10 µs average service time

0

0.5

1

1.5

0 0.4 0.8 1.2 1.6 2G
oo

dp
ut

 (M
R

PS
)

Clients' Demand (MRPS)

SEDA Breakwater Protego

(a) Goodput

0%
20%
40%
60%
80%

100%

0 0.4 0.8 1.2 1.6 2

C
PU

 U
sa

ge

Clients' Demand (MRPS)

(b) CPU usage

0
100
200
300
400

0 0.4 0.8 1.2 1.6 2p9
9

L
at

en
cy

 (u
s)

Clients' Demand (MRPS)

target

(c) 99%-ile latency

0%
1%
2%
3%
4%

0 0.4 0.8 1.2 1.6 2

D
ro

p
R

at
e

Clients' Demand (MRPS)

(d) Drop rate

Figure 10: Performance of SEDA, Breakwater, and Protego for synthetic workload with p = 50% and 1 µs average service time

lisions. Since SET requests complete within less than 1 µs on
average, we set the target delay to 110 µs. For SEDA, we set
timeout to 1 ms, ad ji to 100, and ad jd to 1.02. For Protego,
we set the initial queueing delay budget to 70 µs.

Performance with a global mutex bottleneck: Figure 7
demonstrates the performance of the three overload control
schemes. When the slabs_lock becomes contended with
clients’ demand of more than 550 kRPS, both Breakwater
and SEDA experience a goodput drop because of the increase
in latency. As with Lucene, the admission control and AQM
of Breakwater are not triggered because the CPU is not con-
gested. On the other hand, SEDA suffers from incast. The
goodput of Protego increases further by utilizing uncongested
data paths with GET requests achieving 1.6 times higher good-
put than SEDA and 7 times higher goodput than Breakwater.
The increment in Protego’s goodput is limited by the over-
head of request drops. Most of the dropped requests are SET
requests, and some of them require the slabs_lock to free
the allocated memory. As more requests are dropped, the
slabs_lock becomes more contended by new SET requests
that need to allocate the memory as well as old and dropped
requests that need to release their memory, resulting in lower
throughput of SET requests at very high loads.

Maintaining the SLO under retransmissions: To better
understand the impact of request drops on the overall SLO, we
construct a simple scenario where Memcached has two repli-
cas, but we otherwise use the same configuration as before.
When a client makes a request, it sends the request to Server 1.
If it is dropped, the client then retransmits it to Server 2 (after
receiving a failure message from Server 1). This structure
is similar to how Memcached is operated at Facebook [24]
where they don’t provide a strong consistency guarantee. Note
that if both servers are overloaded, the problem ceases to be
an overload control problem as the service operator needs to

allocate more servers. Thus, our experiment captures the case
where there is sufficient capacity to handle all requests, but
retransmission may still be necessary. We anticipate up to one
retransmission could happen, considering the capacity of the
two servers and the demand the clients generate during the
experiment, so we set the service-level objective (SLO) to
two times the single server target delay, or 220 µs.

Figure 8 demonstrates the total goodput of both servers, the
99th percentile end-to-end latency, and failure message delay
for the VAR workload. When the clients’ demand exceeds
400 kRPS, Server 1 starts to drop requests. Protego drops the
requests before they wait for the contended mutex if the delay
at the mutex exceeds a request’s budget. Thus, most of the fail-
ure messages are delivered within the target delay. Note that
if a client doesn’t receive a credit for a request within 10 µs
from Server 1, it sends the request to Server 2 with the locally
generated failure message. As clients’ demand increases, the
99th percentile delay of failure messages decreases because
more requests are retransmitted to Server 2 with local fail-
ure message. The overall 99th percentile end-to-end latency
achieved by Protego is higher than the per-server target delay
because some requests need to be retransmitted. However, it
is still 1.7 × lower than the SLO.

5.4 Microbenchmark
Workload and configuration: To further analyze Protego’s
performance, we run the synthetic application depicted in
Figure 1. We choose the configuration p = 50%, making both
data paths equally likely to be congested, to provide a best-
case scenario for SEDA. We use a workload with exponential
service time distribution of 10 µs and 1 µs average. The tar-
get delay values are 200 µs and 110 µs, respectively for the
two settings. For SEDA, we set timeout = 1 ms, ad ji = 10,
and ad jd = 1.04 for the first setting, and timeout = 1 ms,
ad ji = 40, and ad jd = 1.04 for the second setting. For Pro-
tego, we set the initial queueing delay budget to 134 µs and

734 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0
0 100 200 300 400T

hr
ou

gh
pu

t (
kR

PS
)

Clients' Demand (kRPS)

 No control AC AC + ASQM
300

200

100

(a) Throughput

0

100

200

300

0 100 200 300 400

G
oo

dp
ut

 (k
R

PS
)

Clients' Demand (kRPS)

(b) Goodput

0
200
400
600
800

0 100 200 300 400

p9
9

L
at

en
cy

 (u
s)

Clients' Demand (kRPS)

target

(c) 99%-ile latency

0%
10%
20%
30%
40%
50%

0 100 200 300 400

D
ro

p
R

at
e

Clients' Demand (kRPS)

(d) Drop rate

Figure 11: Performance of Protego by incrementally applying performance-driven admission control (AC) and ASQM with the synthetic
application with 10 µs average service time

0%

10%

20%

30%

40%

50%

0

50

100

150

200

250

1% 5% 10% 20% 50%
D

ro
p

R
at

e

G
oo

dp
ut

 (k
R

PS
)

Efficiency Threshold ()

Goodput Drop Rate

𝑡𝑡𝑒𝑒
Figure 12: Protego parameter sensitivity (efficiency threshold,
te)

85 µs, respectively, for the two settings.

Overall performance: Figure 9 shows the goodput, CPU
usage, 99th percentile latency, and drop rate for a workload
with 10 µs average service time. The performance is bottle-
necked by the mutexes, leaving the CPU underutilized even
with a high clients’ demand. Thus, at high load, the admission
control or AQM logic of Breakwater is not triggered, lead-
ing to congestion collapse. SEDA limits the sending rates of
clients as soon as it measures high tail latency with a single
temporarily congested data path. Thus, SEDA’s goodput is
limited to 168 kRPS leaving the other data path uncongested.
With a larger clients’ demand, SEDA suffers from incast be-
cause 1,000 clients are each running a control loop separately.
As a result, it shows up to three times higher tail latency than
the target delay. Protego improves goodput by up to 32% com-
pared to SEDA, maintaining latency within the target delay
by dropping up to 40% of incoming requests. Note that the
performance benefits of Protego compared to SEDA increase
as p deviates from 50%, making SEDA more conservative as
it reacts to the most congested path.

Impact of average service time: We reduce the average
service time to 1 µs, reducing the time requests can spend
with the lock, allowing the CPU to become the bottleneck.
The results are shown in Figure 10. As demand exceeds 1.1
million RPS, the CPU is saturated, triggering Breakwater
mechanisms. However, it still suffers at high loads when the
mutexes become contended. SEDA still suffers from high tail
latency up to three times of the target delay because of the
incast, but its impact on goodput is limited. Protego maintains
the tail latency lower than the target delay while dropping less
than 1% of the requests in a CPU-bounded scenario.

Performance breakdown: We measure the performance of
Protego after incrementally activating its two components: the

0
1
2
3
4

0 0.5 1 1.5 2 2.5 3 3.5G
oo

dp
ut

 (M
R

PS
)

Clients' Demand (MRPS)

SEDA Breakwater Protego

(a) Goodput

0%

1%

2%

3%

0 0.5 1 1.5 2 2.5 3 3.5

D
ro

p
R

at
e

Clients' Demand (MRPS)

(b) Drop rate

Figure 13: Performance of SEDA, Breakwater, and Protego for
Memcached with USR workload

performance-driven admission control scheme (AC) and Ac-
tive Synchronization Queue Management (ASQM). We run
the experiments with the synthetic application with p = 50%
and an average service time of 10 µs. Figure 11 shows the
throughput, the goodput, the 99th percentile latency, and drop
rate. With no overload control, goodput collapses as soon as
one of the data paths becomes congested. Enabling admission
control bounds the tail latency by limiting incoming load if
there is no throughput improvement. However, when mutexes
start to be congested, its goodput degrades with up to three
times higher tail latency than the target because one of the
mutexes can have a high queueing delay with the requests’
probabilistic data path selection. By employing ASQM, Pro-
tego ensures the tail latency does not miss the target delay by
dropping requests.

Parameter sensitivity: Protego balances goodput and drop
rate using the efficiency threshold (te). To quantify the trade-
off between them, we repeat the experiment with the synthetic
application with p = 50% and the average service time of
10 µs varying the te from 1% to 50%. Figure 12 shows the
goodput and drop rate of Protego with different te values when
the clients’ demand is 300 kRPS, around 1.4× of the capacity
(consider Figure 11 as a reference). For all values of te smaller
than 10%, the goodput and drop rate don’t change because
throughput improvements with a small te are always marginal.
With larger te values, both the goodput and drop rate decrease
as admission control targets to operate the server on the left
side of the Phase II region in Figure 5. With te = 50%, it
achieves 23% less goodput and 4 × lower drop rate than
te = 1%, allowing server operators to navigate the tradeoff
between goodput and drop rate.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 735

5.5 Limitations of Protego
To demonstrate the limitations of Protego, we repeat the
Memcached experiment in §5.3 with the USR workload, a
GET-dominated workload for user account status information
where 99.8% of the requests are GET requests and about 20%
of the keys are used by 80% of the requests. With the USR
workload, Memcached saturates the CPU when it’s config-
ured with a high enough hash power (i.e., a large number of
buckets compared to the number of key-value pairs). However,
some item_locks can still become congested intermittently
because of the skewed key distribution. Figure 13 shows the
goodput and drop rate, comparing Protego to Breakwater and
SEDA. With clients’ demand of 3.6 million RPS, Protego
achieves 37% less goodput than SEDA and 23% less goodput
than Breakwater.

The USR workload is CPU bottlenecked, allowing Break-
water mechanisms to be triggered. Protego achieves lower
goodput than Breakwater due to the slow reaction of Protego’s
admission control. In particular, Protego changes its credit
pool size every four end-to-end RTTs. On the other hand,
Breakwater adjusts its credit pool size every network RTT. As
a result, Protego reacts to both congestion and added capacity
slowly, leading to a lower goodput. Breakwater and Protego
achieve lower goodput than SEDA because of the overhead of
credit management at the server. Specifically, SEDA doesn’t
add any extra logic at the server while Breakwater and Protego
perform all their admission control and AQM calculations at
the server. This overhead is significant when the request exe-
cution time is very small. Note that increasing the number of
clients from 1,000 to 10k can lead to performance degrada-
tion in SEDA with a larger size of incast [9]. This experiment
shows that Protego can lead to goodput degradation in some
scenarios where the CPU is bottlenecked. However, if the
setting has any significant likelihood of mutex congestion,
Protego can introduce significant benefits even when the CPU
is bottlenecked (Figure 10).

6 Discussion
Fairness. Protego does not provide any mechanisms to ensure
fairness between clients. For example, a client issuing more
requests that require contended locks will get more failure
messages because it faces a higher drop rate. However, it does
provide flexibility for clients in their selection of replicas. A
client can choose to send requests to a replica with a lower
drop rate or distribute requests to multiple replicas to lower its
drop rate. In this paper, we assume that the system as a whole
has enough capacity to handle requests, relying on elastic
resource allocation schemes like auto-scaling.

Generalizing Protego for other in-application congestion.
An evaluation of DeathStarBench [14] revealed a challeng-
ing overload scenario where the tail latency of an upstream
service (NGINX) spiked more than 10× while its CPU usage
remains low due to the blocking network socket call used in
HTTP. The delay introduced by such calls cannot be detected

with the overload signal used in DeathStarBench (i.e., CPU
Usage). Thus, the auto-scaler is never triggered to launch a
new instance, causing high tail latency. Protego can be used
to handle such overload scenarios where blocking calls (e.g.,
network or storage system calls) are the bottleneck. More
specifically, the performance-driven admission control can
back-pressure upstream services when it observes that there
is no throughput improvement as load increases due to block-
ing calls. If the invocation of blocking calls by requests is
unpredictable, it would require editing those calls to support
ASQM. Furthermore, in a multi-tier microservice architecture,
upstream microservices might be able to abstract calls made
to downstream microservices as blocking calls, allowing Pro-
tego to be used to perform overload control over the entire
microservice chain.

7 Related Work
Overload control. To avoid congestion collapse with re-
ceive live lock, an overload control system tries to bound the
incoming requests or drop the request to prevent overload.
Overload can be detected using several metrics. Breakwa-
ter [9] and DAGOR [34] use thread and network queueing
delay. SEDA [32] and ORCA [20] use response time as a con-
gestion signal. The way a system controls the overload also
differs across these systems. Breakwater utilizes credit-based
admission control with AQM. DAGOR utilizes priority-based
admission control with AQM. SEDA adjusts the request send-
ing rate at the client side. ORCA uses TCP-like window-based
approach at the client side.

Flow Control. In TCP and eRPC [18], flow control advertises
the size of the available receive buffer to clients to prevent
receiving more packets than the network stack can accom-
modate. Akka [1] Stream has a similar but more flexible
flow control mechanism where a server signals the maximum
number of requests it can handle to the clients based on the
remaining buffer size, the amount of idle resources, etc. The
clients do not send more requests than the demand signaled
by the server. Flow control is useful to avoid high latency
when the CPU is the bottleneck. However, when a blocking
synchronization becomes the bottleneck, it achieves either
low throughput by underutilizing uncongested data paths or
high latency with long queueing delay.

Measurement-based network congestion control. BBR [7]
and PCC [12] employ mechanisms similar to Protego’s
performance-driven admission control. BBR explores the
maximum network bandwidth by measuring the throughput
with increasing window size. It concludes that the network
bandwidth has reached its maximum value if it observes less
than 25% of bandwidth increase with doubled window size.
Unlike Protego, BBR does not utilize a performance-based
approach to detect network congestion but to determine a
parameter used for congestion control. In PCC, the system op-
erator defines a utility function (e.g., TCP friendliness, latency,
or throughput). PCC conducts multiple micro-experiments

736 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

with a randomized set of parameters to find the configuration
that achieves the highest utility. PCC-like algorithms require
multiple rounds to find the best configuration, which slows
down the reaction of the algorithm to the congestion. Un-
like PCC, Protego deterministically modifies the credit pool
size based on the measurement, which makes its reaction to
congestion faster.
Auto-scaling. Auto-scaling [2, 5, 15, 21, 27, 28] dynamically
changes the amount of resources allocated to a service based
on various signals including CPU usage, estimated demand,
or custom-defined signals. It ensures that a service has enough
resources to serve requests by allocating more resources when
the chosen signal indicates that a load has exceeded a con-
figurable threshold. Some auto-scalers [15, 21] let service
operators specify the signal (e.g., response time, SLO vio-
lation, cost, etc.). More recently, machine learning models
are used for auto-scaling. Facebook [5] and Google Autopi-
lot [28] auto-scale resources based on the estimated demand
learned from historical data. FIRM [27] uses system-wide
performance metrics (CPU, Memory, Disk I/O, Network us-
age, or arrival rate) to train and predict which microservices
require how much additional resources not to violate SLO.
Auto-scaling mechanisms are useful with consistent overload
over a long time scale, but it does not handle transient bursts
in a load that happen over small timescales. Such bursts can
be handled by Protego. In addition, auto-scaling alone is not
enough to achieve both high throughput and low latency in
the presence of lock contention as it does not provide any way
to drop requests in a congested data path.

8 Conclusion
In this paper, we presented Protego, an overload control sys-
tem that handles overloaded blocking synchronizations with
performance-driven admission control and Active Synchro-
nization Queue Management (ASQM). Protego’s admission
control decisions are based on measured throughput, admit-
ting more load only if it improves throughput, admitting less
load otherwise. To ensure low latency even for congested data
paths, Protego sheds load by dropping requests at contended
blocking synchronization points using ASQM. Our extensive
evaluation of Protego demonstrates that it can effectively han-
dle overload when combined with lock contention, achieving
high goodput and low latency for a wide range of conditions.
In particular, Protego achieves up to 3.3× higher goodput
with 12.2× lower 99th percentile latency than state-of-the-art
overload control schemes when applied to Lucene, a realistic
search workload.

Acknowledgments
We thank our shepherd Marios Kogias and the anonymous re-
viewers for their valuable feedback, and Cloudlab [13] for pro-
viding us with infrastructure for development and evaluation.
This work was funded in part by NSF grants CNS-2104398,
CNS-2212098, CNS-2104398, and CNS-2212099; DARPA
FastNICs (HR0011-20-C-0089); VMware and Google.

References
[1] Akka. https://akka.io/.

[2] AWS Auto Scaling. https://aws.amazon.com/
autoscaling/.

[3] Breakwater implementation on shenango. https://
inhocho89.github.io/breakwater.

[4] Memcached. http://memcached.org/.

[5] Throughput autoscaling: Dynamic sizing for
Facebook.com. https://engineering.fb.com/
2020/09/14/networking-traffic/throughput-
autoscaling/.

[6] J. M. Banda, R. Tekumalla, G. Wang, J. Yu, T. Liu,
Y. Ding, K. Artemova, E. Tutubalinа, and G. Chowell. A
large-scale COVID-19 Twitter chatter dataset for open
scientific research - an international collaboration, May
2020. https://doi.org/10.5281/zenodo.3723939.

[7] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh,
and V. Jacobson. BBR: Congestion-based congestion
control: Measuring bottleneck bandwidth and round-trip
propagation time. Queue, 2016.

[8] I. Cho, K. Jang, and D. Han. Credit-scheduled delay-
bounded congestion control for datacenters. In SIG-
COMM, 2017.

[9] I. Cho, A. Saeed, J. Fried, S. J. Park, M. Alizadeh, and
A. Belay. Overload control for µs-scale rpcs with break-
water. In OSDI, 2020.

[10] A. Daglis, M. Sutherland, and B. Falsafi. Rpcvalet: Ni-
driven tail-aware balancing of µs-scale rpcs. In ASPLOS,
2019.

[11] J. Dean and L. A. Barroso. The tail at scale. Communi-
cations of the ACM, 2013.

[12] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and
M. Schapira. PCC: Re-architecting congestion control
for consistent high performance. In NSDI, 2015.

[13] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig,
E. Eide, L. Stoller, M. Hibler, D. Johnson, K. Webb, et al.
The design and operation of cloudlab. In ATC, 2019.

[14] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi,
N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson,
et al. An open-source benchmark suite for microservices
and their hardware-software implications for cloud &
edge systems. In ASPLOS, 2019.

[15] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang.
Adaptive, model-driven autoscaling for cloud applica-
tions. In ICAC, 2014.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 737

https://akka.io/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://inhocho89.github.io/breakwater
https://inhocho89.github.io/breakwater
http://memcached.org/
https://engineering.fb.com/2020/09/14/networking-traffic/throughput-autoscaling/
https://engineering.fb.com/2020/09/14/networking-traffic/throughput-autoscaling/
https://engineering.fb.com/2020/09/14/networking-traffic/throughput-autoscaling/
https://doi.org/10.5281/zenodo.3723939

[16] R. Haecki, R. N. Mysore, L. Suresh, G. Zellweger,
B. Gan, T. Merrifield, S. Banerjee, and T. Roscoe. How
to diagnose nanosecond network latencies in rich end-
host stacks. In NSDI, 2022.

[17] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W.
Moore, G. Antichi, and M. Wójcik. Re-architecting
datacenter networks and stacks for low latency and high
performance. In SIGCOMM, 2017.

[18] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter
RPCs can be general and fast. In NSDI, 2019.

[19] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu,
B. Montazeri, Y. Wang, K. Springborn, C. Alfeld,
M. Ryan, et al. Swift: Delay is simple and effective
for congestion control in the datacenter. In SIGCOMM,
2020.

[20] B. C. Kuszmaul, M. Frigo, J. M. Paluska, and A. S.
Sandler. Everyone loves file: File storage service (FSS)
in oracle cloud infrastructure. In ATC, 2019.

[21] M. Mao, J. Li, and M. Humphrey. Cloud auto-scaling
with deadline and budget constraints. In Grid, 2010.

[22] J. C. Mogul and K. Ramakrishnan. Eliminating receive
livelock in an interrupt-driven kernel. ACM Transac-
tions on Computer Systems, 1997.

[23] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.
Homa: A receiver-driven low-latency transport protocol
using network priorities. In SIGCOMM, 2018.

[24] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, et al. Scaling memcache at facebook. In NSDI,
2013.

[25] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-
akrishnan. Shenango: Achieving high CPU efficiency
for latency-sensitive datacenter workloads. In NSDI,
2019.

[26] G. Prekas, M. Kogias, and E. Bugnion. Zygos: Achiev-
ing low tail latency for microsecond-scale networked
tasks. In SOSP, 2017.

[27] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and
R. K. Iyer. FIRM: An intelligent fine-grained re-
source management framework for SLO-oriented mi-
croservices. In OSDI, 2020.

[28] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych,
P. Broniek, J. Kusmierek, P. Nowak, B. Strack, P. Witu-
sowski, S. Hand, et al. Autopilot: workload autoscaling
at google. In EuroSys, 2020.

[29] A. Singhvi, A. Akella, D. Gibson, T. F. Wenisch,
M. Wong-Chan, S. Clark, M. M. Martin, M. McLaren,
P. Chandra, R. Cauble, et al. 1rma: Re-envisioning re-
mote memory access for multi-tenant datacenters. In
SIGCOMM, 2020.

[30] L. Suresh, P. Bodik, I. Menache, M. Canini, and F. Ciucu.
Distributed resource management across process bound-
aries. In SoCC, 2017.

[31] B. van Klinken. Lucene++. https://github.com/
luceneplusplus/LucenePlusPlus.

[32] M. Welsh and D. Culler. Overload management as a
fundamental service design primitive. In SIGOPS Euro-
pean Workshop, 2002.

[33] Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Char-
acterizing facebook’s memcached workload. IEEE In-
ternet Computing, 2013.

[34] H. Zhou, M. Chen, Q. Lin, Y. Wang, X. She, S. Liu,
R. Gu, B. C. Ooi, and J. Yang. Overload control for
scaling wechat microservices. In SoCC, 2018.

738 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/luceneplusplus/LucenePlusPlus
https://github.com/luceneplusplus/LucenePlusPlus

TOPOOPT: Co-optimizing Network Topology and
Parallelization Strategy for Distributed Training Jobs

Weiyang Wang∗ Moein Khazraee∗ Zhizhen Zhong∗ Manya Ghobadi∗
Zhihao Jia†,‡ Dheevatsa Mudigere† Ying Zhang† Anthony Kewitsch§

∗Massachusetts Institute of Technology †Meta ‡CMU §Telescent

Abstract
We propose TOPOOPT, a novel direct-connect fabric for deep

neural network (DNN) training workloads. TOPOOPT co-

optimizes the distributed training process across three dimen-

sions: computation, communication, and network topology.

We demonstrate the mutability of AllReduce traffic, and lever-

age this property to construct efficient network topologies

for DNN training jobs. TOPOOPT then uses an alternating

optimization technique and a group theory-inspired algorithm

called TotientPerms to find the best network topology and

routing plan, together with a parallelization strategy. We build

a fully functional 12-node direct-connect prototype with re-

mote direct memory access (RDMA) forwarding at 100 Gbps.

Large-scale simulations on real distributed training models

show that, compared to similar-cost Fat-tree interconnects,

TOPOOPT reduces DNN training time by up to 3.4×.

1 Introduction

Our society is rapidly becoming reliant on deep neural net-

works (DNNs). New datasets and models are invented fre-

quently, increasing the memory and computational require-

ments for training. This explosive growth has created an ur-

gent demand for efficient distributed DNN training systems.

Today’s DNN training systems are built on top of tra-

ditional datacenter clusters, with electrical packet switches

arranged in a multi-tier Fat-tree topology [47]. Fat-tree

topologies are traffic oblivious fabrics, allowing uniform

bandwidth and latency between server pairs. They are ideal

when the workload is unpredictable and consists mostly of

short transfers–two inherent properties of legacy datacen-

ter workloads [49, 50, 54, 67, 68]. But Fat-tree networks are

becoming a bottleneck for distributed DNN training work-

loads [58, 69, 77, 85, 102, 105, 136].

Previous work has addressed this challenge by reducing the

size of parameters to transmit through the network [48,58,59,

69,73,79,82,83,94,105,123,139] and developing techniques

to discover faster parallelization strategies while considering

the available network bandwidth [46, 48, 85, 105, 129]. These

proposals co-optimize computation and communication as

two important dimensions of distributed DNN training, but

they do not consider the physical layer topology as an opti-

mization dimension.

In this paper, we analyze DNN training jobs from produc-

tion clusters of Meta. We demonstrate that training workloads

do not satisfy common assumptions about datacenter traffic

that underlie the design of Fat-tree interconnects. Specifically,

we show that (i) the communication overhead of large DNN

training jobs increases dramatically as we increase the num-

ber of workers; and (ii) the traffic pattern of a DNN training

job depends on its parallelization strategies.

Motivated by these observations, we propose TOPOOPT,

a direct-connect DNN training system that co-optimizes net-

work topology and parallelization strategy. TOPOOPT creates

dedicated partitions for each training job using reconfigurable

optical switches and patch panels, and jointly optimizes the

topology and parallelization strategy within each partition. To

achieve our goal, we grapple with the algorithmic challenges

of finding the best topology, such as how to navigate the large

search space across computation, communication, and topol-

ogy dimensions, and also with various operational challenges,

such as which optical switching technologies match well with

the traffic patterns of DNN models.

We cast the topology and parallelization strategy co-

optimization problem as an off-line alternating optimization

framework. Our optimization technique alternates between

optimizing the parallelization strategy and optimizing the net-

work topology. It searches over the parallelization strategy

space assuming a fixed topology, and feeds the traffic demand

to a TOPOLOGYFINDER algorithm. The updated topology is

then fed back into the parallelization strategy search algorithm.

This alternating process repeats until the system converges to

an optimized parallelization strategy and topology.

We demonstrate that finding an optimized network topol-

ogy for DNNs is challenging because the ideal network topol-

ogy needs to meet two goals simultaneously: (i) to complete

large AllReduce transfers efficiently, and (ii) to ensure a small

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 739

hop-count for Model Parallel transfers. To meet these goals,

we propose a novel group theory-based technique, called To-

tientPerms, that exploits the mutability of AllReduce transfers.

Our TotientPerms approach builds a series of AllReduce per-
mutations that not only carry AllReduce transfers efficiently,

but are also well-positioned to carry Model Parallel transfers

and, hence, improve the overall training performance.

Optical circuit-switched networks traditionally support

point-to-point traffic across hosts with direct circuits between

them. As a result, for a given set of circuits, only directly

connected hosts can communicate leaving the rest of the hosts

wait for new circuits to be established. To support arbitrary

communication across all hosts participating in a job, we en-

able TOPOOPT’s hosts to act as relays and forward the traffic

that does not belong to them. Host-based forwarding intro-

duces a new challenge for RDMA flows since RDMA NICs

drop packets that do not belong to them. To enable host-based

RDMA forwarding, we exploit the network partition (NPAR)

function of modern NICs, creating an efficient logical overlay

network for RDMA packet forwarding (§6).

To evaluate TOPOOPT, we build a 12-server prototype with

NVIDIA A100 GPUs [37], 100 Gbps NICs and a Telescent re-

configurable optical patch panel [43]. Moreover, we integrate

our TotientPerms AllReduce permutations into NCCL and

enable it to load-balance parameter synchronization across

multiple ring-AllReduce sub-topologies. Our evaluations with

six representative DNN models (DLRM [20], CANDLE [4],

BERT [134], NCF [75], ResNet50 [74], and VGG [126])

show that TOPOOPT reduces the training iteration time by

up to 3.4× compared to a similar-cost Fat-tree. Moreover,

we demonstrate that TOPOOPT is, on average, 3.2× cheaper

than an ideal full bisection bandwidth Fat-tree. TOPOOPT is

the first system that co-optimizes topology and parallelization

strategy for ML workloads and is currently being evaluated for

deployment at Meta. The source code and scripts of TOPOOPT

are available at https://topoopt.csail.mit.edu.

2 Motivation

Prior research has illustrated that demand-aware network fab-

rics are flexible and cost-efficient solutions for building effi-

cient datacenter-scale networks [64, 68, 113]. However, pre-

dicting the upcoming traffic distribution is challenging in a

traditional datacenter setting. This section demonstrates that

DNN training workloads present a unique opportunity for

demand-aware networks, as the jobs are long-lasting, and the

traffic distribution can be pre-computed before the jobs start

to run. First, we provide the necessary background to under-

stand distributed DNN training and introduce three types of

data dependencies between accelerator nodes in training jobs

(§2.1). Then, we present measurements from production clus-

ters in Meta (§2.2), and discuss the important properties of

DNN training traffic.

2.1 Background on Distributed DNN training

Training iteration. A common approach to training DNNs

is stochastic gradient descent (SGD) [90]. Each SGD iter-
ation involves selecting a random batch of labeled training

data, computing the error of the model with respect to the la-

beled data, and calculating gradients for the model’s weights

through backpropagation. The SGD algorithm seeks to up-

date the model weights so that the next evaluation reduces the

error [55]. Training iterations are repeated with new batch of

data until the model converges to the target accuracy.

Data parallelism. Data parallelism is a popular paralleliza-

tion strategy, whereby a batch of training samples is dis-

tributed across training accelerators. Each accelerator holds a

replica of the DNN model and executes the forward and back-

propagation steps locally. In data parallelism, all accelerators

synchronize their model weights during each training iteration.

This step is commonly referred to as AllReduce and can be per-

formed using various techniques, such as broadcasting [141],

parameter servers [93], ring-AllReduce [3, 83, 130], tree-

AllReduce [116], or hierarchical ring-AllReduce [131, 133].

Hybrid data and model parallelism. Large DNN mod-

els cannot fit in the memory of a single accelerator or even

a single server with multiple accelerators. As a result, the

model needs to be divided across multiple accelerators using

model parallelism [84, 92]. Moreover, pure data parallelism

is becoming suboptimal for large training jobs because of the

increasing cost of synchronizing model parameters across ac-

celerators [20, 78, 85, 104, 106, 125]. As a result, large DNNs

are distributed using a hybrid of data and model parallelism,

where different parts of a DNN and its dataset are processed

on different accelerators in parallel.

Types of data dependencies in DNN training. Each train-

ing iteration includes two major types of data dependencies.

Type (1) refers to activations and gradients computed during

the Forward and Backpropagation steps. This data depen-

dency is required for each input sample. Type (2) refers to

synchronizing the model weights across accelerators through

the AllReduce step once a batch of samples is processed. De-

pending on the parallelization strategy, these data dependen-

cies may result in local memory accesses or cross-accelerator

traffic. For instance, in a hybrid data and model paralleliza-

tion strategy, type (1) and (2) both result in cross-accelerator

traffic, depending on how the model is distributed across ac-

celerators. Given that type (1) is related to model parallelism,

we refer to the network traffic created by type (1) as MP trans-
fers. Similarly, we refer to the network traffic created by type

(2) as AllReduce transfers. Note that AllReduce transfers do

not strictly mean data parallelism traffic, as model parallelism

can also create AllReduce transfers across a subset of nodes.

Example: DLRM traffic pattern. Deep Learning Rec-

ommendation Models (DLRMs) are a family of personaliza-

tion and recommendation models based on embedding table

lookups that capitalize on categorical user data [107]. DLRMs

740 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: DLRM traffic heatmaps for different parallelization

strategies.

are large, typically with 100s of billions of parameters, primar-

ily because of their large embedding tables. Using pure data

parallelism to distribute a DLRM results in massive AllRe-

duce transfers. For instance, consider a DLRM architecture

with four embedding tables E0, · · · ,E3, each with embedding

dimensions of 512 columns and 107 rows (total size 22 GB

for the model) distributed across 16 servers S0, · · · ,S15 with

data parallelism. We compute the resulting traffic distribu-

tion, and Figure 1a illustrates the traffic pattern for a single

training iteration. The rows and columns indicate source and

destination servers, while the color encodes the amount of

traffic between server pairs. The heatmap shows that using

ring-AllReduce for synchronization, a pure data parallelism

strategy results in 44 GB of AllReduce transfers.

Hence, a common parallelization strategy for DLRMs is

to use a hybrid of data and model parallelism where the em-

bedding tables are divided across nodes, while the rest of the

model is replicated on all nodes [102]. Following the paral-

lelization strategy used at Meta, we place E0 on S0, E1 on S3,

E2 on S8, and E3 on S13, and replicate the rest of the model

on all servers. This parallelization strategy creates a mix of

MP and AllReduce traffic, shown in Figure 1b. It reduces the

maximum transfer size from 44 GB to 4 GB.

Note that MP transfers in DLRM form one-to-many broad-

cast and many-to-one incast patterns to transfer the activation

and gradients to all nodes because the servers handling embed-

ding tables must communicate with all other servers. In this

example, the size of each AllReduce transfer is 4 GB, whereas

the size of MP transfers is 32 MB, as shown by darker green

elements in the heatmap.

2.2 Production Measurements
We study traffic traces from hundreds of production DNN

training jobs running on multiple clusters at Meta. We instru-

ment each job to log its training duration, number of workers,

and the total amount of data transferred across its workers

during training.

Number of workers and job duration. Figure 2a shows

the cumulative distribution function (CDF) of the number of

workers for different models in Meta’s clusters. Most jobs are

distributed across 32 to 700 workers, agreeing with recent an-

(a) Number of workers (b) Training job duration

Figure 2: Profiling distributed DNN training jobs in Meta.

nouncements by other major players in the industry [45, 104],

where each worker is a single GPU. Figure 2b demonstrates

the CDF of total training job duration; as the figure shows,

most jobs last over 10 hours. In fact, the top 10% of jobs take

more than 96 hours (four days) to finish. This measurement

shows production DNN jobs at Meta are long-lasting, and

take up to weeks to finish.

Network overhead. Figure 3 illustrates the percentage of

network overhead as the number of GPUs is increased from

8 to 128 for six DNN jobs in production. We use RDMA to

transmit packets between servers and measure the percentage

of time consumed by communication during training as net-

work overhead. The figure shows that as the number of GPUs

increases, the network quickly takes up a significant portion of

training iteration time. In fact, the network overhead accounts

for up to 60% of a DNN training iteration time in Meta’s pro-

duction environment. Similar observations have been made

in prior work [59, 77, 89, 105, 110, 123]. Such bottleneck sug-

gests the existing datacenter networks are insufficient for the

emerging DNN training workloads.

Traffic heatmaps. Figure 4 shows the heatmap of server-to-

server traffic for four training jobs running in Meta’s produc-

tion GPU clusters. The values on the colormap and the exact

names of DNN models are not shown for confidentiality rea-

sons. All heatmaps in the figure contain diagonal squares (in

dark blue), indicating a ring communication pattern between

servers. This is expected, as ring-AllReduce is the common

AllReduce communication collective at Meta. But the MP

transfers (light blue and green squares) are model-dependent
because MP transfers depend on the parallelization strategy

and device placement of a training job. Moreover, we find that

the traffic patterns of training jobs do not change between it-

erations for the entire training duration, resulting in the same

per-iteration heatmap throughout the training. Once a training

job starts, the same parallelization strategy and synchroniza-

tion method are used across training iterations, resulting in a

periodic and predictable traffic pattern. Similar observations

have been made in previous work [140]. In particular, the traf-

fic heatmap is identical across training iterations. Note that

the traffic pattern changes within a training iteration during

forward, backward, and AllReduce phases.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 741

Figure 3: Network overhead

measurements in Meta.
Figure 4: Traffic heatmaps of production jobs in Meta.

3 TOPOOPT System Design

The observations in the previous section suggest that demand-

aware fabrics are excellent candidates for a DNN training

cluster. In this section, we seek to answer the following ques-

tion: “Can we build a demand-aware network to best support
distributed training?" To answer this question, we propose

TOPOOPT, a novel system based on optical devices that jointly

optimizes DNN parallelization strategy and topology to ac-

celerate today’s training jobs.

TOPOOPT interconnect. A TOPOOPT cluster is a shard-
able direct-connect fabric where each server has d interfaces

connected to a core layer of d optical switches, as shown in

Figure 5. The optical switches enable TOPOOPT to shard the

cluster into dedicated partitions for each training job. The

size of each shard depends on the number of servers the

job requests. Given a DNN training job and a set of servers,

TOPOOPT first finds the best parallelization strategy and topol-

ogy between the servers off-line (§4.1). Then, it reconfigures

the optical switches to realize the target topology for the

job. Appendix C provides details on how TOPOOPT achieves

sharding and dynamic job arrivals in shared clusters.

Degree of each server. We denote the number of interfaces

on each server (i.e., the degree of the server) by d. Typically,

d is the same as the number of NICs installed on the server.

In cases where the number of NICs is limited, the degree can

be increased using NICs that support break-out cables or the

next generation of co-packaged optical NVLinks [11]. In our

testbed, we use one 100 Gbps HPE NIC [29] with 4×25 Gbps

interfaces to build a system with degree four (d = 4).

Direct-connect topology. In TOPOOPT, optical switches

connect the servers directly, forming a direct-connect topol-
ogy. To further scale a TOPOOPT cluster, we create a hierar-

chical interconnect by placing the servers under Top-of-Rack

(ToR) switches and connecting ToR switches to the optical

layer, creating a direct-connect topology at the ToR or spine

layers, similar to previous work [53, 71, 72, 100, 114].

Host-based forwarding. In DNN training workloads, the

degree of each server is typically smaller than the total num-

ber of neighbors with whom the server communicates during

training. To ensure traffic is not blocked when there is no

Figure 5: Illustration of TOPOOPT’s interconnect.

direct link between two servers, we use a technique called

host-based forwarding, where hosts act as switches and for-

ward incoming traffic toward the destination. Previous work

used similar technique at the ToR switch level [53, 99, 100].

Optical switching technologies. A wide range of optical

switches is suitable for TOPOOPT, including commodity avail-

able optical patch panels [43] and 3D-MEMS [6, 41], as well

as futuristic designs such as Mordia [113], MegaSwitch [57],

and Sirius [53,60]. Table 1 lists the characteristics of these de-

vices. TOPOOPT is compatible with any of these technologies.

Appendix B provides details about these devices.

One-shot reconfiguration. Patch panel and OCS are both

applicable for an immediate deployment of TOPOOPT, as

shown in Table 1. The choice of which technology to use

depends on several factors, including scale of the cluster, iter-

ation time of jobs, and frequency of job arrivals. For instance,

OCSs can potentially be used to reconfigure the topology of

a job within training iterations, whereas patch panels are only

suitable when the topology remains intact throughout the en-

tire training of a particular job. Our evaluations demonstrate

that the reconfiguration latency of today’s OCSs is too high

for today’s DNNs, leading to sub-optimal performance when

the topology is reconfigured within iterations (§5). As a result,

given that faster technologies are not yet available, TOPOOPT

uses a one-shot reconfiguration technique based on an offline

co-optimization framework (§4) that jointly optimizes the

parallelization strategy and topology. TOPOOPT then recon-

figures the interconnection between training servers of each

job before the job starts and keeps the topology intact until

the training is complete (or to recover from failures).

742 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Technology Port-
count

Reconfig.
latency

Insertion
Loss (dB)

Cost /port

Optical Patch Panels [43] 1008 minutes 0.5 $100

3D MEMS [6, 41] 384 10 ms 1.5–2.7 $520

2D MEMS [57, 113] 300 11.5 μs 10–20 Not commercial

Silicon Photonics [89, 122] 256 900 ns 3.7 Not commercial

Tunable Lasers [53, 60] 128 3.8 ns 7-13 Not commercial

RotorNet [99, 100] 64 10 μs 2 Not commercial

Table 1: Comparison of optical switching technologies.

4 Co-optimizing Parallelization Strategy and
Network Topology

This section describes TOPOOPT’s co-optimization frame-

work for finding a network topology and parallelization strat-

egy for a given DNN training job.

4.1 Alternating Optimization

The search space is too large. Finding the optimal paral-

lelization strategy alone is an NP-complete problem [85], and

adding network topology and routing makes the problem even

harder. An extreme solution is to jointly optimize compute,

communication, and topology dimensions using a cross-layer
optimization formulation. Theoretically, this approach finds

the optimal solution, but the search space quickly explodes,

even at modest scales (e.g., six nodes [129]).

Naive approach. The other extreme is to optimize the net-

work topology sequentially after the parallelization strategy

has been found. While this approach is able to reconfigure

the network to better match its traffic demand, the eventual

combination of topology and parallelization strategy is likely

to be sub-optimal in the global configuration space.

TOPOOPT’s approach: alternating optimization. In

TOPOOPT, we seek to combine the best of both worlds. To

make the problem tractable, we divide the search space into

two planes: Comp.×Comm. and Comm.×Topo. We use an

alternating optimization technique to iteratively search in one

plane while keeping the result of the other plane constant.

Figure 6 illustrates our alternating optimization framework.

We use FlexFlow’s MCMC (Markov Chain Monte Carlo)

search algorithm [85] to find the best parallelization strategy

for a given network topology while considering the com-

munication cost. If the parallelization strategy improves the

training iteration time, we feed it to the Comm.×Topo. plane

to find the efficient network topology and routing using our

TOPOLOGYFINDER algorithm. The discovered topology is

then fed back into the Comp.×Comm. plane, which further

optimizes the parallelization strategy and device placement

based on the new topology. This optimization loop repeats un-

til convergence or after k iterations, where k is a configurable

hyper-parameter.

Comm. Topo. plane

Comp. Comm. plane

Figure 6: TOPOOPT searches for the best parallelization strat-

egy, jointly with routing, and topology.

4.2 TOPOLOGYFINDER Algorithm

TOPOLOGYFINDER steps. Algorithm 1 presents the pseu-

docode of our TOPOLOGYFINDER procedure. The algorithm

takes the following inputs: n dedicated servers for the train-

ing job, each with degree d, as well a list of AllReduce

and MP transfers (TAllReduce and TMP) based on the paral-

lelization strategy and device placement obtained from the

Comp.×Comm. plane. The algorithm then finds the best

topology (G) and routing rules (R) and returns them to the

Comp.×Comm. plane for the next round of alternating opti-

mization. Our algorithm consists of the following four steps.

Step 1: Distribute the degree. This step distributes the

degree d between AllReduce and MP sub-topologies propor-

tionally, based on their share of total traffic. We specifically

start with AllReduce transfers and allocate at least one de-

gree to the AllReduce sub-topology to ensure the network

remains connected (line 2). The remaining degrees, if any, are

allocated to the MP sub-topology (line 3).

Step 2: Construct the AllReduce sub-topology. To find

the AllReduce sub-topology, the algorithm iterates over every

AllReduce group k and allocates degree dk to each group pro-

portionally based on the amount of traffic (line 6). Note that

in hybrid data and model parallelism strategies, the AllRe-

duce step can be performed across a subset of servers when

a DNN layer is replicated across a few servers instead of all

servers. To efficiency serve both AllReduce and MP trans-

fers, TOPOOPT constructs the AllReduce sub-topology such

that the diameter of the cluster is minimized. Section 4.3

explains two algorithms, called TotientPerms (line 8) and

SelectPermutations (line 9) to construct the AllReduce

sub-topology.

Step 3: Construct the MP sub-topology. We use the Blos-

som maximum weight matching algorithm [63] to find the

best connectivity between servers with MP transfers (line 14).

We repeat the matching algorithm until we run out of degrees.

To increase the likelihood of more diverse connectivity across

server pairs, we divide the magnitude of TMP for pairs that

already have an edge between them by two (line 17). In gen-

eral, division by two can be replaced by a more sophisticated

function with a diminishing return.

Step 4: Final topology and routing. Finally, we combine

the MP and AllReduce sub-topologies to obtain the final

topology (line 18). We then use a modified version of the

coin-change algorithm [52] (details in Appendix E.1) to route

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 743

Algorithm 1 TOPOLOGYFINDER pseudocode

1: procedure TOPOLOGYFINDER(n, d, TAllReduce, TMP)
� Input n: Number of dedicated training servers for the job.
� Input d: Degree of each server.
� Input TAllReduce: AllReduce transfers.
� Input TMP: MP transfers.
� Output G: Topology to give back to the Comp.×Comm. plane.
� Output R: Routing rules to give back to the Comp.×Comm. plane.

� Distribute degree d between AllReduce and MP sub-topologies
2: dA = max(1, �d × sum(Treduce)

sum(Treduce)+sum(TMP) �)

3: dMP = d −dAllReduce
� Construct the AllReduce sub-topology GAllReduce

4: GAllReduce = {}
5: for each AllReduce group k with set of transfers Tk do

� Assign degree dk to group k according to its total traffic
6: dk = �dA × sum(Tk)

sum(Treduce)
�

7: dA = dA −dk
� Find all the permutations between servers in group k

8: Pk = TotientPerms(n, k) � (Details in §4.3)
� Select dk permutations from Pk

9: GAllReduce = GAllReduce∪ SelectPermutations(n, dk, Pk) � (§4.3)
10: if dAllReduce == 0 then
11: break

� Construct the MP sub-topology GMP
12: GMP = {}
13: for i : i < dMP do

� Find a maximum weight matching according to TMP
14: g = BlossomMaximumWeightMatching(TMP)
15: GMP = GMP ∪g

� Reduce the amount of demand for each link l in graph g
16: for l ∈ g do
17: TMP[l] = TMP[l]/ 2

� Combine the AllReduce and MP topologies
18: G = GAllReduce ∪GMP

� Compute routes on GAllReduce using the coin change algorithm [52]
19: R = CoinChangeMod(n, GAllReduce) � (Appendix §E.1)

� Compute routes on GMP with shortest path
20: R += ShortestPath(G, TMP)
21: return G,R

AllReduce on the AllReduce sub-topology (line 19). Further,

we use k-shortest path routing for the MP transfers to take

advantage of the final combined topology (line 20).

4.3 Traffic Mutability and AllReduce Topology

Finding an efficient AllReduce sub-topology. At first blush,

finding an AllReduce sub-topology for a given DNN seems

straightforward: we just need to translate the parallelization

strategy and device placement from the Comp.×Comm.
plane into a traffic matrix and map the traffic matrix into

circuit schedules. Several papers have used this technique

for datacenter networks [57, 64, 68, 72, 89, 95–97, 113, 137].

However, the conventional wisdom in prior work is to allocate

as many direct parallel links as possible to elephant flows and

leave mice flows to take multiple hops across the network.

In principle, this approach works well for datacenters but it

leads to sub-optimal topologies for distributed DNN training.

While the size of AllReduce transfers is larger than MP trans-

fers, MP transfers have a higher communication degree than

AllReduce (Appendix D). Hence, the conventional approach

creates parallel direct links for carrying AllReduce traffic and

forces MP flows to have a large hop-count, thereby degrading

the training performance.

0 1
2

3

4

5

6
7

12

13

15

89
10

11

14

0 1
2

3

4

5

6
7

12

13

15

89
10

11

14

0 1
2

3

4

5

6
7

12

13

15

9
10

11

14

8

(a) “+1” Permutation (b) “+3” Permutation (c) “+7” Permutation

Figure 7: Ring-AllReduce permutations.

4 GB

0

(b) Traffic Heatmap 2(a) Traffic Heatmap 1 (c) Traffic Heatmap 3

0 5 10 15

0

5

10

15
0 5 10 15

0

5

10

15
0 5 10 15

0

5

10

15

Figure 8: DLRM traffic heatmaps.

TOPOOPT’s novel technique. In TOPOOPT, we seek to

meet two goals simultaneously: (i) allocate ample bandwidth

for AllReduce transfers, as the bulk of the traffic belongs to

them, but (ii) ensure a small hop-count for MP transfers. We

meet both goals by demonstrating a unique property of DNN

training traffic – the AllReduce traffic is mutable.

Mutability of AllReduce transfers. We define traffic mu-

tability as the ability to change the traffic pattern without alter-

ing parallelization strategy or device placement while main-

taining correctness, and demonstrate that AllReduce transfers

are mutable whereas MP transfers are not. Intuitively, this

is because MP traffic is composed of network flows among

nodes that contain different parts of a DNN model thus creat-

ing immutable data dependencies, while AllReduce transfers

contain network flows among nodes that handle the same
part of the model, providing flexibility in the order of nodes

participating in AllReduce. For instance, consider a DLRM

distributed across 16 servers each with three NICs. The com-

mon AllReduce pattern is shown as a ring with consecutive

node IDs, as shown in Figure 7a. However, this is not the only
possible permutation. Each heatmap in 8a, 8b, and 8c corre-

sponds to a different ring-AllReduce permutation, shown in

Figures 7a, 7b, and 7c. We denote each of these permutations

as +p, where server Si connects to server S(i+p)%n, and n is

the number of servers, as shown in Figure 7. Although all

three heatmaps correspond to the exact same parallelization
strategy and device placement, the blue diagonal lines appear

at different parts of the heatmaps, depending on the order of

servers in the ring-AllReduce permutation. But MP transfers

(green vertical and horizontal lines in each heatmap) are dic-

tated by the parallelization strategy and device placement;

thus, they remain at the same spot in all three heatmaps.

744 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 2 TotientPerms pseudocode

1: procedure TOTIENTPERMS(n, k)

� Input n: Total number of nodes

� Input k: AllReduce group size

� Output Pk: Set of permutations for AllReduce group of size k
� Initially, Pk is empty

2: Pk = {}
� This loop runs φ(p) times, where
� φ is the Euler Totient function, φ(p) = |{k < p : gcd(k, p) = 1}|
� one can also restrict p to be prime only

3: for p ≤ k, gcd(p,k)== 1 do
4: one_perm = []

5: for i in 0 to N/k do
6: one_perm += [i+ j× p for j in 0 to k]
7: Pk += one_perm
8: return Pk

Algorithm 3 SelectPermutations pseudocode

1: procedure SELECTPERMUTATIONS(n, dk , Pk)

� Input n: Total number of nodes

� Input dk: Degree allocated for group this AllReduce group of size k
� Input Pk: Candidate permutations for this AllReduce group of size k
� Output Gk: Parameter synchronization topology, given as a set of

permutations

� Initially, Gk is empty
2: Gk = {}

� q now is the minimum candidate in Pk
3: q = Pk[0]

� GetConn(q) gives the connection described
� by the permutation corresponding to q

4: Gk = Gk∪GetConn(q)

� Ratio of the geometric sequence to fit
5: x = dk

√
N

6: for i ∈ {1, · · · ,dk −1} do
� Select the next candidate based on the ratio

7: q′ = x×q
� Project q′ onto Pk \Gk with minimal distance (L1-norm)

8: q′ = argminr∈Pk\Gk
|r−q′|

� Add this candidate to final topology
9: Gk = Gk∪GetConn(q′)

10: q = q′

11: return Gk

Leveraging AllReduce traffic mutability. Traffic mutabil-

ity implies that if a group of servers is connected in a certain

order, simply permuting the label of the servers gives another

ordering that will finish the AllReduce operation with the

same latency while potentially providing a smaller hop-count

for MP transfers. Instead of selecting just one AllReduce

order, TOPOOPT finds multiple permutations for each AllRe-

duce group and overlaps their corresponding sub-topologies.

In doing so, TOPOOPT efficiently serves the AllReduce traffic

while decreasing the hop-count for MP transfers.

TotientPerms algorithm. While overlapping multiple per-

mutations sounds straightforward, navigating through the set

of all possible AllReduce orderings is non-trivial, since the

number of possible permutations is O(n!). To reduce the

search space of all possible permutations, we design the To-

tientPerms algorithm to find the ring generation rule for all

regular rings, based on group theory. Regular rings are those

0 1
2

3

4

5

6
7

12

13

15

9
10

11

14

8

(a) TOPOOPT topology

4GB

128MB

0

4

1

0 5 10 15

0

5

10

15

(b) TOPOOPT traffic pattern

Figure 9: TOPOOPT’s topology and traffic matrix.

where the distance between indices of consecutive servers is

equal; i.e., server Si is connected to server S(i+p)%n for some

p. Algorithm 2 presents the pseudocode of TotientPerms.

Inspired by Euler’s totient function [25], we find all integer

numbers p< n, where p is co-prime with n (i.e. gcd(p,n) = 1,

line 3, Algorithm 2), represent a valid ring-AllReduce permu-

tation (§E.1). For instance, for n = 12 servers, the ring gener-

ation rule for p = 1,5,7,11 will lead into four distinct ring-

AllReduce permutations between the servers. Note that each

p describes a unique regular permutation. To handle large

scale clusters, we restrict p to be a prime number, thereby re-

ducing the search space size to only O(n
ln n), as per the Prime

Number Theorem [66].

SelectPermutations algorithm. For a group of n servers

participating in AllReduce, TotientPerms finds a set of reg-

ular permutations Pk =∪p:gcd(p,n)=1{p} across them. TOPOL-

OGYFINDER then selects dk permutations using a module

called SelectPermutations, where dk is the number of

degree allocated to the group of nodes running AllReduce

(line 6, Algorithm 1). Algorithm 3 presents the pseudocode

of SelectPermutations. Several metrics can be used in

the SelectPermutations module. In our implementation,

SelectPermutations aims to reduce the cluster diameter to

benefit the MP transfers. To this end, SelectPermutations
chooses {p1, · · · , pdk} ⊂ Pk, such that {p1, · · · , pdk} is close

(in L1-norm) to a geometric sequence (line 7, Algorithm 3).

Theorem 1. TOPOOPT’s SelectPermutations algo-
rithm bounds the diameter of the AllReduce sub-topology to
O(dA ·n1/dA), under certain assumptions.

We list the assumptions and proof of Theorem 1 in Ap-

pendix E.2. Intuitively, each server in the topology is able to

reach a set of servers with a geometrically distributed hop-

count distance (line 5, Algorithm 3), creating a topology sim-

ilar to Chord [128].

Example. Consider the DLRM model in Figure 8. Instead

of choosing one of the AllReduce permutations in Figure 7,

TOPOOPT combines the three ring-AllReduce permutations to

load-balance the AllReduce transfers while providing a short

hop-count for MP transfers. Figure 9 illustrates TOPOOPT’s

topology and traffic matrix and shows a more balanced traffic

matrix than Figure 8.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 745

5 Large Scale Simulations

This section evaluates the performance of a large-scale

TOPOOPT interconnect. First, we explain our simulation soft-

ware and methodology (§5.1). Then, we provide a cost analy-

sis of TOPOOPT to inform our simulations when comparing

different interconnects (§5.2). Next, we demonstrate the per-

formance of TOPOOPT when a cluster is dedicated to a single

distributed DNN training job (§5.3). We perform a sensitivity

analysis to quantify the impact of all-to-all traffic (§5.4) and

host-based forwarding (§5.5). We extend this setting to a case

where a training cluster is shared among multiple jobs (§5.6).

Finally, we evaluate the impact of reconfiguration latency

(§5.7) on TOPOOPT’s performance.

5.1 Methodology & Setup

We implement two simulators to evaluate TOPOOPT.

FlexNet simulator. We augment FlexFlow’s simulator [27]

to be network-aware and call it FlexNet. Given a DNN model

and a batch size, FlexFlow’s simulator explores different par-

allelization strategies and device placements to minimize it-

eration training time. The output of this simulator is a task
graph describing the set of computation and communication

tasks on each GPU and their dependencies. The current im-

plementation of FlexFlow ignores the network topology by

assuming servers are connected in a full-mesh interconnect.

Our FlexNet simulator extends the FlexFlow simulator and

enables it to consider multiple networks, including Fat-trees,

TOPOOPT, and expander networks. Moreover, FlexNet imple-

ments our alternating optimization framework (§4) to find an

optimized network topology and routing rules for TOPOOPT.

FlexNetPacket simulator. FlexFlow’s simulator only pro-

vides course-grind estimation of training iteration time,

because it does not simulate individual packets travers-

ing through a network. Extending FlexNet to become a

packet-level simulator is computationally infeasible, because

FlexFlow generally requires thousands of MCMC iterations

to converge. To faithfully simulate per-packet behavior of

network switches, buffers, and multiple jobs sharing the same

fabric, we build a second event-based packet simulator, called

FlexNetPacket, on top of htsim [7]. FlexNetPacket takes the

output of FlexNet (i.e., the optimized parallelization strategy,

device placement of each operator, network topology, and

routing rules) and simulates several training iterations. The

link propagation delay is set to 1 μs throughout this section.

Simulated network architectures. We simulate dis-

tributed training clusters with n servers equipped with four

NVIDIA A100 GPUs [37]. We vary n in different experiments

and simulate the following network architectures:

• TOPOOPT. A TOPOOPT interconnect where each server

is equipped with d NICs, each with bandwidth B connected

via a flat layer of optical devices. At the beginning of each

job, a shard of the network is selected, and the topology of the

shard is reconfigured based on the output of our alternating

optimization framework (§4) and remains unchanged through-

out the entire training job. Both OCS and patch panels are

suitable for this architecture.

• OCS-reconfig. To study the impact of changing the net-

work topology within training iterations, we simulate a recon-

figurable TOPOOPT interconnect. We rely on commercially

available Optical Circuit Switches (OCSs) for this design

and assume the reconfiguration latency is 10 ms. Given that

FlexFlow’s parallelization strategy search is not aware of dy-

namically reconfigurable networks, following prior work [89],

we measure the traffic demand every 50 ms and adjust the

circuits based on a heuristic algorithm to satisfy the current

traffic demand as much as possible. We also enable host-based

forwarding such that the communication is not blocked even

when a direct link is not available (Appendix E.4).

• Ideal Switch. An ideal electrical switch that scales to any

number of servers, where each server is connected to the

switch via a link with d ×B bandwidth. For any pair of d
and B, no network can communicate faster than this ideal

case. In practice, the Ideal Switch can be approximated with

a full-bisection bandwidth Fat-tree where the bandwidth of

each link is d ×B.

• Fat-tree. To compare the performance of TOPOOPT to

that of a similar-cost Fat-tree architecture, we simulate a full

bisection bandwidth Fat-tree where each server has one NIC

and the bandwidth of each link is d ×B′, where B′ is lower

than B and is selected such that Fat-tree’s cost is similar to

TOPOOPT (§5.2).

• Oversub. Fat-tree. This is a 2:1 oversubscribed Fat-tree

interconnect, where the bandwidth of each link is d ×B but

half of the links in the ToR uplink layer are omitted.

• SiP-ML [89]. SiP-ML is a futuristic DNN training clus-

ter with Tbps of bandwidth per GPU. While having a Tbps

network is beneficial, our goal is to compare the algorithmic

contributions of TOPOOPT and SiP-ML. Hence, to make a fair

comparison, we allocate d wavelengths, each with bandwidth

B, to each SiP-ML GPU and follow its SiP-Ring algorithm

to find a topology with a reconfiguration latency of 25 μs.

Appendix F elaborates on our modifications to SiP-ML.

• Expander [127, 135]. Finally, we simulate a fabric where

each server has d NICs with bandwidth B interconnected via

an Expander topology.

DNN Workloads. We simulate six real-world DNN mod-

els: DLRM [20], CANDLE [4], BERT [62], NCF [75],

ResNet50 [74] , and VGG [126]. List 1 (Appendix D) pro-

vides details about model configurations and batch sizes used

in this paper.

Parallelization strategy. We use FlexNet’s topology-aware

parallelization strategy search for Ideal Switch, Fat-tree, Over-

sub. Fat-tree, SiP-ML, and Expander networks. For TOPOOPT,

we use FlexNet’s alternating optimization framework to find

the best parallelization strategy jointly with topology, where

the final parallelization strategy is either hybrid or pure data-

746 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.6

6

60

(a) d = 4, B = 100 Gbps

SiP-MLTopoOpt OCS-reconfig

Fat-treeIdeal Switch

0.2

2

20

Expander
Oversub Fat-tree

In
te

rc
on

ne
ct

 C
os

t (
M

$)

128 432 1024 2000
Number of servers

128 432 1024 2000
Number of servers

(b) d = 8, B = 200 Gbps

Figure 10: Interconnect cost comparison.

parallel. We use ring-AllReduce and distributed parameter

server [93] as default AllReduce communication collectives

between servers and within servers, respectively. Each data

point averages 5–10 simulation runs.

5.2 Cost Analysis

We begin our evaluations by comparing the cost of various net-

work architectures. Details about the cost of each component

used in each architecture are given in Appendix G.

Figure 10 compares the interconnect cost across various

network architectures as the number of servers is increased.

We estimate the cost of Ideal Switch with a full-bisection

Fat-tree of the same bandwidth. We make the following obser-

vations. First, using OCSs for TOPOOPT is more expensive

(1.33×, on average) than patch panels. Note that OCSs can be

used in both TOPOOPT and OCS-reconfig interconnects. Sec-

ond, the cost of TOPOOPT overlaps with that of the Fat-tree.

This is intentional, because having a cost-equivalent archi-

tecture enables us to compare the performance of TOPOOPT

to a cluster at the same price point. Third, the ratio of Ideal

Switch’s cost to TOPOOPT’s cost is 3.2× on average. Fi-

nally, the most and least expensive fabrics are SiP-ML and

Expander, respectively, and as this section shows, they both

perform worse than TOPOOPT for certain workloads.

We acknowledge that estimating the cost of networking

hardware is challenging because prices are subject to signifi-

cant discounts with bulk orders. Assuming all components in

this analysis are subject to similar bulk order discounts, the

relative comparison across architectures remains valid. As a

point of comparison, we compute the cost of a cluster with

4,394 servers (k = 26 Fat-tree) by following the discounted

cost trends in Sirius [53] and with 50% discounts for patch

panels. For a cluster at this scale, the cost of full-bisection

bandwidth Fat-tree (which approximates our Ideal Switch

baseline) relative to the cost of TOPOOPT changes from 3.0×
to 3.6×, indicating our estimates are reasonable. Moreover, a

TOPOOPT cluster incurs lower energy cost than Fat-trees, as

optical switches are passive.

5.3 Performance Comparison on Dedicated
Clusters

This section compares the training iteration time of TOPOOPT

with that of other network architectures when the cluster is

dedicated to serving one DNN training job.

Figure 11a compares the training iteration times of various

architectures for CANDLE distributed on a dedicated cluster

of 128 servers with a server degree of four (d = 4). We vary

the link bandwidth (B) on the x-axis. The figure shows that

Ideal Switch, TOPOOPT, and SiP-ML architectures achieve

similar performance because the best parallelization strategy

for CANDLE at this scale is mostly data parallel, with few

MP transfers. The OCS-reconfig architecture performs poorly

because it uses the instantaneous demand as the baseline to

estimate the future traffic to schedule circuits. This estima-

tion becomes inaccurate during training, in particular when

the current AllReduce traffic is about to finish but the next

round of AllReduce has not started. The Expander architecture

has the worst performance, as its topology is not optimized

for DNN workloads. Averaging across all link bandwidths,

compared to Fat-tree interconnect, TOPOOPT improves the

training iteration time of CANDLE by 2.8×; i.e., the ratio

of CANDLE’s iteration time on Fat-tree to TOPOOPT is 2.8.

TOPOOPT’s servers have more raw bandwidth, resulting in

faster completion time.1

Figures 11b and 11c show the training iteration times for

VGG and BERT. The trends are similar to CANDLE, as these

models have similar degree requirements. Compared to Fat-

tree, on average, TOPOOPT improves the iteration time of

VGG and BERT by 2.8× and 3×, respectively.

The cases of DLRM and NCF are more interesting, as they

have more MP transfers than the other DNNs. As shown in

Figures 11d and 11e, TOPOOPT’s performance starts to de-

viate from Ideal Switch, especially for NCF, because it uses

host-based forwarding for the many-to-many MP transfers

(§5.4 and §5.5). For DLRM (and NCF), TOPOOPT is 2.8×
(and 2.1×) faster than Fat-tree, while Ideal Switch further

improves the training iteration time by 1.3× (and 1.7×) com-

pared to TOPOOPT. SiP-ML performs poorly, and even when

we increase the link bandwidth, its training iteration time

stays flat. This happens because MP transfers in DLRM and

NCF require several circuit reconfigurations to meet the traffic

demand.

Finally, Figure 11f shows most architectures achieve sim-

ilar training iteration times for ResNet50 since it is not a

communication-heavy model. The Expander architecture per-

forms poorly when the link bandwidth is lower than 100 Gbps,

as the topology does not match the AllReduce traffic pattern.

We repeat this simulation with d = 8 and observe a similar

performance trend (Appendix H).

1It is possible to improve the performance of the Expander fabric by

augmenting Blink’s approach [136] to a cluster-level solution.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 747

Figure 11: Dedicated cluster of 128 servers (d = 4).

5.4 Impact of All-to-all Traffic

This section evaluates the impact of all-to-all traffic patterns

on TOPOOPT’s performance. In particular, TOPOOPT’s host-

based forwarding approach incurs bandwidth tax [99] exacer-

bated by all-to-all and many-to-many communication patterns.

This tax is defined as the ratio of the traffic volume in the

network (including forwarded traffic) to the volume of logical

communication demand. Hence, the bandwidth tax for a full

bisection bandwidth Fat-tree topology is always one, because

hosts do not act as relays for each other.

Consider a DNN model with R bytes of AllReduce traffic

and A bytes of all-to-all traffic, distributed on a full bisection

bandwidth topology with total network bandwidth N ·BF (i.e.,

number of servers multiplied by the bisection bandwidth). The

training iteration time of this DNN is: TF = R
N·BF

+ A
N·BF

+Cbs,

where Cbs is the computation time of the model with batch

size bs.2

Now suppose the same DNN is distributed on a TOPOOPT

topology with total network bandwidth NBT . In this case,

assuming the entire AllReduce traffic is carried on Totient-

Perms with direct links, the training iteration time becomes

TT = R
N·BT

+ α·A
N·BT

+Cbs (Eq. 1), where α represents the slow-

down factor that all-to-all transfers create in the network, due

to host-based forwarding. The value of α depends on the

amount of bandwidth tax and routing strategy (§5.5).

Increasing the amount of all-to-all traffic (A) increases the

iteration time for both TF and TT . But when N ·BF and N ·BT
are equal, TOPOOPT’s performance degrades faster because

of the α factor in the numerator. To quantify this behavior

concretely, we distribute a DLRM training task with 128 em-

2For clarify of presentation, this formulation assumes no overlap between

communication and computation stages and no competing traffic.

bedding tables on a cluster with 128 servers. We choose large

embedding tables and distribute each table on each server,

creating worst-case all-to-all traffic.

Figure 12 compares the training iteration times of

TOPOOPT, Ideal Switch, and Fat-tree as the batch size is

increased. The top x-axis lists the ratio of all-to-all to AllRe-

duce traffic for each batch size value given on the bottom

x-axis. As shown in Figure 12a, when the batch size is 128

and d = 4, TOPOOPT’s performance matches that of Ideal

Switch, while Fat-tree is a factor of 2.7 slower. This result

agrees with the performance gains in Figure 11d, as the batch

sizes are the same.

Increasing the batch size increases A, and this, in turn, in-

creases the training iteration times in all three architectures.

As predicted by Eq. (1), TOPOOPT’s iteration time increases

faster. Specifically, when the batch size is 2048 and all-to-

all traffic is 80% of AllReduce traffic, TOPOOPT performs

poorly, and the iteration time is a factor of 1.1 higher than

that of the Fat-tree architecture. Increasing the server degree

d mitigates the problem, as shown in Figure 12b. Note that in-

creasing the batch size does not always result in faster training

time [89, 109, 124]. Moreover, publicly available data suggest

2048 is the largest batch size for training DLRM [102]. The

number of columns in the embedding tables and the number

of servers are smaller in their workload: (92, 16) vs. (128,

128), respectively. Hence, the DLRM workload we evaluate

contains more all-to-all traffic than the state-of-the-art model

used in industry.

5.5 Impact of Host-based Forwarding

Two factors impact the performance of host-based forwarding

in TOPOOPT: bandwidth tax and routing strategy.

748 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

0.2

0.4

0.6

0.8

64 128 256 512 1024 2048
0

0.1
0.2
0.3
0.4
0.5
0.6

64 128 256 512 1024 2048
Batch size per GPU Batch size per GPU

(a) d = 4 (b) d = 8

TopoOpt
Fat-tree
Ideal Switch

Ite
ra

tio
n

Ti
m

e
(s

)

Ite
ra

tio
n

Ti
m

e
(s

)

3% 5% 10% 20% 40%
Ratio of all-to-all to AllReduce Ratio of all-to-all to AllReduce

80% 3% 5% 10% 20% 40% 80%
TopoOpt
Fat-tree
Ideal Switch

Figure 12: Impact of all-to-all traffic on a dedicated cluster of

128 servers (B = 100 Gbps).

Bandwidth tax. Figure 13 shows the amount of bandwidth

tax experienced by the DLRM job in the previous section.

Each bar represents a different batch size. At batch size 64

with d = 4, TOPOOPT experiences a bandwidth tax of 1.11,

indicating that host-based forwarding creates 11% extra traf-

fic in the network. Increasing the degree to d = 8 further

improves this number to 1.05. In the worst-case scenario with

batch size 2048, TOPOOPT pays a bandwidth tax of 3.03 when

d = 4, causing it to perform worse than Fat-tree, as shown

in Figure 12a. Determining the value of tolerable bandwidth

tax is challenging for a TOPOOPT cluster, as it depends on

the compute time and the amount of compute-communication

overlap, and this varies for different DNN models.

Impact of path length. Intuitively, the amount of band-

width tax grows with the path length [99]. Figure 14 shows

the CDF of path length across all server pairs. When d = 4,

the average path length is 5.7, resulting in at least 5.7× over-

head of host-based forwarding relative to Ideal Switch for

all-to-all traffic. Based on Eq. (1), and since the total network

bandwidth in TOPOOPT is higher than Fat-tree (NBT > NBF),

the overhead of host-based forwarding becomes at least 1.4×
for the Fat-tree architecture. Increasing the server degree to

8 reduces the average path length to 3, thereby reducing the

overhead bound. Appendix H evaluates the impact of increas-

ing node degree on performance for other models.

Routing strategy. Building a topology with a small path

length is necessary but not sufficient to reduce the impact

of host-based forwarding. To handle forwarded traffic with

minimum performance impact, the routing strategy also needs

to be efficient. The best routing strategy minimizes the max-
imum link utilization for a given network topology, similar

to WAN traffic engineering solutions [91]. However, finding

the optimal routing strategy requires solving a set of linear

equations with a centralized controller [76, 81]. To quantify

the load imbalance in TOPOOPT, Figure 15 illustrates the

CDF of the amount of traffic carried by each physical link

for an all-to-all traffic matrix. When the batch size is 128

(Figure 15a), the link with the least traffic carries 39% and

59% less traffic than the link with the most traffic, for d = 4

and d = 8, respectively. This imbalance in load suggests fur-

ther opportunities to improve the performance of TOPOOPT.

Achieving optimal routing makes α (Eq. (1)) equal to the aver-

0

1

2

3

d=4 d=8

bs=64 bs=128 bs=256
bs=512 bs=1024 bs=2048

Degree

Ba
nd

w
id

th
 Ta

x

Figure 13: Bandwidth tax.

Path Length

CD
F

0
0.2
0.4
0.6
0.8

1

0 2 4 6 8 10

d=4
d=8

Figure 14: Path length CDF.

Traffic (MB)

CD
F

0
0.2
0.4
0.6
0.8

1

0 10 20 30 40 50 60

d=4
d=8

Traffic (MB)

CD
F

0
0.2
0.4
0.6
0.8

1

0 200 400 600 800 1000

d=4
d=8

(a) Batch size = 128 (b) Batch size = 2048

Figure 15: Traffic distribution.

age path length. Without a centralized controller, however, the

link utilization becomes non-uniform, and the average path

length only serves as a lower bound. We leave optimizing the

routing strategy in TOPOOPT to future work.

5.6 Performance on Shared Clusters

We now compare the performance of different network archi-

tectures when the cluster is shared across multiple DNN jobs.

Following prior work [98,115], we run a series of simulations

where 40% of the jobs are DLRM, 30% are BERT, 20% are

CANDLE, and 10% are VGG16. We change the number of

active jobs to represent the load on the cluster. Assuming each

job requests 16 servers (64 GPUs), we execute 5, 10, 15, 20,

and 27 jobs on the cluster to represent 20%, 40%, 60%, 80%

and 100% load, respectively.

Figure 16 compares the average and 99%-tile iteration time

at different loads for a cluster with 432 servers where d = 8

and B = 100 Gbps. SiP-ML does not support multiple jobs;

hence, we omit it in this experiment. We omit OCS-reconfig

and Expander networks, as they both show poor performance

in this setting. Instead, we add the Oversub. Fat-tree inter-

connect to demonstrate the impact of congestion on Fat-tree

topologies. Figure 16a shows that TOPOOPT improves the

average iteration time by 1.7× and 1.15×, compared to the

Fat-tree and Oversub. Fat-tree architectures, respectively. We

observe a similar trend for the tail iteration completion times,

depicted in Figure 16b. At the extreme case when all servers

are loaded, TOPOOPT’s tail training iteration time is 3.4×
faster compared to Fat-tree architecture. Averaging across all

load values on the x-axis, TOPOOPT improves the tail train-

ing iteration time by 3× and 1.4× compared to Fat-tree and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 749

(a) Average Iteration Time

Av
er

ag
e

Ite
ra

tio
n

Ti
m

e
(s

)

(b) 99%-ile Iteration Time

99
%

-il
e

Ite
ra

tio
n

Ti
m

e
(s

)

0.05

0.1

0.15

20% 40% 60% 80% 100%
0.1

0.2

0.3

0.4

0.5

20% 40% 60% 80% 100%
Load Load

TopoOpt Fat-tree Ideal Switch Oversub Fat-tree

Figure 16: Shared cluster of 432 servers (d = 8, B = 100 Gbps).

Oversub. Fat-tree architectures.

5.7 Impact of Reconfiguration Latency

Figure 17 shows the training iteration time of DLRM and

BERT in the same setting as Figure 11, while sweeping the

reconfiguration latency of OCSs in OCS-reconfig from 1 μs
to 10 ms. The horizontal blue line corresponds to TOPOOPT’s

iteration time; it remains constant as it does not reconfig-

ure the network topology. We find host-based forwarding

is challenging when the network is reconfigurable, as the

circuit schedules need to account for forwarding the traffic

while the topology reconfigures. Therefore, we evaluate the

performance of OCS-reconfig with and without host-based

forwarding. The purple line corresponds to OCS-reconfig

with host-based forwarding (same as OCS-reconfig evaluated

in Figure 11), denoted by OCS-reconfig-FW. For the orange

line, we disable host-based forwarding (similar to SiP-ML)

and call it OCS-reconfig-noFW.

We find enabling host-based forwarding when the topolo-

gies reconfigures within a training iteration is not always ben-

eficial. For DLRM (Figure 17a), OCS-reconfig-FW achieves

better performance than OCS-reconfig-noFW, as DLRM has

all-to-all MP transfers which benefit from host-based forward-

ing. However, for BERT (Figure 17b), enabling forwarding

increases the chance of inaccurate demand estimation and

imposes extra bandwidth tax, therefore increasing the itera-

tion time of OCS-reconfig-FW by a factor of 1.4 compared to

OCS-reconfig-noFW.

Reducing the reconfiguration latency all the way to 1 μs

enables OCS-reconfig-noFW to match the performance of

TOPOOPT. However, OCS-reconfig-FW still suffers from in-

accurate demand estimations. Although fast reconfigurable

switches are not yet commercially available, they are go-

ing to be essential in elastic scenarios where the cluster is

shared across multiple jobs and servers join and leave different

jobs unexpectedly, or when large, high-degree communication

dominates the workload. We believe futuristic fast reconfig-

urable switches, such as Sirius [53], are well-suited for this

setting. Finding a parallelization algorithm that is aware of

reconfigurability within training iterations is a challenging

and exciting future research problem.

0.03

3

1 10 100 1000 10000

(a) DLRM

0.03

3

1 10 100 1000 10000
Reconfiguration Latency (us)

Tr
ai

ni
ng

 It
er

at
io

n
Ti

m
e

(s
)

(b) BERT

OCS-reconfig-FWTopoOpt

Reconfiguration Latency (us)

OCS-reconfig-noFW

Figure 17: Impact of reconfiguration latency (d=8,

B=100 Gbps).

6 Prototype

Testbed setup. We build a prototype to demonstrate the

feasibility of TOPOOPT. Our prototype includes 12 ASUS

ESC4000A-E10 servers and a G4 NMT patch panel [43].

Each server is equipped with one A100 Nvidia GPU [37]

(40 GB of HBM2 memory), one 100 Gbps HP NIC [29], and

one 100 Gbps Mellanox ConnectX5 NIC. Our HP NICs are

capable of supporting 4×25 Gbps interfaces using a PSM4

transceiver with four breakout fibers [8], enabling us to build

a TOPOOPT system with degree d = 4 and B = 25 Gbps. We

use RoCEv2 for communication, and enable DCB [19] and

PFC on these interfaces to support a lossless fabric for RDMA.

We build a completely functional TOPOOPT prototype with

our patch panel (Figure 18). We compare TOPOOPT’s per-

formance with two baselines: (i) Switch 100Gbps, where the

servers are connected via 100 Gbps links to a switch, and (ii)
Switch 25Gbps, where the servers are connected via 25 Gbps

links to a switch. The Switch 100Gbps baseline corresponds

to the Ideal Switch case in our simulations.

Distributed training framework. We use FlexFlow’s

training engine [26], based on Legion’s parallel program-

ming system [30], to train four DNN models: ResNet50 [74],

BERT [62], VGG16 [126], and CANDLE [4]. For DLRM,

we use Facebook’s implementation from [20]. Since our pro-

totype is an order of magnitude smaller in scale than our

simulation setup, we use smaller model and batch sizes.

Modifications to NCCL. By default, the NCCL com-

munication library [36] assumes all network interfaces are

routable from other interfaces. This assumption is not ideal

for TOPOOPT because we have a specific routing strategy

to optimize training time. We modify NCCL to understand

TOPOOPT’s topology and respect its routing preferences.

Moreover, we integrate our TotientPerms AllReduce permuta-

tions into NCCL and enable it to load-balance parameter syn-

chronization across multiple ring-AllReduce permutations.

RDMA forwarding. Implementing TOPOOPT with today’s

RDMA NICs requires solving an engineering challenge, be-

cause the RDMA protocol assumes a switch-based network.

Packet processing and memory access in RDMA protocol are

offloaded to the NIC, and a RoCEv2 packet whose destination

750 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 18: Testbed

photo.

Figure 19: Training throughput

(samples/second).
Figure 20: Time-to-accuracy of

VGG19 with ImageNet.

0

0.3

0.6

0.9

1.2

32 64 128 256 512

Switch 25Gbps
TopoOpt 4x25Gbps
Switch 100Gbps

Batch Size

Ite
ra

tio
n

Ti
m

e
(s

)

5% 10% 19% 39% 78%
Ratio of all-to-all to AllReduce

Figure 21: Impact of all-to-all

traffic in our testbed.

IP address is different from that of the host is assumed to

be corrupted. Therefore, the NIC silently drops forwarded

packets. To address this issue, we collaborated with engineers

at Marvell who developed the firmware and driver of our HP

NICs. Our solution uses a feature called network partitioning

(NPAR) which enables the NIC to separate host-based for-

warding traffic from direct traffic, and uses the Linux kernel

to route them (details in Appendix I). Our conversations with

Marvell indicate that updating the firmware and the driver

enables the NIC to route forwarded RoCEv2 packets, thereby

bypassing the kernel entirely.

Training performance. Figure 19 demonstrates that

TOPOOPT’s training throughput (samples/second) is simi-

lar to our Switch 100 Gbps baseline for all models. The

performance of Switch 25Gbps baseline is lower because

its available bandwidth is lower than TOPOOPT. Figure 20

shows the time-to-accuracy plot of training VGG19 on the

ImageNet [61] dataset. As the figure indicates, TOPOOPT

reaches the target accuracy of 90% 2.0× faster than the

Switch 25Gbps baseline. TOPOOPT achieves similar perfor-

mance to the Switch 100Gbps baseline, as the blue and red

lines overlap in Figure 20.

Impact of all-to-all traffic. Similar to Section 5.4, we

evaluate the impact of all-to-all MP traffic on our RDMA-

forwarding enabled testbed by measuring the average iteration

time across 320 iterations of a DLRM job distributed in our

testbed. We vary the amount of all-to-all traffic by changing

the batch size. To create worst-case traffic, we increase the

embedding dimensions by 128× relative to the state-of-the-

art [20] (model details are in List 1, Appendix D). Figure 21

shows the training iteration time for various batch sizes. The

results are consistent with Figure 12, but since the bandwidth

tax in our 12-server testbed is much smaller than a 128-server

cluster in simulations, TOPOOPT performs better relative to

the switch-based architectures for a given all-to-all to AllRe-

duce traffic ratio. For instance, for batch size 512, the ratio of

all-to-all traffic to AllReduce is 78%, and the training iteration

time with TOPOOPT is 1.6× better than the Switch 25Gbps

baseline.

7 Discussion

Target workload. The most suitable workload for a

TOPOOPT cluster is a set of large DNN training jobs with hy-

brid data and model parallelism (or simply data parallelism).

We assume the set of servers assigned to each job remains the

same throughout the lifetime of the job, and the GPUs are not

shared across multiple jobs.

Storage and control plane traffic. Meta’s training clus-

ters consist of custom-designed servers, each with eight

GPUs, eight dedicated NICs for training traffic (GPU NICs),

and four additional NICs for storage and other traffic (CPU

NICs) [102]. Other companies, such as NVIDIA, have similar

architectures [10]. TOPOOPT only considers GPU NICs as

server degree and partitions the network dedicated for training

traffic. The CPU NICs are connected through a separate fabric

to carry storage and other control plane traffic.

Supporting dynamic scheduling and elasticity. Others

have demonstrated the benefits of dynamically choosing the

training servers for elastic training jobs [98, 115]. Our tar-

get use case in Meta is to leverage TOPOOPT for the vast

number of long-lasting training jobs that do not change dy-

namically. In cases where elasticity is required, instead of

using patch panels, we use OCSs (or other fast reconfigurable

optical switches) to change the servers participating in a job

quickly. Note that dynamically changing the set of servers

participating in a job while keeping both the topology and

the parallelization strategy optimal requires augmenting the

optimization space with an additional dimension, making the

problem even more challenging. We leave this to future work.

Handling failures. Unlike SiP-ML’s single ring topol-

ogy [89], a single link failure does not disconnect the graph

in TOPOOPT. When a fiber fails, TOPOOPT can temporarily

use a link dedicated to MP traffic to recover an AllReduce

ring. In case of permanent failures, TOPOOPT reconfigures to

swap ports and recover the failed connection.

Supporting multi-tenancy. To support multi-tenancy [142,

143], TOPOOPT can leverage NVIDIA’s MIG [39] to treat

one physical server as multiple logical servers in its topology.

TotientPerms in Fat-trees. Although our TotientPerms

technique is well-suited for reconfigurable optical intercon-

nects, it may be of independent interest for Fat-tree intercon-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 751

nects as well since load-balancing the AllReduce traffic across

multiple permutations can help with network congestion.

TOPOOPT’s limitations. TOPOOPT’s approach assumes

the traffic pattern does not change between iterations. How-

ever, this assumption may not hold for Graphic Neural Net-

work (GNN) models [121] or Mixture-of-Expert (MoE) mod-

els [80]. In addition, we plan to extend TOPOOPT by bringing

its demand-awareness design within training iterations. This

is an open research question, and as shown in Section 5.7,

we will need fast-reconfigurable optical switches, as well as a

more sophisticated scheduling algorithm. Another limitation

of TOPOOPT is that a single link failure within a AllReduce

ring causes the full ring to become inefficient for AllReduce

traffic. A fast optical switch addresses this problem by quickly

reconfiguring the topology.

8 Related Work

Optimizing DNN training. To address the increasing compu-

tation and network bandwidth requirements of large training

jobs, a plethora of frameworks have been proposed [5, 46, 58,

69, 77, 79, 85, 86, 105, 108, 111, 117, 118, 123, 129, 136, 146].

These frameworks distribute the dataset and/or DNN model

across accelerators while considering the available network

bandwidth, but unlike TOPOOPT, they do not consider opti-

mizing the physical layer topology. Specifically, Blink [136]

builds collectives for distributed ML, but it needs a physi-

cal topology to generate spanning trees. Zhao et al. [147]

study the optimal topology for collective communication op-

erations, but this does not apply for general MP traffic. In

addition, several methods have been proposed to quantize

and compress the gradients to reduce the amount of com-

munication data across servers [48, 56, 144]. While these

approaches are effective, they are designed for data parallel

strategies and do not consider the large amount of data trans-

fers caused by model parallel training. Wang et al. [138] com-

pare the performance of Fat-trees and BCube topologies for

distributed training workloads and highlight several inefficien-

cies in Fat-trees. SiP-ML [89] demonstrates the benefits of

8 Tbps silicon photonics-based networks for distributed train-

ing. However, unlike TOPOOPT, these proposed approaches

do not co-optimize topology and parallelization strategy.

DNN parallelization strategies. Data and model paral-

lelism are widely used by today’s DNN frameworks (e.g., Ten-

sorFlow [44], PyTorch [42], MXNet [17]) to parallelize train-

ing across multiple devices. Recent work has also proposed

automated frameworks (e.g., FlexFlow [85], ColocRL [101],

MERLIN [38]) that find efficient parallelization strategies

by searching over a comprehensive space of potential strate-

gies. These frameworks rely on and are optimized for the

conventional Fat-tree interconnects. TOPOOPT proposes a

new approach to building DNN training systems by jointly

optimizing network topology and parallelization strategy.

DNN training infrastructures and schedulers. Several

training infrastructures have been proposed recently, in-

cluding NVIDIA DGX SuperPOD [10], TPU cluster [9],

and supercomputers [1]. All these systems assume non-

reconfigurable network topologies, such as Fat-tree, Torus,

and other traffic-oblivious interconnects. TOPOOPT is the first

DNN system to use commodity reconfigurable interconnects

to accelerate DNN jobs.Gandiva [140], Themis [98], Tire-

sias [70], BytePS [86, 111], and Pollux [115] seek to improve

the utilization of GPU clusters through scheduling algorithms.

These approaches are complementary to ours, and many of

their techniques can be applied to a TOPOOPT cluster.

Optical Interconnects. Several papers have demonstrated

the benefits of optically reconfigurable interconnects for dat-

acenters [51, 53, 57, 60, 64, 68, 95–97, 99, 100, 113]. These

designs lead to sub-optimal topologies for distributed DNN

traffic. Similarly, traffic oblivious interconnects, such as Ro-

torNet [99, 100], are a great fit for datacenter workloads, but

they are not suitable for DNN training jobs characterized

by repetitive traffic demands. Hybrid electrical/optical dat-

acenter proposals [64, 137] can be used to route AllReduce

traffic through the optical fabric and MP flows through a stan-

dard electrical Fat-tree network. But hybrid clusters are not

cost effective and suffer from many problems, including TCP

ramp-up inefficiencies [103], segregated routing issues [65],

and uncertainty in terms of how to divide the cluster between

electrical and optical fabrics [68, 72].

9 Conclusion

We present TOPOOPT, a novel system based on optical de-

vices that jointly optimizes DNN parallelization strategy and

topology to accelerate training jobs. We design an alternating

optimization algorithm to explore the large space of Compu-
tation × Communication × Topology strategies for a DNN

workload, and demonstrate TOPOOPT obtains up to 3.4×
faster training iteration time than Fat-tree.

10 Acknowledgments

We thank our shepherd Sangeetha Abdu Jyothi and anony-

mous reviewers for their valuable feedback. We also acknowl-

edge Meta for supporting this research. In particular, we thank

Omar Baldonado, Gaya Pradeep Sindhu, and Jahangir Hasan.

In addition, we thank Alan Gibbemeyer, Bob Shine, Karl

Kuhn and Ramiro Voicu from Telescent for their support on

the Telescent NTM-G4. We also thank Arial Elior, Karl Er-

ickson, and Nishant Lodha from Marvell for their help on

RDMA forwarding. The MIT-affiliated authors are supported

by ARPA-E ENLITENED PINE DE-AR0000843, DARPA

FastNICs 4202290027, NSF grants CNS-2008624, SHF-

2107244, ASCENT-2023468, CAREER-2144766, PPoSS-

2217099, CNS-2211382, Meta faculty award, Google faculty

award, and Sloan fellowship FG-2022-18504.

752 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Summit Supercomputer, 2014. https:
//www.olcf.ornl.gov/summit/.

[2] Datasheet for Single Mode Network Op-

tical Switch up to 384x384 ports, 2016.

https://www.hubersuhner.com/en/documents-
repository/technologies/pdf/data-sheets-
optical-switches/polatis-series-7000n.

[3] Baidu, 2017. https://github.com/baidu-
research/baidu-allreduce.

[4] CANDLE Uno: Predicting Tumor Dose Re-

sponse across Multiple Data Sources, 2017.

https://github.com/ECP-CANDLE/Benchmarks/
tree/master/Pilot1/Uno.

[5] Meet Horovod: Uber’s Open Source Distributed Deep

Learning Framework for TensorFlow, 2017. https:
//eng.uber.com/horovod.

[6] CALIENT Edge 640™ Optical Circuit Switch, 2018.

https://www.calient.net/2018/03/calient-
edge640-optical-circuit-switch-offers-
industrys-highest-density-fiber-optic-
cross-connect/.

[7] htsim packet simulator, 2018. https://github.com/
nets-cs-pub-ro/NDP/wiki/NDP-Simulator.

[8] AOI 100G PSM4 Transceiver, 2020. https:
//www.ebay.com/itm/234092018446?hash=
item3680f8bb0e:g:WoMAAOSwLFJg8dKF.

[9] Google TPU, 2020. https://cloud.google.com/
tpu.

[10] Nvidia DGX SuperPOD, 2020. https:
//www.nvidia.com/en-us/data-center/dgx-
superpod/.

[11] NVIDIA is Preparing Co-Packaged Pho-

tonics for NVLink, Dec. 2020. https:
//www.techpowerup.com/276139/nvidia-is-
preparing-co-packaged-photonics-for-
nvlink.

[12] 100GBASE-SR4 QSFP28 850nm 100m DOM

MTP/MPO MMF Optical Transceiver Module, 2022.

https://www.fs.com/products/48354.html.

[13] 10GBASE-SR SFP+ 850nm 300m DOM LC MMF

Transceiver Module, 2022. https://www.fs.com/
products/11552.html.

[14] 1x2 PLC Fiber Splitter, Splice/Pigtailed ABS Mod-

ule, 2.0mm, SC/APC, Singlemode, 2022. https://
www.fs.com/products/11615.html.

[15] 25GBASE-SR SFP28 850nm 100m DOM LC MMF

Optical Transceiver Module, 2022. https://
www.fs.com/products/67991.html.

[16] 40GBASE-SR4 QSFP+ 850nm 150m DOM

MTP/MPO MMF Optical Transceiver Module, 2022.

https://www.fs.com/products/36143.html.

[17] Apache MXNet, 2022. https://
mxnet.apache.org/.

[18] Colfax Direct, HPC and Date Center Gear, 2022.

https://www.colfaxdirect.com/.

[19] Data Center Bridging eXchange (DCBX), 2022.

https://man7.org/linux/man-pages/man8/dcb-
dcbx.8.html.

[20] Deep Learning Recommendation Model for Personal-

ization and Recommendation Systems, 2022. https:
//github.com/facebookresearch/dlrm.

[21] Edgecore AS5812-54X 48-Port 10GbE Bare Metal

Switch with ONIE - Part ID: 5812-54X-O-12V-F,

2022. https://www.colfaxdirect.com/store/pc/
viewPrd.asp?idproduct=3614.

[22] Edgecore AS6812-32X 32-Port 40GbE Bare Metal

Switch with ONIE - Part ID: 6812-32X-O-AC-F-US,

2022. https://www.colfaxdirect.com/store/pc/
viewPrd.asp?idproduct=3078.

[23] Edgecore AS7312-54XS 48-Port 25GbE + 6-

Port 100GbE Bare Metal Switch with ONIE

- Part ID: 7312-54XS-O-AC-F-US, 2022.

https://www.colfaxdirect.com/store/pc/
viewPrd.asp?idproduct=3598.

[24] Edgecore AS7816-64X 64-Port 100GbE Bare Metal

Switch with ONIE - Part ID: 7816-64X-O-AC-B-US,

2022. https://www.colfaxdirect.com/store/pc/
viewPrd.asp?idproduct=3483.

[25] Euler’s totient function, 2022. https:
//en.wikipedia.org/wiki/Euler%
27s_totient_function.

[26] Flex Flow’s Training Engine, 2022. https://
flexflow.ai/.

[27] FlexFlow source code, 2022. https://github.com/
flexflow/FlexFlow.

[28] FS.COM, 2022. https://www.fs.com/.

[29] HPE Ethernet 4x25Gb 1-port 620QSFP28 Adapter,

2022. https://support.hpe.com/hpesc/public/
docDisplay?docId=emr_na-c05220334.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 753

[30] Legion Programming System, 2022. https://
legion.stanford.edu/overview/.

[31] Managing edge data centers through au-

tomation and remote diagnostics, 2022.

https://www.telescent.com/blog/2021/11/
11/managing-edge-data-centers-through-
automation-and-remote-diagnostics.

[32] Mellanox ConnectX-4 Single Port 25 Gigabit Ethernet

Adapter Card, PCIe 3.0 x8 - Part ID: MCX4111A-

ACAT, 2022. https://www.colfaxdirect.com/
store/pc/viewPrd.asp?idproduct=2814.

[33] Mellanox ConnectX-4 Single Port 40 Gigabit Ethernet

Adapter Card, PCIe 3.0 x8 - Part ID: MCX4131A-

BCAT, 2022. https://www.colfaxdirect.com/
store/pc/viewPrd.asp?idproduct=2817.

[34] Mellanox ConnectX-5 EN Single Port 100 Gigabit Eth-

ernet Adapter Card, PCIe 3.0 x16 - Part ID: MCX515A-

CCAT, 2022. https://www.colfaxdirect.com/
store/pc/viewPrd.asp?idproduct=3150.

[35] Mellanox ConnectX-5 VPI Adapter Card with

Multi-Host Socket Direct, Dual PCIe 3.0

x8 - Part ID: MCX556M-ECAT-S25, 2022.

https://www.colfaxdirect.com/store/pc/
viewPrd.asp?idproduct=3209.

[36] NCCL, 2022. https://github.com/NVIDIA/nccl-
tests.

[37] NVIDIA A100 Tensor Core GPU, 2022. https://
www.nvidia.com/en-us/data-center/a100/.

[38] NVIDIA MERLIN, 2022. https://
developer.nvidia.com/nvidia-merlin.

[39] NVIDIA MULTI-INSTANCE GPU, 2022.

https://www.nvidia.com/en-us/technologies/
multi-instance-gpu/.

[40] Patch Panel Wiki, 2022. https://
en.wikipedia.org/wiki/Patch_panel.

[41] Polatis Optical Circuit Switch, 2022. https:
//www.polatis.com/series-7000-384x384-
port-software-controlled-optical-circuit-
switch-sdn-enabled.asp.

[42] PyTorch, 2022. https://pytorch.org.

[43] Telescent G4 Network Topology Manager, 2022.

https://www.telescent.com/products.

[44] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry

Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,

Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. Tensorflow: A system

for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 265–283, Savannah, GA,

November 2016. USENIX Association.

[45] Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade

Nie, Carole-Jean Wu, and Kim Hazelwood. Under-

standing training efficiency of deep learning recom-

mendation models at scale, 2020.

[46] Ravichandra Addanki, Shaileshh Bojja Venkatakrish-

nan, Shreyan Gupta, Hongzi Mao, and Mohammad

Alizadeh. Learning generalizable device placement al-

gorithms for distributed machine learning. In Advances
in Neural Information Processing Systems, volume 32,

pages 3981–3991. Curran Associates, Inc., 2019.

[47] Mohammad Al-Fares, Alexander Loukissas, and Amin

Vahdat. A scalable, commodity data center network

architecture. SIGCOMM Comput. Commun. Rev.,
38(4):63–74, August 2008.

[48] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,

and Milan Vojnovic. Qsgd: Communication-efficient

sgd via gradient quantization and encoding. In

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-

gus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, vol-

ume 30, pages 1709–1720. Curran Associates, Inc.,

2017.

[49] Mohammad Alizadeh, Albert Greenberg, David A.

Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-

hakar, Sudipta Sengupta, and Murari Sridharan. Data

Center TCP (DCTCP). In Proceedings of the ACM
SIGCOMM 2010 Conference, SIGCOMM ’10, pages

63–74, New York, NY, USA, 2010. ACM.

[50] Mohammad Alizadeh, Shuang Yang, Milad Sharif,

Sachin Katti, Nick McKeown, Balaji Prabhakar, and

Scott Shenker. pfabric: Minimal near-optimal data-

center transport. In Proceedings of the ACM SIG-
COMM 2013 Conference on SIGCOMM, SIGCOMM

’13, pages 435–446, New York, NY, USA, 2013. ACM.

[51] Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim

Weatherspoon, Robert Kleinberg, and Rachit Agarwal.

Optimal oblivious reconfigurable networks, 2021.

[52] Javed A. Aslam. Dynamic Programming So-

lution to the Coin Changing Problem, 2004.

https://www.ccs.neu.edu/home/jaa/CSG713.04F/
Information/Handouts/dyn_prog.pdf.

754 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[53] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel

Cletheroe, Istvan Haller, Krzysztof Jozwik, Fotini Kari-

nou, Sophie Lange, Kai Shi, Benn Thomsen, and Hugh

Williams. Sirius: A flat datacenter network with

nanosecond optical switching. In Proceedings of the
Annual Conference of the ACM Special Interest Group
on Data Communication on the Applications, Tech-
nologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’20, page 782–797, New

York, NY, USA, 2020. Association for Computing Ma-

chinery.

[54] Theophilus Benson, Aditya Akella, and David A.

Maltz. Network traffic characteristics of data centers in

the wild. In Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, IMC ’10, pages

267–280, New York, NY, USA, 2010. ACM.

[55] J. Brownlee. Better Deep Learning: Train Faster, Re-
duce Overfitting, and Make Better Predictions. Ma-

chine Learning Mastery, 2018.

[56] Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur

Agrawal, Wei Zhang, and Kailash Gopalakrishnan.

Adacomp : Adaptive residual gradient compression

for data-parallel distributed training. Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[57] Li Chen, Kai Chen, Zhonghua Zhu, Minlan Yu, George

Porter, Chunming Qiao, and Shan Zhong. Enabling

wide-spread communications on optical fabric with

megaswitch. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
17), pages 577–593, Boston, MA, 2017. USENIX As-

sociation.

[58] Minsik Cho, Ulrich Finkler, David Kung, and Hillery

Hunter. Blueconnect: Decomposing all-reduce for

deep learning on heterogeneous network hierarchy.

SysML Conference, 2019.

[59] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael

Papamichael, Adrian Caulfield, Todd Massengil, Ming

Liu, Daniel Lo, Shlomi Alkalay, and Michael Hasel-

man. Accelerating persistent neural networks at data-

center scale. In Hot Chips, volume 29, 2017.

[60] K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Ger-

ard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts,

H. Williams, G. Zervas, P. Costa, and Z. Liu. Sub-

nanosecond clock and data recovery in an optically-

switched data centre network. In 2018 European Con-
ference on Optical Communication (ECOC), pages

1–3, 2018.

[61] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical

image database. In IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,

2009.

[62] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. BERT: pre-training of deep

bidirectional transformers for language understanding.

CoRR, abs/1810.04805, 2018.

[63] Jack Edmonds. Paths, trees, and flowers. Canadian
Journal of Mathematics, 17:449–467, 1965.

[64] Nathan Farrington, George Porter, Sivasankar Rad-

hakrishnan, Hamid Hajabdolali Bazzaz, Vikram Subra-

manya, Yeshaiahu Fainman, George Papen, and Amin

Vahdat. Helios: A hybrid electrical/optical switch ar-

chitecture for modular data centers. SIGCOMM’10,

pages 339–350.

[65] K. Foerster, M. Ghobadi, and S. Schmid. Characteriz-

ing the algorithmic complexity of reconfigurable data

center architectures. In Proc. ANCS ’18, pages 89–96,

2018.

[66] Everest G. and Ward Thomas. An introduction to

number theory, 2005.

[67] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao

Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-

nasamy, and Scott Shenker. Network requirements for

resource disaggregation. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, pages 249–264, Berkeley,

CA, USA, 2016. USENIX Association.

[68] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee,

Nikhil Devanur, Janardhan Kulkarni, Gireeja Ranade,

Pierre-Alexandre Blanche, Houman Rastegarfar,

Madeleine Glick, and Daniel Kilper. Projector:

Agile reconfigurable data center interconnect. In

Proceedings of the 2016 ACM SIGCOMM Conference,

SIGCOMM ’16, pages 216–229, New York, NY, USA,

2016. Association for Computing Machinery.

[69] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter No-

ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew

Tulloch, Yangqing Jia, and Kaiming He. Accurate,

large minibatch SGD: training imagenet in 1 hour.

CoRR, abs/1706.02677, 2017.

[70] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,

Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang

Liu, and Chuanxiong Guo. Tiresias: A GPU cluster

manager for distributed deep learning. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 485–500, Boston, MA,

February 2019. USENIX Association.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 755

[71] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu,

Xuan Zhang, Yunfeng Shi, Chen Tian, Yongguang

Zhang, and Songwu Lu. Bcube: A high performance,

server-centric network architecture for modular data

centers. In Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication, SIGCOMM ’09,

page 63–74, New York, NY, USA, 2009. Association

for Computing Machinery.

[72] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta,

Vyas Sekar, Samir R. Das, Jon P. Longtin, Himanshu

Shah, and Ashish Tanwer. Firefly: A reconfigurable

wireless data center fabric using free-space optics. SIG-
COMM’14, pages 319–330.

[73] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy

Campbell. Tictac: Accelerating distributed deep learn-

ing with communication scheduling. In A. Talwalkar,

V. Smith, and M. Zaharia, editors, Proceedings of Ma-
chine Learning and Systems, volume 1, pages 418–430,

2019.

[74] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[75] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,

Xia Hu, and Tat-Seng Chua. Neural collaborative fil-

tering, 2017.

[76] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan,

Ming Zhang, Vijay Gill, Mohan Nanduri, and Roger

Wattenhofer. Achieving high utilization with software-

driven wan. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, page

15–26, New York, NY, USA, 2013. Association for

Computing Machinery.

[77] Yanping Huang, Yonglong Cheng, Dehao Chen, Hy-

oukJoong Lee, Jiquan Ngiam, Quoc V. Le, and Zhifeng

Chen. Gpipe: Efficient training of giant neural net-

works using pipeline parallelism. NeurIPS, 2019.

[78] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan

Firat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee,

Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng

Chen. Gpipe: Efficient training of giant neural net-

works using pipeline parallelism, 2019.

[79] Forrest N. Iandola, Khalid Ashraf, Matthew W.

Moskewicz, and Kurt Keutzer. Firecaffe: near-linear

acceleration of deep neural network training on com-

pute clusters. CoRR, abs/1511.00175, 2015.

[80] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan,

and Geoffrey E. Hinton. Adaptive mixtures of local

experts. Neural Computation, 3(1):79–87, 1991.

[81] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon

Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,

Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Expe-

rience with a globally-deployed software defined wan.

ACM SIGCOMM Computer Communication Review,

43(4):3–14, 2013.

[82] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexan-

dra Fedorova, and Gennady Pekhimenko. Priority-

based parameter propagation for distributed DNN train-

ing. CoRR, abs/1905.03960, 2019.

[83] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang,

Haidong Rong, Feihu Zhou, Liqiang Xie, Zhenyu Guo,

Yuanzhou Yang, Liwei Yu, Tiegang Chen, Guangx-

iao Hu, Shaohuai Shi, and Xiaowen Chu. Highly

scalable deep learning training system with mixed-

precision: Training imagenet in four minutes. CoRR,

abs/1807.11205, 2018.

[84] Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken.

Exploring hidden dimensions in accelerating convolu-

tional neural networks. In Jennifer Dy and Andreas

Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pages 2274–

2283, Stockholmsmässan, Stockholm Sweden, 10–15

Jul 2018. PMLR.

[85] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond

data and model parallelism for deep neural networks.

SysML, 2019.

[86] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong

Cui, and Chuanxiong Guo. A unified architecture

for accelerating distributed DNN training in hetero-

geneous gpu/cpu clusters. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 463–479. USENIX Association,

November 2020.

[87] Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu,

Guangzhi Li, Wei Xu, and Jennifer Rexford. Optimiz-

ing bulk transfers with software-defined optical wan.

In Proceedings of the 2016 ACM SIGCOMM Confer-
ence, SIGCOMM ’16, page 87–100, New York, NY,

USA, 2016. Association for Computing Machinery.

[88] A. S. Kewitsch. Large scale, all-fiber optical cross-

connect switches for automated patch-panels. Journal
of Lightwave Technology, 27(15):3107–3115, 2009.

756 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[89] Mehrdad Khani, Manya Ghobadi, Mohammad Al-

izadeh, Ziyi Zhu, Madeleine Glick, Keren Bergman,

Amin Vahdat, Benjamin Klenk, and Eiman Ebrahimi.

Sip-ml: High-bandwidth optical network interconnects

for machine learning training. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, SIGCOMM

’21, pages 657–675, New York, NY, USA, 2021. Asso-

ciation for Computing Machinery.

[90] J. Kiefer and J. Wolfowitz. Stochastic estimation of the

maximum of a regression function. Ann. Math. Statist.,
23(3):462–466, 09 1952.

[91] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster,

Robert Kleinberg, Petr Lapukhov, Chiun Lin Lim, and

Robert Soulé. Semi-oblivious traffic engineering with

smore. In Proceedings of the Applied Networking Re-
search Workshop, ANRW ’18, page 21, New York, NY,

USA, 2018. Association for Computing Machinery.

[92] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho,

Garth A Gibson, and Eric P Xing. On model paralleliza-

tion and scheduling strategies for distributed machine

learning. In Z. Ghahramani, M. Welling, C. Cortes,

N. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 27,

pages 2834–2842. Curran Associates, Inc., 2014.

[93] Mu Li, David G. Andersen, Jun Woo Park, Alexander J.

Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-

gene J. Shekita, and Bor-Yiing Su. Scaling distributed

machine learning with the parameter server. OSDI’14,

pages 583–598. USENIX Association, 2014.

[94] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and

William J Dally. Deep gradient compression: Reducing

the communication bandwidth for distributed training.

arXiv preprint arXiv:1712.01887, 2017.

[95] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor,

Malveeka Tewari, Geoffrey M. Voelker, George Papen,

Alex C. Snoeren, and George Porter. Circuit switching

under the radar with REACToR. NSDI’14, pages 1–15.

[96] He Liu, Matthew K. Mukerjee, Conglong Li, Nico-

las Feltman, George Papen, Stefan Savage, Srinivasan

Seshan, Geoffrey M. Voelker, David G. Andersen,

Michael Kaminsky, George Porter, and Alex C. Sno-

eren. Scheduling techniques for hybrid circuit/packet

networks. In Proceedings of the 11th ACM Confer-
ence on Emerging Networking Experiments and Tech-
nologies, CoNEXT ’15, New York, NY, USA, 2015.

Association for Computing Machinery.

[97] Yunpeng James Liu, Peter Xiang Gao, Bernard Wong,

and Srinivasan Keshav. Quartz: A new design element

for low-latency dcns. SIGCOMM’14, pages 283–294.

[98] Kshiteej Mahajan, Arjun Balasubramanian, Arjun

Singhvi, Shivaram Venkataraman, Aditya Akella,

Amar Phanishayee, and Shuchi Chawla. Themis: Fair

and efficient GPU cluster scheduling. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 289–304, Santa Clara, CA,

February 2020. USENIX Association.

[99] William M. Mellette, Rajdeep Das, Yibo Guo, Rob

McGuinness, Alex C. Snoeren, and George Porter. Ex-

panding across time to deliver bandwidth efficiency

and low latency. NSDI’20, 2020.

[100] William M. Mellette, Rob McGuinness, Arjun Roy,

Alex Forencich, George Papen, Alex C. Snoeren, and

George Porter. Rotornet: A scalable, low-complexity,

optical datacenter network. SIGCOMM ’17, pages

267–280, 2017.

[101] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit

Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Ku-

mar, Mohammad Norouzi, Samy Bengio, and Jeff Dean.

Device placement optimization with reinforcement

learning. In Doina Precup and Yee Whye Teh, edi-

tors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 2430–2439, Inter-

national Convention Centre, Sydney, Australia, 06–11

Aug 2017. PMLR.

[102] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-

hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,

Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,

Jie Amy Yang, Leon Gao, Dmytro Ivchenko, Aarti

Basant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani,

Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang

Chu, Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo

Feng, Yinbin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin

Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts,

Krishna Dhulipala, KR Kishore, Tyler Graf, Assaf

Eisenman, Kiran Kumar Matam, Adi Gangidi, Guo-

qiang Jerry Chen, Manoj Krishnan, Avinash Nayak,

Krishnakumar Nair, Bharath Muthiah, Mahmoud kho-

rashadi, Pallab Bhattacharya, Petr Lapukhov, Maxim

Naumov, Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and

Vijay Rao. Software-hardware co-design for fast and

scalable training of deep learning recommendation

models, 2021.

[103] Matthew K. Mukerjee, Christopher Canel, Weiyang

Wang, Daehyeok Kim, Srinivasan Seshan, and Alex C.

Snoeren. Adapting TCP for reconfigurable datacenter

networks. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages

651–666, Santa Clara, CA, February 2020. USENIX

Association.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 757

[104] Shar Narasimhan. NVIDIA Clocks World’s Fastest

BERT Training Time and Largest Transformer Based

Model, Paving Path For Advanced Conversational

AI, Aug. 2019. https://devblogs.nvidia.com/
training-bert-with-gpus/.

[105] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,

Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,

Phillip B. Gibbons, and Matei Zaharia. Pipedream:

Generalized pipeline parallelism for dnn training. In

Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP’19, pages 1–15, New York,

NY, USA, 2019. Association for Computing Machin-

ery.

[106] Maxim Naumov, John Kim, Dheevatsa Mudigere, Srini-

vas Sridharan, Xiaodong Wang, Whitney Zhao, Serhat

Yilmaz, Changkyu Kim, Hector Yuen, Mustafa Ozdal,

Krishnakumar Nair, Isabel Gao, Bor-Yiing Su, Jiyan

Yang, and Mikhail Smelyanskiy. Deep learning train-

ing in facebook data centers: Design of scale-up and

scale-out systems, 2020.

[107] Maxim Naumov, Dheevatsa Mudigere, Hao-

Jun Michael Shi, Jianyu Huang, Narayanan Sundara-

man, Jongsoo Park, Xiaodong Wang, Udit Gupta,

Carole-Jean Wu, Alisson G. Azzolini, Dmytro

Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii,

Yinghai Lu, Raghuraman Krishnamoorthi, Ansha

Yu, Volodymyr Kondratenko, Stephanie Pereira,

Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia,

Liang Xiong, and Misha Smelyanskiy. Deep learning

recommendation model for personalization and

recommendation systems, 2019.

[108] T. T. Nguyen, M. Wahib, and R. Takano. Topology-

aware sparse allreduce for large-scale deep learning. In

2019 IEEE 38th International Performance Computing
and Communications Conference (IPCCC), pages 1–8,

2019.

[109] Yosuke Oyama, Naoya Maruyama, Nikoli Dryden, Erin

McCarthy, Peter Harrington, Jan Balewski, Satoshi

Matsuoka, Peter Nugent, and Brian Van Essen. The

case for strong scaling in deep learning: Training large

3d cnns with hybrid parallelism. IEEE Transactions
on Parallel and Distributed Systems, 2020.

[110] Heng Pan, Zhenyu Li, JianBo Dong, Zheng Cao, Tao

Lan, Di Zhang, Gareth Tyson, and Gaogang Xie. Dis-

secting the communication latency in distributed deep

sparse learning. In Proceedings of the ACM Inter-
net Measurement Conference, IMC ’20, page 528–534,

New York, NY, USA, 2020. Association for Computing

Machinery.

[111] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,

Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong

Guo. A generic communication scheduler for dis-

tributed dnn training acceleration. In Proceedings of
the 27th ACM Symposium on Operating Systems Prin-
ciples, SOSP ’19, page 16–29, New York, NY, USA,

2019. Association for Computing Machinery.

[112] Genzhi Photonics. 1x2 Mechanical Optical Switch,

2022. https://www.gezhiphotonics.com/1x2-
optical-switch.html.

[113] George Porter, Richard Strong, Nathan Farrington,

Alex Forencich, Pang Chen-Sun, Tajana Rosing, Yesha-

iahu Fainman, George Papen, and Amin Vahdat. In-

tegrating microsecond circuit switching into the data

center. SIGCOMM’13, pages 447–458.

[114] Leon Poutievski, Omid Mashayekhi, Joon Ong, Ar-

jun Singh, Mukarram Tariq, Rui Wang, Jianan Zhang,

Virginia Beauregard, Patrick Conner, Steve Gribble,

Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu,

Karthik Nagaraj, Jason Ornstein, Samir Sawhney, Ry-

ohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shi-

dong Zhang, Junlan Zhou, and Amin Vahdat. Jupiter

evolving: Transforming google’s datacenter network

via optical circuit switches and software-defined net-

working. In Proceedings of ACM SIGCOMM 2022,

2022.

[115] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Sub-

ramanya, Willie Neiswanger, Qirong Ho, Hao Zhang,

Gregory R. Ganger, and Eric P. Xing. Pollux: Co-

adaptive cluster scheduling for goodput-optimized

deep learning. In 15th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI
21), pages 1–18. USENIX Association, July 2021.

[116] J. R. Quinlan. Induction of decision trees. Mach.
Learn., 1(1):81–106, March 1986.

[117] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Min-

jia Zhang, Reza Yazdani Aminabadi, Ammar Ahmad

Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe:

Advancing mixture-of-experts inference and training

to power next-generation ai scale, 2022.

[118] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,

Shaden Smith, and Yuxiong He. Zero-infinity: Break-

ing the gpu memory wall for extreme scale deep learn-

ing, 2021.

[119] Leslie Reid. MOX Announces New Teles-

cent Automation Technology on Its Latest

Hillsboro to Portland Fiber Route, Sept. 2020.

https://www.businesswire.com/news/home/
20200915005391/en/MOX-Announces-New-
Telescent-Automation-Technology-on-Its-
Latest-Hillsboro-to-Portland-Fiber-Route.

758 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[120] Peter Sanders, Jochen Speck, and Jesper Larsson Träff.

Two-tree algorithms for full bandwidth broadcast, re-

duction and scan. Parallel Computing, 35(12):581–

594, 2009.

[121] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus

Hagenbuchner, and Gabriele Monfardini. The graph

neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2009.

[122] Tae Joon Seok, Niels Quack, Sangyoon Han, Richard S.

Muller, and Ming C. Wu. Large-scale broadband dig-

ital silicon photonic switches with vertical adiabatic

couplers. Optica, 3(1):64–70, Jan 2016.

[123] Alexander Sergeev and Mike Del Balso. Horovod: fast

and easy distributed deep learning in tensorflow. CoRR,

abs/1802.05799, 2018.

[124] Christopher J. Shallue, Jaehoon Lee, Joseph Antognini,

Jascha Sohl-Dickstein, Roy Frostig, and George E.

Dahl. Measuring the effects of data parallelism on

neural network training. Journal of Machine Learning
Research, 20(112):1–49, 2019.

[125] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,

Patrick LeGresley, Jared Casper, and Bryan Catanzaro.

Megatron-lm: Training multi-billion parameter lan-

guage models using model parallelism, 2020.

[126] Karen Simonyan and Andrew Zisserman. Very deep

convolutional networks for large-scale image recogni-

tion, 2015.

[127] Ankit Singla, Chi-Yao Hong, Lucian Popa, and

P. Brighten Godfrey. Jellyfish: Networking data cen-

ters randomly. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Imple-
mentation, NSDI’12, pages 17–17, Berkeley, CA, USA,

2012. USENIX Association.

[128] Ion Stoica, Robert Morris, David Karger, M Frans

Kaashoek, and Hari Balakrishnan. Chord: A scalable

peer-to-peer lookup service for internet applications.

ACM SIGCOMM Computer Communication Review,

31(4):149–160, 2001.

[129] Jakub Tarnawski, Amar Phanishayee, Nikhil R. Deva-

nur, Divya Mahajan, and Fanny Nina Paravecino. Effi-

cient algorithms for device placement of DNN graph

operators. In Hugo Larochelle, Marc’Aurelio Ranzato,

Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien

Lin, editors, Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Infor-
mation Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual, 2020.

[130] Rajeev Thakur, Rolf Rabenseifner, and William Gropp.

Optimization of collective communication operations

in mpich. Int. J. High Perform. Comput. Appl.,
19(1):49–66, February 2005.

[131] Rajeev Thakur, Rolf Rabenseifner, and William Gropp.

Optimization of collective communication operations

in mpich. Int. J. High Perform. Comput. Appl.,
19(1):49–66, February 2005.

[132] Rajeev Thakur, Rolf Rabenseifner, and William Gropp.

Optimization of collective communication operations

in mpich. The International Journal of High Perfor-
mance Computing Applications, 19(1):49–66, 2005.

[133] Yuichiro Ueno and Rio Yokota. Exhaustive study of

hierarchical allreduce patterns for large messages be-

tween gpus. In 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pages 430–439, 2019.

[134] Jakob Uszkorei. Transformer: A Novel Neural

Network Architecture for Language Understanding,

Aug. 2017. https://ai.googleblog.com/2017/08/
transformer-novel-neural-network.html.

[135] Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and

Michael Schapira. Xpander: Towards optimal-

performance datacenters. In Proceedings of the 12th
International on Conference on Emerging Networking
EXperiments and Technologies, CoNEXT ’16, pages

205–219, New York, NY, USA, 2016. ACM.

[136] Guanhua Wang, Shivaram Venkataraman, Amar Phan-

ishayee, Jorgen Thelin, Nikhil Devanur, and Ion Stoica.

Blink: Fast and generic collectives for distributed ml.

In Conference on Machine Learning and Systems (ML-
Sys 2020), March 2020.

[137] Guohui Wang, David G. Andersen, Michael Kaminsky,

Konstantina Papagiannaki, T.S. Eugene Ng, Michael

Kozuch, and Michael Ryan. c-Through: Part-time op-

tics in data centers. SIGCOMM’10, pages 327–338.

[138] S. Wang, D. Li, J. Geng, Y. Gu, and Y. Cheng. Impact

of Network Topology on the Performance of DML:

Theoretical Analysis and Practical Factors. In IEEE IN-
FOCOM 2019 - IEEE Conference on Computer Com-
munications, pages 1729–1737, 2019.

[139] Pijika Watcharapichat, Victoria Lopez Morales,

Raul Castro Fernandez, and Peter Pietzuch. Ako:

Decentralised deep learning with partial gradient ex-

change. SoCC ’16, 2016.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 759

[140] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-

jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,

Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu

Zhang, Fan Yang, and Lidong Zhou. Gandiva: Intro-

spective cluster scheduling for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 595–610, Carlsbad,

CA, October 2018. USENIX Association.

[141] Pengtao Xie, Jin Kyu Kim, Yi Zhou, Qirong Ho, Ab-

himanu Kumar, Yaoliang Yu, and Eric Xing. Lighter-

communication distributed machine learning via suffi-

cient factor broadcasting. In Proceedings of the Thirty-
Second Conference on Uncertainty in Artificial Intelli-
gence, pages 795–804, Arlington, Virginia, USA, 2016.

AUAI Press.

[142] Peifeng Yu and Mosharaf Chowdhury. Fine-grained

GPU sharing primitives for deep learning applications.

In Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and

Vivienne Sze, editors, Proceedings of Machine Learn-
ing and Systems 2020, MLSys 2020, Austin, TX, USA,
March 2-4, 2020. mlsys.org, 2020.

[143] Peifeng Yu, Jiachen Liu, and Mosharaf Chowdhury.

Fluid: Resource-aware hyperparameter tuning engine.

In A. Smola, A. Dimakis, and I. Stoica, editors, Pro-
ceedings of Machine Learning and Systems, volume 3,

pages 502–516, 2021.

[144] Yue Yu, Jiaxiang Wu, and Longbo Huang. Double

quantization for communication-efficient distributed

optimization. In Advances in Neural Information Pro-
cessing Systems, volume 32, pages 4438–4449. Curran

Associates, Inc., 2019.

[145] Mingyang Zhang, Radhika Niranjan Mysore, Sucha

Supittayapornpong, and Ramesh Govindan. Under-

standing lifecycle management complexity of datacen-

ter topologies. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 19),
pages 235–254, Boston, MA, February 2019. USENIX

Association.

[146] H. Zhao and J. Canny. Kylix: A sparse allreduce for

commodity clusters. In 2014 43rd International Con-
ference on Parallel Processing, pages 273–282, 2014.

[147] Liangyu Zhao, Siddharth Pal, Tapan Chugh, Weiyang

Wang, Prithwish Basu, Joud Khoury, and Arvind Kr-

ishnamurthy. Optimal direct-connect topologies for

collective communications, 2022.

[148] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Amar

Phanishayee, Xuan Kelvin Zou, Hang Guan, Arvind

Krishnamurthy, and Thomas Anderson. RAIL: A case

for redundant arrays of inexpensive links in data center
networks. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages

561–576, Boston, MA, March 2017. USENIX Associ-

ation.

760 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Tree-AllReduce and Other AllReduce Per-
mutations

Section 2 established that we can manipulate the traffic of

a ring-AllReduce collective by permuting the labeling of

servers in the AllReduce group. Here, we illustrate how to use

the same technique on another AllReduce algorithm, called

tree-AllReduce.

In the tree-AllReduce algorithm, the servers are connected

logically to form a tree topology. The AllReduce operation

starts by running a reduce operation to the root node with

recursive halving, followed by a broadcast to the rest of the

cluster with recursive doubling [132].

A common instantiation of tree-AllReduce is the

double binary tree (DBT) algorithm [120]. In this algorithm,

the first step is to create a balanced binary tree for the nodes.

The properties of balanced binary trees guarantee that one

half of the nodes will be leaf-nodes, and the other half will be

in-tree; thus, a second binary tree is constructed by flipping

the labeling of the leaf and in-tree nodes. This way, each node

(except the root in both trees) has the same communication

requirements for the AllReduce operation, as described in

the last paragraph, and bandwidth-optimally is achieved. Fig-

ure 23a shows an example where in the first binary tree, the

in-tree nodes are even, and the leaf nodes are odd, while the

second tree flips the labeling.

The DBT itself is essentially an example of permuting the

node labeling to achieve an AllReduce operation with bal-

anced communication load. We also note that we can permute

the labeling for the entire set of nodes for a pair of DBTs to

create a new pair of trees that can perform the AllReduce op-

eration at the same speed. Figures 23b and 23c illustrate two

other possible double binary trees, and their corresponding

traffic demand matrix for the DLRM and CANDLE exam-

ple shown in Figures 22 and 24 (§2). Arbitrary permutations

can be used, and to limit the cases, we could simply consider

the cyclic permutations in the modular space as described in

TotientPerms.

In general, all AllReduce operations can be described as

a directed graph G = (V,E) where V is the set of nodes in

the cluster, and E denotes data dependencies. The permutable
property says every graph G′ = (V,E ′) that is isomorphic to

G can perform the AllReduce operation equally well, where

the homomorphism between G and G′ is described by the

symmetric group on V (generally denoted by Sym(V) in group

theory).

B Commercially Available Patch Panels and
Optical Circuit Switches

Optical patch panels. A patch panel is a device to facilitate

connecting different parts of a system. For instance, electrical

patch panels are used in recording studios and concert sound

Figure 22: DLRM traffic heatmaps with double binary tree

AllReduce.

Figure 23: Double binary tree (DBT) permutations.

Figure 24: CANDLE traffic heatmaps with double binary tree

AllReduce.

systems to connect microphones and electronic instruments

on demand [40]. Fiber optic patch panels are commonly used

for cable management, and have been proposed in recent dat-

acenter topology designs [145]. Reconfigurable optical patch

panels are a new class of software-controlled patch panels

and are already commercialized at scale [119]. For instance,

Telescent offers 1008 duplex ports with insertion loss less than

0.5 dB and cost ≈$100K ($100/port) [88, 119]. Reconfigura-

tion is performed using a robotic arm that grabs a fiber on the

transmit side and connects it to a fiber on the receive side [88].

However, the reconfiguration latency of optical patch panels is

several minutes [43]. Note that reliability is of utmost concern

for operation in unmanned locations; for example, Telescent

NTM patch panels have been certified to NEBS Level 3 and

have over 1 billion port hours in operation [31].

3D MEMS-based Optical Circuit Switches (OCSs). An

OCS uses tiny mirrors to change the direction of light, thereby

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 761

Figure 25: Active & Look-ahead ports for high reconfigura-

tion latency.

Server1 Server2 Servern

Optical Switch1 Optical Switch2 Optical Switchd-1 Optical Switchd

Servern-1

Optipp c 11 pp 2 Optipp ca chdddddddddddd-111111111111

Server2222Server111 Servern-111111111111111 Servernn

OptiOptippppp cac tchddddd

Job 1 Job 2

Figure 26: Sharding TOPOOPT cluster for two jobs.

reconfiguring optical links. The largest optical circuit switch

on the market has 384 duplex ports with ≈10 ms reconfig-

uration latency and is available for $200K ($520/port) [41].

However, the optical loss of these switches is 1.5–2.7 dB [2].

Compared to patch panels, OCSs have the following disad-

vantages: (i) each port is five times more expensive; (ii) their

insertion loss is higher; and (iii) their port-count is three times

lower. The main advantage of OCSs is that their reconfigu-

ration latency is four orders of magnitude faster than patch

panels.

C Handling Sharding and Dynamic Job Ar-
rivals in Shared Clusters

Section 3 explained how TOPOOPT can support multiple

job sharing the cluster through sharding; here we provide a

detailed explanation of how sharding works. Figure 26 shows

how a TOPOOPT cluster is sharded to train two jobs together.

In this scenario, the optical switches are configured in a way

such that the green part (Server 1, 2 and their corresponding

links) is completely disjointed from the red part (Server n−1,

server n). The complete isolation ensures each job gets its

dedicated resources, and benefits the performance (especially

the tail latency) as shown in Section 5.6.

To start a job with k servers, we need to reconfigure the

interconnection between these k servers before the job starts.

This can be done quickly when OCSs are used, but when

patch panels are used, there could be several minutes of delay

before the job can start. To address this challenge, we use a

look-ahead approach to pre-provision the next topology while

current jobs are running. More specifically, we use a simple

1×2 mechanical optical switch [112] at each server’s interface

to choose between Active and Look-ahead ports. These 1×2

switches are inexpensive ($25) and have 0.73 dB optical loss

measured in our prototype. Unlike optical splitters [14], that

incur 3 dB loss, these switches choose where to send light

between their two output ports. We then connect the two ends

of each 1×2 switch to different patch panels, as shown in

Figure 25. As a result, a TOPOOPT cluster with n servers, each

with d interfaces, has 2d patch panels where each interface is

split into two parts: Active and Look-ahead. At any point in

time, only one end of each 1×2 switch is participating in the

active topology; the other end is pre-provisioning the topology

for the next job. Since the topology and parallelization strategy

are calculated off-line, we already know the sequence of job

arrivals and the number of servers required by each job. This

design allows each server to participate in two independent

topologies. Hence, when a set of servers uses one topology

for a training job, TOPOOPT pre-provisions the next topology,

optimized for the next task by reconfiguring Look-ahead ports.

Once all the servers for the new job are ready, TOPOOPT

immediately flips to the new topology by reconfiguring the

corresponding 1×2 switches.

D Model Configurations and Transfer Sizes

List 1 summarizes the parameters we used in our simulation

and testbed. Model parameters and batch sizes are selected

based on common values used in Meta for simulations. For

the prototype, we reduce parameter values and batch sizes to

fit the models in our 12-node cluster.

In most workloads observed in Meta, the size of AllReduce

transfers is larger than the size of MP transfers for each iter-

ation, because in most cases, it would not be worthwhile if

MP transfers were as large as AllReduce transfers. Consider

the DLRM example in Section 4.3 with 20 GB embedding

tables with double-precision floating parameters. If we were

to distribute this embedding table using data parallelism, each

server would need to send and receive 37.5 GB of data for the

AllReduce operation. On a 100 Gbps fabric, this would take 3

seconds by itself, but if we put it on one server, it would only

need to transfer 32 MB/server (assume we have a per-server

batch size of 8192; then, MP traffic is calculated as 16 servers

× 8192 samples/server × 512 activation per sample × 8 bytes

per activation / 16 servers = 32 MB). We note that adding

pipeline parallelism can increase the amount of MP traffic

as it overlaps forward and backward passes. Efficient ways

to pipeline batches remains an active research area [77, 105]

especially when hybrid parallelism is employed. Pure model

parallelism creates another type of sparse traffic pattern where

only accelerators with inter-layer dependencies need to com-

municate. Our TOPOLOGYFINDER algorithm can support

such communication patterns.

Conceptually, however, when the network bandwidth goes

762 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

VGG:
Batch/GPU: 64 (§5.3, §5.6), 32 (§6)

ResNet50:
Batch/GPU: 128(§5.3), 20 (§6)

BERT:
Batch/GPU: 16 (§5.3, §5.6), 2 (§6)

#Trans. blks: 12 (§5.3), 6 (§5.6, §6)

Hidden layer: 1024 (§5.3), 768 (§5.6), 1024(§6)

Seq. length: 64 (§5.3), 256 (§5.6), 1024(§6)

#Attn. heads: 16 (§5.3), 6 (§5.6), 16(§6)

Embed. size: 512 (§5.3, §5.6, §6)

DLRM:
Batch/GPU: 128 (§5.3),[32, · · · ,2048] (§5.4), 256 (§5.6), [64, · · · ,512]

(§6)

#Dense layer: 8 (§5.3, §5.6), 4 (§6)

Dense layer size: 2048 (§5.3), 1024 (§5.6, §6)

#Dense feat. layer: 16 (§5.3, §5.6), 8 (§6)

Feat. layer size: 4096 (§5.3), 2048 (§5.6, §6)

Embed.: 128×107 (§5.3), 256×107 (§5.6), 32768×105 (§6)

#Embed. tables: 64 (§5.3), 16 (§5.6), 128 (§5.4) , 12 (§6)

CANDLE:
Batch/GPU: 256 (§5.3, §5.6), 10 (§6)

#Dense layer: 8 (§5.3, §5.6), 4 (§6)

Dense layer size: 16384 (§5.3), 4096 (§5.6, §6)

#Dense feat. layer: 16 (§5.3, §5.6), 8 (§6)

Feat. layer size: 16384 (§5.3), 4096 (§5.6, §6)

NCF:
Batch/GPU: 128 (§5.3)

#Dense layer: 8 (§5.3)

Dense layer size: 4096 (§5.3)

#User embedding table (MF, MLP): 32, 32 (§5.3)

#User per table: 106 (§5.3)

#Item embedding table (MF, MLP): 32, 32 (§5.3)

#Item per table: 106 (§5.3)

MF embedding dimension: 64 (§5.3)

MLP embedding dimension: 128 (§5.3)

List 1: DNN models used in our simulations and testbed.

to infinity, other overheads in the system (e.g. CUDA kernel

launch) will dominate the latency. In such cases, it might

be beneficial to choose model parallelism instead of data

parallelism, to reduce the amount of system overheads. In

particular, prior work shows 10 Tbps Silicon Photonics links

enable more aggressive model parallelism where the size

of MP traffic is significant [89]. TOPOOPT’s approach to

distribute the degree between the MP and AllReduce sub-

topologies enables us to accommodate this case as well.

E Algorithm Details

E.1 TOPOLOGYFINDER

Using group theory to find AllReduce permutations. For

a ring-AllReduce group with n servers labeled S0, ...,Sn−1, a

straightforward permutation is (S0 → S1 → S2 · · · → Sn−1 →
S0). We denote this permutation by a ring generation rule

as: Si → S(i+1) mod n. Since the servers form a ring, the index

of the starting server does not matter. For instance, these

two rings are equivalent: (S0 → S1 → S2 → S3 → S0) and

(S1 → S2 → S3 → S0 → S1).
3

We first provide the mathematical foundation of the ring

permutation rule.

Theorem 2 (Ring Generation). For a cluster of n nodes V =
{S0,S1, · · · ,SN−1}, all integer numbers p < n, where p is co-
prime with n (i.e. gcd(p,n) = 1) represent a unique ring-
AllReduce permutation rule.

Proof. Consider the integer modulo n group with addition

Z
+
n = {0,1, · · · ,(n−1)}. Z+

n is a cyclic group. By the funda-

mental theorem of cyclic groups, p is a generator of Z+
n if and

only if gcd(p,n) = 1. Hence we can cover the entire Z
+
n by

repeatedly adding p to itself.

Now consider the graph G
Z
+
n ,p = (V

Z
+
n
,Ep) where the set of

vertices V
Z
+
n
=Z

+
n and Ep = {(a× p,(a+1)× p)∈V 2

Z
+
n
, a ∈

Z
+
n }. The set Ep forms a cycle on G

Z
+
n ,p. Now denote our

cluster as G = (V,E) where V is defined as above and E
represents a set of directed links. Then G

Z
+
n ,p is isomorphic

to G, hence following the rule in Ep we can define a valid

ring in G. Furthermore, since ∀pi �= p j we can guarantee that

(0, pi) ∈ Epi and (0, p j) /∈ Epi , and each pi is guaranteed to

describe a unique ring.

One way to extend our approach to other AllReduce algo-

rithms is to generalize TotientPerms (Algorithm 2) so that the

Ep described in theorem 2 simply represents a permutation
which we apply to the original node labeling, while keeping

the edge relation, to create an isomorphic graph that describes

the new AllReduce topology.

E.2 Bounding maximum hop count with To-
tientPerms

In this section, we argue that fitting a geometric sequence

for choosing permutation provides an approximately O(d d
√

n)
bound for the maximum diameter of a cluster with n nodes

and degree d. Denote x ≡ d
√

n. We simplify the question

to the following: given a contiguous set of numbers N =
{1, . . . ,n} and a set of numbers from the geometric sequence

S = {x0,x1, . . . ,xd−1}, choose h numbers (allow repetition)

s1, ·,sk from S so that m = ∑h
i=1 si for some m ∈ N . Let

h = κ(m), find minm∈N κ(m).
Again for simplicity, assume x ∈ Z. Then for a given m ∈

N , we get the recursive relation κ(m) = 1+κ(m− xi) where

i = argmaxi≤d,xi≤m. m = N − 1 gives the maximum κ(N −
1) = dx.

The problem above is simpler than the one in TOPOOPT.

In TOPOOPT, x is rarely an integer, and S is a projection

of the geometric sequence S = {x0,x1, . . . ,xd−1} onto the

3Given that ring-AllReduce is the dominant AllReduce collective, we

describe our algorithms based on ring-AllReduce. Appendix E.1 explains

how to extend our algorithm to other AllReduce communication collectives.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 763

Algorithm 4 CoinChangeMod pseudocode

1: procedure COINCHANGEMOD(n, G)

� Input n: Total number of nodes

� Input G: Network Topology

� Output R: Routings

� R is the routing result
2: R = {}

� Acquire the set of “coins" from the topology,
� which are the choices of Algorithm 3

3: C = GetCoins(G)
4: for i ∈ [1,N −1] do

� curr_dist denotes the “distance" of a value
� (node distance) counted by number of “coins"

5: curr_dist[i] = ∞
� curr_bt record a back-trace of “coins" to
� get to a value (node distance)

6: curr_bt[i] = ∞
7: for c ∈C do
8: curr_dist[c] = 0

9: curr_bt[c] = c
10: while curr_dist has at least one ∞ in it do
11: for i ∈ [1,N −1] do
12: new_dist[i] = curr_dist[i]
13: new_bt[i] = curr_bt[i]
14: for c ∈C do
15: if curr_dist[(i− c) mod N]< new_dist[i] then
16: new_dist[i] = cur_dist[(i− c) mod N]+1

17: new_bt[i] = c
18: curr_dist = new_dist
19: curr_bt = new_bt

� Construct the routing for each node distance from the back-trace
20: R = GetRouteSeq(curr_bt)
21: return R

candidates (co-prime numbers with the size of a subset of

node participating in AllReduce). The intuition still holds.

Note that when d
√

n < 2, it is advantageous to choose x = 2

and spend less degree to create a geometric sequence with a ra-

tio of at least 2. In this case, the d factor becomes the actually

used degree d = log2 n, and the bound holds at O(log2 n).

E.3 Coin Change Routing

Consider servers Si and S j that need to exchange AllReduce

transfers but do not have a direct edge between them. We use a

modified version of the classical coin change problem [52] to

find an efficient routing path (line 19). In classical coin change,

the goal is to find the minimum number of coins that would

sum to a certain total value. Our ring generation rules enable

us to treat the routing problem similarly. In particular, the

p values of AllReduce permutations that have been selected

in the AllReduce sub-topology are the coin values, and the

difference between server i and j indices ((j− i) mod n) is the

target total value that we want to achieve. The only difference

is that our problem runs with modulo n arithmetic, as the

server IDs wrap around in the ring structure. Algorithm 4 lists

the pseudocode of CoinChangeMod.

E.4 OCS-reconfig Heuristic
Algorithm 5 describes the heuristic we use for OCS-reconfig.

As mentioned in Section 4, our goals are (i) to have enough

bandwidth for large transfer demands, (ii) while also mini-

mizing the latency of indirect routing for nodes that do not

have a direct link between them.

To achieve this goal in a reconfigurable interconnect, we

propose a utility function that finds a balance between the two

goals by maximizing the number of parallel links between

high demand nodes but with a diminishing return. More for-

mally, assume a network topology is represented by graph

G = (V,E) and each node has degree d. We define L(i, j) to

be the number of parallel links between node-pair (i, j). Let

T (i, j) be the amount of unsatisfied traffic demand. We define

a topology G’s utility function as follows:

Utility(G) = ∑
{i, j}∈E

T (i, j)×Discount(L(i, j))
(1)

The Discount function can be defined in different ways; in

Algorithm 5 and Algorithm 1’s MP construction, we use

Discount(l) =
l

∑
x=1

2−x (2)

to reduce the utility of additional links exponentially. We can

also explore other discount scaling, such as linear or factorial

functions.

When the fabric is reconfigurable (as in OCS-reconfig),

we collect the unsatisfied traffic demand every 50 ms and

run Algorithm 5 to decide the new network topology. After

the new topology is computed, we pause all the flows for

10 ms representing the reconfiguration delay of the OCS,

apply the new topology, and then resume the flows with one

or more corresponding physical links across the flow source

and destination. The two-edge replacement algorithm from

OWAN [87] in line 21 ensures the topology is connected,

when we enable host-based forwarding.

F Modifications to SiP-ML

Since SiP-ML’s SiP-Ring proposal is based on a physical

ring topology, its reconfiguration algorithm has several con-

straints on wavelength allocation for adjacent nodes. Given

that TOPOOPT’s physical topology is not a ring, directly ap-

plying SiP-Ring’s optimization using the original C++ code

causes SiP-ML to perform extremely poorly in our setup. To

give SiP-ML a leg up, we observe that its formulation tries

to optimize a utility function very similar to Equation 1 with-

out the Discount part (i.e. Discount = 1), but with an integer

liner program (ILP). While an ILP gives the optimal solution,

its runtime makes it prohibitive for the amount of simula-

tion parameters we explore. Therefore, we substitute the ILP

764 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 5 OCS-reconfig pseudocode

1: procedure OCS-RECONFIG(V , T , d, L)

� Input V : Nodes in the network

� Input T : Unsatisfied traffic demand matrix

� Input d: Node degree limit

� Input L: Number of links between ordered node-pair, initially zero

� Output E: Allocated links, initially empty

� Initially, E is empty
2: E = {}

� Initially, each node has d available tx and rx interfaces
3: for v ∈V do
4: availabletx[v] = d
5: availablerx[v] = d

� Create new links according to the demand list
6: while ∃i, j < |V | : i �= j,availabletx[vi]> 0,availablerx[v j]> 0 do

� allocate a direct connection for the highest demand pair
7: (v1,v2) = node-pair with highest demand in T
8: e = NewLink(v1, v2)
9: E = E ∪{e}

� Increment the number of parallel links from v1 to v2

10: L(v1,v2) += 1

� Scale the demand down by the number of links
11: T (v1,v2) ×= 1/2

� Update available interfaces
12: for v ∈ (v1,v2) do
13: availabletx[v1] −= 1

14: availablerx[v2] −= 1

� Stop considering nodes with zero available interfaces
15: if availabletx[v1] == 0 then
16: for u ∈V do
17: Remove (v1,u)’s entry from T
18: if availablerx[v2] == 0 then
19: for u ∈V do
20: Remove (u,v2)’s entry from T

� Ensure the network graph is connected
21: 2-EdgeReplacement(E, T)

� Updte route for host-based forwarding
22: UpdateRoute(E)

23: return E

with Algorithm 5 with Discount = 1, a heuristic that tries to

achieve a similar goal.

Note that the SiP-ML paper has another design called SiP-

OCS, which is similar architecturally to TOPOOPT. In the

paper, SiP-OCS is proposed as a one-shot reconfiguration ap-

proach due to the long reconfiguration latency of 3D-MEMS

based OCSs.

G Cost of Network Components

Table 2 lists the cost of network components we use in Sec-

tion 5.2, namely NICs, transceivers, fibers, electrical switches,

patch panels, and optical switches. The cost of transceivers,

NICs, and electrical switch ports is based on the lowest avail-

able prices in official retailer websites [18, 28]. Note that

for 200 Gbps, we use more 100 Gbps ports and fibers, be-

cause they were less expensive than high-end 200 Gbps and

400 Gbps components, or their price was not available. To esti-

mate the cost of electrical switch ports, we consider Edgecore

4200 G transceivers and switch ports are estimated as 2× 100G cost.

Link

band-

width

Tran-

sceiver

($)

NIC

($)

Electrical

switch

port ($)

Patch

panel

port ($)

OCS

port

($)

1×2

switch

($)
10 Gbps 20 [13] 185 [32] 94 [21] 100 [43] 520 [41] 25 [112]
25 Gbps 39 [15] 185 [32] 144 [23] 100 [43] 520 [41] 25 [112]
40 Gbps 39 [16] 354 [33] 144 [22] 100 [43] 520 [41] 25 [112]
100 Gbps 99 [12] 678 [34] 187 [24] 100 [43] 520 [41] 25 [112]

200 Gbps4 198 [12] 815 [35] 374 [24] 100 [43] 520 [41] 25 [112]

Table 2: Cost of network components.

bare metal switches with L3 switching and maximum number

of ports to amortize the per port cost. The cost of NICs is

taken from the Mellanox ConnectX series, and we consider

two 2-port NICs as one 4-port NIC. We obtain the cost of the

patch panel, OCS, and 1×2 optical switch directly from their

suppliers, Telescent [43] and Polatis [41] (with 40% discount).

The cost of transceivers matches that reported in Sirius [53].

To compute the network cost of Fat-tree and Ideal Switch,

we consider number of nodes in a full bisection bandwidth Fat-

tree. For example, a standard k = 8 Fat-tree has 80 switches

with 64 ports, or 640 switch ports in total, in addition to 1

NIC per host and one transceiver per NIC and switch port. A

TOPOOPT system of 128 nodes with degree d uses 128×d
NICs and transceivers, but 128×2×d patch panel ports be-

cause of the look-ahead design. Note that the cost of optical

components stays constant as link bandwidth increases, an in-

herent advantage of optics. Following prior work, we estimate

the cost of fiber optics cables as 30 cents per meter [68] and

select each fiber’s length from a uniform distribution between

0 and 1000 meters [148]. We calculate the cost of TOPOOPT

based on 2d patch panels and 1×2 switches at each link to

support its look-ahead design (§C). OCS-reconfig’s cost is

based on d OCSs connected to all servers in a flat topology.

H Impact of Server Degree on TOPOOPT’s Per-
formance

Figure 27 shows the same setting as Figure 11 except that

each server has a degree of eight (d = 8). The results show a

similar trend: even though per server bandwidth has increased,

the behavior of different network architectures remains con-

sistent.

Next we do a sensitivity analysis of impact of server de-

gree d on TOPOOPT’s performance. Specifically, we vary

the degree of each server in TOPOOPT for two link band-

widths: 40 Gbps and 100 Gbps. Figure 28 shows the trend

for different DNN models. Both DLRM and CANDLE are

network-heavy; therefore, they benefit more from the addi-

tional bandwidth obtained by increasing d. CANDLE’s im-

provement is almost linear as degree goes up, as the strategy

is closer to data parallel and the amount of bandwidth avail-

able to AllReduce operation increases linearly as well. In the

case of DLRM, we observe a super-liner scaling when B =

100 Gbp because DLRM has one-to-many and many-to-one

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 765

Figure 27: Dedicated cluster of 128 servers (d = 8).

B

Figure 28: Impact of server degree (d) on performance.

B

NIC

ETH|ETH

Kernel
C

NIC

KernelServer
A

NIC

Kernel

RDMA
Engine

D

NIC

Kernel

RDMA
Engine

RDMA|ETH ETH|RDMA

Logical RDMA Connection

TC filters TC filters TC filters TC filters

Figure 29: Host-based RDMA forwarding to create a logical

RDMA connection between end hosts.

MP transfers which require a low hop count in the topology.

As we increase d, TOPOLOGYFINDER is able to find network

topologies with much lower diameter, consequently benefiting

the performance by both increasing bandwidth and reducing

hop-count for MP transfers. Finally, BERT is mostly com-

pute bound at higher bandwidth; hence, increasing the server

degree and bandwidth per node has marginal impact on its

iteration time.

I Enabling Host-based Forwarding in RDMA

To support a multihop TOPOOPT interconnect using host-

based forwarding, we enable RDMA RoCEv2 forwarding on

all our HP NICs. RoCEv2 is an implementation of RDMA

on top of UDP/IP protocol, by utilizing a particular UDP

port (4791) and encapsulating an InfiniBand (IB) data packet.

Hence, each RoCEv2 packet can be routed with its source and

destination IP addresses. However, host-based forwarding is

challenging in RDMA protocol, as the packet processing and

memory access are offloaded to the NIC, and the host does

not have access to individual packets. More precisely, if a

packet’s IP destination IP address does not match the NIC’s

IP address, the RDMA engine silently drops the packet.

To address this issue, we collaborated with engineers from

Marvell, the provider of the firmware and driver for our HP

NICs. The solution that came out of our collaboration does

not require proprietary software or firmware, and is applicable

to commodity NICs with the same ASIC. We will release our

scripts publicly. At a high-level, we use a feature called NPAR,

or network partitioning. It allows us to split each 25 Gbps

physical interface into two logical interfaces in the hardware

level: i f1 and i f2, as shown in the right-most port of server

A in Figure 29. i f1 is a normal RDMA interface, where the

RDMA engine of the NIC bypasses the kernel, and it has an

IP address. This enables the upper layer software to consider

i f1 as a normal RDMA interface. However, i f2 does not have

an IP address and RDMA is disabled. i f2 has a different MAC

address from i f1, and we use this address to split the traffic

across i f1 and i f2. The traffic that needs to be forwarded uses

the MAC address of i f2 and hence is delivered to the host

networking stack instead of NIC’s RDMA engine.

Furthermore, we establish a set of iproute, arp, and tc
flower rules in Linux to enable the proper forwarding of

packets. If two servers are directly connected, such as the

third port of server A and the second port of Server B in

Figure 29, we only need to indicate the outgoing interface

766 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

on each of these servers. RDMA engines will handle the

communication. However, for the connection between server

A and D, we set the iproute and arp tables on server A

and server D to dictate which port the traffic should go out,

as well as the proper MAC address of the next server in the

forwarding chain. In this case, the packets are delivered to

the kernel. Then, on servers B and C, we set the tc flower
rules to forward the packets to the next server with the proper

MAC address. In these tc flower rules, we look-up the final

destination IP and assert the routing that was computed by

our algorithm.

Walk-through of an example of a packet going from
server A to server D. In Figure 29, the RDMA engine of

server A assumes server D is connected on the third port.

It uses the kernel’s routing tables for the destination MAC

address, which is set to the MAC address of i f2 of the second

port on server B. Therefore, a packet which starts as an RDMA

packet of server A is treated as an Ethernet packet when it

arrives at server B, and goes to server B’s kernel. In the kernel,

based on the packet’s final destination IP of server D, server B

redirects the packet to the fourth port, with destination MAC

address set to i f2 of server C. In this connection, the packet

is treated as a normal Ethernet packet. Finally, on server C,

the kernel rewrites the destination MAC address to that of i f1

on the third port of server D, and redirects it to that port. In

this connection, the outgoing Ethernet packet is considered an

RDMA packet because of the destination MAC address. For

the reverse connection from server D to A, the same process

happens in reverse, to support a bidirectional connection.

With these forwarding rules, we construct logical RDMA

connections between all pairs of servers. Upper layer commu-

nication libraries such as NCCL requires all-to-all connectiv-

ity, and they will utilize these connections. We also modify

NCCL to be topology-aware, as certain pairs of servers are

only connected through specific ports.

Compared to native point-to-point RDMA, this approach

takes a performance penalty. Our experiments indicate the

overhead is negligible when the amount of forwarded traffic

is small. Our NICs currently support TCP forwarding offload.

With firmware and driver modifications or future versions of

the NICs, they will also support RDMA forwarding offload.

This will further reduce the overhead of our approach.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 767

ModelKeeper: Accelerating DNN Training via Automated Training Warmup

Fan Lai, Yinwei Dai, Harsha V. Madhyastha, Mosharaf Chowdhury
University of Michigan

Abstract

With growing deployment of machine learning (ML) models,
ML developers are training or re-training increasingly more
deep neural networks (DNNs). They do so to find the most
suitable model that meets their accuracy requirement while
satisfying the resource and timeliness constraints of the target
environment. In large shared clusters, the growing number
of neural architecture search (NAS) and training jobs often
result in models sharing architectural similarities with others
from the same or a different ML developer. However, existing
solutions do not provide a systematic mechanism to identify
and leverage such similarities.

We present ModelKeeper, the first automated training
warmup system that accelerates DNN training by repurpos-
ing previously-trained models in a shared cluster. Our key
insight is that initializing a training job’s model by transform-
ing an already-trained model’s weights can jump-start it and
reduce the total amount of training needed. However, mod-
els submitted over time can differ in their architectures and
accuracy. Given a new model to train, ModelKeeper scalably
identifies its architectural similarity with previously trained
models, selects a parent model with high similarity and good
model accuracy, and performs structure-aware transformation
of weights to preserve maximal information from the parent
model during the warmup of new model weights. Our eval-
uations across thousands of CV and NLP models show that
ModelKeeper achieves 1.3×–4.3× faster training completion
with little overhead and no reduction in model accuracy.

1 Introduction
Modern machine learning (ML) clusters train thousands of
deep neural networks (DNNs) every day [37, 67]. For a spe-
cific ML task, ML developers often start with exploring var-
ious model architectures using Neural Architecture Search
(NAS) to find the one with desired accuracy [77]. In prepa-
ration for model serving, developers may train tens of mod-
els to customize the latency-accuracy trade-off across hard-
ware [21, 35], to organize weak and powerful DNNs into dif-
ferent inference stages for fast feature extraction [20], and/or
to dynamically select tens of models and combine their pre-
dictions to maximize ensemble accuracy [26, 30, 65]. Overall,
from inception to deployment, ML development often re-
quires training hundreds of models across developers [62,75].

Naturally, many recent advances in ML training optimiza-
tions have focused on faster DNN execution, e.g., by increas-
ing parallelism [50, 70], improving communication [40, 55],
or increasing GPU utilization [28, 68, 69, 73]. However, little
has been done to exploit the natural similarity between mod-
els that are trained as part of the same NAS process, models
targeting the same ML task in different hardware, or models
embedded in different applications. Indeed, our analysis of
three large CV and NLP model zoos shows that more than
60% of widely-used models can find an architecturally similar
counterpart within the same zoo (§2.2).

In this paper, our key insight is that one can reduce the
amount of training needed for model convergence by leverag-
ing a well-trained model’s weights to warm up the training of
a new model. This is because any DNN model is fundamen-
tally a computation graph of tensor weights and operators;
transforming weights of trained models with similar archi-
tectures to a new model can accelerate model convergence
(similar to transfer learning [60, 71] but across architectures).

Despite the potential for large benefits, there exists little
systematic support for automated repurposing of weights. To-
day’s frameworks may provide pre-trained models, but are
limited to a few models and specific datasets, and/or require
domain knowledge to manually search, transfer and contribute
a trained model’s weights [6]. As such, ML developers have
to train models from scratch more often [56]. A few recent
AutoML frameworks (e.g., Retiarii [77]) repurpose trained
models. However, they are limited to individual jobs within a
NAS task because they rely on the lineage of model mutation
to enable the transfer. When models are submitted by various
developers and/or frameworks with distinct architectures and
performance requirements, these solutions do not apply.

We introduce ModelKeeper, a cluster-wide training
warmup system, to reduce the training execution needed for
model convergence via automated model weight transforma-
tion (§3). ModelKeeper adaptively manages a collection of
trained models (i.e., model zoo) from prior training jobs corre-
sponding to different ML tasks. For a new training job, Model-
Keeper selects and transforms a trained model’s weights (i.e.,
parent model) to the training model (i.e., query model) before
training takes place. It can benefit various ML applications, in-
cluding exploratory training (e.g., improving Retiarii [77] fur-
ther) and general training (e.g., using PyTorch [9]) of CV/NLP
models, with few-lines-of-code change.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 769

ModelKeeper addresses two primary challenges toward
selecting a suitable parent model and repurposing its weights.
First, ModelKeeper must determine similarity between two
models (§4.1). Intuitively, we can treat each DNN model as
a directed graph, where nodes represent tensors (layers) and
edges represent data flows, and use heuristics for the classic
NP-hard graph edit distance problem [31] to find the matching
similarity. However, maximizing matching by skipping nodes
can be harmful because the computation of each tensor affects
that of the subsequent ones in a trained parent model. To this
end, we present a structure-aware dynamic programming ap-
proach to capture the similarity (transformable tensor weights)
between two models. To scale to real-world zoos with thou-
sands of models, we then introduce a two-stage hierarchical
search algorithm to identify similar models efficiently.

Second, perfect matching is unlikely as two models are
seldom identical. Therefore, given many candidate parent
models with different similarity scores and each with differ-
ent accuracy, which one to pick and then how to transform
its weights to the query model (§4.2)? A more similar par-
ent model enables transforming more weights, while a more
accurate one implies a better training jump start after the
transformation. When the two are at odds, we adopt a buck-
eting heuristic: potential parent models are put into different
buckets in terms of their similarity to the query model, group-
ing comparable parent models together. We then pick the
most accurate parent from the bucket containing the most
similar parent models. Nevertheless, tensor mappings from
the parent to the query model can be incomplete (e.g., due
to non-identical architectures). To preserve maximal parent
model information, we introduce width and depth operators
to transform parent model weights into the query model with
negligible overhead.

We have integrated ModelKeeper with four popular ML
frameworks (§5): Ray [49], AutoKeras [41], MLFlow [75],
and Microsoft NNI with Retiarii backend [77].1 Our evalua-
tions across thousands of DNN training jobs in CV and NLP
applications (§6) show that ModelKeeper can save 23%–77%
total amount of training needed (i.e., 1.3×–4.3× faster train-
ing) than the state-of-the-art without model accuracy drop,
while efficiently serving cluster-scale warmup requests.

Overall, we make the following contributions in this paper:

1. We present ModelKeeper, a system to enable automated
training warmup for faster DNN training in clusters;

2. In order to maximize training speedup, we demonstrate
how to scalably compute similarities between models and
how to transform an already-trained model’s weights to a
yet-to-be trained model with little overhead;

3. We integrate ModelKeeper with multiple advanced ML
frameworks, and evaluate it across thousands of CV and
NLP models to show large improvements.

1ModelKeeper is available at https://github.com/SymbioticLab/
ModelKeeper.

Identical
layers

conv3x3
<64, 64, 3, 3>

Convolution tensor

Identical
layers

Output

…

…

<128, 128, 3, 3>
Convolution tensor

(ResNet18)
Output

…

…

…

(ResNet34)

conv3x3

conv
conv

conv

conv
conv

conv
conv

conv

conv
conv

Input

FC

conv
conv

Input

FC
<1000, 512>

FC tensor

Identical
layers

0.4 0.2 0.1 …
0.7 0.8 0.3 …
0.3 0.6 0.5 …
… … … …

(Tensor Nodes)

10
00

 ro
w

s

500 columns

…
FC

Weights

Multi-dimensional

weights

…128x

Figure 1: A DNN model is essentially a graph of tensors. Model
outputs are determined by tensor weights and their control flow.

2 Background and Motivation
2.1 DNN Model Training

Modern DNN frameworks represent DNN computations as a
directed computation graph with tens to thousands of nodes
across branches (Figure 1) [9,38]. Each node implies a mathe-
matical tensor operation (e.g., matrix multiplication or convo-
lution) along with its tensor weights and input, where weights
are n-dimensional arrays typically consisting of floats. DNN
training often covers thousands of iterations across mini-
batches of data to minimize the training loss. In each iteration,
the computation graph takes a data mini-batch as the input,
and performs a (1) forward pass, where each node conducts
the tensor operation on the output of parent nodes to get the
training loss regarding the model output and ground truth; and
a (2) backward pass, which updates the weight values, from
the last to front tensors, using the gradients derived by the
training loss with respect to the current weight. Therefore, the
DNN model is essentially a graph of weights orchestrated by
tensor operators, and training searches the best weight values.

2.2 Opportunities for Repurposing Models

In this paper, we focus on reducing the amount of training
needed to train a new model by automatically repurposing
the weights of previously trained models. Our approach of
warming up the weights of a new model before its training
starts is based on the following observations.

Pervasive model similarity. With the rapid increase in the
number of ML training jobs in datacenters [28,37], similarities
between training jobs are increasing too [67]:
• First, for a specific ML task, ML developers often explore

various model architectures using Neural Architecture
Search (NAS) to find the preferred model architecture
(e.g., better capacity-accuracy frontier [77]), or to inves-
tigate the performance consistency of new optimizations
across models (e.g., ML ablation study) [48]. For exam-
ple, Microsoft tuning clusters perform as many as 75 ex-
ploratory training jobs in median for user apps [46].

• Second, in preparation for ML deployment, developers
can train dozens of models to either customize the latency-

770 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/SymbioticLab/ModelKeeper
https://github.com/SymbioticLab/ModelKeeper

0.0 0.5 1.0
Model Similarity

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

M
od

el
s Top-1

Top-5

(a) NASBench

0.0 0.5 1.0
Model Similarity

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

M
od

el
s

Top-1
Top-5

(b) Imgclsmob

0.0 0.5 1.0
Model Similarity

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

M
od

el
s Top-1

Top-5

(c) HuggingFace

Figure 2: Pervasive model similarity in today’s model zoos. We
measure the top-1 and top-5 architectural similarities of each
model to other models, and report the distribution across models.
1 indicates identical model architectures.

accuracy tradeoff across hardware (e.g., in video analysis
systems [35, 39]), or to dynamically select tens of models
and combine their predictions in order to maximize accu-
racy under changing loads in today’s ensemble-serving
systems [30, 65] (e.g., AWS Autogluon [26]).

• Third, the potential for similar models increases with in-
creasing users. For example, over 100K ML models are
submitted to Kaggle competitions each month [3]. Each
competition can have thousands of participants develop-
ing their models independently, and participants are re-
ported to have trained many similar models [22].

Indeed, our analysis of three large public model zoos –
Imgclsmob [10] for ImageNet classification (435 models),
HuggingFace [2] for English text generation (2.5K models),
and NASBench [24] for NAS task (16K models) – reinforces
these observations. Figure 2 reports the pairwise architectural
similarity across models in each model zoo. We measure the
similarity of each model to other zoo models2 in terms of the
normalized graph edit distance of two directed model com-
putation graphs [27] (∈ [0, 1]), where 1 indicates identical
graphs. We observe that more than 60% of the models have at
least one other model (top-1) in the zoo with a similarity over
0.6. Pervasive similarity is prominent in all these model zoos
because modern models often rely on similar architecture de-
signs but with wider/deeper layers or branches. For example,
convolution layers are widely-used in CV models [33, 36],
while NLP models are often stacked by attention layers [63].

Similar models can warm-start training. Recent theoret-
ical [60] and empirical [71] efforts from the transfer learning
community show that inheriting well-trained parent model
weights can speed up the training of a new model, because
this warm start enables an informed weight initialization (e.g.,
training from the basin of loss curvature). Yet, different from
their focus that manually transfers the same model across
datasets for better model generalization accuracy [53, 78], we
notice that transforming a trained model’s weights to a new
model (i.e., across architectures) can accelerate its training.

Consider the training of ResNet101 on CIFAR-10 dataset

2To avoid over-optimistic identification of model similarity, we removed
identical models in each zoo and focus on different model architectures.

0 50 100
Training Epoch

70

80

90

Te
st

A
cc

ur
ac

y
(%

)

Res101
RoR3 to Res101
Res50 to Res101
Res34 to Res101

(a) Warm start accelerates training.

10 80 85 90
Parent Model Accuracy (%)

0

10

20

30

G
PU

Sa
vi

ng
(%

)

0

7

19

31

0

6

15

28
RoR3 to Res101
Res50 to Res101

(b) Parent model accuracy matters.

Figure 3: Transferring model weights from well-trained models
with similar architectures can accelerate new model training.

1 2 3 4 5 6 7 8 9 10
Layer ID

0.0

2.5

5.0

7.5

10.0

W
ei

gh
tD

iff
.(

L
2-

N
or

m
) Warm Start

Scratch

(a) Smaller divergence to the optimal.

0 50 100
Training Epoch

0

2000

4000

6000

G
ra

di
en

tV
ar

ia
nc

e
(L

2-
N

or
m

)

Warm Start
Scratch

(b) Smaller gradient variance.

Figure 4: Warm start provides better initial weights search space.
We use RoR3 to warm start ResNet101.

as an example. We copy the tensor weights of a well-trained
parent model (e.g., ResNet50 or RoR3 [76]) to the ResNet101
tensor if two tensors have identical properties (e.g., same op-
erator and weight dimensions), while the rest of the training
proceeds as normal. We notice that (1) warmup training can
reduce the amount of training needed, while obtaining the
same final accuracy to that of training from scratch with ran-
dom weight initialization (Figure 3(a)); and (2) the savings are
more encouraging when inheriting from more similar models
– similarity of ResNet34, ResNet50, and RoR3 to ResNet101
is 0.19, 0.48, and 0.85, respectively – and better performing
models (Figure 3(b)), which respectively determine whether
it is possible and beneficial to transform the weights.

These improvements are because they speed up the search
in the space of weight values. If we consider ResNet101 as
an example, (1) warming it up using RoR3’s weights before
training starts results in a smaller distance to the final weights
achieved when the model converges (Figure 4(a)), and (2) dur-
ing the training, this informed weight initialization enables
smaller gradient variance (i.e., more consistent gradient direc-
tions) towards the basin of loss curvature (Figure 4(b))), thus
requiring fewer iterations to convergence in theory [12, 53].

3 ModelKeeper Overview
ModelKeeper is an automated training warmup system for
various ML tasks that accelerates DNN training by warm-
starting models with weights from already-trained models.

Design Space Large training clusters are shared between
users with varying expertise, and they can train a large num-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 771

1

① Job Submission

ModelKeeper Coordinator

Model Mapper

Zoo Manager
Model Matcher Model

Clustering

Cluster Resource
Scheduler

Execution Engine

(e.g., Retiarii)

⑤ Model

registration

Meta
Store

④ Training Execution

② Model

 Matching

③ Weight

Transformation

Data
Store

keeper.clientAPI()

Figure 5: ModelKeeper architecture. It can run as a cluster-wide
service to serve different users and/or frameworks.

ber of jobs with different model architectures. Consequently,
ModelKeeper must minimize the information needed and
overhead incurred for each training model (i.e., query model),
while offering users the flexibility in their request (e.g., using
ImageNet model zoo to warm start models on other image
datasets). In fact, determining which dataset (model zoo) as
the source to transfer is as yet an open problem in the transfer
learning community [45, 71, 78]. ModelKeeper is comple-
mentary to and benefits existing ML efforts as it automates
training warmup (e.g., searching, transforming, and contribut-
ing a trained parent model’s weights) for a given model zoo,
instead of making the developer keep tracking all models
and handcraft which model to repurpose [6]. We empirically
show that ModelKeeper can benefit the model training across
datasets too (§6.4).

For a given model zoo, the effectiveness of transforming
parent model weights relies on two key aspects: (i) Model
similarity: it dictates the similarity of two model architectures,
including the weights shape and operation type of a tensor;
and (ii) Parent model accuracy: it determines the value of
transformation. Having architectural similarity is the prereq-
uisite to transforming more weights information of a parent
model, while better parent model accuracy implies potentially
better warm start after transformation.

As such, ModelKeeper should repurpose a parent model
with large similarity and better accuracy. We provide the
theoretical analysis to support why ModelKeeper can benefit
model convergence following this principle in Appendix A.

System Components ModelKeeper is a complementary
system to existing ML training (Figure 5), and has integra-
tions with various frameworks (e.g., Microsoft NNI [4] and
Ray [49]). It consists of the remote coordinator, which serves
user query models before their training executes, and the client
agent that allows users to submit model warmup requests.
ModelKeeper coordinator employs three key components to
warm up models by transforming a trained model’s weights:

• Model Matcher: to identify architecturally similar models
in the zoo of trained models;

• Model Mapper: to select a zoo model with good archi-
tectural similarity and accuracy as the parent model, and
transforms the parent model weights to the query model;

• Zoo Manager: to adaptively manage zoo models that can
be submitted from users to support transformation at scale.

Figure 6 reports the example interface on the client agent,
where the user benefits from ModelKeeper with a few lines
of code in training (Coordinator interfaces are in Section 5).

1 from modelkeeper import ModelKeeperClient
2
3 def training_with_keeper(model , dataset):
4 # Create client session to keeper coordinator
5 keeper_client = ModelKeeperClient(coordinator_ip)
6 warmed_model , meta = keeper_client.query_for_model(
7 model , meta={’data’: ’Flowers102’,
8 ’task’:’classification’, ’tags’: None})
9

10 acc = train(warmed_model , dataset) # Training starts
11
12 # Register model to ModelKeeper when training ends
13 keeper_client.register_model(warmed_model ,
14 meta={’data’: ’Flowers102’, ’accuracy’: acc,
15 ’task’: ’classification’, ’tags’: None})
16 keeper_client.stop()

Figure 6: Code snippet of ModelKeeper client service APIs.

Training Lifecycle When the developer creates a new train-
ing job, 1 she first initiates a client connection to the remote
ModelKeeper coordinator, and then issues a query with the
specified job meta information. ModelKeeper client agent
will automatically extract the model information needed (e.g.,
model computation graph) and issue a request (mostly size
< 1 MB) to the coordinator. 2 Upon receiving the request,
Matcher consults its metadata store, identifies zoo models that
the user can access and meet the specified tag (e.g., name of
the preferred parent models), and measures their architectural
similarity to the query model. 3 Mapper selects a parent
model with large architectural similarity and good accuracy
out of these zoo models. Thereafter, it loads model weights of
this parent model from the data store, and transforms parent
model weights, based on pairwise tensor mapping from the
Matcher, to the query model. Note that this transformation
only updates tensor weight values, while others (e.g., model
architecture) remain the same. 4 The coordinator responds
to the developer with warmup model weights, and the rest
of the training remains as usual. 5 When the training com-
pletes, ModelKeeper can automatically register the trained
model to the Zoo Manager to benefit future jobs.

4 ModelKeeper Design
In large shared clusters, models are often submitted by vari-
ous developers and/or frameworks with diverse architectures
at different points in time. The large variety in model archi-
tectures and accuracy characteristics lead to novel system
challenges in automating weight transformation from a parent
model with high similarity and better accuracy:

772 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 -0.25 -0.5 -0.75 -0.25 -0.5 -1.25

-1 1 0.75 0.5 0.75 0.5 1

-2 0 2 1.75

-3 -1 1 3

1

4

❶

❷

❸

❺

❻

Parent

Model

Query

Model

SKIP_CHILD: do not match current query model node

SKIP_PARENT:

do not match

current parent
model node

End-to-end

similarity

SKIP_CHILD

SKIP_PARENT

MATCH(③,❸) is best

transition here that

achieves max score

?

𝕄|gp|×|gc|

5
1 2 3 6

❶

❷

❸

❺

❻

4

5

1

2

3

6

1.0 1.0

4

❶

❷

❸

❺

❻

Parent

Model

Query

Model

SKIP_CHILD: do not match current child node

SKIP_PARENT:

do not match

current parent node

𝕄|gp|×|gc|

5
1 2 3 6

0 0 0 0 0 0 0

-1 1 1 1 1 1 1

-2 0 2 2

-3 -1 1 3

4

❶

❷

❸

❺

❻

Parent

Model

Query

Model

SKIP_CHILD: do not match current query model node

End-to-end

similarity

SKIP_CHILD

SKIP_PARENT

MATCH(③,❸) is best

transition here that

achieves max score

?

𝕄(|gp|+1)×(|gq|+1)

5
1 2 3 6

SKIP_PARENT:

do not match

current parent
model node

Figure 7: ModelKeeper relies on dynamic programming-like
heuristics to measure graph-level model architectural similarity.

• Having similar model architectures is the prerequisite to
transforming weights across architectures. How to iden-
tify more architecturally similar zoo models (§4.1)?

• As the similarity and accuracy of many potential parent
models can come at odds, which one to pick and then how
to transform its weights to the query model even in the
presence of non-identical architectures (§4.2)?

• New training jobs and trained models can join the cluster
on the fly. How to serve user warmup requests at scale for
high throughput clusters in the wild (§4.3)?

4.1 Matcher: Identify Similar Models

The similarity between two model architectures determines
the number of tensor weights that we can transform. Hence,
we need to identify the graph-level architectural similarity
of each parent and query model pair (Figure 7) and their
pairwise tensor mappings. It is tempting to model it as a
classic NP-hard graph edit distance (GED) problem [15] by
treating tensors as nodes and data flows as edges with the goal
to morph one graph to the other with minimum edits (e.g.,
add/delete a node). However, model matching encounters new
challenges: (i) Prefix Preference: we prefer to match the prefix
over the suffix of model graphs. Because prefix tensors are
more transferable since they capture general input features
(e.g., image color blobs) [53, 71]. Moreover, model weights
are trained systematically over tensors, so any edit on prefixes
can result in information loss to subsequent tensors [25]; (ii)
Partial Matching: we can partially transform the weights of
a smaller dimensional tensor to a wider one to match more
tensors, or postpone its matching to preserve its exact weights
information; and (iii) Scalability: as each model can consist of
thousands of nodes across branches, capturing the similarity
to thousands of zoo models is challenging.

ModelKeeper Matcher measures the graph-level similar-
ity of models, in terms of the total number of transformable
weights after mapping tensor pairs from the parent to the
query model. It uses the widely-used ONNX tool [7] to ex-
tract the computation graph. ONNX supports various model
formats (e.g., Tensorflow and PyTorch), which allows us to
perform the cross-framework transformation.

Structure-Aware Pairwise Model Matching We intro-
duce a dynamic programming-based heuristic to mea-
sure the end-to-end similarity (i.e., number of weights to
transform) of two models. It relies on a similarity table
M(|gp|+1)×(|gq|+1)(i, j) to record the best similarity after
matching the prefixes of the parent and the query model.
Here, |gp| and |gq| respectively denote the number of tensors
of the parent model and the query model. Then, it enumer-
ates plausible matching operations from previous states (e.g.,
M(i−1, j−1)), and takes the operation that can acquire the
maximum similarity to enter the next state (i.e., M(i, j)).

Figure 7 shows the execution of our structure-aware match-
ing algorithm. It traverses the similarity table in the topolog-
ical order of graph tensors. This allows us to embed graph-
level information while prioritizing the match of prefixes. To
advance to the current tensor pair (i, j), it enumerates three
plausible operations:
1. MATCH: transform weights of i’s parent to j’s parents.
2. SKIP_PARENT: give up transforming tensor i’s parent;
3. SKIP_CHILD: give up transforming to tensor j’s parent;

Then, it updates the table to obtain the maximum similarity
after each step based on previous states as follows:

M(i, j) = max
k∈parent(i)


M(k, jparent)+MATCH(k, jparent) (1)

M(k, j)+SKIP_PARENT (2)

M(i, jparent)+SKIP_CHILD (3)

To get the overall transformable weights, we can reward
each operation based on the number of tensor weights trans-
formed. When tensor i and j belong to the same operator (e.g.,
convolution), the fraction of transformed weights along each
weights dimension in MATCH operation (1) is:

MATCH(i, j) =
∏dim=1 min(dim(i),dim(j))
∏dim=1 max(dim(i),dim(j))

(
∈ [0,1]

)
(4)

Otherwise, we assign MATCH(i, j) to -1, as this transforma-
tion is useless and even loses the weights of that parent model
tensor. Similarly, SKIP_PARENT is set to -1 as it loses the
parent model tensor, and SKIP_CHILD is 0, since it does not
transform the parent model tensor.

Capturing the graph-level similarity is more challenging
when tensor j of the query model is the intersection of multi-
ple upstream branches. Because different upstream branches
to j may follow the same branch of the parent model dur-
ing their matching, leading to repetitive (conflicting) match-
ing. As shown in Figure 7, when we reach (6 , 6), branch
(2 → 3) and (4 → 5) may both be matched to (2 → 3)
that maximizes their own similarity. To avoid conflicting
matching, the similarity to j is the sum of upstream branches
(M(i, j) = ∑k∈parent(j)M(i,k)), and we greedily adopt the
matching of a branch to tensor j, whose trajectory achieves
the largest similarity (i.e., match 2 → 3 to 2 → 3), to max-
imize their sum. Meanwhile, we discard the trajectory of other

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 773

1

NASBench

T
hr

ou
gh

pu
t

 (#
 o

f p
ai

rw
is

e
m

at
ch

in
g/

m
in

)

Imgclsmob HuggingFaceV-Ensemble

GED ModelKeeper

Larger is better
11678

135799

458

6062

409
2932

17

145

100

101

102

103

104

Figure 8: Keeper is order-of-magnitude more scalable than exist-
ing GED. V-Ensemble is a model zoo for ensemble training (§6.1).

0.0 0.2 0.4 0.6 0.8 1.0
Similarity to Parent Model

75

85

95

Pa
re

nt
M

od
el

A
cc

ur
ac

y
(%

)

Model

1

Bett
erResNet50

Parent Model

Figure 9: Models vary in accuracy and architecture (Imgclsmob
zoo). We measure their similarity w.r.t. ResNet101, and prefer to
transform a parent model with better similarity and accuracy.

branches where conflict exists. As such, branch 4 → 5 takes
the inferior match (5), where 4 is skipped.

The last entry of the table, i.e., M(|gp|, |gq|), gives the
end-to-end similarity. Note that we can learn the pairwise
tensor mappings by backtracking operations taken to reach
M(|gp|, |gq|) over the table in linear time. For a specific
model, our heuristic will naturally treat the model itself as the
most similar model, because matching will always take oper-
ation MATCH(i, i) in each step to maximize the similarity.

Figure 8 reports that our pairwise matching can match
thousands of model pairs in a second, and achieves higher
throughput than the state-of-the-art GED solution [57] in this
model matching scenario. More importantly, our empirical re-
sults report that our structure-aware matching achieves better
training warmup than the GED solution (§6.3).

4.2 Mapper: Transform Maximal Parent Information

The effectiveness of weight transformation is determined by
the similarity (transfer more weights) and accuracy (transfer
better weights) of parent models. Unfortunately, it is imprac-
tical to pick the optimal parent model, since the performance
of transformation can only be known after training each de-
rived warmup model to converge. Worse, the variety of model
similarity and performance leads to the tussle in selecting
the parent model. As shown in Figure 9, while some models
(e.g., ResNet34) possess high accuracy, their low similarity to
ResNet101 can cap the number of weights that can transform.
Next, we introduce Mapper to exploit the sweet spot of both
aspects, and then to transform maximal parent model weights
in the presence of partial matching.

As shown in Algorithm 1, Mapper relies on Matcher to

Input: Query model q, Model Zoo M
Output: Warmup Model Weights

1 NumOfBuckets B = 10 . Model similarity ∈ [0, 1]

2 Function GetModelSim(Query q, Models M)
/* Structure-aware matching for model similarity. */

3 topo_query_tensors = SortByTopo(q)
4 model_similarity = {}

5 for model m ∈M do
6 similarity_table = zeros(|gm|+1, |gq|+1)
7 for tensor i ∈ CachedModelTopo(m) do
8 for tensor j ∈ topo_query_tensors do

/* Enumerate and merge intersection. */
9 similarity_table[i][j] = Equation (1-3)

10 model_similarity[m] = similarity_table[|gm|][|gq|]

11 return model_similarity

12 Function QueryForModel(Query q, Model Zoo M)
/* Bucket models in terms of similarities. Pick the model in

the top-similar bucket with the best performance. */
13 model_similarity = GetModelSim(q, M)
14 top_similar_bucket =

BucketBySimilarity(model_similarity, B).first

15 for model ∈ top_similar_bucket do
16 if model.perf > best_parent.perf then
17 best_parent = model

/* Perform width and depth weight transformation */
18 warmup_weights = TransWeight(best_parent, q)

19 return warmup_weights

Algorithm 1: Select the parent model to transform.

identify similar models (Line 2). As having a good similarity
is the prerequisite for transformation, we need to first ensure
picking similar models. To this end, Mapper takes the popular
bucketing strategy to allocate models into B buckets in terms
of their similarity (Line 14). Taking Figure 9 as an example,
with B = 10 by default, bucket 10 will accommodate models
with similarities between 0.9 and 1.0, so models in the same
bucket have comparable similarities. Then, Mapper traverses
from the last bucket (bucket 10) to the first until reaching the
first one with nonempty models (bucket 9), from which it se-
lects the model with the best performance as the parent model
(Line 15). As such, the parent model approaches the bound-
ary of better model similarity and accuracy. Later, Mapper
performs structure-aware weight transformation to initialize
the query model weights (Line 18).

Information-Preserving Weight Transformation To
maximize the end-to-end number of weights to transform,
Matcher allows partial matching: it may map a small tensor
of the parent to a wider one of the query model, or skip the

774 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1

❶

❷

❺

❻
Parent Model

O1

P2

❶

❷

❺

❻O1

P2

O2

❶

❷

❺

❻O1

Wider Model

P1P1

Identity

Deeper Model

P1

P1
P2

O2
Width

Opt
Depth

Opt

Query Model

Copy

Weight

1

2

3
4

5

6

❶

❷

❺

❻

4

3w1w1 w2 w2
2

O2

w2
2 w1 w22

w2
2

Figure 10: Width and depth operator to transform parent model.

mapping of some tensors in the parent or the query model.
Here, the straw-man solution (e.g., in Retiarii [77]), which
transfers the weights of parent model tensors if and only if
two tensors are identical, can be suboptimal (§6.3), since
losing the parent model tensor can make the transfer of its
subsequent tensors useless.

To preserve maximal parent model information under par-
tial mappings, Mapper employs a width operator and a depth
operator, which extend the well-known ML technique for
function-preserving model transformation (e.g., Net2Net [17]
and Network Morphism [66]). But unlike existing model trans-
formation techniques [41], which are limited to expand the
depth and width of a pre-determined model, or complicated
transfer learning (e.g., knowledge distillation [34]) that re-
quires additional computation (e.g., pre-training) and/or in-
trusive implementation, our operators transform the parent
model weights into the query model with little overhead.

Our graph-level transformation proceeds in the topological
order of tensors. Mapper handles the expanding case similar
to today’s function-preserving transformation (Figure 10): (i)
to transform a parent model tensor to a wider query model
tensor, the width operator copies the parent model weights
to its mapping tensor of the query model, and pads the rest
of the columns via weighted replication from other columns;
and (ii) when the mapping requires inserting a new tensor into
the parent model (i.e., SKIP_CHILD), the depth operator will
initialize the weights of this mapping tensor to be an identity
tensor. i.e., this tensor will directly pass the output of its parent
tensors to the child tensors, in order to keep the same parent
model’s output. Readers can refer to Net2Net [17] for more
details. We note that both expanding operations, in theory,
can preserve the parent model information (i.e., with the same
tensor output) for many tensor operators (e.g., the wide-used
full connection and convolution layers).

The pruning case, however, cannot preserve full parent
model information, because we lose some tensor weights of
the parent model in transformation. Our solution is inspired
by today’s ML model pruning criteria [32]. Specifically, when
we need to fit wider tensor weights (i.e., with larger array di-
mensions) to a smaller dimensional tensor of the query model,
the width operator will progressively pick and copy the largest
weight values of the parent model tensor to the mapping tensor
of the query model. This is because, intuitively and empiri-
cally, larger magnitude values often have more impact on the
model output [14]. From the depth perspective, when we skip

transforming (i.e., SKIP_PARENT) a parent model tensor,
the depth operator will add noise to the weight values of that
tensor’s neighbors. It disturbs the affinity of trained parent
model weights so that neighboring tensors can still keep most
information while being able to learn new weights [51].

Our transformation can be applied to various models for
informed weight initialization. Thereafter, training proceeds
as normal, and the warmup model will gradually converge the
weight values that fit its architecture the best. As a generic
system, ModelKeeper can accommodate other transforma-
tion techniques too as they become available. We provide a
theoretical analysis of our transformation in Appendix A.2,
and empirically show performance improvements using our
transformation over its counterparts (§6.3).

4.3 Zoo Manager: Transform Effectively At Scale

In reality, cluster users register their trained models to the
model zoo on the fly, leading to scalability and performance
challenges. First, while gathering more models increases the
opportunity to transform better parents, the ever-growing num-
ber of models (e.g., > 70K models in the HuggingFace model
hub of all tasks [2]) and model size (e.g., NLP models can be
tens of GBs [16]) can lead to large matching overhead and
storage cost. Moreover, models registering to the zoo may
have low accuracy (e.g., due to insufficient training), which
can harm the effectiveness of weight transformation. As such,
ModelKeeper employs a Zoo Manager to support effective
transformation at scale under dynamics.

Two-Stage Hierarchical Model Matching Despite being
able to match thousands of lightweight CV models every
minute (Figure 8), our pairwise matching heuristic can still
be insufficient for model zoos with tens of thousands of mod-
els or complicated model architectures (e.g., NLP models).
For example, to serve a query model using the HuggingFace
model zoo for English text generation (2.5K models), per-
forming pairwise matching on these zoo models can take
∼17 minutes, namely, 2.5K models over the throughput (145
matching/minute). This long search time is further exacer-
bated in today’s large cluster with sub-minute job arrivals [37],
eventually hurting the user experience.

To ensure an interactive service, Zoo Manager adaptively
clusters zoo models into a well-defined number of groups,
whereby Matcher can perform two-stage matching to reduce
the number of matching pairs needed to identify more similar
models. Intuitively, models with similar architectures would
have comparable model similarity to the same query model,
so we may be able to cluster zoo models into multiple groups,
and then perform pairwise matching on the group members of
top similar model groups. However, it is non-trivial to decide
what features to use for clustering models, and how many
groups are needed. Clustering too few groups does not scale
down the problem enough, while too many can lead to a large
overhead in identifying which group to prioritize.

We deploy K-medoids clustering [52] to combine pair-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 775

Query Model ① Identify similar medoid

② Match group members
①

②

Register Model ③ Identify similar medoid
④ Append to similar group

③

K-Mediod Groups

④

⑤ Update group periodically

Group Members K-Medoid Groups Updated Groups

⑤

(a) When query model arrives (b) When new zoo model joins

Figure 11: Matcher clusters models into groups to reduce the search space,
and then performs model matching within groups.

1

NASBenchPe
rc

en
t.

of
 Z

oo
 M

od
el

s
M

at
ch

ed
 fo

r
O

pt
im

al
 (%

)

Imgclsmob HuggingFace
0

20

40

60

V-Ensemble

1 0.5K* K* 2K* 5K*
of Clusters (K)

Figure 12: ModelKeeper can find the optimal number
of clusters K∗ in hierarchical matching, and can iden-
tify the most similar models with fewer zoo models (e.g.,
5% in NASBench) needed to explore.

1

0

25

50

75

100

0 1 2 3 4 >=5

3.23.14.47.6
19.3

62.4

Model Repurposing FrequencyPe
rc

en
t.

of
 T

ot
al

 Z
oo

 M
od

el
s

0

25

50

75

100

0 1 2 3 4 >=5

3.02.88.111.5
20.2

54.4

Model Repurposing FrequencyPe
rc

en
t.

of
 T

ot
al

 Z
oo

 M
od

el
s

(NASBench Zoo) (Imgclsmob Zoo)

Long-tail distribution Long-tail distribution

(a) Imgclsmob model zoo.

1

0

25

50

75

100

0 1 2 3 4 >=5

3.23.14.47.6
19.3

62.4

Model Repurposing FrequencyPe
rc

en
t.

of
 T

ot
al

 Z
oo

 M
od

el
s

0

25

50

75

100

0 1 2 3 4 >=5

3.02.88.111.5
20.2

54.4

Model Repurposing FrequencyPe
rc

en
t.

of
 T

ot
al

 Z
oo

 M
od

el
s

(NASBench Zoo) (Imgclsmob Zoo)

Long-tail distribution Long-tail distribution

(b) NASBench model zoo.

Figure 13: A few zoo models are more frequently repurposed as
the parent by Keeper. Numbers are from our evaluations (§6.2).

wise model matching and clustering to find a sweet spot. K-
medoids can directly take the distance of two points as input
to minimize the distance between data points and their cluster
center. Here, models can be taken as different points, and
the distance is the reciprocal of their similarity. Compared to
other clustering methods (e.g., K-means), K-medoids circum-
vents the need for embedding complicated model graphs, and
it is more compatible with pairwise model matching.

As shown in Figure 11, when a query model arrives,
Matcher identifies its similarity to each group medoid, and
then conducts pairwise matching on the members of top simi-
lar groups. Similarly, when a new model registers, Matcher
measures its similarity to group medoids, and assigns this new
model to the group whose medoid is the most similar. This en-
ables interactive queries to the latest models. Later, Matcher
periodically triggers K-medoids to update the clustering.

To select the most similar models for each query model,
Matcher identifies the best group medoid i by performing K
pairwise matching, followed by Ki runs to match the mem-
bers of group i. Assuming a zoo of M models (M = ∑

k
i Ki),

to minimize the average matching runs on each group (i.e.,
min

(
(K+Ki)/K

)
), we can get the optimal number of groups

K∗ =
√

M. Figure 12 reports that, compared to the non-
clustering design (i.e., K = 1), this two-stage design requires
matching only 5%-16% of all zoo models to identify the most
similar models, thus reducing the query hang time (§6.3).

Capping Zoo Size Hosting all zoo models can consume no-
ticeable storage space. For example, the HuggingFace model
zoo takes tens of TBs of storage [2]. In fact and understand-
ably, we notice that a small portion of zoo models are more

frequently repurposed than others (Figure 13). This is because
certain models contain more similar blocks to other models
(e.g., ResNet50 is more likely to be used to warm up other
large ResNet models than ResNet18).

To harvest more warmup opportunities subject to the zoo
capacity limit, we can formulate it as a knapsack packing
problem, where each item (model) is associated with a weight
(model size) and a value (repurposing frequency as the parent
model), and our goal is to maximize the total value achieved.
Namely, warm up as many jobs as possible (aka maximum
total repurposing frequency). As such, solving this packing
problem enables us to identify which item (model) to keep
in the knapsack (model zoo). But on the other hand, models
that are popular to train can change over time. For example,
users incline to train more recent and/or advanced models.
To account for the temporal variation in the repurposing fre-
quency of each zoo model, we take the moving average of
model values (e.g., decaying their repurposing frequency by
0.9 every day), and trigger the packing solver upon reaching
the storage limit. We show that ModelKeeper can perform
well even under severe storage limit (§6.4).

Avoiding Low-Accuracy Models Low accuracy models
registering to the zoo (e.g., due to user error) not only wastes
storage but can harm the transformation, so we need to en-
sure the zoo uses models with decent accuracy. To this end,
other than selecting the model with better accuracy as the
parent using the bucketing design at the query time, Zoo Man-
ager evicts zoo models with outlier accuracy at runtime. By
default, we take the popular Z-score criteria (i.e., model accu-
racy below the mean by more than two standard deviations) to
identify outliers [58]. Moreover, for the same model architec-
ture, it only keeps the model with the best accuracy. We show
that ModelKeeper can accelerate training even in the presence
of low accuracy models in unfavorable environments (§6.4).

Complexity Analysis The complexity of pairwise model
matching is O(|gp|× |gq|),3 and that of model clustering is
O(M2.5) for the zoo with M models. Mapper takes linear time
to select and transform the parent model. The magnitude of
these factors is mostly within O(1K) (§6.1). Our evaluations

3We omit the complexity in enumerating tensor parents (i.e., k ∈
parent(i)), since the node degree is orders of magnitude smaller than |gp|.

776 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

show that ModelKeeper incurs negligible overhead (§6.3).

5 Implementation
We have implemented a system prototype of ModelKeeper,
with around 2K lines of Python code as the frontend library
and 1K lines of C++ code as the backend. Our implementa-
tion provides user-friendly APIs and supports many popular
ML frameworks, such as Microsoft NNI [4], AutoKeras [41],
Ray [49], and MLflow [5], with few-lines-of-code plugins.

ModelKeeper Components ModelKeeper coordinator
supports distributed deployment across machines. Each
coordinator controller processes a single scheduling thread to
poll client requests from its queue, and reserves a thread pool
for Matcher. Matcher performs pairwise model matching in
parallel for each query model, and then Mapper creates a
worker thread to transform parent model weights using numpy
format. Zoo Manager updates the model clustering every
5 minutes, and uses ortools library to solve the knapsack
problem. The client agent communicates with the coordinator
via TCP connections.

Fault Tolerance ModelKeeper uses Redis in the coordina-
tor to store the metadata and model weights in a fault-tolerant
manner, and this metadata is cached in the memory with small
footprints. Changes to the model zoo (e.g., registering new
models) follow the write-ahead transaction to the storage. At
runtime, the coordinator runs a daemon process to monitor
the liveness of the service, which will create a new service
process if the existing one crashes. The new process then
fetches the latest checkpoint from Redis to catch up.

Interfaces We pack interfaces into a Python library. The
cluster manager can initiate the coordinator in three lines:

from modelkeeper import ModelKeeperCoordinator
keeper_service = ModelKeeperCoordinator(config)
keeper_service.start()

Users can initiate the client agent in a few lines (Figure 6).

6 Evaluation
We evaluate the effectiveness of ModelKeeper on three main-
stream frameworks for exploratory and general DNN training,
using five large-scale CV and NLP model zoos across thou-
sands of models. We summarize the results as follows:
• ModelKeeper saves 23%-77% total amount of training

execution needed (i.e., 1.3×-4.3× faster training) than the
state-of-the-art without accuracy drop of models (§6.2).

• ModelKeeper outperforms its counterparts by exploiting
the parent model with high similarity and better accuracy
using different design components (§6.3).

• ModelKeeper improves performance over a wide range of
parameters and practical cluster setups in the wild (§6.4).

6.1 Methodology

Cluster setup. We evaluate ModelKeeper on an 80-node
cluster (40 GPU nodes and 40 CPU nodes). Each GPU node

has a Tesla P100 GPU with 16 GB GPU memory and 16-core
CPUs. Since most HuggingFace NLP models exceed our GPU
memory capacity, we resort to CPU nodes. Each node has 32-
core CPUs and 384 GB of memory. ModelKeeper coordinator
runs on a 32-CPU server with 10 Gbps bandwidth.

Workloads. We evaluate ModelKeeper using five widely-
used CV/NLP model zoos and realistic workloads (Table 1):
• NASBench [24]: an image classification model zoo with

thousands of lightweight models for NAS task.
• AutoKeras Zoo [41]: a CNN model zoo generated by

AutoKeras during the bayesian NAS searching.
• Imgclsmob [10]: a popular zoo of state-of-the-art CV mod-

els (e.g., DenseNet [36]). Most models are heavyweight.
• V-Ensemble [65]: a benchmarking workload for ensemble

training, which has hundreds of variants of VGG models.
• HuggingFace [2]: a collection of advanced HuggingFace

NLP models (e.g., Bert [23]) for next word prediction.
We train Imgclsmob-Small models on CIFAR dataset and Im-
ageNet32 dataset for 32×32 small image inputs, Imgclsmob
models on Flowers102 dataset for 224×224 large images,
and HuggingFace models on the large WikiText dataset. Im-
ageNet32 is a downsampled 120-category ImageNet dataset
(e.g., smaller input size) for efficient computation.

To emulate practical cluster setups, NAS models are gener-
ated by the searching algorithm on the fly, and training jobs are
submitted following the arrival of Microsoft Trace [37]. The
same workload does not contain identical model architectures.
ModelKeeper model zoo starts empty for each workload, and
jobs contribute (upload) their trained models to the zoo as
they complete over time.

Parameters. We follow the default setting specified in each
model zoo: (1) CV models: the SGD optimizer with minibatch
size 64 and initial learning rate 0.01; and (2) NLP models: the
AdamW optimizer with minibatch size 32 and initial learning
rate 8e-5. We use the ReduceLROnPlateau scheduler to decay
the learning rate by 0.5 once the training loss stagnates.

Baselines. We compare ModelKeeper to the following:
• Retiarii [77]: Microsoft’s training framework that relies

on the lineage of graph mutation to warm up NAS models.
• AutoKeras [41]: An advanced AutoML system based on

Keras that applies lineage-based warmup for NAS models.
• MotherNet [65]: An ad-hoc ensemble training algorithm

that trains a model subnet, which introduces intrusive
overhead and implementation, to warm start models.

Existing efforts limit to individual NAS/ensemble jobs, while
ModelKeeper can support various tasks across jobs and users.

Metrics. We care about the training execution time needed
to train to converge and the model convergence accuracy.

We run with five realistic Microsoft Traces [56], and report
the average over 5 runs.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 777

Category Task Workload # of Models Dataset
Avg. Time Avg. Acc.

Improvement Difference

Exploratory
Training

Grid Search NAS
NASBench [24] 1,000

CIFAR-100
2.9× 0.39%

Evolution NAS 2.4× 0.38%

AK-Bayesian NAS [41] AutoKeras Zoo [41] 500 4.3× 0.31%

General
Training

Image Classification

Imgclsmob [10] 389 Flowers102 [54] 2.8× 0.23%

Imgclsmob-Small 179
CIFAR-10 2.1× 0.02%

CIFAR-100 1.6× 0.18%

ImageNet32 [19] 1.3× 0.03%

Ensemble Training V-Ensemble [65] 104 CIFAR-100 1.7× 0.08%

Language Modeling HuggingFace [2] 69 WikiText-103 [47] 1.8× -0.13 perplexity

Table 1: Summary of improvements. ModelKeeper improves training execution time without accuracy drop, by reducing the amount of
training needed (i.e., GPU Saving). Accuracy difference is defined by Acc.(Keeper) - Acc.(Baseline), and smaller perplexity is better.

102 103

Training Execution Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Jo
bs

Retiarii + Keeper
Retiarii

(a) Grid Search NASBench

102 103

Training Execution Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Jo
bs

Retiarii + Keeper
Retiarii

(b) Evolution NASBench

102 103

Training Execution Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

M
od

el
s AK + Keeper

AK

(c) Bayesian Optim. (AutoKeras)

102 103

Training Execution Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Jo
bs

Ray + Keeper
MotherNet

(d) Ensemble training

Figure 14: ModelKeeper outperforms existing warmup training.

6.2 End-to-End Performance

In this section, we evaluate how ModelKeeper (Keeper) is
complementary to and benefits today’s ML frameworks. Here,
we run the NAS task using Microsoft NNI (with Retiarii
backend [77]) and AutoKeras, and other training tasks on
Ray [49]. Table 1 summarizes the average improvement on
each training workload after applying ModelKeeper.

ModelKeeper outperforms existing warmup solutions.
ModelKeeper outperforms existing training warmup solu-
tions in Retiarii, AutoKeras, and MotherNet by 1.7×-4.3×
(Figure 14), by saving 43.1%-76.7% total amount of training
needed. Their inefficiency is due to two primary reasons:

(i) Suboptimal parent model selection: Retiarii and AutoK-
eras track the lineage of graph mutation and treat the base
model in evolution as the parent model. However, as multi-
ple layers can be modified on the base model in searching

102 103 104

Training Execution Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Jo
bs

Ray + Keeper
Ray

(a) CIFAR-100 (Imgclsmob-Small)

103 104

Training Execution Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Jo
bs

Ray + Keeper
Ray

(b) ImageNet (Imgclsmob-Small)

102 103 104

Training Execution Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Jo
bs

Ray + Keeper
Ray

(c) Flowers (Imgclsmob)

104 105

Training Execution Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Jo
bs

Ray + Keeper
Ray

(d) NLP (HuggingFace)

Figure 15: ModelKeeper improves general training tasks.

new models, such rigid parent selection can miss better parent
models out of other explored NAS models. Similarly, Mother-
Net not only requires additional training of the model subnet,
but can not repurpose better-trained models on the fly.

(ii) Insufficient weight transformation: Their design, which
simply copies the weights from the parent model when two
tensors are identical, is lossier than ModelKeeper. For exam-
ple, inserting randomly initialized prefix tensors can make the
copy of subsequent tensors useless.

Meanwhile, they are limited to specific NAS or ensemble
training tasks and cannot serve various DNN training jobs on
the fly in the cluster wide.

ModelKeeper accelerates ML training for various tasks.
Figure 15 and Table 2 report the performance of individual
jobs. Compared to training from scratch, we observe that:
(i) ModelKeeper achieves 1.3×-4.3× faster training, saving
23%-77% training execution, across a wide range of work-

778 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Workload
Time Improvement Acc.(Keeper) - Acc.(Baseline)

25th 50th 75th 25th 50th 75th

NAS-Grid 1.5× 2.0× 3.1× 0.01% 0.25% 0.42%

NAS-Evol 1.2× 1.6× 3.0× 0.03% 0.19% 0.48%

Flowers102 1.2× 2.1× 3.3× 0.0% 0.16% 0.37%

CIFAR-100 1.1× 1.5× 2.0× -0.04% 0.08% 0.32%

ImageNet32 1.0× 1.2× 1.6× -0.07% 0.0% 0.11%

V-Ensemble 1.1× 1.5× 1.9× 0.02% 0.07% 0.65%

HuggingFace 1.2× 1.4× 2.1× 0.2 ppl -1.3 ppl -3.87 ppl

Table 2: Keeper saves training execution time of individual jobs
without accuracy drop. Smaller perplexity (ppl) is better.

loads. This improvement is more pronounced in a larger zoo
because of having more trained models to repurpose. (ii) Im-
provements on different workloads report a positive correla-
tion with the prevalence of model similarity in that model zoo.
Here, ModelKeeper achieves larger improvement on NAS-
Bench, which is consistent with the fact that this model zoo
owns higher inter-model similarities (Figure 2). (iii) Although
ModelKeeper starts from an empty zoo and jobs arrive on
the fly, we can still save the training execution for 70%-95%
individual jobs (Table 2). We note that the 25th percentile
improvement of small-scale model zoos (e.g., Imgclsmob) is
inferior to others. This is because not all training models are
warmed up due to the cold start of this online setting, and the
fact that ModelKeeper will not warm start the model that does
not have a similar parent (similarity > 0).

ModelKeeper speeds up training without accuracy drop.
Table 1 and Table 2 report that, on average, ModelKeeper can
achieve similar (or even slightly better) final model accuracy.
Intuitively, ModelKeeper should perform no worse than base-
line accuracy, since the rest of the training (e.g., data) remains
the same. However, we note that this slightly better model per-
formance is consistent with the observations in ML network
morphism [66], which interprets it as the internal regulariza-
tion ability. Specifically, by transferring from well-trained
models, model weights have been placed in a good position in
the space, resulting in a more regularized network to reach a
better basin of the loss curvature [25,66]. In contrast, training
from scratch can get stuck in local minima.

6.3 Performance Breakdown

In the rest of the evaluations, we refer to the improvement on
V-Ensemble as that over training from scratch for brevity.

Breakdown of Components We break down ModelKeeper
by disabling Matcher and Mapper respectively: (1) Keeper
w/o Matcher: remove our Matcher design, and instead resort
to a state-of-the-art graph matching strategy [57] to select a
parent model with the most pairwise tensor mappings; and
(2) Keeper w/o Mapper: disable our Mapper design, so only
transform the parent model weight if and only if two tensors
are identical. Figure 16 reports the improvement of these

Flowers102
0.0

1.0

2.0

3.0

NAS-Grid

Keeper w/o Matcher Keeper w/o Mapper Keeper

1

2.81

2.14

1.58

V-Ensemble

2.91 2.86

1.95
1.72

2.06

1.23

CIFAR-100

1.57
1.271.18

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Figure 16: Breakdown of Keeper components.

1

0.0

1.0

2.0

3.0

4.0

NAS-Grid

<0.7 [0.7, 0.8]
[0.8, 0.9] [0.9, 1.0]

V-Ensemble Flowers102

Parent model similarity

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Figure 17: Faster training with
higher model similarity.

1

Flowers102

NAS-Grid

NAS-Evol

V-Ensemble

CIFAR-100

ImageNet32

HuggingFace

0 0.5 1 1.5

0.10

0.25

0.76

0.83

0.95

0.97

1.24

Overhead/Training Execution Time (%)

Figure 18: Keeper introduces
negligible overhead.

variants. We notice: (i) the classic GED solution, in Keeper
w/o Matcher, achieves suboptimal performance, since model
matching prefers to match prefixes, and partial matching al-
lows better overall similarity. (ii) transforming weights only
for identical tensors, in Keeper w/o Mapper, is inferior to
Keeper information-preserving transformation. (iii) Matcher
and Mapper contribute comparable improvements.

Breakdown of Improvement Characteristics Figure 17
reports the average improvement after categorizing training
models by their similarity to the parent model. We note that:
(1) Keeper tends to achieve better execution saving for mod-
els with a higher parent model similarity. This again supports
our parent model selection criteria that prioritize models with
higher architectural similarity. (2) Improvements of different
similarity regimes (e.g., [0.7, 0.8] vs. [0.8, 0.9]) are often dis-
tinct, and this becomes vague as similarity over 0.8. Because
most layers have been largely warmed up, and deeper layers
are too specific to the parent model to be transferable [71].

Overhead Analysis Figure 18 reports Keeper’s overhead,
i.e., the time taken between initiating the query and starting to
train, over the training execution time. We report the average
of all jobs, and notice that Keeper introduces less than 1.5%
overhead (< 43 s) across all workloads.

6.4 Sensitivity and Ablation Studies

Impact of Low-Accuracy Models As a cluster-wide ser-
vice, ModelKeeper should be robust to unfavorable settings
where the accuracy of user-registered zoo models can be low
(e.g., due to insufficient training). We follow the popular early-
stop design in ML [44] to simulate unfavorable setups, where
model registration takes place when jobs run to at most X
minutes. Figure 19 reports the improvement of execution time
across different degrees of unfavorable settings. Here, the
x-axis value 40% indicates X is set to be the 60th percentile

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 779

1

0.0

1.0

2.0

3.0

4.0

40 50 60 70

w/o Bucketing
w/ Bucketing

Percent. of Low-Accuracy Models (%)

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Figure 19: Keeper is robust in
the presence of poor perfor-
mance models (NAS-Grid).

15

Flowers102

2 3 4
5 10 20

0.0

1.0

2.0

3.0

4.0

NAS-Grid

of Buckets (B)

Fa
ct

or
 o

f I
m

pr
ov

em
en

t
Figure 20: Keeper improves
training execution time across
the different numbers of buck-
ets.

1

0.0

1.0

2.0

3.0

4.0

NAS-Grid

5 10 20
40 100

V-Ensemble Flowers102

Zoo Capacity (%)

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Figure 21: Impact of zoo ca-
pacity on execution time. Error
bars report standard deviation.

102 103 104

Training Execution Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Jo
bs

Keeper w/ ImageNet
Scratch

Figure 22: Keeper accelerates
model training on CIFAR-100
using ImageNet32 model zoo.

value in execution time distributions, so only 40% zoo mod-
els are trained to converge. We observe that: (i) improvement
decreases as more zoo models have low accuracy. (ii) Keeper
is more robust with our bucketing design as it exploits the
similarity-accuracy sweet spot.

Impact of Bucketing Figure 20 reports that ModelKeeper
delivers consistent improvement across a wide range of num-
ber of buckets B. Meanwhile, we notice that using the most
accurate parent model (i.e.,∼ B=2) or the most architecturally
similar parent (i.e., ∼ B=20) achieves suboptimal improve-
ment, since it respectively undervalues the model similarity
and accuracy in selecting the parent model.

Impact of Zoo Capacity Figure 21 reports the average im-
provement under different zoo capacities. The total size (i.e.,
100%) of model zoos in NAS-Grid, V-Ensemble, and Flow-
ers102 are 1.6GB, 17GB, and 31 GB, respectively. We observe
that: (i) as expected, the improvement is more pronounced
as we allocate more storage to ModelKeeper’s model zoo,
but (ii) we can still achieve ∼2× improvement under severe
capacity limits (e.g., 5% capacity aka < 2GB storage), since
Keeper adaptively evicts suboptimal zoo models.

Cross-Dataset Training Warmup Figure 22 reports that
ModelKeeper can benefit DNN training across datasets. Here,
we warm start the training of Imgclsmob-small models on
CIFAR-100 using zoo models from the ImageNet32 work-
load, and notice 2.5× faster training on average. This is be-
cause front DNN layers capture general input features (e.g.,
color blobs of images), which are transferable to similar
datasets [71]. While picking which dataset as the source for
warmup is still an open ML problem [45, 78], ModelKeeper

provides systems support for automated warmup transforma-
tion across ML tasks and datasets using the given model zoo.

7 Discussion and Future Work
Support for Hyperparameter Tuning ModelKeeper by
default automatically searches and transforms the parent
model for various training tasks. Meanwhile, the developer
can specify which parent model to repurpose using the tag
configuration in their request too (Figure 6), while enjoying
the automated weights transformation. For example, we may
want the same parent model for hyperparameter tuning jobs to
eliminate the comparison bias and/or to ensure reproducibility.
Moreover, as the training of the query model will be jump-
started, it would be interesting to investigate how to adapt
to better job configurations (e.g., scaling the learning rate in
terms of the number of transformed layers [56, 66]) to further
improve the training convergence.

Model Sharing in the Wild ModelKeeper repurposes a
zoo of trained models to warm start the new training job.
These zoo models can be maintained by the cluster provider,
and/or contributed by users. For example, AWS SageMaker
offers hundreds of pre-trained models for tasks like object
detection and natural language processing [8]; HuggingFace
Model Hub has gathered∼70K models shared by the commu-
nity [2]. The former is more managed but expensive to include
extensive models and tasks, while the latter has good extensi-
bility but can exhibit great uncertainties (e.g., low-accuracy
models). To the best of our knowledge, ModelKeeper moves
the first step to automatically warm start the cluster-wide
model training. However, further investigations on how to
democratize it in the wild, such as for privacy and security
concerns, are needed. To this end, one possible approach is to
develop differential privacy-like solutions [11] (e.g., adding
noise to the weights of the contributed models), which natu-
rally leads to an interesting trade-off between privacy and the
model quality.

8 Related Work
Deep Learning Frameworks Recent ML efforts have
made considerable progress toward efficient inter-job schedul-
ing [28, 49, 56, 74], intra-job computation placement [43, 50],
communication optimization [40, 55], specialized execution
backend [9, 18, 42], and timely inference [29]. However, they
are mostly in-execution optimizations, and/or the total amount
of training remains the same. Different from transforming ten-
sors for faster computation (e.g., TASO [38] and PET [64]),
ModelKeeper operates on model weights, and acts as a com-
plementary service to accelerate cluster-wide DNN training.

AutoML Systems Retiarii [77] and AutoKeras [41] rely on
the lineage of graph mutation to repurpose trained models,
whereas they are limited to NAS tasks within individual jobs.
Experiment Graph [22] identifies the reusable ML scripts
and artifacts in platforms to speed up repeated executions,

780 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

so it focuses on the same job execution. As recent AutoML
platforms, such as AzureML [59], Amazon SageMaker [1]
and MLflow [75], provide a collaborative environment to
simplify ML deployments, reusing artifacts can greatly speed
up repeated executions (e.g., reuse scripts [22]). ModelKeeper
is the first automated training warmup system to accelerate
cluster-wide DNN training jobs across users, and improves
Retiarii and AutoKeras further (§6.2).

Transfer Learning Transfer learning today mostly trans-
fers the weight of the same model [71], from one source
task to another target to alleviate the need for large training
data. For a given parent model, network morphism [17, 66]
introduces function-preserving transformation to construct
child models while preserving the parent information. Moth-
erNet [65] further applies the network morphism to warm
start model training, but is limited to ensemble training tasks.
ModelKeeper tackles a more challenging scenario for various
tasks in the wild, and achieves better performance (§6.2).

Graph Matching Graph matching is one of the NP-hard
fundamental problems in graph analysis [61]. To speed up
the matching, DAF [31] decomposes the graph into forests.
Similarly, AED [57] divides global matching into local match-
ing, and then aggregates the local matching decisions. How-
ever, they are insufficient due to the novel properties of DNN
graphs, where pairwise matching prefers ordered alignment
and allows partial weights transformation. ModelKeeper out-
performs them in training speedup and throughput (§6.3).

9 Conclusion
In this paper, we introduce ModelKeeper to enable automated
warmup of DNN training jobs at the cluster scale. Model-
Keeper manages a collection of already-trained models from
different developers and/or frameworks. Before training a
model, it selects a high-quality trained parent model and per-
forms structure-aware transformation of parent model weights
to warm up the weights of new training models. Our evalua-
tions across thousands of CV/NLP models show that Model-
Keeper achieves 1.3×-4.3× faster training completion.

Acknowledgments
Special thanks go to the entire CloudLab team for making
ModelKeeper experiments possible. We would also like to
thank the anonymous reviewers, our shepherd, Neeraja J. Yad-
wadkar, and SymbioticLab members for their insightful feed-
back. This work was supported in part by NSF grants CNS-
1909067, CNS-1900665, and CNS-2106184.

References
[1] Amazon SageMaker. https://aws.amazon.com/

sagemaker/.

[2] HuggingFace Model Hub. https://huggingface.
co/models?sort=downloads.

[3] Kaggle Competition. https://www.kaggle.com/
docs/competitions.

[4] Microsoft NNI. https://github.com/microsoft/
nni.

[5] MLflow. https://mlflow.org/.

[6] Model Zoo: Discover open source deep learning code
and pretrained models. https://modelzoo.co/.

[7] Open Neural Network Exchange (ONNX). https://
github.com/onnx/onnx.

[8] Pre-trained machine learning models available in
AWS Marketplace. https://aws.amazon.com/
marketplace/solutions/machine-learning/
pre-trained-models/.

[9] PyTorch. https://pytorch.org/.

[10] Sandbox for training deep learning networks. https:
//github.com/osmr/imgclsmob.

[11] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In CCS, 2016.

[12] Zeyuan Allen-Zhu and Elad Hazan. Variance reduction
for faster non-convex optimization. In ICML, 2016.

[13] Jordan Ash and Ryan P Adams. On warm-starting neural
network training. NeurIPS, 33, 2020.

[14] Brian R. Bartoldson, Ari S. Morcos, Adrian Barbu, and
Gordon Erlebacher. The generalization-stability tradeoff
in neural network pruning. In NeurIPS, 2020.

[15] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wen-
jie Zhang. Efficient subgraph matching by postponing
cartesian products. In SIGMOD, 2016.

[16] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learn-
ers. abs/2005.14165, 2020.

[17] Tianqi Chen, Ian J. Goodfellow, and Jonathon Shlens.
Net2net: Accelerating learning via knowledge transfer.
ICLR, 2016.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 781

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://huggingface.co/models?sort=downloads
https://huggingface.co/models?sort=downloads
https://www.kaggle.com/docs/competitions
https://www.kaggle.com/docs/competitions
https://github.com/microsoft/nni
https://github.com/microsoft/nni
https://mlflow.org/
https://modelzoo.co/
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://aws.amazon.com/marketplace/solutions/machine-learning/pre-trained-models/
https://aws.amazon.com/marketplace/solutions/machine-learning/pre-trained-models/
https://aws.amazon.com/marketplace/solutions/machine-learning/pre-trained-models/
https://pytorch.org/
https://github.com/osmr/imgclsmob
https://github.com/osmr/imgclsmob

[18] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An automated end-
to-end optimizing compiler for deep learning. In OSDI,
2018.

[19] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter.
A downsampled variant of imagenet as an alternative to
the CIFAR datasets. CoRR, abs/1707.08819, 2017.

[20] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey
Zumar, Ion Stoica, Joseph Gonzalez, and Alexey Tu-
manov. Inferline: Latency-aware provisioning and scal-
ing for prediction serving pipelines. In SoCC, 2020.

[21] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper:
A Low-Latency online prediction serving system. In
NSDI, 2017.

[22] Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Zi-
awasch Abedjan, Tilmann Rabl, and Volker Markl. Op-
timizing machine learning workloads in collaborative
environments. In SIGMOD, 2020.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In
NAACL, 2019.

[24] Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending
the scope of reproducible neural architecture search. In
ICLR, 2020.

[25] Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Ben-
gio, Samy Bengio, and Pascal Vincent. The difficulty
of training deep architectures and the effect of unsuper-
vised pre-training. In AISTAAS, 2009.

[26] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang
Zhang, Pedro Larroy, Mu Li, and Alexander J. Smola.
Autogluon-tabular: Robust and accurate automl for struc-
tured data. CoRR, abs/2003.06505, 2020.

[27] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li.
A survey of graph edit distance. Pattern Analysis and
Applications, 13, 113–129 (2010), 2010.

[28] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo
Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu, and
Chuanxiong Guo. Tiresias: A GPU cluster manager for
distributed deep learning. In NSDI, 2019.

[29] Arpan Gujarati, Reza Karimi, Safya Alzayat, Antoine
Kaufmann, Ymir Vigfusson, and Jonathan Mace. Serv-
ing dnns like clockwork: Performance predictability
from the bottom up. In OSDI, 2020.

[30] Jashwant Raj Gunasekaran, Cyan Subhra Mishra,
Prashanth Thinakaran, Bikash Sharma, Mahmut Taylan
Kandemir, and Chita R. Das. Cocktail: A multidimen-
sional optimization for model serving in cloud. In NSDI,
2022.

[31] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo
Park, and Wook-Shin Han. Efficient subgraph matching:
Harmonizing dynamic programming, adaptive matching
order, and failing set together. In SIGMOD, 2019.

[32] Song Han, Jeff Pool, John Tran, and William J. Dally.
Learning both weights and connections for efficient neu-
ral networks. NIPS’15, 2015.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[34] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Dis-
tilling the knowledge in a neural network. In NIPS Deep
Learning and Representation Learning Workshop, 2015.

[35] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai Phili-
pose, Phillip B. Gibbons, and Onur Mutlu. Focus: Query-
ing large video datasets with low latency and low cost.
In OSDI, 2018.

[36] Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q. Weinberger. Densely connected convolutional
networks. In CVPR, 2017.

[37] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of large-scale multi-tenant GPU clusters for
DNN training workloads. In ATC, 2019.

[38] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: Optimiz-
ing deep learning computation with automatic genera-
tion of graph substitutions. In SOSP, 2019.

[39] Angela H. Jiang, Daniel L.-K. Wong, Christopher Canel,
Lilia Tang, Ishan Misra, Michael Kaminsky, Michael A.
Kozuch, Padmanabhan Pillai, David G. Andersen, and
Gregory R. Ganger. Mainstream: Dynamic Stem-
Sharing for Multi-Tenant video processing. In ATC,
2018.

[40] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed DNN training in heterogeneous
gpu/cpu clusters. In OSDI, 2020.

[41] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras:
An efficient neural architecture search system. In
SIGKDD, 2019.

782 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[42] Fan Lai, Jie You, Xiangfeng Zhu, Harsha V. Madhyastha,
and Mosharaf Chowdhury. Sol: Fast distributed compu-
tation over slow networks. In NSDI, 2020.

[43] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and
Mosharaf Chowdhury. Oort: Efficient federated learning
via guided participant selection. In OSDI, 2021.

[44] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization.
JMLR, 2018.

[45] Mingsheng Long, Han Zhu, Jianmin Wang, and
Michael I. Jordan. Deep transfer learning with joint
adaptation networks. In ICML, 2017.

[46] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and
efficient GPU cluster scheduling. In NSDI, 2020.

[47] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. CoRR,
abs/1609.07843, 2016.

[48] Richard Meyes, Melanie Lu, Constantin Waubert
de Puiseau, and Tobias Meisen. Ablation studies in
artificial neural networks. CoRR, abs/1901.08644, 2019.

[49] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for emerg-
ing AI applications. In OSDI, 2018.

[50] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In SOSP,
2019.

[51] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha,
and Dmitry Vetrov. Structured bayesian pruning via
log-normal multiplicative noise. In NeurIPS, 2017.

[52] James Newling and François Fleuret. K-medoids for
k-means seeding. In NeurIPS, 2017.

[53] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang.
What is being transferred in transfer learning? NeurIPS,
2020.

[54] M-E. Nilsback and A. Zisserman. Automated flower
classification over a large number of classes. In Pro-
ceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing, 2008.

[55] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed dnn
training acceleration. In SOSP, 2019.

[56] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subra-
manya, Willie Neiswanger, Qirong Ho, Hao Zhang, Gre-
gory R. Ganger, and Eric P. Xing. Pollux: Co-adaptive
cluster scheduling for goodput-optimized deep learning.
In OSDI, 2021.

[57] Kaspar Riesen and Horst Bunke. Approximate graph
edit distance computation by means of bipartite graph
matching. Image and Vision Computing, 27(7):950–
959, 2009. 7th IAPR-TC15 Workshop on Graph-based
Representations (GbR 2007).

[58] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The
odds are odd: A statistical test for detecting adversarial
examples. In ICML, 2019.

[59] AzureML Team. Azureml: Anatomy of a machine learn-
ing service. In PAPIs, 2015.

[60] Nilesh Tripuraneni, Michael I. Jordan, and Chi Jin. On
the theory of transfer learning: The importance of task
diversity. In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin, editors, NeurIPS, 2020.

[61] J. R. Ullmann. An algorithm for subgraph isomorphism.
J. ACM, 23(1):31–42, January 1976.

[62] Manasi Vartak, Harihar Subramanyam, Wei-En Lee,
Srinidhi Viswanathan, Saadiyah Husnoo, Samuel Mad-
den, and Matei Zaharia. Modeldb: A system for ma-
chine learning model management. In Proceedings of
the Workshop on Human-In-the-Loop Data Analytics,
HILDA ’16, New York, NY, USA, 2016. Association
for Computing Machinery.

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NIPS,
2017.

[64] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,
Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,
Yuanyong Chen, and Zhihao Jia. PET: Optimizing ten-
sor programs with partially equivalent transformations
and automated corrections. In OSDI, 2021.

[65] Abdul Wasay, Brian Hentschel, Yuze Liao, Sanyuan
Chen, and Stratos Idreos. Mothernets: Rapid deep en-
semble learning. In I. Dhillon, D. Papailiopoulos, and
V. Sze, editors, MLSys, 2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 783

[66] Tao Wei, Changhu Wang, Yong Rui, and Chang Wen
Chen. Network morphism. In ICML, 2016.

[67] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. MLaaS in the wild: Workload analysis and
scheduling in Large-Scale heterogeneous GPU clusters.
In NSDI, 2022.

[68] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In OSDI, 2018.

[69] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. AntMan: Dynamic scaling on GPU clus-
ters for deep learning. In OSDI, 2020.

[70] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Re,
Christopher Aberger, and Christopher De Sa. Pipemare:
Asynchronous pipeline parallel dnn training. In MLSys,
2021.

[71] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. How transferable are features in deep neural
networks? ArXiv, abs/1411.1792, 2014.

[72] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted
sgd with faster convergence and less communication:
Demystifying why model averaging works for deep
learning. In AAAI, 2019.

[73] Peifeng Yu and Mosharaf Chowdhury. Fine-grained gpu
sharing primitives for deep learning applications. In
MLSys, 2020.

[74] Peifeng Yu, Jiachen Liu, and Mosharaf Chowdhury.
Fluid: Resource-aware hyperparameter tuning engine.
In MLSys, 2021.

[75] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali
Ghodsi, Sue Ann Hong, Andy Konwinski, Siddharth
Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
et al. Accelerating the machine learning lifecycle with
mlflow. IEEE Data Eng. Bull., 41(4):39–45, 2018.

[76] Ke Zhang, Miao Sun, Tony X. Han, Xingfang Yuan,
Liru Guo, and Tao Liu. Residual networks of residual
networks: Multilevel residual networks. IEEE Trans-
actions on Circuits and Systems for Video Technology,
28(6):1303–1314, Jun 2018.

[77] Quanlu Zhang, Zhenhua Han, Fan Yang, Yuge Zhang,
Zhe Liu, Mao Yang, and Lidong Zhou. Retiarii: A
deep learning exploratory-training framework. In OSDI,
2020.

[78] Han Zhao, Remi Tachet des Combes, Kun Zhang, and
Geoffrey J. Gordon. On learning invariant representa-
tion for domain adaptation. ICML, 2019.

784 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A ModelKeeper Analysis
A.1 Design Criteria

At its core, ModelKeeper performs informed weight initializa-
tion for DNN models by repurposing a well-trained model’s
weights. Intuitively, we note that
• This can be viewed as an instance of existing transfer

learning (TL), where we transform the weight of a model
on one dataset to train on “another” dataset (i.e., the
warmup model has not viewed that dataset before its train-
ing takes place) [13]. More subtly, it is a simplified and
complementary TL scenario under homogeneous data
distribution and features, so existing TL theories can be
applied to validate our effectiveness too.

• ModelKeeper transformation is an informed weight ini-
tialization, thus a special case of random initialization. As
the rest of the training remains the same, the model should
be able to reach similar final accuracy when the model
converges.

Why ModelKeeper Can Help Convergence? We next
present the theoretical analysis of model convergence to show
why ModelKeeper can achieve faster convergence.

Corollary A.1. (Theorem 1 in [72]). Under widely-used DL
assumptions (1) Smoothness: loss function f (w) is L-Lipschitz
smooth; (2) Bounded gradient variances: with constants G >
0, σ > 0, we assume E[‖∇ f (w)‖2]≤ G2 and E[‖∇F(w)‖2−
∇ f (w)‖2]≤ σ2; and (3) Unbiased estimation: on mini-batch
ξ, we have Eξ|w[∇ f (w)] = ∇F(w).

With learning rate γ to 0 < γ≤ 1
L

, then for iteration T , the
model training convergence rate is:

1
T

T

∑
t=1

E[‖∇ f (wt−1)‖2]≤ 2
γT

(f (w0)− f ∗)+4γ
2I2G2L2 +

L
N

γσ
2

Where N is the number of workers in synchronized data-
parallel training, f ∗ is the optimal training loss.

From Corollary A.1, we can notice that, for the same model,
training achieves faster convergence with a smaller initial loss
value f (w0) in theory (similar to [53, 71]). Indeed, existing
gradient variance reduction techniques in the ML community
report a similar theory analysis [12]. Here, we empirically
show that the initial training loss of the warmup query model,
f (w0), will start from some basin of loss curvature (e.g., bet-
ter accuracy in Figure 3 and smaller gradient variance in
Figure 4), and theoretically analyze why this enables starting
from the loss basin in Appendix A.2.

Admittedly, weight transformation can be lossy (e.g., due
to incomplete matching), which breaks the parent model infor-
mation. We note that capturing the exact convergence compar-
ison herein is extremely challenging, which indeed is a funda-

mental open problem even in today’s transfer learning [25].
Nevertheless, many empirical analyses have reported consis-
tently encouraging improvement [71], and transfer learning
is widely-used. Intuitively, for front tensors that enjoy full
information-preserving transformation, we can consider them
as a prefix subnet, and this subnet holds the same output
as the corresponding parent subnet. Therefore, these tensors
can still potentially achieve faster convergence according to
Corollary A.1.

How to Select Parent Models? In selecting the parent
model, ModelKeeper prioritizes the model with (1) better
model accuracy: this is because parent models with better
accuracy enable smaller initial loss f (w0), thus allowing bet-
ter convergence speed (Corollary A.1); and (2) larger archi-
tectural similarity and prefix preference: If we dive to the
fundamental of model training, the output activations of a spe-
cific model tensor i is yi = fi(y(i−1)T wi+bi). Here, assuming
the front l−1 tensor are warmup, while wi is randomly ini-
tialized. The front subnet still enjoys better convergence, so
we prefer a model with architectural similarity to maximize
this potential. In the forward training propagation, wi leads
to cascading information loss to subsequent tensors, so we
prioritize the match of prefixes to minimize this loss. On the
other hand, training front tensors is more difficult but more
transferable, because gradient information becomes less in-
formative as it is backpropagated through more subsequent
tensors [25], which requires us to match subsequent tensors as
many as possible to curb this divergence to the front tensors
in backward propagation.

A.2 Information-Preserving Transformation

ModelKeeper employs width and depth operators to per-
form structure-aware weight transformation, wherein expand-
ing the parent model performs the same to Net2Net [17].
Net2Net theoretically grounds that expanding transforma-
tion (e.g., more convolution channels or new convolution
tensors) can preserve the parent model information for a
wide range of tensors. Specifically, the depth operator tries
to deepen a tensor yi = fi(y(i−1)T wi +bi) using two tensors
yi = fi

(
U(i)T fi

(
y(i−1)T wi +bi

))
, where fi, wi, bi are the acti-

vation function, tensor weights, and bias vectors, respectively.
When matrix U is initialized to an identity matrix, adding U
preserves the same output of its input tensor if fi is chosen
such that fi(U fi(v)) = fi(v) for all vectors v. This property,
fi, holds for widely-used rectified linear activation in today’s
DNN models. For example, to insert a new convolution tensor,
we should set the convolution kernels to be identity filters.
Readers can refer to Net2Net [17] for the theoretical analy-
sis for the width operator. As such, in expanding the parent
model, we may preserve the full parent model information.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 785

SHEPHERD: Serving DNNs in the Wild

Hong Zhang
University of Waterloo

Yupeng Tang
Yale University

Anurag Khandelwal
Yale University

Ion Stoica
UC Berkeley

Abstract

Model serving systems observe massive volumes of infer-
ence requests for many emerging interactive web services.
These systems need to be scalable, guarantee high system
goodput and maximize resource utilization across compute
units. However, achieving all three goals simultaneously is
challenging since inference requests have very tight latency
constraints (10–500ms), and production workloads can be
extremely unpredictable at such small time granularities.

We present SHEPHERD, a model serving system that
achieves all three goals in the face of workload unpredictabil-
ity. SHEPHERD uses a two-level design that decouples model
serving into planning and serving modules. For planning,
SHEPHERD exploits the insight that while individual request
streams can be highly unpredictable, aggregating request
streams into moderately-sized groups greatly improves pre-
dictability, permitting high resource utilization as well as scal-
ability. For serving, SHEPHERD employs a novel online algo-
rithm that provides guaranteed goodput under workload un-
predictability by carefully leveraging preemptions and model-
specific batching properties. Evaluation results over produc-
tion workloads show that SHEPHERD achieves up to 18.1×
higher goodput and 1.8× better utilization compared to prior
state-of-the-art, while scaling to hundreds of workers.

1 Introduction
Model inference has grown to become a critical component of
many interactive applications [1–11]. Facebook, for instance,
serves tens of trillions of inference requests per day [12].
Compared to model training, model inference dominates pro-
duction costs: on AWS, inference accounts for over 90% of
the machine learning infrastructure cost [13]. This has driven
significant effort in the design of model serving systems to
serve inference requests from several applications with deep
neural network (DNN) architectures, often using hardware
accelerators like graphics processing units (GPUs) to meet
tight per-request latency service-level objectives (SLOs), e.g.,
50–500ms. These systems typically group requests with the
same SLO and target model into separate request streams, and
must make two types of scheduling decisions across them to
meet system goals. First, they make request serving decisions
to maximize system goodput, i.e., the number of requests that
meet their SLO deadlines per unit time. Second, they make
resource provisioning decisions in order to scale to a massive

number of request streams using large pools of GPUs, while
ensuring high utilization for the GPU pool for cost-efficiency.

We find that meeting these goals is challenging due to short-
term workload unpredictablity: our analysis of both synthetic
and production workloads (§2.2) indicates that while the aver-
age request arrival rates are predictable over longer timescales
(i.e., hours), they are bursty and unpredictable at smaller time
granularities (i.e., millisconds) that must be considered when
scheduling requests to meet their SLO deadlines. As such,
existing solutions [3–11] fail to meet one or more of the above
goals due to two key reasons.

First, existing systems expose a hard tradeoff between
resource utilization and scalability under short-term unpre-
dictability, as they typically employ one of two classes of
scheduling policies: (1) periodic per-stream policies [3–9],
which make scheduling decisions (i.e., resource provisioning,
batch sizing, load balancing, etc.) for each stream of requests
separately in a periodic manner, and (2) online global poli-
cies, which make scheduling decisions in an online manner
by time-multiplexing the entire pool of resources (e.g., GPUs)
across all request streams [10,11]. On one hand, while the pe-
riodic and per-stream nature of scheduling for the former per-
mit scaling to many request streams and compute resources,
these systems must over-provision resources to handle unpre-
dictable bursts of requests during each period, resulting in
poor resource utilization. On the other hand, online global
policies can achieve higher resource utilization by adapting
the amount of resources allocated to each stream in an online
fashion, but scale poorly with the number of request streams
and size of the resource pool due to the increased complexity
of online scheduling decisions.

Second, existing approaches are fundamentally unable to
provide any guarantees on system goodput under unpre-
dictable workloads. We establish several important theoretical
results to show why this is fundamental (§5). First, making
the optimal scheduling decisions (e.g., executing, deferring or
dropping a request) requires future knowledge of request ar-
rival patterns, and even with perfect knowledge, the problem is
NP-complete. Second, no online algorithm can achieve good-
put that is even within a constant factor of the optimal with
perfect knowledge without using preemption. Since existing
approaches [10] employ simple heuristics without consider-
ing preemption, their performance can be arbitrarily worse
than the optimal under unpredictable workloads (§2.2).

This raises the question: Is it possible to design a model

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 787

GPU Cluster
Model Serving System

Request streams

M1

Models in GPU mem

ra
te

time

timera
te

M2

Worker 1

Worker n

M3 M4

Model provision

Request Serving

Figure 1: High-level architecture of model serving system

serving system that is scalable, achieves high utilization, and
provides guaranteed high goodput under unpredictable serv-
ing workloads? In this paper, we answer the above question in
affirmative with SHEPHERD, a model serving system resilient
to workload unpredictability.

To break the utilization-scalability trade-off exposed by
existing solutions, we make an important observation: while
individual request streams can be highly unpredictable, aggre-
gating them into groups permits accurate resource provision-
ing. Moreover, our analysis show that even moderately-sized
groups comprising hundreds to thousands of streams can
already offer reasonable predictability (§3.1). SHEPHERD re-
alizes this insight into a two-level design that decouples model
serving into a periodic planning phase and an online serving
phase. For the planning phase, we introduce HERD, a planner
that periodically classifies inference request streams, DNN
models, and GPUs into several serving groups. Then based
on the planning results, the serving phase employs an online
algorithm FLEX to serve requests across streams within each
serving group independently. HERD solves an ILP to effi-
ciently balance utilization and scalability (§4): on one hand,
HERD limits the size of each group, restricting the online
scheduling algorithm’s decision space to a limited number
of streams and GPUs within each group. On the other hand,
HERD provisions a sufficient number of streams and GPU
workers for each serving group to maximize utilization.

To achieve guaranteed high goodput, we design FLEX (§5),
an online scheduling algorithm that leverages preemption and
model-specific batching properties. First, we note that while
preemption permits correcting for sub-optimal scheduling
decisions in the online setting, preempting too often can re-
sult in significant amount of wasted work. As such, FLEX
carefully weighs the utility of the currently running batch of
requests against pending candidate requests to decide whether
or not the running batch should be preempted. Second, FLEX
leverages a model-specific relationship between the batch size
in batched inference execution and its execution latency to
determine appropriate batch sizes and the order of execution
across request streams. We show that both techniques work
in concert to achieve SHEPHERD’s goodput guarantee.

We implement SHEPHERD (§6) and evaluate it using a com-
bination of testbed experiments and large-scale emulations
with both production and synthetic workloads (§7). Our re-
sults show that (1) SHEPHERD achieves up to 18.1× higher
goodput and 1.8× higher utilization than periodic per-stream
solutions, (2) SHEPHERD achieves up to 5.2× higher goodput

compared to heuristic-based online approaches, and (3) SHEP-
HERD’s goodput scales linearly with the number of workers.

2 Background and Motivation
We begin with an overview of model serving systems (§2.1)
and short-term workload unpredictability (§2.2).

2.1 System Model and Goals
We focus on Deep Neural Network (DNN) model serving
systems [3–11] deployed on GPU clusters (Figure 1). Users
issue inference requests, which the system must serve using
a specific DNN model on one of its GPU workers within a
latency SLO specified for the request, typically 10–500ms [6].
Requests for the same model and with the same latency SLO
are typically grouped into a request stream, with arbitrary
request arrival patterns within each stream. In serving these
streams, serving systems can benefit significantly by batching
requests on GPUs — on an NVIDIA GTX1080, batching to-
gether 32 inference requests improves model serving through-
put by 4.7–13.3× for VGG, ResNet and Inception models
relative to serving them individually [6]. Taking the above
constraints into account, the system makes two scheduling
decisions: model provisioning decisions to determine which
models should be loaded on which and how many GPUs, and
request serving decisions to determine:
• batch size: how many requests to be executed in a batch,
• batch priority: which batch should be executed first, and,
• target GPU: which GPU to execute the batch on.
Note that although multiple batches can be executed on one
GPU worker concurrently, their execution time becomes non-
deterministic due to poor performance isolation on GPUs. As
such, most model serving systems [3–11] execute one batch
at a time for performance predictability.

The key performance goal for a model serving system is
to maximize the system goodput, or the number of served
requests that meet their SLO requirements per unit time; re-
quests that fail to meet them often hold no utility for the user.
Since serving systems must cater to thousands of requests
streams [1, 12], the system should also scale to large clus-
ters with thousands of GPUs in order to serve them. Finally,
since inference pipelines comprise the majority of the ma-
chine learning infrastructure costs in production settings [13],
serving systems should target high resource utilization of the
GPU clusters to maximize cost-efficiency.

2.2 Short-term Workload Unpredictability
We find that a key challenge in achieving all three of the goals
outlined above is short-term workload unpredictability1 —
while the average request arrival rates are predictable over
longer timescales (e.g., hours), they can be quite unpredictable
at smaller time granularities (e.g., milliseconds) that must be

1Unpredictability in request arrival patterns is orthogonal to performance
predictability demonstrated in prior works [6,10], where the execution latency
for inference requests on GPUs is often quite predictable.

788 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

28 27 26 25 24 23 22 21 20

Time window size (τ , in minutes)

0

2

4

6

8

10

12

C
V

(a) Production workload

28 27 26 25 24 23 22 21 20

Time window size (τ , in minutes)

0

0.5

1

1.5

2

2.5

3

C
V

(b) Synthetic workload

Figure 2: The coefficient of variance (CV) over the number of
request in each time window vs window size (τ, in minutes). The
CV value increases dramatically as time window size decreases.

Solutions Utilization Scalability Goodput
Periodic, per-stream policies [3–9] ✗ ✓ ✗

Online, global policies [10, 11] ✓ ✗ ✗

SHEPHERD ✓ ✓ ✓

Table 1: Existing solutions under short-term unpredictability

considered to meet per-request SLO deadlines. Next, we show
the presence of short-term unpredictability and its impact for
both production and synthetic application workloads. Since
we are unaware of any publicly available production traces
for inference workloads, we use Microsoft’s recently released
traces for Azure Functions [14] for our production workload,
which is noted by recent work to be representative of real-
world inference workloads in terms of both diurnal patterns
and short-term burstiness [4, 10]. The trace contains the num-
ber of function invocations performed at minute granularities
across ∼ 46k applications over a two-week period. Our syn-
thetic workload simulates 1k user request streams as Poisson
processes with average arrival rate following an exponential
distribution, a commonly-used approach in approximating
human-generated invocations [3, 4, 14].

To study workload unpredictability, we divide the entire
time period into non-overlapping time windows of size τ, and
compute the number of requests rt,s in each time window t for
every stream s. We quantify unpredictability in each stream
using the coefficient of variance — the ratio of the standard
deviation to the mean across rt,s. Note that meeting 10–500ms
request SLOs requires optimizing scheduling decisions in
time window sizes (τ) of hundreds of milliseconds. Figure 2
shows the average coefficient of variance across all streams
for different values of τ: for both synthetic and production
workloads, coefficient of variance increases drastically as τ

decreases. Clearly, while statistical models may be able to
estimate average arrival patterns at hours time-scales, the high
coefficient of variance at even minute-granularity makes sub-
second request arrival patterns nearly impossible to predict.

Under short-term workload unpredictability, existing so-
lutions [3–11] are unable to meet one or more of the three
performance goals outlined in §2.1 (Table 1):

Poor resource utilization. Many existing approaches [3–9]
make periodic provisioning and serving decisions for each
user stream independently. Within each period (typically a

idle idleGPU 1:
idleGPU 2:
idleGPU 3:

idleGPU 4:
idleGPU 5:
idleGPU 6:

time(ms)0 50 100

Request: execution time: 10, deadline: 10

Stream 1:

(a) Periodic, per-stream planning

idle idleGPU 1: Provision 1 GPU

Provision 6 GPUs

3 requests 1 request 6 requests

Figure 3: Periodic per-stream policies observe poor utilization.
Request arrival pattern is shown at the top, with each request’s exe-
cution time as well as latency SLO being 10ms. Provisioning one
GPU (top) based on average load causes 70% of the requests to miss
their deadline. Provisioning six GPUs (bottom) allows all requests
to meet their SLOs, but reduces resource utilization to 17%.

few minutes to hours), inference requests are served follow-
ing a fixed schedule determined at the beginning of the pe-
riod. Since scheduling decisions are computed per-stream
and updated only periodically, such approaches can scale to
many streams over massive pools of GPUs. However, these
approaches also tend to over-provisioning GPUs in order to
maximize the number of request SLOs met in the presence of
short-term burstiness, resulting in poor resource utilization.

As a concrete example, Figure 3 shows a user stream with
average arrival rate of 1 request every 10ms, with each re-
quest’s execution time and latency SLO being 10ms as well.
The bursty nature of the workload causes three requests to
arrive at t=0ms, one at t=40ms and six at t=80ms. Provision-
ing one GPU for the stream based on the average load would
cause 7 out of 10 requests to miss their SLO deadlines —
two from the first burst and five from the last. Provisioning
six GPUs permits all request latency SLOs to be met, but
reduces the resource utilization to 17%, since the GPUs are
collectively idle for 500ms out of 600ms cumulative runtime.

Poor scalability. An alternate approach employed by other
serving systems is to time-multiplex the GPU cluster across
different user streams to achieve better resource utiliza-
tion [10, 11]. Instead of provisioning and scheduling request
for each stream independently and periodically, the system
scales the number of GPUs allocated to each stream in an on-
line manner in response to workload fluctuations. While this
results in better resource utilization, it also limits system scal-
ability — scheduling decisions to maximize system goodput
grow super-linearly in computational complexity with both
the number of request streams as well as the number of GPUs
they are served over. Our scalability evaluation of Clock-
work [10], a recent model serving system that employs such
an approach, shows that its goodput does not scale beyond
a hundred GPU workers, saturating at ∼ 50k requests/sec-
ond (§7.1). In contrast, real-world inference serving load at
Facebook can be as high as 2.3 billion requests/second [12].

Lack of goodput guarantees. Maximizing goodput is chal-
lenging under short-term unpredictability. To see why, con-
sider the example in Figure 4, where a request r with an exe-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 789

time time

request r a burst of K requests

Execute r

0 10
Execute batch of K

0 10

request r

(a) Scenario A (b) Scenario B

Execute r ? Throughput
Yes 1
No 0

Execute r ? Throughput
Yes 1
No K

Figure 4: Example highlighting challenges in online scheduling
with short-term unpredictability. The optimal scheduling decision
for request r at time t = 0 depends on future arrivals: the performance
can be far from optimal depending on the scenario and the scheduling
decision to either execute request r or to drop it.

cution duration of 10ms arrives at time t = 0. The request has
a tight SLO deadline that necessitates its immediate execution
for the deadline to be satisfied. The scheduling algorithm has
two choices: to schedule the request, or drop it. Unfortunately,
the optimal decision to maximize system goodput depends on
the future arrival pattern. Specifically, in Scenario A, since no
other request arrives during r’s execution, the optimal choice
is to serve the request. In scenario B, however, where a large
burst of K requests with equally tight deadlines arrive at time
t = 5, the optimal decision is drop r, since it would prevent K
request SLOs from being satisfied in favor of one. Note that if
the SLO deadline for r was not as tight, the scheduler would
have yet another choice to consider — whether or not to defer
r’s execution so that it may be batched with future requests.

Since future arrival patterns cannot be accurately predicted
in the short-term, making the right scheduling choice is in-
herently hard. Existing solutions rely on simple heuristics,
which provides no guarantees on how far the performance
could be from the optimal. While they perform well on certain
workloads, their performance can be arbitrarily worse than the
optimal under unpredictable workloads, similar to the above
example. We validate this observation experimentally in §7.2.

3 SHEPHERD Design
We now outline SHEPHERD’s key design elements.

3.1 Overcoming Short-term Unpredictability
We leverage three key observations to overcome the chal-
lenges introduced by short-term unpredictability (§2.2):

Group-level predictability and group multiplexing. We
observe that while the short-term arrival pattern for individual
request streams are hard to predict, the aggregated arrival
pattern across a group of request streams tends to be much
more predictable. We validate this observation by considering
the same workloads in Figure 2, but randomly classifying
the request streams into serving groups of different sizes and
measuring the coefficient of variance per-group instead of
per-stream. Figure 5 shows that increasing the group sizes
drastically reduces the coefficient of variance even at smaller
window sizes. Note that the networking community has long
made similar observations for bursty network flows, where
statistical multiplexing can drastically improve utilization

28 27 26 25 24 23 22 21 20

Time window size (τ , in minutes)

0

2

4

6

8

10

12

C
V

Group size

1

10

100

1000

(a) Production workload

28 27 26 25 24 23 22 21 20

Time window size (τ , in minutes)

0

0.5

1

1.5

2

2.5

3

C
V

Group size

1

10

100

1000

(b) Synthetic workload

Figure 5: Coefficient of variance (CV) for groups of streams vs
window size (τ, in minutes). The CV increase with decreasing
window sizes is much slower for larger group sizes.

by dynamically sharing a network link across network flows
based on their instantaneous demands [15–18].

However, unlike multiplexing a network link across a few
flows, multiplexing thousands of GPU workers across tens of
thousands of SLO-bound request streams in real time presents
a significant scalability challenge. To address it, we observe
that even at moderate group sizes (100–1000), the per-group
coefficient of variance is small enough to make its arrival
pattern highly predictable (Figure 5). This motives a group
multiplexing approach that first partitions the GPU cluster and
request streams into moderately-sized serving groups (§4),
then applies statistical multiplexing per-group to perform
online scheduling (§5). This approach offers a means to break
the tradeoff between resource utilization and scalability faced
by existing systems: moderately sized groups are predictable
enough even in the short-term to accurately provision their
resources for high resource utilization. At the same time,
restricting the online scheduling algorithm’s decision space
to streams and GPUs assigned to each group drastically limits
its computational complexity, allowing the system to scale to
much larger number of request streams and GPUs.

Preemption to correct for scheduling errors. As noted in
the example from Figure 4, the optimal scheduling decision
often depends on future arrival patterns, which can be hard
to predict. As such, any non-clairvoyant online algorithm is
bound to occasionally make sub-optimal scheduling decisions.
We find that the ability to correct such decisions when its sub-
optimality becomes apparent via preemptions is necessary
for achieving performance guarantees for an online schedul-
ing algorithm. For instance, in the example of Figure 4, a
solution can correct for a sub-optimal scheduling decision in
both scenarios by simply preempting r if a burst of requests
arrives later. Preemptions in online scheduling algorithms
are not a new concept; they have been used in a variety of
scheduling contexts [19, 20] to achieve bounds on the algo-
rithm’s competitive ratio — the ratio between its performance
and that of an optimal offline algorithm. Leveraging insights
from recent work on context switching for DNN training on
GPUs [21] allows us to realize preemptions efficiently for in-
ference workloads (§6), and combining it with model-specific
batch-latency relationships (described next) permits bounding

790 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

GPU Cluster

Request
Router

Worker

Request
streams

Online Scheduler
(FLEX)

Online Scheduler
(FLEX)

Worker

Worker

Worker

Worker

Worker

Group 1

Group 2

Group g

Periodic Planner
(HERD)

traffic statistics

Online Scheduler
(FLEX)Plans

Figure 6: Overview of SHEPHERD design

the competitive ratio for online model serving.

Model-specific batch-latency relationships. Empirical mea-
surements in prior work [6] indicate that a simple linear model
can accurately describe the execution latency for varying re-
quest batch sizes in model serving workloads. In particular,
for a batch B of size |B| being executed on a model m, the
execution latency ℓm(B) is given by:

ℓm(B) = αm · |B|+βm (1)

where βm is the baseline execution latency for executing an
empty batch on the model, while αm is the latency for each
additional request in the batch.

We find exploiting this relationship helps make better
scheduling and stream grouping decisions. First, larger
batches help amortize the fixed cost βm and achieve higher
throughput, but too large a batch may miss the SLO dead-
line altogether. As such, making scheduling and preemption
decisions that leverage the batch-latency relationship to prior-
itize appropriately large batches that are likely to meet their
deadline, permit better performance guarantees for the on-
line scheduling algorithm. Second, when scheduling requests
across streams in a serving group of certain models, we find
that the online algorithm can achieve better performance guar-
antees if the models have similar α and β values (§5.2).

We next describe how SHEPHERD incorporates all of these
insights into an end-to-end design.

3.2 Design Overview
SHEPHERD leverages group-level predictability in a two-level
design that comprises a periodic planning and an online serv-
ing component. At a high-level, the periodic planning compo-
nent leverages long-term load statistics to partition the entire
GPU cluster into several serving groups, and determines how
models and request streams querying them are mapped to
these groups to optimize both resource utilization and system
scalability. The online serving component, on the other hand,
schedules requests from streams in each serving group across
the group’s allocated GPUs, and ensures that its goodput is
always within a constant factor of the optimal schedule.

SHEPHERD’s architecture (Figure 6) comprises four key
components: a planner (HERD), a request router, a scheduler

(FLEX) per serving group and multiple GPU workers. HERD
executes periodic planning, and informs each GPU worker
which serving group it belongs to and which models it must
serve. HERD also assigns a group-level scheduler to each serv-
ing group — the total number of group-level schedulers can
be scaled based on the number of models being served by the
system and the aggregate load across them. The request router
forwards client inference requests to group-level schedulers
based on their target model, and collects statistics regarding
their arrival patterns that HERD employs to compute group-
level mappings. The group-level schedulers, in turn, execute
our online scheduling algorithm, FLEX, to schedule inference
requests across GPU workers in their own serving group.

HERD (§4). While even random assignment of models and
GPU workers to serving groups can achieve decent workload
predictability (§3.1), achieving high utilization and guaran-
teed goodput requires considering a number of additional
constraints. To this end, HERD formulates this assignment
problem as an Integer Linear Program (ILP) incorporating all
such constraints. In particular, as noted in §3.1, colocating
models with similar α, β values (Eq. 1) in the same serv-
ing group yields better goodput guarantees in FLEX. Conse-
quently, HERD also incorporates model-affinity — a measure
of similarity across α, β values — in its ILP.

FLEX (§5). FLEX’s goal is to provide guaranteed high good-
put for each group under short-term unpredictability. To this
end, we answer three key theoretical and practical questions:

• What performance guarantees are possible? We first es-
tablish two impossibility results. We show that determining
an optimal solution is NP-hard, even in the offline setting.
In the online setting, we show that no online algorithm can
achieve performance competitive with the optimal offline so-
lution without using preemption. Since prior model serving
systems do not employ preemption, they are fundamentally
unable to provide any performance guarantees.

• What performance guarantees can FLEX provide? FLEX
ensures that for each serving group, the aggregated goodput
achieved is guaranteed to be at most 12.62 ·K× worse than
the optimal offline schedule with complete knowledge of
the future. K is a model-affinity parameter that reduces to
one if all models in the serving group have the same α and
β, and increases if they diverge (§5.2).

• How does FLEX achieve this guarantee? FLEX leverages
two key insights outlined in §3.1: preemption to correct
for scheduling errors, and model-specific batch-latency re-
lationships. First, preempting a scheduled batch requires
carefully weighing the utility brought by the scheduled
batch of requests against the utility of the new batch to be
scheduled — the threshold beyond which preemption is per-
formed significantly impacts the performance bound FLEX
can achieve. Second, FLEX leverages the model-specific
relationship in Eq. 1 to determine appropriate batch sizes

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 791

Decision variables Definition
xi j ∈ {0,1} Is stream i mapped to group j?
yc j ∈ {0,1} Is affinity-set c mapped to group j?
zk j ∈ {0,1} Is model k mapped to group j?
size j ∈N+ # of GPUs allocated to group j

Input parameters Definition
mem GPU memory capacity

G Scalability limit for # of GPUs per group
N # of GPUs in cluster

hki ∈ {0,1} Does stream i use model k?
qck ∈ {0,1} Does affinity-set c include model k?

Optimization goal Definition
bt(i) The burst tolerance metric for stream i

Table 2: Variables used in HERD’s ILP.

and their order of execution across request streams.

4 Periodic Planner: HERD

HERD operates in two steps. It first determines the number
of GPUs ni that would be needed to sustain the average load
ratei for each request stream separately. To do so, HERD
empirically measures the maximum goodput Ti each stream
i can achieve on a single GPU, and uses it to compute ni as
ratei

Ti
. It uses ni to define a new burst tolerance metric (bt) that

captures the increase in load that the stream can tolerate if
assigned to a particular serving group relative to the average-
load based assignment of GPUs. More formally,

bt(i) =
GPUs i can use for its peak load
GPUs i needs for its average load

= ∑
j

size j · xi j

ni

where xi j is 1 if stream i is assigned to group j (0 otherwise),
and size j is the number of GPUs assigned to group j.

Second, HERD uses an Integer Linear Program (ILP) to
combine streams into serving groups to maximize the min-
imum burst tolerance across all streams; this captures the
goal of ensuring every stream can tolerate as heavy a burst as
possible, subject to a certain set of constraints:

(a) Cluster-size limit ensures that the total number of GPUs
assigned across all serving groups is no larger than the
cluster-size N (in number of GPUs).

(b) Group-worker limit ensures that the total number of
GPUs size j assigned to each group j does not exceed the
maximum scalability limit G of the online algorithm.

(c) GPU-memory limit ensures that the sum of model sizes
assigned a serving group j does not exceed the GPU
memory capacity mem.

(d) Group surjectivity ensures that every stream i is as-
signed to a single group j, and only if its associated
model is also assigned to group j.

(e) Affinity-set surjectivty ensures that models assigned to
the same group j have similar α, β values (as defined in
Eq. 1) to ensure better performance guarantees in FLEX.

We capture the divergence in model α, β values as K
(defined in §5), and pre-compute affinity-sets c1,c2, ...
as a partitioning of models such that K between any two
models in an affinity set is ≤ K; this simplifies our ILP
constraint to only picking models from the same cluster.

Our ILP is presented below, with variables listed in Table 2:

maximize min
i
{bt(i)} (2)

s.t. ∑
j

size j ≤ N, ((a) Cluster-size limit)

size j ≤ G, ∀ j ((b) Group-worker limit)

∑
k

zk j · |mk| ≤ mem, ∀ j ((c) Memory limit)

∑
j

xi j = 1, ∀i

hki · xi j ≤ zk j, ∀i, j,k

}
((d) Group surjectivity)

∑
c

yc j = 1, ∀ j

qck · zk j ≤ yc j, ∀i, j,k

}
((e) Affinity-set surjectivity)

Note that the above formulation is not linear due to the non-
linear optimization goal, which contains: (1) a max-min term,
and, (2) a product between binary and non-negative variables
(xi j · size j). However, both can be linearized using standard
techniques [22] — we omit the linearized ILP for brevity.
Similar to prior work [6], HERD ensures that all models to
be served by a worker in the subsequent online serving phase
are present in GPU memory, with some memory set aside
for the operation of the online algorithm, FLEX. We discuss
additional challenges due to memory constraints in §8.

HERD complexity and periodicity. Since solving HERD’s
ILP is NP-hard, and we must scale to millions of streams
and thousands of workers, we first aggregate streams using
the same model into a single “model-stream”, then apply the
ILP to optimize the burst tolerance metric across the model-
streams. The burst tolerance metric of the model-stream the
lower bound of the burst tolerance metric for each stream
in it. Note that different streams in the model-stream may
have different SLOs, but this will not affect the correctness
of our ILP, since none of the constraints (a) – (e) depend on
per-stream SLO. Instead, FLEX incorporates the impact of
SLOs across different streams during online serving.

Also, note that we only need to ensure that the ILP solver
is much faster than HERD’s periodicity, which, in turn, de-
pends on how frequently the workload characteristics change
enough to require recomputing group assignments. Fortu-
nately, our analysis of Microsoft’s Azure Function trace [14]
shows that the workloads within moderately-sized serving
groups remain stable for tens of minutes or more, while our
solver can compute a plan within a few seconds (§7.3).

792 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Input variables Definition
S = {r1,r2, ...} A request stream from one application.

ar,dr,mr Arrival time, deadline, model for request r.
a(B),d(B),m(B) Arrival time, deadline and model for batch B.
B= {B1,B2, ...} Set of all possible batches.

Decision variables Definition
I(B, t,n) ∈ {0,1} Is batch B is executed at time t on GPU n?

Table 3: Notations for online batch scheduling.

5 Online Serving Algorithm: FLEX
We first formulate the online serving problem (§5.1) and then
present the FLEX algorithm to provide guaranteed goodput
under short-term unpredictability (§5.2).

5.1 Problem Formulation
Our online serving setting focuses on scheduling inference
requests across models and GPUs assigned to a single serving
group. Requests within each stream query the same model
with the same latency SLO. Each request r has an arrival time
ar, deadline dr and queries model mr. Requests are served in
batches; for a batch B, arrival time a(B) is the arrival time of
the most recent request in B, and deadline d(B) is the earliest
deadline of all requests in B. Let B be the set of all possible
batches of requests; the online serving algorithm decides
whether to execute batch B ∈ B at time t on GPU n, which
we capture as the decision variable I(B, t,n) ∈ {0,1}. The
goal of online serving is to maximize the overall goodput: the
number of requests that meet their SLOs per second. Table 3
summarizes the notations for our problem formulation.

Optimal offline serving algorithm. We find that the of-
fline serving problem where the scheduler has access to the
complete future can be formulated as the following Zero-one
Integer Linear Program (ZILP):

maximize∑
t

∑
n

∑
B∈B
|B| · I(B, t,n) (3)

s.t. ∑
t

∑
n

∑
{B|r∈B}

I(B, t,n)≤ 1, ∀r (a)

∑
B∈B

∑
{t ′|t ′≤t≤t ′+ℓmB (B)}

I(B, t ′,n)≤ 1, ∀t,n (b)

a(B) · I(B, t,n)≤ t, ∀B, t,n (c)
(ℓmB(B)+ t) · I(B, t,n)≤ d(B), ∀B, t,n (d)
I(B, t,n) ∈ {0,1}, ∀B, t,n (e)

Intuitively, the ZILP maximizes the total number of requests
that meet their latency SLOs across all selected batches
(I(B, t,n) = 1), which in turn maximizes the total goodput.
The ZILP constraints correspond to:

(a) Each request can be executed in at most one batch,
(b) A GPU can only execute one batch at a time,
(c) No selected batch can start before its arrival time,

Algorithm 1 FLEX Algorithm

1: Initialize:
2: for each model m do
3: Qm ← Priority queue of m’s requests sorted by deadlines.

4: Event: On completion of a batch on any GPU n:
5: Bg,n←BATCHGEN(n) # Largest feasible batch across all Qm
6: Execute Bg,n and dequeue requests in Bg,n from model queue
7: for each GPU n do
8: Bg,n←BATCHGEN(n) # Update candidate batch

9: Event: On arrival of request r:
10: Enqueue r to corresponding queue
11: for each GPU n do
12: Bc,n← The batch currently being executed on GPU n
13: Bg,n←BATCHGEN(n)
14: if Bc = /0 then
15: Execute Bg,n and dequeue requests in Bg,n
16: else if |Bg,n| ≥ λ×|Bc,n| then # Preemption rule
17: Preempt Bc,n
18: Execute Bg,n and dequeue requests in Bg,n
19: Treat requests in Bc,n as new arrivals (go to Line 11)

(d) Every selected batch must finish before its deadline, and
(e) The decision variable I(B, t,n) must either be 1 or 0.

Clearly, the optimal solution to the above ZILP is also the
optimal offline schedule. Obtaining such an optimal is un-
realistic — not only is it impractical to have access to the
complete future (or even a reasonable prediction of it, §2),
computing the optimal solution to the ZILP is NP-hard [23].

Achievable guarantees. However, the optimal offline sched-
ule provides us with a baseline of the best schedule possible,
and permits us to reason about how close an online algorithm
can get to such a solution. More formally, the performance
guarantee an online algorithm can achieve is typically cap-
tured by the competitive ratio: the worst-case ratio of the
ZILP’s goodput to the online algorithm’s goodput over all
possible inputs. Note that our focus is on online request serv-
ing decisions, so we assume both algorithms have the same
resources provisioned to them. We establish the following
important result regarding the competitive ratio:
Theorem 5.1 No non-preemptive, deterministic algorithm
can achieve a bounded competitive ratio for online serving.
We defer the proof to Appendix A, but note that since existing
online serving algorithms [6, 10, 11] are non-preemptive, they
are incapable of achieving a bounded competitive ratio.

5.2 FLEX Algorithm
Algorithm 1 presents our FLEX algorithm that achieves a
bounded competitive ratio for online serving. During initial-
ization, FLEX creates a priority queue Qm for each model m,
which holds requests sorted by tightness of their deadlines.
The algorithm reacts to two key events: (1) completion event
of a batch on any GPU, and, (2) arrival event of a new request.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 793

For a completion event, FLEX simply generates a new batch
Bg and executes it; all requests in Bg are dequeued from
corresponding model queue Qm. To generate the new batch,
FLEX finds the largest feasible batch across all queues, such
that all requests in the batch can meet their latency SLOs.

For an arrival event, FLEX generates a candidate batch for
each GPU as outlined above, and compares it with the cur-
rently running batch. If the generated batch is λ times larger
than currently running batch, the current batch is preempted.
If preemption occurs, requests in preempted batch that can
still meet their SLOs are re-enqueued to their corresponding
priority queues. The re-enqueued requests will be treated as
newly arrived requests so they can be scheduled again.

We now dive deeper into salient features of the algorithm.

Choice of λ. The preemption threshold λ plays a crucial role
in bounding FLEX’s competitive ratio. A conservative pre-
emption policy with larger λ can result in a poor competitive
ratio, while an aggressive preemption policy with smaller λ

can waste GPU resources, since the preempted work does
not contribute to system goodput. As such, we express the
competitive ratio in terms of λ, and formulate the problem
of finding the optimal competitive ratio as an optimization
problem. Solving this problem yields the optimal value of
λ≈ 3.03 (Theorem 5.2). Note that while a worker may expe-
rience cascading preemptions if batches keep arriving with
sizes λ× than the currently executing batch, our choice of λ

ensures that the total wasted work is always much less than
the additional useful work performed post-preemption. In
practice, the effect of cascading preemptions is bounded due
to our maximum batch size limit (128 by default). We defer
the description of our preemption implementation to §6.

Prioritizing batches for a single model. Online job schedul-
ing algorithms [19, 20, 24–27] tend to consider one of two
key metrics as optimization goals: a job’s value, and its value
density. In the online model serving context, the value of a
job (batch) corresponds to the number of requests it contains
(i.e., its batch size), while the value density corresponds to
its contribution to system goodput (i.e., batch size

batch latency). Tradi-
tional online job scheduling algorithms often fail to achieve a
bounded competitive ratio since optimizing these two goals
are often at odds with each other, i.e., optimizing total value
density comes at the cost of optimizing total value across jobs,
and vice versa. Fortunately, Eq. 1 establishes a linear relation-
ship between value density and value for batches of inference
requests: for a single model, larger batches always contribute
more to system goodput. As such, our preemption and batch
generation criteria always favor larger batches to maximize to-
tal value and value density simultaneously, enabling FLEX to
achieve a bounded competitive ratio. In contrast, prior slack-
based prioritization schemes (e.g., tightest deadline first [10])
are unable to provide such guarantees. In fact, our evaluation
(§7) shows that prioritizing larger batches over those with
tigher deadlines leads to higher goodput under high load.

Extending FLEX to multiple models. While the above pri-
oritization scheme is straightforward when a single model
is involved, extending FLEX’s competitive ratio analysis to
a multi-model scenario is challenging, since the linear rela-
tionship between batch value and value density no longer
holds across models. However, the batch-latency relationship
in Eq. 1 still allows us to bound the batch value and value
density across models using the model-specific parameters α

and β. More precisely, we define an affinity metric A(mi,m j)
between two models mi and m j as:

A(mi,m j) =

{
αi+βi

α j
, if α j +β j−βi ≤ 0

min(αi+βi
α j

,max(αi
α j+β j−βi

, αi
α j
)), otherwise

where αi,α j,βi and βi are the model-specific parameters for
models mi and m j respectively. While its specific formula-
tion is devised to establish FLEX’s competitive ratio (Theo-
rem 5.2), we note that A(mi,m j) is close to 1 if mi and m j have
similar α and β, and deviates from 1 as the α and β values for
the models diverge. For a set of models M, we show that the
competitive ratio is a multiple of K, the largest affinity value
A(mi,m j) across all pairs of models (mi, m j) in M, i.e.,

K = max
i, j∈M

A(mi,m j) (4)

FLEX properties. Our analysis in Appendix B shows that:

Theorem 5.2 Algorithm 1 is 12.62 ·K-competitive with pre-
emption threshold λ≈ 3.03, with K defined in Eq. 4.
We note that FLEX is the first algorithm that achieves guar-
anteed performance for online model serving to the best of
our knowledge. We validate FLEX’s performance empirically
over a wide range of representative workloads in §7. Finally,
while we defer the complexity analysis to Appendix C the
following result establishes FLEX’s complexity:
Theorem 5.3 FLEX has a worst-case complexity of O(G),
where G is the number of GPUs in the serving group.

6 SHEPHERD Implementation
Our SHEPHERD implementation follows the architecture de-
scribed in Figure 6. The periodic planner (HERD), request
router and online scheduler are implemented as C++ pro-
cesses, while the GPU workers support configurable model
execution runtimes like PyTorch [28] and Apache TVM [29].

Supporting preemptions. While recent hardware-based pre-
emptions on newer GPUs [31] may enable better perfor-
mance, we opt for software-based preemptions adapted from
Pipeswitch [21] in SHEPHERD due to its general applicabil-
ity to commodity GPUs. Pipeswitch supports preemption of
DNN training tasks by inserting exit points between the train-
ing phases of different DNN layers: when a preemption is
requested, the execution of the current training task can be
terminated at the next exit point. Since PipeSwitch currently
supports preemptions for PyTorch only, we use the PyTorch

794 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Model α (ms) β (ms) # Exit points
ResNet18 (RN18) 0.22 3.74 40
ResNet34 (RN34) 0.38 5.78 46
ResNet50 (RN50) 0.75 7.96 46
ResNet101 (RN101) 1.25 13.57 39
ResNet152 (RN152) 1.77 18.98 84
ResNeSt50 (RS50) 1.18 15.39 78
ResNeSt101 (RS101) 1.91 29.21 57
ResNeSt200 (RS200) 3.35 45.43 96
ResNeSt269 (RS269) 4.37 74.20 128
DenseNet121 (DN121) 0.69 19.96 129
DenseNet161 (DN161) 1.74 23.10 171
DenseNet169 (DN169) 0.83 27.47 120
DenseNet201 (DN201) 1.12 32.33 142
GoogLeNet (GN) 0.25 8.41 44
Inception v3 (I3) 0.96 11.77 122
R-CNN (RCNN) 2.59 14.90 51
BERT (BERT) 40.98 5.67 43

Table 4: DNN Models evaluated in SHEPHERD. BERT [30] is a
popular NLP model, while the rest are popular CV models from six
different model families.

runtime by default in our implementation, although the same
approach could be implemented for Apache TVM as well.

Adapting the preemption approach from training to infer-
ence pipelines introduces a key challenge: while the over-
head for preemption is not a major concern for long-running
model training tasks, it is quite crucial to minimize preemp-
tion overheads for model inference. On one hand, adding too
few exit points to an inference task introduces unacceptable
preemption delay — the time between from the preemption
being requested and actually being completed — since the
preempted task may still execute for tens of milliseconds be-
fore the reaching next exit point. On the other hand, adding
too many exit points slows down the normal execution of
inference tasks, as each exit point introduces non-negligible
execution delay. To better navigate the trade-off, we evaluate
the preemption and execution delay overheads with different
number of exit points for different DNN models via com-
prehensive profiling, and determine the optimal number of
exit points for each individual model (§7.3). Table 4 shows
the DNN models used in SHEPHERD, with their α, β values
(Eq. 1) and the number of exit points. Note that adding exit
points incurs a one-time offline profiling cost during model
registration; this can be implemented as a part of the DNN
framework, making it completely transparent to users.

7 Evaluation

We evaluate SHEPHERD to answer the following questions:

• How does SHEPHERD compare against state-of-the-art
schemes for real-world workloads? (§7.1)

• How does each design component in SHEPHERD contribute
to its performance gains? (§7.2)

• What overheads do SHEPHERD’s preemption and periodic
planning components introduce? (§7.3)

Setup. All our experiments were run on Amazon EC2. For
GPU workers, our testbed experiments use 12 p3.2xlarge
instances each with 8 vCPUs, 61GB RAM, and one NVIDIA
Tesla v100 GPU with 16GB memory, while our large-scale
emulations use m4.16xlarge instances with 64 vCPUs and
256GB RAM. The request router, periodic planner, and online
schedulers are deployed on separate m4.16xlarge instances.

Metrics. We focus on goodput, utilization and scalability as
our key metrics. Goodput and utilization values are averaged
over 5 runs, while scalability is measured as the increase in
system goodput on increasing the number of workers.

Compared schemes. We compare SHEPHERD against Clock-
work [10] and Nexus [6]. Clockwork is representative of
online global scheduling policies, while Nexus is a represen-
tative of the periodic per-stream approach (§1). We implement
all evaluated policies in our SHEPHERD prototype and use a
PyTorch-based runtime to ensure that the performance differ-
ences are solely due to the scheduling decisions rather than
choices in system implementation or the underlying runtime.

For Nexus, we set the reconfiguration period to 60 seconds
as recommended in [6]. Moreover, since Nexus is designed
for predictable workloads, we adapt their algorithm to pro-
vision for the peak demand in every 60-second window of
the workload to ensure it can sustain the provided load. For
SHEPHERD, we set the GPU group-worker limit to 12, since
we found it to be large enough to ensure workload predictabil-
ity (due to a large enough group size) while being well within
our scheduler’s scalability limit. The GPU memory limit for
p3.2xlarge instances is large enough to fit all 13 DNN models.
Finally, we place all the models in a single affinity-set.

DNN Models. We evaluate SHEPHERD with 17 DNN models
widely used for model inference (Table 4), taken from Py-
Torch Hub [32]. For Clockwork and Nexus, we use models
without any exit points (needed for preemption in SHEPHERD,
§6) to ensure they do not suffer any performance penalties
for execution delays. We ensure the models remain in GPU
memory for the duration of all our experiments to eliminate
performance impacts of loading models into GPU memory.

Workloads. Similar to prior work [10], we use the Microsoft’s
publicly-released production traces from Azure Functions
(MAF) [14] as a representative production model serving
workload. MAF interleaves a wide range of workloads, includ-
ing heavy-sustained, low-utilization, bursty and fluctuating
workloads. For our 13 profiled DNN models, we assign the
46,000 streams from MAF to models in a round-robin man-
ner, and configure all streams with a default SLO of 250ms2,
unless otherwise specified. The MAF trace only contains the
aggregated number of requests per one-minute interval for
each request stream. Therefore, we generate two request ar-

2We use a relatively relaxed SLO compared to [10] since the PyTorch
runtime used in our implementation observes longer inference latencies
compared to the TVM runtime used in [10].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 795

4k 8k 16k 32k 64k
Load (req/s)

3k

9k

15k

21k

27k

33k

G
o

o
dp

ut
(r

eq
/s

) Shepherd

Clockwork

Nexus

(a) Goodput (MAF-stable)

4k 8k 16k 32k 64k
Load (req/s)

40

60

80

100

U
ti

liz
at

io
n(

%
)

Shepherd

Clockwork

Nexus

(b) Utilization (MAF-stable)

4k 8k 16k 32k 64k
Load (req/s)

3k

9k

15k

21k

27k

33k

G
o

o
dp

ut
(r

eq
/s

) Shepherd

Clockwork

Nexus

(c) Goodput (MAF-bursty)

4k 8k 16k 32k 64k
Load (req/s)

40

60

80

100

U
ti

liz
at

io
n(

%
)

Shepherd

Clockwork

Nexus

(d) Utilization (MAF-bursty)

Figure 7: Performance variation with load. Under high load, SHEPHERD achieves 4.6 (5.2)× and 7.1 (18.1)× higher goodput than Clockwork
and Nexus under the MAF-stable (MAF-bursty) workload, respectively. SHEPHERD and Clockwork achieve high system utilization while
Nexus’s utilization remains under 89% (55%) across different arrival rates under the MAF-stable (MAF-bursty) workload.

0 50 100 150 200 250
Latency (ms)

0

0.25

0.5

0.75

1

C
D

F

Shepherd

Clockwork

Nexus

(a) Low load (3k req/s)

0 50 100 150 200 250
Latency (ms)

0

0.25

0.5

0.75

1

C
D

F

Shepherd

Clockwork

Nexus

(b) High load (144k req/s)

Figure 8: Latency CDFs for MAF-stable workload with 250ms
SLO. The latency CDF is presented for the set of requests admitted
by each approach. At high load, large portions of Clockwork and
Nexus request latencies are close to the SLO, while SHEPHERD’s
request latencies are distributed more evenly. See §7.1 for details.

rival patterns within each one-minute interval: (1) a Poisson
process to model stable workloads, similar to [10] (“MAF-
stable”), and (2) a more bursty Markov-modulated Poisson
process (MMPP) similar to [9] (“MAF-bursty”).

7.1 SHEPHERD in the Wild
We first evaluate the compared systems for real-world work-
loads on a testbed comprising 12 GPU workers and large-scale
emulations that mimic work done by a GPU on CPU cores.

Performance variation with load (Figure 7). For the MAF-
stable workload, with a low request arrival rate (e.g., at ∼ 3k
requests/second), all systems can meet the SLO deadlines for
most requests in the workload. As such, both SHEPHERD and
Clockwork achieve high system utilization (over 95%) and
high goodput. At higher loads, while both systems are consis-
tently busy serving requests (resulting in high utilization) nei-
ther SHEPHERD nor Clockwork can satisfy all request dead-
lines; however, since Clockwork prioritizes requests based on
how close their deadline is, it greedily schedules many small
batches of requests with tight deadlines, resulting in a reduced
goodput. In contrast, SHEPHERD always prioritizes execution
of larger batches, while the use of preemption ensures that
large batches never get blocked by small batches scheduled
before them. SHEPHERD can therefore efficiently utilize lim-
ited GPU resources to maximize goodput under high load,
and while Clockwork’s goodput starts to saturate beyond a
load of 6k requests/second, SHEPHERD’s goodput keeps in-

creasing, outperforming Clockwork by up to 4.6× at 144k
requests/second. We confirm that SHEPHERD’s gains stem
from its preemption and prioritization design choices in §7.2.
We observe similar trends for Clockwork and SHEPHERD
under the MAF-bursty workload.

For Nexus, we find that the goodput largely remains the
same as we increase the load under both MAF-stable and
MAF-bursty workloads, with a goodput that is up to 7.1× and
18.1× lower than SHEPHERD. Moreover, Nexus’s utilization
remains under 89% for the MAF-stable workload and 55%
for the MAF-bursty workload — even under high load. These
observations can largely be attributed to Nexus’s offline ap-
proach — during its periodic planning phase, Nexus takes the
arrival rate as input and calculates the number of GPU work-
ers required along with an offline schedule for each worker.
With a fixed number of workers, Nexus can only make its
planning decision assuming a specific arrival rate that it can
completely satisfy, which ends up being much lower than the
applied load. Moreover, during online serving phase, Nexus is
unable to adjust its planning decisions dynamically based on
the increased arrival rates. This impact is even more severe for
the MAF-bursty workload, where predetermined execution
plan is unable to adapt to periodic bursts of requests, resulting
in even lower utilization (1.8× worse than SHEPHERD) and
goodput relative to the MAF-stable workload.

Figure 8 plots per-request latency CDFs for SHEPHERD,
Clockwork, and Nexus at low (3k requests/second) and high
load (144k requests/second) for the MAF-stable workload.
Note that while Figure 7(a) shows the proportion of requests
admitted by each system, the CDF only depicts the latency
of requests admitted by each solution. All systems observe
similar latency distributions at low load (Figure 8(a)). At
high load, however, a large portion of requests in Clockwork
observe latency close to the SLO, since Clockwork prioritizes
serving requests closer to their deadlines. Nexus also shares a
similar CDF pattern, as its periodic scheduler tries to batch
together as many requests as it can based on request deadlines.
In contrast, SHEPHERD’s request latencies are distributed
more evenly; this is because SHEPHERD priortizes requests
based on their batch sizes rather than their deadlines, and
the evaluated workload results in batches of widely varying
sizes at different times. We observe similar trends under the

796 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

500 250 100 50
SLO (ms)

1k

2k

3k

4k

G
o

o
dp

ut
(r

eq
/s

)

Shepherd

Clockwork

Nexus

(a) MAF-stable

500 250 100 50
SLO (ms)

1k

2k

3k

4k

G
o

o
dp

ut
(r

eq
/s

)

Shepherd

Clockwork

Nexus

(b) MAF-bursty

Figure 9: Goodput with varying request SLOs. SHEPHERD outper-
forms Nexus and Clockwork by up to 38× and 1.3×, respectively,
under tight SLOs. We omit SLOs ≤ 10ms since some of our evalu-
ated models have higher execution latencies (Table 4).

0 100 200 300 400
Workers

25k

50k

75k

100k

G
o

o
dp

ut
(r

eq
/s

) Shepherd

Clockwork

Nexus

(a) MAF-stable

0 100 200 300 400
Workers

25k

50k

75k

100k

G
o

o
dp

ut
(r

eq
/s

) Shepherd

Clockwork

Nexus

(b) MAF-bursty

Figure 10: Scheduler scalability with emulated workers. For both
workloads, Clockwork does not scale beyond 200 workers; Nexus
scales linearly but observes 40–50% lower goodput than SHEPHERD.
SHEPHERD observes both high goodput and linear scaling.

MAF-bursty workload.

Goodput with varying request SLOs (Figure 9). To under-
stand the impact of request SLOs, we fix the arrival rate to
∼ 3k requests/second and measure the goodput for the com-
pared approaches with varying SLO values. All approaches
achieve high goodput with 500ms SLO, since almost all re-
quest deadlines can be met with a relaxed SLO. On reducing
SLO from 500ms to 50ms, all approaches observe reduced
goodput; Clockwork’s reduction is smaller due to its online al-
gorithm that prioritizes requests with tighter deadlines, while
Nexus observes higher reduction, especially for the MAF-
bursty workload. This is because its periodically computed
static execution plan is unable to adapt to small bursts of
requests, resulting in even fewer requests meeting their dead-
lines. However, SHEPHERD’s online FLEX algorithm is able
leverage prioritization and preemption to maximize the num-
ber requests that meet the stringent SLOs, outperforming both
Clockwork and Nexus by up to 1.3× and 38× respectively.

Scheduler scalability (Figure 10). Due to the limited num-
ber of GPUs in our testbed, we were unable to evaluate the
scalability of SHEPHERD and existing systems beyond a point.
We therefore complement our testbed experiments with large-
scale emulations with up to 400 emulated workers. As in
prior work [10], an emulated worker is identical to a real
SHEPHERD worker, except an inference request triggers no
meaningful work; instead, they wait for a period of time de-
termined by the corresponding model’s batch-latency charac-
teristics (Table 4), before returning a response. We run the

250ms 90ms
SLO (ms)

1k

2k

3k

4k

G
o

o
dp

ut
(r

eq
/s

) Shepherd

Shepherd-NP

Clockwork

(a) Benefits of FLEX

0 100 200 300 400
Workers

25k

50k

75k

100k

G
o

o
dp

ut
(r

eq
/s

) Group(1)

Shepherd

Group(∞)

(b) Benefits of HERD

Figure 11: Understanding SHEPHERD benefits. (a) Prioritiza-
tion and preemption in SHEPHERD results in 3.7× and 6.2× im-
provement in goodput, respectively; SHEPHERD-NP refers to a non-
preemptive variant of SHEPHERD. (b) SHEPHERD achieves both
high goodput and scalability with group-worker limit G = 12.

MAF-stable and bursty workloads with varying number of
emulated workers (N), scaling up the total load applied to the
system with the number of workers. We apply a low enough
load per worker to ensure any requests dropped in SHEPHERD
and Clockwork are solely due to the scheduler’s failure to
scale to large number of workers.

Clockwork’s goodput scales linearly with smaller N, slows
down around N = 150, and saturates at 50k request/second
around N = 200 since its centralized scheduler becomes the
bottleneck3 (Figure 10(a)). Nexus goodput, on the other hand,
scales almost linearly with N; this is expected since Nexus’s
scheduling decisions are computed per-stream and updated
only periodically. However, its periodically computed sched-
ule results in ∼ 40% lower goodput than SHEPHERD. This
is because Nexus’s computed schedule conservatively pro-
visions for a load that a given number of workers can sus-
tain without adapting to any changes due to workload unpre-
dictability, as discussed in the results for Figure 7. Finally,
SHEPHERD observes both consistently high goodput and lin-
ear scaling. The linear scaling is attributed to SHEPHERD
dividing its workers into groups, each with a group-worker
count of 12, which is below the scalability limit of our online
scheduler. The high goodput, on the other hand, is attributed
to each group being large enough for efficient multiplexing
across request streams. As such, SHEPHERD outperforms
Clockwork and Nexus by 2.5× and 1.8× respectively in
terms of goodput at N = 400 workers. We note, however, that
SHEPHERD employs multiple schedulers — specifically, ⌈ N

12⌉
schedulers for N workers — in contrast to Clockwork’s single
centralized scheduler to achieve its linear scaling. We observe
similar trends with the MAF-bursty workload in Figure 10(b).

7.2 Understanding SHEPHERD Benefits
We now dig deeper into how each design component in SHEP-
HERD contributes to its overall performance gains.

Benefits of FLEX (Figure 11(a)). To demonstrate the effec-

3This trend is consistent with the scalability results reported in the Clock-
work paper [10] albeit with a higher peak goodput due to differences in the
system implementation and execution runtime.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 797

tiveness of batch prioritization and preemption in FLEX, we
create a synthetic workload with two streams. Stream A is
bursty and issues requests to the low-latency model ResNet18
(∼ 4ms for batch size = 1, ∼ 32ms for batch size = 128).
Requests in stream A arrive periodically in bursts of 1024
requests at t = 5ms, 125ms, 245ms, ..., i.e., with a period of
120ms. Stream B is stable and issues requests to the high-
latency model ResNet269 (79ms for batch size = 1), and has
individual requests arriving at t = 0ms, 1ms, 2ms ...; note that
in the absence of other queued requests from stream B, any
approach would schedule batches of size 1 for it every 1ms.

We provision one GPU worker for both streams, and com-
pare the performance for SHEPHERD and Clockwork for this
workload. To decouple the contributions of preemption from
prioritization, we also evaluate a non-preemptive variant of
SHEPHERD that retains all the properties of FLEX except pre-
emption. We run the experiments under two different SLOs
(250ms and 90ms) to separate the contributions of prioritiza-
tion and preemption in SHEPHERD, as described next.

For 250ms SLO, both SHEPHERD and non-preemptive
SHEPHERD outperform Clockwork by 3.7×. Since Clock-
work prioritizes requests with tighter deadlines, it always ends
up prioritizing high-latency requests of stream B over low-
latency requests of stream A. In contrast, SHEPHERD’s batch
generation prioritizes larger batches — since stream A’s low-
latency requests can accumulate much larger batches under
the 250ms SLO (e.g., 128 sized batches with 32ms latency)
and achieve much higher goodput. Prioritizing stream A’s
requests allows SHEPHERD to leverage the limited GPU re-
source to complete more requests in the same time span. In
more detail, after a batch of stream B (comprising a single
request) scheduled at time t = 1ms completes after 79ms,
SHEPHERD prioritizes stream A’s queued requests over the
remaining requests of stream B. With an SLO of 250ms, most
requests in stream A can meet their SLO deadlines, permitting
SHEPHERD to achieve high goodput even without preemption.

However, with a reduced SLO of 90ms, non-preemptive
SHEPHERD cannot complete executing larger batches of
stream A’s requests within their SLO deadline since it waits
for stream B’s batch to finish (i.e., at t = 80ms). Thus, the per-
formance for non-preemptive SHEPHERD is similar to Clock-
work — most of stream A’s requests fail to meet their dead-
line. With preemption, a large batch of stream A’s requests
preempts the scheduled (much smaller) batch of stream B’s
requests, allowing most requests of stream A to finish within
the deadline. As such, SHEPHERD outperforms both its non-
preemptive variant and Clockwork by 6.2×. Note that the per-
formance for heuristic-driven and non-preemptive approaches
can be made arbitrarily worse than SHEPHERD by increas-
ing stream A’s burst size and reducing its request execution
latency, as discussed in §2.2 and Theorem 5.1, respectively.

Benefits of HERD (Figure 11(b)). We use the same setting
as the large-scale emulation in §7.1 and vary the number of
group-worker limit G for HERD (§4). With a group-worker

R
N

18

R
S

26
9

R
N

50

R
N

34

R
N

10
1

R
N

15
2

D
N

12
1

D
N

16
9

D
N

20
1

D
N

16
1

R
S

50

R
S

10
1

R
S

26
9

B
E

R
T

G
N I3

R
C

N
N

DNN Model

0

2.5

5

7.5

10

P
er

ce
nt

ag
e(

%
) Execution delay

Preemption delay

Figure 12: Preemption overheads. The preemption delay and ad-
ditional execution delay relative to the normal batch executions for
most of our evaluated models remains below 5%.

streams # models # workers solver network loading
200,000 200 200 0.55 0.19 0.71
400,000 400 400 2.51 0.35 1.23
600,000 600 600 4.28 0.51 1.84
800,000 800 800 8.53 0.62 2.41

1,000,000 1,000 1,000 13.26 0.90 3.14

Table 5: Components of the periodic planning latency (in seconds).

limit of G = ∞, SHEPHERD always chooses a group size
equal to the number of workers. As such, it reduces to the
online global approach, observing the same scalability limit
as Clockwork (Figure 10). With a group-worker limit of G =
1, SHEPHERD cannot efficiently multiplex across streams,
leading to constantly lower goodput compared to SHEPHERD
with multiple workers. As such, HERD allows SHEPHERD to
achieve a goodput that is 2.5× and 1.7× higher than the two
grouping alternatives, respectively, at 400 workers.

7.3 Understanding SHEPHERD Overheads
Finally, we evaluate the preemption and periodic planning
overheads in SHEPHERD to show that neither impact SHEP-
HERD’s performance benefits in any significant manner.

Preemption overheads (Figure 12). As discussed in §6,
efficient preemption should minimize two overheads: (1) pre-
emption delay, or the time between from the preemption being
requested and actually being completed, and (2) execution
delay, the additional latency introduced by exit points for
normal batch execution. We achieve a reasonable trade-off
between these two overheads by specifically tailoring appro-
priate number of exit points for each model listed in Table 4.

We measure the relative preemption overheads introduced
by SHEPHERD, i.e., the preemption and execution delay rela-
tive to normal batch execution time, averaged over batch sizes
1–128. For most models, both the preemption delay and the
extra execution delay are well below 5%.

Periodic planning overheads in HERD (Table 5). The pe-
riodic planning latency in HERD consists of three parts: (1)
the solver latency for solving the ILP (Eq. 2), (2) the network
latency for broadcasting the plan to schedulers and workers,
and, (3) the loading latency for loading the models from CPU
memory to GPU on each worker. We run large-scale emula-

798 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tion to divide the system into 10 serving groups, and measure
these latencies with different number of streams, models, and
emulated workers. The solver latency accounts for most of
the planning time, taking 13.26 seconds for 1 million streams
and 1k workers. Network latency is always less than a sec-
ond, while model loading time increases with the number of
models. Even so, the total planning latency is always much
smaller than HERD’s scheduling period, which is tens of min-
utes. Moreover, the solver and network latency for the next
planning phase can be pipelined with the current online serv-
ing phase, ensuring that planning is never a bottleneck.

8 Discussion and Caveat
We now outline avenues of future research in SHEPHERD.

Group predictablility under different workloads. Al-
though we have demonstrated group predictability using two
representative workloads, we note that the number of streams
(i.e., group size) to achieve sufficient group predictability may
be different for real-world workloads. With insufficient pre-
dictability, HERD may under or overprovision resources for
some groups, although FLEX would still provide the same
performance guarrantee within each group since it does not
rely on predictability. Moreover, group predictability itself
is rooted in statistical multiplexing theory, and holds when
a large enough number of request streams in the workload
have statistical independence [33–35]. While well-exploited
in the networking community to achieve high utilization under
bursty network traffic patterns [15–18], more in-depth quanti-
tive analysis of group predictability for real-world inference
serving workloads is important future work.

Model affinity vs. degree of multiplexing. Recall from
§4 that HERD includes an affinity-set surjectivty constraint,
which requires that models assigned to the same group j have
divergence less than K. With a small K, HERD will break mod-
els into more groups, with each group containing fewer but
more similar models, i.e., models with similar model affinity
values. While this enables tighter performance guarantees in
FLEX, it also reduces the degree of multiplexing within each
group, since GPU workers in each group can serve streams
across a smaller set of models. Although a single affinity
group (i.e., K=∞) yields a looser competitive ratio, our evalu-
ation shows that it still results in high empirical performance
for the MAF workload. Finding an optimal value of K is
promising future work.

Fairness across request streams. Similar to prior serving
system designs [6, 10], we focus on the isolated GPU cluster
settings where fairness across request streams and models is
not a major concern. Fairness can be an important metric to
extend our design to multi-user or cloud scenarios.

Dynamic model swapping. Similar to prior work [6], SHEP-
HERD only loads models onto GPU memory at the start of
a planning period. An alternative solution is to dynamically
swap models between GPU and CPU memory on-demand dur-

ing online serving [10]. However, since such swaps are likely
to take much longer than serving a request, its cost must be
weighed against the potential performance gains from swap-
ping in a new model. We leave incorporating this decision as
a part of online serving as future work.

Large DNN models. If a DNN model is so large that it
cannot be co-located with other models in GPU memory,
HERD must place it in an isolated group with reduced degree
of multiplexing. It is possible, however, to break such large
models into smaller partitions [36] to group them with other
models for better multiplexing.

9 Related Work
We discussed existing model serving systems in §2; we now
discuss prior work related to SHEPHERD in other areas.

Preemption for ML workloads. PipeSwitch [21] allows
preempting a training tasks to execute an inference task.
Irina [11] applies preemption to improve average latency for
inference tasks. LazyBatching [8] is an inference system that
can preempt and stall the currently ongoing batch. SHEPHERD
leverages preemption approaches outlined in these works to
achieve guaranteed high goodput. Concurrent to our work,
REEF [31] leverages ISA support for preemptions [37, 38]
in recent AMD GPUs to enable µs-scale preemptions. While
our current implementation still implements preemptions in
software, it can readily incorporate hardware-based preemp-
tions. Future improvements in this space will only improve
SHEPHERD’s performance further.

Online job scheduling. The theory community has long
considered issues of prioritization and preemption in online
job scheduling [19, 20, 24–27]. Its adaptation to model serv-
ing, however, has a few nuances — the scheduler for model
serving must also decide how to optimally execute requests
across batches while taking into account model-specific batch-
latency relationships. Our scheduling algorithm exploits both
to achieve strong performance guarantees.

10 Conclusion
We have presented SHEPHERD, a distributed a DNN model
serving system. SHEPHERD employs a periodic planner that
aggregates request streams into moderately-sized groups for
high utilization and scalability, and an online scheduler that
employs a novel online algorithm to provide guaranteed good-
put. Evaluation over production workloads shows that SHEP-
HERD achieves 17.2× higher goodput and 1.8× higher utiliza-
tion than prior approaches and scales to hundreds of workers.

Acknowledgement
We thank our shepherd Ravi Netravali and the anonymous
NSDI reviewers for their insightful feedback. This research is
supported by NSF Awards 2112562, 2047220, 1730628 and
gifts from AWS, Ant Group, Ericsson, Futurewei, Google,
Intel, Meta, Microsoft, NetApp, Scotiabank, and VMware.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 799

References
[1] Kim Hazelwood, Sarah Bird, David Brooks, Soumith

Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed
Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. Ap-
plied machine learning at facebook: A datacenter infras-
tructure perspective. In HPCA, 2018.

[2] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas
Chen, Sy Choudhury, Marat Dukhan, Kim Hazelwood,
Eldad Isaac, Yangqing Jia, Bill Jia, et al. Machine learn-
ing at facebook: Understanding inference at the edge.
In 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 331–344.
IEEE, 2019.

[3] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey
Zumar, Ion Stoica, Joseph Gonzalez, and Alexey Tu-
manov. InferLine: latency-aware provisioning and scal-
ing for prediction serving pipelines. In SoCC, pages
477–491, 2020.

[4] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. INFaaS: Automated Model-less
Inference Serving. In ATC, pages 397–411, 2021.

[5] Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S
McKinley, and Björn B Brandenburg. Swayam: dis-
tributed autoscaling to meet slas of machine learning
inference services with resource efficiency. In Middle-
ware, pages 109–120, 2017.

[6] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: a gpu cluster engine for
accelerating dnn-based video analysis. In Proceedings
of the 27th ACM Symposium on Operating Systems Prin-
ciples, pages 322–337, 2019.

[7] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia
Smirni. Batch: machine learning inference serving on
serverless platforms with adaptive batching. In SC:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–15.
IEEE, 2020.

[8] Yujeong Choi, Yunseong Kim, and Minsoo Rhu. Lazy
Batching: An SLA-aware Batching System for Cloud
Machine Learning Inference. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer Ar-
chitecture (HPCA), pages 493–506. IEEE, 2021.

[9] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. Mark: Exploiting cloud services for cost-effective,
slo-aware machine learning inference serving. In ATC,
pages 1049–1062, 2019.

[10] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving dnns like clockwork: Performance pre-
dictability from the bottom up. In 14th {USENIX}
Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 20), pages 443–462, 2020.

[11] Xiaorui Wu, Hong Xu, and Yi Wang. Irina: Accelerating
DNN Inference with Efficient Online Scheduling. In
4th Asia-Pacific Workshop on Networking, pages 36–43,
2020.

[12] Peter Mattson, Vijay Janapa Reddi, Christine Cheng,
Cody Coleman, Greg Diamos, David Kanter, Paulius
Micikevicius, David Patterson, Guenther Schmuelling,
Hanlin Tang, et al. Mlperf: An industry standard bench-
mark suite for machine learning performance. IEEE
Micro, 40(2):8–16, 2020.

[13] AWS. Deliver high performance ML inference with
AWS Inferentia. https://d1.awsstatic.com/
events / reinvent / 2019 / REPEAT _ 1 _ Deliver _
high_performance_ML_inference_with_AWS_
Inferentia_CMP324-R1.pdf., 2019.

[14] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud
provider. In ATC, pages 205–218, 2020.

[15] Ravi R Mazumdar. Performance modeling, stochastic
networks, and statistical multiplexing. Synthesis Lec-
tures on Communication Networks, 6(2):1–211, 2013.

[16] Basil Maglaris, Dimitris Anastassiou, Prodip Sen, Gun-
nar Karlsson, and John D Robbins. Performance models
of statistical multiplexing in packet video communica-
tions. IEEE transactions on communications, 36(7):834–
844, 1988.

[17] Kavitha Chandra. Statistical multiplexing. Wiley Ency-
clopedia of Telecommunications, 5:2420–2432, 2003.

[18] Hiroshi Saito, Masatoshi Kawarasaki, and Hiroshi Ya-
mada. An analysis of statistical multiplexing in an atm
transport network. IEEE Journal on Selected Areas in
Communications, 9(3):359–367, 1991.

[19] S. Goldman, Jyoti Parwatikar, and S. Suri. Online
scheduling with hard deadlines. J. Algorithms, 34:370–
389, 2000.

[20] Richard J. Lipton and Andrew Tomkins. Online interval
scheduling. In In Proceedings of the Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 302–
311, 1994.

800 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://d1.awsstatic.com/events/reinvent/2019/REPEAT_ 1_Deliver_high_performance_ML_inference_with_AWS_ Inferentia_CMP324-R1.pdf.
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_ 1_Deliver_high_performance_ML_inference_with_AWS_ Inferentia_CMP324-R1.pdf.
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_ 1_Deliver_high_performance_ML_inference_with_AWS_ Inferentia_CMP324-R1.pdf.
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_ 1_Deliver_high_performance_ML_inference_with_AWS_ Inferentia_CMP324-R1.pdf.

[21] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin.
Pipeswitch: Fast pipelined context switching for deep
learning applications. In 14th {USENIX} Sympo-
sium on Operating Systems Design and Implementation
({OSDI} 20), pages 499–514, 2020.

[22] Boris N Pshenichnyj. The linearization method for
constrained optimization, volume 22. Springer Science
and Business Media, 2012.

[23] Christos H Papadimitriou and Kenneth Steiglitz. Com-
binatorial optimization: algorithms and complexity.
Courier Corporation, 1998.

[24] Ran Canetti and Sandy Irani. Bounding the power of
preemption in randomized scheduling. SIAM Journal
on Computing, 27(4):993–1015, 1998.

[25] Xujin Chen, Xiaodong Hu, Tie-Yan Liu, Weidong
Ma, Tao Qin, Pingzhong Tang, Changjun Wang, and
Bo Zheng. Efficient mechanism design for online
scheduling. Journal of Artificial Intelligence Research,
56:429–461, 2016.

[26] Sanjoy Baruah, Gilad Koren, Decao Mao, Bhubaneswar
Mishra, Arvind Raghunathan, Louis Rosier, Dennis
Shasha, and Fuxing Wang. On the competitiveness of
on-line real-time task scheduling. Real-Time Systems,
4(2):125–144, 1992.

[27] Sally A Goldman, Jyoti Parwatikar, and Subhash Suri.
Online scheduling with hard deadlines. Journal of Algo-
rithms, 34(2):370–389, 2000.

[28] Pytorch. https://pytorch.org/.

[29] Apache tvm: An end to end machine learning compiler
framework for cpus, gpus and accelerators. https://
tvm.apache.org/.

[30] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[31] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo
Chen. Microsecond-scale preemption for concurrent
{GPU-accelerated}{DNN} inferences. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 539–558, 2022.

[32] Pytorch hub. https://pytorch.org/hub/.

[33] Kavitha Chandra. Statistical multiplexing. Wiley Ency-
clopedia of Telecommunications, 5:2420–2432, 2003.

[34] Basil Maglaris, Dimitris Anastassiou, Prodip Sen, Gun-
nar Karlsson, and John D Robbins. Performance models

of statistical multiplexing in packet video communica-
tions. IEEE transactions on communications, 36(7):834–
844, 1988.

[35] Ward Whitt. Tail probabilities with statistical multi-
plexing and effective bandwidths in multi-class queues.
Telecommunication Systems, 2(1):71–107, 1993.

[36] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Joseph E Gonzalez,
et al. Alpa: Automating inter-and intra-operator par-
allelism for distributed deep learning. arXiv preprint
arXiv:2201.12023 (OSDI), 2022.

[37] GPUOpen. Amd gpu isa documentation.
https : / / gpuopen . com / documentation /
amd-isa-documentation, 2021.

[38] Nathan Otterness and James H Anderson. Amd gpus as
an alternative to nvidia for supporting real-time work-
loads. In 32nd Euromicro Conference on Real-Time Sys-
tems (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

[39] Richard Hamming. Numerical methods for scientists
and engineers. Courier Corporation, 2012.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 801

https://pytorch.org/
https://tvm.apache.org/
https://tvm.apache.org/
https://pytorch.org/hub/
https://gpuopen.com/documentation/amd-isa- documentation
https://gpuopen.com/documentation/amd-isa- documentation

A Competitive Ratio without Preemption
Theorem A.1 No non-preemptive, deterministic algorithm
can achieve a bounded competitive ratio for online serving.
Proof Consider a batch X1 with |X1|= 1, ℓX1 = 1 and dX1 = 1
that arrives at time t = 0. A deterministic non-preemptive al-
gorithm B serves X1 with probability p = {0,1}. We consider
two scenarios after the scheduling decision at t = 0: (A) no
request arrives afterwards, and therefore, the optimal solution
has a total value of 1, and algorithm B has a total value of p;
(B) another batch X2 arrives at time t = ε with |X2|= ω→ ∞,
ℓX2 = 1 and dX2 = 1+ ε: the optimal solution can achieve a
total value of ω by ignoring X1, and algorithm B has a total
value of p+(1− p) ·ω, since it is non-preemptive.

Note that the competitive ratio should be no less than the
ratio between the optimal solution over algorithm B in either
scenario. As such, by combining both cases we show the
competitive ratio c of algorithm B should be no less than:

c≥ max
p={0,1}

(
1
p
,

ω

p+(1− p) ·ω)→ ∞ (5)

which completes the proof ■

B Competitive Ratio Analysis for FLEX

We define a schedule σ to be a sequence of batch executions
(B, tB), where tB is the start time of batch B in the schedule σ.
Note that since we allow preemption, some batches may get
preempted and never complete; we use σc ⊂ σ to denote the
set of completed batches in σ and σp ⊂ σ to denote the set
of preempted batches. We say a schedule σ is feasible if (1)
at any time, at most one batch B ∈ σ is executing, and, (2) a
request is completed (i.e., executed without being preempted)
in at most one batch B ∈ σc. Let v(σ) = ∑

B∈σ

v(B, t) denote the

aggregated value of all batches in σ. We have,

v(σ) = v(σc)+ v(σp) (6)

We use standard competitive analysis to evaluate our algo-
rithm. We denote the schedule due to an algorithm A as σA,
and the optimal schedule constructed by a computationally
unbounded offline algorithm as σ∗. We say that algorithm A

is c-competitive if for any request stream we have:

c · v(σc
A)≥ v(σ∗) (7)

To better differentiate batch sequences (B, t) between
schedule σA and σ∗, we denote the batch sequences in σA

as (I, tI) and batch sequences in σ∗ as (J, tJ). Moreover, for
a batch I ∈ σA, we denote its (1) start time as tI ; (2) value
(batch size) as |I|; and (3) duration as ℓI . The same notation
rules apply to J ∈ σ∗.

We prove our main result in Theorem 5.2 in three steps.
First, we consider a simplification of the online batch schedul-
ing algorithm that only considers online batch scheduling for

𝝈𝑨

𝝈∗ 𝐽௡ାଵ

𝐼௜

…
𝐽ଵ 𝐽ଶ 𝐽௡

… 𝑥ଵ ⋅ |𝐼௜|

𝑥ଷ ⋅ |𝐼௜|

𝑥ଶ ⋅ |𝐼௜| ⋅
𝑙ሺ𝐽௞ሻ
𝑙ሺ𝐼௜ሻ

Figure 13: The value assignment rule from one I ∈ σA to Js ∈ σ∗.

𝝈𝑨

𝝈∗

𝜎஺
௣

𝜎஺
௖

𝝈𝑨

𝝈∗
𝐽௝𝐽௝

𝐼௜
 𝐼௜𝑡௜

 ൅ 𝑙ሺ𝐼௜ሻ 𝑡௜

𝑡௝
 ൅ 𝑙ሺ𝐽௝ሻ𝑡௝

𝑡௜
 ൅ 𝑙ሺ𝐼௜ሻ𝑡௜

𝑡௝
 ൅ 𝑙ሺ𝐽௝ሻ 𝑡௝

(a) 𝐽௝
 ∈ 𝜎∗ blocked by 𝐼௜

 ∈ 𝜎஺
 (b) 𝐽௝

 ∈ 𝜎∗ covered by 𝐼௜
 ∈ 𝜎஺

Figure 14: The block and cover relationship between batches in
σA and σ∗. Note that if J is identical to I then J is covered by I (by
our definition of blocking).

a single model running on a single GPU (§B.1). We then
extend the setting to include multiple models deployed on a
single GPU (§B.2), and finally consider the general case of
multiple models deployed across multiple GPUs (§B.3).

B.1 Single-GPU Single-Model Setting (sgsm)
For the single GPU, single model setting our key result is:
Theorem B.1 Algorithm 1 is 10.81-competitive with a single
model on a single GPU with preemption threshold λ≈ 2.38.
Proof To prove the above theorem, we bound the value of
batches in the optimal schedule (σ∗) by the value of completed
batches in A’s schedule (σc

A). To this end, our analysis builds
on the value assignment approach employed in [19, 20]. This
approach operates in two steps:

1. Mapping. First, we map each batch in σA to a set of
batches in σ∗ in a manner that ensures each batch in σ∗ is
matched to at least one batch in σA. This mapping identifies
batches in σ∗ that are related to batches in σA, either be-
cause they overlap in their execution durations, or the batches
contain common requests. More formally we define three
relationships to compare a batch J ∈ σ∗ with a batch I ∈ σA

(Figure 14):

M1. J is blocked by I if tI ≤ tJ < tI + ℓI ≤ tJ + ℓJ .

M2. J is covered by I if tI < tJ and tI + ℓI > tJ + ℓJ .

M3. J is intersected by I if neither R1 or R2 hold, and ∃r
such that, r ∈ I and r ∈ J.

We say J is temporally related to I if either R1 or R2 holds,
and spatially related if R3 holds.

2. Assignment. We assign values from each batch I ∈ σA to
its mapped batches J ∈ σ∗, which we denote as va(I,J). This
assignment must satisfy two properties. First, it should be
feasible, i.e., for any I ∈ σA its total assignment to all batches
in σ∗ should be equal to the value of I:

∑
J∈σ∗

va(I,J) = |I|, ∀I ∈ σA (8)

802 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Second, the assignment should be bounded, i.e., the total value
assigned from all I ∈ σc

A to to all J ∈ σ∗ must be greater
than or equal to a constant portion of the aggregated value of
J ∈ σ∗:

∑
J∈σ∗

∑
I∈σc

A

va(I,J)≥ r · ∑
J∈σ∗
|J| (9)

where r ∈ [0,1] is a constant. Note that for an assignment that
is both feasible and bounded, we have:

v(σc
A) = ∑

I∈σc
A

|I|

= ∑
I∈σc

A

∑
J∈σ∗

va(I,J)

= ∑
J∈σ∗

∑
I∈σc

A

va(I,J)

≥ ∑
J∈σ∗

r · |J|

≥ r · v(σ∗)

(10)

Based on the definition of competitive ratio in Eq. 7, Eq.
10 suggests a competitive ratio of c = 1

r .
The key tasks that remain are defining a feasible and

bounded assignment va, and quantifying the bound r achieved
by this assignment.

Defining the value assignment va: We are now ready to define
our value assignment; as Figure 13 shows, a batch I in σA

may cover n batches Jc1 to Jcn (see M2), block at most one
batch Jb (see M1) and intersect m batches Ji1 to Jim (see M3).
Our value assignment rules are as follows:
• A1. For a batch Jb that I blocks, va(I,Jb) = x1 · |I|.
• A2. For a batch Jc that I covers, va(I,Jc) = x2 · |I| · ℓJc

ℓI
, i.e.,

the assigned value is proportional to the duration of Jc.
Moreover, since the total duration of all covered batches
Jc1 to Jcn is no more than ℓI , the total assignment across
Jc1, ..., Jcn is no more than x2 · |I|.

• A3. For a batch Ji that I intersects, we assign a value of x3
to Ji for every request that is common between I and Ji, i.e.,
va(I,Ji) = x3 · |I∩ Ji|. Since each request will be executed
at most once in σ∗, the total assigned value from I across
all Ji is no larger than x3 · |I|.

• A4. If the total assigned value from I is less than |I|, we
assign the residual value of I to any arbitrary J ∈ σ∗.
It is clear to see that the above assignment ensures that the

total assignment from any batch I ∈σA to all J ∈σ∗ equals |I|,
i.e., satisfies the feasibility constraint Eq. 8, if (x1+x2+x3)≤
1. Next, we quantify for each batch J ∈ σ∗, the lower-bound
r to satisfy the boundedness constraint (Eq. 9).

3. Determining the bound r: A key challenge in determining
the bound r for value |J| relative to the value assigned to
it, as per the boundedness constraint Eq. 9, is that a batch
I ∈ σA and a batch J ∈ σ∗ can be related both temporally and
spatially as outlined in our mapping step. As such, each such

case requires analysis for the bound. As a concrete example,
consider a batch J blocked by a batch I (as per M1). One
possible reason J is not executed in σA is because a subset
JE ⊂ J of requests may already have been dequeued from
Qm in σA and thus will not be executed again. Based on the
dequeue condition in Algorithm 1, JE is the subset of all
requests in J that have already completed in σA at time tJ . On
the other hand, it may be the case that J is not executed in σA,
because the value added by subset of requests JR ⊂ J that still
remain to be executed (i.e., JR = J \ JE) is less than twice the
value of the batch executed by σA in its place, namely I.

To accurately capture the impact of both of the above ef-
fects in determining the bound r, we define virtual batches
JR and JE for each batch J ∈ σ∗ as above (see Figure 15). We
denote the fraction of requests in J which belong to JR as p,
so that JE contains the remaining 1− p fraction of requests.
Note that p can take different values in [0,1] for different J in
σ∗. Since the value of a batch equals batch size, we have:

|JR|= p · |J|
|JE |= (1− p) · |J|

(11)

Our next step is to determine the bound r based on JR and
JE independently (rR and rE , respectively), and take the tighter
of the two as our final lower bound, i.e., r = max(rR,rE).

Determining rR based on JR: We first consider the lower-
bound bound imposed on the value of J by only considering
the virtual batches JR. To this end, we confine ourselves to
assignment rules A1 and A2 corresponding to blocked and
covered batches, respectively.
• Case 1: I ∈ σA blocks JR. Since JR is blocked by I, it

must be the case that |JR| ≤ λ · |I|; otherwise JR would
have preempted I in σA at time tJ . Combined with the
assignment rule A1, this gives us:

∑
I∈σA

va(I,J)≥ x1 · |I|

≥ x1 · (
1
λ
· |JR|)

= x1 ·
1
λ
· p · |J|

(12)

• Case 2: I ∈ σA covers JR. To determine the lower bound
in this case, we exploit two properties. First, since I covers
JR, ℓI > ℓJR , i.e.,

ℓI > ℓJR (13)

Second, we exploit the property that a given model can al-
ways execute larger batches with smaller latency per record.
Since I covers JR,

|I|
ℓI

>
|JR|
ℓJR

(14)

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 803

𝝈∗
𝝈∗ሺ𝑹ሻ
𝝈𝑨

𝐽௝ሺ𝑅ሻ

𝐽௝

𝐼௜

𝝈∗
𝝈∗ሺ𝑹ሻ
𝝈𝑨

𝐽௝ሺ𝑅ሻ

𝐽௝

𝐼௜

𝝈∗
𝝈∗ሺ𝑹ሻ
𝝈𝑨

𝐽௝ሺ𝑅ሻ

𝐽௝

𝐼௜

(a) Case 1 (b) Case 2a (c) Case 2b

Figure 15: All possible conditions in σA for a batch J ∈ σ∗. Here schedule σ∗(R) denotes the batch sequence of (J(R), tJ).

Finally, as Figure 15(b)-(c) shows, this case can be further
broken down into the following two sub-cases based on the
relation between I and the real batch J:
– Case 2a: I blocks J. Assignment A1 gives us:

∑
I∈σA

va(I,J)≥ x1 · |I|

> x1 ·
|JR|
ℓJR
· ℓI

= x1 ·
p · |J|
ℓJR
· ℓI

> x1 · p · |J|

(15)

– Case 2b: I covers J: Assignment A2 combined with
Eqs. 13 and 14 applied to J gives us:

∑
I∈σA

va(I,J)≥ x2 · |I| ·
ℓJ

ℓI

> x2 ·
|J|
ℓJ
· ℓI ·

ℓJ

ℓI

> x2 · |J|

(16)

Note that in this case we do not need consider JR to
determine the bound since I directly covers J.

• Case 3: If neither of the above cases occur, then σA must be
idle at time tJ . This implies that JR must have been empty
(i.e., p = 0), otherwise JR would have been scheduled in
σA. Therefore, the following trivial bound holds:

∑
I∈σA

va(I,J)≥ p · |J|= 0 (17)

Combining all the cases (Eq. 12, Eq. 15, Eq. 16 and Eq. 17),
we have for any J ∈ σ∗:

∑
I∈σA

va(I,J)≥min(
p · x1

λ
,x2) · |J| (18)

Note that we omit the term from Case 3, since the corre-
sponding inequality is dominated by 1

2 · x1 · p with x1 ≤ 1.
Similarly, the term from Case 2a is also omitted since it is
dominated by Case 1.

Aggregating both sides of Eq. 18 over all J ∈ σ∗, we get:

min(
p · x1

λ
,x2) · ∑

J∈σ∗
|J| ≤ ∑

J∈σ∗
∑

I∈σA

va(I,J)

= ∑
I∈σA

∑
J∈σ∗

va(I,J)

= ∑
I∈σA

|I|

= v(σA)

(19)

Next, we show how we can upper-bound v(σA) by v(σc
A).

Note that batches in σA can form a chain based on the pre-
emption relation. For each chain, the next batch on the chain
preempts the previous one, and each chain must ended with a
batch in σc

A. We denote the chain which ends with batch |I|
as chain(I). Denote v(chain(I)) as the value of all the batches
in chain(I), since each batch in σA will be covered by exactly
one chain, we have

∑
I∈σc

A

v(chain(I)) = ∑
I∈σA

|I|= v(σA) (20)

Moreover, based on the preemption rule we have that for each
chain, the value of the ith batch in the chain must be no less
than λ× the value of the i−1th batch. As such, v(chain(I))
must be no higher than λ

λ−1 ×|I|, which indicates that:

v(σc
A) = ∑

I∈σc
A

|I|

≥ ∑
I∈σc

A

λ−1
λ
· v(chain(I))

=
λ−1

λ
· ∑

I∈σA

|I|

=
λ−1

λ
· v(σA)

(21)

Combined with Eq. 6, we have,

v(σA)≤ λ

λ−1
· v(σc

A)

=
λ

λ−1
· ∑

I∈σc
A

|I|

=
λ

λ−1
· ∑

J∈σ∗
∑

I∈σA

va(I,J)

(22)

804 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Combining Eqs. 19 and 22, we get:

∑
J∈σ∗

∑
I∈σA

va(I,J)≥
λ−1

λ
·min(

p · x1

λ
,x2) · ∑

J∈σ∗
|J| (23)

This gives us a bound rR = λ−1
λ
·min(p·x1

λ
,x2).

Determining rE based on JE : Note that all requests in JE must
have been completed in σA. So based on our assignment rule
A3, any request in JE must have been assigned a value of
x3 from one completed batch from σC

A (the set of completed
batches in σA). The above observation permits bounding |J|
based on JE as follows:

∑
I∈σc

A

va(I,J)≥ ∑
I∈σc

A

x3 · |I∩ J|

≥ x3 · |JE |
= (1− p) · x3 · |J|

(24)

Aggregating both sides of Eq. 24 over all J ∈ σ∗, we get
rE = (1− p) · x3.

4. Determining the optimal competitive ratio: Combining
the bounds rR and rE , we get the final competitive ratio:

csgsm =
1

max(rR,rE)

=
1

min
p∈[0,1]

{max{λ−1
λ
·min{ p·x1

λ
,x2},(1− p) · x3}}

(25)

To minimize the value of csgsm, we can select appropriate
values of x1, x2 and x3 subject to the feasibility constraint
x1 + x2 + x3 ≤ 1, and select appropriate value of λ ∈ (1,∞).
Note, however, that we cannot select p — it can take arbitrary
values in [0,1]; as such, we have to consider the worst-case
value for p to compute the competitive ratio. This provides
us the following optimization problem:

min
x1,x2,x3,λ

csgsm

s.t. x1 + x2 + x3 ≤ 1
1 < λ < ∞

(26)

Solving the above optimization problem (via numerical
methods [39]) yields the minimal value for csgsm =∼ 10.81
with preemption threshold λ≈ 2.38. ■

B.2 Single-GPU Multi-Model Setting (sgmm)
We now extend our analysis to the setting with k models
{m1, ...,mk} deployed on a single GPU. The competitive anal-
ysis for the multi-model case also leverages the linear rela-
tionship between batch size and batch execution latency: for
model mi, the execution latency for a batch B is αi · |B|+βi,
where αi and βi are model-specific constants
Theorem B.2 Algorithm 1 is 10.81 ·K-competitive with mul-
tiple models on a single GPU, with preemption threshold
λ≈ 2.38 and K defined in Eq. 4

Proof The proof shares a similar structure with the single-
GPU, single-model case, and is identical until we determine rR
based on JR. Even so, the analysis for Case 1 is still the same,
since the preemption rule remains unchanged. For Case 2,
however, Eq. 14 no longer holds, since with multiple models,
a batch with larger length may have a smaller value density
than a batch for a different model. However, with Eq. 1 we
can replace Eq. 14 with:

K · |I|
ℓI

>
|JR|
ℓJR

(27)

Now we show why Eq. 27 always holds. Assume I and J
are batches for models m1 and m2 respectively. We have

|JR|
ℓJR
· ℓI

|I| =
|JR|

α2 · |JR|+β2
· (α1 +

β1

|I|)

≤ |JR|
α2 · |JR|+β2

· (α1 +β1)

=
|JR| · (α1 +β1)

α2 · |JR|+β2

≤ K

(28)

Note that Line 1 to Line 2 is based on the implicit constraint
that |I| ≥ 1 since it can only take integer values.

To further improve the bound, we notice that as ℓI > ℓJR

always holds in Case 2, with Eq. 1 we have

α1 · |I|+β1 > α2 · |JR|+β2

→ |I|> α2 · |JR|+β2−β1

α1

(29)

On one hand, if α2 +β2−β1 > 0, we have α2 · |JR|+β2−
β1 > 0. Then we can replace I in the first line of Eq. 28 with
Eq. 29:

|JR|
ℓJR
· ℓI

|I| =
|JR|

α2 · |JR|+β2
· (α1 +

β1

|I|)

<
|JR|

α2 · |JR|+β2
· (α1 +

β1 ·α1

α2 · |JR|+β2−β1
)

=
|JR|

α2 · |JR|+β2
· (α1 · (α2 · |JR|+β2−β1)+β1 ·α1

α2 · |JR|+β2−β1
)

=
|JR|

α2 · |JR|+β2
· (α1 ·α2 · |JR|+α1 ·β2

α2 · |JR|+β2−β1
)

=
|JR|

α2 · |JR|+β2
· (α1 · (α2 · |JR|+β2)

α2 · |JR|+β2−β1
)

=
α1 · |JR|

α2 · |JR|+β2−β1

≤ K

(30)

Then for Case 2a we will have:

∑
I∈σA

va(I,J)≥ x1 · |I|

>
x1 · p · |J|

K

(31)

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 805

For Case 2b we have:

∑
I∈σA

va(I,J)≥ x2 · |I| ·
ℓJ

ℓI

>
x2 · |J|

K

(32)

The analysis for Case 3 and JE is the same as the single
model case. Similar to Eq. 25, by combining all cases we can
calculate the competitive ratio csgmm for the multi-model case:

csgmm =
1

min
p∈[0,1]

(max(λ−1
λ
·min(p·x1

λ
, p·x1

K , x2
K),(1− p) · x3))

(33)
Since K ≥ 1, combining Eqs. 33 and 25 gives us:

csgmm ≤ K · csgsm ∀x1,x2,x3, p,λ (34)

As such, Algorithm 1 can always achieve a competitive ratio
of 10.81 ·K for the single-GPU, multi-model setting. ■

B.3 Multi-GPU Multi-Model Setting (mgmm)
Finally, we extend our analysis to the general case with k
models {m1, ...,mk} and N GPUs. The major difference lies
in the per-GPU preemption rule for the request arrival event —
the new preemption rule ensures that at any time, no available
batch will have a value λ× higher than the value of the cur-
rently running batches on any GPU. Moreover, the modified
dequeue rule ensures that in the multi-GPU case, a request is
completed in at most one batch in σA.

We have the following theorem for the general case.
Theorem B.3 For the multi-GPU, multi-model case, Algo-
rithm 1 is 12.62 ·K-competitive with preemption threshold
λ≈ 3.03, with K defined in Eq. 4.
Proof The proof follows the same structure as the single-
GPU, single-model setting as well. Define the schedule σA(u)
as the schedule of Algorithm A on GPU u ∈ [1,N] and σ∗(v)
as the optimal schedule on GPU v ∈ [1,N]. We have σA =⋃

u σA(u) and σ∗ =
⋃

v σ∗(v). Moreover, we define (u,v) as
a GPU pair between the schedule σA(u) and σ∗(v).

Value assignment rule between GPU pair (u,v) We apply
a similar value assignment rule in the basic case for each
GPU pair (u,v) in the general case. The major difference lies
in assignment rules A1 and A2, where we evenly spread the
value for I from each σA(u) to all σ∗(v) with different v.
• A1. For a batch Jb ∈ σ∗(v) that I ∈ σA(u) blocks,

va(I,Jb) =
x1
N · |I|.

• A2. For a batch Jc ∈ σ∗(v) that I ∈ σA(u) covers,
va(I,Jc) =

x2
N · |I| ·

ℓJc
ℓI

.
• A3. For a batch Ji ∈ σ∗(v) that I ∈ σA(u) intersects, we

assign a value of x3 to Ji for every request that is common
between I and Ji, i.e., va(I,Ji) = x3 · |I∩ Ji|.

• A4. If the total assigned value from I ∈ σA(u) is less than
|I|, we assign the residual value of I to a random J ∈ σ∗(v).
Similar to the basic case, the above pair-wise assignment

rule ensures the following property:

Feasibility: For any GPU u ∈ [1,N], with (x1 + x2 + x3)≤ 1,
the total assignment from any batch I ∈ σA(u) to all J in all
σ∗(v) equals |I|. That is:

∑
v∈[1,N]

∑
J∈σ∗(v)

va(I,J) = |I|, ∀I ∈ σA(u) (35)

Boundedness: Similar to the basic case (Eq. 9), the assignment
should be bounded. Here we want to show that the total value
assigned from all I in all σc

A(u) to all batches J in all σ∗(v)
must be greater than or equal to a constant portion of the
aggregated value of J in all σ∗(v). That is:

∑
v∈[1,N]

∑
J∈σ∗(v)

∑
u∈[1,N]

∑
I∈σc

A
(u)

va(I,J)≥ r ∑
v∈[1,N]

∑
J∈σ∗(v)

·|J|

(36)
where r ∈ [0,1] is a constant. Note that similar to the basic
case (Eq. 10), for an assignment that is both feasible and
bounded, we have:

v(σc
A) = ∑

u∈[1,N]
∑

I∈σc
A
(u)
|I|

= ∑
v∈[1,N]

∑
J∈σ∗(v)

∑
u∈[1,N]

∑
I∈σc

A
(u)

va(I,J)

≥ ∑
v∈[1,N]

∑
J∈σ∗(v)

r · |J|

≥ r · v(σ∗)

(37)

Eq. 37 suggests a competitive ratio of c = 1
r .

Determining the bound r: The key task that remains is to
quantify the bound r achieved by the assignment. Similar to
the basic case, this is done by bounding the values of J for
each σ∗(v) by values of I for each σA(u), based on both the
JE and JR parts.

Determining rR based on JR: We can apply the same analysis
as in the basic case for each GPU pair (u,v). Note that for
Case 1, the modified preemption rule ensures that at any time,
no available batch in σA will have a value λ× higher than the
value of the currently running batches on any GPU. As such,
the JR from any GPU u must have a value no higher than λ×
the value of the I blocks it in any u, which indicates:

∑
I∈σA(u)

va(I,J)≥
x1

N
· |I|

≥ x1

N
· (1

λ
· |JR|)

=
x1

N
· 1

λ
· p · |J|

(38)

806 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Moreover, the analysis for Case 2 and Case 3 follows the
same logic. Formally, for any u and J ∈ σ∗(v) we have:

∑
I∈σA(u)

va(I,J)≥


x1·p

λ
· |J|N , Case 1

x1·p·|J|
K·N , Case 2a

x2·|J|
K·N , Case 2b
p · |J|, Case 3

(39)

Since the above equation holds for each σA(u), we have:

∑
u∈[1,N]

∑
I∈σA(u)

va(I,J)≥min(
x1 · p

λ
,

x1 · p
K

,
x2

K
) · |J| (40)

Aggregating both sides of Eq. 39 over all J in all σ∗(v), we
get:

min(
x1 · p

λ
,

x1 · p
K

,
x2

K
) · ∑

v∈[1,N]
∑

J∈σ∗(v)
|J|

≤ ∑
v∈[1,N]

∑
J∈σ∗(v)

∑
u∈[1,N]

∑
I∈σA(u)

va(I,J)

= ∑
u∈[1,N]

∑
I∈σA(u)

|I|

= v(σA)

(41)

Next, we bound v(σA) by v(σc
A). We apply the same chain

analysis as we did for the basic case for each σA(u). More
specifically we have:

∑
I∈σc

A
(u)

v(chain(I)) = ∑
I∈σA(u)

|I| ∀u ∈ [1,N] (42)

Then based on the preemption rule we have:

v(σc
A) = ∑

u∈[1,N]
∑

I∈σc
A
(u)
|I|

≥ ∑
u∈[1,N]

∑
I∈σc

A
(u)

λ−1
λ
· v(chain(I))

=
λ−1

λ
· ∑

u∈[1,N]
∑

I∈σA(u)
|I|

=
λ−1

λ
· v(σA)

(43)

Combining Eqs. 41 and 43, we get:

∑
v∈[1,N]

∑
J∈σ∗(v)

∑
u∈[1,N]

∑
I∈σc

A
(u)

va(I,J)

≥λ−1
λ

min(
x1 · p

λ
,

x1 · p
K

,
x2

K
) ∑

v∈[1,N]
∑

J∈σ∗(v)
·|J|

(44)

This gives us a bound rR = λ−1
λ

min(x1·p
λ
, x1·p

K , x2
K).

Determining rE based on JE : Note that based on the dequeue
and preemption rule in Algorithm 1, some request in JE may
not have been completed in σA. Instead, it only ensures that
for any J ∈ σ∗(v), all requests in the corresponding JE must

have been (or being) executed in some σA(u). Since each of
the requests in JE gets assigned a value of x3 (based on A3),
we have the following bound:

∑
u∈[1,N]

∑
I∈σA(u)

va(I,J)≥ ∑
u∈[1,N]

∑
I∈σA(u)

|I∩ Ji|

≥ x3 · |JE |
= (1− p) · x3 · |J|

(45)

Note that Eq. 45 is in the exact same form as Eq. 40. So
following the same procedure from Eq. 41 to Eq. 44 we can
get:

∑
v∈[1,N]

∑
J∈σ∗(v)

∑
u∈[1,N]

∑
I∈σc

A
(u)

va(I,J)

≥λ−1
λ

(1− p) · x3 ∑
v∈[1,N]

∑
J∈σ∗(v)

·|J|
(46)

This gives us a bound rE = λ−1
λ
(1− p) · x3.

Determining the optimal competitive ratio cmgmm: Com-
bining the bounds rR and rE , we get the final competitive ratio:

csgsm =
1

max(rR,rE)

=
1

λ−1
λ
· min

p∈[0,1]
{max{min(p·x1

λ
, p·x1

K , x2
K),(1− p) · x3}}

(47)
Similar to the basic case, we can select appropriate values

of x1, x2, x3 and λ to minimize cmgmm.

min
x1,x2,x3,λ

cmgmm

s.t. x1 + x2 + x3 ≤ 1
1 < λ < ∞

■

Solving the above optimization problem yields the maximal
value for cmgmm =∼ 12.62×K with preemption threshold
λ≈ 3.03.

C Complexity Analysis for FLEX

Theorem C.1 FLEX has a worst-case complexity of O(G),
where G is the number of GPUs in the serving group.
Proof Batch generation (Algorithm 2) has a complexity of
O(|M| · |Q|) where |M| is the number of models queues with
newly enqueued requests since last update, and |Q| is the
largest queue size among these model queues. For each re-
quest arrival event, batch generation is triggered O(G) times.
Moreover, between every two invocations, at most one model
queue changes. Therefore, |M| is at most 2 for each invocation
(Line 2 in Algorithm 2). In addition, since each preemption
will increase the size for the running batch by at least λ×, each
GPU can only be preempted by at most O(logλ(|Q|)) times.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 807

Algorithm 2 Batch generation algorithm in FLEX

1: procedure BATCHGEN(n)
2: M← models with newly enqueued requests or currently

running on GPU n
3: for each model m ∈M do
4: Dequeue requests passing their deadlines from Q(m)

Line 5-13: Find largest feasible batch Bg(n,m) for model m
5: Candidate request set S← Q(m)
6: if Bc(n) uses model m then
7: S← Q(m)

⋃
Bc(n)

8: Bg(n,m)← /0

9: for request r in S with ascending deadline do
10: if r can meet SLO with batch size |Bg(n,m))| then
11: Add r to Bg(n,m)
12: else
13: Break
14: Bg(n)← Bg(n,m) with largest batch size among all models
15: Return Bg(n)

As such, the re-enqueue event (Line 19 and 11) will be trig-
gered by at most O(logλ(|Q|)) times for each GPU. The com-
plexity of enqueue operation is O(log(|Q|)) (Line 10), and
the complexity of re-enqueue operation is O(|Q|+ |Bc(n)|)
(Line 19). Note that |Bc(n)| can never be larger than |Q| by
definition. Note that |Q| and λ are constants. Based on the
above analysis, the total complexity for each request arrival
event and batch completion event is O(G). Similar analysis
applies for each batch completion event. Taken together, FLEX
has an overall complexity of O(G). ■

808 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Better Together: Jointly Optimizing ML Collective Scheduling and
Execution Planning using SYNDICATE

Kshiteej Mahajan∗, Ching-Hsiang Chu†, Srinivas Sridharan†, Aditya Akella$

University of Wisconsin - Madison∗, Facebook†, UT Austin$

Abstract: Emerging ML training deployments are trending
towards larger models, and hybrid-parallel training that is
not just dominated by compute-intensive all-reduce for gra-
dient aggregation but also bandwidth-intensive collectives
(e.g., all-to-all). These emerging collectives exacerbate the
communication bottlenecks despite heterogeneous network in-
terconnects with ample multipath opportunities. In this work,
we propose SYNDICATE, a systematic, general framework to
minimize communication bottlenecks and speed up training
for both state-of-the-art and future large-scale models and
interconnects. SYNDICATE proposes a novel abstraction, the
motif, to break large communication work as smaller pieces
as part of execution planning. SYNDICATE also does joint op-
timization of scheduling and execution planning by rethinking
the interfaces in the networking systems stacks used for ML
training. Motifs afford greater flexibility during scheduling
and the joint optimizer exploits this flexibility by packing and
ordering communication work so as to maximize both net-
work utilization and overlap with compute. This improves the
speed of training state-of-the-art large models by 21-74%.

1 Introduction
Training machine learning (ML) models is a common-case
workload at any data-driven enterprise. To keep up with evolv-
ing data and maintain a competitive edge, enterprises are
employing more sophisticated features and more complex
model architectures, and attempting to train faster at ever
larger scales and to deploy high-quality models frequently.

These trends are exemplified by the deep learning recom-
mendation model (DLRM). DLRM is used in recommenda-
tion systems at several large organizations. These models
use a mixture of continuous and categorical features obtained
from user data. The model architectures, which are themselves
rapidly evolving, uses a mixture of multi-layer perceptrons
and embedding table lookups. The model capacity and com-
pute is increasing exponentially year-on-year [24].

At production scale, such state-of-the-art models use a mix-
ture of data and model parallelism to efficiently scale-out to a
large number of machines in the training cluster. This induces
rich communication collectives such as all-reduce, all-to-all,
collective-permute, and all-gather [21,24]. The resulting com-
munication operations (comm-ops) are a major bottleneck to
end-to-end training performance [24].

Evolution in networking infrastructure in training clus-
ters [32, 35] (to include faster interconnects such as
NVLink/NVSwitch, RoCE, Infiniband and support faster

transports such as Remote Direct Memory Access (RDMA))
does not in itself help address these bottlenecks. These ad-
vancements need to be coupled with effective computation-
communication scheduling and execution planning optimiza-
tions. These optimizations hide communication by maximiz-
ing overlap with compute and help maximize utilization of
the networking infrastructure.

Unfortunately, existing scheduling optimizations [16, 18,
29] and execution planners [10,11,20,33,34] fall short. These
works make several restrictive assumptions limiting their ap-
plicability to simplistic models, training settings, and net-
works. Communication schedulers make assumptions about
the model and training architecture (simple layer-by-layer
models [29] with data-parallel training) or deployment mode
(Parameter Server-based [16, 18]), and the execution planners
make simplifying assumptions about the nature of comm-ops
(only all-reduce [10, 11, 20, 33, 34] or only push-pull [20]).

Moreover, existing solutions are point solutions in the op-
timization space and fail to jointly optimize scheduling and
execution planning concerns. Schedulers today are unaware
of the optionality during execution planning, such as parallel
execution of two comm-ops over non-overlapping network
communication channels, and might impose orders that fail
to leverage such opportunities during execution planning. As
a result, they leave significant room for optimization.

We seek a comm-op optimization framework that jointly
optimizes planning and scheduling, applies to state-of-the-
art large models with complex communication patterns, is
generalizable to future large models and arbitrary network in-
terconnects. Our framework should also encapsulates all pos-
sible optimization axes, and enables a systematic, thorough,
automatic search through the space for optimal strategies.

Enabling systematic joint optimization of scheduling and
execution planning is challenging. First, the communication
systems stacks used for ML training today place scheduling
and execution planning concerns in two different layers. The
scheduler is co-located with ML training frameworks (such as
PyTorch, TensorFlow) and the execution planner is co-located
with communication libraries (such as NCCL, MPI). These
are governed by two different developer communities and
the scheduler interacts with the execution planner via a nar-
row, one-way API to just submit comm-ops. Moreover, the
scheduler and the execution planner only accommodate fast,
deterministic procedures so as to enable tight co-ordination
across worker processes that peer with each other using paral-
lel programming frameworks (such as MPI) during training.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 809

Second, scheduling happens at the very coarse granularity
of collectives submitted by the training application which
limits scheduling flexibility as it leads to fewer opportunities
to reorder communication work in time and efficiently pack
communication work in space, i.e., over the heterogeneous
mix of communication channels and bandwidth available in
the networking infrastructure.

We propose SYNDICATE, a system for joint optimization of
scheduling and execution planning with several innovations:

• SYNDICATE proposes a novel abstraction, the motif,
to break large communication work in comm-ops into
smaller units of communication work. Motifs afford
greater flexibility, by helping pack and order communica-
tion work so as to maximize network multipath utilization
and to maximize overlap with compute.

• Similar to query optimization backed by a well-defined
relational algebra, we present a novel algebra atop motifs
that systematically codifies the search space of correct,
composable motif operators used to transform comm-ops
into motifs and enables comm-op optimization.

• SYNDICATE rethinks the interfaces in the commmuni-
cation stack and enables joint optimization via the joint
action of a control plane and a data plane. The former
executes a time-intensive, non-deterministic joint opti-
mization out-of-band without blocking the latter which
enables fast execution of tightly co-ordinated motifs.

• We blend techniques used for optimal tensor operator frag-
mentation [19], DAG scheduling [15] and query replan-
ning [22] to probabilistically search the joint optimization
space to yield near-optimal comm-op optimization plans.
We also introduces a novel shim-layer above existing com-
munication libraries to enforce these plans.

We implement the enforcer atop existing communication
libraries by extending the torch-ucc interface; the joint op-
timizer as a separate python process; and enable safe interac-
tion between the central optimizer and the enforcer via a two
phase commit protocol. We present the evaluation of several
state-of-the-art models on a 128-GPU cluster with rich multi-
path opportunities. SYNDICATE demonstrates 21–74% faster
training than the closest state-of-the-art [29] and is better than
hand-optimized trainers.

2 Background
The compute and capacity of models has been increasing
exponentially [1], with model training compute approaching
1000s of petaflop/s-days [9] and model capacity approach-
ing trillions of parameters [24]. To train ever larger models,
training clusters are scaling up to thousands of devices [21].

In this section, we give a short primer on the compute
parallelization strategies used for ML training and the ac-
companying communication operations (comm-ops) that are
issued. We also discuss how training network infrastructure
is evolvong to deal with higher network loads.

Bottom
MLP

Top
MLP

Emb
Lookup

Dense
Features

Sparse
Features

Sparse
Features

Emb
Lookup

Feature
Interaction

1

B

2

3 C

Model- to Data-Parallel
comm-ops: all-to-all

Sharded by Feature
Sharded by Batch

A

1

A

B

3

C

Model-Parallel2

Data-Parallel
comm-ops: all-reduce

Figure 1: DLRM Model

2.1 Parallelization Strategies
We exemplify the different parallelization strategies via the
Deep Learning Recommendation Model (DLRM). The largest
DLRM used in production has trillions of parameters [12, 24,
26], making DLRM training especially challenging. DLRM
uses a hybrid mix of parallelization strategies for different
model parts (similar to BERT [13], Megatron [30], GPT [9]).

Figure 1 shows the DLRM model architecture. The training
data comprises a mixture of dense continuous features and
sparse categorical features (one-hot encoded or multi-hot en-
coded data), which are first mapped to a common embedding
space using the bottom multi-layer perceptron (MLP) and
the embedding table lookups respectively. The output embed-
dings go through a feature interaction phase and are then fed
to the top MLP to get the recommender model output.
Data-Parallelism: With data-parallelism, all the model pa-
rameters are replicated across all the training devices and each
device has a worker process computing parameter gradients
in parallel. In the case of DLRM, the bottom MLP and top
MLP use data-parallelism for training in production. These
MLPs are compute intensive but not memory intensive and
the MLP parameters fit within a single device memory.
Model-Parallelism: Data-Parallelism does not work for mod-
els with large capacity and with input datasets that cannot be
trivially sharded into batches. With Model-Parallel training,
the model is partitioned (and not replicated) across different
devices. For DLRM, the embedding table lookup models and
the input tables are large and memory-intensive, and as a re-
sult are parititioned across different devices during training
resulting in model-parallel training.
Hybrid-Parallelism: As seen so far, different portions of
DLRM training use different parallelization strategies. This is
known as hybrid-parallelism. In the most general case, mod-
els can be replicated or partitioned in several different ways
during training [19, 21, 25], resulting in hybrid-parallelism.
FSDP: Fully Sharded Data Parallelism [8] is a memory-
efficient version of data-parallelism. It shards the model state
(weights, gradients, optimizer state) for each layer of the
model. During forward- or backward-propagation of a layer it
enables data-parallel computation by first doing an all-gather
of all the model state at all the devices and reshards the up-
dated state post-computation by doing a scatter. This leads

810 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

bwd
top + interact

all-reduce (ar)
top

Compute

Network

bwd
bott

a2a
emb-bwd

bwd
emb

ar
bott

fwd
emb

fwd
bott

a2a
emb-fwd

fwd
topG1 G3

G4

G
2

a2a emb-bwd
earliest start point2 1

3

Compute Stream Gaps =
G1+G2+G3 = 13.6% +
5.4% + 15.8% = 34.8%34

Communication Stream
Gaps = G4 = 6.3%

Figure 2: Gaps in DLRM Training Trace

Model
Parallel

Data
Parallel

1
1
1

2
2
2

3
3
3

Batch
Dimension

1 1 1
2 2 2
3 3 3

Batch
Dimension

Figure 3: Illustration of all-to-all collective in DLRM

Figure 4: State-of-the-art system architecture of training cluster such
as Nvidia DGX/HGX-like systems [24, 28]

to memory-efficiency and as a result allows to pack larger
models in the same cluster resources.

2.2 Communication Operations (Comm-Ops)
Different parallelism strategies induce different comm-ops.

With data-parallel training, gradients computed at each
worker process are aggregated layer-by-layer (during back-
ward pass). Each aggregation yields an all-reduce collective.

After the embedding lookups in DLRM (2 in Figure 1),
each device has a vector for the table lookup models resident
on those devices for all the samples in the batch, which needs
to be reorganized and sharded along the batch dimension. This
induces an all-to-all pattern of collective communication, as
shown in Figure 3.
Collectives from the MPI standard [23]: In the general case,
hybrid-parallel or FSDP model training [8, 14, 21] results in
several types of comm-ops, ranging from all-reduce, all-to-all,
collective-permute, all-gather, reduce-scatter to any collective
defined in the MPI standard [23].

2.3 Evolving Network Infrastructure
The aforementioned comm-ops push increasing amounts of
network traffic and the network infrastructure is adapting
with fatter topologies and faster interconnects to ensure the
needed throughput and latency.The network infrastructure in
a state-of-the-art training cluster [24, 28] is shown in Fig-
ure 4. Each node has multiple CPU cores and accelerators
such as GPUs, with frontend Network Interface Controllers

(NICs) connected to the host CPUs and a dedicated RDMA
NICs such as InfiniBand and RDMA over Converged Ethernet
(RoCE) for each of the GPUs connected via PCIe switches.
The RDMA NICs from across nodes can be connected with a
dedicated network. The extensible design of this node allows
to scale-out the network to interconnect thousands of nodes,
forming a data-center scale training cluster. This cluster has
heterogeneous mix of networking interconnects and protocols
with varying throughput and latency guarantees. There are
multiple communication channels between any two endpoints.
At an intra-node level, a pair of GPUs can communicate via
shared memory, NVLink, PCIe or the external network. At an
inter-node level, any two GPUs can communicate via GPUDi-
rect RDMA [27] or TCP/IP over Ethernet.

3 Motivation
Communication Bottleneck: Despite the networking infras-
tructure upgrades, the execution of comm-ops are a source of
excessive delays in training. As an example of the issues that
can arise in large model training, Figure 2 shows the execution
of CUDA stream kernels on a randomly chosen GPU during
a single iteration of production scale DLRM training 1. The
training creates a compute and a communication stream for
serialized execution of tensor operator kernels and comm-op
kernels, respectively. We note that there are several gaps dur-
ing execution. A gap on a stream occurs when the stream is
waiting for the result of kernel execution on the other stream.
The compute stream gaps are wider (34.8%) and cumulatively
larger than those in the communication stream (6.3%). This
means that communication is a training bottleneck as it blocks
compute for a third of the iteration. We now show that there
are several opportunities to optimize comm-ops.
Better Scheduling Opportunity: Reordering of comm-ops
improve compute/communication overlap. As shown in Fig-
ure 2 – 1 : the top MLP all-reduce comm-op can be split
judiciously and partially executed later to occupy the gap G4;
2 : as a result the all-to-all backward comm-op can be pulled

up to begin as soon as possible to reduce the gap G1.
Better Execution Planning Opportunity: Existing comm-
ops do not efficiently utilize multiple communication channels
available in heterogeneous network interconnects. We high-
light this in Fig.2 – 3 : both the all-to-all’s can be broken up
into smaller fragments of communication work and executed
one fragment at a time to reduce incast and improve through-

1We show accurate percentages and hide low-level details.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 811

Worker ProcessesWorker Processes

Model
(PyTorch / etc.)

Parallelization Strategy
(Data- / Model- / etc.)

Comm-Op Scheduler
(DDP / ByteScheduler /

etc.)

Comm-Op Execution
(NCCL / etc.)

Comm-Op Interface
(ProcessGroup / etc.)

App
Layer

Comm
Layer

Worker Processes

Existing System Stack

Comm Ops
collectives

1
2

3

Tensor Operator Graph

1
bwd c

Training DAG

sched order all devices

exec =
nccl ring ar

all-reduce

model.fwd(x) = op3(op2(x),op1(x))

dag = parallelize(model, devices)

2
bwd

3
bwd b
a

2
fwd

1
fwd 3

fwd

comm stream all devices

ba c

a

a
exec

a
exec

b
exec

c
exec

4

3

2

1

Figure 5: ML Training Communications Stack

put to reduce gaps G1 & G3; 4 : all-to-all and all-reduce can
be executed in parallel over communication channels with
non-overlapping interconnects to start all-reduce sooner and
drive higher network throughput to reduce gap G2.

Existing works to reduce communication overheads are
optimal for specific training scenarios (PS architecture [16],
layer-by-layer models [29], all-reduce collectives [20,34]; §7);
and the scheduling and execution planning techniques pro-
posed therein make restrictive assumptions, making it unclear
as to how to compose and apply these different techniques
towards hybrid-parallel training of large DLRM-like models.

A fundamental shortcoming of these works is that they do
not explore joint optimization (§3.1) mainly because existing
interfaces in the communication stack used for ML training
are not naturally amenable (§3.2). We also note that a collec-
tive is often too coarse-grained to schedule communication
work; breaking it up improves communication optimization
flexibility (§3.3). We describe these issues next.

3.1 Disjoint Scheduling, Execution Planning
3.1.1 Communication Stack Overview
Figure 5 shows the two sets of layers in the communication
stack used for ML training – the application (app) layer and
the communication (comm) layer – and the four steps leading
to execution of a comm-op over the network –
1 Model Definition: The user defines a model by compos-

ing various tensor operations. The example shows a model
declaration with three operators and its tensor operator graph.
2 Parallelization Strategy: The parallelize module (e.g.,
nn.DistributedDataParallel in PyTorch) takes the
model and the set of devices and converts the computation to
a training DAG. The vertices are compute-ops or comm-ops
and edges capture dependencies. Above we show the training
DAG for a single iteration; the ops in the DAG are managed

11

a
4b

d

c 1

1 1 4

4a3c

1

1d1b

1 1 4 1

1d1.5b 4c
5a 119.5

all-
reduce

tree ring ring+
overlap-a2a

tree+
overlap-a2a

b 1 1.2 1.5 1.8
c 3.2 3 4.2 4
d 1 1.2 1.5 1.8

all-to-all
(a2a)

default default + overlap-ar

a 4 5

Training DAG Execution Plan Cost Model

0Time

Compute

Network

Compute

Network

Current Optimal

Syndicate

x
Terminology

= x units time compute op

yz = y units time comm-op z

Runtime Schedule and Execution

Figure 6: Motivating Example

by spawning several worker processes on all the devices by
using a parallel programming library such as MPI.
3 Comm-Op Scheduling: The communication scheduler

takes the training DAG as input and decides a ordering for the
comm-ops that maximizes compute/communication overlap.
The scheduling procedure is deterministic and executes on all
the worker processes so that the comm-ops are issued (and
executed) every training iteration in the same order on all the
devices. The default PyTorch order is FIFO.
4 Comm-Op Execution Planning: The comm layer at all

the devices receive the comm-op from the app layer via an
interface with a well-defined API (e.g., ProcessGroup in Py-
Torch). The execution planner on receiving each comm-op,
assigns it an execution plan and queues it in the same order on
the devices’ i.e., GPU’s communication stream for serialized
execution. The example shows an all-reduce collective which
binds to NCCL’s ring all-reduce implementation during ex-
ecution. Each collective typically has several options for its
execution plan (e.g., ring or tree for all-reduce collective) and
execution planners, such as NCCL, have network topology
aware cost models that estimate the execution time for differ-
ent options. Current execution planners are greedy and select
the execution plan option with the least execution time. All
worker processes bind to the same execution plan.

Thus, scheduling is an app-layer concern today, governed
by schedulers in ML training frameworks as PyTorch, while
execution planning is a comm-layer concern governed by
execution planners in communication libraries as NCCL. As
these are not jointly optimized, several inefficiencies arise,
which we exemplify next.

3.1.2 Example to highlight suboptimality
Figure 6 illustrates the lost opportunities due to a lack of
joint optimization of scheduling and execution planning. The
network topology is similar to that illustrated in Figure 4.
The training DAG in this example has four collectives: a is
an all-to-all collective and b, c, d are all-reduce collectives.

812 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

There are several execution plan options for each collective.
There is a cost associated with each option which measures the
execution time over the network. For all-reduce, the execution
plan options are tree all-reduce or the ring all-reduce, both
using NVLink and GPUDirect RDMA. For all-to-all, there are
two options: pairwise exchange between all processes either
using NVLink and GPUDirect RDMA or using PCIe complex
and TCP/IP over ethernet. With the latter option for all-to-all,
all-to-all and all-reduce can be overlapped. We compare the
iteration time of the current solution against SYNDICATE.
Current Solution: The execution planner greedily selects
the fastest option for each collective resulting in a training
iteration time of 11 units.
SYNDICATE Solution: SYNDICATE realizes that by jointly
making changes to the scheduling order and execution plan
choices there is opportunity to overlap all-to-all with all-
reduce and speed-up communication by utilizing network
heterogeneity. The current solution’s scheduling order exe-
cutes all-to-all last and does not allow overlap. SYNDICATE’s
scheduling order executes all-to-all collective at the very be-
ginning and allows overlap. The execution plan choices made
by SYNDICATE are shaded in the execution plan cost model
in Figure 6. SYNDICATE’s execution planner is not greedy
and chooses a slower execution plan for all-to-all so as to
allow for parallel execution of all-to-all and all-reduce over
non-overlapping interconnects in the network. Overall, this
results in a training iteration time of 9.5 units.

Joint optimization is beneficial but current interfaces are
not amenable as we discuss next.

3.2 Interface constraints Joint Optimization
The training DAG scheduler in the ML processing frame-
works is unaware of optionality (e.g., an all-reduce can be
executed by as a ring all-reduce or a tree all-reduce) present
lower down the stack during execution planning. A trivial ex-
tension of the existing interface is to expose the training DAG
to the comm layer and push the scheduling concern down
the stack to co-locate it with the execution planner. Exposing
the training DAG down the stack is necessary to ensure that
any reordering of comm-ops down the stack does not lead to
dependency violations: a child comm-op cannot be ordered be-
fore a parent comm-op as otherwise it can lead to a deadlock.
This enables joint optimization without dependency viola-
tions. However, the joint optimization problem is NP-hard
and the joint optimization procedure requires a time-intensive,
randomized algorithm (§4.3). As a result, this procedure can
delay comm-op execution due to its time-intensive nature. To
make matters worse, this randomized procedure, may lead to
divergent scheduling orders across different processes. This
can lead to out-of-sync issues, wherein if the collectives are
not submitted in the same order across two different processes
then it results in a deadlock where each process waits for the
other process to issue the same collective as itself. As a result,
the existing interfaces are unable to trivially accommodate

Worker ProcessesWorker Processes

Model
(PyTorch / etc.)

Parallelization Strategy
(Data- / Model- / etc.)

Syndicate Enforcer

Comm-Op Interface
(ProcessGroup / etc.)

App
Layer

Comm
Layer

Worker Processes

Syndicate Stack

Comm Ops
collectives

1
bwd c

sched order

2
bwd

3
bwd b
a

2
fwd

1
fwd 3

fwd

2

1

Syndicate Central Optimizer

A

3

C

a = a

split-pairwise-a2a

b = b1
tree-ar

b2+
ring-ar

c = c

tree-ar

exec plan

acb1
b2

B

optimizer
plan

comm stream all devices
acb1

b2

Figure 7: Overview of SYNDICATE’s ML training Communication
Stack

joint optimization of these concerns.

3.3 Issues with Coarse-Grained Scheduling

Scheduling today happens at the granularity of user-submitted
comm-ops i.e., collectives. Communication libraries such as
NCCL, submit each comm-op as a kernel on the GPU com-
munication stream and a kernel cannot be context-switched
during execution. This means that once a comm-op is sched-
uled for execution it cannot be stopped mid-execution. This
leads to limited scheduling flexibility in space and time.

If the payload is very large then each network transfer in
the comm-op, once scheduled for execution, occupies the
network links for a long time. Likewise, if the pattern of
network transfers is large (e.g., a clique of network transfers)
then the comm-op gang schedules transfers on a large fraction
of network interconnects. Comm-ops, if scheduled as-is, thus
have large communication work orders and limit the ability
to both context switch and efficiently pack communication
work over available heterogeneous interconnects.

4 SYNDICATE Design
SYNDICATE changes the interfaces in the communication
stack to enable joint optimization of scheduling and execu-
tion planning. It builds on the motif abstraction to enable
deconstructing comm-ops into smaller work units along a
few dimensions and allow finer-grained scheduling. In this
section, we start with an overview of the new interfaces and
the new modules in SYNDICATE’s communication stack and
how it enables joint optimization (§4.1). We then explain the
motif abstraction (§4.2), the joint optimizer design (§4.3), and
enforcement of the joint optimizer’s decisions (§4.4).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 813

=Input Tensor =
P1

Broadcast Collective
as Single Motif

P2

P3

P1

P4

P1

P2

P3

P1

P4

P1

P2

P3

P1

P4
Broadcast Collective Segmented

into Two Motifs

Segment Input Tensor =

Figure 8: Example showing segmentation of broadcast collective.
Left half shows the broadcast collective as a single motif. Right half
shows broadcast collective segmented into two motifs, where each
motif broadcasts one half of the bytes from the original tensor.

4.1 Overview
Figure 7 shows SYNDICATE’s communication stack. Notably,
we propose two new entities: a central optimizer and an en-
forcer. SYNDICATE co-locates scheduling and execution plan-
ning concerns in the centralized joint optimizer. The central
optimizer generates an optimizer plan. This plan contains
instructions on how to execute as well as how to schedule the
comm-ops during training and is conveyed to the enforcer on
each worker process. In this regards, the central optimizer is
the the control plane while the enforcer is the data plane. We
propose interfaces (A , B , C) between the central optimizer
and the communication stack. These interfaces are out-of-
band and asynchronous, meaning that the data plane does not,
in any circumstances, block execution of a comm-op waiting
for control plane instructions.

We now go over the workflow in SYNDICATE. We divide
it into control plane workflow and the data plane workflow.

Stepping through the control plane workflow –
A Joint Optimization: The central optimizer pulls the train-
ing DAG from the app layer and the network topology from
the comm layer. The optimizer uses these inputs to construct
the execution plan cost model and does joint optimization to
yield the optimizer plan (§4.3).
B Optimizer Plan Distribution: The joint optimizer plan is
sent to the enforcer on all the worker processes (§4.3).
C Feedback: The central optimizer pulls comm-op perfor-
mance statistics from the enforcer to help refine the execution
plan cost model and potentially redo joint optimization (§4.4).

Stepping throught the data plane workflow –
1 Model Definition: The user defines a model by composing

tensor operators. This yields a computation graph (§3.1).
2 Parallelization Strategy: The computation graph is con-

verted to a training DAG (§3.1). The comm-ops from the
training DAG are submitted every training iteration as-is to
the comm layer in the default FIFO order without applying
any scheduling optimizations.
3 Optimizer Plan Enforcer: The comm-ops are executed

as instructed by the central optimizer (§4.3).

4.2 Motif Abstraction
A motif is a logical grouping of several point-to-point trans-
fers over the network. The enforcer schedules and executes

P1

all-to-all Collective as
Single Motif

P2

P3

P1

P4
all-to-all Collective Splined

into Two Motifs

P2

P3

P4

P1

P2

P3

P1

P4

P2

P3

P4

P1

P2

P3

P1

P4

P2

P3

P4

P1

P2

P3

P1

P4
Broadcast Collective

as Single Motif

P1

P2

P1 P1

P3

P4
Broadcast Collective Splined

into Two Motifs
Figure 9: The left half shows all-to-all and broadcast collective as a
single motif that bundles the transfers from all the source processes to
all the destination processes. The right half shows both the collectives
splined into two motifs, where each motif transfers the same payload
from the source process to one half of the destination processes.

communication work at the granularity of motifs. A motif
once issued to the device e.g., as a kernel on GPU commu-
nication stream is non-preemptible and occupies network
resources until its communication work is completed.

Conversion of comm-op to motifs: Each comm-op i.e., a
collective has two attributes: a payload (typically tensors) and
a pattern of network transfers. We propose two transforma-
tion operators to slice a comm-op either along the payload
dimension or the pattern dimension into one or more motifs.
As compared to the original comm-op, each motif represents
a smaller unit of communication work (with reduced payload
size and/or smaller pattern). Since SYNDICATE does schedul-
ing at the granularity of motifs, this enables finer-grained
scheduling with increased opportunities for making more fre-
quent scheduling decisions in time to enable better overlap of
compute/communication and packing smaller units of com-
munication work more efficiently over the network resources.

4.2.1 Motif Transformation Operators

Segmentation and Splining: SYNDICATE proposes two
transformation operators: segmentation and splining. Seg-
mentation splits the payload into smaller payload segments.
Splining splits the pattern of network transfers into smaller
patterns. Figure 8 and Figure 9 illustrates these operators.

Transformation Operator Algebra: We now formalize the
algebra for the motif transformation operators. The goal of
this algebra is to state concrete rules for transforming comm-
ops into motifs. This formalization succinctly encodes: (1)
correct and admissible motif transformations, (2) correct and
admissible transformation combinations, and (3) a structured
space for all possible operator compositions. We denote the
segmentation operator by s

= and the splining operator by p
=.

These rules are by no means exhaustive and are extensible.

814 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We first present the symbols used in the algebra.

∥ : Parallel Execution Permitted
s
= : Segmentation Transformation
p
= : Splining Transformation

N : Total number of Processes

PG[IDs] : Process IDs involved in a Collective

Ti[0:N,0:D] : N Tensors of size D on Process Pi with

Ti[j,0:D] destined for Process P j

MAA(Ti[0:N,0:D], PG[0:N]) : collective with all-to-all pattern of transfers

with tensor Ti as payload

executing on each Process Pi for all i in 0:N

M(Ti[ai:bi,xi:yi], PG[IDs]) : Motif M

executing on each Process Pi for all i in IDs

with payload = tensor Ti[j, xi:yi] from Process Pi

destined to Process P j for all j in ai:bi

Next, we present the algebraic rules that we use in the
context of DLRM to transform all-to-all into motifs. The
algebra for other comm-ops is in the Appendix §A.1.
Segmented All-To-All:

MAA(Ti[0:N,0:D], PG[0:N])
s
= ∥

D
d −1

s=0 M(Ti[0:N, s*d:(s+1)*d], PG[0:N])

With segmentation, the payload to be sent from a source
process to all the destination processes is split into segments
of size d (= Ti[0:N, s*d:(s+1)*d]). Segmentation of all-
to-all in this way, yields D

d motifs where each motif sends a
payload of size d from a source process keeping the set of
destination processes the same. d is a parameter and controls
the number of motifs associated with the input all-to-all.
Splined All-To-All:

MAA(Ti[0:N,0:D], PG[0:N])
p
= ∥

N
n −1

c=0 M(Ti[(i+c*n)%N:(i+(c+1)*n)%N, 0:D],

PG[0:N])

With splining, the pattern of network transfers in the all-to-all
with each source process sending the payload to all the N desti-
nation processes is broken down into smaller patterns, where
each source process Pi sends the same payload as before
to n destination processes (= (i+c*n)%N:(i+(c+1)*n)%N)).
Splining of all-to-all in this way, yields N

n motifs. Here, n pa-
rameterizes the all-to-all splining operator with larger n break-
ing the all-to-all into fewer motifs with larger sub-patterns.
Composition of Operators: Note that the all-to-all collective,
MAA(:), is in fact a special case single motif (with d = D and
n = N). These operators can be composed and recursively
break a motif into several more finer-grained motifs. While
fine-grained motifs are beneficial for scheduling flexibility,
there is a fixed overhead associated with dispatching a motif
as a kernel on GPU communication stream and launching it
during execution and too fine-grained motifs are not desirable
as these overheads can slow-down communication.
Physical Plan for Motif: Each motif bundles together several
network transfers. Physical plan determines the physical inter-
connects that each network transfer is assigned to. Figure 10

PCIeP1

P2

P3

P4

P1

=Input Tensor =

P1

Broadcast Collective

P2

P3

P1

P4

P1

P2

P3

P1

P4

P1

P2

P3

P4
Broadcast Collective as Three Motifs

Input Tensor =

P2

P3

P4
Physical Plan

PCIe
NVLink

Network Topology

memcpy

P1

P1 P1

NVLink
P1

P2

P3

P4

Figure 10: Physical Plan for Broadcast Collective

shows an example of a physical plan for the broadcast collec-
tive. The broadcast collective is first broken into three motifs.
The physical plan maps the motif to point-to-point network
transfers over various interconnects available in the network.
The figure also shows a toy network topology where the GPU
for process P1 connects to all other GPUs via both PCIe and
NVLink interconnects. The three motifs can be multiplexed
over different interconnects. The physical plan for the first
motif does a memcpy on process P1. The physical plan for the
remaining two motifs use PCIe and NVLink in a mutually
exclusive manner. This allows the point-to-point transfers in
the three motifs to execute in parallel, maximizing utilization
of multipath opportunities available in the network.

4.3 Central Optimizer
The central joint optimizer is responsible for minimizing train-
ing iteration time by minimizing communication overheads.
The optimizer determines the optimizer plan by systematically
navigating the vast space of potential schedules.

The optimizer plan has two pieces: the execution plan and
the scheduling order, containing instructions regarding how
to execute and how to schedule comm-ops respectively. The
execution plan transforms each comm-op in the training DAG
into one or more motifs. The scheduling order decides the
order of execution of motifs.
Exponential Search Space: There is a lot of optionality in
the execution plans for each comm-op. The transformation
operators can be composed to break a comm-op into motifs
in several different ways. Let us say that there are atleast O
execution plan options for each comm-op and there are C
comm-ops in the training DAG, then this results in OC unique
execution plan options for all the comm-ops in a DAG.
Cost of each Execution Plan: For a particular execution plan,
there is an optimal scheduling order for the motifs that max-
imizes overlap of compute/communication and minimizes
training iteration time. This training iteration time with the
optimal scheduling order is the cost of the execution plan.
Problem Statement: The centralized joint optimizer takes a

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 815

Pseudocode 1 Probabilistic Search
1: Training DAG with Greedy Execution Plan G∗

2: procedure MCMCSEARCH
3: C∗, sched_order∗ = optSched(G∗)
4: while true do
5: Gtemp = transform(G∗) ▷ change execution plan for a comm-op at random
6: Ctemp, sched_ordertemp = optSched(Gtemp)
7: α(Ctemp | C∗) = min(1, exp(β * (C∗ - Ctemp)))
8: G∗, C∗, sched_order∗ = Gtemp, Ctemp, sched_ordertemp with α prob.
9: end while

10: return G∗, sched_order∗
11: end procedure

12: procedure OPTSCHED
13: comm_q ▷ queue of ready communication motifs
14: compute_q ▷ queue of ready compute tasks
15: comp_time = 0
16: comm_time = 0
17: sched_order
18: while comp_time ≤ comm_time and comp_q != φ do
19: comp_task = fifoDequeue(comp_q)
20: comp_time += comp_task.time()
21: sched_order.schedule(comp_task) ▷ enqueue ready motifs, compute
22: end while
23: while comm_time ≤ comp_time and comm_q != φ do
24: comm_motif, startTime = criticalPathDequeue(comm_q)
25: comm_time = max(comm_time, startTime+comm_motif.time())
26: sched_order.schedule(comm_motif) ▷ queue ready motifs, compute
27: end while
28: return max(comm_time, comp_time), sched_order
29: end procedure

training DAG G and the network topology as inputs. We take a
training DAG that unrolls compute-ops and comm-ops across
two training iterations to enable cross-iteration optimizations.
The aim of the joint optimizer is to take these inputs and find
the execution plan with minimal cost. The joint optimizer
outputs the optimizer plan, which has the execution plan and
the scheduling order that minimizes overall cost.

4.3.1 Joint Optimization Procedure

The key idea in SYNDICATE is to do probablistic search over
the exponentially large search space. We use MCMC search
as outlined in Pseudocode 1.
MCMC Search: The joint optimizer starts with the default
execution plan for the training DAG (denoted by G∗), wherein
all the comm-ops are greedily assigned the execution plan
choice with the minimum possible execution time. Thereafter,
a comm-op is chosen at random and it is assigned a random
execution plan option. This changes the motifs associated
with this particular comm-op, keeping all the other motifs
constant and yields a temporary execution plan for the training
DAG (denoted by Gtemp). The cost i.e., the execution time of
this training DAG is calculated using the optSched (line 11
in Pseudocode 1) procedure which is a greedy scheduling
heuristic to always dequeue motifs on the critical path in the
DAG to maximize overlap of communication motifs with
compute tasks or other communication motifs (in case the
two communication motifs have non-overlapping physical
plans). This update to the execution plan is probablistically
sampled using the Metropolis-Hastings algorithm [17] and
retained in G∗ (line 8 in Pseudocode 1). This tends to behave
as a greedy search over the search space with an ability to
escape local minimas [17, 19].

Pseudocode 2 Distributed Optimizer Plan Enforcer
1: Exec Plan Ecolls = {...,collin

i : {moti f out
i, j }, ...} ▷ optimal execution plan

2: Scheduling Order S= {...,moti f out
i, j : seqnum

i, j , ...} ▷ optimizer scheduling order
3: Progress Queue pq ▷ thread-safe priority queue containing ready motifs

4: procedure ENFORCEEXECPLAN(collin) ▷ app submits comm-op to comm layer
5: {moti f out } = Ecolls[collin] ▷ comm-op is deconstructed into motifs
6: for all moti f out ∈ {moti f out } do
7: seqnum = S[moti f out]
8: pq.INSERT(priority=seqnum, moti f out)
9: end for

10: end procedure

11: procedure ENFORCEORDER ▷ runs in a separate thread and enforces order
12: nextMoti f SeqNum = 0
13: while true do
14: while pq.TOP().priority != nextMoti f SeqNum do
15: ▷ busy loop until next in order motif is ready
16: end while
17: nextMoti f SeqNum += 1
18: {moti f } = pq.POP()
19: {moti ftensors} = {moti f }.EXECUTE()
20: REPACK({moti ftensors})
21: end while
22: end procedure

Search Termination: MCMC search is terminated if the
search procedure exceeds the time budget assigned for search
or if the search procedure does not find a better joint optimizer
plan for more than half of the total elapsed search time.

4.4 Enforcer
The central optimizer commits the same joint optimizer plan,
comprising of the execution plan and the scheduling order to
the enforcer on each worker process. The enforcer is respon-
sible for tightly co-ordinating this plan across all the worker
processes during training so as to avoid deadlocks and out-
of-sync issues (§3.2). The application thread spawned by the
ML processing framework at each worker process submits
comm-ops to the comm layer every training iteration. With
SYNDICATE, these comm-ops are submitted one-at-a-time in
FIFO order. These comm-ops are intercepted by the enforcer.
The enforcer is responsible for execution of these comm-ops
and preparing the result of these comm-ops (tensors) to un-
block the next application thread operation (compute-op or
comm-op typically waiting on a CUDA stream) that is waiting
on these tensors.

The enforcer takes the responsibility of executing these
comm-ops as per the instructions of the optimizer plan and
preparing the output tensors once ready. It does so in three
steps. First, on intercepting a comm-op, it enforces the ex-
ecution plan by breaking it into motifs. Second, it enforces
the desired scheduling order of execution of motifs. Third,
as and when motifs complete, it checks for completion of
comm-ops and packages the output of individual motifs into
the comm-ops output tensors. Pseudocode 2 shows the proce-
dure to enforce the execution plan and the scheduling order
contained in the joint optimizer plan. The repacking of tensors
to comm-op output tensors happens after successful execution
of each motif (line 20 in Pseudocode 2).
Enforcing Execution Plan: The enforcer is layered as a
shim on top of existing comm-op execution layer i.e., differ-

816 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Compute (TFLOPS) 120 (FP32)/ 1000 (FP16)
HBM 256 GB, 7.2 TB/s
DDR 1.5 TB, 200 GB/s
Scale-up bandwidth 1.2 TB/s (uni-directional)
Scale-out bandwidth 8 x 100 Gbps (uni-directional)
Host NW 2 × 100 Gbps

Table 1: Configuration of each node in our cluster

ent communication libraries such as NCCL, MPI, UCX. The
app layer submits comm-ops to the comm layer using the
interface between them and is immediately trapped by the
enforceExecPlan procedure (line 4 in Pseudocode 2). This
procedure deconstructs the comm-op to one or more motifs,
each assigned a sequence number that captures the priority
of this motif in the current training iteration. This sequence
number is contained in the scheduling order of the joint opti-
mizer plan. These motifs are enqueued into a priority queue
using the sequence number as the priority.
Enforcing Scheduling Order: The enforceOrder proce-
dure (line 11 in Pseudocode 2) enforces the scheduling order
and runs in a thread separate from the enforceExecPlan
procedure. This procedure maintains a priority counter that is
incremented sequentially and is reset at the end of each train-
ing iteration. This counter maintains the priority of the next
expected motif(s). In case of overlapping motifs, two or more
motifs can be assigned the same priority. The enforceOrder
procedure busy loops until the priority of the motif at the
top of the priority queue matches the value in the priority
counter. It busy loops until the enforceExecPlan enqueues
the next expected motif. This ensures that the enforcer on all
the worker processes executes motifs in the same order.
Replanning: We measure the wait time in the busy loop and
send it as feedback to the central optimizer. If wait times in
every iteration consistently add up to more than a threshold
(= 5% of iteration time), then we redo joint optimization at
the optimizer to explore a different optimizer plan.

5 Implementation
We implement the central optimizer as a separate module
in python. The central optimizer simulates the execution of
different execution plan choices as part of the MCMC search
procedure until the search procedure terminates and yields
a joint optimizer plan. The central optimizer runs on one of
the machines in the training cluster and interacts with the
various enforcers on the worker processes via RPCs. We
build a two-phase commit (2PC) protocol using RPCs so
that the same joint optimizer plan is safely committed by the
central optimizer to all the enforcers. After the 2PC protocol
is complete, the enforcers switch to the new joint optimizer
plan from the subsequent training iteration. This ensures that
out-of-sync issues are avoided whenever transitioning to a
new joint optimizer plan.

We implement the enforcer in the Unified Collective Com-
munication (UCC) library interface [6]. We implement the
enforcer routines: enforceExecPlan routine in the main

Model A1 A2 A3 A4
Num parameters 95B 793B 845B 332B
MFLOPS per sample 89 638 784 60
Num of emb tables ∼ 100s ∼ 1000s ∼ 1000s ∼ 1000s
Emb table dim [4, 192] [4, 384] [4, 960] [32, 128]
([min, max], avg) avg: 68 avg: 93 avg: 231 avg: 72
Avg pooling size 27 15 17 49
Num MLP layers 26 20 26 43
Avg MLP size 914 3375 3210 682
Batch Size 512 1024 512 4096
Parallel Paradigm Hybrid Hybrid Hybrid FSDP [8]

Table 2: Models in our workload. Model A5 and A6 descriptions are
in §6.2.

thread and the enforceOrder routine in the progressLoop
thread in the torch-ucc interface [5].

6 Evaluation
6.1 Testbed
We experimented with our prototype on a production-scale
cluster using off-the-shelf NVIDIA HGX-2 based systems.
Specifically, each node hosts dual-socket CPUs, 8 NVIDIA
V100 GPUs that are fully-connected using NvSwitch, 2 front-
end host NICs, and 8 back-end RoCE NICs to allow RDMA
communication between GPUs across nodes. Table 1 summa-
rizes the node configuration; we deployed 16 such nodes.

The testbed runs CentOS-8 and CUDA 11.4 with NVIDIA
driver 470.57.02. For distributed training of DLRM models,
we used PyTorch 1.11 (nightly) with the extension of Process
Group UCC [5] and the latest UCC library [6], which can
take advantage of various transports such as NCCL 2.10.3 [2]
and UCX-based collectives [31] for dynamically selecting
optimal execution planing of collective operations.

6.2 Workloads
We tested SYNDICATE in production across a breadth of sce-
narios; see Table 2.
Vary Model Architectures: We experiment with three dif-
ferent model architecture families. A1-A4 are Recommenda-
tion Models (DLRM [24]), A5 is an NLP Model (XLM-R-
XL [14]), A6 is a CV Model (RegNetZ [7]).
Vary Model Sizes: We have progressively wider MLPs and
higher number of embedding tables from model A1 to A3.
Vary Parallelization Strategies: Models A1-A3 are Hybrid
Parallel. Model A4 is Hybrid Parallel with Fully Sharded Data
Parallel (FSDP) for data parallelism [8]. Model A5 is Model
Parallel. Model A6 is Data Parallel.
Vary Topologies: We vary the number of nodes (and hence
GPUs) used from our testbed.

6.3 Metrics
We measure the following metrics

(1) Training Throughput: We measure the training
throughput in terms of recommendation queries per second
(A1-A4) or words per sec (A5) or images per sec (A6). Higher
throughput is desirable.

(2) Compute Idling: We measure the idle gaps in the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 817

1 1 1 1 1 1
1.38

1.19 1.15 1.22
1 1

1.74
1.44 1.38

1.77

1.21
0.97

0

0.5

1

1.5

2

A1 A2 A3 A4 A5 A6

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Model Throughput for different Scenarios

BS+ HO Syndicate

Figure 11: Training performance for SYNDICATE compared against
baselines

GPU’s compute stream and report it as a percentage of the
total iteration time. Lower compute idling is desirable.

(3) Normalized Metric: We normalize the metric
(such as throuput) against baseline using the formula –
Metric with SYNDICATE

Metric with Baseline .
We run each experiment 5 times and plot the mean and

standard deviation.

6.4 Baselines
We compare SYNDICATE against the following baselines.

• ByteScheduler+ (BS+): ByteScheduler [29] proposes
LIFO scheduling policy for maximizing overlap of com-
pute and communication. Their implementation only
supports all-reduce in layer-by-layer models and does
not have support for all-to-all collectives. We emulate
ByteScheduler (BS) via our own implementation that
is co-located with PyTorch framework. To emulate the
bayesian optimizer used in ByteScheduler for tensor par-
titioning, we aid our BS scheduler with an oracle (BS+)
that optimally segments tensors in all collectives.

• Hand Optimized Model (HO): Existing execution plan-
ners do not optimize all-to-all collectives and existing
schedulers do not have support for DLRM-like models.
We hand optimize both the scheduling policy in PyTorch
(and also provide it the benefit of the segment oracle) and
the choice of execution plan for each collective (including
all-to-all) in the UCC library. In this regards, HO mod-
els the best possible solution with today’s placement of
scheduling and execution planning concerns in exiting
stacks.

• SYNDICATE-Exec (S-Exec): We disable scheduling opti-
mizations in SYNDICATE. We do so by using PyTorch’s
default scheduler that does FIFO scheduling to estimate
the cost of each execution plan during joint optimization.

• SYNDICATE-Sched (S-Sched): We disable execution plan-
ning optimizations in SYNDICATE. We do so by disabling
the MCMC search procedure and find the optimal schedul-
ing order using SYNDICATE’s scheduling heuristic (and
also provide it the benefit of the segment oracle to opti-
mally segment collectives).

6.5 Evaluation on Testbed
Figure 11 compares training performance for SYNDICATE
against the BS+ and HO baselines for all the models. The

0.5

1

2

4

8

16

8 16 32 64 128Th
ro

ug
hp

ut
 S

pe
ed

up

Number of GPUs

Speedup with Varying Topology

BS+ Syndicate Ideal

Figure 12: Speedup with varying topology sizes

Y-axis measures the model throughput normalized against
that of BS+.
Vary Model Sizes: SYNDICATE outperforms BS+ by a factor
of 1.74x, 1.44x, 1.38x for Models A1, A2, A3, respectively.
SYNDICATE outperforms HO baseline by a factor of 1.26x,
1.21x, 1.2x for Models A1, A2, A3, respectively. Note that
gains diminish with increased model sizes. The embedding
tables are not compute-intensive and do not contribute to in-
creasing the MFLOPs per sample but have a high memory
footprint (and contribute to higher number of parameters) and
induce progressively more communication bandwidth-hungry
all-to-all’s to transfer a large number of embeddings. On the
other hand, MLPs are compute intensive and increase the
model compute (MFLOPS per sample). On detailed analy-
sis, we found that the larger embedding table sizes amplify
the amount of time spent in all-to-all in a training iteration
to a higher degree than the contribution of increased MLP
compute time; which skewed the overall ratio of communi-
cation to compute and diminished the opportunity to overlap
communication and compute with SYNDICATE.
Vary Model Architectures and Parallelization Strategies:
SYNDICATE is effective across a range of parallelization
strategies and outperforms the BS+ baselines for A2 (hybrid-
parallel, recommendation model) by 1.44x, A4 (FSDP, rec-
ommendation model) by 1.77x, and A5 (model-parallel, NLP
model XLM-R-XL) by 1.21x. SYNDICATE is slightly worse-
off for A6 (data-parallel, RegNetZ) by 0.97x. For this model
there are no opportunities to overlap comm-ops as they have
linear dependency and BS+ solution (LIFO with oracle tensor
partitions) is the optimal solution (similar to other CV model
families, e.g., ResNet [29]). SYNDICATE is slightly worse-off
due to the overheads of SYNDICATE’s enforcer. The gains are
for A4 are significantly higher than that for A2 despite both
the models having similar model sizes and model architecture.
We found that FSDP parallel strategy for A4 offers a richer
set of collectives: reduce-scatter and all-gather in addition
to all-to-all and all-reduce. This allows SYNDICATE to find
a schedule and an execution plan that overlaps atmost three
comm-ops for A4 at the same time (compared to atmost two
for A2). For Model A5, we find that BS+’s LIFO schedule
is optimal and hence HO does not yield any improvements.
For A5, the 1.21x gains with SYNDICATE are due to better
execution plan with overlap of allgather and reduce-scatter
during backward pass. For Model A6, we observe no improve-
ments with SYNDICATE. This is primarily because A6 is data

818 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

grad
top-mlp

all-reduce(s)
top-mlp

grad
bottom-mlp

all-reduce(s)
bottom-mlp

all-to-all
emb-bwd

all-to-all
emb-fwd

fwd-prop
bottom-mlp

fwd-prop
top-mlp

grad
interaction

fwd-prop
interaction

grad
emb-lookup

fwd-prop
emb-lookup

all-to-all
data-prep

Backward Propagation Data Preparation Forward Propagation

1 2 3 4 5

Figure 13: DLRM Training DAG. The numbers represent the order in which the PyTorch modules (nn.DistributedDataParallel and
nn.EmbeddingBag) submit these collectives.

45% 41.5% 36.2 34.6% 27.4%
0

20
40
60
80

100

BS+ HO S-Exec S-Sched SyndicateC
om

pu
te

 Id
lin

g
%

Comparison of Compute Idling

Figure 14: Comparison of Compute Idling

Compute

Network

bwd
top + interact

all-reduce (ar)
top

bwd
bott

a2a
emb-bwd

bwd
emb

ar
bott

fwd
emb

fwd
bott

a2a
emb-fwd

fwd
top

fwd
top

a2a
prep

bwd
top + interactCompute

Network

bwd
bott

bwd
emb

ar
bott

fwd
emb

fwd
bott

a2a
emb-fwd

fwd
top

a2a
prep

fwd
top

ar
top

ar
top

aa
bw

a2a
bwd

bwd
top + interactCompute

Network

bwd
bott

bwd
emb

fwd
emb

fwd
bott

a2a
emb-fwd

fwd
top

a2a
prep

fwd
top

ar
top

ar
top

a2a
emb-bwd

ar
bott

ar
bot

Compute

Network

bwd
top + interact

bwd
bott

bwd
emb

fwd
emb

fwd
bott

a2a
emb-fwd

fwd
top

a2a
prep

fwd
top

ar
top

ar
top

a2a
emb-bwd

ar
bott

Compute

Network

bwd
top + interact

all-reduce (ar)
top

bwd
bott

a2a
emb-bwd

bwd
emb

ar
bott

fwd
emb

fwd
bott

a2a
emb-fwd

fwd
top

fwd
top

a2a
prep

BS+

HO

Syndicate-
Exec

Syndicate-
Sched

Syndicate

15.7%

17.1%

a2a
prep

25.9%

a2a
prep

30.6%

t = 0

Figure 15: Zooming in on every DLRM iterations for different sys-
tems

parallel and BS+ LIFO schedule is optimal for data parallel
models. Furthermore, the collectives in training DAG for A6
have serial dependencies across themselves with no room to
optimize execution plan by overlapping collectives.

Vary Topologies: Figure 12 compares throughput speedup
for Model A2 with SYNDICATE against BS+. We report the
speedup relative to throughput on a single node. We note
that SYNDICATE scales better than BS+ and is closer to ideal
speedup line. SYNDICATE is better at opportunistically utiliz-
ing the increasing communication bandwidth as the cluster
size scales out.

6.5.1 Sources of Improvement
Compute Idling:

Figure 14 compares the compute idling metric for SYNDI-
CATE against baselines for Model A2. We observe that com-
pute idling with SYNDICATE is 27.4% and is 1.64x, 1.51x,
1.32x, 1.26x less than the BS+, HO, S-Sched, S-Exec base-
lines, respectively. This shows that SYNDICATE is better at
overcoming communication bottlenecks and achieves higher
overlap of compute and communication than any other base-
line. It also highlights that joint optimization is beneficial as
it outperforms the S-Sched and S-Exec baselines. Next, we
zoom-in on each training iteration to better understand the
reasons for lesser compute idling.
Zooming in on an Iteration: We collect traces for execution
of DLRM with different systems using PyTorch Kineto [4].
We illustrate these traces2 to zoom-in on the execution of
compute and communication events on the GPU streams for
a single training iteration for Model A2 in Figure 15. We also
show the training DAG in Figure 13 for reference. We explain
these traces one system at a time.
BS+: BS+ prioritizes the execution of the most recently sub-
mitted collective (LIFO). For reference, Figure 13 shows the
order of submission of collectives by DLRM PyTorch trainer.
To achieve LIFO, tensors in collectives need to be optimally
segmented and as explained before, we use a segment oracle to
do so. BS+ is the worst-performing baseline. BS+ prioritizes
execution of a2a-emb-bwd over ar-top-mlp3, which is bene-
ficial. However, to its detriment, it also prioritizes execution
of ar-bottom-mlp over a2a-emb-bwd despite a2a-emb-bwd
being on the critical path. Delaying a2a-emb-bwd also delays
bwd-emb compute, which delays a2a-data-prep.
HO: To amend the drawbacks of BS+, we hand optimize the
scheduling order to prioritize the execution of a2a-emb-bwd
as well as a2a-data-prep before ar-bottom-mlp. We also add
support for greedy execution planning for a2a collective (ar
greedy optimization is available out-of-the-box). We observe
that HO improves the iteration time by 15.7% as compared
to BS+. We observe that the key reason for this improvement
is that HO unblocks bwd-emb and fwd-emb compute sooner

2We hide low-level events and absolute timing information for confiden-
tiality and legal reasons.

3We use a2a and ar as short hand for all-to-all and all-reduce, respectively.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 819

and enables better overlapping of ar-bottom-mlp with these
compute blocks.
S-Exec: With S-Exec, we observe that the iteration time is
further improved and is 17.1% better as compared to BS+. We
observe that despite placing limiting constraints on scheduling
(default FIFO scheduling), the joint optimizer in SYNDICATE
finds an execution plan that assigns two different communica-
tion channels to a2a and ar and enables better communication-
communication overlap by leveraging heterogeneity in the
network. The ar’s use a communication channel over NVLink
(for intra-node) and GPUDirect RDMA (for inter-node). The
a2a’s use a non-intersecting communication channel over
PCIe (for intra-node) and TCP/IP over Ethernet (for inter-
node). Such communication-communication overlap is not
possible with HO and BS+ as they use traditional communi-
cation stack and interfaces therein only permit one-at-a-time
execution of comm-ops with greedy execution plan.
S-Sched: With S-Sched, we observe that iteration time is
further improved and is 21.9% faster than BS+, despite the
constraints on execution planning (we also handicap S-Sched
with choosing the default execution plan option, which is
sub-optimal, for a2a). The primary reason for the improve-
ment is that SYNDICATE’s scheduler finds a superior comm-
op scheduling order and SYNDICATE’s enforcer enables en-
forcing of this order. SYNDICATE’s scheduling order moves
a2a-data-prep from the ith iteration and moves it back in
time as to overlap it with the fwd-top-mlp and bwd-top-mlp
compute blocks in the (i-1)th iteration. The enforcer design
enables this ordering due to the presence of busy loop in
the enforceOrder procedure in Pseudocode 2. The enforcer
blocks execution of all the comm-ops in the very first training
iteration until a2a-data-prep collective for the next batch is
submitted by the application layer. This increases the train-
ing iteration time only for the first iteration but significantly
improves the training iteration time for all the subsequent
iterations by unlocking pipelining.
SYNDICATE: With SYNDICATE, we observe that iteration
time is faster than all the baselines and is 30.6% faster than
BS+. We observe that as compared to S-Sched, SYNDICATE
is able to hide the overheads of ar-top-mlp by completely over-
lapping it with compute. SYNDICATE enables this by lever-
aging network heterogeneity and enabling communication-
communication overlap of ar-top-mlp and a2a-emb-bwd. S-
Sched, due to its execution planning constraints is unable
to do so and in its scheduling order has to partially push
ar-top-mlp to the very end where it cannot be overlapped
with compute. In this way, SYNDICATE’s joint optimizer max-
imizes compute-communication overlap by leveraging the
benefits of communication-communication overlap.
SYNDICATE’s Optimizer Plan for DLRM: Here, we summa-
rize the key highlights of the optimizer plan that SYNDICATE
finds for DLRM Model A2. In our study, we find that these
observations also hold for Model A1 and Model A3.
Data Prefetch The scheduling order proposed by the optimizer

2
6

2
9

2
12

2
15

2
18

Tensor Size (MB)

0

10

20

30

Th
ro

ug
hp

ut
 (G

B
/s

)

NCCL AR Alg. BW
Tree
Ring

2
6

2
9

2
12

2
15

2
18

Tensor Size (MB)

0

10

20

30

La
te

nc
y

(m
se

c)

NCCL AR Latency
Tree
Ring

Figure 16: Effect of different execution plans on all-reduce perfor-
mance

2
6

2
9

2
12

2
15

2
18

Tensor Size (MB)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

B
/s

)

UCC A2A Alg. BW w/ varied Splices
4 Processes
8 P.
16 P.
32 P.
64 P.
128 P.

2
6

2
9

2
12

2
15

2
18

Tensor Size (MB)

0

100

200

300

400

La
te

nc
y

(m
se

c)

UCC A2A Latency(50%ile) w/ Splices
4 Processes
8 P.
16 P.
32 P.
64 P.
128 P.

Figure 17: Effect of different execution plans on all-to-all perfor-
mance

moves a2a-data-prep back in time from the ith iteration to the
(i-1)th iteration. As mentioned before, this is made possible
by SYNDICATE’s enforcer.
a2a-ar Overlap The execution plan proposed by the optimizer
overlaps all-to-all collective with all-reduce collective over
two separate communication channels as explained before.
SYNDICATE binds both the a2a’s to the 4-way splined execu-
tion plan, the ar-bottom-mlp to the ring all-reduce execution
plan and the ar-top-mlp to the tree all-reduce execution plan.
This maximizes multipath network utilization and also en-
ables greater communication-compute overlap.

6.6 Microbenchmarks
We use the communication microbenchmark, PARAM [3] to
systematically understand the space of execution plans for
different collectives to better understand the choices made
by SYNDICATE’s optimizer plan. SYNDICATE uses these mi-
crobenchmarks as a cost model for its joint optimizer. We
highlight a subset of these microbenchmarks and explain the
various choices made by SYNDICATE for Model A2.
Execution planning options for all-reduce: Figure 16 shows
the effect of different all-reduce execution planning options in
our testbed. We see that the optimal execution plan depends
on the input message size. The optimal plan at small message
sizes is tree all-reduce motif whereas the optimal plan at large
message sizes is ring all-reduce motif. Bottom MLP is wider
and induces larger (O(100’s of MB) vs. top MLPs O(MB)) all-
reduce collectives and explains choice of ring all-reduce and
tree all-reduce for ar-bottom-mlp and ar-top-mlp, respectively.
Execution planning options for all-to-all:

Figure 17 shows the effect of different all-to-all execution
planning options. We note that the optimal plan at small mes-

820 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

TicTac [16] P3 [18] Blink [34] ByteScheduler [29] Syndicate

Execution

Network Throughput × × ✓ ✓ ✓
Network Heterogeneity × × ✓ × ✓
Network Ops Push-Pull Push-Pull All-Reduce Push-Pull; All-Reduce Send-Recv; Collectives
Preemptible ✓ ✓ — ✓ ✓

Scheduling
Models General DAGs Layer-by-Layer — Layer-by-Layer General DAGs
Frameworks PS PS — PS; ∼ P2P PS; P2P
Policy DAG Optimal LIFO — LIFO DAG Optimal

Joint Optimization × × — × ✓

Table 3: Comparison of systems optimizing communication operations for training workloads

2
7

2
10

2
13

2
16

2
19

Tensor Size (MB)

2
4

2
2

2
0

2
2

2
4

Th
ro

ug
hp

ut
 (G

B
/s

)

Alg. BW of AR and A2A

UCC
No Overlap
UCC Overlap
(1 Stream)
UCC Overlap
(2 Stream)
NCCL
No Overlap
NCCL Overlap
(2 Stream)

2
7

2
10

2
13

2
16

2
19

Tensor Size (MB)

2
0

2
2

2
4

2
6

La
te

nc
y

(m
se

c)

Latency (50%ile) of AR and A2A
UCC No Overlap
UCC Overlap (1 Stream)
UCC Overlap (2 Stream)
NCCL No Overlap
NCCL Overlap
(2 Stream)

Figure 18: Effect of different execution plans for all-to-all and all-
reduce overlap

sage sizes is the 1-way splined motif (simultaneous transfers
to 128 destination processes from all source processes), at
intermediate message sizes is the 2-way splined motif (64
Processes), and at large message sizes is the 4-way splined
motif (32 Processes). The effects of incast are significant as
we increase the message sizes and more splining helps reduce
incast. DLRM training induces large a2a’s (O(GB) message
size) and SYNDICATE chooses the 4-way splined execution
plan.
Execution planning options for overlap of all-reduce and
all-to-all: Figure 18 shows that the optimal execution plan
is the one where all-reduce uses NCCL implementation and
all-to-all use UCC implementation over non-overlapping com-
munication channels (i.e., 2 streams). With this implementa-
tion all-to-all is CPU-driven and uses the PCIe complex and
TCP/IP over Ethernet, while all-reduce is GPU-driven and
uses NVLink complex and GPUDirect RDMA. This choice
is optimal (as opposed to vice versa) as all-reduce also does
compute (gradient aggregation) which is faster with GPUs.
SYNDICATE uses this execution plan for overlap of all-to-all
and all-reduce.

7 Other Related Work
Several works speed-up training by optimizing two main con-
cerns of communication operations: scheduling and execution.
Table 3 shows comparison of SYNDICATE against several
state-of-the-art systems.

Scheduling concerns looks at reordering communication
operations to maximize overlap of compute and communica-
tion. The optimal scheduling policy is dependent on factors
such as the model architecture, and the parallelization strat-
egy/framework.

Execution concerns look at accelerating individual commu-

nication operations through efficient transport over all commu-
nication links. These optimizations propose optimal batching
to improve link utilization, propose multipath in collectives
to make better use of heterogeneous links in the network, and
enable preemption to enable scheduling optimizations.

Existing scheduling works fall short in generalizing op-
timally to all scenarios and they exercise only a subset of
optimizations as highlighted in Table 3. Crucially, unlike SYN-
DICATE, existing works do not jointly optimize both these
concerns.

8 Conclusion
We propose SYNDICATE that rethinks communication
scheduling granularity and the interfaces in the communi-
cation stack for ML training to enable joint optimization of
scheduling and execution planning. Using the novel notion
of motifs and a split control/data plane architecture SYNDI-
CATE achieves improvements of 21-74% for production scale
large-model training as it better utilizes the network multipath
opportunities in emerging training clusters.

References
[1] Ai and compute. https://openai.com/blog/

ai-and-compute. Accessed: 2021-08-26.

[2] Nvidia collective communication library: Optimized
primitives for collective multi-gpu communication.
https://github.com/NVIDIA/nccl. Accessed: Oc-
tober 3, 2022.

[3] Parametrized recommendation and ai model bench-
mark. https://github.com/facebookresearch/
param. Accessed: October 3, 2022.

[4] Pytorch kineto. https://github.com/pytorch/
kineto. Accessed: 2021-08-26.

[5] Pytorch process group third-party plugin for ucc. https:
//github.com/facebookresearch/torch_ucc. Ac-
cessed: October 3, 2022.

[6] Unified collective communication (ucc). https://
ucfconsortium.org/projects/ucc/. Accessed: Oc-
tober 3, 2022.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 821

https://openai.com/blog/ai-and-compute
https://openai.com/blog/ai-and-compute
https://github.com/NVIDIA/nccl
https://github.com/facebookresearch/param
https://github.com/facebookresearch/param
https://github.com/pytorch/kineto
https://github.com/pytorch/kineto
https://github.com/facebookresearch/torch_ucc
https://github.com/facebookresearch/torch_ucc
https://ucfconsortium.org/projects/ucc/
https://ucfconsortium.org/projects/ucc/

[7] A. Adcock, V. Reis, M. Singh, Z. Yan, L. van der Maaten,
K. Zhang, S. Motwani, J. Guerin, N. Goyal, I. Misra,
L. Gustafson, C. Changhan, and P. Goyal. Classy
vision. https://github.com/facebookresearch/
ClassyVision, 2019.

[8] M. Baines, S. Bhosale, V. Caggiano, N. Goyal, S. Goyal,
M. Ott, B. Lefaudeux, V. Liptchinsky, M. Rabbat,
S. Sheiffer, A. Sridhar, and M. Xu. Fairscale: A gen-
eral purpose modular pytorch library for high perfor-
mance and large scale training. https://github.com/
facebookresearch/fairscale, 2021.

[9] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei. Language
models are few-shot learners. CoRR, abs/2005.14165,
2020.

[10] M. Cho, U. Finkler, D. Kung, and H. Hunter. BlueCon-
nect: Decomposing All-Reduce for Deep Learning on
Heterogeneous Network Hierarchy. In Proceedings of
the 2nd SysML Conference, 2019.

[11] C.-H. Chu, P. Kousha, A. A. Awan, K. S. Khorassani,
H. Subramoni, and D. K. Panda. NV-Group: Link-
Efficient Reduction for Distributed Deep Learning on
Modern Dense GPU Systems. In Proceedings of the
34th ACM International Conference on Supercomputing,
ICS ’20, 2020.

[12] A. Desai, L. Chou, and A. Shrivastava. Random Offset
Block Embedding Array (ROBE) for CriteoTB Bench-
mark MLPerf DLRM Model : 1000× Compression and
2.7× Faster Inference, 2021.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding, 2019.

[14] N. Goyal, J. Du, M. Ott, G. Anantharaman, and A. Con-
neau. Larger-scale transformers for multilingual masked
language modeling. arXiv preprint arXiv:2105.00572,
2021.

[15] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulka-
rni. {GRAPHENE}: Packing and dependency-aware
scheduling for data-parallel clusters. In 12th {USENIX}
Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 16), pages 81–97, 2016.

[16] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell. Tictac:
Accelerating distributed deep learning with communi-
cation scheduling. arXiv preprint arXiv:1803.03288,
2018.

[17] W. K. Hastings. Monte carlo sampling methods us-
ing markov chains and their applications. Biometrika,
57(1):97–109, 1970.

[18] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and
G. Pekhimenko. Priority-based parameter propaga-
tion for distributed dnn training. arXiv preprint
arXiv:1905.03960, 2019.

[19] Z. Jia, M. Zaharia, and A. Aiken. Beyond data and
model parallelism for deep neural networks. SysML
2019, 2019.

[20] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo. A
unified architecture for accelerating distributed {DNN}
training in heterogeneous gpu/cpu clusters. In 14th
{USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 20), pages 463–479, 2020.

[21] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang,
M. Krikun, N. Shazeer, and Z. Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

[22] K. Mahajan, M. Chowdhury, A. Akella, and S. Chawla.
Dynamic query re-planning using {QOOP}. In 13th
{USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18), pages 253–267, 2018.

[23] Message Passing Interface Forum. http://www.
mpi-forum.org/. Accessed: October 3, 2022.

[24] D. Mudigere, Y. Hao, J. Huang, A. Tulloch, S. Srid-
haran, X. Liu, M. Ozdal, J. Nie, J. Park, L. Luo, J. A.
Yang, L. Gao, D. Ivchenko, A. Basant, Y. Hu, J. Yang,
E. K. Ardestani, X. Wang, R. Komuravelli, C. Chu,
S. Yilmaz, H. Li, J. Qian, Z. Feng, Y. Ma, J. Yang,
E. Wen, H. Li, L. Yang, C. Sun, W. Zhao, D. Melts,
K. Dhulipala, K. R. Kishore, T. Graf, A. Eisenman, K. K.
Matam, A. Gangidi, G. J. Chen, M. Krishnan, A. Nayak,
K. Nair, B. Muthiah, M. khorashadi, P. Bhattacharya,
P. Lapukhov, M. Naumov, L. Qiao, M. Smelyanskiy,
B. Jia, and V. Rao. High-performance, distributed train-
ing of large-scale deep learning recommendation mod-
els. CoRR, abs/2104.05158, 2021.

[25] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri,
N. R. Devanur, G. R. Ganger, P. B. Gibbons, and M. Za-
haria. Pipedream: generalized pipeline parallelism for
dnn training. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, pages 1–15,
2019.

822 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/facebookresearch/ClassyVision
https://github.com/facebookresearch/ClassyVision
https://github.com/facebookresearch/fairscale
https://github.com/facebookresearch/fairscale
http://www.mpi-forum.org/
http://www.mpi-forum.org/

[26] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sun-
daraman, J. Park, X. Wang, U. Gupta, C. Wu, A. G. Az-
zolini, D. Dzhulgakov, A. Mallevich, I. Cherniavskii,
Y. Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko,
S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong,
and M. Smelyanskiy. Deep learning recommendation
model for personalization and recommendation systems.
CoRR, abs/1906.00091, 2019.

[27] NVIDIA. NVIDIA GPUDirect. https://developer.
nvidia.com/gpudirect, 2011. Accessed: October 3,
2022.

[28] NVIDIA. DGX A100 System User Guide. https://
docs.nvidia.com/dgx/pdf/dgxa100-user-guide.
pdf, 2021. Accessed: October 3, 2022.

[29] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu,
and C. Guo. A generic communication scheduler for dis-
tributed dnn training acceleration. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
pages 16–29, 2019.

[30] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring
the limits of transfer learning with a unified text-to-text
transformer, 2020.

[31] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker,
O. Hernandez, Y. Itigin, M. Dubman, G. Shainer, R. L.
Graham, L. Liss, et al. Ucx: an open source framework
for hpc network apis and beyond. In 2015 IEEE 23rd
Annual Symposium on High-Performance Interconnects,
pages 40–43. IEEE, 2015.

[32] M. Smelyanskiy. Zion: Facebook next-generation large
memory training platform. In 2019 IEEE Hot Chips 31
Symposium (HCS), pages 1–22. IEEE Computer Society,
2019.

[33] Y. Ueno and R. Yokota. Exhaustive Study of Hierar-
chical AllReduce Patterns for Large Messages Between
GPUs. In 2019 19th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGRID),
pages 430–439, May 2019.

[34] G. Wang, S. Venkataraman, A. Phanishayee, J. The-
lin, N. Devanur, and I. Stoica. Blink: Fast and
generic collectives for distributed ml. arXiv preprint
arXiv:1910.04940, 2019.

[35] J. Yin, S. Gahlot, N. Laanait, K. Maheshwari, J. Morri-
son, S. Dash, and M. Shankar. Strategies to deploy and
scale deep learning on the summit supercomputer. In
2019 IEEE/ACM Third Workshop on Deep Learning on
Supercomputers (DLS), pages 84–94, 2019.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 823

https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://docs.nvidia.com/dgx/pdf/dgxa100-user-guide.pdf
https://docs.nvidia.com/dgx/pdf/dgxa100-user-guide.pdf
https://docs.nvidia.com/dgx/pdf/dgxa100-user-guide.pdf

A Appendix
A.1 Transformation Operator Algebra
We now present the algebra for the motif transformation op-
erators. We denote the segmentation operator by s

= and the
splining operator by p

=. Note that the algebraic rules presented
below are not exhaustive and are extensible. Here, we present
the algebraic rules that we use in the context of DLRM to
transform all-reduce and all-to-all collectives into motifs. We
first go over the various symbols used in the algebra.

N : Total number of Processes

PG[0:N] : Process IDs involved in a Motif

Ti[0:D] : Tensor of size D on Process Pi

Ti[0:N,0:D] : N Tensors of size D on Process Pi with

first dimension indicating destination Process ID

∥ : Parallel Execution

→ : Sequential Execution
s
= : Segmentation Transformation
p
= : Splining Transformation

AR : all-reduce motif

AA : all-to-all motif

REr : reduce motif with root Process Pr

RS : reduce-scatter motif

BCr : broadcast motif with root Process Pr

AG : all-gather motif

COLL(Ti[:], PG[IDs]) : Motif COLL with input tensor Ti

executing on each Process Pi for all i in IDs

We now present the algebraic rules for transforming the all-
reduce motif using the segment and spline operators.
Segmented All-Reduce: First, we show application of the seg-
ment operator which splits the input tensor at all the processes
and converts an all-reduce motif into smaller all-reduce motifs
over the splits. Each smaller all-reduce motif are independent
and can execute at the same time in parallel.

AR(Ti[0:D], PG[0:N])
s
= ∥

D
d −1

s=0 AR(Ti[s*d:(s+1)*d], PG[0:N])

Ring All-Reduce: Next, we show an instance of the spline
operator that divides the pattern in original all-reduce into
two sub-patterns: reduce-scatter motif followed by the all-
gather motif. The reduce-scatter motif does aggregation and
the all-gather motif broadcasts the aggregated result. The
reduce-scatter and all-gather motifs induce a pattern of com-
munication over a ring, where the processes are arranged in
a ring and the tensor is divided into N pieces. Each process
Pi does a point-to-point transfer of the (i+r)%N piece to its
neighboring process in the ring in the rth round for N rounds.

AR(Ti[0:D], PG[0:N])
c
= RS(Ti[0:D], PG[0:N])

→ AG(Ti[0:D], PG[0:N])

RS(Ti[0:D], PG[0:N])= ring pattern of communication

AG(Ti[0:D], PG[0:N])= ring pattern of communication

Tree All-Reduce: Next, we show an instance of the spline
operator that divides the pattern in the original all-reduce
into three smaller sub-patterns: reduce motif followed by a
smaller all-reduce motif followed by broadcast motif. The
same spline operator algebraic can be recursively applied to
the smaller all-reduce motif. Recursive application results in
a hierarchical tree pattern of communication where several

reduce motifs first aggregate results in a tree like fashion at a
single root process and several broadcast motifs broadcast the
aggregated result from the root process in a tree like fashion
until it is updated at all the processes. Each reduce motif
results in a convergent pattern of communication where all
the processes involved in the reduce send their tensors to the
root process where it is aggregated. Each broadcast motif
results in a divergent pattern of communication where the
root process sends its tensor to all the processes involved in
the broadcast motif.

AR(Ti[0:D], PG[0:N])
c
= ∥

N
n −1

c=0 REc∗n(Ti[0:D], PG[c*n:(c+1)*n])

→ AR(Ti[0:D], PG[∪
N
n −1

c=0 c*n])

→ ∥
N
n −1

c=0 BCc∗n(Ti[0:D], PG[c*n:(c+1)*n])

RE j(Ti[0:D], PG[j:j+n])= convergent pattern of communication

BC j(Ti[0:D], PG[j:j+n])= divergent pattern of communication

AR(Ti[0:D], PG[∪
N
n −1

c=0 c*n])= recursive application of c
= induces

tree pattern of communication

Segmented and Splined All-To-All: Next, we show examples
of segmenting and splining an all-to-all collective into smaller
motifs. With segmentation, the tensor at all the processes is
split and the original all-to-all is deconstructed into several
smaller all-to-all motifs over the split tensors. With splin-
ing, the pattern of communication in the original all-to-all
motif with a clique of point-to-point transfers between all
the processes is broken down into smaller all-to-all motifs
with smaller patterns where each process Pi initiates point-to-
point transfers to a subset of destination processes (with ids
in the range (i+c*n)%N:(i+(c+1)*n)%N). Here, n parame-
terizes the all-to-all splining operator with larger n resulting
in breaking the original all-to-all into fewer all-to-all motifs
with larger sub-patterns.

AA(Ti[0:N,0:D], PG[0:N])
s
= ∥

D
d −1

s=0 AA(Ti[0:N, s*d:(s+1)*d], PG[0:N])

AA(Ti[0:N,0:D], PG[0:N])
c
= ∥

N
n −1

c=0 AA(Ti[(i+c*n)%N:(i+(c+1)*n)%N, 0:D],

PG[0:N])

824 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Addax: A fast, private, and accountable ad exchange infrastructure

Ke Zhong⋆ Yiping Ma⋆ Yifeng Mao⋆ Sebastian Angel⋆†
⋆University of Pennsylvania †Microsoft Research

Abstract. This paper proposes Addax, a fast, verifiable, and
private online ad exchange. When a user visits an ad-supported
site, Addax runs an auction similar to those of leading ex-
changes; Addax requests bids, selects the winner, collects
payment, and displays the ad to the user. A key distinction is
that bids in Addax’s auctions are kept private and the outcome
of the auction is publicly verifiable. Addax achieves these
properties by adding public verifiability to the affine aggregat-
able encodings in Prio (NSDI’17) and by building an auction
protocol out of them. Our implementation of Addax over WAN
with hundreds of bidders can run roughly half the auctions per
second as a non-private and non-verifiable exchange, while
delivering ads to users in under 600 ms with little additional
bandwidth requirements. This efficiency makes Addax the first
architecture capable of bringing transparency to this otherwise
opaque ecosystem.

1 Introduction
Ad exchanges such as DoubleClick and OpenX are key play-
ers in online advertising; their role is to auction ad space on
a publisher’s website in real time to advertisers. When a user
visits a publisher’s page, the user’s browser contacts a server
that triggers an auction on an exchange. The exchange gives
advertisers information about the publisher (e.g., URL, ad size
and type, category of site) and the user (e.g., demographic,
metadata for syncing cookies across sites) in real time, and
collects bids from interested parties. The exchange then runs
an auction (e.g., second-price auction), delivers to the user the
ads of the winning advertisers, and credits the publisher. Fi-
nally, technologies like header bidding [4] and Google’s open
bidding platform [30] allow publishers to auction users across
many exchanges (essentially an exchange of exchanges), in-
creasing competition and improving publishers’ revenue.

While ad networks and exchanges serve as the financial
backbone of the free web, their centralized nature means that:
(1) they are privy to sensitive information, including user’s
browsing habits and the preferences and valuations of advertis-
ers; and (2) they are opaque and hard to audit. The former has
received considerable attention [39, 45, 56, 71, 77, 89, 91]; the
lack of auditing mechanisms and the knowledge of advertisers’
valuations is becoming a serious sociotechnical issue. A recent
antitrust lawsuit alleges that Google used insider knowledge
of past bids submitted by advertisers to gain unfair advantages
whenever its subsidiaries participated in auctions [63]. Further,
it is alleged that Google convinced Facebook to not participate
in header bidding—a technology considered an “existential
threat” to Google’s business [28, 81, 84]. According to dis-
closed reports, in return for Facebook choosing to participate

instead in Google’s open bidding platform, “Google provided
Facebook with special information and speed advantages to
help [Facebook’s exchange] succeed in the auction [over other
bidders]—even including a guaranteed win rate” [84].

Regardless of the merits of these cases, the key issue—and
the crux of this paper—is that there are no ways for exchanges
to prove to their customers and to regulators that they are not
abusing their position. To address this, we present Addax, an
online advertising architecture that achieves 4 goals:
• Auction integrity. Auctions should be publicly verifiable to

allow the ad exchange to prove that it is not biasing auctions
towards particular bidders or lying about their outcome.

• Auction privacy. The bids of losing bidders should be hid-
den from all parties—even the exchange itself! This ensures
that the exchange cannot abuse or share this information.

• High performance. Addax should handle the stringent per-
formance requirements of the ad ecosystem.

• Better tracking. Addax should work with recent tracking
efforts such as Google’s Topics API [16] and Microsoft’s
PARAKEET [13] that allow targeted ads but collect less
information about individuals.

Overview. In Addax, browsers track users’ histories with ex-
isting privacy-preserving client-side techniques [57, 58, 80,
89], and kickstart verifiable and private auctions whenever
the user navigates to an ad-supported site. Auctions in Addax
proceed in three steps. First, the browser invites relevant bid-
ders (e.g., demand-side platforms) by finding their information
(e.g., URL of their ad server) on a database. In existing header
bidding platforms [2] such databases are currently maintained
by publishers; Addax preserves this model, but we addition-
ally experiment with a more decentralized approach where
the database is maintained in a public append-only log and
discuss how to reduce the cost of lookups in this model (§7).
As part of the invitation, the browser supplies to bidders infor-
mation about the site being visited and a variable amount of
user information based on the user’s configuration of Addax
(ranging from fully targeted to generic ads).

Second, bidders submit encrypted bids to the publisher and
one or more auxiliary servers. The auxiliary server helps the
publisher run a new lightweight secure auction computation
over the encrypted bids (§4). The role of an auxiliary server
could be taken up by today’s exchanges or it can be a separate
entity propped up by the industry at large. Under the anytrust
model [88] (either the publisher or any of the auxiliary servers
is honest), the secure auction computation returns the winning
bidder’s identity and bid, and the auction’s sale price, but no
other information.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 825

Last, Addax produces an audit trail that is uploaded to a
public log and that allows any auditor to verify that the auction
was conducted with integrity (§5). At the conclusion of the
auction, the browser fetches the ad from the winning bidder
(or a content distribution network) and the publisher learns
which bidder and how much to bill for the ad impression.

Technical contributions. To maintain good performance,
Addax cannot use expensive cryptography (e.g., homomor-
phic encryption, multiparty computation) in order to achieve
the integrity and privacy goals. Indeed, our evaluation of such
baselines confirms that they are far too inefficient to meet
online advertising’s low latency and communication require-
ments (§9). Instead, Addax makes three contributions:

Secure auction protocol. Addax introduces a new auc-
tion protocol based on Prio’s affine-aggregatable encodings
(AFE) [51]. Addax’s auction is simple and lightweight and al-
lows two or more parties to run the auction over secret-shared
bids without revealing anything beyond the auction’s outcome.

Verifiable AFEs (V-AFEs). Addax extends Prio’s AFEs to
provide public verifiability for outputs (Prio has mechanisms
to verify inputs). Addax then uses V-AFEs to allow anyone
(e.g., an auditor) to confirm that an auction was conducted
correctly without learning any of the input bids.

Integration with Algorand and Chrome. Addax implements
mechanisms to interact quickly with the public log (we use
Algorand [3, 55]) and smart contracts to manage the registra-
tion of advertisers and the collection of audit materials. Addax
also leverages Chrome native messaging to launch auctions.

Our implementation of Addax can complete auctions over
WAN with twice the average number of bidders reported in
production ad exchanges [92] in 440–580 ms (for first and
second-price auctions), and requires only 1.2 MB of commu-
nication between the publisher and the auxiliary server (§9.2).
This is fast enough for ads to be loaded asynchronously with-
out affecting page load time for the overwhelming majority
of websites today [1, 7, 20, 87]. In terms of throughput, Ad-
dax can handle around 250–360 auctions per second per core
(for second and first-price auctions), which is roughly 40%
of what our non-private and unverified baseline can achieve.
Creating the audit trail requires additional computation on the
part of bidders but adds negligible overhead to users’ browsers
and publishers. In contrast, the same auction implemented in
existing state-of-the-art cryptographic frameworks (MPC and
FHE) requires over 4 GB of communication and over 100 sec.

Limitations. Ad exchanges do more than just run auctions
and deliver ads. They vet advertisers to ensure users do not re-
ceive malware; mitigate fraud; and provide powerful analytics.
Addax does not yet address these complementary and critical
aspects, but Section 11 discusses concrete directions to incor-
porate such features into Addax’s architecture. Finally, Addax
can achieve better performance (optionally) at the expense of
revealing the existence of winning ties (§4.4).

2 Background and goals
Ad exchanges are platforms that auction impressions (the dis-
play of a text, image, or video ad) on a publisher’s website
or mobile application in real time. Exchanges support highly
targeted advertising whereby bidders (advertisers or their rep-
resentatives, called demand-side platforms) get a chance to
evaluate the publisher and the user to whom the ad will be
shown to decide how much they would be willing to pay (if
at all). This type of programmatic real-time bidding (RTB)
advertising accounts for over a third of all digital ad spend-
ing today [22, 27]. Some of the largest ad exchanges include
DoubleClick, PubMatic, OpenX, and Facebook.

To participate in an ad exchange, a publisher inserts a supply-
side platform’s (SSP) iframe or JavaScript snippet into their
page. An SSP is a service that sells the publisher’s ads on an
exchange (publishers can also run their own SSP). When a
user’s browser fetches the publisher’s site and executes the
provided JavaScript, it sends an HTTP GET request to the
SSP supplying the user’s cookie, and awaiting for an ad to
be returned. At this point, the SSP can identify the user and
publisher, and start an RTB auction. During this process, the
exchange invites dozens of potentially interested bidders to
bid on the user [92], supplying them with demographic in-
formation, and relevant details about the publisher and the
ad space (size, type, location within the page). To facilitate
the valuation of the user, exchanges and bidders synchronize
cookies [19, 23] to allow bidders to learn the identity of the
user in their respective platforms (if applicable). Based on
this information, bidders return a bid in CPM (cost per 1000
impressions), which ranges from cents to tens of dollars [32].

Upon receiving all bids, the exchange runs an auction where
it selects the winning bidder and charges them the auction’s
sale price based on the type of auction. Two common types are
first-price (winner pays what they bid) and second-price [83]
(winner pays second highest bid) auctions. Finally, the ex-
change notifies the SSP with the result of the auction, who
then responds to the user’s GET requests with the information
that the browser needs to retrieve the ads (images, videos, etc.)
from a storage server.

2.1 Header bidding

Header bidding [4] is a recent advertising paradigm where the
publisher (or its SSP) works with multiple exchanges to sell its
ad slot in real time. It is called “header bidding” because the
publisher supplies JavaScript code that runs in the <header>
part of the page (which loads as soon as the page starts open-
ing in the user’s browser), and this code triggers the process
of contacting the exchanges. The exchanges then internally
run their own auctions (first or second-price) and send back
the winning bids to the browser. The browser then sends the
winning bids to the publisher (or its SSP), which runs another
auction (typically first-price), selects the highest bid as the
winner, and forwards the winner’s ad tag to the user’s browser.
Google’s Open Bidding platform is similar [30].

826 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.2 Concerns with existing exchanges

We highlight three areas of concern with existing ad exchanges.
First, there is no visibility into the auction process. VEX [35]
argues that this opens the door to a variety of issues—including
those that are mentioned by the antitrust lawsuits [28, 63, 84].
Second, exchanges observe all submitted bids in the clear.
These bids represent how valuable different users and publish-
ers are to bidders, which reveals information about bidder’s
trading algorithms, finances, and future plans. Last, users lack
agency and have no say over which types of ads they receive or
what information is shared with bidders. One might imagine a
different world in which users can express an opinion on the
types of ads they consume (e.g., no ads for kids toys to avoid
children exploitation), and what information about themselves
they reveal in order to receive targeted ads.

2.3 Goals

Addax aims to address many of the shortcomings of existing
ad exchanges by giving agency to users, privacy to bidders,
and transparency to all. Addax is compatible with both tradi-
tional exchanges and with the header bidding model (including
Google’s open bidding platform). We detail these goals next.

Integrity of the auction. All parties should be able to ver-
ify that Addax’s auctions are conducted correctly, as per the
auction type (first-price, second-price, etc.).

Privacy for losing bids. Addax should hide the bids of all of
the losing bidders from everyone, even the auctioneers. One
exception is that in second-price auctions, the second highest
bid (which is technically a losing bid) becomes the sale price
and cannot be hidden.

Privacy among bidders. Bidders should not need to learn
each others’ identities or interact with one another in order to
participate in an auction. Existing exchanges do not reveal this
information, and neither should Addax.

High performance. Addax must ensure that auctions com-
plete quickly, as ads need to be displayed within hundreds of
milliseconds in order to preserve a good user experience and
follow existing RTB requirements [10, 11].

User agency. Addax’s focus is on making the auction process
accountable without exposing bidders’ information. Addax
should also allow users to have a say on which kinds of ads
they wish to receive. Ideally, Addax would also improve user
privacy, but this is not a goal of this work. Instead, we ask that
Addax make things no worse than they are today for users,
and that it be compatible with other works that aim to reduce
user tracking (such as Topics [16]). Appendix G expands on
this compatibility aspect.

2.4 Potential solutions (baselines)

Given Addax’s desire for privacy and verifiability, one might
ask whether existing tools such as homomorphic encryption
or multiparty computation fit the bill. This is not the case.

Homomorphic encryption (HE). HE libraries [24–26, 61]
allow the computation of additions and multiplications over en-
crypted data without access to plaintext values. Computing an
auction, however, requires comparisons (such as “less than”)
which are expensive to express with arithmetic operations as
they typically require decomposing values into bits and en-
crypting bits separately [25, 50]. Even recent optimizations are
expensive [41, 48, 64]. As we show in our evaluation (§9.2)
an auction with 96 bidders using the state-of-the-art TFHE
library [49, 50] takes 181 seconds. Finally, HE lacks integrity:
an auctioneer is free to compute an incorrect auction. Recent
work on composing verifiable computation with HE can ad-
dress this, but at orders-of-magnitude cost increase [40, 54].

Secure multi-party computation (MPC). MPC frame-
works [31, 65, 85] allow mutually distrusting parties to com-
pute a function over secret inputs without revealing anything
beyond the function’s outcome. It might seem natural to en-
code the auction as an MPC among the bidders but this is
impractical when there are many bidders. An alternative is to
use a delegated MPC setting whereby two parties (publisher
and auxiliary server in our setting) run the MPC on behalf of
others; bidders could send secret shares of their bids to these
two parties. However, this delegated setting lacks integrity:
either party is free to supply bogus shares to the MPC to cause
the auction’s output to be undetectably incorrect. As we show
in Section 9.2, addressing this introduces prohibitive costs.

Trusted execution environments (TEEs). Another possibil-
ity is to use trusted hardware. Besides side channel [43, 46,
68, 90] and integrity attacks [72, 82], TEEs alone cannot solve
this problem. Appendix F discusses this in depth.

3 Addax Overview
Addax is a platform where the exchange’s duties are split
among different parties. Figure 1 gives a high-level description.
Addax consists of: (i) publishers who run their own SSP and
who wish to show ads to fund their services, (ii) the client’s
browser, (iii) auxiliary servers who help to run auctions, (iv)
bidders (demand-side platforms, advertisers, other exchanges,
etc.) who bid on ad slots, and (v) an append-only log (e.g.,
blockchain, BFT consortium) for persisting an audit trail. We
discuss what happens when a user visits a page below, and
give details in the sections that follow. We defer a discussion
of how bidders join Addax and what information they supply
to Section 7 and Appendix E.

Steps ➀–➁: Client visits a publisher. When a client visits
a publisher, it receives the page content, along with a unique
auction id and a list of valid ad categories that the publisher
supports. Addax uses the 392 categories from the Internet Ad-
vertising Bureau’s (IAB) contextual taxonomy [10], which
include things like “Humor”, “Nutrition”, etc. This meta-
data is embedded within the header of the page, as in header
bidding (§2.1). An Addax-enabled browser, hereafter named
“browser”, parses the web page and extracts this metadata.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 827

Step ➂: Advertising filtering. Addax adopts a client-based
tracking approach inspired by Privad [58], Adnostic [80], and
Google’s recent FLoC proposal [89]. Briefly, the browser
tracks which sites the user visits over time and generates a pro-
file of the user’s interests, which it stores locally in a SQLite
database similar to how cookies are stored. After parsing a
page’s ad spot metadata, the browser combines the user’s pro-
file, the ad spot’s categories supplied by the publisher, and
disallowed categories previously flagged by the user through a
local configuration (e.g., to prevent categories that target chil-
dren). Based on the refined information, the browser fetches
bidders’ details from a bidder database. Addax supports two
types of databases: an embedded database supplied by the
publisher during Step ➁; and a public database where bidder
information is maintained on the public log (blockchain). The
former is how header bidding works today while the latter
option is more decentralized and gives users more agency over
the ads they receive. We defer the details to Section 7.

Steps ➃–➅: Private, decentralized, and verifiable auction.
The browser invites the k bidders from step ➂ to an auction.
To do so, it provides them with an auction id (unique identifier
supplied by the publisher), information about the user, and
information to contact the publisher and the auxiliary server.
Bidders decide whether to join the auction; if so, they respond
to the auxiliary server and publisher with their required ma-
terials. The auxiliary server and the publisher collaboratively
run the auction and select the auction’s winner, and the auc-
tion’s sale price. Asynchronously, and off the critical path, all
participants upload to the public append-only log materials
needed for public auditing (§5).

Step ➆: Notify winner and display the ad. After the auction
concludes, the publisher and auxiliary server learn the outcome
(but nothing else). The publisher notifies the winner and asks it
for an ad tag and payment (e.g., a signed IOU). The publisher
then forwards the ad tag to the browser so that it can fetch and
display the ad on the designated ad spot.

Verification. Auditors can use the information on the public
log to verify the auction’s outcome. By default, they only learn
whether the auction was correct and the number of bidders
that participated. In case that verification fails, Addax helps
narrow down which parties were faulty (§5.3).

3.1 Assumptions and threat model

Addax assumes an append-only log (blockchain, BFT, etc.)
and an anytrust model [88] where either the publisher or the
auxiliary server is honest. The parties may act as follows.

Bidders. Bidders who are invited to the auction can submit
bogus bids and cryptographic material. We model bidders
as covert adversaries [36] who can deviate from the protocol
arbitrarily as long as their malicious actions cannot be detected.
If detected, bidders can incur financial or legal penalties, and
can be banned by publishers. Addax assumes at least 2 non-
colluding losing bidders (otherwise information about losing

ɠ

ɡ

ɥ

ɣ

ɢ

Client’s browserPublisher

Advertisers

Blockchain & Indexers

ɤ

ɦ

create, update, delete

Auxiliary server

FIGURE 1—In Addax, the exchange’s functionality is divided among
the publisher, browser, an auxiliary server and a blockchain.

bids can be inferred from the outcome).

Publishers and auxiliary servers. Publishers may wish to
increase their revenue by lying about the auction’s outcome
(e.g., forcing the winner to pay a fee higher than the second
highest bid), learn the bids of losing bidders, or force users
to view certain ads. Auxiliary servers may wish to bias the
auction’s result to help particular bidders. We model both
parties as covert adversaries since detectable misbehavior can
tarnish their reputation or incur legal penalties.

3.2 Security properties

Addax’s auction protocol provides the following properties.

Completeness. If all parties are honest and the auction’s out-
come is correct (e.g., the winner is the highest bidder and the
sale price is the second highest bid), then Addax’s verification
protocol passes with high probability.

Soundness. If a bidder, the publisher, or an auxiliary server
misbehaves, Addax’s verification fails with high probability.

Privacy. Addax’s auction and verification hides all bids ex-
cept the highest bid and the sale price.

4 Private ad auction
This section describes Addax’s private ad auction. We begin
by describing our building blocks.

4.1 Affine-aggregatable encodings (AFE)

Prio [51] shows how one can take two or more data values
and encode each of them as a vector of λ bits such that adding
up the vectors and running a decoding function on the sum is
equivalent to computing some boolean function f (e.g., OR,
AND, XOR) on the original data values; λ is a parameter that
controls the probability of the result being correct. Prio calls
this and other similar transformations an Affine-Aggregatable
Encoding (AFE). Addax uses the “OR” boolean function to
compute auctions, so it could use Prio’s AFE. However, we

828 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3
bid

bit vector

1
bid

bit vector
2

bid

vector share 1 vector share 2

Auxiliary server’s shares Publisher’s shares

sum vector sum vector of share 1 sum vector of share 2

3
MAX

decode

encode

encode

encode

sum

split

split

split

sum sharessum shares

3 04 2

00

3 00

1 01 2

03

4

41

1 24

4 32 2

21

2

14

2 31

4 22 0

32

2

2 40 22 40 04 11

Bidder

Bidder

AFE vectors

�

1 0

0 0

1 0

1 0

sum

�D��0$;�XVLQJ�$)(�E��SULYDWH�0$;�XVLQJ�$)(�VKDUHV

Bitwise OR
Bidder

bit vectors

!�LV��

1

$)(�LQ�=

1

1 0

1 0

1 1

FIGURE 2—Example of (a) the MAX algorithm using AFE, and (b) the private MAX algorithm using AFE shares. In this example, ℓ = 4
(which affects the range of bids) and we use AFE in Z5 (which affects the probability of obtaining the correct result).

depart slightly from Prio by encoding data values into a single
element in Zp (the set of integers modulo a large prime p)
rather than λ-sized bit vectors. This encoding is more expen-
sive than Prio’s (since λ < log p), but it allows Addax to add
public verifiability, as we discuss in Section 5.1. Below we
give our AFE for the “OR” function over bit values.

Encode OR. Given a bit x ∈ {0, 1}, its AFE is:

Encode-OR(x) =

{
0 ∈ Zp if x = 0
a random element ∈ Zp if x = 1

Compute OR. Given a set of n AFE values {v1, . . . , vn},
which encode n bits {x1, . . . , xn} with the above Encode-OR
procedure, one can compute the OR of the n bits as:

v = v1 + · · ·+ vn ∈ Zp

Decode OR. Given the sum AFE value v, one can correctly
recover the result of the OR operation over the underlying n
bits with probability of at least 1− 1/p as follows.

Decode-OR(v) =

{
0 if v = 0
1 otherwise

To see why Decode-OR returns the correct value with prob-
ability 1− 1/p, we consider two cases. First, when all n input
bits are 0. In this case, all AFE values are zeros so v is guaran-
teed to be zero; Decode-OR always outputs the correct value
of 0. Second, when at least one of the n input bits is 1. In this
case, since the value is independent and uniformly random,
the probability that the sum in Zp is zero is 1/p.

4.2 Computing the MAX function with AFE

Following the approach in Prio, we show how to extend the
above AFE to support MAX, which Addax uses to find the
highest bid in an auction. This construction provides neither
privacy nor verifiability; we add these later.

Suppose all input values are integers in the range [0, ℓ]. Each
input x is first represented in unary. That is, as a bit vector β
of length ℓ (β1,β2, . . . ,βℓ) where βi = 1 if and only if i ≤ x.
Observe that if we perform a bitwise OR on the unary bit
vectors of all inputs, the result will be a unary bit vector where
the index of the last “1” represents the maximum value across
all inputs. This is the idea behind the AFE of MAX.

Encode MAX. Given a value x ∈ [0, ℓ], its AFE is a vector of
ℓ values, where each value is an element in Zp. The encoding
happens in two steps: (1) represent x as a bit vector β of length
ℓ in unary format; and (2) for each bit βi, encode βi with the
Encode-OR of Section 4.1. The result is a vector M with ℓ
values, where M[i] is the AFE value of bit βi.

Compute MAX. Given n AFE vectors {M1, . . . , Mn} that
encode the values {x1, . . . , xn} as above, MAX is computed
by adding the n vectors: M = M1 + · · ·+ Mn.

Decode MAX. Given the sum vector M, one can recover
the MAX of the underlying n values in two steps. First, use
Decode-OR (§4.1) on each of the ℓ entries of M. The result is
a bit vector β of length ℓ in unary format. Second, output the
highest index j for which βj is 1. This value is the correct MAX
among the n inputs if Decode-OR outputs the correct OR for
all ℓ bits. This event occurs with probability ≥ (1− 1/p)ℓ.

Figure 2(a) gives an example of these procedures with three
inputs. Below we describe how to add privacy by secret sharing
the AFE vectors among multiple parties.

4.3 Private and decentralized MAX

Observe that computing the MAX of n values (x1, . . . , xn)
using AFE vectors (M1, . . . , Mn) requires only additions. We
can split each vector Mi into two shares (M1

i and M2
i) that add

up to the original (Mi = M1
i + M2

i) as depicted in Figure 2(b).
Each share is made up of uniform random elements in Zp, and
reveals no information about Mi without the other share.

Suppose that two non-colluding parties, Alice and Bob, are

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 829

tasked with computing the MAX of n values given n AFE
vector shares. Alice receives {M1

1 , . . . , M1
n} and Bob receives

{M2
1 , . . . , M2

n}. Each party sums up their n shares to get two
sum vector shares: M1 for Alice and M2 for Bob. Finally,
both parties exchange their sum vector shares. Observe that
by adding M1 and M2, the parties can recover the sum vector
M = M1 +M2 = M1 + · · ·+Mn as shown in Figure 2(a), and
then use Decode-MAX to recover the max value.

4.4 Private and decentralized auction

We use the private MAX of Section 4.3 to compute an auc-
tion where the auctioneer’s duty is split between the auxiliary
server and the publisher. This protocol provides privacy but
not integrity (i.e., malicious actions can lead to an incorrect
outcome); we add verifiability in Section 5. A bid is given by
the position of the last “1” in a unary vector (e.g., [1,1,1,0]
and [0,0,1,0] both represent 3, though the latter is ill-formed).
We assume a maximum bid ℓ, and everyone bids within [0, ℓ].

Step 1: Set up shared secret. Before the auction starts, the
publisher and the auxiliary server commit to a random se-
cret to be used later as an unbiased source of randomness.
Concretely, when the client visits the publisher, the publisher
contacts the auxiliary server, notifies it of an incoming auction,
and supplies to it a commitment to a uniform random secret,
secretp. The auxiliary server replies with its own commitment
to a uniform random secret, secreta. They keep these secrets
hidden until Step 4.

Step 2: Encode and split bids. The browser sends an invita-
tion to selected bidders with the auction’s id. If a bidder wishes
to participate, they encode their bid using the Encode-MAX
procedure (§4.2), split the resulting vector into two additive
shares as discussed in Section 4.3, and generate a fresh signing
and verification key pair. The verification key acts as the bid-
der’s bidder id in the auction. The bidder then sends share M1

to the auxiliary server and share M2 to the publisher, supplying
both with the bidder id. Bidders who fail to submit their shares
before a timeout are kept out of the auction.

Step 3: Find the highest bid. Before computing the auction,
the auxiliary server sends to the publisher all the bidder ids
that it received, the publisher matches them with the ids that it
received, and responds to the auxiliary server with the intersec-
tion. The publisher and the auxiliary server then use the vector
shares of bidders in the intersection in the MAX protocol of
Section 4.3. If Decode-MAX produces an invalid unary vec-
tor such as [1,0,1,0], the auction is aborted; when parties are
honest, abort happens with negligible probability (§4.2). At
the end, both parties learn the highest bid, b∗, but nothing else.
To avoid parties adapting their sum vector share in response
to the other’s sum vector share, parties first exchange com-
mitments of their sum vector share; the honest party aborts if
misbehavior is detected.

Lemma 1. Let b1, . . . , bj be the bids from j honest bidders,
and let M1, . . . , Mj be the AFE vectors resulting from running

Encode-MAX on the bids. Similarly, let Mj+1, . . . , Mj+k be
AFE vectors that MAX-encode bids from k malicious bidders
(these AFE vectors can represent invalid unary vectors like
[1,0,1,0]). Decode-MAX on the sum of these j+k AFE vectors
outputs, with high probability, either an invalid value (invalid
unary representation) or a value ≥ max(b1, . . . , bj).

Lemma 2. Let M1 and M2 be sum vector shares held by the
auxiliary server and publisher, respectively. During Decode-
MAX, if the auxiliary server uses a different sum vector share
M′1 without having seen M2 first or the publisher uses a differ-
ent sum vector share M′2 without having seen M1 first, then
the output of Decode-MAX is, with high probability, either an
invalid value (invalid unary representation) or ℓ.

Appendix A gives proofs for both lemmas. Together they im-
ply that malicious actions by participants lead to the resulting
highest bid being invalid or at worst larger than the real highest
bid. Either outcome leaks no information about honest losing
bidders’ bids to the attacker (our privacy goal). Furthermore,
malicious actions are detected by Addax’s verification.

Step 4: Find the winner. The publisher and the auxiliary
server find the winner (the bidder id of the party who submit-
ted b∗) interactively. First, both parties decommit to the secrets
they generated in Step 1, check the decommitment, and XOR
the secrets together to obtain secret = secreta ⊕ secretp. Since
at least one party is honest, secret is uniformly random and
independent of the bidder ids generated by the bidders; the
parties use secret as the seed to a pseudorandom generator
(PRG). Both parties locally use the PRG to pick the same ran-
dom bidder w from the set of participating bidder ids, which
avoids biasing the auction towards a particular bidder in the
case of ties (the PRG is for fairness not for privacy). The
auxiliary server sends the b∗-th value of its share of bidder
w’s vector, M1

w[b
∗], to the publisher and the publisher sends

M2
w[b

∗]. Both parties then locally sum the two shares to obtain
Mw[b∗] = M1

w[b
∗] + M2

w[b
∗]. Applying Decode-OR to Mw[b∗]

yields βb∗ , which is the bit of bidder w at position b∗ in the
unary vector (§4.2). If βb∗ is 0, bidder w is not the winner
(since its bid must be lower than b∗). Note that learning βb∗

reveals no additional information. The publisher and the auxil-
iary server continue to pick a random bidder id w until the bit
βb∗ of w is 1 (n/2 tries in expectation). In such a case, w is the
winner. Finally, the auxiliary server and publisher ask w if its
bid is b∗. Bidder w replies only if it receives the same query
from both parties. If w’s bid is not b∗, it sends abort to both
parties and the auction is aborted. If there are ties (i.e., multi-
ple bidders submitted b∗), this procedure returns a uniformly
chosen one. The ids of other tied bidders remain hidden.

Lemma 3. In Step 4, if the auxiliary server sends to the pub-
lisher an AFE share that is different than what it received from
the candidate winner w (i.e., different from M1

w[b
∗]) or the

publisher sends to the auxiliary server an AFE share that is
different than what it received from w, then the auction aborts

830 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

or w is declared the winner with high probability. In the latter
case, w is either the real winner or a malicious bidder.

Appendix A proves this lemma. It basically means that a
malicious publisher or auxiliary server can only ever make
a colluding bidder the winner; they cannot cause a winner
(if chosen by the PRG) to lose, nor can they make an honest
losing bidder the winner (and hence learn its bid).

Step 5: Compute the sale price. The above four steps are
sufficient to compute first-price auctions (the most common
type) where the winner is the highest bidder and the sale price
is its bid. To support second-price auctions (sometimes used
by exchanges), the auxiliary server and publisher subtract the
winning bidder’s vector share from the sum vector share (e.g.,
the auxiliary server subtracts M1

w from M1). They then rerun
Step 3 to obtain the second highest bid.

Lemma 4. If either the auxiliary server or the publisher mis-
behaves in Step 5, or a malicious bidder is declared the winner
in Step 4, then the computed sale price is, with high proba-
bility, either: (1) the highest bid among all bidders; (2) the
second highest bid among all bidders; or (3) ℓ.

Appendix A has the proof of this lemma, which again hides
the losing bids (besides the second-highest). Furthermore, any
misbehavior is eventually detected during an audit.

5 Adding public verifiability
For an auditor to verify the outcome of an auction, the auditor
needs to check that (1) the highest bid b∗ selected in Step 3
of the auction is correct; (2) that the bit βb∗ of the winning
bidder is 1 in Step 4; and (3) that the value computed in Step
5 was set as the auction’s sale price. We start by making the
output of AFEs publicly verifiable, and then discuss how an
auditor can perform the above checks.

5.1 Verifiable and private AFEs

We make AFEs verifiable with a procedure that takes the
result of the AFE computation—the sum vector v—and com-
mitments to the inputs, and outputs whether v is correct.

The key idea of our verification procedure is to observe that
by their very nature, AFEs encode inputs in such a way that
the desired functions (OR, MAX, etc.) can be computed with
only additions. Hence, if one uses an additively homomorphic
commitment scheme on the input AFE values, it is possible to
check the result of the AFE computation without learning the
inputs by adding the commitments and confirming whether
the result is also a valid commitment of the output. We explain
this process for the “OR” AFE of Section 4.1.

Encode V-OR. Given a bit x ∈ {0, 1}, its verifiable AFE is a
tuple v consisting of 2 elements in Zp defined as follows. The
first element in v is given by Encode-OR (§4.1). The second
element in v is a non-zero uniform random element in Zp.

Commit V-AFE. Given a V-AFE tuple v ∈ Z2
p encoding bit

x with Encode V-OR, we use the Pedersen commitment [74]
defined over a multiplicative group G of prime order p with
generators {g, h}.1 The commitment is c = gv[0] · hv[1].

This commitment perfectly hides the V-AFE tuple (an ad-
versary cannot learn the tuple from the commitment); it binds
the tuple (a committer cannot claim to have committed to a
different tuple) if the discrete log problem is hard in G. It is
also additively homomorphic: given a commitment c1 ∈ G to
a tuple v1 ∈ Z2

p and a commitment c2 ∈ G to a tuple v2 ∈ Z2
p,

c3 = c1 · c2 is a valid commitment to the tuple v1 + v2.

Compute and Decode. Given a set of n V-AFE tuples
{v1, . . . , vn}, which encode n bits {x1, . . . , xn} with the above
Encode V-OR procedure, compute the OR of the n bits by
adding the V-AFE tuples component-wise: v = v1 + · · ·+ vn.
Decode V-OR calls Decode-OR on the first element in v.

Verify V-OR. Given the V-AFE sum tuple v which encodes
the result of the Compute V-OR procedure over n V-AFE tu-
ples {v1, . . . , vn}, and given a set of commitments {c1, . . . , cn}
to these tuples generated with the Commit V-AFE procedure,
one can verify v by checking if gv[0] · hv[1] ?

=
∏n

j=1 cj. Verify
V-OR outputs “ok” if the check passes, and “fail” otherwise.

The above approach generalizes to other functions (e.g.,
MAX) that require more complex encodings (e.g., vectors)
since those encodings are just sets of AFE values. For example,
a V-AFE vector is simply a vector of V-AFE tuples, and the
commitment is a vector of Pedersen commitments—one for
each tuple in the V-AFE vector. The approach can also be com-
bined with secret sharing (§4.3) to hide the inputs from non-
colluding parties. Specifically, the input providers (e.g., bid-
ders in our case) generate their V-AFE vectors {M1, . . . , Mn}
and compute the corresponding commitments {c1, . . . , cn},
which are made available on a public log. Then, the input
providers generate secret shares for their V-AFE vectors and
give these shares to the computing parties as described in Sec-
tion 4.3. Finally, the computing parties combine their sum
vector shares into the V-AFE vector M and verify each entry
with Verify V-OR and the commitments.

5.2 Verifiable, private, and decentralized auction

We now discuss how to extend the protocol of Section 4.4 with
the V-AFE construction of Section 5.1 to obtain verifiability
of the auction’s outcome in addition to privacy.

Recall that in Step 2 of the auction protocol (§4.4), a bidder
i encodes its bid using Encode-MAX (§4.2) which produces
an AFE vector Mi, where each entry in Mi is an Encode-
OR (§4.1) of each bit of bidder i’s unary-formatted bid. In our
verifiable auction, the bidder instead uses the Encode V-OR
procedure (§5.1), so Mi is made up of ℓ V-AFE tuples. Bidder i
also creates, for each entry of Mi, a commitment using Commit

1As an (insecure) example, the set {1, 3, 4, 5, 9} in Z11 forms a multiplicative
group with 5 elements (its order is p = 5). A generator for this group is 3
since repeated multiplications of 3 with itself generates every element.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 831

V-AFE (§5.1). Let Ci denote the corresponding vector of ℓ
commitments for Mi. Bidder i then splits Mi (§4.3), and sends
to the auctioneers a collision-resistant hash of Ci and the AFE
vector shares (M1

i or M2
i , depending on the party).

Asynchronously, bidder i uploads to the public log (§7) its
bidder id, Ci, and a signature of Ci that validates with the
bidder id (recall that bidder ids are verification keys). The
other steps of the auction proceed as before. At the end of the
auction, the publisher and the auxiliary server upload an audit
trail to the public log containing: (1) the auction’s outcome,
consisting of the bidder id of the winner w, the highest bid
b∗, and the auction’s sale price; (2) their share of the sum
vector computed in Step 3 and 5 of the auction protocol; (3)
the b∗-th entry of the V-AFE vector share of each candidate
winner chosen in Step 4 and the seed for the PRG used; and
(4) the hashes (to commitments) they received from bidders.

Deferred public verification. After the auction completes,
an auditor can choose to verify that the auction was done
correctly as follows. The auditor accesses the auction’s audit
trail from the public log, and verifies that the uploaded hashes
match the commitments, and all signatures on the commit-
ments are valid. To verify the highest bid in Step 3, the auditor
aggregates the sum vector shares in the audit trail to obtain
M. Then, the auditor computes the highest bid b∗ by calling
Decode-MAX on M (§4.2). Finally, the auditor runs, for all
j ∈ [1, ℓ], Verify V-OR (§5.1) using as input the j-th entry of
M (acting as the V-AFE sum value), and the j-th entry of every
commitment vector submitted by the n bidders (i.e., for all
i ∈ [1, n], Ci[j]), as the commitment set. If all checks pass, then
Step 3 was correct. The auditor performs the same actions for
Step 5 to verify the second highest bid.

To verify Step 4, the auditor checks, for each of the can-
didate winners x, whether gMx[b∗][0] · hMx[b∗][1] ?

= Cx[b∗]. The
auditor also checks that the Decode-OR of Mw[b∗] is 1 (i.e.,
the actual winner’s bit at position b∗ is indeed a 1), and the
Decode-OR of Mx[b∗] for all other candidate winners x is 0.
Then, the auditor uses the PRG and the seed in the audit trail
to check that the bidder ids of the set of candidate winners are
correct and that w was the last bidder id sampled.

Theorem 1. Addax’s auction protocol with deferred verifica-
tion achieves completeness, soundness, and privacy.

We give the full definitions and proofs in Appendix B. Note
that detection is different from finding the party at fault.

5.3 Assigning blame

An auction may be aborted during the online phase, or deferred
verification may fail. In these cases, Addax can narrow down
the set of faulty parties. As parties participate in many auctions
(recall that exchanges process billions of auctions per day),
one could develop detection algorithms that flag those who
are present in an unusually high number of aborted or failed
auctions. We discuss this in more detail in Appendix D.

6 Optimizations
This section discusses two optimizations. The first adds inter-
action between the bidders and the auctioneers to dramatically
cut costs. The second reduces interaction between the auction-
eers, which lowers latency, but leaks the existence of ties.

6.1 Less communication with an interactive MAX

A major drawback of the proposed private auction protocol
is that the computation and communication complexity of
computing MAX using AFE vectors and their correspond-
ing shares is O(ℓ), where ℓ is the highest possible bid (§4.2).
Meanwhile, bids range from cents to tens of dollars; a realistic
deployment would need ℓ ≥ 1,000, which is too costly. In
this section we show how to modify the auction protocol to
add r rounds of interaction between bidders and the auction-
eers (publisher and auxiliary server) in exchange for reducing
computation and communication complexity to O(r · ℓ1/r).

High-level idea. In Figure 2, bidders first represent their bids
as a unary bit vector, and then use Encode-OR on each bit to
create vector M. This vector is then split into shares M1 and
M2. The auctioneers aggregate their shares locally and then
exchange their sum vector shares to construct the sum vector
M. This vector is then decoded into a unary bit vector that
contains the result of max. Observe that if the bidders were to
use Encode-OR only on the last two bits of their bit vectors
(the gray and light gray cells), they would obtain the last 2
entries of M, which would then be split into the last two entries
of M1 and M2, and would become the last 2 entries of the sum
vector shares, and finally of M. Decoding these two entries of
M results in the last two bits of the final unary bit vector (in
the example these bits are 1 and 0). The fact that the last bit
is 0 means that the max value must be < ℓ. The fact that the
penultimate bit is 1 means that the max value must be ≥ ℓ− 1.
Hence, encoding and sharing only a subset of bidders’ unary
bit vectors is enough to compute the max value. Of course, in
this example we knew ahead of time which two elements to
pick to get a tight upper and lower bound on the max. In our
protocol, the auctioneers do r rounds of k-ary search (k = ℓ1/r)
to find the consecutive positions at which the final unary bit
vector changes from a 1 to a 0, which yields the max.

Protocol. Using the notation of Section 4.3, each bidder i
sends ⌈ℓ1/r⌉ entries of the AFE vector shares M1 and M2 to the
auctioneers in each round. The entries sent in each round are
evenly distributed between the current lower and upper bounds
on the maximum bid (initially set to 1 and ℓ, respectively).
For each of the chosen entries j, the auxiliary server runs the
Compute-OR procedure (§4.1) by aggregating the shares it
receives from each bidder i: M1[j] =

∑
i M1

i [j]. Likewise, the
publisher computes M2[j] =

∑
i M2

i [j]. The publisher and the
auxiliary server then exchange their sum shares for each entry
j, allowing the reconstruction of M[j] = M1[j]+M2[j]. Calling
Decode-OR (§4.1) on M[j] returns whether bit βj in the unary
vector is 1 or 0. If βj is 1, the highest bid b∗ ≥ j. Else, b∗ < j.

832 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

This establishes a new lower and upper bound on b∗ with
respect to the exchanged entries. After r rounds, the number of
entries sent by each bidder to each auctioneer is ≤ r · ⌈ℓ1/r⌉.

In this protocol, bidders transmit a subset of the entries that
they send to the auctioneers in the non-interactive variant, and
hence they reveal less information. But there is one down-
side: bidders or an auctioneer can adaptively send inconsistent
shares in response to partial information (e.g., knowledge that
the max is in a given range). This could affect the auction’s
integrity. Addressing this issue requires extending the protocol
with two extra safeguards: (1) an asynchronous step to find
the sale price bidder which is similar to Step 4 in Section 4.4;
and (2) generating a zero-knowledge proof that the sale price
bidder’s AFE vectors are valid without leaking the original
AFE vector. Appendix C describes these steps in detail and
proves the following two lemmas.

Lemma 5. If either the auxiliary server or the publisher mis-
behaves, or malicious bidders issue inconsistent AFE shares,
the above interactive protocol leaks no more information about
losing bidders’ bids than the non-interactive variant.

Lemma 6. If either the auxiliary server or the publisher mis-
behaves, or malicious bidders issue inconsistent AFE shares,
the above protocol (with the extra safeguards) ensures that
malicious actions are detected during an audit.

6.2 Lower latency by leaking the existence of ties

Of all the steps in the auction protocol, finding the winner
(§4.4, Step 4) is the most expensive since each interaction
between the publisher and the auxiliary server occurs over
WAN. This step consists of two parts: (1) pick a random can-
didate winner w, and (2) exchange the b∗-th entry of w’s AFE
vector shares to determine whether w indeed had the highest
bid—trying again otherwise. The iterated nature of this algo-
rithm aims to find one of the highest bidders at random (as
soon as a highest bidder w is found, the auctioneers halt). One
can eliminate this cost if one is willing to leak the number of
ties. The protocol is simple: the publisher and auxiliary server
exchange the b∗-th entry of the vector shares of all bidders. In
the absence of ties, after decoding, only one bidder will have a
1 and all others will have a 0. If there are ties, multiple bidders
will have a 1 at position b∗, and the auctioneers use the PRG
to break the tie. Addax adopts this tradeoff.

We note that the added leakage is actually minor given that
in the interactive protocol (Step 4), one learns that it took k
tries to find the winner. In an auction with no ties, k would
be n/2 in expectation, so the value of k already leaks some
information about the number of potential ties that may exist.

7 Search and filtering
In Addax, bidders register to participate in auctions by storing
their information (e.g., ad categories, domain of their bidding
service) on a public tamper-proof log, and auction participants

also use this log to create an audit trail (§5.2). Our implemen-
tation uses the Algorand blockchain [3] to maintain the log,
though we could have used a BFT consortium or a trusted
party (if one exists). Addax also needs a way to search the
blockchain. This is typically done by downloading the en-
tire blockchain and locally searching for the desired objects.
Of course, this is onerous for browsers, as no user would
ever maintain a copy of the blockchain just to receive ads.
Instead, our implementation uses the Purestake indexer [14].
The downside is that one must trust this indexer. One way to
remove this assumption is to use a verifiable search engine for
blockchains [69].

Even with the Purestake indexer, querying data is slow: it
takes seconds to get a response. Therefore, Addax keeps a
copy of the log in untrusted cache servers; Addax then queries
Purestake asynchronously to verify the cache servers’ results.
Querying cache servers takes only a few milliseconds.

In the rest of this section we describe how browsers do local
filtering and fetch advertisers’ data. We discuss how browsers
interact with the Algorand blockchain in Appendix E.

7.1 Filtering and inviting advertisers

Upon visiting a page with ads and obtaining a list of allowed
categories from the publisher, the browser queries the cache
server to get bidders who match these categories. The browser
caches bidder information and only sends “if-modified-since”
requests to the cache server to reduce communication. Bor-
rowing ideas from Privad [58] and Adnostic [80], the browser
assigns a preference score for each of the returned bidders.
The browser then picks the top k bidders and invites them
to join the auction, supplying them with information about
the publisher and the user. Depending on the configuration of
Addax, the user information can be empty (for generic ads),
include a group or topic id (as in FLoC [89] and Topics [16]),
or include cookies and demographic information. Since the
publisher’s revenue depends on bids, and bidder valuations are
based on user information, different publishers can require dif-
ferent levels of information disclosure to access their content.
This is similar to how publishers detect ad blocking software
and request that users disable it.

8 Implementation
Addax consists of 2.2K lines of C++ and 400 lines of Python
and PyTeal [15] for Algorand smart contracts. Addax’s client-
side tracking is done outside the browser and interacts with
Chrome via native messaging [9]. We use OpenSSL 3.0.0 [12]
for basic cryptographic operations (e.g., BN_rand as the PRG).
Addax’s Pedersen commitment (§5.1) is defined over elliptic
curve secp192r1, as is the Schnorr signature scheme [78]
that bidders use to sign their log entries. Elements in V-AFE
vectors are defined over the 192-bit field used in secp192r1.

Baselines. To contextualize our contributions, we implement
baselines using state-of-the-art homomorphic encryption (HE)
and secure two-party computation (2PC) frameworks:

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 833

• CKKS on SEAL [25, 47]: HE for arithmetic operations.
• TFHE [49, 50]: HE for boolean operations.
• MASCOT on MP-SPDZ [65, 66]: Arithmetic 2PC.
• ag2pc on EMP toolkit [85, 86]: Boolean 2PC.

Homomorphic encryption. The publisher generates cryp-
tographic keys and sends the public key to bidders. Bidders
send bids encrypted with the public key to the auxiliary server,
who runs the auction over ciphertexts and supplies the result
to the publisher for decryption with the secret key. For SEAL
we implement and measure the maxId algorithm by Cheon
et al. [48] which is the best known way to find the ciphertext
with the max value. While this is a subset of running an auc-
tion, this one step is already more expensive than Addax’s full
auction protocol. For TFHE we implement the whole auction.
Neither baseline provides integrity.

Multiparty computation. Advertisers commit to their bids
and send them to the publisher and auxiliary server alongside
additive shares of their bids and the commitment randomness.
Inside the MPC, the auxiliary server and publisher reconstruct
the bids and the commitment randomness from their shares,
check that the commitments match, and the bids are the com-
mitted values, and then run the auction using the bids. For
commitments we use H(rand||bid) and assume H is a random
oracle. We use hash functions already implemented and opti-
mized for these frameworks (e.g., SHA3, SHA256, MiMC).

9 Evaluation
This section studies the following questions:
1. What are the costs of Addax’s auction for each party?
2. How does Addax’s auction compare with alternatives?
3. What is the resource overhead of deploying Addax over a

non-private and unverifiable exchange?
4. How expensive is the verification procedure?

Appendix E.3 discusses the cost of interacting with the log.

Evaluation environment. We run our experiments across
AWS data centers to account for Addax’s decentralized nature.
The publisher is in US East (Ohio) on a c5.2xlarge instance,
the auxiliary server in US West (OR) on a c5.2xlarge instance,
and bidders in US West (CA) on c5.12xlarge instances. We
use standard Ubuntu 20.04 for all of them. PureStake exposes
a REST API and runs on servers in Ontario, CA, and OR.

Method and metrics. Our key metrics are the end-to-end
latency, total network communication, and throughput of the
auction procedure. This includes the events after the browser
fetches the page from the publisher and initiates the auction,
but before the browser fetches and displays the ad on the user’s
screen. In short, we measure the overhead of Addax over the
status quo of using a centralized non-private ad exchange.
We report the mean over 20 trials and one standard deviation.
We focus on second-price auctions in this evaluation, as they
are the more complex type of auction. If Addax is used for
first-price auctions, the costs are 30% lower: auctions with

Size (MB) Generation (ms)

AFE vector shares 0.48 87.55

Materials (non-interactive) 0.25 537.9

Materials (interactive) 1.705 1,802.0

Non-interactive 2-round 4-round

Communication (MB) 0.48 0.0144 0.0034

FIGURE 3—Size of AFE vector shares and other materials (e.g.,
commitments), their generation time, and the total communication
between a bidder and one auctioneer under different Addax variants.

96 bidders complete within 440 ms, and Addax can sustain a
throughput of 360 auctions per second per core.

Parameters. Prior reports [92] suggest that the typical num-
ber of bidders (usually demand-side platforms) in an auction
is under 30. We experiment with up to 96 bidders, but Addax
could handle more with little extra latency since most of the
latency comes from round trips between the two servers and
is not impacted by the number of bidders. We set ℓ = 10,000,
which supports bid ranges consistent with those observed in
practice [93]. This results in a probability of computing the
wrong MAX of ≈ 1− (1− 1

2192)
10,000, which is negligible.

Our baseline implementations are generous: we use 13-bits
for bids (4/5 of our bid range) and do not measure the time to
receive shares or ciphertexts from bidders for any of them.

9.1 Microbenchmarks: Addax’s auction protocol

To answer our first research question we microbenchmark the
operations of each of the auction participants.

Bidder’s cost. Before the auction starts, bidders encode their
bids, commit to the encodings, and send their shares to the auc-
tioneers. Figure 3 depicts the time required to generate an AFE
vector, and the verification materials in both the non-interactive
protocol (§5) and the interactive variant (§6.1) using 8 CPU
threads. For the latter we include the cost of the safeguards
detailed in Appendix C.2. As shown in the figure, generating
these materials is more expensive than the time budgeted for
an auction. However, AFE vectors are made up of random
elements; the only dependence on bids is whether to use a
uniform element or a zero (§4.1). As a result, all materials
can be precomputed and kept aside. Furthermore, their genera-
tion is parallelizable: we get a 5.83× speedup with 6× more
cores. We expect bidders to be able to maintain their desired
throughput, albeit at a higher cost ($) than they incur today.

When the auction starts and the bidder decides on its bid, it
can draw from the set of pre-generated materials to construct
bid-specific AFE vector shares, commitments, and proofs.
With pre-generated materials, bidders respond in 10 ms.

Local auction computation. To determine the costs to the
auxiliary server and the publisher we run a microbenchmark
where both auctioneers run on the same machine, are given all
materials (e.g., AFE shares), and compute the auction without
the effects of network latency. Figure 4a shows the time for

834 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

24 48 96
Number of bidders in auction

1

10

102

103

A
uc

tio
n

Ti
m

e
(m

s)

Non-interactive
Interactive - 2 round
Interactive - 4 round

(a)

24 48 96
Number of bidders in auction

0.01

0.1

1

10

102
103

C
om

m
un

ic
at

io
n

C
os

t (
M

B
)

Non-interactive
Interactive - 2 round

Interactive - 4 round

(b)

�� �� 	�
����������������������������

�

�

�

�

�
���
��
��
��
��
��
�
��
��
� ���������������

��������������������

��������������������

(c)

FIGURE 4—Cost of running and verifying an auction across Addax’s variants. Figure (a) depicts the processing time incurred by each
auctioneer; (b) depicts the communication costs for each auctioneer; and (c) depicts the costs to an auditor.

24 48 96
Number of bidders in auction

0.1

1

10

102

103

Ti
m

e
(s

)

SEAL
TFHE

MASCOT
ag2pc

Addax - 2-round
Addax - 4-round

24 48 96
Number of bidders in auction

0.01

0.1

1
10
102
103
104
105

C
om

m
un

ic
at

io
n

(M
B

)

FIGURE 5—End-to-end latency and communication costs for an
auction in Addax and several baselines over WAN.

different Addax variants. Compared to the non-interactive
protocol, Addax with 4 rounds (§6.1) requires fewer operations
since it acts on a tiny subset of the entries of the AFE vector,
and reduces computation time for a 96 bidder auction from
102 ms to 2.8 ms. Interactivity also reduces communication
costs for effectively the same reason (acts on fewer entries). As
we show in Figure 4b, the size of the AFE shares exchanged
between bidders and each auctioneer in the non-interactive
variant of Addax with 96 bidders is 47.68 MB, whereas it is
0.28 MB with 4-rounds and 1.23 MB with 2-rounds.

9.2 End-to-end performance

The above microbenchmarks give an idea of the computation
and communication costs that are expected when running auc-
tions with Addax. However, the metric that actually matters is
end-to-end latency over WAN. Figure 5 shows the computa-
tion and communication costs of Addax’s end-to-end protocol
over a WAN deployment, from the time that the publisher
starts the auction, to the time the winner is notified. This figure

500 1000 1500 2000 2500
Throughput (auctions/sec)

1

10

102

La
te

nc
y

(m
s)

Addax (2-round) - 50p
Addax (2-round) - 99p
Addax (4-round) - 50p
Addax (4-round) - 99p
Baseline (non-private) - 50p
Baseline (non-private) - 99p

FIGURE 6—Median and 99-percentile response time and server
throughput for Addax and a non-private baseline for an auction with
96 bidders. Each data point represents the latency and the throughput
achieved at a given load (low and to the right is better).

also shows the baselines described in Section 8.
In terms of auction latency, Addax’s 2-round variant is by

far the most efficient option, often by orders of magnitude
compared to the baselines. Addax’s 2-round variant beats the
4-round variant due to fewer WAN RTTs at a slight increase
in the amount of communication. At 96 bidders, the browser
receives an ad tag from Addax in 579 ms; behind the scenes,
the auctioneers exchange 1.23 MB of data to compute the
auction. Of this time, the servers only spend 5 ms computing;
the rest is network latency. Thus, having more bidders will not
meaningfully increase the end-to-end latency of Addax.

For comparison, studies [1, 7, 20, 87] show that page load-
ing times today take several seconds, so we expect Addax to
run auctions asynchronously as the page loads without signifi-
cantly impacting the user experience.

9.3 Costs over a non-private unverifiable baseline

To understand the additional computational resources required
to deploy Addax, we compare its throughput on a c5.2xlarge
instance (4-core VM) to a baseline that simply finds the highest
and second highest bids (the only non-trivial computation
is establishing a TLS session between the browser and the
publisher). We run an open-loop workload with varying load
and with all inputs already in-memory, so we do not measure
network latency. Figure 6 gives the results.

Addax’s 2-round and 4-round variant achieve 8.1× and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 835

Non-interactive 2-round 4-round

Auctioneers 1.932 0.056 0.025

Bidders 0.250 0.250 0.250

Winner 0.250 0.730 0.730

Sale price bidder 0.250 1.705 1.705

FIGURE 7—Total size (MB) of the audit information that parties
must upload to the public log in an auction of 96 bidders.

2.7× lower throughput than the baseline. As Addax requires
two servers, this translates to 16.2× and 5.4× more computa-
tion resources to maintain the same throughput as the baseline.
This suggests that Addax could process the high volume of auc-
tions that exchanges process today while providing integrity
and privacy guarantees—albeit at a premium cost.

9.4 Cost of verification

In this section we evaluate the cost for auction participants to
supply the necessary materials to leave an audit trail, and for
an auditor to validate the correctness of an auction.

Leaving an audit trail. After the auction finishes, partici-
pants upload their audit materials (§5.2–§5.3) to Algorand.
This takes around 0.8 sec. Figure 7 gives the size of the ma-
terials that each party uploads for a 96-bidder auction. In the
interactive variants, the winner uploads its full AFE vector,
and the sale price bidder uploads its full AFE vector with a
random mask and proofs as described in Appendix C.5.

Verification time. Verification requires downloading the ma-
terials from Algorand, checking the hash of commitments,
and checking the recovered AFE sum vectors and bit encod-
ings (§5.2). Auditors also need to validate that AFE vectors
from the winner and sale price bidder are valid (§C.2). Fig-
ure 4c depicts the time of verification. In the non-interactive
variant, deserializing commitments and verifying the two sum
vectors takes most of the time. In contrast, in the interactive
variants the expensive step is validating the winner and sale
price bidders’ AFE vectors. To verify a 96-bidder auction, the
non-interactive variant requires 4.27 sec, while the 2-round
and 4-round variants take 1.66 sec and 1.49 sec, respectively.

10 Related work
This section describes other efforts that relate to Addax.

Advertising. There is a rich literature in privacy preserving
ads [35, 44, 52, 57–59, 75, 76, 80], but none focuses on private
and verifiable auctions. VEX [35] provides verifiability but
the auctioneer learns all bids. Privad [58, 59], Adnostic [80],
FloC [89], Topics [16], and others [37, 57, 76] reduce the
collection of user information, but auctions are still conducted
by a party that learns all bids and cannot be audited.

Private and verifiable auctions. In other domains, there is
work on private or verifiable auctions. Parkes et al. [73] pro-
vide auction integrity but the auctioneer learns all bids, unlike

Addax. Other works [62, 67] provide privacy but not integrity.
Finally, there are several multiparty protocols [38, 42] where
the bidders jointly compute the auction. This is worse than
our MPC baseline in Section 8 in that here bidders actively
participate in the protocol rather than merely generating shares.
This does not scale to more than a handful of bidders.

11 Discussion
Addax departs from the status quo by introducing accountabil-
ity to an opaque ecosystem. While this is a disruptive change,
there are two things on Addax’s favor. First, the ad-tech indus-
try already uses browsers to kickstart auctions and invite bid-
ders [4] and newer proposals like Google’s FLEDGE [33] push
even more functionality to browsers include client-side track-
ing. Second, Addax is incrementally deployable: an Addax-
enabled browser can send an HTTP X-header indicating its
support of the protocol, and interested publishers can respond
with Addax-based ad spots while continuing to offer tradi-
tional ads to other users. Furthermore, we think many missing
features can be implemented in Addax.

Content curation. A key role of exchanges is to prevent
malvertising (the use of ads to spread malware) or ads that
can damage the publisher’s brand. On the one hand, content
curation is hard even in centralized environments: reports of
malicious actors leveraging ad networks to distribute malware
are common [8]. On the other hand, since advertisers publish
their information on Addax’s public log, one could imagine
requiring advertisers to upload their ads as well. Then, just like
existing services scan blockchains for anomalous transactions,
they can scan Addax’s log to detect and flag malicious ads.

Fraud prevention. Many existing mechanisms to prevent
publisher fraud (e.g., using clickbots to increase revenue) [79]
still work in our setting. For example, bidders can still observe
anomalous changes in ad traffic from a publisher, and can
perform randomized auditing with bluff ads [60] (uninviting
ads unlikely to be clicked by real users). Other techniques
that collect hard-to-fake signals from a device with the aim of
detecting bots [18, 21] could also be used, but more work is
needed to port them to our context.

Conversions. Analytics are also critical to the ad ecosystem.
Currently, advertisers and publishers rely on third-party cook-
ies to track when a user performs an action after viewing an ad
(a “conversion”). A recent proposal [94] shows how this can be
done without cookies and without learning the user’s identity;
this approach is compatible with Addax’s architecture.

Trust-performance tradeoff. Our description of Addax uses
2 parties but the protocols naturally generalize to k auxiliary
servers; if either the publisher or any of the k auxiliary servers
is honest, Addax provides its guarantees. Of course, as the
number of parties increases the costs also increase. This trade-
off can be taken into account at deployment time.

836 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments
We thank the OSDI and NSDI reviewers, and our shepherd,
Bryan Ford, for their thoughtful comments that improved
this paper. This work was funded in part by NSF grant CNS-
2045861 and DARPA contract HR0011-17-C0047.

References
[1] About pagespeed insights. https://developers.google.

com/speed/docs/insights/v5/about.
[2] Adtelligent’s header bidding platform. https:

//adtelligent.com/header-bidding-platform/.
[3] Algorand. https://www.algorand.com/.
[4] The beginner’s guide to header bidding.

https://adprofs.co/beginners-guide-to-header-
bidding/.

[5] Google Has a New Plan to Kill Cookies. People Are Still Mad.
https://www.wired.co.uk/article/google-floc-
cookies-chrome-topics.

[6] Google’s Topics API: Rebranding FLoC Without Addressing
Key Privacy Issues. https://brave.com/web-standards-
at-brave/7-googles-topics-api/.

[7] Here’s what we learned about page speed.
https://backlinko.com/page-speed-stats.

[8] Malvertising: What is it and how to avoid it.
https://us.norton.com/internetsecurity-malware-
malvertising.html.

[9] Native messaging.
https://developer.chrome.com/docs/apps/nativeMessaging/.

[10] Openrtb protocol buffer 2.5.0.
https://developers.google.com/authorized-
buyers/rtb/downloads/openrtb-proto.

[11] OpenRTB (real time bidding).
https://www.iab.com/guidelines/real-time-
bidding-rtb-project/.

[12] OpenSSL. https://www.openssl.org.
[13] Parakeet. https://github.com/WICG/privacy-

preserving-ads/blob/main/Parakeet.md.
[14] Purestake. https://www.purestake.com/.
[15] Pyteal: Algorand smart contracts in python.

https://github.com/algorand/pyteal.
[16] The Topics API.

https://developer.chrome.com/docs/privacy-
sandbox/topics/.

[17] This is how Google plans to track you now.
https://www.slashgear.com/this-is-how-google-
plans-to-track-you-now-25708910/.

[18] What is recaptcha?
https://www.google.com/recaptcha/about/.

[19] Cookie synching.
https://www.admonsters.com/cookie-synching/,
2010.

[20] Find out how you stack up to new industry benchmarks for
mobile page speed.
https://think.storage.googleapis.com/docs/
mobile-page-speed-new-industry-benchmarks.pdf,
2017.

[21] Fighting fraud using partially blind signatures.

https://engineering.fb.com/2019/10/16/security/
partially-blind-signatures/, 2019.

[22] Iab internet advertising revenue report.
https://www.iab.com/wp-
content/uploads/2019/05/Full-Year-2018-IAB-
Internet-Advertising-Revenue-Report.pdf, 2019.

[23] Cookie matching.
https://developers.google.com/authorized-
buyers/rtb/cookie-guide, 2020.

[24] Lattigo v2.1.1. Online:
http://github.com/ldsec/lattigo, Dec. 2020.

[25] Microsoft SEAL (release 3.6).
https://github.com/Microsoft/SEAL, Nov. 2020.

[26] PALISADE Lattice Cryptography Library (release 1.10.6).
https://palisade-crypto.org/, Dec. 2020.

[27] Private marketplace ad spending to surpass open exchange in
2020. https://www.emarketer.com/content/private-
marketplace-ad-spending-to-surpass-open-
exchange-in-2020, 2020.

[28] Antitrust battle latest: Google, facebook ’colluded’ to smash
apple’s privacy protections.
https://www.theregister.com/2021/10/22/google_
facebook_antitrust_complaint/, 2021.

[29] Azure attestation client library for .net - version 1.0.0.
https://docs.microsoft.com/en-us/dotnet/api/
overview/azure/security.attestation-readme, 2021.

[30] Bring more bids to the auction with open bidding.
https://admanager.google.com/home/resources/
feature-brief-open-bidding/, 2021.

[31] SCALE and MAMBA.
https://github.com/KULeuven-COSIC/SCALE-MAMBA,
2021.

[32] The comprehensive guide to online advertising costs.
https://www.wordstream.com/blog/ws/2017/07/05/
online-advertising-costs, 2022.

[33] Fledge api.
https://developer.chrome.com/docs/privacy-
sandbox/fledge/, 2022.

[34] E. Anderson, M. Chase, F. B. Durak, E. Ghosh, K. Laine, and
C. Weng. Aggregate measurement via oblivious shuffling,
2021. https://ia.cr/2021/1490.

[35] S. Angel and M. Walfish. Verifiable auctions for online ad
exchanges. In Proceedings of the ACM SIGCOMM Conference,
2013.

[36] Y. Aumann and Y. Lindell. Security against covert adversaries:
Efficient protocols for realistic adversaries. Journal of
Cryptology, 23(2), 2010.

[37] M. Backes, A. Kate, M. Maffei, and K. Pecina. Obliviad:
Provably secure and practical online behavioral advertising. In
Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2012.

[38] S. Bag, F. Hao, S. F. Shahandashti, and I. G. Ray. Seal:
Sealed-bid auction without auctioneers. IEEE Transactions on
Information Forensics and Security, 15, 2020.

[39] M. A. Bashir and C. Wilson. Diffusion of User Tracking Data
in the Online Advertising Ecosystem. In Proceedings of the
Privacy Enhancing Technologies Symposium (PETS), 2018.

[40] A. Bois, I. Cascudo, D. Fiore, and D. Kim. Flexible and
efficient verifiable computation on encrypted data. Cryptology

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 837

https://developers.google.com/speed/docs/insights/v5/about
https://developers.google.com/speed/docs/insights/v5/about
https://adtelligent.com/header-bidding-platform/
https://adtelligent.com/header-bidding-platform/
https://www.algorand.com/
https://adprofs.co/beginners-guide-to-header-bidding/
https://adprofs.co/beginners-guide-to-header-bidding/
https://www.wired.co.uk/article/google-floc-cookies-chrome-topics
https://www.wired.co.uk/article/google-floc-cookies-chrome-topics
https://brave.com/web-standards-at-brave/7-googles-topics-api/
https://brave.com/web-standards-at-brave/7-googles-topics-api/
https://backlinko.com/page-speed-stats
https://us.norton.com/internetsecurity-malware-malvertising.html
https://us.norton.com/internetsecurity-malware-malvertising.html
https://developers.google.com/authorized-buyers/rtb/downloads/openrtb-proto
https://developers.google.com/authorized-buyers/rtb/downloads/openrtb-proto
https://www.iab.com/guidelines/real-time-bidding-rtb-project/
https://www.iab.com/guidelines/real-time-bidding-rtb-project/
https://www.openssl.org
https://github.com/WICG/privacy-preserving-ads/blob/main/Parakeet.md
https://github.com/WICG/privacy-preserving-ads/blob/main/Parakeet.md
https://www.purestake.com/
https://github.com/algorand/pyteal
https://developer.chrome.com/docs/privacy-sandbox/topics/
https://developer.chrome.com/docs/privacy-sandbox/topics/
https://www.slashgear.com/this-is-how-google-plans-to-track-you-now-25708910/
https://www.slashgear.com/this-is-how-google-plans-to-track-you-now-25708910/
https://www.google.com/recaptcha/about/
https://www.admonsters.com/cookie-synching/
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://engineering.fb.com/2019/10/16/security/partially-blind-signatures/
https://engineering.fb.com/2019/10/16/security/partially-blind-signatures/
https://www.iab.com/wp-content/uploads/2019/05/Full-Year-2018-IAB-Internet-Advertising-Revenue-Report.pdf
https://www.iab.com/wp-content/uploads/2019/05/Full-Year-2018-IAB-Internet-Advertising-Revenue-Report.pdf
https://www.iab.com/wp-content/uploads/2019/05/Full-Year-2018-IAB-Internet-Advertising-Revenue-Report.pdf
https://developers.google.com/authorized-buyers/rtb/cookie-guide
https://developers.google.com/authorized-buyers/rtb/cookie-guide
http://github.com/ldsec/lattigo
https://github.com/Microsoft/SEAL
https://palisade-crypto.org/
https://www.emarketer.com/content/private-marketplace-ad-spending-to-surpass-open-exchange-in-2020
https://www.emarketer.com/content/private-marketplace-ad-spending-to-surpass-open-exchange-in-2020
https://www.emarketer.com/content/private-marketplace-ad-spending-to-surpass-open-exchange-in-2020
https://www.theregister.com/2021/10/22/google_facebook_antitrust_complaint/
https://www.theregister.com/2021/10/22/google_facebook_antitrust_complaint/
https://docs.microsoft.com/en-us/dotnet/api/overview/azure/security.attestation-readme
https://docs.microsoft.com/en-us/dotnet/api/overview/azure/security.attestation-readme
https://admanager.google.com/home/resources/feature-brief-open-bidding/
https://admanager.google.com/home/resources/feature-brief-open-bidding/
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://www.wordstream.com/blog/ws/2017/07/05/online-advertising-costs
https://www.wordstream.com/blog/ws/2017/07/05/online-advertising-costs
https://developer.chrome.com/docs/privacy-sandbox/fledge/
https://developer.chrome.com/docs/privacy-sandbox/fledge/
https://ia.cr/2021/1490

ePrint Archive, Report 2020/1526, 2020.
[41] F. Bourse, O. Sanders, and J. Traoré. Improved secure integer

comparison via homomorphic encryption. In Topics in
Cryptology – CT-RSA 2020, 2020.

[42] F. Brandt. A verifiable, bidder-resolved auction protocol. In
Proceedings of the 5th International Workshop on Deception,
Fraud and Trust in Agent Societies, 2002.

[43] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. Wenisch, Y. Yarom, and
R. Strackx. Foreshadow: Extracting the keys to the intel sgx
kingdom with transient out-of-order execution. In Proceedings
of the USENIX Security Symposium, 2018.

[44] J. Cartlidge, N. P. Smart, and Y. Talibi Alaoui. Mpc joins the
dark side. In International Symposium on Information,
Computer, and Communications Security, 2019.

[45] F. Chanchary and S. Chiasson. User perceptions of sharing,
advertising, and tracking. In Symposium On Usable Privacy
and Security (SOUPS), 2015.

[46] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai.
Sgxpectre attacks: Leaking enclave secrets via speculative
execution. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2019.

[47] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic
encryption for arithmetic of approximate numbers. In
International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT), 2017.

[48] J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee.
Numerical method for comparison on homomorphically
encrypted numbers. In International Conference on the Theory
and Application of Cryptology and Information Security
(ASIACRYPT), 2019.

[49] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène.
TFHE: Fast fully homomorphic encryption library, August
2016. https://tfhe.github.io/tfhe/.

[50] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène.
TFHE: Fast fully homomorphic encryption over the torus.
Journal of Cryptology, 33, 2020.

[51] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and
scalable computation of aggregate statistics. In Proceedings of
the USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2017.

[52] E. Deng, H. Zhang, P. Wu, F. Guo, Z. Liu, H. Zhu, and Z. Cao.
Pri-rtb: Privacy-preserving real-time bidding for securing
mobile advertisement in ubiquitous computing. In Information
Sciences, 2019.

[53] A. Fiat and A. Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In Advances
in Cryptology — CRYPTO’ 86, 1987.

[54] D. Fiore, A. Nitulescu, and D. Pointcheval. Boosting verifiable
computation on encrypted data. In Proceedings of the
International Conference on Practice and Theory in Public Key
Cryptography (PKC), 2020.

[55] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies.
In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2017.

[56] A. Goldfarb and C. E. Tucker. Privacy regulation and online
advertising. Management Science, 2010.

[57] M. Green, W. Ladd, and I. Miers. A protocol for privately

reporting ad impressions at scale. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS),
2016.

[58] S. Guha, B. Cheng, and P. Francis. Privad: Practical privacy in
online advertising. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI),
2011.

[59] S. Guha, A. Reznichenko, K. Tang, H. Haddadi, and P. Francis.
Serving ads from localhost for performance, privacy, and profit.
In Proceedings of the ACM Workshop on Hot Topics in
Networks (HotNets), 2009.

[60] H. Haddadi. Fighting online click-fraud using bluff ads. ACM
SIGCOMM Computer Communication Review, 40(2), 2010.

[61] S. Halevi and V. Shoup. Design and implementation of helib: a
homomorphic encryption library. Cryptology ePrint Archive,
Report 2020/1481, 2020.

[62] M. Harkavy, J. D. Tygar, and H. Kikuchi. Electronic auctions
with private bids. In 3rd USENIX Workshop on Electronic
Commerce (EC 98), 1998.

[63] J. Horwitz and K. Hagey. Google’s secret ‘project bernanke’
revealed in texas antitrust case.
https://www.wsj.com/articles/googles-secret-
project-bernanke-revealed-in-texas-antitrust-
case-11618097760, Apr. 2021.

[64] I. Iliashenko and V. Zucca. Faster homomorphic comparison
operations for BGV and BFV. Cryptology ePrint Archive,
Report 2021/315, 2021.

[65] M. Keller. MP-SPDZ: A versatile framework for multi-party
computation. Cryptology ePrint Archive, Report 2020/521,
2020.

[66] M. Keller, E. Orsini, and P. Scholl. Mascot: Faster malicious
arithmetic secure computation with oblivious transfer. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2016.

[67] H. Kikuchi, S. Hotta, K. Abe, and S. Nakanishi. Distributed
auction servers resolving winner and winning bid without
revealing privacy of bids. In Proceedings of the Seventh
International Conference on Parallel and Distributed Systems:
Workshops, 2000.

[68] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado.
Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In Proceedings of the USENIX Security
Symposium, 2017.

[69] M. Li, T. Zhang, J. Zhu, C. Tan, Y. Xia, S. Angel, and H. Chen.
Bringing decentralized search to decentralized services. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2021.

[70] Y. Lindell. How to simulate it - a tutorial on the simulation
proof technique. Cryptology ePrint Archive, Report 2016/046,
2016. https://ia.cr/2016/046.

[71] J. R. Mayer and J. C. Mitchell. Third-party web tracking:
Policy and technology. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2012.

[72] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss,
and F. Piessens. Plundervolt: Software-based fault injection
attacks against intel sgx. In Proceedings of the 41st IEEE
Symposium on Security and Privacy (S&P’20), 2020.

[73] D. C. Parkes, M. O. Rabin, S. M. Shieber, and C. Thorpe.
Practical secrecy-preserving, verifiably correct and trustworthy

838 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.wsj.com/articles/googles-secret-project-bernanke-revealed-in-texas-antitrust-case-11618097760
https://www.wsj.com/articles/googles-secret-project-bernanke-revealed-in-texas-antitrust-case-11618097760
https://www.wsj.com/articles/googles-secret-project-bernanke-revealed-in-texas-antitrust-case-11618097760
https://ia.cr/2016/046

auctions. Electronic Commerce Research and Applications,
2008.

[74] T. P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In Proceedings of the
International Cryptology Conference (CRYPTO), 1991.

[75] G. Pestana, I. Querejeta-Azurmendi, P. Papadopoulos, and
B. Livshits. Themis: Decentralized and trustless ad platform
with reporting integrity.
https://arxiv.org/abs/2007.05556v2, 2020.

[76] A. Reznichenko, S. Guha, and P. Francis. Auctions in
do-not-track compliant internet advertising. In Proceedings of
the ACM Conference on Computer and Communications
Security (CCS), 2011.

[77] F. Roesner, T. Kohno, and D. Wetherall. Detecting and
defending against third-party tracking on the web. In
Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2012.

[78] C. P. Schnorr. Efficient identification and signatures for smart
cards. In Proceedings of the International Cryptology
Conference (CRYPTO), 1989.

[79] B. Stone-Gross, R. Stevens, R. Kemmerer, C. Kruegel,
G. Vigna, and A. Zarras. Understanding fraudulent activities in
online ad exchanges. In Proceedings of the ACM SIGCOMM
Conference on Internet Measurement (IMC), 2011.

[80] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and
S. Barocas. Adnostic: Privacy preserving targeted advertising.
In Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2010.

[81] R. Tracy and J. Horwitz. Inside the Google-Facebook ad deal
at the heart of a price-fixing lawsuit.
https://www.wsj.com/articles/inside-the-google-
facebook-ad-deal-at-the-heart-of-a-price-
fixing-lawsuit-11609254758, Dec. 2020.

[82] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens. LVI:
Hijacking Transient Execution through Microarchitectural
Load Value Injection. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2020.

[83] W. Vickrey. Counterspeculation, auctions, and competitive
sealed tenders. The Journal of Finance, 1961.

[84] D. Wakabayashi and T. Hsu. Behind a secret deal between
Google and Facebook.
https://www.nytimes.com/2021/01/17/technology/
google-facebook-ad-deal-antitrust.html, Jan. 2021.

[85] X. Wang, A. J. Malozemoff, and J. Katz. EMP-toolkit:
Efficient MultiParty computation toolkit.
https://github.com/emp-toolkit, 2016.

[86] X. Wang, S. Ranellucci, and J. Katz. Authenticated garbling
and efficient maliciously secure two-party computation. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2017.

[87] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall. Demystifying page load performance with wprof.
In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2013.

[88] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson.
Scalable anonymous group communication in the anytrust
model. In Proceedings of the European Workshop on System
Security (EUROSEC), Apr. 2012.

[89] Y. Xiao and J. Karlin. Federated learning of cohorts.
https://wicg.github.io/floc/, 2021.

[90] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In
Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2015.

[91] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and Z. Chen.
How much can behavioral targeting help online advertising? In
International World Wide Web Conference (WWW), 2009.

[92] S. Yuan, J. Wang, B. Chen, P. Mason, and S. Seljan. An
empirical study of reserve price optimisation in real-time
bidding. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 2014.

[93] W. Zhang, S. Yuan, J. Wang, and X. Shen. Real-time bidding
benchmarking with iPinYou dataset.
https://arxiv.org/abs/1407.7073, 2015.

[94] K. Zhong, Y. Ma, and S. Angel. Ibex: Privacy-preserving ad
conversion tracking and bidding. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS),
2022.

A Proofs for lemmas

Proof of Lemma 1. Let h be the maximum bid among all
honest bidders. The event claimed in Lemma 1 is equiva-
lent to one of two cases: (1) Decode-MAX outputs a valid
unary bit vector whose value is larger than or equal to h; or
(2) Decode-MAX outputs an invalid unary bit vector. Con-
sider the opposite event where Decode-MAX outputs a valid
unary bit vector whose value is smaller than h. We denote
the probability of this event as Pr(opposite). Pr(opposite) ≤
Pr(Decode-OR outputs 0 at position h) ≤ 1/p. Therefore, the
probability that the output of Step 3 is greater than or equal to
h or is an invalid unary bit vector is 1−Pr(opposite) ≥ 1−1/p.
In our construction p is a large prime, and hence 1− 1/p ≈ 1.

Proof of Lemma 2. Let two parties hold additive shares for
a given AFE value that was produced by Encode-OR. Let
one of the parties be honest and the other malicious. Without
seeing the share held by the honest party, the probability of
the malicious party generating a share that results in Decode-
OR outputting 0 is 1/p: the malicious party would have to
correctly guess the exact value needed to make the two shares
add up to 0, and shares are uniformly random values in Zp.
Thus, the probability of a malicious party generating AFE
shares which lead to Decode-OR outputting 1 is 1− 1/p.

We use Pr(b) to denote the probability that Decode-MAX
outputs b, and Pr(invalid) to denote the probability that
Decode-MAX outputs an invalid bit vector. Decode-MAX out-
puts b means that the decoded bit vector is [1, . . . , 1︸ ︷︷ ︸

b

, 0, . . . , 0︸ ︷︷ ︸
ℓ−b

].

Thus, Pr(b) = (1/p)ℓ−b · (1− 1/p)b.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 839

https://arxiv.org/abs/2007.05556v2
https://www.wsj.com/articles/inside-the-google-facebook-ad-deal-at-the-heart-of-a-price-fixing-lawsuit-11609254758
https://www.wsj.com/articles/inside-the-google-facebook-ad-deal-at-the-heart-of-a-price-fixing-lawsuit-11609254758
https://www.wsj.com/articles/inside-the-google-facebook-ad-deal-at-the-heart-of-a-price-fixing-lawsuit-11609254758
https://www.nytimes.com/2021/01/17/technology/google-facebook-ad-deal-antitrust.html
https://www.nytimes.com/2021/01/17/technology/google-facebook-ad-deal-antitrust.html
https://github.com/emp-toolkit
https://wicg.github.io/floc/
https://arxiv.org/abs/1407.7073

Pr(0) + . . .+ Pr(ℓ− 1) < (1/p)ℓ + . . .+ (1/p)1

=

1
p − (1

p)
ℓ+1

1− 1
p

<
1

p− 1
Pr(ℓ) + Pr(Invalid) = 1− (Pr(0) + . . .+ Pr(ℓ− 1))

≥ 1− 1
p− 1

In our construction p is a large prime, so 1− 1
p−1 ≈ 1.

Proof of Lemma 3. From Lemma 2 (and its proof), if a mali-
cious party uses a bogus share for one of the bits, Decode-OR
outputs 1 with probability ≥ 1 − 1/p. Thus, if a malicious
publisher or auxiliary server ever sends a bogus AFE share,
Decode-OR would output 1 with high probability, leading to
that candidate w becoming the winner. The auxiliary server
and publisher then need to get acknowledgment from bidder
w on whether its bid bw is b∗. If w is honest and bw ̸= b∗, the
auction aborts. If w is honest and bw = b∗, w is the real winner,
as b∗ is greater than or equal to the real highest bid among all
honest bidders with high probability. If w is malicious, it could
abort or can choose to be the winner at its own discretion. If
the latter, it must pay the second-highest bid (sale price).

Proof of Lemma 4. We consider two cases: (1) bidder w is
honest and the real winner (highest bidder); (2) bidder w is a
malicious bidder and not the highest bidder. We denote b as
the computed sale price in Step 5.

For case (1), if the two auctioneers do not misbehave and use
the correct inputs from bidders to compute Step 5, then b is the
real sale price (i.e., the second highest bid) among all bidders.
If a malicious auctioneer (auxiliary server or publisher) sends
a sum vector share that is not computed correctly from bidders’
inputs (i.e., the malicious auctioneer sends a sum vector share
that is not

∑N
i=1 M1

i −M1
w) in Step 5 when computing the sale

price, b would be ℓ with high probability (Lemma 2).
For case (2), if the two auctioneers do not misbehave and

use the correct inputs from bidders to compute Step 5, Step
5 finds the highest bid among all bidders excluding bidder w.
Thus, b equals the highest bid among all bidders. If a malicious
auctioneer sends an incorrect sum vector share (not computed
correctly from the inputs of all bidders) in Step 5, then b is ℓ
with high probability (Lemma 2).

B Proof for Addax’s security properties
This section proves that Addax meets its security properties,
which include auction completeness, soundness, and privacy.

Completeness. When all parties are honest, Addax’s com-
pleteness relies on the probability of Decode-MAX being
successful when it is used to find the highest bid and the sale
price. Further, it relies on the probability of Decode-OR being

successful when finding the id of the winner and the second
highest bidder (recall this happens interactively by calling
Decode-OR on a particular entry in the AFE sum vector of
a candidate winner). In the worst case, Decode-OR might be
run on up to n candidate winners (2n− 1 times for candidate
winners and sale price bidders in the interactive variant). The
probability of success is ≥ (1− 1/p)2ℓ · (1− 1/p)n, and is
≥ (1− 1/p)2ℓ · (1− 1/p)2n−1 in the interactive variant.

Soundness. There are three scenarios which result in an in-
correct outcome: (1) publisher and auxiliary server are honest
and some bidders are malicious; (2) either the publisher or the
auxiliary server is malicious and all bidders are honest; (3)
either the publisher or the auxiliary server is malicious and
some bidders are malicious and colluding with the malicious
auctioneer.

When bidders are malicious, they can: (A1) encode bids
into an invalid unary bit vector (e.g., [1,0,0,1]), then generate
AFE shares for such invalid unary bit vector and submit them
to the publisher and auxiliary server; (A2) provide inconsistent
commitments which are not commitments to the AFE it gener-
ates or provide inconsistent hash values of their commitments;
(A3) claim to be the winner even when they are not. When
one of two computing servers is malicious, it could: (B1) send
incorrect sum vectors for the highest bid or sale price; (B2)
send incorrect AFE shares when finding the winner or the
bidder of the sale price.

All malicious behaviors above except (A1) would lead to
failure of verification using commitments with high probability
due to Pedersen commitments being computationally binding
and the hash function being collision resistant. Specifically,
after all bidders send a hash of their commitments, they are
bound to their AFE vectors. When the random seed used to
find the winner and sale price bidder is fixed, the winner and
the sale price bidder (in the interactive variant) are also bound.
This effectively fixes the outcome of the auction.

(A1) may still pass verification but the outcome of the
auction will still be correct since we do not explicitly check
whether inputs from all bidders are valid or not. In the non-
interactive auction protocol, Addax can treat the highest index
with bit one of the decoded bit vector as the bid of the bidder
(e.g., [1,0,1,0] corresponds to bid 3). Thus, an invalid AFE
vector does not affect the outcome of the auction. And we only
need to check the case of (A1) in the interactive variant. If a
bidder who submitted an invalid AFE vector does not become
the winner or the bidder of the sale price, then they do not
affect the auction’s outcome. Thus, auditors need only check
whether the winner and bidder of the sale price provided valid
AFE vectors. We discuss how to do this in Appendix C.

Privacy. We will prove Addax’s privacy guarantees using a
simulation proof [70]. A simulation proof is done by first defin-
ing an ideal functionalityF . One can think of it as the function
that one would run if one had access to a trusted third party.
This ideal functionality will provide some output that is avail-

840 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

able to everyone, but it will keep all inputs and internal values
secret. We want to show that a protocol is as good as the ideal
functionality in terms of what information it leaks: anything
that an adversary can learn from interacting and observing
the output of Addax, the adversary can learn from interacting
and observing the output of the ideal functionality. To prove
this, we build a simulator Sim that interacts with the ideal
functionality F and obtains only the outputs that F provides
without having access to the inputs of the honest parties. If
the simulator can produce a view (a transcript of all messages
sent and received by all parties) that is computationally indis-
tinguishable from the view produced by the execution of the
original protocol, we say that the protocol is as secure as the
ideal functionality.

To show the security of Addax, we first define a variant that
we call Addax-V. This variant differs from the original Addax
in that instead of deferring all verification to after the protocol
finishes, Addax-V verifies the outcome of each computation
step (i.e., the highest bid, the winner, and the sale price) im-
mediately after the step completes. If at any step verification
fails, the protocol stops without moving forward. Note that
we could deploy Addax-V itself, but it would be inefficient;
Addax instead moves the verification to the asynchronous step
so that it is not part of the critical path of real-time ad auctions.

We will show that Addax-V is as secure as the ideal function-
ality F ; then we will prove that the original Addax protocol
with deferred verification is as secure as Addax-V.

Below we give Addax-V’s protocol. For simplicity, we
omit the exchange of hash values between P1 and P2 before
sending messages, and whenever Decode-MAX outputs an
invalid bit vector, it is assumed that P1 or P2 aborts. We also
assume that the two auctioneers find the winner (or bidder
of sale price) sequentially starting from the first bidder and
stopping when the winner (or bidder of sale price) is found.

Addax-V’s auction protocol

Step 1 (Bidders encode and send AFE shares):
• Each bidder i among the n bidders encodes its bid

as a V-AFE vector Mi, splits it into additive shares
M1

i and M2
i , and generates commitments Ci (§5.1).

• Bidder i sends M1
i to P1 and M2

i to P2, and Ci to
both P1 and P2.

Step 2 (Compute highest bid):
• P1 sets s1 =

∑n
i=1 M1

i ; P2 sets s2 =
∑n

i=1 M2
i .

• P1 and P2 exchange s1 and s2, compute S = s1 + s2,
and run Decode-MAX on S to get b∗.

• P1 and P2 use commitments to verify whether b∗ is
correct (§5.2) and abort if it fails.

Step 3 (Find winner):
For i = 1 to n, P1 and P2 repeat the following:
• P1 sends M1

i [b
∗] to P2, and P2 sends M2

i [b
∗] to P1.

• P1 and P2 set βi = Decode-OR(M1
i [b

∗] + M2
i [b

∗]).
• If βi is 1, then i is the winner (set w = i); else

continue. If i = n and βi = 0, then P1 and P2 abort.
• P1 and P2 ask bidder w if its bid is b∗. If w says no,

P1 and P2 abort. Else, P1 and P2 use commitments
to validate w is correct (§5.2) and abort if it fails.

Step 4 (Compute sale price):
• P1 sends m1 =

∑n
i=1 M1

i −M1
w to P2, and P2 sends

m2 =
∑n

i=1 M2
i −M2

w to P1.
• P1 and P2 compute sp = Decode-MAX(m1 + m2).
• P1 and P2 use commitments to verify whether sp is

correct (§5.2) and abort if it fails.

Note that whenever there is a party that sends abort, the
protocol terminates and all parties are notified. The detailed
process of termination works as follows.

If an auctioneer (either P1 or P2) wants to send abort, it
directly sends abort to all bidders and another auctioneer. If a
bidder wants to send abort when asked whether b∗ is its bid, it
replies “no” and sends abort to the two auctioneers. The two
auctioneers then forward the abort message to all the bidders.

Now we define an ideal functionality that captures the
privacy properties of Addax-V’s protocol. Let n = h+k be the
total number of bidders, where the first h bidders are honest
(non-adversarial) and the last k bidders are malicious (actual
position is irrelevant). The two auctioneers are denoted as P1
and P2. Without loss of generality, we assume an adversary
that corrupts P1 and k bidders. The ideal functionality is:

Ideal functionality F of Addax-V’s auction protocol

Inputs: h bids b1, . . . , bh from h honest bidders and a
cheat message (an integer from 1 to 4) from P1.
Outputs: (b∗, w, sp) are computed as:
• b∗ = max(b1, . . . , bh).
• w, such that bw = b∗ while b1 ̸= b∗, . . . , bw−1 ̸=

b∗ (i.e., w is the first bidder whose bid is b∗).
• sp = max(b1, . . . , bw−1, bw+1, . . . , bh) (i.e., the

maximum bid excluding bw).
F conditionally outputs the above computed values
depending on the value of cheat.
• When cheat is 1: F outputs b∗ to P1 and nothing

to P2.
• When cheat is 2: F outputs (b∗, w) to P1 and b∗ to

P2.
• When cheat is 3: F outputs (b∗, w, sp) to P1 and
(b∗, w) to P2.

• When cheat is 4: F outputs (b∗, w, sp) to both P1
and P2.

Note that the ideal functionalityF also provides an interface

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 841

to take an abort message as input which allows terminating
the execution of a protocol by the simulator.

Now we see how the ideal functionality F captures the
privacy properties of Addax-V’s protocol. In the real world
execution of Addax-V’s protocol, there are five different cases:
(1) verification in Step 2 fails; (2) verification in Step 2 passes,
verification in Step 3 fails, and P1 does not learn the real
winner; (3) verification in Step 2 passes, verification in Step
3 fails, and P1 learns the real winner; (4) verification in Step
2 and 3 passes but verification in Step 4 fails; and (5) all
verification passes.

When cheat message to F is set to 1, the outputs of F
capture cases (1) and (2) above. And when cheat is set to other
values, the outputs of F capture the remaining three cases,
respectively. Thus, the outputs of F capture all different cases
of real world execution of Addax-V.

Lemma 7. The Addax-V auction protocol securely imple-
ments ideal functionality F under the assumption that the
commitment scheme is binding and hiding and that p is large
enough to ensure that Decode-OR and Decode-MAX produce
incorrect outputs with negligible probability.

Proof. We now build a simulator Sim that interacts with the
ideal functionality F which at most leaks the highest bid b∗,
the winning bidder’s index w, and the sale price sp. Note that
the simulator below simulates all the five different cases (when
the protocol aborts in different steps) of real world execution
in Addax-V. We useA to denote the adversary who can corrupt
P1 and k malicious bidders. Note that P1 and P2 are symmetric
and do the same computation in the protocol. Thus, the proof
below also applies to an adversary who corrupts P2.

Simulator Sim

Step 1 (Generate random V-AFE vectors):
• F gives its output to Sim. This output depends on
which of the five cases of the real world execution
we are simulating (based on the cheat message).

• For the h honest bidders, Sim assigns a bid to each
of them in such a way that one of the bids is b∗

and all other bidders’ bids are set as smaller than
or equal b∗.

• If w is included in the output of F , the honest
bidder w’s bid is the one that is set to b∗.

• If sp is included in the output of F , a random
honest bidder’s bid (excluding w) is set to sp and
all other bids are set as smaller than or equal to sp.

• Sim encodes the h honest bidders’ bids into h V-
AFE vectors and generates commitments (§5). It
then splits the V-AFE vectors into additive shares,
and sends one of the V-AFE shares and the com-
mitment of each honest bidder to A.

• A generates V-AFE shares and commitments for
the k malicious bidders. It sends one of the V-AFE

shares and the commitment of each of the k mali-
cious bidders to Sim.

• At this point, A has shares M′1
1, . . . , M′1

n and Sim
has shares M′2

1, . . . , M′2
n. They both get commit-

ments C′
1, . . . , C′

n.
Step 2 (Compute highest bid):

• Sim computes s′2 =
∑n

i=1 M′2
i , and sends it to A.

• A sends a V-AFE vector s′1 (s′1 should be∑n
i=1 M′1

i if it follows the protocol, or some vector
generated based on its cheating strategy) to Sim.

• Sim computes b′∗ = Decode-MAX(s′1 + s′2).
• If b′∗ ̸= b∗, Sim sends abort.

Step 3 (Find winner):
For i = 1 to n, Sim and A repeat:

• Sim sends M′2
i [b

′∗] toA, andA sends vi (vi should
be M′1

i [b
′∗] if it follows the protocol, or a vector

generated based on its cheating strategy) to Sim.
• Sim computes β′

i = Decode-OR(M′2
i [b

′∗] + vi).
• If β′

i = 1, then w′ = i; else continue to the next
round. If i = n and β′

i = 0, Sim sends abort to A.
• After finding w′, if bidder w′ is malicious, Sim
asks A whether the bid of w′ is b′∗. If A replies
with no, Sim sends abort.

• If bidder w′ is an honest bidder and w′ ̸= w, Sim
sends abort to A.

• If w′ ̸= w, Sim sends abort to A.
Step 4 (Compute sale price):

• Sim sends m′
2 =

∑n
i=1 M′2

i − M′2
w′ to A, and A

sends m′
1 (m′

1 should be
∑n

i=1 M′1
i − M′1

w′ if it
follows the protocol, or a V-AFE vector generated
based on its cheating strategy) to Sim.

• Sim computes sp′ = Decode-Max(m′
1 + m′

2).
• If sp′ ̸= sp, Sim sends abort.

Note that whenever Decode-MAX outputs an invalid bit
vector, we assume that Sim sends abort. When Sim wants to
send abort, it notifies A and the ideal functionality F , and
F forwards abort and outputs to all honest parties. When A
wants to abort, it sends abort to Sim, Sim forwards abort to
the ideal functionality F , and F forwards abort and outputs to
all honest parties. In the simulation, as long as each party re-
ceives one abort message, it terminates. Finally, for simplicity
wheneverA and Sim exchange messages (e.g., V-AFE shares),
Sim asks A to send first.

Analyzing the views. When cheat is set to 3 or 4 in the
ideal world (ideal functionality), which corresponds to the
real world (Addax-V) protocol proceeds to the step of com-
puting the sale price, A learns the entire view in both worlds.
The view of A in the ideal world is: {

∑n
i=1 M′2

i , w′, b′∗, sp′,
M′2

w′ , M′2
1[b

′∗], . . .M′2
w′ [b′∗], M′1

1, . . . , M′1
n, C′

1, . . . , C′
n}. In

842 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the real world (Addax-V), A’s view includes: {
∑n

i=1 M2
i , w,

b∗, sp, M2
w, M2

1 [b
∗], . . .M2

w[b
∗], M1

1 , . . . , M1
n , C1, . . . , Cn}.

When cheat is set to 1, A’s view in ideal world only in-
cludes: {

∑n
i=1 M′2

i , b′∗, M′1
1, . . . , M′1

n, C′
1, . . . , C′

n}. In the
real world, the corresponding view of A includes: {

∑n
i=1 M2

i ,
b∗, M1

1 , . . . , M1
n , C1, . . . , Cn}.

When cheat is set to 2, A’s view in ideal world
only includes: {

∑n
i=1 M′2

i , w′, b′∗, M′2
1[b

′∗], . . .M′2
w′ [b′∗],

M′1
1, . . . , M′1

n, C′
1, . . . , C′

n}. In the real world, the correspond-
ing view of A includes: {

∑n
i=1 M2

i , w, b∗, M2
1 [b

∗], . . .M2
w[b

∗],
M1

1 , . . . , M1
n , C1, . . . , Cn}.

V-AFE shares are uniformly random elements in Zp, and
commitments to V-AFE vectors are hiding, thus they have the
same distribution. For w, b∗, sp and w′, b′∗, sp′, their distribu-
tions are also identical. Mw and M′

w′ are both generated by
encoding bid b∗ into V-AFE vectors, thus having the same
distribution.

∑n
i=1 Mi−Mw and

∑n
i=1 M′

i−M′
w′ are both gen-

erated following the requirement that the highest bid among
all remaining bidders (excluding bidder w and bidder w′) is sp,
thus having the same distribution. M′

1[b′∗], . . . , M′
w′−1[b′

∗
]

and M1[b∗], . . . , Mw−1[b∗] are zeros. These say that in the sim-
ulation, bidder 1 to bidder w′ − 1 are not the winner, and in
the real world protocol, bidder 1 to bidder w− 1 are not the
winner. M′

w′ [b′∗] and Mw[b∗] are encodings of bit 1.
As a result of the above exhaustive case analysis, both the

real world view and the ideal world view are identically dis-
tributed. Consequently, an adversary for Addax-V learns noth-
ing beyond what is revealed by the ideal functionality.

Lemma 8. Addax’s protocol does not leak more information
to the adversary than the variant Addax-V.

Proof. The only difference between the variant and the orig-
inal protocol is that in the original protocol, the adversary
learns the entire view of {

∑n
i=1 M2

i , w, M2
w, M2

1 [b
∗], . . .M2

w[b
∗],

M1
1 , . . . , M1

n , C1, . . . , Cn}, while in Addax-V, it stops after
aborts in Step 2 or 3, and only learns a partial view.

In the original protocol, the malicious auctioneer always
learns the correct highest bid regardless of how it behaves, as
the honest auctioneer always sends the correct sum of AFE
shares. From Lemma 3, if an incorrect bidder is claimed as the
winner and the protocol does not abort after finding winner,
the incorrect winner w′ must be malicious. And in the original
protocol, the auctioneers would proceed to compute the sale
price with the incorrect winner w′. In this case, the AFE vector
of the malicious bidder, M′

w′ , is revealed to the auctioneers
and auditors.

In Step 4, when computing the sale price, the adversary
receives

∑n
i=1 M′2

i −M′2
w′ from the honest party P2. Adversary

knows M′2
w′ since it’s from a malicious bidder, and

∑n
i=1 M′2

i
is already learned in Step 2 to compute the highest bid. Thus,
in the original protocol, when the protocol proceeds to Step 4
with an incorrect winner w′, it can only learn the same amount
of information as what it learned in Step 2 (Lemma 4).

Now we can conclude that the original protocol does not
leak more information about honest bidders’ bids compared to
the Addax-V variant, where verification is not deferred.

C Safeguarding interactive Addax
In the non-interactive protocol, the underlying value of a bit
encoding is defined as the rightmost position among all the
non-zero values. For instance, both [1,1,1,0] and [1,0,1,0]
are the encodings of value 3. The above encoding neither
brings issues for privacy nor integrity, but under the interactive
variant, this encoding does not work. See an example below.

Suppose a malicious bidder submits an invalid AFE vector
which yields an invalid bit vector [1,1,0,1], and all other bid-
ders submit [1,0,0,0]. When finding the winner interactively,
two auctioneers will first check the first and the third positions.
Since the corresponding results are 1 and 0, the next position
to be checked should lie in between the first and the third en-
try, which, in this example, is the second position. As a result,
the highest bid found is 2, which means the bidder wins the
auction with bid 2.

Therefore, in the interactive variant, Addax checks whether
the AFE vectors of the winner and the bidder of the sale price
correspond to valid unary bit encodings. To this end, we add
the following two extra steps: (1) an asynchronous procedure
for finding sale price bidder (we need this to find whose bit
encoding to validate); and (2) proving that a bidder’s AFE
vector is valid without leaking its original AFE vector (we
need this to avoid leaking the third-highest bid). Note that in
the interactive variant of the first-price auction, we also need
to prove the winner’s AFE vector is valid while hiding its
original value so the second-highest bid is not leaked.

C.1 Asynchronous: find sale price bidder

The invalid encoding as above impacts the outcome of an
auction (if it is not aborted) if the malicious bidder is the
winner or the bidder of sale price (if the malicious bidder is
neither of these, it has no effect). Therefore, Addax requires
validating the AFE vector of the sale price bidder. To this end,
Addax has to find its bidder id, though not the real identity. We
make the tradeoff of leaking such bidder id in order to keep
the completion of the auction within hundreds of milliseconds
with this extra asynchronous step.

Specifically, the auxiliary server and publisher first find
its bidder id by running Step 4 of Section 4.4 on all AFE
vectors except the winning one. This is done after the auction
is complete and off the latency-critical path (hence why we
say this is an asynchronous step). Verifiers can check, ex post
facto, whether the AFE encodings of the second-highest bidder
were valid or not. Similarly to Lemma 3, the bidder found in
this step is either the real bidder of the sale price or a malicious
bidder.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 843

C.2 Checking the validity of a V-AFE vector

Insecure strawman. To check the validity of V-AFE vectors
we can let the vectors be revealed in the clear and check the
validity by ensuring they are in the right unary bit form, and
are consistent with the Pedersen commitments. However, if
we do this for the second-highest bidder’s V-AFE vector, this
would result in leaking the third-highest bid—substracting the
V-AFE vectors of the winner and sale price bidder from the
overall sum vector (M) reveals the sum of V-AFE vectors of
the remaining bidders, thus leaking their maximum bid. We
provide the following construction to check validity of the
V-AFE vector of the sale price bidder without leakage.

Secure check for AFE validity. In a nutshell, the idea is that
in Step 1 of the auction protocol (§ 4.4), bidders additionally
generate a V-AFE vector vr with a random mask r for their
original V-AFE vector v, such that we can still check the
validity of v by utilizing vr.

Specifically, the bidder first generates the random mask r,
which is a vector of ℓ random non-zero elements in Zp and vr
is the element-wise product between the two {r1·v1, . . . , rℓ·vℓ}.
Since ri · vi = 0 if and only if vi = 0 (for 1 ≤ i ≤ ℓ), therefore,
as long as vr is decoded to be a valid bit vector, so is v.

When generating commitments for V-AFE vector v, a bid-
der also generates commitments to vr and a proof that the
underlying messages in the above two commitments indeed
differ by a multiplicative factor r. Concretely, the bidder uses a
Sigma protocol [78], which is type of very simple and efficient
zero-knowledge proof (with the Fiat-Shamir heuristic [53] it
is made into a non-interactive proof) to prove that, for each el-
ement cri in the commitments of vr and ci in commitments of
v, there exists a non-zero ri which satisfies cri = ci

ri . We give
details about the above zero-knowledge proof in Appendix C.4.
Appendix C.3 proves the binding and hiding properties of the
commitment to vr (which is slightly different than standard
Perdersen commitments).

During verification, the sale price bidder reveals only its
vr, and an auditors: (1) verify whether vr is consistent with
its commitment; (2) check that the decoded result of vr is a
valid AFE encoding; (3) verify the zero-knowledge proof with
respect to the commitments of v and vr.

A key optimization to this process is as follows. Observe
that in the interactive variant the two auctioneers only compute
the sum vector of partial entries (e.g., they may only use the
first 100 entries to compute based on the lower/upper bounds
derived). Thus, the sale price bidder need only hide its original
AFE vector for those entries (by using the above vr and zero-
knowledge proofs for those entries); the sale price bidder can
actually reveal its original AFE encoding for the other entries
without need for proofs. The result is that auditors need only
check the zero-knowledge proofs for the partial entries used
to compute the sale price.

Remark. First, the above approach only hides non-zero val-
ues in v, (i.e., it leaks whether a value in v is zero or not). This

is because for entries with zero values in the V-AFE vector
of sale price bidder, those entries in the sum vector are also
zeros, as the sum vector computed in Step 5 (§4.4) decodes to
the bid of the sale price bidder. Thus, learning those entries
with zero values does not leak the bids of any other bidders.

Second, an adversary may use zeros in the random mask r
to flip non-zero values into zero, which might turn an invalid
AFE vector into a valid one. To check that a bidder did not use
zero as random mask, for each tuple vri in vr, we check that
the second element of vri is not zero.

C.3 Commitment to a V-AFE tuple with random mask

Given a V-AFE tuple v = (a, b), its tuple with a random mask
r is vr = (r · a, r · b). The commitment is as follows. Let
G be a group of prime order p and let {g, h} be two random
generators {g, h} of G. The commitment is gr·a · hr·b.

The reason why the above is slightly different than standard
Pedersen commitments is that the randomness (the exponent
of h in Pedersen) is sampled uniformly at random and indepen-
dent of the exponent of g, whereas here there is a relationship
between the exponent of g (which is r · a) and the exponent of
h (which is r · b).

Lemma 9. Let c = gr·a · hr·b be a commitment to vr =
(r · a, r · b). Then c perfectly hides vr, and computationally
binds vr if the discrete logarithm problem is hard in G.

Perfect hiding. The commitment perfectly hides both r and a.
Let x ∈ Zp be an element such that g = hx (this is well defined
since h is a generator and hence there exists an x such that
hx = g). Given r, a, b, for any a′ there exist r′ and b′ such that
gr·a · hr·b = gr′·a′ · hr′·b′ . And r′, b′ satisfy that r′ = x·r·a+r·b

x·a′+b′ .
Thus, the commitment hides a. Using a similar proof, we can
show that the commitment also hides r.

Binding. We now prove that for a message m = r · a, the
commitment gr·a ·hr·b binds m. Specifically, our goal is to show
that, if an adversary can find a different message m′ = r′ · a′

and some randomness b′ such that gr·a · hr·b = gr′·a′ · hr′·b′ ,
then it can break discrete log for the instance (g, h = gx). Note
here we only assume m′ ̸= m, and it does not mean r′ ̸= r or
a′ ̸= a.

Suppose the adversary finds such r′, a′, b′ as above, which
implies r ·a+ r ·b ·x = r′ ·a′+ r′ ·b′ ·x where h = gx for some
x (i.e., r ·a− r′ ·a′ = (r′ ·b′− r ·b) ·x). If r′ ·b′ = r ·b, then the
above equation means r ·a = r′ ·a′, which contradicts with our
assumption that m′ ̸= m. If r′ · b′ ̸= r · b, then the adversary
can compute x = (r′ · b′− r · b)−1(r · a− r′ · a′), which means
now the adversary solves discrete log for instance (g, h = gx).

C.4 Zero-knowledge proof of commitment relation

The prover, which is the bidder in our case, wants to prove that
the there exists a secret element r ∈ Zp such that commitments
cr and c satisfy cr = cr. Figure 8 gives the pseudocode for how
the prover generates the non-interactive proof π. The prover
first samples a random element r′ from Zp, and computes u =

844 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Prover(c, r, cr = cr) Verifier(c, cr = cr,π = (u, v, z))

r′ R← Zp v ?
= H(c, cr, u)

u← cr′ cz ?
= u · crv

v← H(c, cr, u)
z← r′ + v · r
output π = (u, v, z)

FIGURE 8—Non-interactive zero-knowledge proof of knowledge of
secret r using the Fiat-Shamir Heuristic. H is a random oracle and its
range is Zp (heuristically instantiated with a secure hash function).

cr′ . The prover then computes H(c, cr, u) as the challenge v.
H is modeled as a random oracle but heuristically instantiated
with a collision-resistant hash function. Finally, the prover
computes z = r′ + v · r. The prover sends π = (u, v, z) to the
verifier, and the verifier checks π as described in Figure 8.

C.5 Proofs of lemmas 5 and 6

Below we prove the Lemmas for the interactive variant of Ad-
dax which leverages the safeguards described in this section.

Proof of Lemma 5. The non-interactive protocol and interac-
tive variant differ in the following two places: (1) in interactive
variant, computing MAX only uses partial entries; (2) in inter-
active variant, Addax checks validity of winner and sale price
bidder’s AFE vectors with additional verification materials
(Appendix C.2).

For (1), in the non-interactive protocol, adversary learns the
entire sum vector M, while in the interactive variant, it only
learns r · ⌈ℓ1/r⌉ entries of M (§6.1). It therefore leaks no more
information about bids than the non-interactive protocol.

For (2), in the interactive protocol, the winner w reveals its
full AFE vector, and the sale price bidder needs to provide
materials as in Appendix C.2. In the non-interactive protocol,
w’s full AFE vector can already be inferred from Step 3 (which
computes M) and Step 5 (which computes M−Mw), so this
leaks no additional information. And additional materials pro-
vided in the interactive variant leak no more information of
bids than the sale price as detailed in Appendix C.2.

Proof of Lemma 6. Integrity is ensured in the non-interactive
protocol as per Theorem 1. The only difference in the interac-
tive variant is that if either the winner or the sale price bidder
submits an invalid AFE vector, it can lead to the k-ary search
in the interactive protocol to converge to an incorrect value.
As we discuss in Appendix C, Addax adds checks to ensure
that the AFE vectors of the winner and sale price bidder are
both correct, and hence the k-ary search converges to the same
value as in the non-interactive protocol.

D Subsets of faulty parties
An auction may be aborted during the online phase, or deferred
verification may fail due to a lack of enough materials on
the public log (e.g., commitments, sum shares), or due to
inconsistent materials such as the bidder sending invalid shares

to auctioneers, or an auctioneer claiming it received one value
when a bidder submitted another. Figure 9 gives pseudocode
for how Addax narrows down the parties at fault. Below is a
text explanation for the pseudocode.

Auction aborts. An auction may abort for two reasons: (1)
Decode-MAX outputs an invalid bit vector; or (2) the chosen
winner or sale price bidder claims that their bids do not equal
the found highest bid or sale price. For case (1), if verifica-
tion on the decoded sum vectors passes, then it implies that
some bidders provided invalid AFE vectors. Addax assigns
blame to all participating bidders as potentially malicious. If
verification of the sum vectors fails, Addax assigns blame to
all bidders, the publisher, and the auxiliary server. For case
(2), auditors check the shares revealed by the publisher and
auxiliary server, and check whether they are consistent with
the corresponding commitments. If they are not consistent,
Addax assigns blame to the specific bidder (winner or second
highest bidder), publisher, and auxiliary server. If it is consis-
tent, and that entry decoded to 0, Addax assigns blame to the
auxiliary server and the publisher; if the entry decoded to 1,
Addax assigns blame only to the corresponding bidder.

Lack of materials. Participants may not upload all required
materials to the public log, which prevents auditors from veri-
fying the auction. Bidders are bound to their bidder ids which
should be uploaded by the publisher and auxiliary server. An
auditor can easily tell who did not upload the required materi-
als and assign blame to that set of participants.

Inconsistent views between publisher and auxiliary server.
The publisher and auxiliary server may provide an inconsistent
view for messages they send and receive. For example, the
publisher may claim that it receives sum vector M from the
auxiliary server, while the auxiliary server claims that it sends
M′ to the publisher. In this case, Addax assigns blame to
both publisher and auxiliary server. If publisher and auxiliary
server upload different views of hash values of certain bidder,
Addax assigns blame to the publisher, auxiliary server, and
the specific bidder, as the bidder may send inconsistent hash
values on purpose.

Inconsistency between hash values and commitments. Au-
ditors may find that hash values of commitments uploaded
by publisher and auxiliary server are inconsistent with that
uploaded by the bidder. Addax assigns the blame to that partic-
ular bidder (since publisher and auxiliary server are assumed
to not collude).

Inconsistent AFE sum vectors or bit encodings. Verifica-
tion on sum vectors or revealed bit encodings to find the win-
ner may fail. If verification on sum vectors fails, Addax assigns
blame to publisher, auxiliary server and all bidders. If verifi-
cation on specific bidder’s bit encoding fails, Addax assigns
blame to publisher, auxiliary server and the specific bidder.

Invalid AFE vector. The winner needs to upload its full AFE
vector and the bidder of sale price needs to upload its full AFE

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 845

1: function ASSIGNBLAME(materials, abort, auctioneers, bidders)
2: # Check if abort happens
3: if abort ̸= null then
4: if abort.decodeMax == true then
5: if verifySumvec(materials) == true then
6: blame(bidders)
7: else
8: blame(auctioneers, bidders)
9: else if abort.findBidder == true then

10: if verifyBit(materials.bidders[abortId]) == false then
11: blame(auctioneers, bidders[abortId])
12: else
13: if decode(materials.bidders[abortId].bitEncoding) == 0 then
14: blame(auctioneers)
15: else
16: blame(bidders[abortId])
17: # Check all materials are not missing
18: for auc in auctioneers do
19: if materials.auc == null then
20: blame(auc)
21: for b in bidders do
22: if materials.b == null then
23: blame(b)
24: # Check inconsistency between auctioneers
25: if inconsistent(materials.auctioneers.sumvec) then
26: blame(auctioneers)
27: for b in bidders do
28: if inconsistent(materials.auctioneers.hash[b]) then
29: blame(auctioneers, b)
30: # Check inconsistency between hash and commitments
31: for b in bidders do
32: if inconsistent(materials.b.hash, materials.b.commitment) then
33: blame(b)
34: # Verify sum vectors and bit encodings
35: if verifySumvec(materials) == false then
36: blame(auctioneers, bidders)
37: for b in bidders do
38: if verifyBitEncoding(b.materials) == false then
39: blame(auctioneers, b)
40: # Validate AFE vector of winner and sale price bidder
41: if validate(materials.bidder.AFE) == false then
42: blame(bidder)

FIGURE 9—Pseudocode of how to assign blames in Addax, see texts
for more details.

vector with random mask (§C.2), the commitments and non-
interactive zero-knowledge proofs. An auditor needs to check
the winner’s AFE vector decodes to be a valid bit vector. Also,
an auditor must check whether the AFE vector with random
mask is consistent with the supplied commitments, whether
it decodes to be a valid bit vector, and verify the proofs. If
the check fails, Addax assigns blame to the specific bidder. If
the check passes, even if verification on the sum vectors fails,
Addax explicitly knows that these two bidders are honest, and
can avoid assigning blame to them. Addax will then protect
their identities.

D.1 Narrow down faulty bidders when both auctioneers
are honest

There are some cases (e.g., line 8 in Figure 9) where Addax
can only assign blame to all of the bidders due to the fact that

a malicious auctioneer could collude with bidders. However,
if both auctioneers were honest (how one would establish
this is orthogonal, though likely hard), Addax can identify
the specific bidders who provided inconsistent AFE vectors
and commitments. To detect such faulty bidders, each of the
two auctioneers computes the commitment over its local V-
AFE vector share of a bidder and reveals the commitment.
They then verify whether multiplying these two commitments
from both auctioneers yields the commitment submitted by
the bidder. If not, then Addax can blame the bidder.

E Interacting with the public log
E.1 A brief primer on Algorand

Accounts and Transactions. An account in Algorand con-
sists of a key pair. Transactions include payment, key registra-
tion, and asset transferring. Each transaction is created by one
account and must be signed with its corresponding secret key.

Smart contracts and application calls. Smart contracts are
programs that run on the blockchain with user-defined func-
tionality. Each smart contract is specified with a unique ID.
Application calls are transactions used to invoke functions
in smart contracts like RPC calls. To interact with a smart
contract, an account needs to join the smart contract first. The
opt-in call allows one account to join one smart contract
instance while a close-out call allows one account to leave.
Addax maintains one smart contract per ad category which in-
cludes all advertisers’ information in that category. When one
advertiser belongs to multiple categories, it joins all related
smart contracts. There is no upper bound on the number of
accounts that can join one smart contract in Algorand. Bidders
invoke application calls defined in the running smart contract
to insert, update, or delete their own information.

Indexer. Indexers are special nodes which provide RESTful
interfaces to search for transactions or states of certain apps
by answering SQL-like queries. For example, it can answer
queries to search for all transactions that happened during
a certain period in one smart contract instance with a query
like: SELECT * from transactions WHERE appID = {ID of App}
AND after-time = {start} AND before-time = {end};

E.2 Workflow of a deployed smart contract

There are two kinds of smart contracts in Algorand, stateful
ones which have their own storage and stateless ones which
do not. Storage in smart contracts consists of several key-
value pairs which can be read and written. There is global
storage which maintains the state of the smart contract instance
and local storage. All opted-in accounts have their own local
storage. All storage can be read by anyone and updated via
application calls. Application calls for writing local storage
can only be invoked by its owner account.

Addax maintains one stateful smart contract per ad category
which includes all advertisers in that category. When one
advertiser belongs to multiple categories, it joins all related

846 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1: function INIT(N)
2: gs.counter ← 0
3: function CREATE(info)
4: ls.id ← gs.counter
5: gs.counter ← gs.counter + 1
6: ls.info← info
7: function UPDATE(newInfo)
8: ls.info← newInfo
9: function DELETE

10: delete(ls.info, ls.id)

FIGURE 10—Pseudocode of smart contract, gs is global state, ls is
local storage of each advertiser. Init function is called when smart
contract is initialized. Create, Update, Delete functions are called by
advertisers.

smart contracts. Figure 10 shows the functionalities provided
by the deployed smart contracts in Addax. Each smart contract
is created by an INIT function to initialize an incremental
counter starting from zero in global storage. Advertisers can
invoke CREATE, UPDATE and DELETE functions. CREATE is the
opt-in application call in Addax that opts an advertiser into
the smart contract of its category and write information into
the invoker’s local storage. Local information of advertisers
can include brand name, all categories the advertiser belongs
to, domain and port of ad server, protocols and serialization
formats supported, etc. The UPDATE call is invoked by opted-
in advertisers to update their local information. Advertiser
invokes DELETE to clear all information stored in local storage
and leave this smart contract instance.

E.3 Costs of interacting with public log

In this section, we answer the question of costs for interact-
ing with the public log and for querying the indexer. We use
the PureStake indexer which provides a REST API that one
can use to upload and retrieve information from the Algo-
rand blockchain. PureStake has servers all over the world as
they contract with Cloudfront. In our experiments, requests to
PureStake that originate from AWS US East (Ohio) contact
servers in Ontario. Requests that originate from the AWS US
West (California) contact servers in California. Requests that
originate from AWS US West (Oregon) contact servers in Ore-
gon. PureStake then takes care of broadcasting the transaction
to the Algorand peer-to-peer network.

The size of advertisers’ information (§E.1) uploaded to
Algorand to participate in Addax is 960 bytes. We experiment
with a modest number of advertisers. The reason that we do
not have tens of thousands of advertisers is that creating a new
advertiser requires creating an Algorand account (new email
address, password, account verification, etc.) which is time-
consuming. Nevertheless, we semi-automate this painstaking
process and generate 1,000 accounts.

Time for advertisers’ operations. In Figure 11, we evalu-
ate the time of advertisers’ operations (invoking CREATE,

UPDATE or DELETE application call) on the Algorand
blockchain. We vary whether advertisers belong to one or mul-
tiple categories, and also vary the distribution of the number
of opted-in advertisers for a given category. Figure 11a shows
the results of an advertiser interacting with Algorand where
the advertiser belongs to a single category while varying the
number of advertisers registered for that category. Figure 11b
shows the results when the advertiser belongs to multiple cat-
egories, all of which have 500 advertisers registered. Finally,
Figure 11c shows the results when the advertiser belongs to six
different categories, while each category contains a different
number of advertisers. In Scenario 1, each category contains
100 advertisers. In Scenario 2–4, the numbers of advertisers in
each category are [50, 100, 100, 100, 100, 150], [50, 50, 50,
100, 150, 200], and [50, 50, 50, 100, 100, 250].

As can be seen, the time for these three operations remains
nearly constant when the number of opted-in advertisers in
one category grows. It takes about 8–8.5 seconds for invoking
one application call to one category (i.e., one smart contract
instance). Most of the overhead (about 7 seconds) comes from
advertisers waiting for confirmation from the blockchain that
this operation has finished successfully. Advertisers can di-
rectly invoke application calls and leave without having to
wait for confirmation. Indeed, this is what the browser does
when uploading its audit materials as described in the Leaving
an audit trail paragraph of Section 9.4.

The costs of these operations grow linearly with the number
of categories to which an advertiser belongs, regardless of the
number of opted-in advertisers in each category.

Time for querying the indexer. We also evaluate the costs
for querying the indexer for updates during certain period of
time under different scenarios. The time for querying the in-
dexer is also the time to verify the query results from cache
servers. Figure 12a shows the time to query indexer for updates
of multiple categories. Each category contains 500 advertisers.
We simulate 20% updates in each category, namely 100 trans-
actions happened during the period we search for. Figure 12b
shows the time to query the indexer for updates of one cate-
gory with 1,000 advertisers but with different percentages of
updates during the period of search.

We find that querying one category generally takes about 0.8
seconds, and this number would grow slightly if the number
of total updates (i.e., transactions) grows. This is due to the
fact that as the total number of updates grows, the data fetched
from the indexer grows as well. Also, the time to query the
indexer for updates of multiple categories grows linearly with
the number of categories queried. This is because to query N
categories, the querier needs to send N requests to the indexer.

F What about TEE-based solutions
In principle, one might be able to design a solution that lever-
ages TEEs to provide privacy and public verifiability for online
ad auctions. However, this is not a trivial task, since TEEs:

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 847

��� ��� ��� ����

������������������
����������

0

2

4

6

8

10

��
�
��
��
� ���
��

���
��
	�����

(a)

� � � � ��
��������������������

0

20

40

60

80

100

��
�
��
��
�

	�����

�����

�����

(b)

	
�������� 	
�������� 	
�������� 	
��������
�

0

20

40

60

�
�
��
��
� ������

������
������

(c)

FIGURE 11—Time for advertisers’ operations on the Algorand blockchain under different settings (see text).

� � 	 � ��
��������������������

���

���

���

��

�
�

��
��

�

�������������������

(a)

��� ���
�� ���
���������������������

���

��	

���

��	

�
�
��
��
�

�������������������

(b)

FIGURE 12—Time to query indexer for updates in certain period
under different scenarios.

• Require the release of code that runs inside the enclave.
This includes the auction protocol, the encryption/decryp-
tion code to recover plaintext bids, and signing code for
creating a proof that can be publicly audited.

• Require careful auditing or formal verification of all the
code running inside the enclave to ensure the exchange
operator (who is running the TEE) did not inject backdoors
or other vulnerabilities that can obviate the TEE.

• Intel SGX in particular requires trusting an Intel cloud
server during remote attestation (cloud services like Azure’s
Attestation Service [29] can also be used). In either case,
trusting such servers might not be that different of an as-
sumption than the anytrust model in Addax.

• Require additional mechanisms to prevent replay attacks.
For example, suppose an operator runs an auction, invites
10 bidders, and passes as input their 10 encrypted bids to
TEE (TEE internally has a key to decrypt bids). The TEE
then outputs the winner and sale price in the clear. The
operator could then run the same auction again but passing
only a subset of the bids (these are all valid encrypted bids
under a key known to the TEE). The TEE then outputs a
winner and sale price in the clear, so the attacker could
quickly discover all bids. In contrast, replay is not possible
in Addax since the auction is either completed so both
auctioneers forward the result to the publisher, or aborted
so at least one honest auctioneer forwards an abort result to
the publisher (and the publisher displays a generic ad).

G Compatible user privacy features
One of Addax’s goals is to have a flexibile enough design
to be compatible with various efforts that aim to improve

user-privacy (these efforts are orthogonal but they are also
complementary to Addax).

Bidding on groups rather than individuals. User activities
are tracked as advertisers need to gather enough information
about different users’ browsing and purchasing preferences.
The information is used by advertisers to decide how to bid
for a user. Addax’s design is compatible with Google’s recent
Topics proposal [16] which locally groups users into groups.
In particular, Topics enhances the browser to keep track of
the user’s interest and assigns to the user a Topic identifier.
Once this identifier exist, Addax can send this identifier to the
selected bidders instead of sending them more demographic
information (§7). An advertiser would then decide how to bid
for each group of users without learning information about
the individual user for which it is bidding. The obvious caveat
here is that the current Topics proposal is not perfect and there
have been various privacy concerns voiced [5, 6, 17].

Measuring conversions without learning individual’s data.
Measuring the effectiveness of an ad after the auction is es-
sential for advertisers. However, the current way of measuring
conversions leaks users’ sensitive information about which
websites are visited. There is a recent effort [34] that provides
a mechanism to measure the return on investment (ROI) and
conversions without requiring the advertiser to learn infor-
mation about a specific user. At the end of the measurement,
advertisers see a differentially private histogram of all users’
conversions, which is sufficient for them to determine the ef-
fectiveness of their campaigns. In Addax, after the auction
finishes, advertisers could apply this approach to privately
gather data about conversions for analysis while being more
sensible to users’ privacy concerns. This mechanism is com-
patible with Addax as it occurs after the auction completes.

848 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SPEEDEX:
A Scalable, Parallelizable, and Economically Efficient Decentralized EXchange

Geoffrey Ramseyer
Stanford University

Ashish Goel
Stanford University

David Mazières
Stanford University

Abstract
SPEEDEX is a decentralized exchange (DEX) that lets par-
ticipants securely trade assets without giving any single party
undue control over the market. SPEEDEX offers several ad-
vantages over prior DEXes. It achieves high throughput—over
200,000 transactions per second on 48-core servers, even with
tens of millions of open offers. SPEEDEX runs entirely within
a Layer-1 blockchain, and thus achieves its scalability without
fragmenting market liquidity between multiple blockchains
or rollups. It eliminates internal arbitrage opportunities, so
that a direct trade from asset A to asset B always receives as
good a price as trading through some third asset such as USD.
Finally, it prevents certain front-running attacks that would oth-
erwise increase the effective bid-ask spread for small traders.
SPEEDEX’s key design insight is its use of an Arrow-Debreu
exchange market structure that fixes the valuation of assets for
all trades in a given block of transactions. We construct an algo-
rithm, which is both asymptotically efficient and empirically
practical, that computes these valuations while exactly preserv-
ing a DEX’s financial correctness constraints. Not only does
this market structure provide fairness across trades, but it also
makes trade operations commutative and hence efficiently par-
allelizable. SPEEDEX is prototyped but not yet merged within
the Stellar blockchain, one of the largest Layer-1 blockchains.

1 Introduction
Digital currencies are moving closer to mainstream adoption.
Examples include central bank digital currencies (CBDCs)
such as China’s DC/EP [90], commercial efforts [65, 75],
and many decentralized-blockchain-based stablecoins such as
Tether [104], Dai [9], and USDC [17]. These currencies vary
wildly in terms of privacy, openness, smart contract support,
performance, regulatory risk, solvency guarantees, compliance
features, retail vs. wholesale suitability, and centralization of
the underlying ledger. Because of these differences, and be-
cause financial stability demands different monetary policy in
different countries, we cannot hope for a one-size-fits-all global
digital currency. Instead, to realize the full potential of digital
currencies (and digital assets in general), we need an ecosystem

where many digital currencies can efficiently interoperate.
Effective interoperability requires an exchange: an efficient

system for exchanging one digital asset for another. Users post
offers to trade one asset for another on the exchange, and then
the exchange matches mutually compatible offers together and
transfers assets according to the offered terms. For example,
one user might offer to trade 110 USD for 100 EUR, and might
be matched against another user who previously offered to
trade 100 EUR for 110 USD. A typical exchange maintains
orderbooks of all of the open trade offers.

The ideal digital currency exchange should, at minimum,
• not give any central authority undue power over the

global flow of money,
• operate transparently and auditably,
• give every user an equal level of access,
• enable efficient trading between every pair of currencies

(make effective use of all available liquidity), and
• support arbitrarily high throughput, without charging

significant fees to users.
Scalability is crucial for a piece of financial infrastructure

that must last far into the future, as the number of individuals
transacting internationally continues to grow. Furthermore, the
above feature list is by no means complete; a deployment may
want any number of additional features, such as persistent log-
ging, simplified payment verification [89], or integrations with
legacy systems, each of which slows down the system’s per-
formance. Scalability, viewed from another angle, enables the
system to add features without decreasing overall transaction
throughput (at the cost of additional compute hardware).

The gold standard for avoiding centralized control is a
decentralized exchange, or DEX: a transparent exchange
implemented as a deterministic replicated state machine
maintained by many different parties. To prevent theft, a
DEX requires all transactions to be digitally signed by the
relevant asset holders. To prevent cheating, replicas organize
history into an append-only blockchain. Replicas agree on
blockchain state through a Byzantine-fault tolerant consensus
protocol, typically some variant of asynchronous or eventually
synchronous Byzantine agreement [46] for private blockchains

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 849

or synchronous mining [89] for public ones.
Unfortunately, existing DEX designs cannot meet the last

three desiderata.

Equality of Access In existing exchange designs, users with
low-latency connections to an exchange server (centralized or
not) can spy on trades incoming from other users and front-run
these trades. For example, a front-runner might spy an incom-
ing sell offer, and in response, send a trade that buys and imme-
diately resells an asset at a higher price [38,82]. In a blockchain,
where a block of trades is either finalized entirely or not at all,
this front-running can be made risk-free. More generally, some
users form special connections with blockchain operators to
gain preferential treatment for their transactions [55]. This spe-
cial treatment typically takes the form of ordering transactions
in a block in a favorable manner. The result is hundreds of
millions of dollars siphoned away from users [95].

Effective Use of Liquidity Existing exchange designs are
filled with arbitrage opportunities. A user trading from one cur-
rency A to another B might receive a better overall exchange
rate by trading through an intermediate reserve currency C,
such as USD. Users must typically choose a single (sequence
of) intermediate asset(s), leaving behind arbitrage opportuni-
ties with other intermediate assets. This challenge is especially
problematic in the blockchain space, where market liquidity
is typically fragmented between multiple fiat-pegged tokens.

Computational Scalability DEX infrastructure must
also be scalable. The ideal DEX needs to handle as many
transactions per second as users around the globe want to
send, without limiting transaction rates through high fees.
Trading activity growth may outpace Moore’s law, and should
not be limited by the rate of increase of single-CPU-core
performance. An ideal DEX should handle higher transaction
rates simply by using more compute hardware.

Unfortunately, folk wisdom holds that DEXes cannot
scale beyond a few thousand transactions per second. Naïve
parallel execution would not be replicable across different
blockchain nodes. This wisdom has led to many alternative
blockchain scaling techniques, such as off-chain trade
matching [108], automated market-makers [24], transaction
rollup systems [15, 19], and sharded blockchains [6] or
side-chains [92]. These approaches either trust a third party
to ensure that orders are matched with the best available price,
or sacrifice the ability to set traditional limit orders that only
sell at or above a certain price (reducing market liquidity).
Offchain rollup systems, sharded chains, and side-chains
further fragment market liquidity, leading to cross-shard
arbitrage and worse exchange rates for traders.

A challenge for on-chain limit-order DEXes is that the
order of operations affects their results. Typically, a DEX
matches each offer to the reciprocal offer with the best price:
e.g., the first offer to buy 1 EUR might consume the only offer
priced at 1.09 USD, leaving the second to pay 1.10 USD. Each
trade is a read-modify-write operation on a shared orderbook

data structure, so trades must be serialized. This serialization
order must be deterministic in a replicated state machine, but
naïve parallel execution would make the order of transactions
dependent on non-deterministic thread scheduling.

1.1 SPEEDEX: Towards an Ideal DEX
This paper disproves the conventional wisdom about on-chain
DEX performance. We present SPEEDEX, a fully on-chain
decentralized exchange that meets all of the desiderata outlined
above. SPEEDEX gives every user an equal level of access
(thereby eliminating a widespread class of risk-free front-
running), eliminates internal arbitrage opportunities (thereby
making optimal use of liquidity available on the DEX), and
is capable of processing over 200,000 transactions per second
when deployed on 48-core machines (Figure 3). SPEEDEX
is designed to scale further when given more hardware.

Like most blockchains, SPEEDEX processes transactions
in blocks—in our case, a block of 500,000 transactions every
few seconds. Its fundamental principle is that transactions in a
block commute: a block’s result is identical regardless of trans-
action ordering, which enables efficient parallelization [51].

SPEEDEX’s core innovation is to execute every order
at the same exchange rate as every other order in the same
block. SPEEDEX processes a block of limit orders as one
unified batch, in which, for example, every 1 EUR sold to buy
USD receives exactly 1.10 USD in payment. Furthermore,
SPEEDEX’s exchange rates present no arbitrage opportunities
within the exchange; that is, the exchange rate for trading USD
to EUR directly is exactly the exchange rate for USD to YEN
multiplied by the rate for YEN to EUR. These exchange rates
are unique for any (nonempty) batch of trades. Users interact
with SPEEDEX via traditional limit orders, and SPEEDEX
executes a limit order if and only if the batch’s exchange rate
exceeds the order’s limit price.

This design provides two additional economic advantages.
First, the exchange offers liquid trading between every asset
pair. Users can directly trade any asset for any other asset, and
the market between these assets will be at least as liquid as the
most liquid market path through intermediate reserve curren-
cies. Second, SPEEDEX eliminates a class of front-running
that is widespread in modern DEXes. No exchange operator or
user with a low-latency network connection can buy an asset
and resell it at a higher price, within the same block. (Note
that this is not every type of front-running; §8 and §10 contrast
SPEEDEX’s guarantees with those of other mitigations, and
how they can be combined.)

Furthermore, this economic design enables a scalable
systems design that is not possible using traditional order-
matching semantics. Unlike every other DEX, the operation
of SPEEDEX is efficiently parallelized, allowing SPEEDEX
to scale to transaction rates far beyond those seen today.
Transactions within a block commute with each other precisely
because trades all happen at the same shared set of exchange
rates. This means that the transaction processing engine has no

850 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

need for the sequential read-modify-update loop of traditional
orderbook matching engines. Account balances are adjusted
using only hardware-level atomics, rather than locking.

1.2 SPEEDEX Overview
SPEEDEX is not a blockchain itself; rather, it is a DEX
component that can be integrated into any blockchain. A copy
of the SPEEDEX module should run inside every replica of
a blockchain using the system. SPEEDEX does not depend
on any specific property of a consensus protocol, but automat-
ically benefits from throughput advances in consensus and
transaction dissemination (such as [56]). SPEEDEX heavily
uses concurrency and benefits from uninterrupted access to
CPU caches, and as such is best implemented directly within
blockchain node software (instead of as a smart contract).

We implemented SPEEDEX within a custom blockchain us-
ing the HotStuff consensus protocol [115]; this implementation
provides the measurements in this paper. We created a second
implementation as a component of the Stellar blockchain [84],
which is considering a Layer-1 SPEEDEX deployment.

Implementing SPEEDEX introduces both theoretical
algorithmic challenges and systems design challenges. The
core algorithmic challenge is the computation of the batch
prices. This problem maps to a well-studied problem in the the-
oretical literature (equilibrium computation of Arrow-Debreu
Exchange Markets, §A.1); however, the algorithms in the the-
oretical literature scale extremely poorly, both asymptotically
and empirically, as the number of open limit orders increases.

We show that the market instances which arise in SPEEDEX
have additional structure not discussed in the theoretical litera-
ture, and use this structure to build a novel algorithm (based on
the Tâtonnement process of [53]) that, in practice, efficiently
approximates batch clearing prices. We then explicitly correct
approximation error with a follow-up linear program.

Our algorithm’s runtime is largely independent of the num-
ber of limit orders—each Tâtonnement query has a runtime
of O(#assets2 · lg(#offers)) and the linear program has size
O(#assets2). This gives a crucial algorithmic speedup because
in the real world, the number of currencies is much smaller
than the number of market participants. (The experiments of
§6 and §7 use 50 assets and tens of millions of open offers.)

On the systems design side, to implement this exchange,
we design natural commutative transaction semantics and
implement data structures designed for concurrent, batched
manipulation and for efficiently answering queries about the
exchange state from the price computation algorithm.

In recent years, the economics literature has begun
discussing the use of batched trading systems in traditional
markets to combat front-running and externalities associated
with high-frequency trading [30, 41, 43]. This literature
focuses only on the case of trading between two assets (where
price computation is simple) or where all trades use a single
numeraire currency [44]. Our contribution to this line of work
is to demonstrate the feasibility of a batch trading system

Blockchain
Node

Overlay
Network (1)

Block
Proposal (2)

Consensus
(3)

SPEEDEX

Core DEX
Engine (4)

Batch Pricing
Algorithm (5)

DEX State Database (6)

Persistent
Log (7)

Demand
Queries

Pricing Queries

State
Updates

Fig. 1. Architecture of SPEEDEX module (4, 5, 6) inside one
blockchain node.

that exchanges many assets and many numeraire currencies
simultaneously, thereby expanding the design space of
implementable market structures.

2 System Architecture
SPEEDEX is an asset exchange implemented as a replicated
state machine in a blockchain architecture (Fig. 1). Assets are
issued and traded by accounts. Accounts have public signature
keys authorized to spend their assets. Signed transactions
are multicast on an overlay network (Fig. 1, 1) among block
producers. At each round, one or more producers propose
candidate blocks extending the blockchain history (Fig. 1, 2).
A set of validator nodes (generally the same set or a superset of
the producers) validates and selects one of the blocks through
a consensus mechanism (Fig. 1, 3). SPEEDEX is suitable for
integration into a variety of blockchains, but benefits from a
consensus layer with relatively low latency (on the order of
seconds), such as BA? [71], SCP [84], or HotStuff [115].

The implementation evaluated here uses HotStuff [115],
while the the Stellar blockchain implementation relies on
Stellar’s existing consensus protocol, SCP [88].

Most central banks and digital currency issuers maintain
a ledger tracking their currency holdings. SPEEDEX is not
intended to replace these primary ledgers. Rather, we expect
banks and other regulated financial institutions to issue 1:1
backed token deposits onto a blockchain that runs SPEEDEX
and provide interfaces for moving money on and off the
exchange. These assets could be digital-native tokens as well;
any divisible and fungible asset can integrate with SPEEDEX.

SPEEDEX supports four operations: account creation, offer
creation, offer cancellation, and send payment. Offers on
SPEEDEX are traditional limit orders. For example, one offer
might offer to sell 100 EUR to buy USD, at a price no lower
than 0.91 USD/EUR. Offers can trade between any pair of
assets, in either direction. Another offer, for example, might
offer to sell 100 USD in exchange for EUR, at a price no lower
than 1.10 EUR/USD.

What makes SPEEDEX different from existing DEXes
is the manner in which it processes new orders. Traditional

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 851

exchanges process trades sequentially, implicitly computing
a matching between limit orders. SPEEDEX, by contrast,
processes trades in batches (typically, one batch would consist
of all of the limit orders in one block of the blockchain).

In a blockchain, all of the transactions in a block are
appended at the same clock time, so there is no reason a
priori why a DEX should pick one ordering over another.
SPEEDEX, by design, imposes no ordering whatsoever
between transactions in a block. Side effects of a transaction
are only visible to other transactions in future blocks.

Logically, when the SPEEDEX core engine (Fig. 1, 4)
receives a finalized block of trades, it applies all of the trades at
exactly the same time and computes an unordered set of state
changes, which it passes to its exchange state database (Fig.
1, 6). This database records orderbooks and account balances,
and is periodically written to the persistent log (Fig 1, 7).

2.1 SPEEDEX Module Architecture
To implement an exchange that operates replicably where
trades in a block are not ordered relative to each other,
SPEEDEX requires a set of trading semantics such that
operations commute.

Traditional exchange semantics are far from commutative:
one offer to buy an asset is matched with the lowest priced
seller, and the next offer to buy is matched against the
second-lowest priced seller, and so on. Hence, every trade can
occur at a slightly different exchange rate.

Instead, to make trades commutative, SPEEDEX computes
in every block a valuation pA for every asset A . The units
of pA are meaningless, and can be thought of as a fictional
valuation asset that exists only for the duration of a single
block. However, valuations imply exchange rates between
different assets—every sale of asset A for asset B occurs at
a price of pA/pB . Unlike traditional exchanges, SPEEDEX
does not explicitly compute a matching between trade offers.
Instead, offers trade with a conceptual “auctioneer” entity at
these exchange rates. Trading becomes commutative because
all trades in one asset pair occur at the same price.

The main algorithmic challenge is to compute valuations
where the exchange clears—i.e., the amount of each asset sold
to the auctioneer equals the amount bought from the auctioneer.

When the auctioneer sets exact clearing valuations, an offer
trades fully with the auctioneer if its limit price is strictly
below the auctioneer’s exchange rate, and not at all if its limit
price exceeds the auctioneers rate. When the limit price equals
the exchange rate, SPEEDEX may execute the offer partially.
Note that an exchange is a zero-sum system; as compared to
sequential execution, some users may see better prices and
some may see worse, but SPEEDEX guarantees that no user’s
price is worse than their minimum limit price.

Theorem 1. Exact clearing valuations always exist. These
valuations are unique up to rescaling.1

1And technical conditions (§A.3), e.g. everything clears an empty market.

Theorem 1 is a restatement of a general theorem of
Arrow-Debreu exchange market theory [57] (§A.3).

Concretely, whenever the core SPEEDEX engine (Fig 1,
4) receives a newly finalized block, one of its first actions is
to query an algorithm that computes clearing valuations (Fig
1, 5). It then uses the output of this algorithm to compute the
modifications to the exchange state (Fig 1, 6).

As valuations that clear the market always exist for any set of
limit orders, there is no adversarial input that SPEEDEX cannot
process. And because these valuations are unique, SPEEDEX
operators do not have a strategic choice between different sets
of valuations. SPEEDEX’s algorithmic task is to surface infor-
mation about a fundamental mathematical property of a batch.

Unfortunately, we are not aware of a practical method to
compute clearing prices exactly. (The number of bits required
to represent exact clearing prices may be extremely large [57],
and in a natural extension of the SPEEDEX model [96] the
clearing prices are not even rational.) SPEEDEX therefore
uses approximate clearing prices.

At nonexact clearing prices, the conceptual auctioneer will
not have enough of some asset(s) to pay out all offers willing
to accept the market price. SPEEDEX addresses this deficit
in two ways. First, the auctioneer proportionally reduces the
amount it pays out to offers by a small fraction—in other
words, it charges a commission. Commissions are common for
exchanges, whether decentralized or not, though SPEEDEX
does it for market clearing rather than profit reasons. To avoid
incentivizing high trading costs, the implementation returns
commissions to the asset issuers, and one goal of our price
computation algorithm’s design is to make this commission
as low as computationally practical. Second, the auctioneer
can refrain from filling some marketable offers. Whereas in
a perfect Arrow-Debreu exchange market, offers at the market
price may be partially filled or not filled, in SPEEDEX the
same applies to offers very close to the market price, even if
they still beat the market price by a small percentage.

SPEEDEX always rounds trades in favor of the auctioneer.
Our implementation burns collected transaction fees and
accumulated rounding error (effectively returning them to
the issuer by reducing the issuer’s liabilities). The Stellar
implementation eliminates the fee and returns the accumulated
rounding error to asset issuers.

2.2 Design Properties
Computational Scalability SPEEDEX’s commutative
semantics allow effective parallelization of DEX operation.
Because transactions within a block are not semantically
ordered, DEX state is identical regardless of the order in
which transactions are applied. This exact replicability
is, of course, required for a replicated state machine. The
order-independence also means SPEEDEX transactions can
be executed in parallel by all available CPU cores despite the
fact that thread interleaving is nondeterministic in multicore
machines. Almost all coordination occurs via hardware-level

852 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

atomics (e.g., atomic add on 64-bit integers) without spinlocks.
SPEEDEX stores balances in accounts, rather than in

discrete, unspent coins (often called “UTXOs”). It also
supports single-currency payment operations, which are
simpler than DEX trading. Hence, SPEEDEX disproves the
popular belief [85, 97] that account-based ledgers are not
compatible with horizontal scalability.

No risk-free front running Well-placed agents in real-
world financial markets can spy on submitted offers, notice
a new transaction T , and then submit a transaction T ′ (that
executes before T) that buys an asset and re-sells it to T
at a slightly higher price. In some blockchain settings, T ′

can be done as a single atomic action [55]. However, since
every transaction sees the same clearing prices in SPEEDEX,
back-to-back buy and sell offers would simply cancel each
other out. Relatedly, because every offer sees the same prices,
a user who wishes to trade immediately can set a very low
minimum price and be all but guaranteed to have their trade
executed, but still at the current market price.

Risk-free front-running is one instance of the widely dis-
cussed “Miner Extractable Value” (MEV) [55] phenomenon,
in which block producers reorder transactions within a
block for their own profit (or in exchange for kickbacks).
By eliminating the ordering of transactions within a block,
SPEEDEX eliminates a large source of MEV. However, this
does not eliminate every type of front-running manipulation,
such as delaying victim transactions to a future block (see §8).

No (internal) arbitrage and no central reserve currency
An agent selling asset A in exchange for asset B will see a price
of pA/pB . An agent trading A for B via some intermediary
asset C will see exactly the same price, as pA

pC
· pC

pB
= pA

pB
.

Hence, one can efficiently trade between assets without much
pairwise liquidity with no need to search for an optimal path.
By contrast, many international payments today go through
USD because of a lack of pairwise liquidity. The multitude
of USD-pegged stablecoins in modern blockchains further
fragments liquidity. Of course, there can still be arbitrage
between SPEEDEX and external markets.

3 Commutative DEX Semantics
To propose or execute a block of transactions, the SPEEDEX
core engine performs the following three actions.

1 For each transaction in the block (in parallel), check
signature validity, collect new limit offers, and compute
available account balances after funds are committed to
offers or transferred between accounts. When proposing
a block of transactions, SPEEDEX discards potentially
invalid transations.

2 When proposing a block, compute approximate clearing
prices and approximation correction metadata.

3 Iterate over each offer, making a trade or adding it to the
resting orderbooks (based on the prices and metadata).

For transaction processing in step 1 to be commutative, it

must be the case that the step 1 output effects (specifically: cre-
ate a new account, create a new offer, cancel an existing offer,
and send a payment) of one transaction have no influence on the
output effects of another transaction. This means that one trans-
action cannot read some value that was output by another trans-
action (in the same block), and that whether one transaction
succeeds cannot depend on the success of another transaction.

To meet the first requirement, traders include all parameters
to their transactions within the transaction itself. The second
requirement necessitates precise management of transaction
side effects. At most one transaction per block may alter an
account’s metadata (such as the account’s public key or exis-
tence), and metadata changes take effect only at the end of block
execution. Similarly, an offer cannot be created and cancelled
in the same block. As payments and trading are the common
case, we do not consider these restrictions a serious limitation.

SPEEDEX must also ensure that no account is overdrafted.
That is to say, after processing all transactions in a block,
the unlocked balance of every account must be nonnegative
(where an open offer locks the offered amount of an asset for
the duration of its lifetime). Unlike most distributed ledgers,
SPEEDEX cannot simply deem the second of two conflicting
transactions to fail—after all, transactions have no ordering.
Instead, our implementation requires a block proposer to
ensure that a block cannot cause overdrafts; every node rejects
blocks that violate this property. To generate valid blocks,
proposers use a conservative process outlined in §K.6. The
design requires passing information from the SPEEDEX
database (Fig 1, 6) to the proposal module (Fig 1, 2).

The core remaining technical challenge is the batch price
computation (Fig 1, 5).

4 Price Computation

4.1 Requirements

As discussed earlier, in every block, SPEEDEX computes
batch clearing prices and executes trades in response to these
prices. Every DEX is subject to two fundamental constraints:

• Asset Conservation No assets should be created out of
nothing. As discussed in §2, offers in SPEEDEX trade
with a virtual auctioneer. After a batch of trades, this
auctioneer cannot be left with any debt. We do allow the
auctioneer to burn some surplus assets as a fee.

• Respect Offer Parameters No offer trades at a worse
price than its limit price.

Additionally, SPEEDEX should facilitate as much trade
volume as possible. (Otherwise, the constraints could be vac-
uously met by never trading.) Furthermore, price computation
must be efficient, as it occurs for each block of trades, every
few seconds. Finally, SPEEDEX should minimize the number
of offers that trade partially; asset quantities are stored as
integer multiples of a minimum unit, so each partial trade risks
accumulating a rounding error of up to one unit.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 853

4.2 From Theory To Practice
The problem of computing batch clearing prices is equivalent
to the problem of computing equilibria in linear Arrow-Debreu
Exchange Markets (§A). Our algorithm is based on the
iterative Tâtonnement process from this literature [53].

However, the runtimes of the theoretical algorithms scale
very poorly, both asymptotically and empirically. They also
output approximate equilibria for notions of approximation
that violate the two fundamental constraints above (for
example, Definition 1 of [53] permits equilibria to mint new
assets and to steal from a user).

We develop a novel algorithm for computing equilibria that
runs efficiently in practice (§6) and explicitly ensures that
(1) asset amounts are conserved and (2) every offer trades at
exactly the market prices, and only if the offer’s limit price
is at or below the batch exchange rate. First, Tâtonnement
approximates clearing prices (§5). We show that the structure
of the types of trades in SPEEDEX lets each iteration run
in time logarithmic in the number of open limit offers (via a
series of binary searches), giving an algorithm asymptotically
faster than that within the theoretical literature.

We then explicitly correct for the approximation error with a
linear program (§D). Crucially, the size of this linear program
is linear in the number of asset pairs, and has no dependence on
the number of open trade offers. The linear program ensures
that, no matter what prices Tâtonnement outputs, (1) asset
amounts are conserved, and (2) no offer trades if the batch
price is less than its limit price.

To be precise, our algorithm outputs the following:
• Prices: For each asset A , SPEEDEX computes an asset

valuation pA . One unit of A trades for pA/pB units of B .
• Trade Amounts: For each asset pair (A ,B), SPEEDEX

computes an amount xA ,B of asset A that is sold for asset
B (again, at exchange rate pA/pB).

For every asset pair (A ,B), SPEEDEX sorts all of the offers
selling A for B by their limit prices, and then executes the of-
fers with the lowest limit prices, until it reaches a total amount
of A sold of xA ,B (tiebreaking by account ID and offer ID).

As a bonus, this method ensures that at most one offer per
trading pair executes partially, minimizing rounding error.

5 Price Computation: Tâtonnement
Tâtonnement is an iterative process; starting from an (arbitrary)
initial set of prices, it iteratively refines them until the prices
reach a stopping criterion.

Each iteration of Tâtonnement starts with a demand query.
The demand of an offer is the net trading of the offer (with
the auctioneer) in response to a set of prices, and the demand
of a set of offers is the sum of the demands of each offer.
Tâtonnement’s goal is to find prices such that the amount of
each asset sold to the auctioneer matches the amount bought
from it (in other words, the net demand is 0).

Example 1. Suppose that a limit order offers to sell 100 USD

for EUR with a minimum price of 0.8 EUR per USD. If the can-
didate prices are such that α=

pUSD
pEUR

>0.8, then the limit order
would like to trade, and its demand is (−100 USD,100α EUR).
Otherwise, its demand is (0 USD,0 EUR).

Iterative Price Adjustment. If more units of an asset
are demanded from the auctioneer than are supplied to it (a
positive net demand, meaning a deficit for the auctioneer),
then the auctioneer raises the price of the asset. Otherwise,
the auctioneer has a surplus, so it lowers the price of the
asset. Implementing this process effectively requires careful
numerical normalization in response to differences in prices
and trade volumes, which we describe in detail in §C.1.

Tâtonnement repeats this process until the current set of
prices is sufficiently close to the market clearing prices (or it
hits a timeout). Specifically, Tâtonnement iterates until it has a
set of prices such that, if the auctioneer charges a commission
of ε, then there is a way to execute offers such that:

1 The auctioneer has no deficits (assets are conserved)
2 No offer executes outside its limit price bound
3 Every offer with a limit price more than a (1−µ) factor

below the auctioneer’s exchange rate executes in full.
The last condition is a formalization of the notion that

SPEEDEX should satisfy as many trade requests as possible.
Informally, an offer with a limit price equal to the auctioneer’s
exchange rate is indifferent between trading and not trading,
while one with a limit price far below the auctioneer’s
exchange rate strongly prefers trading to not trading.

5.1 Efficient Demand Queries
Implemented naïvely, Tâtonnement’s demand queries would
consist of a loop over every open exchange offer. This is im-
possibly expensive, even if the loop is massively parallelized.
Concretely, one invocation of Tâtonnement can require many
thousands of demand queries. Every demand query therefore
must return results in at most a few hundred microseconds.

This naïve loop appears to be required for the (more
general) problem instances studied in the theoretical literature.
However, all of the offers in SPEEDEX are traditional limit
orders that sell one asset in exchange for one other asset at
some limit price. An offer with a lower limit price always
trades if an offer with a higher limit price trades. Therefore,
SPEEDEX groups offers by asset pair and sorts offers by
their limit prices. We drive the marginal cost of this sorting
to near zero by using an offer’s limit price as the leading bits
(in big-endian) of the keys in our Merkle tries (§K.5).

SPEEDEX can therefore compute a demand query with a
sequence of binary searches (§G). Individual binary searches
can run on separate CPU cores. The number of open offers
(say, M) on an exchange is vastly higher than the number of
assets traded (say, N). Our experiments in §7 trade N = 50
assets with M= tens of millions of open offers; the complexity
reduction from O(M) to O(N2lg(M)) is crucial.

854 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.2 Multiple Tâtonnement Instances
§C describes several other Tâtonnement adjustments that help
it respond well to a wide variety of market conditions. Some of
these adjustments are parametrized (such as how quickly one
should adjust the candidate prices); rather than pick one set of
control parameters, we run several instances of Tâtonnement
in parallel and take whichever finishes first as the result. (In the
case of a timeout, we choose the set of prices that minimizes
the unrealized utility [§6.2].) SPEEDEX includes the output of
Tâtonnement and the subsequent linear program in the headers
of proposed blocks (§K.3).

6 Evaluation: Price Computation
Tâtonnement’s runtime depends primarily on the target ap-
proximation accuracy, the number of open trade offers, and
the distribution of the open trade offers. The runtime increases
as the desired accuracy increases. Surprisingly, the runtime
actually decreases as the number of open offers increases. And
like many optimization problems, Tâtonnement performs best
when the input is normalized, meaning in this case that the (nor-
malized, §C.1) volume traded of each asset is roughly the same.

Tâtonnement runs once per block. To produce a block every
few seconds, Tâtonnement must run in under one second most
of the time. Our implementation runs Tâtonnement with a
timeout of 2 seconds, but it typically converges much faster.

6.1 Accuracy and Orderbook Size
We find that Tâtonnement converges more quickly as the
number of open offers increases. Tâtonnement converges
fastest when small price changes do not cause comparatively
large changes in overall net demand. However, an offer’s
behavior is a discontinuous function (of prices); it does not
trade below its limit price and trades fully above it.

There are two factors that mitigate these “jump discontinu-
ities.” First, Tâtonnement approximates optimal offer behavior
by a continuous function (§B). Smaller µ means a closer
approximation. Second, the more offers there are in a batch, the
smaller any one offer’s relative contribution to overall demand.
This last factor explains why Tâtonnement converges more
quickly when there are more offers on the exchange. A real-
world deployment might raise accuracy as trading increases.

Fig. 2 plots the minimum number of trade offers that
Tâtonnement needs to consistently find clearing prices
for 50 distinct assets in under 0.25 seconds (for the same
trade distribution used in §7). To put these fee rates in
context, BinanceDex [1] charged a fee of either 0.1%≈2−10

or 0.04% ≈ 2−11.3. Uniswap [24, 25] charges 1%, 0.3%,
or 0.05% (∼2−6.6, ∼2−8.4, and ∼2−11, respectively), and
Coinbase charges 0.5% to 4% [4] (∼2−7.6 to∼2−4.6).

Though our experiments rarely experienced Tâtonnement
timeouts, Tâtonnement timeouts caused by sparse orderbooks
may be self-correcting: If SPEEDEX proposes suboptimal
prices, fewer offers will find a counterparty and trade. When
fewer offers clear in one block, more are left to facilitate

Fig. 2. Minimum number of offers needed for Tâtonnement to
run in under 0.25 seconds (Smaller is better. Times averaged
over 5 runs). The x axis denotes offer behavior approximation
quality (µ), and the y axis denotes the commission (ε).

Tâtonnement in the next block. §F describes an alternative
algorithm that is effective on small batches.

6.2 Robustness Checks
As a robustness check, we run Tâtonnement against a trade
distribution derived from volatile cryptocurrency market data.
In an ideal world, we could replay trades from another DEX
through SPEEDEX. Unfortunately, doing so poses several
problems. First, in practice, almost all DEX trades go through
four de facto reserve currencies (ETH, USD, USDC, and
USDT), three of which are always worth close to $1. The
decomposition between a few core “pricing” assets and a
larger number of other assets makes price discovery too simple.
Second, transaction rates on existing DEXes are too low to
provide enough data. Finally, we suspect users would submit
different orders to SPEEDEX than they might on a traditional
exchange, due to the distinct economic properties of batch
trading systems.

Experiment Setup. As a next-best alternative, we generate
a dataset based on historical price and market volume data. We
took the 50 crypto assets that had the largest market volume
on December 8, 2021 (as reported by coingecko.com) and
for each asset, gathered 500 days of price and trade volume
history. We then generated 500 batches of 50,000 transactions.
A new offer in batch i sells asset A (and buys asset B) with
probability proportional to the relative volume of asset A
(and asset B , conditioned on A 6=B) on day i, and demands a
minimum price close to the real-world exchange rate on day i.
The extreme volatility of cryptocurrency markets and variation
between these 50 assets make this dataset particularly difficult
for Tâtonnement. To further challenge Tâtonnement, we use
a smaller block size of∼30,000 (compared to 500,000 in §7).

The experiment charged a commission of ε = 2−15 ≈

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 855

coingecko.com

0.003%, and attempted to clear offers with limit prices more
than 1−µ below the market prices, for µ=2−10≈0.1% (§B).

Experiment Results. The experiment ran for 500 blocks.
Each block created about 25,000 new offers and a few
thousand cancellations and payments.

Tâtonnement computed an equilibrium quickly in 350
blocks, and in the remainder, computed prices sufficiently
close to equilibrium that the follow-up linear program
facilitated the vast majority of possible trading activity.

We measure the quality of an approximate set of prices by
the ratio of the “unrealized utility” to the “realized utility.” The
utility gained by a trader from selling one unit of an asset is the
difference between the market exchange rate and the trader’s
limit price, weighted by the valuation of the asset being sold.
Note that the units do not matter when comparing relative
amounts of “utility.”

In the blocks where Tâtonnement computed an equilibrium
quickly, the mean ratio of unrealized to realized utility was
0.71% (max: 4.7%), and in the other blocks, the mean ratio
was 0.42% (max: 3.8%).

Recall that Tâtonnement terminates as soon as a stopping
criteria is met; roughly, “does the supply of every asset exceed
demand,” so one mispriced asset will cause Tâtonnement
to keep running. However, every Tâtonnement iteration
continues to refine the price of every asset. This is why
Tâtonnement actually gives more accurate results in the
batches it found challenging. A deployment might enforce a
minimum number of Tâtonnement rounds.

Qualitatively, Tâtonnement correctly prices assets with
high trading volume and struggles on sparsely traded assets (as
might be expected from Fig. 2). Tâtonnement also adjusts its
price adjustment rule in response to recent market conditions
(§C.1), a tactic which is less effective on volatile assets.

Should this pose a problem in practice, a deployment could
choose to vary the approximation parameters by trading pair.

7 Evaluation: Scalability
We ran SPEEDEX on four r6id.24xlarge instances in an Ama-
zon Web Services datacenter. Each instance has 48 physical
CPU cores divided over two Intel Xeon Platinum 8375CL
chips (32 total cores per socket, 24 of which are allocated to our
instances), running at 2.90Ghz with hyperthreading enabled,
768GB of memory, 4 1425GB NVMe drives connected in a
RAID0 configuration. We use the XFS filesystem [102]. These
experiments use the HotStuff consensus protocol [115], and
do not include Byzantine replicas or a rotating leader.

Experiment Setup. These experiments simulate trading of
50 assets. Transactions are charged a fee of ε=2−15(0.003%).
We set µ = 2−10, guaranteeing full execution of all orders
priced below 0.999 times the auctioneer’s price. The initial
database contains 10 million accounts. Tâtonnement never
timed out, and typically required fewer than 1,000 iterations.

Transactions are generated according to a synthetic data

Fig. 3. Transactions per second on SPEEDEX, plotted over the
number of open offers.

model—every set of 100,000 transactions is generated as
though the assets have some underlying valuations, and users
trade a random asset pair using a minimum price close to the
underlying valuation ratio. The valuations are modified (via
a geometric Brownian motion) after every set. Accounts are
drawn from a power-law distribution.

Each set is split into four pieces, with one piece given
to each replica. Replicas load these sets sequentially and
broadcast each set to every other replica. Each replica adds
received transactions to its pool of unconfirmed transactions.

Replicas propose blocks of roughly 500,000 transac-
tions. In these experiments, each block consists of roughly
350,000–400,000 new offers, 100,000–150,000 cancellations,
10,000–20,000 payments, and a small number of new accounts.
We generate 5,000 sets of input transactions. Some of these
transactions conflict with each other and are discarded by
SPEEDEX replicas. Each experiment runs for 700–750 blocks.

Every five blocks, the exchange commits its state to
persistent storage in the background (via LMDB [50], §K.2).

Performance Measurements. Fig. 3 plots the end-to-end
transaction throughput rate of SPEEDEX as the number of
worker threads inside SPEEDEX increases. The x-axis plots
the number of open offers on the exchange.

Most importantly, Fig. 3 demonstrates that SPEEDEX can
efficiently use its available CPU hardware. The speedup is
near-linear, until the number of threads approaches the number
of CPU cores—from 6 to 12,∼1.9x, from 12 to 24,∼1.8x, and
from 24 to 48,∼1.4x. The thread counts are only for the num-
ber of threads directly for SPEEDEX’s critical path, and not for
many of the tasks that the implementation must perform in the
background, such as logging data to persistent storage (logging
the account database uses 16 threads), consensus, and garbage
collection, and these threads begin to contend with SPEEDEX
as the number of SPEEDEX worker threads increases.

Secondly, Fig. 3 demonstrates the scalability of SPEEDEX
with respect to the number of open offers. The number of open

856 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fig. 4. Time to propose and execute a block, plotted over the
number of open offers.

offers SPEEDEX works with in these experiments is already
quite large, but most importantly, as the number of open offers
goes from 0 to the 10s of millions, SPEEDEX’s transaction
throughput falls by only∼10%. This slowdown is primarily
derived from a Tâtonnement optimization (the precomputation
outlined in §9.2). Tâtonnement is the one part of SPEEDEX
that cannot be arbitrarily parallelized, so we design our imple-
mentation towards making it as fast as possible. An implemen-
tation might skip this work in some parameter regimes.

To focus on the performance of SPEEDEX, Figs. 4
and 5 plot the time to propose and execute blocks, and to
validate and execute proposals, respectively, when we disable
signature verification (which is trivial to parallelize). First,
note that both proposal and validation scale with the number
of threads; validation scales better than proposal due to the
aforementioned Tâtonnement optimization. Second, note that
validating and executing a proposal from another replica is
substantially faster than proposing a block; this lets a replica
that is somehow delayed catch up.

The runtime variation in Fig. 4 results from the fact that
SPEEDEX without signature verification runs too quickly for
our persistent logging implementation.

SPEEDEX is not a consensus protocol, and these experi-
ments (one consensus invocation every few seconds) do not
come close to stressing the consensus throughput of Hotstuff.
However, network bandwidth requirements necessarily
scale (at least) linearly with transaction rate. Recent work,
such as [56, 79, 113], develops consensus protocols that
maximally use available network bandwidth. However,
integrating SPEEDEX with any consensus protocol requires
understanding the tradeoffs between batch size, transaction
rate, and consensus frequency. Fig. 6 plots this tradeoff running
SPEEDEX on the same transaction workload as in Fig. 3. We
also ran SPEEDEX with more replicas on different hardware
and observed the same scalability trends, as outlined in §L
(albeit with lower overall throughput on weaker hardware).

Fig. 5. Time to validate and execute a proposal, plotted over
the number of open offers (measurements from one replica).

Fig. 6. Median transaction rates, varying block size and num-
ber of open offers (grouped into buckets of 2M). Shaded areas
plot 10th to 90th percentiles.

Conclusions. To reiterate, SPEEDEX achieves these
transaction rates while operating fully on-chain, with no
offchain rollups and no sharding of the exchange’s state. To
make SPEEDEX faster, one can simply give it more CPU cores,
without changing the transaction semantics or user interface.
This scaling property is unique among existing DEXes.

7.1 Alternative Scaling Techniques
Traditional Exchange Semantics. The core logic of just
an exchange system can be implemented extremely efficiently
with almost no code. The logic of the constant product market
maker UniswapV2 [24], for example, is less than 10 lines
of simple arithmetic code. An orderbook-based exchange
requires more code but can still be made very fast, as most
operations modify only a small number of data objects. We im-
plemented a bare-bones orderbook exchange with two assets
using the same data structures as in SPEEDEX—each trans-
action checks the orderbook for a matching offer or offers and
either makes appropriate transfers or adds the new offer to the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 857

orderbook. These operations are extremely fast when the num-
ber of accounts is small; our implementation runs∼1.7 million
of these transactions per second when there are only 100
accounts. However, every database lookup becomes slower as
the as the number of accounts grows; when there are 10 million
accounts in the database (as in the above experiments), through-
put falls 8x to∼210,000 per second. Yet that is before adding
all of the other SPEEDEX features one needs in a real DEX,
such as state hashes, transaction fees, structures for simple
payment verification [89], replication, or durable logging. The
scalability of the full SPEEDEX implementation lets it surpass
that rate even when slowed down by all of these features.

Note that every orderbook operation affects every subse-
quent transaction—each transaction influences the exchange
rate observed in the next transaction—and as such, their ex-
ecution cannot be parallelized. SPEEDEX’s design, therefore,
enables parallel execution of what would otherwise be a strictly
serial workload. To isolate the effect of SPEEDEX’s paralleliz-
able semantics on its transaction throughput, we therefore turn
to a workload that does not touch the DEX at all—one where
every transaction is a payment between random accounts.

Optimistic Concurrency Control. A widely explored
class of alternative designs for parallel transaction execution
use optimistic concurrency control, and of these approaches
the most closely related state of the art design appears to
be Block-STM [70], which is deployed in Aptos [22]. This
approach optimistically executes batches of transactions,
retrying after conflicts as necessary.

We therefore design the measurements of Fig. 7 to mirror
the experiments in [70]. The “Aptos p2p” transactions in [70]
are payments between two random accounts, and consist of
8 reads of 5 writes. Each of our payments consists of two data
reads (source account public key and last committed sequence
number), two atomic compare_exchange operations (subtract
payment and fee from source), an atomic fetch_xor (reserve
sequence number), and an atomic fetch_add (add payment to
destination)—implemented without atomics, this would be
6 reads and 4 writes. All payments are of the same asset.

Fig. 7 plots the throughput rates of SPEEDEX on this
transaction workload for the parameter settings measured in
Block-STM (Figs. 7 and 8, [70]). Note that for large batch
sizes, the transaction throughput is largely independent of
the number of accounts, even though every transaction in the
two account setting contends with every other transaction. Fur-
thermore, unlike Block-STM, SPEEDEX achieves near-linear
scalability on sufficiently large batches. For small batch sizes,
a large number of accounts actually slows down SPEEDEX,
largely due to increased sensitivity to cache performance
and our system’s NUMA (two socket) architecture on small
timescales. We also ran this experiment on a single-socket sys-
tem (an AWS c5a.16xlarge, as in [70]), and found only negligle
impact of the number of accounts on throughput. Fig. 7 was run
with hyperthreading disabled, to compare against Block-STM
experiments. The rest of our experiments were run with hy-

Fig. 7. Throughput of SPEEDEX on batches of payment trans-
actions with varying thread counts (average of 100 trials).

perthreading enabled (because of the many background tasks
in SPEEDEX); enabling hyperthreading on this payments
workload causes a negligible performance degradation for
large batches (approximately 1-6%), and a larger (up to 25%)
on small batches. As a baseline, §J graphs the performance
of Block-STM on these parameter settings on our hardware.

We also ran SPEEDEX on an only-payments workload with
10 million accounts and 50 assets, and measured a throughput
of approximately 375k, 215k, 114k, and 60k transactions per
second using 48, 24, 12, and 6 threads, respectively (a 34.8x,
20.0x, and 10.6x, and 5.6x speedup over the single-threaded
measurement). We disabled data persistence for these
trials—again, the logging off of the critical path contends with
SPEEDEX at these transaction rates, especially for payment
transactions that modify two accounts, instead of just one
(as when creating an offer). The throughput reached 255k
transactions per second with data persistence enabled.

Production Systems. Finally, we ran the Ethereum Virtual
Machine (Geth 1.10 [10]) on a workload of UniswapV2 [24]
transactions, and measured a rate of∼3000 transactions per
second (a result in line with other Ethereum benchmarks [107]).
The Loopring exchange, built as an L2 rollup on Ethereum,
claims a maximum rate of∼2000 per second [23], a number
calculated from Ethereum’s per-block computation limit [21],
which is in turn set based on the real computational cost of serial
transaction execution [26, 45, 47, 91]. Precise measurements
of the Stellar blockchain’s orderbook DEX suggest that its
implementation could handle∼4000 DEX trades per second.

8 Design Limitations and Mitigations
Latency. Batch trading inherently introduces latency
(between order submission and order execution) not present
on traditional, centralized exchanges, simply because an order
cannot execute until a batch has been closed and clearing
prices have been computed. This latency is already present
in a blockchain context (a transaction is not finalized until

858 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the consensus protocol adds it to a block), so in this context,
SPEEDEX introduces no additional latency.

The latency may have downstream economic effects.
Market-making may be more (or less) profitable operating
in a batch system, which could lead to reduced (or increased)
liquidity. Budish et al. [30] argue that batch trading (between
2 assets) would reduce costs for market-makers, which could
lead to increased liquidity. However, they study a higher batch
frequency (approximately once per millisecond); our lower
batch frequency is less studied (see Q9, [41]).

Tâtonnement Nondeterminism. The algorithms evaluated
in §6 can be viewed as a randomized approximation scheme,
which raises the question of whether a malicious operator
can manipulate the approximation. Note that the level of
approximation error (as defined in §B) can be measured,
so non-anonymous node operators can be penalized for
malfeasance. When regulation is not possible, Tâtonnement
can be made deterministic by fixing a set of control parameters
for each instance and choosing the solution with the lowest
approximation error (or lowest unrealized utility, §6.2). The
Stellar implementation uses a static set of control parameters
with one Tâtonnement instance. Node operators could also
compete to compute prices accurately, as in [7].

Nondeterministic Overdraft Prevention. SPEEDEX
needs to prevent an account from spending more than its
balance of an asset. As discussed in §3, our implementation
considers a proposal valid only if no account is overdrafted
after applying the block. This design complicates pipelining
of consensus with execution, gives plausible deniability for
delaying transactions, and is incompatible with cryptographic
commit-reveal schemes.

Instead, given a fixed block of transactions, an implemen-
tation could first compute, for each account, the total amount
of each asset debited from the account (before applying any
credits). If there is any possibility for an account to overdraft
in this block, then this amount must exceed the account’s
balance. As such, to ensure that no accounts overdraft, the
implementation can remove all transactions from accounts
that might overdraft. Note that this determination is made on a
per-account basis, before any transactions are removed, so this
filtering requires only one, parallelizable pass over a block of
transactions, adding only minimal overhead (§I). Furthermore,
only accounts that attempt to overdraft are affected.

Other commutativity conflicts, such as cancelling an offer
twice or reusing a sequence number, can be handled similarly,
by removing all transactions involved in these conflicts. Note
that using these filtering criteria, removing a transaction
cannot cause a commutativity conflict. The Stellar blockchain
plans this approach.

Other Types of Front-Running. The set of pending trans-
actions is public in many blockchains. One might estimate the
clearing prices in a future batch and arbitrage the batch against
low-latency markets. This could lead to negative externalities

(see [42], footnote 1), and could merit combining SPEEDEX
with a commit-reveal scheme such as [52, 117]. Such a design
requires the deterministic overdraft-prevention scheme above.

Malicious nodes might also delay transactions. An imple-
mentation could buffer several blocks of transactions from
a consensus protocol into a single SPEEDEX batch. If even
one of these consensus blocks is from an honest replica (that
does not censor transactions), a user could ensure that their
transaction cannot be delayed from one SPEEDEX batch to the
next (by broadcasting to all replicas). This requires a consensus
protocol with sufficient chain quality [67]. Alternatively, some
DAG-based protocols [56, 79] simultaneously commit many
blocks of transactions from different replicas. Grouping these
blocks into one SPEEDEX batch, instead of ordering them
arbitrarily, achieves the same censorship-resistance property.
These designs would likewise require the deterministic
overdraft-prevention scheme.

Linear Program Scalability. The runtime to solve the linear
program increases dramatically beyond 60-80 assets, limiting
the number of assets in a SPEEDEX batch. A deployment could
take advantage of market structure—there are many assets (e.g.,
stocks) in the real world, but most are linked to one geographic
area or economy, and are primarily traded against one currency.
We formally show in §E that in this case, the price computa-
tion problem can be decomposed between core pricing (i.e.,
numeraire) currencies and the external stocks. After running
Tâtonnement on the core currencies, each stock can be priced
on its own relative to a core currency. This lets SPEEDEX sup-
port real-world transaction patterns with an arbitrary number
of assets and a small number of pricing currencies.

§D points out that setting the commission to 0 simplifies the
linear program to one that is more algorithmically tractable
at larger numbers of assets. The Stellar implementation uses
this version of the linear program.

Limited Trade Types. Trades on SPEEDEX are limited to
trades selling a fixed amount of one asset in exchange for as
much as possible of another. SPEEDEX does not implement
offers to buy a fixed amount of an asset in exchange for as
little as possible of another. These buy offers admit the same
logarithmic transformation as in §5.1, but make the price
computation problem PPAD-hard, a complexity class that is
widely conjectured to be algorithmically intractable in poly-
nomial time (§H). One could compute prices using only sell
offers and integrate buy offers in the linear programming step.

Ramseyer et al. [96] show how to integrate Constant Func-
tion Market Makers (CFMMs) [28] into the exchange market
framework and Tâtonnement. The Stellar implementation
uses this integration with its own CFMMs.

9 Implementation Details
The standalone SPEEDEX evaluated in §6 and §7 is a
blockchain using HotStuff [115] for consensus. A leader node
periodically mints a new block from the memory pool and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 859

feeds the block to the consensus algorithm. Other nodes apply
the block once it has been finalized by consensus. A faulty
node can propose an invalid block. Consensus may finalize
invalid blocks, but these blocks have no effect when applied.

The implementation is available open source at
https://github.com/scslab/speedex and consists
of∼30,000 lines of C++20, plus∼5,000 lines for our Hotstuff
implementation. It uses Intel’s TBB library [8] to manage
parallel work scheduling, the GNU Linear Programming
Kit [86] to solve linear programs, and LMDB [50] to manage
data persistence (for crash recovery).

Exchange state is stored in a collection of custom Merkle-
Patricia tries; hashable tries allow nodes to efficiently compare
state (to check consensus) and build short state proofs.

The rest of this section outlines additional design choices
built into SPEEDEX. Additional design choices in §K. All opti-
mizations (save §9.1) are implemented in the evaluated system.

9.1 Blockchain Integration
An existing blockchain with its own (non-commutative) seman-
tics can integrate SPEEDEX by splitting block execution into
phases: first applying all SPEEDEX transactions (in parallel),
then applying legacy transactions (sequentially). SPEEDEX’s
scalability lets a blockchain charge only a marginal fee for
transactions (to prevent spam). A proof-of-stake integration
of SPEEDEX could penalize faulty proposals.

SPEEDEX’s economic properties are desirable independent
of scalability. The initial Stellar implementation uses two-
phase blocks, but the SPEEDEX phase is still implemented
sequentially. As a result, the initial implementation is
simple (adding only∼5,000 lines to the server daemon) and
the primary benefits are economic. However, because the
transaction semantics are commutative, engineers can work
to parallelize the implementation as needed, without formally
upgrading the protocol (which is more difficult than releasing
a software update).

9.2 Caches and Tâtonnement
Tâtonnement spends most of its runtime computing demand
queries. Each query consists of several binary searches over
large lists, so the runtime depends heavily on memory latency
and cache performance. Towards the end of Tâtonnement,
when the algorithm takes small steps, one query reads almost
exactly the same memory locations as the previous query, so
the cache miss rate can be extremely low.

Instead of querying the offer tries directly, we precompute
for each asset pair a list that records, for each unique limit
price, the amount of an asset offered for sale below the price
(§G). Laying out this information contiguously improves
cache performance.

We also execute the binary searches of one Tâtonnement
iteration in parallel. One primary thread computes price
updates and wakes helper threads. However, each round of
Tâtonnement is already fast on one thread—with 50 assets and

millions of offers, one round takes 400–600µs. To minimize
synchronization latency and avoid letting the kernel migrate
threads between cores (which harms cache performance), we
operate these helper threads via spinlocks and memory fences.
In the tests of §6, we see minimal benefit beyond 4–6 helper
threads, but this suffices to reduce each query to 50–150µs.

Finally, there is a tradeoff between running more copies of
Tâtonnement with different settings and the performance of
each copy. More concurrent replicas of Tâtonnement mean
more cache traffic and higher cache miss rates.

We accelerate the rest of Tâtonnement by exclusively using
fixed-point arithmetic (rather than floating-point).

9.3 Batched Trie Design
Our tries use a fan-out of 16 and hash nodes with the 32-byte
BLAKE2b cryptographic hash [34]. Both the layout of trie
nodes and the work partitioning are designed to avoid having
multiple threads writing to the same cache line.

The commutativity of SPEEDEX’s semantics opens up an
efficient design space for our data structures, which need only
materialize state changes once per block. Tries need only re-
compute a root hash once per block, for example, instead of
after every modification. Threads locally build tries recording
insertions, which are merged together in one batch operation
(which is also parallelizable by redividing local tries into dis-
joint key ranges). Deletions (when offers are cancelled) are
implemented via atomic flags on trie nodes; to enable effi-
cient cleanup of deleted nodes, each node stores the number
of deleted nodes beneath it. To facilitate efficient work distri-
bution, each node also stores the number of leaves below it.

SPEEDEX builds in every block an ephemeral trie that logs
which accounts are modified; specifically, it maps an account
ID to a list of its transactions and to the IDs of transactions
from other accounts that modified it. This enables construction
of short proofs of account state changes. This trie also uses
the same key space as the main account state trie, which lets
SPEEDEX use the ephemeral trie to efficiently divide work
on the (much larger) account trie.

Memory allocation for an emphemeral trie is trivial because
no ephemeral trie node is carried over from one block to
the next. Every thread has a local arena, allocation simply
increments an arena index, and garbage collection means just
setting the index to 0 at the end of a block. We find it to be
not a problem if some of the memory in the arena is wasted;
we allocate the potential children of an ephemeral trie node
contiguously, so a node need only store a 4-byte base pointer
(buffer index) and a bitmap denoting the active children. This
lets each ephemeral trie node fit in one 64-byte cache line.

10 Related Work
Blockchain Scaling. Our approach is inspired by Clements
et al. [51], who improve performance in the Linux kernel
through commutative syscall semantics.

Chen et al. [49] speculatively execute Ethereum transactions

860 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/scslab/speedex

to achieve a∼6x overall execution speedup. Other approaches
to concurrent execution include optimistic concurrency
control [70, 111], invalidating conflicting transactions [27],
broadcasting conflict resolution information [29, 60], or
partitioning transactions into nonconflicting sets [35, 74, 116].
This problem is related to that of building deterministic
databases and software transactional memory [94,105,110]. Li
et al. [83] build a distributed database where some transactions
are tagged as commutative.

Empirical work [66, 98] finds that a small number of
Ethereum contracts, often token contracts, are historically
responsible for the majority of conflicts that limit optimistic
execution. A recent Solana [112] outage resulted in part when
many transactions conflicted on one orderbook contract [99].

Project Hamilton [85] develops a CBDC payments platform.
The authors find that totally-ordered semantics become a
performance bottleneck. Unlike SPEEDEX, which stores
asset balances in accounts, this system requires the more
restrictive unspent transaction output (UTXO) model.

Some systems move transaction execution off-chain,
into so-called “Layer-2” networks, each with different
capabilities, perfomance, interoperability, and security
tradeoffs [11, 13, 18, 21, 78, 92, 93]. Other blockchains
[6, 27, 103, 109, 118] split state into concurrently-running
shards, at the cost of complicating cross-shard transactions.

(Distributed) Exchanges. Budish et al. [42, 43] argue
that exchanges should process orders in batches to combat
automated arbitrage and improve liquidity.

Other defenses against front-running include cryptographic
commit-reveal schemes [52, 72, 100, 117] or “fair” ordering
schemes that assume a bounded fraction of malicious
nodes [40, 80, 119]. The front-running attacks that SPEEDEX
prevents are not guaranteed to be blocked in these schemes.
For example, a replica might plausibly front-run a transaction
in [80] by investing in lower-latency network links between
itself and other replicas than other replicas have with each
other, and commit-reveal schemes do not prevent statistical
front-running (guessing the contents of a transaction).

Some blockchains build limit-order DEX mechanisms
natively [2, 16] or as smart contracts [14]. Smart contracts
known as Automated Market-Makers (AMMs) [24, 64, 73, 87]
facilitate passive market-making on-chain [28].

0x and a past version of Loopring [19,108] allow settlement
on-chain of orders matched off-chain, in pairs or in cycles.
StarkEx [15,36] gives cryptographic tools to prove correctness
of an off-chain exchange.

CoWSwap [5, 7] uses mixed-integer programming to clear
offers in batches of at most 100 [20]. Solvers compete to
produce the best solution. The former Binance DEX [3] com-
puted per-asset-pair prices in each block. The Penumbra DEX
uses homomorphic encryption to privately make batch swaps
against an AMM, but cannot let users set limit prices [12].

Price Computation. Our algorithms solve instances of
the special case of the Arrow-Debreu exchange market [33]
where every utility function is linear. Equilibria can be
approximated in these markets using combinatorial algorithms
such as those of Jain et al. [77] and Devanur et al. [58] and
exactly via the ellipsoid method and simultaneous diophantine
approximation [76]. Duan et al. [62] construct an exact
combinatorial algorithm, which Garg et al. [69] extend to an
algorithm with strongly-polynomial running time. Ye [114]
gives a path-following interior point method, and Devanur et
al. [57] construct a convex program. Codenotti et al. [53, 54]
show that a version of the Tâtonnement process [32] converges
to an approximate equilibrium in polynomial time. Garg et
al. [68] give another algorithm based on demand queries.

11 Conclusion
SPEEDEX is a fully on-chain DEX that can scale to more than
200,000 transactions per second with tens of millions of open
trade offers. SPEEDEX requires no offchain rollups and no
sharding of the exchange’s logical state. To make SPEEDEX
faster, one can simply give SPEEDEX more CPU cores,
without changing the semantics or user interface. Because
SPEEDEX operates as a logically-unified platform, instead
of a sharded network, SPEEDEX does not fragment liquidity
between subsystems and creates no cross-rollup arbitrage.

In addition, SPEEDEX displays several independently
useful economic properties. It eliminates risk-free front run-
ning; any user who can get their offer to the exchange before
a block cutoff time can get the same exchange rate as every
other trader. SPEEDEX also eliminates internal arbitrage,
which disincentivizes network spam. And finally, SPEEDEX
eliminates the need to transact through intermediate, reserve
currencies, instead allowing a user to trade directly from one
asset to any other asset listed on the exchange, with the same
or better market liquidity as the trader would have gotten by
trading through a series of intermediate currencies.

SPEEDEX is free software, available at https:
//github.com/scslab/speedex.

Acknowledgements
This research was supported by the Stanford Future of Digital
Currency Initiative, the Stanford Center for Blockchain
Research, the Office of Naval Research (ONR N00014-19-
1-2268), and the Army Research Office (76412CSII). The
Stellar blockchain integration was funded by and performed
at the Stellar Development Foundation.

The authors wish to thank the anonymous reviewers and our
shepherd Siddhartha Sen for their valuable feedback, and thank
CloudLab [63] for providing resources for our experiments.

References
[1] Binance chain docs - fees. https://

web.archive.org/web/20200617014623/https://

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 861

https://github.com/scslab/speedex
https://github.com/scslab/speedex
https://web.archive.org/web/20200617014623/https://docs.binance.org/guides/concepts/fees.html
https://web.archive.org/web/20200617014623/https://docs.binance.org/guides/concepts/fees.html

docs.binance.org/guides/concepts/fees.html.
Accessed 10/18/2022.

[2] Binance chain docs - introduction. https:
//web.archive.org/web/20200616190856/https:
//docs.binance.org/guides/intro.html. Ac-
cessed 10/18/2022.

[3] Binance chain docs - match steps and examples. https:
//web.archive.org/web/20200617065916/https:
//docs.binance.org/match-examples.html.
Accessed 10/18/2022.

[4] Coinbase pricing and fees disclosures. https:
//help.coinbase.com/en/coinbase/trading-
and-funding/pricing-and-fees/fees. Accessed
04/10/2021.

[5] Cow protocol overview: The batch auc-
tion optimization problem. https://
web.archive.org/web/20220614183101/https:
//docs.cow.fi/off-chain-services/in-depth-
solver-specification/the-batch-auction-
optimization-problem. Accessed 10/19/2022.

[6] Eth2 shard chains. https://ethereum.org/en/
eth2/shard-chains/. Accessed 03/11/2021.

[7] An exchange protocol for the decentral-
ized web. https://web.archive.org/web/
20220825164405/https://docs.gnosis.io/
protocol/docs/introduction1/ and https:
//github.com/gnosis/dex-research/blob/
08204510e3047c533ba9ee42bf24f980d087fa78/
dFusion/dfusion.v1.pdf and https://
github.com/gnosis/dex-research/blob/
c56235a3c79fbd85771760ca8826b757fb03eb1f/
BatchAuctionOptimization/
batchauctions.pdf.

[8] Intel oneapi threading building blocks.
"https://software.intel.com/content/www/
us/en/develop/tools/oneapi/components/
onetbb.html". Accessed 5/6/2021.

[9] The maker protocol: Makerdao’s multi-collateral
dai (mcd) system. https://makerdao.com/en/
whitepaper/. Accessed 12/14/2021.

[10] Official go implementation of the ethereum protocol.
https://github.com/ethereum/go-ethereum/
tree/release/1.10. Accessed 10/13/2022.

[11] Optimistic rollups. https://docs.ethhub.io/
ethereum-roadmap/layer-2-scaling/
optimisticrollups/. Accessed 03/11/2021.

[12] The penumbra protocol: Sealed-bid batch swaps.
https://web.archive.org/web/20220614034906/
https://protocol.penumbra.zone/main/zswap/
swap.html. Accessed 10/19/2022.

[13] Polygon lightpaper: Ethereum’s internet of blockchains.
https://polygon.technology/lightpaper-
polygon.pdf. Accessed 12/6/2021.

[14] Serum: Faster, cheaper, and more powerful defi. https:
//www.projectserum.com/. Accessed 12/6/2021.

[15] Starkex. https://starkware.co/product/
starkex/.

[16] Stellar. https://www.stellar.org/.

[17] USDC: the world’s leading digital dollar stablecoin.
https://www.circle.com/en/usdc. Accessed
12/14/2021.

[18] Zk rollups. https://docs.ethhub.io/ethereum-
roadmap/layer-2-scaling/zk-rollups/. Ac-
cessed 03/11/2021.

[19] Loopring: A decentralized token exchange protocol.
September 2018.

[20] Gpv2 objective criterion. https://
web.archive.org/web/20211019155516/https:
//forum.gnosis.io/t/gpv2-objective-
criterion/1254, April 2021. Accessed 04/30/2021.

[21] Loopring 3 design doc. https://web.archive.org/
web/20220411224154/https://github.com/
Loopring/protocols/blob/master/packages/
loopringv3/DESIGN.md#results, 2021.

[22] The aptos blockchain: Safe, scalable, and
upgradeable web3 infrastructure. https:
//web.archive.org/web/20221020032330/https:
//aptos.dev/assets/files/Aptos-Whitepaper-
47099b4b907b432f81fc0effd34f3b6a.pdf, August
2022. Accessed 10/20/22.

[23] Loopring protocol. https://web.archive.org/
web/20220409050852/https://loopring.org/#/
protocol, April 2022.

[24] Hayden Adams, Noah Zinsmeister, and Dan Robinson.
Uniswap v2 core. 2020.

[25] Hayden Adams, Noah Zinsmeister, Moody Salem,
River Keefer, and Dan Robinson. Uniswap v3 core.
Technical report, Tech. rep., Uniswap, 2021.

[26] Amjad Aldweesh, Maher Alharby, Maryam
Mehrnezhad, and Aad van Moorsel. The op-
bench ethereum opcode benchmark framework:

862 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://web.archive.org/web/20200617014623/https://docs.binance.org/guides/concepts/fees.html
https://web.archive.org/web/20200616190856/https://docs.binance.org/guides/intro.html
https://web.archive.org/web/20200616190856/https://docs.binance.org/guides/intro.html
https://web.archive.org/web/20200616190856/https://docs.binance.org/guides/intro.html
https://web.archive.org/web/20200617065916/https://docs.binance.org/match-examples.html
https://web.archive.org/web/20200617065916/https://docs.binance.org/match-examples.html
https://web.archive.org/web/20200617065916/https://docs.binance.org/match-examples.html
https://help.coinbase.com/en/coinbase/trading-and-funding/pricing-and-fees/fees
https://help.coinbase.com/en/coinbase/trading-and-funding/pricing-and-fees/fees
https://help.coinbase.com/en/coinbase/trading-and-funding/pricing-and-fees/fees
https://web.archive.org/web/20220614183101/https://docs.cow.fi/off-chain-services/in-depth-solver-specification/the-batch-auction-optimization-problem
https://web.archive.org/web/20220614183101/https://docs.cow.fi/off-chain-services/in-depth-solver-specification/the-batch-auction-optimization-problem
https://web.archive.org/web/20220614183101/https://docs.cow.fi/off-chain-services/in-depth-solver-specification/the-batch-auction-optimization-problem
https://web.archive.org/web/20220614183101/https://docs.cow.fi/off-chain-services/in-depth-solver-specification/the-batch-auction-optimization-problem
https://web.archive.org/web/20220614183101/https://docs.cow.fi/off-chain-services/in-depth-solver-specification/the-batch-auction-optimization-problem
https://ethereum.org/en/eth2/shard-chains/
https://ethereum.org/en/eth2/shard-chains/
https://web.archive.org/web/20220825164405/https://docs.gnosis.io/protocol/docs/introduction1/
https://web.archive.org/web/20220825164405/https://docs.gnosis.io/protocol/docs/introduction1/
https://web.archive.org/web/20220825164405/https://docs.gnosis.io/protocol/docs/introduction1/
https://github.com/gnosis/dex-research/blob/08204510e3047c533ba9ee42bf24f980d087fa78/dFusion/dfusion.v1.pdf
https://github.com/gnosis/dex-research/blob/08204510e3047c533ba9ee42bf24f980d087fa78/dFusion/dfusion.v1.pdf
https://github.com/gnosis/dex-research/blob/08204510e3047c533ba9ee42bf24f980d087fa78/dFusion/dfusion.v1.pdf
https://github.com/gnosis/dex-research/blob/08204510e3047c533ba9ee42bf24f980d087fa78/dFusion/dfusion.v1.pdf
https://github.com/gnosis/dex-research/blob/c56235a3c79fbd85771760ca8826b757fb03eb1f/BatchAuctionOptimization/batchauctions.pdf
https://github.com/gnosis/dex-research/blob/c56235a3c79fbd85771760ca8826b757fb03eb1f/BatchAuctionOptimization/batchauctions.pdf
https://github.com/gnosis/dex-research/blob/c56235a3c79fbd85771760ca8826b757fb03eb1f/BatchAuctionOptimization/batchauctions.pdf
https://github.com/gnosis/dex-research/blob/c56235a3c79fbd85771760ca8826b757fb03eb1f/BatchAuctionOptimization/batchauctions.pdf
https://github.com/gnosis/dex-research/blob/c56235a3c79fbd85771760ca8826b757fb03eb1f/BatchAuctionOptimization/batchauctions.pdf
"https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html"
"https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html"
"https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html"
https://makerdao.com/en/whitepaper/
https://makerdao.com/en/whitepaper/
https://github.com/ethereum/go-ethereum/tree/release/1.10
https://github.com/ethereum/go-ethereum/tree/release/1.10
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/optimistic_rollups/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/optimistic_rollups/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/optimistic_rollups/
https://web.archive.org/web/20220614034906/https://protocol.penumbra.zone/main/zswap/swap.html
https://web.archive.org/web/20220614034906/https://protocol.penumbra.zone/main/zswap/swap.html
https://web.archive.org/web/20220614034906/https://protocol.penumbra.zone/main/zswap/swap.html
https://polygon.technology/lightpaper-polygon.pdf
https://polygon.technology/lightpaper-polygon.pdf
https://www.projectserum.com/
https://www.projectserum.com/
https://starkware.co/product/starkex/
https://starkware.co/product/starkex/
https://www.stellar.org/
https://www.circle.com/en/usdc
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/
https://web.archive.org/web/20211019155516/https://forum.gnosis.io/t/gpv2-objective-criterion/1254
https://web.archive.org/web/20211019155516/https://forum.gnosis.io/t/gpv2-objective-criterion/1254
https://web.archive.org/web/20211019155516/https://forum.gnosis.io/t/gpv2-objective-criterion/1254
https://web.archive.org/web/20211019155516/https://forum.gnosis.io/t/gpv2-objective-criterion/1254
https://web.archive.org/web/20220411224154/https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md#results
https://web.archive.org/web/20220411224154/https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md#results
https://web.archive.org/web/20220411224154/https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md#results
https://web.archive.org/web/20220411224154/https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md#results
https://web.archive.org/web/20221020032330/https://aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf
https://web.archive.org/web/20221020032330/https://aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf
https://web.archive.org/web/20221020032330/https://aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf
https://web.archive.org/web/20221020032330/https://aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf
https://web.archive.org/web/20220409050852/https://loopring.org/#/protocol
https://web.archive.org/web/20220409050852/https://loopring.org/#/protocol
https://web.archive.org/web/20220409050852/https://loopring.org/#/protocol

Design, implementation, validation and experiments.
Performance Evaluation, 146:102168, 2021.

[27] Elli Androulaki, Artem Barger, Vita Bortnikov,
Christian Cachin, Konstantinos Christidis, Angelo
De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, et al. Hyperledger
fabric: a distributed operating system for permissioned
blockchains. In Proceedings of the thirteenth EuroSys
conference, pages 1–15, 2018.

[28] Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Char-
lie Noyes, and Tarun Chitra. An analysis of uniswap
markets. Cryptoeconomic Systems Journal, 2019.

[29] Parwat Singh Anjana, Sweta Kumari, Sathya Peri,
Sachin Rathor, and Archit Somani. An efficient
framework for optimistic concurrent execution of smart
contracts. In 2019 27th Euromicro International Con-
ference on Parallel, Distributed and Network-Based
Processing (PDP), pages 83–92. IEEE, 2019.

[30] Matteo Aquilina, Eric B Budish, and Peter O’Neill.
Quantifying the high-frequency trading" arms race":
A simple new methodology and estimates. Technical
report, Working Paper, 2020.

[31] Larry Armijo. Minimization of functions having
Lipschitz continuous first partial derivatives. Pacific
Journal of mathematics, 16(1):1–3, 1966.

[32] Kenneth J Arrow, Henry D Block, and Leonid Hurwicz.
On the stability of the competitive equilibrium, ii.
Econometrica: Journal of the Econometric Society,
pages 82–109, 1959.

[33] Kenneth J Arrow and Gerard Debreu. Existence of an
equilibrium for a competitive economy. Econometrica:
Journal of the Econometric Society, pages 265–290,
1954.

[34] Jean-Philippe Aumasson and Markku-Juhani O
Saarinen. The blake2 cryptographic hash and message
authentication code (mac). RFC 7693, 2015.

[35] Massimo Bartoletti, Letterio Galletta, and Maurizio
Murgia. A true concurrent model of smart contracts ex-
ecutions. In International Conference on Coordination
Languages and Models, pages 243–260. Springer, 2020.

[36] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Scalable, transparent, and post-
quantum secure computational integrity. 2018.

[37] Michele Benzi. Preconditioning techniques for large
linear systems: a survey. Journal of computational
Physics, 182(2):418–477, 2002.

[38] Ivan Bogatyy. Implementing ethereum trading
front-runs on the bancor exchange in python. https:
//web.archive.org/web/20220119154606/https:
//hackernoon.com/front-running-bancor-in-
150-lines-of-python-with-ethereum-api-
d5e2bfd0d798, Aug 2017.

[39] Stephen P Boyd and Lieven Vandenberghe. Convex
optimization. Cambridge university press, 2004.

[40] Lorenz Breidenbach, Christian Cachin, Benedict
Chan, Alex Coventry, Steve Ellis, Ari Juels, Farinaz
Koushanfar, Andrew Miller, Brendan Magauran,
Daniel Moroz, et al. Chainlink 2.0: Next steps in the
evolution of decentralized oracle networks. https:
//research.chain.link/whitepaper-v2.pdf,
2021. Accessed 12/14/2021.

[41] Eric Budish. Re-
sponse to esma’s call
for evidence: “peri-
odic auctions for eq-
uity instruments” (esma70-
156-785). https:
//ericbudish.org/wp-
content/uploads/2022/
03/responseesmascallevidenceperiodicauctions.pdf,
January 2019. Accessed 10/17/2022.

[42] Eric Budish, Peter Cramton, and John Shim. Implemen-
tation details for frequent batch auctions: Slowing down
markets to the blink of an eye. American Economic
Review, 104(5):418–24, 2014.

[43] Eric Budish, Peter Cramton, and John Shim. The
high-frequency trading arms race: Frequent batch
auctions as a market design response. The Quarterly
Journal of Economics, 130(4):1547–1621, 2015.

[44] Eric B Budish, Peter Cramton, Albert S Kyle, and
Jeongmin Lee. Flow trading. University of Chicago,
Becker Friedman Institute for Economics Working
Paper, (2022-82), 2022.

[45] Vitalik Buterin. A quick explanation of what the point
of the eip 2929 gas cost increases in berlin is. https://
web.archive.org/web/20211017034159/https://
www.reddit.com/r/ethereum/comments/mrl5wg/
aquickexplanationofwhatthepointoftheeip/,
April 2021.

[46] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance. In 3rd Symposium on Operating
Systems Design and Implementation, pages 173–186,
New Orleans, LA, February 1999.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 863

https://web.archive.org/web/20220119154606/https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://web.archive.org/web/20220119154606/https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://web.archive.org/web/20220119154606/https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://web.archive.org/web/20220119154606/https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://web.archive.org/web/20220119154606/https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://research.chain.link/whitepaper-v2.pdf
https://research.chain.link/whitepaper-v2.pdf
https://ericbudish.org/wp-content/uploads/2022/03/response_esmas_call_evidence_periodic_auctions.pdf
https://ericbudish.org/wp-content/uploads/2022/03/response_esmas_call_evidence_periodic_auctions.pdf
https://ericbudish.org/wp-content/uploads/2022/03/response_esmas_call_evidence_periodic_auctions.pdf
https://ericbudish.org/wp-content/uploads/2022/03/response_esmas_call_evidence_periodic_auctions.pdf
https://web.archive.org/web/20211017034159/https://www.reddit.com/r/ethereum/comments/mrl5wg/a_quick_explanation_of_what_the_point_of_the_eip/
https://web.archive.org/web/20211017034159/https://www.reddit.com/r/ethereum/comments/mrl5wg/a_quick_explanation_of_what_the_point_of_the_eip/
https://web.archive.org/web/20211017034159/https://www.reddit.com/r/ethereum/comments/mrl5wg/a_quick_explanation_of_what_the_point_of_the_eip/
https://web.archive.org/web/20211017034159/https://www.reddit.com/r/ethereum/comments/mrl5wg/a_quick_explanation_of_what_the_point_of_the_eip/

[47] Ting Chen, Xiaoqi Li, Ying Wang, Jiachi Chen, Zihao
Li, Xiapu Luo, Man Ho Au, and Xiaosong Zhang. An
adaptive gas cost mechanism for ethereum to defend
against under-priced dos attacks. In International
conference on information security practice and
experience, pages 3–24. Springer, 2017.

[48] Xi Chen, Dimitris Paparas, and Mihalis Yannakakis.
The complexity of non-monotone markets. Journal of
the ACM (JACM), 64(3):1–56, 2017.

[49] Yang Chen, Zhongxin Guo, Runhuai Li, Shuo Chen,
Lidong Zhou, Yajin Zhou, and Xian Zhang. Forerunner:
Constraint-based speculative transaction execution for
ethereum (full version). 2021.

[50] Howard Chu and Symas Corporation. Light-
ning memory-mapped database manager (lmdb).
http://www.lmdb.tech/doc/. Accessed 04/29/2021.

[51] Austin T Clements, M Frans Kaashoek, Nickolai
Zeldovich, Robert T Morris, and Eddie Kohler. The
scalable commutativity rule: Designing scalable
software for multicore processors. ACM Transactions
on Computer Systems (TOCS), 32(4):1–47, 2015.

[52] Dan Cline, Thaddeus Dryja, and Neha Narula.
Clockwork: An exchange protocol for proofs of non
front-running.

[53] Bruno Codenotti, Benton McCune, and Kasturi
Varadarajan. Market equilibrium via the excess demand
function. In Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing, pages 74–83,
2005.

[54] Bruno Codenotti, Sriram V Pemmaraju, and Kasturi R
Varadarajan. On the polynomial time computation of
equilibria for certain exchange economies.

[55] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li,
Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and
Ari Juels. Flash boys 2.0: Frontrunning, transaction
reordering, and consensus instability in decentralized
exchanges. arXiv preprint arXiv:1904.05234, 2019.

[56] George Danezis, Lefteris Kokoris-Kogias, Alberto
Sonnino, and Alexander Spiegelman. Narwhal and tusk:
a dag-based mempool and efficient bft consensus. In
Proceedings of the Seventeenth European Conference
on Computer Systems, pages 34–50, 2022.

[57] Nikhil R Devanur, Jugal Garg, and László A Végh.
A rational convex program for linear Arrow-Debreu
markets. ACM Transactions on Economics and
Computation (TEAC), 5(1):1–13, 2016.

[58] Nikhil R Devanur and Vijay V Vazirani. An improved
approximation scheme for computing Arrow-Debreu
prices for the linear case. In International Conference
on Foundations of Software Technology and Theoretical
Computer Science, pages 149–155. Springer, 2003.

[59] Steven Diamond and Stephen Boyd. Cvxpy: A
python-embedded modeling language for convex
optimization. The Journal of Machine Learning
Research, 17(1):2909–2913, 2016.

[60] Thomas Dickerson, Paul Gazzillo, Maurice Herlihy,
and Eric Koskinen. Adding concurrency to smart
contracts. Distributed Computing, pages 1–17, 2019.

[61] Alexander Domahidi, Eric Chu, and Stephen Boyd.
Ecos: An socp solver for embedded systems. In
2013 European Control Conference (ECC), pages
3071–3076. IEEE, 2013.

[62] Ran Duan and Kurt Mehlhorn. A combinatorial poly-
nomial algorithm for the linear Arrow–Debreu market.
Information and Computation, 243:112–132, 2015.

[63] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuangching Wang, Glenn Ricart, Larry Landweber,
Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of CloudLab. In Proceedings of the USENIX
Annual Technical Conference (ATC), pages 1–14, July
2019.

[64] Michael Egorov. Stableswap-efficient mechanism for
stablecoin liquidity. Retrieved Feb, 24:2021, 2019.

[65] Stellar Development Foundation. Stellar for cb-
dcs. https://resources.stellar.org/hubfs/
StellarCBDCWhitepaper.pdf. Accessed 2/24/2023.

[66] Péter Garamvölgyi, Yuxi Liu, Dong Zhou, Fan Long,
and Ming Wu. Utilizing parallelism in smart contracts
on decentralized blockchains by taming application-
inherent conflicts. arXiv preprint arXiv:2201.03749,
2022.

[67] Juan Garay, Aggelos Kiayias, and Nikos Leonardos.
The bitcoin backbone protocol: Analysis and appli-
cations. In Advances in Cryptology-EUROCRYPT
2015: 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part
II, pages 281–310. Springer, 2015.

[68] Jugal Garg, Edin Husić, and László A Végh. Auction
algorithms for market equilibrium with weak gross
substitute demands and their applications. arXiv
preprint arXiv:1908.07948, 2019.

864 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.lmdb.tech/doc/
https://resources.stellar.org/hubfs/Stellar_CBDC_Whitepaper.pdf
https://resources.stellar.org/hubfs/Stellar_CBDC_Whitepaper.pdf

[69] Jugal Garg and László A Végh. A strongly polynomial
algorithm for linear exchange markets. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, pages 54–65, 2019.

[70] Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang,
George Danezis, Zekun Li, Yu Xia, Runtian Zhou,
and Dahlia Malkhi. Block-stm: Scaling blockchain
execution by turning ordering curse to a performance
blessing. arXiv preprint arXiv:2203.06871, 2022.

[71] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios
Vlachos, and Nickolai Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, page 51–68, New York, NY,
USA, 2017. Association for Computing Machinery.

[72] Christopher Goes, Awa Sun Yin, and Adrian Brink.
Anoma: Undefining money. 2021.

[73] Eyal Hertzog, Guy Benartzi, and Galia Benartzi.
Bancor protocol. 2018.

[74] Graydon Hoare. Core advancement pro-
tocol 53: Smart contract data, Mar 2022.
https://github.com/stellar/stellar-
protocol/blob/master/core/cap-0053.md.

[75] BIS Innovation Hub. Project helvetia phase
ii: Settling tokenised assets in wholesale cbdc.
https://www.bis.org/publ/othp45.pdf, 2022.
Accessed 2/24/2023.

[76] Kamal Jain. A polynomial time algorithm for com-
puting an Arrow–Debreu market equilibrium for linear
utilities. SIAM Journal on Computing, 37(1):303–318,
2007.

[77] Kamal Jain, Mohammad Mahdian, and Amin Saberi.
Approximating market equilibria. In Approximation,
Randomization, and Combinatorial Optimization..
Algorithms and Techniques, pages 98–108. Springer,
2003.

[78] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen,
S Matthew Weinberg, and Edward W Felten. Arbitrum:
Scalable, private smart contracts. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages
1353–1370, 2018.

[79] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor,
and Alexander Spiegelman. All you need is dag. In
Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing, pages 165–175, 2021.

[80] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and
Ari Juels. Order-fairness for byzantine consensus. In

Annual International Cryptology Conference, pages
451–480. Springer, 2020.

[81] Zoltán Király and Péter Kovács. Efficient implementa-
tions of minimum-cost flow algorithms. arXiv preprint
arXiv:1207.6381, 2012.

[82] Yudi Levi. Bancor’s response to today’s smart contract
vulnerability. https://web.archive.org/web/
20210525131534/https://blog.bancor.network/
bancors-response-to-today-s-smart-
contract-vulnerability-dc888c589fe4?gi=
5e2d9c4ff877, Jun 2020.

[83] Cheng Li, Daniel Porto, Allen Clement, Johannes
Gehrke, Nuno Preguiça, and Rodrigo Rodrigues.
Making {Geo-Replicated} systems fast as possible,
consistent when necessary. In 10th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 12), pages 265–278, 2012.

[84] Marta Lokhava, Giuliano Losa, David Mazières,
Graydon Hoare, Nicolas Barry, Eli Gafni, Jonathan
Jove, Rafał Malinowsky, and Jed McCaleb. Fast and
secure global payments with stellar. In Proceedings
of the 27th ACM Symposium on Operating Systems
Principles, SOSP ’19, page 80–96, New York, NY,
USA, 2019. Association for Computing Machinery.

[85] James Lovejoy, Cory Fields, Madars Virza, Tyler
Frederick, David Urness, Kevin Karwaski, Anders
Brownworth, and Neha Narula. A high performance
payment processing system designed for central bank
digital currencies.

[86] Andrew Makhorin. Glpk (gnu linear programming kit).
http://www.gnu.org/s/glpk/glpk.html, 2008.

[87] Fernando Martinelli and Nikolai Mushegian. Balancer
whitepaper. Technical report, 9 2019. Accessed
2/4/2022.

[88] David Mazieres. The stellar consensus protocol: A
federated model for internet-level consensus. Stellar
Development Foundation, 32, 2015.

[89] Satoshi Nakamoto. Bitcoin: A peer-to-
peer electronic cash system, 2008. http:
//bitcoin.org/bitcoin.pdf.

[90] Working Group on E-CNY Research and Devel-
opment of the People’s Bank of China. Progress
of research and development of E-CNY in china.
http://www.pbc.gov.cn/en/3688110/3688172/
4157443/4293696/2021071614584691871.pdf, Jul
2021. Accessed 12/14/2021.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 865

https://github.com/stellar/stellar-protocol/blob/master/core/cap-0053.md
https://github.com/stellar/stellar-protocol/blob/master/core/cap-0053.md
https://www.bis.org/publ/othp45.pdf
https://web.archive.org/web/20210525131534/https://blog.bancor.network/bancors-response-to-today-s-smart-contract-vulnerability-dc888c589fe4?gi=5e2d9c4ff877
https://web.archive.org/web/20210525131534/https://blog.bancor.network/bancors-response-to-today-s-smart-contract-vulnerability-dc888c589fe4?gi=5e2d9c4ff877
https://web.archive.org/web/20210525131534/https://blog.bancor.network/bancors-response-to-today-s-smart-contract-vulnerability-dc888c589fe4?gi=5e2d9c4ff877
https://web.archive.org/web/20210525131534/https://blog.bancor.network/bancors-response-to-today-s-smart-contract-vulnerability-dc888c589fe4?gi=5e2d9c4ff877
https://web.archive.org/web/20210525131534/https://blog.bancor.network/bancors-response-to-today-s-smart-contract-vulnerability-dc888c589fe4?gi=5e2d9c4ff877
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/2021071614584691871.pdf
http://www.pbc.gov.cn/en/3688110/3688172/4157443/4293696/2021071614584691871.pdf

[91] Daniel Perez and Benjamin Livshits. Broken metre:
Attacking resource metering in evm. arXiv preprint
arXiv:1909.07220, 2019.

[92] Joseph Poon and Vitalik Buterin. Plasma: Scalable
autonomous smart contracts. White paper, pages 1–47,
2017.

[93] Joseph Poon and Thaddeus Dryja. The bitcoin lightning
network: Scalable off-chain instant payments, 2016.

[94] Guna Prasaad, Alvin Cheung, and Dan Suciu. Handling
highly contended oltp workloads using fast dynamic
partitioning. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data,
pages 527–542, 2020.

[95] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quanti-
fying blockchain extractable value: How dark is the
forest? arXiv preprint arXiv:2101.05511, 2021.

[96] Geoffrey Ramseyer, Mohak Goyal, Ashish Goel, and
David Mazières. Batch exchanges with constant
function market makers: Axioms, equilibria, and
computation. arXiv preprint arXiv:2210.04929, 2022.

[97] Daniël Reijsbergen and Tien Tuan Anh Dinh. On
exploiting transaction concurrency to speed up
blockchains. In 2020 IEEE 40th International Con-
ference on Distributed Computing Systems (ICDCS),
pages 1044–1054. IEEE, 2020.

[98] Vikram Saraph and Maurice Herlihy. An empirical
study of speculative concurrency in ethereum smart
contracts. arXiv preprint arXiv:1901.01376, 2019.

[99] Leopold Schabel. Reflections on solana’s sept 14 outage.
https://web.archive.org/web/20211104012332/
https://jumpcrypto.com/reflections-on-the-
sept-14-solana-outage/, Oct 2021. Accessed
12/7/2021.

[100] Noah Schmid, Christian Cachin, Orestis Alpos, and
Giorgia Marson. Secure causal atomic broadcast, 2021.

[101] Alexander Schrijver. Theory of linear and integer
programming. John Wiley & Sons, 1998.

[102] Adam Sweeney, Doug Doucette, Wei Hu, Curtis An-
derson, Mike Nishimoto, and Geoff Peck. Scalability
in the xfs file system. In USENIX Annual Technical
Conference, volume 15, 1996.

[103] NEAR Team. Near launches nightshade shard-
ing, paving the way for mass adoption. https:
//web.archive.org/web/20221007081239/https:
//near.org/blog/near-launches-nightshade-
sharding-paving-the-way-for-mass-
adoption/, November 2021. Accessed 10/18/2022.

[104] Tether. Tether: Fiat currencies on the bitcoin blockchain.
https://tether.to/wp-content/uploads/2016/
06/TetherWhitePaper.pdf. Accessed 12/14/2021.

[105] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J Abadi.
Calvin: fast distributed transactions for partitioned
database systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management
of Data, pages 1–12, 2012.

[106] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 18–32, 2013.

[107] Gerui Wang, Shuo Wang, Vivek Bagaria, David Tse,
and Pramod Viswanath. Prism removes consensus
bottleneck for smart contracts. In 2020 Crypto Valley
Conference on Blockchain Technology (CVCBT), pages
68–77. IEEE, 2020.

[108] Will Warren and Amir Bandeali. 0x: An open protocol
for decentralized exchange on the ethereum blockchain.
2017.

[109] Gavin Wood. Polkadot: Vision for a heterogeneous
multi-chain framework. White Paper, 21, 2016.

[110] Yu Xia, Xiangyao Yu, William Moses, Julian Shun, and
Srinivas Devadas. Litm: a lightweight deterministic
software transactional memory system. In Proceedings
of the 10th International Workshop on Programming
Models and Applications for Multicores and Manycores,
pages 1–10, 2019.

[111] Anatoly Yakovenko. Sealevel: Parallel processing thou-
sands of smart contracts. https://web.archive.org/
web/20220124143042/https://medium.com/
solana-labs/sealevel-parallel-processing-
thousands-of-smart-contracts-d814b378192.
Accessed 12/6/2021.

[112] Anatoly Yakovenko. Solana: A new architecture for
a high performance blockchain v0.8.13. Whitepaper,
2018.

[113] Lei Yang, Seo Jin Park, Mohammad Alizadeh,
Sreeram Kannan, and David Tse. DispersedLedger:
High-Throughput byzantine consensus on variable
bandwidth networks. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pages 493–512, Renton, WA, April 2022. USENIX
Association.

[114] Yinyu Ye. A path to the Arrow–Debreu competitive
market equilibrium. Mathematical Programming,
111(1-2):315–348, 2008.

866 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://web.archive.org/web/20211104012332/https://jumpcrypto.com/reflections-on-the-sept-14-solana-outage/
https://web.archive.org/web/20211104012332/https://jumpcrypto.com/reflections-on-the-sept-14-solana-outage/
https://web.archive.org/web/20211104012332/https://jumpcrypto.com/reflections-on-the-sept-14-solana-outage/
https://web.archive.org/web/20221007081239/https://near.org/blog/near-launches-nightshade-sharding-paving-the-way-for-mass-adoption/
https://web.archive.org/web/20221007081239/https://near.org/blog/near-launches-nightshade-sharding-paving-the-way-for-mass-adoption/
https://web.archive.org/web/20221007081239/https://near.org/blog/near-launches-nightshade-sharding-paving-the-way-for-mass-adoption/
https://web.archive.org/web/20221007081239/https://near.org/blog/near-launches-nightshade-sharding-paving-the-way-for-mass-adoption/
https://web.archive.org/web/20221007081239/https://near.org/blog/near-launches-nightshade-sharding-paving-the-way-for-mass-adoption/
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://web.archive.org/web/20220124143042/https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192
https://web.archive.org/web/20220124143042/https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192
https://web.archive.org/web/20220124143042/https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192
https://web.archive.org/web/20220124143042/https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192

[115] Maofan Yin, Dahlia Malkhi, Michael K. Reiter,
Guy Golan Gueta, and Ittai Abraham. Hotstuff:
Bft consensus with linearity and responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, PODC ’19, page 347–356,
New York, NY, USA, 2019. Association for Computing
Machinery.

[116] Wei Yu, Kan Luo, Yi Ding, Guang You, and Kai Hu.
A parallel smart contract model. In Proceedings of the
2018 International Conference on Machine Learning
and Machine Intelligence, pages 72–77, 2018.

[117] Haoqian Zhang, Louis-Henri Merino, Vero Estrada-
Galinanes, and Bryan Ford. Flash freezing flash boys:
Countering blockchain front-running. In The Workshop
on Decentralized Internet, Networks, Protocols, and
Systems (DINPS), 2022.

[118] Jianting Zhang, Zicong Hong, Xiaoyu Qiu, Yufeng
Zhan, Song Guo, and Wuhui Chen. Skychain: A deep re-
inforcement learning-empowered dynamic blockchain
sharding system. In 49th International Conference on
Parallel Processing-ICPP, pages 1–11, 2020.

[119] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou,
and Lorenzo Alvisi. Byzantine ordered consensus with-
out byzantine oligarchy. In 14th {USENIX} Symposium
on Operating Systems Design and Implementation
({OSDI} 20), pages 633–649, 2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 867

Appendix A Mathematical Model Underlying
SPEEDEX

Mathematically, SPEEDEX relies on a correspondence
between a batch of trade offers and an instance of a lin-
ear Arrow-Debreu Exchange Market [33]. Specifically,
SPEEDEX’s batch computation is equivalent to the problem
of computing equilibria in these markets.

A.1 Arrow-Debreu Exchange Markets
The Arrow-Debreu Exchange Market is a classic model from
the economics and theoretical computer science literature.
Conceptually, there exists in this market a set of independent
agents, each with its own endowment of goods. Each agent
has some set of preferences over possible collections of goods.
These goods are tradeable on an open market, and agents, all
at the same time, make any set of trades that they wish with
the market (or auctioneer), not directly with each other.

Definition 1 (Arrow-Debreu Exchange Market). An Arrow-
Debreu Exchange Market consists of a set of goods A and a
set of agents j∈{1,...,M}. Every agent j has a utility function
u j(·) and an endowment e j∈R

|A|
≥0 .

When the market trades at prices p ∈ R|A|≥0 , every agent
sells their endowment to the market in exchange for revenue
s j = p·e j, which the agent immediately spends at the market
to buy back an optimal bundle of goods x j ∈ R|A|≥0 - that is,
x j =argmaxx:∑A∈AxA pA≤s j

u j(x).

There are countless variants on this definition. Typically
the utility functions are assumed to be quasi-convex. Some
variants include stock dividents, corporations, production of
new goods from existing goods, and multiple trading rounds.
SPEEDEX uses only the model outlined above—SPEEDEX
looks only at snapshots of the market, i.e., once per block, and
computes batch results for each block independently.

One potential objection to the above definition is that it
assumes that the abstract market has sufficient quantities avail-
able so that every agent can make its preferred trades. We say
that a market is at equilibrium when agents can make their pre-
ferred trades and the market does not have a deficit in any good.

Definition 2 (Market Equilibrium). An equilibrium of an
Arrow-Debreu market is a set of prices p and an allocation x j
for every agent j, such that for all goods A , ∑ jeA , j≥∑ jxA , j,
and x j is an optimal bundle for agent j. The inequality for
asset A is tight whenever pA is nonzero.

Note that an equilibrium includes both a set of market prices
and a choice of a utility-maximizing set of goods for each
agent. Say, for example, there are two goods A and B , and one
unit of each is sold by other agents to the market. If two agents
are indifferent to receiving either good, then the equilibrium
must specify whether the first receives A or B , and vice versa
for the second. It would not be a market equilibrium for both
of these agents to purchase a unit of A and no units of B .

A.2 From SPEEDEX to Exchange Markets
SPEEDEX users do not submit abstract utility functions to
an abstract market. However, most natural types of trade offers
can be encoded as a simple utility function.

Specifically, our implementation of SPEEDEX accepts
limit sell orders of the following form.

Definition 3 (Limit Sell Offer). A Sell Offer (S , B , e, α) is
request to sell e units of good S in exchange for some number
k units of good B , subject to the condition that k≥αe.

The user who submits this offer implicitly says that they
value k units of B more than e units of S if and only if k≥αe.
These preferences are representable as a linear utility function.

Theorem 2. Suppose a user submits a sell offer (S , B ,
e, α). The optimal behavior of this offer (and the user’s
implicit preferences) is equivalent to maximizing the function
u(xS ,xB)=αxB+xB (for xS ,xB amounts of goods S and B).

Proof. Such an offer makes no trades if pS/pB <α and trades
in full if pS/pB >α.

The user starts with k units of S . In the exchange market
model, the user can trade these k units of S in exchange for
any quantities xS of S and xB of B , subject to the constraint
that pS xS +pB xB≤kpS .

The function u(xS ,xB) = αxB + xS is maximized, subject
to the above constraint, by (xB,xS) = (0,k) precisely when
pS/pB <α and by (xB ,xS)= (kpS/pB ,0) otherwise (and by
any convex combination of the two when pS/pB =α). These
allocations correspond exactly to the optimal behavior of a
limit sell offer.

Note that these utility functions have nonzero marginal
utility for only two types of assets, and are not arbitrary linear
utilities. Ramseyer et al. [96] find anecdotal evidence that this
subclass of utility functions may be analytically more tractable
than the case of general linear utilities.

A.3 Existence of Unique* Equilibrium Prices
Theorem 3. All of the market instances which SPEEDEX
considers contain an equilibrium with nonzero prices.

Proof. All of the utilities of agents derived from limit sell
offers are linear (Theorem 2), and have a nonzero marginal
utility on the good being sold.

This means our market instances trivially satisfy condition
(*) of Devanur et al. [57]. Existence of an equilibrium with
nonzero prices follows therefore from Theorem 1 of [57].

In fact, all of the equilibria in a market instance contain the
same equilibrium prices, unless there are two sets of assets
across which no trading activity occurs. In such a case, one
might be able to uniformly increase or decrease all the prices
together on one set of assets, relative to the other set of assets.

868 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Theorem 4. Suppose there are two equilibria (p,x) and (p′,x′)
and there exist two assets A and B for which pA/pB < p′A/p′B .

Then it must be the case that there is a partitioning of the
assets A1,A2 with A ∈ A1,B ∈ A2 such that both equilibria
include no trading activity across the partition.

Proof. Consider the set of offers trading from A to B . Let
ZA ,B(r) be the set of amounts of asset A that may be sold (when
every agent receives an optimal bundle) by these offers to the
market at an exchange rate r= pA/pB . Observe that if r1<r2,
then every z1∈ZA ,B(r1) is no more than than any z2∈ZA ,B(r2)
(as sell offers always prefer higher exchange rates).

At the equilibrium (p,x), let zA ,B be the total amount of A
sold for B for every asset pair (and z′A ,B similarly for (p′,x′)).
Note that zA ,B ∈ZA ,B(pA/pB).

Suppose that there exists a pair of assets A ,B as in the
theorem statement. Then there exists a set of assets A1 such
that for every asset pair C ∈A1 and D /∈A1, pC/pD < p′C/p′D .

For each of these asset pairs, we must have that zC ,D≤z′C ,D ,

zD,C ≥ z′D,C , and pC
pD

zC ,D ≤ p′C
p′D

z′C ,D . Combining these
equations gives

pC zC ,D−pDzD,C ≤(p′C z′C ,D−p′Dz′D,C)pD/p′D

Each of these inequalities is tight if and only if zC ,D =0.
It is without loss of generality to rescale p′ so that

pD/p′D <1 for all D /∈A1. Thus,

pC zC ,D−pDzD,C ≤(p′C z′C ,D−p′Dz′D,C)

Because (p,x) and (p′,x′) are equilibria, we must have that

0 = ∑
C∈A1

∑
D /∈A1

pC zC ,D − pDzD,C

≤ ∑
C∈A1

∑
D /∈A1

p′C z′C ,D − p′Dz′D,C

But the second inequality is tight only if each zC ,D =0.
Hence, (p′,x′) can only be an equilibrium if there exists

a partitioning of the assets that separates A and B , and for
which there is no trading activity between the sets in either
equilibrium.

Corollary 1. Let (p,x) be an equilibrium.
Construct an undirected graph G=(V,E) with one vertex

for each asset, and an edge e=(A ,B)∈E if, at equilibrium,
any A is sold for B or any B is sold for A .

If G is connected, then the market equilibrium prices p are
unique (up to uniform rescaling).

Proof. If the theorem hypothesis holds, then for any other
equilibrium (p′,x′), it must be the case that for every asset
pair (A ,B), pA/pB = p′A/p′B . By Theorem 4, if this did not
hold, then there would exist a partitioning of V into two sets
of assets, across which there is no trading at equilibrium (p,x)
(contradicting the assumption that G is connected).

Appendix B Approximation Error
SPEEDEX measures two forms of approximation error: first,
every trade is charged a ε transaction commision, and second,
some offers with in-the-money limit prices might not be able
to be executed (while preserving asset conservation). Formally,
the output of the batch price computation is a price pA on each
asset A , and a trade amount xA ,B denoting the amount of A
sold in exchange for B .

Formally, we say that the result of a batch price computation
is (ε,µ)-approximate if:

1 Asset conservation is preserved with an ε commission.
The amount of A sold to the auctioneer, ΣB xA ,B , must
exceed the amount of A bought from the auctioneer,
ΣB(1−ε) pB

pA
xB,A .

2 No offer trades outside of its limit price. That is to say,
an offer selling A for B with a limit price of r cannot
execute if pA

pB
<r.

3 No offer with a limit price “far” from the batch exchange
rate does not trade. That is to say, an offer selling A for B
with a limit price of r must trade in full if r<(1−µ) pA

pB
.

Intuitively, the lower the limit price, the more an offer
prefers trading to not trading.

This notion of approximation is closely related to but not
exactly the same as notions of approximation used in the
theoretical literature on Arrow-Debreu exchange markets
(e.g., [53], Definition 1). In particular, we find it valuable in
SPEEDEX to distinguish between the two types of approx-
imation error (and measure each separately) and SPEEDEX
must maintain certain guarantees exactly (e.g., assets must
be conserved, and no offer can trade outside its limit price).

Appendix C Tâtonnement Modifications
C.1 Price Update Rule
One significant algorithmic difference between the Tâton-
nement implemented within SPEEDEX and the Tâtonnement
described in Codenotti et al. [53] is the method in which
Tâtonnement adjusts prices in response to a demand query.
Codenotti et al. use an additive rule that they find amenable
to theoretical analysis. If Z(p) is the market demand at prices
p, they update prices according to the following rule:

pA← pA+ZA(p)δ (1)

for some constant δ. The authors show that there is a
sufficiently small δ so that Tâtonnement is guaranteed to move
closer to an equilibrium after each step.

The relevant constant is unfortunately far too small to be
usable in practice, and more generally, we want an algorithm
that can quickly adapt to a wide variety of market conditions
(not one that always proceeds at a slow pace).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 869

First, we update prices multiplicatively, rather than
additively. This dramatically reduces the number of required
rounds, especially when Tâtonnement starts at prices that are
far from the clearing prices.

pA← pA(1+ZA(p)δ) (2)

Second, we normalize asset amounts by asset prices, so that
our algorithm will be invariant to redenominating an asset. It
is equivalent to trade 100 pennies or 1 USD, and our algorithm
performs better when it can take that kind of context into
account.

pA← pA(1+pA ZA(p)δ) (3)

Next, we make δ a variable factor. We use a heuristic to
guide the dynamic adjustment. Our experiments used the l2

norm of the price-normalized demand vector, ∑A(pA ZA(p))2;
other natural heuristics (i.e. other lp norms) perform compa-
rably (albeit not quite as well). In every round, Tâtonnement
computes this heuristic at its current set of candidate prices,
and at the prices to which it would move should it take a
step with the current step size. If the heuristic goes down,
Tâtonnement makes the step and increases the step size, and
otherwise decreases the step size. This is akin to a backtracking
line search [31, 39] with a weakened termination condition.

pA← pA(1+pA ZA(p)δt) (4)

Finally, we normalize adjustments by a trade volume factor
νA . Without this adjustment factor, computing prices when one
asset is traded much less than another asset takes a large num-
ber of rounds, simply because the lesser traded asset’s price
updates are always of a lower magnitude than those of the more
traded asset. Many other numerical optimization problems run
most quickly when gradients are normalized (e.g., see [37]).

νA need not be perfectly accurate—indeed, knowing
the factor exactly would require first computing clearing
prices—but we can estimate it well enough from the trading
volume in prior blocks and from trading volume in earlier
rounds of Tâtonnement (specifically, we use the minimum of
the amount of an asset sold to the auctioneer and the amount
bought from the auctioneer). Real-world deployments could
estimate these factors using external market data.

Putting everything together gives the following update rule:

pA← pA(1+pA ZA(p)δtνA) (5)

The step size is represented internally as a 64-bit integer and
a constant scaling factor. As mentioned in §5.2, we run several
copies of Tâtonnement in parallel with different scaling
factors and different volume normalization strategies and take
whichever finishes first as the result.

C.1.1 Heuristic Choice

A natural question is why do we use the seemingly theoretically
unfounded l2 norm of the demand vector as our line-search

heuristic. A typical line search in an optimization context uses
the convex objective function of the optimization problem
(e.g., [39]). Devanur et al. [57] even give a convex objective
function for computing exchange market equilibria, which
we reproduce below (in a simplified form):

∑
i:mpi<

pSi
pBi

pSiEiln
(

mpi
pSi

pBi

)
−yiln(mpi) (6)

for mpi the minimum limit price of an offer i that sells Ei units
of good Si and buys good Bi, and yi =xi pSi for xi the amount
of Si sold by the offer to the market.

This objective is accompanied by an asset conservation
constraint for each asset A :

∑
i:Si=A

yi= ∑
i:Bi=A

yi (7)

However, unlike the problem formulation in [57], Tâtonnement
does not have decision variables {yi}. Rather, Tâtonnement
pretends offers respond rationally to market prices, and then
adjusts prices so that constraints become satisfied. As such,
mapping our algorithms onto the above formulation would
mean that yi = pSiEi if mpi <

pSi
pBi

and 0 otherwise (although
§C.2 would slightly change this picture). This would make
the objective universally 0, and thus not useful.

We could incorporate the constraints into the objective by
using the Lagrangian of the above problem, which gives the
objective

∑
A

λA(∑
i:Si=A

yi(p)− ∑
i:Bi=A

yi(p)) (8)

for a set of langrange multipliers {λA}.
We write yi(p) to denote that in this formulation, offer

behavior is directly a function of prices. It appears difficult
to use equation 8 directly as an objective to minimize, as
it is nonconvex and the gradients of the functions yi(·) are
numerically unstable (even with the application of §C.2).

However, observe that equation 8 is another way of writing
“the l1 norm of the net demand vector” (weighted by the
lagrange multipliers). We use the l2 norm instead of the l1 to
sidestep the need to actually solve for these multipliers.

An observant reader might notice that the derivative of
Equation 8 with respect to λA is the amount by which (the
additive version of) Tâtonnement updates pA . This might
suggest using pA in place of λA in equation 8. However, that
search heuristic performs extremely poorly.

C.2 Demand Smoothing
Observe that the demand of a single offer is a (discontinuous)
step function; an offer trades in full when the market exchange
rate exceeds its limit price, and not at all when the market rate
is less than its limit price.

These discontinuities are difficult for Tâtonnement.
(Analogously, many optimization problems struggle on non-
differentiable objective functions.) As such, we approximate

870 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the behavior of each offer with a continuous function.
Recall that §B measures one form of approximation error

(using the parameter µ) which asks how closely realized
offer behavior matches optimal offer behavior. Specifically,
SPEEDEX wants to maintain the guarantee that every offer
(selling A for B) with a limit price below (1−µ) pA

pB
trades in

full, and those with limit prices above pA
pB

trade not at all.
As such, SPEEDEX has the flexibility to specify offer

behavior on the gap between (1−µ) pA
pB

and pA
pB

. Instead of a
step function, SPEEDEX linearly interpolates across the gap.
That is to say, if α= pA

pB
, we say that an offer with limit price

(1−µ)α≤β≤α sells an α−β

µα
fraction of its assets.

Observe that as µ gets increasingly small, this linear
interpolation becomes an increasingly close approximation
of a step function. This explains some of the behavior in
Figure 2, particularly why the price computation problem gets
increasingly difficult as µ decreases.

C.3 Periodic Feasibility Queries
Tâtonnement’s linear interpolation simplifies computing
each round, but also restricts the range of prices that meet
the approximation criteria, as it does not capitalize on the
flexibility we have in handling offers within µ of the market
price. As a result, Tâtonnement may arrive at adequate prices
without recognizing that fact. To identify good valuations,
SPEEDEX runs the more expensive linear program every
1,000 iterations of Tâtonnement.

Appendix D Linear Program
Recall that the role of the linear program in SPEEDEX is to
compute the maximum amount of trading activity possible
at a given set of prices. That is to say, Tâtonnement first
computes an approximate set of market clearing prices, and
then SPEEDEX runs this linear program taking the output of
Tâtonnement as a set of input, constant parameters.

Throughout the following, we denote the price of an asset
A (as output from Tâtonnement) as pA , and the amount of A
sold in exchange for B as xA ,B . We will also denote the two
forms of approximation error as ε and µ, as defined in §B.

To maintain asset conservation, the linear program must
satisfy the following constraint for every asset A :

∑
B

xA ,B≥∑
B
(1−ε)

pB
pA

xB,A

Define UA ,B to be the upper bound on the amount of A that
is available for sale by all offers with in the money limit prices
(i.e., limit prices at or below pA

pB
), and define LA ,B to be the

lower bound on the amount of A that must be exchanged for B
if SPEEDEX is to be µ-approximate (i.e., execute all offers with
minimum prices at or below (1−µ) pA

pB
, as described in §B).

Then the linear program must also satisfy the constraint,
for every asset pair (A ,B),

LA ,B≤xA ,B≤UA ,B

Informally, the goal of our linear program is to maximize
the total amount of trading activity. Any measurement of
trading activity needs to be invariant to redenominating assets;
intuitively, it is the same to trade 1 USD or 100 pennies. As
such, the objective of our linear program is:

∑
A ,B

pA xA ,B

Putting this all together gives the following linear program
(let A be the set of all assets):

max ∑
A ,B

pA xA ,B (9)

s.t. pA LA ,B≤ pA xA ,B≤ pAUA ,B(p) ∀A ,B∈A, (A 6=B)
(10)

pA ∑
B∈A

xA ,B≥(1−ε) ∑
B∈A

pB xB,A ∀A∈A (11)

From the point of view of the linear program, pA is a
constant (for each asset A). As such, this optimization problem
is in fact a linear program.

It is possible that Tâtonnement could output prices where
this linear program is infeasible (this is the case of the
Tâtonnement timeout, as discussed in §6). In these cases, we
set the lower bound on each xA ,B to be 0 instead of LA ,B . This
change makes the program always feasible (e.g., an assigment
of each variable to 0 satisfies the constraints).

Observe that as written, every instance of the variable xA ,B
appears adjacent to pA . We can simplify the program by
replacing each occurrence of pA xA ,B by a new variable yA ,B .
After solving the program, we can compute xA ,B as

yA ,B
pA

.
This substitution gives the following linear program:

max ∑
A ,B

yA ,B (12)

s.t. pA LA ,B≤yA ,B≤ pAUA ,B(p) ∀(A ,B), (A 6=B) (13)

∑
B∈A

yA ,B≥(1−ε) ∑
B∈A

yA ,B ∀A (14)

The Stellar implementation charges no transaction commis-
sion (i.e., sets ε to 0) in its SPEEDEX deployment. This makes
the linear program into an instance of the maximum circulation
problem (i.e., variable yA ,B denotes the flow from vertex A to
vertex B). It is well known that the constraint matrices of these
problems are totally unimodular (Chapter 19,Example 4 [101]).
This means that it always has an integral solution (Theorem
19.1, [101]) and can be solved by specialized algorithms
(such as those outlined in [81]). Some of these algorithms run
substantially faster than general simplex-based solvers.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 871

Appendix E Market Structure Decomposition
Suppose that the set of goods could be partitioned between
a set of numeraires, which might be traded with any other
asset, and a set of stocks, which are only traded with one of
the pricing assets.

Then SPEEDEX could compute a batch equilibrium by
first computing an equilibrium taking into account only
trades between pricing assets, then computing an equilibrium
exchange rate for every stock between the stock and its pricing
asset, and finally combining the results.

More specifically:

Theorem 5. Let A be the set of numeraires and S the set of
stocks. A stock S ∈S is traded with asset a(S)∈A.

Suppose (p,x) is an equilibrium for the restricted market
instance considering only the numeraires. For each S ∈ S,
let (r,y) be an equilibrium for the restricted market instance
considering only S and a(S).

Then (p′,x′) is an equilibrium for the entire market instance,
where

1. p′A = pA for A∈A

2. p′S =
(
rS/ra(S)

)
pa(S)

3. x′A ,B =xA ,B for A ,B∈A

4. x′S ,a(S)=yS ,a(S)

5. x′=0 otherwise

Proof. More generally, let G be a graph whose vertices are
the traded assets and which contains an edge (A ,B) if A and
B can be traded directly.

Decompose G into an arbitrary set of edge-disjoint
subgraphs {Gi}, such that any two subgraphs Gi,G j share
at most one common vertex. Then define a graph H whose
vertices are the subgraphs Gi, and where a subgraph Gi is
connected to G j if Gi and G j share a common vertex.

If H is acyclic, then an equilibrium can be reconstructed
from equilibria computed independently on each Gi.

We reconstruct a unified set of prices iteratively, traversing
along H. Given adjacent Gi and G j sharing common vertex vi j,
let (pi,xi) and (p j,x j) be equilibria on Gi and G j, respectively,
rescale all of the prices p j by pi

vi j
/p j

vi j.

This rescaling constructs a new equilibria (p j′,x j)for G j that
agrees with that of Gi on the price of the shared good. As such,
the combined system (pi∪ p j′,xi∪x j) forms an equilibrium
for Gi∪G j.

This iteration is possible precisely because H is acyclic (a cy-
cle could prevent us from finding a rescaling of some subgraph
that satisfied two constraints on the prices of shared vertices).

Fig. 8. Time to solve the convex program of Devanur et al. [57]
using the CVXPY toolkit [59], varying the number of assets
and offers.

Appendix F Alternative Batch Solving Strate-
gies

F.1 Convex Optimization
We implemented the convex program of Devanur et al. [57]
directly, using the CVXPY toolkit [59] backed by the ECOS
convex solver [61]. Figure 8 plots the runtimes we observed
to solve the problem while varying the number of assets and
offers.

The runtimes are not directly comparable to those of
Tâtonnement—namely, this strategy does not have the
potential to shortcircuit operation upon early arrival at an
equilibrium (our notions of approximation error also do not
directly translate to the notions used interally in the solver),
nor is it optimized for our particular class of problems.

The important observation is that the runtime of this
strategy scales linearly in the number of trade offers. Instances
trading 1000 offers, for example, take roughtly 10x as long
as instances trading only 100 offers.

This is not a surprising result, given that the number of
variables in the convex program scales linearly with the
number of trade offers.

The choice of solver strategy does not, of course, change the
structure of the input problem instances. The same observation
used in §5.1 makes it possible to refactor the convex program
so that the number of variables does not depend on the number
of open offers, and so that the objective (and its derivatives) can
be evaluated in time logarithmic in the number of open offers.

Unfortunately, this transformation makes the objective
nondifferentiable. The demand smoothing tactic of §C.2 gives
a differentiable but not twice differentiable objective (and
presents challenges regarding numerical stability of the deriva-
tive). Construction of a convex objective that approximates
that of [57] while maintaining sufficient smoothness and
numerical stability is an interesting open problem.

872 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

F.2 Mixed Integer Programming
Gnosis (Walther, [7]) give several formulations of a batch
trading system as mixed-integer programming problems.
These formulations track token amounts as integers (instead
of as real numbers, as used in Tâtonnement’s underlying
mathematical formulation), which enables strict conservation
of asset amounts with no rounding error.

However, mixed-integer problems appear to be computa-
tionally difficult to solve. Walther [7] finds that the runtime of
this approach scales faster than linearly. Instances with more
than a few hundred assets appear to be intractable for practical
systems.

Appendix G Tâtonnement Preprocessing
We include this section so that this paper can provide a
comprehensive reference for anyone to develop their own
Tâtonnement implementation.

Every demand query in Tâtonnement requires computing,
for every asset pair, the amount of the asset available for
sale below the queried exchange rate. As discussed in
§9.2, Tâtonnement lays out contiguously in memory all the
information it needs to return this result quickly.

For a version of Tâtonnement without the demand smooth-
ing of §C.2, a demand query for exchange rate p (i.e. the ratio
of the price of the sold asset to the price of the purchased asset)

∑
i:mpi≤p

Ei (15)

where mpi denotes the minimum price of an offer i and Ei
denotes the amount of the asset offered for sale.

We can efficiently answer these queries by computing
expression 15 for every price p used as a limit price

Demand smoothing complicates the picture. The result of
a demand query (with smoothing parameter µ)

∑
i:mpi<p(1−µ)

Ei+ ∑
i:p(1−µ)≤mpi≤p

Ei∗(p−mpi)/(pµ) (16)

We can rearrange the second term of the summation into

1/(pµ) ∑
i:p(1−µ)≤mpi≤p

(pEi−Eimpi) (17)

With this, we can efficiently compute the demand query
after precomputing, for every unique price p that is used as
a limit price, both expression 15 and

∑
i:mpi<p

mpiEi (18)

The division in equation 16 can be avoided by recognizing
that Tâtonnement normalizes all asset amounts by asset
valuations (so equation 16 is always multiplied by p).

Appendix H Buy Offers are PPAD-hard
A natural type of trade offer is one that offers to sell any number
of units of one good to buy a fixed amount of a good (subject to
some minimum price constraint). We call these limit buy offers.

Example 2 (Limit Buy Offer). A user offers to buy 100 USD
in exchange for EUR, selling as few EUR as possible and only
if one EUR trades for at least 1.1 USD.

These offers unfortunately do not satsify a property known
as “Weak Gross Substitutability” (WGS, see e.g., [53]). This
property captures the core logic of Tâtonnement. If the price
of one good rises, the net demand for that good should fall,
and the net demand for every other good should rise (or at
least, not decrease). Limit sell offers satisfy this property, but
limit buy offers do not.

Example 3. The demand of the offer in of example 2, when
pEUR=2 and pUSD=1, is (−50 EUR,100 USD).

If pUSD rises to 1.6, then the demand for the offer is
(−80 EUR,100 USD).

Observe that the price of USD rose and the demand for
EUR fell.

Informally speaking, if offers do not satisfy the core logic
of Tâtonnement’s price update rule, then Tâtonnement cannot
handle them in a mathematically sound manner.

More formally, Chen et al. [48] show through Theorem 7
and Example 2.4 that markets consisting of collections of
limit buy offers are PPAD-hard. These theorems are phrased
in the language of the Arrow-Debreu exchange market model;
see §A for the correspondence between SPEEDEX and this
model. In fact, the utility functions used in Example 2.4 to
demonstrate an example “non-monotone” (i.e., defying WGS)
instance are of the type that would arise by mapping limit buy
offers into the Arrow-Debreu exchange market model.

Appendix I Deterministic Filtering Perfor-
mance

The deterministic transaction batch pruning system works
by eliminating the transactions from all of the accounts that
could create an unresolvable conflict. To be specific, if the
sum of the amount of an asset used (either sent in a payment
option or locked to create a offer) by all of an account’s
transactions exceeds that account’s balance, then that account’s
transactions are removed. If an account sends two transactions
with the same sequence number (both of which have valid
signatures, and the sequence numbers are higher than the
sequence number of the account’s most recent transaction), or
two transactions cancel the same offer ID, then that account’s
transactions are removed. If two transactions create the same
account ID, then both transactions are removed.

We generated batches of 400,000 transactions from the
same synthetic transaction model as in §7, and then duplicated
100,000 transactions at random to create a batch of 500,000.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 873

Fig. 9. Throughput of Block-STM on batches of “Aptos p2p”
transactions with varying thread counts (average of 100 trials).

A small number of accounts (1000) send transactions with
conflicting sequence numbers. We initialize the database
(again, 10 million accounts) to give each account a small
amount of money, and a small number (one or two hundred)
of accounts attempt to overdraft.

This filtering takes 0.13s and 0.07s seconds with 24 and 48
threads, respectively (averaged over 50 trials, after a warmup),
giving a 21.0× and 38.4× speedup over the serial benchmark.
On a more contested benchmark, with only 10,000 accounts
(almost all of which overdraft) the maximum speedup over
the single threaded trial is only 5.3×, but the overall filtering
runtime is still just 0.10s. Our implementation of the filtering
is not heavily optimized, but in either parameter setting, the
overhead is small.

Appendix J Block-STM Baseline
To provide a baseline for the measurements in Fig. 7, we
also ran Block-STM on our hardware (with hyperthreading
disabled, as in [70]). Fig. 9 displays the results.

These performance measurements are similar, quantita-
tively and qualitatively, to those reported in [70] (on different
hardware). Note that performance appears to reach a maximum
after approximately 16 to 24 threads, and, unlike SPEEDEX,
does not effectively use additional hardware beyond this point,
even on relatively low-contention workloads.

Appendix K Additional Implementation
Details

K.1 Data Organization
Account balances are stored in a Merkle-Patricia trie. However,
because a trie is not self-rebalancing, its worst-case adversarial
lookup performance can be slow. As such, we store account
balances in memory indexed by a red-black tree, with updates
pushed to the trie once per block.

For each pair of assets (A , B), we build a trie storing offers

selling asset A in exchange for B . Finally, in each block, we
build a trie logging which accounts were modified.

We store information in hashable tries so that nodes can
efficiently compare their database state with another replica’s
(to validate consensus and check for errors), and construct
short proofs for users about exchange state.

K.2 Data Storage and Persistence
SPEEDEX uses a combination of an in-memory cache and
ACID-compliant databases (several LMDB [50] instances).
This choice suffices for our experiments, but a database
that persists data in epochs, like Silo [106], or is otherwise
optimized for batch operation might improve performance.

Our implementation uses one LMDB instance for the set
of open offers, one instance for Hotstuff logs, one instance
for storing block headers, and 16 instances for storing
account states. LMDB is single-threaded, and we find that
the throughput of one thread generating database writes does
not keep up with SPEEDEX. Accounts are randomly divided
between these instances, according to a hash function keyed
by a (persistent) secret key (which is different per blockchain
node). This key must be kept secret so as to prevent nodes
from denial of service attacks.

Processing transactions in a nondeterministic order
complicates recovery from a database snapshot where a
block has been partially applied. Cancellation transactions,
in particular, refund to an account the remainder of an offer’s
asset amount. We therefore cannot recover if the snapshot
of the orderbooks is more recent than the snapshot of the
set of account balances, and our implementation takes care
to commit updates to the account LMDB instances before
committing updates to the orderbook LMDB.

K.3 Follower Optimizations
A block proposal includes the output of Tâtonnement and the
linear program in (the prices and trade amounts, as in §4.2).
This permits the nondeterminism in Tâtonnement (§5.2), and
lets the other nodes skip the work of running Tâtonnement.

Proposals also include, for every pair of assets, the trie key
of the offer with the highest minimum price that trades in
that block. When executing a proposal from another node, a
follower can compare the trie key of a newly created offer with
this marginal key and know immediately whether to make a
trade or add the offer to the resting orderbooks. A node also
defers all checks that an account balance is not overdrafted
to after it has executed all the transactions in a block.

K.4 Replay Prevention
Transactions have per-account sequence numbers to ensure
a transaction can execute only once. Many blockchains
require sequence numbers from an account to increase
strictly sequentially. Our implementation allows small gaps in
sequence numbers, but restricts sequence numbers to increase
by at most an arbitrary limit (64) in a given block. Allowing

874 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

gaps simplifies some clients (such as our open-loop load
generator), but more importantly lets validators efficiently
track consumed sequence numbers out of order with a
fixed-size bitmap and hardware atomics.

The Stellar implementation requires strictly consecutive
sequence numbers, mostly for backwards compatibility.

K.5 Fast Offer Sorting
The running times of §6 do not include times to sort or
preprocess offers. Naïvely sorting large lists takes a long time.
Therefore, we build one trie storing offers per asset pair, and
we use an offer’s price, written in big-endian, as the first 6
bytes of the offer’s 22-byte trie key. Constructing the trie thus
automatically sorts offers by price.

Additionally, SPEEDEX executes offers with the lowest
minimum prices, so a set of offers executed in a round forms
a dense (set of) subtrie(s), which is trivial to remove.

K.6 Nondeterministic Block Assembly
As discussed in §3, SPEEDEX must assemble blocks of
transactions in a manner that guarantees no account is
overdrafted after applying all of the transactions in the
block. The block proposal system (Fig. 1, 2) manages this by
carefully controlling writes to shared state.

The proposal module takes as input a set of unconfirmed
transactions (the “mempool”, in typical blockchain parlance)
and outputs a proposed block containing a subset of the
unconfirmed transactions. For each candidate unconfirmed
transaction, a thread reserves the ability to perform all nec-
essary modifications by “locking” all relevant data elements.
Once a transaction acquires all of its locks, it performs its
necessary state modifications and finally releases the locks.
If it cannot acquire all necessary locks, it releases any locks
and excludes the transaction from the proposed block.

Conceptually, a transaction offering a trade or sending a
payment must lock the number of units of assets that could be
debited from the account if the operation succeeds. However,
doing this with spinlocks would preclude the scalability
displayed in Figure 7. Instead, most reservations are performed
with hardware atomics to decrement the number of available
units. Crediting an account can never fail because SPEEDEX
caps the total amount of any asset issued at INT64_MAX. This
process is conservative in that it may reject transactions that
could have executed safely.

Unique offer IDs ensure that no offer is created twice, and
atomic boolean flags ensure an offer cannot be cancelled twice.
Sequence numbers can be reserved by atomic bitmaps (as in
§K.4). For simplicity, our implementation does use exclusive
locks when creating new accounts (which we assume occurs
relatively infrequently).

Appendix L Additional Replicas
SPEEDEX invokes a consensus protocol no more than once per
second in our experiments. To demonstrate that this overhead

Fig. 10. Transactions per second on SPEEDEX when running
with 10 replicas (on weaker hardware than in Fig. 3), plotted
over the number of open offers.

is negligible, we ran SPEEDEX with 10 replicas, although with
weaker hardware per replica, due to resource limitations. Each
replica is one AWS c5ad.16xlarge instance, with one AMD
EPYC 7R32 processor (48 CPUs @ 2.8Ghz per physical chip,
32 of which are allocated to our instances), 128 GB of memory,
and two 1.1TB NVMe drives in a RAID0 configuration.
Performance measurements are plotted in Figure 10.

The overall throughput numbers are lower here than in
Figure 3 due to the weaker hardware, but the scalability trends
are the same. Doubling the thread count increases performance
by a factor of between 1.8x and 1.9x, except that the jump from
16 to 32 gives a roughly 1.4x increase due to contention with
background tasks (particularly logging to persistent storage).

This graph also highlights how SPEEDEX responds to
insufficient hardware resources. As the number of open offers
increases, SPEEDEX’s memory requirements increase. Even-
tually, memory starts to be paged to disk, which dramatically
increases disk usage and contends with the logging to persis-
tent storage. SPEEDEX slows down in response, to ensure for
safety that data in peristent storage is never too far out of sync.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 875

Boomerang: Metadata-Private Messaging under Hardware Trust

Peipei Jiang1,2 Qian Wang1,∗ Jianhao Cheng1 Cong Wang2 Lei Xu3

Xinyu Wang4 Yihao Wu1 Xiaoyuan Li1 Kui Ren5

1 School of Cyber Science and Engineering, Wuhan University 2 City University of Hong Kong
3 Nanjing University of Science and Technology 4 Tencent Inc. 5 Zhejiang University

Abstract
In end-to-end encrypted (E2EE) messaging systems, pro-

tecting communication metadata, such as who is communi-
cating with whom, at what time, etc., remains a challenging
problem. Existing designs mostly fall into the balancing act
among security, performance, and trust assumptions: 1) de-
signs with cryptographic security often use hefty operations,
incurring performance roadblocks and expensive operational
costs for large-scale deployment; 2) more performant sys-
tems often follow a weaker security guarantee, like differ-
ential privacy, and generally demand more trust from the in-
volved servers. So far, there has been no dominant solution.
In this paper, we take a different technical route from prior
art, and propose Boomerang, an alternative metadata-private
messaging system leveraging the readily available trust as-
sumption on secure enclaves (as those emerging in the cloud).
Through a number of carefully tailored oblivious techniques
on message shuffling, workload distribution, and proactive
patching of the communication pattern, Boomerang brings
together low latency, horizontal scalability, and cryptographic
security, without prohibitive extra cost. With 32 machines,
Boomerang achieves 99th percentile latency of 7.76 seconds
for 220 clients. We hope Boomerang offers attractive alter-
native options to the current landscape of metadata-private
messaging designs.

1 Introduction

In E2EE messaging systems [59], the exposure of privacy-
revealing communication metadata, including the identities
of the communicating parties, and the timing and volume of
the traffic, remains a big concern [26,39,61]. Communication
metadata can not only be used to target whistleblowers and
journalists [37, 70], but also serve as a surveillance means
to reveal intimate details of a person’s life [38]. Designing a
metadata-private messaging system is a challenging problem,
given the powerful attackers that can monitor and actively

∗Qian Wang is the corresponding author.

interfere with the network traffic [31,39]. The popular system
in practice today that hides communication metadata, namely
Tor [34], is not resilient against even passive traffic analysis
attacks (e.g., through timing, volume patterns, etc.) [39]. Be-
cause of this, academic research systems have been developed
recently with well-defined security guarantees for improved
metadata privacy [3–6, 8, 11, 15, 16, 27–29, 36, 37, 52, 54, 56–
58, 70, 72, 88, 91]. Ideally, such a system must ensure that
any pair of connected clients might be communicating from
the view of powerful attackers. This implies two necessary
requirements: 1) unlinking senders and receivers during any
message exchange; and 2) maintaining the same communica-
tion pattern across all connected clients, to resist traffic anal-
ysis. Roughly speaking, most prior art on metadata-private
messaging falls into the balancing act among security, perfor-
mance, and trust assumptions, while trying to meet these two
requirements (more discussions in §7).

Among the diverse landscape of metadata-private messag-
ing designs, there are two commonalities of state-of-the-art
systems: 1) leveraging an intermediate “virtual address” to
facilitate obfuscated message “drop” and “fetch” between the
communicating pairs; and 2) operating in rounds. Designs
with cryptographic security follow technical routes of sophis-
ticated cryptographic operations that either obliviously “write
to (drop)” [5, 27, 37, 52, 54, 70] or obliviously “read from
(fetch)” the virtual address [4, 8]. The hefty operations, how-
ever, often present performance roadblocks and unfavorable
operational dollar costs, hindering large-scale voluntary adop-
tions in practice. More performant systems [11, 56, 87, 88]
choose to relax the security guarantee and use random noise
to disguise the observable “drop” / “fetch” at the virtual ad-
dress in the framework of differential privacy. Generally, these
systems need to trust a fraction of servers for the claimed se-
curity, where the latency would be increased if trusting fewer
servers. So far there has yet to be any dominant solution.
Motivations. In this paper we propose Boomerang, an alter-
native metadata-private messaging system leveraging secure
enclaves. Boomerang takes a different technical route from
prior art, and is partially motivated by the readily available

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 877

trust assumption on hardware enclaves. As emerging in the
cloud [78, 81], secure enclaves provide a convenient and na-
tive implementation choice to build secure yet sophisticated
systems in practical settings.

Like much prior art [24, 32, 35, 42, 49, 50, 74], Boomerang
leverages hardware enclaves for both performance and se-
curity. Performance is arguably one of the key reasons for
Tor’s wide adoption in practice [39]. Yet, this is what most
prior art on metadata-private messaging is still lacking. We
believe that using hardware enclaves to improve performance
could be the key missing ingredient for wider adoption of
metadata-private messaging systems in practice. Under hard-
ware trust, Boomerang hides users’ online communication
behaviors with a strong guarantee of metadata privacy and
resilience against powerful attackers, while retaining good
enough performance.

Besides, we envision that there could be broader options of
technical routes for metadata-private messaging, with differ-
ent trust assumptions, performance, and security guarantees.
For whistleblowers [37, 70], their most reasonable choice is
to go for designs with a cryptographic guarantee and zero
trust in the servers [8,39], where performance might be much
less concerning. For the mass general users who want more
than E2EE messaging (e.g., due to concerns about metadata
tracking [38, 47]), we hope Boomerang could offer a better
option with lowered operational cost and improved perfor-
mance. These benefits can potentially attract a large user base,
which is crucial in private communication systems [33].
Challenges. While trusting the enclaves brings easy-to-see
benefits, such as using fewer servers for traffic mixing than
prior art for reduced latency, it does not entirely solve the
problems in building a scalable metadata-private messaging
system. This is because: 1) secure enclaves exhibit their own
threat models and attack surfaces, especially the leakage of
memory access patterns [32, 90], which demand tailored sys-
tem structure and oblivious algorithm designs; 2) as acknowl-
edged by prior art [39, 54, 57, 88], even with just one trusted
server, dealing with the thorny problems of active attackers
that may selectively interfere with traffic, e.g., disconnecting
selected clients to gain advantages in identifying targeted com-
municating pairs, remains hard to address; and 3) as privacy
loves company [33], the need to support more clients suggests
the necessity of pushing for horizontal scaling designs, which
is also a hot topic in recent years [11, 52, 54, 56, 57, 87]. No-
tably, scalability is not only a usability requirement but also a
security demand [33, 39, 54, 56, 87].
Technical overview. For metadata-private messaging,
Boomerang draws many insights from the prior art, and is de-
signed to be a performant system with cryptographic security
under hardware trust. It operates in rounds for bi-directional
conversations, and centers around the paradigm of adopting a
private “virtual address” to facilitate obfuscated message ex-
change that unlinks the sender and receiver. As we overview
below, its technical instantiation involves tailored oblivious

algorithms for message shuffling, proactive resistance against
active attacks, and horizontal scaling. For ease of presenta-
tion, we present a basic single-server Boomerang (§3) and a
scalable multi-server Boomerang+ (§4).

1) Basic single-server Boomerang. From a high level, the
system operates as follows: Upon proper setup, in each round,
each connected client sends a message, tagged with a “private
label”, which is randomly derived from a pairwise shared se-
cret with his communicating buddy, to the Boomerang server.
The Boomerang server obliviously checks all the messages
and swaps any pair of messages sharing the same labels for
the relevant communicating pair. In this regular case, each
label shows up twice each round. But active attackers might
block selected clients or control a subset of clients to disrupt
this regular pattern, causing each label to show up once or
more than twice each round. The problem is quite subtle, be-
cause we need to fix these irregular patterns, without giving
attackers any advantage in linking the remaining clients.

Boomerang’s key insight is to preserve the same observable
receiving pattern for each connected client, no matter how the
sending pattern changes. We build oblivious algorithms for
enclaves to detect messages with irregular label patterns and
proactively patch them (§3.3.2) by returning those messages
back to the corresponding senders, like a “boomerang”. In
this way, we can contain the influence attempts within the
problematic clients themselves, isolated from the remaining
clients. Based on a library of basic general-purpose oblivious
primitives [2, 71], we design specialized oblivious algorithms
(§3.3.2, §3.3.3, §4.2) for all enclave operations in Boomerang,
including proactive resistance designs against active attacks
and horizontal scaling in Boomerang+.

2) Scalable multi-server Boomerang+. For horizontal scala-
bility, directly replicating the basic single-server Boomerang
and letting each server process a subset of communicating
pairs would not work, because pairwise clients connecting
to one server have a higher possibility to communicate than
those across different servers. Introducing a load balancer,
known as an entry node in Boomerang+, to obliviously dis-
tribute batches of messages to a group of Boomerang nodes
for message exchange would fulfill the need for “global
mixing”, where any pair of connected clients at the entry
node might be communicating. But as pointed out by re-
cent art [32, 89], two requirements remain: 1) a centralized
proxy [82] can be error-prone and a scalability bottleneck of
the underlying system; and 2) any batch structure from a load
balancer must be generated using public information, so as to
ensure that no sensitive information can be observable from
the load balancing.

Note that these requirements are generic for any security-
aware scalable system design. Answering them can be quite
design specific, especially on setting the bound on batch size
without triggering an overflow. Inspired by the balls-into-bins
analysis [32], we model the problem of setting the maxi-

878 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

mum batch size in Boomerang+ as a weighted balls-into-bins
game, where we partition the messages by their private labels
and each message’s weight is determined by its label pattern
(showing once, twice, or more than twice). We prove an up-
per bound on the maximum batch size and show its marginal
overhead on our horizontal scaling design. Following the
oblivious load balancer design [32], we derive tailored obliv-
ious algorithms to generate sub-batches whose distribution
across rounds is indistinguishable (§4.2).

2 Threat Model and Security Goals

2.1 Threat Model and Assumptions
We consider the following threats. Attackers can: 1) observe
the global network states (including the timing, volume, and
link states); 2) actively tamper with the network, such as selec-
tively dropping messages, blocking selected connections, and
controlling a subset of clients; and 3) access the server-side
components beyond hardware enclaves, such as the memory,
files, and networks, as well as the operating system.

Boomerang is built on servers equipped with secure en-
claves, where memory access patterns can be observed [32,
49, 62, 66]. Boomerang is designed to work with generic en-
claves [18, 30], and we adopt Intel SGX for our implemen-
tation. Our oblivious algorithms can deal with side-channel
attacks against SGX leveraging memory access patterns to ex-
tract secrets, such as the cache attacks [19,41,67] and paging-
based attacks [20]. We assume a public key infrastructure
(PKI) to help manage the public keys of clients. Communi-
cations among clients and enclaves are securely established
via TLS integrated with remote attestation [1, 46, 51]. In Ap-
pendix A, we elaborate in more detail on how a client can
establish the trust on a multi-enclave system like Boomerang
through remote attestation, following common practices sug-
gested from the prior art [9, 23, 35, 74, 79].
Communication model. Like many previous metadata-
private messaging systems [4,8,54,56,57,87,88], Boomerang
operates in rounds to ensure the uniformity of communication
pattern among clients, and focuses on pairwise messaging
among online clients who have coordinated their conversa-
tions. Processing message exchanges on round boundaries
implies that clients of Boomerang send encrypted messages
with a fixed rate and size, independent of their true commu-
nication activities, which allows the dealing against traffic
analysis attacks. This can be done at Boomerang clients by
generating “blank” messages if a user types nothing or too
slow, and queuing/splitting messages if a user types too fast
or sends a message of large size [88].

Under this communication model, Boomerang does not
hide the fact that clients are using the system. Boomerang
offers online anonymity by supporting a large scale of clients.
The anonymity set includes both active clients in real conver-
sations with their buddies and online idle clients who do not

have a conversation buddy but can voluntarily send “blank”
messages to themselves as cover traffic to further enlarge this
anonymity set [56, 88]. We suggest the clients always keep
online to disguise the real communication actions [33, 39].
Because all clients connected in the system behave the same
at each communication round, we can hide the communica-
tion metadata with cryptographic security against powerful
attackers. We formalize this security notion in Definition 2.1.
Bootstrapping Boomerang. Besides operating in rounds,
Boomerang adopts the existing practices of a bootstrapping
phase for clients to start conversations [11, 37, 52, 58]. Par-
ticularly, clients should run an “add-friend” protocol (where
clients can verify each other’s identity and share their se-
crets) and a “dialing” protocol (where pairwise clients coordi-
nate the time to have the conversation and exchange session
keys) [7]. To add a friend, the common practice is to: 1) ex-
change secrets in person (e.g., by showing a QR code at a
coffee shop [7, 37]); or 2) use an online metadata-private add-
friend protocol [58]. To dial a friend, the common practice
is to adopt an out-of-band metadata-private dialing system,
e.g., Alpenhorn [58]. Dialing brings additional costs to clients,
which will be amortized over multiple conversation rounds.
Note that similar bootstrapping phases have been adopted
by prior art [54, 56, 57, 87]. Thus, throughout the paper, we
keep our focus on the conversation protocol design, which is
where much prior art is differentiated [7], and make simplified
assumptions that the bootstrapping phase is properly done.
Specifically, upon proper bootstrapping, we will narrow down
the problem of metadata-private messaging to how to design
an obfuscated message exchange (aka conversation) protocol
among pairwise clients under hardware trust.
Attacks out of scope. Similar to other enclave-based sys-
tems [32, 35, 49, 75], we don’t consider denial-of-service at-
tacks. The enclave code is assumed to be correct and faithfully
fulfilling our oblivious algorithms. Orthogonal countermea-
sures to recent noteworthy leakage attacks through power con-
sumption channels [25, 68] and transient executions [48, 77]
are also beyond the scope of this work. One generic limitation
to all metadata-private messaging systems is the long-term
intersection threat [14]. Recall that we do not hide whether
clients are using the systems or not. Thus, an attacker, who
observes the anonymity set of online clients changing across
rounds, might infer the linkage of communicating pairs. For
example, two clients that simultaneously get online or offline
are more likely to be communicating. The common practice
to mitigate this concern is to let the clients always stay on-
line [56, 88] or keep the same communication pattern [11]
and send enough cover traffic. We also suggest adopting or-
thogonal mitigation techniques [60, 92] and using more cover
traffic, as also noted by Clarion [36].

2.2 Security Goals
Like much prior art, our security goal follows the unobserv-
ability concept in anonymous communication [43]. Specifi-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 879

cally, for any two online clients, Alice and Bob, we want to
ensure that an attacker cannot distinguish whether they are
real buddies in a conversation or not. We want to guarantee
this is true even in a malicious setting, where an attacker can
control up to m−2 clients for m as the total number of clients
connected to the system. We formalize this property below as
communication pattern indistinguishability.

Definition 2.1 Let λ be the security parameter and m be the
number of connected clients in the system. Define an experi-
ment EXP with an attacker A who controls m−2 clients:

• The attacker creates a pair of clients in a conversation as
P0 = (c0,c1), and a pair of clients not in a conversation
as P1 = (c′0,c

′
1) (e.g., being idle or missing buddies).

• The challenger randomly chooses b ∈ {0,1} and plays
the role of the pair of clients Pb to simulate interactions
between them and the server. During this procedure, the
challenger needs to simulate the payload (aka contents
that can be represented by a random string) for the cho-
sen pair of clients.

• The attacker observes their transcriptions and outputs a
bit b′ ∈ {0,1} to guess the challenger’s choice.

We define the attacker A’s advantage with respect to EXP as

AdvEXP,A =
∣∣Pr[b = b′]−Pr[b ̸= b′]

∣∣ .
We say that a system is communication pattern indistinguish-
able if the advantage AdvEXP,A is negligible in λ for all prob-
abilistic polynomial time (PPT) attackers.

This definition implies that seemingly any pair of connected
clients might be communicating with equal chance. We will
show this is indeed the case in Boomerang and Boomerang+.

3 Boomerang: Basic Instantiation

3.1 Overview
Boomerang runs in rounds with a single enclave-based server.
Following the same practice in previous round-based de-
signs [54, 56, 57, 87, 88], Boomerang requires a coordinator
to announce round numbers across the server and clients. In
each round, each client sends and receives one message re-
spectively to and from the Boomerang server. To facilitate
oblivious message swapping, every message is tagged with
a “private label”, which is a pseudorandom string generated
from a pairwise session secret between a communicating pair.
(See §2 for our system setup assumptions.) Any pair of mes-
sages sharing the same private label will be swapped, which
indicates a regular case when each private label shows up ex-
actly twice each round. Messages with irregular private label
patterns will be detected and looped back (§3.3.2).

Figure 1 shows an overview of our Boomerang design. The
Boomerang server first (➊) sorts the packets and detects the

0x2A6F4592
From A NULL

0x0D24E832
From B NULL

0x2A6F4592
From C NULL

0x20FF3976
From D NULL

0x2A6F4592
From A NULL

0x0D24E832
From B NULL

0x2A6F4592
From C NULL

0x20FF3976
From D NULL

 OSort by
private labels

0x2A6F4592
From A To C

0x0D24E832
From B To B

0x2A6F4592
From C To A

0x20FF3976
From D To D

0x20FF3976

From E NULL

 OSort by
 receiver IDs

0x2A6F4592
From C To A

0x0D24E832
From B To B

0x2A6F4592
From A To C

0x20FF3976
From D To D

Boomerang ServerClients Clients

A

B

C

D

E

A

B

C

D

E

1 Swapping and
proactive patching

2 3

Figure 1: Overview of Boomerang. In this example, A and C
are talking. B is idle. D and E are talking, but E is blocked as
described at the end of §3.3.2. Boomerang proactively patches
the pattern for D and B (Step ➋).

irregular pattern of the private labels. Then, (➋) it proactively
fixes the irregular pattern via the proactive pattern patching al-
gorithm (§3.3.2). Finally, (➌) it sorts the messages by receiver
IDs and sends them to the clients (§3.3.3).

3.2 Client
Figure 2 shows the pseudocode for client operations. We con-
sider two modes of clients: active clients in conversations with
their buddies and idle clients sending dummy cover traffic (as
discussed in §2.1). Regardless of being active or idle, each
connected client needs to send one message to the Boomerang
server in each round.
Packet preparation. A packet Pkt includes the follow-
ing fields: 1) private label with l bits, priv_label; 2) re-
ceiver’s identifier, R; 3) sender’s identifier, S; 4) round num-
ber, round_num; and 5) content encrypted by the session key
shared with the buddy (Lines 4-6). When preparing the packet,
the client fills in all fields except for the receiver’s identifier
(e.g., set to NULL by default). If the active client has nothing
to deliver to her buddy, she should fill the content anyway,
e.g., with a message saying “this is a blank message”. The
client then encrypts the packet using the session key shared
with the secure enclaves (Line 7). Finally, the client sends the
encrypted message to the Boomerang server.
Idle clients. To hide real communication actions, clients need
to keep sending messages even if they are not in an active
conversation [56, 88]. We let idle clients randomly generate a
private label (not shared with others). By design, the server
will loop all unpaired messages back to senders.
Exception alert. Normally, after sending the prepared packet
to the Boomerang server, the client is expected to receive one
packet carrying the message from the buddy/herself every
round. Otherwise, the system will raise exceptions for abnor-
mal cases. If there is no message returned by the decryption
procedure, it means that the packet to/from the server has
been lost. In this case, both active and idle clients should be

880 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 def active_client(round_num, priv_label, my_id,\
2 content, ses_key_encl, ses_key_buddy):
3 # Prepare the packet
4 Pkt pkt; pkt.round_num = round_num
5 pkt.priv_label = priv_label; pkt.S = my_id
6 pkt.enc_content = Encrypt(content, ses_key_buddy) 1
7 enc_pkt = Encrypt(pkt, ses_key_encl)
8 # Send the packet to the Boomerang server \
9 # running boomerang_server()

10 send_msg = (my_id, enc_pkt)
11 # Receive the packet from the Boomerang server
12 recv_msg = rpc.request(send_msg)
13 pkt = Decrypt(recv_msg, ses_key_encl)
14 # Exception alert
15 # If there is message loss
16 if pkt == None: raise("Message loss")
17 # If the original message is looped back
18 if pkt.R == my_id: raise("Buddy blocked")
19

20 return Decrypt(pkt.enc_content, ses_key_buddy)
21

22 def idle_client(round_num, my_id, ses_key_encl):
23 # Prepare the packet
24 Pkt pkt; pkt.round_num = round_num
25 pkt.priv_label = random(); pkt.S = my_id
26 pkt.enc_content = ciphertext.random()
27

28 send_msg = (my_id, Encrypt(pkt, ses_key_encl))
29 recv_msg = rpc.request(send_msg)
30

31 if Decrypt(recv_msg, ses_key_encl) == None:
32 raise("Message loss")
33

34 return True

1

Figure 2: Pseudocode for client operations.

alerted about their unreliable network conditions (Lines 13-16
and Lines 31-32). For those successfully decrypted packets,
active clients then check whether their messages are from
their buddies (Line 18). Note that in Boomerang design, if the
receiver ID is the same as the sender ID (indicating that the
message is sent back like a “boomerang”), the client should be
alerted that his/her buddy has been blocked and can choose to
resend the message in the next round or stop the conversation
immediately (by changing to idle mode).

3.3 Server

Figure 3 shows the pseudocode for oblivious server opera-
tions, including two main functions: 1) oblivious irregular
pattern detection and 2) oblivious proactive pattern patching.
Below we introduce the background of oblivious primitives
and then describe the main ideas of our designs.

3.3.1 Background of Oblivious Primitives

We build Boomerang’s oblivious algorithms over an existing
library of general-purpose oblivious primitives developed by
XGBoost contributors [2,55], which is also based on libraries
provided in previous noteworthy enclave-based data analytic
systems [71, 73]. The library offers basic oblivious functions,
including comparisons, assignments, sorting, etc. These obliv-
ious functions are fundamentally built on register-to-register

operators, which are private to the processor and immune to
memory access pattern leakages [55, 71, 73].
Oblivious comparisons/assignments. This set of primitives
can conditionally assign or compare values on the register
level without revealing the results of the comparison or assign-
ment. In this paper, we use O_Equal(a,b), O_Less(a,b), and
O_Choose(cond,a,b) [2] for comparison and conditional as-
signment. O_Equal(a,b) outputs True if a = b (otherwise
outputs False). O_Less(a,b) outputs True if a ≤ b (oth-
erwise outputs False). O_Choose(cond,a,b) chooses from
two values given a boolean condition without leaking which
value is chosen. If cond= True, it outputs value a (otherwise
outputs value b).
Oblivious sort (O_Sort(key,array)). An oblivious sort al-
gorithm outputs ordered data without revealing any infor-
mation (e.g., the original order) about the input data [10].
In our instantiation, we choose bitonic sort [12], which is
highly parallelizable with O(n log2 n) computational complex-
ity. Bitonic sort compares and swaps the items in a fixed and
data-independent order, and thus is oblivious by design.

3.3.2 Oblivious Proactive Pattern Patching

Detecting irregular pattern. When receiving a batch, the
server first needs to identify all the regular and irregular mes-
sages for subsequent processing. The server first obliviously
sorts the batch by priv_label (Step 2 in Figure 3, Line 12).
This step is to map the messages of the same label (which
implies a communicating pair) together for further pattern
detection. Before introducing the detection algorithm, we first
show the possible label patterns after sorting. Since the private
label is a l-bit pseudorandom string shared between the pair,
the possibility that attackers can guess it and forge messages
is negligible if l is sufficiently large (e.g., 256 bits). Therefore,
a communicating pattern indicates a double-accessed label,
which we regard as a regular pattern. Otherwise, the pattern is
regarded as irregular. There are three possible label patterns
after O_Sort, as shown below

• double: messages from communicating pairs;
• single: messages from idle clients or incomplete pairs

(caused by client churn or malicious blocking);
• more-than-two: multiple messages with repeating labels

controlled by an attacker.
To detect irregular patterns, the server linearly scans the

ordered packets using oblivious comparison primitives to
identify the above three patterns. Basically, we can achieve
this by scanning the messages with a sliding window of three
each time, as shown in Step 3.1 in Figure 3. For each message,
we compare its private label with its previous, next, and next
next messages, respectively (Lines 17-22). This will give us
the relationship of the packets in the sliding window.

We first clarify how to determine more-than-two cases. If
the label of a message is the same as its two subsequent mes-
sages (is_next2_same= True), this implies that this private

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 881

1 def boomerang_server(round_num, recv_msgs, session_keys):
2 pkts = [], R_list = [] # Receiver IDs
3 recv_msgs = Dedup(recv_msgs)
4 # Step 1: decrypt the messages
5 for (S, enc_pkt) in recv_msgs:
6 pkt = Decrypt(enc_pkt,session_keys[S])
7 # Filter out messages not in this round
8 if pkt.round_num != round_num:
9 continue

10 pkts.append(pkt)
11 # Step 2: Pair the private labels
12 pkts.O_Sort(key=pkt.priv_label)
13 # Step 3: Oblivious proactive pattern patching
14 is_mtt = False # mtt: more_than_two
15 for pkt in pkts:
16 # Step 3.1: Detect irregular pattern
17 is_prev_same = O_Equal(pkt.priv_label,\
18 Prev(pkt).priv_label)
19 is_next_same = O_Equal(pkt.priv_label, \
20 Next(pkt).priv_label)
21 is_next2_same = O_Equal(pkt.priv_label, \
22 Next(Next(pkt)).priv_label)
23 # Detect more-than-two (mtt) pattern
24 is_mtt = is_mtt and is_prev_same or is_next2_same
25 # Detect and patch single patterns in Lines 27-28
26 # Step 3.2: Swapping and patching
27 pkt.R = O_Choose(is_next_same, Next(pkt).S, pkt.S)
28 pkt.R = O_Choose(is_prev_same, Prev(pkt).S, pkt.R)
29 pkt.R = O_Choose(is_mtt, pkt.S, pkt.R)
30 # Step 4: Re-order messages by receiver IDs
31 pkts.O_Sort(key=pkt.R)
32 # Step 5: Encrypt and send the messages
33 send_msgs = {}
34 for pkt in pkts:
35 enc_pkt = Encrypt(pkt, session_keys[pkt.R])
36 send_msgs[pkt.R] = enc_pkt
37 R_list.append(R)
38 rpc.response(R_list, send_msgs)
39

40

41

42

43

44

45

46 R_list.append(R)

1

Figure 3: Pseudocode for server operations.

label must occur at least three times. Then, we can identify
this message as a more-than-two case (by setting the flag
is_mtt= True). Another observation is that, if a message’s
label repeats as a detected more-than-two case, this message
must belong to the same case. We identify this by checking
whether a message’s previous neighbor belongs to a more-
than-two case (based on the flag is_mtt as set in the previous
iteration), and whether the message’s label repeats that of its
previous neighbor (based on the flag is_prev_same).

To determine single cases, we check both the message’s
previous and next neighbors. If inequality holds for both
neighbors (is_prev_same = False and is_next_same =
False), this message belongs to the single case. To save
operational costs, we integrate this logic with the swapping
process in Step 3.2 (Lines 27-28). This finishes the identifi-
cation part. In this step, the server has obtained information
about the relationship of the private labels in an ordered se-
quence and determined whether the label pattern falls into
an irregular case. Next, the Boomerang server will swap the
regular messages and patch the irregular ones.
Swapping and patching. For regular patterns, the server
swaps the sender IDs of the two messages and assigns their
values to the receiver ID fields (Lines 27-28). Specifically,
if the current label is the same as that of the previous (next)

packet, we assign its receiver ID field to have the value of the
sender ID of its previous (next) packet. The oblivious choose
function helps us conditionally assign the sender ID values
to the right packets. It ensures that the server will not learn
which part is actually copied to the receiver ID field.

For irregular patterns, Boomerang proactively patches them
by looping back such “single” and “more-than-two” messages
to its sender (like a boomerang), i.e., setting pkt.R= pkt.S,
where R and S denote the identifiers of the receiver and
sender, respectively. For single cases, the server obliviously
assigns pkt.R to have the value of pkt.S, if the conditions of
is_next_same and is_prev_same are both False (Lines
27-28). Finally, for more-than-two cases, where is_mtt =
True, the server also loops back the packet (Line 29). Note
that the original messages do not explicitly carry the infor-
mation of the receivers. This makes sure that only expected
“collisions” on private labels can push forward message deliv-
ery. In other words, the server will not obtain the receiver IDs
from messages with irregular label patterns.

This step patches the receiving pattern of idle clients, ac-
tive clients with blocked buddies, and clients controlled by an
attacker. With Boomerang, messages with irregular label pat-
terns will not influence their receiver’s receiving pattern. For
the example in Figure 1, the message from E to D is blocked,
in which case D would not receive any message if there were
no pattern patching. The Boomerang server loops back D’s
message by setting D as the receiver (as shown in Step ➋),
defeating active attacks.

3.3.3 Oblivious Re-order

After the proactive patching, Boomerang needs to re-order
the label-ordered sequence. This step is necessary, because
adjacent messages in the label-ordered sequence will imply
a high possibility that they share the same private label, in-
dicating that the receivers are talking to each other. Hence,
we choose to use osort with the order of receiver identifiers
(IDs) to obliviously re-order the sequence.

Sorting the outgoing messages by receiver IDs would re-
veal the set of receiver IDs (along with their order), which
are essential fields to be reported to the server for message
transmission anyway. Recall that in the proactive patching
step, the server carefully assigns the values of sender IDs to
receiver IDs via swapping and patching. This ensures that
the receiver set is exactly the same as the sender set (publicly
observable to attackers), and each receiver will receive exactly
one message. Therefore, sorting the messages by receiver IDs,
which reveals the ordered receiver ID list, would not reveal
additional information about the conversation metadata.
Remark. This completes our round-based oblivious message
exchange in Boomerang design. Note that at the beginning
of each round, we can further employ a textbook deduplica-
tion procedure in enclaves to filter repeated packets, just in
case a malicious host might try to cause an exchange failure

882 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(DoS attack) by injecting replicated packets from the network
stack to let the packets’ private labels appear more than twice.
Similar treatment has also been done in prior art [32, 56, 57].

4 Boomerang+: Horizontal Scalability

4.1 Overview
As noted in §1, for horizontal scalability, directly replicat-
ing the single-server Boomerang, with each server processing
a subset of clients, would not work because it immediately
implies that clients connecting to different servers are not
able to talk to each other. To address the problem, one direct
idea is to employ an entry node as a load balancer to obliv-
iously distribute batches of messages from all clients to a
group of Boomerang nodes for message exchange. Here, the
oblivious design is supposed to hide the mapping between the
messages and the Boomerang nodes from an attacker. While
this opens up a possible pathway to scale Boomerang, subtle
issues remain: how to set up the batch structure?

Recent studies on distributed oblivious data stores [32, 89]
have pushed forward the understanding on security-aware
scaling designs. Particularly, an oblivious load balancer must
set up the batch structure only using public information, in-
dependent of the input distribution. In this way, an attacker
would not observe any sensitive information from the load
balancing. We note that these requirements for setting up an
oblivious load balancer are generic to any security-aware scal-
able system designs. Yet, answering them can be quite design
specific. Indeed, a batch structure of data requests generated
by an oblivious balancer for a distributed data store, where
data partitions are fixed at each server across all rounds [32],
would be ill-suited for obliviously distributing batches of mes-
sages in Boomerang+, where messages might be mapped to
different Boomerang nodes each round.
Setting a batch size for Boomerang+. This has motivated us
to search for solutions specific to our Boomerang+ design. In
our context, the public information at an entry node is the m
messages from m connected clients, and n Boomerang nodes
(the back-end nodes for message exchange). Functionality-
wise, we need to partition the messages by their private labels,
which are random (§4.1), to facilitate the exchange of mes-
sages sharing the same labels at the same servers. For security,
we need to ensure that the batch structures reveal nothing
about the input distribution. For performance, we must set the
batch size B as small as possible, but without triggering the
overflow (otherwise, there will be dropped messages).

Inspired by the balls-into-bins analysis [32], our problem
of finding the bound on batch size B in distributing m mes-
sages by their random labels (balls) to n servers (bins) can
be translated to: what is the maximum load of balls into any
bin? In §3.3.2, we have shown each message’s label pattern
as single, double, or more-than-two. This suggests that each
message carries a different weight in the distribution, and

...... ...
...

Entry nodes B-nodesClients

sub-batches

......

A

Private label

...

...

...

...

...

C

0x21

0x2C
0x2C

0x4F

Figure 4: Overview of the scalable Boomerang+ instantiation.

thus we need to answer the question in a weighted balls-into-
bins game. In Appendix B, we show the complete analysis
and proofs to derive the maximum batch size in Boomerang+
(results listed below for easy reference), by applying clas-
sic results [13, 76] from the balls-into-bins literature to our
problem context.

Theorem 4.1 For any set of m messages, n Boomerang nodes,
and a security parameter λ, satisfying m ≫ n(lnn)3 and
λ/ log2 n > 1, let B(m,n) be a function that outputs the max-
imum batch size B for each node in Boomerang+. Then the
probability of overflow is negligible in λ if we choose

B =

⌈
m
n
+4

√
m lnn

3n

(
1− 1

λ

ln lnn
2ln2

)⌉
.

Based on the formula, the maximum batch size will be domi-
nated by m/n, with the extra padding size per batch varying
with different choices of messages m and Boomerang nodes n.
Note that λ/ log2 n > 1 can always hold in practice because n
is always smaller than 2λ for any reasonable security parame-
ter λ. As shown in Appendix B, Figure 13, with λ = 128 and
m = 216, when we scale the number of Boomerang nodes n
from 4 to 28, the ratio of extra paddings over real messages
ranges from 2% to 8%. With the maximum batch size settled,
we will describe our oblivious “load balancers” (entry nodes)
and the architecture of Boomerang+ next.
Architecture. Figure 4 shows Boomerang+. We leverage
the classic two-layer architecture, consisting of entry nodes
and Boomerang nodes (B-node for short) to share traffic and
computation workload. The message transmission flow is
summarized as follows. (➊) Each client connects to one entry
node. (➋) Entry nodes generate oblivious sub-batches for B-
nodes (§4.2). (➌) Each B-node merges the sub-batches from
entry nodes and processes messages like a single Boomerang
server (e.g., proactive irregular pattern detection and patching,
§3), except for one additional step to swap the entry node
identifiers of the pairs (§4.3). (➍) Upon done with the pro-
cessing, B-node sends the swapped messages back to entry
nodes. (➎) Finally, entry nodes merge the sub-batches, pad
for possible lost messages, and send them back to receivers.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 883

0x1C

0x1C

0x1CC

A

B E1

0x1F

0x2D

0x0E

(a) Case 1

0x1C

0x1C

0x1C

A

B

E1

E2

E3

B1

...

...

...

...

0x1C

A

B

C C

(b) Case 2

Figure 5: An illustration of more-than-two label patterns on
(a) entry nodes and (b) B-nodes. The red dotted arrows in (b)
imply that the messages to “0x1C” will be looped back to the
malicious clients ultimately.

4.2 Entry Nodes

4.2.1 Irregular Pattern Patching

Similar to the basic single-server Boomerang, when receiving
a batch, the entry nodes first decrypt and obliviously sort the
batch by priv_label, and then detect and patch irregular
label patterns. But different from the proactive pattern patch-
ing algorithm at the basic Boomerang (§3.3.2), here the entry
nodes only need to handle the more-than-two cases and leave
the single ones to B-nodes.

Patching the more-than-two cases on entry nodes, in case
of multiple clients controlled by an attacker sending mul-
tiple messages carrying the same private label, is essential.
Because such a threat will cause workload skew [32] and po-
tentially influence the non-overflow guarantee of our weighted
balls-into-bins algorithm. To eliminate the skew, we let the
entry node replace the redundant private labels with new ran-
dom labels. To detect the more-than-two label patterns, entry
nodes adopt the detection algorithm in Boomerang (Step 3.1
in Figure 3, Lines 17-25). Next, instead of looping the irreg-
ular messages back, the entry node reassigns new random
private labels to them, as shown in Figure 5(a). To set it
obliviously, we assign pkt.priv_label to have the value of
O_Choose(is_mtt, random(), pkt.priv_label).

Since the fresh private label is randomly chosen with neg-
ligible possibility of collision, the irregular messages will
be regarded as a single pattern to be looped back in subse-
quent processes on the Boomerang node. In this way, we can
eliminate workload skew without revealing the number of
malicious messages or changing the communication pattern.

4.2.2 One-time Message Assignment

The message assignment function has two main goals:
• (function goal) assigning the messages with the same private
labels to the same B-node, no matter which entry nodes the
clients are connecting to, and
• (security goal) ensuring the assignment is (pseudo)random,
and the distribution of the sub-batches across rounds will not
leak the communication pattern.

For the function goal, the intuition is to derive B-node ID

B-
no

de
 1

B-
no

de
 0

0x2A6F4592
1 REAL

0x2A6F4592
1 REAL

0x0D24E832
0 REAL

0x20FF3976
1 REAL

Derive
fresh br_id

*
0 DUMMY

*
0 DUMMY

*
1 DUMMY

*
1 DUMMY

Append
dummy
packets

0x2A6F4592
1 REAL

0x2A6F4592
1 REAL

0x0D24E832
0 REAL

0x20FF3976
1 REAL

0x2A6F4592
1 REAL

0x20FF3976
1 REAL

*
1 DUMMY

*
1 DUMMY

OSort by
br_id || tag

0x0D24E832
0 REAL

*
0 DUMMY

*
0 DUMMY

0x2A6F4592
1 REAL

0x2A6F4592
1 REAL

0x20FF3976
1 REAL

Oblivious
Compact

0x0D24E832
0 REAL

*
0 DUMMY

0x2A6F4592
1 REAL

*
1 DUMMY

*
1 DUMMY

*
0 DUMMY

H

H

H

H

*
1 DUMMY

*
0 DUMMY

*
0 DUMMY

*
1 DUMMY

*
1 DUMMY

*
0 DUMMY

1 2 3 4

Message
format

...
priv_label

br_id tag
...

Figure 6: An example of entry node operations. “H” in Step
1 refers to the mapping function (Eq. (1)). B is set to 3. The
blue box with rounded corners refers to read operations, and
the red box with dotted lines refers to write operations.

(denoted as br_id) from the private label using the same
deterministic function across all entry nodes. For example,
we can simply compute the identifier from the private label
modulo the number of B-nodes: br_id = priv_label%n,
where n refers to the number of B-nodes. For the security
goal, we make the mapping function change across rounds.

Specifically, we use a keyed hash function Hk(·) to derive a
fresh string from the private label, round number, and a secret
key k shared among the enclaves of all entry nodes. We apply
the modulo function to the fresh string and the number of
B-nodes. The assigned B-node is:

br_id= Hk(priv_label||round_num)%n. (1)

The keyed hash function provides a fresh mapping from the
private label to the B-node every round, so attackers cannot
predict any future assignments in new rounds.

4.2.3 Oblivious Sub-batch Padding

Although the distribution is fresh across rounds, the true size
of each sub-batch is revealed, which brings security concerns
in long-term communications [32, 52, 87]. Based on our de-
rived maximum batch size in §4.1, we opt to pad the sub-
batches to equal size B, which is calculated from public in-
formation, namely m messages and n B-nodes, and will not
carry any private information about the content.

The remaining step is to obliviously pad the sub-batches
without leaking the original sizes. We here follow the oblivi-
ous padding algorithm in Snoopy [32]. The padding steps are

884 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

shown in Figure 6 and described as follows. Firstly (➋), the
entry node appends B dummy messages (with tag= DUMMY)
for each sub-batch to the message sequence. The private la-
bels in dummy messages are randomly generated. Secondly
(➌), it obliviously sorts the message sequence by br_id||tag.
After the sorting, we can get a group of sub-batches, each
of which is formed of real messages followed by B dummy
messages. Finally (➍), it squeezes extra dummy messages
using oblivious compaction. An oblivious compaction algo-
rithm [40] (O_Compact(flag,array)) can remove the items
in an array with certain flags without leaking which items are
removed. The complexity is O(n logn).

To decide which messages to send or remove obliviously
(that is, to set the flag for each message), the entry node lin-
early scans the sorted batch and keeps a counter (c) to record
the relative position of the message in a sub-batch. If the mes-
sage is among the first B messages in its sub-batch (c≤ B),
the message should be sent (flag = True). Otherwise, the
flag should be set to False. We next introduce how to obliv-
iously iterate c and assign flag. The counter is initially set
to 1. When iterating through the batch, the node accumulates
the counter (c+1) if the current br_id repeats its previous
one. Otherwise, set the counter to 1, meaning that the node
has finished processing the current sub-batch and encounters
the first message for a new sub-batch. With the right counter
c, the node can obliviously assign flag accordingly. The
pseudocode for the above step is as follows.

is_br_same= O_Equal(pkt.br_id,Prev(pkt).br_id)
c= O_Choose(is_br_same,c+1,1)

flag= O_Less(c,B)

B is the upper bound calculated from our weighted balls-
into-bins algorithm, which guarantees that real messages as-
signed to the same B-node will not exceed size B (except
with negligible probability). Therefore, all real messages will
be marked with flag = True and not be dropped. Finally,
the node uses oblivious compaction to remove extra dummy
messages (those marked with flag= False).

With the steps above, the size of the sub-batch for each
group is exactly B, and the attacker cannot differentiate the
dummy messages from the real ones. The entry nodes then
send sub-batches to B-nodes for further processing.

4.3 Boomerang Node
Like the basic Boomerang, B-nodes also need to: 1) detect
irregular access patterns and patch them (i.e., the patching
algorithm in §3.3.2); and 2) swap the messages carrying the
same private label. Figure 7 shows operations on B-nodes,
among which most operations are the same as Boomerang.

Similarly, there are two types of irregular label patterns
on B-nodes: 1) single pattern and 2) more-than-two pattern.
Besides idle clients and incomplete pairs as discussed before,
single patterns may also come from the irregular messages

Detect,
patch, and

swap

0x2A6F4595
1 REAL

NULL A

0x20FF3976
1 REAL

NULL D

0x0D24E832
2 REAL

NULL B

*
3 DUMMY
* *

0x0D24E832
2 REAL

NULL B

0x20FF3976
1 REAL

NULL D

0x2A6F4595
1 REAL

NULL A

0x2A6F4595
4 REAL

NULL C

0x0D24E832
2 REAL
B B

0x20FF3976
1 REAL
D D

0x2A6F4595
4 REAL
C A

0x2A6F4595
1 REAL
A C

0x0D24E832
2 REAL
B B

0x2A6F4595
1 REAL
A C

0x20FF3976
1 REAL
D D

E1

E2

E3

E4

 OSort by
priv_label

 OSort by
 entry_id

*
3 DUMMY
* *

*
3 DUMMY
* *

*
3 DUMMY
* *

0x2A6F4595
4 REAL
C A

1 2 3
Message format

priv_label
entry_id tag

R S

E1

E2

E3

E4
0x2A6F4595

4 REAL
NULL C

Figure 7: An example of B-node operations. In this example,
A and C are talking to each other, B talks to herself (idle
client), and the message from someone to D is blocked.

with private labels reassigned by entry nodes. Interestingly,
although entry nodes have eliminated workload skew, more-
than-two patterns might still appear on B-nodes. As shown
in Figure 5(b), malicious clients could send messages with
the same private label through multiple entry nodes, with
only one message to each entry node, evading the irregular
pattern detection. Ultimately, these messages will end at some
B-node and appear as more-than-two patterns. To detect such
irregular patterns, B-nodes follow the same detection and
patching algorithm as Boomerang (Steps 2 and 3 in Figure 3).

Different from Boomerang, B-nodes cannot directly send
the processed messages to clients, because this reveals the
identities of clients connecting to the same B-node, indicating
they are more likely to be talking. Instead, we let B-nodes
send each message back to the entry node first, and then let the
entry node send the message back to the receiver connecting
to it. The entry node ID of the receiver can be obtained from
the paired message (if any) with which it was swapped. Hence,
(➋) the B-node can swap entry node IDs (entry_id) of the
paired messages during the linear scan. Similar to the receiver
ID swapping step in Boomerang, the B-node swaps (or loops
back) both the entry node IDs and receiver IDs using oblivious
choose. Finally (➌), the B-node obliviously sorts the sequence
by entry node IDs (to group the batch for each entry node
together) and sends the messages back to the corresponding
entry nodes.

In Boomerang, the last step is to re-order messages. We
accordingly move this step to entry nodes. When receiving the
sub-batches from B-nodes, entry nodes merge the sub-batches,
sort the batch by receiver IDs, pad for possible missing mes-
sages (as we will discuss in §4.4), remove extra dummy mes-
sages, and send the messages to receivers.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 885

4.4 Server Churn
So far, we have introduced our mechanisms (e.g., one-time
message assignment and oblivious sub-batch padding) to
make the communication pattern among servers oblivious
to attackers. However, such mechanisms only consider the
“accidents” from clients. For completeness, here we discuss
some possible accidents that may happen to servers and intro-
duce Boomerang+’s enhancing strategies.
B-node churn. B-nodes can be blocked (e.g., under DoS
attacks) or accidentally go offline without sending back the
messages, leading to missing patterns on the clients whose
messages are processed on the corresponding B-node. This
gives an attacker a chance to link the clients with certain B-
nodes. Towards this threat, we let the entry node proactively
patch the dropping pattern due to the lost connection with
some B-nodes. The patching algorithm is very similar to
the oblivious sub-batch padding algorithm in §4.2.3. Firstly,
the entry node appends one dummy message for each client
connecting to itself. This is feasible because the node can
record the list of connecting clients when it processes the
incoming messages in the very beginning. Secondly, the entry
node obliviously sorts the batch by receiver identifiers. Finally,
it linearly scans the sequence, marks which messages to send,
and obliviously compacts the batch. After the patching, we
can ensure that all clients connecting to the entry node will
receive one message in each round, no matter whether there
is any B-node churn or not. For efficiency, we only trigger
this patching algorithm when a connection loss occurs. Once
a B-node goes offline, entry nodes will ignore this node and
not assign messages to it in the next round (according to the
instructions from the coordinator). In this way, we make sure
that B-node churn will not cause severe service denial.
Entry node churn. This case is similar to the case where the
clients are blocked, but on a larger scale. The direct impact is
that the buddies of clients connected to this entry node will
fail to form a paired private label, and thus their messages will
be looped back (by other entry nodes). In this case, attackers
observe nothing but a predictable situation where a set of
clients cannot link to the churned entry node.

5 Analysis

We now show Boomerang and Boomerang+ achieve com-
munication pattern indistinguishability as we claimed in §2.
Thanks to the oblivious designs, we ensure that all connected
clients behave the same in every round, either exchanging
messages with a buddy or sending messages to themselves.
Theorem 5.1 Given oblivious comparison/assignment oper-
ations, an oblivious sort algorithm, and an oblivious patching
and swapping algorithm, Boomerang achieves communica-
tion pattern indistinguishability presented in Definition 2.1.

Proof sketch. We focus on the setting defined in Definition 2.1,
where m− 2 clients are compromised by the attacker. As

Boomerang operates in rounds, in view of the attacker, the
only way to distinguish the communication pattern of two
given clients is from the observation of memory access pat-
terns during the “obfuscated” message exchange procedure.
Thus, the security of Boomerang hinges on the oblivious al-
gorithms designed for proactive pattern patching and re-order
(in §3.3.2 and §3.3.3). As the re-order algorithm is essentially
the oblivious sorting [10], we mainly pay attention to proving
the obliviousness of proactive pattern patching, captured by
Lemma C.1 in Appendix C.1. When all involved algorithms
are oblivious, it is easy to derive that the attacker cannot iden-
tify whether two clients are communicating or not within each
round, except with negligible probability. For the fixed system
configuration, it follows that the attacker’s view will remain
the same across rounds. The full proof of the Theorem 5.1
can be seen in Appendix C.1.

We next show that Boomerang+ achieves the same com-
munication pattern indistinguishability as Boomerang, even
though multiple servers are introduced.

Theorem 5.2 Given a cryptographic hash function, obliv-
ious comparison/assignment operations, an oblivious sort
algorithm, an oblivious patching and swapping algorithm,
an oblivious sub-batch padding algorithm, and an oblivious
compaction algorithm, Boomerang+ achieves communication
pattern indistinguishability presented in Definition 2.1.

Proof sketch. Following the proof sketch in Theorem 5.1,
here we also focus on the settings where m− 2 clients are
controlled by the attacker. With multiple entry nodes and B-
nodes deployed, we will first show that Boomerang+ assigns
a message to each B-node uniformly due to the deployment of
the cryptographic hash function and our security-aware load-
balancing design. Then, we show that for the two targeted
clients, whether they are communicating or not, the probabili-
ties that their messages are assigned to one single B-node are
always equal. Thus, combined with Theorem 5.1, we have
that an attacker cannot identify whether two clients are com-
municating or not in Boomerang+. The detailed analysis can
be seen in Appendix C.2.

It is intuitive to see that Boomerang+ is horizontally scal-
able. See Appendix B for the scalability analysis.

6 Implementation and Evaluation

We implement Boomerang and Boomerang+ in about 4000
lines of C++ code. We build secure enclaves using the
framework of Intel SGX v2.16 on Intel SGX DCAP Driver
v1.14 and use Intel’s AVX-512 SIMD instructions for ba-
sic oblivious primitives. We build our oblivious algorithms
using the oblivious library from XGBoost [2]. Clients and
Boomerang(+) servers communicate using gRPC v1.35 on
asynchronous RPC mode over TLS. The Boomerang(+) pro-
totype is available online at https://github.com/CongGro
up/boomerang.

886 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/CongGroup/boomerang
https://github.com/CongGroup/boomerang

6.1 Evaluation Overview
We experimentally answer the following questions: 1) How
fast are Boomerang and Boomerang+? 2) Can Boomerang+
scale by adding servers? We highlight some results below:

• Boomerang achieves 99th percentile latency of 1.41 sec-
ond for 216 clients on one 16-core server. For space, we
present the results in Appendix D.

• Boomerang+ achieves 99th percentile latency of 615 ms
for 216 on 16 servers and 7.76 second latency for 220

clients on 32 servers, respectively.

Experiment setup. We evaluate Boomerang(+) on Tencent
Cloud M6ce VMs [83], with Intel Xeon Ice Lake processors
with Intel SGX support [45]. For Boomerang, we use one
M6ce.4XLARGE128 instance (16 vCPU, 128 GB of memory,
and 13 Gbps of network bandwidth). For Boomerang+, we
assign 12 M6ce.4XLARGE128 instances as entry nodes and 4
M6ce.4XLARGE128 instances as B-nodes by default. For com-
pleteness, we also evaluate three metadata-private communi-
cation systems: Pung (XPIR) [8], XRD [54] and Addra [4].
According to Azure pricing [65], instances with TEEs are
roughly twice as expensive as those without TEEs at the same
level of computing power. Therefore, to compensate for the
machine cost of the trusted hardware Boomerang uses, we
allocate twice the number of machines (or total CPU cores)
for these systems. For XRD, we use 32 M6.4XLARGE128 in-
stances (16 vCPU, 128 GB of memory, and 13 Gbps of net-
work bandwidth) to construct the chain-based architecture.
For Pung, we use one M6.4XLARGE128 instance and run 1/32
total traffic over it, following the setting in XRD [54]. Since
Pung is directly parallelizable, letting one server share 1/N of
the total traffic is the best performance it can possibly achieve.
For Addra, we use one S4.8XLARGE128 instance (32 vCPU,
128 GB of memory, and 11 Gbps of network bandwidth) as
the master and 30 M6.4XLARGE128 instances as the workers.
For clients in the four systems, we use one C5.26XLARGE368
instance (104 vCPU, 368 GB of memory, 36 Gbps of network
bandwidth) to run simulated clients, each sending/receiving
one RPC request at a time. We run instances in the same data
center to save bandwidth and simulate client-server round trip
latency of 100 ms by using Linux tc command. Results are
averaged 20 times for each experiment.
Parameters. We set the message size to 256 Bytes and the
private label to 256 bits. We set the conversation round to
12 seconds, according to the latency results from our exper-
iment on Boomerang+ dealing with 220 messages. We set
the batch size B according to Theorem 4.1, with the security
parameter λ = 128. For XRD, we construct 32 chains, each
of which consists of 30 machines. The length ensures that the
probability of the existence of a group of malicious servers
is less than 2−64 if 20% of the servers are malicious. We let
each client send 8 messages to 8 chains, following XRD’s
recommendations. For Pung, we use recursion with a depth
of 2 and set the bucket size to 64.

2^10 2^12 2^14 2^16 2^18 2^20
Number of Clients

10−1

100

101

102

99
th

 P
er

ce
nt

lie
 L

at
en

cy
 (s

)

0.12 0.14 0.15
0.18

0.24

0.39
0.62

1.27

2.61

5.48

10.09

0.75

1.25

2.24

3.98

7.33

14.19

27.76
55.52

101.25

212.99

415.74

0.55

1.17

2.78

7.4

22.53

72.32

281.86

0.55

0.93

2.41

6.02

20.04

56.52

174.55

743.24

0.11 0.11 0.12 0.13
0.17

0.25

0.45

0.83

1.56

3.12

5.88

0.12 0.14
0.18 0.26

0.4

0.78

1.41

2.83

6.45

13.03

26.8

Boomerang+
Boomerang
Pung (XPIR)
XRD
Addra
Non-private baseline

Figure 8: 99th percentile latency of Boomerang, Boomerang+,
and other baselines with a varying number of clients.

6.2 Boomerang+ Performance
Latency and throughput. Figure 8 depicts the latency of
Boomerang, Boomerang+, Pung (XPIR) [8], XRD [54], Ad-
dra [4], and a non-private baseline. Pung, XRD, and Addra
are the latest work achieving pairwise metadata-private com-
munication under cryptographic security, but with different
trust assumptions. XRD operates on fractional trusted servers,
and Addra and Pung operate on fully untrusted servers. We
notice that the latency results of Addra and XRD are higher
than those reported in their papers. This is perhaps because
we used fewer and less powerful machines. Besides, we only
ran Addra over up to 218 clients, as our testbed (one 32-core
master and 30 16-core workers) could not afford a workload
for clients more than 218.

Boomerang+ achieves 615 ms latency for 216 clients and
10.09 second latency for 220 clients. The throughput of
Boomerang+ reaches 85.4K messages per second under 16
machines. Compared to the prior systems based on crypto-
graphic primitives, Boomerang+ is significantly more efficient
thanks to leveraging the trusted hardware. For example, for
216 clients, Boomerang+ is 36× faster than Addra and 45×
faster than XRD. We also evaluate a non-private version of
Boomerang+ to show the cost of non-oblivious operations
(most of which is from the network operation cost). In this
baseline, we keep the same round-based design and traffic
transmission flow (i.e., the same two-layer network architec-
ture) but remove all security-enhancing operations in enclaves
(e.g., oblivious sort, padding, patching, etc.). Results (the grey
dotted line in Figure 8) indicate that the computational over-
head of the oblivious operations for metadata hiding over that
of other basic operations is small. Interestingly, compared to
Boomerang (the basic instantiation), Boomerang+ does not
have an overwhelming advantage when the clients are less
than 215. This is because Boomerang+ involves more obliv-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 887

2^16 2^17 2^18 2^19 2^20
Number of Clients

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ca

l P
ro

ce
ss

in
g

Ti
m

e
(s

)

Entry node (response preparation)
B-node (message processing)
Entry node (batch assignment)

Figure 9: Breakdown of Boomerang+ op-
eration costs.

2 6 10 14
Number of Entry Nodes

0

5

10

15

20

25

30

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (s

)

12.53
10.12 10.76 10.77 13.29

15.61

29.11

0.72 0.6 0.64 0.63 0.66 0.89 1.55

2^20 clients
2^16 clients

Figure 10: Latency with varying numbers
of entry and B-nodes (sum fixed to 16).

2 6 10 14
Number of Entry Nodes

30K

40K

50K

60K

70K

80K

90K

Th
ro

ug
hp

ut
 (m

sg
s/

s)

65.4K

75.9K

68.2K
69.7K

59.1K

51.5K

29.8K

74.1K

85.4K
79.7K 82.2K

81.4K

56.4K

34.0K

2^20 clients
2^16 clients

Figure 11: Throughput with varying num-
bers of entry nodes and B-nodes.

ious operations (e.g., the padding, oblivious sort, and com-
paction on the entry nodes) to take care of potential threats
due to the scalable design. When the clients scale to 220, the
benefits of horizontal scaling gradually show up: Boomerang+
runs 2.66× faster than Boomerang. In §6.3, we will further
show the horizontal scalability of Boomerang+; that is, it can
achieve lower latency by adding more servers.
Bandwidth cost. Boomerang+ requires one message per
round for both active and idle clients. On the server side,
Boomerang+ involves dummy paddings, and the overhead
is relatively small. According to our calculation, for a work-
load of 215 messages on one entry node to four B-nodes,
dummy messages account for less than 4% of all messages
(details about the padding overhead in Figures 13 and 14 in
Appendix B). Luckily, on Azure Cloud and many other clouds,
data transfer within one VPNet is free [63].

6.3 Microbenchmarks

Breakdown of Boomerang+ operational cost. To evaluate
the computational cost on entry nodes and B-nodes, we break
down Boomerang+ latency into three parts: 1) entry node
batch assignment, 2) B-node message processing, and 3) en-
try node response preparation. Figure 9 shows the processing
time for 8 entry nodes plus 8 B-nodes, each of which handles
(almost) an equivalent volume of messages. Besides, we only
record the local processing time on each node and eliminate
the network cost (e.g., RPC request and response with clients)
here. In this way, we can clearly see the computational over-
head at each stage. Note that the total operation latency is
smaller than the end-to-end latency presented in Figure 8.
This is because processing RPC requests is time-consuming
in our implementation, especially under a large number of
requests. Generally, facing the same volume, the entry nodes
(both the first and third stages) operate longer than B-nodes.
We conjecture that assigning a few more machines as entry
nodes than B-nodes with a fixed total number of machines
may save latency, as shown below.
Resource allocation on entry nodes and B-nodes. As
discussed before, resource allocation can be important for
Boomerang+’s overall performance. We have tested the la-

8 16 24 32
Number of 8-Core Servers

0

2

4

6

8

10

12

14

16

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (s

) 15.5

10.4

8.1 7.8

1.6
2.5

3.3
4.1

0.8 1.3 1.7 2.1

2^20 clients (fixed)
16K clients/server
8K clients/server

Figure 12: Latency with a varying number of servers.

tency and throughput under different allocations on entry
nodes and B-nodes using 16 machines in total, as shown in
Figures 10 and 11, respectively. We find that Boomerang+
performs the best over 12 entry nodes and 4 B-nodes. This
is because the operational cost is higher on entry nodes, and
assigning more entry nodes reduces the average workload on
each entry node. This observation is consistent with the break-
down results, where processing on entry nodes takes longer
than that on B-nodes. We also report the performance of dif-
ferent allocations given different total numbers of servers in
Appendix E.
Scaling by adding servers. With horizontal scalability,
Boomerang+ should, ideally, achieve the same level of latency
by adding more servers when handling more clients. In this
experiment, we adopt 32 8-core M6ce.2XLARGE64 instances
to test the scalability of Boomerang+ over more servers.

We first set a fixed total number of clients to 220 and gradu-
ally increase the number of servers from 8 to 32 to see how the
latency can be reduced by adding servers. We then evaluate
the scalability by proportionally adding servers and clients,
by keeping a fixed number of clients on one server group.
Specifically, we let every 8 servers handle 217 and 216 clients
(amortized to about 16K and 8K clients per server, respec-
tively). For different numbers of servers, we choose the best
ratio of entry nodes to B-nodes according to the supplemen-
tary resource allocation experiment (Appendix E). The ratio is
5:3 for 8 servers and 3:1 for 16, 24, and 32 servers. As reported
in Figure 12, the latency reduces from 15.5 seconds to 7.8 sec-
onds when Boomerang+ scales from 8 to 32 servers. Adding
more servers to decrease the amortized workload helps re-

888 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

duce latency when client size scales, but this also increases
the system dollar cost (as discussed in Appendix F). This is a
trade-off between performance and cost. For example, with
the same total number of clients, supporting an average of 8K
clients per server doubles the machine cost of supporting 16K
clients per server, while gaining a 2× speed-up. Fortunately,
the host cost for a 16-core SGX instance on Azure cloud is
only 1121 USD/month, which we believe is affordable when
amortized to 8K clients (0.14 USD/month per client).

7 Related Work

Mix-nets and follow-up enhancements. There has been
significant progress in metadata-private communication de-
signs recently. One category of results follows the concept
of mix networks (mix-nets) [21]. Based on that, recent re-
sults [15,16,52–54,56–58,72,87,88] have proposed a number
of noteworthy security and privacy enhancement strategies to
deal with powerful attackers, including: 1) batch processing of
messages from all clients in synchronous rounds to mitigate
traffic analysis threats [31, 39]; 2) carefully structuring pro-
tocols to reveal less observable variables (and thus exposing
reduced useful information) to attackers, with representative
examples of adopting private virtual addresses for obfuscated
message exchanges [54, 56, 87, 88]; 3) generating cover traf-
fic with calibrated parameters to obscure the communication
patterns among users (as well as users) [56, 87, 88]; 4) adding
verifiability to the message shuffling to defeat misbehaving
servers among the mix-nets [54, 56, 87]; and 5) designing
proactive self-recovering schemes (usually relying on the as-
sumption of honest servers) in the face of inadvertent user dis-
connections or even active network disruptions [54, 57]. One
latest effort has tried to shift the online burden of clients [11]
through oblivious delegation to untrusted proxy servers.

Boomerang’s design draws insights from these strategies
but differs from them on instantiations with hardware en-
claves. Trusting the enclaves enables Boomerang to use fewer
servers for traffic mixing with reduced latency. But the unique
enclave security context demands Boomerang to bring to-
gether tailored oblivious designs for message shuffling, hori-
zontal scaling, and proactive patching against active attacks.
Metadata-private messaging via cryptographic designs.
There have been cryptographic designs to facilitate metadata-
private communications. One category of results follows
the dining cryptographers network (DC-net) [22], which de-
mands broadcasting data linear to the size of the participating
clients in the anonymous communication at a high level [28].
Later systems [3, 29, 91] propose scalability improvement
and resilience designs against unreliable clients and untrusted
servers. Another category of cryptographic designs utilizes
private information retrieval [4,6,8], MPC [5] and distributed
point function techniques [3, 27, 37, 70] to facilitate oblivious
read / write to a database with private mailboxes, based on
which metadata-private messaging (and broadcast) system can

be constructed. Recently, Clarion [36] gives an MPC-based
shuffling design for anonymous communication.

Despite providing cryptographic security (sometimes even
under fully untrusted server [4, 8]), these systems do not eas-
ily scale to more than hundreds of thousands of users while
maintaining low latency and high throughput. The inherent
cryptographic operations also present unfavorable operational
dollar cost, which might yet be attractive for voluntary adop-
tions in practice.
Security-aware scaling of oblivious data stores. Recent
results have studied how to scale the oblivious data ac-
cess systems without leaking information about the data re-
quests [32, 89]. The key is an oblivious load balancer design
that distributes access batches independent of the input dis-
tribution (with security-aware paddings) and sets the batch
size using only public information. The entry-node design
in Boomerang+ is inspired by these generic observations.
Yet, with context-specific modeling and analysis, we have
derived the bound of the maximum batch size that best suits
our metadata-private messaging system, through a weighted
balls-into-bins game.
Enclave-based network systems. While enclave-based net-
work applications are many, e.g., SGX-Tor [49, 50], SGX-
middleboxes [35, 42, 74], to our best knowledge, usage of
enclaves is rarely attempted for metadata-private communi-
cations, except for one recent work DAEnet [80]. The focus
of DAEnet is different from Boomerang, as it tends to hide
the conversation route through a peer-to-peer infrastructure,
where each peer as a personal computer is assumed to be
equipped with an enclave. Unfortunately, this assumption
seems no longer in line with the industry movement [44].

8 Conclusion
We have presented Boomerang, a metadata-private messaging
system that leverages the readily available trust assumption on
hardware enclaves. Boomerang draws many insights from the
prior art and achieves efficient pairwise communication with
cryptographic security. Its technical instantiation involves tai-
lored oblivious algorithms for message shuffling, horizontal
scaling, and proactive resistance against active attacks. We
hope Boomerang’s comparably high efficiency and low oper-
ational cost could make metadata-private messaging systems
one step closer to mass adoption in practice.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Dr. Jay
Lorch, for their helpful and valuable feedback, and Tencent
Yunding lab for providing the Intel SGX cluster and gener-
ous technical support. This work was partially supported by
the NSFC under Grants U20B2049, U21B2018, 62202228,
and 62032021, the HK RGC under Grants N_CityU139/21,
RFS2122-1S04, C2004-21GF, R1012-21, and R6021-20F, and
the Natural Science Foundation of Jiangsu Province under
Grant BK20210330.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 889

References

[1] Confidential Computing Zoo repository. https://gith
ub.com/intel/confidential-computing-zoo. Ac-
cessed Sept. 2022.

[2] XGBoost repository. https://github.com/mc2-pro
ject/secure-xgboost. Accessed Sept. 2022.

[3] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blin-
der - scalable, robust anonymous committed broadcast.
In Proc. of ACM CCS, pages 1233–1252, 2020.

[4] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal,
Amr El Abbadi, and Trinabh Gupta. Addra: Metadata-
private voice communication over fully untrusted infras-
tructure. In Proc. of USENIX OSDI, 2021.

[5] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste,
and Thomas Zacharias. MCMix: Anonymous messag-
ing via secure multiparty computation. In Proc. of
USENIX Security, pages 1217–1234, 2017.

[6] Sebastian Angel, Hao Chen, Kim Laine, and Srinath
Setty. PIR with compressed queries and amortized query
processing. In Proc. of IEEE S&P, pages 962–979,
2018.

[7] Sebastian Angel, Sampath Kannan, and Zachary B.
Ratliff. Private resource allocators and their applica-
tions. In Proc. of IEEE S&P, pages 372–391, 2020.

[8] Sebastian Angel and Srinath T. V. Setty. Unobservable
communication over fully untrusted infrastructure. In
Proc. of USENIX OSDI, pages 551–569, 2016.

[9] Apache. Mutual Attestation: Why and How.
https://teaclave.apache.org/docs/mutual-at
testation/. Accessed Jan. 2023.

[10] Gilad Asharov, T.-H. Hubert Chan, Kartik Nayak, Rafael
Pass, Ling Ren, and Elaine Shi. Bucket oblivious sort:
An extremely simple oblivious sort. In Proc. of SOSA,
pages 8–14, 2020.

[11] Ludovic Barman, Moshe Kol, David Lazar, Yossi Gilad,
and Nickolai Zeldovich. Groove: Flexible metadata-
private messaging. In Proc. of USENIX OSDI, pages
735–750, 2022.

[12] Kenneth E. Batcher. Sorting networks and their appli-
cations. In Proc. of AFIPS, volume 32, pages 307–314,
1968.

[13] Petra Berenbrink, Tom Friedetzky, Zengjian Hu, and
Russell A. Martin. On weighted balls-into-bins games.
Theor. Comput. Sci., 409(3):511–520, 2008.

[14] Oliver Berthold and Heinrich Langos. Dummy traffic
against long term intersection attacks. In Proc. of PETS,
pages 110–128, 2002.

[15] Stevens Le Blond, David R. Choffnes, William Caldwell,
Peter Druschel, and Nicholas Merritt. Herd: A scalable,
traffic analysis resistant anonymity network for VoIP
systems. In Proc. of ACM SIGCOMM, 2015.

[16] Stevens Le Blond, David R. Choffnes, Wenxuan Zhou,
Peter Druschel, Hitesh Ballani, and Paul Francis. To-
wards efficient traffic-analysis resistant anonymity net-
works. In Proc. of ACM SIGCOMM, 2013.

[17] Alexandra Boldyreva, David Cash, Marc Fischlin, and
Bogdan Warinschi. Foundations of non-malleable hash
and one-way functions. In Proc. of ASIACRYPT, volume
5912 of Lecture Notes in Computer Science, pages 524–
541, 2009.

[18] Thomas Bourgeat, Ilia A. Lebedev, Andrew Wright,
Sizhuo Zhang, Arvind, and Srinivas Devadas. MI6: se-
cure enclaves in a speculative out-of-order processor. In
Proc. of MICRO, pages 42–56, 2019.

[19] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure: SGX cache attacks
are practical. In Proc. of WOOT, 2017.

[20] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page table-based attacks on
enclaved execution. In Proc. of USENIX Security, pages
1041–1056, 2017.

[21] David Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Commun. ACM,
24(2):84–88, 1981.

[22] David Chaum. The dining cryptographers problem:
Unconditional sender and recipient untraceability. J.
Cryptol., 1(1):65–75, 1988.

[23] Guoxing Chen and Yinqian Zhang. Mage: Mutual at-
testation for a group of enclaves without trusted third
parties. In Proc. of USENIX Security, pages 4095–4110,
2022.

[24] Weikeng Chen and Raluca Ada Popa. Metal: A
metadata-hiding file-sharing system. In Proc. of NDSS,
2020.

[25] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward
Dean, David Oswald, and Flavio D. Garcia. Voltpillager:
Hardware-based fault injection attacks against intel SGX
enclaves using the SVID voltage scaling interface. In
Proc. of USENIX Security, pages 699–716, 2021.

890 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/intel/confidential-computing-zoo
https://github.com/intel/confidential-computing-zoo
https://github.com/mc2-project/secure-xgboost
https://github.com/mc2-project/secure-xgboost
https://teaclave.apache.org/docs/mutual-attestation/
https://teaclave.apache.org/docs/mutual-attestation/

[26] David Core. We kill people based on metadata. The
New York Review, 2014.

[27] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières.
Riposte: An anonymous messaging system handling
millions of users. In Proc. of IEEE S&P, pages 321–
338, 2015.

[28] Henry Corrigan-Gibbs and Bryan Ford. Dissent: ac-
countable anonymous group messaging. In Proc. of
ACM CCS, pages 340–350, 2010.

[29] Henry Corrigan-Gibbs, David Isaac Wolinsky, and
Bryan Ford. Proactively accountable anonymous mes-
saging in verdict. In Proc. of USENIX Security, pages
147–162, 2013.

[30] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas.
Sanctum: Minimal hardware extensions for strong soft-
ware isolation. In Proc. of USENIX Security, pages
857–874, 2016.

[31] Debajyoti Das, Sebastian Meiser, Esfandiar Moham-
madi, and Aniket Kate. Anonymity trilemma: Strong
anonymity, low bandwidth overhead, low latency -
choose two. In Proc. of IEEE S&P, pages 108–126,
2018.

[32] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Nat-
acha Crooks, and Raluca Ada Popa. Snoopy: Surpassing
the scalability bottleneck of oblivious storage. In Proc.
of ACM SOSP, pages 655–671, 2021.

[33] Roger Dingledine and Nick Mathewson. Anonymity
loves company: Usability and the network effect. In
Proc. of WEIS, 2006.

[34] Roger Dingledine, Nick Mathewson, and Paul F. Syver-
son. Tor: The second-generation onion router. In Proc.
of USENIX Security, pages 303–320, 2004.

[35] Huayi Duan, Cong Wang, Xingliang Yuan, Yajin Zhou,
Qian Wang, and Kui Ren. LightBox: Full-stack pro-
tected stateful middlebox at lightning speed. In Proc. of
ACM CCS, pages 2351–2367, 2019.

[36] Saba Eskandarian and Dan Boneh. Clarion: Anonymous
communication from multiparty shuffling protocols. In
Proc. of NDSS, 2022.

[37] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Za-
haria, and Dan Boneh. Express: Lowering the cost of
metadata-hiding communication with cryptographic pri-
vacy. In Proc. of USENIX Security, pages 1775–1792,
2021.

[38] Electronic Frontier Foundation. Why metadata mat-
ters. https://ssd.eff.org/module/why-metadat
a-matters. Accessed Jan. 2023.

[39] Yossi Gilad. Metadata-private communication for the
99%. Commun. ACM, 62(9):86–93, 2019.

[40] Michael T. Goodrich. Data-oblivious external-memory
algorithms for the compaction, selection, and sorting
of outsourced data. In Proc. of SPAA, pages 379–388,
2011.

[41] Marcus Hähnel, Weidong Cui, and Marcus Peinado.
High-resolution side channels for untrusted operating
systems. In Proc. of USENIX ATC, pages 299–312,
2017.

[42] Juhyeng Han, Seong Min Kim, Jaehyeong Ha, and
Dongsu Han. SGX-Box: Enabling visibility on en-
crypted traffic using a secure middlebox module. In
Proc. of APNet, 2017.

[43] Alejandro Hevia and Daniele Micciancio. An
indistinguishability-based characterization of anony-
mous channels. In Proc. of PETS, volume 5134, pages
24–43, 2008.

[44] Intel. Intel SDP for desktop based on Alder
Lake S - 12th Generation Intel Core Processors.
https://edc.intel.com/content/www/us/en/de
sign/ipla/software-development-platforms/c
lient/platforms/alder-lake-desktop/12th-ge
neration-intel-core-processors-datasheet-v
olume-1-of-2/009/. Accessed Feb. 2023.

[45] Intel. Intel Xeon scalable platform built for most
sensitive workloads. https://www.intel.com/co
ntent/www/us/en/newsroom/news/xeon-scalabl
e-platform-built-sensitive-workloads.html.
Accessed Feb. 2023.

[46] Intel. SGX remote attenstation services.
https://api.trustedservices.intel.com/do
cuments/sgx-attestation-api-spec.pdf. Ac-
cessed Sept. 2022.

[47] Bastien Inzaurralde. The cybersecurity 202: Leak
charges against treasury official show encrypted apps
only as secure as you make them. The Washington Post,
2018.

[48] Van Bulck Jo, Daniel Moghimi, Michael Schwarz,
Moritz Lipp, Marina Minkin, Daniel Genkin, Yuval
Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.
LVI: Hijacking transient execution through microarchi-
tectural load value injection. In Proc. of IEEE S&P,
pages 54–72, 2020.

[49] Seongmin Kim, Juhyeng Han, Jaehyeong Ha, Taesoo
Kim, and Dongsu Han. Enhancing security and privacy
of Tor’s ecosystem by using trusted execution environ-
ments. In Proc. of USENIX NSDI, pages 145–161, 2017.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 891

https://ssd.eff.org/module/why-metadata-matters
https://ssd.eff.org/module/why-metadata-matters
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/009/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/009/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/009/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/009/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/009/
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-built-sensitive-workloads.html
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-built-sensitive-workloads.html
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-built-sensitive-workloads.html
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf

[50] Seongmin Kim, Juhyeng Han, Jaehyeong Ha, Taesoo
Kim, and Dongsu Han. SGX-Tor: A secure and practical
Tor anonymity network with SGX enclaves. IEEE/ACM
Transactions on Networking, 26(5):2174–2187, 2018.

[51] Thomas Knauth, Michael Steiner, Somnath Chakrabarti,
Li Lei, Cedric Xing, and Mona Vij. Integrating remote
attestation with transport layer security. CoRR, 2018.

[52] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas,
and Bryan Ford. Atom: Horizontally scaling strong
anonymity. In Proc. of ACM SOSP, pages 406–422,
2017.

[53] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan
Ford. Riffle: An efficient communication system with
strong anonymity. In Proc. of PETS, pages 115–134,
2016.

[54] Albert Kwon, David Lu, and Srinivas Devadas. XRD:
Scalable messaging system with cryptographic privacy.
In Proc. of USENIX NSDI, pages 759–776, 2020.

[55] Andrew Law, Chester Leung, Rishabh Poddar,
Raluca Ada Popa, Chenyu Shi, Octavian Sima, Chaofan
Yu, Xingmeng Zhang, and Wenting Zheng. Secure
collaborative training and inference for XGBoost. In
Proc. of PPMLP, pages 21–26, 2020.

[56] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to pas-
sive traffic analysis. In Proc. of USENIX OSDI, pages
711–725, 2018.

[57] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Yo-
del: Strong metadata security for voice calls. In Proc. of
ACM SOSP, pages 211–224, 2019.

[58] David Lazar and Nickolai Zeldovich. Alpenhorn: Boot-
strapping secure communication without leaking meta-
data. In Proc. of USENIX OSDI, pages 571–586, 2016.

[59] Alleyne Llanor. Enterprise end-to-end encryption is on
the rise. IT Business Edge, 2021.

[60] Nick Mathewson and Roger Dingledine. Practical traffic
analysis: Extending and resisting statistical disclosure.
In Proc. of PETS, pages 17–34, 2004.

[61] Jonathan R. Mayer, Patrick Mutchler, and John C.
Mitchell. Evaluating the privacy properties of telephone
metadata. Proc. Natl. Acad. Sci. USA, 113(20):5536–
5541, 2016.

[62] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-
los V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and
Uday R. Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. In Proc. of HASP,
page 10, 2013.

[63] Microsoft. Azure bandwidth pricing. https:
//azure.microsoft.com/en-us/pricing/detail
s/bandwidth/. Accessed Sept. 2022.

[64] Microsoft. Azure cloud messaging services.
https://azure.microsoft.com/en-us/solu
tions/messaging-services/#overview. Accessed
Sept. 2022.

[65] Microsoft. Azure virtual machine pricing.
https://azure.microsoft.com/en-us/pricin
g/details/virtual-machines/linux/#pricing.
Accessed Sept. 2022.

[66] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessan-
dro Chiesa, and Raluca Ada Popa. Oblix: An efficient
oblivious search index. In Proc. of IEEE S&P, pages
279–296, 2018.

[67] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. CacheZoom: How SGX amplifies the power of
cache attacks. In Proc. of CHES, pages 69–90, 2017.

[68] Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van
Bulck, Daniel Gruss, and Frank Piessens. Plundervolt:
Software-based fault injection attacks against Intel SGX.
In Proc. of IEEE S&P, pages 1466–1482, 2020.

[69] Netsfere. Netsfere pricing. https://www.netsfere
.com/Product/Free-Pro-Custom-Enterprise-Me
ssaging-Pricing. Accessed Sept. 2022.

[70] Zachary Newman, Sacha Servan-Schreiber, and Srini-
vas Devadas. Spectrum: High-bandwidth anonymous
broadcast. In Proc. of USENIX NSDI, pages 229–248,
2022.

[71] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel
Costa. Oblivious multi-party machine learning on
trusted processors. In Proc. of USENIX Security, pages
619–636, 2016.

[72] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebas-
tian Meiser, and George Danezis. The Loopix anonymity
system. In Proc. of USENIX Security, pages 1199–1216,
2017.

[73] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath
Setty, Stavros Volos, and Raluca Ada Popa. Visor:
Privacy-preserving video analytics as a cloud service.
In Proc. of USENIX Security, pages 1039–1056, 2020.

[74] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and
Sylvia Ratnasamy. SafeBricks: Shielding network func-
tions in the cloud. In Proc. of USENIX NSDI, pages
201–216, 2018.

892 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/solutions/messaging-services/#overview
https://azure.microsoft.com/en-us/solutions/messaging-services/#overview
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/#pricing
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/#pricing
https://www.netsfere.com/Product/Free-Pro-Custom-Enterprise-Messaging-Pricing
https://www.netsfere.com/Product/Free-Pro-Custom-Enterprise-Messaging-Pricing
https://www.netsfere.com/Product/Free-Pro-Custom-Enterprise-Messaging-Pricing

[75] Christian Priebe, Kapil Vaswani, and Manuel Costa. En-
claveDB: A secure database using SGX. In Proc. of
IEEE S&P, pages 264–278, 2018.

[76] Martin Raab and Angelika Steger. “balls into bins” -
A simple and tight analysis. In Proc. of International
Workshop on Randomization and Approximation Tech-
niques in Computer Science, volume 1518, pages 159–
170, 1998.

[77] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert
Bos, and Cristiano Giuffrida. Crosstalk: Speculative
data leaks across cores are real. In Proc. of IEEE S&P,
pages 1852–1867, 2021.

[78] Mark Russinovich, Manuel Costa, Cédric Fournet,
David Chisnall, Antoine Delignat-Lavaud, Sylvan Cleb-
sch, Kapil Vaswani, and Vikas Bhatia. Toward confi-
dential cloud computing. Commun. ACM, 64(6):54–61,
2021.

[79] Felix Schuster, Manuel Costa, Cédric Fournet, Christos
Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and
Mark Russinovich. VC3: Trustworthy data analytics
in the cloud using SGX. In Proc. of IEEE S&P, pages
38–54, 2015.

[80] Tianxiang Shen, Jianyu Jiang, Yunpeng Jiang, Xusheng
Chen, Ji Qi, Shixiong Zhao, Fengwei Zhang, Xiapu
Luo, and Heming Cui. DAENet: Making strong
anonymity scale in a fully decentralized network. IEEE
Transactions on Dependable and Secure Computing,
19(4):2286–2303, 2021.

[81] Jatinder Singh, Jennifer Cobbe, Do Le Quoc, and Zahra
Tarkhani. Enclaves in the clouds. Commun. ACM,
64(5):42–51, 2021.

[82] Emil Stefanov and Elaine Shi. ObliviStore: High perfor-
mance oblivious cloud storage. In Proc. of IEEE S&P,
pages 253–267, 2013.

[83] Tencent. Tencent Cloud instance type documenta-
tion. https://intl.cloud.tencent.com/documen
t/product/213/11518. Accessed Sept. 2022.

[84] Tencent. Tencent cloud instant messaging pricing. http
s://intl.cloud.tencent.com/products/im. Ac-
cessed Sept. 2022.

[85] Tencent. Tencent Cloud virtual machine pric-
ing. https://intl.cloud.tencent.com/pricing
/cvm/overview. Accessed Sept. 2022.

[86] Trillian. Trillian instant messaging pricing. https:
//trillian.im/pricing/. Accessed Sept. 2022.

[87] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Za-
haria, and Nickolai Zeldovich. Stadium: A distributed
metadata-private messaging system. In Proc. of ACM
SOSP, pages 423–440, 2017.

[88] Jelle van den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: Scalable private messag-
ing resistant to traffic analysis. In Proc. of ACM SOSP,
pages 137–152, 2015.

[89] Midhul Vuppalapati, Kushal Babel, Anurag Khandelwal,
and Rachit Agarwal. SHORTSTACK: Distributed, fault-
tolerant, oblivious data access. In Proc. of USENIX
OSDI, pages 719–734, 2022.

[90] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A. Gunter. Leaky cauldron on the dark
land: Understanding memory side-channel hazards in
SGX. In Proc. of ACM CCS, pages 2421–2434, 2017.

[91] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Dissent in numbers: Making
strong anonymity scale. In Proc. of USENIX OSDI,
pages 179–182, 2012.

[92] David Isaac Wolinsky, Ewa Syta, and Bryan Ford. Hang
with your buddies to resist intersection attacks. In Proc.
of ACM CCS, pages 1153–1166, 2013.

A Discussion and Limitations

Establishing trust on Boomerang. Boomerang relies on the
trust assumption on secure enclaves, which provide confi-
dentiality and integrity for data and codes. While trusting
a single enclave node can be done through the standard re-
mote attestation, like the one from Intel SGX [46], trusting
multiple-enclave applications would additionally involve mu-
tual attestation, which is necessary among interacting enclaves
to establish a trust relationship [23,79]. One common practice
is to rely on a trusted third party (TTP) to facilitate mutual
attestation [9]. The TTP can perform remote attestation with
each enclave individually and serve as a trusted anchor to
bootstrap the mutual trust among those enclaves. In the case
of Boomerang, we suggest following the above common prac-
tice for any client connecting to the system to establish trust
on Boomerang. The TTP that all clients need to rely on can
be the trusted developer of Boomerang or his/her delegated
server in a trusted domain [9, 23]. A very recent work has
proposed a new way for mutual attestation among enclaves
without relying on a TTP [23], which can be beneficial to the
trust establishment in the Boomerang system. In the future,
to mitigate the concern on the centralized trust of a single en-
clave vendor (e.g., Intel), we can further consider employing a
mix of enclaves from different vendors, e.g., Intel SGX, ARM

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 893

https://intl.cloud.tencent.com/document/product/213/11518
https://intl.cloud.tencent.com/document/product/213/11518
https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/pricing/cvm/overview
https://intl.cloud.tencent.com/pricing/cvm/overview
https://trillian.im/pricing/
https://trillian.im/pricing/

TrustZone, AMD SEV, etc., to distribute the trust, which is
also a trendy subject in recent literature [23].
Reduce client online burden. Metadata-private messaging
systems usually assume clients should always keep online
and send messages at regular rates to hide the real communi-
cation behavior [4,33,39,54,57,87,88]. To simplify the prob-
lem statement, Boomerang’s security analysis also follows
this assumption. Although Boomerang achieves acceptable
bandwidth cost, we acknowledge that this “always-online” re-
quirement may be a barrier to the practical use of Boomerang.
The latest work Groove [11] studied this issue and proposed
an oblivious delegation mechanism to reduce client online
burden, by introducing proxies between clients and mixnets.
To improve Boomerang’s client flexibility, a feasible way is to
integrate the oblivious delegation mechanism and the proxy
design with Boomerang, considering that Boomerang can be
an alternative to mixnets for message shuffling. We believe
our Boomerang can serve as a performant and secure backend
for metadata-private message shuffling.

B Balls into Bins

To analyze the overflow probability in Boomerang+, we intro-
duce the balls-into-bins game to estimate the probability that
a message may be dropped during batch distributions.

Balls-into-bins studies the allocation problem that throws
m balls into n bins by placing each ball into a bin chosen
independently and uniformly at random [76]. One natural
question in this area is to ask for the maximum number of
balls in any bin. According to prior art [13, 76], an interesting
result about the maximum number of balls in any bin prob-
lem is introduced below, which will be used to estimate the
maximum load bound of Boomerang+.

Lemma B.1 (Maximum load [76]) Let ℓ be the random
variable that counts the maximum number of balls in any
bin, if we throw m balls independently and uniformly at ran-
dom into n bins and m ≫ n(lnn)3. Then we have

Pr[ℓ >
m
n
+

√
2m lnn

n

(
1− 1

α

ln lnn
2lnn

)
] = 1− 1

nα
,

where α is a positive constant larger than 1.

Here α serves a role to ensure the tightness of the bound of the
maximum load [13, 76]. Next, we prove Theorem 4.1 below.

Theorem 4.1 For any set of m messages, n Boomerang nodes,
and a security parameter λ, satisfying m ≫ n(lnn)3 and
λ/ log2 n > 1, let B(m,n) be a function that outputs the max-
imum batch size B for each node in Boomerang+. Then the
probability of overflow is negligible in λ if we choose

B =

⌈
m
n
+4

√
m lnn

3n

(
1− 1

λ

ln lnn
2ln2

)⌉
.

Proof. Like most existing works, allocating a set of m mes-
sages to a given number of servers can be formalized as a
balls-into-bins game. But a bit different from their works, the
balls are weighted in Boomerang+ because messages with
the same private labels will be allocated to the same servers.
Suppose m1 is the number of messages with single-pattern
private labels (see §3.3.2 for possible causes), and m2 is the
number of messages with double-pattern private labels (i.e.,
regular messages from communicating pairs). Since assign-
ing messages with single-pattern private labels and assigning
messages with regular private labels are independent, the task
of allocating m messages can be separated as two subtasks: 1)
allocating m1 messages with single-pattern private labels; and
2) allocating m2 messages with double-pattern private labels.
It’s clear that m1 +m2 = m.

For the task of allocating m1 messages to n B-nodes, it can
be formalized as the game throwing m1 balls into n bins. For
the task of allocating m2 messages, a pair of messages with
the same regular private labels will be allocated to the same
B-node. Thus, we can tie m2 balls together in pairs (by their
double-pattern labels), and throw m2/2 times. Namely, it is a
m2/2-balls-into-n-bins problem. Let ℓ1 and ℓ2 be two random
variables that count the maximum messages assigned in any
B-node in the above two tasks, respectively. Let

Bm1 =
m1

n
+

√
2m1 lnn

n
(1− 1

α

ln lnn
2lnn

)

and

Bm2 =
m2

n
+2

√
m2 lnn

n
(1− 1

α

ln lnn
2lnn

).

According to Lemma B.1, we have

Pr[ℓ1 > Bm1] = 1− 1
nα

and Pr[ℓ2 > Bm2] = 1− 1
nα

.

To prevent overflow, the probability of a message being
dropped should be confined to a negligible function in the
security parameter λ. Thus we have

1− 1
nα

= 1− 1
2λ

⇒ α =
λ

log2 n
.

Let B′ = Bm1 +Bm2 , then

B′ =
m
n
+
(√

m1 +
√

2m2

)√2lnn
n

(
1− 1

λ

ln lnn
2ln2

)
. (2)

With the arithmetic-geometric mean inequality, we have that(√
m1 +

√
2m2

)
≤
√

2(
√

m1)2 +2(
√

2m2)2),

which attains its equality if and only if
√

m1 =
√

2m2.

894 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 8 12 16 20 24 28
 Number of B-nodes

100

102

104

106

108

110

112

114

M
es

sa
ge

 O
ve

rh
ea

d
(ra

tio
, %

)

100 100 100 100 100 100 100

103

105

106
108

109
111

112

102
103

104
106

106
107

108

Without padding
With padding, m=2^15
With padding, m=2^16

Figure 13: Message overhead (ra-
tio), which describes the ratio of
overall padded messages to real
messages, i.e., nB/m.

4 8 12 16 20 24 28
Number of B-nodes

1K

2K

3K

4K

5K

6K

7K

8K

9K

M
es

sa
ge

 O
ve

rh
ea

d
(n

um
be

r) 8.4K

4.3K

2.9K
2.2K

1.8K1.5K1.3K

Real
Padded

Figure 14: Message
overhead (number) un-
der 215 real messages
concretely.

Combined with the condition m1 +m2 = m, we can solve
for m1 = 2m/3 and m2 = m/3. Then

(
√

m1 +2
√

m2)≤

√√√√√2

(√2m
3

)2

+

(√
2m
3

)2
≤ 2

√
2m
3
.

(3)
Applying Eq. (3) to Eq. (2), it is easy to get

B′ ≤ m
n
+4

√
m lnn

3n

(
1− 1

λ

ln lnn
2ln2

)
≤ B.

Finally, we compute the probability that a message is dropped
on a server. It equals the probability that the maximum number
of messages allocated to a node is larger than the maximum
load. As mentioned, the above two subtasks are independent,
and thus we have

Pr[ℓ > B]≤ Pr[ℓ > B′] = Pr[ℓ > Bm1 +Bm2]

≤ 1−Pr[ℓ≤ Bm1 +Bm2]

≤ 1−Pr[ℓ1 ≤ Bm1 ∧ ℓ2 ≤ Bm2]

≤ 1− (1−Pr[ℓ1 > Bm1])(1−Pr[ℓ2 > Bm2])

≤ 2
nα

− 1
n2α

=
2
2λ

− 1
22λ

.

That is to say, the probability that a message is dropped (aka
overflow) is negligible in λ. This completes the proof.

In practice, we usually round the above bound up to an
integer that is greater but nearest to it. Figures 13 and 14
have demonstrated that our maximum batch size only incurs
marginal overhead (with extra paddings) on our horizontal
scaling design.
Scalability Analysis. We borrow the idea from XRD [54] to
define the scalability of the designed system. Specifically, we
say that a system is scalable if the number of requests that
one server needs to handle trends to zero when the number of
deployed servers increases to infinite. Without loss of gener-
ality, we start with one entry node that obliviously distributes

the incoming messages to a set of B-nodes in Boomerang+.
Let m and n denote the number of messages and deployed
B-nodes, respectively. According to Theorem 4.1, we know
that the upper bound of the number of messages sent to a

B-node server is m
n +4

√
m lnn

3n (1− 1
λ

ln lnn
2ln2). It is clear that

lim
n→∞

m
n
+4

√
m lnn

3n
(1− 1

λ

ln lnn
2ln2

) = 0.

Now let us consider having more entry nodes in the system.
It is intuitive to see that in Boomerang+ each entry node can
run independently and in parallel, which effectively eliminates
a potential bottleneck at a single entry node. Similar to the
observations in Snoopy [32], in Boomerang+, adding more
entry-nodes is not entirely free, because it would increase the
total amount of messages sent to each B-node server. Suppose
we have ν entry-nodes, n B-nodes, and each entry-node has
m incoming messages (out of the total ν×m messages) for
oblivious distribution. The upper bound of the total amount
of messages from ν entry-nodes sent to a B-node server is

ν× (m
n +4

√
m lnn

3n (1− 1
λ

ln lnn
2ln2)), which would still approach 0

when n → ∞. Thus, Boomerang+ can scale with more clients
and messages by adding more entry nodes and more B-nodes.

Our analysis mainly focuses on the heavy load cases, where
m ≫ n(lnn)3 generally holds. For example, for those deploy-
ments in practice with good anonymity, m at each entry node
can easily reach at least in the order of 105, while the over-
all workload can largely be handled with no more than n
= 100 B-nodes. If in the extreme cases where m becomes
small, we have some fallback options: 1) setting the maxi-
mum load B=m; or 2) adaptively falling back to single-server
Boomerang mode. We leave this adaptive switching design
as our future work.

Note that our scalability analysis does not give specific
configuration guidelines on how to add entry-nodes and B-
nodes, because this would be highly dependent on specific
requirements on performance, e.g., latency, throughput, etc.,
and cost, e.g., expenses of adding respective nodes, band-
width, etc. We would resort to the abstract configuration plan-
ner in Snoopy [32] as a good starting point when we push
Boomerang+ to a more practical realm in the future.

C Security Analysis

C.1 Proof of Theorem 5.1
As mentioned, due to the deployment of secure enclaves and
a round-based communication model in Boomerang, the only
thing left is to prove that memory access patterns in the obfus-
cated message exchange are oblivious. From the description
in §3, Boomerang is designed by combining several oblivious
algorithms. Here we prove the indistinguishability of mem-
ory access patterns in Boomerang in a modular way. First,
we demonstrate that our proactive pattern patching (denoted

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 895

RealPPP(pkts) : // pkts: the real input packets prepared by clients
Parse pkts as (pkt_1,. . . ,pkt_m), where m is the number of packets
is_mtt= False

for pkt in pkts do
is_prev_same = O_Equal(pkt.priv_label,Prev(pkt).priv_label) ▷ Step 3.1: Detect irregular pattern
is_next_same = O_Equal(pkt.priv_label,Next(pkt).priv_label)
is_next2_same = O_Equal(pkt.priv_label,Next(Next(pkt)).priv_label)
is_mtt= is_mtt and is_prev_same or is_next2_same ▷ Detect more-than-two pattern
pkt.R = O_Choose(is_next_same,Next(pkt).S,pkt.S) ▷ Step 3.2: Swapping and patching
pkt.R = O_Choose(is_prev_same,Prev(pkt).S,pkt.R)
pkt.R = O_Choose(is_mtt, pkt.S,pkt.R)

end for
IdealPPP(pkts

′) : //pkts′: the dummy input generated using public information on the number of packets and the packet size

Parse pkts′ as (pkt_1,. . . ,pkt_m), where m is the number of packets
is_mtt= False

for pkt in pkts′ do
is_prev_same = Sim_O_Equal(pkt.priv_label, Prev(pkt).priv_label) ▷ Step 3.1: Detect irregular pattern
is_next_same = Sim_O_Equal(pkt.priv_label, Next(pkt).priv_label)
is_next2_same = Sim_O_Equal(pkt.priv_label, Next(Next(pkt)).priv_label)
is_mtt = is_mtt and is_prev_same or is_next2_same ▷ Detect more-than-two pattern
pkt.R = Sim_O_Choose(Next(pkt).S,pkt.S) ▷ Step 3.2: Swapping and patching
pkt.R = Sim_O_Choose(Prev(pkt).S,pkt.R)
pkt.R = Sim_O_Choose(pkt.S,pkt.R)

end for

Figure 15: Real and ideal experiments for an oblivious proactive pattern patching algorithm

as PPP) algorithm built on existing oblivious algorithms is
oblivious according to Definition C.1 below. Then we prove
that our Boomerang system protects metadata privacy when
built on the oblivious PPP. We first give the definition of a
secure PPP algorithm.

Definition C.1 The proactive pattern patching algorithm
PPP is secure if for any PPT attacker, there exists a PPT
simulator such that

|Pr [RealPPP(λ) = 1]−Pr [IdealPPP(λ) = 1]| ≤ negl(λ), (4)

where λ is the security parameter, RealPPP and IdealPPP are
experiments defined in Figure 15.

Below we show that our PPP algorithm satisfies the above
definition by proving the RealPPP and IdealPPP experiments
are indistinguishable.

Lemma C.1 Given the oblivious primitives for comparison
and assignments O_Choose and O_Equal, the proactive pat-
tern patching protocol described in §3 and formally defined
in Figure 15 is also an oblivious algorithm.

Proof. To simplify the proof and our description of the simu-
lator, we assume that the packets (aka encrypted messages)
received by the server are indistinguishable by size and traffic
patterns, which the attacker cannot exploit to distinguish the

memory access patterns. Then we need to demonstrate that
the memory accesses of the simulated experiment IdealPPP
that takes public information as input are indistinguishable
from those of the real experiment RealPPP. As shown in Fig-
ure 15, we leverage the following oblivious building blocks
in the RealPPP experiment.

• O_Choose(cond,a,b): If cond= True, it outputs value
a. Otherwise, it outputs value b.

• O_Equal(a,b): Obliviously assigns True to the output
if a equals b. Otherwise, it outputs False.

The simulated experiment IdealPPP is built on top of simula-
tions of the above oblivious building blocks.

• Sim_O_Choose(a,b): Simulates choosing from (a,b) as
the output, given a hidden bit.

• Sim_O_Equal(a,b): Simulates testing whether a equals
b and outputs True if they are equal.

With these building blocks, we show that the memory ac-
cess patterns in the real and ideal experiments defined in Fig-
ure 15 are indistinguishable. Specifically, if an attacker can
distinguish the IdealPPP and RealPPP, then the distinguisha-
bility must occur in at least one of the steps. But this hap-
pens only with negligible probability because: 1) the simula-
tor uses the public information to simulate indistinguishable

896 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

dummy input from real input (i.e., the number of packets
m and the packet size), and accordingly follows the same
for loop structure as the RealPPP; 2) for each iteration in-
side the for loop structure, the security of oblivious building
blocks O_Choose and O_Equal ensures that the correspond-
ing simulations Sim_O_Choose and Sim_O_Equal produce
indistinguishable memory access patterns; and 3) the oper-
ations on direct assignment to is_mtt in both IdealPPP and
RealPPP are also indistinguishable. This completes the proof
of Lemma C.1.
Proof of Theorem 5.1. Based on the fact that the proactive
pattern patching (PPP) algorithm is oblivious, we continue to
prove Theorem 5.1 under the security notion defined in Defi-
nition 2.1. Let b and b′ be the choices of the challenger and
the attacker A , respectively, in the experiment EXP defined
in Definition 2.1.

From the attacker’s view, as all messages are encrypted,
the only way to distinguish the communication patterns of
two given clients is by observing memory access patterns
during the “obfuscated” message exchange procedure. We
assume all involved oblivious algorithms are computationally
indistinguishable, except with negligible probability in λ (aka
negl(λ)). As seen, Boomerang leverages an oblivious proac-
tive pattern patching algorithm (as shown in Lemma C.1)
and an oblivious sorting algorithm [10]. Let “M fails” denote
the event that the memory access patterns of at least one of
the algorithms mentioned above fail to achieve obliviousness,
which happens only with negligible probability in λ. Thus,
we have

AdvEXP,A =
∣∣Pr[b = b′]−Pr[b ̸= b′]

∣∣
≤ max{Pr[b = b′,M fails],Pr[b ̸= b′,M fails]}
= max{Pr[b = b′|M fails],Pr[b ̸= b′|M fails]} ·Pr[M fails]
≤ Pr[M fails] = negl(λ).

The above shows that the attacker cannot identify whether
two clients are communicating or not within each round, ex-
cept with negligible probability. For the fixed system configu-
ration across rounds, it is easy to see that the attacker’s view
will remain the same across rounds. This completes the proof
of Theorem 5.1.

C.2 Proof of Theorem 5.2
The proof of Theorem 5.2 is analogous to that of Theorem 5.1.
The only difference between Boomerang and Boomerang+ is
that Boomerang+ employs entry nodes as load balancers to
distribute batches of messages from all clients to a group of
B-nodes for message exchange. Thus, the key is to show that
this distribution procedure is oblivious.

We assume that the system configuration is fixed across
rounds, including the number of entry nodes, B-nodes, and
connected clients to each entry node. First, we show that
Boomerang+ assigns a message to each B-node uniformly.

Note that Boomerang+ assigns a message to each B-node
by computing br_id = Hk(priv_label||round_num)%n,
where H is a keyed cryptographic hash function, and n
refers to the number of B-nodes. According to the classical
simulation-based security definition of a keyed hash func-
tion [17], the result of a hash function and a random value is
computationally indistinguishable. It implies that the distribu-
tion of br_id is uniform, and further confirms that allocating
messages to different B-nodes can indeed be formulated as
a random balls-to-bins assignment. Therefore, we can apply
the batch size derived from Theorem 4.1 to set up the batch
structure without overflow. Moreover, the batch size is deter-
mined by the public information (as shown in §4.2.3) only,
independent of the input.

Based on the above initial result, it follows that the proba-
bility that a message is assigned to any individual B-node is
always equal. Without loss of generality, we assume that the
number of deployed entry nodes is ν. Let c be an encrypted
message sent by a client and e be its refreshed copy by the
entry node. The probability for the message assigned to the
t-th B-node is

Pr[c → Bt] =
ν

∑
j=1

Pr[c → E j] ·Pr[e → Bt] =
1
n
,

where Bt denotes the t-th B-node, E j denotes the j-th entry
node, and c → Bt denotes that message c is assigned to Bt
finally. This result holds as long as no empty B-node exists
during one communication round, which is guaranteed by
our uniform message assignment and oblivious sub-batch
padding algorithms. Our oblivious sub-batch padding algo-
rithm is largely based on existing building blocks, including
the oblivious padding algorithm in Snoopy [32]. Thus, we
omit the proofs for its obliviousness here. With the above
results, we can obtain that messages from any two clients i
and j, whether they are communicating or not, are assigned
to the same B-node t with the same probability 1/n2. In other
words, whether the two clients are communicating or not, their
message assignment from entry node(s) to a single B-node is
indistinguishable from the attacker.

Now let’s focus on messages assigned to each individual
B-node. According to Theorem 5.1, an attacker cannot iden-
tify whether any pair of clients are communicating or not at
a single-server Boomerang. Thus, it follows that at each in-
dividual B-node in Boomerang+, an attacker cannot identify
whether any pair of messages are from two communicating
clients or not. It holds in any single round. As the assignment
mapping (through the keyed hash function H) is refreshed
for every round, it is easy to see that the attacker’s view will
remain the same across rounds, with a fixed system configura-
tion. It ensures the indistinguishability of whether two clients
communicate or not in Boomerang+.

Finally, we need to prove that the memory access patterns in
Boomerang+ are oblivious. To achieve such obliviousness, we
build Boomerang+ on top of a group of oblivious primitives

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 897

Table 1: Latency with varying numbers of entry nodes (#E) and B-nodes (#B). The best ratios with the lowest latency are marked
in bold.

#E #B Latency #E #B Latency #E #B Latency #E #B Latency

8 Servers 7 1 20.10 6 2 16.08 5 3 15.54 4 4 16.19
3 5 20.57 2 6 28.71 1 7 58.47

16 Servers 14 2 12.19 12 4 10.37 10 6 10.45 8 8 10.71
6 10 11.65 4 12 17.16 2 14 27.54

24 Servers
22 2 12.62 20 4 10.18 18 6 8.09 16 8 9.59
14 10 8.41 12 12 9.11 10 14 9.46 8 16 10.71
6 18 12.12 4 20 14.95 2 22 27.81

32 Servers

30 2 11.77 28 4 9.35 26 6 8.45 24 8 7.76
22 10 8.26 20 12 8.41 18 14 8.78 16 16 8.23
14 18 8.75 12 20 8.99 10 22 9.27 8 24 9.83
6 26 12.47 4 28 16.49 2 30 28.46

2^10 2^12 2^14 2^16 2^18 2^20
Number of Clients

10−1

100

101

99
th

 P
er

ce
nt

lie
 L

at
en

cy
 (s

)

0.12 0.14
0.18

0.26
0.4

0.78

1.41

2.83

6.45

13.03

26.8

Figure 16: 99th percentile latency of Boomerang.

including oblivious comparisons, assignments, compaction,
and sorting functions. Based on these oblivious primitives,
we develop the oblivious batch generation and distribution
procedures, and those based on the oblivious PPP algorithm
with slight modifications in Boomerang+, just like the way
we develop Boomerang. Thus, we do not spend more space
repeating that their algorithms are oblivious. By the above two
derivations, we show that Boomerang+ is secure according to
Definition 2.1. This completes the proof.

D Boomerang Performance

Latency. We evaluate Boomerang on one 16-core server and
test the latency over up to 220 clients. Figure 16 shows the
99th percentile latency of Boomerang with a varying number
of clients. For 215 clients, the latency is 778 ms, which is
also enough for VoIP communication. Notably, Boomerang
achieves 1.41 second latency for 216 clients using only one
server. We can observe that the latency increases (almost) lin-
early with the number of clients (messages). There are mainly
two factors: 1) with the increasing of clients, the server needs
to handle more RPC requests; and 2) the most expensive
computation in enclaves is oblivious sort (twice), which is of

O(n(logn)2) complexity. When the client number increases
to 220, the latency reaches 26.8 seconds, which is no longer
suitable for latency-sensitive applications. The increased la-
tency also shows the need for horizontal scalability.
Bandwidth cost. Boomerang requires each client to send
a message of 256 Bytes every round. It occupies 512 Bps
bandwidth for each client if we set a 500 ms round. If the client
keeps online on Boomerang for one month, the bandwidth
cost is 2.47 GB (including sending and receiving data), which
we believe is affordable for ordinary users.

E Supplementary Experiments for Resource
Allocation

Recall that in §6.3 we show the best resource allocation for
entry nodes and B-nodes with 16 servers that can achieve the
lowest latency. This section further reports the best allocation
with 8, 16, 24, and 32 servers. We have exhaustively tried
different combinations of entry nodes and B-nodes for each
set of servers and let them handle 220 messages. The results
are reported in Table 1. The best allocation for entry nodes
and B-nodes for 8, 16, 24, and 32 servers are 5:3, 12:4, 18:6,
and 24:8, respectively. Note that this is a brute-force way to
get the best ratio. A possibly more efficient way to configure
the system is to design a configuration planner [32], which
we will leave as our future work.

F System Dollar Cost

We here report the estimated cost in US dollars of running
Boomerang+ servers. Leaving human-operation costs aside,
we calculate the total cost for hosting Boomerang+ servers
and data egress costs and show how much each user would
(at least) pay for joining Boomerang+ for one month.

898 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Server cost. Since the Tencent Cloud machines we use did
not announce the international pricing for M6ce.4XLARGE124
[85], we alternatively choose Standard_Dc16s_v3 instances
from Azure Cloud for price estimation, which have the same
properties as M6ce.4XLARGE128. According to the prices
for Azure Cloud VMs [65], the host (machine) cost is 1121
USD/month. The cost varies with different performance goals.
For example, running 16 instances for 216 clients achieves
615 ms latency, which results in $0.274 amortized monthly
cost per client. In the scaling experiment, Boomerang+ runs
32 8-core instances for 220 clients, resulting in $0.017 amor-
tized cost and 7.76 second latency based on the price for the
alternative instance Standard_Dc8s_v3 (560 USD/month).
Ideally, adding more servers will further reduce the latency,
but it will also increase the overall server cost.
Bandwidth cost. We assume that each client sends a 256 Byte
message every 500 ms, adding up to 1.24 GB data ingress to
(or egress from) the server if the client stays online for one
month. To save data transfer costs, we can set the servers in
the same availability zone, within which the transferred data is
free of charge. If the clients and servers transfer data between
different continents, the price is at most 0.16 USD/GB [63].
Then, the server-side bandwidth cost is 0.198 USD/month
for each client. Overall, we believe Boomerang+ is afford-
able for clients while maintaining good privacy and high-
performance services. Its promising cost is comparable to
non-private cloud-based IM services today [64, 69, 84, 86].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 899

Hamilton: A High-Performance Transaction Processor
for Central Bank Digital Currencies

James Lovejoy
Federal Reserve Bank of Boston

Madars Virza
MIT Media Lab

Cory Fields
MIT Media Lab

Kevin Karwaski
Federal Reserve Bank of Boston

Anders Brownworth
Federal Reserve Bank of Boston

Neha Narula
MIT Media Lab

Abstract
Over 80% of central banks around the world are inves-
tigating central bank digital currency (CBDC), a digital
form of central bank money that would be made available
to the public for payments. We present Hamilton, a trans-
action processor for CBDC that provides high throughput,
low latency, and fault tolerance, and that minimizes data
stored in the transaction processor and provides flexibil-
ity for multiple types of programmability and a variety
of roles for financial intermediaries. Hamilton does so
by decoupling the steps of transaction validation so only
the validating layer needs to see the details of a transac-
tion, and by co-designing the transaction format with a
simple version of a two-phase-commit protocol, which
efficiently applies state updates in parallel. An evaluation
shows Hamilton achieves 1.7M transactions per second
in a geo-distributed setting.

1 Introduction
Central banks are increasingly investigating general-
purpose central bank digital currency (CBDC), a digital
currency that would be broadly available to users mak-
ing retail payments, could provide interoperability and
programmability depending on how it is designed, and,
because it would be a direct liability of the central bank,
reduces risk [7, 8, 14, 15, 19, 22, 23, 24, 37, 47, 65].

Figure 1 summarizes the different properties of a
CBDC as compared to other forms of payment instru-
ments [9]. A CBDC could help address public pol-
icy objectives such as ensuring public access to cen-
tral bank money, fostering payment competitiveness and
resilience, supporting financial inclusion, and offering
privacy-preserving digital payments [3, 7, 15, 42, 70].

Technical designs for CBDC vary depending on spe-
cific policy requirements and goals. For example, a CBDC
could provide low value payments in an anonymous,
peer-to-peer fashion, or be distributed and accessed only

The views expressed in this paper are those of the authors and do not
necessarily reflect the views of the Federal Reserve Bank of Boston or
the Federal Reserve System.

through accounts at approved financial institutions. To
better inform policy discussions, central banks are rec-
ognizing the importance of technical experimentation in
understanding the implications and trade-offs of different
CBDC models and other policy choices. Importantly, the
feasibility, operating performance and impact of different
CBDC policy choices are dependent upon the technical
design of the underlying transaction processor.

This paper presents a collaboration with a major cen-
tral bank in the design of Hamilton, a high-performance
transaction processing system flexible enough to support
experimentation with different choices around data stor-
age, programmability, and intermediation. Hamilton pro-
cesses payments from users (or financial institutions) who
address and sign transactions using cryptographic keys
stored in digital wallets. Wallets submit transactions to the
Hamilton transaction processor to move unspent funds—a
representation of money containing an amount and the
rules required to spend it (in our case, a public key indicat-
ing ownership). Our initial goals (set by the central bank)
were a centralized transaction processor for CBDC with
high performance and geo-replicated resiliency. Three
additional goals emerged within the collaboration:

Intermediary and custody flexibility. An open question
in CBDC design is that of the role of the central bank
and other intermediaries, and determining how (if at all)
CBDC access can be moderated. These roles will likely
vary by jurisdiction, due to policymaker decisions and
consumer preferences. Currently, people who want to dig-
itally store funds and make payments must open accounts
with financial institutions or payment service providers
which are linked to the identity of the owner and are re-
sponsible for processing transactions on behalf of their
customers, interfacing with payment networks, and safe-
guarding customer funds. In contrast, cash can be held
directly by the public and used to conduct transactions
without the need for a financial institution to process the
payment on their behalf. A CBDC could be designed to
offer similar functionality to cash and provide users the
ability to spend their own funds without the need for an
account provider or custodian to generate transactions,
it could be designed more like existing digital payment

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 901

Property Cash Bank deposits Cryptocurrency Central bank reserves CBDC
Electronic
Central-bank issued
Universally accessible

Figure 1: Table describing the properties of various monetary instruments, summarized from Graph 3 in [9].

systems, or it could even support a combination of the
two models [17].

Interoperability and programmability. Many payment
processor systems provide high throughput and low la-
tency, but unfortunately, they generally provide limited
application programming interfaces (APIs) and do not
natively interoperate. For example, if a Venmo user wants
to pay a user who only has Square Cash, they would need
to transfer their funds outside the application into bank
accounts and send the money via traditional banking rails
(inside the United States using ACH or FedWire; across
borders, even in the same currency, using SWIFT and
correspondent banking), which incurs bank and applica-
tion fees and could take days to complete. Central bank
Real-Time Gross Settlement Systems (RTGS), or instant
payment systems, help reduce interoperability latency but
do not preclude the requirement for multi-step transfers
between applications and bank accounts (where fees are
charged) or provide interoperability and programmability,
especially between payment applications. Contrast these
systems with cryptocurrencies which do not scale well but
natively provide interoperability and programmability.

Preserving privacy and minimizing data retention.
There is strong user demand for financial privacy [37]
and central banks would prefer not to collect and store
user-identifying information or sensitive transaction de-
tails.
Challenges. Building Hamilton to achieve these goals re-
quired addressing the following challenges. First, we had
to build a flexible platform that could support multiple de-
signs without explicit policy requirements or well-defined
tradeoffs. For example, it is unclear what balance to target
between end-user privacy and data storage requirements
for users at the central transaction processor. We take a
layered approach with a design where additional function-
ality can be built outside the core transaction processor.
Our design supports a range of intermediary roles includ-
ing one where users custody their own funds. Hamilton
does not store personally identifiable information (PII),
transaction addresses or amounts in the core of the system.

The second challenge is in providing strong consis-
tency, geographic fault tolerance, high throughput, and
low latency, all with a workload that consists of 100%
read/write, multi-server transactions. Since Hamilton is
unaware of the mapping between users and unspent funds,
we cannot rely on user locality for partitioning, which is
often exploited by traditional database systems to make
workloads predominantly single-partition transactions.

Key ideas. We address these challenges in Hamilton
by carefully co-designing the transaction format, data
model, and distributed transaction commitment proto-
col to achieve the above goals while getting good per-
formance. This involves three parts: First, we decouple
transaction validation from fund existence checks; only
user wallets and a validating layer see transaction details.
Hamilton only ever stores funds as opaque 32 byte hashes,
in an Unspent funds Hash Set, or UHS [41] (§3.3). This
hides details about the funds (like amounts and addresses)
from the UHS storage, reduces storage requirements, and
creates opportunities to improve performance, described
below.

Next, we next create a UHS-designed transaction for-
mat (§3.4), which is extensible and secure against double
spends, inflation attacks, replay attacks, and malleability,
and also has the benefit of supporting future layer 2 de-
signs for even higher throughput in the future. It borrows
from Bitcoin’s transaction format but is designed to be
validated without looking up data from the UHS, which
we term transaction-local validation.

Our design choices let us exploit payment application
semantics to create a streamlined commit protocol for dis-
tributed transactions. In particular, our transaction format
guarantees that Hamilton knows the read and write sets
for every valid transaction before its execution; similarly,
our cryptographically-generated UHS identifiers (hashes)
are globally unique. These two properties guarantee that
Hamilton does not need any reads or locks before commit
time, and that valid transactions (those that do not try to
spend the same funds twice) will never conflict.

Our evaluation shows that co-design achieves improved
performance over more general, commercial databases.
We measured Hamilton’s throughput at 1.7M txns/sec,
26× that of PostgreSQL on the same workload, though
with higher latency (§6). We also compare against Ro-
lis [64], a replicated in-memory database, and show that
Hamilton achieves close performance, even though it
stores data on disk for whole system crash recovery.

The UHS design, in combination with our transaction
format, also affords us substantial flexibility. We believe
that the abstractions our system provides and the assump-
tions it makes are compatible with most ideas underly-
ing certain types of programmability and cryptographic
privacy-preserving designs [10, 52, 69, 71]. In addition,
we can upgrade the scripting language or add a cryp-
tographic privacy-preserving protocol (even supporting
multiple concurrent designs), as long as they are com-

902 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

patible with 32-byte hash storage, without needing any
changes to the backing UHS, making it possible to defer
decisions on specific programmability features. However,
our design choices have implications on what data users
or intermediaries need to store in their wallets and what
messages are required to confirm a payment (§3.7).

In summary, the contributions of this paper are the
following:

• Hamilton, a flexible transaction processor design that
supports a range of models for a CBDC and mini-
mizes data storage in the core transaction processor
while supporting self-custody or custody provided
by intermediaries

• A transaction format and implementation for a UHS
which together support modularity and extensibility

• An implementation and evaluation which shows
good performance in comparison to centralized
databases. Hamilton and the benchmarks are avail-
able at https://github.com/mit-dci/opencbdc-tx.

2 System model and security goals
This section describes the actors in Hamilton, their roles,
and the security properties we want Hamilton to satisfy.
In our description, we make the simplifying assumption
that users directly custody their money without help of
an intermediary. Hamilton supports intermediaries, and
adding an intermediary would not change the core security
properties of the transaction processor.

2.1 Actors
We distinguish three types of actors: the transaction pro-
cessor, the issuer, and users. The transaction processor
keeps track of funds which are owned by different users.
Funds are a representation of money and as such refer
to an amount of money (such as dollars) and a condition
that must be satisfied to move this amount (say, to another
user or users). The funds enter and exit the system through
acts of the issuer who can mint and redeem funds to add
and remove them from the transaction processor, respec-
tively. Users can execute transfer operations (transactions
or payments) that atomically change the ownership of
funds, with the requirement that the total amount of funds
stored in the transaction processor has not changed. A user
does so by submitting their transaction to the transaction
processor over the Internet, which the processor then vali-
dates and executes. Figure 2 shows the high-level system
model and potential communication channels between
users and the transaction processor. Users run wallet soft-
ware (e.g. on mobile phones or specialized hardware in
smart cards) to manage cryptographic keys, track funds,
and facilitate transactions. An important piece of future
work is preventing spam and denial of service attacks.

Sender wallet
Alice: $20 Transaction

processor

Stores all funds and
executes transfersRecipient wallet

Bob: $0

Transaction
requests and
confirmations

Figure 2: Data flows between all participants in a transac-
tion.

2.2 Threat model
Our goal is that each user’s funds and the integrity of
the monetary system are safe from interference of an
external actor. We assume that the transaction processor
is faithfully executing our design, that users’ wallets are
able to maintain secret keys, and that the users are able to
use a secure channel to communicate with the transaction
processor. Our design is a cryptographic system so we
assume the security of standard cryptographic primitives
such as hash functions and digital signatures.

We aim to protect against an adversary who can freely
interact with the system as a regular user, and as such
make no additional assumptions about an adversary’s ca-
pabilities or behavior. For example, the adversary is free
to create arbitrarily many identities and wallets, receive
funds from other users, and engage in elaborate transac-
tion patterns. Our designs are multi-server systems and
the adversary is free to attempt concurrent attacks against
all externally-exposed parts of the system.

2.3 Data representation
The two most common ways to represent funds are the
account balance model and the UTXO model.

Account model. Traditional payment systems and sev-
eral cryptocurrencies, like Ethereum [73] use an account
model where the system stores unspent funds as balances
associated with unique account identifiers. Users make
payments by issuing requests to the transaction processor
to move balance to another identifier (decrementing their
balance and incrementing another identifier’s balance).

UTXO model. Another choice is to track discrete pieces
of outstanding funds without explicitly consolidating
them in a single balance. For example, Bitcoin maintains
an append-only ledger of accounting entries (sometimes
called “coins”) each of which records a value and condi-
tions to spend the funds. Furthermore, each entry is either
marked as “spent” or “unspent”. Users make payments
by issuing transactions that mark some entries (inputs)
as spent, and appends new unspent entries (outputs) to
the ledger. In Bitcoin these are called UTXOs or Unspent
Transaction Outputs. Importantly, UTXOs are never mod-
ified and must be spent in their entirety. Therefore, Alice
wishing to use a $10.00 UTXO to send $4.99 to Bob

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 903

https://github.com/mit-dci/opencbdc-tx

will create a transaction with two outputs: a $4.99 out-
put meant for Bob and a $5.01 change output meant for
herself.

We derive Hamilton’s data model from the UTXO
model for two reasons: First, because it offers greater
transaction execution parallelism; inputs can only be spent
once, and so in the common case there should never be
conflicting transactions, unlike concurrent transactions
against a popular account. We leverage this in our data
storage design (§3.4). Second, UTXOs are the leading
choice for privacy designs [10, 16, 26, 45, 48, 69, 71]
(including for those deployed on top of account-based cur-
rencies [61, 72]). UTXOs can be less intuitive to the user,
but note that the transaction processor’s internal data rep-
resentation is distinct from the user interface; wallets can
still present a user account balance on top of the UTXO
data representation.

2.4 System operations
Logically, Hamilton maintains a record of all unspent
funds in existence and in order to spend funds, they must
be present in the set of unspent funds. Our system supports
three kinds of operations: Mint, Redeem, and Transfer,
all of which are atomic and serialized.
Minting and redeeming. The Mint operation creates
new unspent funds and adds these to the set of unspent
funds, whereas the Redeem operation removes unspent
funds from the system, making them unspendable. These
operations also have semantics outside Hamilton: minting
would normally correspond to funds in other forms of
central bank money being set aside for use in Hamilton,
whereas redeeming would make them available again.
Value transfers. The Transfer operation both consumes
unspent funds and creates new unspent funds. This trans-
action is specified by a list of funds to be spent (inputs),
a list of new funds to be created (outputs), and a list of
witnesses (i.e., digital signatures) authorizing spends of
each input. A successful Transfer completely consumes
its inputs; these are removed from the system and cannot
be used again, whereas the new outputs are available to
be used as inputs to other Transfer or Redeem operations.
No editing of unspent funds. The set of unspent funds
can only be modified via the above three operations, and
funds tracked in the system cannot be modified to change
their ownership or value.
Payment discovery. In public blockchains users can
search the publicly available history of transactions to
see if they have received payment. Transaction history in
Hamilton is not public, and the sender must give the recip-
ient the information about newly created unspent funds so
that the recipient can further spend them. To ensure users
know a Transfer is complete and has been applied, the
transaction processor is also responsible for responding
to user queries about the existence of unspent funds.

2.5 Security properties
In brief, the system must faithfully execute transactions,
ensuring that each was authorized by the owner of the
input funds, and safeguard that transactions do not disturb
the overall balance of funds (outside of minting and re-
demption). Hamilton’s transaction processor ensures this
by satisfying the following four security properties.

Authorization. Hamilton only accepts and executes Mint
and Redeem operations authorized by the issuer, i.e., only
the issuer can mint and redeem funds. We use digital
signature authorization for these. Similarly, we require
that each Transfer transaction is signed by owners of all
inputs the transaction attempts to spend.

Authenticity. The set of unspent funds tracked in Hamil-
ton only contains authentic funds, as we now define. De-
fine unspent funds created by authorized Mint operations
to be authentic. Moreover, define unspent funds created
by Transfer operations to also be authentic if and only if
all inputs consumed by the transaction were authentic and
the transaction preserves balance. Note that the recursive
authenticity property depends on both the contents of the
transaction itself, as well as the set of unspent funds when
Transfer is applied.

Durability. Mint, Redeem, and Transfer are the only op-
erations in Hamilton that change the set of unspent funds.

As a consequence of the three integrity properties de-
fined above the set of unspent funds always remains au-
thentic and transactions in Hamilton cannot be reverted.
We further require that the transaction processor makes
the following availability guarantee and always makes
progress:

Availability. The transaction processor will always accept
an authorized transaction spending authentic funds.

3 Transaction design and processing
This section first reviews Bitcoin’s UTXO model in more
detail and explains the challenges associated with using
this data model in our setting. It then describes the UTXO
hash set (UHS), a different idea that we choose as a ba-
sis for Hamilton’s data model and the motivation behind
our choice. Finally, it introduces Hamilton’s transaction
format, describes how to securely create and process trans-
actions in this model, and discusses implications on future
functionality.

3.1 Bitcoin’s UTXO model
Bitcoin uses the UTXO model, where each output utxo
has a value and an encumbrance: The value v is an integer
multiple of the smallest subdivision of Bitcoin and an en-
cumbrance is a script, an executable program which eval-
uates the conditions for a valid spend. An encumbrance
expresses a predicate P taking two arguments: a transac-
tion tx seeking to spend this utxo, and a witness wit. A

904 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

transaction is a list of references to input UTXOs to be
consumed together with a list of corresponding witnesses,
and lists of values and encumbrances for new UTXOs to
be created. Each encumbrance predicate returns true if
and only if its corresponding witness signifies that this
spending transaction should be authorized.

A common encumbrance is that of digital signature
authorization, known as pay-to-pubkey (P2PK). Here the
predicate P hard-codes a public key pk and P(tx,wit)
checks that wit consists of a valid signature under the pub-
lic key pk where the message is the serialized spending
transaction tx. To spend such a utxo, the user creates a
transaction tx having the utxo as an input and signs tx
with the corresponding secret key sk.

3.2 UTXO model challenges
Adopting Bitcoin’s design in our setting comes with a
number of challenges. First, Bitcoin’s UTXO model re-
quires maintaining a copy of the entire UTXO set in
full detail. This has unwanted implications for privacy
as Bitcoin node operators are both privy to values and
encumbrances (i.e., users’ public keys), as well as for data
storage, especially when using complex or post-quantum
secure encumbrances, which might be large. Second, in
Bitcoin, transactions only refer to their inputs by speci-
fying a hash txid of a prior transaction together with a
particular output index idx of that transaction. Thus, to
validate a transaction a node has to look up the input en-
cumbrances and values in its local UTXO set, and only
trivial validation checks can be done statelessly. This is
reasonable when the UTXO set is small and nodes store
it locally, but becomes more challenging when it must
be partitioned across many machines to achieve higher
performance, while still being accessed consistently.

3.3 UTXO hash set
A key observation in the design of Hamilton is that we
can divide transaction validation checks into two parts –
transaction-local validation, which does not require ac-
cess to shared state, and existence validation, which does.
We can then scale these two tasks independently. This
is useful because they have different scalability profiles,
with transaction-local validation requiring mostly com-
pute resources (i.e., verifying digital signatures used in
spend authorization) and existence validation requiring
mostly persistent storage I/O.

By doing this, we can go even further and observe that
after transaction-local validation, instead of processing
and storing the entire UTXO, we can operate on cryp-
tographic commitments to the UTXOs. In Hamilton we
replace the UTXO set with a UTXO hash set (UHS), ex-
tending an idea first proposed as a Bitcoin storage and
scalability improvement [41]. That is, our transaction pro-
cessor stores unspent funds as a set of opaque 32-byte
cryptographic hashes of UTXOs, not UTXOs themselves.

We refer to hashes of UTXOs as UHS IDs or simply
hashes. Instead of looking up the transaction input data
(which we do not have), we ask the (untrusted) user to
provide full input UTXOs in a transaction. However, a
malicious user might lie and claim to have more funds to
spend than they actually do. To catch this, we reduce the
problem of checking UTXO correctness to UHS commit-
ment existence—Do the funds the user is claiming they
can spend actually exist? As we’ll see in §4, this affords
us the opportunity to piggyback existence validation with
actual execution inside the distributed transaction commit
protocol.

UTXOs must be stored in the user wallets and are sup-
plied as part of transactions. We also note that while in
Bitcoin the UTXO set is derived by processing the Bitcoin
blockchain and keeping the set of unspent UTXOs, Hamil-
ton’s backend is a transactional database that maintains
the UHS without operating a ledger.

Using a UHS has a number of benefits. First, as de-
scribed above, a UHS-based transaction format lets us de-
couple transaction validation from funds existence checks
and affords us opportunities for performance improve-
ment in the backend. Second, it lowers storage require-
ments, as the transaction processor only stores a 32-byte
hash per UTXO, independent of a UTXO’s size. Third,
it increases flexibility, as the UHS abstraction makes no
assumptions about what hashes represent: it is easy to
adapt a high-performance system maintaining a UHS, like
Hamilton, to a different transaction formats or scripting
languages without needing to change the core execution
engine. Fourth, it improves privacy as the transaction pro-
cessor does not store balances or account information.

However, a UHS design also presents some challenges,
stemming from its data minimization. The UHS, as de-
scribed above, does not contain enough information to
audit the total amount of unspent funds (the “full” UTXOs
only reside in user wallets). However, UHS hashes could
be augmented to store a value alongside hashes (mak-
ing supply auditing trivial, at some privacy cost), or by
converting UHS IDs to homomorphic commitments that
can be maintained and tallied using additional crypto-
graphic techniques [54, 60]. The sender also has to pro-
vide the recipient with the UHS ID preimage to further
spend their funds, as described in §3.7. Finally, decou-
pling transaction-local validation and access to shared
state means that future transaction programmability is
restricted to only referencing transaction-local data.

3.4 Transaction format
To build Hamilton we designed a new, extensible trans-
action format in the UHS model. As we will see later,
Hamilton’s transactions can be split into transaction-local
validation and existence checks.

Unspent funds. We represent unspent funds as triples

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 905

utxo := (v,P,sn). Here v and P are value and encum-
brance. Currently we only support encumbrances of pub-
lic keys, and thus represent predicate P by the 32-byte
public key pk itself. Our model supports future encum-
brances, such as requiring a subset of signatures from
multiple public keys.

The third component, sn is a globally unique serial
number. The serial number, enables us to reference and
distinguish funds that share the same encumbrance and
value (e.g., Alice having received same $5.00 value in two
different transactions encumbered with the same public
key pkAlice); it also implies that UHS is a set, not a multi-
set. Our transaction format will ensure that serial numbers
do not repeat across time: a serial number associated with
a spent UTXO cannot “reappear” as a serial number for a
new unspent UTXO. Global uniqueness of serial numbers
is not a mere technicality: they express the intent of sin-
gling out a particular UTXO and prevent replay attacks
(see §3.6 for discussion).

UTXO hash set. Instead of storing a set of entire UTXOs
utxo = (v,P,sn), we store cryptographic commitments
h := H (v,P,sn) to UTXOs. In Hamilton we set H to be
SHA-256 to derive these hash commitments.

Mint transactions. New funds enter the system by sys-
tem operator creating new utxo’s and adding their hashes
to the UHS. The issuer must choose unique serial num-
bers for newly minted UTXOs. It suffices to set these as
uniformly random nonces.

Transfer transactions. A k-input, l-output Transfer trans-
action seeks to fully consume k UTXOs currently present
in the system, and create l new UTXOs specified by en-
cumbrances and values. Such a transaction txTransfer =
(⃗utxoinp, v⃗out, P⃗out; w⃗it) is comprised of (a) a size-k list
⃗utxoinp of input UTXOs to be spent; (b) two size-l lists

v⃗out and P⃗out of output values and encumbrances specify-
ing output UTXOs to be created; and (c) a size-k list of
witnesses w⃗it, one for each input.

Such txTransfer creates l UTXOs with
value/encumbrance pairs (vout,i,Pout,i). We make
UTXOs unique by deriving the serial numbers sn as pairs
sn := (txid, idx) as follows. The first component, txid
is the unique transaction identifier, the cryptographic
hash of the transaction that created this UTXO. This
hash covers all input UTXOs, output encumbrances and
values: txid(txTransfer) := H ((⃗utxoinp, v⃗out, P⃗out)). The
second component, idx, is the particular output index, i.e.,
first, second, etc, output of the transaction.

Note that our transaction format includes input UTXOs
in the Transfer itself. In contrast, a Bitcoin transaction
does not: it references UTXOs via txid and idx instead,
and requires UTXO look-ups in transaction processing.

Transaction creation. To create a Transfer transaction,
users digitally sign txid with private keys corresponding to

inputs they are spending. Each of these signatures serves
as the witness authorizing the transaction to spend the
given input. Witnesses are not included in the transaction
identifier so signing can be deferred by the sender to after
the transaction has been shared with the recipient. This
is useful to support future smart contract functionality
where unsigned transactions could be shared between par-
ties to be signed and broadcast later under certain condi-
tions. Recall that encumbrances are applied to individual
outputs rather than whole transactions, and transactions
can have multiple inputs, which means that funds can be
spent atomically from multiple public keys in a single
transaction. Once a transaction is finalized, the users will
deterministically derive serial numbers of each of the out-
put UTXOs from the transaction contents. Users store this
outpoint information in their wallets.

3.5 Transaction execution
Processing a Transfer transaction involves confirming
that it is valid and then applying it to the state. Validation
involves checking the following:

1. Syntactical correctness. Check that the transaction
has at least one input and output, and that the trans-
action supplies exactly one witness per input.

2. Balance. Check that transaction’s input values tally
up to exactly the same value as outputs to be created.

3. Authorization. Check that each input UTXO is ac-
companied by a valid signature, relative to the input’s
public key, on a message comprised of the transac-
tion’s identifier txid.

4. Authenticity. Check that transaction’s input hashes
exist in the UHS.

To apply a valid transaction to the UHS we atomically
remove the spent input hashes and create the new out-
put hashes under the control of the recipient(s); this in
combination with the other checks provides durability.

Performing local-validation. Hamilton has dedicated
components, which we call sentinels, that receive transac-
tions from users and perform transaction-local validation.
This local validation performs the above syntactical cor-
rectness, balance, and authorization checks.

Compaction. We further observe that while the
transaction-local validation does not reference any data
from the state and only uses transaction-local data, the
UHS, in turn, does not reference a transaction’s contents
and only operates on the hash values. Thus, once locally
validated, a transaction is compacted. First, the sentinel
derives the output UTXO serial numbers; together with
output encumbrances and values they fully specify output
UTXOs to be created. Next, the sentinel hashes the input
and output UTXOs and obtains two lists of hashes which
we call a compact transaction. Finally, sentinels forward

906 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

compact transactions to the execution engine, which main-
tains the UHS, for existence checks and to update the UHS
state.
Checking existence, execution and the swap abstrac-
tion. Now, given a compact transaction, our system does
the following: First, check if all input hashes exist in the
UHS; if so (a) remove the input hashes from the UHS
and (b) add the output hashes of newly created UTXOs to
the UHS. We call this UHS primitive swap. Processing
Hamilton transactions at scale reduces to the challenge
of implementing a fast, scalable, and durable backend for
executing swap, which we describe in §4. Such a backend
abstraction maintains a set of hashes, and exposes swap
as the only operation. The inputs to swap are two lists
of hashes: one for existence checks and removal (called
input hashes), and one for insertion (called output hashes).
To execute a swap, the system atomically checks that all
input hashes are present. If an input hash is missing, swap
aborts. Otherwise, it obtains an updated set of hashes by
erasing all input hashes and inserting all output hashes.
All other hashes in the set remain unchanged.

We note that separating transaction-local validation and
execution means that swap supports multiple transaction
formats concurrently without affecting UHS performance.

3.6 Transaction format security
Using our transaction format Hamilton maintains an au-
thentic, authorized and durable set of unspent funds (§2.5),
eliminates the possibility of double spends, and also
achieves additional security goals related to its use. In
particular, transactions in Hamilton are not replayable
and digital signature authorizations are not reusable.

These properties are a consequence of the fact that
each UTXO created by a Mint or Transfer transaction is
unique and guaranteed to not equal any other UTXO in
the past or in the future, as we now explain. In Hamilton,
each Transfer’s UHS IDs are derived by hashing all the
corresponding transaction’s inputs, as well as details perti-
nent to the particular output itself (see §3.4). In particular,
sn references previous unique serial numbers and recur-
sively incorporates the entire transaction history up to
distinct (due to presence of the uniformly random nonce)
Mint’s. Collision resistance of H guarantees that these
serial numbers are unique. Because UHS hashes com-
mit to the same UTXO data which must be provided in
the transaction, an attacker can not fit a different UTXO
preimage into the same UHS hash without violating the
collision-resistance of H .
No double-spends. Transfer operations permanently
delete input hashes from the UHS. Therefore, as serial
numbers are unique, no UHS ID can be spent more than
once or recreated after having been spent.
No replay attacks. In a basic replay attack the victim
has signed a single transaction to authorize a single value

transfer. The attacker, however, submits this transaction
twice in the hope of effectuating two value transfers. For
example, Alice, who has two unspent $5.00 “bills”, might
give Bob a transaction that spends one of her $5.00 bills
to pay for ice cream, which Bob then submits twice to
take possession of both.

Hamilton’s transaction format prevents replay attacks
as each transaction references globally unique input
hashes, and each signature covers the entire transaction, in-
cluding all its inputs and outputs. Thus, signatures are not
valid for spending any other UHS ID, including those cre-
ated in the future, and it is not possible to copy a Hamilton
transaction and apply it multiple times to spend additional
funds.

Transactions are non-malleable. In a system with mal-
leable transactions, an attacker can change some details
about the transaction (e.g., the witnesses used to satisfy in-
put encumbrances or output UTXO serial numbers) with-
out otherwise changing the input UTXOs or modifying
output UTXO values or encumbrances. For example, if the
transaction format included an auxiliary field not covered
by the signatures but used in serial number computation,
an attacker could change this field. This would change
output UTXO serial numbers and make it unsafe to accept
a chain of unconfirmed transactions, thus preventing cer-
tain higher level protocols like the Lightning Network. In
2014, the largest Bitcoin exchange Mt. Gox closed after
claiming to be a victim of malleability attacks [32]. In our
implementation, we require signatures to cover all fields
of uniquely-encoded transaction and derive UTXO serial
numbers from the same fields (plus, output indexes).

3.7 Transaction protocol
Our choice of transaction data model and format directly
impacts potential transaction protocols. For example,
transaction compaction for the UHS adds a new communi-
cation step requirement between sender and recipient. The
recipient should not consider a payment “complete” until
they have received both a confirmation from the transac-
tion processor and the full preimage data for their new
outputs. If the recipient does not receive these, the sender
has essentially destroyed the funds.

In theory, cryptocurrencies in which the recipient’s ad-
dress is obfuscated also have this problem. In practice, be-
cause the entire blockchain is public and standard address
formats are used, recipients can scan every transaction
to detect if they have been paid and, if so, construct new
transactions to spend those funds. Even if the UHS were
public, recipients would still not be able to unilaterally
detect payments. The hash preimage for a UHS ID de-
pends on data from the transaction that creates the UTXO
which is unavailable to the recipient. As there is no public
ledger, recipients must rely on the transaction processor
to learn about the status of outstanding transactions.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 907

Figure 3: System diagram for the 2PC architecture and
inter-component data flow

4 Processing transactions at scale
As described in §3, transaction processing can be split
into transaction-local validation, existence validation, and
execution, which creates opportunities for improving per-
formance. To process more transactions, we partition the
set of unspent funds across multiple computers. Transac-
tions might reference unspent funds stored on different
machines, requiring a coordination protocol to check ex-
istence of inputs and execute transactions atomically.

One way to achieve this is to first explicitly order all
valid transactions and subsequently apply them to the par-
titioned state in the same order, if the inputs exist and have
not already been spent. We investigated this architecture
and found performance was limited by the ordering server
(§4.3). However, we note that payment semantics do not
require materializing a linear transaction history. Thus,
we also built an architecture which executes transactions
in parallel to achieve high performance, described next.

4.1 Applying transactions to the UHS
We use variants of two-phase commit and conservative
two-phase locking[36, 44] to atomically apply transac-
tions to the UHS, partitioned across shards which are
each responsible for a subset of the UHS IDs which are
unspent within the system.

Figure 3 shows a diagram of the components in the 2PC
architecture and the data flow between components. As
described in §3.5, a wallet submits a transaction to a sen-
tinel (1), which validates everything except the existence
of inputs. Upon success, sentinels convert transactions to
compact transactions and send compact transactions to a
transaction coordinator (2).

Each coordinator has a thread pool to execute transac-
tions in parallel, and adds incoming compact transactions
from sentinels to a queue. Once a thread from the pool
becomes available, it drains the queue and creates a new

distributed transaction (dtxn) containing the pending com-
pact transactions (up to a maximum size). The thread then
performs the 2PC protocol to commit the dtxn. If a thread
is available, it will begin a new dtxn even if there is only
one compact transaction waiting in the queue, it will not
wait for the queue to grow. Due to application choices
described in §3, we know the read/write sets ahead of time
and can execute the dtxn entirely inside the 2PC protocol,
without any extra roundtrips. This is the same technique
introduced in Sinfonia [1].

There are three steps to commit a dtxn:

1. Prepare (3). The coordinator contacts each shard
responsible for a UHS ID included in the dtxn and
requests that it durably lock the input UHS IDs (a pre-
pare request). (Note that by design of our transaction
format (see §3.4), valid output UHS IDs are guaran-
teed to be unique across transactions, so reserving
outputs is not necessary.) Each shard responds to the
prepare request indicating which compact transac-
tions in the dtxn had their IDs successfully locked,
and which no longer exist, or were already locked by
a different dtxn (4).

2. Commit (5). The coordinator uses the shards’ re-
sponses to determine which compact transactions in
the dtxn can be completed, and which cannot com-
plete because some of the inputs are unavailable
or already locked. The coordinator makes this deci-
sion durable and then contacts each shard again to
indicate which compact transactions in the dtxn to
complete and which to cancel (a commit request).
Each shard then atomically unlocks the input UHS
IDs belonging to a canceled transaction, deletes in-
put UHS IDs and creates the output UHS IDs for
successful transactions, and updates local dtxn state
about the status of the dtxn. The shard then responds
to the coordinator to indicate that the commit was
successful (6).

3. Discard (7). The coordinator issues a discard to each
shard informing them that the dtxn is now complete
and it can forget the relevant dtxn state.

Once every shard participating in the dtxn has com-
pleted the commit, the coordinator informs each sentinel
whether its transactions were successfully executed or
rejected by the shards (8). The sentinels in turn forward
these responses to the users who submitted the transac-
tions (9).

It is possible that if two concurrent transactions by
different transaction coordinators spend the same inputs,
neither will succeed, because both will be canceled due
to observing the other’s lock conflicts. This means that at
least one will need to be retried, which is left to the user’s
wallet. An adversary could try to continually conflict a
user’s transaction by spending the same input. However,

908 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

this requires the adversary to have the authorization to
spend the input in order to pass sentinel validation. Inves-
tigating methods to fairly resolve concurrency conflicts is
left to future work.

Combining many compact transactions into a larger dis-
tributed transaction amortizes the costs of messaging and
making the result of each phase of the protocol durable
on each shard, whether by flushing to persistent storage
or replicating as part of a distributed state machine. Be-
cause our application semantics are constrained, this is
slightly different from traditional two-phase commit in
that dtxns always complete successfully, and individual
compact transactions are executed (or not) deterministi-
cally: if all of a compact transaction’s input UHS IDs are
locked and output UHS IDs are reserved, the compact
transaction will succeed. The transaction coordinator al-
ways completes both phases of dtxns, even if some of
the compact transactions within do not succeed. General
2PC designs need to support transaction coordinators that
might make arbitrary decisions about whether to commit
or abort transactions.

4.2 Fault Tolerance
Each transaction coordinator and shard is made fault tol-
erant using Raft [58], a distributed consensus algorithm.
Sentinels only maintain state during the duration of the
user wallet request to return transaction status to the user;
if one fails, the user’s wallet will need to retry its transac-
tion or ask about its status with another sentinel.

Only the leader node in the transaction coordinator
Raft cluster actively processes dtxns; followers simply
replicate the inputs to each phase of the dtxn. This is
a technique used in deterministic scalable database sys-
tems [68]. Before initiating each phase of the distributed
transaction, the coordinator replicates the inputs to both
the prepare and commit requests to each shard. Shards
remember which phase each dtxn has last executed and
the response to the coordinator. If the coordinator leader
changes mid-dtxn, the new leader reads the list of active
dtxns from the coordinator state machine and continues
each dtxn from the start of its most recent phase. Shards
that have already completed the requests will return the
stored response to the new coordinator leader. To ensure
proper completion of the commit across all shards, shards
will remember the response for the commit until the coor-
dinator has received responses from all shards in the dtxn
and issued a discard to inform shards the dtxn is complete
and can be forgotten. Note that these can be applied lazily
and the transaction coordinators can inform the sentinels
the transactions were successful before issuing discard.

Similar to coordinators, in each shard cluster only the
leader processes dtxns and responds to sentinels. Al-
though followers do not handle RPCs, they maintain the
same UHS as the shard leader, so they are prepared to

take over processing RPCs if the leader fails without a
specific recovery procedure beyond that provided by Raft.
Once a dtxn has entered the prepare phase and has been
replicated by the coordinator cluster, the dtxn will always
run to completion. If a shard leader fails mid-transaction,
the coordinator leader will retry requests until a new shard
leader processes and responds to the request.

4.3 Comparison to blockchain architectures
Many have suggested using blockchain technology to
design a central bank digital currency. We found that us-
ing a blockchain-based system in its entirety was not
a good match for our requirements. First, there was no
requirement to distribute governance amongst a set of
distrusting participants. The transaction processing plat-
form is controlled and governed by a central administrator.
Blockchains use relatively new distributed consensus pro-
tocols which are designed to operate in a permissionless,
adversarial environment. This introduces software and
operational complexity as well as new cryptographic as-
sumptions. A CBDC should rely on the simplest, most
well-understood, well-tested protocols to achieve its goals.

Second, we anticipated the complexity of a blockchain
architecture would limit performance. To evaluate this
we implemented a streamlined permissioned-blockchain-
inspired design, the atomizer. Instead of using transac-
tion coordinators and two-phase commit, the atomizer or-
ders compact transactions into blocks through a replicated
state machine. To reduce load on this ordering server, the
design outsources storage of the UHS to shards, which
hold the partitioned UHS ID state as in the 2PC design.
However, a shard’s UHS ID state is only correct up to
a specific block height. Sentinels send compact transac-
tions to shards, and shards then pass attestations for input
IDs that exist to the atomizer, which collects complete
compact transactions into blocks. The atomizer broad-
casts confirmed blocks so shards can update their state,
deleting spent UHS IDs and creating new ones. Shards
do not require consensus or even primary/backup for cor-
rectness, they are merely replicated. For the specifics of
the atomizer design see a related technical report [51].
As might be anticipated, we found the atomizer architec-
ture’s throughput is limited by the resource constraints
(network bandwidth and CPU) of a single server, the at-
omizer leader, and cannot benefit beyond a limited point
from additional shard resources (§6).

OmniLedger [49] is a sharded blockchain design which,
like Hamilton, operates in the UTXO model, but uses
a client-driven commit protocol to commit cross-shard
transactions without going through a single server. Based
on reported results, OmniLedger can achieve much higher
performance than our atomizer prototype (with a replica-
tion factor of four per shard and 1% adversarial power,
approximately 400K txns/sec). However, in Hamilton we

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 909

did not want to rely on clients, which might fail or dis-
appear, to complete transactions. Hamilton instead uses
replicated transaction coordinators, so incomplete trans-
actions will never result in stuck or frozen funds.

5 Implementation
We implemented Hamilton in C++17, released at [https:
//github.com/mit-dci/opencbdc-tx], and tested on Linux
and macOS, though it should be portable to any UNIX-
like system. The primary dependence on a UNIX-
compatible API is our use of UNIX sockets for network
communication. Clients communicate via a custom serial-
ization protocol, via single, short-lived TCP connections.

We use LevelDB [43], NuRaft [35], libsecp256k1 [13]
and vendored components from Bitcoin Core [12]. We
use BIP-340 compatible Schnorr signatures [76] as our
digital signature scheme. We also use the cryptography
components of Bitcoin Core to provide optimized imple-
mentations of SHA256 [56], used as our cryptographic
hash function, SipHash [4] used for hashmaps and bech32
[74, 75] used for error-correcting public key encoding.

6 Evaluation
Our evaluation answers the following questions:

• How does Hamilton’s performance compare to other
database and blockchain-based designs?

• How does Hamilton perform with multiple regional
failures?

• How well does Hamilton tolerate different transac-
tional workloads, whether with larger transactions or
double spends?

Setup. Unless otherwise specified, for benchmarking we
deployed on Amazon Web Services (AWS) using EC2 vir-
tual servers running Ubuntu 20.04 (c5n.2xlarge instances
with 8 vCPUs and 21GB RAM). We ran the system com-
ponents across three regions within the United States:
Virginia, Ohio and Oregon. Round-trip time between Vir-
ginia and Ohio was ≈ 12ms, Virginia to Oregon ≈ 62ms
and Ohio to Oregon ≈ 51ms. Unless otherwise stated,
there were 1B outputs, 8 logical shards, and shard and
coordinator clusters were replicated by a factor of three.
In particular, each shard and each coordinator has a Raft
node in each of these three regions. Non-replicated com-
ponents such as sentinels and load generators were dis-
tributed between regions to simulate load from across the
United States. Load generators (c5n.large instances with
2 vCPUs and 5.25GB RAM) were simulated wallets that
produced valid, signed transactions with two inputs and
two outputs unless otherwise stated. We limited dtxns to
a maximum size of 2000 compact transactions, and each
coordinator had a thread pool containing 75 threads.

We do not consider data from a benchmark for a config-
uration if any Raft cluster was unable to reliably replicate

0 4 8 12 16 20 24 28 32

Logical shards/Threads

0.0

0.5

1.0

1.5

2.0

T
h
ro

u
gh

p
u
t

(T
X

/s
)

×1
0

6

Peak throughput (shard/thread scaling)

2PC

Atomizer

Rolis

Figure 4: Compares the peak throughput of 2PC, the at-
omizer, and Rolis, when varying logical shard count (2PC
and atomizer) or the number of threads (Rolis).

data between all regions during the experiment. Take,
for example, a three node cluster: if one follower is reli-
ably lagging behind due to data replication issues, though
the leader and other follower still form a quorum, this
configuration can’t tolerate an additional failure of either
node without potentially suffering a delay and throughput
reduction. We took this to imply the system was oversatu-
rated.

6.1 Comparison
Figure 4 shows the peak throughput for Hamilton and
the atomizer when varying the number of load generators
for different shard counts. Our 2PC architecture scales
linearly as the number of logical shards increases, up to
1.7M txns/sec with less than one second 99% tail latency
and under 500ms 50% latency, though we expect peak
throughput would continue to increase with more shards
and this would not negatively affect latency. Additionally,
if a lower tail latency is desired for a particular transaction
throughput, increasing the number of shards can decrease
tail latency for the same offered load. This makes sense
because, in the worst case, each transaction requires the
participation of a subset of shards equal to the number of
inputs and outputs in the transaction. Since transactions
in the test load have an upper bounded number of inputs
and outputs, increasing the number of shards results in
each transaction requiring the participation of a smaller
proportion of the total shards in the system.

The atomizer achieves 170K txns/sec with under two
seconds 99% tail latency and 700ms 50% latency, the
bottleneck being network bandwidth limitations between
the replicas in different regions. In other experiments we
found if bandwidth constraints are relaxed, computation
in the lead atomizer replica to manage Raft replication
and execute the state machine becomes the bottleneck.

We compare Hamilton’s performance to three cen-
tralized databases: PostgreSQL, Rolis [64], and Cock-
roachDB. In all cases the workload was the swap func-
tion with 2-in/2-out compact transactions; we did not run
sentinels or do signature checking, which improved la-
tency for these measurements.

PostgreSQL. We chose to compare against PostgreSQL

910 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/mit-dci/opencbdc-tx
https://github.com/mit-dci/opencbdc-tx

since it is a widely used, fully-featured commercial
database. We ran PostgreSQL on c5a.8xlarge EC2 in-
stances, using benchmarking recommendations [50] and
implementing swap as a stored function. We were able to
obtain a max throughput on PostgreSQL v13.8 of 63.4K
txns/sec and an average throughput over a 45 second
run of 61K txns/sec, with average and 99% latency (as
measured on the client) of 10ms, using hundreds of load
generating clients. The database had 38.4M UHS IDs.
Our experiments indicated that PostgreSQL is limited by
throughput to the write-ahead log. Note that this was a
single-machine benchmark with no replication.

Rolis. Rolis is a very high-performance in-memory
research database. To evaluate Rolis we implemented
the swap function in the benchmarking experiment soft-
ware that accompanies Rolis. We used three replicas in
the regions specified above and, as Rolis uses significant
amount of RAM, used c5n.18xlarge instances (72 vCPUs,
192 GB RAM), largest among the c5n family of instances
that we used to evaluate Hamilton. We did our experi-
ments using Ubuntu 18.04.

We used a database containing 200M UHS IDs, unlike
the 1B used for benchmarking Hamilton as 250M and
larger data base sizes reliably ran out of memory. Figure
4 shows the performance as we increase the number of
threads; the thread count there includes the additional
thread [64, §6.1] that Rolis uses to advance the watermark
and perform leader election tasks. To maximize Rolis’s
performance, we (a) implemented load generators inside
each Rolis thread (so unlike when evaluating Hamilton,
PostgreSQL, or CockroachDB, the load generators were
not networked) and (b) used sequential UHS IDs. The
latter avoids calling a hash function to generate UHS IDs
in the critical path of the load generator, which halved the
throughput when we tried it, but would be parallelizable
in a different load generator implementation.

Rolis achieves a max throughput of 1.91M txns/sec on
our workload. When replicating the YCSB++ benchmark
on the same EC2 instances, the max throughput using
32 threads was 10.2M txns/sec, comparable to 10.3M re-
ported in the Rolis paper. Our keys are 32 bytes instead of
8 bytes, and unlike YCSB++, which is 50% read-only, our
workload is 100% read/modify/write, thus it requires more
logic per transaction and more bandwidth for replication.

The almost-linear scalability when using 1, 2, 4, 8, and
16 threads did not continue when thread count increased
from 16 to 31. We attribute this to hyper-threading: Ro-
lis’s implementation only supports a single socket (as it
uses rdtscp counters for time-stamping), whereas our
72 vCPU instance had 16 cores (32 hyper-threads) per
socket. This made our 31 thread benchmarks use hyper-
threading and we would expect Rolis to perform better
with an increased number of dedicated cores.

When comparing performance, it is important to note

00:00 01:00 02:00 03:00 04:00 05:00

Time (mm:ss)

0

2

4

6

T
h
ro

u
gh

p
u
t

(T
X

/s
)

×1
0

5 Throughput during two datacenter failures

2PC

Atomizer

Figure 5: Throughput over time where the number of sup-
ported failures for both architectures was 2 and 2 whole
data center failures were triggered at 120s and 180s. 5
sample moving average.

that Hamilton durably commits every transaction to disk,
whereas Rolis runs wholly in-memory persisting nothing
to disk. As our setting calls for ability to cold-start a
system after potentially correlated failures, we see the
excellent Rolis in-memory performance as establishing
an upper, rather than a lower, bound for a backend.

CockroachDB. We ran limited experiments against
CockroachDB v22.1.9, a feature-complete scalable dis-
tributed database. CockroachDB automatically manages
data partition assignments. We ran with a replication
factor of three in the regions specified above, using
c5d.4xlarge instances. We had to implement the swap
function through client queries, requiring two roundtrips
to commit a transaction, as CockroachDB does not yet sup-
port stored procedures or functions. It achieved through-
put of 3.4K, 5.7K, and 11K txns/sec partitioning data
across 1, 2, and 4 logical shards, respectively. Cock-
roachDB is slower because it implements many more
features than Hamilton, whereas implementing swap as
a primitive in our distributed backend reduces the number
of roundtrips and transferred data required to commit.

In summary, Hamilton achieves higher throughput than
PostgreSQL and CockroachDB by co-designing the appli-
cation with the data model, and pushing the swap prim-
itive into the commit protocol. It approaches the perfor-
mance of Rolis, a very fast in-memory replicated database.
Rolis might be a better choice for a backend if in-memory
replication is sufficient for durability; in our application
it was important to have data on disk to have a path to
recovery from simultaneous crashes. Another reasonable
choice is to use an existing commercial database if perfor-
mance is not as much of a concern.

6.2 Fault Tolerance
We evaluate how our system handles up to two regional
data center failures, and its scalability as the number of
supported faults increases.

Figure 5 shows the overall system throughput over time
when shards and coordinators have a replication factor of
five (supporting up to two failures per cluster). To test con-
tinued system availability when up to two data centers fail

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 911

0 1 2 3 4

Failures the system can tolerate

0

2

4

6
T

h
ro

u
gh

p
u
t

(T
X

/s
)

×1
0

5
Peak throughput (fault tolerance)

2PC

Atomizer

Figure 6: Peak throughput versus the number of tolerated
failures per replicated service. Atomizer used 100M UHS
IDs, 2PC used 1B.

completely, the Raft leaders for coordinators and shards
were killed at 120 seconds into the test, and a subsequent
set of nodes for each cluster were killed at 180 seconds
into the test. The second group of nodes contained a mix-
ture of leaders and followers depending on the result of
the leader election from the previous failure. The plot
shows that our system is successfully able to recover from
the failure of two entire data centers with minimal down-
time and no loss of system performance. For each failure,
throughput was temporarily reduced for less than fifteen
seconds, before automatically recovering to the baseline.
There is no data loss and the system is not left in an in-
consistent state as the replacement coordinators complete
any distributed transactions that were in progress at the
time of each failure.

Figure 6 compares how peak throughput is affected by
the number of supported system failures between architec-
tures by increasing the number of tolerated failures from
0 through 4. The plot shows that as replication factor in-
creases, peak throughput for a given system configuration
decreases. Since the performance of our Raft replicated
services is limited by bandwidth constraints between the
leader and follower nodes, more replicas require more
leader bandwidth to provide the same throughput. In 2PC,
we believe a higher replication factor can be supported
without a loss in performance by increasing the number of
shard and coordinator clusters. The atomizer architecture
could not scale in this way, as the system throughput is
limited by a single Raft service which provides the global
order of transactions.

6.3 Workload Variability
We varied the proportion of transactions with a high num-
ber of inputs and outputs, and the proportion of double-
spending transactions to see how Hamilton performs un-
der different workloads from users.

Figure 7 shows how the proportion of double-spending
transactions, or those with a large number of inputs and
outputs affects peak throughput. In this test, the proportion
of invalid or non-2-in-2-out transactions in the workload
was varied from 0% through 30%. The load generators
sent double-spending transactions by storing previously

0% 5% 10% 15% 20% 25% 30%

% of transactions of a type

0

2

4

T
h
ro

u
gh

p
u
t

(T
X

/s
)

×1
0

5

Peak throughput (variable workload)

Double spend, 2-in-2-out

Valid, 2-in-8-out

Valid, 8-in-2-out

Figure 7: Peak throughput varying the proportion of valid,
2-in-2-out transactions.

confirmed transactions and re-issuing them at a later time.
We only plot the throughput of valid transactions because
double-spending transactions never complete.

As the proportion of large or double-spending trans-
actions increases, the peak throughput decreases. This
behavior is similar to increasing the overall number of 2-
in-2-out transactions. The system is limited by the overall
number of UHS IDs being processed, regardless of how
they are grouped into transactions. Shards and coordina-
tors replicate all transactions, so double-spends exert the
same load as valid transactions. Thus, increasing the num-
ber of shards and coordinators could absorb an increased
proportion of large or double-spending transactions while
executing the same number of valid transactions. Transac-
tions with a large number of inputs most negatively affect
peak throughput because the sentinels have to validate
more signatures per transaction. This could be solved by
increasing the number of sentinels per load generator.

7 Related Work
Central banks are experimenting with or launching CB-
DCs. Some [22, 23, 34, 65] use DLT [57, 63], but ac-
cording to their reports do not achieve as high perfor-
mance as Hamilton. Other CBDC work uses a parallelized
architecture; China’s e-CNY is currently in public tri-
als [24, 46, 62] and is a scalable system based on the
UTXO model, but does not support self-custody. The Eu-
rosystem has tested a CBDC design based on tracking
groups of bills using a set of parallelized blockchains [38].
While it achieves linear scalability, transactions involv-
ing multiple bills require external coordination. The Reg-
ulated Liability Network [29] presents a design which
claims to achieve 1M transactions per second with multi-
ple coordinated blockchains. However, they do not discuss
deployment across multiple geographic regions which is
vital for resiliency or provide latency measurements.

Chaumian eCash [26] and designs based on it [18, 20,
21] operate with a central trusted intermediary, but either
require maintaining an ever-growing list of all spent coins
for double spend prevention, or require users to manage
expiring coins, which has significant policy implications.
The Swiss National Bank [27] expands upon the Chau-

912 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

mian ecash model using this technique.
Several central banks already support real-time gross

settlement (RTGS) and fast payment systems [5]. These
systems are designed to settle transactions between only
eligible financial institutions. In practice, these systems do
not handle a volume of traffic representative of a national
retail payment system, do not provide programmability,
nor provide access to the general public [6, 39, 40, 59].

Contrary to decentralized cryptocurrencies [53, 73] or
stablecoins [11, 25, 33, 67], Hamilton is designed to be ad-
ministered directly by the central bank or a related entity,
and transacts in central bank liabilities. However, Hamil-
ton borrows ideas from cryptocurrency designs; it uses
the UTXO transaction model, but only stores 32-byte
hashes [41]. Users cannot verify transaction execution
themselves since they cannot access the ledger or state
of the system. Techniques like authenticated datastruc-
tures [66] or cryptographic proofs of transaction inclu-
sion [55] might be able to help with this.

Newer consensus algorithms [30] achieve higher
throughput for agreement on ordering, and Hamilton
could benefit from these as a replacement for Raft. How-
ever, faster consensus does not address the scalability bot-
tleneck of state machine execution and validation in non-
sharded blockchain-based architectures. Our 2PC architec-
ture outperforms both our straw-man sharded blockchain
as well as existing sharded blockchains which aim to op-
erate in a decentralized setting, and thus cannot rely on a
trusted coordinator to drive the cross-shard commit proto-
col to completion [2, 31, 49, 77]. However, some of these
blockchains provide more features than Hamilton, like
general smart contracts.

Via careful choices in application transaction design
and format, Hamilton is able to avoid the need for reads or
any other transaction execution before commit time, and
can apply good ideas in traditional distributed transaction
commit protocols [1, 28, 68] in a simplified backend that
does not need to handle general transactions.

8 Conclusion
This work presents a high-performance, resilient transac-
tion processor for CBDCs. We support a range of potential
policy choices and can minimize data stored in the trans-
action processor while supporting a variety of custodial
models. Our experiments show that a blockchain-based
design for CBDC has seriously scalability limitations,
but by validating transactions in parallel we can achieve
millions of transactions per second.

9 Acknowledgements
The authors express gratitude to Robert Bench and Jim
Cunha for their leadership and direction in this work.
We are also grateful to Tyler Frederick and David Ur-
ness who were instrumental in the early stages of this

research. In addition, we thank Chris Berube, Alexan-
der Chernyakhovsky, Nikhil George, Gert-Jaap Glasber-
gen, Alistair Hughes, Ben Kincaid, Weihai Shen, Bernard
Snowden, Sam Stuewe, and our shepherd and reviewers
for their helpful contributions, feedback, and comments.
Cory Fields, Neha Narula, and Madars Virza were sup-
ported by the funders of the Digital Currency Initiative.

References
[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Kara-

manolis. Sinfonia: a new paradigm for building scalable dis-
tributed systems. ACM SIGOPS Operating Systems Review,
41(6):159–174, 2007.

[2] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and
G. Danezis. Chainspace: A sharded smart contracts platform.
arXiv preprint arXiv:1708.03778, 2017.

[3] R. Auer, J. Frost, M. Lee, A. Martin, and N. Narula. Why
central bank digital currencies? Liberty Street Economics,
2021. https://libertystreeteconomics.newyorkfed.org/2021/12/
why-central-bank-digital-currencies/.

[4] J. Aumasson and D. J. Bernstein. SipHash: a fast short-input
PRF. Cryptology ePrint Archive, Report 2012/351, 2012. https:
//eprint.iacr.org/2012/351.

[5] Bank For International Settlements. Fast payments - enhancing the
speed and availability of retail payments. Committee on Payments
and Market Infrastructures, 2016. https://www.bis.org/cpmi/publ/
d154.pdf.

[6] Bank for International Settlements. BIS statistics explorer, 2019.
https://stats.bis.org/statx/toc/CPMI.html.

[7] Bank of Canada et al. Central bank digital currencies: foundational
principles and core features. BIS Working Group, 2020. https:
//www.bis.org/publ/othp33.pdf.

[8] Bank of England. Central bank digital currency: Opportunities,
challenges and design, 2020. https://www.bankofengland.co.uk/-
/media/boe/files/paper/2020/central-bank-digital-currency-
opportunities-challenges-and-design.pdf.

[9] M. L. Bech and R. Garratt. Central bank digital currencies. BIS
Quarterly Review, September 2017.

[10] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza. Zerocash: Decentralized anonymous pay-
ments from Bitcoin. In Proceedings of the 2014 IEEE Symposium
on Security and Privacy, SP ’14, pages 459–474, 2014.

[11] Binance. Binance USD. https://www.binance.com/en/busd.
[12] Bitcoin Core Developers. Bitcoin Core. https://github.com/bitcoin/

bitcoin.
[13] Bitcoin Core Developers. libsecp256k1. https://github.com/

bitcoin-core/secp256k1.
[14] C. Boar and A. Wehrli. Ready, steady, go? – results of the third

BIS survey on central bank digital currency. BIS Papers No 114,
2021. https://www.bis.org/publ/bppdf/bispap114.htm.

[15] Board of Governors of the Federal Reserve System. Money and
payments: The U.S. dollar in the age of digital transformation,
January 2022.

[16] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu.
Zexe: Enabling decentralized private computation. In Proceedings
of the 41st IEEE Symposium on Security and Privacy, S&P ’20,
2020. ePrint: https://eprint.iacr.org/2018/962.

[17] L. Brainard. Update on digital currencies, stablecoins, and the chal-
lenges ahead, 2019. https://www.federalreserve.gov/newsevents/
speech/brainard20191218a.htm.

[18] S. Brands. Untraceable off-line cash in wallet with observers.
In Annual international cryptology conference, pages 302–318.
Springer, 1993.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 913

https://libertystreeteconomics.newyorkfed.org/2021/12/why-central-bank-digital-currencies/
https://libertystreeteconomics.newyorkfed.org/2021/12/why-central-bank-digital-currencies/
https://eprint.iacr.org/2012/351
https://eprint.iacr.org/2012/351
https://www.bis.org/cpmi/publ/d154.pdf
https://www.bis.org/cpmi/publ/d154.pdf
https://stats.bis.org/statx/toc/CPMI.html
https://www.bis.org/publ/othp33.pdf
https://www.bis.org/publ/othp33.pdf
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf
https://www.binance.com/en/busd
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin-core/secp256k1
https://github.com/bitcoin-core/secp256k1
https://www.bis.org/publ/bppdf/bispap114.htm
https://eprint.iacr.org/2018/962
https://www.federalreserve.gov/newsevents/speech/brainard20191218a.htm
https://www.federalreserve.gov/newsevents/speech/brainard20191218a.htm

[19] N. Brewster and S. Bishop. Getting out the mes-
sage. http://www.centralbank.org.bb/ economic-insightbb/getting-
out-the-message.

[20] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact
e-cash. In Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 302–321. Springer,
2005.

[21] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Balancing
accountability and privacy using e-cash. In International Confer-
ence on Security and Cryptography for Networks, pages 141–155.
Springer, 2006.

[22] Central Bank of Nigeria. Design paper for the eNaira. https:
//enaira.gov.ng/download/eNaira Design Paper.pdf.

[23] Central Bank of The Bahamas. Sand dollar. https://www.
sanddollar.bs.

[24] Central Banking Newsdesk, 2020. https://www.centralbanking.
com/fintech/cbdc/7529621/pboc-confirms-digital-currency-
pilot.

[25] Centre Foundation. USD-C. https://www.centre.io/usdc.
[26] D. Chaum. Blind signatures for untraceable payments. In Ad-

vances in Cryptology: Proceedings of Crypto 82, pages 199–203.
Springer, 1983.

[27] D. Chaum, C. Grothoff, and T. Moser. How to issue a central bank
digital currency. arXiv preprint arXiv:2103.00254, 2021.

[28] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al. Spanner:
Google’s globally distributed database. ACM Transactions on
Computer Systems (TOCS), 31(3):1–22, 2013.

[29] A. Culligan, N. Pennington, M. Delatine, P. Morel, E. M. Salinas,
G. Vargas, N. Dusane, J. Iu, S. Sheikh, N. Kerigan, T. McLaughlin,
P. D. Courcy, M. Low, and K. H. Park. The regulated liability
network, 12 2021. https://setldevelopmentltd.box.com/shared/
static/18mff2m990qabgzseiex3h7itq7qdnls.pdf.

[30] G. Danezis, E. K. Kogias, A. Sonnino, and A. Spiegelman. Narwal
and Tusk: A DAG-based mempool and efficient BFT consensus,
2021. https://arxiv.org/pdf/2105.11827.pdf.

[31] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and
B. C. Ooi. Towards scaling blockchain systems via sharding. In
Proceedings of the 2019 international conference on management
of data, pages 123–140, 2019.

[32] C. Decker and R. Wattenhofer. Bitcoin transaction malleability
and MtGox. In Proceedings of the 19th European Symposium on
Research in Computer Security, pages 313–326, 2014.

[33] Diem Foundation. Diem. https://www.diem.com/en-us/white-
paper/.

[34] Eastern Caribbean Central Bank. ECCB digital EC currency pilot,
2021. https://www.eccb-centralbank.org/p/about-the-project.

[35] eBay. NuRaft. https://github.com/eBay/NuRaft.
[36] K. Eswaran, J. Gray, and L. Traiger. The notion of consistency

and predicate locks in a database system. Communications of the
ACM, 19(11):624–632, november 1976.

[37] European Central Bank. ECB publishes the results of the public
consultation on a digital euro, 2021. https://www.ecb.europa.eu/
press/pr/date/2021/html/ecb.pr210414∼ca3013c852.en.html.

[38] European Central Bank. Work stream 3: A new solution –
blockchain & eID, 2021. https://haldus.eestipank.ee/sites/default/
files/2021-07/Work%20stream%203%20-%20A%20New%
20Solution%20-%20Blockchain%20and%20eID 1.pdf.

[39] Eurosystem. TARGET Instant Payments Settlement user require-
ments, 2017. https://www.ecb.europa.eu/paym/target/tips/profuse/
shared/pdf/tips crdm uhb v1.0.0.pdf.

[40] Eurosystem. T2-T2S consolidation user requirements document
for T2-RTGS component, 2018. https://www.ecb.europa.eu/paym/
pdf/consultations/T2-T2S Consolidation User Requirements
Document T2 RTGS v1.2 CLEAN.pdf.

[41] C. Fields. UHS: Full-node security without maintaining a full
UTXO set. https://lists.linuxfoundation.org/pipermail/bitcoin-dev/
2018-May/015967.html.

[42] R. Garratt, M. J. Lee, et al. Monetizing privacy with central bank
digital currencies. Technical report, Federal Reserve Bank of New
York, 2020.

[43] Google. LevelDB. https://github.com/google/leveldb.
[44] J. N. Gray. Notes on data base operating systems. In Operating

Systems: An Advanced Course, pages 394–481. Springer, 1978.
[45] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox. Zcash protocol

specifiation, 2021. https://zips.z.cash/protocol/protocol.pdf.
[46] J. C. Jiang and K. Lucero. Background and implications of China’s

central bank digital currency: E-CNY. Available at SSRN 3774479,
2021.

[47] J. Kiff, J. Alwazir, S. Davidovic, A. Farias, A. Khan,
T. Khiaonarong, M. Malaika, H. Monroe, N. Sugimoto,
H. Tourpe, and P. Zhou. A survey of research on retail central
bank digital currency, 2020. https://www.elibrary.imf.org/view/
journals/001/2020/104/001.2020.issue-104-en.xml.

[48] koe, K. M. Alonso, and S. Noether. Zero to Monero: Second edi-
tion, 2020. https://www.getmonero.org/library/Zero-to-Monero-
2-0-0.pdf.

[49] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford. OmniLedger: A secure, scale-out, decentralized ledger
via sharding. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 583–598. IEEE, 2018.

[50] V. Kumar. Pgbench: Performance benchmark of
postgresql 12 and edb advanced server 12, 2020.
https://www.enterprisedb.com/blog/pgbench-performance-
benchmark-postgresql-12-and-edb-advanced-server-12.

[51] J. Lovejoy, C. Fields, M. Virza, T. Frederick, D. Urness, K. Kar-
waski, A. Brownworth, and N. Narula. A high performance pay-
ment processing system designed for central bank digital curren-
cies. Cryptology ePrint Archive, 2022.

[52] G. Maxwell. Confidential transactions – investiga-
tion. https://elementsproject.org/features/confidential-
transactions/investigation.

[53] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Cryptography Mailing list at https://metzdowd.com, 10 2008. https:
//bitcoin.org/bitcoin.pdf.

[54] N. Narula, W. Vasquez, and M. Virza. zkLedger: Privacy-
preserving auditing for distributed ledgers. In Proceedings of
the 15th USENIX Symposium on Networked Systems Design and
Implementation, NSDI ’18, 2018. ePrint: https://eprint.iacr.org/
2018/241.

[55] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,
I. Khoffi, J. Cappos, and B. Ford. CHAINIAC: Proactive software-
update transparency via collectively signed skipchains and verified
builds. In 26th USENIX Security Symposium (USENIX Security

’17), pages 1271–1287, 2017.
[56] NIST. Secure Hash Standard, 2002. https://csrc.nist.

gov/csrc/media/publications/fips/180/2/archive/2002-08-
01/documents/fips180-2.pdf.

[57] NZIA. Nzia cortex dlt. https://nzia.io.
[58] D. Ongaro and J. Ousterhout. In search of an understandable con-

sensus algorithm. In 2014 USENIX Annual Technical Conference
(USENIX ATC ’14), pages 305–319, 2014.

[59] Pay.UK. Pay.UK 2020 annual self-assessment against
the principles for financial market infrastructure, 2020.
https://www.wearepay.uk/wp-content/uploads/Pay.UK-PFMI-
Self-Assessment-Jun-20.pdf.

[60] T. P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Proceedings of the 11th Annual Inter-
national Cryptology Conference, CRYPTO ’91, pages 129–140,
1992.

914 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.centralbank.org.bb/_economic-insightbb/getting-out-the-message
http://www.centralbank.org.bb/_economic-insightbb/getting-out-the-message
https://enaira.gov.ng/download/eNaira_Design_Paper.pdf
https://enaira.gov.ng/download/eNaira_Design_Paper.pdf
https://www.sanddollar.bs
https://www.sanddollar.bs
https://www.centralbanking.com/fintech/cbdc/7529621/pboc-confirms-digital-currency-pilot
https://www.centralbanking.com/fintech/cbdc/7529621/pboc-confirms-digital-currency-pilot
https://www.centralbanking.com/fintech/cbdc/7529621/pboc-confirms-digital-currency-pilot
https://www.centre.io/usdc
https://setldevelopmentltd.box.com/shared/static/18mff2m990qabgzseiex3h7itq7qdnls.pdf
https://setldevelopmentltd.box.com/shared/static/18mff2m990qabgzseiex3h7itq7qdnls.pdf
https://arxiv.org/pdf/2105.11827.pdf
https://www.diem.com/en-us/white-paper/
https://www.diem.com/en-us/white-paper/
https://www.eccb-centralbank.org/p/about-the-project
https://github.com/eBay/NuRaft
https://www.ecb.europa.eu/press/pr/date/2021/html/ecb.pr210414~ca3013c852.en.html
https://www.ecb.europa.eu/press/pr/date/2021/html/ecb.pr210414~ca3013c852.en.html
https://haldus.eestipank.ee/sites/default/files/2021-07/Work%20stream%203%20-%20A%20New%20Solution%20-%20Blockchain%20and%20eID_1.pdf
https://haldus.eestipank.ee/sites/default/files/2021-07/Work%20stream%203%20-%20A%20New%20Solution%20-%20Blockchain%20and%20eID_1.pdf
https://haldus.eestipank.ee/sites/default/files/2021-07/Work%20stream%203%20-%20A%20New%20Solution%20-%20Blockchain%20and%20eID_1.pdf
https://www.ecb.europa.eu/paym/target/tips/profuse/shared/pdf/tips_crdm_uhb_v1.0.0.pdf
https://www.ecb.europa.eu/paym/target/tips/profuse/shared/pdf/tips_crdm_uhb_v1.0.0.pdf
https://www.ecb.europa.eu/paym/pdf/consultations/T2-T2S_Consolidation_User_Requirements_Document_T2_RTGS_v1.2_CLEAN.pdf
https://www.ecb.europa.eu/paym/pdf/consultations/T2-T2S_Consolidation_User_Requirements_Document_T2_RTGS_v1.2_CLEAN.pdf
https://www.ecb.europa.eu/paym/pdf/consultations/T2-T2S_Consolidation_User_Requirements_Document_T2_RTGS_v1.2_CLEAN.pdf
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-May/015967.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-May/015967.html
https://github.com/google/leveldb
https://zips.z.cash/protocol/protocol.pdf
 https://www.elibrary.imf.org/view/journals/001/2020/104/001.2020.issue-104-en.xml
 https://www.elibrary.imf.org/view/journals/001/2020/104/001.2020.issue-104-en.xml
https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://www.enterprisedb.com/blog/pgbench-performance-benchmark-postgresql-12-and-edb-advanced-server-12
https://www.enterprisedb.com/blog/pgbench-performance-benchmark-postgresql-12-and-edb-advanced-server-12
https://elementsproject.org/features/confidential-transactions/investigation
https://elementsproject.org/features/confidential-transactions/investigation
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2018/241
https://eprint.iacr.org/2018/241
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
https://nzia.io
https://www.wearepay.uk/wp-content/uploads/Pay.UK-PFMI-Self-Assessment-Jun-20.pdf
https://www.wearepay.uk/wp-content/uploads/Pay.UK-PFMI-Self-Assessment-Jun-20.pdf

[61] A. Pertsev, R. Semenov, and R. Storm. Tornado cash privacy
solution: Version 1.4, 2019. https://tornado.cash/Tornado.cash
whitepaper v1.4.pdf.

[62] Y. Qian. Technical aspects of CBDC in a two-tiered system,
2018. https://www.itu.int/en/ITU-T/Workshops-and-Seminars/
20180718/Documents/Yao%20Qian.pdf.

[63] R3. Corda. https://www.corda.net.
[64] W. Shen, A. Khanna, S. Angel, S. Sen, and S. Mu. Rolis: a software

approach to efficiently replicating multi-core transactions. In Pro-
ceedings of the Seventeenth European Conference on Computer
Systems, pages 69–84, 2022.

[65] Sveriges Riksbank. E-krona pilot phase 1. Sveriges Riksbank Re-
port, 2021. https://www.riksbank.se/globalassets/media/rapporter/
e-krona/2021/e-krona-pilot-phase-1.pdf.

[66] R. Tamassia. Authenticated data structures. In European sympo-
sium on algorithms, pages 2–5. Springer, 2003.

[67] Tether Operations Ltd. Tether. https://tether.to/.
[68] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J.

Abadi. Calvin: fast distributed transactions for partitioned database
systems. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 1–12, 2012.

[69] UkoeHB. Mechanics of MobileCoin. https://github.com/UkoeHB/
Mechanics-of-MobileCoin.

[70] A. Usher, E. Reshidi, F. Rivadeneyra, S. Hendry, et al. The positive
case for a CBDC. Bank of Canada Staff Discussion Paper, 2021.

[71] N. van Saberhagen. CryptoNote v 2.0. https://web.archive.org/
web/20201028121818/https://cryptonote.org/whitepaper.pdf.

[72] T. Walton-Pocock. Why hashes dominate in SNARKs: A primer by
AZTEC, 2019. https://medium.com/aztec-protocol/why-hashes-
dominate-in-snarks-b20a555f074c.

[73] G. Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 151(2014):1–
32, 2014.

[74] P. Wuille. Bech32m format for v1+ witness addresses, 2020.
https://github.com/bitcoin/bips/blob/master/bip-0350.mediawiki.

[75] P. Wuille and G. Maxwell. Base32 address format for native v0-
16 witness outputs, 2017. https://github.com/bitcoin/bips/blob/
master/bip-0173.mediawiki.

[76] P. Wuille, J. Nick, and T. Ruffing. Schnorr signatures for
secp256k1, 2020. https://github.com/bitcoin/bips/blob/master/bip-
0340.mediawiki.

[77] M. Zamani, M. Movahedi, and M. Raykova. Rapidchain: Scaling
blockchain via full sharding. In Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security,
pages 931–948, 2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 915

https://tornado.cash/Tornado.cash_whitepaper_v1.4.pdf
https://tornado.cash/Tornado.cash_whitepaper_v1.4.pdf
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/20180718/Documents/Yao%20Qian.pdf
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/20180718/Documents/Yao%20Qian.pdf
https://www.corda.net
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2021/e-krona-pilot-phase-1.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2021/e-krona-pilot-phase-1.pdf
https://tether.to/
https://github.com/UkoeHB/Mechanics-of-MobileCoin
https://github.com/UkoeHB/Mechanics-of-MobileCoin
https://web.archive.org/web/20201028121818/https://cryptonote.org/whitepaper.pdf
https://web.archive.org/web/20201028121818/https://cryptonote.org/whitepaper.pdf
https://medium.com/aztec-protocol/why-hashes-dominate-in-snarks-b20a555f074c
https://medium.com/aztec-protocol/why-hashes-dominate-in-snarks-b20a555f074c
https://github.com/bitcoin/bips/blob/master/bip-0350.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

RECL: Responsive Resource-Efficient Continuous Learning for Video Analytics
Mehrdad Khani1,2, Ganesh Ananthanarayanan2, Kevin Hsieh2, Junchen Jiang3, Ravi Netravali4,

Yuanchao Shu5, Mohammad Alizadeh1, Victor Bahl2
1MIT CSAIL, 2Microsoft, 3University of Chicago, 4Princeton University, 5Zhejiang University

Abstract
Continuous learning has recently shown promising results
for video analytics by adapting a lightweight “expert” DNN
model for each specific video scene to cope with the data drift
in real time. However, current adaptation approaches either
rely on periodic retraining and suffer its delay and significant
compute costs or rely on selecting historical models and
incur accuracy loss by not fully leveraging the potential of
persistent retraining. Without dynamically optimizing the
resource sharing among model selection and retraining, both
approaches have a diminishing return at scale. RECL is
a new video-analytics framework that carefully integrates
model reusing and online model retraining, allowing it
to quickly adapt the expert model given any video frame
samples. To do this, RECL (i) shares across edge devices
a (potentially growing) “model zoo” that comprises expert
models previously trained for all edge devices, enabling history
model reuse across video sessions, (ii) uses a fast procedure to
online select a highly accurate expert model from this shared
model zoo, and (iii) dynamically optimizes GPU allocation
among model retraining, model selection, and timely updates
of the model zoo. Our evaluation of RECL over 70 hours of
real-world videos across two vision tasks (object detection and
classification) shows substantial performance gains compared
to prior work, further amplifying over the system lifetime.

1 Introduction
Video analytics with deep neural networks (DNNs) is a
promising technology adopted in a wide range of applications
such as enterprise security, retail, traffic management, and
transportation [1, 2]. Across these applications, it is often
imperative to run analytics tasks directly on edge devices
(e.g., using on-premises edge servers [3, 4]) to ensure that the
system can deliver real-time results with low latency and in
compliance with data privacy constraints [5–8]. However, the
edge has limited compute resources, which cannot match the
unrelenting growth of video analytics workloads, DNN mod-
els, and video streams [9,10]. Even for applications that can be
deployed in resourceful environments such as public clouds,
the cost of running video analytics remains exorbitant despite
recent advancements in DNN resource efficiency [11–13]. For
example, a high-end NVIDIA V100 GPU can only support
two video streams running the state-of-the-art YOLOv5-L
model [13] at 30 FPS, which translates to a steep cost of
$1,100/month/stream on public clouds [14].

One common approach to reducing the resource require-
ments for video analytics is to use specialized and compressed

DNNs [15–18]. However, owing to their inherent limits on the
number of object appearances and scenes they can learn in their
condensed structures, such specialized DNNs require contin-
uous retraining to cope with dynamic scenes (data drifts) in
order to maintain high inference accuracy. Recent work in the
computer vision and systems communities [19–21] has shown
the effectiveness of this approach for edge video analytics, de-
livering both high resource efficiency and accuracy in results.

Though promising, continuous retraining and deploying
specialized DNNs has two fundamental limitations. First,
continuous retraining consumes the vast majority of compute
resources in these video analytics systems (70%–90% in our
study) [20, 21], making model retraining the key bottleneck
in scaling video analytics to more video streams with limited
compute resources. Our study (Fig. 2) shows that accuracy
drops sharply (by 40% in object detection) as 4× more
cameras share the GPU cycles to retrain their models (§2.2).
Second, it takes time to retrain specialized DNNs, and abrupt
video scene changes inevitably lead to drastic accuracy drops
until the retraining is completed (see Fig. 3 for an example).
Hence, it is fundamentally challenging to uphold the accuracy
lower tail during the retraining.

Our goal in this work is to address the above two fundamen-
tal limitations so that video analytics are scalable with more
consistent accuracy. As retraining specialized DNNs requires
resources and takes time, we aim to minimize the necessity
of retraining by judiciously reusing historical specialized
DNNs that are trained with past video segments. The intuition
behind our approach is that video streams typically exhibit
spatio-temporal correlations (e.g., a car drives back on
the same street or another car has been on the same street
before) [22]. Thus, it is likely that the current video segment
bears some resemblance to historical video segments, and
the corresponding historical specialized DNNs can be reused
for the current scene. Indeed, our study in §2 shows that an
idealized model reusing scheme can consistently deliver high
accuracy (35% mAP) with limited compute resources. In
comparison, existing continuous retraining systems (e.g., [20])
cannot keep up with the compute demand of more cameras,
with their accuracy dropping to a low 24% mAP.

Technical challenges: Harnessing the potential of model
reuse for video analytics faces two challenges. First, we need
to quickly and accurately find the specialized DNN that works
well for the current video segment so that we can reuse the
DNN in real-time. This is difficult because it is unclear how to
compare the similarity of high-dimensional and unstructured
data such as video segments [23], and comparing the current

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 917

video segment with all the historical video segments is not
practically feasible. Second, we need to keep the cost of
enabling model reuse much lower than the cost of model
retraining. This is challenging as the cost of seeking through
historical models grows with the size of history, while model
retraining only requires fixed expenditure for each video
segment. Recent video analytics solutions that reuse historical
models (e.g., ODIN [23]) cannot address these challenges
because they are not designed for resource efficiency.

Solution: We present RECL, a new video analytics solution
that leverages historical specialized DNNs to improve scala-
bility, responsiveness, and accuracy consistency in a resource-
constrained environment. RECL is the first end-to-end
system that integrates model reusing with model retraining for
resource-efficient video analytics, entailing three main ideas:

• We design a fast and robust model selection procedure
to quickly select a suitable model from the model zoo, a
large collection of historical specialized models (§3.1). Our
model selector is inspired by sparse gating networks in the
mixture of experts (MoEs) approach [24–26], and we make
it resource-efficient by decoupling the training of the gating
network from the training of underlying experts. This allows
RECL to select a model based on the characteristic of video
analytic tasks and video scenes (e.g., detecting cars on a sunny
day), which is superior to existing solutions that only consider
the similarity of video frames (e.g., rainy or sunny days) [23].

• RECL shares the model zoo across different edge devices
to enable more model reusing and dynamically adds new
experts to the model zoo with a lightweight process to update
the model selector (§3.3).

• RECL shares GPU resources across the retraining
jobs using an iterative training scheduler that dynamically
prioritizes retraining jobs that progress faster (§3.2). As a
result, it spends little retraining resources on expert models
that are already a good match with the current video segments.

We implement and evaluate RECL on two computer vision
tasks: object detection and object classification. We compare
RECL against three state-of-the-art video analytics systems
(Ekya [21], AMS [20], and ODIN [23]) over a total of 71 hours
of driving videos. Given the same compute resource, our evalu-
ation shows that RECL improves the object detection mAP and
image classification accuracy over the state-of-the-art solutions
by up to 9.0% and 7.4%, respectively. To put these accuracy
gains in perspective, the state-of-the-art mAP score for the ob-
ject detection task on the PASCAL dataset has only improved
by less than 8 percent in the past 6 years [27]. Moreover, the
baseline systems need at least 3.2×more compute resources
to match RECL’s accuracy. Our ablation study shows that
RECL’s superior performance mostly comes from effective
integration of model reuse in our design. Compared to Ekya as
a prior continuous training approach, RECL achieves the same
accuracy up to 91 seconds faster on average. We also show that
the compute overhead of RECL declines gracefully over time
as more expert models are learned and added to the model zoo.

Adaptation

Camera Inference

Sampled
Frames

Model
Updates

Frames

Figure 1: Overview of a video analytics system utilizing continuous learn-
ing. A typical adaptation module continuously retrains expert models
or selects them from an existing collection of models trained in the past.

2 Background and Motivation
We first introduce the background of continuous retraining and
deploying specialized DNNs for video analytics (§2.1). We
then discuss the fundamental limitations of this approach and
how reusing historical specialized DNNs can address these
limitations effectively (§2.2).

2.1 Continuous Retraining for Video Analytics

State-of-the-art generic DNNs are often too expensive to
run for video analytics all the time in resource-constrained
environments such as a mobile edge computing (MEC) net-
work [28]. A common approach is to deploy specialized and
compressed DNNs (or “expert” models) that are trained using
the knowledge of the generic and expensive DNNs (or the
“teacher” model). The idea is to use knowledge distillation [29]
to transfer the knowledge from a large teacher model to a small
expert model for a specific video segment or video stream. On
a matching video segment, an expert model can save compute
resources by orders of magnitude while achieving similar
model accuracy as the large teacher model [15, 16, 30]. This
approach has been widely adopted in modern systems such as
Microsoft’s Rocket [17] and Google’s Learn2Compress [18].

As an expert model only recognizes a limited set of object
appearances and video scenes, a static expert model cannot
achieve high accuracy on dynamic live videos where objects
and scenes inevitably change over time (e.g., different loca-
tions, lighting conditions, object classes, etc.) [21]. A promis-
ing approach to employing expert models on dynamic live
videos is to continuously retrain the expert model with the most
recent video frames. Recent work [19–21, 31] has established
that continuous retraining and deploying small expert models
can simultaneously achieve high accuracy and resource effi-
ciency on dynamic video content. Furthermore, continuous re-
training has shown superior performance compared to running
the large teacher model on a subset of frames and interpolating
the labels (e.g., using optical flow tracking methods) [20].

Fig. 1 can be used to illustrate the high-level components of
a video analytics system that continuously retrains and deploys
expert models. They include: (i) camera service: periodically
sends new sample video frames to the adaptation service; (ii)
adaptation service: uses the recently sampled frames to fine-
tune (a copy of) the camera’s expert model to mimic a larger
teacher model for the current scene, and sends (or “streams”)
the updated expert model to the inference service; and (iii) in-

918 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 4 6 8
20

25

30

35

40

45

Num. of Cameras

m
ea

n
Av

er
ag

eP
re

ci
si

on
(m

A
P)

No Adaptation
Continuous Retraining
Ideal Model Reuse
Ideal Reuse + Retraining

Figure 2: Object detection accuracy (mAP) of different designs under
different numbers of cameras. Model reuse has the potential to
significantly improve the accuracy in resource-constrained regimes (4, 6,
and 8 cameras), and when combining model reuse and model retraining,
performance could be greatly improved.

ference service: uses the received lightweight expert model for
real-time inference on video frames from the camera service.

This paper focuses on the adaptation service. As retraining
an expert model takes significant compute resources and
time (§1), the adaptation service becomes a key bottleneck
in resource efficiency and accuracy consistency. We observe
that these systems [20, 21] need to spend 70%–90% of the
overall compute resource on retraining their expert models.
This is because model training is much more expensive than
model inference. Besides, knowledge distillation needs to run
the large teacher model to generate data labels on the sampled
frames. In order to address this fundamental challenge, we
need an effective approach to minimize the necessity of
invoking expert retraining.

2.2 The Case of Reusing Historical Expert Models

It is well known that a video deployment usually exhibits
temporally and spatially recurrent patterns [22,23,32]. Similar
video scenes reoccur on the same camera at a similar time of
day (e.g., morning or night), weather (e.g., sunny or raining),
and location (e.g., a drone revisits the same street). More
importantly, a video scene from one camera can also appear
on other cameras, especially those in the same geographical
vicinity, such as a self-driving car visiting a place that other
cars in the same fleet have seen. These temporal and spatial
correlations imply that some expert models trained on video
scenes in the past could perform reasonably well on the current
video scene, and we can potentially leverage these historical
expert models to minimize the necessity of retraining.

To empirically show the potential of reusing historical
expert models, we use a total of 71 hours of driving videos col-
lected from YouTube (more details in §5.1). The large teacher
model is a state-of-the-art object detector DNN, YOLOX-X
(282 GFLOPs), and the expert model is a much smaller
variant YOLOX-Nano (1 GFLOPs) [13]. Similar to existing
continuous retraining solutions, we train one expert model for
each 30-second video segment. We create a model zoo using
all the expert models trained on the first 30 hours of the videos
("training data"), and we use the remaining 41 hours of the

videos ("test data") to report the object detection accuracy.
We evaluate four designs:

1. No Adaptation: trains a single expert model based on all
training data and deploys this expert on the test data.

2. Continuous Retraining: periodically retrains an
expert model for each camera using the most recent
video segments. This serves as a reference point of recent
model-retraining systems, such as AMS [20] and Ekya [21].

3. Ideal Model Reuse: deploys the best expert model from
a given model zoo created based on video segments in
the first 30 hours (ignoring the model-selection overhead).
This can be seen as a strictly better version of ODIN [23],
recent model reusing baseline.

4. Ideal Reuse with Retraining: combines 2 & 3 (retraining
the reused model selected by 3.) This shows how much an
ideal model reusing scheme can improve in a continuous
retraining framework.

All designs are given the same amount of GPU resources
to continuously retrain expert models, while No Adaptation
(Design 1) and Ideal Model Reuse (Design 3) do not use this
resource for retraining.
Benefits in resource efficiency: Fig. 2 shows the mean
Average Precision (mAP) score on the test data while varying
the number of cameras. The observations are two-fold.

First, model reuse is a promising direction in minimizing
retraining. The benefits of model reuse become more evident
when the compute resource is not enough to retrain the expert
models for more cameras (4, 6, and 8 cameras). Even when
the compute resource is enough for model retraining (2
cameras), Ideal Model Reuse can still achieve a similar mAP
as Continuous Retraining. This observation is encouraging
because reusing history models does not require the resources
(not shown here) to retrain any new expert models, and at the
same time, the best expert model in the past already achieves
comparable accuracy with the expert models trained on the
most recent video data.

Second, model reuse has a promising synergy with
continuous retraining—Ideal Reuse with Retraining achieves
the highest mAP across the board. This is because the reused
model provides a strong starting point for retraining, which
reduces the compute resource needed by retraining (i.e., faster
convergence) and improves the inference accuracy of the
resultant expert models.
Benefits in accuracy consistency: Another key benefit of
model reuse is that we do not need to wait for an expert model to
finish retraining. This is particularly important when a camera
has experienced a sudden scene change and is in urgent need
of a new model. For example, when a car drives into a tunnel,
we can select and change the expert model quickly without
the latency of training a new expert (Fig. 3 shows a concrete
example). We demonstrate this benefit with the CDF of mAP
across all video segments for the 8 camera setting (Fig. 4).
As the figure shows, Ideal Model Reuse has a much better

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 919

(a) t=10s (b) t=30s (c) t=40s

20 40 60 80 100 120 140 160

0.6

0.8

1

Response Time Gap

Time (sec)

A
cc

ur
ac

y
(n

or
m

al
iz

ed
)

Continuous Retraining Ideal Model Reuse

(d) Accuracy

Figure 3: Example of a scene change when a car camera enters a tunnel
and how fast Ideal Model Reuse and Continuous Retraining respond:
Model updates arrive every 30 seconds. At t=60 sec, both schemes can
access sample frames from the tunnel scene. Ideal Model Reuse switches
to a good model for the new scene immediately at t = 60 sec, whereas
Continuous Retraining takes about 80 sec to retrain the model till the
accuracy bounces back.

tail mAP than Continuous Retraining. For instance, at the 1st
percentile, Ideal Model Reuse retains 24% mAP while Con-
tinuous Retraining drops to an unacceptable 7% mAP. Fig. 3
illustrates a concrete example. As the car drives into the tunnel
(t = 40s), Ideal Model Reuse switches to a matching expert
much faster (t =60s) than Continuous Retraining (t =120s),
which leads to a much more moderate drop in model accuracy.
Challenges of model reuse: Several technical challenges
need to be addressed to fully realize the benefits of model
reuse. Ideal Model Reuse assumes that it always selects the
best expert model with no compute cost or delay in searching
through all experts in the model zoo, which is not practical.
Recent model reuse solutions in the database community (e.g.,
ODIN [23]) cannot address these challenges either, because
they are not designed for resource efficiency, when sharing
the compute resource among the functions of model selection
and model retraining for many edge devices. To unleash the
potential of model reuse in practice, we need a mechanism to
find the best expert model quickly and accurately. We also need
to rein in the cost and latency of model selection, so that it does
not grow indefinitely with the number of videos or cameras.

In summary, reusing historical expert models is a promising
complement to model retraining, and when used jointly, it
leads to better resource efficiency and more stable and accurate
model adaptation. That said, to make model reuse practical,
several technical challenges remain, which we will tackle in
the next section.

3 Design of RECL
This paper presents RECL, a new end-to-end design of model
adaptation for continuous learning on edge devices. At a high
level, RECL is given an accurate-yet-expensive model (the
“teacher”) and a set of edge devices, and it automatically adapts

10 20 30 40 50

0

0.5

1

Video Segment mAP

C
D

F

Continuous Retraining
Ideal Reuse

Figure 4: Ideal Reuse improves both average and tail accuracy (mAP)
across video segments.

the deployed lightweight (“expert”) models, each dynamically
tailored to an edge device’s particular distribution of video
frames at any point in time, allowing each edge device to
obtain results similar to running the teacher model.

Overall architecture (Fig. 5): RECL launches a model-
adaptation controller on a server machine (e.g., in the cloud,
edge compute cluster, etc.), which manages a set of daemons
running on edge devices. The controller selects and deploys
lightweight models on edge devices, which run local fast
inference using the lightweight model. This work focuses
on the adaptation controller, and the optimizations inside the
edge devices or on the communication between the controller
and the edge device are orthogonal to RECL. Furthermore,
we assume the interactions between the server and edge do not
interfere with any other processes running on the edge device
(including the local inference).

In each model-update window (by default, every 30
seconds),1 each edge device sends sampled frames to the
controller to query if a new model should be used. (Note that
the RECL controller only updates models for edge devices,
which then use models to run inference on video streams.) The
frame sampling rate is set dynamically based on the extent
of scene change (similar to the technique used in AMS [20]).
AMS takes the drift rate of the labels measured at the server
as a signal for setting the frame sampling rate. As labels are
usually in a lower dimension than input images, their variation
rate is a less noisy proxy for detecting the scene change pace.

Based on the sampled frames, the controller performs
two basic functions—model selection (§3.1), which selects
a suitable expert model from a collection of history expert
models to quickly respond to the edge device’s query, and
model retraining (§3.2), which fine-tunes the selected model
based on the sampled frames and manages GPU resources
to many edge devices to retrain their models. Furthermore,
retrained models are periodically added to the model zoo
shared with other edge devices (§3.3). The rest of the section
will present their designs and rationales.

1We use fixed update windows, similar to Ekya [21]. Dynamic window
size is orthogonal to RECL. In general, an update window can be triggered
by an edge device when it detects substantial changes in its video stream, and
there are several prior efforts on scene change detection.

920 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Adaptation Process M (§3.1)

Model Adaptation Controller

Edge1

Update Model Zoo & Update Model Selector
(§3.3)

Heavyweight Teacher NN
Lightweight Expert NN

Sampled
Frames

Deployed
Expert

Sampled
Frames

Model Selector
(Gating Network) Safety Checker

Model Retraining &
Training Scheduler (§3.2)

(Frames,
Labels)

New
Expert

,…

Adaptation
Process M

Adaptation
Process 1

New
Expert

…

…

Teacher Labeler

,…

Backup
Backup

Model Selector (Gating Net) NN

Takes less than few seconds
Takes several seconds
Takes several minutes

Deep Neural Network ModelsMicroservices

Deployed
Expert

EdgeM

Model
Zoo

Model Zoo

Top-k

Figure 5: RECL system architecture. Edge devices (cameras) run real-time inference using lightweight models, and the model-adaptation controller
manages a model zoo of expert models trained on history frames from edge devices (cameras) and, on receiving a model-update query, quickly selects
a suitable model from the model zoo and recently trained models (the light-blue box). New models are also continuously retrained (optimized by a
custom training scheduler) and then incrementally added to the model zoo over time. (The figure does not show optimizations to speedup inference
on edge devices or the controller-device communication, as they are orthogonal to RECL.)

3.1 Model Selection

RECL’s model selection module, on receiving a query from
an edge device, should quickly select a high-quality (accuracy)
expert model from a collection of models. RECL achieves this
goal by: (i) maintaining a large (potentially growing) model
zoo of history expert models that are previously trained for
any edge device; and (ii) using a fast and robust selection
procedure to navigate the large model zoo.

Sharing model zoo across video sessions: RECL’s model zoo
consists of a set of lightweight expert models, each trained for
a specific scene distribution previously seen by some edge de-
vice managed by the controller. For example, if the controller
manages several driving video sensors in an area, the model
zoo might contain experts for different streets/neighborhoods,
different weather conditions, etc. It is crucial to note that RECL
does not directly rely on any priors about the features (e.g.,
weather conditions) of video content as a signal for creating
new models; rather, an expert model is created based on
frames of an edge device in an update time window, and then
added to the model zoo if it improves performance (see §3.3).

An important design choice of RECL is that rather than
caching the history models of different devices separately,
RECL shares the model zoo and its gating network across
devices, enabling model reuse across similar video sessions
of different devices that might share similar temporal-spatial
correlations (e.g., in the same geographical vicinity) [33]. This
reduces the need for online model retraining and improves
system responsiveness when an edge device experiences
a sudden scene change for which a previously trained
model (probably of another device) with good accuracy is
available. For example, cars in the same city would observe
the same scenery over time, even though the frames observed

throughout one driving session may vary significantly. In such
an application, the model zoo would eventually include an
expert for most scene distributions encountered, significantly
reducing the need for per-session model training.
Fast, robust online model selection: Figure 5 (right-hand
side) describes RECL’s online procedure to select a model
from the model zoo. One strawman solution to the model
selection problem is running an exhaustive search over all
experts in the zoo. However, the number of models in the zoo
can grow large over time, and it would become prohibitively
expensive to select models by testing all of them on the sam-
pled frames in each update window. To scale model selection
to a large model zoo, RECL uses a gating network [26] to
directly infer which models in the zoo better fit a given video
content. The gating network is a lightweight DNN that given
an image, assigns a score to each model in the model zoo.
Logically, the gating network is similar to an image classifier,
except that the labels are not object classes but models in
the model zoo. A higher score indicates the model likely
has higher accuracy on the image. (§3.3 will explain how to
update the gating network to handle the changing model zoo.)

An alternative approach [23,34] to model selection is to map
video content to an embedding space (via an autoencoder),
partition the embedding space, and map each partition
to a specific expert model. We found that this approach
works poorly in practice (§5.2). The intuitive reason is that
auto-encoders are trained to learn the distributions of only
input data (e.g., which video frames look similar), rather than
simply learning which frames can share a good expert model.
The former task is too generic, and therefore, it is significantly
hard to learn an efficient embedder to deploy in practice. We
refer readers to [35] for further details. In contrast, RECL’s
gating network directly predicts the quality (accuracy) of each

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 921

expert model and avoids the need to have a good auto-encoder.
That said, it is hard to train a gating network that always

picks the best model from the model zoo. Instead, RECL runs
the gating network on the edge device’s latest sampled frames
and selects the top-K models (e.g., K = 10) with the highest
average scores. The intuition is that the performance of the best
of the top-K models improves quickly with larger K (see §5.3).
In short, the top-K filtering approach strikes a decent balance
between leveraging a large model zoo and fast model selection.

The safety checker then tests the accuracy of these top K
models, along with the current model of the edge device and
the last model retrained on video frames from the same edge
device (explained in §3.2). The testing is based on the sampled
frames and their “ground truth” labeled by the more accurate
and more expensive “teacher” model. Finally, among these
models (top-K from the model zoo, current model, and the
last retrained model), RECL selects the one with the highest
empirical accuracy on the labeled images and sends it to the
device. This online model selection process is fully automatic
and has a low compute cost. For the object detection task, for
example, we use YOLOX-nano for the lightweight experts
and ResNet18 as the gating network. These two models
have a close inference cost per sample (1.1 vs. 1.8 GFLOPs).
However, the gating network only runs on a significantly
smaller subset of frames (e.g., 1/30th of frames).

3.2 Model Retraining

So far, we discussed how to reuse the previously trained models.
Like other continuous learning frameworks [20,21,23], RECL
also retrains models online for each edge device. The edge de-
vice periodically queries the controller in every model-update
window. For each query, RECL will initiate a retraining job
using the sampled frames sent by the device (similar to [21]),
after the model selection process described above is finished.

However, to scale to more edge devices, many of which
need new models, RECL must carefully allocate its GPU
resource to model retraining jobs. The basic idea of RECL
is to closely monitor how accuracy improves on each training
job and dynamically share more GPU resources to the jobs
that benefit more from additional GPU cycles.

RECL time-shares the GPU among multiple retraining
jobs by micro-windows—in a micro-window, we let one of
the retraining jobs use all GPU cycles and may switch to a
different job at the boundary of micro-windows based on the
logic described next. Each micro-window is long enough for
one retraining job to complete one epoch (i.e., going through
all sampled frames once). A typical micro-window size is
about one second. (We will explain the reason for timesharing
GPU shortly.)
Retraining scheduling algorithm: Targeting a fixed maxi-
mum accuracy gap with the teacher model for each video scene
can become quickly intractable as it can be pretty challenging
for the student model to track the same target performance for
all real-world scenes. However, as our results show later, we

Algorithm 1 RECL GPU Sharing Algorithm

1: Input: training requests R , micro-window number of
seconds µ, window size of T sec

2: budget←T ▷ Total time budget
3: procedure PROCESSREQUEST(r)
4: acci← r.EVAL()
5: Train the model for request r for µ seconds
6: acc f ← r.EVAL()
7: budget←budget−µ
8: return (acc f - acci)/µ ▷ Returns the accuracy gain
9: end procedure

10: for r in R do ▷ Initialize the gain estimates
11: gain[r]←PROCESSREQUEST(r)
12: end for
13: while budget>µ do ▷ Schedule the most promising
14: r←argmaxgain ▷ Find the request with max gain
15: gain[r]←PROCESSREQUEST(r)
16: end while

can still target a fixed maximum gap on the average accuracy.
Hence, having a system that uses the resources efficiently,
we can always add more resources as the number of cameras
grows till we are happy with the overall accuracy.

Consider C concurrent training jobs (one for each edge
device). We define Ic(τ) as the improvement achieved from
training the model corresponding to camera c for τ seconds.
Our objective is:

max
τ1,τ2,...,τC

C

∑
c=1

Ic(τc)

s.t.
C

∑
c=1

τc=T

(1)

That is, given a time budget T (e.g., the update window
duration), we want to time-share GPU resources to maximize
the total improvement of accuracy across all models.

To solve this optimization problem, RECL uses the
following iterative scheduler (Algorithm 1). At the beginning
of each update window of size T , the scheduler receives a set
of training requests, R . Each training request corresponds to
a set of labeled frames (already labeled by the teacher model
as part of safety checking), and an expert model checkpoint
(selected by the safety checker at the beginning of the window).
In each micro-window of µ seconds, the PROCESSREQUEST
procedure (Lines 3-9) takes one of the requests r as input and
evaluates how much its accuracy improves between before and
after a micro-window. Notes that the cost of these accuracy
evaluations is ignored as they only require a lightweight
forward pass on the test subset of the data.

The main loop of the algorithm first spends one micro-
window to process each request and initialize its accuracy
improvement (Lines 10-12). Then it iteratively picks the

922 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

training request with the largest accuracy improvement as our
next model to train till we run out of time (Lines 13-16).

Since DNN training curves Ic(τ) are usually concave (i.e.,
accuracy improves quickly and then slows down), then this
iterative algorithm effectively minimizes the maximum speed
of these models’ training curves (∂Ii

∂τi
). It can be shown that

this iterative process converges to a near-optimal partition
of the total time budget that maximizes the total accuracy
improvement across the training jobs [36].
Design choices: We highlight two design choices behind the
retraining scheduler.

To find the best GPU allocation, both Ekya and RECL
predict each retraining job’s training speed (accuracy
improvement vs. epochs) but with different approaches. Ekya
periodically runs extra (“out-of-band”) micro-profiling on each
camera: running a few epochs of training on a subset of history
images to build a profile of the training curve of each camera.
Such upfront micro-profiling has extra compute overhead and
fails when the training curve changes over time. In other words,
they inherently trade off between the profile accuracy and their
overhead. In contrast, RECL uses an “in-band” profiler—it
measures the actual learning progress (accuracy improvement)
of each job on the fly and dynamically determines which one
progresses faster. This scheme avoids the micro-profiling over-
head of Ekya without losing accuracy. Note that RECL requires
fast switching between models, which will be discussed next.
Our scheduler’s iterative algorithm is similar to [37] which is
designed to achieve fairness among the cluster-level training
jobs which compete at a significantly longer time scale.

Instead of splitting GPU cycles spatially across concurrent
training jobs, RECL time-shares the GPU cycles by switching
among concurrent retraining jobs every micro-window. While
it is logically equivalent to spatially sharing, RECL’s GPU
timesharing is based on three practical considerations. (1)
The delay to context switch between GPU-loaded models
(usually less than tens of milliseconds) is negligible compared
to a micro-window. Since a lightweight model in RECL has
a small memory footprint, we can load it to GPU memory
and not swap it out (even when switching between retraining
jobs) until the model retraining completes. (2) Unlike Ekya,
RECL does not have to finish model training very quickly (it
responds to each edge device by first selecting a good model
from the model zoo or the most recently trained model has
been good enough). (3) It does not rely on any GPU library
to dynamically reallocate GPU across different jobs.

3.3 Updating the Model Zoo & Selector

Admission of new models to model zoo: RECL does not add
every retrained model to the model zoo. A recently trained
model is considered promising if the safety checker finds
this retrained model’s accuracy is α higher than the rest of
the candidate models (the top-K experts selected by gating
network and edge device’s current model). These promising
models are put in a queue. When the promising model’s queue

grows larger than a fixed threshold, γ, we empty the queue by
adding them to the model zoo and update the gating network
(explained next) to consider the recently added models. Hence,
α and γ control the frequency of model selector updates. We
later study the impact of the zoo admission rate on the system
performance (§5.3).
Incrementally update of gating network: Recall that the gat-
ing network predicts the accuracy of each expert in the model
zoo on the input frame. Hence, when updating the gating
network to handle new expert models, we need to first label
the accuracy of all experts on both the new frames that were
used to train the new expert models as well as a sub-sampled
set of history frames (those used to update gating network
before). To this end, we label the new samples with existing
experts in the zoo and label the existing samples with the new
experts added to the zoo. This way, we track the performance
of all experts on a sampled set of frames so far. Note that when
we create the training frame set of the gating network, we
sub-sample frames used before and mix them with the new
frames in order to keep the same training size over time.

As the zoo size increases, the output size of our gating
network must change as well. Since the accuracy prediction
logic does not change for most of the models in the zoo, we
only need to add corresponding neurons for the new models
to the final layer without changing the connectivity weights
for existing expert models. This way, we transfer as much
knowledge as possible from one gating network to the next.
To further speed up the training of the gating network, we use
the mean and variance of the most recent model selector in
order to initialize the connectivity weights corresponding to
the new experts in the final layer.
Pruning the model zoo: Though updating the gating network
is usually fast, the overhead of retraining for updating the
gating network grows proportionally with the size of the
model zoo. To prevent the model zoo to grow indefinitely, we
deem an expert in the zoo ineffective if other experts always
have a preferred accuracy. In particular, we remove the experts
that are chosen less than η times in the last q model selection
calls. We set q = 3000, which is about one day’s worth of
video streaming in our system and study the impact of the η

parameter later in §5.2.

4 Implementation
We have implemented RECL in Python and used Pytorch [38]
for inference and training of ML tasks. For communication
between the services, we use the gRPC [39] framework for
remote procedure calls.
Microservices: We implement several microservices to
prototype RECL. These microservices are designed to
generalize to different continuous adaptation design choices
in prior work. RECL runs a camera streaming service on each
camera device to send the subsampled video frames to the
teacher labeler service running on the adaptation server. We
use TensorRT [40] and half-precision computation to further

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 923

speed up the inference processes. One runner microservice
manages the coordination of different components across all
video streams that share resources in the server.
Hooks: Each microservice can register a hook in other
microservices. These hooks are specific functions to run at
predefined time events in the system. Our time events are a com-
bination of before/after, window/microwindow, and first/last
time. For example, if a model zoo update strategy requires
to have information about the training gain of each model at
the microwindow level, it registers accuracy evaluation hooks
in the training scheduler before and after each window.
Adaptation state: There is an adaptation state shared
across all microservices that register to the same runner. All
microservices have read and write access to the adaptation
state to optimize their decisions, possibly share the hooks
results, and keep track of possible global events like the
beginning of a new window.
Training strategy: Our training scheduler service relies on
a sharing strategy abstraction. Each strategy has access to
the adaptation state, can register or subscribe to a hook, and
has a run method to decide which camera model should train
next in each microwindow. If an adaptation scheme is not
microwindow-based, it only has to register hooks for the first
and last microwindow.
Performance monitoring: For tracking the system per-
formance metrics, we implement logging hooks to track
system-level metrics like compute times and resource
utilization in addition to RECL-specific performance metrics
like zoo admission rate and model reuse rates.

5 Evaluations
Finally, we evaluate RECL on two video-analytics tasks using
real-world driving videos. Our key findings include:
• Given the same compute resource, RECL improves the

object detection mAP and image classification accuracy
over state-of-the-art baselines by up to 9.0% and 7.4%,
respectively. The baselines need to use at least 3.2×more
compute resources to match RECL’s accuracy.

• The superior performance of RECL comes primarily from
our distinctive design of model reuse. RECL ’s fast gating
network and safety checker outperform the state-of-the-art
model selection mechanism in terms of accuracy and
efficiency by a large margin.

• RECL is highly responsive to a model-update request. On
average, the time RECL needs to adapt models to the same
accuracy is 11–91 seconds faster than that of the baselines,
with the gap growing both at the tail of the distribution (by
almost 2×) and with the total number of cameras.

• RECL’s retaining scheduler also makes better use of GPU.
In contrast to round-robin and out-of-band profiling used in
several recent continuous learning systems, RECL’s in-band
profiling provides a 2.0% higher mAP at up to 6.1× lower
overhead.

• Compute overhead of RECL decreases gracefully over time

Model Params FLOPs Throughput (FPS)
MobileNetV2 3.5M 0.32G 1.5K

ResNet50 25.6M 4.12G 153
YOLOX-Nano 0.91M 1.1G 312

YOLO-X 99.1M 282G 58
ShuffleNetV2 2.28M 0.15G 3.7K

ResNet18 11.7M 1.8G 490

Table 1: Specifications of the models used for the evaluation. Throughputs
are reported for NVIDIA V100 GPU with a batch size of 1.

as more models are trained and added to the zoo.

5.1 Methodology & Setup

Dataset: We evaluate RECL on two computer-vision tasks—
image classification and object detection—using 151 driving
videos collected from YouTube. Since we would like our video
sessions to include meaningful data drifts, we adopt videos that
have a length of at least a few minutes (up to a couple of hours)2

with a total length of 71 hours. Furthermore, our dataset covers
a wide range of cities and driving situations in North America,
including weather conditions, time of day, and driving speed.
Note that in each experiment, we do not play the exact same
video segment twice on any edge devices, since it might artifi-
cially amplify the gain from model reusing. Driving video is a
remarkably challenging workload for evaluating our system as
the scenes change more widely and frequently. This workload
brings a variety of situations where exact matching is impos-
sible and requires more than a few models to cover the wide
range of possible scenarios. Responsiveness is also more chal-
lenging for driving cameras compared to fixed cameras. For
example, traffic light cameras mostly need only to update ev-
ery few hours when the lighting/weather change, significantly
stressing the compute power at the adaptation server.
Models: For object detection, we use YOLOX-Nano and
YOLOX-X [13] for the student and teacher models, respec-
tively. For image classification, we use MobileNetV2 [42] and
ResNet50 [43] for the student and teacher models. Details of
these models are shown in Table 1. Our models are pre-trained
on ImageNet [44] and COCO [45] datasets for classification
and detection, respectively. For fast model selection, we use
ResNet18 as the gating network architecture by default, unless
otherwise stated.
Metrics: To evaluate the accuracy of different schemes,
we compare the inference results on the edge device with
labels extracted for the same video frames using the teacher
model (similar to prior work [20, 21]). We use mean Average
Precision (mAP) for the detection task, while for classification,
we report accuracy by the proportion of correct predictions
(both true positives and true negatives) among the total number
of cases examined. We calculate these metrics across all 80
and 1000 classes of MS COCO and ImageNet datasets for

2Video sessions in other similar video datasets like Berkeley Driving
Dataset (BDD) [41] were not long enough for our purpose. For example, each
driving episode in BDD is only 40 seconds.

924 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 4 6 8
20

25

30

35

40

45

Num. of Cameras

C
O

C
O

m
A

P

No Adaptation One-Time Adaptation AMS Ekya ODIN RECL (Ours)

1 2 4 8
20

25

30

35

40

45

Num. of GPUs

(a) Object Detection

2 4 6 8
60

65

70

75

80

Num. of Cameras

A
cc

ur
ac

y

1 2 4 8
60

65

70

75

80

85

Num. of GPUs

(b) Image Classification

Figure 6: End-to-end scaling of the average accuracy across different schemes for two typical vision tasks.

detection and classification, respectively.
Setup: In our setting, model selection and training of the adap-
tation controller happen in the cloud, and each edge device only
runs inference by the lightweight expert model on the local
video stream. All experts can run at a real-time inference speed
(30 frames-per-second) even on lower compute power edge
devices such as NVIDIA Jetson Nano [46] and Coral Edge
TPU [47], and we do not evaluate any optimization on the edge
device, as it is orthogonal to RECL. We use NVIDIA V100
GPUs for the adaptation server. The adaptation processes of
different edge devices share the same pool of GPU resources.
Baselines. We compare RECL against the following
continuous learning methods:
• No Adaptation: We run the pre-trained model on the edge

device without any adaptation.
• One-Time Adaptation: We fine-tune the entire model

on the first half of the videos and test on the rest. This
adaptation happens only once. Comparing RECL with
this scheme will show the benefit of having a continuous
adaptation system in place.

• AMS: We implement Adaptive Model Streaming (AMS)
as in [20], which uses a remote server to continually adapt
lightweight expert models running on edge devices. As
the update intervals are longer and our lightweight models
are smaller than AMS, network bandwidth consumption
is less of a concern in our setup. As such, we relax the
bandwidth constraint of AMS and allow for full model
parameter updates in this scheme. AMS uses a simple
round-robin mechanism for GPU sharing. Comparison
with AMS mainly highlights the gains of model reuse and
optimized GPU sharing. As AMS reasonably outperforms
Just-In-Time [19] and remote server inference in prior
work [20], we no longer compare with these schemes.

• Ekya: Ekya enables both retraining and inference to
co-exist on the edge node without any model reuse. Since
RECL shares the server GPU resource only among model
retraining and selection jobs (inference is on edge devices),
for a fair comparison, we compare RECL with applying
Ekya’s microprofiler and thief scheduler (released in
Ekya [21]) to model retraining jobs. Despite the more

sophisticated resource-sharing mechanisms compared to
AMS, Ekya, however, incurs the out-of-band profiling
overhead and cannot reuse models compared to RECL.
Moreover, since Ekya shows how continuous retraining
significantly outperforms naive model reuse methods (e.g.,
reuse models from the same time of the day) [21, §6.4], we
do not compare RECL with these naive reuse heuristics.

• ODIN: ODIN [23] is a video analytics system that can
detect and recover from data drift by building expert
models based on the similarity of video scenes. We use the
autoencoder-based method proposed in ODIN for model
selection. Specifically, the average of embedding vectors
of the sampled frames in a window is used as the embedding
vector of that window. Also, each trained expert is assigned
an embedding vector the same as its training data. We use
the L2 distance between the embedding vector of a window
and the models in the zoo as a measure of similarity, and
the model selector returns the model with the least distance
from the samples in each window as in the ODIN paper [23].

5.2 Results

End-to-end performance: We first compare the end-to-end
accuracy of RECL with the baselines over a range of provi-
sioned GPUs and a varying number of concurrent cameras
replaying videos from our dataset. Whenever a video ends,
we continue with another video from our dataset. Note that
we never repeat the same video twice as it favorably impacts
the accuracy gain of model reuse. We use NVIDIA V100
GPU as the adaptation server. In measuring the impact of
the number of cameras on the accuracy, we fix the number of
GPUs to 1. For the varying number of GPUs experiment, we
run a workload consisting of 8 cameras. As shown in Fig. 6:
1. Continuous adaptation significantly improves mAP and

accuracy. Gains from continuous learning grow with more
resources provisioned per camera.

2. Overall, RECL outperforms all baselines by a large margin.
In object detection, for instance, RECL improves mAP by
up to 9.0% (8 cameras, 1 GPU) compared to the second
best approach. In terms of resource consumption, RECL
supports 2.6× more cameras on one GPU, and requires

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 925

0 2 4 6 8
20

25

30

35

40

Wall-clock Time (hours)

C
O

C
O

m
A

P

ODIN Oracle RECL

(a) Selection Accuracy

0 2 4 6 8

10

20

Wall-clock Time (hours)
R

at
e(

%
)

ODIN RECL

(b) Switch Rate

Figure 7: An example of RECL model selection performance over time.
As the model zoo grows, (a) accuracy of the RECL-selected models
gradually improves, and (b) the model selected by RECL’s gating
network has higher accuracy than models selected by ODIN (as evidenced
by the fact that the safety checker would more frequently pick the model
by the gating network than it would pick the model selected by ODIN).

2 4 6 8
0

50

100

150

200

Num. of Cameras

Ti
m

e-
to

-R
E

C
L

-A
cc

.(
se

c)

Average 90th-Percentile

Figure 8: Model reuse impact on improving the response time.

3.2× fewer GPU cycles to maintain an mAP of 35%.
3. mAP/accuracy improvements from model reuse are

significant. Compared with Ekya and AMS which do
not reuse historical models, RECL brings up to 9.8%
and 10.7% improvement in mAP and accuracy for object
detection and image classification, respectively.

4. Without model reuse, RECL’s scheduler provides about
1.5% mAP improvement compared to Ekya.

5. In image classification, ODIN performs the best among the
baselines due to its model reuse and specialization design.
Nonetheless, ODIN’s auto-encoder-based model selector
(and the lack of optimized resource sharing) performs
poorly on relatively complicated tasks like object detection.
In contrast, we see better performance of RECL across all
settings in both tasks due to our unique model selector and
retraining scheduler design.

Model selection performance: To directly examine the
model selector performance, in Fig. 7a, we plot the accuracy
of the selected models vs. the system’s wall-clock for 8 GPUs,
i.e., within each hour on the wall-clock, the system ingests 8
hours of video. In the figure, we also include the performance
of ODIN (a recent model selector) over the same zoo created
by RECL, as well as the accuracy of an oracle model that
exhaustively searches over all models in the zoo at each point
in time (while ignoring the oracle’s compute overhead). It

2 4 8

25

30

35

40

Num. of Cameras

C
O

C
O

m
A

P

In-band (RECL–Without Reuse) Out-of-band (Ekya–1 Epoch Prof.)

Out-of-band (Ekya–5 Epoch Prof.) Out-of-band (Ekya–10 Epoch Prof.)

Round-robin (AMS)

(a) Scheduling Perf.

2 4 8
0

0.2

0.4

0.6

Num. of Cameras

Pr
ofi

lin
g

O
ve

rh
ea

d

(b) Profiling Overhead

Figure 9: Impact of profiling on retraining performance: RECL’s
retraining scheduler (which uses a low-overhead in-band profiling)
outperforms Ekya (which relies on out-of-band profiling on each job)
and AMS (whic uses a round-robin scheduler).

is not surprising that the accuracy of the model selected by
RECL improves over time as more models are being added to
the zoo. Furthermore, we observe that RECL performs closely
to the oracle selector, while ODIN struggles to select a good
model from the same zoo. Notice that the cost of running the
oracle model is prohibitively expensive as, after a couple of
hours, it requires testing the accuracy of thousands of experts
in the zoo for each sample frame. On the contrary, RECL uses
ResNet18 as the underlying gating architecture that runs at
490 frames per second (see Table 1).

We further notice that, in Fig. 7a, the model zoo roughly
converges to a desirable accuracy after four hours, totaling
32 hours of video stream ingestion. This observation shows
an opportunity to reduce model zoo update frequency (and
thus its cost) after enough representative experts are collected
in the system. With the growing model zoo, model reuse
becomes more favorable over time as well. Fig. 7b depicts
the percentage of the time that the safety checker prefers the
selected model over the rest (e.g., a recently trained model).
For a fair comparison of the effectiveness of model reuse, we
run RECL and ODIN end-to-end independently (i.e., they are
not sharing the same model zoo). As can be seen in Fig. 7b,
RECL’s model hit ratio increases with a larger zoo, making our
system both more accurate and efficient than ODIN. Moreover,
notice that the safety checker picks the offered historical
model 25% of the time in the case that the most recent trained
model is also coming from RECL. To better understand the
model reuse impact here, we design the following experiment.
Impact of model reuse on responsiveness: Model reuse
improves the response time of the adaptation server by not need-
ing to retrain a new expert model first. To directly evaluate this
effect, we first profile the accuracy of 102 models generated in
Ekya (in a video of 51 minutes long) against 2 minutes of offline
training on a single V100 GPU. Using these profiles, we then
measure the time it would take Ekya, as a continuous retraining
approach, to adapt each model to the same accuracy level of the
RECL’s selected model for reuse on the same window. We refer
to this metric as Time-to-RECL-Accuracy. Figure 8 shows the

926 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 2 4 6

100

101

102

Wall-clock Time (hours)

C
om

pu
te

C
os

t(
Te

ra
flo

ps
)

Selector Update Teacher Labeler Experts Retraining
Model Selector Safety Checker Total

0 2 4 6

0

0.1

0.2

0.3

0.4

0.5

Wall-clock Time (hours)

C
om

pu
te

C
os

tR
at

io

Figure 10: Breakdown of compute cost by the components of RECL
controller. The total cost drops over time as the extra-cost of maintaining
the model zoo significantly reduces, allowing RECL to enjoy the benefit
of model reuse without much additional overhead.

2 4 6 8 10
0

200

400

600

800

Pruning threshold η

Z
oo

Si
ze

With Pruning Without Pruning

2 4 6 8 10
0

10

20

Pruning threshold η

Av
g.

R
eu

se
R

at
e(

%
)

2 4 6 8 10

25

30

35

Pruning threshold η

C
O

C
O

m
A

P

Figure 11: Pruning policy impact on RECL accuracy.

mean and 90th percentile of the Time-to-RECL-Accuracy for
the object detection task across a varying number of cameras
sharing one GPU. We observe that Ekya takes up to 90 seconds
longer than RECL, on average, to achieve the same level of
accuracy. More importantly, this gap grows significantly large
with increasing the number of cameras and at the tail scenarios.
Scheduler performance: We now evaluate RECL’s retraining
scheduler with its “in-band” profiling (§3.2) and compare
its performance with Ekya’s out-of-band micro-profiler and
AMS’s round-robin scheduling method. For a fair comparison
between Ekya and RECL, we turn off RECL’s model reuse
and let Ekya adapt its early stop parameter, which has a similar
effect to the micro-window-based scheduling in RECL. To run
Ekya’s profiler, we set its early stop parameter to 1, 5, and 10
epochs. Fig. 9 compares the accuracy and profiling overhead
(ratio of the time spent on profiling in each window) of these
schedulers vs. the number of cameras. We observe that Ekya’s
out-of-band profilings are either too costly to run (e.g., Ekya
with an early stop of 10 epochs), or too noisy to identify a
good early stop parameter, which results in low accuracy. For
example, an early stop at 1 epoch has the same cost as RECL’s
in-band method but performs worse than round-robin when
resource allocation becomes more challenging with 8 cameras.
Breakdown of compute cost: Fig. 10 shows the cost of differ-
ent components in RECL over the course of 7 hours. Initially,
model selector update has the dominant cost in the system.
However, as the zoo grows over time, the need for updating the
model zoo (and consequently the selector) reduces to the extent
that after a while, the teacher labeler and training scheduler

0 2 4 6 8

0

20

40
60

80

Wall-clock Time (hours)

A
dm

is
si

on
R

at
e(

%
) α=0% α=2% α=4%

(a) Zoo Admission

0 2 4 6 8

25

30

35

40

Wall. Time (hours)

C
O

C
O

m
A

P

(b) Oracle Perf.

0 2 4 6 8

25

30

35

40

Wall. Time (hours)

C
O

C
O

m
A

P

(c) RECL Perf.

Figure 12: Impact of changing the admission rate through the α-promise
threshold on RECL model selection performance.

0 10 20 30 40
0.4

0.6

0.8

K

Se
le

ct
io

n
A

cc
ur

ac
y

ResNet18 (fast, default) ShuffleNetV2 (very fast)

(a) Gating Network Accuracy

0 10 20 30 40

28

30

32

34

K

C
O

C
O

m
A

P

(b) Selected Model Performance

Figure 13: Impact of using top-k models suggested by the gating network
for the default gating network and a faster gating network model.

become the dominant cost of the system, but these “base cost”
is the same as a typical continuous retraining system (such
as Ekya and AMS). In short, the extra overhead for RECL
to enable model reusing (model selector and maintaining a
growing model zoo) significantly reduces over time.

5.3 Ablation Studies

Model zoo pruning: In Fig. 11, we compare RECL accuracy
across various levels of pruning intensity over the course of
nearly 60 hours. Naturally, reducing the value of η leads to
a significant drop in model zoo size without much accuracy
sacrifice. For instance, a balanced choice of the pruning
threshold, η=4 provides the same accuracy despite efficiently
shrinking the size of the model zoo by a factor of 5.6×, from
830 down to about 150 experts.
Zoo admission rate impact (α-promise margin): In order
to evaluate the impact of the admission rate, we turn off the
zoo pruning mechanism and measure the selected model
accuracy. Fig. 12 shows this accuracy for three levels of α

for both the ideal oracle selector and RECL’s selector. As
decreasing α allows for admitting more models to the zoo,
the oracle-based scheme can choose among more models.
However, it gets harder for the gating network model to select
from an arbitrarily large model zoo. Hence, we observe a
diminishing return in increasing the admission rate beyond
α= 2%, which seems to be a good balance between the zoo
size and the model selection complexity.

It should be noticed that the exact values of these parameters
(η,α) largely depend on the dynamics of video content. The

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 927

message from Fig. 12 and 11 is that there are sweet spots for
them that, on a large set of videos, strike a desirable tradeoff
between the cost of maintaining a reasonably sized model
zoo and the quality (accuracy) of the selected models. The
parameter γ controls the gating network update frequency (i.e.,
cost). As the Selector Update cost in Fig. 10 shows, this cost
diminishes over time as the system collects a comprehensive
set of experts. Therefore, RECL ’s performance in steady state
is not as sensitive to γ as it is to α and η.
Model selector top-k: As discussed in §3.1, we pass the top-k
selected model to the safety checker (instead of 1) in order to
find a better model for reuse. In Fig. 13, we show the accuracy
of model selection and the performance of the selected model
for our default and a faster gating network model (see Table 1
for speed comparison). Given this observation, we find K=10
is a good default operating point for RECL. Notice that while
a higher K increases the cost of the safety checker, as shown
in Fig. 10, our safety checker still has a negligible overhead
compared to the other components in the system.

6 Discussion
Safety-critical applications: Predicting the feasibility of
minimum accuracy thresholds is not a trivial problem in non-
convex ML training tasks. Therefore, as we cannot guarantee a
minimum accuracy level using continuous adaptation for safety
critical problems, the solution might come at the cost of provi-
sioning enough resources to run the large state-of-the-art model
for inference. However, if the problem is not safety-critical,
one solution might be to set minimum accuracy thresholds
with timeouts to achieve them, which we leave to future work.
Data residency: RECL requires sharing training samples
with the adaptation server. While there are recent solutions in
computation over encrypted data for secure AI [48], our current
evaluation has been based on having access to the actual video
frames. Depending on the data residency policies, such data
sharing may constrain how far the adaptation server can be
taken from the cameras.

7 Related work
Optimization of video-analytics systems: To maintain high
inference accuracy with low resource usage and fast response,
video-analytics systems have explored many approaches,
including model distillation [16, 20, 21], model architecture
pruning [49, 50], configuration adaptation [32, 51], frame
selection [52, 53], and DNN feature reusing [54, 55]. The
closest to RECL is model distillation—creating lightweight
models (i.e., experts in RECL) that are small and fast yet
accurate on a specific video scene [16, 56]. The challenge is
that as the video scene evolves, the system must create new
expert models on the fly to fit new video content. Existing
solutions rely on either of two approaches—model retraining
techniques train the lightweight models on the latest video
frames [19–21] or on the most relevant images from the
training set [31], and model selection techniques maintain, and

then select a model from, a collection of history models [23]
or a cascade of models with increasing capacities [31, 57].

In contrast, RECL uses both techniques—model retraining
and model selection—as building blocks in an end-to-end
framework. In particular, when an edge device queries for a
model update, RECL can respond faster than Ekya [21] and
AMS [20] by selecting a model from a large collection of
history models used by all edge devices which might have
seen a similar scene and object distribution. RECL also shares
GPU cycles to enable more concurrent model retraining jobs,
refreshing new models for more edge devices.
Model selection under data drifts: In the ML literature,
model selection in a collection of expert models, or Mixture-of-
Experts (MoE), has attracted much attention, especially after
Shazeer et al. [26] demonstrated that using a sparsely gating
network with an MoE of many expert models can drastically
reduce the compute cost of DNNs. Recent work has obtained
accuracy comparable to state-of-the-art expensive models with
a fraction of compute cost [58]. One key distinction between
RECL and MoE applications is that in MoE, all or a subset of
the experts work together on each input. However, in RECL,
there only works one expert on each input. For example, the
recent MoE approach [58] operating on tokenized images
requires access to 768 experts for inference on each input
image. To implement such an approach, one must either load
all experts in the accelerator’s memory or quickly swap the
experts on the accelerator per patch per image, introducing
significant challenges for even more resourceful settings such
as entirely cloud-based applications [59]. That said, many tech-
niques in MoE also assume that the MoE consists of a static
set of models. To handle MoEs that gradually incorporate new
models (as in RECL), the gating network or the model selector
must be retrained over time [60,61]. To avoid retraining model
selectors or saving training data, recent works leverage an
autoencoder that projects input data to a latent space and map
new models to a region in the latent space [23, 34].

RECL’s model selection strategy (§3.1) builds on the
literature on gating networks [26], but reduces the delay and
compute overhead when adding new expert models. Instead
of jointly training the new experts and the gating network [26],
RECL freezes the new expert models already trained to fit the
edge devices’ recent videos and only reshapes and fine-tunes
the last layer of the gating network. Compared to recent
autoencoder-based model selectors [23], RECL’s gating
network enjoys better algorithmic intuition (see §3.1) and
better empirical performance (§5.2).
Resource allocation for DNNs: Resource sharing for
DNN-related jobs has been extensively studied in the systems
literature, including sharing of GPU and network resources
among multiple concurrent DNN training jobs (e.g., [37, 62]),
inference tasks of video analytics (e.g., [51, 63]), and between
inference and training jobs [21]. The common challenge facing
these settings is to predict how much each job’s accuracy can
improve with the same amount of compute/network resources.

928 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

This is usually profiled offline [51], periodically [21], or by
reusing compute data [37].

RECL is a custom design of GPU sharing for continuous
learning across many edge devices. Compared to Ekya [21],
the most recent related work on edge continuous learning,
RECL avoids profiling the training curve of each model;
instead, it tracks the actual training progress of each retraining
job on the fly, similar to SLAQ’s quality-driven scheduler [37]
proposed for large-scale DL clusters.

8 Conclusion
Resource efficiency is one of the most important problems
in modern video analytics applications, and continuous
retraining and deploying expert models is a promising
direction. We show that reusing historical expert models has
a large potential to improve resource efficiency and response
time for continuous retraining, but this approach comes with
its own challenges. We present RECL, the first end-to-end
system that integrates model reusing with model retraining
for resource-efficient video analytics. We show that RECL
achieves significantly better resource efficiency and higher
accuracy simultaneously than state-of-the-art baselines with
(i) a fast and robust model selection procedure, (ii) a model zoo
that shares across multiple edge devices, and (iii) an iterative
training scheduler. We hope that our findings and designs can
stimulate further research in unleashing the full potential of
the synergy between model reusing and model retraining.

9 Acknowledgements
We thank the NSDI reviewers and our shepherd, Dongsu
Han, for their invaluable feedback. This work was supported
in part by NSF grants CNS-1751009, CNS-1955370,
CNS-2152313, CNS-2153449, CNS-2147909, and CNS-
2140552, as well as gifts from Cisco and the sponsors of
MachineLearningApplications@CSAIL program.

References
[1] Iyiola E Olatunji and Chun-Hung Cheng. Video

analytics for visual surveillance and applications: An
overview and survey. Machine Learning Paradigms,
pages 475–515, 2019.

[2] MarketsAndMarkets. Video analytics market
with covid-19 impact, by component, application
(intrusion management, incident detection, peo-
ple/crowd counting, traffic monitoring), deployment
model (on-premises and cloud), type, vertical,
and region - global forecast to 2026. https:
//www.marketsandmarkets.com/Market-Reports/
intelligent-video-analytics-market-778.
html, 2021.

[3] Azure outposts. https://aws.amazon.com/
outposts/.

[4] Azure stack edge. https://azure.microsoft.com/
en-us/services/databox/edge/.

[5] Ganesh Ananthanarayanan, Paramvir Bahl, Peter
Bodík, Krishna Chintalapudi, Matthai Philipose, Lenin
Ravindranath, and Sudipta Sinha. Real-time video
analytics: The killer app for edge computing. Computer,
50(10), 2017.

[6] Si Young Jang, Yoonhyung Lee, Byoungheon Shin,
and Dongman Lee. Application-aware iot camera
virtualization for video analytics edge computing. In
Symposium on Edge Computing (SEC), 2018.

[7] European Parliament. Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27 April 2016
on the protection of natural persons with regard to the
processing of personal data and on the free movement
of such data, and repealing directive 95/46 (general data
protection regulation). Official Journal of the European
Union (OJ), 59, 2016.

[8] Behrouz Jedari, Gopika Premsankar, Gazi Karam
Illahi, Mario Di Francesco, Abbas Mehrabi, and Antti
Ylä-Jääski. Video caching, analytics, and delivery at
the wireless edge: A survey and future directions. IEEE
Commun. Surv. Tutorials, 23(1), 2021.

[9] Ion Stoica. The future of computing is dis-
tributed. https://www.datanami.com/2020/02/
26/the-future-of-computing-is-distributed/,
2020.

[10] Shadi A. Noghabi, Landon P. Cox, Sharad Agarwal, and
Ganesh Ananthanarayanan. The emerging landscape of
edge computing. GetMobile Mob. Comput. Commun.,
23(4), 2019.

[11] Andrew Howard, Ruoming Pang, Hartwig Adam,
Quoc V. Le, Mark Sandler, Bo Chen, Weijun Wang,
Liang-Chieh Chen, Mingxing Tan, Grace Chu, Vijay
Vasudevan, and Yukun Zhu. Searching for mobilenetv3.
In International Conference on Computer Vision (ICCV),
2019.

[12] Mingxing Tan, Ruoming Pang, and Quoc V. Le.
Efficientdet: Scalable and efficient object detection. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[13] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and
Jian Sun. YOLOX: exceeding YOLO series in 2021.
CoRR, abs/2107.08430, 2021.

[14] Azure linux virtual machine pricing. https:
//azure.microsoft.com/en-us/pricing/
details/virtual-machines/linux/.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 929

https://www.marketsandmarkets.com/Market-Reports/intelligent-video-analytics-market-778.html
https://www.marketsandmarkets.com/Market-Reports/intelligent-video-analytics-market-778.html
https://www.marketsandmarkets.com/Market-Reports/intelligent-video-analytics-market-778.html
https://www.marketsandmarkets.com/Market-Reports/intelligent-video-analytics-market-778.html
https://aws.amazon.com/outposts/
https://aws.amazon.com/outposts/
https://azure.microsoft.com/en-us/services/databox/edge/
https://azure.microsoft.com/en-us/services/databox/edge/
https://www.datanami.com/2020/02/26/the-future-of-computing-is-distributed/
https://www.datanami.com/2020/02/26/the-future-of-computing-is-distributed/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

[15] Seungyeop Han, Haichen Shen, Matthai Philipose,
Sharad Agarwal, Alec Wolman, and Arvind Krishna-
murthy. MCDNN: an approximation-based execution
framework for deep stream processing under resource
constraints. In Proceedings of Annual International
Conference on Mobile Systems, Applications, and
Services (MobiSys), 2016.

[16] Daniel Kang, John Emmons, Firas Abuzaid, Peter
Bailis, and Matei Zaharia. Noscope: Optimizing neural
network queries over video at scale. Proc. VLDB
Endow., 10(11):1586–1597, aug 2017.

[17] Microsoft Rocket for live video analytics.
https://www.microsoft.com/en-us/research/
project/live-video-analytics/, 2021.

[18] Sujith Ravi. Custom on-device ML models with
Learn2Compress. https://ai.googleblog.com/
2018/05/custom-on-device-ml-models.html,
2018.

[19] Ravi Teja Mullapudi, Steven Chen, Keyi Zhang, Deva
Ramanan, and Kayvon Fatahalian. Online model
distillation for efficient video inference. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2019.

[20] Mehrdad Khani, Pouya Hamadanian, Arash Nasr-
Esfahany, and Mohammad Alizadeh. Real-time video
inference on edge devices via adaptive model stream-
ing. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2021.

[21] Romil Bhardwaj, Zhengxu Xia, Ganesh Anantha-
narayanan, Yuanchao Shu, Nikolaos Karianakis, Kevin
Hsieh, Paramvir Bahl, and Ion Stoica. Ekya: Continuous
learning of video analytics models on edge compute
servers. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2022.

[22] Samvit Jain, Ganesh Ananthanarayanan, Junchen Jiang,
Yuanchao Shu, and Joseph Gonzalez. Scaling video
analytics systems to large camera deployments. In
Proceedings of the International Workshop on Mobile
Computing Systems and Applications (HotMobile), 2019.

[23] Abhijit Suprem, Joy Arulraj, Calton Pu, and Joao
Ferreira. Odin: Automated drift detection and
recovery in video analytics. Proc. VLDB Endow.,
13(12):2453–2465, jul 2020.

[24] Michael I. Jordan and Robert A. Jacobs. Hierarchical
mixtures of experts and the EM algorithm. Neural
Comput., 6(2), 1994.

[25] Carlos Riquelme, Joan Puigcerver, Basil Mustafa,
Maxim Neumann, Rodolphe Jenatton, André Susano
Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision
with sparse mixture of experts. CoRR, abs/2106.05974,
2021.

[26] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

[27] Paperswithcode leaderboard of object de-
tection on PASCAL VOC 2007 dataset.
https://paperswithcode.com/sota/
object-detection-on-pascal-voc-2007. Ac-
cessed: September 2022.

[28] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang,
and Khaled Ben Letaief. A survey on mobile edge
computing: The communication perspective. IEEE
Commun. Surv. Tutorials, 19(4), 2017.

[29] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

[30] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodík,
Shivaram Venkataraman, Paramvir Bahl, Matthai
Philipose, Phillip B. Gibbons, and Onur Mutlu. Focus:
Querying large video datasets with low latency and low
cost. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2018.

[31] Haichen Shen, Seungyeop Han, Matthai Philipose, and
Arvind Krishnamurthy. Fast video classification via
adaptive cascading of deep models. In Proceedings of
the IEEE conference on computer vision and pattern
recognition (CVPR), pages 3646–3654, 2017.

[32] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik,
Siddhartha Sen, and Ion Stoica. Chameleon: scalable
adaptation of video analytics. In Proceedings of the
2018 Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2018.

[33] Samvit Jain, Xun Zhang, Yuhao Zhou, Ganesh Anantha-
narayanan, Junchen Jiang, Yuanchao Shu, Paramvir Bahl,
and Joseph Gonzalez. Spatula: Efficient cross-camera
video analytics on large camera networks. In IEEE/ACM
Symposium on Edge Computing (SEC), 2020.

[34] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuyte-
laars. Expert gate: Lifelong learning with a network
of experts. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 3366–3375, 2017.

930 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.microsoft.com/en-us/research/project/live-video-analytics/
https://www.microsoft.com/en-us/research/project/live-video-analytics/
https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html
https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html
https://paperswithcode.com/sota/object-detection-on-pascal-voc-2007
https://paperswithcode.com/sota/object-detection-on-pascal-voc-2007

[35] Geoffrey Hinton. Introduction to neural networks and
machine learning, lecture 15.

[36] Stephen Boyd, Stephen P Boyd, and Lieven Vanden-
berghe. Convex optimization. Cambridge university
press, 2004.

[37] Haoyu Zhang, Logan Stafman, Andrew Or, and
Michael J Freedman. Slaq: quality-driven scheduling
for distributed machine learning. In Proceedings of the
2017 Symposium on Cloud Computing (SoCC), 2017.

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035, 2019.

[39] gRPC. https://grpc.io/about/.

[40] NVIDIA. TensorRT. https://developer.nvidia.
com/tensorrt.

[41] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingy-
ing Chen, Fangchen Liu, Vashisht Madhavan, and Trevor
Darrell. BDD100K: A diverse driving dataset for hetero-
geneous multitask learning. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[42] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[44] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, 2009.

[45] Tsung-Yi Lin, Michael Maire, Serge J. Belongie,
Lubomir D. Bourdev, Ross B. Girshick, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common
objects in context. CoRR, abs/1405.0312, 2014.

[46] NVIDIA Jetson Nano. https://developer.nvidia.
com/embedded/jetson-nano-developer-kit.

[47] Coral Edge TPU. https://coral.ai/docs/
edgetpu/benchmarks/.

[48] CIPHERMODE Labs. https://www.ciphermode.
tech/solutions-secureai. Accessed: September
2022.

[49] Ran Xu, Rakesh Kumar, Pengcheng Wang, Peter
Bai, Ganga Meghanath, Somali Chaterji, Subrata
Mitra, and Saurabh Bagchi. Approxnet: Content and
contention-aware video object classification system
for embedded clients. ACM Transactions on Sensor
Networks (TOSN), 18(1):1–27, 2021.

[50] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan
Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda,
Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware
efficient convnet design via differentiable neural
architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[51] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J Freed-
man. Live video analytics at scale with approximation
and {Delay-Tolerance}. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
17), 2017.

[52] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei
Wang, Guoqing Harry Xu, and Ravi Netravali. Reducto:
On-camera filtering for resource-efficient real-time video
analytics. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and pro-
tocols for computer communication (SIGCOMM), 2020.

[53] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng,
Paramvir Bahl, and Hari Balakrishnan. Glimpse:
Continuous, real-time object recognition on mobile
devices. In Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2015.

[54] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu
Lin, and Xuanzhe Liu. Deepcache: Principled cache for
mobile deep vision. In Proceedings of the 24th Annual
International Conference on Mobile Computing and
Networking (MobiCom), 2018.

[55] Angela H Jiang, Daniel L-K Wong, Christopher Canel,
Lilia Tang, Ishan Misra, Michael Kaminsky, Michael A
Kozuch, Padmanabhan Pillai, David G Andersen, and
Gregory R Ganger. Mainstream: Dynamic Stem-Sharing
for Multi-Tenant video processing. In USENIX Annual
Technical Conference (USENIX ATC), 2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 931

https://grpc.io/about/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://coral.ai/docs/edgetpu/benchmarks/
https://coral.ai/docs/edgetpu/benchmarks/
https://www.ciphermode.tech/solutions-secureai
https://www.ciphermode.tech/solutions-secureai

[56] Daniel Kang, Peter Bailis, and Matei Zaharia. Blazeit:
Optimizing declarative aggregation and limit queries
for neural network-based video analytics. Proc. VLDB
Endow., 13(4):533–546, dec 2019.

[57] Jiashen Cao, Ramyad Hadidi, Joy Arulraj, and Hyesoon
Kim. Thia: Accelerating video analytics using early
inference and fine-grained query planning. arXiv
preprint arXiv:2102.08481, 2021.

[58] Carlos Riquelme, Joan Puigcerver, Basil Mustafa,
Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. Scaling
vision with sparse mixture of experts. Advances in Neu-
ral Information Processing Systems (NeurIPS), 34, 2021.

[59] Tutel: An efficient
mixture-of-experts im-
plementation for large
DNN model training.
https://www.microsoft.
com/en-us/research/
blog/tutel-an-efficient-mixture-of-experts-implementation-for-large-dnn-model-training/.
Accessed: September 2022.

[60] Jeremy Z Kolter and Marcus A Maloof. Using additive
expert ensembles to cope with concept drift. In
Proceedings of the 22nd international conference on
Machine learning (ICML), pages 449–456, 2005.

[61] J Zico Kolter and Marcus A Maloof. Dynamic
weighted majority: An ensemble method for drifting
concepts. The Journal of Machine Learning Research,
8:2755–2790, 2007.

[62] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,
and Chuanxiong Guo. Optimus: an efficient dynamic
resource scheduler for deep learning clusters. In
Proceedings of the Thirteenth EuroSys Conference
(EuroSys), 2018.

[63] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: A GPU cluster engine for
accelerating DNN-based video analysis. In Proceedings
of the 27th ACM Symposium on Operating Systems
Principles (SOSP), 2019.

932 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.microsoft.com/en-us/research/blog/tutel-an-efficient-mixture-of-experts-implementation-for-large-dnn-model-training/
https://www.microsoft.com/en-us/research/blog/tutel-an-efficient-mixture-of-experts-implementation-for-large-dnn-model-training/
https://www.microsoft.com/en-us/research/blog/tutel-an-efficient-mixture-of-experts-implementation-for-large-dnn-model-training/

Boggart: Towards General-Purpose Acceleration of Retrospective Video Analytics

Neil Agarwal, Ravi Netravali
Princeton University

Abstract

Commercial retrospective video analytics platforms have in-
creasingly adopted general interfaces to support the custom
queries and convolutional neural networks (CNNs) that dif-
ferent applications require. However, existing optimizations
were designed for settings where CNNs were platform- (not
user-) determined, and fail to meet at least one of the fol-
lowing key platform goals when that condition is violated:
reliable accuracy, low latency, and minimal wasted work.

We present Boggart, a system that simultaneously meets
all three goals while supporting the generality that today’s
platforms seek. Prior to queries being issued, Boggart care-
fully employs traditional computer vision algorithms to gen-
erate indices that are imprecise, but are fundamentally com-
prehensive across different CNNs/queries. For each issued
query, Boggart employs new techniques to quickly character-
ize the imprecision of its index, and sparingly run CNNs (and
propagate results to other frames) in a way that bounds ac-
curacy drops. Our results highlight that Boggart’s improved
generality comes at low cost, with speedups that match (and
most often, exceed) prior, model-specific approaches.

1 INTRODUCTION

Video cameras are prevalent in our society, with massive de-
ployments across major cities and organizations [4, 10, 11,
22,32,47]. These cameras continually collect video data that
is queried retrospectively to guide traffic/city planning, busi-
ness or sports analytics, healthcare, crime investigation, and
many other applications [5, 14, 23, 26, 31, 33–35, 37, 61, 69,
122]. Queries typically involve running convolutional neural
network (CNN) models that locate and characterize partic-
ular objects in scenes [53, 99, 104, 106, 125]. Applications
tailor the architectures and weights of those CNNs to their
unique requirements (e.g., accuracy, latency, and resource
cost) and target tasks, e.g., via specialization to scenes or ob-
ject types [8,13,116], proprietary training datasets [7,27,28].

To support these diverse applications, commercial video
analytics platforms (e.g., Microsoft Rocket [41,44,45], Ama-
zon Rekognition [39], Google AI [70], IBM Maximo [83])
have steadily transitioned away from exposing only prede-
termined video processing results, towards being platforms
that allow users/applications to register custom, large-scale
video analytics jobs without worrying about infrastructural
details [55,116,118]. To register a query, users typically pro-
vide (1) a CNN model of arbitrary architecture and weights,
(2) a target set of videos (e.g., feeds, time periods), and
(3) an accuracy target indicating how closely the provided
results must match those from running the CNN on every

frame. Higher accuracy targets typically warrant more infer-
ence (and thus, slower responses and higher costs).

From a platform perspective, there exist three main goals
for each registered query. First and foremost, provided re-
sults should reliably meet the specified accuracy target (usu-
ally above 80% [80,92,105,116]). Subject to that constraint,
the platform should aim to consume as few computational
resources as possible (i.e., minimize unnecessary work) and
deliver responses as quickly as possible. The main difficulty
in achieving these goals stems from the potentially massive
number of video frames to consider, and the high compute
costs associated with running a CNN on each one. For exam-
ple, recent object detectors would require 500 GPU-hours to
process a week of 30-fps video from just one camera [77,82].

Unfortunately, despite significant effort in optimizing ret-
rospective video analytics [42,48,80,81,93–95], no existing
solution is able to simultaneously meet the above goals for
the general interfaces that commercial platforms now offer.
Most notably, recent optimizations perform ahead-of-time
processing of video data to build indices that can accelerate
downstream queries [48, 80, 95]. However, these optimiza-
tions were designed for settings where models were known
a priori (i.e., not provided by users), and thus deeply inte-
grate knowledge of the specific CNN into their ahead of time
processing. Porting these approaches to today’s bring-your-
own-model platforms fundamentally results in unacceptable
accuracy violations and resource overheads. The underly-
ing reason is that models with even minor discrepancies (in
architecture or weights) can deliver wildly different results
for the same tasks and frames. Consequently, using different
models for ahead-of-time processing and user queries can
yield accuracy drops of up to 94% (§2.3). Building an index
for all potential models is unrealistic given the massive space
of CNNs [102,107,114,149], and the inherent risk of wasted
resources since queries may never be issued [80, 137].

In this paper, we ask “can retrospective video analytics
platforms operate more like general-purpose accelerators to
achieve their goals for the heterogeneous queries+models
provided by users?” We argue that they can, but doing so
requires an end-to-end rethink of the way queries are exe-
cuted, from the ahead-of-time processing used to develop in-
dices, to the execution that occurs only once a user provides
a model and accuracy target. We examine the challenges as-
sociated with each phase, and present Boggart, a complete
video analytics platform that addresses those challenges.

Ahead-of-time processing (indexing). To support our goals,
an index must meet the following criteria: (1) comprehensive
with respect to data of interest for different models/queries –
any information loss would result in unpredictable accuracy

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 933

drops, (2) links information across frames so CNN inference
results – the most expensive part of query execution [80, 94]
– can be propagated from one frame to another at low cost,
and (3) cheap to construct since queries may never come in.

We show with Boggart that, if applied in a conservative
manner, traditional computer vision (CV) algorithms [52,88,
100, 127] can be repurposed to generate such an index per
video. Along these lines, Boggart’s ahead-of-time processing
extracts a comprehensive set of potential objects (or blobs)
in each frame as areas of motion relative to the background
scene. Trajectories linking blobs across frames are then com-
puted by tracking low-level, model-agnostic video features,
e.g., SIFT keypoints [110]. Crucially, Boggart’s trajectories
are computed once per video (not per video/model/query tu-
ple) using cheap CV tasks that require only CPUs, and are
generated 58% faster than prior model-specific indices con-
structed using compressed CNNs and GPUs (§6.3).
Query execution. Once a user registers a query and CNN,
the main question is how to use the comprehensive index to
quickly generate results that meet the accuracy target, i.e.,
running inference on as few frames as possible, and aggres-
sively propagating results along Boggart’s trajectories. The
challenge is that Boggart’s index is extremely coarse and im-
precise relative to CNN results. For instance, blob bounding
boxes may be far larger than those generated by CNNs, and
may include multiple objects that move in tandem. Worse,
the imprecision of Boggart’s index varies with respect to dif-
ferent models and queries; prior systems avoid this issue by
using indices that directly approximate specific models.

To handle this, Boggart introduces a new execution
paradigm that first selects frames for CNN inference in a
manner that sufficiently bounds the potential propagation
error from index imprecision and unavoidable inconsisten-
cies in CNN results [97]. The core idea is that such errors
are largely determined by model-agnostic features about the
video (e.g., scene dynamics), and can be discerned via in-
ference on only a small set of representative frames. CNN
results are then propagated using a custom set of accuracy-
aware techniques that are specific to each query type (e.g.,
detection, classification) and robustly handle (and dynami-
cally correct) imprecisions in Boggart’s trajectories.
Results. We evaluated Boggart using 96 hours of video from
8 diverse scenes, a variety of CNNs, accuracy targets, and ob-
jects of interest, and 3 widely-used query types: binary clas-
sification, counting, and detection. Across these scenarios,
Boggart consistently meets accuracy targets while running
CNNs on only 3-54% of frames. Perhaps more surprisingly
given its focus on generality and model-agnostic indices,
Boggart outperforms existing systems that (1) rely solely on
optimizations at query execution time (NoScope [94]) by 19-
97%, and (2) use model-specific indices (Focus [80] running
with knowledge of the exact CNN) by -5-58%.

Taken together, our results affirmatively answer the ques-
tion above, showing that Boggart can support the general in-

terfaces and diverse user models that commercial platforms
face, while delivering reliable accuracy and comparable (typ-
ically larger) speedups than prior, model-specific optimiza-
tions. The source code and experimental data for Boggart
are available at https://github.com/neilsagarwal/boggart.

2 BACKGROUND AND MOTIVATION
In this section, we first present an overview of retrospective
video analytics pipelines and their use cases (§2.1). We then
describe existing optimizations (§2.2), and present measure-
ments highlighting their inability to generalize to the differ-
ent models and queries that users register (§2.3). Additional
related work can be found in §7.

2.1 Primer on Retrospective Video Analytics
Numerous applications leverage (and are guided by) insights
gleaned from analyzing the large amount of video data pre-
viously captured in different environments. For example,
sports analytics tools leverage video analytics on previous
game film to detect players on a field; these detections are fed
into tracking algorithms to determine the efficacy of various
strategies and to evaluate player performance [16, 29]. Sim-
ilarly, retail analysts use video analytics to locate customers
in indoor environments with high accuracy, in order to un-
derstand customer-product interaction and, ultimately, to im-
prove store layout designs and product placement [31, 34].
City planners and traffic engineers employ video analytics to
extract trends from historical footage, e.g., identifying points
of congestion or opportunities for expansion [3, 20, 33, 35].

Despite their diverse use cases, retrospective video an-
alytics generally share two main properties that charac-
terize their computational requirements. First, they typi-
cally process video frames using convolutional neural net-
works (CNNs), a class of deep neural networks that have
become the norm for automated vision processing due to
their success in extracting spatial dependencies within im-
ages [53, 99, 104, 106, 125]. CNNs incorporate 3 kinds of
layers: convolutional (responsible for recognizing pixel-level
features), pooling (responsible for making these features
more abstract), and fully-connected (responsible for using
acquired features for prediction). In a CNN, each successive
layer learns a more complex feature representation. Earlier
layers focus on simple features such as colors and edges,
while later layers aim to recognize specific objects. We re-
fer the reader to prior reports [80, 94, 103] for more details.

Second, retrospective video analytics applications typi-
cally use CNNs to perform object-centric queries, e.g., to
locate, characterize, and label different types of objects in
frames. Indeed, the output of a CNN is a set of bounding
boxes that localize all identified objects in a given frame,
with each box being accompanied by a probability distri-
bution characterizing its potential labels (or types). Such
object-centric queries subsume those reported by both recent
academic literature [55, 64, 92, 94, 105] and industrial orga-
nizations that run video analytics platforms [36, 80, 87, 111,

934 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/neilsagarwal/boggart

116, 140]. Concretely, in this paper, we consider the follow-
ing query types (and accuracy metrics):

• binary classification: return a binary decision as to
whether a specific object or type of object appears in each
frame. Accuracy is measured as the fraction of frames
tagged with the correct binary value.

• counting: return the number of objects of a given type that
appear in each frame. Per-frame accuracy is set to the per-
cent difference between the returned and correct counts.

• bounding box detection: return the coordinates for the
bounding boxes that encapsulate each instance of a spe-
cific object or object type. Per-frame accuracy is measured
as the mAP score [67], which considers the overlap (IOU)
of each returned bounding box with the correct one.

The heterogeneity in use cases also brings important dif-
ferences between manifestations of retrospective video an-
alytics applications. Most notably, applications often apply
specialized CNNs that cater to their specific target environ-
ments, object(s) of interest, required accuracy, task complex-
ity, and available computational resources [75, 80, 94, 113].
Recent analyses of production video analytics workloads
have shown that applications carry out such specialization by
(1) selecting an existing reference model architecture from
a popular family (e.g., ResNet, YOLO) and (2) training that
model using custom and/or proprietary datasets that yield de-
sirable weights for the target use case [116].

2.2 Existing Acceleration Approaches

Query-time strategies. Systems such as NoScope [94] and
Tahoma [42] only operate once a user issues a query. To
accelerate response generation, they first train cascades of
cheaper binary classification CNNs that are specialized to
the user-provided CNN, object of interest, and target video.
The specific cascade to use is selected with the goal of meet-
ing the accuracy target while minimizing computation and
data loading costs. If confidence is lacking with regards to
meeting the accuracy target, the user’s CNN is incrementally
run on frames until sufficient confidence is achieved.

Ahead-of-time (preprocessing) strategies. Other systems
provide speedups by performing some computation ahead of
time, i.e., before a query is issued; for ease of exposition, we
refer to such computations as preprocessing in the rest of the
paper. For example, Focus [80] speeds up binary classifica-
tion queries by building an approximate, high-recall index of
object occurrences using a specialized and compressed CNN
that roughly matches the full CNN on the target video. Ob-
jects are then clustered based on the features extracted by the
compressed model such that, during query execution, the full
CNN only runs on the centroid of each cluster, with labels
being propagated to all other objects in the same cluster.

BlazeIt [93] and TASTI [95] accelerate aggregate versions
of certain query types, e.g., total counts across all frames.
Preprocessing for both systems involves generating sampled

results using the full CNN. TASTI uses the sampled results
to train a cheap embedding CNN that runs on all frames and
clusters those that are similar from the model’s perspective.
During query execution, the full CNN is run only on select
frames in each cluster, with the results propagated to the rest.
In contrast, BlazeIt uses the sampled results to train spe-
cialized CNNs that act as control variates for the remaining
frames: the specialized CNNs run on all frames, and the re-
sults are correlated with sampled results from the full CNN
to provide guarantees in statistical confidence. OTIF [48] fol-
lows a similar strategy, but uses proxy models (trained using
the sampled results) to extract tracks about model-specific
objects that are later used to accelerate tracking queries.

Videozilla [81] aims to extend such indexing optimiza-
tions across multiple video streams. More specifically, it
identifies and exploits semantic similarities across streams
that are based on the features extracted by the full CNN.
2.3 The Problem: Model-Specific Preprocessing
As confirmed by prior work [80, 93, 95] and our results
in §6.3, preprocessing (intuitively) reduces the amount of
computation required during query execution, and is crucial
to enabling fast responses. However, all existing solutions
suffer from the same fundamental issue: they deeply inte-
grate a specific CNN into their preprocessing computations
(e.g., to generate sampled results for training the compressed
models used to build indices or group similarly-perceived
frames), and assume that all future queries will use that
same exact CNN. While such an approach was compatible
with prior platforms that exposed only predetermined results
from platform-selected CNN(s), it is no longer feasible with
the bring-your-own-model interfaces that are now common-
place on commercial platforms. To make matters worse, con-
sider that queries can be made at any point in the future and
the space of potential CNNs is immense and rapidly evolv-
ing [102, 107, 114, 149], with variations in architecture (e.g.,
of layers) or weights (e.g., different training datasets). In
fact, building an index for even today’s reference models
would quickly present intractable resource challenges at the
scale of retrospective video datasets: there exist tens of pop-
ular model families, each with multiple architecture options,
e.g., the ResNet family alone has 8 architectures.

To quantify the issues when this assumption is violated,
we ran experiments asking: how would accuracy be affected
if the CNN provided by users during query execution (i.e.,
query CNN) was different than the CNN used during pre-
processing (i.e., preprocessing CNN)? We consider the three
query types above, videos and objects described in §6.1, and
a wide range of CNNs: Faster RCNN, YOLOv3, and SSD,
each trained on two datasets (COCO and VOC Pascal).

For each possible pair of preprocessing and query CNNs,
we ran both CNNs on the video to obtain a list of object
bounding boxes per frame. In line with Focus’ observation
that classification results from two CNNs may not identically
match but should intersect for the top-k results [80], we ig-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 935

YOLO
(COCO)

YOLO
(VOC)

FRCNN
(COCO)

FRCNN
(VOC)

SSD
(COCO)

SSD
(VOC)

0

50

100

Ac
cu

ra
cy

 (%
)

(a) Binary classification.

YOLO
(COCO)

YOLO
(VOC)

FRCNN
(COCO)

FRCNN
(VOC)

SSD
(COCO)

SSD
(VOC)

0

50

100

Ac
cu

ra
cy

 (%
)

(b) Counting.

YOLO
(COCO)

YOLO
(VOC)

FRCNN
(COCO)

FRCNN
(VOC)

SSD
(COCO)

SSD
(VOC)

0

50

100

Ac
cu

ra
cy

 (%
) YOLO (COCO)

YOLO (VOC)
FRCNN (COCO)
FRCNN (VOC)

SSD (COCO)
SSD (VOC)

(c) Bounding box detection.
Figure 1: Query accuracies when different CNNs are used for preprocessing (bar types) and query execution (X axes). Bars show
results for the median video, and error bars span the 25-75th percentiles. Models are listed as ‘architecture (training dataset)’.

nore the classifications from each CNN. Instead, we consider
all bounding boxes from the preprocessing CNN that have an
IOU of ≥ 0.5 with some box generated by the query CNN;
results were largely unchanged for other IOU thresholds.
This presents the best scenario (accuracy-wise) for existing
preprocessing strategies. Finally, we compute query results
separately using only the remaining preprocessing CNN’s
boxes or all of the query CNN’s boxes, and compare them.

Figure 1 shows that discrepancies between preprocessing
and query CNNs can lead to significant accuracy degrada-
tions, with the errors growing as query precision increases.
For example, median degradations were 0-32% for binary
classifications, but jump to 8-84% and 46-94% for count-
ing and detections. Note that degradations for binary clas-
sification and counting are by definition due to the prepro-
cessing CNN entirely missing objects relative to the query
CNN. Parsed differently, median degradations across query
types were 0-84%, 2-94%, and 1-90% when the preprocess-
ing and query CNNs diverged in terms of only architecture,
only weights, or both. Figure 2 shows that these degradations
persist even for variants in the same family of CNNs.

Takeaway. Ultimately, when run on the general interfaces
of today’s commercial video analytics platforms where users
can provide CNNs, all existing optimizations would sacrifice
at least one key platform goal:

• reliable accuracy: running preprocessing optimizations as
is (using platform-determined CNNs) would yield unpre-
dictable and substantial (up to 94%) accuracy hits;

• minimal wasted work: performing preprocessing for all
potential user CNNs is not only unrealistic given the sheer
number of possibilities, but would also result in substan-
tial wasted work since queries may never be issued;

• low-latency responses: optimizing only once a query is is-
sued will yield higher than necessary response times.

3 OVERVIEW OF BOGGART

This section describes the overall workflow that Boggart uses
to simultaneously meet all three platform goals for general,
user-provided CNNs (Figure 3). §4 and §5 detail its prepro-
cessing and query execution phases, and the project reposi-
tory includes end-to-end visualizations of its operation [9].

Preprocessing. The main goal of Boggart’s preprocessing
phase is to perform cheap computations over a video dataset
such that the outputs (an index) can accelerate query exe-

ResNet50 ResNet100 ResNet50
+FPN

ResNet50
+FPN+SyncBn

0
20
40
60
80

100

Ac
cu

ra
cy

 (%
)

ResNet100
ResNet50+FPN

ResNet50+FPN+SyncBn
ResNet50

Figure 2: Accuracies when CNNs for preprocessing (bar types)
and query execution (X axis) are FasterRCNN+COCO with dif-
ferent ResNet backbones. Results are for counting queries; bars
list medians with error bars for 25-75th percentiles.

cution for diverse user CNNs, without sacrificing accuracy.
Crucially, to avoid the pitfalls of prior work (§2.3), Bog-
gart’s preprocessing does not incorporate any knowledge of
the specific CNN(s) that will be used during query execution.
Instead, our insight is that traditional computer vision (CV)
algorithms [88,100,124,127] are well-suited for such prepro-
cessing, as they extract information purely about video data,
rather than how a specific model or query would parse that
data. Using generic CV algorithms enables Boggart to gen-
erate a single index per video, rather than per video/query/-
model tuple. Further, those CV algorithms are computation-
ally cheaper than (even compressed) CNNs, and rely on
CPUs (not GPUs), keeping monetary costs low (§6.3). Both
aspects drastically reduce the potential for wasted work.

However, in contrast to their intended use cases, for our
purposes, CV algorithms must be conservatively tuned to en-
sure that accuracy during query execution is not sacrificed.
Namely, Boggart’s index must comprehensively include all
information that may influence or be incorporated in a query
result (across CNNs), regardless of how coarse or imprecise
that information is. Whereas coarse or imprecise results can
be corrected or filtered out during query execution, missing
information would result in unpredictable accuracy drops.

Accordingly, Boggart carefully uses a combination of mo-
tion extraction and low-level feature tracking techniques to
identify all potential objects as areas of motion (or blobs)
relative to a background estimate, and record their trajecto-
ries across frames by tracking each blob’s defining pixels (or
keypoints). For the former task, only high-confidence pixels
are marked as being part of the background, ensuring that
even minor motion is treated as a potential object; note that
static objects are definitively discovered during query execu-
tion via CNN sampling on the frames across which the ob-

936 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Accurac
y

Target+

Background
Generation

Blob Extraction
& Tracking

Video Chunk
Clustering

Representative Frame(s)
Selection + Inference

Query Result
Propagation

Blob Trajectories

Trajectories w/ Partial Results

Complete Results

CNN

Query ExecutionPreprocessing

Figure 3: Overview of Boggart.

jects are static. For the latter task, any uncertainty in trajec-
tory continuity (e.g., tracking ambiguities) is handled by sim-
ply starting a new trajectory; this ensures that results are not
mistakenly propagated across different objects during query
execution, albeit at the cost of additional inference. Overall,
we did not observe any missed moving objects in Boggart’s
indices across our broad evaluation scenarios (§6.1).

Trajectories are a fundamental shift from the clustering
strategies that prior systems use to group frames or objects
based on how they are perceived by a specific CNN (§2.2). In
contrast, trajectories are computed in a model-agnostic man-
ner, but still provide a mechanism through which to prop-
agate CNN results across frames during query execution –
the primary source of speedups. Such generality does, how-
ever, come at a cost. Whereas prior efforts cluster on frames
or object classes, Boggart’s trajectories group frames on a
per-object basis. This discrepancy lets Boggart defer the de-
termination of how a user’s CNN perceives each object to
query execution, but it limits potential propagation, i.e., Bog-
gart propagates the result for an object across the frames in
which it appears, while prior approaches can propagate re-
sults across appearances of different objects. Note that this
discrepancy does not apply to detection queries that require
precise object locations (not just labels) to be propagated.

A natural question is: why not cluster objects on the fea-
tures extracted by traditional CV algorithms to enable more
result propagation? The issue is that, if performed without
knowledge of the user-provided CNN, such clustering could
lead to unsafe result propagation. More specifically, objects
that are similar on some set of features but are perceived dif-
ferently by the user’s CNN could end up in the same cluster.
Query Execution. Once a user registers a query (providing a
CNN, accuracy target, and video to consider), Boggart’s goal
is to generate a full set of per-frame results as quickly as pos-
sible, while reliably meeting the target accuracy. This trans-
lates to using the index from preprocessing (i.e., blobs and
trajectories) to run the CNN on a small sample of frames, and
efficiently propagate those results to the remaining frames.

The main challenge is that, owing to their general-purpose
nature (relative to different models/queries) and closeness to
noisy image signals, the CV algorithms used during prepro-
cessing typically produce results that fail to precisely align
with those from a user’s CNN [55, 105]. Consequently, in

being comprehensive, Boggart’s index is coarse and impre-
cise relative to the target results from a user’s CNN, e.g.,
with misaligned bounding boxes or extraneous objects that
are not of interest to the query. Worse, the degree of impre-
cision is specific to the user CNN, and can lead to cascading
errors (and accuracy drops) as results are propagated along
Boggart’s trajectories. All prior efforts avoid these issues by
tuning indices to specific CNNs at the cost of generality.

To bound accuracy degradations (and reliably meet the
specified target) while avoiding substantial inference, Bog-
gart introduces a new query execution approach with two
main components. First, to quickly and judiciously select
the frames to run CNN inference on, our key observation is
that errors from index imprecision and result propagation are
largely dictated by model-agnostic features about the video,
e.g., scene dynamics or trajectory lengths. Accordingly, Bog-
gart clusters chunks of video in the dataset based on those
features, and runs the user’s CNN only on cluster centroids
to determine the best frame selection strategy per cluster for
the query at hand, i.e., the lowest frequency of CNN infer-
ence that meets the user-specified target accuracy. We note
that, since clustering is based on model-agnostic features, it
can be performed during preprocessing; CNN inference on
centroids, however, only occurs once a user registers a query.

Second, to further limit inference overheads, Boggart in-
troduces a new set of result propagation techniques that are
specific to each query type and bolster propagation distances
in spite of imprecisions in the index. For instance, for bound-
ing box detections, Boggart leverages our empirical observa-
tion that the relative position between an object’s keypoints
(from preprocessing) and its bounding box edges remain sta-
ble over time. Building on this, Boggart propagates an ob-
ject’s CNN-produced bounding box to subsequent frames in
its trajectory by efficiently searching for the coordinates that
maximally preserve these spatial relationships.

Query model and assumptions. Boggart currently supports
the large body of object-centric queries whose results are re-
ported at the granularity of individual objects (e.g., label-
ing or locating them) and whose CNNs are run on a per-
frame basis. Thus, currently handled queries include classi-
fications, counting, and detections, as well as queries that
build atop those primitives such as tracking and activity
recognition. Such queries dominate the workloads reported

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 937

by commercial platforms [36,80,87,116,140], and subsume
those supported by prior work (§2.2). We note that Boggart’s
approach is general enough to also accelerate less common,
finer-grained queries, e.g., semantic segmentation [109]. For
such queries, the keypoints (and their matches across frames)
recorded in Boggart’s index can be used to propagate groups
of pixel labels; we leave implementing this to future work.

Boggart does not make any assumptions about or require
any knowledge of the object type(s) that a query targets. In-
stead, as described above, Boggart relies on generic back-
ground estimation and motion extraction to identify poten-
tial objects. The intuition is that a moving object of any kind
will involve (spatially correlated) moving pixels that can be
identified purely based on the scene. Boggart leaves it to the
user’s CNN to determine whether those potential objects are
of interest during query execution. We stress-test Boggart’s
robustness to different object types in §6.4.

Boggart’s preprocessing operates on videos from static
cameras that capture a single scene. Boggart currently does
not support preprocessing for videos with changing back-
grounds, e.g., CGI-generated films or videos from moving
cameras. We note, however, that the CV community has ac-
tively been extending the core techniques that Boggart builds
atop to deliver improved robustness in the face of moving
cameras [65, 128, 135, 142]. We leave an exploration of inte-
grating these efforts into Boggart to future work.
Reliance on Heuristics. Despite its focus on reliably meet-
ing accuracy targets, Boggart’s operation does involve mul-
tiple heuristics, i.e., tracking algorithms (§4), preset video
chunk sizes (§4), thresholds for blob extraction (§4), and
clustering parameters (§5.2). The upcoming sections and re-
sults in §6.4 elaborate on Boggart’s sensitivity to each pa-
rameter. More generally, Boggart’s approach to ensure suffi-
cient accuracy is shared: each heuristic is conservatively con-
figured to err on capturing too much data (resulting in unnec-
essary processing) rather than missing important data, i.e.,
prioritizing accuracy over efficiency. Examples include re-
turning blobs for unlikely (but possible) objects, splitting tra-
jectories upon uncertainty in object tracking, etc. §6 shows
that this approach enables Boggart to consistently and effi-
ciently deliver accurate query responses for diverse camera
feeds, queries, models, objects, and accuracy targets.

4 BOGGART’S PREPROCESSING
Boggart’s target output from preprocessing is a set of blobs
and their trajectories. To efficiently extract this information
and enable parallel processing over the dataset, Boggart op-
erates independently on video chunks (i.e., groups of con-
tiguous frames); the default chunk size is 1 min (profiled
in §6.4), and trajectories are bound to individual chunks to
eliminate any cross-chunk state sharing. The rest of this sec-
tion describes the analysis that Boggart performs per chunk.

Background estimation. Extracting blobs inherently re-
quires a point of reference against which to discern areas of

motion. Thus, Boggart’s first task is to generate an estimate
of the background scene for the current chunk. However,
existing background estimation approaches [46, 101] are ill-
suited for Boggart as they are primarily concerned with gen-
erating a single, coherent background image despite scene
dynamics (e.g., motion) that complicate perfect foreground-
background separation. In contrast, Boggart’s focus is on
navigating the following tradeoff between accuracy and ef-
ficiency, not coherence. On one hand, placing truly back-
ground pixels in the foreground will lead to spurious trajecto-
ries (and query execution inefficiencies). On the other hand,
incorrectly placing a temporarily static object in the back-
ground can result in accuracy degradations. Indeed, unlike
entirely static objects that will surely be detected via CNN
sampling and propagated to all frames in a chunk (during
query execution), temporarily static objects may be missed
and should only be propagated to select frames.

Boggart addresses the above tradeoff in a manner that fa-
vors accuracy. More specifically, Boggart only marks content
as pertaining to the background scene when it has high con-
fidence; all other content is conservatively marked as part of
the foreground and is resolved during query execution. To re-
alize this approach, Boggart eschews recent background esti-
mation approaches in favor of a custom, lightweight strategy.

In its most basic form, background estimation involves
recording the distribution of values assigned to each pixel
(or region) across all frames in the chunk, and then marking
the most frequently occurring value(s) (i.e., the peaks in the
probability density function) as the background [124, 127].
This works well in scenarios where there is a clear peak in the
distribution that accounts for most of the values, e.g., if ob-
jects do not pass through the pixel or do so with continuous
motion, or if an object is entirely static and can thus be safely
marked as the background. However, complications arise in
settings with multiple peaks. For instance, consider a pixel
with two peaks. Any combination of peaks could pertain to
the background: a tree could sway back and forth (both), a
single car could temporarily stop at a traffic light (one), or
multiple cars could serially stop and go at the light (none).

To distinguish between these multi-modal cases and iden-
tify peaks that definitely pertain to the background for a
chunk, Boggart extends (into the next chunk) the duration
over which the distribution of pixel values is computed. The
idea is that motion amongst background components should
persist with more video, while cases with temporarily static
objects should steadily transform into uni-modal distribu-
tions favoring either the background scene or the object (if it
remains static). To distinguish between the object and back-
ground in the latter case, Boggart further extends the distri-
bution of pixel values to incorporate video from the previous
chunk. If the same peak continues to rise, it must pertain to
the background since we know that the object was not static
throughout the entire chunk. Otherwise, Boggart conserva-
tively assigns an empty background for that pixel.

938 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Frame i Frame i+30 Frame i+60

Figure 4: Example screenshots from the Auburn video (Table 1). CNN (YOLOv3+COCO) detections are shown in white, while each
of Boggart’s trajectories (and their constituent blobs) is shown in a different color.

Blob Extraction. Using the background estimate, Boggart
takes a second pass through the chunk in order to extract ar-
eas of motion (blobs) on each frame. More specifically, Bog-
gart segments each frame into a binary image whereby each
pixel is annotated with a marker specifying whether it is in
the foreground or background. Our implementation deems
a pixel whose value falls within 5% of its counterpart(s) in
the background estimate as a background pixel, but we find
our results to be largely insensitive to this parameter. Given
the noise in low-level pixel values [105], Boggart further re-
fines the binary image using a series of morphological oper-
ations [115], e.g., to convert outliers in regions that are pre-
dominantly either background or foreground. Lastly, Bog-
gart derives blobs by identifying components of connected
foreground pixels [71], and assigning a bounding box using
the top left and bottom right coordinates of each component.
Computing Trajectories. Boggart’s final preprocessing task
is to convert the set of per-frame blobs into trajectories that
track each blob across the video chunk. At first glance, it may
appear that sophisticated multi-object trackers (e.g., Kalman
Filters) [50, 91, 134, 138] could directly perform this task.
However, most existing trackers rely on pristine object de-
tections as input. Blobs do not meet this criteria, and instead
are far coarser and imprecise (Figure 4). At any time, a single
blob may contain multiple objects, e.g., two people walking
together. Blobs may split or merge as their constituent ob-
jects move and intersect. Lastly, the dimensions of a given
object’s blob bounding boxes can drastically fluctuate across
frames based on interactions with the estimated background.

To handle these issues, we turn to tracking algorithms that
incorporate low-level feature keypoints (SIFT [110] in par-
ticular) [88, 89], or pixels of potential interest in an image,
e.g., the corners that may pertain to a car windshield. Asso-
ciated with each keypoint is a descriptor that incorporates in-
formation about its surrounding region, and thus enables the
keypoint (and its associated content) to be matched across
images. Boggart conservatively applies this functionality to
generate correspondences between blobs across frames.

For each pair of consecutive frames, Boggart pairs the
constituent keypoints of each blob. This may yield any form
of an N → N correspondence depending on the underlying
tracking event, e.g., blobs entering/leaving a scene, fusion or
splitting of blobs. For instance, if the keypoints in a blob on
frame fi match with keypoints in N different blobs on frame

fi+1, there is a 1 → N correspondence. To generate trajec-
tories, Boggart makes a series of forwards and backwards
scans through the chunk. For each correspondence that is not
1 → 1, Boggart propagates that information backwards to ac-
count for the observed merging or splitting. For example, for
a 1 → N correspondence between frames fi and fi+1, Bog-
gart would split fi’s blob into N components using the rela-
tive positions of the matched keypoints on fi+1 as a guide.
Index Storage. Preprocessing outputs are stored in Mon-
goDB [1]; overheads are profiled in §6.4. Matched keypoints
are stored with the corresponding frame IDs: row = [<((x,y)-
coordinates, frame #)>]. Blob coordinates (and their trajec-
tory IDs) are stored per frame to facilitate the matching of
CNN results and blobs on sampled frames during query exe-
cution (§5.1): row = [<((x,y)-coordinates of top left corner,
(x,y)-coordinates of bottom right corner, trajectory ID)>].

5 FAST, ACCURATE QUERY EXECUTION
During query execution, Boggart’s sole goal is to judiciously
use the user-provided CNN and the index from preprocess-
ing to quickly generate a complete set of results that meet
the specified accuracy target. Doing so involves answering
two questions: (1) what sampled (or representative) frames
should the CNN be run on such that we can sufficiently adapt
to the registered query (i.e., CNN, query type, and accuracy
target) and bound errors from index imprecisions?, and (2)
how can we use preprocessing outputs to accurately propa-
gate sampled CNN results across frames for different query
types? For ease of exposition, we describe (2) first, assuming
CNN results on representative frames are already collected.
5.1 Propagating CNN Results
Regardless of the query type, Boggart’s first task is to pair
the CNN’s bounding box detections on representative frames
with the blobs on those same frames; this, in turn, associates
detections with trajectories, and enables cross-frame result
propagation. To do this, we pair each detection bounding box
with the blob that exhibits the maximum, non-zero intersec-
tion. Trajectories that are not assigned to any detection are
deemed spurious and are discarded. Further, detections with
no matching blobs are marked as ‘entirely static objects’ and
are handled after all other result propagation (described be-
low). Note that, with this approach and in spite of the trajec-
tory corrections from §4, multiple detections could be asso-
ciated to a single blob, i.e., when objects move together and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 939

0 100 200 300 400 500
Propagation Distance (Frames)

0

25

50

75

100
Ac

cu
ra

cy
 (%

)

Figure 5: Accuracy (mAP) degradations when CNN bounding
boxes are propagated by computing the blob-to-detection coor-
dinate transformation on a representative frame, and applying
it to all other blobs in the trajectory. Line represents median
detections, with ribbons spanning 25-75th percentiles.

never separate. Using these associations, Boggart propagates
CNN results via techniques specific to the target query type.
Binary classification and counting. To support both query
types, each trajectory is labeled with an object count accord-
ing to the number of detections associated with it on repre-
sentative frames. If a trajectory passes through multiple rep-
resentative frames, Boggart partitions the trajectory into seg-
ments, and assigns each segment a count based on the associ-
ations from the closest representative frame. Lastly, Boggart
sums the counts across the trajectories that pass through each
frame, and returns either the raw count (for counting), or a
boolean indicating if count > 0 (for binary classification).
Bounding box detections. Whereas binary classification
and count queries simply require propagating coarse infor-
mation about object presence, bounding box queries require
precise positional information to be shared across frames.
However, as noted in §4, blobs and trajectories are inher-
ently imprecise and fail to perfectly align with detections. A
natural approach to addressing such discrepancies is to com-
pute coordinate transformations between paired detections
and blobs on representative frames, and apply those trans-
formations to the remainder of each blob’s trajectory; equiv-
alently, one could compute transformations for a blob across
its own trajectory, and apply them to add detections to non-
representative frames. Unfortunately, Figure 5 shows that de-
tection accuracy rapidly degrades with this approach, e.g.,
median degradations are 30% when propagating a box over
30 frames. The reason is that blobs and their paired detec-
tions move/resize differently across frames, resulting in me-
dian errors of 84% between the Euclidean distances of blob-
blob and detection-detection coordinate transformations.

To fill the void of stable propagation mechanisms, Bog-
gart leverages our finding that the relative positions between
an object’s constituent keypoints (i.e., those extracted and
tracked during preprocessing) and its detection bounding box
edges remain largely unchanged over short durations; we
refer to these relative positions as anchor ratios since they
‘anchor’ an object’s content to a relative position within the
bounding box. This stability is illustrated in Figure 6, and is
intuitive: objects tend to remain rigid over short time scales,
implying that the points they are composed of move in much

0 20 40 60 80 100
Distance (Frames)

0

50

100

Pe
rc

en
t E

rro
r

X-Dim Y-Dim

Figure 6: Percent difference in anchor ratios for each object’s
keypoints across its trajectory. Lines show medians, with rib-
bons spanning 25-75th percentiles.

the same way as the entire object does (including as the ob-
ject scales in size). Building on this, Boggart propagates de-
tections by using matching keypoints along the trajectories to
which they have been associated, and efficiently solving an
optimization problem in search of bounding box coordinates
that maximally preserve the anchor ratios for each keypoint.

More formally, for each detection on each representative
frame, Boggart considers the set of keypoints K that fall in
the intersection with the associated blob. Each keypoint k in
K has coordinates (xk,yk). Further, let the coordinates of the
detection bounding box be (x1,y1,x2,y2), where (x1,y1) and
(x2,y2) refer to the top left and bottom right corners. The
anchor ratios (axk,ayk) for keypoint k are computed as:

(axk,ayk) =
(x2 − xk

x2 − x1
,

y2 − yk

y2 − y1

)
(1)

For each subsequent non-representative frame (until the next
representative frame) that includes the same trajectory, Bog-
gart finds the set of keypoints that match with those in K;
denote the set of matching keypoints as K′, where each k′

in K′ matches with keypoint k in K. Finally, to place the
bounding box on the subsequent frame, Boggart solves for
the corresponding coordinates (x1,y1,x2,y2) by minimizing
the following function to maximally preserve anchor ratios:

K′

∑
k′

[(x2 − xk′

x2 − x1
−axk

)2
+
(y2 − yk′

y2 − y1
−ayk

)2
]

(2)

Note that this optimization (which takes 1 ms for the me-
dian detection) can be performed in parallel across frames
and across detections on the same frame. Further, Boggart
initializes each search with the coordinates of the corre-
sponding detection box on the representative frame, thereby
reducing the number of steps to reach a minima.

Propagating entirely static objects. Thus far, we have only
discussed how to propagate detection bounding boxes that
map to a blob/trajectory, i.e., moving objects. However, re-
call from §4 that certain objects which are entirely static will
be folded into the background. These objects are discovered
by the CNN on representative frames, but they will not be
paired with any blob. Instead, Boggart broadcasts these ob-
jects to nearby frames (until the next representative frame) in
a query-specific manner: such objects add to the per-frame
counts used for classification and count queries, and their
boxes are statically added into frames for detection queries.

940 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 10 20 30 40 50
Propagation Distance (Frames)

0

50

100
Ac

cu
ra

cy
 (%

)

Figure 7: Accuracy (mAP) degradations grow as Boggart prop-
agates detection bounding boxes over longer durations. Results
consider all object trajectories in the median video. Line repre-
sents medians, with ribbons spanning 25-75th percentiles.

5.2 Selecting Representative Frames
To use the result propagation techniques from §5.1, we must
determine the set of sampled, representative frames to collect
CNN results on. Because CNN execution is the largest con-
tributor to query execution delays (§6.4), we aim to select the
smallest set of representative frames such that Boggart can
sufficiently discern the relationship between its index and the
CNN results, and generate a complete set of accurate results.

A natural strategy for selecting representative frames is to
pick the smallest set of frames such that every trajectory ap-
pears at least once. In theory, executing the CNN on this set
of frames should be sufficient to generate a result (e.g., object
label, bounding box) for each trajectory, and propagate that
result to all of the trajectory’s frames. However, this straight-
forward approach falls short for two reasons:

1. CNNs can be inconsistent and occasionally produce dif-
ferent results for the same object across frames, e.g., a
car in frame i may be ignored in frame i+ 1 [97, 98].
In line with prior analyses, we mostly observe this be-
havior for small or distant objects, e.g., YOLOv3 mAP
scores are 18% and 42% for the small and large objects
in the COCO dataset [120]. The consequence is that, if
such an inconsistent result appears on a representative
frame, Boggart would propagate it to all other frames in
the trajectory, thereby spreading the error.

2. Even for consistent CNN results, propagation errors in-
herently grow with longer trajectories (i.e., as a given
result is propagated to more frames). For instance, me-
dian accuracies are 90% and 30% when Boggart propa-
gates bounding boxes over 10 and 50 frames (Figure 7).

These issues are more pronounced in busy/dynamic scenes
with significant object occlusions/overlap [79, 132]. More-
over, the implication of both is that solely ensuring that the
set of representative frames covers each trajectory is insuffi-
cient and can result in unacceptable accuracy degradations.
To address this, Boggart introduces an additional constraint
to the selection of representative frames: any blob in a trajec-
tory must be within max distance frames of a representative
frame that contains the same trajectory. This, in turn, bounds
both the duration over which inconsistent CNN results can be
propagated, as well as the magnitude of propagation errors.

Tying back to our original goal, we seek the largest
max distance (and thus, fewest representative frames) that

allows Boggart to meet the accuracy target. However, the
appropriate max distance depends on how the above issues
manifest with the current query, CNN, and video. Digging
deeper, we require an understanding of how Boggart’s prop-
agation techniques (for the query type at hand) and the user’s
CNN interact with each frame and trajectory, i.e., how accu-
rate are Boggart’s propagated results compared to the CNN’s
results. Though important for ensuring sufficient accuracy,
collecting this data (particularly CNN results) for each frame
during query execution would forego Boggart’s speedups.

To achieve both accuracy and efficiency, Boggart clusters
video chunks based on properties of the video and its in-
dex that characterize the aforementioned issues. The idea is
that the chunks in each resulting cluster should exhibit sim-
ilar interactions with the CNN and Boggart’s result prop-
agation, and thus should require similar max distance val-
ues. Accordingly, Boggart could determine the appropriate
max distance for all chunks in a cluster by running the CNN
and result propagation only on the cluster’s centroid chunk.

To realize this approach, for each chunk, Boggart extracts
distributions of the following features: object sizes (i.e., pixel
area per blob), trajectory lengths (i.e., number of frames),
and busyness (i.e., number of blobs per frame and trajectory
intersections). These match our observations above: CNN
inconsistencies are most abundant in frames with small ob-
jects, the potential for propagation errors is largest with long
trajectories, and both issues are exacerbated in busy scenes.

With these features, Boggart clusters chunks using the K-
means algorithm. We find that setting the number of target
clusters to ensure that the centroids cover 2% of video strikes
the best balance between CNN overheads and robustness to
diverse and rapidly-changing video chunks; we profile this
parameter in §6.4. Note that since clustering is based on
model-agnostic features (from the extracted trajectories), it
can be performed during preprocessing. Then, during query-
execution, for each resulting cluster, Boggart runs the CNN
on all frames in the centroid chunk. Using the collected re-
sults, Boggart runs its result propagation for a range of pos-
sible max distance values, and computes an achieved accu-
racy for each one relative to the ground truth CNN results.
More precisely, for each max distance, Boggart selects the
set of representative frames by greedily adding frames un-
til our criteria is met, i.e., all blobs are within max distance
of the closest representative frame containing the same tra-
jectory. From there, Boggart selects the largest max distance
that meets the specified accuracy goal, and applies it to pick
representative frames for all other chunks in the same cluster.

Figure 8 highlights the effectiveness of Boggart’s cluster-
ing strategy in terms of (quickly) adapting to different query
types, accuracy targets, objects of interest, and CNNs. As
shown in Figure 8(top), the median discrepancy between
each chunk’s ideal max distance value and that of the cor-
responding cluster centroid is only 0-8 frames; this jumps
to 45-898 frames when comparing chunks with the centroid

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 941

0

500

Er
ro

r I
n

M
ax

Di
st

an
ce

 (F
ra

m
es

)

FRCNN
(Person)
[90.0%]

FRCNN
(Car)

[95.0%]

FRCNN
(Car)

[90.0%]

YOLOv3
(Person)
[80.0%]

YOLOv3
(Car)

[95.0%]

YOLOv3
(Car)

[80.0%]

YOLOv3
(Car)

[90.0%]
Query Variants

0

50

100

Ac
cu

ra
cy

 (%
)

Closest Cluster 2nd Closest Cluster

Figure 8: Effectiveness of Boggart’s clustering with different
CNNs, (object types), and [accuracy targets]. Results are for
the median video, and compare the ideal max distance value for
each chunk with those of the centroids in its cluster and the
nearest neighboring cluster. The top graph measures the dis-
crepancies in per-chunk max distance (bars list medians, with
error bars for 25-75th percentile); the bottom graph evaluates
the corresponding hits on average accuracy (for detections).

of the closest neighboring cluster. Figure 8(bottom) illus-
trates the importance of shrinking these discrepancies. More
specifically, applying each centroid’s ideal max distance to
all chunks in the corresponding cluster (i.e., Boggart’s ap-
proach) yields average accuracies that are consistently above
the targets. The same is not true when using the ideal
max distance values from the nearest neighboring cluster.

In summary, Boggart meets accuracy targets through
co-analysis of the video content and specified query, i.e.,
object of interest, model, and query type. Boggart per-
forms query/model-specific profiling of representative video
chunks (where representative is defined by video content/-
dynamics) to identify the frame inference strategy that most
efficiently meets the accuracy target, and then executes this
strategy for the remaining video chunks within each cluster.
6 EVALUATION
We evaluated Boggart on a wide range of queries, CNNs,
accuracy targets, and videos. Our key findings are:

• Boggart consistently meets accuracy targets while running
the CNN on only 3-54% of frames, highlighting its com-
prehensive (model-agnostic) index and effective adapta-
tion during query execution.

• Despite its goal of generality, Boggart’s response times
are 19-97% lower than NoScope’s. Compared to Focus
(which requires a priori knowledge of the CNN that will
be used during query execution), Boggart’s response times
are 33% and 52% lower on counting and detection queries,
and only 5% higher on classifications.

• Boggart’s preprocessing (and index construction) runs
58% faster than Focus’, while also generalizing to differ-
ent CNNs/queries and requiring only CPUs (not GPUs).

• Boggart’s preprocessing and query execution tasks speed
up nearly linearly with increasing compute resources.

Camera location Resolution

Auburn, AL (University crosswalk + intersection) [12] 1920×1080
Atlantic City, NJ (Boardwalk) [24] 1920×1080

Jackson Hole, WY (Crosswalk + intersection) [17] 1920×1080
Lausanne, CH (Street + sidewalk) [18] 1280×720

Calgary, CA (Street + sidewalk) [2] 1280×720
South Hampton, NY (Shopping village) [15] 1920×1080

Oxford, UK (Street + sidewalk) [21] 1920×1080
South Hampton, NY (Traffic intersection) [25] 1920×1080

Table 1: Summary of our main video dataset.

6.1 Methodology
Videos. Table 1 summarizes the primary video sources used
to evaluate Boggart. Video content across the cameras ex-
hibits diversity in setting, resolution, and camera orientation
(relative to the scene). From each camera, we scraped 12
hours of continuous video (at 30 fps) in order to capture vary-
ing levels of lighting and object densities (i.e., busyness). We
consider additional videos and scene types in §6.4.

Queries. We consider the three query types (and their corre-
sponding accuracy definitions) described in §2, i.e., binary
classification, counting, and bounding box detection. For
each type, we ran the query across our entire video dataset,
and considered two objects of interest, people and cars, that
cover drastically different size, motion, and rigidity prop-
erties; §6.4 presents results for additional object types. We
evaluated Boggart with three accuracy targets – 80%, 90%,
and 95% – and report accuracies as averages for each video.
Accuracies are computed relative to running the model di-
rectly on all frames; as in prior systems and commercial plat-
forms [41, 64, 80, 87, 105], Boggart does not aim to improve
the accuracy of the provided model, and instead targets the
same per-frame results at lower resource costs and delays.

CNN models. We consider three popular architectures: (1)
SSD with a ResNet-50 backbone, (2) Faster RCNN with a
ResNet-50 backbone, and (3) YOLOv3 with a Darknet53
backbone. For each, we used one version trained on the
COCO dataset, and another trained on VOC Pascal. Trends
for any results shown on a subset of CNNs (due to space
constraints) hold for all considered models.

Hardware. Experiments used a server with an NVIDIA
GTX 1080 GPU (8 GB RAM) and 18-core Intel Xeon 5220
CPU (2.20 GHz; 125 GB RAM), running Ubuntu 18.04.3.

Metrics. In addition to accuracy, we evaluate query execu-
tion performance of all considered systems (Boggart, Fo-
cus [80], and NoScope [94]) in terms of the number of GPU-
hours required to generate results. We report GPU-hours for
two reasons: (1) CNN execution (on GPUs) accounts for al-
most all response generation delays with all three systems,
and (2) it is directly applicable to all of the systems, e.g., it
incorporates NoScope’s specialized CNNs. For preprocess-
ing, we report both GPU- and CPU-hours since Boggart only
requires the latter. As in prior work [80, 94], we exclude the
video decoding costs shared by all considered systems.

942 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

50

100

Ac
cu

ra
cy

 (%
)

YOLO
(COCO)

YOLO
(VOC)

FRCNN
(COCO)

FRCNN
(VOC)

SSD
(COCO)

SSD
(VOC)

0

50

100

%
 o

f G
PU

-H
ou

rs Binary Class. Counting Bounding Box

(a) 80% Accuracy Target

0

50

100

Ac
cu

ra
cy

 (%
)

YOLO
(COCO)

YOLO
(VOC)

FRCNN
(COCO)

FRCNN
(VOC)

SSD
(COCO)

SSD
(VOC)

0

50

100

%
 o

f G
PU

-H
ou

rs Binary Class. Counting Bounding Box

(b) 90% Accuracy Target

0

50

100

Ac
cu

ra
cy

 (%
)

YOLO
(COCO)

YOLO
(VOC)

FRCNN
(COCO)

FRCNN
(VOC)

SSD
(COCO)

SSD
(VOC)

0

50

100

%
 o

f G
PU

-H
ou

rs Binary Class. Counting Bounding Box

(c) 95% Accuracy Target
Figure 9: Boggart’s query execution performance across CNNs, query types, and accuracy targets; results are aggregated across
object types. Bars summarize the distributions of per-video average result accuracy (top) and percentage of GPU-hours required to
generate results relative to running the CNN on all frames (bottom). Bars list medians with error bars spanning 25-75th percentiles.

Object Type → People Cars
Query Type ↓ Acc. % GPU-hrs Acc. % GPU-hrs

Binary Classif. 92% 6% 98% 3%
Counting 90% 11% 90% 7%

Bounding Box 91% 27% 90% 16%

Table 2: Average accuracy and percentage of GPU-hours (rela-
tive to the naive baseline) for different query types and objects
of interest. Results list median per-video values across all CNNs.

6.2 Query Execution Speedups
Figure 9 evaluates Boggart’s query response times relative
to a naive baseline that runs the CNN on all frames. Boggart
always used the same, model-agnostic index per video.

There are three points to take away from Figure 9. First,
across all of the conditions, Boggart consistently meets the
specified accuracy targets. Second, the percentage of GPU-
hours required to meet each accuracy target with Boggart
grows as we move from coarse classification and counting
queries to finer-grained bounding box detections. For exam-
ple, with a target accuracy of 90%, the median percentage of
GPU-hours across all models was 3-6%, 4-11%, and 8-28%
for the three query types, respectively. Third, the percentage
of GPU-hours also grows as the target accuracy increases
for each query type. For instance, for counting queries, the
percentage (across all CNNs) was 3-5% when the target ac-
curacy was 80%; this jumps to 12-30% when the target accu-
racy grows to 95%. The reason is intuitive: higher accuracy
targets imply that Boggart must more tightly bound the dura-
tion over which results are propagated (to limit propagation
errors) by running the CNN on more frames.

Different object types. Table 2 reports the results from Fig-
ure 9 separately per object type. As shown, the high-level
trends from above persist for each. However, for a given
query type, the percentage of required GPU-hours is consis-
tently lower when considering cars versus people. The rea-
son is twofold. First, inconsistencies in CNN results are more
prevalent for people since they appear as smaller objects in
our scenes (§5.2). Second, cars are inherently more rigid than
people, and thus deliver more stability in the anchor ratios
that Boggart relies on for bounding box propagation (§5.1);

30 FPS 15 FPS 1 FPS0

50

100

%
 o

f G
PU

-H
ou

rs
30 FPS 15 FPS 1 FPS 0

50

100

Ac
cu

ra
cy

 (%
)

Binary Class. Counting Bounding Box

Figure 10: Average accuracy (line) and percentage of GPU
hours (relative to the naive baseline) for different video sam-
pling rates. Results are listed for the median video, and consider
YOLOv3+COCO and a 90% accuracy target.

consequently, propagation errors for bounding box queries
grow more quickly with people. Boggart handles both issues
by running the CNN on more representative frames.
Downsampled video. Users may issue queries on sampled
versions of each video [80]. We evaluated Boggart with three
different sample rates: {30, 15, 1} fps. Although the num-
ber of considered frames drops, Figure 10 shows that Bog-
gart’s query execution speedups persist when operating over
downsampled videos. For instance, with 1-fps video, Bog-
gart requires only 25-49% of the GPU-hours that the naive
baseline would need across all query types. Figure 10 also
shows that Boggart’s ability to consistently meet accuracy
targets holds across sampling rates. We find that Boggart can
hit accuracy targets without resorting to running the CNN on
all frames because object keypoints – the primitive that Bog-
gart tracks across frames during both trajectory construction
(preprocessing) and detection propagation (query execution)
– typically persist across frames even at these sample rates.
For instance, Boggart matches 85% of the median object’s
keypoints across the 29-frame gap induced by the 1-fps rate.
6.3 Comparison to State-of-the-Art
We compared Boggart with two recent retrospective video
analytics systems: (1) NoScope [94], which only employs
optimizations during query execution, and (2) Focus [80],
which performs model-specific preprocessing by assuming a
priori knowledge of user CNNs. §2.2 details each system.

For these experiments, we set the user-provided CNN to
be YOLOv3+COCO, and the accuracy target to be 90%. Our

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 943

NoScope Focus Boggart0
2
4
6
8

GP
U-

Ho
ur

s

Binary Class. Counting Bounding Box

(a) Query execution efficiency. Bars list values for the me-
dian video, with error bars spanning 25-75th percentiles.

0 2 4 6 8 10 12 14
Preprocessing Computation (Hours)

Boggart

Focus

CPU
GPU

(b) Preprocessing efficiency. Bars list GPU/CPU-hours
for the median video. Note that NoScope does not per-
form preprocessing.
Figure 11: Comparing Boggart, Focus [80], and NoScope [94].
Results use YOLOv3+COCO and a target accuracy of 90%.

Focus implementation used Tiny YOLO [120] as the spe-
cialized/compressed model (i.e., we ran Focus as if it knew
the user CNN a priori), while NoScope used all of its open-
source models. Following the training methodology used in
both papers, we train the specialized/compressed models on
1-fps versions of the first half (i.e., 6 hours) of each video in
our dataset, and run queries on the second half of each video.

Query Execution. Figure 11a compares the query response
times of all three systems. As shown, Focus requires 5%
fewer median GPU-hours than Boggart for binary classifica-
tion queries. The main reason is that Focus’ model-specific
preprocessing (i.e., clustering of objects) enables more result
propagation than Boggart’s general, model-agnostic trajecto-
ries, i.e., Focus can propagate labels across objects, whereas
Boggart can propagate labels only along a given object’s tra-
jectory (§3). Median propagation distances for results from
the full CNN are 58 and 44 frames with Focus and Boggart.

Summing Focus’ classifications to generate per-frame
counts was insufficient for our 90% target. Thus, for count-
ing queries, we performed favorable sampling until Focus
hit 90% in each video: we greedily select a set of contiguous
frames with constant count errors, run the CNN on a single
frame, and correct errors on the remaining ones in the set.
Even with such favorable sampling, Boggart required 33%
fewer GPU-hours than Focus for counting queries.

Bounding box detections paint a starker contrast, with
Boggart needing 52% fewer GPU-hours than Focus. Unlike
with classification labels, Focus cannot propagate bounding
boxes across frames. Instead, to accelerate these queries, Fo-
cus relies on binary classification, and runs the full CNN on
all frames with an object of interest (to obtain their bound-
ing boxes); for our videos, this translates to running the full
CNN on 63-100% of frames. In contrast, Boggart propagates
bounding boxes along each trajectory (median propagation
distance of 23 frames) and reduces CNN tasks accordingly.

1 2 3 4 5
Factor Increase in Compute Resources

2

4

Fa
ct

or
Sp

ee
d-

up

Preprocessing
Query Execution

Figure 12: Boggart’s performance with increasing compute re-
sources. Resource factors are multiples of the 18-core CPU and
single GPU listed in §6.1. Results consider YOLOv3+COCO, a
90% accuracy target, and the median video.

Compared to NoScope, Boggart’s query execution tasks
consume 19-97% fewer GPU-hours across query types. Bog-
gart’s speedups are largely due to three limitations with No-
Scope. First, NoScope does not perform preprocessing, and
instead must train and run inference with its specialized and
compressed CNNs during query execution. Second, results
are not propagated across frames. Third, bounding box de-
tections are sped up only via binary classification; note that
NoScope performs binary classification on each frame (not
object, like Focus), so we cannot simply sum the classifi-
cation results to answer a counting query, and instead must
execute counting queries as bounding box queries.

Preprocessing. Figure 11b shows that Boggart’s preprocess-
ing tasks take 58% fewer computation hours than Focus’.
The discrepancy is from the training and inference costs that
Focus incurs by using a specialized/compressed model. Note
that all of Boggart’s preprocessing is CPU-based, while Fo-
cus’ costs are dominated (79%) by GPU operations. Further,
Boggart’s preprocessing runs once per video to support all
future CNNs. To avoid accuracy drops (§2.3), Focus would
have to run preprocessing for each CNN it wishes to support,
leading to higher costs and potential for wasted work.

6.4 Profiling Boggart

Dissecting Boggart’s performance. Boggart’s preprocess-
ing delays are dominated (83% on the median video) by the
extraction of SIFT keypoints across frames; background es-
timation, trajectory construction, and clustering together ac-
count for only 17% of the time. Query execution profiles are
similar, with CNN inference on centroid chunks and repre-
sentative frames contributing 7% and 91% of runtime; result
propagation (mostly for detections) takes the remaining 2%.

Resource scaling. Figure 12 shows that Boggart’s prepro-
cessing and query execution performance scale nearly lin-
early with increasing CPU and GPU resources, respectively.
The reason is that feature extraction and CNN inference, the
tasks that dominate delays in the two phases, inherently op-
erate on a per-frame basis and can thus naturally be paral-
lelized across frames. Note that these results only consider
parallel processing within each chunk; Boggart can also par-
allelize across chunks since trajectories are bound to single
chunks, i.e., there is no cross-chunk state sharing (§5).

Storage costs. Boggart’s preprocessing generates, on aver-
age, 306 MB of data per 1 hour of video. For context, (1) the

944 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

average video in our dataset consumes 1 GB when encoded
with H.264, and (2) Focus’ preprocessing generates 70 MB
of data for the same video. Recall that NoScope does not in-
volve video preprocessing, and thus does not incur storage
costs for indices. Note that 98% of Boggart’s storage over-
heads are for keypoints used to propagate bounding boxes;
blobs and trajectories consume only 2%.
Sensitivity to parameters. Boggart includes parameters for
video chunk size (default: 1 min) and target number of clus-
ters (default: centroids cover 2% of video). On average, we
find that Boggart’s performance is largely insensitive to both:
varying chunk sizes from 0.2-10 min and the videos covered
by centroids from 0.5-5% altered Boggart’s performance by
less than 5% (note that accuracy never dropped below the
targets). However, the effects of each parameter are more
pronounced on short amounts of video and are dependent
on the content being considered. More specifically, smaller
chunk sizes reduce the potential result propagation, but also
shrink cluster centroids and increase the potential for paral-
lel processing. Similarly, more clusters implies fewer subop-
timalities in the selection of representative frames, but also
additional centroids on which to run the CNN.
Generalizability. To further evaluate Boggart’s ability to
generalize, we ran experiments with three additional videos
(3 hours each) and new object types specific to those scenes:
birds in nature [19], boats in a canal [30], and people, cups,
chairs, and tables in a restaurant [6]. For these experiments,
we ran Boggart in the same way as above, i.e., it is not tuned
in any way to the video or objects of interest. We also ran ex-
periments considering different object types (trucks and bi-
cycles) in the traffic videos from Table 1; these experiments
used the same indices as in our main evaluation. All results
exhibit similar trends as above, with Boggart always meet-
ing accuracy targets (80%, 90%, 95%) and running CNNs
on only 11.7-34.2%, 11.7-53.4%, and 12.6-56.7% of frames
for binary classification, counting, and detection.

7 ADDITIONAL RELATED WORK
Live video analytics. Multiple systems accelerate queries
on live video, with optimizations along the following axes:
(1) profiling pipeline knobs to identify cheaper (but accu-
rate) configurations [87, 140], (2) integrating on-camera or
edge server resources for partial inference, frame filtering,
or reusing results from prior frames [43,54,58,63,66,73,74,
105,129,136,141,148], (3) content/model-aware encoding to
reduce data transfers [64, 133], and (4) spatiotemporal coor-
dination for efficient multi-camera queries [86, 111]. These
systems target an entirely different computational model
(stream processing vs. “after-the-fact” querying) and thus
face a different set of goals, optimization knobs, and con-
straints, e.g., by not having the entire dataset up front, live
analytics can only propagate results to later frames.
Accelerating GPU tasks. One line of work optimizes DNNs
for accelerated inference via distillation [78], quantiza-
tion [60, 84, 144], or pruning [51, 108]. Another direction

targets faster inference for a model, either through better
scheduling of GPU resources across inference tasks [85,123,
126], or hardware acceleration [38,68,90,117]. These works
are complementary to Boggart, which focuses on reducing
the number of frames on which inference must be performed.
Video Object Detection. In addition to those in §4, Boggart
builds on a line of work in the CV community that leverages
the spatiotemporal aspect of video to accelerate detection
and classification tasks. These techniques swap inference on
sampled frames with optical flow networks that extend re-
sults from earlier frames [49, 56, 57, 59, 62, 72, 76, 98, 112,
130,131,145–147], and are thus similar in spirit to Boggart’s
result propagation strategy. However, unlike Boggart, these
approaches are model-specific, in that the networks used for
propagation must be trained according to the specific CNN
(e.g., its feature extractor) used in the target query.
Video storage and indexing. Many systems balance video
storage and lookup costs for specific query types [121, 139,
143] or CNNs [40, 96, 119, 137]. Boggart is complementary
to these works in that its focus is on performing generaliz-
able preprocessing and accelerating response generation af-
ter video frames are loaded into memory.
8 CONCLUSION

This paper described Boggart, a system for retrospective
video analytics that supports the general “bring your own
model” interfaces that are now commonplace in commer-
cial platforms. To meet the core accuracy, speed, and effi-
ciency goals of those platforms, Boggart holistically rethinks
the query execution process, introducing cheap techniques to
generate comprehensive (but imprecise) indices during pre-
processing, and later use those indices to limit costly infer-
ence while bounding accuracy drops from imprecisions. Our
results show that such generality can come at low cost, as
Boggart outperforms prior, model-specific approaches.

Ethics. The focus of this work is on making the ethical pro-
cessing of videos (public or private, according to the law)
more efficient. We do not advocate for the processing of
video for illicit purposes, unlawful tracking, etc. Moreover,
Boggart is developed to improve the resource efficiency of
existing retrospective video analytics platforms in a man-
ner that does not change the interfaces they expose, i.e., the
videos, models/queries, and customers they handle remain
unchanged. In sum, Boggart does not alter the set of infor-
mation exposed to applications – the videos that an applica-
tion can query and the queries that the application can run
on those videos are unchanged, and Boggart’s internal state
(e.g., preprocessing results) is not exposed.

Acknowledgements. We thank Ganesh Ananthanarayanan,
Amit Levy, Jennifer Rexford, the NSDI reviewers, and our
shepherd, Siddhartha Sen, for their valuable feedback and
constructive comments. This work was supported by a Sloan
Research Fellowship, a Cisco grant, and NSF CNS grants
2152313, 2153449, 2147909, and 2140552.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 945

REFERENCES

[1] https://www.mongodb.com/.
[2] 11 Street SW Calgary. https://www.youtube.com/wa

tch?v=iGxFLjqhkSA.
[3] 3 Reasons Why City Planners Need Video Analytics.

https://www.briefcam.com/resources/blog/3-reasons-
why-city-planners-need-video-analytics/.

[4] Absolutely everywhere in beijing is now covered by
police video surveillance. https://qz.com/518874/.

[5] Are we ready for ai-powered security cameras? https:
//thenewstack.io/are-we-ready-for-ai-powered-secur
ity-cameras/.

[6] Beach Bar St. John Webcam. https://www.youtube.co
m/watch?v=2wqpy036z24.

[7] Betterview Combines Computer Vision and Post-
Event Imagery to Map Tornado Damage. https:
//blog.betterview.com/betterview-combines-comp
uter-vision-and-post-event-imagery-to-quickly-ma
p-tornado-damage.

[8] Bird Cams Lab. https://www.zooniverse.org/organiz
ations/cornellbirdcams/bird-cams-lab.

[9] Boggart Repository. https://github.com/neilsagarwal/
boggart.

[10] British transport police: Cctv. http://www.btp.police
.uk/advice and information/safety on and near the r
ailway/cctv.aspx.

[11] Can 30,000 cameras help solve chicago’s crime prob-
lem? https://www.nytimes.com/2018/05/26/us/chicag
o-police-surveillance.html.

[12] City of Auburn Toomer’s Corner Webcam 1. https:
//www.youtube.com/watch?v=wVDtzDwo-1Q.

[13] Computer Vision AI. https://techsee.me/computer-vi
sion/.

[14] Global Sports Analytics Market Size Report, 2021-
2028. https://www.grandviewresearch.com/indust
ry-analysis/sports-analytics-market.

[15] Hamptons.com Southampton Village Cam, Hildreth’s
Home Goods LIVE. https://www.youtube.com/watc
h?v=9IbruokZzx0.

[16] How to Be Ahead of Your Competition with Data. ht
tps://www.hudl.com/blog/how-to-be-ahead-of-your-
competition-with-data.

[17] Jackson Hole Wyoming USA Town Square Live
Cam. https://www.youtube.com/watch?v=1EiC9
bvVGnk.

[18] Lausanne, pont Bessières. https://www.youtube.com/
watch?v=TyElel0QjCI.

[19] Live BACKYARD Animal Cam in Ohio! . https://ww
w.youtube.com/watch?v=OIqUka8BOS8.

[20] One traffic framework. Any video source. All traffic
tasks. https://datafromsky.com/.

[21] Oxford Martin School Webcam - Broad Street, Ox-
ford. https://www.youtube.com/watch?v=St7aTfoId
YQ.

[22] Paris hospitals to get 1,500 cctv cameras to combat
violence against staff. https://bit.ly/2OYiBz2.

[23] Powering the edge with ai in an iot world. https://ww
w.forbes.com/sites/forbestechcouncil/2020/04/06/po
wering-the-edge-with-ai-in-an-iot-world/.

[24] Resorts Casino Hotel Beach Camera. https://www.yo
utube.com/watch?v=vVyBOU9Huvo.

[25] SouthHampton Traffic Cam. https://www.youtube.co
m/watch?v=Z9P 2pCgfBA.

[26] The Hudl Algorithm: Turning Video into Player
Tracking Data. https://www.maryecollins.com/h
udl-tracking.

[27] Toyota Research Institute accelerates safe automated
driving with deep learning. https://www.wired.com/
brandlab/2018/08/tri-accelerates-safe-automated-dr
iving-deep-learning-2/.

[28] Unique web-based facial recognition tool enhances
security and fights crime. https://www.securityin
fowatch.com/access-identity/biometrics/facial-reco
gnition-solutions/article/21261325/unique-webbased
-facial-recognition-tool-enhances-security-and-fight
s-crime.

[29] Using Deep Learning to Find Basketball Highlights.
https://www.hudl.com/bits/using-deep-learning-to-f
ind-basketball-highlights.

[30] Venice Italy Live Camera - Grand Canal. https://ww
w.youtube.com/watch?v=P393gTj527k.

[31] Video analytics applications in retail - beyond secu-
rity. https://www.securityinformed.com/insights/co-2
603-ga-co-2214-ga-co-1880-ga.16620.html/.

[32] Video Analytics Market - Growth, Trends, COVID-19
Impact, and Forecasts (2022 - 2027). https://www.mo
rdorintelligence.com/industry-reports/video-analytic
s-market.

[33] The vision zero initiative. http://www.visionzeroinit
iative.com/.

[34] How retail stores can streamline operations with video
content analytics. https://www.briefcam.com/resourc
es/blog/how-retail-stores-can-streamline-operations-
with-video-content-analytics/, 2020.

[35] Video analytics traffic study creates baseline for
change. https://www.govtech.com/analytics/Vide
o-Analytics-Traffic-Study-Creates-Baseline-for-Ch
ange.html, 2020.

[36] Ekya: Continuous learning of video analytics models
on edge compute servers. In 19th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI 22), pages 119–135, Renton, WA, Apr.
2022. USENIX Association.

[37] Video analytics market. https://www.fortunebusinessi
nsights.com/industry-reports/video-analytics-marke
t-101114, 2022.

[38] J. Albericio, A. Delmás, P. Judd, S. Sharify,
G. O’Leary, R. Genov, and A. Moshovos. Bit-

946 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.mongodb.com/
https://www.youtube.com/watch?v=iGxFLjqhkSA
https://www.youtube.com/watch?v=iGxFLjqhkSA
https://www.briefcam.com/resources/blog/3-reasons-why-city-planners-need-video-analytics/
https://www.briefcam.com/resources/blog/3-reasons-why-city-planners-need-video-analytics/
https://qz.com/518874/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
https://www.youtube.com/watch?v=2wqpy036z24
https://www.youtube.com/watch?v=2wqpy036z24
https://blog.betterview.com/betterview-combines-computer-vision-and-post-event-imagery-to-quickly-map-tornado-damage
https://blog.betterview.com/betterview-combines-computer-vision-and-post-event-imagery-to-quickly-map-tornado-damage
https://blog.betterview.com/betterview-combines-computer-vision-and-post-event-imagery-to-quickly-map-tornado-damage
https://blog.betterview.com/betterview-combines-computer-vision-and-post-event-imagery-to-quickly-map-tornado-damage
https://www.zooniverse.org/organizations/cornellbirdcams/bird-cams-lab
https://www.zooniverse.org/organizations/cornellbirdcams/bird-cams-lab
https://github.com/neilsagarwal/boggart
https://github.com/neilsagarwal/boggart
http://www.btp.police.uk/advice_and_information/safety_on_and_near_the_railway/cctv.aspx
http://www.btp.police.uk/advice_and_information/safety_on_and_near_the_railway/cctv.aspx
http://www.btp.police.uk/advice_and_information/safety_on_and_near_the_railway/cctv.aspx
https://www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html
https://www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html
https://www.youtube.com/watch?v=wVDtzDwo-1Q
https://www.youtube.com/watch?v=wVDtzDwo-1Q
https://techsee.me/computer-vision/
https://techsee.me/computer-vision/
https://www.grandviewresearch.com/industry-analysis/sports-analytics-market
https://www.grandviewresearch.com/industry-analysis/sports-analytics-market
https://www.youtube.com/watch?v=9IbruokZzx0
https://www.youtube.com/watch?v=9IbruokZzx0
https://www.hudl.com/blog/how-to-be-ahead-of-your-competition-with-data
https://www.hudl.com/blog/how-to-be-ahead-of-your-competition-with-data
https://www.hudl.com/blog/how-to-be-ahead-of-your-competition-with-data
https://www.youtube.com/watch?v=1EiC9bvVGnk
https://www.youtube.com/watch?v=1EiC9bvVGnk
https://www.youtube.com/watch?v=TyElel0QjCI
https://www.youtube.com/watch?v=TyElel0QjCI
https://www.youtube.com/watch?v=OIqUka8BOS8
https://www.youtube.com/watch?v=OIqUka8BOS8
https://datafromsky.com/
https://www.youtube.com/watch?v=St7aTfoIdYQ
https://www.youtube.com/watch?v=St7aTfoIdYQ
https://bit.ly/2OYiBz2
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.youtube.com/watch?v=vVyBOU9Huvo
https://www.youtube.com/watch?v=vVyBOU9Huvo
https://www.youtube.com/watch?v=Z9P_2pCgfBA
https://www.youtube.com/watch?v=Z9P_2pCgfBA
https://www.maryecollins.com/hudl-tracking
https://www.maryecollins.com/hudl-tracking
https://www.wired.com/brandlab/2018/08/tri-accelerates-safe-automated-driving-deep-learning-2/
https://www.wired.com/brandlab/2018/08/tri-accelerates-safe-automated-driving-deep-learning-2/
https://www.wired.com/brandlab/2018/08/tri-accelerates-safe-automated-driving-deep-learning-2/
https://www.securityinfowatch.com/access-identity/biometrics/facial-recognition-solutions/article/21261325/unique-webbased-facial-recognition-tool-enhances-security-and-fights-crime
https://www.securityinfowatch.com/access-identity/biometrics/facial-recognition-solutions/article/21261325/unique-webbased-facial-recognition-tool-enhances-security-and-fights-crime
https://www.securityinfowatch.com/access-identity/biometrics/facial-recognition-solutions/article/21261325/unique-webbased-facial-recognition-tool-enhances-security-and-fights-crime
https://www.securityinfowatch.com/access-identity/biometrics/facial-recognition-solutions/article/21261325/unique-webbased-facial-recognition-tool-enhances-security-and-fights-crime
https://www.securityinfowatch.com/access-identity/biometrics/facial-recognition-solutions/article/21261325/unique-webbased-facial-recognition-tool-enhances-security-and-fights-crime
https://www.hudl.com/bits/using-deep-learning-to-find-basketball-highlights
https://www.hudl.com/bits/using-deep-learning-to-find-basketball-highlights
https://www.youtube.com/watch?v=P393gTj527k
https://www.youtube.com/watch?v=P393gTj527k
https://www.securityinformed.com/insights/co-2603-ga-co-2214-ga-co-1880-ga.16620.html/
https://www.securityinformed.com/insights/co-2603-ga-co-2214-ga-co-1880-ga.16620.html/
https://www.mordorintelligence.com/industry-reports/video-analytics-market
https://www.mordorintelligence.com/industry-reports/video-analytics-market
https://www.mordorintelligence.com/industry-reports/video-analytics-market
http://www.visionzeroinitiative.com/
http://www.visionzeroinitiative.com/
https://www.briefcam.com/resources/blog/how-retail-stores-can-streamline-operations-with-video-content-analytics/
https://www.briefcam.com/resources/blog/how-retail-stores-can-streamline-operations-with-video-content-analytics/
https://www.briefcam.com/resources/blog/how-retail-stores-can-streamline-operations-with-video-content-analytics/
https://www.govtech.com/analytics/Video-Analytics-Traffic-Study-Creates-Baseline-for-Change.html
https://www.govtech.com/analytics/Video-Analytics-Traffic-Study-Creates-Baseline-for-Change.html
https://www.govtech.com/analytics/Video-Analytics-Traffic-Study-Creates-Baseline-for-Change.html
https://www.fortunebusinessinsights.com/industry-reports/video-analytics-market-101114
https://www.fortunebusinessinsights.com/industry-reports/video-analytics-market-101114
https://www.fortunebusinessinsights.com/industry-reports/video-analytics-market-101114

pragmatic deep neural network computing. In Pro-
ceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-50 ’17,
page 382–394. Association for Computing Machin-
ery, 2017.

[39] Amazon. Rekognition. https://aws.amazon.com/rek
ognition/.

[40] Amazon. AWS DeepLens. https://aws.amazon.com/d
eeplens/, 2019.

[41] G. Ananthanarayanan, Y. Shu, M. Kasap, A. Kewal-
ramani, M. Gada, and V. Bahl. Live video analyt-
ics with microsoft rocket for reducing edge compute
costs, July 2020.

[42] M. R. Anderson, M. J. Cafarella, G. Ros, and T. F.
Wenisch. Physical representation-based predicate op-
timization for a visual analytics database. In 35th
IEEE International Conference on Data Engineering,
ICDE 2019, Macao, China, April 8-11, 2019, pages
1466–1477, 2019.

[43] K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishna-
murthy, and A. K. Roy-Chowdhury. Frugal following:
Power thrifty object detection and tracking for mobile
augmented reality. In Proceedings of the 17th Confer-
ence on Embedded Networked Sensor Systems, Sen-
Sys ’19, page 96–109, New York, NY, USA, 2019.
Association for Computing Machinery.

[44] M. Azure. Computer vision api. https://azure.micros
oft.com/en-us/services/cognitive-services/computer
-vision/, 2021.

[45] M. Azure. Face api. https://azure.microsoft.com/en-u
s/services/cognitive-services/face/, 2021.

[46] O. Barnich and M. Van Droogenbroeck. Vibe: A uni-
versal background subtraction algorithm for video se-
quences. IEEE Transactions on Image processing,
20(6):1709–1724, 2010.

[47] D. Barrett. One surveillance camera for every 11 peo-
ple in Britain, says CCTV survey. https://www.telegr
aph.co.uk/technology/10172298/\One-surveillance-
camera-for-every-11-people-in-Britain\-says-CCTV
-survey.html, 2013.

[48] F. Bastani and S. Madden. Otif: Efficient tracker pre-
processing over large video datasets. In Proceedings
of the 2022 International Conference on Management
of Data, SIGMOD ’22, 2022.

[49] G. Bertasius, L. Torresani, and J. Shi. Object detec-
tion in video with spatiotemporal sampling networks.
In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 331–346, 2018.

[50] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft.
Simple online and realtime tracking. In 2016 IEEE
international conference on image processing (ICIP),
pages 3464–3468. IEEE, 2016.

[51] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag.
What is the state of neural network pruning? arXiv

preprint arXiv:2003.03033, 2020.
[52] S. Brutzer, B. Hoferlin, and G. Heidemann. Evalu-

ation of background subtraction techniques for video
surveillance. In Proceedings of the 2011 IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR ’11, pages 1937–1944, Washington, DC, USA,
2011. IEEE Computer Society.

[53] Z. Cai, M. Saberian, and N. Vasconcelos. Learning
complexity-aware cascades for deep pedestrian de-
tection. In Proceedings of the 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), ICCV
’15, pages 3361–3369, Washington, DC, USA, 2015.
IEEE Computer Society.

[54] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. An-
dersen, M. Kaminsky, and S. R. Dulloor. Scaling
video analytics on constrained edge nodes. In 2nd
SysML Conference, 2019.

[55] F. Cangialosi, N. Agarwal, V. Arun, J. Jiang,
S. Narayana, A. Sarwate, and R. Netravali. Privid:
Practical, privacy-preserving video analytics queries.
In Proceedings of the 19th USENIX Conference
on Networked Systems Design and Implementation,
NSDI’22, Berkeley, CA, USA, 2022. USENIX Asso-
ciation.

[56] Y. Chai. Patchwork: A patch-wise attention net-
work for efficient object detection and segmentation
in video streams. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
3415–3424, 2019.

[57] K. Chen, J. Wang, S. Yang, X. Zhang, Y. Xiong, C. C.
Loy, and D. Lin. Optimizing video object detection
via a scale-time lattice. In CVPR, 2018.

[58] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and
H. Balakrishnan. Glimpse: Continuous, real-time ob-
ject recognition on mobile devices. In Proceedings of
the 13th ACM Conference on Embedded Networked
Sensor Systems, pages 155–168, 2015.

[59] Y. Chen, Y. Cao, H. Hu, and L. Wang. Memory en-
hanced global-local aggregation for video object de-
tection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
10337–10346, 2020.

[60] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv,
and Y. Bengio. Binarized neural networks: Train-
ing deep neural networks with weights and acti-
vations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

[61] S. R. E. Datondji, Y. Dupuis, P. Subirats, and
P. Vasseur. A survey of vision-based traffic monitoring
of road intersections. Trans. Intell. Transport. Sys.,
17(10):2681–2698, Oct. 2016.

[62] J. Deng, Y. Pan, T. Yao, W. Zhou, H. Li, and T. Mei.
Relation distillation networks for video object detec-
tion. In Proceedings of the IEEE/CVF International

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 947

https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/deeplens/
https://aws.amazon.com/deeplens/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://www.telegraph.co.uk/technology/10172298/\One-surveillance-camera-for-every-11-people-in-Britain\-says-CCTV-survey.html
https://www.telegraph.co.uk/technology/10172298/\One-surveillance-camera-for-every-11-people-in-Britain\-says-CCTV-survey.html
https://www.telegraph.co.uk/technology/10172298/\One-surveillance-camera-for-every-11-people-in-Britain\-says-CCTV-survey.html
https://www.telegraph.co.uk/technology/10172298/\One-surveillance-camera-for-every-11-people-in-Britain\-says-CCTV-survey.html

Conference on Computer Vision, pages 7023–7032,
2019.

[63] U. Drolia, K. Guo, J. Tan, R. Gandhi, and
P. Narasimhan. Cachier: Edge-caching for recognition
applications. In 2017 IEEE 37th International Con-
ference on Distributed Computing Systems (ICDCS),
pages 276–286, 2017.

[64] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang,
H. Hoffmann, and J. Jiang. Server-driven video
streaming for deep learning inference. In Proceed-
ings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Ap-
plications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’20, page
557–570, New York, NY, USA, 2020. Association for
Computing Machinery.

[65] A. Elqursh and A. Elgammal. Online moving camera
background subtraction. In A. Fitzgibbon, S. Lazeb-
nik, P. Perona, Y. Sato, and C. Schmid, editors, Com-
puter Vision – ECCV 2012, pages 228–241, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[66] J. Emmons, S. Fouladi, G. Ananthanarayanan,
S. Venkataraman, S. Savarese, and K. Winstein.
Cracking open the dnn black-box: Video analytics
with dnns across the camera-cloud boundary. In Pro-
ceedings of the 2019 Workshop on Hot Topics in Video
Analytics and Intelligent Edges, HotEdgeVideo’19,
pages 27–32, New York, NY, USA, 2019. Association
for Computing Machinery.

[67] M. Everingham, L. Gool, C. K. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes
(voc) challenge. Int. J. Comput. Vision, 88(2):303–
338, June 2010.

[68] J. Fowers, K. Ovtcharov, M. Papamichael, T. Mas-
sengill, M. Liu, D. Lo, S. Alkalay, M. Haselman,
L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek,
G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M.
Caulfield, E. S. Chung, and D. Burger. A config-
urable cloud-scale dnn processor for real-time ai. In
Proceedings of the 45th Annual International Sympo-
sium on Computer Architecture, ISCA ’18, page 1–14.
IEEE Press, 2018.

[69] I. Ghodgaonkar, S. Chakraborty, V. Banna, S. All-
croft, M. Metwaly, F. Bordwell, K. Kimura, X. Zhao,
A. Goel, C. Tung, et al. Analyzing worldwide social
distancing through large-scale computer vision. arXiv
preprint arXiv:2008.12363, 2020.

[70] Google. Cloud vision api. https://cloud.google.com/v
ision, 2021.

[71] C. Grana, D. Borghesani, and R. Cucchiara. Op-
timized block-based connected components labeling
with decision trees. IEEE Transactions on Image Pro-
cessing, 19(6):1596–1609, 2010.

[72] C. Guo, B. Fan, J. Gu, Q. Zhang, S. Xiang, V. Prinet,

and C. Pan. Progressive sparse local attention
for video object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 3909–3918, 2019.

[73] P. Guo, B. Hu, R. Li, and W. Hu. Foggycache: Cross-
device approximate computation reuse. In Proceed-
ings of the 24th Annual International Conference on
Mobile Computing and Networking, MobiCom ’18,
page 19–34, New York, NY, USA, 2018. Association
for Computing Machinery.

[74] P. Guo and W. Hu. Potluck: Cross-Application Ap-
proximate Deduplication for Computation-Intensive
Mobile Applications, page 271–284. Association for
Computing Machinery, New York, NY, USA, 2018.

[75] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wol-
man, and A. Krishnamurthy. MCDNN: An
approximation-based execution framework for deep
stream processing under resource constraints. In Pro-
ceedings of the 14th Annual International Confer-
ence on Mobile Systems, Applications, and Services,
MobiSys ’16, pages 123–136, New York, NY, USA,
2016. ACM.

[76] F. He, N. Gao, Q. Li, S. Du, X. Zhao, and K. Huang.
Temporal context enhanced feature aggregation for
video object detection. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34,
pages 10941–10948, 2020.

[77] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick.
Mask R-CNN. CoRR, abs/1703.06870, 2017.

[78] G. Hinton, O. Vinyals, and J. Dean. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[79] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnos-
ing error in object detectors. In European conference
on computer vision, pages 340–353. Springer, 2012.

[80] K. Hsieh, G. Ananthanarayanan, P. Bodik,
S. Venkataraman, P. Bahl, M. Philipose, P. B.
Gibbons, and O. Mutlu. Focus: Querying large video
datasets with low latency and low cost. In 13th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 269–286,
Carlsbad, CA, 2018. USENIX Association.

[81] B. Hu, P. Guo, and W. Hu. Video-zilla: An indexing
layer for scalable live video analytics. In Proceedings
of the 2022 International Conference on Management
of Data, SIGMOD ’22, 2022.

[82] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,
A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadar-
rama, and K. Murphy. Speed/accuracy trade-offs
for modern convolutional object detectors. CoRR,
abs/1611.10012, 2016.

[83] IBM. Maximo remote monitoring. https://www.ibm.
com/products/maximo/remote-monitoring, 2021.

[84] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang,

948 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://cloud.google.com/vision
https://cloud.google.com/vision
https://www.ibm.com/products/maximo/remote-monitoring
https://www.ibm.com/products/maximo/remote-monitoring

A. Howard, H. Adam, and D. Kalenichenko. Quan-
tization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2704–2713, 2018.

[85] P. Jain, X. Mo, A. Jain, H. Subbaraj, R. S. Dur-
rani, A. Tumanov, J. Gonzalez, and I. Stoica. Dy-
namic space-time scheduling for gpu inference. arXiv
preprint arXiv:1901.00041, 2018.

[86] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan,
J. Jiang, Y. Shu, V. Bahl, and J. Gonzalez. Spatula: Ef-
ficient cross-camera video analytics on large camera
networks. In ACM/IEEE Symposium on Edge Com-
puting (SEC 2020), November 2020.

[87] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and
I. Stoica. Chameleon: Scalable adaptation of video
analytics. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communica-
tion, SIGCOMM ’18, pages 253–266, New York, NY,
USA, 2018. ACM.

[88] J. Jodoin, G. Bilodeau, and N. Saunier. Urban tracker:
Multiple object tracking in urban mixed traffic. In
IEEE Winter Conference on Applications of Computer
Vision, pages 885–892, 2014.

[89] J. Jodoin, G. Bilodeau, and N. Saunier. Tracking all
road users at multimodal urban traffic intersections.
IEEE Transactions on Intelligent Transportation Sys-
tems, 17(11):3241–3251, 2016.

[90] N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hag-
mann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khai-
tan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony,
K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni,
K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadi-
ani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon. In-datacenter
performance analysis of a tensor processing unit.
SIGARCH Comput. Archit. News, 45(2):1–12, June
2017.

[91] C. Ju, Z. Wang, C. Long, X. Zhang, G. Cong,
and D. E. Chang. Interaction-aware kalman neu-
ral networks for trajectory prediction. CoRR,
abs/1902.10928, 2019.

[92] D. Kang, P. Bailis, and M. Zaharia. Blazeit: Fast ex-
ploratory video queries using neural networks. CoRR,

abs/1805.01046, 2018.
[93] D. Kang, P. Bailis, and M. Zaharia. Blazeit: Optimiz-

ing declarative aggregation and limit queries for neu-
ral network-based video analytics. Proc. VLDB En-
dow., 13(4):533–546, Dec. 2019.

[94] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and
M. Zaharia. Noscope: Optimizing neural network
queries over video at scale. Proc. VLDB Endow.,
10(11):1586–1597, Aug. 2017.

[95] D. Kang, J. Guibas, P. Bailis, T. Hashimoto, and
M. Zaharia. Task-agnostic indexes for deep learning-
based queries over unstructured data, 2020.

[96] D. Kang, A. Mathur, T. Veeramacheneni, P. Bailis, and
M. Zaharia. Jointly optimizing preprocessing and in-
ference for dnn-based visual analytics. Proc. VLDB
Endow., 14(2):87–100, Oct. 2020.

[97] K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao,
C. Zhang, Z. Wang, R. Wang, X. Wang, and
W. Ouyang. T-CNN: Tubelets With Convolu-
tional Neural Networks for Object Detection From
Videos. IEEE Trans. Cir. and Sys. for Video Technol.,
28(10):2896–2907, Oct. 2018.

[98] K. Kang, W. Ouyang, H. Li, and X. Wang. Object de-
tection from video tubelets with convolutional neural
networks. In CVPR, 2016.

[99] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural
networks. Commun. ACM, 60(6):84–90, May 2017.

[100] B. Kueng, E. Mueggler, G. Gallego, and D. Scara-
muzza. Low-latency visual odometry using event-
based feature tracks. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 16–23, Oct 2016.

[101] B. Laugraud, S. Piérard, and M. Van Droogenbroeck.
Labgen: A method based on motion detection for gen-
erating the background of a scene. Pattern Recogni-
tion Letters, 96:12–21, 2017.

[102] J. Le. Part 1: An overview of dataops for computer
vision. https://www.superb-ai.com/blog/part-1-an-o
verview-of-dataops-for-computer-vision, 2021.

[103] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[104] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A
convolutional neural network cascade for face detec-
tion. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5325–5334,
June 2015.

[105] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu,
and R. Netravali. Reducto: On-Camera Filtering for
Resource-Efficient Real-Time Video Analytics. SIG-
COMM ’20, page 359–376, New York, NY, USA,
2020. Association for Computing Machinery.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 949

https://www.superb-ai.com/blog/part-1-an-overview-of-dataops-for-computer-vision
https://www.superb-ai.com/blog/part-1-an-overview-of-dataops-for-computer-vision

[106] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan,
and S. Belongie. Feature pyramid networks for ob-
ject detection. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 936–
944, July 2017.

[107] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen,
X. Liu, and M. Pietikäinen. Deep learning for generic
object detection: A survey, 2019.

[108] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang.
Learning efficient convolutional networks through
network slimming. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages
2736–2744, 2017.

[109] J. Long, E. Shelhamer, and T. Darrell. Fully convolu-
tional networks for semantic segmentation. In 2015
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3431–3440, Los Alami-
tos, CA, USA, jun 2015. IEEE Computer Society.

[110] D. G. Lowe. Distinctive image features from
scale-invariant keypoints. Int. J. Comput. Vision,
60(2):91–110, Nov. 2004.

[111] Y. Lu, A. Chowdhery, and S. Kandula. Optasia: A
relational platform for efficient large-scale video ana-
lytics. In Proceedings of the Seventh ACM Symposium
on Cloud Computing, SoCC ’16, pages 57–70, New
York, NY, USA, 2016. ACM.

[112] H. Mao, T. Kong, and W. J. Dally. Catdet: Cascaded
tracked detector for efficient object detection from
video. arXiv preprint arXiv:1810.00434, 2018.

[113] A. Mhalla, T. Chateau, H. Maamatou, S. Gazzah, and
N. E. B. Amara. Smc faster r-cnn: Toward a scene-
specialized multi-object detector. Computer Vision
and Image Understanding, 164:3–15, 2017.

[114] A. Moschitti. Updating neural networks to recognize
new categories, with minimal retraining. https://www.
amazon.science/blog/updating-neural-networks-to-
recognize-new-categories-with-minimal-retraining,
2019.

[115] OpenCV. Morphological Transformations. https://do
cs.opencv.org/master/d9/d61/tutorial py morpholog
ical ops.html, 2020.

[116] A. Padmanabhan, N. Agarwal, A. Iyer, G. Anantha-
narayanan, Y. Shu, N. Karianakis, G. H. Xu, and
R. Netravali. Gemel: Model merging for memory-
efficient, real-time video analytics at the edge, 2022.

[117] S. Park, J. Park, K. Bong, D. Shin, J. Lee, S. Choi,
and H. Yoo. An energy-efficient and scalable deep
learning/inference processor with tetra-parallel mimd
architecture for big data applications. IEEE Transac-
tions on Biomedical Circuits and Systems, 9(6):838–
848, 2015.

[118] R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos,
and R. A. Popa. Visor: Privacy-preserving video ana-
lytics as a cloud service. In S. Capkun and F. Roesner,

editors, 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, pages 1039–1056.
USENIX Association, 2020.

[119] A. Poms, W. Crichton, P. Hanrahan, and K. Fata-
halian. Scanner: Efficient video analysis at scale.
ACM Trans. Graph., 37(4), July 2018.

[120] J. Redmon and A. Farhadi. Yolov3: An incremen-
tal improvement. arXiv preprint arXiv:1804.02767,
2018.

[121] W. Ren, S. Singh, M. Singh, and Y. S. Zhu. State-
of-the-art on spatio-temporal information-based video
retrieval. Pattern Recogn., 42(2):267–282, Feb. 2009.

[122] A. Rizzoli. 7 Game-Changing AI Applications in the
Sports Industry. https://www.v7labs.com/blog/ai-in-
sports, 2022.

[123] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Phili-
pose, A. Krishnamurthy, and R. Sundaram. Nexus: A
gpu cluster engine for accelerating dnn-based video
analysis. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, pages
322–337, New York, NY, USA, 2019. Association for
Computing Machinery.

[124] C. Stauffer and W. E. L. Grimson. Adaptive back-
ground mixture models for real-time tracking. In Pro-
ceedings. 1999 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (Cat. No
PR00149), volume 2, pages 246–252 Vol. 2, 1999.

[125] Y. Sun, X. Wang, and X. Tang. Deep convolu-
tional network cascade for facial point detection.
In Proceedings of the 2013 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR
’13, pages 3476–3483, Washington, DC, USA, 2013.
IEEE Computer Society.

[126] Y. Ukidave, X. Li, and D. Kaeli. Mystic: Predic-
tive scheduling for gpu based cloud servers using ma-
chine learning. In 2016 IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS),
pages 353–362. IEEE, 2016.

[127] P. D. Z. Varcheie, M. Sills-Lavoie, and G.-A.
Bilodeau. A multiscale region-based motion detec-
tion and background subtraction algorithm. Sensors,
10(2):1041–1061, 2010.

[128] A. Viswanath, R. K. Behera, V. Senthamilarasu, and
K. Kutty. Background modelling from a moving cam-
era. volume 58, pages 289–296, 2015. Second In-
ternational Symposium on Computer Vision and the
Internet (VisionNet’15).

[129] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pil-
lai, S.-W. Yang, and M. Satyanarayanan. Bandwidth-
efficient live video analytics for drones via edge com-
puting. pages 159–173, 10 2018.

[130] S. Wang, H. Lu, and Z. Deng. Fast object detection in
compressed video. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages

950 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.amazon.science/blog/updating-neural-networks-to-recognize-new-categories-with-minimal-retraining
https://www.amazon.science/blog/updating-neural-networks-to-recognize-new-categories-with-minimal-retraining
https://www.amazon.science/blog/updating-neural-networks-to-recognize-new-categories-with-minimal-retraining
https://docs.opencv.org/master/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/master/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/master/d9/d61/tutorial_py_morphological_ops.html
https://www.v7labs.com/blog/ai-in-sports
https://www.v7labs.com/blog/ai-in-sports

7104–7113, 2019.
[131] S. Wang, Y. Zhou, J. Yan, and Z. Deng. Fully motion-

aware network for video object detection. In Proceed-
ings of the European conference on computer vision
(ECCV), pages 542–557, 2018.

[132] X. Wang, T. Xiao, Y. Jiang, S. Shao, J. Sun, and
C. Shen. Repulsion loss: Detecting pedestrians in
a crowd. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
7774–7783, 2018.

[133] Y. Wang, W. Wang, J. Zhang, J. Jiang, and K. Chen.
Bridging the edge-cloud barrier for real-time ad-
vanced vision analytics. In 11th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 19),
Renton, WA, July 2019. USENIX Association.

[134] N. Wojke, A. Bewley, and D. Paulus. Simple online
and realtime tracking with a deep association metric,
2017.

[135] S. Xie, W. Zhang, W. Ying, and K. Zakim. Fast detect-
ing moving objects in moving background using orb
feature matching. In 2013 Fourth International Con-
ference on Intelligent Control and Information Pro-
cessing (ICICIP), pages 304–309, 2013.

[136] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu. Deep-
cache: Principled cache for mobile deep vision. In
Proceedings of the 24th Annual International Confer-
ence on Mobile Computing and Networking, Mobi-
Com ’18, page 129–144, New York, NY, USA, 2018.
Association for Computing Machinery.

[137] T. Xu, L. M. Botelho, and F. X. Lin. Vstore: A data
store for analytics on large videos. In Proceedings
of the Fourteenth EuroSys Conference 2019, EuroSys
’19, pages 16:1–16:17, New York, NY, USA, 2019.
ACM.

[138] Q. Xue, X. Li, J. Zhao, and W. Zhang. Deep kalman
filter: A refinement module for the rollout trajectory
prediction methods. CoRR, abs/2102.10859, 2021.

[139] J. Yuan, H. Wang, L. Xiao, W. Zheng, J. Li, F. Lin,
and B. Zhang. A formal study of shot boundary de-
tection. IEEE Trans. Cir. and Sys. for Video Technol.,
17(2):168–186, Feb. 2007.

[140] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Phili-
pose, P. Bahl, and M. J. Freedman. Live video
analytics at scale with approximation and delay-
tolerance. In Proceedings of the 14th USENIX Con-
ference on Networked Systems Design and Implemen-
tation, NSDI’17, pages 377–392, Berkeley, CA, USA,
2017. USENIX Association.

[141] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and
S. Banerjee. The design and implementation of a
wireless video surveillance system. pages 426–438,
09 2015.

[142] D. Zhou, L. Wang, X. Cai, and Y. Liu. Detection of
moving targets with a moving camera. In 2009 IEEE
International Conference on Robotics and Biomimet-
ics (ROBIO), pages 677–681, 2009.

[143] X. Zhou, X. Zhou, L. Chen, and A. Bouguettaya.
Efficient subsequence matching over large video
databases. The VLDB Journal, 21(4):489–508, Aug.
2012.

[144] C. Zhu, S. Han, H. Mao, and W. J. Dally.
Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016.

[145] X. Zhu, J. Dai, L. Yuan, and Y. Wei. Towards high
performance video object detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7210–7218, 2018.

[146] X. Zhu, Y. Wang, J. Dai, L. Yuan, and Y. Wei. Flow-
guided feature aggregation for video object detection.
In Proceedings of the IEEE International Conference
on Computer Vision, pages 408–417, 2017.

[147] X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei. Deep
feature flow for video recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2349–2358, 2017.

[148] Y. Zhu, A. Samajdar, M. Mattina, and P. Whatmough.
Euphrates: Algorithm-soc co-design for low-power
mobile continuous vision. In Proceedings of the 45th
Annual International Symposium on Computer Archi-
tecture, ISCA ’18, page 547–560. IEEE Press, 2018.

[149] Z. Zou, Z. Shi, Y. Guo, and J. Ye. Object detection in
20 years: A survey, 2019.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 951

Tambur: Efficient loss recovery for videoconferencing via streaming codes

Michael Rudow†, Francis Y. Yan¶, Abhishek Kumar†, Ganesh Ananthanarayanan§, Martin Ellis§, K.V. Rashmi†
†Carnegie Mellon University, ¶Microsoft Research, §Microsoft

Abstract
Packet loss degrades the quality of experience (QoE) of video-
conferencing. The standard approach to recovering lost pack-
ets for long-distance communication where retransmission
takes too long is forward error correction (FEC). Conven-
tional approaches for FEC for real-time applications are inef-
ficient at protecting against bursts of losses. Yet such bursts
frequently arise in practice and can be better tamed with a new
class of theoretical FEC schemes, called “streaming codes,”
that require significantly less redundancy to recover bursts.
However, existing streaming codes do not address the needs
of videoconferencing, and their potential to improve the QoE
for videoconferencing is largely untested. Tambur is a new
streaming-codes-based approach to videoconferencing that
overcomes the aforementioned limitations. We first evaluate
Tambur in simulation over a large corpus of traces from Mi-
crosoft Teams. Tambur reduces the frequency of decoding
failures for video frames by 26% and the bandwidth used
for redundancy by 35% compared to the baseline. We imple-
ment Tambur in C++, integrate it with a videoconferencing
application, and evaluate end-to-end QoE metrics over an em-
ulated network showcasing substantial benefits for several key
metrics. For example, Tambur reduces the frequency and cu-
mulative duration of freezes by 26% and 29%, respectively.

1 Introduction

The quality of videoconferencing calls dictates the effec-
tiveness of remote meetings [17] which are now ubiquitous.
Videoconferencing calls can be one-on-one [27] or multi-
party [39]. Our work focuses on one-on-one calls. Video
quality depends on several key performance indicators, such
as freeze, bandwidth, packet loss, and latency [14, 28, 41].

Recovering lost packets is crucial for providing high-
quality videoconferencing [33, 48]. Losing even a single
packet may prevent rendering a video frame. It may also
prohibit rendering multiple future frames (i.e., causing the
video to freeze) due to inter-frame dependencies of com-
pressed video. Due to this, it is common for videoconferenc-
ing applications to handle packet losses at the application
level. The two broad viable solutions are retransmissions and
forward error correction (FEC). Both approaches transmit
redundant data. Consequently, there is a trade-off between
bandwidth allocated for redundancy and transmitting original
data. Furthermore, videoconferencing applications must re-
cover lost packets within a strict latency—preferably less than

150 ms [33]—to meet the real-time playback requirement.
Retransmission involves minimal redundant data since it

resends only the lost packets. Hence, it is preferred whenever
possible [64]. However, retransmission is suitable only for
scenarios with short round trip times due to the strict real-time
latency requirement of videoconferencing applications. For
all other cases, videoconferencing applications rely on FEC
to recover lost packets within an acceptable latency.

Block codes are the most common form of FEC employed
in production systems today. Under a block code, k “data
packets” are used to create r redundant packets—called “par-
ity packets.” When some of these (k + r) packets are lost,
the k data packets can still be recovered. There are r extra
parity packets, so the bandwidth overhead is (r/k)×100%.
One main objective in designing FEC schemes is to minimize
the bandwidth overhead. Common examples of block codes
include Reed-Solomon (RS) block codes [55] and fountain
(i.e., rateless) codes [40]. Many of the codes, e.g., RS codes,
are optimal for random losses in which packets are lost inde-
pendently. For instance, in the above example, if RS codes are
used, any k packets suffice for recovery. Hence, block codes
are popular for production videoconferencing applications.
For example, Microsoft Teams uses RS codes.

Videoconferencing applications send data from compressed
video frames over multiple packets. We refer to losing several
packets over one or more consecutive frames as a “burst” loss.
Burst losses can occur for various reasons, including persis-
tent Wi-Fi interference and network congestion (when applica-
tions overflow router buffers and cause correlated losses [29]).
Our analysis of packet traces from thousands of video calls
from Teams (§3.3) shows that real-world losses faced by
videoconferencing applications are indeed bursty.

Block codes are highly inefficient in their bandwidth con-
sumption when recovering from burst losses under real-time
latency requirements. In contrast, a relatively new theoretical
FEC framework, known as “streaming codes” [5,42,43], han-
dle burst losses along with strict latency constraints efficiently.
At a high level, streaming codes recover packets lost in a burst
sequentially by their respective playback deadlines, whereas
block codes recover all the lost packets simultaneously by
the earliest playback deadline. Using block codes for loss
recovery wastes later parity packets sent before the deadline
of the final lost packet. Most prior work on streaming codes
is theoretical [5, 20, 22, 26, 35, 36, 42, 43, 59–61], studying
bounds and code constructions. A few existing works [6, 25]
explore the practical applicability of streaming codes but only

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 953

for VoIP (i.e., audio, but not video).
Given the dual importance of bandwidth and loss recovery,

streaming codes are appealing to videoconferencing applica-
tions. However, there are two main challenges. First, there
are gaps between existing streaming codes and videocon-
ferencing applications. Most practical variants of streaming
codes [6, 25] are limited to settings in which the sizes of
the input data are a fixed constant over time. In contrast, in
videoconferencing, the sizes of compressed video frames are
variable. The only streaming codes that accommodate such
variability [59–61] pessimistically assume that a frame is en-
tirely lost or received because the framework involves sending
each frame in a single packet. This is seldom true in videocon-
ferencing applications. Existing streaming codes also require
that every burst is followed by a guard space where all pack-
ets are received. But this assumption often does not hold in
practice (as we show in §3.2). Also, existing streaming codes
set the amount of redundancy with a parameter of a theoretical
channel model that is unknown in practice. Second, streaming
codes’ effectiveness for improving the QoE for real-world
videoconferencing applications is untested on real-world data.

This work addresses the aforementioned challenges. We
present Tambur, a new communication scheme for bandwidth-
efficient loss recovery for videoconferencing.1 Tambur com-
prises two components. First, a new streaming code that builds
upon a prior theoretical framework [61] while overcoming
its limitations with respect to real-world videoconferencing
applications. Specifically, Tambur allows for specifying a
bandwidth overhead for each frame. Furthermore, for any
given bandwidth overhead, Tambur creates data packets and
parity packets in a manner that (a) is not overly pessimistic
by facilitating recovery from bursts where only some packets
are lost per frame and (b) is robust to losses in the guard
space. Second, the streaming code is integrated with a ma-
chine learning (ML) model to take a predictive decision on
the bandwidth allocated to streaming codes. Specifically, a
lightweight approach is employed, which uses only a simple
model and a single bit of additional feedback.

We analyze packet traces collected from thousands of video
calls from Teams and present three key observations in §3: (a)
Bursts of packet losses frequently arise. (b) Losses are often,
but not always, followed by a guard space of several frames
with no losses. (c) Codes employed in production (RS codes)
use a significant bandwidth overhead to recover lost packets
in real time, depleting the bandwidth for the original data.

We first evaluate Tambur in simulation over a large cor-
pus of traces from Teams (§5.2). We compare Tambur with
Teams’s FEC (“Block-Within,” a block code within a frame;
§5.1) and show that Tambur recovers 26.5% more frames with
35.1% less bandwidth overhead.

We also implement and integrate Tambur, several base-
lines (Block-Within and “Block-Multi,” a block code across

1Named to convey Taming burst losses.

25th 50th 75th 90th
Percentile over videos

0

1

2

3

4

5

Fr
eq

ue
nc

y
of

 fr
ee

ze
s (

%
) Block-Within

Block-Multi
Tambur-0.9
Tambur
Tambur-full-BW

Figure 1: Tambur reduces the ratio of frozen frames to total
frames per-video by 78% and 26% compared to Block-Within
and Block-Multi, respectively, at a lower bandwidth overhead.

multiple frames) and several variants of Tambur (“Tambur-
full-BW,” which matches the bandwidth overhead of Block-
Within and “Tambur-0.9,” which reduces the bandwidth over-
head more at the cost of recovering fewer frames) with a
videoconferencing benchmark platform that we developed.
We then evaluate the schemes over an emulated network to
assess the impact on the QoE (§5.4). Tambur, Tambur-full-
BW, and Tambur-0.9 reduce the average frequency of video
freezes by 26%, 29%, and 17%, respectively, compared with
the better of Block-Within and Block-Multi. Fig. 1 shows
that these benefits hold across many percentiles. These bene-
fits highlight that Tambur improves the QoE, as it has been
shown [44,53,66] that video freezes have a detrimental effect
on user engagement.

In summary, our main contributions are to:
• Analyze thousands of packet loss logs for video calls

taken from a large commercial videoconferencing appli-
cation, and characterize their suitability for using stream-
ing codes. To the best of our knowledge, this is the first
work to evaluate the potential of streaming codes using
large-scale, real-world traces.

• Present Tambur, which bridges the gap between the the-
ory behind streaming codes and videoconferencing ap-
plications by (a) designing a new streaming code that is
well-suited to videoconferencing and (b) integrating it
with a lightweight ML model to take a predictive deci-
sion on the bandwidth allocated to streaming codes.

• Implement a new benchmark platform to enable research
on videoconferencing with an easy-to-use interface to
integrate and assess new FEC schemes. In addition, im-
plement Tambur, Block-Within, and Block-Multi in C++
and incorporate them into the benchmark platform using
the interface.

• Evaluate Tambur over a large corpus of production traces
through simulation, and show that it simultaneously re-
duces the frequency of non-recoverable frames and band-
width overhead by 26.5% and 35.1%, respectively.

• Evaluate Tambur over emulated networks and show sig-
nificant improvements over key metrics pertaining to
end-to-end QoE (e.g., reducing the frequency of freezes

954 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Frame

undecodable wasted bandwidth

i 1i+ 2i+ 3i+ 4i+

(a) Within-frame

Frame

lost packetdata parity

recover loss 3 frames later

6 parity packets cause spike in bandwidth

i 1i+ 2i+ 3i+

6×

(b) Multi-frame

Figure 2: Two approaches for employing block codes: (a)
within each frame and (b) across multiple frames.

by 26% and the cumulative duration of freezes by 29%).

Overall, to the best of our knowledge, this work is the first
to establish that streaming codes can improve key metrics
relating to the QoE for videoconferencing. This work also
showcases the potential of a new form of FEC, streaming
codes along with learning-based bandwidth allocation, for
bandwidth-efficient loss recovery in videoconferencing. This
work poses no ethical issues.

2 Background and motivation

2.1 Conventional FEC and its challenges in
videoconferencing

Block codes. One of the most commonly used FECs is the
so-called “block codes.” The idea of block codes is to en-
code k data packets, ⟨D[1], . . . ,D[k]⟩ to r parity packets into
⟨D[1], . . . ,D[k],P[1], . . . ,P[r]⟩, so that the k data packets can
be recovered using a subset of the (k+ r) packets. When any
k of the (k+ r) packets suffice for recovery, the block code
is termed “maximally distance separable (MDS).” One of the
best known examples of MDS codes is the Reed-Solomon
(RS) block codes [55]. Other examples of block codes include
fountain (i.e., rateless) codes [40], or two-dimensional block
codes [67].

Traditionally, FEC applies to packets, but videoconferenc-
ing involves transmitting multiple packets for each video
frame. One natural solution is to apply a block code to the
data packets within each frame (Fig. 2a). The parity packets
are sent immediately after the final data packet of a frame. A
second approach is to apply a block code across the data pack-
ets of multiple frames (Fig. 2b) by sending all parity packets
after the final data packet of the last frame in the block. Our
analysis of the production packet loss traces (§3) from Teams
shows that the packet losses are bursty. Both approaches have
significant limitations for burst losses.
Limitations of block codes for videoconferencing. When
packet losses occur as bursts, the within-frame approach
wastes the redundancy sent in frames immediately follow-
ing a burst because it is useless for recovering the lost frames.

Although the multi-frame approach overcomes this problem,
it has two main drawbacks. First, the latency of recovering
losses is high due to waiting for the parity packets, which are
sent after the final frame in the block, to recover any packets.
The length of the block code must be short lest the latency
exceeds the real time deadline to play a frame, leading to an
increased bandwidth overhead and reduced robustness to burst
losses. Second, packets sent in rapid succession may be lost
if a router buffer is full. When a full router buffer coincides
with the final frame of a block, no lost packets are recovered.

The bandwidth consumed by parity packets of FEC can
be substantially higher than retransmission, even for modest
packet loss rates. Unlike retransmission, which only resends
lost packets, even an “optimal” FEC scheme does not know
which packets will be lost. Hence, it must send far more parity
packets than lost packets. For example, to prevent a video
freeze, at least one parity packet must be sent every ≈ 150ms
to cover the scenario of losing a data packet. However, this
parity packet is not used if there are no losses.

2.2 Streaming codes
A class of codes, known as “streaming codes” [5, 42, 43, 59–
61], specifically addresses burst losses and sequential com-
munication between a sender and a receiver. At a high level,
streaming codes avoid the limitations of within-frame and
multi-frame by (a) sending parity packets with each frame
and (b) using all parity packets received by the playback dead-
line of the final frame of a burst for recovering losses. We
describe the theoretical framework of streaming codes in de-
tail, provide an illustrative example, and then discuss how
it is a promising option for videoconferencing applications
impeded by a large gap between the framework and practice.

The streaming codes framework consists of the following.
(1) A sender that generates data packets sequentially at regular
intervals and transmits packets sequentially to a receiver. (2)
An adversarial packet loss channel that introduces burst losses
of length b followed by guard spaces of packet receptions.
(3) A requirement that the receiver recovers lost data packets
within a specified time. The data packet that arrives at the time
index i must be recovered by time index (i+ τ). We call the
parameter τ the “latency deadline.” After a burst, the guard
space must be at least τ packets (but longer guard spaces are
not needed since bursts are to be recovered within τ packets).

Sequential encoding. The sequential nature of encoding in
streaming codes is well suited for videoconferencing, wherein
a sequence of compressed frames are to be transmitted pe-
riodically (e.g., one every 33.3 ms for a video showing 30
frames per second). We will denote the symbols sent for the
ith video frame as D[i], where each symbol can be thought
of as a vector of bits.2 These symbols are distributed over

2More formally, a symbol is an element of a mathematical entity called a
finite field, and all operations are performed over finite fields using modular
arithmetic. For simplicity, readers can just assume the usual arithmetic.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 955

Frame

[4]₀D +i

[4]₁D +i

[4]₂D +i

[4]₀P +i

[4]₁P +i

[3]₀D +i

[3]₁D +i

[3]₂D +i

[3]₀P +i

[3]₁P +i

[]₀D +2i

[2]₁D +i

[2]₂D +i

[2]₀P +i

[2]₁P +i

[1]₀D +i

[1]₁D +i

[1]₂D +i

[1]₀P +i

[1]₁P +i

[]₀D i

[]₁D i

[]₂D i

[]₀P i

[]₁P i

[2] recovers lost [] and [1]P i i+ iD D₂ ₂ +1

[3] recovers lost [] and []P i + i iD D₀ ₁2

[4] recovers lost [1] and [1]P i i i+ + +D D₀ ₁3

i (lost) 1 (lost)+i 2+i 3+i 4+i

parity packet ()Pdata ()D

Figure 3: Recovering b = 2 lost frames starting in frame i
within a latency deadline of τ = 3 using a streaming code. For
each frame in the burst, all parity symbols sent τ packets later
recover its lost symbols.

one or more packets to be sent to the receiver. In addition,
some parity symbols, denoted as P[i], are transmitted in one
or more packets. These parity symbols are a function (linear
combinations) of the data symbols of the past few frames.

Sequential recovery. Under the streaming codes model, the
latency deadline parameter τ determines the delay in recov-
ering a lost packet: if D[j] is lost, it must be recovered using
symbols from parity packets until P[j+ τ]. Each video frame
must be recovered within a strict latency to be rendered in real
time. The latency deadline parameter τ is set according to the
frame rate and one-way delay to induce a suitable maximum
latency to recover lost frames. For example, if the maximum
tolerable latency is 150 ms (a standard value for real-time
video communication [33]), the one-way propagation delay is
50 ms, and a frame is encoded every 33.3 ms (i.e., at 30 fps),
τ could be set as 3 (= (150−50)/33.3).

An example of sequential loss recovery of a burst of length
2 starting in frame i within a latency deadline of τ = 3 us-
ing existing streaming codes (e.g., [5, 42, 43]) is shown in
Fig. 3. Each frame comprises the same amount of data. First,
the parity symbols of the packet sent immediately after the
burst recovers one-third of the missing data symbols of each
lost frame (i.e., D2[i] and D2[i+ 1]).Second, the remaining
lost data symbols of frames i and (i+ 1) (i.e., (D0[i],D1[i])
and (D0[i+1],D1[i+1]), respectively) are recovered with the
parity symbols sent in frames (i+3) and (i+4), respectively.

Streaming codes recover a burst loss by sequentially recov-
ering each frame in the burst within its deadline. For a burst
loss that encompasses b consecutive frames {i, . . . , i+b−1},
a data packet D[j] in the burst is recovered using the parity
symbols of P[i+ b], . . . ,P[j + τ]. This sequential nature of
the recovery of streaming codes allows them to use all parity
symbols that are received within the deadline. For example,
P[j+ τ] is used to recover D[j] after the latency deadline of
D[i] for i < j. In contrast, block codes recover all lost packets
together. Hence, the recovery occurs by the first lost frame’s
deadline (i.e., by the time the symbols of P[i+τ] are received),

wasting the parity symbols sent subsequently. This key dif-
ference enables streaming codes to attain significantly lower
bandwidth overhead; the longer the burst, the greater the ben-
efits of streaming codes. However, it also requires a guard
space of at least τ frames after the burst lest some frame not
be recovered with the latency deadline.

2.3 Challenges of using streaming codes for
videoconferencing

There are two main challenges in using streaming codes for
videoconferencing. First, significant gaps between the theoret-
ical models and practical systems render existing streaming
codes incompatible with videoconferencing applications. Sec-
ond, streaming codes’s effectiveness for videoconferencing is
untested on large-scale real-world traces. Hence, the poten-
tial of streaming codes improving QoE of videoconferencing
applications is yet unknown. These challenges are discussed
in more detail below.

Gaps between the existing model and videoconferenc-
ing applications. The existing practical work on streaming
codes [6,25], like the theoretical work they build upon [5,42],
is limited to settings where the amount of data to be transmit-
ted at each time instant is a fixed constant. However, videocon-
ferencing involves sending compressed video frames whose
sizes vary. Only a few streaming code constructions [59–61]
can handle this variability. However, as discussed in §2.2, ex-
isting streaming codes, including those in [59–61], consider
an adversarial loss model that imposes bursts of length b.
When applied for videoconferencing, the parameter b trans-
lates into the number of consecutive frames for which all
packets are lost. However, videoconferencing applications
frequently send multiple packets per frame, and often only
some of these packets are lost, as we show in greater detail in
§3 for packet loss traces from production. Existing streaming
codes are overly pessimistic because they can recover from
losing all packets for multiple consecutive frames. This re-
quirement imposes a significant bandwidth penalty, negating
the potential bandwidth savings of streaming codes. Stream-
ing codes are also vulnerable to recovery failures if there are
any losses in the guard space after a burst. But, in practice,
many bursts are not followed by such guard spaces (see §3.2).

Applicability of streaming codes in the wild. The benefits
of streaming codes for VoIP applications have been studied
using simulated losses under theoretical loss models, such as
the Gilbert-Elliott channel [23] and over traces [6,25], wherein
each frame is sent in one packet and all frames/packets are
of a fixed constant size. However, these results do not apply
to videoconferencing applications, which send (a) multiple
packets for each frame and (b) varying amounts of data per
frame. Streaming codes perform best when each burst occurs
across multiple frames and is followed by a guard space of
several frames without losses. A natural question is whether

956 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

such losses arise in videoconferencing and if they can be
exploited via streaming codes. To the best of our knowledge,
no study of large-scale real-world packet losses establishes
the applicability of streaming codes in the wild. Furthermore,
establishing that streaming codes are viable to improve the
QoE hinges on improving several metrics relating to the QoE.
Yet an analysis of streaming codes’ impact on such metrics is
similarly lacking in the existing literature. Finally, the effect of
inter-frame dependencies on the benefits of streaming codes
has yet to be assessed, even though inter-frame dependencies
are prevalent in videoconferencing.

3 Packet loss in the wild

Logs (specifically, packet loss traces) from Microsoft Teams
were collected from a random sample of calls over two weeks.
One week’s traces were held out as a test set for the evaluation.

Teams uses FEC only after a packet loss occurs, which is
fairly standard in the industry [64] to avoid wasting bandwidth
for the many calls that do not experience any loss. We limit
our study to traces with at least two instances of loss since our
focus is on improving scenarios after FEC is activated (i.e.,
FEC is turned on after the first loss and then used to recover
the second). Our analysis involves approximately 9700 traces,
which constitute 16% of all the traces. Studying these traces
sheds light on the tail performance, which is crucial for real-
world commercial applications. Each trace corresponds to one
call and contains the size, sequence number, and send/receive
timestamps for each received packet, as well as whether it is
a parity packet or data packet; lost packets are identified via
missing sequence numbers. Due to the application’s data col-
lection method, the traces are limited to the final one minute
of the call. Although the logs are for packets, we approximate
frame-level information by combining the logs with Teams’s
packetization logic and have corroborated with the Teams
engineers that this approximation is good.

3.1 FEC metrics
Teams employs an RS block code within each frame and
varies the bandwidth overhead based on infrequent feedback
from the receiver on packet losses. We will denote the FEC
scheme used by the application simply as “Block-Within.”

We evaluate three metrics over the traces. First, the percent
of video frames using FEC for each videoconferencing call
(Fig. 4a). The 25th, 50th, and 75th percentile for the percent
of video frames over each trace using FEC are 13%, 48.8%,
and 70% of calls respectively, indicating that FEC is applied
to a significant portion of the frames. Second, the percent of
decoding failures for video frames over all frames for each
videoconferencing call (Fig. 4b). The 25th, 50th, and 75th
percentile for the percent of decoding failures of frames are
0.6%, 1.8%, and 6.1% of calls. Note that the decoding failures
should be kept below around 1% to provide high QoE [33].

0 25 50 75 100
Frames using FEC (%)

0

0.25

0.5

0.75

1.0

C
D

F

(a) FEC usage

0 25 50 75 100
Undecodable frames (%)

0

0.25

0.5

0.75

1.0

C
D

F

(b) Decoding failures

0 25 50 75 100
Bandwidth overhead (%)

0

0.25

0.5

0.75

1.0

C
D

F

(c) Redundancy

Figure 4: CDFs over the traces from Teams of (a) how often
FEC is used to encode frames to protect against packet loss,
(b) how often the lost packets are not decoded, and (c) the
bandwidth overhead of parity packets.

As such, decoding failures are prevalent enough to tangibly
negatively impact the QoE, prompting the need for a more
effective FEC mechanism. Third, the bandwidth overhead
for each call (Fig. 4c). The 25th, 50th, and 75th percentile
for the bandwidth overhead are 4.2%, 24%, and 45% of calls.
Thus, reducing the bandwidth overhead will free a significant
portion of the bandwidth for these calls.

3.2 Network quality

We analyze the packet losses to assess streaming codes’ suit-
ability for real-world videoconferencing applications. To the
best of our knowledge, this is the first work to analyze large-
scale real-world packet loss traces from this perspective. We
analyze three key metrics of losses in Fig. 5. (1) The packet
loss rate for each trace (Fig. 5a). (2) The distribution of lengths
of bursts of packets measured over all of the calls (Fig. 5b).
(3) The distribution of the lengths of bursts of frames (i.e., the
number of consecutive frames with at least one packet lost)
measured over all of the calls (Fig. 5c). This metric indicates
streaming codes’ suitability, as they are most effective when
bursts of lost packets encompass multiple frames (see § 2.2).

The mean percent of packets lost over the traces is 7%. It
is higher than the packet loss in the FCC report [15] since we
focus on the traces where FEC is employed. If the other traces
from Teams are also considered, the mean packet loss over all
traces is 1.7%, which is comparable to the FCC measurement.
In earlier studies of end-to-end Internet packet loss, loss rates
tended to vary over time and between ISPs and access net-
work technology [8, 18, 24, 54], with ISP queue management
policies impacting the loss patterns seen by applications. As
discussed in [24], in home broadband networks, loss rates
are often less than 1% for long periods, with infrequent pe-
riods of very bursty packet loss. Similar patterns are seen in
mobile networks, where loss rates tend to increase during
handovers [8], and much longer packet loss bursts are seen.
Our traces from Teams, described in this section, show similar
behavior, with a large number showing very low loss rates,
with a long-tail of traces showing extremely bursty packet
loss. Specifically, 38.1% of the instances of packet loss in-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 957

0 20 40 60 80
Packet loss rate (%)

0

0.25

0.5

0.75

1.0

C
D

F

(a) Packet loss

1 2 3 4 5−9 10+
Length of packet burst

0

20

40

60

P
er

ce
nt

 o
f

bu
rs

ts

(b) Packet bursts

1 2 3 4 5−9 10+
Length of frame burst

0

20

40

60

P
er

ce
nt

 o
f

bu
rs

ts

(c) Frame bursts

Figure 5: Packet loss is prominent (e.g., Fig 5a shows 1−10%
packet loss for most traces) and often occurs as bursts across
consecutive packets (Fig 5b) or frames (Fig 5c).

volve at least two consecutive packets being lost (Fig. 5b), and
38.4% of instances of packet loss encompass more than one
video frame. Such loss patterns can be efficiently recovered
by streaming codes (§3.3).

There is also a trade-off between the bandwidth overhead
(i.e., the bandwidth used for parity packets) and the proba-
bility of decoding failure. The bandwidth overhead cannot
be prohibitively high lest there be insufficient bandwidth for
the original data. Consequently, the frequency of decoding
failures for frames is non-negligible despite using FEC.

3.3 Potential of streaming codes

Recall from §2.3 that streaming codes are most effective when
(a) packet loss occurs as a burst across multiple consecutive
frames and (b) the burst loss is followed by a guard space
of multiple consecutive frames with no losses. We formalize
two metrics to capture these conditions. We then show that
the packet losses in the traces exhibit these features.

Measuring bursts. The bandwidth overhead needed to de-
code a burst depends on the fraction of the packets being lost
when losses occur across multiple frames. We introduce a
new metric to formalize this notion.

Definition 1 (Multi-frame burstiness) Suppose a burst oc-
curs across two or more frames, i through j, over which s
packets are sent. If l of the s packets are lost, the multi-frame
burstiness is defined as l/s.

For example, suppose Tambur sends packets
(D0[i],D1[i],D2[i]) and (D0[i + 1],D1[i + 1]) over frames i
and (i+1), respectively. Suppose D1[i],D2[i], and D0[i+1]
are lost. Then the multi-frame burstiness is 3/5. The
multi-frame burstiness is always positive since at least one
packet is lost for each frame in the burst. The maximum
value of 1 occurs when all packets are lost for all frames
in the burst. High values correspond to situations of a high
percentage of the packets being lost for multiple consecutive
frames. The value of the multi-frame burstiness directly
relates to the minimum bandwidth overhead needed for any
code to decode lossy frames in real time.

0.2 0.4 0.6 0.8 1.0
Fraction of lost packets
for bursts of 2+ frames

0

0.25

0.5

0.75

1.0

C
D

F

(a) Multi-frame burstiness

0.2 0.4 0.6 0.8 1
Fraction of guard spaces

of 3+ frames

0

0.25

0.5

0.75

1.0

C
D

F

(b) Guard space sufficiency

Figure 6: The CDFs over the traces of the (a) the multi-frame
burstiness (for traces with at least one burst over 2+ frames),
and (b) the guard space sufficiency.

Measuring guard spaces. Streaming codes can reduce band-
width overhead for scenarios where a burst of packet losses
is followed by a guard space of at least τ frames that expe-
rience reliable transmission, where τ is the latency deadline
parameter (§2). We now introduce a new metric to measure
the extent to which the guard spaces exhibit this property.

Definition 2 (Guard space sufficiency) The τ-guard space
sufficiency is the fraction of instances in which one or more
frames with packet loss are followed by at least τ consecutive
frames which experience lossless transmission.

The value of the guard space sufficiency varies from 0 to 1. It
is negatively related to the bandwidth overhead needed when
using streaming codes. High values for the guard space suffi-
ciency indicate that the bandwidth overhead can be reduced.

Suitability of streaming codes. The multi-frame burstiness
and 3-guard space sufficiency is evaluated over the traces in
Fig. 6.3 In Fig. 6a, the value of the multi-frame burstiness is
shown to vary over the range 0 to 1, with values at the 25th,
50th, and 75th percentiles of 0.32, 0.5, and 0.67 respectively.
This indicates that the bandwidth overhead needed when using
streaming codes varies over the traces, as expected. For higher
values, more bandwidth must be allocated to redundancy to
decode the losses. For lower values, it is possible to make do
with less bandwidth used for redundancy. The guard space
sufficiency is evaluated over the traces in Fig. 6b, and its
values at the 25th, 50th, and 75th percentiles are 0.73, 1.0,
and 1.0 respectively. These values imply that streaming codes
are often suitable. For example, for the traces with a value of
1.0, every single time a burst occurs across multiple frames,
streaming codes could have been used to decode the losses
with the optimal amount of bandwidth overhead. Yet, the low
values indicate insufficient guard spaces for using existing
streaming codes to reduce the bandwidth overhead, as they
are vulnerable to losses in the guard space.

3Recall from § 2.2 that τ = 3 applies for a realistic choice of parameters,
in which case a guard space of length 3 is beneficial for loss recovery with
streaming codes.

958 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3.4 Key findings
Bursts of packet losses followed by guard spaces arise fre-
quently and are conducive to streaming codes. However, this
is not always the case. Bursts are sometimes followed by
short guard spaces or involve significant packet loss, in which
case the bandwidth overhead cannot be reduced via streaming
codes. Hence, integrating streaming codes into real-world
applications requires (a) predicting whether the bandwidth
overhead can be reduced without incurring decoding fail-
ures, (b) leveraging partial losses in a frame (i.e., losses of
only some packets per frame rather than all packets) and (c)
adding robustness to losses in the guard space.

4 Tambur

We present Tambur, which exploits the potential discussed
in §3.3 and addresses the challenges discussed in §2.3 by
(1) using an ML model to take predictive decisions on the
bandwidth overhead, and (2) designing a new streaming code
suitable for videoconferencing given any setting for the band-
width overhead.4 First, an ML model makes a predictive de-
cision on the number of parity symbols to allocate for each
frame. This helps to set the bandwidth overhead to match the
network conditions. Second, the parity symbols are defined to
provide (a) sequential recovery of bursts over multiple frames
while exploiting partial losses, (b) recovery of occasional
losses within a single frame immediately, and (c) robustness
to a small amount of loss in the guard space after a burst.
Third, a new methodology is employed to distribute each
frame’s data and parity symbols over multiple packets. The
design of the parity symbols and their distribution across pack-
ets constitute Tambur’s streaming code. During loss recovery,
Tambur uses the received packets from the frames involved
in a burst (i.e., partial losses), which allows for a lower band-
width overhead than is possible for existing streaming codes
that ignore such packets.

Fig. 7 shows how Tambur fits into the stack of a videocon-
ferencing application. The streaming encoder encodes data
from compressed frames into data packets and parity pack-
ets. A Bandwidth Overhead Predictor periodically selects
bandwidth overhead for each frame using a predictive (ML)
model based on the losses observed at the decoder and sends
the value to the encoder. The streaming decoder uses parity
packets to recover lost data packets. We will now describe
these components in detail.

4.1 Tambur’s streaming code
We present the code in two parts: encoding and decoding.
Encoding. We illustrate how Tambur encodes the ith frame.
Fig. 8 shows an example of encoding for τ = 3. The data

4The new streaming code builds upon recently developed theoretical
streaming codes [60, 61] while overcoming the limitations discussed in §2.3.

Video Encoder Video Decoder

Bandwidth
Overhead
Predictor

Streaming DecoderStreaming Encoder

packetized
frames

packetized
frames

loss-pattern
report

bandwidth
overhead

Se
nd
er

Receiver

Figure 7: Overview of Tambur. The components in green are
specific to Tambur.

??

?

?

reserved space?parity packet ()Pdata ()Vdata ()U

Framei 1+i 2+i 3+i

i
reserved before

frame
split data
evenly

define parity
packets

reserve parity
for frame 3i+

Figure 8: Encoding for τ = 3. Tambur splits frame i evenly
into (V [i],U [i]) and sends them over data packets. Also, Tam-
bur sends parity packets for recovering V [i−3], . . . ,V [i],U [i]
and U [i−3] and reserves space for parity symbols of frame
(i+3).

symbols of this frame, D[i], are sent in data packets, and the
parity symbols, P[i], are sent in parity packets. The sizes
of the packets are maximized subject to (a) not exceeding
an MTU (for example, 1500 bytes in our experiments) to
be equal. The previous value of the Bandwidth Overhead
Predictor determines how many parity symbols are allocated
for frame i. These parity symbols will be sent τ frames later
(see “reserved space” in Fig. 8). The number of parity symbols
sent for frame i was determined by the size of frame (i− τ).

Next, we describe how parity symbols are formed. The
symbols of P[i] are linear combinations of the symbols of
the (τ + 1) frames, {D[i], . . . ,D[i − τ]}. To define the par-
ity symbols, it helps to view the data symbols of the asso-
ciated (τ+1) frames as being divided evenly into two parts as
D[j] = (V [j],U [j]), for j ∈ {i, . . . , i− τ}. Fig. 8 shows these
components in blue and green, respectively.

The symbols of P[i] are carefully designed linear combi-
nations of the symbols of V [i], . . . ,V [i− τ],U [i], and U [i− τ].
Specifically, P[i] is sum of three quantities: P[i] := P1[i] +
P2[i] +P3[i]. The symbols of P1[i] are linear combinations
of the symbols of V [i− τ], . . . ,V [i−1]. The symbols of P2[i]
are linear combinations of the symbols of U [i− τ]. The sym-
bols of P3[i] are linear combinations of the symbols of U [i]
and V [i]. All linear combinations are carefully chosen to be
linearly independent linear equations.5

Decoding. We describe the decoding process in two parts:

5It suffices to take linear equations from three different Cauchy matrices.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 959

[1] and [2] recovers lost [] and [1]P i P i V V i+ + +i1

[3] recovers lost []P i U+ i2

[4] recovers lost [1]P i U i+ +3

lost packetparity packet ()Pdata ()Vdata ()U

Frame

1

1

2

3

1

1 2 3

1

3
1
2

i 1+i 2+i 3+i 4+i

Figure 9: Decoding a burst across 2 frames within τ = 3
frames delay using Tambur’s streaming code. Data symbols
labeled 1, 2, and 3 are decoded using the parity packets with
the same label.

(1) occasional packet losses and (2) burst of packet losses.
Let all frames before the loss be decoded. First, suppose that
packet loss is rare, and the size of P[i] exceeds the number of
symbols lost for frame i. Then P[i] suffices to decode the ith
frame (specifically, by solving a system of linear equations).

Second, consider a burst of packet losses across two con-
secutive frames for τ = 3, as is shown in Fig. 9. Packet losses
(red-dashed border) span frames i and (i+1). For each frame
i, the blue, green, and brown parts represent U [i], V [i], and P[i],
respectively. First, V [i] and V [i+1] are both decoded using
P[i+2], which consists of independent linear combinations
of (a) the symbols of V [i] and V [i+1], and (b) the (received)
symbols of V [i−1], U [i−1], U [i+2], and V [i+2]. Second,
for j ∈ {i, i+1}, U [j] is decoded using P[j+3], which con-
sists of independent linear combinations of (a) the symbols of
U [j], and (b) the (available) symbols of V [j−3], . . . ,V [j], and
U [j]. The key to this methodology is that U [i+1] is not recov-
ered by the latency deadline of D[i] (i.e., (i+3)). This enables
using extra parity symbols (i.e., P[i+4]) to recover U [i+1]
while still decoding each data packet within τ = 3 frames.
Appendix A presents the general case. If decoding fails, the
receiver queries the sender to generate a new keyframe (i.e., a
self-sufficient frame) to handle inter-frame dependencies.

There are three key differences from existing streaming
codes for videoconferencing: (1) The data symbols and parity
symbols of a frame are sent over multiple packets instead of
a single packet. (2) Each frame’s parity packets are designed
such that they are useful in recovering its lost data packets (in
addition to being useful in recovering previously sent frames).
(3) The code is flexible enough to allow per-frame bandwidth
overhead to be set using the Bandwidth Overhead Predictor.

4.2 Bandwidth overhead predictor
At a high level, Tambur makes use of a predictive model to
determine the bandwidth overhead employed by its streaming
code (i.e., the amount of “reserved space” in Fig. 8). This
predictive model takes as input a feature vector computed by
the receiver periodically (e.g., every two seconds), dubbed
a loss-pattern report. The predictive model’s output is then
sent to the sender to set the bandwidth overhead for each
frame for Tambur’s streaming code until the next loss-pattern
report is received. For example, a bandwidth overhead of 50%
means that if frame i comprises 1000 bytes, 500 bytes of
parity symbols are allocated.

Loss-pattern report. Let P be the bitmap of packet losses
since the last loss-pattern report, where 1 denotes a loss and
0 is a reception. Let F be a bitmap over all frames since the
last loss-pattern report of whether at least one of the frame’s
packets was lost. The loss-pattern report consists of the fol-
lowing 13 quantities, all of which can be computed in linear
time with a single sequential pass over F and P.

• Multi-frame burstiness and guard space sufficiency (§3).
• Fraction of losses for P and F .
• Mean number of consecutive losses for P and F .
• Mean length of guard spaces for P and F .
• Burst density [12] and gap density [12] for P and F6.
• A score employed by Teams to choose its bandwidth over-

head, which is based on the observed fraction of packet
losses and lengths of bursts.

Bandwidth overhead prediction via weighted classifica-
tion. Tambur uses an ML model to determine the bandwidth
overhead allocated per frame based on the recent loss condi-
tions. As discussed above in § 4.1, Tambur’s streaming code
enables such an approach by allowing fine-grained tuning of
the bandwidth overhead. To keep the model simple, we select
two options for the bandwidth overhead. This approach easily
generalizes to more than two values for bandwidth overhead
by using a multiclass classifier to enable tuning the bandwidth
overhead used by Tambur. In our implementation, we use a
small neural network (discussed further in §4.3), although any
methodology could be substituted.7

The ML model is trained with different weights for the
two classes based on prioritization of bandwidth savings ver-
sus minimizing decoding failures. Essentially, the higher the
weight for the class corresponding to the higher bandwidth
overhead, the greater the frequency of decoding frames, but
the lower the reduction in bandwidth overhead. Videoconfer-
encing service operators can use these weights as a knob to
prioritize reducing decoding failures or bandwidth overhead.

Neural network details. Binary classification is conducted
using a small fully connected neural network with one hid-
den layer. The input is the values of the 13 metrics for the

6The parameter gMin [12] is set to be 1 and τ for P and F respectively.
7We found ML models to outperform heuristics empirically.

960 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

previous 3 loss-pattern reports. The cross-entropy loss is ap-
plied, and by default the weights for mistakenly reducing the
bandwidth overhead (i.e., causing a decoding failure) and not
reducing the bandwidth overhead by half (i.e., failing to save
bandwidth) are 0.999 and 0.001, respectively. We tested vari-
ous number of hidden neurons (e.g., 100, 1000, and 10000)
and selected 1000 as the smallest option to reach the point of
diminishing returns. The model is implemented and trained
in PyTorch offline using the traces based on the optimal de-
cision for reducing the bandwidth overhead without causing
decoding failures. During inference, it is instantiated in C++.

4.3 Implementation

We implemented Tambur in C++ as part of a new independent
library called Tambur that any videoconferencing application
can use.8 At the sender, Tambur takes successive compressed
frames as input and outputs data packets and parity packets. At
the receiver, Tambur decodes lost packets by solving a system
of linear equations using the symbols of the received packets.
When packets are lost, we combine properties of streaming
codes with an open-source min-cut/max-flow algorithm [11]
to determine which data symbols can be decoded using which
parity symbols in negligible time (see Appendix B). Data is
then decoded by solving the smallest full-rank systems of
linear equations.

We use a small header to provide frame-level information
needed for decoding. This includes sequence numbers for
packets and frames and relative positions of a packet within
a frame and amongst parity packets. The streaming decoder
also needs the size of the lost frame in order to decode it (even
when all packets corresponding to the frame are lost); hence,
we encode the sequence of frame sizes using a streaming code
and send one parity symbol of this code in each packet.

The library provides an interface for rapidly prototyping
new FEC schemes. We used this interface to implement the
baselines from §1 (i.e., Block-Within and Block-Multi).

The core arithmetic of linear encoding and solving a sys-
tem of linear equations for decoding is done using Jerasure
2.0 [52], an open-source library in C/C++ with modules for
key operations of erasure coding. Jerasure 2.0 is built on
top of the GF-Complete library [51], which uses Intel SIMD
instructions to perform Galois Field arithmetic quickly. Tam-
bur involves encoding data into “coding blocks” of 256 bytes,
each of which uses the same linear equations. Extending Tam-
bur to use hardware offload to encode and decode frames is a
potential avenue of future work.

Integration with videoconferencing. To validate Tambur’s
effectiveness in the real world, we integrate it with Ringmas-
ter9, a newvideoconferencing platform that emulates one-on-
one video calls for benchmarking FEC schemes. Ringmaster

8https://github.com/Thesys-lab/tambur
9https://github.com/microsoft/ringmaster

is implemented in ∼4000 lines of C++. Its video sender reads
raw frames from an input Y4M video file on disk at a precise
frame rate (e.g., 30 fps) and compresses them with the VP9
encoder in the libvpx [1] library using similar codec con-
figuration as in WebRTC [2]. A user-provided FEC scheme
provides parity data for the encoded frames, which is sent over
UDP after packetization to the video receiver. Upon receiving
the frames, the video receiver applies the FEC decoder and
VP9 decoder sequentially to decode and render the original
video frames. In addition, Ringmaster allows for requesting
new keyframes, e.g., when the receiver fails to recover a video
frame due to excessive loss of packets and thus requests the
sender to encode a new keyframe so as to resume the video.
At the end of the automated call, QoE metrics are computed
by aggregating logs from both endpoints, which record the
timestamps when each frame is encoded or decoded, along
with its frame ID, size, FEC bandwidth overhead, etc.

Ringmaster provides clean and modular interfaces that we
use to integrate it into Tambur. Combining Ringmaster with
Tambur enables benchmarks of FEC schemes’performance
featuring QoE metrics, e.g., video freezes, per-frame de-
lay, rendered frame rate, for FEC schemes implemented via
Tambur’s interface. Furthermore, Ringmaster also allows re-
searchers to isolate the impact of FEC and disable modules
that interfere with FEC, such as bandwidth estimation [13]
and packet retransmission.

5 Evaluation

To assess whether Tambur can improve the QoE, we ask:
• Can Tambur provide significant benefits for metrics relat-

ing to FEC on real-world losses?
• Do the benefits of Tambur lead to a higher QoE?

5.1 Experimental methodology and highlights

Videoconferencing application parameters. In our experi-
ments, we aim for a maximum tolerable latency of 150 ms to
meet industry recommendations [33], which is a fairly stan-
dard value for interactive video. The frame rate is taken to
be 30 fps, which is a typical value in videoconferencing. The
inter-frame arrival time for 30 fps is 33.3ms. Allowing for a
one-way frame delay of 50 ms leaves room for a decoding
delay of around 100ms. Thus, the parameter τ can be at most
3 (frames) for the end-to-end latency (i.e., 33.3τ+50) to be at
most ≈ 150 ms. The two options for the bandwidth overhead
of Tambur are to match or use half of the bandwidth over-
head of the baseline coding scheme, Block-Within, which is
introduced next.

Coding schemes. We evaluate six coding schemes. (1) Block-
Within (Fig. 2a), which applies RS codes within a frame.
This scheme is employed in production by Teams. (2) Block-
Multi (Fig. 2b) which applies RS codes across (τ+ 1) = 4

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 961

https://github.com/Thesys-lab/tambur
https://github.com/microsoft/ringmaster

frames. RS codes are optimal block codes, and hence the
above two baselines outperform other block codes such as
fountain or rateless codes in recovering losses and band-
width overhead. (3) Tambur-full-BW, which is a variant
of Tambur that matches Block-Within’s bandwidth overhead.
(4) Tambur-0.9, which is Tambur with the neural network
trained to prioritize bandwidth savings more by decreasing the
weight of misclassification from 0.999 to 0.9 in the loss func-
tion. Thus, Tambur-0.9 prioritizes reducing the bandwidth
overhead more than Tambur. (5) Tambur-low-BW, which
is a variant of Tambur that uses 50% of the bandwidth over-
head of Block-Within. (6) Oracle, which optimally selects
between Tambur-full-BW, Tambur-low-BW, or Block-Within.
Each time the sender obtains feedback from the receiver, the
Oracle selects the scheme with the smallest bandwidth over-
head among the scheme(s) that recover the most frames. This
choice never causes a non-recoverable loss. Consequently,
the Oracle always recovers at least as many frames as Block-
Within, Tambur, and Tambur-full-BW. The bandwidth over-
head of Block-Within and Block-Multi is never reduced to en-
sure a fair comparison of Tambur’s loss recovery capabilities
and because both baselines already perform worse than Tam-
bur despite using the full bandwidth overhead. Like Tambur,
Block-Within and Block-Multi send feedback to the sender
once FEC decoding has failed to trigger a new keyframe as a
fallback mechanism to handle inter-frame dependencies.

Metrics. We evaluate the following metrics: (1) Percent
of non-recoverable frames, which is the percentage of com-
pressed frames that are not recovered. (2) Bandwidth over-
head for FEC. (3) Percent of non-rendered frames, which is
the percent of frames that are not played by the receiver—
this includes non-recovered frames and recovered frames that
depend on non-recovered frames. (4) Latency, which is the
duration between a frame being created and rendered. (5) Fre-
quency of freezes, which is the number of times the receiver’s
video is frozen. (6) Duration of freezes, which is the cumu-
lative length of time where the receiver’s video is frozen.10

We calculate these metrics only for the frames where FEC is
applied (i.e., where FEC affects the quality). We compute one
value per call (e.g., median duration of freezes, bandwidth
overhead, etc.) and then consider the percentiles over these
values. For latency, we consider all frames over all calls.

QoE is difficult to measure precisely with so-called “QoE
models” [68] because it depends on video-specific properties
(e.g., in sports, video quality during gameplay matters more
than during timeouts). But several works [7, 21, 37] have
shown that key metrics for QoE (e.g., frequency of freezes,
duration of freezes, bandwidth, etc.) impact the mean opinion
score—the gold standard measure of QoE. These metrics also
affect user interactions (e.g., users watch more video when
there are fewer freezes). In fact, [19] showed that cumulative

10We use the definition of freezes and duration of freezes from the most
recent (unofficial) draft of identifiers for WebRTC’s statistics [10].

freeze duration is crucial for QoE, as well as the importance
of bitrate and frequency of video freezes for live video.

Offline evaluation. We evaluate the performance of Block-
Within, Tambur, Tambur-full-BW, Tambur-0.9, Tambur-low-
BW, and Oracle over the test set of traces from Teams de-
scribed in §3, which was held out from the previous analyses.
The packet logs provide the performance of Block-Within. We
make two safe assumptions to evaluate the remaining schemes
over the traces: (a) modifying the payload of a packet, but
not its size, would not change whether it is lost or received;
(b) reducing the size of a packet’s payloads would not incur
any new packet losses. Each data packet is sent identically as
in the trace, the payloads for the parity packets are changed,
the sizes of the parity packets are sometimes reduced, and
the bitmap of packet losses from the trace is used. To satisfy
the assumptions, we must force Tambur to send the number
of parity symbols allocated for each frame within the frame
(rather than delayed by τ frames), which we expect to degrade
Tambur’s performance. This enforcement alters the number
of parity packets sent under Tambur but not how their sym-
bols are defined. Block-Multi is excluded because it sends all
parity packets after the final data packet of the final frame of
the block, so its performance cannot be fairly simulated using
the production traces.

Online evaluation. We evaluate prototype implementations
of Block-Within, Block-Multi, Tambur, Tambur-full-BW, and
Tambur-0.9 integrated with Ringmaster (the videoconferenc-
ing benchmark platform described in §4.3) via network emu-
lation using Mahimahi [46] while simulating a Gilbert-Elliott
(GE) [23] loss model over a dataset of 80 videos. Specifi-
cally, we evaluate 20 video calls from [16,47] at four constant
bitrates each (namely, 500,1000,1500, and 2000 kbps) to iso-
late the effect of FEC. The bandwidth overhead is set to 50%
for Block-Within (likewise, for Block-Multi and Tambur-full-
BW).11 The GE loss model is a standard loss model which
is a Markov model with two states: “good” and “bad,” each
with an associated probability of packet loss. For a fair and
realistic comparison, different coding schemes must experi-
ence the same distribution of burst losses at the frame level
even though they send differing numbers of packets per frame.
Therefore, we consider transitions between the states occur-
ring once at the start of every frame (i.e., once every 33.3 ms)
rather than a transition between states every packet, which is
commonly used in the literature when only one packet is sent
per frame. Packets within each frame are lost independently
with the same probability. The modified GE channel can be
viewed as a buffer overflowing for a short period, as can arise
from on/off characteristics of traffic [49]. Appendix C details
how we set the parameters of the GE model based on the
losses from the traces.

Result highlights.

11The bandwidth overhead is sometimes slightly higher for all schemes
due to rounding and ensuring at least one parity packet is sent per frame.

962 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.0 2.5 5.0 7.5 10.0 12.5
Non-recoverable frames per trace (%)

0.55

0.65

0.75

0.85

0.95

C
D

F

Oracle
Tambur
Tambur-low-BW
Tambur-full-BW
Block-Within

Better

(a) Non-recoverable frames

20 40 60 80 100 120 140
Bandwidth overhead per trace (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Oracle
Tambur
Tambur-low-BW
Tambur-full-BW
Block-Within (overlap)

Better

(b) Bandwidth overhead

Figure 10: CDFs for the percent of non-recoverable frames for
the 55th through 95th percentiles and the bandwidth overhead
for the offline evaluation.

• In offline evaluation, Tambur reduces the frequency of
non-recoverable frames by 26.5% while using 35.1% less
bandwidth overhead.

• In online evaluation, Tambur reduces frequency of non-
rendered frames, frequency of freezes, and duration of
freezes by 28%, 26%, and 29%, respectively compared
to Block-Multi, and by 73%, 78%, and 77% compared to
those of Block-Within. Block-Multi has a significantly
higher latency than Block-Within (see Fig. 13b).

• Modest memory overhead and median encoding and de-
coding times of 575 KB, 1.7ms, and 3.4ms, respectively.

5.2 Offline evaluation

We assess only the frequency of non-recoverable frames and
the bandwidth overhead for offline traces because the remain-
ing metrics are unavailable. Fig. 10a shows the CDF of the
percent of non-recoverable frames from 55th to 95th per-
centiles over the traces. These percentiles correspond roughly
to the 92nd to 99th percentile over all traces. The Oracle re-
duces the total number of non-recoverable frames by 44.2%
compared to Block-Within and reflects an upper bound on
performance. Tambur-full-BW reduces the frequency of non-
recoverable frames by 33% compared to Block-Within, indi-
cating the potential improvements of using streaming codes.
In contrast, Tambur-low-BW increases the frequency of non-
recoverable frames by 34.7% compared to Block-Within, indi-
cating the need for more sophisticated methods to reduce the
bandwidth overhead without incurring a significant penalty
in non-recoverable frames. By using a predictive model to
determine the bandwidth overhead, Tambur reduces the band-
width overhead by 35% while simultaneously reducing the
number of non-recoverable frames by 26.5% compared to
Block-Within (Fig. 10b). §5.3 summarizes the spectrum of
bandwidth savings versus recovering frames for Tambur based
on tuning the associated weight parameter.

−40 −20 0 20 40
Non-recoverable frames reduction (%)

0

10

20

30

40

50

B
an

dw
id

th
 o

ve
rh

ea
d

re
du

ct
io

n
(%

)

Oracle

Tambur

Tambur-full-BW

Tambur-low-BW

Tambur-0.9
Tambur-0.5

Block-Within

Bet
te

r

Figure 11: Sensitivity analysis of the weights for the classes
used in the predictive model for the frequency of non-
recoverable frames and bandwidth overhead over all of the
frames where FEC is used in the traces.

5.3 Sensitivity analysis

There is an inherent trade-off in performance between the
non-recoverable frames and bandwidth overhead metrics. The
ML model for Tambur is trained using a loss function with
a weight of 0.999 on avoiding recovery failures and the re-
maining weight (i.e., 0.001) on saving bandwidth overhead
(§4.3). Fig. 11 shows the impact of this parameter on the
frame recovery performance of Tambur with the weight set
to 0.9 (i.e., Tambur-0.9) and to 0.5. The improvement in
non-recoverable frames for the two schemes are respectively
21.9% and 1.7%. The reduction in the bandwidth overhead is
respectively 40.3% and 45.2%. By contrast, recall that Tam-
bur leads to a 26.5% improvement in non-recoverable frames
and reduces the bandwidth overhead by 35.1%. Reducing the
value of the parameter reduces the frequency of recovering
frames and increases the reduction in the bandwidth overhead.
Videoconferencing service operators can use these weights as
a knob to prioritize one metric over another.

5.4 Online evaluation

Next, we establish Tambur’s potential to improve the QoE. To
facilitate an easy comparison with the offline evaluation, we
show the frequency of non-recoverable losses and the band-
width overhead (as in §5.2) in Fig. 12. On average, Tambur
reduces the number of non-recoverable frames by 69% com-
pared to Block-Within and 34% compared to Block-Multi.
Tambur-0.9 reduces the number of non-recoverable frames by
65% compared to Block-Within and 26% compared to Block-
Multi despite Block-Multi’s much higher latency (Fig. 13b).
The results differ slightly from the offline evaluation at the
lower percentiles because of setting the parameters of the
channel based on average loss statistics over all the traces.
This significantly reduced the frequency of calls with low loss
rates where any coding scheme suffices to recover nearly all
frames (i.e., sophisticated FEC schemes are unnecessary).

Tambur—which is conservative in risking recovery failures
to save bandwidth—reduces the bandwidth overhead by 3%

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 963

0 2 4 6 8
Non-recoverable frames per trace (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Block-Multi
Block-Within

Tambur-0.9
Tambur
Tambur-full-BW

Better

(a) Non-recoverable frames

25 30 35 40 45 50
Bandwidth overhead per trace (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Block-Multi
Block-Within

Tambur-0.9
Tambur
Tambur-full-BW

Better

(b) Bandwidth overhead

Figure 12: CDFs for the percent of non-recoverable frames
and the bandwidth overhead for the online evaluation.

on average of the calls. In contrast, Tambur-0.9 reduces the
bandwidth overhead by an average of over 8%. These results
reflect both schemes reducing the bandwidth overhead sig-
nificantly on some calls but only negligibly on many others,
which is expected given the loss rates of most calls. Tambur-
0.9’s bandwidth savings are especially pronounced at the
lower percentiles (e.g., 31% at the 10th percentile and 15% at
the 20th percentile). Tambur-0.9 provides a win-win by both
recovering more frames and saving bandwidth despite the
online evaluation reflecting out-of-sample performance for its
neural network, which was trained offline over the production
traces. The results further validate the trade-off between the
bandwidth overhead and recovering frames discussed in §5.3.

Next, we examine the percent of non-rendered frames in
Fig. 13a; recall that fewer frames are rendered than recovered
due to inter-frame dependencies. Tambur reduces the fre-
quency of failing to render frames compared to Block-Multi
and Block-Within by an average of 28% and 73%, respec-
tively. Tambur does worse than Block-Multi at the tail, but this
only occurs after all schemes have a failure rate above 23%.
Thus, all schemes should employ more redundancy. Tambur-
0.9 decreases the frequency of failing to render frames by
an average of 70% and 20% compared to Block-Within and
Block-Multi, respectively. Tambur-0.9 modestly increases the
frequency by 1% at the 75th percentile compared to Block-
Multi. Overall, the rate of rendering frames can be improved
while simultaneously reducing the bandwidth overhead for
most calls. The results are the first to establish the benefits of
streaming codes when there are inter-frame dependencies.

Fig. 13b shows that the end-to-end latency is within
the upper limit of approximately 150ms for all schemes.
Block-Within’s latency is slightly lower due to a shorter en-
code/decode time and always recovering rendered frames
using the parity of the same frame (see Fig. 15 and Fig. 16
in Appendix D); Tambur decodes 87% of frames without ex-
tra frames versus 88% for Block-Within, so the extra latency
from the waiting for extra frames should really be compared to
Block-Within failing to decode at all. We argue that Tambur’s
small cost (e.g., an extra 1.7ms to encode and 3.4ms to decode
at the median) is worthwhile due to substantial improvements
across the remaining QoE metrics. We also note that our im-
plementation of Tambur’s streaming code is not yet optimized

25th 50th 75th 90th
Percentile over videos

0

10

20

30

40

N
on

-r
en

de
re

d
fr

am
es

 (%
)

Block-Within
Block-Multi
Tambur-0.9
Tambur
Tambur-full-BW

(a) Frequency of non-rendered
frames

25th 50th 75th
Percentile over video frames

0

50

100

150

200

En
d-

to
-e

nd
 la

te
nc

y
(m

s) Block-Within
Block-Multi
Tambur-0.9
Tambur
Tambur-full-BW

(b) Latency of rendered frames

Figure 13: Tambur renders significantly more frames than
Block-Multi and with lower latency. Tambur’s modestly
higher latency than Block-Within is more than offset by the
improvement in rendering frames.12

for fast encoding/decoding; hence, we believe it can be signif-
icantly faster. Our goal is to establish that Tambur’s streaming
code is practical enough for videoconferencing applications.

Recall from Fig. 1 that Tambur reduces the frequency of
freezes by 78% and 26% compared to Block-Within and
Block-Multi, respectively, and Tambur-0.9 reduces the fre-
quency of freezes by 75% and 17% compared to the two
respective baselines. Fig. 14a shows that Tambur and Tambur-
0.9 each reduce the median duration of freezes compared to
Block-Multi by 30ms on average. Tambur and Tambur-0.9
each have a 90ms longer median duration of freezes than
theBlock-Within because Block-Within has over 300% more
freezes than Tambur does. Many of the extra freezes are short,
reducing Block-Within’s median value to below Tambur’s.

Tambur-0.9 reduces the cumulative duration of freezes by
an average of 69% compared to Block-Within. The cumula-
tive duration of freezes is 17% lower for Block-Multi than
for Tambur-0.9 despite Tambur-0.9 having on average 11%
shorter median durations of freezes and 17% fewer freezes.
While the combined effect of the frequency and duration of
freezes on the QoE for Block-Multi and Tambur-0.9 are simi-
lar, recall that Tambur-0.9 also improves the bandwidth over-
head and renders more frames for most traces. As such, we
expect Tambur-0.9 to provide an overall higher QoE. Tambur
has an average of 77% and 28% shorter cumulative durations
of freezes than Block-Within and Block-Multi, respectively,
which is a clear win. Tambur, Tambur-0.9, and Tambur-full-
BW exhibit higher cumulative durations of freezes at the tail
than Block-Multi. We argue that this matters less because the
tail QoE is already bad, indicating that all schemes needed
more bandwidth overhead. Appendix E explains how this
phenomenon is an artifact of the implementation and includes
our proposed a solution.

The benefits across QoE metrics of Tambur, Tambur-full-
BW, and Tambur-0.9 suggest a markedly improved QoE com-
pared to Block-Within and Block-Multi. Without using ML
to reduce the bandwidth overhead, Tambur-full-BW offers a
substantial improvement over the two baselines. Tambur and

12We omit the 90th percentile since over 10% of frames are not rendered.

964 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

25th 50th 75th 90th
Percentile over videos

250

300

350

400

450

M
ed

ia
n

du
ra

tio
n

of
 fr

ee
ze

s (
m

s) Block-Within
Block-Multi
Tambur-0.9

Tambur
Tambur-full-BW

(a) Median duration of freezes

25th 50th 75th 90th
Percentile over videos

0.0

0.2

0.4

Pe
rc

en
t o

f v
id

eo
 sp

en
t f

ro
ze

n

Block-Within
Block-Multi
Tambur-0.9
Tambur
Tambur-full-BW

(b) Percent of video spent frozen

Figure 14: Tambur has a higher median duration of freezes
than Block-Within but a significantly smaller cumulative du-
ration of freezes because Tambur has 78% fewer freezes than
Block-Within (Fig. 1). Tambur has a lower cumulative and
median duration of freezes than Block-Multi.

Tambur-0.9 progressively trade off improvements in loss re-
covery with bandwidth overhead. Overall, the results illustrate
a Pareto frontier of the benefits of streaming codes across the
QoE metrics that could be studied further in future work.

6 Related work

FEC for videoconferencing. From the early days of VoIP
and Internet-based audio and videoconferencing, FEC has
played a key role in recovering lost packets (e.g., [50]). As
standards for real-time media and conferencing developed,
RTP payload formats for various FEC schemes were defined
(e.g., [62]). Later, the FECFRAME working group of the
IETF [58] documented traditional FEC schemes such as parity
codes [9] and RS codes [57], as well as LDPC [56] and Raptor
codes [65]. As the WebRTC project developed based on these
standards, it also incorporated the use of FEC to protect media
streams [32, 64]. All these codes are block codes. As such,
RS codes (i.e., the main baselines against which Tambur was
evaluated) have the best loss recovery capabilities of any of
them, including fountain [40] and raptor codes [63]. FEC has
also been used for rate adaptation. For example, a proposed
rate adaptation algorithm for WebRTC, known as FBRA [45],
uses extra FEC packets to probe for additional bandwidth,
with the benefit that some of the packet losses due to self-
induced congestion can be recovered by the FEC.

Streaming codes. In addition to the prior work discussed in
§2 and §4, streaming codes have also been studied under vari-
ous other theoretical models, such as multiplexing with two
different decoding delays [4] and multiple burst losses [38].
However, these settings are not directly relevant to our focus
on videoconferencing applications.

Alternatives to FEC. Prior work has explored avoiding lossy
paths using overlay networks (e.g., Via [34] and J-QoS [31]).
While these can be effective in some circumstances, there are
two drawbacks to relying only on such approaches. Firstly,
these assume that a suitable alternative path exists (i.e., that
the lossy portion of the path is on a transit network that can

be avoided, rather than on the user’s home network or last-
mile to the ISP, and that there is available interconnectivity
with the provider’s overlay network); in the current era of
hybrid work, enterprises cannot completely eliminate loss
through traditional QoS approaches. Secondly, when overlay
networks are a feasible solution, there needs to be a careful
analysis of when to apply this approach since there is a high
financial cost to relaying traffic and fixed capacity on provider
networks. Another alternative to FEC is using retransmission
to recover losses (e.g., [30]), provided the end-to-end latency
is tolerable. However, when there is both high latency and
loss (e.g., in cases of acute congestion), retransmission is not
always feasible [3]. Tambur provides a flexible end-to-end
solution within the application that adapts to any path and is
orthogonal to these other approaches.

7 Conclusion

This work introduces Tambur—a new communication scheme
for bandwidth-efficient loss recovery for videoconferencing
comprising two components. First, a new streaming code
that bridges the gap between theoretical streaming codes
and videoconferencing applications, which takes as input any
given bandwidth overhead. Second, a learning-based predic-
tive model to set the bandwidth overhead. Tambur simultane-
ously reduces the frequency of non-recoverable frames and
the bandwidth overhead by 26.5% and 35.1%, respectively,
in our evaluation over large-scale real-world traces from a
commercial videoconferencing application. We also design
the first videoconferencing framework for implementing and
evaluating FEC schemes. The framework enables easy eval-
uation of the QoE benefits of new communication schemes
by providing a simple interface to incorporate (a) new FEC
schemes and (b) new learning-based predictive models. Using
the framework, we evaluate Tambur and show improvements
in QoE metrics, including 26% fewer freezes and 28% fewer
non-rendered frames. The benefits establish streaming codes
as a viable solution to recovering lost packets for videoconfer-
encing applications. The results thus also show the promise
of streaming codes for other live-streaming applications such
as cloud gaming.

Acknowledgments

This work was funded in part by an NSF grant (CCF-
1910813). We thank our anonymous reviewers for their com-
ments and Nandita Dukkipati for shepherding this work. We
also thank Sasikanth Bendapudi, Sivakumar Ananthakrishnan,
Nelson Pinto, Jiannan Zheng, and Ross Cutler from Microsoft
for their helpful discussions and supporting the project.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 965

References

[1] libvpx. https://chromium.googlesource.com/
webm/libvpx/.

[2] WebRTC. https://webrtc.org/.

[3] A. Badr, A. Khisti, W. Tan, and J. Apostolopoulos. Per-
fecting protection for interactive multimedia: A survey
of forward error correction for low-delay interactive ap-
plications. IEEE Signal Processing Magazine, 34(2):95–
113, March 2017.

[4] A. Badr, D. Lui, A. Khisti, W. Tan, X. Zhu, and J. Apos-
tolopoulos. Multiplexed coding for multiple streams
with different decoding delays. IEEE Transactions on
Information Theory, 64(6):4365–4378, June 2018.

[5] A. Badr, P. Patil, A. Khisti, W. Tan, and J. Apostolopou-
los. Layered constructions for low-delay streaming
codes. IEEE Transactions on Information Theory,
63(1):111–141, Jan 2017.

[6] Ahmed Badr, Ashish Khisti, Wai-tian Tan, Xiaoqing
Zhu, and John Apostolopoulos. FEC for VoIP using
dual-delay streaming codes. In IEEE INFOCOM 2017-
IEEE Conference on Computer Communications, pages
1–9. IEEE, 2017.

[7] Athula Balachandran, Vyas Sekar, Aditya Akella, Srini-
vasan Seshan, Ion Stoica, and Hui Zhang. Developing
a predictive model of quality of experience for internet
video. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, page 339–350,
New York, NY, USA, 2013. Association for Computing
Machinery.

[8] Dziugas Baltrunas, Ahmed Elmokashfi, Amund Kval-
bein, and Özgü Alay. Investigating packet loss in mobile
broadband networks under mobility. In 2016 IFIP Net-
working Conference (IFIP Networking) and Workshops,
pages 225–233. IEEE, 2016.

[9] Ali C. Begen. RTP Payload Format for 1-D Interleaved
Parity Forward Error Correction (FEC). RFC 6015,
October 2010.

[10] Henrik Boström, Harald Alvestrand, and Varun
Singh. Provisional identifiers for WebRTC’s
statistics API unofficial draft. Draft of a po-
tential specification, W3C, July 2022. https:
//w3c.github.io/webrtc-provisional-stats/
#RTCVideoReceiverStats-dict.

[11] Yuri Boykov and Vladimir Kolmogorov. An experi-
mental comparison of min-cut/max-flow algorithms for
energy minimization in vision. IEEE transactions on
pattern analysis and machine intelligence, 26(9):1124–
1137, 2004.

[12] Ramon Caceres, Alan Clark, and Timur Friedman. RTP
Control Protocol Extended Reports (RTCP XR). RFC
3611, November 2003.

[13] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and
Saverio Mascolo. Analysis and design of the Google
congestion control for web real-time communication
(WebRTC). In Proceedings of the 7th International
Conference on Multimedia Systems, pages 1–12, 2016.

[14] Hyunseok Chang, Matteo Varvello, Fang Hao, and Sarit
Mukherjee. Can you see me now? A measurement study
of Zoom, Webex, and Meet. In Proceedings of the 21st
ACM Internet Measurement Conference, pages 216–228,
2021.

[15] Federal Communications Commission.
Measuring Broadband America, 2021.
https://www.fcc.gov/reports-research/
reports/measuring-broadband-america/
measuring-fixed-broadband-eleventh-report
(Last accessed: 2022-02-02).

[16] Mauro Conti, Simone Milani, Ehsan Nowroozi, and
Gabriele Orazi. Do not deceive your employer with a
virtual background: A video conferencing manipulation-
detection system. CoRR, abs/2106.15130, 2021.

[17] Ross Cutler, Yasaman Hosseinkashi, Jamie Pool, Senja
Filipi, Robert Aichner, Yuan Tu, and Johannes Gehrke.
Meeting effectiveness and inclusiveness in remote
collaboration. Proc. ACM Hum.-Comput. Interact.,
5(CSCW1), apr 2021.

[18] Marcel Dischinger, Andreas Haeberlen, Krishna P. Gum-
madi, and Stefan Saroiu. Characterizing residential
broadband networks. In Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, pages
43–56, 2007.

[19] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica,
Dilip Joseph, Aditya Ganjam, Jibin Zhan, and Hui
Zhang. Understanding the impact of video quality
on user engagement. In Proceedings of the ACM
SIGCOMM 2011 Conference, SIGCOMM ’11, page
362–373, New York, NY, USA, 2011. Association for
Computing Machinery.

[20] E. Domanovitz, S. L. Fong, and A. Khisti. An explicit
rate-optimal streaming code for channels with burst and
arbitrary erasures. In 2019 IEEE Information Theory
Workshop (ITW), pages 1–5, 2019.

[21] Zhengfang Duanmu, Kai Zeng, Kede Ma, Abdul
Rehman, and Zhou Wang. A quality-of-experience index
for streaming video. IEEE Journal of Selected Topics in
Signal Processing, 11(1):154–166, 2017.

966 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://chromium.googlesource.com/webm/libvpx/
https://chromium.googlesource.com/webm/libvpx/
https://webrtc.org/
https://w3c.github.io/webrtc-provisional-stats/#RTCVideoReceiverStats-dict
https://w3c.github.io/webrtc-provisional-stats/#RTCVideoReceiverStats-dict
https://w3c.github.io/webrtc-provisional-stats/#RTCVideoReceiverStats-dict
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eleventh-report
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eleventh-report
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eleventh-report

[22] D. Dudzicz, S. L. Fong, and A. Khisti. An explicit
construction of optimal streaming codes for channels
with burst and arbitrary erasures. IEEE Transactions on
Communications, 68(1):12–25, 2020.

[23] E. O. Elliott. Estimates of Error Rates for Codes on
Burst-Noise Channels. Bell System Technical Journal,
42(5):1977–1997, September 1963.

[24] Martin Ellis. Understanding the performance of Internet
video over residential networks. PhD thesis, University
of Glasgow, 2012.

[25] Salma Shukry Emara, Silas Fong, Baochun Li, Ashish
Khisti, Wai-Tian Tan, Xiaoqing Zhu, and John Apos-
tolopoulos. Low-latency network-adaptive error control
for interactive streaming. IEEE Transactions on Multi-
media, pages 1–1, 2021.

[26] S. L. Fong, A. Khisti, B. Li, W. Tan, X. Zhu, and J. Apos-
tolopoulos. Optimal streaming codes for channels with
burst and arbitrary erasures. IEEE Transactions on In-
formation Theory, 65(7):4274–4292, July 2019.

[27] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine
Wu, Riad S. Wahby, and Keith Winstein. Salsify: Low-
Latency network video through tighter integration be-
tween a video codec and a transport protocol. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 267–282, Renton, WA,
April 2018. USENIX Association.

[28] Boni García, Micael Gallego, Francisco Gortázar, and
Antonia Bertolino. Understanding and estimating qual-
ity of experience in WebRTC applications. Computing,
101(11):1585–1607, 2019.

[29] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark
buffers in the internet. Queue, 9(11):40–54, 2011.

[30] Dongsu Han, Ashok Anand, Aditya Akella, and Srini-
vasan Seshan. RPT: Re-architecting loss protection for
content-aware networks. In 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
’12), pages 71–84, 2012.

[31] Osama Haq, Cody Doucette, John W Byers, and Fa-
had R. Dogar. Judicious QoS using cloud overlays. In
Proceedings of the 16th International Conference on
emerging Networking EXperiments and Technologies,
pages 371–385, 2020.

[32] S. Holmer, M. Shemer, and M. Paniconi. Handling
packet loss in WebRTC. In 2013 IEEE International
Conference on Image Processing, pages 1860–1864,
2013.

[33] International Telecommunication Union. ITU-T G.
1010: End-User Multimedia Qos Categories. G SE-
RIES: Transmission Systems and Media, Digital System
and Networks-Multimedia Quality of Service and Per-
formance Generic and User-Related Aspects, 2001.

[34] Junchen Jiang, Rajdeep Das, Ganesh Ananthanarayanan,
Philip A. Chou, Venkata Padmanabhan, Vyas Sekar, Esb-
jorn Dominique, Marcin Goliszewski, Dalibor Kukoleca,
Renat Vafin, et al. VIA: Improving internet telephony
call quality using predictive relay selection. In Proceed-
ings of the 2016 ACM SIGCOMM Conference, pages
286–299, 2016.

[35] M. N. Krishnan and P. V. Kumar. Rate-optimal stream-
ing codes for channels with burst and isolated erasures.
In 2018 IEEE International Symposium on Information
Theory (ISIT), pages 1809–1813, June 2018.

[36] M. N. Krishnan, D. Shukla, and P. V. Kumar. A quadratic
field-size rate-optimal streaming code for channels with
burst and random erasures. In 2019 IEEE International
Symposium on Information Theory (ISIT), pages 852–
856, 2019.

[37] S. Shunmuga Krishnan and Ramesh K. Sitaraman.
Video stream quality impacts viewer behavior: Infer-
ring causality using quasi-experimental designs. In Pro-
ceedings of the 2012 Internet Measurement Conference,
IMC ’12, page 211–224, New York, NY, USA, 2012.
Association for Computing Machinery.

[38] Z. Li, A. Khisti, and B. Girod. Correcting erasure bursts
with minimum decoding delay. In 2011 Conference
Record of the Forty Fifth Asilomar Conference on Sig-
nals, Systems and Computers (ASILOMAR), pages 33–
39, Nov 2011.

[39] Xianshang Lin, Yunfei Ma, Junshao Zhang, Yao
Cui, Jing Li, Shi Bai, Ziyue Zhang, Dennis Cai,
Hongqiang Harry Liu, and Ming Zhang. GSO-
Simulcast: Global stream orchestration in simulcast
video conferencing systems. In Proceedings of the
ACM SIGCOMM 2022 Conference, SIGCOMM ’22,
page 826–839, New York, NY, USA, 2022. Association
for Computing Machinery.

[40] David J. C. MacKay. Fountain codes. IEE Proceedings-
Communications, 152(6):1062–1068, 2005.

[41] Kyle MacMillan, Tarun Mangla, James Saxon, and Nick
Feamster. Measuring the performance and network uti-
lization of popular video conferencing applications. In
Proceedings of the 21st ACM Internet Measurement
Conference, IMC ’21, page 229–244, New York, NY,
USA, 2021. Association for Computing Machinery.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 967

[42] E. Martinian and C.-E. W. Sundberg. Burst erasure
correction codes with low decoding delay. IEEE Trans-
actions on Information Theory, 50(10):2494–2502, Oct
2004.

[43] E. Martinian and M. Trott. Delay-optimal burst erasure
code construction. In 2007 IEEE International Sympo-
sium on Information Theory, pages 1006–1010, June
2007.

[44] Anush Krishna Moorthy, Lark Kwon Choi, Alan Con-
rad Bovik, and Gustavo de Veciana. Video quality as-
sessment on mobile devices: Subjective, behavioral and
objective studies. IEEE Journal of Selected Topics in
Signal Processing, 6(6):652–671, 2012.

[45] Marcin Nagy, Varun Singh, Jörg Ott, and Lars Eggert.
Congestion Control using FEC for Conversational Mul-
timedia Communication. In Proceedings of the 5th ACM
Multimedia Systems Conference, pages 191–202, 2014.

[46] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. Mahimahi: Accurate Record-and-
Replay for HTTP. In 2015 USENIX Annual Technical
Conference (USENIX ATC 15), pages 417–429, Santa
Clara, CA, July 2015. USENIX Association.

[47] Ehsan Nowroozi, Ali Dehghantanha, Reza M Parizi,
and Kim-Kwang Raymond Choo. A survey of machine
learning techniques in adversarial image forensics. Com-
puters & Security, page 102092, 2020.

[48] P. Orosz, T. Skopkó, Z. Nagy, P. Varga, and L. Gyimóthi.
A case study on correlating video QoS and QoE. In 2014
IEEE Network Operations and Management Symposium
(NOMS), pages 1–5, 2014.

[49] Kohong Park and Walter Willinger. Sele-Similar net-
work traffic and performance evaluation. Wiley & Son,
2000.

[50] C. Perkins, O. Hodson, and V. Hardman. A survey of
packet loss recovery techniques for streaming audio.
IEEE Network, 12(5):40–48, 1998.

[51] James S. Plank, Ethan L. Miller, Kevin M. Greenan,
Benjamin A. Arnold, John A. Burnum, Adam W. Disney,
and Allen C. McBride. GF-Complete: A comprehensive
open source library for galois field arithmetic version
1.02, 2014.

[52] James S. Plank, Scott Simmerman, and Catherine D.
Schuman. Jerasure: A library in C/C++ facilitating
erasure coding for storage applications-version 1.2. Uni-
versity of Tennessee, Tech. Rep. CS-08-627, 23, 2008.

[53] Yining Qi and Mingyuan Dai. The effect of frame freez-
ing and frame skipping on video quality. In 2006 Inter-
national Conference on Intelligent Information Hiding
and Multimedia, pages 423–426, 2006.

[54] Ramya Raghavendra and Elizabeth M. Belding. Char-
acterizing high-bandwidth real-time video traffic in resi-
dential broadband networks. In 8th International Sympo-
sium on Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks, pages 597–602. IEEE, 2010.

[55] Irving S. Reed and Gustave Solomon. Polynomial codes
over certain finite fields. Journal of the society for in-
dustrial and applied mathematics, 8(2):300–304, 1960.

[56] Vincent Roca, Mathieu Cunche, and Jerome Lacan. Sim-
ple Low-Density Parity Check (LDPC) Staircase For-
ward Error Correction (FEC) Scheme for FECFRAME.
RFC 6816, December 2012.

[57] Vincent Roca, Mathieu Cunche, Jerome Lacan, Amine
Bouabdallah, and Kazuhisa Matsuzono. Simple Reed-
Solomon Forward Error Correction (FEC) Scheme for
FECFRAME. RFC 6865, February 2013.

[58] Vincent Roca, Mark Watson, and Ali C. Begen. Forward
Error Correction (FEC) Framework. RFC 6363, October
2011.

[59] Michael Rudow and K. V. Rashmi. Learning-augmented
streaming codes are approximately optimal for variable-
size messages. In 2022 IEEE International Symposium
on Information Theory (ISIT), pages 474–479, 2022.

[60] Michael Rudow and K. V. Rashmi. Streaming codes for
variable-size messages. IEEE Transactions on Informa-
tion Theory, 68(9):5823–5849, 2022.

[61] Michael Rudow and K.V. Rashmi. Online versus offline
rate in streaming codes for variable-size messages. IEEE
Transactions on Information Theory, pages 1–1, 2023.

[62] Henning Schulzrinne and Jonathan Rosenberg. An RTP
Payload Format for Generic Forward Error Correction.
RFC 2733, December 1999.

[63] A. Shokrollahi. Raptor codes. IEEE Transactions on
Information Theory, 52(6):2551–2567, 2006.

[64] Justin Uberti. WebRTC Forward Error Correction Re-
quirements. RFC 8854, January 2021.

[65] Mark Watson, Thomas Stockhammer, and Mike Luby.
Raptor Forward Error Correction (FEC) Schemes for
FECFRAME. RFC 6681, August 2012.

[66] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Levis, and

968 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Keith Winstein. Learning in situ: a randomized ex-
periment in video streaming. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 495–511, Santa Clara, CA, February
2020. USENIX Association.

[67] Mo Zanaty, Varun Singh, Ali C. Begen, and Giridhar
Mandyam. RTP Payload Format for Flexible Forward
Error Correction (FEC). RFC 8627, July 2019.

[68] Xu Zhang, Yiyang Ou, Siddhartha Sen, and Junchen
Jiang. SENSEI: Aligning video streaming quality with
dynamic user sensitivity. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 303–320. USENIX Association, April 2021.

Appendices

A Recovering a burst with Tambur’s stream-
ing code

Consider a burst of length b starting in frames i and delay
constraint τ. Suppose all frames before the burst have been
decoded. First, the received symbols of P[i], . . . ,P[i+b−1]
as well as P[i+ b], . . . ,P[i+ τ] are used to decode the lost
symbols of V [i], . . . ,V [i+ b− 1]. Second, each U [j] for j ∈
{i, . . . , i+b} is decoded using P[j+τ]. In both steps, decoding
follows from solving a system of linear equations.

B Tambur’s streaming code’s flow network

The graph of the flow network at a high level represents
each P[i] that may be used in decoding with a node with
an edge into nodes corresponding to each of U [i], U [i −
τ],V [i], . . . ,V [i − τ], where one unit of flow represents de-
coding one symbol. The flow network is small (i.e., at most
(5τ+3) vertices and (2τ2 +11τ+5) edges for τ = 3). There-
fore, the time to solve it is negligible compared to solving the
system of linear equations.

C Parameters of the GE channel

To set the parameters of the GE channel for the offline evalu-
ation, we first identify settings that match several aggregate
statistics of the production traces as follows. The probability
of transitioning from the bad state to the good state (respec-
tively, vice versa) is the mean over traces of one divided by the
mean length of bursts (respectively, guard spaces) in frames.
The probability of loss in the bad state equals the mean over
traces of the multi-frame burstiness. The probability of loss
in the good state is then set so that the expected loss rate

Tambur Block-Within
0.5

1.0

1.5

T
im

e
to

 e
nc

od
e

in
 m

s

(a) Encoding

Tambur Block-Within

2

4

6

T
im

e
to

 d
ec

od
e

in
 m

s

(b) Decoding

Figure 15: The encoding and decoding times are modest.

matches the mean loss rate over traces given the other three
parameters. To ensure our results hold for varying network
conditions, we then draw the values for each of the four param-
eters uniformly at random from intervals around these values
(rounded to increments of 0.05) as follows. The probability
of transitioning from the good state to the bad state and vice
versa are distributed as Uniform(0, 0.05) and Uniform(.75,
.9), respectively. The probability of loss in the good and bad
states are distributed as Uniform(0, 0.05) and Uniform(0.05,
1), respectively.13

D Encoding and decoding overheads

We compare the encoding and decoding time for Tambur with
that of Block-Within, which is the fastest of all the baselines
(Fig. 15). As seen in Fig. 15, the time to encode and decode is
comparable to Block-Within and is only a small fraction of the
end-to-end latency budget of 150 ms. The median times for
encoding are 1.7ms and .6ms for Tambur and Block-Within,
respectively, whereas decoding takes 3.4ms and .7ms for Tam-
bur and Block-Within, respectively. Because Tambur operates
over multiple frames of varying sizes, encoding and decod-
ing times are slightly longer and more variable. Our imple-
mentation of Tambur requires a fixed amount of memory of
approximately 575 KB during encoding and decoding.

But times for encoding and decoding are just a small com-
ponent of the end-to-end latency. The 50ms one-way delay
and the number of extra frames used in decoding (see Fig. 16)
have more pronounced effects. Recall that each additional
frame used in adds approximately 33 ms to the end-to-end
latency, so using fewer extra frames is faster. Tambur does
not decode within the same frame only 1% more frequently
than Block-Within, which cannot use extra frames in decod-
ing. Tambur uses extra frames to decode only 8% of the time.
Block-Multi decodes 24%, 23%, 23%, and 23% of frames
with 0,1,2, and 3 extra frames, respectively. Each extra frame
adds ≈ 33 ms to the end-to-end latency.

13The results were similar when we varied the ranges.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 969

0 1 2 3 Unrecovered
of extra frames used to recover a frame

0

20

40

60

80
Pe

rc
en

t o
f f

ra
m

es Block-Within
Block-Multi
Tambur-0.9
Tambur
Tambur-full-BW

Figure 16: Tambur recovers nearly as many frames as Block-
Within using no extra frames and also recovers more over-
all. Block-Multi recovers an approximately equal number of
frames using 0, 1, 2, and 3 extra frames.

E Tail duration of freezes

Recall from Fig. 14b that Tambur, Tambur-0.9, and Tambur-
full-BW have higher tail durations of freezes than Block-
Multi. The reason for the poor performance is threefold. First,
Tambur, Tambur-0.9, and Tambur-full-BW fail to render more
frames at the tail, as was discussed in §5.2. Second, the sender
generates a keyframe (often ending a freeze) once it learns
of recovery failures. Because Block-Within can only recover
a frame using the parity packets within the same frame, a
keyframe is requested 3 frames sooner (i.e., ≈ 100 ms faster)
than when Tambur (or Tambur-0.9) is used. Many of the 78%
of freezes under the Block-Within where Tambur does not
freeze are therefore short and shift the entire distribution of
cumulative duration of freezes for Block-Within, including
the tail; if we added 0ms freezes for Tambur (or Tambur-0.9)
for these instances, their distributions would likewise shift.
Third, encoding across multiple frames can make it harder
to recover a keyframe triggered by a freeze of several lost
frames. This phenomenon does not impact Block-Within and
affects Block-Multi less than any of Tambur, Tambur-0.9,
and Tambur-full-BW (e.g., does not affect on Block-Multi
whenever the keyframe is in the first position within the block
of (τ+1) = 4 frames). The phenomenon also contributes to
a difference in the frequency of recovered frames (Fig. 12a)
and rendered frames (Fig. 13a). There is a natural solution
that is outside of the scope of this work. When the sender
triggers a new keyframe due to a loss, it should stop taking
linear combinations of frames from before the new keyframe.
Doing so will strictly (a) increase the frequency of displaying
frames and (b) decrease the mean and median duration of
freezes. It will benefit Tambur, Tambur-0.9, and Tambur-full-
BW the most, but it will also improve Block-Multi to a lesser
extent.

F Analysis of recovering bursts

Next, we evaluate Tambur’s capabilities for recovering bursts
of packets across multiple frames; to do so fairly, we must fix
the bandwidth overhead, so “Tambur” refers to Tambur-full-

0 1 0 1 2 0 1 2 3 0 1 2 3 40 1 0 1 2 0 1 2 3 0 1 2 3 4
... frames recovered from a burst loss of ...

0.0

0.2

0.4

0.6

0.8

P
M

F

1 frame 2 frames 3 frames 4 frames

Block-Within

Tambur
Overlap

Figure 17: Given the same bandwidth budget as Block-Within,
Tambur is more likely to recover all or zero frames from a
burst loss over production traces.

1 2 3 4 5+
Burst length in number of lost frames

0.00

0.05

0.10

0.15

0.20

M
ea

n
no

n-
re

co
ve

re
d

fr
am

es
in

 e
ac

h
bu

rs
t

Block-Within
Block-Multi
Tambur

Figure 18: Given the same bandwidth budget as Block-
Within/Block-Multi, Tambur provides greater improvement
for longer bursts over an emulated network.

BW for the remainder of §F. Fig. 17 shows the distribution
of the number of packets recovered for each burst length (in
frames) for the offline evaluation. In Fig. 17, the distribution
of the number of packets recovered for each burst length (in
frames) is shown. Bursts encompassing 2, 3, and 4 frames
constitute 23%, 7%, and 3.3% of all lossy events, respectively.
For these losses, Tambur recovers all lossy frames 66.8%,
103%, and 97.3% more frequently than Block-Within. For
the longer (less frequent) bursts of lengths 3 and 4, when the
bandwidth overhead is insufficient, Tambur fails to recover
any frames 65.9% and 87% more frequently than the Block-
Within. This follows from the Block-Within being more likely
to recover some (but not all) of the frames when there is insuf-
ficient bandwidth overhead to recover all losses. In contrast,
when the bandwidth overhead is insufficient to recover a burst
in its entirety, streaming codes are likely to fail to recover all
of the frames. However, note that the overall performance of
Tambur is still better than the Block-Within: Tambur recovers
21.8%, 12.4%, and 2.3% more frames than the Block-Within
for bursts of 2,3, and 4 frames, respectively. Tambur also out-
performs Block-Within in recovering losses limited to a single
frame, as parity packets sent with later frames can be used in
recovery. In short, Tambur performs significantly better for
bursts across up to 3 frames than Block-Within and offers

970 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

more modest gains for bursts across 4 frames.
We also evaluate Tambur’s effectiveness at recovering

bursts in the online evaluation. Because the loss of a sin-
gle packet of a frame means that the frame is “lost” under our
definition of a burst, longer bursts usually only involve being
in the bad state for one, two, or sometimes three frames. We
consider the mean number of frames recovered among a burst
encompassing 1, 2, 3, 4, or greater than 4 frames in Fig. 18.
Tambur reduces the frequency of non-recoverable frames by
70.5%, 68.0%, and 65.8% compared to Block-Within over
bursts of 2, 3, and 4 frames respectively. Tambur reduces the
frequency of non-recoverable frames by 35.8%, 40.3%, and
47.4% compared to Block-Multi over bursts of 2, 3, and 4,
respectively.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 971

Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

Arthi Padmanabhan⋆§ Neil Agarwal⋆¶ Anand Iyer† Ganesh Ananthanarayanan†

Yuanchao Shu‡ Nikolaos Karianakis† Guoqing Harry Xu§ Ravi Netravali¶

§UCLA †Microsoft Research ‡Zhejiang University ¶Princeton University

Abstract
Video analytics pipelines have steadily shifted to edge de-
ployments to reduce bandwidth overheads and privacy vio-
lations, but in doing so, face an ever-growing resource ten-
sion. Most notably, edge-box GPUs lack the memory needed
to concurrently house the growing number of (increasingly
complex) models for real-time inference. Unfortunately, ex-
isting solutions that rely on time/space sharing of GPU re-
sources are insufficient as the required swapping delays re-
sult in unacceptable frame drops and accuracy loss. We
present model merging, a new memory management tech-
nique that exploits architectural similarities between edge
vision models by judiciously sharing their layers (includ-
ing weights) to reduce workload memory costs and swap-
ping delays. Our system, Gemel, efficiently integrates merg-
ing into existing pipelines by (1) leveraging several guid-
ing observations about per-model memory usage and inter-
layer dependencies to quickly identify fruitful and accuracy-
preserving merging configurations, and (2) altering edge in-
ference schedules to maximize merging benefits. Experi-
ments across diverse workloads reveal that Gemel reduces
memory usage by up to 60.7%, and improves overall accu-
racy by 8-39% relative to time or space sharing alone.

1 Introduction
Fueled by the proliferation of camera deployments and sig-
nificant advances in deep neural networks (DNNs) for vision
processing (e.g., classification, detection) [19,28,46,69,74],
live video analytics have rapidly grown in popularity [25,35,
60,71,113]. Major cities and organizations around the world
now employ thousands of cameras to monitor intersections,
homes, retail spaces, factories, and more [1, 5, 6, 10]. The
generated video feeds are continuously and automatically
queried using DNNs to power long-running applications for
autonomous driving, footfall tracking, traffic coordination,
business analytics, and surveillance [2, 11–13, 34].

In order to deliver highly-accurate query responses in real
time, video analytics deployments have steadily migrated
to the edge [25, 78, 107]. More specifically, pipelines rou-
tinely incorporate on-premise edge servers (e.g., Microsoft
Azure Stack Edge [4], Amazon Outposts [3]) that run in
hyper-proximity to cameras (in contrast to traditional edge
servers [32, 37, 79, 104]), and possess on-board GPUs to aid
video processing. These edge boxes are used to complement
(or even replace [21,29]) distant cloud servers by locally per-
forming as many inference tasks on live video streams as

⋆ These authors contributed equally to this work.

2010 2015 2020
Year

0

5

10

Pa

ra
m

et
er

s
(x

10
e8

)

Figure 1: Parameter counts in popular vision DNNs over time.
Data drawn from [92].

possible [29, 53, 71, 117]. Generating responses directly on
edge boxes reduces transfer delays for shipping data-dense
video over wireless links [44, 73, 117] while also bringing
resilience to outbound edge-network link failures [7,80] and
compliance with regional data privacy restrictions [77, 85].

To reap the above benefits, video analytics deployments
must operate under the limited computation resources of-
fered by edge boxes. On the one hand, due to cost, power,
and space constraints, edge boxes typically possess weaker
GPUs than their cloud counterparts [4, 21, 95]. On the other
hand, analytics deployments face rapidly increasing work-
loads due to the following trends: (1) more camera feeds
to analyze [21, 53, 55], (2) more models to run due to in-
creased popularity and shifts to bring-your-own-model plat-
forms [16, 24, 38, 54], and (3) increased model complexity,
primarily through growing numbers of layers and parame-
ters (Figure 1) [15, 56, 57, 108]. Taken together, the result is
an ever-worsening resource picture for edge video analytics.
Problems. Although GPU computation resources are holis-
tically constrained on edge boxes, this paper focuses on GPU
memory restrictions, which have become a primary bottle-
neck in edge video analytics for three main reasons. First,
GPU memory is costly due to its high-bandwidth nature [83,
86, 93], and is thus unlikely to keep pace with the ever-
growing memory needs of DNNs (Figure 1). Second, we em-
pirically find that existing memory management techniques
that time/space-share GPU resources [26, 39, 50, 56, 94, 110]
are insufficient for edge video analytics, resulting in skipped
processing on 19-84% of frames, and corresponding accu-
racy drops up to 43% (§3). The underlying reason is that
the costs of loading vision DNNs into GPU memory (i.e.,
swapping) are prohibitive and often exceed the correspond-
ing inference times, leading to sub-frame-rate (< 30 fps) pro-
cessing and dropped frames due to SLA violations [94,114].
Such accuracy drops are unacceptable for important vision
tasks, especially given that each generation of vision DNNs
brings only 2-10% of accuracy boosts – that after painstaking
tuning [22, 52, 64, 98]. Third, compared to computation bot-
tlenecks [29,39,40,60,71], GPU memory restrictions during
inference have been far less explored in video analytics.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 973

Contributions. We tackle this memory challenge by mak-
ing two main contributions described below. The design and
evaluation of our solution are based on a wide range of pop-
ular vision DNNs, tasks, videos, and resource settings that
reflect workloads observed in both our own multi-city pilot
video analytics deployment and in prior studies (§2).

Our first contribution is model merging, a fundamentally
new approach to tackling GPU memory bottlenecks in edge
video analytics that is complementary to time/space-sharing
strategies (§4). With merging, we aim to share architec-
turally identical layers across the models in a workload such
that only one copy of each shared layer (i.e., one set of
weights) must be loaded into GPU memory for all models
that include it. In doing so, merging reduces both the number
of swaps required to run a workload (by reducing the overall
memory footprint) and the cost of each swap (by lowering
the amount of new data to load into GPU memory).

Our merging approach is motivated by our (surprising)
finding that vision DNNs share substantial numbers of lay-
ers that are architecturally (i.e., excluding weights) identical
(§4.1). Such commonalities arise not only between identi-
cal models (100% sharing), but also across model variants
in the same (up to 84.6%) and in different (up to 96.3%)
families. The reason is that, despite their (potentially) differ-
ent goals, vision DNNs ultimately employ traditional com-
puter vision (CV) operations (e.g., convolutions) [22, 64],
operate on unified input formats (e.g., raw frames), and per-
form object-centric tasks (e.g., detection, classification) that
rely on common features such as edges, corners, and mo-
tion [27, 31, 65, 66, 88, 106, 118, 119].

Our analysis reveals that exploiting these architectural
commonalities via merging has the potential to substantially
lower memory usage (17.9-86.4%) and boost accuracy (by
up to 50%) in practice. However, achieving those benefits
is complicated by the fact that edge vision models typically
use different weights for common layers due to training non-
linearities [62, 63] and variance in target tasks, objects, and
videos; and yet, merging requires using unified weights for
each shared layer. Digging deeper, we observe that there
exists an inverse relationship between the number of shared
layers and achieved accuracy during retraining. Intuitively,
this is because for shared layers to use unified weights, other
layers must adjust their weights accordingly during retrain-
ing; the more layers shared, the harder it is for (the fewer)
other layers to find weights to accommodate such constraints
and successfully learn the target functions [23, 70]. Worse,
determining the right layers to merge is further complicated
by the fact that (1) it is difficult to predict precisely how
many layers will be shareable before accuracy violations oc-
cur, and (2) each instance of retraining is costly.

Our second contribution is Gemel, an end-to-end system
that practically incorporates model merging into edge video
analytics by automatically finding and exploiting merg-
ing opportunities across user-registered vision DNNs (§5).

Gemel tackles the above challenges by leveraging two key
observations: (1) vision DNNs routinely exhibit power-law
distributions whereby a small percentage of layers, often to-
wards the end of a model, account for most of the model’s
memory usage, and (2) merging decisions are agnostic to
inter-layer dependencies, and accordingly, a layer’s merge-
ability does not improve if other layers are also shared.

Building on these observations, Gemel follows an incre-
mental merging process whereby it attempts to share one
additional layer during each iteration, and selects new lay-
ers in a memory-forward manner, i.e., prioritizing the (few)
memory-heavy layers. In essence, this approach aims to reap
most of the potential memory savings as quickly, and with
as few shared layers, as possible. Gemel further accelerates
the merging process by taking an adaptive approach to re-
training that detects and leverages signs of early successes
and failures. At the end of each successful iteration, Gemel
ships the resulting merged models to the appropriate edge
servers, and carefully alters the time/space-sharing scheduler
– a merging-aware variant of Nexus [94] in our implemen-
tation – to maximize merging benefits, i.e., by organizing
merged models to reduce the number of swaps, and the de-
lay for each one. Importantly, Gemel verifies that merging
configurations meet accuracy targets prior to deployment at
the edge, and also periodically tracks data drift.

Results. We evaluated Gemel on a wide range of work-
loads and edge settings (§2, §6.3). Overall, Gemel re-
duces memory requirements by up to 60.7%, which is 5.9-
52.3% more than stem-sharing approaches that are funda-
mentally restricted to sharing contiguous layers from the
start of models (Mainstream [59]), and within 9.3-29.0%
of the theoretical maximum savings (that disregard layer
weights). These memory savings lead to 13-44% fewer
skipped frames and overall accuracy improvements of 8-
39% compared to space/time-sharing GPU schedulers alone
(Nexus [94]). Source code and datasets for Gemel are avail-
able at https://github.com/artpad6/gemel nsdi23.

2 Methodology & Pilot Study
We begin by describing the workloads used in this paper.
They were largely derived from our experience in deploy-
ing a pilot video analytics system in collaboration with two
major US cities (one per coast), for road traffic monitoring.

Models and tasks. In line with other video analytics frame-
works [16,24,38,54], users in our deployment provided pre-
trained models when registering queries to run on different
video feeds. Due to the complexity of model development,
we observe that users opt to leverage existing (popular) ar-
chitectures geared for their target task (e.g., YOLOv3 for ob-
ject detection), and train those models for specific object(s)
of interest and datasets (e.g., detecting vehicles at Main St.)
to generate a unique set of weights. Despite being allowed,
custom architectures were never provided in our deployment.

974 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/artpad6/gemel_nsdi23

Accordingly, we selected the 7 most popular families
of models across our pilot deployment and recent litera-
ture [21,26,49,50,53,59–61,71,109]: YOLO, Faster RCNN,
ResNet, VGG, SSD, Inception, and Mobilenet. From each
family, we selected up to 4 model variants (if available)
that exhibit different degrees of complexity and compres-
sion. For instance, from YOLO, we consider {YOLOv3,
Tiny YOLOv3}; similarly, we consider ResNet{18, 50, 101,
152}. The selected models focus on two tasks – object classi-
fication and detection – and for each, we train different ver-
sions for all combinations of the following objects: people
and vehicles (e.g., cars, trucks, motorbikes). Classification
and detection accuracy are measured using F1 and mAP [36].
Videos. Our dataset consists of video streams from 12 cam-
eras in our pilot deployment that span two metropolitan ar-
eas. From each region, we consider cameras at adjacent in-
tersections, and those spaced farther apart within the same
metropolitan area; this enables us to consider different edge
box placements, i.e., at a traffic intersection vs. further up-
stream to service a slightly larger geographic location. From
each stream, we scraped 120 minutes of video that cover 24-
hour periods from four times of the year.
Edge boxes. Our review of on-premise edge boxes focused
on 5 commercial offerings: Microsoft Azure Stack Edge [4],
Amazon Outposts [3], Sony REA [97], NVIDIA Jetson [8],
and Hailo Edge-AI-box [43]. These servers each possess on-
board GPUs and offer 2-16 GB of total GPU memory. Since
edge inferences do not typically span multiple GPUs, we fo-
cus on model merging and inference scheduling per GPU.
This does not restrict Gemel to single-GPU settings; rather,
it means that our merging and scheduling techniques are ap-
plied separately to the DNNs in each GPU, with the assump-
tion that each merged model runs on only one GPU.
Workload construction. Recent works highlight that 10s of
videos are usually routed to each edge box [13, 53], which
runs upwards of 10 queries (or DNNs) on each feed [16,21].
Our experience was similar: it was typical to direct the max
possible number of feeds to an edge box, with the goal of
minimizing the number of edge boxes required to process the
workload. To cover this space, and since we focus on per-
GPU inference optimization, we generated an exhaustive list
of all possible workloads sized between 2-50 DNNs using
the models above. We then sorted the list in terms of the
potential (percentage) memory savings (using the methodol-
ogy from §4), and selected 15 workloads: 3 random work-
loads from the lower quartile (i.e., Low Potential (LP1-3)), 6
from the middle 50% (i.e., Medium Potential (MP1-6)), and
6 from the upper quartile (i.e., High Potential (HP1-6)). We
chose this ratio to match that from our deployment. MP and
HP workloads each constituted 30-50% of the total work-
loads since (1) users tended to employ the same few model
variants from a limited set of popular families, and (2) each
user typically used the same architecture (but not weights)
for different feeds in a region. LP workloads were less com-

L1 L2 L3 M1M2M3M4M5M6H1 H2 H3 H4 H5 H60

10

20

M
em

or
y

(G
B) Batch Size=1

Batch Size=4

Figure 2: Per-workload memory requirements for two popular
batch sizes used in video analytics [94]. Dashed lines represent
the available GPU memory on several commercial edge boxes.

mon (<20%), and arose from different users opting for dif-
ferent model families.

Each workload was randomly assigned to one of the cities,
with the constituent models being randomly paired with the
available videos. The extended version [82] details the work-
loads, each of which exhibits heterogeneity in terms of the
families, tasks, videos, and (combinations of) target objects.
In summary, the workloads contain 3-42 queries (avg: 15)
across 3-7 video feeds (avg: 5), featuring 2-10 unique mod-
els (avg: 6) and 2-5 different objects (avg: 4). We consider
additional workloads, models, objects, and videos in §6.3.
Result presentation. End-to-end accuracy depends on the
available GPU memory. However, each workload requires a
different minimum amount of memory to run, i.e., the GPU
should be able to load/run the most memory-intensive model
in isolation for a batch size of 1. Further, the memory needed
to avoid swapping (i.e., to load all models and run one at a
time) also varies per workload; we call this no swap. To en-
sure comparability across all presented accuracy results and
to focus on memory-bottlenecked scenarios, we assign each
workload three memory settings to be evaluated on (listed in
[82]): (1) the minimum value (min), (2) 50% of the no swap
value (50%), and (3) 75% of the no swap value (75%).

3 Motivation
3.1 Memory Pressure in Edge Video Analytics

To run inference with a given model, that model’s layers and
parameters must be loaded into the GPU’s memory, with suf-
ficient space reserved to house intermediate data generated
while running, e.g., activations. The amount of data gener-
ated (and thus, memory consumed) during inference depends
on both the model architecture and the batch size used; a
higher batch size typically requires more memory.

Figure 2 shows the total amount of memory (i.e., for both
loading and running) required for each of our workloads and
two batch sizes; the listed numbers exclude the fixed mem-
ory that ML frameworks reserve for operation, e.g., 0.8 GB
for PyTorch [18]. As shown, many workloads do not directly
fit into edge box GPUs, and the number of edge boxes nec-
essary to support a given workload can quickly escalate. For
instance, even with a batch size of 1 frame, 73% of our work-
loads need more than one edge box possessing 2 GB of GPU
memory; with a batch size of 4, 60% and 27% require more
than one edge box with 8 GB and 16 GB of memory.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 975

Model Load Memory Run Memory (Time)

(Time) BS=1 BS=2 BS=4

YOLOv3 0.24 (49.5) 0.52 (17.0) 0.73 (24.0) 1.22 (39.9)
ResNet152 0.24 (73.3) 0.65 (24.8) 0.98 (26.3) 1.71 (26.7)
ResNet50 0.12 (27.1) 0.35 (8.4) 0.50 (8.5) 0.84 (8.5)
VGG16 0.54 (72.2) 0.74 (2.1) 0.89 (2.4) 1.18 (2.4)
Tiny YOLOv3 0.04 (6.7) 0.15 (3.0) 0.18 (5.2) 0.24 (5.2)
Faster RCNN 0.73 (117.3) 3.70 (115.4) 6.96 (210.1) 12.47 (379.4)
Inceptionv3 0.12 (11.8) 0.19 (9.1) 0.23 (9.1) 0.34 (9.1)
SSD-VGG 0.11 (16.1) 0.23 (16.5) 0.33 (25.7) 0.51 (44.6)

Table 1: Memory (GB) and time (ms) requirements for load-
ing/running inference with 3 different batch sizes (in frames).
Run memory values include load values, but exclude memory
needs of serving frameworks. Results use a Tesla P100 GPU.

Table 1 breaks this memory pressure down further by list-
ing the amount of loading and running memory required for
representative models in our workloads. When analyzed in
the context of the scale of edge video analytics workloads,
the picture is bleak, even with a batch size of 1. For exam-
ple, a 2 GB edge box can support only 1, 2, or 3 VGG16,
YOLOv3, or ResNet50 models, respectively, after account-
ing for the memory needs of the serving framework. Moving
up to 8 and 16 GB edge boxes (of course) helps, but not
enough, e.g., an 8 GB box can support 13 YOLOv3 or 2
Faster RCNN models, both of which are a drastic drop from
the 10s of models that workloads already involve (§2).

3.2 Limitations of Existing GPU Memory Management

Space and time sharing. Existing learning frameworks
recommend model allocation at the granularity of an entire
GPU [56]. Space-sharing techniques [14,17] eschew this ex-
clusivity and partition GPU memory per model. Although
space-sharing approaches are effective when a workload’s
models can fit together in GPU memory, they are insufficient
when that does not hold, which is common at the edge (§3.1)

There are two natural solutions when a workload’s models
cannot fit together in the target GPU’s memory. The first is
to place models on different GPUs [39, 94], which resource-
constrained edge settings cannot afford. The second is to
time share the models’ execution in the GPU by swapping
them in and out of GPU memory (from CPU, via a PCIe in-
terface) [26,39,50,94,110]. However, as we will show next,
time-sharing techniques are bottlenecked by frequent model
swapping, which severely limits their utility. More recently,
SwapAdvisor [50] and Antman [110] proposed swapping at
finer granularities, e.g., individual or a few layers. However,
even these approaches are limited in our case because a hand-
ful of layers in vision DNNs typically account for most mem-
ory usage (§5.2); edge boxes often lack the GPU memory to
concurrently house even these expensive singular layers.

We evaluated time-sharing strategies in our setting by con-
sidering a hybrid version that packs models into GPU mem-
ory, and executes as many models as possible while ensur-
ing that swapping costs for the next model to run are hid-
den. Concretely, we extend Nexus [94] to incorporate such
pipelining. Our variant first organizes models in round-robin

LP MP HP25
50
75

100

Ac
cu

ra
cy

 (%
)

Min
25%
75%

Figure 3: Achieved accuracy with time/space-sharing alone
(i.e., using our Nexus variant) for different memory availability
(following the definitions in §2). Bars list results for the median
workload in each class, with error bars spanning min to max.

order (as Nexus does), and profiles the workload offline
to determine the best global list of per-model batch sizes
that maximizes the minimum achieved per-model through-
put while adhering to an SLA (i.e., a per-frame processing
deadline). Using those batch sizes, the scheduler traverses
the round robin order with the goal of minimizing GPU idle
time: when loading the next model, if there does not exist
sufficient memory to load both parameters and intermedi-
ates, the most recently run model (i.e., the one whose next
use is in the most distant future) is evicted to make space.

Figure 3 shows the accuracy of the Nexus variant on our
workloads with an SLA of 100 ms; we saw similar trends
for other common SLAs in video analytics [94]. As shown,
accuracy drops are substantial, growing up to 43% relative
to a setting when there exists sufficient memory to house all
models at once. The root cause is the disproportionately high
loading times of vision DNNs that must be incurred when
swapping. As shown in Table 1, per-model loading delays
are 0.98-34.4× larger than the corresponding inference times
(for batch size 1). When facing the strict SLAs of video ana-
lytics, these loading costs result in the inability to keep pace
with incoming frame rates, and thus, dropped (unprocessed)
frames; the Nexus variant skipped 19-84% of frames.
Predicting workload characteristics. Another approach is
to selectively preload models based on predictions of the tar-
get workload [115], e.g., deprioritizing inference on streams
at night due to lack of activity. However, in edge video an-
alytics, spatial correlation between streams results in model
demands being highly correlated [55, 60, 71, 76].
Compression and quantization. These techniques gener-
ate lighter model variants that impose lower memory (and
compute) footprints and deliver lower inference times. Some
families offer off-the-shelf compressed variants (e.g., Tiny
YOLOv3), and techniques such as neural architecture search
can be used to develop cheaper variants that are amenable to
deployment constraints [40]. Regardless, in reducing model
complexity, these cheaper model variants typically sacrifice
accuracy and are more susceptible to drift, relative to their
more heavy-weight counterparts [21,100]; consequently, de-
termining the feasibility of using such models in a given set-
ting requires careful tuning and analysis by domain experts.

We consider compression and quantization as orthogonal
to merging for two reasons. First, in common workloads that
involve a mix of models and tasks (§2), it may not be possi-
ble to compress all of the models while delivering sufficient

976 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

YOLOv3
FRCNN-R50

ResNet152
ResNet50 VGG16

SSD-VGG AlexNet

YOLOv3
FRCNN-R50
ResNet152

ResNet50
VGG16

SSD-VGG
AlexNet

100.0
1.2 100.0
0.7 33.3 100.0
1.2 93.0 34.4 100.0
0.0 0.0 0.0 0.0 100.0
0.0 0.0 0.0 0.0 34.2 100.0
0.0 0.0 0.0 0.0 14.3 2.4 100.0

Sharing Opportunities
Same Model
Same Family
Similar Backbone
Derivative Of

Figure 4: Percentage of architecturally identical layers across
different model pairs. See Figure 20 for an extended version.

accuracy. However, even a handful of non-compressed mod-
els can exhaust the available GPU memory (§3.1). Second,
compressed models exhibit sharing opportunities: our work-
loads include compressed and non-compressed models (§2),
and our results show that Gemel is effective for both (§6).

4 Our Approach: Model Merging
To address the high model loading costs that plague exist-
ing memory management strategies when workloads cannot
fit together in a GPU’s memory (§3.2), we propose model
merging. Merging is complementary to time/space sharing
of GPU memory, and its goal is straightforward: share lay-
ers across models such that only one copy of each shared
layer (i.e., layer definition and weights) must be loaded into
GPU memory and can be used during inference for all of
the models that include it. The benefits are two-fold: (1) re-
duce the overall memory footprint of a workload, thereby en-
abling edge boxes to house more models in parallel and per-
form fewer swaps (or equivalently, lower the number of edge
boxes needed to run the workload), and (2) accelerate any re-
maining swaps by reducing the amount of extra memory that
the next model to load requires. Note that merging does not
involve sharing intermediates (i.e., layer outputs) for a com-
mon layer because models may run on different videos (and
thus, inputs). We next highlight the promise for merging in
edge video analytics (§4.1), and then lay out the challenges
associated with realizing merging in practice (§4.2).

4.1 Opportunities

Commonality of layers. A layer is characterized by both
its architecture and its weights. In ML frameworks (e.g., Py-
Torch, TensorFlow), the architecture is defined by first spec-
ifying a layer type (e.g., convolutional, linear, batch normal-
ization), which in turn indicates how the layer transforms
inputs, and dictates the set of defining parameters that must
be specified (e.g., convolutional: kernel, stride, etc., linear:
of input features, bias, etc.). A layer’s weights are a ma-
trix of numbers whose dimensions match the layer structure.
To successfully share a layer across a set of models, that
layer must be architecturally identical in each model, but its
weights need not be the same across appearances.

Architectural equivalence is determined directly from the
model definition in the ML framework (i.e., no inference re-

quired): the layers must be of the same type, with identi-
cal values for type-specific properties. Using this approach,
we studied pairs of 24 different models to identify and an-
alyze layers with identical architectures; Figure 20 presents
our comprehensive results. Below, we summarize our find-
ings; Figure 4 lists results for representative model pairs.

Model pairs fall into one of three categories: (1) instances
of the same model, (2) different models in the same fam-
ily (e.g., ResNet variants), and (3) different models in dif-
ferent families. Multiple instances of the same model un-
surprisingly match on every layer; this favorable scenario is
not uncommon in edge video analytics, as several model ar-
chitectures tend to dominate the landscape [20] and a given
model can be employed on different video feeds or in search
of different objects (§2). More interestingly, we also observe
sharing opportunities across different models from the same
(up to 84.6%) and divergent (up to 96.3%) families.

Models within the same family exhibit significant sharing
opportunities as larger variants are typically extended ver-
sions of the original base model. For instance, ResNet mod-
els share ResNet blocks (groups of 2-3 convolutional lay-
ers) that are repeated at different frequencies, as well as the
first convolutional layer and final fully-connected layer. As
a result, all 41 layers of ResNet18 are shared with ResNet34
(Figure 19). Similarly, in the VGG family, models share the
exact same base architecture and add different numbers of
convolutional layers, e.g., VGG19 shares all 16 of VGG16’s
layers (13 convolutional, 3 fully-connected; Figure 5 (left)).

Sharing for models in different families comes in two
main forms: (a) ‘similar backbones’ and (b) ‘derivatives of.’
Scenario (a) includes pairs of detectors that use the same
(or similar) backbone networks for feature extraction, e.g.,
SSDs that use any VGG backbone, or FasterRCNNs that
use any ResNet backbone. (a) also includes pairs of clas-
sifiers and detectors where the classifier (or a variant) is
used as the detector’s backbone. For instance, every layer
in the ResNet50 backbone of FasterRCNN (which consti-
tutes 51% of the detector’s layers) appears in the ResNet101
classifier. Similar examples include SSD-VGG with any
VGG variant, and SSD-MobileNet with MobileNet. Sce-
nario (b) involves cases where one model family was de-
rived directly from another. For example, VGG was de-
veloped by replacing AlexNet’s large kernels with multiple
smaller ones [96]; VGG16 and AlexNet share 3 out of 16 lay-
ers, including 2 fully-connected layers at the end (Figure 5
(right)). Other examples include InceptionNetV3 [102] with
GoogLeNet [101].

In summary, 43% of all pairs of different models present
sharing opportunities. Of those with substantial (≥ 10%)
common layers, 51% have models in the same family, while
49% involve models from different families; for the latter,
76% are ‘similar backbones’ and 24% are ‘derivatives of.’

These layer similarities generally follow from the fact that
the considered models are all vision processing DNNs. That

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 977

0 0.1 0.3 0.6 1.1 2.3 2.3 4.5 9 9 9 9 9 392 64 0

VG
G1

6

0 0.1 0.3 0.6 1.1 2.3 2.3 4.5 9 9 9 9 9 392 64 0

VG
G1

6

0 0.1 0.3 0.6 1.1 2.3 2.3 2.3 4.5 9 9 9 9 9 9 9 392 64 0
Memory Per Layer (MB)

VG
G1

9

0.1 1.2 2.5 3.4 2.3 144 64 0
Memory Per Layer (MB)

Al
ex

Ne
t Convolutional

Fully Connected
Batch Normalization

Figure 5: Sharing opportunities between VGG16 and VGG19 (left), and VGG16 and AlexNet (right).

0

50

100

%
 S

av
in

gs

L1 L2 L3 M1M2M3M4M5M6H1H2H3H4H5H60

10

Ra
w

Sa
vi

ng
s

(G
B)

Figure 6: Potential memory savings when all architecturally
identical layers are shared across the models in each workload.

is, they all ingest pixel representations of raw images, and
employ a series of traditional CV operations [22, 64], e.g., a
convolutional layer is applying a learned filter to raw pixel
values in preparation for downstream processing. Moreover,
the target tasks are rooted in identifying and characterizing
objects in the scene using low-level CV features such as de-
tected edges and corners [27, 49, 65, 66, 71, 118, 119].

Prior work has capitalized on such similarities for ef-
ficient multi-task learning [30, 59, 112] and architecture
search [75, 84]. Those efforts aim to reduce computation
overheads by sharing “stems” of models, i.e., contiguous lay-
ers (and their generated intermediates) starting from the be-
ginning of the models. In contrast, we aim to exploit archi-
tectural similarities to reduce memory overheads via merg-
ing. As a result, merging only requires layer definitions and
weights to be shared, but not generated intermediate values.
This distinction is paramount because, as we will discuss
in §5.2, memory-heavy layers typically reside towards the
end of vision DNNs. Consequently, stem sharing would re-
quire almost all model layers to be shared to reap substantial
memory savings, which in turn brings unacceptable accuracy
drops (§4.2 and §6). Merging, on the other hand, can share
only those memory-heavy layers to simultaneously deliver
substantial memory savings and preserve result accuracy.
Potential memory savings and accuracy improvements.
Figure 6 shows the memory savings from sharing all of the
common layers across the models in each of our workloads;
this represents an upper bound on merging benefits as it
disregards the challenge of identifying an acceptable set of
weights per shared layer (§4.2). As shown, the memory sav-
ings are substantial: per-workload memory usage dropped

LP MP HP0

20

40

Ac
cu

ra
cy

Im
pr

ov
em

en
t

(%
)

Min
25%
75%

Figure 7: Potential accuracy improvements when sharing all
architecturally identical layers. Memory availability is defined
in §2, bars list medians, and error bars span min to max.

by 17.9-86.4% relative to no merging, translating to raw sav-
ings of 0.2-9.9 GB. Importantly, these savings result in 2
and 4 new workloads fitting entirely (no swapping) on edge
boxes with 2 GB and 8 GB of GPU memory (with batch size
1). Similarly, the number of 2 GB edge boxes needed to sup-
port each workload drops from 1-9 to 1-4. We further evalu-
ated the resulting impact on end-to-end accuracy by compar-
ing the performance of the Nexus variant from §3.2 when run
on workloads with and without (maximal) merging. Models
in both cases were ordered in the same way, to maximize
the benefits of merging (§5.4). As shown in Figure 7, merg-
ing can boost accuracy by up to 50% across our workloads.
These benefits are a direct result of lower swapping costs,
and the resulting ability to run on 29-61% more frames.

4.2 Challenges

Merging layers for memory reductions requires using shared
weights across the models in which those layers appear.
However, those shared weights must not result in accuracy
violations for any of the models, despite their potentially
different architectures/tasks, target objects/videos, etc.; such
accuracy drops would forego merging benefits from faster
swapping. Concretely, there are two core challenges in prac-
tically exploiting the architectural commonalities from §4.1.

Challenge 1: sharing vs. accuracy tension. To max-
imize memory savings, merging seeks to share as many
architecturally identical layers as possible across a work-
load’s models. However, we observe that accuracy degra-
dations steadily grow as the number of shared layers in-
creases. Figure 8 illustrates this trend by sharing different
numbers of identical layers across representative pairs of
models that vary on the aforementioned properties, e.g., tar-

978 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 20 30 40 50 60
Shared Layers

60

70

80

90

100
Ac

cu
ra

cy
 (%

)

Same Task + Object
Same Task, Diff Object
Diff Task + Object

Figure 8: Accuracy after 5 hours of retraining when sharing
additional architecturally-identical layers for different model
pairs (starting from their origins). Tasks cover detection (Faster
RCNN) and classification (ResNet50), and two objects: people,
vehicles. Results list the lower per-model accuracies per pair.

get task. These results were obtained when we increase the
number of shared layers by moving from start to end in the
considered models, but similar trends are observed for other
selection strategies (e.g., random) and models.

The reason for this behavior is intuitive: the retraining per-
formed to assess the feasibility of a sharing configuration is
end-to-end across the considered models. During this pro-
cess, weights are being tuned for all of the layers in all of the
models, with the constraint being that the shared layers each
use a unified set of weights. Sharing more layers has three
effects: (1) more constraints are being placed on the training,
(2) it is harder to find weights for (the shrinking number of)
unshared layers that simultaneously accommodate the grow-
ing constraints, and (3) learning each model’s desired func-
tion becomes more difficult as there exist fewer overall pa-
rameters to tune [23, 70]. It is for these reasons that isolated
merging strategies such as averaging weights across copies
of each shared layer (while keeping other layers unchanged)
do not suffice; we find that sharing even single layers in this
way almost always results in unacceptable accuracy dips.

Digging deeper, the issue stems from non-convex opti-
mization of DNNs, which leads to several equally good
global minima [62, 63]. Thus, training even two identical
models on the same dataset, and for the same task/object, of-
ten results in divergent weights across each layer, despite the
resultant models exhibiting similar overall functionality.
Challenge 2: retraining costs. The retraining involved
in determining whether a set of layers to share can meet
an accuracy target, and if so, the weights to use, can be
prohibitively expensive. For instance, each epoch when
jointly retraining two Faster RCNN models that detect cars at
nearby intersections (i.e., a simple scenario) took ≈35 mins,
and different combinations of layer sharing required between
1-10 epochs to converge. These delays grow as more models
are considered since training data must reflect the behavior
of all of the unmerged models that are involved, e.g., by us-
ing the original training datasets for each of those models.
Worse, it is difficult to know, a priori, which sharing config-
urations can meet accuracy targets (and which will not) in
a reasonable time frame. For example, the model pairs in
Figure 8 have largely different ‘breaking points.’ The result

Merging

Configuration

Cloud
Server

Unmerged
Models

Edge
Server

Merged
Models

Merging
Manager

Dataset
Manager TrainerSampled

Frames

Refresh?

1

Merged
Models

1

23

4
5

Figure 9: Gemel architecture.

also fails to support the use of intuitive trends to predict the
success of sharing configurations: models targeting the same
task or object do not exhibit any discernible advantage.

5 Gemel Design
Gemel is an end-to-end system that practically integrates
model merging into edge video analytics pipelines by ad-
dressing the challenges in §4.2. We first provide an overview
of Gemel’s operation, and then describe the core observa-
tions (and resulting optimizations) that it leverages to enable
timely merging without violating accuracy requirements.

5.1 Overview

Figure 9 shows Gemel’s cloud merging and edge inference
workflows. As in existing pipelines [16,60,71], users register
inference tasks (or “queries”) at Gemel’s cloud component
by providing a DNN, and specifying the input video feed(s)
to run on as well as the required accuracy for the results.
Upon receiving new queries, Gemel bootstraps edge infer-
ence by sending unaltered versions of the registered models
to the appropriate edge box(es) 1 . When GPU memory is
insufficient to house all of those models, edge boxes run the
Nexus variant from §3.2 that pipelines inference and model
loading to maximize the min per-model throughput.

After initiating edge inference, Gemel’s cloud component
begins the merging process, during which it incrementally
searches through the space of potential merging configura-
tions across the registered models, and evaluates the efficacy
of each configuration in terms of both its potential memory
savings and its ability to meet accuracy requirements 2 .
The evaluation of each configuration involves joint retrain-
ing and validation of the models participating in merging.
Since Gemel’s goal is to ensure that the retrained models
deliver sufficient accuracy (relative to the originals) on the
target feeds, data for these tasks can be obtained in one of
two ways: users can supply the data used to train the original
models, or Gemel can automatically generate a dataset by
running the supplied model (or a high-fidelity one [60, 116])
on sampled frames from the target feed.

At the end of each merging iteration, if the considered
configuration was successfully retrained to meet the accu-
racy targets for all constituent models, Gemel shares the up-
dated merged models with the appropriate edge boxes 3 .
New merging results may result in altered edge inference
schedules to maximize merging benefits for reducing swap-
ping costs and boosting inference throughput. The iterative
merging process for the current workload then continues un-
til (1) the cloud resources dedicated to merging have been ex-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 979

pended, (2) no configurations that can deliver superior mem-
ory savings are left to explore, or (3) models with sharing
opportunities are either newly registered or deleted by users.

Gemel periodically assesses data drift for its merged mod-
els. As in prior systems [71, 100], edge servers periodi-
cally send sampled frames (and their inference results, if
collected) to Gemel’s cloud component 4 . These sampled
frames are used to augment the datasets considered for re-
training merged models, and to track the accuracy of recent
results generated at the edge by deployed merged models.
For the latter, Gemel runs the original user models on the
sampled videos and compares the results to those from the
merged models. If accuracy is below the target for any query,
Gemel reverts edge inference to use the corresponding origi-
nal (unmerged) models, and resumes merging and retraining,
starting with the previously deployed weights 5 .
Implementation. Gemel uses PyTorch [18] to manage cloud
merging and edge inference, and is implemented in ≈3500
LOC. More details are presented in A.1.

5.2 Guiding Observations

Two key empirical observations guide Gemel’s approach to
tackling the challenges in §4.2. We describe them in turn.
Observation 1: power-law memory distributions. We find
that vision DNNs commonly exhibit power-law distributions
in terms of memory usage, whereby a few “heavy-hitter”
layers account for most of the overall model’s memory con-
sumption. Figure 10 illustrates this, showing that for 80%
of considered models, 15% of the layers account for 60-91%
of memory usage. For example, a single layer in VGG16
is responsible for 392 MB (the entire model is 536 MB) and
corresponds to the steep slope around the x=80% mark. Sim-
ilarly, Tiny YOLOv3 has three layers (around the 38%, 45%,
and 65% marks) that together use 35 MB of its total 42 MB.

Heavy-hitter layers come in one of two forms. The first
are the convolutional layers at the end of the feature extrac-
tor that condense the numerous low-level features extracted
by prior layers (e.g., shapes, colors) into higher-level, more
abstract features (e.g., eyes, nose). The second are the subse-
quent fully-connected layer(s) that learn more robust patterns
from all possible combinations of those high-level features,
e.g., eyes, nose, and fur might each suggest a dog, but the
combination is a stronger indicator. Note that models gen-
erally include one such fully-connected layer per sub-task,
e.g., detectors have one for finding bounding boxes and one
for classifying objects. Memory-heavy fully-connected lay-
ers are spatially close to one another (within a few layers),
and are usually followed by 1-2 cheap fully-connected lay-
ers that extract predictions from the final feature vector.

The main exception is ResNet, whose models use resid-
ual layers to address accuracy saturation limitations of
prior deep models [47]. ResNet models have memory-
heavy ResNet blocks (set of convolutional layers) that repeat
at varying frequencies, thereby distributing memory more

0 20 40 60 80 100
% Layers

0
20
40
60
80

100

Cu
m

ul
at

iv
e

%
 o

f
M

em
or

y
(M

B)

FasterRCNN-R50
Tiny YOLOv3

YOLOv3
VGG16

ResNet152
ResNet101

SSD-VGG
SSD-Mobilenet

Figure 10: Cumulative memory consumed by each model’s lay-
ers moving from start to end of the model. §A.4 has full legend.

evenly across the models, e.g., ResNet101 and ResNet152
repeat the same ResNet block 23 and 36×, leading to grad-
ual slopes in Figure 10. DenseNet has the same pattern [51].

Figure 10 also shows that heavy-hitter layers most often
appear in the latter half of a model’s architecture (since both
forms involve condensing features from earlier layers), com-
plicating the use of stem sharing for memory savings (§4.2).
For example, Faster RCNN’s expensive fully-connected lay-
ers fall at layers 101 and 104 out of 106, and together account
for 76% of total memory. The few cases with heavy-hitters
in the middle of a model (between the 20-60% marks) are
“single-shot” detectors (SSD-VGG, SSD-Mobilenet, Tiny
YOLOv3, YOLOv3) that find bounding boxes and classify
objects at once, rather than as disparate subtasks. These
models replace the few memory-heavy fully-connected lay-
ers (for those subtasks) with many cheaper convolutional
layers; doing so extends model lengths and shifts the large
jump from memory-heavy feature extractor layers to earlier.

These observations have two implications on merging.
First, strategies can reap most potential memory benefits by
targeting the few heavy-hitter layers in models. Thus, the
tension between memory savings and accuracy is far more
favorable than that between the number of shared layers and
accuracy (Figure 8). Second, strategies should be agnostic to
the position of heavy hitters in models, and must support the
common case where heavy hitters appear towards the end.

Observation 2: independence of per-layer merging deci-
sions. In DNNs, layers are configured based on input for-
mats, target task, execution time, etc. Hence, a natural as-
sumption is that the ability to share any one layer is depen-
dent on sharing decisions for other layers, e.g., a layer may
be shareable if and only if other layers are shared. Prior work
has highlighted that inter-layer dependencies primarily arise
between neighboring layers, e.g., with transfer learning, per-
formance drops are largest when splitting neighboring lay-
ers [112]. Thus, to determine the existence of layer-wise
dependencies as it pertains to merging, we focus our analy-
sis on (potential) dependencies between neighboring layers;
we also consider other layers via random selection. Using
the 25% most memory-heavy layers for each model in our
workloads, we test whether accuracy targets are met under
different sharing configurations (described in Table 2).

980 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Only Alone Only Alternate Both Neither
1 Each Side 1.1% 0.0% 97.6% 1.3%
2 Each Side 3.7% 0.0% 95.0% 1.3%
Random 8.5% 0.0% 90.2% 1.3%

Table 2: Sharing a layer alone vs. alternate approaches (shar-
ing a layer with one or two neighbors on each side, or with 3
random sets of 1-10 layers). Results are % of runs that meet
accuracy targets (aggregated across 80, 90, 95%), and list cases
where the layer alone met but an alternate did not, an alternate
met but the layer alone did not, both met, and neither met.

As shown, we never observe a case where a layer is unable
to meet an accuracy target on its own, but it is able to meet
the accuracy target when some other layers are also shared
(shaded row in Table 2). This is consistent with our finding
that sharing more layers leads to larger accuracy degrada-
tions (Figure 8) since additional constraints are placed on
the weights for those layers, and fewer (unconstrained) non-
shared layers exist to help satisfy the constraints. The impli-
cation is that layers can be considered independently during
merging without harming their potential merging success.
Takeaway. Collectively, these observations motivate an in-
cremental merging process (detailed in §5.3) that attempts
to share one new layer at a time, and prioritizes heavy-
hitter layers that consume the most memory (and are thus the
most fruitful to share). In this manner, memory-heavy layers
are considered in the most favorable settings (i.e., with the
fewest other shared layers), and each increment only mod-
estly adds to the likelihood of not meeting accuracy targets.
Note. Despite arising across our diverse workloads, these
observations are not guarantees. Importantly, violation of
these observations only results in merging delays (inefficien-
cies), but not accuracy breaches; accuracy is explicitly vetted
prior to shipping merged models to the edge for inference.

5.3 Merging Heuristic

Gemel begins by enumerating the layers that appear in a
workload, and annotating each with a listing of which mod-
els the layer appears in (and where) and the total memory it
consumes across the workload; we refer to all appearances
of a given layer as a ‘group.’ Gemel then sorts this list in
descending order of memory consumption, e.g., a 100 MB
layer that appears in 4 models would be earlier than a 120
MB layer that appears 3 times. Thus, memory-heavy groups,
or those that would yield the largest memory savings if suc-
cessfully merged, are towards the start of the list.

Gemel then maintains a running merging configuration,
and simultaneously merges and trains layers across models
in an incremental fashion. To begin, Gemel selects the first
group from the sorted list (i.e., the one that consumes the
most memory in the workload) and attempts to share it across
all of the models in which it appears; this group is added to
the running configuration. While a subset of models could be
considered instead, Gemel aggressively opts to first try shar-
ing across all models in the group, and then to selectively
remove appearances of the layer when the resulting accuracy

is insufficient. The reason is that we did not observe any
model clustering strategies (e.g., based on task) that identi-
fied models consistently unable to share layers.

To retrain and merge the current running configuration,
Gemel selects initial weights for the newly added group from
a random model that includes that layer. We tried selecting
weights from each model (including the one with the highest
accuracy) but found no difference in the # of epochs needed
to meet accuracy. We also tried default initialization tech-
niques (e.g., Kaiming [48]), which led to lower accuracy. Re-
training continues until the merged models each meet their
accuracy targets, or a preset time budget elapses (10 epochs
by default). If retraining is successful, Gemel adds the next
group in the sorted list to the running configuration, and re-
sumes retraining from the weights at the end of the previous
iteration. The generated merged models are sent to the edge
box and incorporated into edge inference (§5.4).

If retraining is not successful at the end of an iteration,
Gemel must decide whether to prune layers from the cur-
rent group and try again, or to discard the group altogether
and move on to the next one in the sorted list. To do this,
Gemel follows a strategy that aims to balance fast memory
savings and avoidance of unsuccessful training rounds, with
priority on the latter since failures can consume 3-10 epochs
(each up to 30 min) and provide no new memory savings.
Specifically, recall that each time a new group is considered,
the number of shared layers in the merging configuration
grows by the size of the group. To counter this ‘additive in-
crease,’ upon unsuccessful retraining, Gemel halves the cur-
rent group, eliminating half of the layer appearances. If the
resulting layer appearances consume more memory than the
next group, Gemel considers those layers; else, Gemel re-
moves the current group from the running policy, and moves
to the next one. In either case, retraining resumes from the
weights at the end of the last successful iteration. We com-
pare against alternate merging heuristics in §6.2.

Accelerating retraining. Each iteration requires Gemel to
run retraining over many epochs, and validate the results
accuracy-wise. To accelerate training and validation, Gemel
takes an adaptive approach. During validation, as per-model
accuracy values approach their targets, it is often unneces-
sary to train further on full epochs of data. Instead, Gemel
reduces the training data once the accuracy is within a pre-
defined threshold of the target. Specifically, Gemel reduces
the amount of data so it is inversely proportional to the gap in
accuracy normalized by the lift since the previous training.
Reducing data on such early success directly translates to
lower training times. Similarly, Gemel detects early failures
by looking at the validation results and removing models that
are not improving at the same pace as the others after some
time (3 epochs by default). We empirically observe that early
success and early failure detection drastically (28% on aver-
age) reduces retraining times.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 981

LP MP HP0

25

50

Ac
cu

ra
cy

Im
pr

ov
em

en
t

(%
)

Min
25%
75%

Figure 11: Accuracy improvements with Gemel compared to
time/space-sharing alone for different GPU memories (defined
in §2). Bars list median workloads, with error bars as min-max.

5.4 Edge Inference

Upon receiving a new set of merged models from Gemel’s
cloud component, an edge server quickly incorporates those
models into its inference schedule. However, to ensure that
merging benefits are maximized, the schedule is altered to
reduce the amount of data that must be loaded across the
anticipated swaps. During the offline profiling Nexus uses to
select per-model batch sizes, Gemel estimates per-workload-
iteration swapping delays based on per-model computation
costs and swapping delays (both influenced by merging).
The idea is that, when merging is used, in addition to or-
dering models to reduce the number of swaps, models that
share the most layers should be placed next to one another in
the load order. This lowers the cost of each swap by enabling
finer-grained swapping, where only those layers in the next
model that are not already in GPU memory must be loaded.

More generally, all schedulers will reap merging benefits
in the event that Gemel enables a workload to entirely fit
on an edge box (without swapping). Additional benefits de-
pend on the specific scheduler. For schedulers that employ a
statically-configured load order [81, 94], Gemel can directly
modify the schedule as described above to maximize bene-
fits. Other schedulers [39] dynamically select the load order
to optimize for a certain metric. Such schedulers typically
incorporate model loading times when estimating the effi-
cacy of different orders, and thus would naturally factor in
the effects of merging per swap. Note that merging benefits
would be considered in the context of meeting the optimiza-
tion metric(s) rather than minimizing global loading delays
(as in Gemel’s Nexus variant). Lastly, schedulers that ig-
nore load times in favor of policies such as FIFO [105] or
priority scheduling [111] will only see merging-induced re-
ductions in loading costs if merged models are (by chance)
neighbors in the order. Note that finer-grained [50, 110] and
space-sharing [9,14,17,21] schedulers follow the same prin-
ciples: shared layers should be adjacent in the load orders for
the former, while models with the most shared layers should
be placed in the same GPU partition for the latter.

6 Evaluation
We primarily evaluated Gemel across the diverse workloads
and settings from §2. Our key findings are:
• Gemel improves per-workload accuracies by 8-39% com-

pared to time/space-sharing strategies alone; these im-

0

50

100

%
 S

av
in

gs

L1 L2 L3 M1M2M3M4M5M6H1H2H3H4H5H6
Workloads

0

10

Ra
w

Sa
vi

ng
s

(G
B)

Figure 12: Gemel’s per-workload memory savings. Lines above
bars show the theoretical optimal savings from Figure 6.

provements result from Gemel processing 13-44% more
frames (while adhering to SLAs).

• Gemel lowers memory needs by 17.5-60.7% (0.2-5.1 GB);
savings are 5.9-52.3% more than Mainstream [59] (stem
sharing), and within 9.3-29.0% of an optimal that ignores
weights (and accuracy drops) when sharing layers.

• More than 70% of Gemel’s memory savings are achieved
within the first 24-210 minutes of merging+retraining due
to its incremental merging heuristic.

6.1 Overall Performance

End-to-end Accuracy Improvements. We first compare
Gemel with time/space-sharing solutions alone, i.e., the
Nexus variant running with only unmerged (original) mod-
els. Our experiments consider all workloads and resource
settings from §2, a per-frame processing SLA of 100 ms,
and an accuracy target of 95%; trends hold for other accu-
racy targets and SLAs, which we consider in §6.2.

Figure 11 presents our results, showing that Gemel im-
proves accuracy by 8.0%, 13.5%, and 39.1% for the median
LP, MP, and HP workloads, respectively, when the edge box
GPU’s memory is just enough to load and run the largest
model in each workload, i.e., the min setting. The origin of
these benefits is Gemel’s ability to reduce the time blocked
on swapping delays by 17.9-84.0%, which enables process-
ing on 13-44% more frames than without merging.

Our results highlight two other points. First, Gemel’s ben-
efits are highest for workloads that are most significantly bot-
tlenecked by memory restrictions (and thus loading costs).
For instance, workloads HP1 and LP1 exhibit largely dif-
ferent memory vs. computation profiles: loading costs are
66% of computation costs in the former, but only 15% in the
latter. Accordingly, Gemel’s accuracy wins across the avail-
able memory settings are 11-60% and 5-16% for workloads
HP1 and LP1. Second, Figure 11 shows that, as expected,
Gemel’s benefits per workload decrease as the available GPU
memory grows, e.g., accuracy improvements drop to 17.5%
and 10.2% for the median MP workload when GPU memory
grows to 50% and 75% of the total workload memory needs.
The reason is straightforward: larger GPU memory yields
fewer required swaps without merging.

982 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

LP MP HP0

50

100
M

em
or

y
Sa

ve
d

(%
) Optimal

Gemel
Mainstream

Figure 13: Memory savings with Gemel, an optimal that ignores
accuracy, and Mainstream [59]. Bars list the median workload
per class, with error bars spanning min to max.

Memory Reductions. Figure 12 lists the memory reduc-
tions that Gemel delivers for each considered workload by
sharing model layers and the associated weights, i.e., pa-
rameter reductions. We note that reported values here are
based on Gemel’s final merging results and an accuracy tar-
get of 95%; we analyze the incremental nature of Gemel’s
merging heuristic in §6.2. As shown, parameter reductions
are 17.5-33.9% for LP workloads, 28.6-46.9% for MP work-
loads, and 40.9-60.7% for HP workloads; the corresponding
raw memory savings are 0.2-0.3 GB, 0.2-0.8 GB, and 0.7-5.1
GB, respectively. When analyzed in terms of overall mem-
ory usage during inference (i.e., including the parameters, in-
ference framework, and intermediate data generated during
model execution), reductions are 4.5-48.1% across the work-
loads. Wins are generally higher for workloads with larger
parameter reductions, with the exception of Workloads LP1
and LP3 (reductions of 6.3% and 4.5%) whose intermediates
are particularly large relative to the parameters.

To better contextualize the above memory savings, we
compare Gemel with two alternatives. First, we consider a
theoretical optimal (Optimal) that shares all layers that are
architecturally identical across a workload’s models, without
considering accuracy (and the need to find shared weights
for those layers). Thus, Optimal represents an upper bound
on Gemel’s potential memory savings. Second, we compare
with Mainstream [59], a recent stem-sharing approach. To
run Mainstream, we trained each model in our workloads
several times, each time starting with pre-trained weights
(based on ImageNet [90]) and freezing up to different points,
e.g., freeze up to layer 10, freeze up to layer 15, etc. We
selected the configuration for each model that kept the most
layers frozen while meeting the accuracy target (95% relative
to no freezing). Then, within each workload, we merged all
layers that were shared across the frozen layer set of the con-
stituent models (note that these layers have identical weights)
and recorded the resultant memory savings.

Figure 13 shows our results, from which we draw two con-
clusions. First, Gemel’s memory savings are within 9.3%,
15.0%, and 29.0% of Optimal for the median LP, MP, and
HP workloads. Second, Gemel’s memory reductions are 5.9-
52.3% larger than Mainstream’s across all workloads. This
is a direct consequence of Gemel’s prioritization of memory-
heavy layers that routinely appear towards the end of mod-
els (§5.2). By requiring shared stems from the start of the
models, Mainstream would have to share all layers up to the

0 200 400 600
Time (Min)

0

50

M
em

or
y

Sa
ve

d
(%

)

LP
MP
HP

0 200 400 600
Time (Min)

0

10

20

Cu
m

ul
at

iv
e

BW
Us

ag
e

(G
B) LP

MP
HP

Figure 14: Gemel’s memory savings (left) and cloud-to-edge
bandwidth usage (right) over time during incremental merging.
Results show the median workload per class.

memory-heavy ones; we find that sharing nearly-entire mod-
els is rarely possible while meeting accuracy targets (Fig-
ure 8). The high variance in Mainstream’s results are due
to the fact that different models drop in accuracy at different
rates when more layers are frozen. Classifiers drop relatively
slowly (savings up to 70.1%), while detectors are a harder
task with faster accuracy drops (Mainstream was unable to
share many layers, with savings as low as 1.0%).

6.2 Analyzing Gemel
Incremental memory savings. Key to Gemel’s practicality
are its efficient merging heuristic and retraining optimiza-
tions that aim to reap memory savings early in the process;
indeed, this is important not only to reap accuracy-friendly
memory wins quickly, but also to quickly respond to work-
load changes. As shown in Figure 14 (left), 73% of Gemel’s
achieved memory savings for the median HP workload are
realized within the first 24 minutes of merging. Similarly,
86% and 64% of the total memory savings are achieved in
the first 42 and 210 minutes of merging for median MP and
LP workloads, respectively.
Network bandwidth usage. After each successful merg-
ing iteration, Gemel ships weights to edge servers for all
updated models. As shown in Figure 14 (right), cumula-
tive bandwidth usage during merging is 6.0-19.4 GB for
the three workloads. Importantly, bandwidth consumption
largely grows after substantial memory savings are already
reaped. For example, for the median MP workload, 86% of
memory savings are achieved in 42 minutes, while only 2.1
GB (of the total 6.0 GB) of bandwidth is used during that
time. The reason is that later merging iterations explore the
larger number of lower-memory layers. Thus, Gemel can
often deliver large memory savings even in constrained set-
tings with bandwidth caps. Note that shipping weights uses
cloud-to-edge (not precious edge-to-cloud) bandwidth.
Micro-benchmarks. We profile the time spent in each of
Gemel’s components. Training delays are configurable (Fig-
ure 14), but dominate cloud merging, with the remaining
<2% of time spent on identifying shareable layers (0.7-1.4s
per workload) and serializing/saving weights from success-
ful training (9.1-19.5s per round). The majority of time spent
at the edge steadily shifts from model loading to inference as
Gemel’s incremental merging results stream in; at the me-
dian, time spent blocked reduces from 32.8%, 48.3%, and
52.0% to 22.1%, 34.6%, and 27.9% for the LP, MP, and HP

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 983

LP MP HP0
10
20
30
40
50

Ge
m

el
 A

cc
ur

ac
y

W
in

s (
%

)
Varied Accuracy Target

80%
85%
90%
95%

LP MP HP

Varied FPS
5
10
20
30

LP MP HP

Varied SLA
100
200
300
400

Figure 15: Gemel’s accuracy wins (compared to time/space-sharing alone) with varied accuracy targets, FPS, and SLAs.

workloads respectively. Applying results takes <.15s and is
not blocking.

Varying accuracy, FPS, and SLA. To evaluate the impact
of each parameter, we conducted experiments using one ran-
domly selected workload from each class. In each experi-
ment, we only vary one parameter, while keeping the other
two at the fixed values from above (95%, 30 FPS, 100 ms).

Figure 15 presents our results, which exhibit three trends.
First, Gemel’s accuracy wins over time/space-sharing alone
grow (by 1.1-7.8% for the three workloads) as accuracy tar-
gets drop (from 95% to 80%). This is because certain layers
failed to meet 95% during retraining, but did meet a lower
accuracy target. Second, Gemel’s accuracy wins drop as in-
put video frame rates (FPS) drop, e.g., from 6.2-42% across
the workloads when FPS drops from 30 fps to 5 fps. The rea-
son is that lower FPS values reduce the amount of inference
in any time window (assuming a fixed SLA), which in turn
adds tolerance to high loading delays. Third, Gemel’s ben-
efits grow as SLAs become stricter: accuracy wins for the
three workloads rise by 0.4-2.3% when SLA drops from 400
to 100 ms. This is because tighter SLAs imply more skipped
frames for a given swapping delay.

Comparison to other merging heuristics. We consider
variants that differ from Gemel in one of two ways: they
choose layers to merge in a different order or they merge a
different number of layers at a time. We describe the variants
of each type below, along with the corresponding results.
Our experiments use all workloads from §2, and we report
memory saved over time. Figure 16 shows results for two
representative workloads (HP3, MP2); the remaining work-
load results are in §A.4. In summary, no variant consistently
outperforms Gemel, and the degradations (in saved mem-
ory or merging delays) that each brings to certain workloads
(from being overly aggressive or cautious) are substantial.

Rather than merging layers in descending order of mem-
ory usage (irrespective of position) as Gemel does, the vari-
ants we consider start by merging the models’ earliest lay-
ers (Earliest), latest layers (Latest), and three random layer
orderings (Random). Across all workloads, these heuristics
all resulted in significantly lower memory savings. Among
the three, Latest performed the best (median of 13.5% of
Gemel’s savings), as memory-heavy layers often appear later
in a model (but not necessarily the end). For the same rea-

0 100 200 3000

1

2

M
em

or
y

Sa
ve

d
(G

B)

0 100 200 300

0.05

0.10

0.0 0.2 0.4 0.6 0.8 1.0
Time (min)

0.0

0.5

1.0 Workload
HP3

Workload
MP2

GEMEL
TwoGroup

Earliest
Latest

Random
OneModelAtATime

Figure 16: Comparing variants of Gemel’s merging heuristic
on two representative workloads.

son, Earliest performed the worst (0.2% of Gemel’s savings).
Random’s performance varied dramatically (0.2% - 72.9%,
median of 5.7% of Gemel’s savings) based on whether a
memory-heavy layer was selected.

We consider two variants to Gemel’s approach of adding
one layer group at a time across all models that layer appears
in. First, TwoGroup more aggressively adds two groups at a
time. This can result in faster memory savings than Gemel
(3/15 workloads, including Figure 16 (left)), but most often
(8/15 workloads) misses accuracy targets and results in sub-
stantial slowdowns (78 min longer to max savings for the
median workload). The reason is that, on failure, TwoGroup
restarts training with 1 group, adding long delay without
memory savings, e.g., x=75-220 min in Figure 16 (right).
Second, OneModelAtATime less aggressively shares the se-
lected group’s layer iteratively across the models it appears
in. This reaches within 5% of Gemel’s memory savings in
8/15 workloads, but is often unnecessarily slow, e.g., in Fig-
ure 16 (left), Gemel successfully considers 5 models at once,
while OneModelAtATime individually adds models (some of
which fail) leading to the flat stretch from 0-91 min.

6.3 Generalization Study

We evaluate Gemel on over 850 more workloads that extend
our main ones by adding: (1) new scene types and the ob-
jects they bring (e.g., bags, hats, and people at a beach, boats
in a canal), and (2) new models, including more variants in
the same families (e.g., ResNet, VGG), and entirely new ar-
chitectures (e.g., GoogLeNet [101], DenseNet [51]). In total,
our analysis involves 17 videos (8 scene types), 13 objects,
and 16 models; the extended version [82] lists the values.
Constructing workloads. Each query in a workload is pa-
rameterized by a set of knobs: camera feed (and correspond-
ing scene type), model, and object of interest. To study the

984 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

C O M CO CM
Knob(s) varied per workload

50

100
%

 P
os

sib
le

M
em

or
y

Sa
ve

d

2 Queries
3 Queries
4 Queries
5 Queries

Figure 17: Memory savings across subset of generalization
workloads, organized by workload size (color) and knobs var-
ied (Camera, Object, Model). Distributions show median and
25-75%ile; accuracy target was 95%. Figure 22 has full graph.

impact of varying each knob (or combination of knobs) on
Gemel’s merging, we construct workloads as follows. For
each set of target knobs to vary, we start with a random query
and incrementally add new queries that only vary values for
the target knobs to generate workloads with 2-5 queries each.
We did this up to 30 times each for all target knob sets (as
their values permit), excluding only (1) target knob sets that
vary the scene but not camera knob, (2) queries for an object
that never appears in a given camera feed, and (3) workloads
with no possible memory sharing opportunities.

Findings. As shown in Figure 17, Gemel’s memory sav-
ings are high for 2-query workloads (89-98% of optimal at
medians), but steadily degrade as workloads grow. This is
expected as increasing workload size is (by design, and unre-
alistically) increasing heterogeneity in this experiment. The
nature of degradation depends on the knob(s) being varied.
For all combinations of {camera, object, scene}, degrada-
tions are mild moving from 2- to 5-query workloads (0-8%),
showing Gemel’s robustness to variations on those proper-
ties. Since model is constant in these cases, degradations are
because the same set of shareable layers must support more
diverse scenarios (making it harder to find shared weights).

The Model knob (alone or with other knobs) presents a
different picture, with larger drops in median memory sav-
ings (2-33%) and broader distributions. We can decompose
this into two aspects as workload sizes increase:

• Previously-shared layers appear in the new model: the
effect on memory savings heavily depends on where the
shared layer appears in the new model; recall that layers
can appear in different positions (and thus, serve different
roles) across models (Figure 19). Cases where the new
model introduces drastically different positions for shared
layers (e.g., ResNet variants) account for the low-end of
the resultant distributions, while memory savings largely
persist when positions of shared layer(s) are similar in the
new model (e.g., merging across VGG variants).

• New layers are shareable with the new model: the extra
sharing opportunities increase potential savings, but are
more challenging to realize as they reduce the number of
non-shared layers whose weights help compensate for the
constraints from sharing (§4.2).

7 Additional Related Work
Certain systems reuse model components [91], most relat-
edly via stem sharing for compute savings [59] or sharing
operators with identical weights anywhere in models [68]; in
contrast, Gemel targets memory savings, and enables shar-
ing architecturally-identical layers anywhere in models even
if they have different weights. Layer sharing in multi-task
learning is often studied in the context of transfer learning,
where models for a task with insufficient data leverage the
dataset of a related task [30,99,103]; Gemel considers multi-
ple sets of pretrained weights for sharing, each with different
goals (e.g., detection vs. classification, different objects).

Other platforms optimize model serving either by tun-
ing video analytics-specific knobs to lower compute foot-
prints [29,35,49,55,60,61,87,109,116,117], or by identify-
ing lightweight variants of individual models that match spe-
cific hardware resources [45, 89]; Gemel focuses on mem-
ory (not compute) bottlenecks, and optimizes across models.
Some frameworks reuse results across frames [31,33,42,67,
71], reducing frame rates for inference and alleviating the
impact of model loading delays. Gemel provides benefits
at lower FPS (§6.2), and also can alleviate memory pressure
across spatially correlated feeds that exhibit limited reuse op-
portunities at the same time (§3.2).

There exist training optimizations that trade off memory
usage for computation overheads [83, 86, 93]; we eschew
such techniques given the holistic constraint on compute re-
sources that edge boxes face (§1). Finally, another body of
work develops metrics to quantify how similar models will
behave [41, 58, 72]. While Gemel does not consider model
similarity metrics in its heuristic (we quantitatively observe
that ‘model similarity’ is not reflected in layer merging po-
tential), we leave it to future work to explore the relationship
between ‘model similarity’ and ‘layer similarity’ in improv-
ing Gemel’s prediction of layer merging potential.

8 Conclusion
Model merging is a new memory management technique
that exploits architectural similarities across vision DNNs by
sharing their common layers (including parameters but not
intermediates). Gemel efficiently carries out model merg-
ing by quickly finding and retraining accuracy-preserving
layer sharing configurations, and scheduling edge inference
to maximize merging benefits (8-39% accuracy boosts).

Acknowledgements. We thank Ramesh Govindan and Jen-
nifer Rexford for their valuable feedback on earlier drafts
of the paper. We thank our shepherd, Wenjun Hu, and
the anonymous NSDI reviewers for their constructive com-
ments. This work was supported in part by a Sloan
Research Fellowship, research grants from Cisco, ONR
grant N00014-18-1-2037, and NSF CNS grants 2152313,
2153449, 2147909, 2140552, 1703598, 1763172, 1907352,
2007737, 2006437, 2128653, and 2106838.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 985

References
[1] Absolutely everywhere in beijing is now covered by

police video surveillance. https://qz.com/518874/.

[2] Are we ready for ai-powered security cameras? https:
/ / thenewstack . io / are - we - ready - for - ai - powered -
security-cameras/.

[3] AWS Outposts. https://aws.amazon.com/outposts/.

[4] Azure Stack Edge. https://azure.microsoft.com/en-
us/products/azure-stack/edge/.

[5] British transport police: Cctv. http : / / www.
btp.police.uk/advice and information/safety on and
near the railway/cctv.aspx.

[6] Can 30,000 cameras help solve chicago’s crime prob-
lem? https://www.nytimes.com/2018/05/26/us/
chicago-police-surveillance.html.

[7] Edge computing at chick-fil-a. https : / /medium.
com/@cfatechblog/edge-computing-at-chick-fil-a-
7d67242675e2.

[8] NVIDIA Jetson: The AI platform for edge comput-
ing. https://www.nvidia.com/en- us/autonomous-
machines/embedded-systems/.

[9] NVIDIA Multi-Instance GPU . https://www.nvidia.
com/en-us/technologies/multi-instance-gpu/.

[10] Paris hospitals to get 1,500 cctv cameras to combat
violence against staff. https://bit.ly/2OYiBz2.

[11] Powering the edge with ai in an iot world. https://
www.forbes.com/sites/forbestechcouncil/2020/04/06/
powering-the-edge-with-ai-in-an-iot-world/.

[12] Video analytics applications in retail - beyond secu-
rity. https://www.securityinformed.com/insights/co-
2603-ga-co-2214-ga-co-1880-ga.16620.html/.

[13] The vision zero initiative. http : / / www .
visionzeroinitiative.com/.

[14] Cuda multi-process service, April 2021.

[15] Live Video Analytics with Microsoft Rocket for re-
ducing edge compute costs, May 2021.

[16] Microsoft rocket video analytics platform, April 2021.

[17] NVIDIA TensorRT, April 2021.

[18] Pytorch, April 2021.

[19] Pytorch-yolov3. https://github.com/eriklindernoren/
PyTorch-YOLOv3, 2021.

[20] Traffic Video Analytics – Case Study Report, May
2021.

[21] R. B. , Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu,
N. Karianakis, K. Hsieh, V. Bahl, and I. Stoica. Ekya:
Continuous learning of video analytics models on
edge compute servers. In USENIX NSDI, April 2022.

[22] M. Alam, M. Samad, L. Vidyaratne, A. Glandon,
and K. Iftekharuddin. Survey on deep neural net-
works in speech and vision systems. Neurocomputing,
417:302–321, 2020.

[23] Z. Allen-Zhu, Y. Li, and Y. Liang. Learning and gen-
eralization in overparameterized neural networks, go-
ing beyond two layers. CoRR, abs/1811.04918, 2018.

[24] Amazon. Rekognition. https://aws.amazon.com/
rekognition/.

[25] G. Ananthanarayanan, V. Bahl, L. Cox, A. Crown,
S. Nogbahi, and Y. Shu. Video analytics - killer
app for edge computing. In Proceedings of the 17th
Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’19, pages 695–
696, New York, NY, USA, 2019. Association for
Computing Machinery.

[26] Z. Bai, Z. Zhang, Y. Zhu, and X. Jin. Pipeswitch:
Fast pipelined context switching for deep learning ap-
plications. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
499–514. USENIX Association, Nov. 2020.

[27] S. Brutzer, B. Hoferlin, and G. Heidemann. Evalu-
ation of background subtraction techniques for video
surveillance. In Proceedings of the 2011 IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR ’11, pages 1937–1944, Washington, DC, USA,
2011. IEEE Computer Society.

[28] Z. Cai, M. Saberian, and N. Vasconcelos. Learning
complexity-aware cascades for deep pedestrian de-
tection. In Proceedings of the 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), ICCV
’15, pages 3361–3369, Washington, DC, USA, 2015.
IEEE Computer Society.

[29] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G.
Andersen, M. Kaminsky, and S. R. Dulloor. Scal-
ing video analytics on constrained edge nodes. In 2nd
SysML Conference, 2019.

[30] R. Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997.

986 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://qz.com/518874/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
https://thenewstack.io/are-we-ready-for-ai-powered-security-cameras/
https://aws.amazon.com/outposts/
https://azure.microsoft.com/en-us/products/azure-stack/edge/
https://azure.microsoft.com/en-us/products/azure-stack/edge/
http://www.btp.police.uk/advice_and_information/safety_on_and_near_the_railway/cctv.aspx
http://www.btp.police.uk/advice_and_information/safety_on_and_near_the_railway/cctv.aspx
http://www.btp.police.uk/advice_and_information/safety_on_and_near_the_railway/cctv.aspx
https://www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html
https://www.nytimes.com/2018/05/26/us/chicago-police-surveillance.html
https://medium.com/@cfatechblog/edge-computing-at-chick-fil-a-7d67242675e2
https://medium.com/@cfatechblog/edge-computing-at-chick-fil-a-7d67242675e2
https://medium.com/@cfatechblog/edge-computing-at-chick-fil-a-7d67242675e2
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://bit.ly/2OYiBz2
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.forbes.com/sites/forbestechcouncil/2020/04/06/powering-the-edge-with-ai-in-an-iot-world/
https://www.securityinformed.com/insights/co-2603-ga-co-2214-ga-co-1880-ga.16620.html/
https://www.securityinformed.com/insights/co-2603-ga-co-2214-ga-co-1880-ga.16620.html/
http://www.visionzeroinitiative.com/
http://www.visionzeroinitiative.com/
https://github.com/eriklindernoren/PyTorch-YOLOv3
https://github.com/eriklindernoren/PyTorch-YOLOv3
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/

[31] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and
H. Balakrishnan. Glimpse: Continuous, real-time ob-
ject recognition on mobile devices. In Proceedings of
the 13th ACM Conference on Embedded Networked
Sensor Systems, pages 155–168, 2015.

[32] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F.
Wenisch. The mystery machine: End-to-end perfor-
mance analysis of large-scale internet services. OSDI,
2014.

[33] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E.
Gonzalez, and I. Stoica. Clipper: A Low-Latency on-
line prediction serving system. In 14th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 17), pages 613–627, Boston, MA, Mar.
2017. USENIX Association.

[34] S. R. E. Datondji, Y. Dupuis, P. Subirats, and
P. Vasseur. A survey of vision-based traffic monitoring
of road intersections. Trans. Intell. Transport. Sys.,
17(10):2681–2698, Oct. 2016.

[35] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang,
H. Hoffmann, and J. Jiang. Server-driven video
streaming for deep learning inference. In Proceed-
ings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Ap-
plications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’20, page
557–570, New York, NY, USA, 2020. Association for
Computing Machinery.

[36] M. Everingham, L. Gool, C. K. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes
(voc) challenge. Int. J. Comput. Vision, 88(2):303–
338, June 2010.

[37] Google. Google edge network. https://peering.google.
com/#/infrastructure, 2016.

[38] Google. Cloud vision api. https://cloud.google.com/
vision, 2021.

[39] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kauf-
mann, Y. Vigfusson, and J. Mace. Serving dnns like
clockwork: Performance predictability from the bot-
tom up. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
443–462. USENIX Association, Nov. 2020.

[40] P. Guo, B. Hu, and W. Hu. Mistify: Automating DNN
model porting for on-device inference at the edge. In
18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 705–719.
USENIX Association, Apr. 2021.

[41] P. Guo, B. Hu, and W. Hu. Sommelier: Curating dnn
models for the masses. In Proceedings of the 2022

International Conference on Management of Data,
pages 1876–1890, 2022.

[42] P. Guo and W. Hu. Potluck: Cross-application approx-
imate deduplication for computation-intensive mobile
applications. SIGPLAN Not., 53(2):271–284, mar
2018.

[43] HAILO. Edge AI Box. https://hailo.ai/reference-
platform/edge-ai-box/, 2021.

[44] B. Han, F. Qian, L. Ji, and V. Gopalakrishnan. Mp-
dash: Adaptive video streaming over preference-
aware multipath. In Proceedings of the 12th In-
ternational on Conference on Emerging Networking
EXperiments and Technologies, CoNEXT ’16, pages
129–143, New York, NY, USA, 2016. ACM.

[45] S. Han, H. Shen, M. Philipose, S. Agarwal,
A. Wolman, and A. Krishnamurthy. Mcdnn: An
approximation-based execution framework for deep
stream processing under resource constraints. In Pro-
ceedings of the 14th Annual International Conference
on Mobile Systems, Applications, and Services, Mo-
biSys ’16, page 123–136, New York, NY, USA, 2016.
Association for Computing Machinery.

[46] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick.
Mask R-CNN. CoRR, abs/1703.06870, 2017.

[47] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition, 2015.

[48] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification. CoRR, abs/1502.01852,
2015.

[49] K. Hsieh, G. Ananthanarayanan, P. Bodik,
S. Venkataraman, P. Bahl, M. Philipose, P. B.
Gibbons, and O. Mutlu. Focus: Querying large
video datasets with low latency and low cost. In 13th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 269–286,
Carlsbad, CA, Oct. 2018. USENIX Association.

[50] C.-C. Huang, G. Jin, and J. Li. Swapadvisor: Pushing
deep learning beyond the gpu memory limit via smart
swapping. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, AS-
PLOS ’20, page 1341–1355, New York, NY, USA,
2020. Association for Computing Machinery.

[51] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Wein-
berger. Densely connected convolutional networks,
2016.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 987

https://peering.google.com/#/infrastructure
https://peering.google.com/#/infrastructure
https://cloud.google.com/vision
https://cloud.google.com/vision
https://hailo.ai/reference-platform/edge-ai-box/
https://hailo.ai/reference-platform/edge-ai-box/

[52] J. Hui. Object detection: speed and accuracy compar-
ison (Faster R-CNN, R-FCN, SSD, FPN, RetinaNet
and YOLOv3). https://jonathan-hui.medium.com/
object- detection- speed- and- accuracy- comparison-
faster - r - cnn - r - fcn - ssd - and - yolo - 5425656ae359,
2018.

[53] C. Hung, G. Ananthanarayanan, P. Bodik, L. Gol-
ubchik, M. Yu, P. Bahl, and M. Philipose. Videoedge:
Processing camera streams using hierarchical clusters.
In 2018 IEEE/ACM Symposium on Edge Computing
(SEC), pages 115–131, Oct 2018.

[54] IBM. Maximo remote monitoring. https://www.ibm.
com/products/maximo/remote-monitoring, 2021.

[55] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan,
J. Jiang, Y. Shu, V. Bahl, and J. Gonzalez. Spatula: Ef-
ficient cross-camera video analytics on large camera
networks. In ACM/IEEE Symposium on Edge Com-
puting (SEC 2020), November 2020.

[56] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian,
W. Xiao, and F. Yang. Analysis of large-scale
multi-tenant GPU clusters for DNN training work-
loads. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 947–960, Renton, WA, July
2019. USENIX Association.

[57] M. Jeon, S. Venkataraman, J. Qian, A. Phanishayee,
W. Xiao, and F. Yang. Multi-tenant gpu clusters for
deep learning workloads: Analysis and implications.
Technical report, Microsoft Research, 2018.

[58] H. Jia, H. Chen, J. Guan, A. S. Shamsabadi, and
N. Papernot. A zest of LIME: Towards architecture-
independent model distances. In International Con-
ference on Learning Representations, 2022.

[59] A. H. Jiang, D. L.-K. Wong, C. Canel, L. Tang,
I. Misra, M. Kaminsky, M. A. Kozuch, P. Pillai,
D. G. Andersen, and G. R. Ganger. Mainstream: Dy-
namic stem-sharing for multi-tenant video process-
ing. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 29–42, Boston, MA, July
2018. USENIX Association.

[60] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and
I. Stoica. Chameleon: Scalable adaptation of video
analytics. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communica-
tion, SIGCOMM ’18, page 253–266, New York, NY,
USA, 2018. Association for Computing Machinery.

[61] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and
M. Zaharia. Noscope: Optimizing neural network

queries over video at scale. Proc. VLDB Endow.,
10(11):1586–1597, Aug. 2017.

[62] K. Kawaguchi, J. Huang, and L. P. Kaelbling. Every
local minimum value is the global minimum value of
induced model in nonconvex machine learning. Neu-
ral Computation, 31(12):2293–2323, Dec 2019.

[63] K. Kawaguchi and L. P. Kaelbling. Elimination
of all bad local minima in deep learning. CoRR,
abs/1901.00279, 2019.

[64] S. H. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S.
Khan, and M. Shah. Transformers in vision: A survey.
CoRR, abs/2101.01169, 2021.

[65] H. Kim, S. Leutenegger, and A. J. Davison. Real-
time 3D reconstruction and 6-DoF tracking with an
event camera. In Computer Vision - ECCV 2016 -
14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part VI,
pages 349–364, 2016.

[66] B. Kueng, E. Mueggler, G. Gallego, and D. Scara-
muzza. Low-latency visual odometry using event-
based feature tracks. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 16–23, Oct 2016.

[67] A. Kumar, A. Balasubramanian, S. Venkataraman,
and A. Akella. Accelerating deep learning inference
via freezing. In 11th USENIX Workshop on Hot Top-
ics in Cloud Computing (HotCloud 19), Renton, WA,
July 2019. USENIX Association.

[68] Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio,
M. Weimer, and M. Interlandi. PRETZEL: Opening
the black box of machine learning prediction serving
systems. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
611–626, Carlsbad, CA, Oct. 2018. USENIX Associ-
ation.

[69] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A
convolutional neural network cascade for face detec-
tion. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5325–5334,
June 2015.

[70] Y. Li and Y. Liang. Learning overparameterized neu-
ral networks via stochastic gradient descent on struc-
tured data. In Proceedings of the 32nd International
Conference on Neural Information Processing Sys-
tems, NIPS’18, page 8168–8177, Red Hook, NY,
USA, 2018. Curran Associates Inc.

988 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://www.ibm.com/products/maximo/remote-monitoring
https://www.ibm.com/products/maximo/remote-monitoring

[71] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu,
and R. Netravali. Reducto: On-camera filtering for
resource-efficient real-time video analytics. In Pro-
ceedings of the Annual Conference of the ACM Spe-
cial Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Proto-
cols for Computer Communication, SIGCOMM ’20,
page 359–376, New York, NY, USA, 2020. Associa-
tion for Computing Machinery.

[72] Y. Li, Z. Zhang, B. Liu, Z. Yang, and Y. Liu. Mod-
elDiff: testing-based DNN similarity comparison for
model reuse detection. In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, jul 2021.

[73] Z. Li, Y. Shu, G. Ananthanarayanan, L. Shang-
guan, K. Jamieson, and V. Bahl. Spider: A multi-
hop millimeter-wave network for live video analyt-
ics. In ACM/IEEE Symposium on Edge Computing.
ACM/IEEE, December 2021.

[74] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan,
and S. Belongie. Feature pyramid networks for ob-
ject detection. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 936–
944, July 2017.

[75] H. Liu, K. Simonyan, and Y. Yang. DARTS: differ-
entiable architecture search. CoRR, abs/1806.09055,
2018.

[76] X. Liu, P. Ghosh, O. Ulutan, B. S. Manjunath,
K. Chan, and R. Govindan. Caesar: Cross-camera
complex activity recognition. In Proceedings of the
17th Conference on Embedded Networked Sensor Sys-
tems, SenSys ’19, page 232–244. Association for
Computing Machinery, 2019.

[77] Microsoft. Enabling Data Residency and Data Pro-
tection in Microsoft Azure Regions. https://azure.
microsoft.com/en-us/resources/achieving-compliant-
data-residency-and-security-with-azure/, 2021.

[78] S. A. Noghabi, L. Cox, S. Agarwal, and G. Anantha-
narayanan. The emerging landscape of edge com-
puting. GetMobile: Mobile Comp. and Comm.,
23(4):11–20, May 2020.

[79] E. Nygren, R. K. Sitaraman, and J. Sun. The aka-
mai network: A platform for high-performance inter-
net applications. SIGOPS, 2010.

[80] OfCom. Residential landline and fixed broadband
services. https://www.ofcom.org.uk/ data/assets/
pdf file/0015/113640/landline-broadband.pdf, 2017.

[81] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao,
F. Li, V. Rajashekhar, S. Ramesh, and J. Soyke.
Tensorflow-serving: Flexible, high-performance ml
serving, 2017.

[82] A. Padmanabhan, N. Agarwal, A. Iyer, G. Anantha-
narayanan, Y. Shu, N. Karianakis, G. H. Xu, and
R. Netravali. Gemel: Model merging for memory-
efficient, real-time video analytics at the edge, 2022.

[83] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong,
F. Yang, and X. Qian. Capuchin: Tensor-based gpu
memory management for deep learning. In Proceed-
ings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’20, page 891–905.
Association for Computing Machinery, 2020.

[84] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and
J. Dean. Efficient neural architecture search via pa-
rameter sharing. CoRR, abs/1802.03268, 2018.

[85] R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos,
and R. A. Popa. Visor: Privacy-preserving video an-
alytics as a cloud service. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1039–1056.
USENIX Association, Aug. 2020.

[86] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith,
and Y. He. Zero-infinity: Breaking the GPU mem-
ory wall for extreme scale deep learning. CoRR,
abs/2104.07857, 2021.

[87] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen.
Deepdecision: A mobile deep learning framework
for edge video analytics. In IEEE INFOCOM 2018
- IEEE Conference on Computer Communications,
pages 1421–1429, 2018.

[88] H. Rebecq, T. Horstschaefer, and D. Scaramuzza.
Real-time visual-inertial odometry for event cam-
eras using keyframe-based nonlinear optimization.
In British Machine Vision Conference 2017, BMVC
2017, London, UK, September 4-7, 2017, 2017.

[89] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis.
INFaaS: Automated model-less inference serving.
In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 397–411. USENIX Asso-
ciation, July 2021.

[90] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 989

https://azure.microsoft.com/en-us/resources/achieving-compliant-data-residency-and-security-with-azure/
https://azure.microsoft.com/en-us/resources/achieving-compliant-data-residency-and-security-with-azure/
https://azure.microsoft.com/en-us/resources/achieving-compliant-data-residency-and-security-with-azure/
https://www.ofcom.org.uk/__data/assets/pdf_file/0015/113640/landline-broadband.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0015/113640/landline-broadband.pdf

[91] S. S. Sarwar, A. Ankit, and K. Roy. Incremental
learning in deep convolutional neural networks using
partial network sharing. IEEE Access, 8:4615–4628,
2019.

[92] J. Sevilla, P. Villalobos, and J. Cerón. Pa-
rameter counts in Machine Learning. https : / /
www.lesswrong.com/posts/GzoWcYibWYwJva8aL/
parameter-counts-in-machine-learning, 2021.

[93] A. Shah, C. Wu, J. Mohan, V. Chidambaram, and
P. Krähenbühl. Memory optimization for deep net-
works. CoRR, abs/2010.14501, 2020.

[94] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Phili-
pose, A. Krishnamurthy, and R. Sundaram. Nexus:
A gpu cluster engine for accelerating dnn-based video
analysis. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, pages
322–337, New York, NY, USA, 2019. Association for
Computing Machinery.

[95] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge
computing: Vision and challenges. IEEE internet of
things journal, 3(5):637–646, 2016.

[96] K. Simonyan and A. Zisserman. Very deep convo-
lutional networks for large-scale image recognition,
2014.

[97] Sony. REA-C1000 Edge Analytics Appliance. https:
//pro.sony/ue US/products/ptz-cameras/rea-c1000-
edge-analytics-appliance, 2021.

[98] F. Sultana, A. Sufian, and P. Dutta. Evolution of
image segmentation using deep convolutional neural
network: A survey. Knowledge-Based Systems, 201-
202:106062, 2020.

[99] X. Sun, R. Panda, R. Feris, and K. Saenko. Adashare:
Learning what to share for efficient deep multi-task
learning. arXiv preprint arXiv:1911.12423, 2019.

[100] A. Suprem, J. Arulraj, C. Pu, and J. Ferreira. Odin:
Automated drift detection and recovery in video ana-
lytics. Proc. VLDB Endow., 13(12):2453–2465, July
2020.

[101] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich. Going deeper with convolutions, 2014.

[102] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna. Rethinking the inception architecture for
computer vision, 2015.

[103] S. Vandenhende, S. Georgoulis, B. De Braban-
dere, and L. Van Gool. Branched multi-task net-
works: deciding what layers to share. arXiv preprint
arXiv:1904.02920, 2019.

[104] L. M. Vaquero and L. Rodero-Merino. Finding your
way in the fog: Towards a comprehensive definition
of fog computing. CCR, 44(5):27–32, Oct. 2014.

[105] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agar-
wal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah,
S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, and E. Baldeschwieler. Apache hadoop yarn:
Yet another resource negotiator. In Proceedings of the
4th Annual Symposium on Cloud Computing, SOCC
’13, New York, NY, USA, 2013. Association for Com-
puting Machinery.

[106] A. R. Vidal, H. Rebecq, T. Horstschaefer, and
D. Scaramuzza. Ultimate slam? combining events,
images, and IMU for robust visual SLAM in HDR and
high-speed scenarios. IEEE Robotics and Automation
Letters, 3(2):994–1001, 2018.

[107] J. Wang, Z. Feng, S. George, R. Iyengar, P. Pillai, and
M. Satyanarayanan. Towards scalable edge-native ap-
plications. In Proceedings of the 4th ACM/IEEE Sym-
posium on Edge Computing, SEC ’19, page 152–165,
New York, NY, USA, 2019. Association for Comput-
ing Machinery.

[108] M. Wang, C. Meng, G. Long, C. Wu, J. Yang, W. Lin,
and Y. Jia. Characterizing deep learning training
workloads on alibaba-pai, 2019.

[109] Y. Wang, W. Wang, J. Zhang, J. Jiang, and K. Chen.
Bridging the edge-cloud barrier for real-time ad-
vanced vision analytics. In 11th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 19),
Renton, WA, July 2019. USENIX Association.

[110] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li,
Y. Feng, W. Lin, and Y. Jia. Antman: Dynamic scaling
on GPU clusters for deep learning. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 533–548, 2020.

[111] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm:
Simple linux utility for resource management. In
JSSPP, 2003.

[112] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How
transferable are features in deep neural networks? In
Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2,
NIPS’14, page 3320–3328, Cambridge, MA, USA,
2014. MIT Press.

990 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.lesswrong.com/posts/GzoWcYibWYwJva8aL/parameter-counts-in-machine-learning
https://www.lesswrong.com/posts/GzoWcYibWYwJva8aL/parameter-counts-in-machine-learning
https://www.lesswrong.com/posts/GzoWcYibWYwJva8aL/parameter-counts-in-machine-learning
https://pro.sony/ue_US/products/ptz-cameras/rea-c1000-edge-analytics-appliance
https://pro.sony/ue_US/products/ptz-cameras/rea-c1000-edge-analytics-appliance
https://pro.sony/ue_US/products/ptz-cameras/rea-c1000-edge-analytics-appliance

[113] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala,
F. Jalali, A. Niakanlahiji, J. Kong, and J. P. Jue. All
one needs to know about fog computing and related
edge computing paradigms: A complete survey. Jour-
nal of Systems Architecture, 98:289–330, 2019.

[114] A. R. Zamani, M. Zou, J. Diaz-Montes, I. Petri,
O. Rana, A. Anjum, and M. Parashar. Deadline con-
strained video analysis via in-transit computational
environments. IEEE Transactions on Services Com-
puting, 13(1):59–72, 2020.

[115] X. Zeng, B. Fang, H. Shen, and M. Zhang. Dis-
tream: Scaling live video analytics with workload-
adaptive distributed edge intelligence. In Proceedings
of the 18th Conference on Embedded Networked Sen-
sor Systems, SenSys ’20, page 409–421, New York,
NY, USA, 2020. Association for Computing Machin-
ery.

[116] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Phili-
pose, P. Bahl, and M. J. Freedman. Live video analyt-
ics at scale with approximation and delay-tolerance.

In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 377–
392, Boston, MA, Mar. 2017. USENIX Association.

[117] T. Zhang, A. Chowdhery, P. V. Bahl, K. Jamieson,
and S. Banerjee. The design and implementation of
a wireless video surveillance system. In Proceed-
ings of the 21st Annual International Conference on
Mobile Computing and Networking, MobiCom ’15,
pages 426–438, New York, NY, USA, 2015. ACM.

[118] A. Z. Zhu, N. Atanasov, and K. Daniilidis. Event-
based feature tracking with probabilistic data asso-
ciation. In 2017 IEEE International Conference on
Robotics and Automation, ICRA 2017, Singapore,
Singapore, May 29 - June 3, 2017, pages 4465–4470,
2017.

[119] A. Z. Zhu, N. Atanasov, and K. Daniilidis. Event-
based visual inertial odometry. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 5816–5824, July 2017.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 991

A Appendix
A.1 Implementation Details

Gemel’s main components are training models at the cloud
server and running the scheduler at the edge. During train-
ing, a single optimizer manages the weights across all con-
sidered models; the optimizer holds a single copy of weights
for each layer that is shared across the models. Aside
from this, Gemel’s training process mirrors classic multi-task
training [30]: it forms a collective pool of an equal num-
ber of data samples from all models and randomly selects
batches from this pool. Samples are run through their re-
spective models, each model calculates its loss individually,
and losses are summed over all models. In this way, lay-
ers that are shared are updated by the concurrent training of
multiple models within a single batch.

The Nexus-variant scheduler chooses when to load and
evict models as described in §5.4. To load a model into
GPU memory, the scheduler simply calls “.cuda()” on that
model’s PyTorch object. PyTorch automatically only loads
layer weights not already in GPU memory. However, when
evicting a model, PyTorch, by default, removes all of the
layers’ weights from GPU memory. This poses a problem if
some of those weights are needed by models still in GPU
memory (i.e., they are shared). To avoid this, the sched-
uler: (1) maintains a running list of shared layers that are
needed by models currently in GPU memory or next in line
to be loaded, and (2) when a model needs to be evicted, only
evicts weights corresponding to layers not in the list. Over-
all, Gemel is implemented in ≈3500 LOC: 500 for finding
shared layers and sharing them according to the heuristic,
2500 for dataset management and retraining, and 500 for
scheduling models at the edge.

A.2 Generalization Workload Query Knobs

Knob Values
Object Truck, Person, Bus, Boat, Shoe, Skateboard, Car, Hat, Back-

pack, Wine Glass, Traffic Light, Parking Meter, Surfboard
Camera A0, A1, A2, A3, B0, B1, B2, B3, B4, B5, B6, Restaurant,

Mall, Beach, Canal, Parking Lot, Street
Model SSD-VGG, AlexNet, YOLOv3, Tiny-YOLOv3, DenseNet,

SqueezeNet, GoogLeNet, ResNet-18, ResNet-34, ResNet-
50, ResNet-101, ResNet-152, VGG-11, VGG-13, VGG-16,
VGG-19

Scene CityA Traffic, CityB Traffic, Restaurant, Beach, Mall, Canal,
Parking Lot, Street

Table 3: Knob values considered in generalization study.

A.3 Workload Memory Settings

Workload L1 L2 L3
Min 4.50 1.45 4.50
50% 5.12 1.59 4.72
75% 5.43 1.66 4.83

Table 4: Edge box memory settings for LP workloads (in GB).

Workload M1 M2 M3 M4 M5 M6
Min 3.35 1.45 1.32 1.32 1.45 3.35
50% 4.56 1.62 1.55 1.45 1.83 3.77
75% 5.16 1.70 1.65 1.52 2.02 3.99

Table 5: Edge box memory settings for MP workloads (in GB).

Workload H1 H2 H3 H4 H5 H6
Min 3.35 4.50 4.50 1.45 4.50 4.50
50% 4.87 6.60 10.25 2.17 10.41 10.26
75% 5.63 7.66 13.13 2.53 13.36 13.14

Table 6: Edge box memory settings for HP workloads (in GB).

A.4 Additional Figures

0 20 40 60 80 100
% Layers

0

20

40

60

80

100

Cu
m

ul
at

iv
e

%
 o

f
M

em
or

y
(M

B)
FasterRCNN-R101
FasterRCNN-R50
YOLOv3
Tiny YOLOv3
ResNet152
ResNet101
ResNet50
ResNet34

ResNet18
VGG19
VGG16
VGG13
VGG11
InceptionV3
SSD-VGG
SSD-Mobilenet

MobileNet
AlexNet
GoogleNet
SqueezeNet
DenseNet201
DenseNet169
DenseNet161
DenseNet121

Figure 18: Extended version of Figure 10. Cumulative memory
consumed by each model’s layer groups moving from start to
end of the model.

992 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.00.00.10.00.10.00.10.00.10.00.30.00.60.00.00.00.60.00.60.01.10.02.20.00.10.02.20.02.20.04.50.09.00.00.50.09.00.09.00.00.0

Re
sN

et
18

Convolutional
Fully Connected
Batch Normalization

0.00.00.10.00.10.00.10.00.10.00.10.00.10.00.30.00.60.00.00.00.60.00.60.00.60.00.60.00.60.00.60.01.10.02.20.00.10.02.20.02.20.02.20.02.20.02.20.02.20.02.20.02.20.02.20.02.20.04.50.09.00.00.50.09.00.09.00.09.00.09.00.00.0
Memory Per Layer (MB)

Re
sN

et
34

Figure 19: ResNet18 and ResNet34 are variants within the ResNet model family [47]. They share 41/73 layers (20 convolutional, 1
fully-connected and 20 batch normalization).

AlexNet

DenseNet121
DenseNet161

DenseNet169
DenseNet201

FRCNN-R101
FRCNN-R50

GoogLeNet
Inceptionv3

MobileNet
ResNet101

ResNet152
ResNet18

ResNet34
ResNet50

SSD-MobileNet
SSD-VGG

SqueezeNet
VGG11

VGG13
VGG16

VGG19
YOLOv3

YOLOv3-Tiny

Alex
Net

DenseN
et1

21

DenseN
et1

61

DenseN
et1

69

DenseN
et2

01

FRCNN-R101

FRCNN-R50

Goog
LeN

et

Incep
tion

v3

MobileN
et

ResN
et1

01

ResN
et1

52

ResN
et1

8

ResN
et3

4

ResN
et5

0

SSD-MobileN
et

SSD-VGG

Squeez
eN

et

VGG11

VGG13

VGG16

VGG19

YO
LO

v3

YO
LO

v3-Tin
y

100.0
62/38/0

0.0
0/0/0

100.0
50/0/50

0.0
0/0/0

3.1
0/0/100

100.0
50/0/50

0.0
0/0/0

66.7
50/0/50

4.1
0/0/100

100.0
50/0/50

0.0
0/0/0

50.5
50/0/50

4.6
0/0/100

76.2
50/0/50

100.0
50/0/50

0.0
0/0/0

5.8
24/4/72

0.0
0/0/0

3.9
19/0/81

3.5
19/0/81

100.0
50/2/48

0.0
0/0/0

7.6
24/4/72

0.0
0/0/0

4.9
19/0/81

4.3
19/0/81

52.6
50/4/47

100.0
50/4/47

0.0
0/0/0

2.3
88/12/0

0.2
100/0/0

1.3
100/0/0

1.0
100/0/0

2.2
86/14/0

3.2
86/14/0

100.0
50/1/50

0.0
0/0/0

0.5
100/0/0

0.2
100/0/0

0.4
100/0/0

0.2
100/0/0

0.5
100/0/0

0.7
100/0/0

15.5
10/0/90

100.0
50/1/50

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

100.0
56/2/42

0.0
0/0/0

5.6
25/0/75

0.0
0/0/0

4.0
19/0/81

3.6
19/0/81

96.3
50/0/50

49.1
50/0/50

1.9
100/0/0

0.8
67/33/0

0.0
0/0/0

100.0
50/0/50

0.0
0/0/0

6.1
19/0/81

0.0
0/0/0

4.7
14/0/86

4.2
14/0/86

65.4
50/0/50

33.3
50/0/50

1.4
100/0/0

0.6
67/33/0

0.0
0/0/0

67.2
50/0/50

100.0
50/0/50

0.0
0/0/0

5.2
7/0/93

0.0
0/0/0

3.6
8/0/92

3.0
8/0/92

14.8
39/0/61

27.3
39/0/61

0.6
100/0/0

0.0
0/0/0

0.0
0/0/0

15.2
39/0/61

10.3
39/0/61

100.0
49/2/49

0.0
0/0/0

6.1
6/0/94

0.0
0/0/0

4.3
6/0/94

3.7
6/0/94

24.1
38/0/62

36.8
30/0/70

0.5
100/0/0

0.0
0/0/0

0.0
0/0/0

24.8
38/0/62

18.9
41/0/59

56.2
49/2/49

100.0
49/1/49

0.0
0/0/0

7.4
25/0/75

0.0
0/0/0

5.0
19/0/81

4.3
19/0/81

49.1
50/0/50

93.0
50/0/50

2.8
100/0/0

1.0
67/33/0

0.0
0/0/0

51.2
50/1/50

34.4
50/1/50

28.7
39/0/61

38.5
30/0/70

100.0
50/1/50

0.0
0/0/0

0.7
100/0/0

0.0
0/0/0

0.6
100/0/0

0.5
100/0/0

0.8
100/0/0

1.1
100/0/0

1.1
100/0/0

0.3
100/0/0

28.7
100/0/0

0.8
100/0/0

0.6
100/0/0

0.0
0/0/0

0.0
0/0/0

1.1
100/0/0

100.0
58/0/42

2.4
100/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

100.0
100/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

100.0
100/0/0

18.8
33/67/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

21.1
100/0/0

0.0
0/0/0

100.0
73/27/0

16.7
33/67/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

26.3
100/0/0

0.0
0/0/0

84.6
73/27/0

100.0
77/23/0

14.3
33/67/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

34.2
100/0/0

0.0
0/0/0

68.8
73/27/0

81.2
77/23/0

100.0
81/19/0

12.5
33/67/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

31.7
100/0/0

0.0
0/0/0

57.9
73/27/0

68.4
77/23/0

84.2
81/19/0

100.0
84/16/0

0.0
0/0/0

1.6
100/0/0

0.0
0/0/0

1.0
100/0/0

0.9
100/0/0

0.8
100/0/0

1.2
100/0/0

1.6
100/0/0

0.3
100/0/0

0.0
0/0/0

0.8
100/0/0

0.7
100/0/0

1.6
100/0/0

1.4
100/0/0

1.2
100/0/0

0.3
100/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

100.0
51/0/49

0.0
0/0/0

0.4
100/0/0

0.0
0/0/0

0.3
100/0/0

0.2
100/0/0

0.8
100/0/0

1.5
100/0/0

3.0
100/0/0

0.5
100/0/0

0.0
0/0/0

0.9
100/0/0

0.6
100/0/0

0.0
0/0/0

0.0
0/0/0

1.6
100/0/0

0.5
100/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

0.0
0/0/0

12.5
47/0/53

100.0
54/0/46

Sharing Opportunities
Same Model
Same Family
Similar Backbone
Derivative Of

Figure 20: Extended version of Figure 4. For each unique pair of models, we show the percentage of architecturally identical layers
and of those layers, the percent breakdown across layer types (%Convolutional / %Linear / %BatchNorm).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 993

0 100 200 3000.0

0.1

0.2

0.3
L1L1L1L1L1L1

0 100 200 3000.00

0.05

0.10

0.15 L2L2L2L2L2L2

0 100 200 3000.00

0.05

0.10

0.15
L3L3L3L3L3L3

0 100 200 3000.0

0.2

0.4

M1M1M1M1M1M1

0 100 200 3000.00
0.02
0.04
0.06
0.08
0.10 M2M2M2M2M2M2

0 100 200 3000.0

0.1

0.2

0.3 M3M3M3M3M3M3

0 100 200 3000.00
0.05
0.10
0.15
0.20
0.25 M4M4M4M4M4M4

0 100 200 3000.0

0.1

0.2

0.3

0.4 M5M5M5M5M5M5

0 100 200 3000.0

0.2

0.4

M6M6M6M6M6M6

0 100 200 3000.0

0.5

1.0

1.5

2.0 H1H1H1H1H1H1

0 100 200 3000.0

0.5

1.0

1.5

2.0
H2H2H2H2H2H2

0 100 200 3000

1

2
H3H3H3H3H3H3

0 100 200 3000.0

0.2

0.4

0.6 H4H4H4H4H4H4

0 100 200 3000

1

2
H5H5H5H5H5H5

0 100 200 3000

1

2
H6H6H6H6H6H6

Time (min)

M
em

or
y

Sa
ve

d
(M

B)

GEMEL TwoGroup Earliest Latest Random OneModelAtATime

Figure 21: Complete version of Figure 16. Comparison of Gemel with other merging heuristics.

C O M CS CO CM OM COS COM OCMS
Knob(s) varied per workload

25

50

75

100

%
 P

os
sib

le
M

em
or

y
Sa

ve
d

2 Queries
3 Queries
4 Queries
5 Queries

Figure 22: Extended version of Figure 17. Memory savings across 872 workloads, organized by workload size (color) and knobs
varied (x-axis). We plot the median of each distribution (error bars spanning 25-75P). Knobs are labeled as follows: C:Camera,
O:Object, M:Model, S:Scene.

994 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fast, Approximate Vector Queries on Very Large Unstructured Datasets

Zili Zhang∗ Chao Jin∗ Linpeng Tang† Xuanzhe Liu∗ Xin Jin∗

∗Peking University †Moqi

Abstract
The breakthroughs in deep learning enable unstructured data
to be represented as high-dimensional feature vectors for serv-
ing a wide range of applications. Processing vector queries
(i.e., finding the nearest neighbor vectors for an input vector)
for large unstructured datasets (with billions of items) is chal-
lenging, especially for applications with strict service level
objectives (SLOs). Existing solutions trade query accuracy for
latency, but without any guarantees, causing SLO violations.

This paper presents Auncel, a vector query engine for large
unstructured datasets that provides bounded query errors and
bounded query latencies. The core idea of Auncel is to exploit
local geometric properties of individual query vectors to build
a precise error-latency profile (ELP) for each query. This
profile enables Auncel to sample the right amount of data
to process a given query while satisfying its error or latency
requirements. Auncel is a distributed solution that can scale
out with multiple workers. We evaluate Auncel with a variety
of benchmarking datasets. The experimental results show that
Auncel outperforms state-of-the-art approximate solutions by
up to 10× on query latency with the same error bound (≤
10%). In particular, Auncel only takes 25 ms to process a
vector query on the DEEP1B dataset that contains one billion
items with four c5.metal EC2 instances.

1 Introduction
Vector query engines for unstructured datasets (e.g., images,
videos and texts) are a key building block for modern applica-
tions including recommendation [1–4], recognition [5–8] and
biological information retrieval [9–11]. This is enabled by the
breakthroughs in deep learning [12] that allow unstructured
data to be represented as high-dimensional feature vectors. A
vector query is to find the top-k nearest neighbor vectors in a
dataset for an input vector.

With the explosive growth of unstructured data [13, 14],
a central challenge for vector query processing is to satisfy
strict service level objectives (SLOs) for applications on large
unstructured datasets that contain millions and even billions
of items. For instance, a face recognition task is to match a
human face from an input image against a database of faces.
With deep convolutional neural networks [6], each face im-
age is converted into an embedding vector. Consequently, the

recognition task becomes a top-k nearest neighbor (KNN)
search problem, i.e., finding the nearest neighbor vector of
the query vector among the database vectors. The person cor-
responding to the nearest neighbor vector is the recognition
result. Performing exact KNN search (e.g., through pairwise
comparison between query vector and each stored vector)
is costly in terms of computation resources, and more im-
portantly, is hard to achieve low query latency. As a result,
approximate top-k nearest neighbor (ANN) search [15–18] is
widely used by vector query engines to tradeoff query accu-
racy for latency. The basic idea of ANN search is to sample a
subset of the dataset for finding the top-k, and the sampling
size affects the query accuracy and latency.

A key requirement for approximate query processing
is to provide performance guarantees in order to meet
SLOs [19–21]. Performance guarantees are defined in terms
of error bounds (e.g., ≤10% query error) or latency bounds
(e.g., ≤25 ms query latency). Existing systems [22–29] ex-
ploit various ANN algorithms [15–18] and system optimiza-
tions to optimize query accuracy and latency. However, these
systems do not provide any performance guarantees.

Faiss [22] and AnalyticDB-V [24] are widely-used open-
source and commercial vector query engines, respectively.
Unfortunately, they do not provide any performance (error or
latency) bounds. They build a profile to map query errors to
sampling sizes for a given dataset. It is possible to leverage the
profile to pick an appropriate sampling size to meet an error
bound. But the problem is that the profile is query-agnostic:
it ignores the characteristics of individual query vectors, and
uses a fixed sampling size for all query vectors under the
same error bound. Consequently, the sampling size is too
pessimistic—the maximum sampling size among all query
vectors has to be used to meet the error bound. This leads to
excessive redundant computation.

Learned Adaptive Early Termination (LAET) [30] is a re-
cent work that leverages machine learning to optimize vector
query processing. It trains a gradient boosting decision tree
model to predict when to stop searching for a given query
in order to reduce query latency. It focuses on average query
accuracy, and does not provide any error or latency bounds.
LAET includes a heuristic to adapt the decision tree model by
multiplying a hyperparameter to the prediction result to meet

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 995

a given error bound. But the model treats the entire structured
ANN index as a blackbox, which performs poorly on query
latency for bounded errors.

More importantly, existing systems focus on a single-node
setup and use a single worker to process each query. Dis-
tributed processing is critical for vector queries over large
unstructured datasets with billions of items. Conceivably, one
can replicate a dataset to multiple workers, and process multi-
ple queries in parallel—one query by each worker. This naive
solution has high memory footprint for billion-scale datasets
(e.g., 360 GB for DEEP1B [31] dataset). Moreover, it cannot
reduce query latency with more workers, making it hard to
achieve latency bounds for billion-scale datasets.

We present Auncel, a vector query engine for large un-
structured datasets with performance guarantees. Different
from existing systems, Auncel allows users to specify an er-
ror bound or latency bound for an input vector. The core of
Auncel is a query-aware and error-aware error-latency pro-
file (ELP) that enables Auncel to minimize the query latency
for an error bound and maximize the query accuracy for a
latency bound. Auncel is a distributed solution that can re-
duce the query latency with more workers. To the best of our
knowledge, Auncel is the first distributed vector engine that
provides bounded errors and bounded latencies.

There are two primary challenges in realizing Auncel. The
first challenge is to decide the appropriate sampling size for
an individual query vector under a particular error or latency
bound. Auncel uses a whitebox approach that exploits the
geometric properties in the high-dimensional space to explic-
itly model the relationship between sampling sizes and query
errors. This enables Auncel to build more accurate ELPs
than existing query-agnostic or blackbox approaches. Auncel
immediately terminates the search process when the error
bound can be guaranteed based on the ELP to minimize query
latency. In terms of the latency bound, Auncel exploits the na-
ture of vector query processing and uses a runtime approach
to maximize query accuracy.

The second challenge is to scale Auncel out to multiple
workers in order to reduce query latency. A natural approach
is to shard a dataset among workers and aggregate workers’
results for query processing. The nuance is to correctly set
the local error bound for each worker. Naively setting the
local error bound to be the target error bound would magnify
the global error after aggregation. Auncel applies probability
theory to calibrate the local error bound for each worker in
order to bound the global error. We theoretically prove that
Auncel is able to bound the global error with high probability.

We implement a prototype of Auncel, and extensively eval-
uate it with a variety of benchmarking datasets. The results
show that Auncel outperforms Faiss [22] by 1.3–10× and
LAET [30] by 1.4–3.6× on the single-node setup. For the
distributed setup, Auncel is able to process a vector query
under 25 ms for the DEEP1B dataset which contains one bil-

Cluster
1

Sorted array
of size 𝒌 = 𝟑

Update

Query

3

Update Update

. . . Cluster
2

Cluster
n

6 9 3 6 7 2 3 6

Figure 1: IVF workflow.

lion vectors of 96 dimensions with 128 workers (using four
c5.metal EC2 instances).

In summary, we make the following contributions.
• We present Auncel, to the best of our knowledge, the first

distributed vector query engine that provides bounded query
errors and bounded query latencies.

• We propose a whitebox approach that leverages high-
dimensional geometry to build accurate ELPs, and apply
probability theory to calibrate each worker to scale out.

• We implement an Auncel prototype. The evaluation shows
that Auncel outperforms Faiss by up to 10× and LAET by
up to 3.6×, and processes a vector query within 25 ms for
billion-scale datasets with 128 workers.

2 Background and Motivation
In this section, we begin by introducing the background of
vector queries on unstructured datasets. We then describe cur-
rent solutions and their limitations to support vector queries
on large unstructured datasets, which motivates the design of
Auncel. Finally, we describe the challenge to scale out vector
query processing.

2.1 Vector Queries on Unstructured Datasets

The common practice for managing and querying unstruc-
tured datasets is to use deep neural networks (DNNs) to pro-
cess each item and represent each item as a high-dimensional
feature vector [32–34]. A vector query on an unstructured
dataset is to find the top-k vectors in the dataset that are most
similar to the query vector. The most widely-used similarity
metrics between two vectors are Euclidean distance and An-
gular distance. KNN search returns the top-k most similar
vectors (i.e., nearest neighbors), and ANN search returns the
approximate top-k nearest neighbors. KNN becomes imprac-
tical for large datasets with millions or billions of items due
to long query latency. ANN trades off accuracy for latency,
and is the de facto solution for vector query processing on
large unstructured datasets. Another reason for the wide adop-
tion of ANN is that it is unnecessary to output the exact top-k
items for many vector query processing tasks, as DNN models
themselves are not perfect when generating these vectors.

The basic idea of ANN search is to use an indexing struc-
ture to sample a subset of the dataset to find the top-k neigh-
bors. Inverted file index (IVF) [15, 25, 35] is a state-of-the-art
ANN algorithm. While IVF has many variants, it has the fol-
lowing general workflow. It trains a list of cluster centroids by
k-means clustering [36] offline. These cluster centroids form
the index of the dataset; each vector is assigned to the closest

996 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

query-1 query-2 query-3 query-4 query-5 query-6
0

20

40

60

80

100

120

140

To
p-
n

Optimal Faiss

Figure 2: Redundant computation in Faiss.

cluster. Given a query vector, IVF first computes the distance
between each centroid and the query vector. Then it chooses
the top-n nearest centroids, and processes the corresponding
clusters of these centroids one by one. It maintains a sorted ar-
ray of size k, and updates the array after performing pairwise
distance calculation in each cluster as Figure 1. The k vectors
remained in the array at the end are returned as the query
result. The vectors in the array are called intermediate result
during the processing. In this figure, each value in the array
represents the vector’s index in the ground truth result of ex-
act search. The vectors in the top-n clusters are the sampling
vectors. n determines the sampling size, and thus controls the
tradeoff between accuracy and latency.

2.2 Bounding Performance for Vector Queries

Providing bounded performance for query processing is a key
requirement for meeting SLOs of applications [19–21]. There
are two typical types of performance bounds: error bounds
and latency bounds. The query processing engine is expected
to minimize query latency when given an error bound, and
maximize query accuracy when given a latency bound.

Limitations of existing solutions. Existing systems [22–29]
do not provide bounded performance, and leave the choice of
the sampling size to users. While it is possible to adapt the
mechanisms in existing systems to provide bounded perfor-
mance, simply doing so yields undesirable results. Faiss [22]
and AnalyticDB-V [24] build a profile by sampling some
queries to map query errors to different n values (exponential
power of two in practice to save the map building time) after
building an IVF index for a dataset. To guarantee bounded
errors, they use the n whose worst-case error is no bigger than
the bound. This pessimistic choice of n has poor performance,
because it is query-agnostic. It ignores the characteristics of
individual queries and uses a fixed n for all queries under a
given error bound. Some queries may use a smaller n (and
thus achieve better latency) without violating the error bound.

To illustrate the problem, we randomly select six query
vectors in DEEP10M [31] and assign them the same error
bound (10%). In Figure 2, the optimal bars are the minimal
values of n to reach the error bound for each query vector,
and they are calculated through grid search of parameter n for
the six queries respectively. Since Faiss uses the same value

query-1 query-2 query-3 query-4 query-5 query-6
0

60

120

180

240

300

360

420

To
p-
n

Optimal LAET-plain LAET-hyper

Figure 3: Redundant computation in LAET.

of n for all queries, the value is dominated by query-2; other
queries do not need such a large n to meet the error bound.
A larger n means searching more clusters, i.e., longer query
latency. The naive solution of using a query-agnostic fixed
value for n has a 10× gap from the optimal for some queries
in this example.

To alleviate this problem, LAET [30] leverages machine
learning to adaptively decide n among different query vectors.
However, LAET is designed to reduce latency under average
query error and is incapable to guarantee bounded error. It
trains a decision tree model with LightBGM [37] and treats
IVF index as a blackbox. The model takes the query vector,
the intermediate result and some features of the clusters as
input and outputs n for a given query. Due to the overhead of
running a machine learning model for each query, LAET can-
not use complex models and it also simplifies the model input.
For instance, it only considers a small portion of intermedi-
ate result and cluster centroids. Therefore, the model cannot
accurately predict n with blackbox fitting. To guarantee an
error bound, LAET includes a heuristic to adapt the model
by multiplying a hyperparameter to the prediction result—a
tighter bound requires a larger hyperparameter. However, ap-
plying such a hyperparameter to all queries given the same
error bound induces severely redundant computation with the
inaccurate model. This is because this inaccurate blackbox
model needs a very large hyperparameter to guarantee the er-
ror bound for all queries, but most queries only require a small
one. Consequently, the values of n generated by LAET are
also far from the optimal. Besides, tuning the hyperparameter
for different error bounds is error-agnostic.

We continue with the previous DEEP10M example to show
the problem of LAET. As shown in Figure 3, the bars of
LAET-plain are lower than those of the optimal, indicat-
ing that the plain LAET solution with blackbox fitting is
inaccurate to predict top-n and cannot provide bounded er-
rors. LAET-hyper, which is LAET with the aforementioned
heuristic, sets the hyperparameter large enough to ensure the
bounded error for all the six queries. The hyperparameter is
dominated by query-6; other queries can use a smaller hyper-
parameter, i.e., just enough to match the optimal. Therefore,
LAET has the similar problem as Faiss and AnalyticDB-V.
The inaccurate blackbox model introduces a 5× gap from the
optimal for some queries in this example.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 997

Sub
Data 1

KNN ANN
33.3%

33.3%

33.3%

67%

Sub
Data 2

Sub
Data 3

1 4 7

2 5 8

3 6 9

1 2 3

4 7 10

5 8 11

3 6 12

3 4 5

Figure 4: Problem when scaling error bounds.

Opportunity: Geometric structures in ANN indexes. The
key to address the problem is building an accurate, light-
weight ELP. Our core idea is to exploit the geometric struc-
ture and computation pattern of ANN indexes to establish the
relationship between sampling sizes and query errors with
high-dimensional geometry. The geometric intuition is that
a query vector needs a large value of n if the vector is lo-
cated at the boundary of clusters. Similarly, searching a small
number of clusters, i.e., a small value of n, is sufficient, if the
query vector falls close to a centroid. Thus, we can formu-
late the entire search procedure with geometric formulas, and
use whitebox approach to explicitly model the relationship
between sampling sizes and query errors.

2.3 Applying to Distributed Settings

Existing systems focus on a single-node setup and use a sin-
gle worker to process each query. Replicating the dataset
to each worker and processing multiple queries in parallel
only increases throughput. It does not help with per-query
latency, and has high memory footprint for each worker, both
of which are undesirable for billion-scale datasets. A com-
mon approach is sharding, i.e., partitioning the dataset among
multiple workers. Each worker finds the local top-k in its own
shard (i.e., a map operation), and then a leader aggregates the
local results to the global top-k (i.e., a reduce operation). This
works well for exact search (KNN), as the aggregated result is
identical to the ground truth. However, for approximate search
(ANN), the error of the aggregated result is not bounded, even
if the error of the local top-k on each worker is bounded.

To see why this is the case, consider the example in Figure 4.
The example includes three workers, the value of k is 3, and
the error bound is 35%. We show the local top-k at each
worker and the aggregated global top-k. Each value represents
the corresponding top-k vector’s index in the global ground
truth result of exact search. The results of KNN is on the left
and that of ANN is on the right. In KNN, each worker returns
the exact local top-k, and the aggregated top-k vectors are the
true top-k (i.e., the ground truth). In ANN, the error of the
local top-k at each worker is 33.3%, which satisfies the error
bound. However, after aggregating the local top-k, the error
of the global top-k is 66.7%; only one vector (with index 3)
is in the true global top-k vectors.

To address the problem, we need to calibrate the local error
bounds when finding the local top-k at each worker; we cannot

Offline

A set of clusters

. . .

K-means

Error-Latency Profile

Build

Online

Query vector,
Topk

User

Sorted
array

Interface

Sort by query

Search
one cluster

Terminate ?

❶

❷

❸

❹

❺

❻

. . .

Database

Sorted
Clusters Error/Time bound

Figure 5: Auncel architecture.

directly use the global error bound. We apply probability
theory to calibrate the local error bounds to ensure that the
global error is bounded with high probability.

3 Auncel Overview
We present Auncel, a vector query processing engine for large
unstructured datasets with performance guarantees. Auncel
exploits the geometric properties of ANN index structures to
build accurate, lightweight ELPs. Such ELPs enable Auncel
to sample just enough data to answer vector queries within
their error or latency bounds. To scale out vector query pro-
cessing for large datasets with billions of items, Auncel adopts
map-reduce style dataflow operations, and applies probability
theory to calibrate the local error bounds at each worker. Fig-
ure 5 shows the overall architecture of Auncel. We provide a
brief overview of Auncel in this section.

User interface. Auncel allows users to tradeoff between ac-
curacy and latency with user-defined performance bounds ¸.
Specially, a user can specify an error bound or a latency bound
for a query vector and a value of k (i.e., how many nearest
neighbors to return) as follows.
• Error bound ε. The user specifies an error bound ε, and

Auncel returns a result within ε error as soon as possible.
• Time bound t. The user gives a time bound t, and Auncel

returns the most accurate result within t time.

Offline. Similar to all query processing engines for unstruc-
tured datasets, Auncel first uses IVF to build an ANN index
for a given dataset offline ¶. IVF divides the vectors in the
database into a few clusters with k-means clustering. It main-
tains the centroids of each cluster; each vector in the dataset is
assigned to the closest cluster. In addition to the ANN index,
Auncel samples synthetic or example queries to build an ELP
for the dataset ·. ELP building techniques include fitting
geometric formulas and substituting some complex operators
with pre-calculated key-value pairs to reduce overhead.

Online. At runtime, vector queries are issued to Auncel for
processing. Each query includes a vector, a value of k, and
an error/time bound. To process an incoming query, Auncel
first evaluates the distance between the query vector and each

998 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Symbol Description

q Query vector
t Latency bound
ε Error bound
l Number of clusters
Ci The ith closest cluster to q (a hyper polyhedron)
εi Error after processing {C1...Ci}
S Set of database vectors
Si Intermediate result after processing {C1...Ci}
Sgt Ground truth result of exact search (Sgt = Sl)
j∗ |Si∩Sgt | after processing {C1...Ci}
ϕi(j) Scaling factor of the jth element in Si
λi(j) Distance between q and the jth element in Si
B(r) Sphere (Ball) with center q and radius r
Pj(m) B(λi(j))∩Cm
N j(m) Number of the vectors within

⋃m
η=1 Pj(η)

V (G) Volume of geometric body G

Table 1: Key notations in problem formulation.

centroid, and then sorts the clusters by distance in ascending
order ¹. According to the sorted clusters, Auncel performs
pairwise distance calculation between the query vector and
each stored vector cluster by cluster, and updates the sorted
array (i.e., the intermediate result) º. After processing each
cluster, Auncel uses the intermediate result and the centroids
to predict the current error based on the ELP ». If the error
or time bound can be satisfied, Auncel terminates the search
process in º, and returns the vectors in the array as the result.

4 Auncel Design
In this section, we present the design of Auncel. We first
describe the problem formulation (§4.1) and the key ideas
(§4.2). Then we show how to build error profiles (§4.3) and
latency profiles (§4.4). Finally, we describe how to apply our
solution to distributed settings (§4.5). Some key notations in
the design are listed in Table 1.

4.1 Problem Formulation

We first mathematically formulate the problem of vector query
processing on unstructured datasets. Let S = {v1,v2, ...vN} ∈
Rd , where S is an unstructured dataset, N is the number of
vectors in S, and vi is a d-dimensional vector in S. Let q ∈Rd

be a query vector. Given a value k ∈ N+ and k ≤ N, a vector
query with q is to find the top-k nearest neighbors of q in
S, according to a pairwise distance function d(q,vi). The
distance function typically computes Euclidean distance or
Angular distance between two vectors. The ground truth of
the top-k nearest neighbors Sgt is obtained when searching in
the entire dataset S. Sgt are often sorted according to d(q,v).

Sgt = argmink
v∈S d(q,v) (1)

Finding the exact top-k nearest neighbors has high query
latency for large datasets, which may violate latency SLOs

𝑪𝟏

Query Vector
𝒌=5, Error Bound (𝜺)=20%

Update

Intermediate Result 𝑺𝒊
(only index in 𝑺𝒈𝒕)

ELP
Predict

𝜺𝟏 ≤ 𝜺
Teminate?

✖

1 4 7 8 9

𝑪𝟐

ELP
Predict

𝜺𝟐 ≤ 𝜺
Teminate?

1 3 4 5 7

𝑪𝟑 ✔
✖

Figure 6: Example to show key idea and workflow of Auncel.

for applications. To trade query accuracy for query latency, a
subset Sa ⊂ S can be sampled to find the approximate top-k
nearest neighbors Sr for lower latency.

Sr = argmink
v∈Sa

d(q,v). (2)

The accuracy (recall) and error of Sr are defined as follows.

Accuracy ,
|Sgt ∩Sr|

k
(3)

Error , 1−Accuracy (4)

4.2 Workflow and Key Idea

Auncel allows users to specify an error bound or a latency
bound for a query. When an error bound is given, Auncel
minimizes query latency; when a latency bound is given,
Auncel maximizes query accuracy. As we have described in
§2, the basic approach for processing a vector query with an
ANN index is to first compute the distances between the query
vector and the centroids of the clusters in the index and then
search cluster by cluster based on the ascending order of the
distances. The key idea of Auncel is to build an accurate ELP
so that after searching each cluster, Auncel can consult the
ELP to decide whether to terminate the search.

Workflow of Auncel. We use a concrete example in Figure 6
to illustrate the workflow of Auncel. In this example, the ANN
index partitions the dataset into three clusters. Each cluster
(Ci) is a polyhedron in d-dimensional space. The value of k
in top-k is 5, and the error bound is 20%. The three clusters
are sorted in ascending order by their centroids’ distances to
the query vector. Auncel searches the three clusters based on
the order one by one. The three clusters may have different
numbers of vectors due to the imbalance property of k-means.
It does not impact the error profile since Auncel terminates
the search as soon as the current error is guaranteed. However,
the imbalance property leads to inaccurate latency profile that
we will discuss later in §4.4.

After processing C1, Auncel updates the intermediate result
(a sorted array) which represents the query vector’s top-k

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 999

Algorithm 1 Error Profile
1: ε← Error Bound, i← 1
2: while i <= l do
3: Perform search computation in cluster Ci
4: geometric properties← Si , cluster centroids
5: εi← ELP (geometric properties)
6: if εi ≤ ε then
7: break
8: i← i+1
9: Return intermediate result

nearest neighbors in C1. Each element in the sorted array is a
pair of a database vector’s index and its distance to the query
vector. For simplicity, the figure only shows the element’s
index in ground truth result. Auncel uses the intermediate
result as the input of the ELP to predict the current error, and
decides whether to terminate the search. The ground truth
vectors have top-k indexes [1, 2, 3, 4, 5] in this example,
which is obtained after searching all three clusters. As the
intermediate result after searching C1 is [1, 4, 7, 8, 9], only two
vectors in the intermediate result (the two with indexes 1 and
4) belong to the true top-k. Therefore, the current error is 60%,
which is still above the error bound 20%. Auncel continues to
search C2. The intermediate result after searching C2 contains
four vectors in the true top-k (the four with indexes 1, 3, 4
and 5), and the current error decreases to 20%, which satisfies
the error bound. Therefore, it is safe for Auncel to terminate
the search and return the sorted array as the query result.

The workflow is summarized in Algorithm 1. Predicting
the error with ELP in line 5 is the key to guarantee bounded
errors and minimize query latency. If the predicted error is
smaller than the actual error, the system terminates search too
early, and fails to meet the error bound; if the predicted error is
larger than the actual error, the system unnecessarily continues
to search more clusters, which increases query latency. Thus,
the main challenge is to build an accurate ELP to accurately
predict the current error after searching each cluster.

Key idea of Auncel. To understand how Auncel addresses
this challenge, consider the intermediate result after searching
C1. The first element in the intermediate result (1) is also
the first element in ground truth (sorted array after searching
all three clusters). But, the second element (4) is the fourth
element in ground truth, and the the third element (7) is not in
the top-k (k=5). We define the scaling factor of the jth element
in the intermediate result after processing Ci as follows, where
indexgt is the element’s index in ground truth.

ϕi(j), indexgt/ j (≥ 1) (5)

If ϕi(j) is known, then the current error of the intermediate
result after searching Ci can be calculated. Specifically, we
compute j∗ such that

j∗ = argmax j{ j ·ϕi(j)≤ k}. (6)

The elements from 1 to j∗ in the intermediate result belong
to the true top-k. j∗ is often calculated through binary search.
The current error εi after processing Ci is

εi = 1− j∗/k (7)

For any j, ϕi(j) converges to 1 when i increases to the num-
ber of clusters (l). Correspondingly, j∗ converges to k and
εi converges to 0. When searching the clusters one by one,
Auncel terminates the process immediately when εi becomes
no bigger than the error bound.

Therefore, we convert the problem of building an accurate
ELP to accurately estimating ϕi(j). We exploit the geomet-
ric properties of ANN indexes in high-dimensional space to
estimate ϕi(j). Since Auncel is designed to provide bounded
errors, it is sufficient to estimate the upper bound of scaling
factor ϕi(j), which we describe next.

4.3 Handling Error Bounds

Auncel minimizes query latency under a given error bound us-
ing scaling factors in the ith error prediction (ϕi). We perform
a detailed analysis of ϕi(j) from a geometric perspective, and
design a formula to calculate the upper bound of ϕi(j) under
the two most prevalent distance metrics.

4.3.1 Scaling Factor under Euclidean Distance

We first focus on Euclidean distance, the most widely-used
and intuitive distance metric, which measures the length of
the line segment between two anchor vectors in geometry.

We have two key insights. Our first insight is to leverage
the geometric structure of the IVF index. IVF shards the en-
tire dataset into l clusters (C) by k-means clustering, and the
clusters are sorted as C = {C1,C2...Cl}. Due to the rule of
k-means, Ci is a d-dimensional polyhedron and the boundary
between Ci and C j is the (d− 1)-dimensional mid-vertical
plane of the line segment connecting the two clusters’ cen-
troids. Thus, we can divide the entire space into several parts
based on these boundaries. Our second insight is to exploit the
local geometric properties of q which belongs to C1. The top-
k ground truth vectors gather around q and form a sphere,
B(λl(k)) with radius λl(k) and center q in d-dimensional
space. For any vector within B(λl(k)), it is a member of Sgt .
For instance, if B(λl(k)) locates within C1, it is sufficient to
search in the first cluster to get ground truth.

The combination of these two insights allows us to com-
pute ϕi(j) with high-dimensional geometry. We know that
the k ground truth vectors are distributed in sphere B(λl(k)),
and the sphere is divided into many parts by the boundaries
between C1 and other clusters. For example, we have three
clusters in total and query vector q in Figure 7. The sorted
clusters are {C1,C2,C3}, and all vectors within the sphere be-
long to Sgt . This sphere is cut into three parts—P1,P2,P3—by
the two boundaries, and Ni is the number of database vectors
in the scope of

⋃
{P1...Pi} (i = 1,2,3). In Figure 7, the num-

bers of the vectors within the shaded areas are N1 and N2,

1000 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Cluster 3 (𝐂𝟑)

q 𝑷𝟏

𝑷𝟐

𝑷𝟑 Cluster 1
(𝐂𝟏)

Cluster 2 (𝐂𝟐)

(a) Search in one cluster.

Cluster 3 (𝐂𝟑)

q 𝑷𝟏

𝑷𝟐

𝑷𝟑 Cluster 1
(𝐂𝟏)

Cluster 2 (𝐂𝟐)

(b) Search in two cluster.

Figure 7: Geometric demo for calculating scaling factor.

respectively. In Figure 7(a), scaling factor ϕ1(N1) =
k

N1
since

the N1th element in S1 is the kth element in Sgt . Figure 7(b)
shows the scaling factor ϕ2(N2) =

k
N2

. To extend to general
settings, we define Pj(m) as the intersection of B(λi(j)) and
Cm after processing Ci. Consequently, N j(m) is the number
of vectors within

⋃m
η=1 Pj(η) which gives that:

ϕi(j) = N j(l)/N j(i). (8)

l is the number of clusters and i represents the current cluster.
We observe that the vectors of real-world datasets conform

to local uniform distribution, and k in most query workloads
is no bigger than 100, which means the vectors within the
scope of B(λl(k)) nearly conform to uniform distribution.
We provide a measurement in Appendix A.1 to confirm this
observation. Let den represents the local density of B(λl(k)).
We get that N j(m)≈V (

⋃m
η=1 Pj(η))×den. Hence,

ϕi(j) =V (B(λi(j)))/V (
i⋃

m=1

Pj(m)). (9)

V is the volume function. Since Pj(1) has different geometric
meaning with Pj(m) (m≥ 2) (spherical cap) and is complex
to calculate, we use the following inequation:

ϕi(j) =
1

1− V (
⋃l

m=i+1 Pj(m))

V (B(λi(j)))

≤ 1

1− ∑
l
m=i+1 V (Pj(m))

V (B(λi(j)))

≤ 1
b−a×U

. (10)

Different spherical caps (e.g., P1, P2 in Figure 7) may inter-
sect with each other. The union of all spherical caps has a
smaller volume than the sum of the volumes of all spherical
caps, which leads to the first ≤. We apply b−a×U to substi-
tute such complicated volume calculation in d-dimensional
space, where a,b are parameters to fit offline and a×U is the
geometric upper bound of the volume ratio. Appendix A.2
contains the detailed analysis of a×U , and we conclude one
of the upper bound functions is

U =
l

∑
m=i+1

arccos(xm) (0≤ xm ≤ 1). (11)

Algorithm 2 Latency Profile
1: t← Time Bound, i← 1
2: t0←CurrentTime()
3: while i≤ l do
4: Perform search computation in cluster Ci
5: tc←CurrentTime()
6: if tc− t0 ≥ t−δ then
7: break
8: i← i+1
9: Return intermediate result

where xm = dbm
λi(j) and dbm is the distance between query vector

and the boundary of C1, Cm. We do not consider the circum-
stance when xm > 1.

In Formula 11, the time complexity of calculating the upper
bound of ϕi(j) is O(l) since arccos(xm) only costs constant
time. We use binary search to calculate j∗ with Formula 6,
which concludes that the time complexity to predict εi is
O(l× log(k)) while the space complexity is O(1).

4.3.2 Scaling Factor under Angular Distance

Another widely-used vector distance metric is Angular dis-
tance, which evaluates the angle between two anchor vectors.
Its geometric meaning allows us to transform Angular dis-
tance into Euclidean distance. Specifically, we project all
database vectors onto the unit sphere in d-dimensional space
through vector normalization, while maintaining the Angu-
lar distance between any vectors. Thus, we substitute angle
with the line segment on such unit sphere, and the theoretical
analysis in §4.3.1 holds under Angular distance.

4.4 Handling Latency Bounds

Given a latency bound, Auncel maximizes query accuracy for
a query vector. Conceivably, one can build a latency profile
to capture the relationship between sampling sizes (i.e., the
number of clusters to search) and query latencies. Then Aun-
cel can consult the latency profile to get how many clusters
to search based on a given latency bound. However, building
such a profile is difficult, because the clusters have different
sizes and the order of the set of clusters to search vary between
different query vectors.

We design a runtime solution that exploits the monotonicity
property of vector query processing to handle latency bounds,
obviating the need of building a latency profile offline. Specif-
ically, vector query processing searches the clusters in the
ANN index one by one. The search is based on ascending
order of the distances between the clusters’ centroids and
the query vector. The accuracy of the intermediate result in-
creases when searching more clusters. As such, Auncel tracks
the used time when searching the clusters, and terminates
the search when the used time is close to the time bound.
This ensures that Auncel uses as much time as possible in
processing to maximize query accuracy. Algorithm 2 shows

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1001

Subdata 3 Sorted Array : 𝒉𝟑
with ELP

Query with
Time/Error

bound calibration

Leader
Process exact

search in

!
𝒊"𝟏

𝒘

𝒉𝒊

Leader

Map: w(=3) workers Reduce

Subdata 2 Sorted Array : 𝒉𝟐
with ELP

Subdata 1 Sorted Array: 𝒉𝟏
with ELP

Figure 8: Auncel runtime with map-reduce.

the pseudocode of processing vector queries under latency
bounds. To guarantee the search terminates before the time
bound, the algorithm stops the search when the used time
is a (configurable) δ before the time bound. δ is influenced
by the first cluster after Auncel terminates the search, i.e.,
Ci if the termination condition is triggered after processing
Ci−1. The larger δ is required if Ci has more vectors and costs
more time to process. To guarantee the latency bounds in any
circumstances, δ is tuned according to the cluster with the
largest number of vectors.

4.5 Applying to Distributed Settings

We emphasize that the distributed solutions mentioned in
§2.3 either cannot reduce query latency (i.e., only improve
throughput) or leads to error amplification. To scale out, Aun-
cel uses map-reduce style processing to process vector queries
with multiple workers while preserving the error and latency
bound. Auncel divides distributed vector processing into two
phases—a map phase and a reduce phase. As shown in Fig-
ure 8, Auncel randomly and uniformly shards the dataset
into multiple partitions. Each worker owns one partition, and
builds a local ANN index and a local ELP. One of the work-
ers is elected as the leader, which controls the global query
processing.

When a vector query with an error/time bound (which we
call global bound) comes, the leader calibrates the bound to
get an error/time bound to be used by each worker (which
we call local bound). In the map phase, each worker uses its
local ANN index and ELP to process the query on its own
partition. In the reduce phase, the leader collects the local
results from the workers, and performs exact top-k search on
these collected results to produce the final result.

Calibration of error/latency bounds. As we have shown in
§2.3, the local errors can be amplified in the reduce phase
when the local results are aggregated to the final result. Di-
rectly using the global error bound as the local error bound
in the map phase would cause the final error obtained by the
reduce phase to be larger than the global error bound. To
address this problem, we design an error bound calibration
mechanism based on probability theory. The leader calibrates
the local error bound before distributing the work to the work-
ers in the map phase.

𝒌×𝒘 (𝟓×𝟐)

𝒘𝟏

𝒘𝟐

Reduce

Requestd Error = 40%

Calibrated Error = 20%

: Hit Element

: Miss Element

1 4 7 9 11

3 6 8 10 12

1 3 4 6 7

Figure 9: Error calibration of Auncel.

Figure 9 shows an example with two workers to illustrate
the calibration mechanism. The global error bound ε is 40%,
and the local error bound after calibration εc is 20%. Hit
elements are the intersection of Sr and Sgt . The map phase
is done by the workers individually, and the local error at
each worker is 20%, which meets the local error bound εc.
The reduce phase aggregates the local results and the global
error is 40%. While the global error is bigger than 20%, it
still meets the global error bound (ε = 40%). The probability
of the example in the figure is:

(5
3

)
∗
(5

5

)
/
(10

8

)
= 2

9 , where
(n

m

)
means the combination number. From classical models of
probability, it means the probability of the random event that
selects eight hit elements of all ten ground truth vectors and
three elements are situated in the first five ground truth.

Formally, we define the number of hit elements of the first n
elements in the ground truth as Hn. The worst case is Hk×w =
k×w× (1− εc), which means each worker just meets the
local error bound. The global error can be represented by
1−Hk/k. The probability of a random event Hk = i is

P(Hk = i) =

(k
i

)
×
(k×(w−1)

k×w×(1−εc)−i

)(k×w
k×w×(1−εc)

) . (12)

Thus, the probability of the random event to meet the global
error bound is calculated by:

P(Hk ≥ (k× (1− ε))) =
k

∑
i=k×(1−ε)

P(Hk = i). (13)

For instance in Figure 9, P(Hk ≥ (k× (1− ε))) = P(3) +
P(4)+P(5) = 2

9 +
5
9 +

2
9 = 1, which means the calibrated

local error bound (20%) can guarantee the global error (40%)
under any circumstances. Auncel starts calibrating εc from
ε and decreases εc by 1

k each time. We choose 1
k as the loop

decrement because the error, which is defined in Formula 3, is
a multiple of 1

k . The probability to guarantee the global error
bound ε is calculated through Formula 13. If the probability is
greater than γ (99.9% used in our prototype), Auncel stops the
calibration and distributes the εc to each worker. Therefore,
the probability of failing to guarantee the error bound is less
than 1-γ (<0.1% when γ = 99.9%), i.e., Auncel guarantees
the error bound with high probability. As for the convergence

1002 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

time of the calibration algorithm, the calculation time of For-
mula 12 is constant since the values of combinatorial numbers
are pre-calculated offline. The time complexity of Formula 13
is O(k×ε). Consequently, the convergence time of calibration
is O((k× ε)2). Since k in real query workloads is not large,
the time to calibrate the error bound is relatively small.

Calibrating the latency bound is straightforward since the
overhead of the reduce phase is negligible compared to the
map phase. We slightly enlarge δ to include the reduce over-
head as the latency calibration.

5 Implementation
We have implemented a system prototype of Auncel with
∼3000 lines of code in C++ based on Faiss. We use Faiss for
building IVF indexes and similarity search, and extend Faiss
with building and applying ELPs for performance bounds. Be-
cause Faiss does not support distributed processing, we also
implement data sharding, and map-reduce operations for dis-
tributed query processing. In theory, Auncel can be integrated
with any vector query processing engines. We choose Faiss
because it is a widely-used open-source vector query process-
ing engine, and is adopted in production like Meta/Facebook.
The code of Auncel is open-source and is publicly available
at https://github.com/pkusys/Auncel.

ELP & Distributed setting. We implement the ELP compo-
nent of Auncel with C++ Standard Library (STL) and Intel
oneMKL [38]. ELP works in the query process and is treated
as the process controller (monitor). For the distributed set-
ting, Auncel spawns a worker process for each CPU core,
and a server machine contains multiple workers. The entire
dataset is sharded among the workers, and each worker pro-
cesses queries on its own shard. Auncel randomly chooses
a machine to spawn a leader process to receive the query
and distribute the query with calibrated configurations (§4.5)
to each worker. After all workers finishing their own query
processing, the leader aggregates local results and returns the
final results to the user. Each machine contains a daemon
process that manages the local workers on the machine and
communicates with the leader using TCP sockets. For lead-
ers, Auncel handles query failures by re-executing the query.
When receiving a local result from a worker, the leader creates
a consistent backup of the result. Users are able to resume the
query with the existing backup files, which is similar with the
ideas of traditional primary-backup mechanisms [39, 40].

System optimizations. The ELP component imposes com-
putation overhead to the system because of the complex ge-
ometric operations for high-dimensional vectors. We follow
Faiss to implement Euclidean distance calculation, Angular
distance calculation and vector normalization through SIMD
instructions of oneMKL. Since SIMD is designed for vector
operations such as inner-product and element-wise addition,
it significantly reduces the computation overhead of the ELP
component. In addition, we pre-calculate key-value pairs of

Dataset Dimensions Database Query Distance
Vectors Vectors

SIFT10M [41] 128 10M 10K Euclidean
DEEP10M [31] 96 10M 10K Euclidean
DEEP1B [31] 96 1B 10K Euclidean
GIST1M [42] 960 1M 1K Euclidean

TEXT10M [31] 200 10M 10K Angular

Table 2: Datasets used in the evaluation.

some operations(e.g., arccos) offline and consult the key-value
pairs online to improve the performance of these operations.

6 Evaluation
In this section, we empirically evaluate Auncel from the fol-
lowing aspects: (i) end-to-end performance improvement over
state-of-the-art solutions; (ii) effectiveness of ELP; (iii) vali-
dation of the mathematical formulation; (iv) system overhead
of Auncel; and (v) scalability. The summary of the experi-
ments is as follows.
• Auncel outperforms LAET [30] and Faiss [22] by up to

3.6× and 10× on average query latency under the same
error bound, respectively (§6.1).

• The ELPs built by Auncel are highly accurate across a range
of datasets (§6.2).

• The mathematical formulation of Auncel fits well with real-
world datasets (§6.3).

• The runtime overhead of Auncel is within 1%, and building
an ELP offline can be done within ten minutes (§6.4).

• Auncel scales out near ideally, and only takes 25 ms to
process a query on DEEP1B with 128 workers (§6.5).

Setup. All experiments are conducted on AWS. We use two
EC2 instance types, both configured with Ubuntu 18.04 LTS.
For the single-node experiments, we use c5.4xlarge, which
is configured with 16 vCPUs (Intel Xeon Platinum 8275CL)
and 32 GB memory. For the scalability experiments, we use
c5.metal, which is configured with 96 vCPUs (Intel Xeon
Platinum 8275CL) and 192 GB memory. The reason of using
c5.metal for the scalability experiments is the experiments
aim to demonstrate the ability of Auncel to support very large
datasets and we need large memory to host DEEP1B (nearly
400 GB memory footprint).

Datasets. Table 2 summarizes the preprocessed datasets used
in our experiments. These datasets are widely-used bench-
marking datasets for vector query processing in both academic
and industry [43, 44]. Each dataset consists of database vec-
tors, query vectors and ground truth. For each query vector, the
ground truth records the indexes and distances of its top-100
neighbors. SIFT [41] is a dataset of local SIFT image descrip-
tors [45] with ten million database vectors and ten thousand
queries. DEEP [31] is a dataset of CNN [46] image embed-
dings with one billion database vectors and ten thousand
queries. The single-node experiments only use ten million
database vectors of DEEP, denoted by DEEP10M. The scala-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1003

https://github.com/pkusys/Auncel

SIFT10M DEEP10M GIST1M TEXT10M0

100

200

300

400

500

600

Av
g.

La
te
nc
y
(m

s)

Auncel LAET Faiss

(a) Average latency.

SIFT10M DEEP10M GIST1M TEXT10M0

4

8

12

Av
g.

S
lo
w
do
w
n

Auncel LAET Faiss

(b) Average slowdown of latency.

SIFT10M DEEP10M GIST1M TEXT10M0

4

8

12

16

Av
g.

C
lu
st
er

S
ea

rc
h
R
at
io Auncel LAET Faiss

(c) Average cluster search ratio.

Figure 10: Performance under different datasets.

Error-10% Error-5% Error-1%0

100

200

300

400

500

600

Av
g.

La
te
nc

y
(m

s)

Auncel LAET Faiss

(a) Average latency.

Error-10% Error-5% Error-1%0

2

4

6

8

10

12

Av
g.

S
lo
w
do

w
n

Auncel LAET Faiss

(b) Average slowdown of latency.

Error-10% Error-5% Error-1%0

2

4

6

8

10

12

Av
g.

C
lu
st
er

S
ea

rc
h
R
at
io Auncel LAET Faiss

(c) Average cluster search ratio.

Figure 11: Performance under different error bounds.

Top-10 Top-50 Top-1000

50

100

150

200

250

300

Av
g.

La
te
nc

y
(m

s)

Auncel LAET Faiss

(a) Average latency.

Top-10 Top-50 Top-1000

4

8

12

16

20

Av
g.

S
lo
w
do

w
n

Auncel LAET Faiss

(b) Average slowdown of latency.

Top-10 Top-50 Top-1000

4

8

12

16

20

24

Av
g.

C
lu
st
er

S
ea

rc
h
R
at
io Auncel LAET Faiss

(c) Average cluster search ratio.

Figure 12: Performance under different values of k.

bility experiments use all database vectors of DEEP, denoted
by DEEP1B. GIST [42] is a dataset of global color GIST
descriptors [45] with one million database vectors and one
thousand query vectors. TEXT [31] is a cross-model [47, 48]
dataset of texts and images, where the ten million database
vectors and the ten thousand query vectors have different dis-
tributions in a shared representation space. The TEXT dataset
adopts Angular distance as the distance metric, while the other
three datasets use Euclidean distance.

Baselines. We compare Auncel to two baselines.
• Faiss [22] is a widely-used solution for processing vector

queries. It uses a fixed approach that picks the same sam-
pling size for all queries under a given error bound.

• LAET [30] is a state-of-the-art solution that uses machine
learning to adaptively determines search termination condi-
tions for individual queries.

We emphasize that Faiss and LAET do not provide perfor-
mance guarantees. To the best of our knowledge, Auncel is the
first system that provides performance guarantees for vector
query processing. In the experiments, we use the best con-
figurations (e.g., the minimal n in the map for Faiss and the
earliest search termination condition for LAET) to guarantee
that all queries meet the given error bound. This allows us to

fairly compare the query latency of Auncel, Faiss and LAET,
while all three systems satisfy the given error bounds.

Note that it is necessary for all the three systems (Auncel,
Faiss and LAET) to train their ELPs offline with some exam-
ple queries. In the experiments, unless otherwise stated, we
randomly split the query vectors into two parts of equal size,
one for training and the other for testing. Because Auncel and
LAET only perform search on the training queries once, the
ELP building times of the two systems are almost the same.
However, the grid search method of Faiss requires searching
on the training queries for different top-n (exponential power
of two in practice to save time), and the building time is tens
of times longer than that of Auncel and LAET.

Metrics. We use average end-to-end query latency,
Ave(Tsystem) as the main evaluation metric, where Tsystem rep-
resents the individual query latency of one of the three sys-
tems. In addition, we also report average slowdown of latency
and average cluster search ratio. Average slowdown of latency
is defined as Ave(Tbaseline

TAuncel
). Average cluster search ratio is de-

fined as the average ratio between the number of searched
clusters by the baseline and that by Auncel, i.e., Ave(Nbaseline

NAuncel
),

where N represents the number of searched clusters when
processing an individual query.

1004 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 20 30 40 50 60 70
Requested Error Bound (%)

0

20

40

60

80

100

A
ct
ua

lE
rr
or

(%
) Ideal

Maximum Error
95%-tile Error

(a) SIFT10M.

10 20 30 40 50 60 70
Requested Error Bound (%)

0

20

40

60

80

100

A
ct
ua

lE
rr
or

(%
) Ideal

Maximum Error
95%-tile Error

(b) DEEP10M.

10 20 30 40 50 60 70
Requested Error Bound (%)

0

20

40

60

80

100

A
ct
ua

lE
rr
or

(%
) Ideal

Maximum Error
95%-tile Error

(c) GIST1M.

10 20 30 40 50 60 70
Requested Error Bound (%)

0

20

40

60

80

100

A
ct
ua

lE
rr
or

(%
) Ideal

Maximum Error
95%-tile Error

(d) TEXT10M.

Figure 13: Effectiveness of error profiles.

5 10 15 20 25 30 35 40 45 50
Requested Response Time (ms)

0

10

20

30

40

50

A
ct
ua

lR
es

po
ns

e
Ti
m
e
(m

s)

Maximum Time
Minimum Time

(a) SIFT10M.

5 10 15 20 25 30 35 40 45 50
Requested Response Time (ms)

0

10

20

30

40

50

A
ct
ua

lR
es

po
ns

e
Ti
m
e
(m

s)

Maximum Time
Minimum Time

(b) DEEP10M.

5 10 15 20 25 30 35 40 45 50
Requested Response Time (ms)

0

10

20

30

40

50

A
ct
ua

lR
es

po
ns

e
Ti
m
e
(m

s)

Maximum Time
Minimum Time

(c) GIST1M.

5 10 15 20 25 30 35 40 45 50
Requested Response Time (ms)

0

10

20

30

40

50

A
ct
ua

lR
es

po
ns

e
Ti
m
e
(m

s)

Maximum Time
Minimum Time

(d) TEXT10M.

Figure 14: Effectiveness of time profiles.

6.1 Overall Performance

We compare the end-to-end query latency between Auncel,
Faiss and LAET under the same error bound. Auncel outper-
forms Faiss and LAET under different datasets, different error
bounds, and different values of k.

Performance under different datasets. We compare Aun-
cel against the baselines on SIFT10M, DEEP10M, GIST1M
and TEXT10M. We use one c5.4xlarge EC2 instance. The
error bound is 10% and k in top-k is 100 (i.e., returning top-
100 nearest neighbors for a query). The results are shown in
Figure 10, which we summarize as follows.
• Auncel achieves 1.8–3.6× lower average end-to-end latency

than LAET and 1.3–4.8× lower of that than Faiss under the
same error bound. This is because Auncel adaptively and
accurately profiles the relationship between errors and sam-
pling sizes, which allows Auncel to sample fewer clusters
to generate query results.

• Compared to the gap of average latency between Auncel
and the baselines, the gap of average slowdown is larger.
This is because Auncel co-adapts individual queries and the
error bounds, while the two baselines fail to adapt queries
and error bounds at the same time.

• Auncel outperforms the two baselines by up to 9.6× in
average cluster search ratio. This means Auncel can reduce
the search cost by up to 9.6× in average while meeting
the requested error bound, due to the use of the geometric
properties when building ELPs.

• Auncel significantly outperforms Faiss and LAET on all the
four datasets, which have different characteristics of data
and different metrics of distance (Euclidean and Angular).

Performance under different error bounds. To show that
Auncel consistently outperforms the baselines when the error

bound changes, we vary the error bound from 1% to 10% and
run the top-100 workload on the SIFT10M dataset. Figure 11
shows the performance under different error bounds. Auncel
achieves 1.4–1.7× lower average end-to-end latency than
LAET and 1.8–4.8× lower of that than Faiss.

Performance under different values of k. We also vary the
value of k from 10 to 100. We fix the error bound as 10% and
run different top-k workloads on the SIFT10M dataset. From
Figure 12, we observe that Auncel outperforms LAET and
Faiss by 1.6–3.3× and 4.6–10× on average query latency,
respectively. It confirms that Auncel can handle different
values of k in top-k.

6.2 Effectiveness of ELP Techniques

In this set of experiments, we evaluate the effectiveness of the
ELP building techniques in Auncel.

Error Profiles. To evaluate our error profiling technique, we
run Auncel with the top-100 workload on the four datasets.
We vary the error bound from 10% to 70%. Figure 13 illus-
trates the maximum and 95%-tile actual errors. We also plot
the ideal straight lines (i.e., actual error equals to error bound)
in Figure 13. Note that the measured actual error is always no
bigger than the error bound, which demonstrates the ability of
Auncel to guarantee bounded errors. As we increase the error
bound, the measured actual error increases as well, indicating
that Auncel adapts to the error bound. However, the maximum
error does not increase monotonically with the error bound
on SIFT10M, DEEP10M and GIST1M. This is because the
geometric characteristics (e.g., dimension and distribution) of
query vectors vary widely across different datasets.

Time Profiles. To evaluate our time profiling technique, we
run Auncel with the top-100 workload on the four datasets and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1005

0 10 20
Upper Bound Function (U)

0

5

10

15

S
ca

lin
g

Fa
ct

or
 (φ

)

φ Upper
Bound Model

10
0

10
1

10
2

(a) SIFT10M.

0 10 20
Upper Bound Function (U)

0

5

10

15

S
ca

lin
g

Fa
ct

or
 (φ

)

φ Upper
Bound Model

10
0

10
1

10
2

(b) DEEP10M.

Figure 15: Validation of Formula 10.

report query latency of each query, with a time bound from
5 ms to 50 ms. Figure 14 shows the results of the maximum
and minimum end-to-end query latencies. The results show
that each query is terminated before the time bound.

6.3 Validation of Mathematical Formulation

This experiment validates that our theoretical model (For-
mula 10) fits well with real-world unstructured datasets. In
ELP initialization, we compute the geometric upper bound
function U and collect the corresponding real scaling factor ϕ

according to the ground truth. We sample a portion of U−ϕ

pairs, where ϕ is the maximal in a small interval, to model
the tight upper bound of ϕ. The larger interval apparently
leads to a tighter upper bound. We then use least squares to fit
Formula 10 for these U−ϕ pairs. Figure 15 shows the results
of the top-100 search workload on SIFT10M and DEEP10M.
The results confirm that Formula 10 can well capture the rela-
tionship between U and ϕ, which allows Auncel to accurately
predict the runtime errors.

6.4 System Overhead

Runtime overhead. To evaluate the runtime overhead of
Auncel, we perform an experiment with top-k search work-
loads on different datasets. We configure Auncel to search
fixed number of clusters and make an error prediction after
searching each cluster. For comparison, we measure the ELP
prediction time and the entire time of query processing. We
also vary the value of k from 10 to 100, and run Auncel on
SIFT10M. As shown in Table 3 and Table 4, the average la-
tency can hardly be distinguished between Auncel with ELP
and Auncel without ELP. The runtime overhead of using ELP
in Auncel is within 1%. Note that the average latency almost
stays the same from top-10 search to top-100 search. This is
because distance computation dominates in the search process
such that top-k relevant computation is negligible.

ELP Building Time. We evaluate the offline time taken for
ELP building. We configure Auncel to train 50% query vec-
tors with the top-100 workload on different datasets. Table 5
shows that the time to build ELP is within ten minutes, which
is relatively small for datasets with ten million vectors.

6.5 Scalability

Auncel shards a dataset into several partitions. For a vector
query, it performs local ANN search with ELP in the map

4 8 16 32 64 128
No. of Workers

0
50

100
150
200
250
300
350

Av
er

ag
e

La
te

nc
y

(m
s)

Figure 16: Scalability on multiple workers.

Dataset Without ELP With ELP

SIFT10M 68.02 ms 68.41 ms (+0.58%)
DEEP10M 48.16 ms 48.55 ms (+0.81%)
GIST1M 6.86 ms 6.91 ms (+0.70%)

TEXT10M 95.42 ms 96.00 ms (+0.61%)

Table 3: Runtime overhead under different datasets.

Top-K Without ELP With ELP

Top-10 68.09 ms 68.47 ms (+0.55%)
Top-50 68.12 ms 68.51 ms (+0.57%)
Top-100 68.02 ms 68.4 1ms (+0.58%)

Table 4: Runtime overhead under different values of k.

Dataset Building Time

SIFT10M 6.20min
DEEP10M 4.44min
GIST1M 0.61min

TEXT10M 8.65min

Table 5: ELP building time on different datasets.

phase and aggregates the local results in the reduce phase.
We evaluate how configurations with different number of
workers impact the average latency. We use four c5.metal
EC2 instances to verify the scalability of Auncel. In this ex-
periment, we adopt the calibration techniques described in
§4.5 to guarantee 10% global bounded error for all queries.
We vary the number of workers from 4 to 128, and run the
top-100 workload on DEEP1B. Auncel assigns each machine
an equal number of workers and spawns a leader worker on
one of the machines. The leader worker receives all local
top-k results and completes the reduce task. Figure 16 shows
that the average latency is almost halved when the number
of workers doubles each time, indicating that Auncel scales
out near ideally. This is because Auncel only transmits the
indexes of local top-100 vectors and their corresponding dis-
tances to the query vector from the workers to the leader; it
does not transmit the raw data of the high-dimensional vec-
tors. The reduce phase to aggregate local results takes only
a small portion of the total time. Therefore, Auncel can fully
leverage the advantages of data parallelism to scale out.

1006 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

7 Discussion
Hardware acceleration. Some query engines [23, 49] lever-
age GPUs to accelerate vector query processing. GPU accel-
eration works well for small datasets, but is not suitable for
large datasets because of limited GPU memory size. Thus,
CPUs are widely used in production for large datasets. Also,
GPUs are more expensive than CPUs. Therefore, we focus on
CPUs for implementation and evaluation in this paper. We re-
mark that the design of Auncel is orthogonal to the underlying
hardware. Auncel can be applied to GPUs or other specialized
hardware for vector query processing.

Vector compression. Vector compression [50] is proposed to
reduce the memory footprint of large datasets. It compresses
high-dimensional vectors into low-dimensional space while
maintaining the distance property. The number of dimen-
sions in each vector is reduced after vector compression. This
technique is orthogonal to Auncel since we only consider the
distance property between different vectors. Auncel processes
vector queries on a dataset, no matter how many dimensions
each vector in the dataset has.

8 Related Work
ANN indexes. Many ANN indexes are proposed to im-
prove query accuracy and reduce query latency, such as
IVF [15, 25, 35], graph index [16, 51, 52] and locality sen-
sitive hashing [18, 53–55]. These algorithms perform search
on sampling data which trade accuracy for query latency. They
leave the sampling size (e.g., top-n in IVF) to users and do
not provide bounded performance. These ANN algorithms
are orthogonal and complementary to Auncel, and we fol-
low one of the state-of-the-art solutions, IVF, to build Auncel.
Besides, ANN algorithms also have different system charac-
teristics [56]. For example, the graph index is more efficient
than IVF, but it needs extra memory to hold large graphs. An
interesting direction for future work is to build a unified ELP
for more ANN indexes and provide bounded performance
according to user preferences. Some recent works [30, 57]
focus on early stopping conditions of nearest neighbor search
to reduce average query latency at a high accuracy, but they
do not provide any error or time bound guarantees. With the
proliferation of unstructured data and machine learning, ANN
on the embedding vectors of unstructured data becomes a key
component in many AI applications, such as recommenda-
tion [1–4], recognition [5–8] and information retrieval [9–11].
Recent industrial vector data management systems [23,24,58]
are developed to meet the rapidly increasing demand of these
AI applications. They typically build their query processing
engines on top of Faiss [22]. As we integrate the Auncel pro-
totype into Faiss, it is convenient for these systems to leverage
Auncel to improve vector query processing.

Approximate query processing. Approximate query process-
ing systems [19, 20, 59–61] have gained a lot of popularity

due to the long latency of exact search. These systems all pro-
vide time or latency guarantees through probability statistics.
However, none of them pays attention to unstructured data
represented by vectors. BlinkDB [19] and Quickr [60] focus
on structured data and approximate aggregation jobs while
ASAP [20] focuses on approximate graph pattern mining.
The probability statistics method fails to produce good results
on vector queries with performance guarantees. Thus, we in-
troduce a novel high-dimensional geometry theory tailored
for vector queries in Auncel. GRASS [21] is a scheduler for
approximation jobs in data analytics clusters to alleviate the
straggler problem in a map-reduce framework. It is comple-
mentary to the distributed design of Auncel since our error
and latency calibration mechanism is easy to be integrated
into such cluster schedulers. Big data warehouses [62–64]
are prevalent in modern cloud services, which provide high-
performance query processing. To manage large-scale un-
structured data, Auncel can be integrated into these query
systems to provide bounded performance. Auncel bridges
the gap between approximate query processing and vector
queries.

9 Conclusion
We present Auncel, a vector query processing engine that pro-
vides bounded errors and latencies on very large unstructured
datasets. Auncel exploits the geometric properties of high-
dimensional space and the nature of vector query processing
to build precise and lightweight ELPs. Auncel is a distributed
solution that leverages probability theory to scale out with
multiple workers. We demonstrate the performance of Auncel
on a variety of datasets. Auncel significantly reduces query
latency while meeting error or latency bounds, and scales to
billion-scale datasets with latency reduction.

Acknowledgments. We sincerely thank our shepherd Anurag
Khandelwal and the anonymous reviewers for their valuable
feedback on this paper. This work is supported by the National
Key Research and Development Program of China under the
grant number 2021YFB3300700, the National Natural Sci-
ence Foundation of China under the grant number 62172008,
the National Natural Science Fund for the Excellent Young
Scientists Fund Program (Overseas), and a research gift from
Moqi. Xin Jin and Xuanzhe Liu are the corresponding au-
thors. Zili Zhang, Chao Jin, Xuanzhe Liu and Xin Jin are
also with the Key Laboratory of High Confidence Software
Technologies (Peking University), Ministry of Education.

References
[1] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google

news personalization: scalable online collaborative fil-
tering,” in WWW, 2007.

[2] J. Suchal and P. Návrat, “Full text search engine as scal-
able k-nearest neighbor recommendation system,” in

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1007

IFIP International Conference on Artificial Intelligence
in Theory and Practice, 2010.

[3] P. Covington, J. Adams, and E. Sargin, “Deep neural net-
works for youtube recommendations,” in Recsys, 2016.

[4] M. Grbovic and H. Cheng, “Real-time personalization
using embeddings for search ranking at airbnb,” in ACM
SIGKDD, 2018.

[5] R. He, Y. Cai, T. Tan, and L. Davis, “Learning pre-
dictable binary codes for face indexing,” Pattern recog-
nition, 2015.

[6] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A
unified embedding for face recognition and clustering,”
in IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

[7] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and
Q. Tian, “Scalable person re-identification: A bench-
mark,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2015.

[8] X. Liu, W. Liu, H. Ma, and H. Fu, “Large-scale vehicle
re-identification in urban surveillance videos,” in ICME,
2016.

[9] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and
T. Blaschke, “The rise of deep learning in drug discov-
ery,” Drug discovery today, 2018.

[10] A. C. Mater and M. L. Coote, “Deep learning in chem-
istry,” Journal of chemical information and modeling,
2019.

[11] K. Berlin, S. Koren, C.-S. Chin, J. P. Drake, J. M. Lan-
dolin, and A. M. Phillippy, “Assembling large genomes
with single-molecule sequencing and locality-sensitive
hashing,” Nature biotechnology, 2015.

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
nature, 2015.

[13] R. Blumberg and S. Atre, “The problem with unstruc-
tured data,” Dm Review, 2003.

[14] “Eighty Percent of Your Data Will Be Unstructured
in Five Years.” https://solutionsreview.com/
data-management/.

[15] A. Babenko and V. Lempitsky, “The inverted multi-
index,” TPAMI, 2014.

[16] Y. A. Malkov and D. A. Yashunin, “Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs,” TPAMI, 2018.

[17] K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time
kd-tree construction on graphics hardware,” ACM TOG,
2008.

[18] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni,
“Locality-sensitive hashing scheme based on p-stable
distributions,” in Proceedings of the twentieth annual
symposium on Computational geometry, 2004.

[19] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Mad-
den, and I. Stoica, “BlinkDB: queries with bounded er-
rors and bounded response times on very large data,” in
EuroSys, 2013.

[20] A. P. Iyer, Z. Liu, X. Jin, S. Venkataraman, V. Braverman,
and I. Stoica, “ASAP: Fast, approximate graph pattern
mining at scale,” in USENIX OSDI, 2018.

[21] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica,
A. Wierman, and M. Yu, “GRASS: Trimming stragglers
in approximation analytics,” in USENIX NSDI, 2014.

[22] J. Johnson, M. Douze, and H. Jégou, “Billion-scale sim-
ilarity search with GPUs,” IEEE Transactions on Big
Data, 2019.

[23] J. Wang, X. Yi, R. Guo, H. Jin, P. Xu, S. Li, X. Wang,
X. Guo, C. Li, X. Xu, et al., “Milvus: A purpose-built
vector data management system,” in ACM SIGMOD,
2021.

[24] C. Wei, B. Wu, S. Wang, R. Lou, C. Zhan, F. Li, and
Y. Cai, “Analyticdb-v: A hybrid analytical engine to-
wards query fusion for structured and unstructured data,”
in Proceedings of the VLDB Endowment, 2020.

[25] Q. Chen, B. Zhao, H. Wang, M. Li, C. Liu, Z. Li,
M. Yang, and J. Wang, “SPANN: Highly-efficient
billion-scale approximate nearest neighbor search,” in
Neural Information Processing Systems, 2021.

[26] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and
L. Schmidt, “Practical and optimal lsh for angular dis-
tance,” in Neural Information Processing Systems, 2015.

[27] M. Muja and D. Lowe, “Flann-fast library for approxi-
mate nearest neighbors user manual,” VISAPP, 2009.

[28] “Annoy.” https://github.com/spotify/annoy.

[29] L. Boytsov and B. Naidan, “Engineering efficient and
effective non-metric space library,” in SISAP, 2013.

[30] C. Li, M. Zhang, D. G. Andersen, and Y. He, “Improving
approximate nearest neighbor search through learned
adaptive early termination,” in ACM SIGMOD, 2020.

[31] “yandex billion-scale datasets.” https://research.
yandex.com/datasets/biganns.

1008 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://solutionsreview.com/data-management/
https://solutionsreview.com/data-management/
https://github.com/spotify/annoy
https://research.yandex.com/datasets/biganns
https://research.yandex.com/datasets/biganns

[32] M. Grohe, “word2vec, node2vec, graph2vec, x2vec: To-
wards a theory of vector embeddings of structured data,”
in ACM SIGMOD, 2020.

[33] H. Chen and H. Koga, “Gl2vec: Graph embedding en-
riched by line graphs with edge features,” in Neural
Information Processing Systems, 2019.

[34] G. C. Tomas Mikolov, Kai Chen and J. Dean, “Efficient
estimation of word representations in vector space,” in
International Conference on Learning Representations
(ICLR), 2013.

[35] D. Baranchuk, A. Babenko, and Y. Malkov, “Revisiting
the inverted indices for billion-scale approximate nearest
neighbors,” in ECCV, 2018.

[36] J. A. Hartigan and M. A. Wong, “Algorithm as 136:
A k-means clustering algorithm,” Journal of the royal
statistical society. series c (applied statistics), 1979.

[37] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma,
Q. Ye, and T.-Y. Liu, “Lightgbm: A highly efficient
gradient boosting decision tree,” in Neural Information
Processing Systems, 2017.

[38] “Intel oneAPI Math Kernel Library (oneMKL).” https:
//www.intel.com/content/www/us/en/develop/
documentation/oneapi-programming-guide/
top/api-based-programming/
intel-oneapi-math-kernel-library-onemkl.
html.

[39] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the
ACM, 2008.

[40] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica, “Spark: Cluster computing with working
sets,” in USENIX HotCloud Workshop, 2010.

[41] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg,
“Searching in one billion vectors: re-rank with source
coding,” in ICASSP, 2011.

[42] H. Jegou, M. Douze, and C. Schmid, “Product quantiza-
tion for nearest neighbor search,” TPAMI, 2010.

[43] M. Aumüller, E. Bernhardsson, and A. Faithfull, “Ann-
benchmarks: A benchmarking tool for approximate near-
est neighbor algorithms,” in SISAP, 2017.

[44] S. Harsha, W. George, A. Martin, B. Artem, B. Dmitry,
C. Qi, D. Matthijs, K. Ravishankar, S. Gopal, S. Suhas,
and W. Jingdong, “Billion-scale approximate nearest
neighbor search challenge,” in Neural Information Pro-
cessing Systems Competition Track, 2021.

[45] A. Oliva and A. Torralba, “Modeling the shape of the
scene: A holistic representation of the spatial envelope,”
IJCV, 2001.

[46] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich, “Going deeper with convolutions,” in IEEE Con-
ference on Computer Vision and Pattern Recognition,
2015.

[47] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and
L. Heck, “Learning deep structured semantic models for
web search using clickthrough data,” in CIKM, 2013.

[48] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation
networks,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2018.

[49] J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao, and
D. L. Lee, “Billion-scale commodity embedding for e-
commerce recommendation in alibaba,” in Proceedings
of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 839–848,
2018.

[50] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product
quantization for approximate nearest neighbor search,”
in IEEE Conference on Computer Vision and Pattern
Recognition, 2013.

[51] C. Fu, C. Xiang, C. Wang, and D. Cai, “Fast approximate
nearest neighbor search with the navigating spreading-
out graph,” in Proceedings of the VLDB Endowment,
2019.

[52] S. Jayaram Subramanya, F. Devvrit, H. V. Simhadri,
R. Krishnawamy, and R. Kadekodi, “Diskann: Fast ac-
curate billion-point nearest neighbor search on a single
node,” 2019.

[53] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li,
“Multi-probe lsh: efficient indexing for high-dimensional
similarity search,” in Proceedings of the VLDB Endow-
ment, 2007.

[54] Y. Zheng, Q. Guo, A. K. Tung, and S. Wu, “Lazylsh:
Approximate nearest neighbor search for multiple dis-
tance functions with a single index,” in ACM SIGMOD,
2016.

[55] L. Gong, H. Wang, M. Ogihara, and J. Xu, “idec: index-
able distance estimating codes for approximate nearest
neighbor search,” in Proceedings of the VLDB Endow-
ment, 2020.

[56] M. Aumüller, E. Bernhardsson, and A. Faithfull, “Ann-
benchmarks: A benchmarking tool for approximate near-
est neighbor algorithms,” Information Systems, 2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1009

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html

[57] A. Gogolou, T. Tsandilas, T. Palpanas, and A. Bezeri-
anos, “Progressive similarity search on time series data,”
in BigVis, 2019.

[58] W. Yang, T. Li, G. Fang, and H. Wei, “Pase: Postgresql
ultra-high-dimensional approximate nearest neighbor
search extension,” in ACM SIGMOD, 2020.

[59] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen,
“Approxhadoop: Bringing approximations to mapreduce
frameworks,” in ACM ASPLOS, 2015.

[60] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma,
R. Grandl, S. Chaudhuri, and B. Ding, “Quickr: Lazily
approximating complex adhoc queries in bigdata clus-
ters,” in ACM SIGMOD, 2016.

[61] A. P. Iyer, A. Panda, S. Venkataraman, M. Chowd-
hury, A. Akella, S. Shenker, and I. Stoica, “Bridging
the gap: towards approximate graph analytics,” in SIG-
MOD GRADES-NDA, 2018.

[62] “Google BigQuery.” https://cloud.google.com/
bigquery/.

[63] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov,
A. Avanes, J. Bock, J. Claybaugh, D. Engovatov,
M. Hentschel, J. Huang, et al., “The snowflake elastic
data warehouse,” in Proceedings of the 2016 Interna-
tional Conference on Management of Data, 2016.

[64] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak,
S. Stefani, and V. Srinivasan, “Amazon redshift and the
case for simpler data warehouses,” in ACM SIGMOD,
2015.

[65] “CMU CStheory-infoage chap1-high-dim-space.”
https://www.cs.cmu.edu/~venkatg/teaching/
CStheory-infoage/chap1-high-dim-space.pdf.

1010 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/chap1-high-dim-space.pdf
https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/chap1-high-dim-space.pdf

A Appendix
A.1 Validation of Local Uniform Distribution

0 5 10 15 20 25
No. of Moves

0

20

40

60

80

100

N
o.

of
N
ei
gh

bo
rs

(a) cp1 in SIFT10M.

0 5 10 15 20 25
No. of Moves

0
50

100
150
200
250
300
350

N
o.

of
N
ei
gh

bo
rs

(b) cp2 in SIFT10M.

0 5 10 15 20 25
No. of Moves

0

20

40

60

80

100

120

N
o.

of
N
ei
gh

bo
rs

(c) cp3 in DEEP10M.

0 5 10 15 20 25
No. of Moves

0

1000

2000

3000

4000

5000

6000

N
o.

of
N
ei
gh

bo
rs

(d) cp4 in DEEP10M.

Figure 17: Validation of local uniform distribution.
We emphasize that the assumption about data distribution

is local uniform distribution rather than uniform distribution.
It is because the real-world items are distributed together
smoothly. We perform a measurement to validate that vec-
tors conform to local uniform distribution in widely-used
unstructured datasets. We randomly pick a central point (cp)
in the geometric space and let it do a random walk. Each
time cp moves a small distance in either direction, the num-
ber of database vectors within a small radius (r) from cp is
counted through a sweep. In this measurement, we pick two
initial central points for SIFT10M and DEEP10M, respec-
tively. Figure 17 shows the dynamics of the number of cp’s
neighbors and how it changes when cp moves. Within 25
moves (i.e., a relatively small local scope), the number of cp’s
neighbors fluctuates no more than 14% in the four examples.
Consequently, it is reasonable to conclude the local uniform
distribution.

A.2 Analysis of Formula 10

1

𝑥!

𝑑𝑥

! 1 − 𝑥" radius sphere in
(d-1) dimensional space

Spherical Cap

Figure 18: Unit spherical cap.

Let dbm represent the distance between the query vector
q and the boundary of C1, Cm. We leverage cosine theorem
to calculate dbm by three anchor vectors, q and the centroid
vectors of C1,Cm, where the boundary is the mid-vertical
plane of the line segment connecting the two centroids.

Since only the volume ratio is considered, we simplify
the model into unit sphere, which substitutes λi(j) with unit
element (1) and dbm with xm = dbm

λi(j) after processing Ci. Thus,
V (Pj(m))

V (B(λi(j))) is identical to the ratio of spherical cap’s volume,
V (sc) to the volume of the unit sphere as Figure 18 shows.
According to properties of high-dimensional space [65], the
volume of the unit sphere, Un(d) in d-dimensional space is

V (Un(d)) =
π

d
2

d
2 Γ(d

2)
.

As for the spherical cap, the exact volume calculation is
time-consuming through definite integral. To guarantee the
bounded error, it is sufficient to provide an upper bound for-
mula of the ratio. Thus, we derive the following lemma.

Lemma A.1 For any 0 ≤ xm ≤ 1 , the fraction of the vol-
ume of the hemisphere above the boundary (spherical cap,
sc) is V (sc). The unit sphere’s volume is V (Un(d)) in d-
dimensional space (d ≥ 3). We conclude that V (sc)

V (Un(d)) ≤
a× arccos(xm), where a is a number corresponding to d.

Proof. The surface area of the intersection of the boundary
and the sphere is

(1− x2)
d−1

2 V (Un(d−1)).

Thus, the volume of sc is:

V (sc) =V (Un(d−1))
∫ 1

xm

(1− x2)
d−1

2 dx.

Now,

V (sc)
V (Un(d))

=
V (Un(d−1))

V (Un(d))

∫ 1

xm

(1− x2)
d−1

2 dx

≤ a×
∫ 1

xm

(1− x2)
d−1

2 dx.

As for the upper bound, since 0≤ (1−x2)≤ 1 and− 1
2 < 0 <

d−1
2 , we have (1−x2)

d−1
2 ≤ (1−x2)−

1
2 . Due to the properties

of definite integral,∫ 1

xm

(1− x2)
d−1

2 dx≤
∫ 1

xm

(1− x2)−
1
2 dx

Thus,

V (sc)
V (Un(d))

≤ a×
∫ 1

xm

(1− x2)−
1
2 dx = a× arccos(xm).

The lemma is concluded by the above proof, and we fit a by
sampling queries offline.

Above all, one of U is ∑
l
m=i+1 arccos(xm) in Formula 10

where a×U represents the upper bound of ∑
l
m=i+1 V (Pj(m))

V (B(λi(j))) .

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1011

Arya: Arbitrary Graph Pattern Mining with Decomposition-based Sampling

Zeying Zhu⋆∗, Kan Wu†∗, Zaoxing Liu⋆
⋆Boston University, †University of Wisconsin-Madison

Abstract
Graph pattern mining is compute-intensive in process-
ing massive amounts of graph-structured data. This paper
presents Arya, an ultra-fast approximate graph pattern miner
that can detect and count arbitrary patterns of a graph. Unlike
all prior approximation systems, Arya combines novel graph
decomposition theory with edge sampling-based approxima-
tion to reduce the complexity of mining complex patterns on
graphs with up to tens of billions of edges, a scale that was
only possible on supercomputers. Arya can run on a single
machine or distributed machines with an Error-Latency Pro-
file (ELP) for users to configure the running time of pattern
mining tasks based on different error targets. Our evaluation
demonstrates that Arya outperforms existing exact and ap-
proximate pattern mining solutions by up to five orders of
magnitude. Arya supports graphs with 5 billion edges on
a single machine and scales to 10-billion-edge graphs on a
32-server testbed.

1 Introduction
Graph-structured data have been used to represent relation-
ships between entities in various domains, ranging from social
networks [23, 39], financial transactions [46, 56], and knowl-
edge bases [4]. There are two main categories of tasks in ana-
lyzing graphs: graph computation and graph pattern mining.
Graph computation obtains various properties of a graph, such
as PageRank [59] and connected components [41]. Graph pat-
tern mining is more compute-intensive as it discovers struc-
tural patterns (i.e., subgraphs), such as motif finding [16, 57],
frequent subgraph mining (FSM) [9, 73], and clique count-
ing [21, 40]. These mining tasks are used in various appli-
cations, such as counting patterns of financial fraud [1] and
detecting suspicious activities on social networks [8].

With graph data reaching multi-billion scales [7, 76], there
is an increasing need to mine complex patterns to under-
stand complicated internal relationships [22, 24, 29]. While
many graph frameworks have been developed over the years
based on various system and algorithmic optimizations, min-
ing complex patterns (e.g., more than 5-vertex) in large graphs
remains challenging. The fundamental reason is that pat-
tern mining requires traversing and computing over large
intermediate candidate sets, which grow exponentially with

∗Equal contribution.

the graph size and pattern complexity. For instance, a recent
high-performance mining engine, GraphPi [64], needs several
hours to mine a six-vertex pattern in a graph of 1.2 billion
edges, using the world’s top-10 supercomputer with 1024
compute nodes (24,576 cores). Other general-purpose graph
mining solutions, such as Peregrine [45] and Fractal [33],
need more than a day to mine a six-vertex pattern even in
small graphs (e.g., 1 million edges) on a 4-server testbed (see
details in §7).

To reduce the underlying mining complexity, sampling-
based approximation approaches have been proposed, e.g.,
ASAP [44] leverages a neighborhood sampling approach to
approximate the pattern occurrences. Unfortunately, existing
sampling-based approaches come with two common issues:
(1) When pattern complexity (the numbers of vertices and
edges) grows, the number of required sampling algorithm
trials (called samplers) increases significantly (e.g., 1015 in
mining 5-cliques in a billion-edge graph as shown in §2.1),
making it infeasible to mine complex patterns in large graphs.
(2) Systems like ASAP require developers to define distinct
ways to sample a pattern to cover all possible occurrences.
It might be easy for simple patterns like triangles: we can
randomly pick the first edge, sample the second edge among
the first edge’s neighbors, and wait for the third edge to close
the triangle. But it is challenging to figure out how to sample
complex patterns as there are many distinct sampling ways.

In this paper, we present Arya, an approximate mining
system that can scale to ultra-large graphs (e.g., 10 billion
edges) and mine complex patterns (e.g., 11-vertex). In Arya,
we tackle a general approximate mining problem: Given an
input graph, output the approximated occurrences of an arbi-
trary subgraph. In many applications, an almost-correct result
is sufficient, and the processing time is the key. For instance,
a fintech company estimates the frequency of certain complex
patterns to quantify the trends of online crime and fraud [24].
The chains of (money laundering) transactions form special
patterns and estimating the occurrences of such patterns will
help banks and companies to evaluate their operational risks.

Given that designing faster pattern sampling algorithms
is theoretically difficult [35], Arya takes a new avenue to re-
duce the complexity of the pattern to be sampled. Inspired
by theory advances in graph sampling [14, 34, 36] and graph
decomposition [18], our contribution is to bring theory into
practice by an end-to-end system design that explores the algo-
rithmic potential of approximate graph mining (e.g., systems

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1013

design and optimizations, query accelerations) to meet user
requirements (e.g. mining arbitrary patterns and error-latency
profiles). Backed by decomposition theory, Arya significantly
reduces the inherent approximation complexity of complex
patterns in large dense graphs if the pattern can be properly
decomposed. Arya has two main components: (1) a pattern
decomposer that decomposes a complex pattern into a set of
unique simple subpatterns and (2) a parallel estimation engine
that generates a number of samplers for decomposed subpat-
terns and constructs an estimated frequency for the original
complex pattern.

When designing our pattern decomposer, we need to de-
termine an optimal decomposition of a complex pattern into
simpler subgraphs such that it is sufficiently easier to sample
the decomposed subpatterns and reconstruct the result for
the original pattern. In Arya, we leverage the recent edge-
cover-based graph decomposition [18]. The analysis shows
that by computing the optimal fractional edge cover of a com-
plex pattern (see §2.2), we can decompose the pattern into
a unique collection of unique vertex-disjoint odd cycles and
stars, which can be significantly easier to sample than the
original pattern. With decomposition, Arya also has unique
ways to sample patterns, alleviating the need to explore dif-
ferent sampling methods. Even if a pattern is too simple to
be decomposed (e.g., 2-star), Arya performs no worse than
existing sampling-based systems.

Once a pattern is decomposed, we build a parallel sampling
engine to estimate the pattern occurrence by sampling cycles
and stars separately. By extending the edge sampling theory
from [15, 18], we build odd cycle sampler and star sampler
with massive parallelism and construct the sampler for the
original pattern. Each sampler is essentially a sampling trial
aims to find one instance of the pattern with a fixed probability
p: it merges the sampled odd cycles and stars and tests the
remaining edges to find a potential pattern. If the sampled
pattern can be formed, the sampler outputs 1/p; otherwise
zero. With a sufficient number of independent samplers, we
can obtain an estimated pattern count by averaging the outputs
from all samplers (linearity of expectation). To estimate the
number of samplers required to achieve the desired accuracy,
Arya introduces a heuristic inspired by ASAP [44] to build
the Error-Latency Profile (ELP), which takes an error target as
the input and infers relevant parameters (e.g., the number of
samplers) to configure the graph miner based on bootstrapping
(from a small sample of the graph).

With graph decomposition, edge sampling, and a series of
system optimizations (e.g., probability-aware scheduling and
sampler caching), Arya outperforms any existing graph min-
ing systems in scalability. We implement Arya using Mem-
cached to store graph data structures and optimize the most
frequent queries to it (e.g., neighbor edges and vertices). We
deploy Arya onto three computing scenarios: a single server,
a single server with persistent memory, and a cluster with 4
to 32 servers. Our evaluation demonstrates that Arya outper-

forms GraphPi, a state-of-the-art supercomputer-based graph
miner, by up to 5 orders of magnitude while incurring a less
than 5% error. In addition, Arya outperforms the state-of-the-
art approximate mining system [44] by up to 145× and scales
to graphs with multi-billion edges. For example, Arya can
mine a complex 7-vertex pattern in a 5-billion-edge synthetic
graph in several seconds. We open-source Arya and datasets
in https://github.com/Froot-NetSys/Arya.

In this paper, we make the following contributions.

•We present Arya, an approximate graph miner that scales
to large graphs and complex patterns, leveraging advanced
graph decomposition theory and edge-based sampling. (§3)
•We introduce techniques to quickly sample decomposed

subpatterns and reconstruct the original pattern for approx-
imation, based on the latest cycle/star sampling algorithms.
(§4)
•We extend Arya to various distributed settings for hetero-

geneous graph processing scenarios. (§5)
•We show that Arya mines complex patterns in graphs with

5 billion edges using a single machine and 10 billion edges
using multiple machines, a scale that even supercomputer-
based systems failed to achieve. (§6,§7)

2 Background and Motivation
In this section, we discuss the background of graph pattern
mining and approximate mining algorithms. We then describe
the graph decomposition theory that we leverage.

2.1 Graph Pattern Mining
Problem Definition. Graph pattern mining is to find instances
of a given pattern in a graph or set of graphs. A pattern is an
arbitrary subgraph, which represents user-defined properties
attached to the edges and vertices. Pattern mining algorithms
aim to find all subgraph instances (called embeddings) that
match a given pattern of interest. Such matching is usually
done via iterating all subgraphs that are isomorphic to the
input pattern, which is known to be NP-complete. At a high
level, the compute complexity of an exact pattern mining al-
gorithm is associated with the need to iterate over all possible
embeddings in the graph.
Approximate Graph Pattern Mining. Given the search
complexity of exact mining algorithms, approximation-based
approaches become promising. Approximate analytics is
widely used in solving complex big data [58], network teleme-
try [38, 63], and database problems [11], typically with signif-
icantly lower resource overheads. A common idea to perform
approximation is to sample a subset of the input data uni-
formly at random and perform analytical tasks over the sam-
pled data. For instance, uniform sampling (e.g., NetFlow and
sFlow) has been widely used in monitoring network flows.
• Advanced pattern sampling: There is a large body of the-
oretical work on designing sampling algorithms [44, 47, 60]
to mine specific patterns such as triangles and cliques. The

1014 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/Froot-NetSys/Arya

main difference between these algorithms is the way to sam-
ple a specific pattern. Intuitively, if a sampling approach can
sample a pattern with a higher probability, a smaller number
of samplers is required to achieve high accuracy (and thus a
shorter completion time). For instance, neighborhood sam-
pling is used in ASAP [44]. The main idea of neighborhood
sampling is to continuously sample neighbor edges until the
pattern can be formed. In mining triangles, each neighbor-
hood sampler starts by sampling an edge uniformly at random
and then sampling the second edge from the neighbor edges
of the first edge. If there is a third edge in the remaining
edges that can form a triangle with the existing two edges,
this sampler successfully samples a triangle. Compared to
the standard sampling approach that has a 1/m3 probability
(sampling three edges uniformly at random), neighborhood
sampling has a larger probability 1/m · c to sample a triangle,
where c is the number of neighbor edges of the first edge.

• Limitations of existing sampling-based systems. While
sampling-based approximation is promising in reducing the
computation in graph pattern mining compared to exact algo-
rithms, two significant issues remain:
(1) Scalability remains an issue in mining complex patterns

in (dense) large graphs for systems like ASAP [44]. In
particular, the number of required samplers can be pro-
hibitively large, leading to high computation and memory
costs. Taking neighborhood sampling as an example, it re-
quires O(m2

fp
) to estimate 4-vertex patterns and O(m3∆

fp
) for

5-vertex patterns, where ∆ is the maximum degree in the
graph and fp is the occurrence of the pattern. From 4-vertex
to 5-vertex, the computation complexity is increased by up
to O(m∆), where the number of edges m can be large (e.g.,
Twitter graph [50] has 1.2 billion edges). This complexity
will be increased dramatically for more complex patterns,
and this observation is confirmed by ASAP that they cannot
scale to more than 5-vertex patterns in their large graphs
evaluated in their 16-server testbed.

(2) Using ASAP, one needs to define how to sample a pattern
using their neighborhood API [44]. While it is straightfor-
ward to sample simple patterns (e.g., triangle), sampling
complex patterns is challenging (e.g., triangle-triangle).
For instance, there is only one way to sample a triangle as
described above, but there are multiple ways to sample a
triangle-triangle (two triangles connected by an edge). It is
challenging for developers to figure out all possible sam-
plers when the pattern is even more complex. If samplers
do not cover all possible ways to sample patterns, we can
see severe underestimations in the final results.

2.2 Approximation with Graph Decomposition
The goal of our system, Arya, is to explore a scalable solution
for mining complex patterns in large graphs. One potential
way to improve the scalability is to continuously design and
develop new sampling techniques that can sample patterns

0.5 0.5

0.5

1.0
(a) 5-House (b) An optimal

edge cover.
(c) Decomposition

Figure 1: An example of decomposing a pattern.

with higher probabilities. However, the fundamental limitation
in this direction is that, we need to sample at least these many
of edges and vertices to form a pattern, which implies an
upper bound on how large the sampling probability can be on
a specific pattern [35].

Instead, Arya aims to take another road to improve the
scalability of approximate pattern mining. The question we
ask is that if we cannot improve the sampling technique fur-
ther, can we instead reduce the complexity of the pattern to
be sampled? We find that, graph decomposition theory [30],
which is a powerful tool to reduce the complexity of graph
matching and coloring problems, can also be applied jointly
with existing sampling techniques to reduce the pattern min-
ing complexity. Recent graph theory advances [18] made a
contribution to proving that any subgraph can be decomposed
as a collection of vertex-disjoint odd cycles and stars by solv-
ing an optimal fractional edge cover problem. This decompo-
sition is a desired property for our purposes, as no matter how
complex the patterns are, they can be decomposed into cycles
and stars (tackling issue (2)), and these two subpatterns are
“easier” cases to be sampled (tackling issue (1)).

Definition 1 ([18]). Denote the fractional edge cover of a
pattern P as P(VP,EP), where VP is the vertex set and EP
is the edge set. P(VP,EP) is a mapping φ : EP→ [0,1] such
that for each v in VP, ∑e∈EP,v∈e φ(e)≥ 1. The fractional edge
cover number is ∑e∈EP φ(e).

The optimal fractional cover is to find a subset of edges in
the pattern (covering all vertices) that minimum the fractional
edge cover number ρ(P) (i.e., min ∑e∈EP φ(e)). Intuitively,
the key insight (detailed proofs in [18]-A.2) is that for any
pattern P, there always exists an optimal fractional cover
that maps weights 0.5 to edges that can form odd cycles and
maps weights 1.0 to edges that do not belong to any odd cy-
cle (in the cover). This result is powerful because it ensures
that we can decompose arbitrary patterns into a collection of
odd cycles and stars. Moreover, the analysis further proves
that this decomposition reaches optimal bounds for sampling
arbitrary patterns, which strengthens our confidence in this
decomposition. Thus, we need to calculate the following lin-
ear programming (LP), and construct odd cycles with edges
of weights 0.5 and stars with edges of weights 1.0:

Minimize ∑
e∈EP

φ(e)

s.t. ∑
e∈EP:v∈e

φ(e)≥ 1,∀v ∈VP

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1015

Graph.size (1B)
Pattern(5house, 5%, 0.95)

Graph Pattern
Parallel Sampling Engine

Fractional Edge Cover
LP Solver

Pattern Decomposer

…

Error-Latency Profile
/ User Configuration

Count: 12345 +/- 617
Time: 12s

…

Sampled embeddings

1
2 3

4

5

Figure 2: Overall architecture of Arya.

Figure 1 shows a 5-house example to find the optimal
fraction cover as (b), and we then decompose 5-house into a
three-cycle (if the weight φ of each edge is 0.5) and a 1-star
(if the weight is 1.0).

Challenges. While the decomposition technique has provable
theoretical guarantees, there are several challenges in build-
ing a general, distributed system for large-scale approximate
graph mining. First, to be of practical use, once a pattern is
decomposed into subpatterns, we need a distributed process-
ing engine that optimizes the performance of running a large
number of (subpattern) samplers, e.g., how to schedule the
execution of the samplers and scale to distributed settings
with optimized communication. Second, the graph theory we
leverage assumes homogeneous edges and vertices while real-
world graphs are often associated with properties. Therefore,
the mining queries require predicate matching that envisions
the technique to be property-aware. Finally, as an approxi-
mate processing system, we need to allow users to trade-off
accuracy for running time. We need to understand the rela-
tionship between errors and actual running time in both single
and distributed settings.

3 Arya Overview
We design Arya, an approximate graph pattern mining system
leveraging decomposition-based graph sampling. Figure 2
demonstrates the overall architecture of Arya. Arya provides
three operating modes to adjust to different compute scenarios:
(1) Single machine mode that is optimized for local edge
and vertex queries; (2) distributed with replicated graphs
mode where the graph dataset is replicated entirely to multiple
machines; (3) distributed with partitioned graphs mode that
is developed with distributed KV-store (e.g., Memcached) to
support arbitrarily partitioned graphs across machines. We
provide an overview of different components in Arya and how
users can leverage our system to perform approximate mining
tasks for arbitrary patterns.

Arya workflow. Arya allows users to mine arbitrary patterns
in a graph. As an approximate engine, a user can specify an
input pattern and an error budget as follows:
• Input pattern P: The user defines an arbitrary subgraph

P of the input graph as the pattern to mine in Arya. The
user specifies P (in a text file) by adding a list of edges that
form the pattern. This pattern will then be decomposed into

a collection of odd cycles and stars via Arya decomposer.
Unlike prior approximate mining systems, the user does not
need to define the ways to sample the pattern as Arya will
always sample stars and odd cycles for arbitrary patterns.
• Error budget ε: The user specifies an accuracy target by

setting an error budget ε (e.g., 5%) with a confidence inter-
val (e.g., 95%). Arya is expected to output an approximate
result within ε error in time T .
After specifying the input pattern and the error budget, Arya

first decomposes the pattern via the fractional edge cover LP
solver as 1⃝. For building an ELP, the ELP engine will return
a required number of samplers (and time) for the error budget
ε as 2⃝ using the parallel sampling engine 3⃝; or the user
directly specifies the number of samplers to run. Once the
user approves the estimated time, the sampling engine will
perform the approximation and return the estimated count
with the actual run time as 4⃝. The sampling engine also finds
a set of sampled embeddings as 5⃝.
Sampling vs. Enumeration. While Arya shows tremendous
performance improvements on mining various complex pat-
terns, we observe that Arya works best with the following
two assumptions: (1) The graph is dense such that there are
many pattern occurrences. (2) The decomposed subpatterns
need only a few remaining edges to complete the pattern.
For (1), it is a fundamental argument between determinis-
tic enumeration-based approaches and sampling-based ap-
proaches. When the graph is sparse, it is challenging to find a
pattern via random sampling (like “a needle in a haystack”),
while it is a better case for enumeration. For (2), if the de-
composition of a pattern breaks too many edges, each Arya’s
sampler spends extensive efforts on searching the remaining
edges to complete the pattern, degrading the execution per-
formance. If these two assumptions do not hold, Arya may
experience many failed trials and thus requires more samplers.
Therefore, while Arya supports arbitrary pattern mining, the
actual runtime depends on the above two key conditions.

4 Basic Design
We now present how Arya enables ultra-fast graph pattern
mining by combining pattern decomposition and edge-based
sampling as a theoretical foundation. We focus on the single
machine design in this section and extend it to distributed
settings in the next section.

4.1 Pattern Sampling Algorithms
By leveraging graph decomposition theory (§2.2), a pattern
will be represented as a set of vertex-disjoint odd cycles and
stars. Our pattern sampler is to sample the relevant odd cycles
and stars from the graph and check if there exist remaining
edges that complete the pattern. Thus, we introduce two sam-
pling algorithms based on [15, 18] to sample them separately,
then use them to construct the pattern. In the algorithms, we
denote an odd cycle with 2k+1 edges as C2k+1 (k ≥ 1) and a
star with l petals as Sl .

1016 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 Odd Cycle Sampler
1: Input:
2: Graph G = (V,E) where |E|= m, an odd cycle C2k+1
3: Output:
4: An instance of C2k+1 and sampling probability Pr[C2k+1]

or 0
5: Sample an edge e1 = (u1,v1) from graph such that

d(u1)≤ d(v1). ▷ sample first edge with an order
6: Sample k− 1 edges e2 = (v2,u2), . . . ,ek = (vk,uk) with

replacement from G. ▷ sample rest edges as the cycle
skeleton

7: Sample a vertex n from the neighbors of u1. ▷ One more
8: Check if there are remaining edges

(v1,u2), . . . ,(vk−1,uk),(vk,n) in G. If succeeds, output
C2k+1 and Pr[C2k+1]; otherwise, 0.

Odd Cycle Sampler. At a high level, our goal here is to
sample odd cycles and we can adopt any cycle sampling algo-
rithms (e.g., neighborhood sampling [61] used in ASAP [44]).
In Arya, we attempt to introduce the algorithm shown in [31]
and [18]: first uniformly sample k edges (with the first edge
having an order based on the degree), a neighbor edge of the
first edge, and then test if there are remaining k edges in the
graph to complete a cycle. Compared to ASAP, it is easier for
Arya’s sampler to sample an odd cycle using edge sampling
since the probability of forming an odd cycle is higher. How-
ever, our empirical results show that the two algorithms are
comparable for cycles (§7). We adopt this algorithm for two
reasons: (1) Easy to support longer odd cycles: compared to
neighborhood sampling, most of its sampling phase involves
only random edge sampling, and thus no need to store nested
neighborhood states (e.g. neighbors of neighbors); (2) Easy
to optimize performance with the hash-based graph structures
presented in §4.2 to accelerate queries.

Specially, we present the odd cycle sampler in Algorithm 1.
First, we sample a special (directed) edge e1 = (u1,v1) whose
first vertex does not have a larger degree than that of the
second vertex (Line 5). Second, we sample another k− 1
edges uniformly at random with replacement (Line 6). Third,
we sample a neighbor edge (n,u1) of u1 as the last hoop of
the cycle (Line 7). Finally, we need to test if there are re-
maining k edges in the graph to complete the odd cycle as
(u1,v1),(v1,u2), . . . ,(uk,vk),(vk,n),(n,u1). Since each sam-
pling step is independent, the overall probability to sample
this odd cycle is Pr[C2k+1] = Pr[e1] ·Pr[e2] · · ·Pr[ek] ·Pr[n] =
1
m (

1
2m)

k−1 1
d(u1)

.

Star Sampler. Intuitively, a star consists of a center vertex
and a few petals, and sampling a star can be straightforward.
There is a broad spectrum of theory work using star samplers
as a main or subroutine in various applications (e.g., spar-
sification, clustering, and matching) [15, 18, 49]. Here, we
adopt a common weighted star sampler as in Algorithm 2
(e.g., [15, 18]). We start by selecting a vertex v1 with proba-

Algorithm 2 Star Sampler
1: Input:
2: Graph G = (V,E) where |E|= m, a star Sl with l pedals
3: Output:
4: An instance of Sl and sampling probability Pr[Sl] or 0
5: Sample a vertex v1 ∈V with probability dv1/2m for any

v1 ∈V . ▷ weighted center vertex sampling
6: Sample l petal vertices uniformly at random from the

neighbors of v1 without replacement . ▷ sample pedals to
complete

7: Output Sl and Pr[Sl] if succeeds; otherwise, 0.

bility proportional to its degree d(v1) (i.e., d(v1)
2m). This step is

to sample centers that are more likely to form stars with mul-
tiple petals. In practice, we optimize the query performance
by performing an edge sampling as the way to sample v1. For
instance, if a graph has 50 edges and a vertex v1 has a degree
of 10, randomly sampling an edge is equivalent to sampling
a vertex that is v1 with a probability of 1/10 because there
are 10 edges in the graph that are incident to v1. This sampled
vertex is used as the star center, and we will then sample l
vertices from v1’s neighbors uniformly at random without
replacement. We will either find such an l-star or return zero
from this step. Overall, the probability to sample a star is
Pr[Sl] = Pr[v1] ·Pr[petal_vertices] =

dv1
2m

(dv1
l

)
.

Approximation for the Original Pattern. We can sample an
embedding of the original input pattern if and only if all associ-
ated odd cycle samplers and star samplers find their instances.
If any sampler does not successfully form their cycle/star
embedding, we will terminate this sampler for the original
pattern and return zero. Once all the decomposed pattern sam-
plers finish, we need to reconstruct the original pattern P by
merging the cycles/stars and testing if the remaining edges
between the cycles and the stars do exist in the graph to form
the pattern. This is the last step of the whole pattern sampler.
During the testing, we list all the possible remaining edges
and check if they exist in the graph until there are enough
checked edges to complete the pattern. If a complete pattern
can be formed with o odd cycles and s stars, the probability
of the sampler is Pr[P] = Pr[C1] · · ·Pr[Co]Pr[S1] · · ·Pr[Ss]. A
sampler outputs R[P] = 1

Pr[P] if a pattern instance is found;
otherwise, it outputs R[P] = 0.

In summary, Arya runs a number of such pattern samplers
in parallel based on ELP. In the final “reduce” phase, if there
are n samplers and sampler i returns result Ri[P], Arya returns
∑

n
i=1 Ri[P]

n as the final result. This is because Arya’s pattern
sampler finds any possible embedding Pi with Pr[Pi]. Suppose
there are #P embeddings of the pattern, the expected output
of a sampler is E = ∑

#P
i=1

1
Pr[Pi]

·Pr[Pi]+0 · (1−Pr[Pi]) = #P.
With more samplers, the average of the sampler outputs will
be closer to the expected value #P. Therefore, Arya trades
more samplers for better accuracy.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1017

4.2 Sampler-Friendly Graph Structures
We observe that both odd cycle and star samplers involve
a number of specific queries to the graph data, which are
the major computation bottlenecks in the sampler runtime.
To improve sampler performance, we summarize the most
frequent runtime queries and provide simple, yet effective
data structures to accelerate them.

• Edge sampling: sample an edge e uniformly at random
from the graph.

• Neighbor sampling (v, i): perform a neighborhood sam-
pling on v to obtain the i-th neighbor edge (i≤ d(v)) and
check what vertex is associated with this edge.

• Degree checking v: obtain the degree of vertex v.
• Edge checking (u,v): check if vertices u and v form an

edge in the graph.
Given the nature of the queries above in randomized algo-

rithms, we should optimize data stores to accelerate process-
ing. For instance, an edge sampling query can be implemented
unoptimized as drawing a random number from the edge list
[1 . . .m] and taking a linear traversal to find the exact edge.
Instead, we use two auxiliary data stores for performance im-
provements: (1) An edge array that is grouped by vertex with
the requirement that all neighbor edges of a vertex are stored
consecutively. We observe that many public graph datasets
are already stored in this order [6]. (2) A hash table that maps
vertices to their metadata. Specifically, each vertex has an in-
teger as its ID and its metadata containing the vertex’s degree
and the starting index of the vertex in the edge array.

4.3 Advanced Pattern Mining Features
Beyond approximating the occurrences of a pattern in a graph,
Arya provides users with several advanced features.
Predicate matching. A common way of representing the
graph data is in the form of property graph, where user-
defined properties are attached to the vertices and the edges.
Thus, the real-world queries to a property graph may require
to match patterns satisfying certain predicates. For instance, a
predicate matching query can ask for the count of all 5-House
patterns in the graph where all edges are associated with an
organization or all vertices meet a certain type.

Arya supports three types of predicates—at-least-one,
at-least-percentage, and all. For “at-least-one” or “at-least-
percentage” predicates, users are asked to specify a predicate
that is applied to at least one (or a percentage or all) of the
edges or vertices. Arya can support these predicates since a
new property “subgraph” can be maintained and the same
sampling techniques can be applied. To perform a predicate
matching task, we introduce a conservative sampling stage.
We first create an auxiliary graph that contains only the edges
or the vertices that satisfy the predicate. The odd cycle and
star samplers will sample the first (or a percentage of) edges
or vertices from the auxiliary graph and then perform the
rest of the sampling in the original graph. Different from
the non-predicate-case, we need to refine the sampling rates

Algorithm 3 Error-Latency Profile (δ,ε)
Input: Original graph G with M edges, sampled subgraph
g with m edges (with probability r), pattern P with p edges,
error target ε, and confidence 1−δ.
Output: Number of estimators Ne for G

1: avglast ← inf, rangelast ← inf, Nc← 10,000
2: while True do
3: Run Arya 3 times with Nc samplers on subgraph g
4: avgcur← the average count of the 3 trials.
5: rangecur ← the range (max - min) of the 3 trials.
6: ε̃← |avglast −avgcur|/avgcur
7: if rangelast

avglast
< 10% and ε̃ < ε and rangecur

avgcur
< 10% then

8: C← Nε̃2avgcur
mρ(P) , h← avgcur

9: Break
10: Nc← Nc×2, avglast ← avgcur, rangelast ← rangecur

11: Ne← C·Mρ(P)

hε2
rp δ

▷ ρ(P) is known given P

based on the number of matched edges or vertices stored in
the auxiliary data store. In a simple example, the probability
of sampling the first edge uniformly at random is not 1/m
but 1/m∗, where m∗ is the number of edges that satisfy the
predicate. More details can be seen in Appendix A.
Intermediate state caching (e.g., Motifs). We consider two
scenarios when some intermediate states can be cached and
reused. (a) First, when running multiple mining tasks on the
same graph, different patterns may share one or more decom-
posed subpatterns (i.e., odd cycles and stars). For instance,
the decomposed 5-house and triangle patterns share a 3-cycle
subpattern. Thus, Arya automatically caches the previous sub-
graph samplers (3 cycles) to reuse across patterns. (b) Second,
some patterns share the same sampling steps in their samplers
to form the patterns, e.g., one can sample any 4-motif patterns
(except for 3-star) using two 1-star samplers with different
remaining edges to complete the patterns. Thus, Arya does
not need to sample each 4-motif pattern separately.

4.4 Error Latency Profile (ELP)
Arya allows users to tradeoff accuracy for result latency. As
an approximation system, Arya needs to determine the num-
ber of samplers for expected errors and running time. Arya
uses a heuristic to build the ELP. Our experiments in §7.3
demonstrate the accuracy of the ELP.

According to the mathematical analysis in [18, 30] using
Chebyshev’s inequality, decomposition-based sampling re-
quires O(mρ(P)

#P) estimators to provide a (1±ε)-approximation
to the ground truth (#P) for any ε > 0, where ρ(P) is the mini-
mum fractional edge cover number of pattern P. Furthermore,
the actual number of required samplers is lower bounded by
Cmρ(P)

#P·ε2δ
with probability 1−δ for some constant C. Thus, our

goal is to estimate C for a particular graph and a pattern. We

1018 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

achieve this by using a “sparsified” input graph: we uniformly
sample a subgraph from the original graph with probability r
(e.g., 30%), and determine an approximate number of needed
samplers by running varying numbers of samplers and con-
verging to a stable pattern count. The pseudocode is shown in
Algorithm 3. Line 1 gives an initial number of samplers Nc to
start with. For a given Nc, the algorithm runs Arya 3 times to
obtain the average and range of 3 trails in lines 3 to 5. If the
last and current range difference is small enough and when
using the current average result as the ground truth, the last
average estimated result is within the error target (line 7), we
can exit, calculate an estimated C , and treat the current aver-
age result as the estimated ground truth h (line 8). Otherwise,
ELP exponentially increases Nc (line 10) and proceeds again.
Line 11 calculates Ne, the number of samplers for G, based
on C and δ, ε, M and scaled #P.

5 Scaling Arya to Distributed Settings
In this section, we introduce how Arya is scaled to multiple
machines to support larger graphs and more complex patterns.
Naturally, a graph store can be distributed in the following
three ways: (1) distributed replicated graphs, (2) randomly
partitioned graphs, and (3) arbitrarily partitioned graphs. Arya
is designed to support all these configurations and arbitrarily
partitioned graph is the most challenging one. We introduce
several optimizations to improve Arya’s scalability by up to
4.7× over the basic design.

5.1 Distributed Replicated Graphs
Replicated graphs are a common approach for serving input
data in distributed graph mining systems, such as Fractal [33]
and GraphPi [64]. In Arya, the compute can be distributed
directly across the machines if the graphs are replicated. This
is because each sampler is independent and each machine will
be assigned a subset of required samplers to run on its multiple
CPU cores/threads. Each thread takes one sampler at a time.
Once the samplers are assigned, there is no communication
between machines or samplers until the final aggregation of
the results from all the samplers.

5.2 Distributed Partitioned Graphs
The second scenario is when graphs are partitioned to multiple
machines. G-thinker [72] and Kudu [52] are example mining
systems that assume graphs are partitioned among compute
nodes. Similarly, graphs can also be separated from compute
nodes in real-world scenarios. Meta, for example, has its own
cluster of graph store RIPQ [68]. Arya assumes an API (e.g.,
getedge(edgeID), getAdjList(vertexID)) to access partitioned
graphs and can work with either locally partitioned graphs (as
in G-thinker) or remote graph stores.

In practice, many partitioning strategies are possible.
ASAP [44] requires to partition the graph edges uniformly
at random. Graph partition strategies often depend on the
workloads (e.g., PageRank [59]). In addition, the graphs may

need to be partitioned based on strategies to be compliant
with security and privacy requirements, such as GDPR [3]
and GDPR-Neo4j [5]). Unlike ASAP, Arya makes no assump-
tions about partitioning strategies.

Arya extends its design from replicated graphs to parti-
tioned graphs, with one major challenge to overcome. In
contrast to the replicated graph scenario, a graph is parti-
tioned into slices to compute nodes; each node’s samplers
will have a potentially large number of random accesses to the
graph data stored in other nodes. This poses significant scal-
ing challenges for Arya on partitioned graphs: Arya will be
constrained by network communication overheads. A single
triangle sampler, for example, entails six graph queries (1 edge
sampling, 3 degree checkings, 1 neighbor sampling and 1 edge
checking). Each triangle sampler in the Friendster graph [74]
generates around 6KB network traffic. To count triangles in
Friendster with a 5% error, we will need at least 4 million sam-
plers, which translates to 20 million graph queries and 23GB
of network traffic. The comptation-communication ratio is
approximately c p

(p−1) , where c is a constant depending on
the pattern and graph, and p is the number of partitions. The
detailed analysis is defered to Appendix C. While the interme-
diate state caching technique can help reduce communication
costs, Arya introduces two more techniques for communica-
tion reduction: (1) probability-aware sampler scheduling and
(2) batched sampling and communication.

Technique 1: Probability-aware sampler scheduling. A key
observation we have is that different decomposed subpattern
samplers (e.g., triangle vs. 2-star) have different probabilities
to fail (not finding one). According to our Mico graph profil-
ing, a 2-star sampler has a 0.5% failure probability while a
triangle sampler has a 92% probability to fail. This is because
simpler structures are more likely to be sampled than com-
plex structures in a graph. Based on this observation, we can
save communication overheads if we sample these likely-to-
fail subpatterns earlier. A lot of such samplers will fail early
and we can prune them without running other subpattern
samplers.We note that after decomposition, each subpattern
sampling occurs independently, and thus the order of subpat-
tern sampling has no effect on the original pattern sampling’s
success/failure probability and overall accuracy. Taking the
triangle-2star pattern as an example: for each pattern sampler,
if sampling the triangle first, it is more likely to fail (92%)
and there is no need to sample 2-star in 92% of the cases.
Hence, we schedule subpattern samplers in the order of their
sampling failure probabilities to achieve better performances.

To do so, we must address an important question: how
do we know which subpattern samplers are likely to fail?
The answer depends on the pattern and graph. Given the
static graph, Arya first offline profiles failure probabilities
of popular subpatterns (such as 2-star, triangle) in a small
number of trials. Then each pattern counting task can query
the failure probability profile for any subpattern samplers.
When the failure probability of a subpattern is not in the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1019

profile, we perform an online profile by letting the first set
(e.g., 10%) of the samplers collect the failure probabilities
information without early pruning. These probabilities will
be used to schedule the remaining samplers. This technique
is applied to all Arya versions.

Now, we analyze the overheads of Arya’s offline and on-
line profiles. The cost of offline failure profiling is minimal
because the overheads are amortized by all queries to the
graph, and profiling is limited to simple common subpatterns.
For example, profiling simple 2- to 5-stars and triangle sub-
patterns for the Friendster graph takes only 220ms even for
less than 5% error results, whereas a single 5-node pattern
query to Friendster can take tens of seconds as we will show
in Figure 5(b).

Arya’s online failure probability profiling trades off early
pruning opportunities in the query’s first 10% samplers for
better subpattern sampling order in its remaining 90% sam-
plers. This approach produces runtime comparable to Arya
with perfect subpattern sampling order pre-knowledge and
significant improvements over Arya with the worst subpattern
sampling order. We use 10% as we found it to be adequate
for accurate simple subpattern failure probability profiling.

If the profiled failure probability is inaccurate (which is
uncommon as subpatterns are simple patterns that are easy to
estimate), Arya may use suboptimal subpattern sampling or-
ders. In this worst case, probability-aware sampling performs
similarly to the case of no early pruning.

Technique 2: Batched sampling/communication. Arya re-
duces overheads from the network stack by using batched
sampling and communication. One Arya thread advances a
batch of samplers at the same time (vs. progress one sam-
pler until it finishes). When a graph query is required in a
sampler, the thread buffers the query and pauses the sampler
before moving on to the next sampler in the batch. When all
of the samplers in the batch are waiting for graph queries,
the thread will begin its batch communication with the graph
store (i.e., send out the queries we buffered, for example, with
Memcached multi-get).

6 Implementation
We build Arya for both single-machine and distributed graph
computing scenarios. The pattern decomposition logic is im-
plemented with Python, and the core components of Arya are
written in C++ with 11K LOC. We open-source Arya at [2].

Pattern Decomposition. Arya takes an arbitrary pattern as
input and outputs a set of stars and odd-cycles via a pattern
decomposition logic. As discussed in §2.2, Arya will find the
optimal fractional cover of the input pattern. We use scipy
linear programming package to find the optimal cover: it
takes only 900ms on a single server to decompose complex
20-vertex patterns and less than 400ms for less complex pat-
terns that have fewer than 10 vertices. This running time is
negligible compared to the total mining time.

Graph Sampler. There are three versions of sampling logic
written in C++: single-machine, distributed replicated graph,
and distributed partitioned graph. The former two versions
access in-process graph stores, while the distributed parti-
tioned graph version accesses remote graph stores (e.g., Mem-
cached) via TCP. To parallelize the samplers, all Arya ver-
sions employ multi-threading. Single-machine version and
distributed replicated graph version use the work-stealing
algorithm dynamically scheduling computations. A commu-
nication thread distributes tasks when the total number of
samplers is smaller than required and uses asynchronous com-
munication primitives for work stealing. Worker threads re-
turn the results from a batch of samplers to the communication
thread when they finish a task. Worker threads then execute
the next batch of samplers. We can configure the granularity
of a sampling task. For distributed partitioned graph imple-
mentation, the master process will initiate samplers on each
machine and collect results from each machine when the
sampling phase is completed. For evaluating ASAP in a fair
setting, we implement ASAP graph samplers using Arya’s
system API (which is faster than Spark used in ASAP), in-
cluding accessing the graph structures and performing edge-
and node-related queries.

7 Evaluation
We evaluate Arya on a variety of open-source and synthe-
sized graphs and compare it to the state-of-the-art approx-
imate mining system (ASAP [44]) and exact mining sys-
tems (Single-machine: Peregrine [45], DwarvesGraph [26],
AutoMine [54]. Distributed: Fractal [33], GraphPi [64], G-
Thinker [72], Kudu [52]). Our experiments demonstrate:
• Compared to single-machine exact mining systems, Arya

is up to 105,365× faster than Peregrine within a 5% loss
of accuracy when counting complex patterns. To the best of
our knowledge, Arya is the first system capable of mining
complex patterns (>6 vertices) on giant graphs.
• Compared to distributed mining systems, Arya outperforms

Fractal by 62× to 56,842× and GraphPi by up to 988×.
• Compared to ASAP, Arya can mine arbitrary patterns in

both single-machine and distributed settings. Arya is up to
145× times faster on a single machine and 55× faster in
distributed settings, with a 5% error target.
• Arya’s probability-aware scheduling and batched sampling

techniques are effective for speeding up Arya by up to
4.7×.

Datasets and baselines. We compare Arya to state-of-the-art
systems using a set of representative graphs as in Table 1. We
obtain the ground truth via running deterministic mining sys-
tems such as GraphPi [64] and Peregrine [45]2. For datasets
used in distributed partitioned graph experiments, the graph

2We are unable to get the mining results of P3 and P4 patterns [64] in
the Twitter graph because all tested deterministic miners including GraphPi
experienced system crashes or their running time exceeded 24 hours.

1020 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Size Graph Nodes Edges Degrees

Medium Mico [37] 100,000 1,080,298 22
Youtube [51] 1,134,890 2,987,624 8

Large Twitter [50] 41.7 million 1.2 billion 36
Friendster [75] 65.5 million 1.8 billion 28

Giant RMAT-5B 500 million 5 billion
RMAT-10B 1 billion 10 billion

Table 1: Graph datasets used in the evaluation. We use the RMAT

model [48] to generate small and giant synthetic graphs. In the RMAT model,

we used default parameters (a,b,c,d) as (0.44,0.22,0.22,0.22).

5-House Triangle-Triangle 3Star-2Star

P25Star-5Cycle7Cycle-2Chain

P3

P4

Figure 3: Evaluated complex patterns.

is partitioned based on node index hash into relatively similar
sizes, and edges belonging to the same node are put into one
partition. Since we do not have access to (single-machine)
Automine, DwarvesGraph, and (distributed) Kudu, we refer to
their performance numbers in a similar setup. Since ASAP is
built on Spark, we reimplement its sampling approach using
our API for a fair comparison.
Hardware testbed. Our experiments are carried out in
three different hardware configurations: (1) Single-machine
DRAM, which has 20 CPU cores and 188 GB of DRAM. (2)
Single-machine PMEM (persistent memory) with additional 4
× 128GB Intel Optane DCPM. (3) Distributed settings with 4
to 32 machines in a cluster, each with the same configuration
as the single-machine-DRAM. The testbed CPUs are Intel
Xeon Silver 4114 clocked at 2.2Ghz per core.
Evaluated patterns. We evaluate both simple patterns (Tri-
angle and 4-Motif) and complex patterns. Most prior systems
did not evaluate patterns larger than 5-vertex while Arya can
mine arbitrary patterns in large graphs. We describe the com-
plex patterns we evaluate in Figure 3.

7.1 Single-Machine Performance
Overall Performance. We first compare Arya to Peregrine,
Automine, Dwarvesgraph, and GraphPi. As shown in Table 2,
we evaluate both simple patterns (triangle, 3-Motif) and com-
plex patterns of up to 11 vertices on medium (Mico) and
large graphs (Friendster). We also mine the extremely com-
plex patterns such as 3Star-2Star. The results show that Arya
significantly outperforms existing systems, particularly in
complex patterns. On Mico, complex patterns (3Star-2Star,
7Cycle-2Star, 5Star-5Cycle) always take longer than 24 hours
or crash. The long running time of Peregrine illustrates that

Pattern Graph System Runtime Error/Speedup

Triangle Mico Arya 22ms 0.74%
Peregrine 46ms 2×
GraphPi 3.5s 159×

Friendster Arya 15ms 1.24%
Peregrine 11.3s 782×
GraphPi 770.5s 51367×

3-Motif Mico Arya 36ms 0.09%
Peregrine 67ms 1.8×
DwarvesGraph 48ms 1.3×
AutoMine 161ms 4.4×
GraphPi 6.86s 190×

Friendster Arya 59ms 0.71%
Peregrine 20.6s 349×
GraphPi 804.4s 13634×

4-Motif Mico Arya 1.0s 0.42%
Peregrine 5.2s 5.2×
DwarvesGraph 1.3s 1.3×
AutoMine 22s 22×
GraphPi 21s 21×

Friendster Arya 13248s 0.76%
Peregrine 2158s 1/6×
DwarvesGraph 4369s 1/3×
GraphPi 4399s 1/3×

3Star-2Star Mico Arya 0.8s N/A
(7 vertices) Peregrine >24h 105365×

GraphPi 2.33s 2.91×
Friendster Arya 287s N/A

Peregrine Crashed N/A
GraphPi 924s 3.22×

7Cycle-2Chain Mico Arya 4s N/A
(9 vertices) Peregrine Crashed N/A

GraphPi Stuck N/A

5Star-5Cycle Mico Arya 211s N/A
(11 vertices) Peregrine >24h 409×

GraphPi Stuck N/A

P3 [64] Mico Arya 11s 2.5%
GraphPi 8.7s 1/1.2×

P4 [64] Mico Arya 6.7s 1.6%
GraphPi 13.3s 2×

Table 2: Single-machine DRAM: Arya vs. Peregrine, Dwarves-
Graph, Automine. This table summarizes runtime of Arya and other

graph engines on various patterns (first column) and graphs (second column).

Arya has a 5% error target.

existing exact mining systems are fundamentally incapable
of mining complex patterns. In contrast, Arya counts 3Star-
2Star in Mico in 0.8s, outperforming Peregrine by 105,365×.
We observe that while GraphPi completes mining star-related
patterns, their results were incorrect, which prevents us to
evaluate Arya’s errors in some cases.

In this setting, we also explore an undesirable scenario for
Arya (and any sampling-based approaches). In the Friendster
graph, the occurrence of 4-Motif is relatively “sparse”, making
sampling-based approaches fundamentally more challenging
to sample patterns. This is due to the “searching a needle in
a haystack” effect and it is an ideal case for traversal-based
solutions. Thus, in this scenario, Arya is running 3 to 6 times
slower than exact mining solutions.

Table 3 shows results for Arya’s intermediate state
caching technique under the scenario when running three

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1021

Mico Triangle-Triangle 5-House Triangle

No Cache 13.3s 4.8s 0.079s

Cache 14.6s 3.0s 0.037s

Speed Up/Down 0.91× 1.6× 21.2×
Youtube Triangle-Triangle 5-House Triangle

No Cache 188.7s 297.9s 0.32s

Cache 198.7s 127.6s 0.011s

Speed Up/Down 0.95× 2.3× 27.9×

Table 3: Arya’s intermediate state caching technique. This table

summarizes runtime and speedup of applying intermediate state caching

technique when mining three patterns consecutively. Since these patterns

share a common subpattern triangle, Arya caches the triangle samples in

mining Triangle-Triangle and reuse them in the 5-House mining. Similarly,

Arya also caches additional triangle samples when mining 5-House. These

cached triangle samples accelerate the Triangle mining task significantly.

Pattern Graph System Runtime

Triangle RMAT-5B Arya (10%) 89s
RMAT-5B Arya (5%) 337s
RMAT-5B Peregrine Crashed

3Star-2Star RMAT-5B Arya (10%) 395s
RMAT-5B Arya (5%) 1583s
RMAT-5B Peregrine Crashed

Table 4: Scaling single-machine Arya to giant graphs with
PMEM. This table summarizes runtime of Arya (10% and 5% error

rates) and Peregrine when mining on RMAT-5B.

mining tasks (Triangle-Triangle, 5-House, and Triangle) on
the same graph. Arya can mine multiple patterns one by one.
Except for the last pattern Triangle, the sampled subpatterns
and their actual sampling probabilities are cached; starting
from the second pattern, we can reuse the cached subpatterns
instead of sampling new ones and thus the running time is
reduced. This experiment shows that when mining multiple
patterns with shared subpatterns, Arya can achieve significant
speedups (e.g., up to 27.9× for the last task) as the perfor-
mance bottleneck is sampler computation and performing
caching has negligible performance overheads.

We add persistent memory into the single machine to
mimic large memory machines. On a giant 5-billion-edge
graph (RMAT-5B), Arya counts triangles in 337 sec and mines
a complex pattern of 7 vertices (3Star-2Star) in less than
30min while Peregrine fails to complete (Table 4).
Arya vs. ASAP. Figure 4 compares the running time of Arya
and ASAP for different error rates. Both approximate sys-
tems, as expected, require more samplers to achieve lower
error rates. However, the performance differences of the two
approaches lie in two key factors: (1) the number of samplers
needed and (2) the running time of each sampler. Compared to
ASAP with the same error rate, Arya usually achieves better
runtime because it requires fewer samplers (due to decom-
position) and/or individual samplers run faster (due to Arya

uses edge sampling while ASAP uses neighborhood sam-
pling and Arya’s system optimizations). For instance, when
the graph is large (e.g., YouTube), the pattern is complex
(e.g., 5-House, Triangle-Triangle), Arya requires fewer sam-
plers, each of which is also faster than that of ASAP. Thus,
for example, Youtube graph and 5-House pattern (Figure 4
(c)), Arya achieves less than a 5% error rate in 1.2s, whereas
ASAP takes 3 min (145× slower). For small dense graphs
(e.g., Mico, Figure 4 (b)), Arya and ASAP have comparable
performances because they require comparable numbers of
samplers, and their samplers have similar running times.

7.2 Scaling Arya on Distributed Settings
Arya can mine graphs that are (a) replicated across servers and
(b) partitioned across servers (e.g., simulating geo-distributed
graphs). We use a cluster with 4 to 32 servers.

7.2.1 Distributed Replicated Graphs

When graphs are replicated across nodes, Arya mines on each
node in parallel and aggregates sampled results in a “reduce”
phase. Many existing systems (e.g., Fractal and GraphPi) scale
to multiple nodes using replicated graphs.
Overall performance. As depicted in Table 5, we compare
Arya to Fractal and GraphPi on a 4-node cluster. In sum-
mary, Arya outperforms both Fractal and GraphPi, especially
when graph is large and pattern is complex. For example,
when mining triangles on the Twitter Graph, Arya achieves a
988× speedup over GraphPi. When the pattern is changed to
Triangle-Triangle (a 6-vertex complex pattern), neither Frac-
tal nor GraphPi can complete execution within a day, whereas
Arya takes only 393 seconds. Overall, our results show that
Arya has a significant advantage when mining complex pat-
terns on large graphs.

Table 6 compares the performance of Arya, GraphPi, and
ASAP (Spark version) on larger clusters. Arya outperforms
both ASAP (by up to 55×) and GraphPi (by up to 1084×) on
simple (e.g., 3-Motif) and complex patterns (e.g. 5-House).
Referring to one of GraphPi’s pattern (P2) mining results
on a world-class supercomputer (up to 1024 nodes), we can
see that approximate graph mining system Arya can achieve
even better performance with only 16 nodes, demonstrating
significantly better scalability.

Scalability in a Cluster. Figure 6 illustrates how Arya scales
as more nodes (or cores) are added to the cluster. The runtime
of Arya decreases as more machines are assigned to it. Arya
can scale for both small and large graphs, whereas GraphPi
cannot scale for larger Twitter graph with more than eight
nodes. We find that the scaling of Arya is slightly worse
than linear scaling. This is due to increased synchronization
overheads of the final results when there are more nodes.

7.2.2 Distributed Partitioned Graphs

Unlike in a replicated graph setup, the graphs are partitioned
across machines, and Arya samplers now require communi-

1022 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Youtube, 4-Chain (b) Mico, 5-House (c) Youtube, 5-House (d) Youtube, Triangle-Triangle

Figure 4: Comparing ASAP and Arya on running time vs. actual errors. This figure compares ASAP (our reimplementation for fairness) and

Arya’s running time (y axis) v.s. estimation errors (x axis, descending order). We report median absolute error rate |%| from 10 runs of each experiment. As

shown, Arya requires fewer samplings and less runtime for the same error rate as ASAP, especially for large graphs and complex patterns.

(a) Batching - Friendster, 8 Nodes (b) Probability-aware sampler
scheduling

Figure 5: Effectiveness of Arya batching and probability-aware sampler scheduling. This figure compares the performance of Arya with and

without 1) batching and 2) probability-aware sampler scheduling techniques. In figure (a), Arya_NoBatch represents Arya without batching. Arya_KBatch

represents Arya with K batched sampling and batched communication. We vary K between 10 and 1000. In figure (b), Arya_NoPruning represents the basic

version of Arya, which samples all sampling blocks and then judges them all together. Arya_Sorted represents Arya when sampling according to the fail

probability of each sampling block and terminating the estimator after any block fails. Arya_ReverseSorted is Arya that does sampling based on fail probability

in a descending order.

(a) Mico, ∆_∆ (b) Twitter, 5-House (c) Friendster, 4-Chain

Figure 6: Scalability of Arya. This figure shows the performance of

Arya when the number of nodes (cores) with replicated and partitioned graphs

varies. We examine both small (Mico) and large (Twitter and Friendster)

graphs, as well as various patterns. The letter ‘T’ indicates that the execution

time exceeds 24 hours. ∆_∆ denotes Triangle-Triangle pattern. (a) and

(b) shows the scalability of replicated-graph version Arya compared with

GraphPi. (c) shows the replicated-graph and partitioned-graph versions

of Arya compared with single-thread Arya showing the COST metric on

Friendster graph and 4-Chain pattern, where “Parti” represents partitioned-

graph version and “Repli” represents replicated-graph version.

cations with remote nodes to obtain the necessary sampled
edges or neighbors of vertices for testing. In this experiment,
graphs are partitioned into machines based on their vertices
and associated edges, and is stored in a Memcached instance
on each machine. For simplicity, we evenly partition the graph
to Memcached nodes.

Effectiveness of Arya Scaling Techniques. We begin by
demonstrating the efficacy of batching and probability-aware
scheduling techniques in improving Arya performance on

partitioned graph setups. As shown in Figure 5 (a), batching
can significantly improve Arya performance on partitioned
graph setups. Batching improves Arya 2-Star, Triangle, and
4-Chain mining by 4.5×, 3.2×, and 4.7×, respectively, on
eight nodes with Friendster graph. Because we’ve found that
batching more than 100 samplers together yields minimal
benefits, we set the default batching size to 100.

Figure 5 (b) shows how probability-aware sampler schedul-
ing can help with Arya mining complex patterns. In this
experiment, we use two nodes and the Mico graph. As an
example, consider the following subpatterns: 2-Stars, trian-
gle, and 5-Cycle. These subpatterns have very different sam-
pling success probabilities: 2-Stars: 99.5%, Triangles: 8%,
and 5-Cycles: 0.09%. When mining complex patterns con-
taining these subpatterns, we can see that Arya samples with
sorted likely-to-fail subpattern samplers and the early prun-
ing achieves up to 2.3× (for 5Cycle-Triangle-2Star) better
performance than no pruning. Arya’s samplers with other
orderings of subpatterns (e.g., ReverseSorted) cannot achieve
comparable performance to fail probability sorted sampling.

McSherry’s COST metric [55]. Figure 6 (c) shows the scal-
ability of Arya’s distributed replicated and partitioned ver-
sions compared with the runtime of a single thread Arya. The
replicated version’s COST is around 2.7 cores because the
MPI implementation uses a master thread to poll results from
worker threads, using at least 1 core. The partitioned version’s

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1023

Pattern Graph System Runtime Error/Speedup

Triangle Mico Arya 0.5s 0.74%
Fractal 145s 278×
GraphPi 5.4s 10×

Youtube Arya 0.55s 0.78%
Fractal 317s 576×
GraphPi 38s 69×

Twitter Arya 3.8s 0.96%
Fractal >24h 22,736×
GraphPi 3755s 988×

4-Motif Mico Arya 3.3s 0.42%
Fractal 205s 62×
GraphPi 33s 10×

Youtube Arya 123s 0.42%
Fractal 29966s 243×
GraphPi 219s 1.8×

Twitter Arya 360s 0.23%
Fractal failed N/A
GraphPi >24h 240×

5-House Mico Arya 0.8s 0.63%
Fractal 1822s 2366×
GraphPi 6.3s 8×

Youtube Arya 18s 0.65%
Fractal 2479s 142×
GraphPi 36s 2×

Twitter Arya 265s 4.06%
Fractal failed N/A
GraphPi >24h 326×

∆_∆ Mico Arya 1.5s 0.71%
Fractal >24h 56,842×
GraphPi 560s 368×

Youtube Arya 15s 1.13%
Fractal >24h 5760×
GraphPi 11696s 779×

Twitter Arya 393s N/A
Fractal failed N/A
GraphPi >24h 220×

Table 5: Distributed replicated graphs (4-nodes).

COST is around 13 cores due to large communication costs
in Memcached. In this version, scaling 1-core to 16-core ex-
periments run on a single machine, and 32-core and 64-core
experiments run on 2 and 4 machines of 16 cores.
Overall performance. Table 7 summarizes Arya’s overall
performance in comparison to G-thinker and Kudu. Kudu is a
system that converts single-machine or distributed replicated
graph mining systems (such as GraphPi and Automine) to
partitioned graph setups. As shown in the table, Arya out-
performs all existing exact graph mining systems on small
(e.g., Mico) and large (Friendster) graphs, mining simple (e.g.,
2-Star) and complex patterns (e.g., Triangle-2Star). The im-
provement is most noticeable on complex patterns. G-thinker,
for example, fails to execute both Triangle-1Star and Triangle-
2Star on a small Mico graph within a day; however, Arya can
finish in seconds, yielding a speedup of more than 44000×.
Mining 10-billion edges graph on a large cluster. Table 8

Pattern Graph System Runtime Error/Speedup

3-Motif Twitter Arya, 16 × 8 2.8s 0.34%
ASAP, 16 × 8 150s 55×
GraphPi, 16 × 8 2971s 1084×

5-House Twitter Arya, 16 × 16 60s 4.06%
ASAP, 16 × 16 738s 12×
GraphPi, 16 × 16 > 24h 1440×

∆_∆ Twitter Arya, 16 × 20 100s N/A
GraphPi, 16 × 20 > 24h 864×

P2 [64] Twitter Arya, 16 × 20 856s N/A
GraphPi, 16 × 20 23.2h 98×
GraphPi, 128 × 24 10000s 12×
GraphPi, 1024 × 24 3000s 3.5×

P4 [64] Twitter Arya, 16 × 20 1600s N/A
GraphPi, 16 × 20 > 24h 54×

Table 6: Comparing Arya, GraphPi, and ASAP on larger clus-
ters. This table presents Arya/ASAP/GraphPi runtime on different clusters.

The “system” column indicates system, the number of machines × the num-

ber of cores per machine. Arya is set to a 5% error target. GraphPi, 128 ×
24 and 1024 × 24 results are picked from GraphPi paper [64].

Pattern Graph System Runtime Error/Speedup

2-Star Friendster Arya 4 Nodes 0.58s 0.70%
G-thinker 4 Nodes 52.4s 90×
Arya 8 Nodes 0.64s 0.70%
G-thinker 8 Nodes 30.8s 48×

Triangle Friendster Arya 4 Nodes 0.94s 1.24%
G-thinker 4 Nodes 99s 105×
Arya 8 Nodes 0.76s 1.24%
G-thinker 8 Nodes 58s 76×
Kudu-GraphPi 8 Nodes 79s 104×
Kudu-Automine 8 Nodes 84s 110×

Triangle-1Star Mico Arya 2 Nodes 1.93s 0.95%
(5 vertices) G-thinker 2 Nodes >24h 44766×

Triangle-2Star Mico Arya 2 Nodes 1.73s 0.40%
(6 vertices) G-thinker 2 Nodes Crashed N/A

Table 7: Distributed Partitioned Graphs: Arya vs. G-thinker
vs. Kudu-GraphPi, Kudu-Automine. This table compares Arya and

G-thinker and Kudu performance on partitioned graphs. The system column

indicates both system name and how many nodes the graph is partitioned to.

shows the Arya runtime with 32 nodes mining patterns on a
10 billion edges graph (RMAT-10B). As shown in the table,
Arya can mine huge graphs quickly. It completes triangle
counting in 22 minutes for a 5% error rate and 358s for a
10% error rate. When mining 4-Chain, we see similar levels
of speed. Arya can mine complex patterns even though it
requires more time of sampling on a huge graph; for example,
for a pattern with 7 vertices like 3Star-2Star, Arya finishes in
4.2h with a 10% error rate.

7.3 Effectiveness of Arya ELP
Finally, we evaluate the effectiveness of Arya Error-Latency
Profiling. In this experiment, we compare the actual error vs.
the predicted error from Arya ELP given a variety of amount
of samplers. The Arya runtime is proportional to the number
of samplers. As depicted in Figure 7, we investigate various
patterns (Triangle and 3-Star) on various graphs (Youtube,
Friendster, Twitter). We build the error profile by running

1024 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Pattern Graph System Runtime

Triangle RMAT-10B Arya (10%) 358s
RMAT-10B Arya (5%) 1275s

4-Chain RMAT-10B Arya (10%) 171s
RMAT-10B Arya (5%) 688s

3Star-2Star RMAT-10B Arya (10%) 4.2h
RMAT-10B Arya (5%) 16.5h

Table 8: Arya mining 10-billion edges huge graph. This table

summarizes runtime of Arya (10% and 5% error rate) when mining on RMAT-

10B on a 32-node cluster.

(a) Youtube, Triangle (b) Friendster, Triangle (c) Twitter, Triangle

(d) Youtube, 3_Star (e) Friendster, 3_Star (f) Twitter, 3_Star

Figure 7: Relative errors vs. number of estimators for YouTube,
Friendster, and Twitter graphs. Actual error is obtained by compare

Arya results with ground truth, and profiled error is the error estimated by

ELP given a number of samplers.

different numbers of samplers. We run ten trials for each
x-axis value and report the median and variance error bars.
As we can see, Arya ELP yields good upper bounds for the
required error targets.

8 Related Work
Single-machine mining systems. A number of single ma-
chine exact mining systems have been proposed [26, 28, 43,
45, 54, 70]. These systems leverage a wide spectrum of sys-
tem optimizations to prune the intermediate state and accel-
erate the subgraph exploration process. For instance, Pere-
grine [45] focuses on pattern-aware techniques to reduce the
exploration of unnecessary subgraphs. Essentially, it prunes
the incomplete subgraphs early if they cannot later form the
pattern. Automine [54] and RStream [70] use guided explo-
ration strategies but reduce memory usage. The fundamental
performance bottleneck of these exact systems is that regard-
less of how optimized the exploration techniques are, one must
still explore all the patterns in the graph. When the pattern
occurrences are dense in the graph, this bottleneck will be
significant. Arya leverages decomposition-based sampling,
which significantly reduces exploration complexity. Another
related work is DwarvesGraph [26], which also uses a type
of pattern composition to count the decomposed subpatterns
separately and thus reduces the overall computation. How-
ever, DwarvesGraph’s decomposition technique cannot be

applied with sampling techniques to further reduce search
complexity. Some related architecture works leverage dif-
ferent architectures and hardware to accelerate enumerating
graph patterns [27, 62, 65–67], while Arya and compared
baselines run on general-purpose CPUs.

Distributed mining systems. To scale graph mining tasks
on larger graphs, a wide range of distributed mining systems
are proposed [10, 17, 25, 33, 53, 64, 69, 72]. Recent sys-
tems such as Fractal [33] and GraphPi [64] focused on sup-
porting general-purpose mining tasks. Fractal extends the
“embedding-aware” processing model by introducing the con-
cept of fractoids and reduces the complexity of its depth-
first search exploration. GraphPi is a high-performance graph
miner that optimizes computation and communication over-
heads by introducing a 2-cycle-based automorphism elimina-
tion algorithm. GraphPi scales to supercomputers (up to 1024
compute nodes) to support complex pattern mining in large
graphs. Arya’s decomposition-based sampling technique fur-
ther improves the scalability by several orders of magnitude.

Graph approximation theory. There have been rich efforts
from theory community to analyze and propose approximate
graph algorithms for various graph analytical tasks [12, 13, 18–
20, 32, 42, 60, 71]. Among these efforts, only a small subset
of them are used in graph systems. None of them are aimed
at distributed scenarios, nor do they introduce methods to
understand the real-world performance of the algorithms. To
bring theory into practice, we entail careful understanding of
the algorithmic tradeoffs and the actual computation scenarios.
We leverage this rich theoretical foundation to further improve
the sampling-based approximate systems and propose a series
of sampling-friendly optimizations.

9 Conclusions

We observe that existing graph pattern mining systems cannot
scale to complex pattern mining over large graphs as they
fail to cope with the explosively growing mining complexity.
We propose Arya as an approximate graph miner that com-
bines graph decomposition theory with sampling techniques
to achieve optimized mining complexity over arbitrary pat-
terns. Arya can deal with large billion-level graphs even in a
single machine and can scale to larger graphs in distributed
settings. Our evaluation demonstrates that Arya outperforms
state-of-the-art mining systems by up to five orders of magni-
tude. We posit that Arya can potentially be applied to extreme
mining scenarios (e.g., trillion edges) on a small computing
base, and we plan to explore this for future work.

Acknowledgments. We would like to thank the anonymous
reviewers and our shepherd Peter Pietzuch for their helpful
comments. This work was supported in part by NSF grants
CNS-2107086, CNS-2106946, SaTC-2132643, and Red Hat
Collaboratory at Boston University.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1025

References
[1] Ant financial’s innovations and practices in online graph

computing. https://www.alibabacloud.com/blog/ant-
financials-innovations-and-practices-in-online-
graph-computing_595846.

[2] Arya graph pattern mining codebase. https://github.com/
Froot-NetSys/Arya.

[3] General Data Protection Regulation. https://gdpr-
info.eu/.

[4] Graph databases: Updates on their growing popular-
ity. https://www.dataversity.net/graph-databases-
updates-on-their-growing-popularity/.

[5] Neo4j Privacy Shield: The Graph Solution for GDPR. https:
//neo4j.com/use-cases/gdpr-compliance/.

[6] Stanford Large Network Dataset Collection. https://
snap.stanford.edu/.

[7] Weg graph. http://webdatacommons.org/, 2014.
[8] A comparison of state-of-the-art graph processing

systems. https://code.facebook.com/posts/
319004238457019/a-comparison-of-state-of-the-
art-graph-processing-systems/, 2016.

[9] E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat, and
F. Jamour. Scalemine: Scalable parallel frequent subgraph
mining in a single large graph. In SC’16: Proceedings of
the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 716–727. IEEE,
2016.

[10] E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat, and
F. Jamour. Scalemine: Scalable parallel frequent subgraph
mining in a single large graph. In SC’16: Proceedings of
the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 716–727. IEEE,
2016.

[11] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and
I. Stoica. Blinkdb: Queries with bounded errors and bounded
response times on very large data. In Proceedings of the 8th
ACM European Conference on Computer Systems, EuroSys
’13, pages 29–42, New York, NY, USA, 2013. ACM.

[12] K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph struc-
ture via linear measurements. In Proceedings of the Twenty-
third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’12, pages 459–467, Philadelphia, PA, USA, 2012. So-
ciety for Industrial and Applied Mathematics.

[13] K. J. Ahn, S. Guha, and A. McGregor. Graph sketches: Sparsi-
fication, spanners, and subgraphs. In Proceedings of the 31st
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS ’12, pages 5–14, New York, NY,
USA, 2012. ACM.

[14] M. Aliakbarpour, A. S. Biswas, T. Gouleakis, J. Peebles, R. Ru-
binfeld, and A. Yodpinyanee. Sublinear-time algorithms for
counting star subgraphs via edge sampling. Algorithmica,
80(2):668–697, 2018.

[15] M. Aliakbarpour, A. S. Biswas, T. Gouleakis, J. Peebles, R. Ru-
binfeld, and A. Yodpinyanee. Sublinear-time algorithms for
counting star subgraphs via edge sampling. Algorithmica,
80(2):668–697, 2018.

[16] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C.
Sahinalp. Biomolecular network motif counting and discovery
by color coding. Bioinformatics, 24(13):i241–i249, 2008.

[17] Apache Giraph. http://giraph.apache.org.
[18] S. Assadi, M. Kapralov, and S. Khanna. A simple sublinear-

time algorithm for counting arbitrary subgraphs via edge sam-
pling. Innovations in Theoretical Computer Science (ITCS),
2018.

[19] S. Assadi, S. Khanna, and Y. Li. On estimating maximum
matching size in graph streams. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’17, pages 1723–1742, Philadelphia, PA, USA, 2017.
Society for Industrial and Applied Mathematics.

[20] V. Braverman, R. Ostrovsky, and D. Vilenchik. How Hard Is
Counting Triangles in the Streaming Model?, pages 244–254.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[21] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of
an undirected graph. Communications of the ACM, 16(9):575–
577, 1973.

[22] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,
M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and
V. Venkataramani. Tao: Facebook’s distributed data store for
the social graph. In Presented as part of the 2013 USENIX
Annual Technical Conference (USENIX ATC 13), pages 49–60,
San Jose, CA. USENIX.

[23] J. Brynielsson, J. Högberg, L. Kaati, C. Mårtenson, and P. Sven-
son. Detecting social positions using simulation. In 2010 Inter-
national Conference on Advances in Social Networks Analysis
and Mining, pages 48–55. IEEE, 2010.

[24] C. Chen, C. Liang, J. Lin, L. Wang, Z. Liu, X. Yang, J. Zhou,
Y. Shuang, and Y. Qi. Infdetect: a large scale graph-based
fraud detection system for e-commerce insurance. In 2019
IEEE International Conference on Big Data (Big Data), pages
1765–1773. IEEE, 2019.

[25] H. Chen, M. Liu, Y. Zhao, X. Yan, D. Yan, and J. Cheng. G-
miner: an efficient task-oriented graph mining system. In
Proceedings of the Thirteenth EuroSys Conference, pages 1–
12, 2018.

[26] J. Chen and X. Qian. Dwarvesgraph: A high-performance
graph mining system with pattern decomposition. arXiv
preprint arXiv:2008.09682, 2020.

[27] Q. Chen, B. Tian, and M. Gao. Fingers: exploiting fine-grained
parallelism in graph mining accelerators. In Proceedings of the
27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pages
43–55, 2022.

[28] X. Chen, R. Dathathri, G. Gill, L. Hoang, and K. Pingali. Sand-
slash: a two-level framework for efficient graph pattern mining.
In Proceedings of the ACM International Conference on Su-
percomputing, pages 378–391, 2021.

[29] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and
S. Muthukrishnan. One trillion edges: Graph processing at
facebook-scale. Proc. VLDB Endow., 8(12):1804–1815, Aug.
2015.

[30] W. H. Cunningham and J. Edmonds. A combinatorial decom-

1026 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.alibabacloud.com/blog/ant-financials-innovations-and-practices-in-online-graph-computing_595846
https://www.alibabacloud.com/blog/ant-financials-innovations-and-practices-in-online-graph-computing_595846
https://www.alibabacloud.com/blog/ant-financials-innovations-and-practices-in-online-graph-computing_595846
https://github.com/Froot-NetSys/Arya
https://github.com/Froot-NetSys/Arya
https://gdpr-info.eu/
https://gdpr-info.eu/
https://www.dataversity.net/graph-databases-updates-on-their-growing-popularity/
https://www.dataversity.net/graph-databases-updates-on-their-growing-popularity/
https://neo4j.com/use-cases/gdpr-compliance/
https://neo4j.com/use-cases/gdpr-compliance/
https://snap.stanford.edu/
https://snap.stanford.edu/
http://webdatacommons.org/
https://code.facebook.com/posts/319004238457019/a-comparison-of-state-of-the-art-graph-processing-systems/
https://code.facebook.com/posts/319004238457019/a-comparison-of-state-of-the-art-graph-processing-systems/
https://code.facebook.com/posts/319004238457019/a-comparison-of-state-of-the-art-graph-processing-systems/
http://giraph.apache.org

position theory. Canadian Journal of Mathematics, 32(3):734–
765, 1980.

[31] A. Czumaj and C. Sohler. Estimating the weight of metric
minimum spanning trees in sublinear time. SIAM Journal on
Computing, 2009.

[32] A. Das Sarma, S. Gollapudi, and R. Panigrahy. Estimating
pagerank on graph streams. In Proceedings of the Twenty-
seventh ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, PODS ’08, pages 69–78, New
York, NY, USA, 2008. ACM.

[33] V. Dias, C. H. Teixeira, D. Guedes, W. Meira, and
S. Parthasarathy. Fractal: A general-purpose graph pattern
mining system. In Proceedings of the 2019 International Con-
ference on Management of Data, pages 1357–1374, 2019.

[34] T. Eden, D. Ron, and C. Seshadhri. On approximating the num-
ber of k-cliques in sublinear time. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pages 722–734, 2018.

[35] T. Eden and W. Rosenbaum. Lower bounds for approximat-
ing graph parameters via communication complexity. arXiv
preprint arXiv:1709.04262, 2017.

[36] T. Eden and W. Rosenbaum. On sampling edges almost uni-
formly. arXiv preprint arXiv:1706.09748, 2017.

[37] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis.
Grami: Frequent subgraph and pattern mining in a single large
graph. Proceedings of the VLDB Endowment, 7(7):517–528,
2014.

[38] C. Estan and G. Varghese. New directions in traffic measure-
ment and accounting. In Proceedings of the 2002 conference
on Applications, technologies, architectures, and protocols for
computer communications, pages 323–336, 2002.

[39] W. Fan, X. Wang, and Y. Wu. Diversified top-k graph pattern
matching. Proceedings of the VLDB Endowment, 6(13):1510–
1521, 2013.

[40] I. Finocchi, M. Finocchi, and E. G. Fusco. Clique counting in
mapreduce: Algorithms and experiments. Journal of Experi-
mental Algorithmics (JEA), 20:1–20, 2015.

[41] S. Fortunato. Community detection in graphs. Physics reports,
486(3):75–174, 2010.

[42] N. Z. Gong, W. Xu, L. Huang, P. Mittal, E. Stefanov, V. Sekar,
and D. Song. Evolution of social-attribute networks: Measure-
ments, modeling, and implications using google+. In Proceed-
ings of the 2012 Internet Measurement Conference, IMC ’12,
pages 131–144, New York, NY, USA, 2012. ACM.

[43] C. Gui, X. Liao, L. Zheng, P. Yao, Q. Wang, and H. Jin. Sumpa:
Efficient pattern-centric graph mining with pattern abstraction.
In 2021 30th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), pages 318–330.
IEEE, 2021.

[44] A. P. Iyer, Z. Liu, X. Jin, S. Venkataraman, V. Braverman, and
I. Stoica. {ASAP}: Fast, approximate graph pattern mining
at scale. In 13th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 18), pages 745–761,
2018.

[45] K. Jamshidi, R. Mahadasa, and K. Vora. Peregrine: a pattern-
aware graph mining system. In Proceedings of the Fifteenth

European Conference on Computer Systems, pages 1–16, 2020.
[46] C. Jedrzejek, J. Bak, and M. Falkowski. Graph mining for

detection of a large class of financial crimes. In 17th Interna-
tional Conference on Conceptual Structures, Moscow, Russia,
volume 46, 2009.

[47] M. Jha, C. Seshadhri, and A. Pinar. A space-efficient stream-
ing algorithm for estimating transitivity and triangle counts
using the birthday paradox. ACM Trans. Knowl. Discov. Data,
9(3):15:1–15:21, Feb. 2015.

[48] F. Khorasani, R. Gupta, and L. N. Bhuyan. Scalable simd-
efficient graph processing on gpus. In Proceedings of the
24th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’15, pages 39–50, 2015.

[49] M. Kurant, M. Gjoka, Y. Wang, Z. W. Almquist, C. T. Butts,
and A. Markopoulou. Coarse-grained topology estimation via
graph sampling. In Proceedings of the 2012 ACM workshop
on Workshop on online social networks, pages 25–30, 2012.

[50] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a
social network or a news media? In WWW ’10: Proceedings
of the 19th international conference on World wide web, pages
591–600, New York, NY, USA, 2010. ACM.

[51] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large net-
work dataset collection. http://snap.stanford.edu/data,
June 2014.

[52] T. Lipcon, D. Alves, D. Burkert, J.-D. Cryans, A. Dembo,
M. Percy, S. Rus, D. Wang, M. Bertozzi, C. P. McCabe, et al.
Kudu: Storage for fast analytics on fast data. Cloudera, inc,
28, 2015.

[53] D. Mawhirter, S. Reinehr, W. Han, N. Fields, M. Claver,
C. Holmes, J. McClurg, T. Liu, and B. Wu. Dryadic: Flex-
ible and fast graph pattern matching at scale. In 2021 30th
International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), pages 289–303. IEEE, 2021.

[54] D. Mawhirter and B. Wu. Automine: harmonizing high-level
abstraction and high performance for graph mining. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 509–523, 2019.

[55] F. McSherry, M. Isard, and D. G. Murray. Scalability! but at
what {COST}? In 15th Workshop on Hot Topics in Operating
Systems (HotOS XV), 2015.

[56] K. Michalak and J. Korczak. Graph mining approach to suspi-
cious transaction detection. In 2011 Federated conference on
computer science and information systems (FedCSIS), pages
69–75. IEEE, 2011.

[57] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,
and U. Alon. Network motifs: simple building blocks of com-
plex networks. Science, 298(5594):824–827, 2002.

[58] J. Mondal and A. Deshpande. Stream querying and reasoning
on social data. In Encyclopedia of Social Network Analysis
and Mining, pages 2063–2075, 2014.

[59] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Technical Report
1999-66, Stanford InfoLab, November 1999. Previous number
= SIDL-WP-1999-0120.

[60] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu.
Counting and sampling triangles from a graph stream. Proc.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1027

http://snap.stanford.edu/data

VLDB Endow., 6(14):1870–1881, Sept. 2013.
[61] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu.

Counting and sampling triangles from a graph stream. Pro-
ceedings of the VLDB Endowment, 6(14):1870–1881, 2013.

[62] G. Rao, J. Chen, J. Yik, and X. Qian. Sparsecore: stream isa
and processor specialization for sparse computation. In Pro-
ceedings of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 186–199, 2022.

[63] V. Sekar, M. K. Reiter, and H. Zhang. Revisiting the case for
a minimalist approach for network flow monitoring. In Pro-
ceedings of the 10th ACM SIGCOMM conference on Internet
measurement, pages 328–341, 2010.

[64] T. Shi, M. Zhai, Y. Xu, and J. Zhai. Graphpi: high performance
graph pattern matching through effective redundancy elimina-
tion. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–14.
IEEE, 2020.

[65] J. Su, L. He, P. Jiang, and R. Wang. Exploring pim architecture
for high-performance graph pattern mining. IEEE Computer
Architecture Letters, 20(2):114–117, 2021.

[66] N. Talati, H. Ye, S. Vedula, K.-Y. Chen, Y. Chen, D. Liu,
Y. Yuan, D. Blaauw, A. Bronstein, T. Mudge, et al. Mint:
An accelerator for mining temporal motifs.

[67] N. Talati, H. Ye, Y. Yang, L. Belayneh, K.-Y. Chen, D. T.
Blaauw, T. N. Mudge, and R. G. Dreslinski. Ndminer: ac-
celerating graph pattern mining using near data processing. In
ISCA, pages 146–159, 2022.

[68] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li. {RIPQ}:
Advanced photo caching on flash for facebook. In 13th
{USENIX} Conference on File and Storage Technologies
({FAST} 15), pages 373–386, 2015.

[69] C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J.
Zaki, and A. Aboulnaga. Arabesque: A system for distributed
graph mining. In Proceedings of the 25th Symposium on Op-
erating Systems Principles, SOSP ’15, pages 425–440, New
York, NY, USA, 2015. ACM.

[70] K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H. Xu.
{RStream}: Marrying relational algebra with streaming for
efficient graph mining on a single machine. In 13th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 763–782, 2018.

[71] T. Wang, Y. Chen, Z. Zhang, T. Xu, L. Jin, P. Hui, B. Deng,
and X. Li. Understanding graph sampling algorithms for so-
cial network analysis. In 2011 31st international conference
on distributed computing systems workshops, pages 123–128.
IEEE, 2011.

[72] D. Yan, G. Guo, M. M. R. Chowdhury, M. T. Özsu, W.-S. Ku,
and J. C. Lui. G-thinker: A distributed framework for mining
subgraphs in a big graph. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE), pages 1369–1380,
2020.

[73] X. Yan and J. Han. gspan: Graph-based substructure pattern
mining. In Data Mining, 2002. ICDM 2003. Proceedings.
2002 IEEE International Conference on, pages 721–724. IEEE,
2002.

[74] J. Yang and J. Leskovec. Defining and evaluating network
communities based on ground-truth. CoRR, abs/1205.6233,
2012.

[75] J. Yang and J. Leskovec. Defining and evaluating network com-
munities based on ground-truth. Knowledge and Information
Systems, 42(1):181–213, 2015.

[76] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe,
and A. S. Szalay. {FlashGraph}: Processing {Billion-Node}
graphs on an array of commodity {SSDs}. In 13th USENIX
Conference on File and Storage Technologies (FAST 15), pages
45–58, 2015.

1028 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A More Details on Predicate Matching
In predicate “all”, queries specify a predicate that is applied

to every edge or vertex. For instance, one can query “5-House
patterns where all edges have the property NSDI”. To support
such a query, Arya introduces a conservative sampling stage
to generate a new graph (of edges and their vertices) from
the original graph, where the predicate condition is applied to
every edge; and in the sampling phase, Arya runs only on this
new property graph. This step ensures that “all” edges match
the predicate.

In predicate “at-least-one”, queries specify a predicate that
is applied to at-least one edge or vertex. For example, one
such query is “5-House patterns where at-least-one edge has
a weight > 66”. To support such predicate queries, we change
the runtime workflow to take two passes on the graph. In the
first pass, edges matching the predicate of weight > 66 are
generated as a new graph. In the second pass, every sampler
picks the first edge randomly from the new graph. This en-
sures that the pattern found by the sampler (if it does find
one) meets the predicate. For the rest of the edges, the sam-
pler continues sampling on the original graph, which can add
zero or more edges that satisfy the predicate. If a duplicated
edge is found, we disregard this sampler. This ensures that the
probability analysis of Arya to estimate the error still holds.

Similarly, in the predicate “at-least-percentage”, we use
the two-pass approach as in the predicate “at-least-one”. The
only difference is we need to sample a percentage of edges
from the newly generated graph.

B Detailed Explanation of Sampling Algo-
rithms

In this section, we introduce the data structures and prob-
ability calculation used in the decomposition sampling. Al-
gorithm 4 and Algorithm 2 describe the building blocks of
decomposition sampling in our implementation as [18]. We
use sampler trees as sampling data structures for maintaining
the (inverse) probability. Figure 8 shows a (2k+1)-odd cycle
sampler tree and an l-star sampler tree representation. Each
subpattern (an odd cycle or a star) always has a two-layer
sampler tree structure. The first layer is a root node, the sec-
ond layer contains one or more nodes as leaves and we assign
the inverse probability to each leaf.

Odd Cycle Sampler Tree. In Figure 8 (a), e1, ...,ek in the
cycle sampler tree root denotes first k edges sampled in Algo-
rithm 4 (line 5 and 6) and n1, ...,nb in b leaves denotes vertices
sampled in line 7 and 8 where b = ⌈d(u1)/

√
m⌉. This set of

nodes and edges can potentially form at most b (2k + 1)-
odd cycles in the original graph which are represented in b
branches in the cycle sampler tree. The inverse probability
of one leaf i is Pri[C2k+1] = Pr[e1] ·Pr[e2] . . .Pr[ek] ·Pr[ni] =
1
m (

1
2m)

k−1 1
d(u1)

if the root edges and the node in the leaf can

Algorithm 4 Odd Cycle Sampler Tree
1: Input:
2: Graph G = (V,E) where |E|= m, an odd cycle C2k+1
3: Output:
4: A set consisting of C2k+1 or 0
5: Sample an edge e1 = (u1,v1) from graph such that

d(u1)≤ d(v1). ▷ sample first edge with an order
6: Sample k−1 edges e2 . . .ek with replacement from G. ▷

sample rest edges as the cycle skeleton
7: for i = 1 to ⌈d(u1)/

√
m⌉ do ▷ Sample last hoop edge

8: Sample a vertex ni from the neighbors of u1.
9: Test if there are edges in G to complete an odd cycle.

form an odd cycle; otherwise, the inverse probability is de-
fined as Pri[C2k+1] = 0.

Star Sampler Tree. In Figure 8 (b), v in the root node is the
central vertex of the star and v1, ...,vl in the leaf node are l
petals. The inverse probability of the leaf is Pr[Sl] = Pr[v] ·
Pr[petal_vertices] = dv

2m

(dv
l

)
, where m is the total number of

edges in graph G.

Approximation for the Original Pattern. Supposing a pat-
tern P consists of o odd cycles C2k1+1, ...,C2ko+1 and s stars
S1, ...,Ss, and z = 2o+ 2s. A pattern-sampler tree will be a
z-level tree which consists of odd cycle sampler subtrees and
star sampler subtrees. To obtain the final pattern-sampler
tree, we run subpattern samplers in some order. The pattern-
sampler tree keeps extending two new layers by connecting
each last-layer leaf-node to a new subpattern subtree root. A
final sampler tree is shown in Figure 9 (a). We also show a
5-House sampler tree example in Figure 9 (b). As 5-House
is decomposed into a triangle and an 1-star (see Figure 1),
the first two layers of 5-House sampler tree represent a tri-
angle sampler tree, and for the last two layers each branch
represents a 1-star sampler tree.

A path from the root to a leaf in the pattern sampler
tree forms a potential pattern. If path j passes connectiv-
ity test with remaining edges, the probability of the path
is Pr[Pj] = Pr[C1

j] . . .Pr[Co
j]Pr[S1

j] . . .Pr[Ss
j] because subpat-

terns are sampled independently. The output of a sampler path
is R[Pj] =

1
Pr[C1

j]...Pr[Co
j]Pr[S1

j]...Pr[Ss
j]

if it forms a pattern after

testing; or R[Pj] = 0 if it’s not. The estimated pattern num-
ber outputs by a pattern sampler tree is the average of each

path’s estimation output, which is R[P] =
∑

w
j=1 R[Pj]

w supposing
we have w final-layer leaves. We aggregate results from all
pattern sampler trees as their average number ∑

n
i=1 Ri[P]

n , sup-
posing there are n sampler trees and tree i outputs Ri[P]. [18]
proves the expectation estimated by Ri[P] is the number of
pattern P in graph G (denoted as #P) and variance is bounded.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1029

!!,…
, !"

"! "#…

(a) (2k+1)-odd-cycle
sampler tree

#

#!,…
, #$

(b) l-star sampler tree

Figure 8: Subpattern sampler trees used in decomposition. This

figure shows (2k+1)-odd-cycle sampler tree and l-star sampler tree each

corresponding to Algorithm 4 and 2.

C Computation-Communication Ratio Analy-
sis in Partitioned-graph Setting

In this section, we calculate computation-communication
ratio based on sampler tree implementation. In terms of com-
putation cost, in an l-star sampler, we sample l neighbors ran-
domly and thus the contribution to computation cost is Θ(l).
In a (2k + 1)-odd cycle sampler, we sample an edge from
the graph first, which is Θ(1), and then sample k−1 edges
with cost Θ(k−1). And then we sample ⌈d(u1)/

√
m⌉ vertices

from the first node u1’s neighbors, which costs Θ(d(u1)/
√

m),
where m is the number of edges in the large graph and d(u1)
is the degree of the start vertex of the first sampled edge. Let
∆ denote the average degree of the large graph. Testing com-
pleteness of these ⌈d(u1)/

√
m⌉ cycles needs to test k edges,

whose cost is Θ(k ·∆) after amortizing since our neighbor
checking goes through all the neighbors of the start vertex.
We also test the remaining edges of the entire pattern con-
necting each subpattern, and the computation cost is Θ(x ·∆)
supposing there are x remaining edges. Supposing the pat-
tern contains s stars and o odd cycles, the total computation
cost for one sampler is ∑

s
j l j +∑

o
i (ki +

∆√
m + ki ·∆)+ x ·∆ by

amortizing the degrees among multiple sampling trials.
Supposing we have p partitions (p ≥ 2). In our evalua-

tion, we partition the vertices nearly uniformly by hashing
the vertices to a machine, the probability of a sampler may
not have a vertex’s neighbors locally is p−1

p . For an l-star
sampler, if the central vertex of this star is local to the ma-
chine running the sampler algorithm, the communication cost
is 0 because we have all the neighbors of a vertex belong-
ing to the partition stay in the same machine; Otherwise,
the communication cost is Θ(d(ucentral)). Therefore, the l-
star sampler communication cost is Θ(p−1

p d(ucentral)). For a
(2k+1)-cycle sampler, we first sample an edge, if this edge is
not local, we will retrieve all the neighbors for the start vertex.
When sampling the next k edges, we may retrieve the neighbor
list of a vertex for each edge. Thus the communication cost
is Θ(p−1

p k ·∆)). To test these k edges and a neighbor of the
first vertex form a cycle, we need to test the connectivity of k
remaining edges in the (2k+1)-cycle, which cost is p−1

p k ·∆.

!!!,…
, !"!

"!! "#!…

#!

#!!,…
, #$!

!!% ,…
, !"%

"!% "#%… …

…

#&

#!&,…
, #$&

(a) A pattern sampler tree

#

#!

!!

"! " '()!)
+…

(b) 5-House sampler tree

Figure 9: Pattern sampler trees. Dotted lines represent there can be

multiple other odd cycles or stars in the middle of the layers. Solid lines are

connecting root and leaves in a subpattern sampler subtree or from a last

cycle leaf node to a first star root node. The blue lines form a path from the

root to a last-layer leaf. The labels of some nodes are omitted in the figure.

Plus the x remaining-edge test of the entire pattern, the total
communication cost is p−1

p (∑o
i 2ki ·∆+∑

s
j ∆+ x ·∆).

Therefore, the computation-communication cost of parti-

tioned Arya is p
p−1 ·

∑
s
j l j+∑

o
i ki+∑

o
i (

1√
M
+ki)·∆+x·∆

(∑o
i 2ki+s+x)·∆ , which is ap-

proximately c p
p−1 where c is a constant related to the pattern

and the graph. This communication cost can be reduced by
using batching technique mentioned in Section 5.2.

1030 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SECRECY: Secure collaborative analytics in untrusted clouds

John Liagouris Vasiliki Kalavri Muhammad Faisal Mayank Varia
Boston University

{liagos, vkalavri, mfaisal, varia}@bu.edu

Abstract
We present SECRECY, a system for privacy-preserving col-
laborative analytics as a service. SECRECY allows multiple
data holders to contribute their data towards a joint analysis in
the cloud, while keeping the data siloed even from the cloud
providers. At the same time, it enables cloud providers to offer
their services to clients who would have otherwise refused to
perform a computation altogether or insisted that it be done on
private infrastructure. SECRECY ensures no information leak-
age and provides provable security guarantees by employing
cryptographically secure Multi-Party Computation (MPC).

In SECRECY we take a novel approach to optimizing MPC
execution by co-designing multiple layers of the system stack
and exposing the MPC costs to the query engine. To achieve
practical performance, SECRECY applies physical optimiza-
tions that amortize the inherent MPC overheads along with
logical optimizations that dramatically reduce the computa-
tion, communication, and space requirements during query
execution. Our multi-cloud experiments demonstrate that SE-
CRECY improves query performance by over 1000× com-
pared to existing approaches and computes complex analytics
on millions of data records with modest use of resources.

1 Introduction

Secure collaborative analytics [20,26,30,47,97] is a family of
emerging applications, where multiple data holders are will-
ing to allow certain computations on their collective private
data (e.g., for profit, social good, improved services, etc.), pro-
vided that the data remain siloed from untrusted entities. For
instance, some companies would agree to participate in a gen-
der wage gap study [32] but only if no employee wages are re-
vealed to other companies, as they may lose their competitive
advantage. Similarly, researchers from different medical insti-
tutions may conduct a large-scale study on the union of their
patient records, provided that the data analysis is end-to-end
compliant with privacy regulations [2, 3]. Another example is
private advertising: web users may subscribe to recommenda-

tions based on collaborative filtering as long as their online
activity remains hidden from the service provider [85].

To realize the above use cases, we need systems capable of
extracting value from sensitive or proprietary data, while pro-
tecting the data from untrusted or unauthorized entities. We
identify four major requirements for such systems. First, they
must ensure no information leakage so that they reveal noth-
ing except the output of the computation the data holders have
agreed on. At the same time, they must guarantee security
in the absence of trusted resources, as the data holders may
lack the expertise or infrastructure needed for secure compu-
tation and may need to outsource the analysis to untrusted
third parties [45]. Another requirement is to support complex
analytics beyond simple statistics, such as relational queries
on multiple tables [95]. Lastly, while queries in these use
cases are non-interactive, they must complete in reasonable
time, e.g., within a few hours.

Enabling secure outsourced analytics with practical per-
formance has been a long-standing research challenge [13].
So far, there exist three general approaches to secure com-
putation with no leakage. The first one is Fully Homomor-
phic Encryption (FHE) [57] that provides “ideal” security by
enabling computation directly on encrypted data. Although
there are many implementations that support simple func-
tions [4, 6, 8, 21], FHE is still prohibitively slow for the ana-
lytics we consider in this work. A more practical approach
is to use secure hardware solutions, like Intel’s SGX, which
have been proposed as a faster alternative to cryptography but
do not provide provable security [33, 74]. A third promising
approach is cryptographically secure Multi-Party Computa-
tion (MPC) [77]. MPC refers to a family of cryptographic
protocols that enable mutually distrusting parties to jointly
compute functions on secret (encoded) data without relying
on any single trusted entity. MPC is generally faster than
FHE-based approaches but still challenging to scale to inputs
with more than a few thousand records [22, 45, 73, 95, 105].

Recently, systems like Conclave [105], SMCQL [22], Sen-
ate [95], and others [23, 24, 111] have made MPC more ac-
cessible to data analysts by providing relational interfaces

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1031

Figure 1: Overview of secure collaborative analytics with SECRECY. Clients (e.g., data analysts) access a catalog with metadata about available
private datasets and submit public queries to the SECRECY service. SECRECY performs query planning and provisions computing parties in
available non-colluding cloud providers, e.g., GCP, AWS, and Azure. Next, it instructs data owners to distribute secret shares (cf. §3) of their
data to computing parties. Parties execute the query under MPC and send the results to the analysts. SECRECY considers adversaries who may
have complete control over the network. All data remain private as long as an adversary does not compromise the majority of cloud providers.

and automated query planning. However, to achieve practical
performance, these works employ optimizations that either
leak information to untrusted parties or apply to peer-to-peer
settings where data holders also serve as computing parties
using trusted resources (we provide more details in §8). Out-
sourced MPC, on the other hand, removes the computation
burden from data holders and has recently gained attention, es-
pecially in industry, with systems like Prio [45] Carbyne [11],
CrypTen [70] and Cape Privacy’s TF Encrypted [1]. Yet, these
frameworks focus on certain statistics or ML workloads and
do not support general-purpose analytics.

To fill this gap, we present SECRECY, a new relational MPC
system for efficient collaborative analytics in the cloud with
no information leakage. In SECRECY we take a fundamentally
different approach over prior work and we carefully co-design
the MPC protocol, query engine, and distributed runtime into
a single platform. SECRECY’s core novelty is a generic cost-
based optimization framework for relational MPC that does
not rely on trusted infrastructure. As such, it enables data hold-
ers and analysts to use untrusted cloud resources on demand
and benefit from the “pay-as-you-go” model while retaining
the full security guarantees of the cryptographic protocols.

Contributions. We make the following contributions:
• We present a relational MPC system, based on secret

sharing, that enables efficient collaborative analytics
with no information leakage.

• We design vectorized MPC primitives and relational
operators that amortize the network I/O of secret
sharing. Contrary to prevailing wisdom, we show
that this approach can be competitive with widely
adopted MPC techniques for relational analytics in
both LAN and WAN environments.

• We define an analytical cost model that formulates MPC
query costs in terms of secure computation and commu-
nication operations. We use this cost model to develop a
novel query optimization framework for relational MPC.

• We implement a Volcano-style query processor that lever-
ages the cost model to automatically apply a rich set
of logical, physical, and protocol-aware optimizations
which can improve performance by orders of magnitude.

• We evaluate SECRECY’s performance and the effec-
tiveness of its optimizations using real and synthetic
queries. Our experiments show that SECRECY outper-
forms state-of-the-art MPC frameworks and scales to
much larger datasets.

We believe SECRECY will become a valuable tool to cloud
providers, data holders, and analysts by enabling new privacy-
preserving applications and marketplaces on existing cloud
infrastructure. We will release SECRECY as open-source [9].

2 SECRECY system overview

Figure 1 presents an overview of the SECRECY cloud service.
Each party in SECRECY has one or more of the following
roles: (i) data holder or data owner who provides some input
data, (ii) computing party, e.g., a cloud provider that provides
resources to perform the secure computation, and (iii) analyst
who issues a query to learn the result. SECRECY supports
any number of data owners and uses three computing parties.
A “party” is a logical entity and does not necessarily corre-
spond to a single compute node. SECRECY does not make
any assumption about the physical deployment: parties can
be deployed in private clusters, in a multi-cloud, or across
multiple providers in a hybrid or federated cloud.

1032 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.1 Design principles
We have designed SECRECY on the following principles:

1. No information leakage. SECRECY reveals nothing about
the input, output, or intermediate data and the execution meta-
data to untrusted parties, including the cloud providers. It
completely hides access patterns, intermediate, and output
result sizes. SECRECY does not require data owners to anno-
tate attributes as sensitive or non-sensitive and does not try
to sidestep the secure computation. It executes all operations
under MPC and protects all attributes to prevent inference
attacks that exploit correlations or functional dependencies in
the data which may be unknown to data owners.

2. No reliance on trusted execution environments. SE-
CRECY does not rely on any (semi-)trusted party, honest bro-
ker or specialized secure hardware. To remove barriers for
adoption, we target general-purpose compute and cloud.

3. Decoupling of roles. In SECRECY, a party may have any
combination of roles, that is, data owners can (but do not
have to) also act as computing parties and/or analysts without
affecting the security guarantees. Query optimization in SE-
CRECY does not rely on data ownership and does not require
data owners to participate in MPC using trusted resources.
Due to decoupling, SECRECY can effectively use a small num-
ber of computing parties to support any number of data owners
without affecting the scalability of secure computation.

4. High expressivity. SECRECY’s protocol does not pose any
restriction on the types of queries that can be supported. While
there exist many efficient protocols for specific instances of
MPC operators, these are often not composable. In SECRECY,
we have decided to provide general operator implementations
that are independent of the data characteristics and can be
composed with each other to create arbitrary query plans.

2.2 Threat model and security guarantees
SECRECY protects data throughout the entire lifecycle and
treats the query itself as public, i.e., it assumes that data own-
ers and analysts have previously agreed on a relational query
to compute and this query is known to the computing par-
ties, as in prior works [22–24, 95, 105]. To evaluate the query,
SECRECY servers execute an identical computation and ex-
change messages with each other according to a protocol. All
communication in a SECRECY deployment must be done via
authenticated and encrypted channels (e.g., using TLS).

Threat model. SECRECY assumes “honest-but-curious” par-
ties and can withstand adversaries who have two types of
capabilities. First, adversaries have complete control over the
network and can monitor all network links. Second, adver-
saries may compromise one computing party and can see all
of its internal state (e.g., memory contents, access patterns,
and data sent/received) but without altering its execution. That
said, most of the techniques we present in this work are also

compatible with malicious-secure MPC protocols where par-
ties can deviate from the protocol arbitrarily (cf. §5.4).

Security guarantees. We have purposely designed SECRECY
in a modular fashion to ensure it can directly inherit all secu-
rity guarantees of the underlying MPC protocol. SECRECY
relies on the semi-honest 3-party replicated secret sharing
protocol by Araki et al. [17, 81]. The protocol provides two
types of guarantees: (i) privacy, meaning that computing par-
ties do not learn anything about the data, and (ii) correctness,
meaning that all participants are convinced that the compu-
tation output is accurate. As long as the computing parties
do not collude, the SECRECY servers cannot learn anything
beyond the size of the input data (which can also be padded
by the data owners). Only the designated analysts learn the
result of the query. SECRECY does not use differential privacy
to protect the result from possible inference attacks by the
analysts but it could be easily augmented to do so (cf. §8). We
also stress that formal verification of the SECRECY software
is out of scope for this work (but an exciting future direction).
For a detailed security analysis please refer to Appendix B.

2.3 Cost-based secure query optimization

Cost-based query optimization on plaintext data relies on se-
lectivity estimations to reduce the size of intermediate results.
MPC operators, however, are oblivious, i.e., their control flow
is independent of the input data and incurs exactly the same
accesses for all inputs of the same size. Oblivious operators
do not reveal the size of intermediate data to prevent recon-
struction attacks based on selectivity statistics [60, 69, 84].
As a consequence, traditional selectivity-based techniques for
plaintext queries [41], such as join reordering or filter push-
down, are not effective when optimizing plans under MPC.
For instance, given that oblivious selections do not reduce
the size of intermediate data, pushing a filter down does not
improve the cost of subsequent operators in the plan.

To devise effective optimizations under MPC, we express
the plan costs in terms of secure computation and communica-
tion operations. In SECRECY, we define three types of costs:

• The operation cost, Co , which is determined by the
number of primitive MPC operations per party. Prim-
itive operations can be local (+,⊕), which do not require
communication, or remote (×, ∧), which require some
message exchange between parties (cf. §3).

• The synchronization cost, Cs , given by the number of
communication rounds across parties that are inherent
in MPC. Each round corresponds to a barrier, i.e. a syn-
chronization point in the distributed execution, where
parties must exchange data in order to proceed.

• The cost of composition, Cc , which is also measured
in operations and communication rounds required to
compose oblivious relational operators under MPC.

SECRECY applies automatic optimizations that aim to mini-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1033

mize at least one of these three costs. We present a comprehen-
sive cost analysis of oblivious operators and their composition
in §4. Contrary to plaintext query optimization where esti-
mations are often erroneous [76], in MPC we can use the
typical dynamic programming approach from database op-
timizers [98] to compute exact plan costs at compile time,
since Co ,Cs , and Cc do not depend on the data distribution.

3 Background on MPC

MPC protocols follow one of two general techniques: ob-
scuring the truth table of each operation using Yao’s garbled
circuits [114], or performing operations over encoded data
using secret sharing [100]. So far, garbled circuits has been
the preferred method to securely compute Boolean circuits
in high-latency environments, as they only need a small (con-
stant) number of rounds between computing parties at the cost
of incurring a large memory overhead [73]. On the other hand,
secret sharing-based approaches require more rounds (that
depend on the input size) but have a small memory footprint
and consume less overall bandwidth. In this work we employ
secret sharing in the honest-majority setting that is reasonable
for many real use cases [20,25,26,28,101]. Looking ahead, in
§7 we will demonstrate that SECRECY’s optimizations make
secret sharing competitive in both LAN and WAN settings.

3.1 Replicated secret sharing
SECRECY encodes an `-bit string of sensitive data s by split-
ting it into three secret shares s1, s2, and s3 that individually
have the uniform distribution over all possible `-bit strings
(for privacy) and collectively suffice to specify s (for correct-
ness). Computing parties are placed on a logical ring and
each party Pi receives two of the shares si and si+1 (i.e., P1
receives s1, s2, P2 receives s2, s3, and P3 receives s3, s1).
Hence, any two parties can reconstruct a secret if they col-
lude, but any single party cannot, no matter how powerful it
is. SECRECY supports two secret sharing formats (and can
also transition from one to the other): boolean secret sharing
in which s � s1 ⊕ s2 ⊕ s3, where ⊕ denotes the bitwise XOR
operation, and additive or arithmetic secret sharing in which
s � s1 + s2 + s3 mod 2` .

3.2 Oblivious primitives
In this section, we provide an overview of the oblivious prim-
itives we use throughout our work. Let s, t be two secrets,
and op(s , t) an operation on these secrets. The primitives
allow SECRECY servers to start with shares of s and t and
jointly compute shares of the result op(s , t) without learning
anything about s and t. Each server can use these shares in
subsequent operations or send them to the analysts, who can
reconstruct the true output of op(s , t). We stress that our obliv-
ious relational operators in §4 are agnostic of the underlying

primitives and it would be perfectly possible to implement
primitives based on other MPC protocols without affecting
the applicability of the optimizations in §5.

Basic operations. When given boolean secret-shared data
corresponding to `-bit strings s and t, parties can compute
shares of the bitwise XOR s ⊕ t locally (i.e., without com-
munication) and shares of the bitwise AND st with syn-
chronization cost equal to Cs(AND) � 1 round of communi-
cation. The operation cost is the same in both cases, i.e.,
Co(XOR) � Co(AND) � ` (we consider 1-bit boolean opera-
tions to have unit cost). Similarly, given two secrets u and
v that have been arithmetically shared, parties can compute
shares of the sum u+ v locally (similarly to XOR) and shares
of the product u · v with 1 communication round (similarly to
the bitwise AND operation).

Mixed-mode operations. The above boolean and arith-
metic operations are universal and can be used to com-
pute any function. Moreover, there exist well-known con-
structions of several specific operations with fast instanti-
ations based on boolean and/or arithmetic sharing. In SE-
CRECY we implement several such oblivious operations:
(in)equality, a compare-and-swap multiplexer, boolean ad-
dition with a ripple-carry adder, boolean-to-arithmetic con-
version, and more.
For details on the SECRECY primitives, please refer to §A.1.

4 SECRECY operators and cost model

In this section, we first provide an overview of oblivious op-
erators in SECRECY along with their asymptotic costs (§4.1)
and the costs of their composition under MPC (§4.2). We then
explain how SECRECY computes exact plan costs in §4.3.
Although, in practice, the SECRECY planner uses the detailed
cost formulas from Appendix A, knowledge of the asymptotic
costs is sufficient to follow the optimizations in §5.

4.1 Oblivious relational operators
SECRECY supports a rich class of oblivious relational opera-
tors: SELECT, PROJECT, (SEMI-)JOIN, GROUP-BY, DISTINCT,
and ORDER-BY with LIMIT. It also supports the following ag-
gregations under MPC: COUNT, SUM, MIN/MAX, and global AVG.

All operators have the same semantics as their plaintext
counterparts but their control flow is data independent; in
practice, this means that the SECRECY code does not have
any if statements that depend (either directly or indirectly) on
the input data. At a high level, oblivious selection requires a
linear scan over the input relation, join and semi-join operators
require a nested-loop over the two inputs, whereas order-by,
distinct, and group-by are based on a sorting network.

In all cases, operator predicates can be arbitrary logical ex-
pressions with atoms that may also include arithmetic expres-
sions (+,×,�, >,<,,,≥,≤) and are evaluated under MPC

1034 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Operator #operations (#messages) #communication rounds

SELECT O(n) O(1)
JOIN O(n ·m) O(1)

SEMI-JOIN O(n ·m) O(log m)
ORDER-BY O(n · log2 n) O(log2 n)
DISTINCT O(n · log2 n) O(log2 n)
GROUP-BY O(n · log2 n) O(log2 n)
MASK O(n) O(1)

Table 1: Summary of operation (Co) and synchronization costs (Cs)
for general oblivious relational operators w.r.t. the cardinalities (n,
m) of the input relation(s). The asymptotic number of operations
equals the asymptotic number of messages per computing party,
as each individual operation on secret shares involves a constant
number of message exchanges under MPC. Independent messages
can be batched in rounds as shown in the rightmost column.

using the oblivious primitives of §3.2. All operators except
PROJECT and ORDER-BY append a new attribute to each record
of their input relation that stores a (secret-shared) valid bit:
this bit denotes whether the record belongs to the output of
the operator and is computed under MPC.

Table 1 shows the asymptotic operation and synchroniza-
tion costs per operator with respect to the input size. MASK is
a special operator used by SECRECY to hide records (with
“garbage” values) upon a condition. The formal operator se-
mantics and their exact costs are given in §A.2.

4.2 Composing oblivious operators
We define the composition of two operators as applying the
second operator to the output of the first. One merit of our
approach is that all operators of §4.1 reveal nothing about their
output or access patterns and can be arbitrarily composed into
an end-to-end oblivious plan without special treatment.

Let op1 and op2 be two SECRECY operators. In general,
the composition op2(op1(R)) has an extra cost (additional to
the cost of applying the operators op1 and op2) as it requires
evaluating under MPC a logical expression ec for each gener-
ated tuple. We define the composition cost of op2(op1(R)) as
the cost of evaluating ec on all records generated by op2. The
expression ec depends on the types of operators. For example,
composing two selections, each one appending a valid bit
to the input relation, requires ANDing the two bits for each
record. Table 2 shows the asymptotic composition costs for
different operator pairs. The detailed costs are given in §A.3.

Note that applying the distinct operator to the output of a
selection, a group-by or a (semi-)join requires a linear number
of rounds. This is a significant increase over the O(log2 n)
rounds required by distinct when applied to a base relation
(cf. Table 1). In §5.2, we propose an optimization that reduces
the cost of these compositions to a logarithmic factor.

4.3 Computing optimal plan costs
SECRECY’s query planner is based on a typical bottom-up
dynamic programming algorithm [98] that computes optimal

Operator pair(s) #rounds

{SELECT, (SEMI-)JOIN, GROUP-BY, DISTINCT}→ DISTINCT O(n)
DISTINCT→ {SELECT, (SEMI-)JOIN} O(1)

SELECT↔ (SEMI-)JOIN O(1)
GROUP-BY→ {SELECT, (SEMI-)JOIN} O(1)

{SELECT, (SEMI-)JOIN, DISTINCT, GROUP-BY}→ GROUP-BY O(log2 n)

Table 2: Summary of composition costs (Cc) in number of rounds
for pairs of operators in SECRECY w.r.t the number of generated
records (n). Arrows denote the order of applying the two operators.
Composition incurs a small constant number of boolean operations
per record, so its cost in number of operations is O(n) in all cases.

plans based on our analytical cost model and a set of transfor-
mation rules that we present in §5. The algorithm identifies
all operators in the input query and proceeds in stages: at
each stage it creates bigger plans by adding a new operator to
sub-plans from the previous stage. Initially, the set of possible
sub-plans includes scans of the input relations. When creat-
ing a new (sub-)plan, the algorithm checks for all applicable
transformation rules and applies them exhaustively to gener-
ate equivalent (sub-)plans with lower cost. The cost of a plan
is computed as follows. Each time an operator op is added to
a sub-plan, SECRECY computes the operation and synchro-
nization costs Co(op) and Cs(op). If the operator is applied
to the output of another operator, SECRECY also computes
the composition cost Cc . To do so, it augments the current
plan with a special operator opec (opi(op j(..))) that applies
the composition predicate ec (§4.2). Co(opec) and Cs(opec)
amount to the cost of composing the operators opi and op j in
number of operations and rounds respectively. For a plan with
k operators, the total cost is

∑k
i�1 αCo(i)+βCs(i), where α, β

are parameters of the deployment. The algorithm returns the
plan with the minimum cost from the final stage.

5 SECRECY optimizations for relational MPC

Here we present the optimizations we introduce in SECRECY
to speed up MPC query execution: (i) logical transforma-
tion rules, such as operator reordering and decomposition
(§5.1), (ii) physical optimizations, such as operator fusion,
vectorized primitives and message batching (§5.2), and (iii)
secret-sharing optimizations that further reduce the number
of communication rounds for certain operators (§5.3). Table 3
summarizes the notation used in the remainder of the paper.

Target queries. Our work focuses on collaborative analytics
under MPC where two or more data owners want to outsource
queries on their collective data without compromising privacy.
We consider all inputs as sensitive and assume that data own-
ers wish to protect their raw data and avoid revealing attributes
of base relations in query results. For example, employing
MPC to compute a query that includes patient names along
with their diagnoses in the SELECT clause is pointless. Thus,
we target queries that return global or per-group aggregates
and/or distinct results, as in prior works.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1035

Symbol Description

` length of the share representation in bits
R,S relations with cardinality |R | and |S |
σφ(R) selection with predicate φ
R ./θ S join with predicate θ
Rnθ S left semi-join with predicate θ
δa (R) distinct operator on attribute a
γ

g
a (R) group-by operator on attribute a with aggregation function g

s↑a (R) sort on attribute a (ascending)

Table 3: Notation used in the paper

5.1 Logical transformation rules
SECRECY uses three types of logical transformations that
reorder and decompose operators to reduce the MPC costs:

5.1.1 Blocking operator push-down

Blocking oblivious operators (GROUP-BY, DISTINCT,
ORDER-BY) materialize and sort their entire input before pro-
ducing any output tuple. Contrary to a plaintext optimizer that
would most likely place sorting after selective operators, in
MPC we have an incentive to push blocking operators down,
as close to the input as possible. Since oblivious operators
do not reduce the size of intermediate data, sorting the input
is clearly the best option. Blocking operator push-down can
provide considerable performance improvements in practice,
even if the asymptotic costs do not change. As an example,
consider the rule that pushes ORDER-BY before a selection,
i.e., s↑a(σφ(R)) → σφ(s↑a(R)). Although this rule would not
generate a more efficient plan in plaintext evaluation, it does
so in the MPC setting. This is because the operations required
by the oblivious ORDER-BY depend on the cardinality and
the number of attributes of the input relation. Applying the
selection after the order-by reduces the actual (but not the
asymptotic) operation cost, as σφ appends one attribute to R.

Applicability. Rules in this class are valid relational transfor-
mations with no special applicability conditions under MPC.

5.1.2 Join push-up

The second class of rules leverage the fact that JOIN is the
only operator whose output is larger than its input. Based on
this, we have an incentive to perform joins as late as possible
in the query plan so that we avoid applying other operators to
join results, especially those that require materializing the join
output. For example, placing a blocking operator after a join
requires sorting the cartesian product of the input relations,
which increases the operation cost of the blocking operator to
O(n2 log2 n) and the synchronization cost by 4×.

Example. Consider the following query:
Q1: SELECT DISTINCT R.id

FROM R, S

WHERE R.id = S.id

and the rule δid(R ./id�id S) → δid(R) ./id�id δid(S). Let
R and S have the same cardinality n. A plan that applies

1 s↑aθ↑ak
(R) ; //sort input relation R on aθ, ak

2 let d← |R |/2; //Distance of tuples to aggregate
3 while d ≥ 1 do
4 for each pair of tuples (ti , ti+d), 0 ≤ i < |R | − d, do

//Are tuples in the same group?

5 let b← ti[ak]
?
� ti+d[ak];

//Are tuples in semi-join output too?
6 let bc← b ∧ ti[aθ] ∧ ti+d[aθ]; //bc is a bit

//Oblivious aggregation via multiplexing

7 ti[ag]← bc ·
(
ti[ag]+ ti+d[ag]

)
+ (1− bc) · ti[ag];

8 ti+d[av] ← ¬bc ; //av is the valid bit

9 mask ti+d when ti+d[av] � 0;

10 d � d/2;

11 mask remaining tuples with t[av] � 0 and shuffle R;
Algorithm 1: 2nd phase of Join-Aggregation decomposition

DISTINCT after the join operator requires O(n2 log2 n) oper-
ations. On the other hand, pushing DISTINCT before JOIN
reduces the operation cost to O(n2) and the composition cost
from O(n2) to O(1) in number of rounds. The asymptotic
synchronization cost is the same for both plans, i.e. O(log2 n),
but the actual number of rounds when DISTINCT is pushed
before JOIN is 4× lower.

Applicability. Rules in this class have the same applicability
conditions as similar rules for plaintext queries [42,113], even
though their goal is different. In our setting, the re-orderings
do not aim to reduce the size of intermediate data. In fact,
a plan that applies DISTINCT on a JOIN input produces ex-
actly the same amount of intermediate data as a plan where
DISTINCT is placed after JOIN, yet our analysis reveals that
the second plan has higher MPC costs.

5.1.3 Join-Aggregation decomposition

Consider a query plan where a JOIN on attribute a j is fol-
lowed by a GROUP-BY on another attribute ak , a j . In this
case, pushing the GROUP-BY down does not yield a seman-
tically equivalent plan. Still, we can optimize the plan by
decomposing the aggregation in two phases and push the first
and most expensive phase of GROUP-BY before the JOIN.

Let R, S be the join inputs, where R includes the group-by
key ak . The first phase of the decomposition sorts R on ak
and computes a semi-join on a j that appends two attributes to
R: the valid bit aθ introduced by the semi-join, and a second
attribute ag that stores the result of a partial aggregation1 (we
come back to this later).

In the second phase, we compute the final aggregates per ak
using Algorithm 1, which takes into account the attribute aθ
and updates the partial aggregates ag in-place using odd-even
aggregation. The decomposition essentially replaces the join

1In case the aggregation function is AVG, we need to keep the value sum
(numerator) and count (denominator) as separate secret-shared attributes in R.

1036 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

with a semi-join and a partial aggregation in order to avoid
performing the aggregation on the cartesian product R× S.
This way, we significantly reduce the number of operations
and communication rounds, but also ensure that the space
requirements remain bounded by |R |, since the join output is
not materialized. Note that this optimization is fundamentally
different than performing a partial aggregation in the clear (by
the data owners) and then computing the global aggregates
under MPC [22, 95]; in our case, all data are secret-shared
amongst parties and both phases are under MPC.

Example. Consider the following query:
Q2: SELECT R.ak, COUNT(*)

FROM R, S
WHERE R.id = S.id

GROUP BY R.ak

Let R and S have the same cardinality n. The plan that
applies GROUP-BY to the join output requires O(n2 log2 n)
operations and O(log2 n) communication rounds. When de-
composing the aggregation γCOUNT(*)ak

in two phases, the oper-
ation cost is reduced to O(n2) and the synchronization cost
is 4× lower. The space requirements are also reduced from
O(n2) to O(n). In our example, the partial aggregation corre-
sponds to the function t[aθ] �

∑
∀t′∈S θ(t , t′), t ∈ R, where

θ(t , t′) :� t[id] ?
� t′[id]. Similar partial aggregations can be

defined for SUM, MIN/MAX, and AVG.

Decomposition with DISTINCT. A similar idea can also
be employed when the join is followed by a DISTINCT.
The transformation rule in this case is δR.a(R ./θ S) →
δ′a(s↑R.aθ ,↑R.a(Rnθ S)), where aθ denotes the semi-join bit
and δ′(·) is the final phase of distinct that compares adjacent
tuples with aθ � 1. For example, the plan δR.a(R ./b�b S) can
be replaced with the equivalent plan δ′R.a(s↑R.aθ ,↑R.a(Rnb�b

S)) to reduce the operation cost from O(n2 log2 n) to O(n2)
and the synchronization cost from O(n2) to O(log2 n).
Applicability. The decomposition technique we described is
applicable to any θ-join followed by (i) a GROUP-BY with
aggregation or (ii) a DISTINCT operator, under the condition
that the group-by or distinct keys belong to one join input.

5.2 Physical optimizations
We now describe a set of physical optimizations in SECRECY.

5.2.1 Predicate fusion

Fusion is a common optimization in plaintext query planning,
e.g., when predicates of multiple filters are merged and exe-
cuted by a single operator. Fusion has been recently used to
speed up secure ML pipelines in Cerebro [117] and is also
applicable to oblivious relational operators. In our setting,
fusion is achieved by identifying independent operations that
can be executed efficiently within the same communication

round. For example, if the equality check of an equi-join and
a selection are independent of each other, a fused operator
requires dlog `e + 1 rounds instead of 2dlog `e + 1 (cf. §A).
Next, we describe a somewhat more interesting case of fusion.

5.2.2 Operator fusion

Recall that applying DISTINCT after SELECT requires n com-
munication rounds (§4.2). We can avoid this overhead by
fusing the two operators in a different way, that is, sorting the
input relation on the selection bit first and then on the distinct
attribute. Sorting on two (instead of one) attributes adds a
small constant factor to each oblivious compare-and-swap
operation, hence, the asymptotic complexity of the sorting
step remains the same. When distinct is applied to the output
of other operators, including selections and (semi-)joins, this
physical optimization keeps the number of rounds required
for the composition low.

Example. Consider the following query:
Q3: SELECT DISTINCT id

FROM R

WHERE ak = ‘c’

Fusing the distinct and selection operators reduces the num-
ber of communication rounds from O(n) to O(log2 n), as if
the distinct operator was applied only to R (without a se-
lection). DISTINCT can be fused with a join or a semi-join
operator in a similar way. In this case, the distinct operator
takes into account the (semi-)join bit.

5.2.3 Vectorization and message batching

In secret sharing protocols, non-local operations require ex-
changing very small messages. Applying multiple such in-
dependent operations in a vectorized fashion and exchang-
ing the respective messages in bulk improves performance
tremendously. Consider applying a selection with an equality
predicate on a relation with n tuples. Performing oblivious
equality on one tuple requires dlog `e rounds. Applying the se-
lection tuple-by-tuple and sending messages eagerly (as soon
as they are generated) results in n · dlog `e rounds. Instead,
if we apply independent selections across the entire relation
and exchange messages in bulk, we can reduce the total syn-
chronization cost to dlog `e. We have designed all SECRECY
primitives to apply vectorization and message batching by de-
fault, otherwise the cost of secret sharing is prohibitive. Costs
in Tables 1 & 2 already take message batching into account.

5.3 Secret-sharing optimizations
Here we propose optimizations that take advantage of mixed-
mode MPC protocols which permit both arithmetic and
boolean computations. While SECRECY uses boolean secret
sharing for most operations, computing arithmetic expres-
sions or aggregations like COUNT and SUM on boolean shares

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1037

requires using a ripple-carry adder (RCA), which in turn re-
quires many communication rounds. Performing these oper-
ations on additive shares would require no communication,
but converting shares from one format to another can be ex-
pensive. Below, we describe two optimizations that avoid the
RCA in aggregations and predicates with constants.

5.3.1 Dual sharing

The straight-forward approach of switching from boolean to
additive shares (and vice versa) based on the type of operation
does not pay off; the conversion itself relies on RCA, which
has to be applied twice to switch to the other representation
and back. The cost-effective way would be to evaluate logical
expressions using boolean shares and arithmetic expressions
using additive shares. However, this is not always possible be-
cause arithmetic and boolean expressions in oblivious queries
often need to be composed into the same formula. We mitigate
this problem using a dual secret-sharing scheme.

Recall the example query Q2 from §5.1.3 that applies an
aggregation function to the output of a join according to
Algorithm 1. The attribute aθ in Algorithm 1 is a single-
bit attribute denoting that the respective tuple is included
in the join result. During oblivious evaluation, each party
has a boolean share of this bit that is used to compute the
arithmetic expression in line 6. The naïve approach is to
evaluate the following equivalent logical expression directly
on the boolean shares of bc , ti[ag], and ti+d[ag]:

ti[ag] ← b` ∧RCA
(
ti[ag], ti+d[ag]

)
⊕ b` ∧ ti[ag]

where RCA is the oblivious ripple-carry adder primitive, b` is
a string of ` bits (the length of ag) all of which are set equal
to bc , and b` is the binary complement of b` . Evaluating the
above expression requires ` communication rounds for RCA
plus two more rounds for the logical ANDs (∧). On the con-
trary, SECRECY evaluates the equivalent formula in line 6 of
Algorithm 1 in four rounds (independent from `) as follows.
First, parties use arithmetic shares for the attribute ag to com-
pute the addition locally. Second, each time they compute the
bit bc in line 5, they exchange boolean as well as arithmetic
shares of its value. To do this efficiently, we rely on the single-
bit conversion protocol also used in CrypTen [70], which
requires two rounds of communication. Having boolean and
arithmetic shares of bc allows SECRECY to use it in boolean
and arithmetic expressions without paying the cost of RCA.

5.3.2 Proactive sharing

The previous optimization relies on bc being a single bit.
In many cases, however, we need to compose boolean and
additive shares of arbitrary values. Representative examples
are join predicates with arithmetic expressions on boolean
shares, e.g. (R.a − S.a ≥ c), where a is an attribute and c
is a constant. We can speedup the oblivious evaluation of

such predicates by proactively asking the data owners to send
shares of the expression results. In the previous example, if
parties receive boolean shares of S.a + c they can avoid com-
puting the boolean addition with RCA. A similar technique is
also applicable for selection predicates with constants. In this
case, to compute a > c, if parties receive shares of a− c and
c− a, they can transform the binary equality to a local compar-
ison with zero. Note that proactive sharing is fundamentally
different than having data owners perform local filters or pre-
aggregations prior to sharing. In the latter case, the computing
parties might learn the selectivity of a filter or the number
of groups in an aggregation (if results are not padded). In
our case, parties simply receive additional shares and will not
learn anything about the intermediate query results.

5.4 Generality of optimizations

The logical and physical query optimizations constructed in
this work (§5.1-5.2) apply generally to any mixed-mode MPC
protocol that supports the primitives we describe in §3.2. This
includes protocols that remain secure in the face of a mali-
cious adversary who can deviate from the protocol arbitrarily
(e.g., [46, 71, 89]), and (authenticated) garbled circuit pro-
tocols [109, 114] combined with conversions to arithmetic
secret sharing [50, 89] as needed. SECRECY can also support
alternative instantiations of oblivious primitives with different
cost profiles, such as constant-round equality and comparisons
with higher operation costs [48, 86].

While the secret-sharing optimizations of §5.3 are specific
to SECRECY’s underlying MPC protocol (§3.1), we expect
that similar techniques can be developed also for other pro-
tocols. Extending the SECRECY planner to consider the cost
profiles of various building blocks is an exciting avenue for
future work. We provide a formal discussion of generality in
Appendix B.

6 SECRECY implementation

Despite a rich open-source ecosystem of general-purpose
MPC frameworks [62], we found that existing tools either lack
support for general relational operations (with θ-predicates)
or cannot effectively amortize network I/O. For these reasons,
we implemented SECRECY in C/C++, entirely from scratch.
We designed our secure primitives to operate directly on rela-
tions and we also built a library of general oblivious relational
operators that can be combined into arbitrary query plans.

System overview. Figure 2 shows the SECRECY architecture
and software stack. Data analysts submit queries through a
client application that exposes a SQL interface and provides
a query planner that performs query rewriting and cost-based
optimization. Data owners use the secret-sharing generation
module to distribute random shares of their data to the comput-
ing parties. Computing parties can be deployed on premises,

1038 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: The SECRECY system consists of (i) a client application
that can be used by data analysts to submit queries, (ii) a data owner
application to generate and distribute secret shares, and (iii) three
computing parties that execute queries under MPC.

in a hybrid cloud, or across multiple clouds. To automate
cloud deployment we use Ansible [7]. The parties’ software
stack consists of (i) a custom implementation of the replicated
secret sharing protocol, (ii) a library of secure computation
and communication primitives, and (iii) a library of oblivious
relational operators. The distributed runtime and communica-
tion layer are based on MPI [5]. Each party is a separate MPI
process that handles both computation and communication.

Operator pipelining. SECRECY relational operators and se-
cure primitives are designed to process table rows in batches.
The batch size is configurable and allows SECRECY to com-
pute expensive operators, such as joins, with full control over
memory requirements. While batching does not reduce the
total number of operations, we leverage it to compute on large
inputs in a pipelined fashion, without running out of memory
or switching to a disk-based evaluation.

Query planning and execution. Upon startup, the parties es-
tablish connections to each other and learn the process IDs of
other parties. Next, they receive shares for each input relation
from the data owners. Queries are specified either in SQL (and
go through query planning) or in a declarative DSL that allows
seamless operator composition by abstracting MPC details.
For SQL parsing we use the Hyrise parser [12]. SECRECY’s
planner generates the optimal query plan as explained in §4.3.
To evaluate a query, parties execute the same oblivious physi-
cal plan on their random shares and return the results to the
designated client. We use a 64-bit share representation by
default, so ` � 64 (cf. Table 3).

7 Experimental evaluation

Our experimental evaluation is structured into four parts:

Benefits of query optimization. In §7.2, we evaluate the ben-
efits of SECRECY’s optimizations on eight real and synthetic
queries. We show that SECRECY’s cost-based optimizer re-
duces the runtime of complex queries by up to three orders of
magnitude both in a LAN and a multi-cloud setting.

Performance on real and synthetic queries. In §7.3 we
evaluate SECRECY’s performance as input sizes grow. We use
queries that include selections, group-by, distinct, semi-join,
and theta-joins with both equality and inequality predicates.
Our results demonstrate that SECRECY can scale to millions
of input rows and evaluate complex queries in reasonable time
with modest use of resources.

Micro-benchmarks. In §7.4, we evaluate individual logical,
physical, and secret-sharing optimizations on the three queries
from §5.1-5.3. Our results demonstrate that pushing down
blocking operators reduces execution time by up to 1000×
and enables queries to scale to 100× larger inputs. Further, we
show that operator fusion and dual sharing improve execution
time by an order of magnitude in the WAN setting.

Comparison with state-of-the-art frameworks. In §7.5,
we compare SECRECY with SMCQL [22] and the 2-party
semi-honest version of EMP [108]. We choose SMCQL (the
ORAM-based version) as the only open-source relational
framework with semi-honest security and no leakage. We also
choose the EMP library since it is used by all recent systems,
namely Shrinkwrap [23], SAQE [24], a new version of SM-
CQL, and Senate [95]. Although none of these systems is
publicly available, they all build their relational MPC engines
on top of EMP. We show that SECRECY outperforms them
both and can comfortably process much larger datasets.

We provide additional micro-benchmarks and experiments
with EMP in Appendix D.

7.1 Evaluation setup
We use three cloud deployments: (i) AWS-LAN uses an
EC2 r5.xlarge instance per party in the us-east-2 region,
(ii) AWS-WAN distributes parties across us-east-2 (Ohio),
us-east-1 (Virginia), and us-west-1 (California), and (iii)
MULTI-CLOUD distributes parties across three different cloud
providers, namely AWS (Ohio), Google Cloud (South Car-
olina), and Azure (Virginia). VMs have 32GB of memory
and run Ubuntu 20.04, C99, gcc 5.4.0, and MPICH 3.3.2.
Measurements are averaged over at least three runs and plot-
ted in log-scale, unless otherwise specified.

Queries. We use 11 queries for evaluation, including five real-
world queries from previous MPC works [22–24, 95, 105].
Three are medical queries [22]: Comorbidity returns the ten
most common diagnoses of individuals in a cohort, Recurrent
C.Diff. returns the distinct ids of patients who have been
diagnosed with cdiff and have two consecutive infections
between 15 and 56 days apart, and Aspirin Count returns
the number of patients who have been diagnosed with heart
disease and have been prescribed aspirin after the diagnosis
was made. We also use queries from other MPC application
areas [95]: Password Reuse asks for users with the same
password across different websites, while Credit Score asks
for persons whose credit scores across different agencies have

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1039

(a) LAN (b) MULTI-CLOUD

Figure 3: SECRECY end-to-end performance when optimizations are enabled (Optimized) and disabled (Not optimized) for real and synthetic
queries. Logical and physical optimizations result in over 1000× lower execution times, while secret-sharing optimizations improve performance
by up to ∼ 52×. Not optimized plans still use vectorization and message batching (§5.2.3), otherwise the cost of secret sharing is prohibitive.

(a) Category A (b) Category B (c) Category C

Figure 4: Scaling behavior of optimized real and synthetic queries on SECRECY

significant discrepancies in a particular year. In addition to
the real-world queries, we use the TPC-H queries (Q4, Q6,
Q13) [103] that have been used in SAQE [24]. Finally, to
evaluate the performance gains from each optimization in
isolation, we use Q1, Q2, Q3 from §5.1-5.3.

Datasets. All experiments use randomly generated tables with
64-bit values. Note that SECRECY’s MPC protocol assumes
a fixed-size representation of shares that is implementation-
specific and could be increased to any 2k value. We also
highlight that using random inputs is no different than using
real data, as all operators are oblivious and the data distribu-
tion does not affect the amount of computation or commu-
nication. Regardless if the input is real or random, parties
compute on secret shares, which are by definition random.
In all experiments we designate one party as the data owner
who distributes shares and learns the results. SECRECY uses
exactly three computing parties; therefore, the number of data
owners and analysts does not affect query performance, only
the cumulative input size does.

7.2 Benefits of query optimization
We compare the performance of 8 queries optimized by SE-
CRECY with that of plans without the optimizations of §5.
For a fair comparison, we implement baseline plans using SE-
CRECY’s batched operators. Although this favors the baseline,
the communication cost of MPC is otherwise prohibitive and
queries cannot scale beyond a few hundred input rows. We
execute each plan with 1K rows per input relation. For Q4
(resp. Q13), we use 1K rows for LINEITEM (resp. ORDERS)
and maintain the size ratio with the other input relation as
specified in the TPC-H benchmark. For Comorbidity, we use

a cohort of 256 patients. We run this experiment on AWS-LAN
and MULTI-CLOUD and present the results in Figure 3.

In the LAN setting, SECRECY achieves the highest
speedups for Recurrent C.Diff., Aspirin Count, and Q13,
that is, 1142×, 121×, and 714× lower execution times, re-
spectively. Optimized plans for these queries leverage join
push-up (Aspirin Count), fusion (Recurrent C.Diff.), and join-
aggregation decomposition (Q13). The optimized plans for
Comorbidity, Password Reuse, Q4, and Q6 leverage dual and
proactive sharing, achieving up to 52× speedup compared to
the baseline. Finally, the Credit Score query leverages dual
sharing which, in this case, provides a modest improvement.
SECRECY achieves significant speedups in the wide area, too.
The performance improvement is higher for Comorbidity, Q4,
and Q13 in the multi-cloud setting, as these queries leverage
optimizations that primarily reduce the synchronization cost.
We evaluate the benefit of individual optimizations in §7.4.

7.3 Performance on real and synthetic queries

We now run the optimized plans with increasing input sizes
in AWS-LAN and report total execution time. For these experi-
ments, we group queries into three categories of increasing
complexity. Category A includes queries with selections and
global aggregations, Category B includes queries with select
and group-by or distinct operators, and Category C includes
queries with select, group-by and (semi-)join operators. Fig-
ure 4 presents the results.

Q6 in Category A consists of five selections and a global
aggregation. It requires minimal communication that is inde-
pendent of the input relation cardinality. As a result, it scales
comfortably to large inputs and takes ∼ 6s for 8M rows.

1040 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Distinct-join reordering (LAN) (b) Join-Aggr. decomposition (LAN) (c) Select-Distinct fusion (WAN) (d) Dual sharing in Group-by (WAN)

Figure 5: Performance improvement of individual optimizations applied by the SECRECY planner

Queries in Category B scale to millions of input rows as
well. The cost of these queries is dominated by the oblivi-
ous group-by and distinct operators. At 2M rows, Recurrent
C.Diff. completes in ∼ 1.2h and Password Reuse in ∼ 20min.

The cost of queries in Category C is dominated by joins
and semi-joins. The size ratio between the two inputs of
each query is different: for Q4 and Q13, we use the ratio
specified in the TPC-H benchmark whereas, for Aspirin Count,
we use inputs of equal size. In Figure 4c, Scaling factor 1×
corresponds to 1K rows for the small input. As we increase the
input sizes, we always keep their ratio fixed. At scaling factor
32×, the most expensive query is Q13, which is optimized
with join-aggregation decomposition and takes ∼ 6.5h on
295K rows. At the same scaling factor, Q4 completes in ∼
3.4h on 164K rows, and Aspirin Count in ∼ 1.3h.

While MPC protocols remain expensive for real-time
queries, our results demonstrate that offline collaborative ana-
lytics on millions of records entirely under MPC are viable.

7.4 Micro-benchmarks

We now use the queries of §5 (Q1, Q2, Q3) to evaluate the
impact of SECRECY’s optimizations in isolation. We run each
query with and without the particular optimization and mea-
sure total execution time. Distinct-join reordering and join-
aggregation decomposition primarily reduce the operation
cost and we evaluate them in AWS-LAN. Fusion and dual shar-
ing reduce the synchronization cost and we evaluate them in
AWS-WAN. Figure 5 shows the results.

Distinct-Join reordering. The optimized plan of Q1 pushes
the JOIN after DISTINCT and, thus, only sorts a relation of n
rows instead of n2. Figure 5a shows that the optimized plan is
up to 50× faster than the baseline, which runs out of memory
for even modest input sizes.

Join-Aggregation decomposition. The baseline plan of Q2
materializes the result of the join and then applies the group-
ing and aggregation. Instead, the optimized plan decomposes
the aggregation in two phases (cf. §5.1.3). As shown in Fig-
ure 5b, this optimization provides 100× lower execution time
than that of the baseline plan. Further, the baseline plan runs
out of memory for inputs larger than 1K rows.

Operator fusion. The baseline plan of Q3 applies the obliv-
ious selection before DISTINCT, while the optimized plan

Comorbidity Recurrent C. Diff. Aspirin Count
SMCQL 91s 358s 365s

SECRECY 0.083s 0.092s 0.171s

Table 4: SMCQL and SECRECY execution times in LAN for the
three medical queries from [22] on 25 tuples per input relation.

Figure 6: Performance comparison of the oblivious sort operator on
EMP and SECRECY in LAN (left) and WAN (right).

fuses the two operators and performs the DISTINCT computa-
tion in bulk (cf. §5.2.2). Figure 5c shows that this optimization
provides more than 25× speedup for large inputs and allows
the query to scale to much larger inputs.

Dual sharing. We also evaluate SECRECY’s ability to switch
between arithmetic and boolean sharing to reduce communi-
cation costs for certain operations. For this experiment, we
compare the run-time of the optimized GROUP-BY-COUNT op-
erator (cf. §5.3) to that of a baseline operator that uses boolean
sharing only and, hence, relies on the ripple-carry adder to
compute the COUNT. Figure 5d plots the results. The baseline
operator is 10× slower than the optimized one, as it requires
64 additional rounds of communication per input row.

7.5 Comparison with other MPC frameworks

Existing 3-party frameworks [62] are either proprietary, e.g.
[27], or they only support specific operators, such as unique-
key joins [82, 99], that cannot be used for any of the queries
we consider. We stress that EMP and SMCQL use 2-party
garbled circuit protocols that are not directly comparable with
SECRECY’s. The purpose of these experiments is to showcase
the end-to-end performance of the available solutions for
relational MPC and not to compare the underlying protocols.

Comparison with SMCQL. In the first set of experiments,
we aim to reproduce the results presented in SMCQL [22,
Fig. 7] on our experimental setup. We run the three medical
queries on SMCQL and SECRECY, using a sample of 25

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1041

rows per data owner (50 in total), and present the results
in Table 4. We use the plans and default configuration of
protected and public attributes, as in the SMCQL project
repository. SECRECY is over 1000× faster than SMCQL in
all queries.

Comparison with EMP. EMP is a general-purpose MPC
framework and does not provide relational operators or query
planning. Nevertheless, we include a comparison with EMP
because it is the MPC library underpinning several non-open-
source relational frameworks (e.g., Shrinkwrap, SAQE, and
Senate). For these experiments, we use the oblivious sort
operation from the EMP repository [108] that has the same
asymptotic complexity with the respective SECRECY sort.
Figure 6 shows the results in AWS-LAN and AWS-WAN for input
sizes ranging from 64K to 4M rows. The performance gap
between SECRECY and EMP is significant. SECRECY is up to
12.7× faster in LAN (∼ 3h vs 14min for 4M input rows). In
the WAN setting, SECRECY sorts 4M rows in 42min, while
EMP could not complete the computation within 9h.

8 Related Work

Relational MPC systems. We distinguish two lines of work
in this space that are often combined. The first line targets
peer-to-peer deployments and reduces multi-party computa-
tion by pushing parts of the query to data owners (for plain-
text evaluation) or executing the protocol within subsets of
the computing parties [13, 22, 44, 95, 105]. The second line
includes systems that trade off MPC performance with con-
trolled information leakage [23, 24, 64, 105, 111]. We summa-
rize each system’s preconditions and guarantees in Table 5
and provide more details in Appendix C. Function secret shar-
ing in Splinter [106] allows for private queries on public data,
which is the opposite to our goal.

Our approach has several advantages over, and is also com-
plementary with, many of the prior techniques. SECRECY’s
optimizations are agnostic to data ownership and retain the
full security guarantees of MPC, merely optimizing its execu-
tion. More importantly, this work provides a strong foundation
for a unified query optimization framework that can accom-
modate multi-cloud, peer-to-peer, and hybrid deployments.
Prior techniques can be ported into SECRECY by plugging
in appropriate cost functions and query transformation rules.
For example, pushing parts of the query to data owners, as in
Conclave [105], can be done via transformation rules that in-
troduce plaintext operators with certain placement constraints.

Enclave-based approaches. In this line of work, parties pro-
cess the plaintext data within a physically protected envi-
ronment. Enclave-based approaches aim to minimize RAM
requirements, pad intermediate results, and hide access pat-
terns in untrusted storage. The works by Agrawal et al. [14]
and Arasu et al. [19] focus on database queries in this setting.

More recent systems such as ObliDB [52], Opaque [116],
StealthDB [104], and OCQ [49] rely on Intel’s SGX.

Enclave-based systems typically achieve better perfor-
mance than MPC systems but require different trust assump-
tions and are susceptible to attacks [33, 35, 36, 59, 74, 75, 107,
112]. Some of these threats can be ameliorated using oblivi-
ous operators within the enclave. Our logical optimizations
from §5.1 could also be applied in this setting to reduce the
number of operations and memory requirements.

System optimizations for MPC. Improving the performance
of secure computation via system optimizations is an active
research topic. MAGE [73] proposed an interesting technique
to reduce the inherent memory overhead of homomorphic
encryption and garbled circuits (cf. §3). As SECRECY relies
on secret sharing, its memory footprint is small. Instead, se-
cret sharing incurs a higher communication cost, which we
amortize using vectorization and message batching (§5.2.3).
MPC performance can be further improved by offloading
secure primitives to hardware accelerators [54, 55, 79, 102].
Most works in this space focus on ML workloads but similar
techniques could also be applied to relational operators.

MPC operators, algorithms, and cost models. Various re-
lated works focus on standalone oblivious relational opera-
tors, e.g. building group-by from oblivious sort [66], equi-
joins [15, 72, 82, 93], or common aggregations [45, 51]. SE-
CRECY is driven by real-world applications that typically
require oblivious evaluation of queries with multiple opera-
tors. Motivated by similar needs, Wang et al. [110] presented
a secure version of the Yannakakis’ algorithm, while Ion et
al. [65] and Buddhavarapu et al. [34] studied unique-key joins
followed by simple aggregations. These works do not provide
general cost-based MPC query optimization and they oper-
ate in the peer-to-peer setting, where data owners participate
in the protocol execution using trusted resources. Recently,
CostCO [53] did some nice work on modeling the cost of
general MPC programs. Our cost model focuses on relational
operators and is tightly integrated with the query planner.

Encrypted DBs. Existing practical solutions in secure
database outsourcing [56] operate in a client-server setting
and reveal or “leak” information to the database server. Sys-
tems based on property-based encryption like CryptDB [96]
offer full SQL support and legacy compliance, but each query
reveals information that can be used in reconstruction at-
tacks [37,58,60,61,69,78,80,84]. Systems based on structural
encryption [38, 67, 88, 94, 115] provide semantic security that
does not eliminate access pattern leaks. SDB [64, 111] uses
secret sharing but leaks information to the server whereas
Cipherbase [18] relies on a trusted machine. These systems
support only one data owner and it would require public-key
encryption to evaluate queries that span multiple datasets [31].

Differential Privacy (DP). Systems like DJoin [83], DStress
[87], and others [29, 43, 63] use DP to ensure that the out-

1042 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Framework MPC Protocol Information
Leakage

Trusted
Party

Query
Execution

Main Optimization
Objective Optimization Conditions

Conclave [105] Secret Sharing /
Garbled Circuits

Controlled
(Hybrid operators) Yes Hybrid

Minimize the use of
secure computation

1. Data owners serve as computing parties
2. Data owners provide privacy annotations
3. There exists an additional trusted party

SMCQL [22]
Garbled Circuits /

ORAM No No1 Hybrid
Minimize the use of
secure computation

1. Data owners serve as computing parties
2. Data owners provide privacy annotations
3. There exists an honest broker

Shrinkwrap [23]
Garbled Circuits /

ORAM
Controlled

(Diff. Privacy) No Hybrid
Calibrate padding of
intermediate results

1. Data owners serve as computing parties
2. Data owners provide privacy annotations
and intermediate result sensitivities

SAQE [24] Garbled Circuits
Controlled

(Diff. Privacy) No Hybrid
Choose sampling rate

for approximate answers

1. Data owners serve as computing parties
2. Data owners provide privacy annotations
and differential privacy budgets

Senate [95] 2 Garbled Circuits No No Hybrid
Reduce joint computation

to subsets of parties

1. Data owners serve as computing parties
2. Input or intermediate relations are owned
by subsets of the computing parties

SDB [64, 111] 3 Secret Sharing Yes
(operator dependent) No Hybrid

Reduce data encryption
and decryption costs

1. Data owner serves as computing party
2. Data owner provides privacy annotations

SECRECY Rep. Secret Sharing No No
End-to-end
under MPC

Reduce MPC costs
(§ 2.3 and § 4-5) None

1 SMCQL relies on an honest broker that may see protected data in the clear during query evaluation [22, § 5.1].
2 Senate provides security against malicious parties whereas all other systems adopt a semi-honest model.
3 SDB adopts a typical DBaaS model with one data owner and does not support collaborative analytics.

Table 5: Summary of MPC-based systems for relational analytics. Hybrid execution splits the query plan into a plaintext part (executed by the
data owners) and an oblivious part (executed under MPC) and requires data owners to participate in the computation using trusted resources.
The rest of the optimizations supported by each system are applicable under one or more of the listed conditions in the rightmost column.

put of a query reveals little about any one input record. This
property is independent of (yet symbiotic with) MPC’s guar-
antee that the act of computing the query reveals no more
than what may be inferred from its output. The SECRECY
primitives from §3.2 can express arbitrary computations and
could also be used to add DP noise under MPC. We leave
this as future work.

9 Conclusions

This work presents SECRECY, a new system for efficient
secure analytics in the cloud with no information leakage. SE-
CRECY can enable new data markets and socially-beneficial
data analyses while protecting private data. Our results show
that logical optimizations coupled with careful system design
can make MPC practical for complex analytics on millions
of data records. In the future, we plan to extend SECRECY
with multi-objective query optimization that considers cloud
fees, data-parallelism via oblivious hashing (e.g. [91, 92]),
and support for malicious-secure MPC (e.g., [16, 71]).

Acknowledgments

We would like to thank the anonymous reviewers for their
valuable feedback and James Mickens for shepherding the
paper. We also thank Jonathan Appavoo, Orran Krieger, Ran
Canetti, Leo Reyzin, Azer Bestavros, Kinan Dak Albab, and
Ben Getchell for their comments on an early version of this
work, Eric Chen for automating the SECRECY deployment,
and the MOC Alliance for providing access to their cloud.
This work has been partially supported by a Red Hat Col-

laboratory grant (No. 2022-01-RH02) and a Hariri Institute
Focused Research Project Award. M. Varia’s work is sup-
ported by the DARPA SIEVE program under Agreement No.
HR00112020021 and the National Science Foundation under
Grants No. 1414119, 1718135, 1801564, and 1931714.

References

[1] Cape Privacy. https://capeprivacy.com. [Online; ac-
cessed April 2022].

[2] General Data Protection Regulation (GDPR). https:
//gdpr.eu/tag/gdpr/. [Online; accessed April
2022].

[3] Health Insurance Portability and Accountability
Act (HIPAA). https://www.cdc.gov/phlp/
publications/topic/hipaa.html. [Online;
accessed April 2022].

[4] HElib. https://github.com/homenc/HElib. [On-
line; accessed April 2022].

[5] Message Passing Interface (MPI). https:
//www.mcs.anl.gov/research/projects/mpi/
standard.html. [Online; accessed April 2022].

[6] PALISADE. https://gitlab.com/palisade/
palisade-release. [Online; accessed April 2022].

[7] Red Hat Ansible Automation Platform.
https://www.redhat.com/en/technologies/
management/ansible. [Online; accessed April
2022].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1043

https://gdpr.eu/tag/gdpr/
https://gdpr.eu/tag/gdpr/
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://github.com/homenc/HElib
https://www.mcs.anl.gov/research/projects/mpi/standard.html
https://www.mcs.anl.gov/research/projects/mpi/standard.html
https://www.mcs.anl.gov/research/projects/mpi/standard.html
https://gitlab.com/palisade/palisade-release
https://gitlab.com/palisade/palisade-release
https://www.redhat.com/en/technologies/management/ansible
https://www.redhat.com/en/technologies/management/ansible

[8] SEAL. https://github.com/Microsoft/SEAL.
[Online; accessed April 2022].

[9] Secrecy Github Repository. https://github.com/
CASP-Systems-BU/Secrecy. [Online; accessed
April 2022].

[10] SoK: General-Purpose Compilers for Se-
cure Multi-party Computation. https:
//github.com/MPC-SoK/frameworks/blob/
master/emp/sh_test/test/xtabs.cpp. [Online;
accessed April 2022].

[11] The Carbyne Stack: Cloud Native Secure Multiparty
Computation. https://carbynestack.io. [Online;
accessed April 2022].

[12] The Hyrise Project: C++ SQL Parser. https:
//github.com/hyrise/sql-parser. [Online; ac-
cessed April 2022].

[13] Gagan Aggarwal, Mayank Bawa, Prasanna Ganesan,
Hector Garcia-Molina, Krishnaram Kenthapadi, Ra-
jeev Motwani, Utkarsh Srivastava, Dilys Thomas, and
Ying Xu. Two can keep a secret: A distributed archi-
tecture for secure database services. In The Second
Biennial Conference on Innovative Data Systems Re-
search (CIDR 2005), 2005.

[14] Rakesh Agrawal, Dmitri Asonov, Murat Kantarcioglu,
and Yaping Li. Sovereign joins. In Proceedings of
the 22nd International Conference on Data Engineer-
ing, ICDE ’06, page 26, USA, 2006. IEEE Computer
Society.

[15] Rakesh Agrawal, Alexandre Evfimievski, and Ramakr-
ishnan Srikant. Information sharing across private
databases. In Proceedings of the 2003 ACM SIG-
MOD International Conference on Management of
Data, SIGMOD ’03, pages 86–97, New York, NY,
USA, 2003. Association for Computing Machinery.

[16] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar
Lichter, Yehuda Lindell, Ariel Nof, Kazuma Ohara,
Adi Watzman, and Or Weinstein. Optimized honest-
majority mpc for malicious adversaries – breaking the
1 billion-gate per second barrier. In Proceedings of the
38th IEEE Symposium on Security and Privacy (SP),
pages 843–862, May 2017.

[17] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel
Nof, and Kazuma Ohara. High-throughput semi-honest
secure three-party computation with an honest majority.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS),
pages 805–817, October 2016.

[18] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav
Kaushik, Donald Kossmann, Ravi Ramamurthy, and
Ramarathnam Venkatesan. Orthogonal security with
cipherbase. In 6th Biennial Conference on Innovative
Data Systems Research (CIDR’13), January 2013.

[19] Arvind Arasu and Raghav Kaushik. Oblivious
query processing. In Nicole Schweikardt, Vassilis
Christophides, and Vincent Leroy, editors, Proc. 17th
International Conference on Database Theory (ICDT),
Athens, Greece, March 24-28, 2014, pages 26–37.
OpenProceedings.org, 2014.

[20] David W. Archer, Dan Bogdanov, Yehuda Lindell, Li-
ina Kamm, Kurt Nielsen, Jakob Illeborg Pagter, Nigel P.
Smart, and Rebecca N. Wright. From keys to databases
- real-world applications of secure multi-party compu-
tation. Comput. J., 61(12):1749–1771, 2018.

[21] David W. Archer, José Manuel Calderón Trilla, Ja-
son Dagit, Alex J. Malozemoff, Yuriy Polyakov, Kurt
Rohloff, and Gerard W. Ryan. RAMPARTS: A
programmer-friendly system for building homomor-
phic encryption applications. In WAHC@CCS, pages
57–68. ACM, 2019.

[22] Johes Bater, Gregory Elliott, Craig Eggen, Satyender
Goel, Abel N. Kho, and Jennie Rogers. SMCQL: se-
cure query processing for private data networks. Proc.
VLDB Endow., 10(6):673–684, 2017.

[23] Johes Bater, Xi He, William Ehrich, Ashwin
Machanavajjhala, and Jennie Rogers. Shrinkwrap:
efficient SQL query processing in differentially
private data federations. Proceedings of the VLDB
Endowment, 12(3):307–320, 2018.

[24] Johes Bater, Yongjoo Park, Xi He, Xiao Wang, and
Jennie Rogers. Saqe: practical privacy-preserving ap-
proximate query processing for data federations. Pro-
ceedings of the VLDB Endowment, 13(12):2691–2705,
2020.

[25] Dan Bogdanov, Marko Jõemets, Sander Siim, and
Meril Vaht. How the estonian tax and customs board
evaluated a tax fraud detection system based on secure
multi-party computation. In Financial Cryptography,
volume 8975 of Lecture Notes in Computer Science,
pages 227–234. Springer, 2015.

[26] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Re-
bane, Ville Sokk, and Riivo Talviste. Students and
Taxes: a Privacy-Preserving Study Using Secure Com-
putation. Proceedings on Privacy Enhancing Technolo-
gies (PoPETS), 2016(3):117–135, 2016.

1044 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/Microsoft/SEAL
https://github.com/CASP-Systems-BU/Secrecy
https://github.com/CASP-Systems-BU/Secrecy
https://github.com/MPC-SoK/frameworks/blob/master/emp/sh_test/test/xtabs.cpp
https://github.com/MPC-SoK/frameworks/blob/master/emp/sh_test/test/xtabs.cpp
https://github.com/MPC-SoK/frameworks/blob/master/emp/sh_test/test/xtabs.cpp
https://carbynestack.io
https://github.com/hyrise/sql-parser
https://github.com/hyrise/sql-parser

[27] Dan Bogdanov, Sven Laur, and Jan Willemson. Share-
mind: A framework for fast privacy-preserving com-
putations. In Sushil Jajodia and Javier López, editors,
Computer Security - ESORICS 2008, 13th European
Symposium on Research in Computer Security, Málaga,
Spain, October 6-8, 2008. Proceedings, volume 5283
of Lecture Notes in Computer Science, pages 192–206.
Springer, 2008.

[28] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård,
Martin Geisler, Thomas P. Jakobsen, Mikkel Krøigaard,
Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen,
Jakob Pagter, Michael I. Schwartzbach, and Tomas
Toft. Secure multiparty computation goes live. In
Financial Cryptography, volume 5628 of Lecture Notes
in Computer Science, pages 325–343. Springer, 2009.

[29] Jonas Böhler and Florian Kerschbaum. Secure sublin-
ear time differentially private median computation. In
NDSS. The Internet Society, 2020.

[30] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Anto-
nio Marcedone, H. Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. Practi-
cal secure aggregation for privacy-preserving machine
learning. In ACM Conference on Computer and Com-
munications Security, pages 1175–1191. ACM.

[31] Christoph Bösch, Pieter H. Hartel, Willem Jonker, and
Andreas Peter. A survey of provably secure search-
able encryption. ACM Computing Surveys, 47(2):18:1–
18:51, 2014.

[32] Boston Women’s Workforce Council (BWWC). Gen-
der/racial pay gap in boston by the numbers.
https://thebwwc.org, 2021.

[33] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure: SGX cache attacks
are practical. In 11th USENIX Workshop on Offen-
sive Technologies (WOOT 17), Vancouver, BC, August
2017. USENIX Association.

[34] Prasad Buddhavarapu, Andrew Knox, Payman Mo-
hassel, Shubho Sengupta, Erik Taubeneck, and Vlad
Vlaskin. Private matching for compute. Cryptol-
ogy ePrint Archive, Report 2020/599, 2020. https:
//eprint.iacr.org/2020/599.

[35] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Thomas F. Wenisch, Yuval Yarom, and Raoul
Strackx. Foreshadow: Extracting the keys to the intel
SGX kingdom with transient out-of-order execution.
In William Enck and Adrienne Porter Felt, editors, 27th
USENIX Security Symposium, USENIX Security 2018,

Baltimore, MD, USA, August 15-17, 2018, pages 991–
1008. USENIX Association, 2018.

[36] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza,
Frank Piessens, and Raoul Strackx. Telling your se-
crets without page faults: Stealthy page table-based at-
tacks on enclaved execution. In 26th USENIX Security
Symposium (USENIX Security 17), pages 1041–1056,
Vancouver, BC, August 2017. USENIX Association.

[37] David Cash, Paul Grubbs, Jason Perry, and Thomas
Ristenpart. Leakage-abuse attacks against searchable
encryption. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Secu-
rity, CCS ’15, page 668–679, New York, NY, USA,
2015. Association for Computing Machinery.

[38] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charan-
jit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and
Michael Steiner. Dynamic searchable encryption in
very-large databases: Data structures and implementa-
tion. In NDSS. The Internet Society, 2014.

[39] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and
Ajith Suresh. ASTRA: high throughput 3pc over rings
with application to secure prediction. In CCSW@CCS,
pages 81–92. ACM, 2019.

[40] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh.
Trident: Efficient 4pc framework for privacy preserv-
ing machine learning. In NDSS. The Internet Society,
2020.

[41] Surajit Chaudhuri. An overview of query optimization
in relational systems. In Alberto O. Mendelzon and
Jan Paredaens, editors, Proceedings of the Seventeenth
ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, June 1-3, 1998, Seattle,
Washington, USA, pages 34–43. ACM Press, 1998.

[42] Surajit Chaudhuri and Kyuseok Shim. Including group-
by in query optimization. In Jorge B. Bocca, Matthias
Jarke, and Carlo Zaniolo, editors, VLDB’94, Proceed-
ings of 20th International Conference on Very Large
Data Bases, September 12-15, 1994, Santiago de Chile,
Chile, pages 354–366. Morgan Kaufmann, 1994.

[43] Albert Cheu, Adam D. Smith, Jonathan R. Ullman,
David Zeber, and Maxim Zhilyaev. Distributed dif-
ferential privacy via shuffling. In EUROCRYPT (1),
volume 11476 of Lecture Notes in Computer Science,
pages 375–403. Springer, 2019.

[44] Sherman S. M. Chow, Jie-Han Lee, and Lakshmi-
narayanan Subramanian. Two-party computation
model for privacy-preserving queries over distributed
databases. In NDSS. The Internet Society, 2009.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1045

https://eprint.iacr.org/2020/599
https://eprint.iacr.org/2020/599

[45] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
robust, and scalable computation of aggregate statistics.
In Proceedings of the 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
pages 259–282, Boston, Massachusetts, USA, 2017.
USENIX Association.

[46] Anders P. K. Dalskov, Daniel Escudero, and Marcel
Keller. Fantastic four: Honest-majority four-party se-
cure computation with malicious security. In USENIX
Security Symposium, pages 2183–2200. USENIX As-
sociation, 2021.

[47] Ivan Damgård, Kasper Damgård, Kurt Nielsen, Pe-
ter Sebastian Nordholt, and Tomas Toft. Confidential
benchmarking based on multiparty computation. In Fi-
nancial Cryptography, volume 9603 of Lecture Notes
in Computer Science, pages 169–187. Springer, 2016.

[48] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus
Nielsen, and Tomas Toft. Unconditionally secure
constant-rounds multi-party computation for equality,
comparison, bits and exponentiation. In TCC, volume
3876 of Lecture Notes in Computer Science, pages
285–304. Springer, 2006.

[49] Ankur Dave, Chester Leung, Raluca Ada Popa,
Joseph E. Gonzalez, and Ion Stoica. Oblivious coopet-
itive analytics using hardware enclaves. In EuroSys,
pages 39:1–39:17. ACM, 2020.

[50] Daniel Demmler, Thomas Schneider, and Michael
Zohner. ABY - A framework for efficient mixed-
protocol secure two-party computation. In 22nd An-
nual Network and Distributed System Security Sympo-
sium, NDSS 2015, San Diego, California, USA, Febru-
ary 8-11, 2015. The Internet Society, 2015.

[51] F. Emekci, D. Agrawal, A. E. Abbadi, and A. Gulbeden.
Privacy preserving query processing using third parties.
In 22nd International Conference on Data Engineering
(ICDE’06), pages 27–27, 2006.

[52] Saba Eskandarian and Matei Zaharia. Oblidb: obliv-
ious query processing for secure databases. Proceed-
ings of the VLDB Endowment, 13(2):169–183, 2019.

[53] Vivian Fang, Lloyd Brown, William Lin, Wenting
Zheng, Aurojit Panda, and Raluca Ada Popa. CostCO:
An automatic cost modeling framework for secure
multi-party computation. In IEEE EuroS&P 22, 2022.

[54] Xin Fang, Stratis Ioannidis, and Miriam Leeser. SIFO:
secure computational infrastructure using FPGA over-
lays. Int. J. Reconfigurable Comput., 2019:1439763:1–
1439763:18, 2019.

[55] Tore Kasper Frederiksen, Thomas P. Jakobsen, and
Jesper Buus Nielsen. Faster maliciously secure two-
party computation using the GPU. In SCN, volume
8642 of Lecture Notes in Computer Science, pages
358–379. Springer, 2014.

[56] Benjamin Fuller, Mayank Varia, Arkady Yerukhi-
movich, Emily Shen, Ariel Hamlin, Vijay Gadepally,
Richard Shay, John Darby Mitchell, and Robert K. Cun-
ningham. Sok: Cryptographically protected database
search. In 2017 IEEE Symposium on Security and Pri-
vacy, SP 2017, San Jose, CA, USA, May 22-26, 2017,
pages 172–191. IEEE Computer Society, 2017.

[57] Craig Gentry. Fully homomorphic encryption using
ideal lattices. In Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing, STOC ’09,
page 169–178, New York, NY, USA, 2009. Association
for Computing Machinery.

[58] Matthieu Giraud, Alexandre Anzala-Yamajako, Olivier
Bernard, and Pascal Lafourcade. Practical passive
leakage-abuse attacks against symmetric searchable
encryption. In Pierangela Samarati, Mohammad S.
Obaidat, and Enrique Cabello, editors, Proceedings of
the 14th International Joint Conference on e-Business
and Telecommunications (ICETE 2017) - Volume 4:
SECRYPT, Madrid, Spain, July 24-26, 2017, pages 200–
211. SciTePress, 2017.

[59] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache attacks on intel sgx. In Pro-
ceedings of the 10th European Workshop on Systems
Security, EuroSec’17, New York, NY, USA, 2017. As-
sociation for Computing Machinery.

[60] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud,
and Kenneth G. Paterson. Pump up the volume: Prac-
tical database reconstruction from volume leakage on
range queries. In CCS, pages 315–331. ACM, 2018.

[61] Paul Grubbs, Richard McPherson, Muhammad Naveed,
Thomas Ristenpart, and Vitaly Shmatikov. Breaking
web applications built on top of encrypted data. In
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16,
page 1353–1364, New York, NY, USA, 2016. Associa-
tion for Computing Machinery.

[62] Marcella Hastings, Brett Hemenway, Daniel Noble,
and Steve Zdancewic. Sok: General purpose compilers
for secure multi-party computation. In IEEE Sympo-
sium on Security and Privacy, pages 1220–1237. IEEE,
2019.

1046 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[63] Xi He, Ashwin Machanavajjhala, Cheryl J. Flynn, and
Divesh Srivastava. Composing differential privacy and
secure computation: A case study on scaling private
record linkage. In ACM Conference on Computer and
Communications Security, pages 1389–1406. ACM,
2017.

[64] Zhian He, Wai Kit Wong, Ben Kao, David Wai Lok
Cheung, Rongbin Li, Siu Ming Yiu, and Eric Lo. Sdb:
A secure query processing system with data inter-
operability. Proceedings of the VLDB Endowment,
8(12):1876–1879, 2015.

[65] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar
Patel, Mariana Raykova, Shobhit Saxena, Karn Seth,
David Shanahan, and Moti Yung. On deploying secure
computing commercially: Private intersection-sum pro-
tocols and their business applications. IACR Cryptol-
ogy ePrint Archive, 2019:723, 2019.

[66] Kristján Valur Jónsson, Gunnar Kreitz, and Misbah
Uddin. Secure multi-party sorting and applications.
IACR Cryptol. ePrint Arch., 2011:122, 2011.

[67] Seny Kamara and Tarik Moataz. SQL on structurally-
encrypted databases. In Thomas Peyrin and Steven Gal-
braith, editors, Advances in Cryptology – ASIACRYPT
2018, pages 149–180, Cham, 2018. Springer Interna-
tional Publishing.

[68] Randy Howard Katz and Gaetano Borriello. Contem-
porary logic design (2. ed.). Pearson Education, 2005.

[69] Georgios Kellaris, George Kollios, Kobbi Nissim, and
Adam O’Neill. Generic attacks on secure outsourced
databases. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, CCS ’16, pages 1329–1340, New York, NY, USA,
2016. Association for Computing Machinery.

[70] B. Knott, S. Venkataraman, A.Y. Hannun, S. Sengupta,
M. Ibrahim, and L.J.P. van der Maaten. Crypten: Se-
cure multi-party computation meets machine learning.
In Proceedings of the NeurIPS Workshop on Privacy-
Preserving Machine Learning, 2020.

[71] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith
Suresh. SWIFT: super-fast and robust privacy-
preserving machine learning. In 30th USENIX Security
Symposium. USENIX Association, 2021.

[72] Simeon Krastnikov, Florian Kerschbaum, and Douglas
Stebila. Efficient oblivious database joins. Proc. VLDB
Endow., 13(11):2132–2145, 2020.

[73] Sam Kumar, David E. Culler, and Raluca Ada Popa.
MAGE: Nearly zero-cost virtual memory for secure

computation. In 15th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 21),
pages 367–385. USENIX Association, July 2021.

[74] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia-che Tsai,
and Raluca Ada Popa. An off-chip attack on hardware
enclaves via the memory bus. In Srdjan Capkun and
Franziska Roesner, editors, 29th USENIX Security Sym-
posium, USENIX Security 2020, August 12-14, 2020,
pages 487–504. USENIX Association, 2020.

[75] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring fine-
grained control flow inside SGX enclaves with branch
shadowing. In 26th USENIX Security Symposium
(USENIX Security 17), pages 557–574, Vancouver, BC,
August 2017. USENIX Association.

[76] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter
Boncz, Alfons Kemper, and Thomas Neumann. How
good are query optimizers, really? Proc. VLDB Endow.,
9(3):204–215, November 2015.

[77] Yehuda Lindell. Secure multiparty computation. Com-
mun. ACM, 64(1):86–96, December 2020.

[78] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-
An Tan. Search pattern leakage in searchable en-
cryption: Attacks and new construction. Inf. Sci.,
265:176–188, may 2014.

[79] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srini-
vasan, Wenting Zheng, and Raluca Ada Popa. Delphi:
A cryptographic inference service for neural networks.
In 29th USENIX Security Symposium (USENIX Secu-
rity 20), pages 2505–2522, 2020.

[80] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessan-
dro Chiesa, and Raluca Ada Popa. Oblix: An efficient
oblivious search index. In 2018 IEEE Symposium
on Security and Privacy, SP 2018, Proceedings, 21-
23 May 2018, San Francisco, California, USA, pages
279–296. IEEE Computer Society, 2018.

[81] Payman Mohassel and Peter Rindal. Aby3: A mixed
protocol framework for machine learning. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’18, pages
35–52, New York, NY, USA, 2018. Association for
Computing Machinery.

[82] Payman Mohassel, Peter Rindal, and Mike Rosulek.
Fast database joins and PSI for secret shared data. In
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, CCS ’20: 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security, Vir-
tual Event, USA, November 9-13, 2020, pages 1271–
1287. ACM, 2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1047

[83] Arjun Narayan and Andreas Haeberlen. Djoin: Differ-
entially private join queries over distributed databases.
In Proceedings of the 10th USENIX Conference on Op-
erating Systems Design and Implementation (OSDI),
pages 149–162, October 2012.

[84] Muhammad Naveed, Seny Kamara, and Charles V.
Wright. Inference attacks on property-preserving en-
crypted databases. In ACM Conference on Computer
and Communications Security, pages 644–655. ACM,
2015.

[85] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioanni-
dis, Marc Joye, Dan Boneh, and Nina Taft. Privacy-
preserving ridge regression on hundreds of millions of
records. In 2013 IEEE Symposium on Security and Pri-
vacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013,
pages 334–348. IEEE Computer Society, 2013.

[86] Takashi Nishide and Kazuo Ohta. Constant-round mul-
tiparty computation for interval test, equality test, and
comparison. IEICE Trans. Fundam. Electron. Com-
mun. Comput. Sci., 90-A(5):960–968, 2007.

[87] Antonis Papadimitriou, Arjun Narayan, and Andreas
Haeberlen. Dstress: Efficient differentially private com-
putations on distributed data. In Proceedings of the
12th European Conference on Computer Systems (Eu-
roSys), pages 560–574, 2017.

[88] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin,
S. G. Choi, W. George, A. Keromytis, and S. Bellovin.
Blind seer: A scalable private dbms. In 2014 IEEE
Symposium on Security and Privacy, pages 359–374,
2014.

[89] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hos-
sein Yalame. ABY2.0: improved mixed-protocol se-
cure two-party computation. pages 2165–2182, 2021.

[90] Arpita Patra and Ajith Suresh. BLAZE: blazing fast
privacy-preserving machine learning. In NDSS. The
Internet Society, 2020.

[91] Benny Pinkas, Thomas Schneider, Gil Segev, and
Michael Zohner. Phasing: Private set intersection using
permutation-based hashing. In USENIX Security Sym-
posium, pages 515–530. USENIX Association, 2015.

[92] Benny Pinkas, Thomas Schneider, Oleksandr
Tkachenko, and Avishay Yanai. Efficient circuit-based
PSI with linear communication. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology
- EUROCRYPT 2019 - 38th Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May

19-23, 2019, Proceedings, Part III, volume 11478 of
Lecture Notes in Computer Science, pages 122–153.
Springer, 2019.

[93] Benny Pinkas, Thomas Schneider, Christian Weinert,
and Udi Wieder. Efficient circuit-based PSI via cuckoo
hashing. In Jesper Buus Nielsen and Vincent Rijmen,
editors, Advances in Cryptology - EUROCRYPT 2018
- 37th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part
III, volume 10822 of Lecture Notes in Computer Sci-
ence, pages 125–157. Springer, 2018.

[94] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa.
Arx: An encrypted database using semantically secure
encryption. Proc. VLDB Endow., 12(11):1664–1678,
July 2019.

[95] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan
Deng, Raluca Ada Popa, and Joseph M Hellerstein.
Senate: A maliciously-secure MPC platform for collab-
orative analytics. In 30th USENIX Security Symposium
(USENIX Security 21), Vancouver, B.C., August 2021.
USENIX Association.

[96] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai
Zeldovich, and Hari Balakrishnan. Cryptdb: Protecting
confidentiality with encrypted query processing. In
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP), pages 85–100, 2011.

[97] Anjana Rajan, Lucy Qin, David W. Archer, Dan Boneh,
Tancrède Lepoint, and Mayank Varia. Callisto: A cryp-
tographic approach to detecting serial perpetrators of
sexual misconduct. In COMPASS, pages 49:1–49:4.
ACM, 2018.

[98] Raghu Ramakrishnan and Johannes Gehrke. Database
Management Systems. McGraw-Hill, Inc., USA, 2nd
edition, 2000.

[99] Peter Rindal. https://github.com/ladnir/aby3,
The ABY3 Framework for Machine Learning and
Database Operations. [Online; accessed April 2022].

[100] Adi Shamir. How to share a secret. Commun. ACM,
22(11):612–613, November 1979.

[101] Riivo Talviste. Practical applications of secure mul-
tiparty computation, chapter 12, pages 246–251. IOS
Press, 2015.

[102] Sijun Tan, Brian Knott, Yuan Tian, and David J Wu.
Cryptgpu: Fast privacy-preserving machine learning
on the gpu. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 1021–1038. IEEE, 2021.

1048 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/ladnir/aby3

[103] Transaction Processing Performance Council. TPC
Benchmark H. http://tpc.org/tpc_documents_
current_versions/pdf/tpc-h_v3.0.0.pdf. [On-
line; accessed April 2022].

[104] Dhinakaran Vinayagamurthy, Alexey Gribov, and
Sergey Gorbunov. Stealthdb: a scalable encrypted
database with full SQL query support. Proc. Priv. En-
hancing Technol., 2019(3):370–388, 2019.

[105] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell,
Mayank Varia, Andrei Lapets, and Azer Bestavros.
Conclave: secure multi-party computation on big data.
In George Candea, Robbert van Renesse, and Christof
Fetzer, editors, Proceedings of the Fourteenth EuroSys
Conference 2019, Dresden, Germany, March 25-28,
2019, pages 3:1–3:18. ACM, 2019.

[106] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod
Vaikuntanathan, and Matei Zaharia. Splinter: Practi-
cal private queries on public data. In Proceedings of
the 14th USENIX Conference on Networked Systems
Design and Implementation, NSDI’17, page 299–313,
USA, 2017. USENIX Association.

[107] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A. Gunter. Leaky cauldron on the dark
land: Understanding memory side-channel hazards in
sgx. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS
’17, pages 2421–2434, New York, NY, USA, 2017. As-
sociation for Computing Machinery.

[108] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz.
EMP-toolkit: Efficient MultiParty computation toolkit.
https://github.com/emp-toolkit, 2016.

[109] Xiao Wang, Samuel Ranellucci, and Jonathan Katz.
Authenticated garbling and efficient maliciously secure
two-party computation. In CCS, pages 21–37. ACM,
2017.

[110] Yilei Wang and Ke Yi. Secure Yannakakis: Join-
Aggregate Queries over Private Data, pages 1969–
1981. Association for Computing Machinery, New
York, NY, USA, 2021.

[111] Wai Kit Wong, Ben Kao, David Wai Lok Cheung,
Rongbin Li, and Siu Ming Yiu. Secure query pro-
cessing with data interoperability in a cloud database
environment. In Proceedings of the 2014 ACM SIG-
MOD international conference on Management of data,
pages 1395–1406, 2014.

[112] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In Proceedings
of the 2015 IEEE Symposium on Security and Privacy,
SP ’15, pages 640–656, USA, 2015. IEEE Computer
Society.

[113] Weipeng P. Yan and Per-Åke Larson. Performing
group-by before join. In Proceedings of the Tenth
International Conference on Data Engineering, Febru-
ary 14-18, 1994, Houston, Texas, USA, pages 89–100.
IEEE Computer Society, 1994.

[114] Andrew Chi-Chih Yao. How to generate and exchange
secrets. In Proceedings of the 27th Annual Symposium
on Foundations of Computer Science, SFCS ’86, pages
162–167, USA, 1986. IEEE Computer Society.

[115] Zheguang Zhao, Seny Kamara, Tarik Moataz, and
Zdonik Stan. Encrypted databases: From theory to
systems. In Proceedings of the 11th Annual Confer-
ence on Innovative Data Systems Research, 2021.

[116] Wenting Zheng, Ankur Dave, Jethro G Beekman,
Raluca Ada Popa, Joseph E Gonzalez, and Ion Sto-
ica. Opaque: An oblivious and encrypted distributed
analytics platform. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
17), pages 283–298, 2017.

[117] Wenting Zheng, Ryan Deng, Weikeng Chen,
Raluca Ada Popa, Aurojit Panda, and Ion Stoica.
Cerebro: A platform for multi-party cryptographic
collaborative learning. In Michael Bailey and Rachel
Greenstadt, editors, 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021, pages
2723–2740. USENIX Association, 2021.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1049

http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
https://github.com/emp-toolkit

A ANALYTICAL COST MODEL

A.1 Oblivious SECRECY primitives

Boolean operations. As explained in §3.2, we consider that
each single-bit operation on shares has unit cost, so the op-
eration cost of both XOR and AND operations is Co(XOR) �
Co(AND) � `, where ` is the length of the share representa-
tion in bits. Recall that the synchronization cost of XOR is
Cs(XOR) � 0 whereas the synchronization cost of AND is
Cs(AND) � 1 round of communication. We further explain
these costs below.

In SECRECY, each party starts with two shares of the input
secrets s, t and ends up with two shares of the output. Initially,
P1 has s1 , s2 , t1 , t2 whereas P2 has s2 , s3 , t2 , t3, and P3 has
s3 , s1 , t3 , t1. Observe that s⊕ t � (s1⊕ s2⊕ s3)⊕ (t1⊕ t2⊕ t3)
= (s1 ⊕ t1) ⊕ (s2 ⊕ t2) ⊕ (s3 ⊕ t3). Each parenthesis corre-
sponds to a share of s ⊕ t and each party can compute two
out of the three shares by simply XORing its input shares.

Logical AND is a bit more complex. Observe that st �
(s1 ⊕ s2 ⊕ s3) ∧ (t1 ⊕ t2 ⊕ t3). After distributing the AND
over the XOR and doing some rearrangement we have st �
(s1t1 ⊕ s1t2 ⊕ s2t1) ⊕ (s2t2 ⊕ s2t3 ⊕ s3t2) ⊕ (s3t3 ⊕ s3t1 ⊕
s1t3). Again, each parenthesis corresponds to a share of st.
Using its input shares, each party can locally compute one
of these shares. The parties then XOR this share with a fresh
sharing of the number 0 (which is created locally) so that the
final share is uniformly distributed [17]. In the end, each party
sends the computed share to its successor on the ring (clock-
wise) so that all parties end up with two shares of st. Logical
OR and NOT are based on the XOR and AND primitives.

Equality/Inequality. Using these boolean operations, parties

can jointly compute s ?
� t (resp. s

?
< t) by computing a sharing

of s ⊕ t and then taking the oblivious boolean-AND of each
of the bits of this string (resp., taking the value of si at the first
bit i in which the two strings differ). As a result, taking the
equality of `-bit strings requires Co(eq) � 2`−1 operations
(namely, ` XORs plus ` − 1 ANDs) and Cs(eq) � dlog `e
rounds. Similarly, inequality comparison has Co(ineq) � 4`−
3 and Cs(ineq)� dlog(`+1)e. As special cases, s < 0 requires
no communication, and equality with a public constant s�c
can also be done locally provided that the data owners have
secret-shared the results of s− c and c− s [70].

Compare-and-swap. The parties can calculate the min and
max of two strings. Setting b � (s<t), we can use a mul-
tiplexer to compute s′ � min{s , t} � bs ⊕ (1⊕ b)t and t′ �
max{s , t} � (1⊕ b)s⊕ bt. Evaluating these formulas requires
6 more operations and 1 more synchronization round beyond
the cost of the oblivious inequality.

Sort and shuffle. Given an array of n secret-shared strings,
each of length `, oblivious sort in SECRECY is based on a
bitonic sorter that comprises log n · (log n +1)/2 stages and

performs n/2 independent compare-and-swap operators in
each stage. Hence, sorting has operational cost Co(sortn) �
1
4 n log n · (log n+1) · (Co(ineq)+6) and synchronization cost
Cs(sortn) � 1

2 log n · (log n+1) · (Cs(ineq)+1). We can obliv-
iously shuffle values in a similar fashion: each party appends
an attribute that is populated with locally generated random
values, sorts the values on this attribute, and then discards it.

Boolean addition. Given boolean-shared integers s and t,
computing the boolean share of s + t using a ripple-carry
adder [68] can be done with Co(RCA) � 5`−3 operations in
Cs(RCA) � ` rounds.

Arithmetic operations. Arithmetic addition and multiplica-
tion work similarly to XOR and AND respectively (see above).
Scalar multiplication c · u, where c is a public constant, does
not require communication.

Conversion. We can convert between additive and boolean
sharings [50, 81, 89] by securely computing all of the XOR
and AND gates in a ripple-carry adder. Single-bit conversion
can be done in two rounds with the simple protocol that is
also used in CrypTen [70].

A.2 Oblivious SECRECY operators
Let R, S, and T be relations with cardinalities |R |, |S |, and |T |
respectively. Let also t[ai] be the value of attribute ai in tuple
t. To simplify the presentation, we describe each operator
based on the logical (i.e., secret) relations and not the random
shares distributed across parties. That is, when we say that
“an operator is applied to a relation R and defines another
relation T”, in practice this means that each party begins with
shares of R, performs some MPC operations on the shares,
and ends up with shares of T.

PROJECT. Oblivious projection has the same semantics as
its plaintext counterpart. The operation and synchronization
costs of oblivious PROJECT are both zero since each party
can locally disregard the shares corresponding to the filtered
attributes.

SELECT. An oblivious selection with predicate ϕ on a rela-
tion R defines a new relation:

T � {t∪{ϕ(t)} | t ∈ R}

with the same cardinality as R, i.e. |T | � |R |, and one more
single-bit attribute for each tuple t ∈ R that contains φ’s result
when applied to t. This bit denotes whether t is included in
the output relation T and is securely computed under MPC so
that its true value remains hidden (i.e., secret-shared) from the
computing parties. Note that, in contrast to a typical selection
in the clear, oblivious selection defines a relation with the
same cardinality as the input, i.e., it does not remove tuples
from R so that the true size of T is kept secret.
Costs: The operation cost of SELECT is Co(σφ(R)) �
Co(φ(t)) · |R |, t ∈ R, where Co(φ(t)) is the operation cost

1050 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of evaluating φ on a single tuple t ∈ R. Since predicate eval-
uation can be performed independently for each tuple in R,
the total number of rounds to perform the SELECT equals the
number of rounds to evaluate the selection predicate on a
single tuple, i.e., Cs(σφ(R)) � Cs(φ(t)), t ∈ R.

Both Co(φ(t)) and Cs(φ(t)) are independent of the actual
t contents: they only depend on φ’s syntax and the lengths
of the attributes used in φ. In SECRECY, a predicate φ can
be an arbitrary logical expression with atoms that may also
include arithmetic expressions (+,×,�, >,<,,,≥,≤) and is
constructed using the primitives of §A.1. Consider the exam-
ple predicate φ :� age>30 AND age<40 that requires ANDing
the results of two oblivious inequalities under MPC. Based
on the costs of primitive operations, we have: Co(φ(t)) �
2Co(ineq)+Co(AND) and Cs(φ(t)) � Cs(ineq)+1. In §5.3,
we described a technique we use in SECRECY that can reduce
selections to local operations (with Cs � 0).

JOIN. An oblivious θ-join between two relations R and S,
denoted with R ./θ S, defines a new relation:

T � {(t∪ t′∪{θ(t , t′)}) | t ∈ R ∧ t′ ∈ S}
where t∪ t′ is a new tuple that contains all attributes of t ∈ R
along with all attributes of t′ ∈ S, and θ(t , t′) is θ’s result
when applied to the pair of tuples (t , t′). T is the cartesian
product of the input relations (R×S), where each tuple is aug-
mented with a (secret-shared) bit denoting whether the tuple t
“matches” with tuple t′ according to θ. We emphasize that our
focus in this work is on general-purpose oblivious joins that
can support arbitrary predicates; there also exist special cases
of oblivious join algorithms, e.g., primary- and foreign-key
equi-joins with lower asymptotic complexity [15, 72, 82, 93]
or compositions of equi-joins with specific operators [34] that
could be added to SECRECY if desired.
Costs: The general oblivious JOIN requires a nested-loop
over the input relations to check all possible pairs, so its
operation cost is Co(R ./θ S) � Co(θ(t , t′)) · |R | · |S |, t ∈
R, t′ ∈ S. However, the total number of communication
rounds to evaluate the JOIN is independent of the input
cardinality; it only depends on the join predicate θ, i.e.,
Cs(R ./θ S)� Cs(θ(t , t′)), t ∈ R, t′ ∈ S. For example, a range
join R ./a<b S has Co(R ./a<b S) � 2|R | · |S | ·Co(ineq) and
Cs(R ./a<b S) � Cs(ineq). The constant asymptotic com-
plexity in number of rounds with respect to the input cardi-
nality holds for any θ-join. Join predicates in SECRECY can
be arbitrary expressions whose cost is computed as explained
above for selection predicates.

SEMI-JOIN. An oblivious (left) semi-join between two rela-
tions R and S on a predicate θ, denoted with Rnθ S, defines
a new relation:

T � {(t∪{
∨
∀t′∈S

θ(t , t′)}) | t ∈ R}

with the same cardinality as R, i.e. |T | � |R |, and one more
attribute that stores the result of the formula f (θ, t ,S) �

∨
∀t′∈S θ(t , t′), t ∈ R indicating whether the tuple in R

“matches” any tuple in S.
Costs: The operation cost of the general oblivious SEMI-JOIN
is Co(Rnθ S) � Co(f (θ, t ,S)) · |R | � Co(θ(t , t′)) · |R | · |S |+
|R | · (|S | − 1), t ∈ R, t′ ∈ S. The formula f (θ, t ,S) can be
evaluated independently for each tuple t ∈ R using a binary
tree of OR operations, therefore, the synchronization cost of the
semi-join is Cs(Rnθ S) � Cs(θ(t , t′))+ dlog |S |e , t ∈ R, t′ ∈
S (i.e., independent of |R |).
ORDER-BY. Oblivious order-by on attribute ak has the same
semantics as the non-oblivious operator. Hereafter, sorting a
relation R with m attributes on ascending (resp. descending)
order of an attribute ak ,1 ≤ k ≤ m, is denoted as s↑ak (R) � T
(resp. s↓ak (R) � T). We define order-by on multiple attributes
using the standard semantics. For example, sorting a relation
R first on attribute ak (ascending) and then on an (descend-
ing) is denoted as s↑ak↓an (R). An order-by operator is often
followed by a LIMIT that defines the number of tuples the
operator must output.
Costs: Oblivious ORDER-BY in SECRECY relies on a bitonic
sorter of §A.1 that internally uses an oblivious multi-
plexer. Hence, the operation and synchronization costs are
Co(s↑a(R)) � Co(sort|R |) and Cs(s↑a(R)) � Cs(sort|R |), as
given in §A.1. In this case, the number of operations required
by each oblivious multiplexing is linear to the number of at-
tributes in the input relation, however, the total number of
rounds depends only on the cardinality of the input. The
analysis assumes one sorting attribute; adding more sorting
attributes increases the number of operations and communi-
cation rounds in each comparison by a small constant factor.

GROUP-BY with aggregation. An oblivious group-by ag-
gregation on a relation R with m attributes defines a new
relation T � { f (t′) | t′ � t ∪ {ag , av}, t ∈ R} with the
same cardinality as R, i.e. |T | � |R |, and two more attributes:
ag that stores the result of the aggregation, and av that denotes
whether the tuple t is ‘valid’, i.e., included in the output. Let
ak be the group-by key and aw the attribute whose values are

aggregated. Let also S �

[
t1[aw], t2[aw], ..., tu[aw]

]
be the

list of values for attribute aw for all tuples t1 , t2 , ..., tu ∈ R that
belong to the same group, i.e., t1[ak] � t2[ak] � ... � tu[ak],
1 ≤ u ≤ |R |. The function f in T’s definition above is defined
as follows:

f (ti)�


ti[ag] � a g g(S), ti[av] � 1, i � u′, 1 ≤ u′ ≤ u

tinv , i , u′, 1 ≤ i ≤ u

where tinv is a tuple with tinv[av] � 0 and the rest of the
attributes set to a special reserved value, while a g g(S) is the
aggregation function, e.g. MIN, MAX, COUNT, SUM, AVG, and is
implemented using the primitives of §A.1. Put simply, oblivi-
ous aggregation sets the value of ag for one tuple per group
equal to the result of the aggregation for that group and up-
dates (in-place) all other tuples with “garbage.” This operation

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1051

is followed by an oblivious shuffling to hide the group bound-
aries when opening the relations to the learner (and only if
there is no subsequent shuffling in the query plan). Groups can
be defined on multiple attributes using the standard semantics.
Costs: The GROUP-BY operator γa g g

ak
(R) breaks into two

phases: an oblivious sort on the group-by key(s) and
an odd-even aggregation [66] applied to the sorted input.
The odd-even aggregation performs (|R |(log |R | − 1)+ 1) ·
Co(a g g(t , t′)) operations in log |R | ·Cs(a g g(t , t′)) rounds,
where Co(a g g(t , t′)) and Cs(a g g(t , t′)) are the operation
and synchronization costs, respectively, of applying the ag-
gregation function to a single pair of tuples t , t′ ∈ R (in-
dependent of |R |). Accounting for the initial sorting on
the group-by keys, the total operation cost of the oblivi-
ous group-by is Co(γa g g

ak
(R)) � Co(s↑ak (R))+ (|R |(log |R | −

1) + 1) · Co(a g g(t , t′)). The total synchronization cost is
Cs(γa g g

ak
(R)) � Cs(s↑ak (R)) + log |R | · Cs(a g g(t , t′)). The

analysis can be easily extended to multiple group-by keys.

DISTINCT. The oblivious distinct operator is a special case
of group-by with aggregation, assuming that ak is not the
group-by key as before but the attribute where distinct is
applied. For distinct, there is no ag attribute and the function
f is defined as follows:

f (ti) �


ti[av] � 1, i � u′, 1 ≤ u′ ≤ u

ti[av] � 0, i , u′, 1 ≤ i ≤ u

Distinct marks one tuple per group as ‘valid’ and the rest as
‘invalid’.
Costs: The DISTINCT operator includes an oblivious sort on
the distinct attribute(s) followed by a second phase where
the operator compares adjacent tuples in the sorted input to
set the distinct bit av . Setting the distinct bit for each tuple
is independent from the rest of the tuples, so all distinct bit
operations can be performed in bulk. The total operation cost
Co(δak(R)) � Co(s↑ak (R))+ (|R | − 1) ·Co(eq) and synchro-
nization cost Cs(δak(R))� Cs(s↑ak (R))+Co(eq) of oblivious
distinct are dominated by the oblivious sort.

MASK. Let tinv be a tuple with all attributes set to a special
reserved value. A mask operator with predicate p on a relation
R defines a new relation T � { f (t) | t ∈ R}, where:

f (t) �


t , p(t) � 0

tinv , p(t) � 1

Mask is used at the end of the query, just before opening the
result to the learner, and only if there is no previous masking.
The cost analysis of MASK is similar to that of SELECT.

Global aggregations. SECRECY also supports global aggre-
gations without a group-by clause. The total operation cost
of a global aggregation is Co(a g g(R)) � Co(a g g(t , t′)) ·

(|R | − 1), where Co(a g g(t , t′)) is the operation cost of ap-
plying the aggregation function to a single pair of tuples
t , t′ ∈ R. The total synchronization cost is Cs(a g g(R)) �
Cs(a g g(t , t′)) · dlog |R |e, since the aggregation can be ap-
plied using a binary tree of function evaluations.

A.3 Composition of oblivious operators

Composing selections and joins. Recall that selections,
joins, and semi-joins append a single-bit attribute to their
input relation that indicates whether the tuple is included in
the output. To compose a pair of such operators, we compute
both single-bit attributes and take their conjunction under
MPC. For example, for two selection operators σ1 and σ2
with predicates ϕ1, ϕ2, the composition σ2(σ1(R)) defines a
new relation T � {t ∪ {ec � ϕ1(t) ∧ϕ2(t)} | t ∈ R}. The
cost of composition in this case is the cost of evaluating the
expression ϕ1(t)∧ϕ2(t) for each tuple in T. This includes
|T | independent boolean ANDs which can be evaluated in
one round.

Composing distinct with other operators. Applying a se-
lection or a (semi-)join to the result of DISTINCT requires one
communication round to compute the conjunction of the se-
lection or (semi-) join bit with the bit av generated by distinct.
However, applying DISTINCT to the output of a selection, a
(semi-)join or a group-by operator, requires some care. Con-
sider the case where DISTINCT is applied to the output of a
selection. Let aφ be the attribute added by the selection and ak
be the distinct attribute. To set the distinct bit av at each tuple,
we must make sure there are no other tuples with the same
attribute ak , with aφ � 1, and whose distinct bit av is already
set. To do so, the distinct operator must process tuples sequen-
tially and the composition itself requires n rounds, where n
is the cardinality of the input. This results in a significant
increase over the O(log2 n) rounds required by distinct when
applied to a base relation. Applying distinct to the output of a
group-by or (semi-)join incurs a linear number of rounds for
the same reason. In §5.2, we proposed an optimization that
reduces the cost of these compositions to a logarithmic factor.

Composing group-by with other operators. To perform a
group-by on the result of a selection or (semi-)join, the group-
by operator must apply the aggregation function to all tuples
in the same group that are also included in the output of the
previous operator. Consider the case of applying group-by to
a selection result. To identify the aforementioned tuples, we
need to evaluate the formula:

b← b∧ ti[aφ]∧ t j[aφ]

at each step of the group-by operator, where b is the bit that
denotes whether the tuples ti and t j belong to the same group
and aφ is the selection bit. This formula includes two boolean
ANDs that require two communication rounds. Applying

1052 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

group-by to the output of a (semi-)join has the same compo-
sition cost; in this case, we replace aφ in the above formula
with the (semi-)join attribute aθ.

To apply a selection to the result of GROUP-BY, we must
compute a boolean AND between the selection bit aφ and the
‘valid’ bit av of each tuple generated by the group-by. The
cost of composition in number of rounds is independent of
the group-by result cardinality, as all boolean ANDs can be
applied in bulk. The same holds when applying a (semi-)join
to the output of group-by. Finally, composing two group-by
operators has the same cost with applying GROUP-BY to the
result of selection, as described above.

Composing order-by with other operators. Composing
ORDER- BY with other operators is straight-forward. Applying
an operator to the output of order-by has zero composition
cost. The converse operation, applying ORDER-BY to the out-
put of an operator, requires a few more boolean operations per
oblivious compare-and-swap (due to the attribute/s appended
by the previous operator), but does not incur additional com-
munication rounds.

B SECURITY ANALYSIS

We have purposely designed SECRECY in a modular black-
box fashion, with a hierarchy of MPC protocol functionalities
→ oblivious primitives→ relational operators→ optimiza-
tions. This design choice provides two benefits: (i) immediate
inheritance of all security guarantees provided by the under-
lying MPC protocol, and (ii) flexibility to support different
protocols in the future that might have a different number of
parties, threshold, and threat model.

Inheritance of security guarantees. SECRECY relies on a
set of functionalities that must be provided by the MPC pro-
tocol. These functionalities enable parties to receive secret-
shared inputs and return secret-shared outputs: (i) Fadd and
Fmult that add and multiply their inputs, (ii) Fxor and Fand that
take boolean operations of their inputs, (iii) Fa2b and Fb2a

that perform conversions between arithmetic and boolean
representations, (iv) Feq and Fcmp to compute the equality
and comparison predicates (where the hardest step of the lat-
ter usually involves extracting the most significant bit of an
arithmetic-shared value), and (v) Fsh and Frec that allow ex-
ternal participants to secret-share data to and reconstruct data
from the computing parties.

In this section, we argue that SECRECY retains the secu-
rity guarantees provided by the underlying MPC protocol, or
equivalently that it retains the security guarantees of these
ideal functionalities. Our reasoning shows that SECRECY
compiles each query into a sequence of calls to these func-
tionalities that is oblivious, meaning that its control flow is
independent of its input and all data remains hidden:

1. SECRECY calls the functionalities of the MPC protocol

in a black-box manner. As a result, computing parties
always operate on secret-shared data; only Frec provides
any data in the clear (namely to the learner), and SE-
CRECY only calls this functionality once at the end of
the query execution.

2. The control flow of each relational operator (§A.2) is
oblivious, i.e., data-independent. Concretely, SELECT
and PROJECT always require a single pass over the input,
(semi-)JOINs require a nested for-loop over the two in-
puts, ORDER-BY is based on an oblivious sorting network,
and GROUP-BY and DISTINCT consist of an ORDER-BY
followed by an additional oblivious step (to apply the ag-
gregation and identify the unique records, respectively).

3. SECRECY composes relational operators (§A.3) using
the protocol functionalities (e.g., taking ANDs under
MPC) within an oblivious linear scan over the output of
the composition.

4. The logical and physical transformations of §5 rewrite
the oblivious sequence of calls to the protocol function-
alities into a new semantically equivalent sequence of
calls that is also oblivious and has lower execution cost.

As a result, semi-honest security of the full SECRECY proto-
col follows by inspection of the ideal functionalities. Privacy
is satisfied against all parties because none of the function-
alities ever provides a (non-secret-shared) output to the data
owners or computing parties, and only the final Frec provides
an output to the analyst as desired. Correctness of the full pro-
tocol follows immediately from correctness of each individual
functionality.

Generality of optimizations. The logical and physical query
optimizations constructed in this work (§5.1-5.2) apply gen-
erally to any mixed-mode MPC protocol that supports the set
of functionalities we describe above. This level of abstraction
is commonly used by modern mixed-mode MPC protocols
(e.g., [17, 39, 40, 46, 50, 71, 81, 89, 90]).

If providing malicious security, we require these function-
alities to validate the shares of their inputs and outputs (e.g.,
using an information-theoretic MAC or replicated sharing),
either immediately or with delayed validation before invok-
ing Frec. As a consequence, SECRECY satisfies correctness
against the computing parties because input validation binds
them to provide the output of the prior step as the input shares
into the next functionality. Additionally, correctness against
the data owners and analyst follow from the fact that, aside
from the data owners’ initial sharing through Fsh, none of the
functionalities allow them to provide an input so they cannot
influence the protocol execution.

As a result, the techniques from SECRECY can be applied
to any N-party MPC protocol that provides semi-honest or
malicious security against T adversarial parties. In particular,
SECRECY can be instantiated with 2, 3, and 4-party secret

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1053

sharing-based protocols that remain secure in the face of a
malicious adversary who can deviate from the protocol ar-
bitrarily (e.g., [46, 71, 89]), or with (authenticated) garbled
circuit protocols [109, 114] combined with occasional conver-
sions to arithmetic secret sharing [50,89] as needed. Protocols
that provide the stronger cryptographic guarantee of robust-
ness often do so by running several MPC executions both
before and after evicting the malicious party, and by the same
logic as above SECRECY even maintains the robust security
of these protocols.

C SUMMARY OF MPC-BASED SYSTEMS
FOR RELATIONAL ANALYTICS

Here we provide more details on existing systems for rela-
tional MPC summarized in Table 5. Hybrid execution splits
the query plan into parts that can be evaluated in plaintext by
a single party (the appropriate data owner) versus parts that in-
herently require multiple parties’ data (executed under MPC).
Therefore, hybrid execution is only feasible when data owners
can compute part of the query on premise. SMCQL, SDB,
and Conclave can further sidestep MPC when some attributes
have been annotated as non-sensitive. Shrinkwrap and SAQE
build on SMCQL to calibrate leakage based on user-provided
privacy budgets, and Senate reduces joint computation when
some relations are owned by subsets of the computing parties.
This is common in peer-to-peer MPC but does not occur in a
typical outsourced setting like the one of Figure 1, where all
computing parties receive shares of the input data.

As shown in Table 5, Senate is the only relational system
with support for malicious security. Due to its hybrid exe-
cution model, Senate requires additional steps to verify the
integrity of local computations by the data owners (not to
be confused with formal software verification). While SE-
CRECY currently focuses on semi-honest security, the Araki
et al. protocol [17] and subsequent mixed-mode ABY3 proto-
cols [81] can be extended to provide malicious security with
low computational cost [16, 71]. By optimizing MPC rather
than sidestepping it, a malicious-secure version of SECRECY
would not impose any new restriction on the supported set of
queries or the mixed-mode MPC protocol utilized.

D ADDITIONAL EXPERIMENTS

D.1 Performance of SECRECY primitives
Here we present a set of micro-benchmarks that evaluate the
performance of SECRECY’s MPC primitives in AWS-LAN.

Effect of message batching on communication latency. In
the first experiment, we measure the latency of inter-party
communication using two messaging strategies. Recall that,
during a message exchange, each party sends one message to
its successor and receives one message from its predecessor

(a) Effect of message batching (b) Comparison and addition

Figure 7: Performance of oblivious SECRECY primitives

(a) Unary operators (b) Join operators

Figure 8: Performance of oblivious SECRECY operators

on the logical ‘ring’. Eager exchanges data among parties as
soon as they are generated, thus,. producing a large number
of small messages. The Batched strategy, on the other hand,
collects data into batches and exchanges them only when
computation cannot otherwise make progress, thus, producing
as few as possible, albeit large messages.

We run this experiment with increasing data sizes and mea-
sure the total time from initiating the exchange until all parties
complete the exchange. Figure 7a shows the results. We see
that batching provides two to four orders of magnitude lower
latency than eager messaging. Using batching in our experi-
mental setup, parties can exchange 100M 64-bit data shares
in 2s. These results reflect the network performance in our
cloud testbed. We expect better performance in dedicated
clusters with high-speed networks and higher latencies if the
computing parties communicate over the internet.

Performance of secure computation primitives. We now
evaluate the performance of oblivious primitives that require
communication among parties. These include equality, in-
equality, and addition with the ripple-carry adder. In Fig-
ure 7b we show the execution time of oblivious primitives
as we increase the input size from 1K rows to 10M rows.
All primitives scale well with the input size as they all de-
pend on a constant number of communication rounds. Equal-
ity requires six rounds. Inequality requires seven rounds
and more memory than equality. Boolean addition is not
as computation-intensive as inequality, but requires a higher
number of rounds (64).

1054 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 9: Performance comparison of an oblivious join operator on
EMP and SECRECY in LAN (left) and WAN (right).

D.2 Performance of SECRECY operators

The next set of experiments evaluates the performance
of SECRECY’s relational operators. We apply DISTINCT,
GROUP-BY, ORDER-BY, and JOIN (equality and range) to rela-
tions of increasing size and measure the total execution time
per operator in AWS-LAN. We empirically verify the cost anal-
ysis of §A and show that our vectorized implementations are
efficient and scale to millions of input rows with a single CPU
thread. Figure 8 shows the results.

Unary operators. In Figure 8a, we plot the execution time
of unary operators vs the input size. Recall from §A.2 that
DISTINCT and GROUP-BY are both based on sorting and, thus,
their cost includes the cost of ORDER-BY for unsorted inputs of
the same cardinality. To shed more light on the performance of
DISTINCT and GROUP-BY, Figure 8a only shows the execution
time of their second phase, that is, after the input is sorted and,
for GROUP-BY, before the final shuffling (which has identical
performance to sorting).

For an input relation with n rows, DISTINCT performs n−
1 equality comparisons, one for each pair of adjacent rows.
Since all these comparisons are independent, our vectorized
implementation uses batching, thus, applying DISTINCT to
the entire input in six rounds of communication (the number
of rounds required for oblivious equality on pairs of 64-bit
shares). As a result, DISTINCT scales well with the input
size and can process 10M rows in 20s. GROUP BY is slower
than DISTINCT, as it requires significantly more rounds of
communication, logarithmic to the input size. Finally, ORDER
BY relies on our implementation of bitonic sort, where all n

2
comparisons at each level are batched within the same round.

Joins. The oblivious join operators in SECRECY hide the
size of their output, thus, they compute the cartesian product
between the two input relations and produce a bit share for
all pairs of records, resulting in an output with n ·m entries.
We run both operators with n � m, for increasing input sizes,
and plot the results in Figure 8b. The figure includes equi-
join and range-join results for up to 100K rows per input, as
we capped the duration of this experiment to 5h. SECRECY
executes joins in batches without materializing their entire
output at once. As a result, it can perform 10B equality and
inequality comparisons under MPC within the experiment
duration limit.

D.3 EMP vs SECRECY on oblivious join
Here we compare EMP with SECRECY using an oblivious
join operator that is based on the sample program from the
SoK project [10]. For these experiments, we use inputs of the
same cardinality and increase the size from 10K to 100K rows
per input. We cap the time of these experiments to 12h. Fig. 9
plots the results in AWS-LAN and AWS-WAN. Within the experi-
ment duration, EMP can evaluate joins on up to 40K rows per
input (in 11h). SECRECY is 18× faster for the same input size
and can process up to 100K rows per input in less than 4h.

E QUERIES USED IN THE PAPER

Here we list the queries used in §7 (in SQL syntax):

Comorbidity:
SELECT diag, COUNT(*) cnt
FROM diagnosis
WHERE pid IN cdiff_cohort
GROUP BY diag
ORDER BY cnt DESC

LIMIT 10

Recurrent C. Diff.:
WITH rcd AS (

SELECT pid, time, row_no
FROM diagnosis
WHERE diag=cdiff)

SELECT DISTINCT pid
FROM rcd r1 JOIN rcd r2 ON r1.pid = r2.pid
WHERE r2.time - r1.time >= 15 DAYS
AND r2.time - r1.time <= 56 DAYS
AND r2.row_no = r1.row_no + 1

Aspririn Count:
SELECT count(DISTINCT pid)
FROM diagnosis as d, medication as m on
d.pid = m.pid
WHERE d.diag = hd AND m.med = aspirin

AND d.time <= m.time

Password Reuse:
SELECT ID
FROM R
GROUP BY ID, PWD

HAVING COUNT(*)>1

Credit Score:
SELECT S.ID
FROM (
SELECT ID, MIN(CS) as cs1, MAX(CS) as cs2
FROM R
WHERE R.year=2019
GROUP-BY ID) as S

WHERE S.cs2 - S.cs1 > c

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1055

TPC-H Q4:
SELECT o_orderpriority, count(*) as order_count
FROM orders
WHERE o_orderdate >= date ’[DATE]’ AND
o_orderdate < date ’[DATE]’ + interval ’3’ month
AND EXISTS (

SELECT *
FROM lineitem
WHERE l_orderkey = o_orderkey
AND l_commitdate < l_receiptdate

)
GROUP BY o_orderpriority

ORDER BY o_orderpriority

TPC-H Q6:
SELECT sum(l_extendedprice*l_discount) as revenue
FROM lineitem
WHERE l_shipdate >= date ’[DATE]’ AND
l_shipdate < date ’[DATE]’ + interval ’1’ year
AND l_discount between [DISCOUNT] - 0.01
AND [DISCOUNT] + 0.01 and l_quantity < [QUANTITY]

TPC-H Q13:
SELECT c_count, count(*) as custdist
FROM (

SELECT c_custkey, count(o_orderkey)
FROM customer left outer join orders ON
c_custkey = o_custkey
AND o_comment = ‘[WORD]’

GROUP BY c_custkey
) as c_orders (c_custkey, c_count)

GROUP BY c_count

ORDER BY custdist desc, c_count desc

1056 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

FLASH: Towards a High-performance Hardware Acceleration Architecture for
Cross-silo Federated Learning

Junxue Zhang1,2, Xiaodian Cheng1,2, Wei Wang2, Liu Yang1,2, Jinbin Hu1, Kai Chen1

1iSINGLab @ Hong Kong University of Science and Technology 2Clustar

Abstract
Cross-silo federated learning (FL) adopts various crypto-
graphic operations to preserve data privacy, which introduces
significant performance overhead. In this paper, we iden-
tify nine widely-used cryptographic operations and design
an efficient hardware architecture to accelerate them. How-
ever, directly offloading them on hardware statically leads to
(1) inadequate hardware acceleration due to the limited re-
sources allocated to each operation; (2) insufficient resource
utilization, since different operations are used at different
times. To address these challenges, we propose FLASH,
a high-performance hardware acceleration architecture for
cross-silo FL systems. At its heart, FLASH extracts two ba-
sic operators—modular exponentiation and multiplication—
behind the nine cryptographic operations and implements
them as highly-performant engines to achieve adequate ac-
celeration. Furthermore, it leverages a dataflow scheduling
scheme to dynamically compose different cryptographic op-
erations based on these basic engines to obtain sufficient
resource utilization. We have implemented a fully-functional
FLASH prototype with Xilinx VU13P FPGA and integrated it
with FATE, the most widely-adopted cross-silo FL framework.
Experimental results show that, for the nine cryptographic
operations, FLASH achieves up to 14.0× and 3.4× accelera-
tion over CPU and GPU, translating to up to 6.8× and 2.0×
speedup for realistic FL applications, respectively. We finally
evaluate the FLASH design as an ASIC, and it achieves 23.6×
performance improvement upon the FPGA prototype.

1 Introduction
Training a high-quality machine learning model requires mas-
sive data, which is likely to be distributed across different
institutions or companies in the real world. However, the
increasing concern about data privacy and emerging regula-
tions and lawsuits restrict these data from being collected
together in one place for centralized training. To solve this
problem, federated learning (FL) has been proposed to enable
distributed learning among these data silos by performing
local computation within a data silo and securely aggregating
the intermediate results (e.g., gradients/parameters) to gener-
ate a global model without revealing any original data to the
outside world [44, 48, 89].

To ensure the security of cross-silo FL, various crypto-
graphic techniques have been used. For example, partially ho-
momorphic encryptions (PHE), e.g., Paillier, have been used
to enable parameter computation/aggregation directly on ci-
phertexts [73]. RSA is used to build the blind signature-based
Private Set Intersections (PSI) for sample alignment [45]. In

this paper, we perform a comprehensive analysis of exist-
ing cross-silo FL applications and identify nine widely-used
cryptographic operations, such as encryption/decryption, com-
putation over ciphertexts, etc. (more details in §3.1). While
preserving privacy, these cryptographic operations signifi-
cantly degrade the performance (§3.2). For example, our ex-
periments show that these operations cause up to 60.74×
performance degradation. The reasons are two-fold: (1) they
are of high computational complexity, e.g., Paillier encryp-
tion has a O(2N)1 time complexity; (2) they introduce large
number calculations, e.g., additively HE and RSA encryp-
tion generate 2048-bit ciphertexts which need to be broken
down to multiple 64-bit numbers and executed with limited
parallelism on current CPU architecture.

In this paper, we ask: can we offload these cryptographic
operations to dedicated hardware to accelerate cross-silo FL?
Towards answering this question, our first attempt went with
GPU. However, as we will reveal in §3.3, the cryptographic
operations used in cross-silo FL involve complicated compu-
tation stages and dramatically inflate the data, making them
inappropriate for GPUs. While GPU is ideal for performing
data parallelism over tensors with short numbers, e.g., single-
precision floats, it fails to provide efficient pipeline execution
for cryptographic operations with large numbers, e.g., 2048-
bit integers. The reason is that the limited size of the shared
memory within one Streaming Multiprocessor (SM) causes
frequent data exchange between external and on-chip shared
memory during the pipeline execution, significantly compro-
mising the performance. While it might be feasible to work
around the limitation of GPUs, it requires complex mecha-
nisms such as a complex memory orchestration system. Our
paper does not take this direction (§6).

To further accelerate cross-silo FL, we seek a more effi-
cient hardware acceleration architecture beyond the existing
GPU architecture. To this end, we choose to use FPGA as
a prototype and further explore an Application-specific Inte-
grated Circuit (ASIC). We believe such customized hardware
architecture will exhibit several desired properties for our pur-
pose. First, it is possible to tailor a hardware architecture for
efficient cross-silo FL by customizing the hardware circuits
from scratch, so that we can design an optimized fine-grained
pipelining with flexible bit-width support for accelerating
cryptographic operations. Second, the customized hardware
architecture allows us to provide sufficient on-chip memory
for storing large numbers used in the processing pipeline for
superior performance. However, while promising, we identify

1N is the bit-width of the exponent n, and n is the public key in Paillier
encryption.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1057

that directly offloading the nine cryptographic operations to
the hardware statically will pose two key challenges (§3.3):

• Inadequate hardware acceleration due to limited re-
sources. To achieve high performance, one operation may
need multiple hardware instances for high parallelism.
However, as the hardware resource of a chip is limited,
directly offloading all these nice operations to the hardware
causes inadequate resources to speed up each operation,
leading to suboptimal performance. Our implementation
with this approach on a Xilinx VU13P FPGA [23] chip
shows that each operation only achieves ∼ 50% accelera-
tion on average.

• Insufficient resource utilization due to static offload-
ing. Different FL applications use different cryptographic
operations, and within each application, different opera-
tions are used at different times. Consequently, statically
offloading all the operations as a whole results in resource
under-utilization because not all the operations are used at
all times simultaneously.

To address the challenges, we take a closer look at these
nine cryptographic operations and observe that almost all of
them build upon two basic operators: modular exponentiation
and modular multiplication. Based on this observation, we
propose FLASH, a high-performance hardware acceleration
architecture for cross-silo federated learning (§4). At its core,
FLASH uses the majority of hardware resources to imple-
ment the two basic operators as high-performance engines
to achieve adequate hardware acceleration. We also design
fine-grained pipelines with sufficient on-chip memory to im-
prove both the intra- and inter-engine execution efficiency
for superior performance. Furthermore, based on these basic
engines, FLASH adopts a dataflow scheduling module to dy-
namically compose these engines into different cryptographic
operations on-demand to achieve high resource utilization.

We have provided a down-scale but full functional imple-
mentation of FLASH with Xilinx VU13P FPGA [23]2 for
prototyping purpose, integrated it with FATE [2]—the most
widely-adopted cross-silo FL framework—and evaluated it
extensively with real-world FL applications. We compare the
performance of FLASH with (1) the vanilla FATE, which uses
GMP [19] to implement these cryptographic operations with
CPU. GMP provides a highly-optimized implementation for
modular multiplication and exponentiation operations, which
uses many optimization algorithms, including but not limited
to the two mentioned in our paper. We choose Intel Xeon Sil-
ver 4114 CPU similar to prior works [76]; (2) the FATE where
the cryptographic operations are accelerated by NVIDIA P43

2We use FPGA for prototyping purposes, so we do not consider the price
advantages/disadvantages of the VU13P FPGA chip.

3We note that latest NVIDIA A100 [9]/H100 [10] may have a better
performance than P4/VU13P, however, they are much more expensive while
still sharing the architectural deficiency of GPU in general as discussed in
§3.3. The focus of FLASH is to pursue a more efficient hardware acceleration
architecture for cross-silo FL.

Participant A

𝑿! 𝒚! 𝑾!

𝑿" 𝒚"

𝑾"

Arbiter

Participant C

𝑿𝑪 𝒚$
𝑾$

Same feature space

Participant B

(a) Horizontal FL

Participant A

𝑿!
Same sample

ID space

Participant B

𝑿𝑩

Arbiter

𝒚!

(b) Vertical FL

Figure 1: Two paradigms of cross-silo FL.

GPU [11, 43]. Here we use P4 GPU because it has the closest
INT8 TOPS (although ∼ 2× better) as FLASH (we typically
use INT8 TOPS to denote the general computation power of
a chip). P4 has ∼ 20 INT8 TOPS [11]. VU13P has ∼ 38.3
INT8 DSP TOPS while reaching peak 891MHz operation
frequency [23, 24]. As FLASH uses 300MHz, it achieves
∼ 12.9 DSP INT8 TOPS. Moreover, both of them are built
with 16nm technology. Finally, with the standard Synopsys
software tools (e.g., Design Compiler [14], VCS [16] and
Prime Time [15]), we further evaluate the performance of
FLASH if implemented as an ASIC.

Overall, some of our key results are as follows:
• Across the nine concrete cryptographic operations (§6.2),

FLASH (with FPGA implementation) outperforms CPU
and GPU by 10.4× – 14.0× and 1.4× – 3.4×, respectively.

• Over the nine realistic FL applications (§6.3), FLASH
(with FPGA implementation) can consistently outperform
CPU and GPU by up to 6.8× and 2.0×, respectively.

• Our software evaluation of FLASH as an ASIC with 12nm
and 28nm fabrication techniques (§6.5) shows that it can
achieve 23.6× and 7.1× additional performance improve-
ment upon the FPGA implementation, respectively.
As a final note, we are fully aware that there exist various

other privacy-preserving techniques [27, 71, 81, 85]. How-
ever, in current industry-level deployments, Paillier and RSA
schemes built with the nine cryptographic operations we in-
vestigated in this work are, to date, the most widely adopted
approach in cross-silo FL systems [2,41,49], primarily due to
the reason that they can achieve relatively better performance
and are easier to use compared to other privacy-preserving
schemes. Our goal is to provide plug-and-play acceleration
capability for these industry-level cross-silo FL systems.

2 Cross-silo Federated Learning
FL was first proposed by Google to train a language model
for keyboard input prediction from massive Android devices
without leaking privacy-sensitive data [36, 90]. Recently, FL
has evolved from the above cross-device scenarios to collabo-
ratively train machine learning models across different data
silos, i.e., cross-silo FL [44, 48, 89]. A data silo is a reposi-
tory or collection of data under the control of a single entity
(e.g., institution, company, etc.), and is isolated from other
entities due to the ever-improving management regulations

1058 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

or laws [50]. Cross-silo FL enables machine learning among
these data silos and supports both vertical and horizontal FL.
Horizontal FL: As shown in Figure 1a, participants in Hor-
izontal FL have different sample spaces but the same fea-
ture space, and each participant owns the labels of its sam-
ples. In most cases, there is an arbiter for parameter aggrega-
tion (the arbiter is a third-party server to assist the FL com-
putations). To train a model, each participant trains local
model www with its own samples and encrypts its model weights
via PHE (e.g., Paillier [74]). Then all participants send their
encrypted weights to the arbiter, and the arbiter directly per-
forms an aggregation over the received ciphertexts to obtain
the global model. Eventually, the arbiter sends the aggregated
global model to all participants for next-round computation.
Vertical FL: As shown in Figure 1b, participants in Vertical
FL have the same sample space but different feature spaces.
Only one participant holds the label of the FL task. Before
training a model, all participants have to align the samples
among different data silos based on the common IDs (similar
to joining two tables in a database based on the common IDs).
One of the most commonly used algorithms is RSA blind
signature-based PSI (RSA-PSI) [45]. After sample alignment,
all participants can follow a pre-defined protocol for model
training, such as Vertical Linear Regression (Please see Table
1 in [89]) and SecureBoost [42]. During the process, par-
ticipants use PHE to encrypt their intermediate results and
exchange them with other participants or the arbiter.

For interested readers, we have provided a detailed expla-
nation of how cross-silo FL works and its security analysis in
Appendix A.
Summary: Various cryptographic technics are used in cross-
silo FL. These cryptographic technics are composed of vari-
ous operations, e.g., data encryption/decryption via additively
HE, computation over ciphertext, etc., and we call these oper-
ations as cryptographic operations in this paper.

3 Analysis of Cryptographic Operations
3.1 Cryptographic Operations
In this section, we present nine cryptographic operations that
are widely used in cross-silo FL. Our study is based on the
implementation of FATE [2], the most widely adopted open-
source framework for cross-silo FL. However, our analysis
can also be applied to other cross-silo FL frameworks, e.g.,
FedLearner [4], TF Encrypted [18], etc. Specifically, these
nine cryptographic operations are as follows:
O1. Paillier Encryption. This operation uses Paillier [28,73],
an additively homomorphic cryptographic algorithm, to en-
crypt cleartexts into ciphertexts. The operation is mainly used
for protecting the intermediate data during model training.
O2. Paillier Decryption. This operation decrypts Paillier
ciphertexts into cleartexts. It is used when participants need
to decrypt the intermediate results for local model updates in
the training phase.

O3. Ciphertext Matrix Addition. This operation is used to
add two matrices (or vectors/values) of ciphertexts. As Paillier
is used, ciphertexts can be summed up.
O4. Ciphertext & Cleartext Matrix Element-wise Multi-
plication. This operation performs Hadamard product [58]
between ciphertext matrix and cleartext matrix.
O5. Ciphertext & Cleartext Matrix Multiplication4. This
operation performs matrix multiplication between two matri-
ces of ciphertexts and cleartexts, respectively.
O6. Ciphertext Histogram Building. This operation per-
forms addition operations over encrypted gradient statistics
to build decision trees [42].
O7. RSA Encryption/Decryption. This operation conducts
encryption or decryption with the public or private key of
the RSA algorithm correspondingly. This operation is used
when multiple participants try to perform PSI for sample
alignment [45].
O8. RSA Blind. This operation blinds the cleartexts with
encrypted random numbers.
O9. RSA Unblind. This operation unblinds RSA ciphertexts
to remove the random numbers from the ciphertexts.

As shown subsequently (§3.2), these cryptographic opera-
tions have a large impact on the performance of cross-silo FL
applications due to the following two reasons:
• High time complexity: These operations are of high com-

putation complexity, e.g., Paillier encryption has a time
complexity of O(2N). Thus these algorithms are expensive
to compute.

• Large number computation: Cryptographic operations
significantly inflate data, yielding large numbers, e.g., 2048-
bit integer. The large number will need to be divided into
multiple small numbers and executed on the current CPU
architecture with limited parallelism.

3.2 Quantifying the Performance Impact
We now quantify the performance impact of these crypto-
graphic operations with realistic cross-silo FL applications
through testbed experiments.

Our testbed is equipped with an Intel Xeon Silver 4114
CPU [5] and 192GB memory. We choose three most widely-
adopted vertical FL applications and one horizontal FL appli-
cation for evaluation: RSA blind signature-based PSI (RSA-
PSI), Vertical Logistic Regression (VLR) [53], SecureBoost
Decision Tree (SBT) [42] and Horizontal Logistic Regres-
sion (HLR). The dataset we use is a commercial dataset from
a bank with ∼ 100,000 samples and 80 features. For verti-
cal FL applications, the dataset is vertically partitioned into
two parts: one part contains 80 features while the other con-
tains one feature. We first perform RSA-PSI to obtain the

4To efficiently process a large matrix, we will use optimization algorithms
such as blocking the matrix and performing multiplications of the blocked
matrices. Thus this operation is not a simple combination of matrix element-
wise multiplication (O4) and addition (O3).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1059

Applications & Their Sub-tasks Involved Operations w/o CO (s) w CO (s) Degradation

RSA-PSI Computing intersection O7, O8, O9 7.91 20.62 2.60× ↓

VLR
(One Epoch)
Total: 12.05× ↓

Encrypting logits O1 0 32.05 -
Aggregating logits O3 0.63 2.04 3.23× ↓
Computing fore gradientsa O3, O4 0.74 2.92 3.93× ↓
Computing gradients O3, O4, O5 3.77 135.96 36.08× ↓
Decrypting gradients O2 0 0.04 -
Computing loss O1, O3, O4 4.08 8.22 2.02× ↓

SBT
(One Epoch)
Total: 3.49× ↓b

Encrypting gradients O1 0 54.71 -
Aggregating gradients O3, O6 12.02 223.91 18.62× ↓
Split information synchronization O2 3.62 13.03 3.60× ↓

HLR
(One Epoch)
Total: 60.74× ↓b

Computing gradients O3, O4, O5 1.73 177.94 102.80× ↓
Model update O3, O4 0.0002 0.10 526.10× ↓
Model re-encryption O1, O2 0 0.69 -

a According to Federated Logistic Regression [53], the gradient computation takes two steps: fore gradients computation and gradients computation.
b The overall performance degradation of SBT/HLR is smaller than the sum of those sub-tasks because we do not include pure cleartext computation or networking communication
sub-tasks in the table.

Table 1: Performance penalty caused by cryptographic operations (CO) with different cross-silo FL applications.

data intersection. Then, we run VLR and SBT over the data
intersection, respectively. For horizontal FL, the dataset is
horizontally partitioned into two parts, each with ∼ 50,000
samples. The four applications are executed both with cryp-
tographic operations implemented using GMP (w/ CO) and
without cryptographic operations (w/o CO). To implement
model training w/o CO, we modify the code of FATE to skip
these cryptographic operations. To perform a fine-grained
analysis, we also break down these four applications into
sub-tasks, and for each sub-task, we show the adopted cryp-
tographic operations. All the applications are executed with
ten CPU cores in parallel. Table 1 shows the results, and we
make the following observations:

• Cryptographic operations considerably degrade the
performance. In general, cryptographic operations sig-
nificantly degrade the performance of cross-silo FL ap-
plications. In our experiment, the cryptographic opera-
tions cause RSA-PSI, VLR, SBT and HLR to suffer 2.60×,
12.05×, 3.49× and 60.74× performance degradation, re-
spectively. Moreover, the combinations of these crypto-
graphic operations can degrade the performance from
∼ 2.02× to ∼ 526.10×.

• Not all the cryptographic operations are used at all
times simultaneously. Different FL applications use dif-
ferent cryptographic operations, and even within a single
application, different sub-tasks use different operations.

3.3 Challenges of Offloading Cryptographic
Operations

To accelerate these cryptographic operations, we chose GPU
as our first attempt, as it has been widely adopted in various
offloading scenarios. However, as our exploration proceeds,
we find that the cryptographic operations in cross-silo FL
require complicated pipeline computation and significantly
inflate the data, posing the following challenges for GPU.

The hardware architecture of GPU is tailored for perform-
ing data parallelism over tensors, which are mostly short
numbers. However, as we will show in §4.2.1, to efficiently

execute cryptographic operations, we have to use several
steps to optimize the computation, e.g., Montgomery Modular
Multiplication [65], in which pipeline parallelism is needed.
Furthermore, massive large numbers should be stored in the
shared memory during the pipeline execution. However, these
large numbers, e.g., 2048-bit integer numbers, can easily over-
flow the on-chip memory of the GPU. For example, the
amount of shared memory per SM is 96 KB for NVIDIA
V100 [13]. No more than 384 2048-bit integer numbers can
be stored inside one SM. Therefore, after processing a small
amount of data, the GPU has to swap data between the shared
memory and external memory, interrupting the pipeline exe-
cution. While it is possible to solve the aforementioned limi-
tations, it requires complicated memory orchestration, such
as a suitable double-buffering [33], which may pose further
challenges.

To this end, our paper does not take this direction but
moves one step further beyond the existing GPU architecture,
by seeking a more efficient, customized hardware accelera-
tion architecture for cross-silo FL. We envision that with a
customized hardware architecture, we can implement fine-
grained pipelining for those cryptographic operations with
large numbers. The hardware can also support variable bit-
widths to match the cross-silo FL scenarios where different
public key sizes are used (which yield large numbers with
different bit-widths). Furthermore, with a customized design,
we are able to invest sufficient on-chip memory for caching
large numbers used in the pipeline execution. The data swap-
ping between on-chip and external memory can be part of the
pipeline to avoid the performance penalty mentioned above.

In this paper, we follow the rule-of-thumb approach to
use FPGA as a prototype and evaluate the potential of ASIC
via software tools [30, 51, 87]. However, we confront the
following two challenges in our design:

1. Inadequate hardware acceleration due to limited re-
sources. As identified in §3.2, all the cryptographic opera-
tions cause a performance penalty, so we should offload all of
them to hardware. Furthermore, to realize sufficient accelera-

1060 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

O1 O2 O3 O4 O5 O6 O7 O8 O9
0

50

100

%
T
im

e Modular Multiplication Modular Exponentiation Other

Figure 2: Cryptographic operation computation time analysis.

tion, each operation requires multiple hardware instances of
accelerating modules/circuits for high parallelism. However,
in practice, the hardware chip has limited resources, and if we
naïvely offload all cryptographic operations to the chip, each
operation has inadequate resources to be fully accelerated.
Taking the DSP resources as an example, our preliminary
implementation on VU13P FPGA [23] chip shows that to
accelerate Paillier encryption (O1) by 2×, we need to use
2630 DSPs. Yet, a high-end FPGA chip, such as VU13P [23],
only has 12288 DSPs, leaving < 1365 DSPs for one opera-
tion on average5 (some DSPs are reserved for PCIe, memory
controller, etc.). Thus, directly offloading all operations on
VU13P FPGA chip leads to only ∼ 50% acceleration on aver-
age. A similar problem also applies to the ASIC design.
2. Insufficient resource utilization due to static offload-
ing. Different from software, hardware function is static
after being configured/programmed/taped out, thus it cannot
change its function dynamically. Nevertheless, as shown in
§3.2, not all the cryptographic operations are used at all times
simultaneously. Consequently, if we statically offload all cryp-
tographic operations on the hardware chip, only part of these
cryptographic operations is used at a time. Therefore, such
static offloading causes low resource utilization and further
leads to suboptimal performance.

3.4 Opportunities with Accelerating Basic Op-
erators

To overcome the above challenges, we further take a look
at the internal of these nine cryptographic operations. We
discover that all these operations are composed of two basic
operators: modular multiplication and exponentiation. Then
we further find that the performance of these operations is
mainly decided by the two basic operators.
Paillier Encryption: Given the public key (n,g) and data
m (0 ≤ m < n), the Paillier encryption algorithm takes two
steps: (1) selecting a random number r where 0 < r < n and
r ∈ Z∗n; (2) computing ciphertext c = gm · rn mod n2. The
formula can also be simplified to c = (1+mn) · rn mod n2

by setting g = (1 + n). We use [[·]] to denote the Paillier
encryption, e.g., c = [[m]].
Homomorphic Addition: Given two plaintext a and b, ho-
momorphic addition guarantees that [[a]]

⊕
[[b]] = [[a+ b]].

In Paillier cryptosystem, [[a]]
⊕

[[b]] is defined as [[a]]∗ [[b]]
mod n2. The homomorphic addition is used by operations O3,
O5 and O6.

5We will show later that all these nine operations share similar building
blocks, thus they require similar resources to implement.

CPU

Main
Memory

PCIeFLASH
Driver

X86 Server FLASH

PCIe
DMA

Source Data
DDR0

Return Data
DDR1

Memory Controller

libfl.so
Modular Exponentiation &

Multiplication Engine
Modules for

Other
Operations

Engines

Scheduler

Dataflow Scheduling Module

Data Flow
Control Flow

Crytoraphic Operator Scheduling Configurations

External
Memory

Figure 3: FLASH architecture.

Homomorphic Multiplication: Given a plaintext a and k, the
homomorphic multiplication is denoted by k · [[a]]. It can be
actually regarded as a homomorphic addition: Σk[[a]]. Thus,
k · [[a]] = [[a]]k mod n2. The homomorphic multiplication is
used by operations O4 and O5.
Paillier Decryption: Given the public key (n,g), private key
(p,q) and ciphertext c, the Paillier Decryption algorithm can
be optimized via Chinese Remainder Theorem (CRT) to re-
duce the original workload to only about one-quarter of the
original decryption algorithm. To use CRT, we define Lp and
Lq to be Lp(x) = x−1

p and Lq(x) = x−1
q . The decryption algo-

rithm takes the following three steps: (1) computing mp =
Lp(cp−1 mod p2)Lp(gp−1 mod p2)−1 mod p; (2) comput-
ing mq = Lq(cq−1 mod q2)Lq(gq−1 mod q2)−1 mod q; and
(3) computing plaintext m = CRT(mp,mq) mod n.
RSA-related Operations: The RSA-related operations are
used in RSA blind signature-based PSI [45]. It is commonly
known that the core of these RSA-related algorithms is either
modular multiplication or modular exponentiation.

Through the above mathematical analysis, we find that all
cryptographic operations used in cross-silo FL are built upon
the two basic operators: modular multiplication and expo-
nentiation6 . Then, we further perform testbed experiments
to investigate how these two basic operators impact the per-
formance of the nine original cryptographic operations. The
results are shown in Figure 2. Clearly, we find that across
all nine original operations, the two basic operators occupy
> 95% of the total execution time.
Observation: We can compose all the nine cryptographic
operations with these two basic operators, and by accelerating
these two basic operators, all the nine original operations used
in cross-silo FL applications can be effectively accelerated.

4 The FLASH Design
Inspired by the above observation, we present FLASH, a high-
performance hardware acceleration architecture for cross-silo
FL. This section describes how we design FLASH in detail.
Please note that our design has been fully implemented in our
FLASH prototype with FPGAs as well as rigorously evaluated

6Appendix B and C provide more details of these operations.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1061

Clock
Key 1 Key 2

Calculating parameters based on 𝑁 Converting input data into Montgomery form
Computation in Montgomery form Converting back from Montgomery form

Engine 1

Engine 2

Engine 3

Tasks with Key 1

Tasks with Key 1

Tasks with Key 2

Figure 4: Pipeline executions of both inter- and intra-engines.

with the Synopsys tools for the ASIC.

4.1 Architecture Overview
Figure 3 shows the overall architecture of FLASH. It con-
tains a hardware acceleration card and an integrated software
package. The accelerator card can be plugged into a server
via PCIe Gen3×16 interface. The server is installed with
cross-silo FL software, e.g., FATE. The software can invoke
FLASH’s software package to offload the cryptographic oper-
ations on the card for efficient acceleration.

The idea of our FLASH design is that it does not directly
offload all cryptographic operations on the hardware, but
leverages the insights of our observation to (1) utilize the
limited programmable resource for most performance-critical
basic operators: modular exponentiation and multiplication
to achieve adequate acceleration (§4.2), and (2) design an
on-chip dataflow scheduling module to dynamically compose
different cryptographic operations on-demand based on these
engines, achieving high resource utilization (§4.3). In addi-
tion, to make FLASH a general solution to support a wide
range of cross-silo FL frameworks, our software package
provides standard APIs. In this way, different cross-silo FL
software can utilize FLASH by harnessing its APIs (§4.4).

4.2 Modular Exponentiation and Multiplica-
tion Engines

To implement modular exponentiation and multiplication op-
erators as high-performance engines on hardware, FLASH
makes the following design decisions. First, instead of directly
offloading the modular exponentiation and multiplication op-
erators, we optimize the algorithms of the two operators to
make them suitable for the hardware implementation (§4.2.1).
Second, based on the optimized algorithms, FLASH further
leverages pipelining technologies to efficiently execute them
with high parallelism (§4.2.2). Third, we provide sufficient
on-chip memory for pipeline execution and make the data
transfer as part of the pipeline to efficiently exchange data
between off-chip memory and engines (§4.2.3).

4.2.1 Algorithm Optimization
The mathematical formulas of the two basic operators: mod-
ular exponentiation (Equation 1) and multiplication (Equa-
tion 2) are as follows:

Algorithm 1 Montgomery Modular Multiplication
. Given 3 input numbers X , Y and N, the Montgomery Modular Multi-
plication outputs Z = X ·Y · R−1 mod N, where R is a power of 2 and
blog2 Rc= blog2 Nc.
Input: X = (Xd−1, ...,X0), Y = (Yd−1, ...,Y0), N = (Nd−1, ...,N0), N′, where

N′ = (−N)−1 mod r, . N′ is pre-computed in S1
r = 2w, d = blogr Nc+1, . r and d is used to split data
gcd(N,r) = 1, with N×N′ ≡−1 mod r

Output: Z = ModMult(X ,Y,N) = X×Y ×R−1 mod N
1: Z = (Zd−1, ...,Z0) = 0 . Initialization
2: for all i = 0,1, ...,d−1 do . Loop on Y
3: α = [X0×Yi]low

4: β = α+Z0

5: q = [β×N′]low

6: δ1 = α+ [q×N0]low

7: δ2 = δ1 +Z0
8: Z0 = [δ2]low
9: C = [δ2]high

10: for all j = 1,2, ...,d−1 do . Loop on X
11: δ0 = [X j−1×Yi]high + [q×N j−1]high

12: δ1 = δ0+ [X j×Yi]low + [q×N j]low

13: δ2 = δ1 +Z j +C
14: Z j−1 = [δ2]low
15: C = [δ2]high . Carry higher bits
16: end for
17: Zd−1 =C
18: end for
19: if Z ≥ N then
20: Z = Z−N
21: end if
22: return Z

P = me mod n m,e,n ∈ Z+ (1)
P = ab mod n a,b,n ∈ Z+ (2)

When used in cryptographic operations, all the numbers
a,b,m,n are large numbers, leading to high computation com-
plexity. Therefore, before designing FLASH’s engines, we
first apply some commonly-used optimization strategies in
the cryptographic research community to optimize the two
basic operators, including Binary Exponentiation [52] and
Montgomery Modular Multiplication [65], etc. The advan-
tages of using these optimization strategies are: (1) lowering
the number of multiplications used in modular exponentia-
tion from O(2N) to O(N) (N is the bit-width of e), and (2)
replacing the modulo operation with the hardware-friendly
bit-shifting operation. Appendix D provides details of how
they work.

After applying these optimization methods, FLASH’s mod-
ular exponentiation and multiplication operators require the
following four stages to complete the computation:
S1. Preparing common data needed in Montgomery space

based on the input data n. Since, in both Paillier and RSA
cryptosystems, n is decided by the public key, we can re-
use these prepared data for all computations with the same
public key. This is common in cross-silo FL applications
as they use one key for all cryptographic operations within
one application.

1062 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RAM 𝑋

Mul 1

Mul 2

M
U
X

Add 1

High 𝑤 bits

Low 𝑤 bits

Add 2

High 𝑤 bits

Low 𝑤 bits

Add 3

Reg 𝑟!

Add 4

M
U
X

RAM 𝑍

Add 5

M
U
X

Sub

From RAM 𝑁

Output

Reg 𝑋"

Reg 𝑌"

Reg 𝑁"

Reg 𝑟#

Reg 𝑟$

Reg 𝑟%

Reg 𝑁&

Reg 𝛽

Reg 𝑞

Reg 𝑟'

Reg 𝑟(

Reg 𝑟) Reg 𝑟*

Reg 𝑍+

Reg 𝐶
RAM 𝑌

RAM 𝑁

Reg Register Group

𝑤-bit multiplier

𝑤-bit adder

M
U
X

Multiplexer

𝑤-bit subtractor

RAM
RAM

Figure 5: The Montgomery Modular Multiplication engine circuit design. Our circuit uses two multipliers and four on-chip
RAMs for efficient pipelining. For more details of how this circuit works, please refer to Appendix E.

S2. Performing input data pre-precessing and converting
them into Montgomery space.

S3. Performing computation in Montgomery form. Major op-
erations in this stage include large-number multiplication,
addition, and bit-shifting. No modulo operation is needed.

S4. Converting all output data of the operators out of Mont-
gomery space.

4.2.2 Pipelining
We next introduce how FLASH efficiently performs the above
four computation stages via inter- and intra-engine pipelining.
Inter-engine pipelining: To enable inter-engine pipelining,
FLASH employs an engine pipeline stage manager to control
the execution strategies for different stages. Figure 4 gives
an overview of how these stages are pipelined. First, FLASH
reserves S1 as a standalone stage, which can be executed
in advance once it obtains the public key. Second, for all
computation tasks with the same public key (Engine 1 and 3
in Figure 4), they can be executed in parallel once their data
preparation is completed (S1). The start time of these engines
may have a small gap of several clock cycles because FLASH
adopts a round-robin strategy to dispatch stage executions.
Third, for tasks with different keys (Engine 2 in Figure 4),
they can be executed independently.
Intra-engine pipelining: FLASH further performs intra-
engine pipelining within the most computation-intensive stage
S3 to accelerate the stage’s internal execution. The key de-
sign goals are: (1) FLASH should support variable bit-widths
thus the application can choose the key length based on their
security requirements; (2) the hardware resources should be
fully utilized to achieve superb performance.

To achieve the first goal, FLASH builds an efficient pipeline
that processes data based on radix-2w arithmetic [60] (we use
w = 64 in FLASH’s implementation). Given any input data,
we split it into d w-bit integers. For example, d = 16 when
bit-width of X is 1024, and d = 32 when bit-width of X is
2048. Theoretically, the pipeline can be adapted for input
data with any bit-width as long as the bit-width is or can be
extended by complementary zeros to the integer multiple of
d. After data splitting, the complete algorithm of S3 (Mont-
gomery Modular Multiplication) is shown in Algorithm 1.
Note, compared to the original Montgomery Modular Mul-
tiplication (shown in Algorithm D.2 in Appendix D.2), we
make the following optimizations to make the algorithm more

hardware-friendly: (1) the computation of S (i.e., line 6 in
Algorithm D.2) is separated into computations of lower w
bits and higher w bits so that the bit-width required in oper-
ations (e.g., addition) is halved; (2) the first iteration of the
inner loop where j = 0 is unrolled to remove the conditionals
in the original algorithm (i.e., line 7 to 9 in Algorithm D.2)
and keep the consistency of computation logic.

In Algorithm 1, the most computation-intensive operations
are the multiplications of X j×Yi and q×N j respectively (both
operations require d2 w-bit multiplications). Moreover, the
data required in these two multiplications are totally indepen-
dent. Therefore, we use two multipliers (one 64-bit multiplier
consists of 32 DSP48E2 slices [22] on our FPGA prototype),
Mul 1 and Mul 2, for these two multiplication operations and
reuse them to execute the rest of the multiplication operations
as well (operations assigned to Mul 1 and Mul 2 are marked
with red and green respectively in Algorithm 1). Since the
multiplier can continuously process data, to fully utilize the
multiplier, we have the following design decisions. First, we
design a circuit to fully pipeline the inner loop (line 10 to 16
of Algorithm 1). The circuit is shown in Figure 5 and due to
the limited space, we defer a detailed description of how it
works in Appendix E. Second, when the multiplications of
i-th iteration finish and some other operations are still under
execution, e.g., addition operations in the right part of the
Figure 5, FLASH allows direct starting the multiplications in
i+1-th iteration to minimize the delay between different iter-
ations. We also use Figure 6 to visualize how the operations
in S3 are efficiently pipelined.

4.2.3 On-chip & Off-chip Memory
To provide sufficient on-chip memory for efficient pipeline
execution, FLASH allocates four memory units for each mod-
ular multiplication and exponentiation engine (shown in Fig-
ure 5). For our FPGA prototype implementation, we use 4×
36Kbit BRAM units. While the on-chip memory is mainly
used for pipeline execution, FLASH further exploits external
memory (shown in Figure 3) for input, output and intermedi-
ate data storage. To achieve high performance, data exchange
between on-chip and off-chip memory is part of the pipeline
itself, i.e., when the data at the on-chip memory is consumed,
FLASH simultaneously fetches new data from the off-chip
memory, so that the data fetching time can overlap with the
computation time. As the data fetch time is typically shorter
than the computation time, it effectively hides the off-chip

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1063

R
Pre-Comp.

Pre-read data
Calculate 𝛼, 𝛽, 𝑞
Loop for 𝑗 = 0
Loop for 𝑗 = 1

𝑤-bit Mult.
𝑤-bit Mult.
𝑤-bit Mult.

𝑤-bit Mult.

Loop for 𝑗 = 2

Loop for 𝑗 = 𝑑 − 1

A A A
A A A

A A A

A A A

R
Pre-Comp.

𝑤-bit Mult.
𝑤-bit Mult.
𝑤-bit Mult.

𝑤-bit Mult.

A A A
A A A

A A A

A A A

pre-read and cache data
in register

𝑤-bit addition

pre-computation for
each 𝑖	to calculate 𝛼, 𝛽, 𝑞

R
Pre-Comp.

𝑖 = 0 𝑖 = 1

𝑤-bit multiplication

Figure 6: Efficient pipelining of Montgomery Modular Multiplication.

memory access latency, leading to perfect pipelining.
Moreover, we also design a hierarchical data distribution

mechanism to solve the design difficulties encountered when
manipulating large external memory. Specifically, instead of
directly using long paths to send data from the memory con-
troller to all engines, FLASH distributes data at multiple lay-
ers. Such a hierarchical mechanism leads to two advantages:
(1) low design difficulties: since a small fan-out with short
logical paths is required in each layer, the placement of the
circuits is much easier; (2) improved performance: because
the time constraints of the short path are much easier to meet,
such method can allow a high operating frequency. Due to the
limited space, we defer a detailed introduction in Appendix F.

4.3 Dataflow Scheduling
We now introduce how FLASH composes various cryp-
tographic operations over basic engines through dataflow
scheduling. First, we show how our engines can work at dif-
ferent modes (§4.3.1). Then, we present how different crypto-
graphic operations are constructed by combining particular
engines (§4.3.2).

4.3.1 Dynamic Engine Switching
To build various cryptographic operations over basic engines,
FLASH needs to enable dynamic engine switching between
modular exponentiation and multiplication. Mathematically,
modular exponentiation can be realized by performing modu-
lar multiplication multiple times. Thus, FLASH leverages a
hardware control module to achieve it without reconfiguring
hardware (it is almost impossible to reconfigure the ASIC).
Specifically, to accelerate modular exponentiation, FLASH
constructs a dataflow loop over the multiplication engine mul-
tiple times. In contrast, when the engine needs to execute
modular multiplication, FLASH directs the dataflow through
the modular multiplication engine once. While the design
works well for most cryptographic operations that use either
modular exponentiation or multiplication, it cannot directly
support operations that simultaneously require both modular
exponentiation and multiplication, e.g., Paillier encryption
(O1), matrix multiplication (O5), in which FLASH has to
decide the ratio of engines in different modes.

How to decide the ratio? We use domain knowledge in
cross-silo FL applications to decide the ratio. Taking matrix
multiplication operation (O5) as an example, it first performs
ciphertexts and cleartexts multiplication (requires modular
exponentiation) and then ciphertexts addition (requires modu-

lar multiplication). Considering the modular exponentiation,
the exponent e is a cleartext, which has a common bit-width
of 64. As mentioned in §4.2.1, since we use Binary Exponen-
tiation to optimize the modular exponentiation, the number
of modular multiplication required may vary from 64 to 127
depending on the specific value of cleartext. On average, 96
modular multiplications are required. Thus, the throughput
of the modular exponentiation should be ∼ 1/96 of modular
multiplication. Based on this, we can adjust the ratio of the
engines working in different modes to make the throughput of
both modular exponentiation and modular multiplication bal-
anced. In this way, the hardware resources can be efficiently
utilized and no engines will sit idle.

4.3.2 Building Cryptographic Operations

As shown in Figure 7a, the core idea of dataflow scheduling
is to use an on-chip controller to dynamically determine: (1)
which data paths (they are logical paths that do not reflect
the physical wiring) should be active, and (2) what to put
in the engine slots, based on which operation is offloaded.
Each engine slot contains one data splitting module and one
data merging module to distribute data to different engines
and aggregate results from these engines, respectively. These
data splitting and merging modules have physical wires to all
engines, and by configuring which wires are active, we can
logically assign engines to these engine slots. We also design
a hierarchical data distribution mechanism, as mentioned in
§4.2.3, for better performance.

Specifically, we can construct a Paillier encryption operator
by following the dataflow scheduling strategy shown in Fig-
ure 7b. As mentioned in §3.4, the Paillier encryption follows
equation: c = (1+mn) · rn mod n2. So we can distribute the
data m,n,n2 to modular multiplication engines (these engines
are denoted E1) to calculate r1 = mn mod n2 and distribute
the data r,n,n2 to modular exponentiation engines (these en-
gines are denoted E2) to calculate r2 = rn mod n2. Then
the results can be further sent to modular multiplication en-
gine (these engines are denoted E3) to calculate (1+ r1)× r2
mod n2. Please note that the 1+ r1 is completed in the input
data pre-precessing stage (S2 in §4.2.1) with a lightweight
dedicated hardware module. The ratios of E1, E2 and E3 are
determined through the strategies discussed above, thus we
can assign particular numbers of engines to these engine slots.
Similarly, Figure 7c shows the dataflow used in Paillier de-
cryption. In this case, FLASH uses other modules besides
modular exponentiation and multiplication engines to real-

1064 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CRT Modules
for Decryption

Data Split Data Merge

Engine Slot

Engine Slot

Engine Slot

(a) All available dataflow scheduling paths.

Modular
Exponentiation

𝑟!	𝑚𝑜𝑑	𝑛"

Modular
Multiplication

𝑚𝑛	𝑚𝑜𝑑	𝑛"

Modular
Multiplication
1 + 𝑚𝑛 	𝑟#𝑚𝑜𝑑	𝑛"

CRT Modules
for Decryption

𝑟, 𝑛, 𝑛!

𝑚, 𝑛, 𝑛!

(b) Dataflow for encryption.

Modular
Exponentiation

CRT Modules
for Decryption

Engine Slot Engine Slot

(c) Dataflow for decryption.

Figure 7: Dataflow scheduling. Black arrow indicates all available paths for dataflow scheduling while red arrow indicates the
active paths for a particular cryptographic operation. Each engine slot can have multiple engines.

ize the decryption operation. In particular, we use CRT to
optimize the decryption algorithm as discussed in §3.4, thus
FLASH implements several CRT modules to accelerate this
operation. We put all engines, working in modular exponenti-
ation mode, in the top left corner engine slot to achieve high
resource utilization.

4.4 Software Integration
While our current implementation integrates FLASH with
FATE, the design of FLASH is generic and works with other
cross-silo FL systems/frameworks. They can harness FLASH
by using the standard APIs.

For easy integration, FLASH provides Python NumPy-
similar APIs as shown in Listing 1. The Python APIs are
also wrappers of the C/C++ library: libfl.so. Besides pro-
viding standard APIs, the libfl.so library manipulates the
status of all installed FLASH accelerators, such as tempera-
ture, workload, etc.

By using these APIs, users can easily create encrypted
scalar, vector, or matrix via Paillier or RSA encryption method.
Users can further perform homomorphic addition and mul-
tiplication operations over these data. To reduce the data
exchange between the FLASH accelerator and the host, we
put the computation results on the off-chip memory unless
the get API is used. As shown in §4.2.3, the data exchange
between on-chip and off-chip memory is efficiently pipelined,
leading to better end-to-end performance. Moreover, since
libfl.so works in a stateless way, it can be easily scaled out
to support different tasks from various FL applications.

Listing 1: FLASH’s NumPy-like APIs
import flash_np as np
Generating two Paillier-encrypted arrays accelerated by FLASH
x1 = np.array([1, 2, 3], encryption="paillier")
x2 = np.array([4, 5, 6], encryption="paillier")

x3 = x1 + x2 # Homomorphic addition
x4 = np.array([1, 2, 3], encryption=None)
x5 = x4 * x1 # Ciphertext & cleartext multiplication

x3.decrypt() # Decrypting the ciphertext
x5.decrypt()

x3.get() # Transferring the data from accelerator to host
x5.get()

Multi-accelerator Support: The server-side software also
enables multi-accelerator support. If there are multiple
FLASH accelerators on the server, when applications invoke
the APIs, libfl.so will break the task into multiple sub-tasks
and dispatch them to multiple accelerators. The dispatching

strategy is the least workload first and can be configured to
use different strategies, such as round-robin.

5 Implementation
Prototype Implementation with FPGA: We implement
FLASH with FPGA using ∼ 30,000 lines of Verilog [84]
code. We use Xilinx Virtex UltraScale+ VU13P chip [23] in
our implementation. FLASH implements 300 modular expo-
nentiation and multiplication engines with the chip. As the
VU13P chip consists of four dies, we need to distribute com-
ponents on different dies in a balanced way to achieve high
resource utilization. In our implementation, we first place
large modules such as PCIe and DDR controllers on sepa-
rate dies with the consideration that they should be close to
the location of their corresponding I/O pins. Then, with the
settle-down of large modules, we place different numbers of
engines on different dies to make the resource utilization of
each die approximately the same to avoid the possibility of
local congestion. As a final note, the operation frequency of
our FPGA implementation is 300MHz while we achieved
∼ 88% DSP resource utilization, which, to the best of our
knowledge, is relatively high in FPGA’s industry [92].
Server-side Software Stack Implementation: Our im-
plementation of FLASH’s server-side software contains ∼
10,000 lines of C/C++ and Python code. This includes modi-
fications of FATE to harness FLASH’s acceleration capacity.
We mainly modify the federatedml module [3] in FATE
by replacing normal collection operations with FLASH’s
NumPy-like APIs. We further use Xilinx DMA (XDMA)
IP Reference driver [21] for high-performance direct memory
access through the PCIe interface.
Evaluating FLASH as ASIC: We leverage multiple standard
software to assess the FLASH design as an ASIC. Specifi-
cally, we first use Synopsys Design Compiler [14] to convert
FLASH’s design logics into physical implementations, i.e.,
netlist, over both 12nm and 28nm technology libraries. Then,
we use Synopsys VCS [16] to verify that the generated netlist
functions correctly and use Synopsys Prime Time [15] for
static timing analysis to validate that the netlist satisfies all
timing constraints. More evaluation results of the ASIC per-
formance will be discussed in §6.5.

6 Evaluation
In this section, we first present our evaluation methodol-
ogy (§6.1). Then we show that for the nine cryptographic

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1065

0

10

20

A
cc
.
R
a
ti
o

O1 O2 O3

O4 (e=
10
24b

)

O4 (e=
25
6b
)

O4 (e=
12
8b
)

O4 (e=
64b

)

O4 (e=
32b

)

O5 (e=
10
24b

)

O5 (e=
25
6b
)

O5 (e=
12
8b
)

O5 (e=
64b

)

O5 (e=
32b

)
O6 O7 O8 O9

102

104

k
O
P
/
s

CPU GPU FLASH Acc. FLASH over CPU Acc. FLASH over GPU

(a) Cryptographic operation performance of all compared schemes. The left Y-axis is associated with the
bar chart and is in the log scale. The right Y-axis is associated with the line chart.

O1 O2 O3 O4 O5 O7
0

1

2

3

4

N
o
rm

.
k
O

P
/
s

FLASH-1 FLASH-2 FLASH-3

(b) Multi-accelerator performance
with selected operations.

Figure 8: Performance of cryptographic operations.

FPGA Logic Cells DSP Public Key N = 1024bit Public Key N = 2048bit
Encryption (kOP/s) Decryption (kOP/s) Encryption (kOP/s) Decryption (kOP/s)

FLASH VU13P 3,780,000 12,288 40.706 107.707 6.033 19.373
PCP [80] 7VX330T [25] 326,400 1,120 1.40625 1.15625 - -
HLS [91] VU9P [23] 2,586,000 6,840 5.238 5.238 - -
SoC [31] ZU9EG [26] 600,000 2,520 - - 0.561 0.563

Table 2: Resource consumption & performance comparison among FLASH and other Paillier accelerators.

Models Datasets

Vertical FL
RSA-PSI [45]

CreditCard [1]VLR [53]
SBT [42]

Horizontal FL

HLR CreditCard [1]
MLP FMNIST [86]
LSTM [57] Shakespeare [17]
DenseNet169 [59]

Cifar-10 [66]ResNet50 [55]
VGG16 [82]

Table 3: Models & datasets used in evaluation of FLASH.

operations, FLASH achieves up to 14.0× and 3.4× accel-
eration over CPU and GPU (§6.2), translating up to 6.8×
and 2.0× speedup for realistic FL applications (§6.3), respec-
tively. Finally, we evaluate the performance of FLASH as an
ASIC (§6.5).

6.1 Methodology
Environment Setup: We use two X86 servers in our setup.
Each server is equipped with a Mellanox CX-4 NIC [6] and
connected to a Mellanox SN2100 [7] switch via 40Gbps DAC
cables. To reflect realistic networking situations in real-world
cross-silo FL deployments, we use netem [8] to limit the net-
working bandwidth to be 50Mbps 7. As to other hardware
configurations, each server is equipped with one Intel Xeon
Silver 4114 CPU [5], 192GB memory, and one FLASH accel-
eration card (In the multi-accelerator experiment, each server
will be installed with multiple acceleration cards). We deploy
FATE v1.5 as the cross-silo FL framework.
Schemes Compared: We mainly compare the performance
achieved by FLASH with that achieved by: (1) Original FATE
that uses a highly-optimized GMP library to execute crypto-
graphic operations with CPU (denoted as CPU in the follow-
ing charts). We choose Intel Xeon Silver 4114 CPU similar
to prior works [76]. All CPU experiments are executed with
all ten physical cores in parallel. (2) GPU-based accelerator

7More details on how network bandwidth affects FLASH are shown in
§6.4

(denoted as GPU). We extend the GPU implementation of
HAFLO [43] which only implements logistic regression. Note
that only the cryptographic operations are accelerated by GPU
in our experiments. We use NVIDIA P4 GPU because it has
the same technology of 16nm and achieves the closest INT8
TOPS as FLASH (although ∼ 2× better. P4 reaches ∼ 20
INT8 TOPS while FLASH achieves ∼ 12.9 INT8 TOPS).
Performance Metrics: We use the number of operations
performed per second (OP/s) as the metric when evaluating
the performance of cryptographic operations, and accelera-
tion ratio over CPU/GPU as the metric when evaluating FL
applications.

6.2 Cryptographic Operations
To demonstrate that FLASH can efficiently accelerate the
nine cryptographic operations, we compare the performance
achieved by CPU, GPU, and FLASH, respectively. For oper-
ations O4 and O5, we also evaluate different exponent bit-
widths (32bit – 1024bit). The experiment results are shown
in Figure 8a. In general, FLASH can consistently outperform
CPU and GPU for all cryptographic operations. Specifically,
FLASH outperforms CPU by 7.7× – 14.0× and GPU by
1.4× – 3.4×, showing that FLASH’s hardware architecture
fits the computational requirements of these cryptographic
operations. Furthermore, we observe that when handling a
larger exponent, FLASH tends to achieve a better acceleration
ratio. For example, FLASH achieves 13.6× acceleration than
CPU when evaluating O4 with e = 1024bit, but drops to 7.7×
with e = 32bit. The results show that when the computation
is more intensive, i.e., with a large exponent, FLASH can
achieve even better performance.
Multi-accelerator Support: We inspect how FLASH per-
forms when we use multiple FLASH acceleration cards to
speed up cryptographic operations. We evaluate one, two
and three accelerators, denoted as FLASH-1, FLASH-2 and
FLASH-3 respectively. For space limitation, we only pick
some operations for demonstration: O1, O2, O3, O4 with

1066 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 20 30 40 50

Samples (K)

1

2

3

A
cc

.
R

at
io

CPU GPU FLASH

(a) RSA-PSI

10 20 30 40 50

Samples (K)

1

2

3

4

A
cc

.
R

at
io

CPU GPU FLASH

(b) VLR

10 20 30 40 50

Samples (K)

1

2

3

A
cc

.
R

at
io

CPU GPU FLASH

(c) SBT

10 20 30 40 50

Samples (K)

0

3

6

9

A
cc
.
R
at
io

CPU GPU FLASH

(d) HLR

Figure 9: Performance of RSA-PSI, VLR, SBT, and HLR with changing data volumes.

0 5 10 15 20 25 33

Parameters (M)

0

3

6

A
cc

.
R

at
io

MLP LSTM

DenseNet169

ResNet50 VGG16CPU GPU FLASH

Figure 10: Performance of five deep learning applications.

e = 1024bit, O5 with e = 1024bit, and O7. The results are
shown in Figure 8b. We observe that for most cryptographic
operations, e.g., O1, O2, O4, O5 and O7, the overall perfor-
mance of FLASH is almost linear to the number of acceler-
ators: FLASH-2 achieves 1.90× – 1.98× while FLASH-3
achieves 2.89× – 2.95× speedup for these operations. How-
ever, for O3, FLASH-2 and FLASH-3 only achieve 1.47×
and 1.80× acceleration, respectively. The reason is as fol-
lows: the computation workload of O3 is relatively low, thus
the control overhead, e.g., multi-accelerator synchronization,
takes a considerable portion, leading to non-linear speedup.
However, in the real-world use case, we envision that FLASH
with multiple accelerators would still be an efficient solution
to accelerate large-scale cross-silo FL applications.
Comparison with Other Paillier Accelerators: To give
readers a better understanding of how efficient the FLASH’s
hardware design is, we further compare FLASH with some
state-of-the-art hardware-based solutions, e.g., Paillier Crypto-
processor (PCP) [80], HLS [91], and SoC [31] based solutions.
Moreover, due to the limited hardware resources, some of
these works only implement a subset of cryptographic opera-
tions supported by FLASH. The comparison results are shown
in Table 2. PCP and HLS report their data with public key
N = 1024bit, while SoC uses N = 2048bit, thus we report the
performance of FLASH with both N = 1024 and 2048bit. The
results show that, compared to PCP, HLS and SoC, FLASH
consumes 10.97×, 1.80×, 4.88× DSP resources, but deliv-
ers 28.95×, 7.77×, and 10.75× encryption acceleration and
93.15×, 20.56×, and 34.38× decryption acceleration, respec-
tively. The results demonstrate that by using inter- & intra-
engine pipelining and dataflow scheduling, FLASH can (1)
deliver much better performance if utilizing comparable re-
sources, and (2) support more complete functions.

6.3 Cross-silo FL Applications
We then present how FLASH can accelerate real-world cross-
silo FL applications, including both vertical and horizontal.
The models and datasets used are shown in Table 3. For ver-

tical FL, before performing the model training algorithms,
we first run a commonly used sample alignment algorithm:
RSA blind signature-based PSI (RSA-PSI). Then, we per-
form Vertical Logistic Regression (VLR) [53] and Secure
Boosting Tree (SBT) [42] algorithms over the data intersec-
tion (generated from PSI), respectively. For horizontal FL,
we mainly evaluate Horizontal Logistic Regression (HLR)
and five deep learning applications with different parameters.
Each application runs a fixed number of epochs.

RSA-PSI, VLR, SBT, and HLR: The performance of RSA-
PSI, VLR, SBT, and HLR is related to the data volumes. Thus
we evaluate FLASH with different data volumes. The re-
sults are shown in Figure 9. In general, FLASH consistently
outperforms CPU and GPU by achieving 1.6× – 6.8× and
1.1× – 2.0× acceleration ratio respectively. The results have
demonstrated that by designing a tailored hardware accelera-
tion architecture for cross-silo FL, we can effectively speed
up FL applications and outperform the existing CPU/GPU
architectures. Furthermore, we also notice that for RSA-PSI
and VLR, GPU tends to reach a similar acceleration ratio as
FLASH while processing more data. The reason is that for
RSA-PSI and VLR, the cleartext computation, which is purely
executed on the CPU, takes a significant portion of the total
computation time. For example, in VLR, when handling 50K
data samples in one epoch, after sufficient acceleration, the
ciphertext computation takes < 10% of the total computation
time. Therefore, the performance is mainly decided by the
time of cleartext computation when the cryptographic opera-
tions are sufficiently accelerated, which leads to the results
that FLASH and GPU achieve similar acceleration ratios over
CPU. In contrast, for HLR and SBT, FLASH can achieve a
higher acceleration ratio than GPU because the cryptographic
operations of these two applications consume a significant
portion of the total computation time.

Deep Learning Applications: We have further evaluated five
deep learning models of different numbers of parameters with
horizontal FL. The results are shown in Figure 10. We find that
FLASH can outperform CPU and GPU by achieving 4.1× –
5.4× and 1.2× – 1.6× acceleration ratio respectively due to a
similar reason discussed above. Furthermore, we note that for
models with more parameters, e.g., DenseNet169, ResNet50,
VGG16, FLASH can achieve a higher speedup than models
with fewer parameters, e.g., MLP, LSTM. This experiment
implies that for more computation-intensive tasks, FLASH
can deliver more notable results.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1067

28nm Technology Library (Actual Op. Frequency: 800MHz) 12nm Technology Library (Actual Op. Frequency: 1120MHz)
Area/Unit (mm2) # Unit Total Area (mm2) Area/Unit (mm2) # Unit Total Area (mm2)

PCIe Gen3×16 8.46 1 8.460 (6.56%) 5.25 1 5.250 (4.04%)
DDR4 Controller 7.25 2 14.500 (11.24%) 4.43 2 8.860 (6.81%)
Engine Logic 0.093 800 74.480 (57.72%) 0.046 1900 87.499 (67.26%)
Engine Memory 0.033 800 26.200 (20.30%) 0.014 1900 25.927 (19.93%)
Dataflow Scheduling & Others 5.399 1 5.399 (4.18%) 2.561 1 2.561 (1.97%)

Total - - 129.04 (99.26%) - - 130.10 (100.08%)

Table 4: ASIC resource evaluation for both 28nm and 12nm technology libraries.

Correctness: In addition to evaluating the performance of
the above nine cross-silo FL applications, we also validate
the final results of all compared schemes (we avoid the ran-
domness by setting an identical random seed). Results have
shown that all schemes yield identical results, showing that
FLASH does not affect the correctness of model training.

Summary: Implemented as an FPGA prototype, FLASH has
already largely outperformed CPU and achieved moderately
better performance than GPU with comparable price. We also
understand that high-end GPUs, e.g., A100 [9], H100 [10],
may outperform FLASH’s FPGA prototype due to more ad-
vanced foundry technology, which are also of much higher
price. However, they still share the drawbacks as mentioned
in §3.3. The goal of our paper is to design a more efficient
hardware acceleration architecture for cross-silo FL beyond
existing CPU/GPU architectures. As we will demonstrate in
§6.5, if implemented as an ASIC, the performance of FLASH
can be significantly improved, which should boost the accel-
eration ratio for these applications to a much higher level.

6.4 FLASH Deep-dive
In this part, we mainly investigate (1) how the number of par-
ticipants and (2) how the varying network bandwidth affects
the performance of FLASH respectively.

Number of Participants: We evaluate VLR with two to five
participants and measure the acceleration ratio of FLASH
over CPU. The experiment result is shown in Figure 11a and
we observe that in general, the number of participants does
not largely impact the acceleration of FLASH.

Varying Bandwidth Setting: In this part, we use netem [8]
to limit the available bandwidth between the two participants
from 10Mbps to 100Mbps. We run VLR and measure the
execution time of one iteration with both CPU and FLASH.
Figure 11b shows the results and we can observe that when
the bandwidth is over 50Mbps, the running times of both CPU
and FLASH are stable, where FLASH outperforms CPU by
∼ 3×. The results show that the varying network bandwidth
does not have a noticeable impact on FLASH.

6.5 ASIC Performance Assessment
Given that our FPGA-based prototype implementation of
FLASH has performance limitations due to the intrinsic draw-
back of FPGA (e.g., low operation frequency), in this section
we intend to demonstrate some preliminary results of how
FLASH performs as an ASIC. As introduced in §5, we use

2 3 4 5

Participants

1

2

3

4

A
cc

.
R

at
io

Acceleration Ratio

(a) Performance of VLR with
varying participants.

20 40 60 80 100

Bandwidth (Mbps)

0

50

100

150

T
im
e
(s
)

CPU FLASH

(b) Performance of VLR with
varying networking bandwidth.

Figure 11: FLASH deep-dive.

standard software tools to assess the performance of FLASH
if implemented as an ASIC. We evaluate FLASH’s ASIC im-
plementation with two technology libraries: 28nm and 12nm.
Based on the industry experience, we set the operating fre-
quency to be 1000MHz and 1400MHz, respectively, for these
two technology libraries. Furthermore, we set the die area
to be ∼ 130mm2. We believe this setting could balance the
performance and power consumption for FLASH.

The detailed evaluation includes the following steps: First,
we perform logic synthesis using Synopsys Design Com-
piler [14] to convert FLASH’s design into netlist under the
frequency and die area constraints. Table 4 illustrates the
results. With 28nm technology library, we can allocate 800
modular multiplication and exponentiation engines success-
fully, while with 12nm technology library, we can allocate
1900 such engines. Second, we use Synopsys VCS [16] and
Synopsys Prime Time [15] to confirm that both netlists are
valid and function correctly. The third step is to estimate the
performance gain of FLASH as an ASIC. Since the actual
operating frequency after physical design should be lower
than logic synthesis, we reduce the actual operation frequency
by multiplying 80% by the design target for a conservative
purpose.

Then, our final performance estimation is as follows. With
28nm technology library, we can allocate 2.67× engines com-
pared to our FPGA implementation (800 v.s. 300), and the
operation frequency of these engines is 2.67× that of the
FPGA implementation (800MHz v.s. 300MHz), leading to
an overall 7.11× performance gain on modular exponenti-
ation operator (we use modular exponentiation operator as
the metrics since it can fulfill the computation capacity of
an engine). With 12nm technology library, we can allocate
6.33× engines (1900 v.s. 300) with 3.73× operation fre-
quency (1120MHz v.s. 300MHz), and achieve 23.64× overall
performance improvement. To give our readers a better un-
derstanding of FLASH’s performance as an ASIC, we also

1068 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

evaluate the modular exponentiation operator with a state-of-
the-art GPU – NVIDIA A100 [9], our results show that A100
can only achieve 5.78× performance gain than our downscale
FPGA prototype. Finally, we estimate the power consump-
tion for a single engine, which is ∼ 16.6mWatt with 28nm
technology library. Thus, the total power consumption for all
engines is ∼ 13.28Watt. Although we do not have the power
consumption data of other parts, e.g., PCIe controller, we be-
lieve the total power consumption of FLASH as an ASIC
should be significantly lower than the 120Watt of our FPGA
implementation.

7 Discussion

Benefit to Future GPU/TPU Design: Nowadays, GPU [9–
13] and TPU [63] have been widely adopted to accelerate
deep learning applications. These accelerators mainly target
accelerating convolution operations with tensors, where most
numbers are short floats. In contrast, FLASH targets accel-
erating the identified nine cryptographic operations that are
widely adopted in cross-silo FL. Moreover, most numbers
used in FLASH are large numbers with a bit-width of 2048
bit or even longer. However, in some cross-silo applications,
e.g., horizontal deep learning in §6.3, both convolution and
cryptographic operations exist. Therefore, we can foresee a
co-design of GPU/TPU with FLASH in the future. For ex-
ample, GPU/TPU can efficiently accelerate the local model
training while FLASH is used to accelerate the model encryp-
tion and aggregation. We will make FLASH as an IP core in
the future, and thus GPU/TPU vendors can use FLASH in
their design to accomplish the aforementioned co-design.

FLASH v.s. Other GPU/FPGA Implementations: Some
existing works also target accelerating modular exponentia-
tion operations with GPU [43, 54, 61] or FPGA [29, 31, 34,
35, 80, 83, 91], which leverage similar algorithm optimization
methods, e.g., Binary Exponentiation [52] and Montgomery
Modular Multiplication [65]. Yet, none of them performs a
thorough analysis towards all cryptographic operations used
in cross-silo FL and offloads them efficiently on the hardware-
based accelerator as FLASH. Moreover, our idea of com-
posing various cryptographic operations based on the two
basic operators via dataflow scheduling is designed for the
cross-silo FL scenarios, making FLASH a unique solution
compared to prior FPGA-based implementations. As a final
note, our design of FLASH is not limited to FPGA but is also
applied to ASICs.

Extending to Other Application Domains: While FLASH
is introduced for accelerating cross-silo FL, it can speed up
applications in other domains as well. First, the Paillier and
RSA cryptosystems used in cross-silo FL are also widely
adopted in other domains. Thus FLASH can accelerate appli-
cations built on them, e.g., electronic voting [47], electronic
cash [38], and threshold cryptosystem [46]. Second, since
FLASH’s core idea is to accelerate modular multiplication

and exponentiation operators, cryptographic systems/opera-
tions built on them, such as Diffie-Hellman key exchange [56],
can also benefit from FLASH.

8 Related Works
Besides the related works discussed in §7, we further cover
the following two related directions in this section.
Accelerating FL: Recently, due to the increasing deployment
of FL, various research works have emerged to accelerate FL.
MAGE proposes to optimize the secure computation from a
memory perspective [67]. BatchCrypt tries to optimize the
Paillier encryption by encoding a batch of quantized gradi-
ents into a long integer and encrypting it in one batch [95].
VF2Boost proposes a novel training protocol to reduce the
idle time of each participant [49]. Relative to them, we design
FLASH from a different angle: accelerating the cryptographic
operations used in FL, and our FLASH could be easily com-
bined with these prior works.
Domain Specific Accelerator (DSA): DSA has recently
been an emerging research topic that adopts hardware, e.g.,
FPGA, ASIC, etc., to accelerate particular applications [37,
62, 64, 75, 75, 76, 79, 93, 94]. For example, Tiara [94] uses
FPGA and a programmable switch to accelerate layer-4 load
balancing. FlowBlaze [75] offloads complex networking func-
tions to a NetFPGA SmartNIC. hXDP [37] proposes to use
FPGA to accelerate eBPF programs for fast XDP execu-
tion. MicroRec [62] offloads neural networks to FPGA to
implement efficient recommendation systems. Various DSAs
have been proposed to accelerate fully homomorphic encryp-
tion (FHE) [96], such as HEAX [76], F1 [78], BTS [64] and
CraterLake [79]. Similar to them, FLASH follows the princi-
ple of DSA to design a hardware-based solution to efficiently
accelerate cross-silo FL.

9 Conclusion
This paper presented FLASH, a hardware acceleration archi-
tecture for cross-silo FL. We have provided a fully functional
FPGA prototype and evaluated our design as an ASIC. Exten-
sive experiments with realistic applications and cryptographic
operations have shown that FLASH is a viable solution.

Acknowledgments
We thank the anonymous NSDI reviewers and our shep-
herd Prof. Andreas Haeberlen for their constructive feed-
back and suggestions. This work is supported in part by the
Key-Area Research and Development Program of Guang-
dong Province (2021B0101400001), the Hong Kong RGC
TRS T41-603/20-R, GRF-16215119, GRF-16213621, the
NSFC Grant (62062005, 62102046), the Natural Science
Foundation of Hunan Province (2022JJ30618), and the Sci-
entific Research Fund of Hunan Provincial Education De-
partment (22B0300). Kai Chen is the corresponding author.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1069

References
[1] Credit Card Cheating Detection. https://

www.kaggle.com/arslanali4343/credit-card-
cheating-detection-cccd.

[2] Federated AI Technology Enabler. https://fate.
fedai.org.

[3] Federated Machine Learning. https://github.com/
FederatedAI/FATE/tree/master/python/
federatedml.

[4] FedLearner. https://github.com/bytedance/
fedlearner.

[5] Intel Xeon Silver 4114 Processor. https://www.
intel.com/content/www/us/en/products/sku/
123550/intel-xeon-silver-4114-processor-
13-75m-cache-2-20-ghz/specifications.html.

[6] Mellanox ConnectX-4 EN Adapter Card
Single/Dual-Port 100 Gigabit Ethernet Adapter.
https://www.mellanox.com/products/ethernet-
adapters/connectx-4-en.

[7] Mellanox SN2100 Open Ethernet Switch.
https://www.mellanox.com/related-docs/
prod_eth_switches/PB_SN2100.pdf.

[8] netem. https://man7.org/linux/man-pages/
man8/tc-netem.8.html.

[9] NVIDIA A100. https://www.nvidia.com/en-us/
data-center/a100/.

[10] NVIDIA H100. https://www.nvidia.com/en-us/
data-center/h100/.

[11] NVIDIA P4. https://images.nvidia.com/
content/pdf/tesla/184457-Tesla-P4-
Datasheet-NV-Final-Letter-Web.pdf.

[12] NVIDIA P40 Datasheet. https://www.nvidia.com/
content/dam/en-zz/Solutions/design-
visualization/documents/nvidia-p40-
datasheet.pdf.

[13] NVIDIA V100 Datasheet. https://images.nvidia.
com/content/technologies/volta/pdf/volta-
v100-datasheet-update-us-1165301-r5.pdf.

[14] Synopsys Design Compiler. https://
www.synopsys.com/implementation-and-
signoff/rtl-synthesis-test/dc-ultra.html.

[15] Synopsys Prime Time. https://www.synopsys.com/
implementation-and-signoff/signoff/
primetime.html.

[16] Synopsys VCS. https://www.synopsys.com/
verification/simulation/vcs.html.

[17] Text generation with an RNN. https://
www.tensorflow.org/text/tutorials/
text_generation.

[18] TF Encrypted. https://github.com/tf-
encrypted/tf-encrypted.

[19] The GNU Multiple Precision Arithmetic Library.
https://gmplib.org.

[20] Timing Closure User Guide. https://
www.xilinx.com/content/dam/xilinx/support/
documentation/sw_manuals/xilinx14_7/
ug612.pdf.

[21] Xilinx DMA. https://www.xilinx.com/support/
documentation/ip_documentation/axi_dma/
v7_1/pg021_axi_dma.pdf.

[22] Xilinx UltraScale Architecture DSP Slice User
Guide. https://docs.xilinx.com/v/u/en-US/
ug579-ultrascale-dsp.

[23] Xilinx UltraScale+ FPGA Production Table and Pro-
duction Selection Guide. https://www.xilinx.com/
content/dam/xilinx/support/documents/
selection-guides/ultrascale-plus-fpga-
product-selection-guide.pdf.

[24] Xilinx Virtex UltraScale+ FPGA Data Sheet: DC and
AC Switching Characteristics. https://docs.xilinx.
com/v/u/en-US/ds923-virtex-ultrascale-plus.

[25] Xilinx Virtex7 FPGAs. https://www.xilinx.com/
support/documentation/selection-guides/
virtex7-product-table.pdf.

[26] Xilinx Zynq UltraScale+ MPSoCs. https://
docs.xilinx.com/v/u/en-US/zynq-ultrascale-
plus-product-selection-guide.

[27] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October
24-28, 2016, pages 308–318. ACM, 2016.

[28] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and
Mauro Conti. A survey on homomorphic encryption
schemes: Theory and implementation. ACM Comput.
Surv., 51(4):79:1–79:35, 2018.

[29] Timo Alho, Panu Hämäläinen, Marko Hännikäinen, and
Timo D. Hämäläinen. Compact modular exponentiation
accelerator for modern FPGA devices. Comput. Electr.
Eng., 33(5-6):383–391, 2007.

1070 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.kaggle.com/arslanali4343/credit-card-cheating-detection-cccd
https://www.kaggle.com/arslanali4343/credit-card-cheating-detection-cccd
https://www.kaggle.com/arslanali4343/credit-card-cheating-detection-cccd
https://fate.fedai.org
https://fate.fedai.org
https://github.com/FederatedAI/FATE/tree/master/python/federatedml
https://github.com/FederatedAI/FATE/tree/master/python/federatedml
https://github.com/FederatedAI/FATE/tree/master/python/federatedml
https://github.com/bytedance/fedlearner
https://github.com/bytedance/fedlearner
https://www.intel.com/content/www/us/en/products/sku/123550/intel-xeon-silver-4114-processor-13-75m-cache-2-20-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/123550/intel-xeon-silver-4114-processor-13-75m-cache-2-20-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/123550/intel-xeon-silver-4114-processor-13-75m-cache-2-20-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/123550/intel-xeon-silver-4114-processor-13-75m-cache-2-20-ghz/specifications.html
https://www.mellanox.com/products/ethernet-adapters/connectx-4-en
https://www.mellanox.com/products/ethernet-adapters/connectx-4-en
https://www.mellanox.com/related-docs/prod_eth_switches/PB_SN2100.pdf
https://www.mellanox.com/related-docs/prod_eth_switches/PB_SN2100.pdf
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://images.nvidia.com/content/pdf/tesla/184457-Tesla-P4-Datasheet-NV-Final-Letter-Web.pdf
https://images.nvidia.com/content/pdf/tesla/184457-Tesla-P4-Datasheet-NV-Final-Letter-Web.pdf
https://images.nvidia.com/content/pdf/tesla/184457-Tesla-P4-Datasheet-NV-Final-Letter-Web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/documents/nvidia-p40-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/documents/nvidia-p40-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/documents/nvidia-p40-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/documents/nvidia-p40-datasheet.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://www.tensorflow.org/text/tutorials/text_generation
https://www.tensorflow.org/text/tutorials/text_generation
https://www.tensorflow.org/text/tutorials/text_generation
https://github.com/tf-encrypted/tf-encrypted
https://github.com/tf-encrypted/tf-encrypted
https://gmplib.org
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx14_7/ug612.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx14_7/ug612.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx14_7/ug612.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx14_7/ug612.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp
https://docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://docs.xilinx.com/v/u/en-US/ds923-virtex-ultrascale-plus
https://docs.xilinx.com/v/u/en-US/ds923-virtex-ultrascale-plus
https://www.xilinx.com/support/documentation/selection-guides/virtex7-product-table.pdf
https://www.xilinx.com/support/documentation/selection-guides/virtex7-product-table.pdf
https://www.xilinx.com/support/documentation/selection-guides/virtex7-product-table.pdf
https://docs.xilinx.com/v/u/en-US/zynq-ultrascale-plus-product-selection-guide
https://docs.xilinx.com/v/u/en-US/zynq-ultrascale-plus-product-selection-guide
https://docs.xilinx.com/v/u/en-US/zynq-ultrascale-plus-product-selection-guide

[30] Arash AziziMazreah and Lizhong Chen. Shortcut min-
ing: Exploiting cross-layer shortcut reuse in DCNN ac-
celerators. In 25th IEEE International Symposium on
High Performance Computer Architecture, HPCA 2019,
Washington, DC, USA, February 16-20, 2019, pages 94–
105. IEEE, 2019.

[31] Milad Bahadori and Kimmo Järvinen. A programmable
soc-based accelerator for privacy-enhancing technolo-
gies and functional encryption. IEEE Trans. Very Large
Scale Integr. Syst., 28(10):2182–2195, 2020.

[32] Paul Barrett. Implementing the rivest shamir and adle-
man public key encryption algorithm on a standard
digital signal processor. In Advances in Cryptology
- CRYPTO ’86, Santa Barbara, California, USA, 1986,
Proceedings, volume 263 of Lecture Notes in Computer
Science, pages 311–323. Springer, 1986.

[33] Pramod Bhatotia, Rodrigo Rodrigues, and Akshat
Verma. Shredder: Gpu-accelerated incremental storage
and computation. In Proceedings of the 10th USENIX
conference on File and Storage Technologies, FAST
2012, San Jose, CA, USA, February 14-17, 2012, page 14.
USENIX Association, 2012.

[34] Thomas Blum. Montgomery modular exponentiation on
reconfigurable hardware. In 14th IEEE Symposium on
Computer Arithmetic (Arith-14 ’99), 14-16 April 1999,
Adelaide, Australia, pages 70–77. IEEE Computer Soci-
ety, 1999.

[35] Thomas Blum and Christof Paar. High-radix mont-
gomery modular exponentiation on reconfigurable hard-
ware. IEEE Trans. Computers, 50(7):759–764, 2001.

[36] Kallista A. Bonawitz, Hubert Eichner, Wolfgang
Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzoc-
chi, Brendan McMahan, Timon Van Overveldt, David
Petrou, Daniel Ramage, and Jason Roselander. Towards
federated learning at scale: System design. In Proceed-
ings of Machine Learning and Systems 2019, MLSys
2019, Stanford, CA, USA, March 31 - April 2, 2019. ml-
sys.org, 2019.

[37] Marco Spaziani Brunella, Giacomo Belocchi, Marco
Bonola, Salvatore Pontarelli, Giuseppe Siracusano,
Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. hXDP:
Efficient software packet processing on FPGA nics. In
14th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2020, Virtual Event, Novem-
ber 4-6, 2020, pages 973–990. USENIX Association,
2020.

[38] Jan Camenisch, Anna Lysyanskaya, and Mira
Meyerovich. Endorsed e-cash. In 2007 IEEE Sympo-
sium on Security and Privacy (S&P 2007), 20-23 May
2007, Oakland, California, USA, pages 101–115. IEEE
Computer Society, 2007.

[39] Di Chai, Leye Wang, Kai Chen, and Qiang Yang. Se-
cure federated matrix factorization. IEEE Intell. Syst.,
36(5):11–20, 2021.

[40] Di Chai, Leye Wang, Junxue Zhang, Liu Yang, Shuowei
Cai, Kai Chen, and Qiang Yang. Practical lossless fed-
erated singular vector decomposition over billion-scale
data. In KDD ’22: The 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Washington,
DC, USA, August 14 - 18, 2022, pages 46–55. ACM,
2022.

[41] Chaochao Chen, Jun Zhou, Li Wang, Xibin Wu, Wen-
jing Fang, Jin Tan, Lei Wang, Alex X. Liu, Hao Wang,
and Cheng Hong. When homomorphic encryption mar-
ries secret sharing: Secure large-scale sparse logistic
regression and applications in risk control. In KDD

’21: The 27th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, Singapore,
August 14-18, 2021, pages 2652–2662. ACM, 2021.

[42] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian
Chen, Dimitrios Papadopoulos, and Qiang Yang. Secure-
Boost: A lossless federated learning framework. IEEE
Intell. Syst., 36(6):87–98, 2021.

[43] Xiaodian Cheng, Wanhang Lu, Xinyang Huang, Shuihai
Hu, and Kai Chen. HAFLO: gpu-based acceleration for
federated logistic regression. CoRR, abs/2107.13797,
2021.

[44] Yong Cheng, Yang Liu, Tianjian Chen, and Qiang Yang.
Federated learning for privacy-preserving AI. Commun.
ACM, 63(12):33–36, 2020.

[45] Emiliano De Cristofaro and Gene Tsudik. Practical pri-
vate set intersection protocols with linear complexity. In
Financial Cryptography and Data Security, 14th Inter-
national Conference, FC 2010, Tenerife, Canary Islands,
Spain, January 25-28, 2010, Revised Selected Papers,
volume 6052 of Lecture Notes in Computer Science,
pages 143–159. Springer, 2010.

[46] Ivan Damgård and Mads Jurik. A length-flexible thresh-
old cryptosystem with applications. In Information Se-
curity and Privacy, 8th Australasian Conference, ACISP
2003, Wollongong, Australia, July 9-11, 2003, Proceed-
ings, volume 2727 of Lecture Notes in Computer Sci-
ence, pages 350–364. Springer, 2003.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1071

[47] Ivan Damgård, Mads Jurik, and Jesper Buus Nielsen. A
generalization of paillier’s public-key system with ap-
plications to electronic voting. Int. J. Inf. Sec., 9(6):371–
385, 2010.

[48] Olga Fink, Torbjørn H. Netland, and Stefan Feuerriegel.
Artificial intelligence across company borders. Commun.
ACM, 65(1):34–36, 2022.

[49] Fangcheng Fu, Yingxia Shao, Lele Yu, Jiawei Jiang,
Huanran Xue, Yangyu Tao, and Bin Cui. VF2Boost:
Very fast vertical federated gradient boosting for cross-
enterprise learning. In SIGMOD ’21: International Con-
ference on Management of Data, Virtual Event, China,
June 20-25, 2021, pages 563–576. ACM, 2021.

[50] Michelle Goddard. The eu general data protection reg-
ulation (GDPR): European regulation that has a global
impact. International Journal of Market Research,
59(6):703–705, 2017.

[51] Vaibhav Gogte, Aasheesh Kolli, Michael J. Cafarella,
Loris D’Antoni, and Thomas F. Wenisch. HARE: hard-
ware accelerator for regular expressions. In 49th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, MICRO 2016, Taipei, Taiwan, October 15-19, 2016,
pages 44:1–44:12. IEEE Computer Society, 2016.

[52] Daniel M. Gordon. A survey of fast exponentiation
methods. J. Algorithms, 27(1):129–146, 1998.

[53] Stephen Hardy, Wilko Henecka, Hamish Ivey-Law,
Richard Nock, Giorgio Patrini, Guillaume Smith, and
Brian Thorne. Private federated learning on vertically
partitioned data via entity resolution and additively ho-
momorphic encryption. CoRR, abs/1711.10677, 2017.

[54] Owen Harrison and John Waldron. Efficient accelera-
tion of asymmetric cryptography on graphics hardware.
In Progress in Cryptology - AFRICACRYPT 2009, Sec-
ond International Conference on Cryptology in Africa,
Gammarth, Tunisia, June 21-25, 2009. Proceedings, vol-
ume 5580 of Lecture Notes in Computer Science, pages
350–367. Springer, 2009.

[55] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-
30, 2016, pages 770–778. IEEE Computer Society, 2016.

[56] Martin E Hellman, Bailey W Diffie, and Ralph C Merkle.
Cryptographic apparatus and method, April 29 1980. US
Patent 4,200,770.

[57] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural Comput., 9(8):1735–1780, 1997.

[58] Roger A Horn. The hadamard product. In Proc. Symp.
Appl. Math, volume 40, pages 87–169, 1990.

[59] Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q. Weinberger. Densely connected convolutional
networks. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017, pages 2261–2269. IEEE Com-
puter Society, 2017.

[60] M.K. Ibrahim. Radix-2n multiplier structures: a struc-
tured design methodology. IEE Proceedings E (Com-
puters and Digital Techniques), 140(4):185–190, 1993.

[61] Keon Jang, Sangjin Han, Seungyeop Han, Sue B. Moon,
and KyoungSoo Park. Sslshader: Cheap SSL acceler-
ation with commodity processors. In Proceedings of
the 8th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2011, Boston, MA, USA,
March 30 - April 1, 2011. USENIX Association, 2011.

[62] Wenqi Jiang, Zhenhao He, Shuai Zhang, Thomas B.
Preußer, Kai Zeng, Liang Feng, Jiansong Zhang, Tongx-
uan Liu, Yong Li, Jingren Zhou, Ce Zhang, and Gustavo
Alonso. MicroRec: Efficient recommendation inference
by hardware and data structure solutions. In Proceed-
ings of Machine Learning and Systems 2021, MLSys
2021, virtual, April 5-9, 2021. mlsys.org, 2021.

[63] Norman P. Jouppi, Cliff Young, Nishant Patil, David A.
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Got-
tipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt,
Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadi-
ani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan,
Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,
Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. In-datacenter performance
analysis of a tensor processing unit. In Proceedings of
the 44th Annual International Symposium on Computer
Architecture, ISCA 2017, Toronto, ON, Canada, June
24-28, 2017, pages 1–12. ACM, 2017.

1072 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[64] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim,
Wonkyung Jung, John Kim, Minsoo Rhu, and Jung Ho
Ahn. BTS: an accelerator for bootstrappable fully homo-
morphic encryption. In ISCA ’22: The 49th Annual In-
ternational Symposium on Computer Architecture, New
York, New York, USA, June 18 - 22, 2022, pages 711–725.
ACM, 2022.

[65] Çetin Kaya Koç, Tolga Acar, and Burton S. Kaliski Jr.
Analyzing and comparing montgomery multiplication
algorithms. IEEE Micro, 16(3):26–33, 1996.

[66] Alex Krizhevsky. Learning multiple layers of features
from tiny images. 2009.

[67] Sam Kumar, David E. Culler, and Raluca Ada Popa.
MAGE: nearly zero-cost virtual memory for secure com-
putation. In 15th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2021, July 14-
16, 2021, pages 367–385. USENIX Association, 2021.

[68] Pankaj Kumbhare and Vamsi Krishna. Designing high-
performance video systems in 7 series FPGAs with the
AXI interconnect. Xilinx, Inc., San Jose, CA, USA, Appl.
Note, 7:1–24, 2012.

[69] Gang Liang and Sudarshan S. Chawathe. Privacy-
preserving inter-database operations. In Intelligence and
Security Informatics, Second Symposium on Intelligence
and Security Informatics, ISI 2004, Tucson, AZ, USA,
June 10-11, 2004, Proceedings, volume 3073 of Lec-
ture Notes in Computer Science, pages 66–82. Springer,
2004.

[70] Yang Liu, Yan Kang, Chaoping Xing, Tianjian Chen,
and Qiang Yang. A secure federated transfer learning
framework. IEEE Intell. Syst., 35(4):70–82, 2020.

[71] Payman Mohassel and Yupeng Zhang. Secureml: A
system for scalable privacy-preserving machine learning.
In 2017 IEEE Symposium on Security and Privacy, SP
2017, San Jose, CA, USA, May 22-26, 2017, pages 19–
38. IEEE Computer Society, 2017.

[72] M Rai Nigam and S Bande. AXI interconnect between
four master and four slave interfaces. Int. J. Eng. Res.
Gen. Sci, 2(4):2091–2730, 2014.

[73] Pascal Paillier. Public-key cryptosystems based on com-
posite degree residuosity classes. In Advances in Cryp-
tology - EUROCRYPT ’99, International Conference
on the Theory and Application of Cryptographic Tech-
niques, Prague, Czech Republic, May 2-6, 1999, Pro-
ceeding, volume 1592 of Lecture Notes in Computer
Science, pages 223–238. Springer, 1999.

[74] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Li-
hua Wang, and Shiho Moriai. Privacy-preserving deep
learning via additively homomorphic encryption. IEEE
Trans. Inf. Forensics Secur., 13(5):1333–1345, 2018.

[75] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola,
Carmelo Cascone, Marco Spaziani Brunella, Valerio Br-
uschi, Davide Sanvito, Giuseppe Siracusano, Antonio
Capone, Michio Honda, and Felipe Huici. FlowBlaze:
Stateful packet processing in hardware. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2019, Boston, MA, February 26-28,
2019, pages 531–548. USENIX Association, 2019.

[76] M. Sadegh Riazi, Kim Laine, Blake Pelton, and Wei
Dai. HEAX: an architecture for computing on en-
crypted data. In ASPLOS ’20: Architectural Support
for Programming Languages and Operating Systems,
Lausanne, Switzerland, March 16-20, 2020, pages 1295–
1309. ACM, 2020.

[77] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman.
A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[78] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev,
Srinivas Devadas, Ronald G. Dreslinski, Christopher
Peikert, and Daniel Sánchez. F1: A fast and pro-
grammable accelerator for fully homomorphic encryp-
tion. In MICRO ’21: 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, Virtual Event,
Greece, October 18-22, 2021, pages 238–252. ACM,
2021.

[79] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev,
Nathan Manohar, Nicholas Genise, Srinivas Devadas,
Karim Eldefrawy, Chris Peikert, and Daniel Sánchez.
Craterlake: a hardware accelerator for efficient un-
bounded computation on encrypted data. In ISCA ’22:
The 49th Annual International Symposium on Computer
Architecture, New York, New York, USA, June 18 - 22,
2022, pages 173–187. ACM, 2022.

[80] Ismail San, Nuray At, Ibrahim Yakut, and Huseyin Polat.
Efficient paillier cryptoprocessor for privacy-preserving
data mining. Secur. Commun. Networks, 9(11):1535–
1546, 2016.

[81] Sinem Sav, Apostolos Pyrgelis, Juan Ramón Troncoso-
Pastoriza, David Froelicher, Jean-Philippe Bossuat,
Joao Sa Sousa, and Jean-Pierre Hubaux. POSEIDON:
privacy-preserving federated neural network learning.
In 28th Annual Network and Distributed System Secu-
rity Symposium, NDSS 2021, virtually, February 21-25,
2021. The Internet Society, 2021.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1073

[82] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
In 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[83] Daisuke Suzuki. How to maximize the potential of
FPGA resources for modular exponentiation. In Crypto-
graphic Hardware and Embedded Systems - CHES 2007,
9th International Workshop, Vienna, Austria, September
10-13, 2007, Proceedings, volume 4727 of Lecture Notes
in Computer Science, pages 272–288. Springer, 2007.

[84] Donald E. Thomas and Philip Moorby. The Verilog
hardware description language (2. ed.). Kluwer, 1995.

[85] Han Tian, Chaoliang Zeng, Zhenghang Ren, Di Chai,
Junxue Zhang, Kai Chen, and Qiang Yang. Sphinx:
Enabling privacy-preserving online learning over the
cloud. In 43rd IEEE Symposium on Security and Privacy,
SP 2022, San Francisco, CA, USA, May 22-26, 2022,
pages 2487–2501. IEEE, 2022.

[86] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
MNIST: a novel image dataset for benchmarking ma-
chine learning algorithms. CoRR, abs/1708.07747,
2017.

[87] Shuotao Xu, Thomas Bourgeat, Tianhao Huang, Ho-
jun Kim, Sungjin Lee, and Arvind. AQUOMAN: an
analytic-query offloading machine. In 53rd Annual
IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 2020, Athens, Greece, October 17-21,
2020, pages 386–399. IEEE, 2020.

[88] Liu Yang, Ben Tan, Vincent W. Zheng, Kai Chen, and
Qiang Yang. Federated recommendation systems. In
Federated Learning - Privacy and Incentive, volume
12500 of Lecture Notes in Computer Science, pages 225–
239. Springer, 2020.

[89] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin
Tong. Federated machine learning: Concept and appli-
cations. ACM Trans. Intell. Syst. Technol., 10(2):12:1–
12:19, 2019.

[90] Timothy Yang, Galen Andrew, Hubert Eichner,
Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ramage,
and Françoise Beaufays. Applied federated learning:
Improving google keyboard query suggestions. CoRR,
abs/1812.02903, 2018.

[91] Zhaoxiong Yang, Shuihai Hu, and Kai Chen. Fpga-
based hardware accelerator of homomorphic encryption
for efficient federated learning. CoRR, abs/2007.10560,
2020.

[92] Tian Ye, Sanmukh R. Kuppannagari, Rajgopal Kan-
nan, and Viktor K. Prasanna. Performance modeling
and FPGA acceleration of homomorphic encrypted con-
volution. In 31st International Conference on Field-
Programmable Logic and Applications, FPL 2021, Dres-
den, Germany, August 30 - Sept. 3, 2021, pages 115–121.
IEEE, 2021.

[93] Chaoliang Zeng, Layong Luo, Qingsong Ning, Yaodong
Han, Yuhang Jiang, Ding Tang, Zilong Wang, Kai Chen,
and Chuanxiong Guo. FAERY: an fpga-accelerated
embedding-based retrieval system. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2022, Carlsbad, CA, USA, July 11-13,
2022, pages 841–856. USENIX Association, 2022.

[94] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong
Wang, Luyang Li, Wenchen Han, Nan Chen, Lebing
Wan, Lichao Liu, Zhipeng Ding, Xiongfei Geng, Tao
Feng, Feng Ning, Kai Chen, and Chuanxiong Guo. Tiara:
A scalable and efficient hardware acceleration architec-
ture for stateful layer-4 load balancing. In 19th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2022, Renton, WA, USA, April 4-6,
2022, pages 1345–1358. USENIX Association, 2022.

[95] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang,
Feng Yan, and Yang Liu. BatchCrypt: Efficient homo-
morphic encryption for cross-silo federated learning. In
2020 USENIX Annual Technical Conference, USENIX
ATC 2020, July 15-17, 2020, pages 493–506. USENIX
Association, 2020.

[96] Junxue Zhang, Xiaodian Cheng, Liu Yang, Jinbin Hu,
Ximeng Liu, and Kai Chen. Sok: Fully homomorphic
encryption accelerators. CoRR, abs/2212.01713, 2022.

Appendix
A Cross-silo Federated Learning
Cross-silo federated learning (FL) denotes the scenario where
companies or institutions collaboratively train machine learn-
ing models without data privacy leakage [39,40,44,48,88,89].
Compared with cross-device FL, where participants are mo-
bile devices, cross-silo FL focuses more on data security and
incentive mechanism. From the data partition angle, Yang
et al. proposed to categorize FL into horizontal FL, vertical
FL, and federated transfer learning [70]. Federated transfer
learning has rarely been applied in the industry and remains
in the research stage. In most cases, cross-device FL contains
only horizontal FL, while cross-silo FL usually contains both
horizontal and vertical FL. Because of the different data par-
tition situations, horizontal and vertical FL are different in
model construction, protocol design as well as the utilized
cryptographic systems.

1074 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A.1 Cross-silo Horizontal FL
Participants in horizontal FL have different sample ID spaces
but the same feature space, as shown in Figure 1a. Each partic-
ipant owns the labels of their samples. Therefore, horizontal
FL enlarges the number of training samples to train a model
with better generalization ability. In most cases, there is a
third-party central server for parameter aggregation.

The tth iteration of the training process among three partic-
ipants is shown as follows:

1. All participants negotiate about keys for encryption.
2. Each participant i trains local model wwwt

i with its own sam-
ples and encrypts its model weights to [[wwwt

i]] with either
additively homomorphic encryption (e.g., Paillier [74]).

3. Each participant i sends the encrypted weights to the central
server.

4. The server receives the encrypted local model weights
from all participants and aggregates them to global model
weights ∑i [[wwwt

i]]
n , where n stands for the number of partic-

ipants. Because the weights are encrypted via additively
homomorphic encryption, we can directly perform an ag-
gregation over the ciphertext.

5. The central server sends the aggregated global weights to
all participants.

6. Each participant receives the global weights and decrypts
them locally. Then the participant can update its local
model wwwt+1

i with the decrypted global model.
After the federated training process, each participant ob-

tains the same well-trained model. Thus, each participant can
perform model inference locally.

A.2 Cross-silo Vertical FL
Participants in vertical FL scenarios have the same sample
ID space but different feature spaces, as shown in Figure 1b.
Under normal circumstances, only one participant holds the
label of the FL task, which is called the active party. The other
participants without labeling information are called passive
parties. Compared with horizontal FL, vertical FL could en-
rich the feature information of samples. Unlike horizontal
FL, the training process of vertical FL is conducted after the
entity alignment stage, which aligns common samples while
protecting privacy. Besides, the training schema of vertical
FL is also different from horizontal FL. More specifically,
each participant only owns part of the model parameters cor-
responding to the local feature dimensions. Hence, vertical FL
cannot simply conduct the secure aggregation as horizontal
FL does. In addition, various machine learning algorithms do
not have a unified design of the vertical FL implementation.

Taking the federated linear regression [89] between two
participants as an example, we illustrate the training process
as follows:

1. Participants and the third-party central server negotiate
about keys for encryption.

2. Passive party B computes local point estimate ut
B, j and

partial loss Lt
B, j for the jth aligned sample, then encrypts

them to [[ut
B, j]] and [[Lt

B, j]] with Paillier [74]. Active party
A calculates local point estimate ut

A, j.

3. Passive party B sends the encrypted numbers to the active
party A.

4. Active party A receives the encrypted numbers and com-
putes the total loss [[Lt

j]] and the intermediate results [[dt
j]]

used to calculate gradients.

5. Active party A sends [[Lt
j]] to server and [[dt

j]] to passive
party B.

6. Party B and party A separately compute encrypted gradients

[[
∂Lt

j
∂wwwt

P
]] and [[

∂Lt
j

∂wwwt
A
]] and add random masks.

7. Both parties send the encrypted and masked gradients to
the central server.

8. The third-party central server decrypts the received cipher-
text to get the plain-text masked gradients and sends them
back.

9. Party B and party A respectively remove the random masks
from gradients and update the local partial model.

All participants of vertical FL should be involved in the
inference stage since each of them only owns part of the whole
model.

A.3 Security Analysis of Cross-silo FL
The adopted FL algorithms in this paper are proved secure
under the semi-honest assumption [42, 89]. The semi-honest
assumption means that each party does not violate the fed-
erated protocols and only tries to infer the sensitive data of
other parties from the received messages. For the horizon-
tal FL models, the transmitted model updates are protected
by additively HE for aggregation. Therefore, nothing can be
learned by the arbiter. Moreover, each party obtains the ag-
gregated model updates and can only calculate the average
model updates of the other parties. Hence, given more than
two parties, the model updates computed over the local data
of one party cannot be leaked to the other parties [89]. For the
vertical federated linear models, the transmitted intermediate
results are protected by random masks and HE, which reveals
no information. Furthermore, from the obtained model up-
dates, one party cannot infer the sensitive data of other parties
without prior knowledge of their data structures [89]. For
the vertical SecureBoost model, the active party with labels
could learn some information agreed in advance, such as the
instance spaces and the responsible parties of splits. However,
under the protection of HE, the original data records of one
party cannot be revealed to other parties, either [42].

B Paillier Cryptosystem
Paillier Cryptosystem [73] is a widely-used additively (i.e.,
partially) homomorphic encryption scheme. Paillier cryp-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1075

tosystem supports two kinds of operations, including the ad-
dition of two values of ciphertext and multiplication between
ciphertext and cleartext. We will introduce Paillier key gener-
ation, encryption and decryption respectively in the following
section.
Key Generation: Key generation of Paillier Cryptosystem
follows the following steps.
1. Choose two random prime numbers p and q which satisfy

that gcd(pq,(p−1)(q−1)) = 1, where gcd stands for the
greatest common divisor.

2. Compute n = p ·q.
3. Compute λ = lcm(p−1,q−1), where lcm means the least

common multiple.
4. Randomly select an integer g which satisfies that

gcd(Ln(gλ mod n2),n) = 1. Function Ln(x) is defined as
Ln(x) = (x−1)/n.

5. Compute µ = [Ln(gλ mod n2)]−1 mod n.
After the above computation, we will obtain the public key:
(n,g) and private key: (λ,µ) respectively.
Encryption: The encryption algorithm of Paillier is straight-
forward and follows the following equation.

c = gm · rn mod n2. (B.1)

Optimization of Encryption: The encryption can be ac-
celerated by assigning public key g as n+1. Therefore, the
encryption algorithm is simplified as follows.

c = gm · rn mod n2

= (n+1)m · rn mod n2

= [(
m

∑
i=0

(
m
i

)
·ni) · rn] mod n2

= [(1+m ·n) · rn] mod n2

(B.2)

One modular exponentiation operation is saved by this
optimization. FLASH uses the optimized encryption for better
performance.
Decryption: Paillier ciphertext c is decrypted to plaintext m
with both public key (n,g) and private key (λ,µ):

m = Ln(cλ mod n2) ·µ mod n (B.3)

Optimization of Decryption: The workload of the decryp-
tion algorithm of Paillier can be reduced with the Chinese
Remainder Theorem (CRT). In this scheme, prime numbers p
and q generated with the key pair are considered as the private
key. The process of optimized decryption is shown below:
1. Compute hp = Lp(gp−1 mod p2)−1 mod p and hq =

Lq(gq−1 mod q2)−1 mod q.
2. Compute mp = Lp(cp−1 mod p2) · hp mod p and mq =

Lq(cq−1 mod q2) · hq mod q. Function Lp(x) and Lq(x)
are defined by Lp(x) = (x− 1)/p and Lq(x) = (x− 1)/q.

It can be proved that mp = m mod p and mq = m mod q,
where m is the plaintext corresponding to ciphertext c.

3. Apply CRT to recombine the modular residues. m =
CRT(mp,mq) mod pq.
With the optimization above, the workload can be reduced

to only about one-quarter of the original decryption algorithm,
leading to better performance. FLASH also uses optimized
decryption in its implementation.

C RSA Intersection
RSA (Rivest–Shamir–Adleman) is an asymmetric public-
private key method used to securely transfer data [77]. The
whole RSA algorithm mainly contains three operations: key
generation, encryption, and decryption.
Key Generation: The generation process is shown below:
1. Randomly choose two distinct prime numbers p and q.
2. Compute n = p ·q.
3. Compute λ(n) = lcm(p−1,q−1).
4. Randomly choose a number e such that 1 < e < λ(n) and

gcd(e,λ(n)) = 1.
5. Compute d by solving d · e = 1 mod λ(n).
Generally speaking, (n,e) is regarded as a public key, while
d is regarded as a private key.
Encryption: Using public key (n,e), plain-text message m
is encrypted to cipher-text message c:

c = me mod n. (C.4)

Decryption: Using private key d, cipher-text message c is
decrypted to plain-text message m:

m = cd mod n. (C.5)

RSA-based PSI: The RSA-based private set intersection can
protect the privacy of sample ID out of the intersection set
with the mechanism of blind RSA signature [45, 69]. We take
the two-party setting as an example. Party A contains three
user IDs, i.e., XA = {x1,x2,x3}, while party B contains four
user IDs, i.e., XB = {x1,x2,x4,x5}. They want to find their
common users via RSA-based intersection:
1. Party A generates RSA keys n,e,d and sends public key

(n,e) to party B.
2. Party B blinds and encrypts its user IDs XB to YB = {H(x)

mod n · re mod n) | x ∈ XB}, where r is a unique random
number for each x, and sends YB to party A.

3. Party A signs the received YB, obtains ZB = {yd mod n =
r ·H(x)d mod n | y ∈ YB} and sends ZB to party B.

4. Party A also signs its own user IDs, gets DA = {H(H(x))d |
x ∈ XA} and sends DA to party B.

5. Party B unblinds the received ZB and obtains DB = {H(z/r
mod n) = H(H(x))d | z ∈ ZB}.

1076 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

6. Party B computes DA ∩DB = {H(H(x1))
d ,H(H(x2))

d}
and gets common user IDs {x1,x2}.
H(·) denotes the hash function. After party B knows the

overlapping users, it could choose whether to inform party A
according to different scenarios.

D Modular Exponentiation & Multiplication
Algorithm Optimization

D.1 Binary Exponentiation
Modular exponentiation is defined as P = me mod N, as
shown in Equation 1. In the naïve algorithm, m is multiplied
by itself for e times, and the algorithm uses e− 1 multipli-
cations to obtain the result. Therefore, if e is a large integer,
the computation time is dramatic. As a result, to optimize
the computation, people usually apply binary exponentiation
optimization to reduce the dramatic computation time. Al-
gorithm D.1 shows the process of the binary exponentiation
optimization algorithm.

Algorithm D.1 Binary Exponentiation
Input: m, e, N, where N > 0
Output: P = me mod N

1: P = 1 . Initialization
2: while e > 1 do
3: if e is odd then
4: P = P ·m mod N
5: end if
6: e = e� 1
7: m = m2 mod N
8: end while
9: return P

The idea of binary exponentiation is to reduce the number
of multiplications by using the binary representation of the
exponent e. As a result, we only need to compute at most
2blog2 ec multiplications, which is much smaller than e−1.
Since the time complexity of modular exponentiation is de-
termined by the number of multiplications, binary exponenti-
ation can reduce its time complexity from O(e) to O(loge).
Worth mentioning, the modulo computation can be performed
after each multiplication because of the distribution law in
modular arithmetic: (a mod N)(b mod N)≡ ab mod N.
Summary: By using the binary exponentiation optimization
algorithm, we can largely optimize the time complexity of
modular exponentiation computation.

D.2 Montgomery Modular Multiplication
After applying the binary exponentiation optimization algo-
rithm as shown in §D.1, we lower the time complexity of
modular exponentiation computation by reducing the num-
ber of multiplications. However, after each multiplication, we
have to perform one modulo operation. Although we can
implement modulo operation on hardware with Cyclic Reduc-
tion and Barrett Reduction algorithms [32], the performance

Algorithm D.2 Montgomery Modular Multiplication
. Given three input numbers X , Y and N, the Montgomery Modular
Multiplication outputs Z = X ·Y ·R−1 mod N, where R is a power
of 2 and blog2 Rc= blog2 Nc.
Input: X = (Xd−1, ...,X0), Y = (Yd−1, ...,Y0), N = (Nd−1, ...,N0),

N′, where
N′ = (−N)−1 mod r, . N′ is pre-computed in S1
r = 2w, d = blogr Nc+1, . r and d is used to split data
gcd(N,r) = 1, with N×N′ ≡−1 mod r

Output: Z = ModMult(X ,Y,N) = X×Y ×R−1 mod N
1: Z = (Zd−1, ...,Z0) = 0 . Initialization
2: for all i = 0,1, ...,d−1 do . Loop on Y
3: q = (Z0 +X0×Yi)×N′ mod r
4: C = 0
5: for all j = 0,2, ...,d−1 do . Loop on X
6: S = Z j +X j×Yi +q×N j +C
7: if j > 0 then
8: Z j−1 = S mod r
9: end if

10: C = S� w . Carry higher bits
11: end for
12: Zd−1 =C
13: end for
14: if Z ≥ N then
15: Z = Z−N
16: end if
17: return Z

of these algorithms is still not satisfying because of the divi-
sion operations used in these algorithms. Therefore, FLASH
utilizes Montgomery Modular Multiplication [65] to replace
the modulo operation with a bit-shifting operation, which is
more hardware-friendly.

The process of applying Montgomery Modular Multiplica-
tion includes three major steps: (1) converting the data into
Montgomery space, (2) computing the modular multiplica-
tion in the Montgomery space, and (3) converting the data
back from Montgomery space. Before going into details, we
will first describe Algorithm D.2. This algorithm implements
efficient A∗B∗R−1 mod N in a hardware-friendly way. The
key optimization of the algorithm is the introduction of the
divider R = rd . Thus the division can be easily implemented
by bit-shifting since r is a power-of-2 integer, and after the
division, the result is an integer within [0,2N) and no more
modulo operation is needed. Afterward, we will show details
of each step in the following sections.
Converting the data into Montgomery space: Before ap-
plying Montgomery Modular Multiplication, the input num-
bers should be converted to Montgomery space. The conver-
sion formula is A = a ·R mod N. It can also be written as
A = a ·R2 ·R−1 mod N, so we can leverage Algorithm D.2
to efficiently calculate it. In the formula, a is one of the mul-
tiplicands of modular multiplication. A is the Montgomery
space of a. N is the modulus. R is a power of 2 and it satisfies
the condition that blog2Rc= blog2Nc.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1077

Controller 0 Controller 1 Controller 2 Controller 3

DDR 0 DDR 1 DDR 2 DDR 3

AXI Interconnect Engines

(a) AXI Interconnect.

Interconnect

Long data path

High fanout

Data Distributor FLASH Engines

(b) Naïve data distribution.

Interconnect

Layer 1 Layer 2

Data Distributor FLASH Engines

(c) Hierarchical data distribution.

Figure D.1: FLASH adopts hierarchical data distribution to enable efficient data exchange between on-chip and off-chip memory.

Computing the modular multiplication in the Mont-
gomery space: We can directly use Algorithm D.2 to ef-
ficiently calculate the modular multiplication.
Converting the data back from Montgomery space: To
convert a number out of Montgomery space, the conversion
formula is p = P ·R−1 mod N. p is the result of modular
multiplication. P is the Montgomery format of p. Similarly,
we can leverage Algorithm D.2 to complete the computation.
Parameter Computation: In the above steps, we notice
that if N, which is usually the public key in cryptosystems,
remains unchanged, R2 mod N (e.g., used in converting the
data into Montgomery space) and (−N)−1 mod r (e.g., line 3
and 8 in Algorithm D.2) remain constant values. We call these
constant values parameters in this paper, and we show that we
can compute these parameters in advance and avoid duplicate
calculations to improve the performance further.
Summary: By applying the Montgomery Modular Mul-
tiplication, we mainly replace the modulo operation with
a hardware-friendly bit-shifting operation, which improves
the performance of modular multiplication/exponentiation on
hardware.

E The Montgomery Modular Multiplication
Circuit Design

In this section, we will describe how our Montgomery Modu-
lar Multiplication Circuit works (shown in Figure 5).

According to Algorithm 1, the outer loop iterates over
operand Y . Therefore, the circuit sequentially reads differ-
ent Yi from RAM Y and performs execution over them. The
workflow of our Montgomery Modular Multiplication circuit
contains four steps. Steps 1 and 2 in the following introduc-
tion focus on the workflow for a fixed Yi while steps 3 and 4
show how we bridge the operations between iterations with
different i and obtain the final result. We use Reg to represent
the register group.

1. X0 and Yi are sent to Mul 1 to get a 2w-bit multiplication
result. The higher w bits of the result are cached in Reg r1.
The lower w bits, denoted as α in Algorithm 1, are cached
in both Reg α and r7. The numbers stored in Reg α are
used for the calculation of β via Add 5. With β and N′

available, their multiplication result q can be obtained from
the output of Mul 2. After that, q is sent back to the input of
Mul 2 and multiplied with N0. Similarly, the higher w bits
of the multiplication result are cached in Reg r3 and the

lower w bits are sent to Reg r8. Combining data cached in
r7 and r8, it is straightforward to get δ1 and δ2 with several
addition units. The results of addition, Z0 and C, are cached
in Reg Z0 and Reg C for subsequent operations.

2. Following step 1, the inner loop for j begins. Different
iterations of the inner loop are fully pipelined, which im-
plies the jth iteration is executed by the circuit just one
cycle after the (j−1)th iteration. At the beginning of the
pipeline, Mul 1 and Mul 2 simultaneously calculate X j×Yi
and q×N j. The higher w bits and lower w bits of the results
are separately cached in different registers. Please note that
we use Reg r5 and r6 to register the higher w bits in the
circuit for one more cycle compared to the lower w bits
so that δ1 can be calculated through the addition between
higher w bits from the (j−1)th iteration and lower w bits
from the jth iteration (i.e., line 12 in Algorithm 1). After
the calculation of δ1, the subsequent calculation of δ2 can
also be simply executed by the adders in the pipeline. The
intermediate results, Z j−1 and C, are cached in RAM Z and
Reg C.

3. We begin the execution of the (i+1)th iteration of the outer
loop when all the multiplications in the ith iteration accom-
plish. Although some operations like addition are still in
progress, the multipliers are free to start the multiplications
in Step 1 for the (i+1)th iteration.

4. After accomplishing the outer loop, the result Z should be
stored in RAM Z. If Z < N, we directly output Z. Other-
wise, we calculate Z−N as the final output.

F Hierarchical Data Distribution
While the design in §4.2.3 is efficient, it also introduces a
practical problem. As shown in Figure D.1a, FLASH adopts
AXI interconnect to manipulate the external memory [68, 72].
However, as the on-chip memory units are placed near each
engine for low latency, naïvely distributing data from the AXI
interconnect to these memory units, as shown in Figure D.1b,
leads to high fan-out near interconnect and long data paths.
These two issues will cause (1) large design difficulties for
circuits placement because there are too many long paths to be
placed near interconnect; (2) degraded performance because
long paths cause large delay for the circuits.

To solve the problem, we design a hierarchical data dis-
tribution mechanism as shown in Figure D.1c. Instead of
directly sending data to all engines, FLASH distributes data

1078 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DDR0

DDR1

DMA
Driver

libfl.soPython
Wrapper

Add data Fetch data

Add result

A
cceleration C

ard

Task
M

anager

FLASH

FederatedM
L

FATE
Fetch data

Get data

Figure G.2: FLASH integrates with cross-silo FL frameworks
by providing an integrated software package.

at multiple layers. At each layer, the data distributors receive
data from the previous layer and further distribute data to the
data distributors/engines in the next layer. Suppose we have
m engines and n layers, the fan-out of each data distributor is
∼ logn m, which is much smaller than m. As a result, FLASH
achieves a much smaller fan-out and shortened logical data
path. These two advantages first reduce the design complexity
because a small fan-out with short logical paths will make
the circuits’ placement much easier. Furthermore, they also
improve performance because they allow a high operating
frequency by restricting the delay of all logic paths. In our
FPGA implementation, the delay of all logic data paths is
within 3.3ns, thus we can achieve a high FPGA operation
frequency of 300MHz [20].

G Software Stack Architecture
Figure G.2 illustrates how FLASH integrates with the cross-
silo FL software. As introduced in §4.4, FLASH’s software
stack contains Xilinx DMA Driver [21], libfl.so library
and its corresponding Python wrapper.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1079

On Modular Learning of Distributed Systems for Predicting End-to-End Latency

Chieh-Jan Mike Liang‡ Zilin Fang∗ Yuqing Xie◦ Fan Yang‡

Zhao Lucis Li⋆ Li Lyna Zhang‡ Mao Yang‡ Lidong Zhou‡

‡Microsoft Research ∗CMU ◦Tsinghua University ⋆University of Science and Technology of China

Abstract
An emerging trend in cloud deployments is to adopt ma-

chine learning (ML) models to characterize end-to-end system
performance. Despite early success, such methods can incur
significant costs when adapting to the deployment dynamics
of distributed systems like service scaling-out and replace-
ment. They require hours or even days for data collection
and model training, otherwise models may drift to result in
unacceptable inaccuracy. This problem arises from the prac-
tice of modeling the entire system with monolithic models.
We propose Fluxion, a framework to model end-to-end sys-
tem latency with modularized learning. Fluxion introduces
learning assignment, a new abstraction that allows model-
ing individual sub-components. With a consistent interface,
multiple learning assignments can then be dynamically com-
posed into an inference graph, to model a complex distributed
system on the fly. Changes in a system sub-component only
involve updating the corresponding learning assignment, thus
significantly reducing costs. Using three systems with up to
142 microservices on a 100-VM cluster, Fluxion shows a per-
formance modeling MAE (mean absolute error) up to 68.41%
lower than monolithic models. In turn, this lower MAE al-
lows better system performance tuning, e.g., a speed up for
90-percentile end-to-end latency by up to 1.57×. All these
are achieved under various system deployment dynamics.

1 Introduction
Predicting cloud system performance is critical for improving
the end-user experience. While this problem has been tradi-
tionally addressed with analysis and handcrafted performance
models, an emerging trend is to incorporate machine learning
(ML) techniques for performance modeling [7,9,23]. Such ap-
proaches [2,3,6,13,14,20,21,34,41] typically use monolithic
ML models, to predict the performance (e.g., user request

This work was done when Zilin Fang, Yuqing Xie, and Zhao Lucis Li
were interns at Microsoft Research.

latency), given configurable knobs of the system component
(e.g., cache size) and observable states (e.g., request rate).

In recent years, the microservice architecture has gained
popularity in building distributed cloud systems [1, 12, 18, 25,
40]. Its per-service flexibility enables continuous integration
and continuous delivery (CI/CD), and per-service horizontal
scaling (e.g., replication) and vertical scaling (e.g., capacity
adjustments) can handle load dynamics. Interestingly, the
monolithic approach of modeling the entire system could still
be applicable to such distributed systems, and doing so frees
operators from explicitly modeling service dependencies.

Unfortunately, our first-hand experience at Microsoft sug-
gests inherent limitations in effectively learning distributed
system’s end-to-end performance. There is a need to continu-
ally adapt performance models to the deployment dynamics.
As services are independently scaled and replaced over time,
deployment updates become frequent operations.

Continually updating monolithic models can incur signifi-
cant time costs, especially if deployment dynamics are han-
dled in an ad-hoc way. First, collecting a sufficient amount of
training data can be time-consuming, as new system dynamics
can take minutes and even hours to be fully warmed-up and
stable [39]. Second, designing and training a new model can
also be time-consuming, even with the help of automation
tools [4, 19, 27]. For example, a system evaluated in §5 has
142 microservices, and requires a performance model that
considers 1,034 service knobs and states. Collecting suffi-
cient data points to train such a complex monolithic model
takes us ∼46 hours, and model training takes additional ∼24
hours. Such a practice hinders the practicality of monolithic
approach, for performance tuning in the real world.

Given the above challenges, we advocate modularized
learning for microservice-based distributed systems. Our key
observation is the locality of deployment dynamics, where
changes happen at the granularity of system components (e.g.,
microservices). So, modularized learning models the perfor-
mance of each service individually, and carefully composes
these models on-demand to follow deployment dynamics.

Fluxion is a framework that realizes modularized learning

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1081

to model end-to-end latency while handling system deploy-
ment dynamics efficiently and effectively. Fluxion introduces
learning assignment, an abstraction to model each service in
a distributed system. Learning assignment is instantiated on
each service instance to model its performance metrics (e.g.,
latency). It can accommodate any service and different ML
modeling techniques (e.g., DNN or Gaussian process). Learn-
ing assignments can be composed into an inference graph to
model a large complex system, similar to how services are
composed into an end-to-end system. Changes in a service of
the system only induce modeling errors in the corresponding
learning assignments. Since the configurations and internal
logic of other services remain the same, their corresponding
learning assignments along with their modeling accuracy also
remain unchanged. Therefore, Fluxion only needs to update
the learning assignments corresponding to the changed ser-
vice, thus significantly reducing the costs.

Three unique characteristics enable learning assignment
to handle system deployment dynamics effectively. First, to
capture the impact from other services, learning assignment
defines external performance dependencies as part of mod-
eling inputs. This enables the composability — multiple as-
signments can be composed into an inference graph, to follow
service dependencies of a complex distributed system on the
fly. Second, instead of considering only the performance met-
ric of interest (e.g., p90 latency), learning assignments can
take in a spectrum of performance metrics from upstream as-
signments (e.g., p50–p99 latencies) in inference graph. This
allows a learning assignment to better observe (and capture)
the impacts of system deployment dynamics from upstream
assignments. Finally, to capture the temporal system dynam-
ics, a learning assignment can host one or more ML models
trained in different time periods and scales.

In summary, this paper makes the following contributions.
(1) We propose a modular approach to modeling end-to-end
latency for complex and dynamic distributed systems, ex-
emplified by microservice systems. (2) The abstraction of
learning assignment and the resulting inference graph effec-
tively capture intrinsic system dynamics, as well as dependen-
cies among services. (3) We conduct comprehensive experi-
ments to demonstrate the significantly superior performance
of Fluxion over existing approaches, under various system de-
ployment dynamics. In some microservice systems spanning
100 VMs, Fluxion’s performance model exhibits up to 68%
lower MAE (mean absolute error). In turn, this enables better
system performance optimization, or p90 latency speed up
by up to 1.57× over the use of baselines. At the same time,
Fluxion reduces the model training time by up to 99.98%.

2 Background and Motivations
2.1 Performance Prediction and Modeling

Performance models predict the end-to-end system perfor-
mance (e.g., user request latencies), given observable states

Figure 1: General workflow of auto-tuning. Fluxion focuses
on step #2, or the efficiency in adapting performance models
to system deployment dynamics.

(e.g., per-service request rates) and configurable knobs (e.g.,
per-service cache size and thresholds). Performance models
can be analytically constructed with mathematical formula-
tions, but doing so does not scale well with the size or com-
plexity of large-scale distributed systems. A typical microser-
vice system can have hundreds (and even thousands [40]) of
services, and requests can traverse 40+ services [25].

Learned performance model. Advances in machine learning
(ML) enable performance modeling to be learned, with regres-
sion techniques such as Gaussian process and DNN. Like pre-
vious efforts that model monolithic systems [2,3,9,13,21,23],
it is possible to treat an entire microservice system as a black-
box. To match system deployment scale, ML models can
monolithically grow in size (e.g., adding DNN neurons). Fur-
thermore, black-box modeling eliminates the need to explic-
itly consider service interactions and dependencies.

For training performance models, each training data point
consists of inputs (i.e., per-service knob settings and observ-
able states) and an output (i.e., a system performance measure-
ment). Data are collected through benchmarks in controlled
environment (e.g., testbeds or isolated sections in production),
or telemetries in production. Trained models may be evalu-
ated with testing data, which are collected in the same fashion.
One common evaluation metric for performance modeling is
MAE (mean absolute error) [37], or the average magnitude
of errors in a set of test predictions made by the model.
Performance auto-tuning scenario. As Fig 1 illustrates, per-
formance models can drive auto-tuning [2, 3, 21–23]. The
goal is to guide non-system-experts to set system knobs, to
optimize for a performance metric. Auto-tuning relies on opti-
mizers (step #3), which iteratively search for global optimum
in the modeled space. Each iteration algorithmically selects
new knob setting (for performance model to predict), based
on performance predictions from previous iterations.

2.2 High Costs to Maintain ML Models
We observe significant time costs in continually keeping
ML-based performance models updated to system deploy-
ment dynamics. Deployment dynamics make performance
models drift over time and impact modeling accuracy, hence
auto-tuning outcomes (c.f. §5). Main sources of deployment

1082 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

dynamics include (1) system scaling, i.e., replicating or re-
claiming service instances, and (2) continuous integration and
delivery (CI/CD), i.e., replacing existing services.

We discuss the breakdown of time costs below.

Problem #1: Collecting training data points for perfor-
mance modeling can be time-consuming. As the model
complexity grows, the number of training data points nec-
essary also grows. However, each benchmark requires the
system to be fully warmed-up and stable [39]. In our cases,
one benchmark can take up to 15 minutes, and collecting
sufficient data points can require ∼46 hours.

The problem exacerbates as distributed cloud systems re-
quire a significantly higher model complexity than previously
considered. Unlike monolithic systems with ∼20 knobs and
states to consider, this number can quickly add up to hundreds
and thousands for microservice-based systems. For exam-
ple, Train-Ticket [31] has 41 services. At initialization, it
has 242 model inputs: 148 configuration knobs (e.g., Mon-
goDB’s eviction_dirty_target), 94 states (e.g., Docker’s
cpu-limit and per-service requests per second). As Train-
Ticket scales-out by a factor of 6, there is a total of 210 service
instances, and 1,020 model inputs.

Problem #2: Designing and training new models for per-
formance modeling can be time-consuming. Keeping per-
formance models updated goes beyond simply fine-tuning
models with recent benchmarks. In many cases, the required
changes lie in the model structure. One motivating example
is how replicating services essentially alters the deployment,
with respect to the available knobs, service states, and service
dependencies. As a result, we need a new model of different
input dimension and even different modeling technique.

Although AutoML toolkits can automate this process to
some extent, our experience suggests that it can take at least 20
hours to produce a reasonably accurate ML model for perfor-
mance modeling. Furthermore, it is not feasible to pre-train all
monolithic models for all possible deployment setups. Since
services can be independently replaced and arbitrarily scaled,
the number of possible deployment setups is unbounded.

2.3 Modularized Learning
The principle of modularity has been proven in engineering
scalable and elastic systems. It provides opportunities to real-
ize ML-based performance modeling in an agile and accurate
way. Instead of monolithically modeling the end-to-end la-
tency of distributed systems with one performance model, we
propose modularized learning that breaks down this model to
align with a deployment’s modular units.

Challenges. To practice modularity, it is natural to indepen-
dently model each system component, e.g., a microservice.
Given system components can have vastly different configu-
ration knobs and states, different types of ML models can be
chosen for individual system components. The key challenges
are: (1) to represent different system components, possibly

Figure 2: Learning assignment is a wrapper for ML models.
It has a consistent interface for composability.

using different ML techniques, with a consistent interface;
and (2) to have a composability criteria that combines these
component representations into an end-to-end ML model for
performance modeling.

3 Fluxion Framework

Fluxion is a framework that realizes modularized learning for
distributed systems. To address the two challenges discussed
in §2.3, Fluxion introduces learning assignment to abstract
away model and component heterogeneity and provide a uni-
fied interface to model service-level latency (§3.1). Moreover,
Fluxion presents inference graph to dynamically compose
assignments into an end-to-end performance model (§3.2).

3.1 Learning Assignments
A learning assignment is a basic modeling unit. It hosts one
or more ML models that collectively model a modular unit
in distributed systems. Since system deployment dynamics
typically happen at the unit of services (e.g., scaling and
replacing services), assignments are instantiated on a per-
service-instance and per-performance-metric1 basis. When
deployment dynamics happen, this mapping of modular units
allows Fluxion to localize changes to some learning assign-
ments. Fig 2 illustrates the internal structure of an assignment,
and we elaborate the details next.

Interface. The learning assignment interface is designed to
abstract service-level performance for ML models. Model-
ing individual services is different from modeling the entire
system monolithically. The former needs to take service de-
pendencies into account. E.g., a service’s observed latency in-
herently includes the latency of its downstream services [10].

Therefore, in addition to internal configuration knobs and
internal observable states, the assignment inputs further in-
clude external performance dependencies (e.g., downstream
service latency). The assignment output is a service-level

1E.g., p50 and p90 latencies require two learning assignments.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1083

performance metric. This interface addresses challenge #1
— the consistent service-level performance metrics as input
and output, together with the heterogeneous internal states
and knobs, are sufficiently general to model different services
and to host ML models of different modeling techniques, and
a learning assignment’s output can be connected to another
assignment as an external performance dependency.

Exposing a spectrum of performance metrics. To predict
the end-to-end latency more accurately, a learning assignment
may expect the external performance dependencies to be a
spectrum of performance metrics from dependent services.
For example, to predict end-to-end p90 latency, a learning
assignment may require p50–p90 latencies of the downstream
services (and even their CPU utilization and disk throughput),
so as to decide which metrics are appropriate for considera-
tion. This allows a learning assignment to better observe the
extent of impacts that system deployment dynamics impose
on its downstream services.

However, not all performance metrics are highly relevant to
the one being predicted. An example is the bottom-percentile
latencies vs. the top-percentile latencies. Including irrelevant
performance metrics incurs additional costs. The first is the
training costs. As unnecessary inputs add noises to the train-
ing dataset, some ML models would need more data points to
distinguish and learn from the relevant inputs. And collecting
training data points can be time-consuming (c.f. §2.2). The
second is the unnecessary learning assignments introduced to
predict these irrelevant metrics.

To this end, learning assignment introduces "input selec-
tion" (shown in Fig 2) to prune unnecessary metrics and the
corresponding learning assignments. The problem of input se-
lection can be formulated as follows. Given a set of k learning
assignments (mk) as inputs to a specific learning assignment,
we want to find the k-dimensional binary weight vector (w∗

k).
w∗

k should minimize the prediction error of an weighted sum
of mk, over a batch of n data points (inputs X , and outputs Y).
This is formulated as the following equation:

w∗
k = argmin

wk ∈ W
(

n

∑
i=1

Yi − f (wk,mk(Xi)))
2. (1)

The goal is to search for w∗
k , or the optimal k-dimensional

binary vector. f is a predefined function that aggregate outputs
of k learning assignments, and it can be hand-written code or
non-linear functions such as neural networks. We can expand
f as follows:

f (w,m(X)) =
∑

k
i=1 w(i)m(i)(X)

∑
k
i=1 w(i)

. (2)

In practice, k can be large. For example, RocksDB has k = 99
performance metrics. To select three relevant metrics need
to search 941,094 possible combinations. To find a solution
effectively, §4.1 presents one generic approach in the current
implementation of Fluxion.

(a) Execution graph

(b) Inference graph

Figure 3: A simplified inference graph of a microsevice ap-
plication, Hotel Reservation. Vertices represent services, and
directed edges capture performance dependencies among ser-
vices. Graph inputs include configuration knobs and observ-
able service states. (M) represents models. In this example,
the Recommend service is scaled out to two instances.

Capturing system’s temporal dynamics. A learning assign-
ment can host multiple ML models trained in different time
periods and scales. Doing so promotes the reuse of previously
learned models, in order to better capture temporal dynamics
and predict recurring patterns. An example is the daily vari-
ations in incoming request rates. In this case, we can train a
new model with data points collected each day.

Learning assignment introduces "output weighting" (shown
in Fig 2) to weight over outputs from different time peri-
ods/scales and reduce all models’ outputs to one succinct
value. The formulation of output weighting is similar to that
of input selection, except that k assignments are changed to k
internal models and w∗

k here is a k-dimensional vector of con-
tinuous numbers between 0 and 1 inclusively. And the output
is computed as the weighted sum of all k models’ outputs.

Similarly, to find a good combination of weights is compu-
tationally expensive. §4.1 presents one generic approach in
the current implementation of Fluxion.

3.2 Inference Graph of Learning Assignments

Inference graph is a set of interconnected learning assign-
ments. It represents the performance modeling of an end-to-

1084 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

end system. From external user’s perspective, inference graph
has the same input/output semantics as monolithic models.
In other words, inference graph exposes the following per-
formance modeling inputs: all services’ configuration knobs
and observable states. Its output predicts for an end-to-end
performance metric: the end-to-end tail latency in our case. In-
ference graph addresses challenge #2, i.e., the composability
criteria to compose learning assignments.

3.2.1 Inference Graph Construction

Fig 3 illustrates a simplified inference graph for a microser-
vice system, Hotel Reservation [11].

Graph vertices. An inference graph has two types of vertices:
instance-vertices and service-vertices (c.f. Fig 3b). Instance-
vertices correspond to the learning assignments modeling the
performance of service instances. They expose learning as-
signment inputs (e.g., service configuration knobs, observable
states, and external performance dependencies) and output
(e.g., a service-level performance metric). Service-vertices ag-
gregate instance-vertices that model the same service and per-
formance metric. In Fig 3b, the Recommend service (marked
in dash-line) is scaled out to two instances.

Graph edges. Graph edges are directed dataflows, and they
satisfy services’ external performance dependencies. To draw
the edges correctly, we leverage the observation that the per-
formance dependency of two services is the reverse of their
execution dependency. Since an upstream service invokes
RPC calls to its downstream service, the upstream service’s
latency would depend on the latency of downstream service.
Hence an edge should be connected from the learning as-
signment (i.e., vertex) representing the downstream service
to the one representing the upstream service (i.e., the reverse
direction of the service execution order).

Handling deployment dynamics through inference graph
updating. Since graph vertices and edges have a strong
correspondence to services in the system deployment,
orchestration-induced dynamics can be localized to certain
regions of the inference graph. This implies that other re-
gions can remain unchanged. Fluxion provides APIs to update
graph for common orchestration operations (c.f. §4.1.2). First,
scaling-out a service is conceptually equivalent to replicating
the corresponding instance-vertices, to match the number of
deployed instances. Similarly, scaling-in a service removes
some of the corresponding instance-vertices. Second, upgrad-
ing a service (or even a migration from MySQL to Post-
greSQL) is conceptually equivalent to replacing old service’s
instance-vertices with new service’s.

3.2.2 Graph Inferencing to Predict End-to-End Latency

Graph inferencing is performed through graph traversal. The
traversal starts from graph vertices that do not have external

performance dependencies, or services that do not invoke any
downstream services (e.g., the top vertices in Fig 3b). At each
vertex, the learning assignment output metric is computed
with its ML models. Following graph edges, the output is
then passed to subsequent vertices as an external performance
dependency. The traversal stops at the last vertex in the graph,
or typically the gateway service in a deployment. The output
of this last vertex is the output of the graph, and it predicts
the end-to-end system performance.

3.2.3 Inference Graph Re-training

Inference can be performed immediately after graph is com-
posed, but in cases where the prediction error rate is high,
re-training can mitigate the problem. Fluxion identifies two
major error sources. And, it can effectively reduce the re-
training costs by taking advantage of the inherent modularity
in the graph, rather than re-designing and re-training the entire
monolithic model. Particularly, graph prediction errors can be
traced back to some subsets of vertices.

Graph error source #1: New learning assignments. New
learning assignments are required when new services are de-
ployed to microservice systems or existing services are being
updated. From our experience, their high MAE is typically
due to insufficient training, especially by non-ML-experts.
This case can be mitigated with the use of AutoML toolkits.
Another possibility is service-vertices. Since they aggregate
instance-vertices, scaling out/in a service requires them to
have a new model with a new input dimension. Localizing
new assignments is trivial, and the information is available
through recording graph manipulations over time.

Graph error source #2: Unforeseen prediction inputs. Un-
foreseen prediction inputs can happen when the system re-
ceives unforeseen request types, or unexpected request ratios.
This is a situation monolithic models also have to handle. As
different requests stress different service-to-service execution
paths, a service can observe unfamiliar states (e.g., requests
per second and CPU utilization) or even downstream service
performance. In the monolithic approach, the solution is to re-
train the monolithic models. Modularized learning gives new
optimization opportunities. Fluxion only needs to retrain the
learning assignments being impacted to better handle these
prediction inputs.

Identifying the impacted assignments, i.e., vertices in the
inference graph, to address error source #2 can be non-trivial.
This step is not simply about identifying vertices whose learn-
ing assignments have the largest prediction MAE. A well-
trained learning assignment can still output unexpected pre-
dictions if it receives erroneous inputs from another. The
reason is that local errors of individual assignments can prop-
agate. This is an artifact of how the inference graph output
is a function of all its models. As graph traversal passes the
prediction of a learning assignment to another assignment,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1085

Figure 4: Fluxion architecture overview. It is implemented as
three engines. Graph Engine hosts inference graphs. Testing
Engine implements features for graph uncertainty estimation
and graph debugging. Ingestion Engine ingests and buffers
streams of telemetries, for ML model training and testing.

prediction errors propagate and accumulate.
Unfortunately, it is not trivial to analytically derive formu-

las describing the error accumulation. As ML models apply
non-linear transformations to inputs, this non-linearity also
transforms input errors to prediction errors. Furthermore, a
learning assignment can have multiple model inputs. Not only
can different model inputs be weighted differently, but they
can also be of predictions from different assignments.

Pair-wise debugging approach. Fluxion implements a pair-
wise debugging approach for error source #2. This is an itera-
tive process, and each iteration selects one vertex. The core
idea is to evaluate the likelihood that the vertex’s prediction
error is due to its own learning assignment or parent vertices.

System operators provide a test dataset, which contains
recent deployment benchmarks. Fluxion then computes the
test MAE for each graph vertex. And, it computes the Pear-
son correlation, or r(maeparent , maechild), for each directly
connected pair of graph vertices. With all rs computed, the
debugging procedure follows a depth-first traversal. It starts
from the last graph vertex (i.e., the vertex that produces the
graph output), and performs the following steps — (step #1)
with respect to the current vertex, we rank all parent vertices
by their r in descending order. (step #2) If the top-ranked
parent vertex has an r larger than 0, we traverse the edge to
it and repeat step #1. (step #3) Otherwise, if the top-ranked
parent vertex does not have an r larger than 0, we stop and
return the current vertex as the debugging result.

4 Implementation

Current implementation has 13,012 SLOC, supports PyTorch
and scikit-learn models, and integrates NNI [27]. Fig 4 shows
an overview. A model repository stores models in serialized
form and retrieves them with the unique model ID.

4.1 Graph Engine (GE)

GE serves inference graphs. During auto-tuning, the optimizer
queries GE for performance predictions, just like how it would
query monolithic models. GE implements the input selection
strategy and the output weighting strategy (c.f. §3.1), and it
offers APIs to manipulate inference graphs.

Input selection strategy. Our implementation is based on
Thompson sampling with Beta distribution [30]. For a learn-
ing assignment, each external performance dependency has a
Beta distribution, to estimate the probability of being selected
for w∗

k . The probability density is governed by two variables,
α and β. A larger α increases the mean probability, and a
larger (α + β) decreases the probability variance.

αs and βs are initialized to 0, or system operators can man-
ually specify a larger α to favor certain performance metrics.
Then, the input selection strategy repeatedly updates αs and
βs as follows. Each round starts by randomly generating a
combination of models — specifically, we generate random
numbers from each β-distribution and select k performance
metrics with the largest number. This combination is then
evaluated for the prediction accuracy. If the current round
results in a higher accuracy then the first round, we increment
each performance metric’s α value, otherwise the β value.

This process of updating α and β repeats for a user-defined
number of rounds, or if the random selection converges for
several rounds. Upon termination, we again generate random
numbers from each β-distribution and select k performance
metrics with the largest number.

Output weighting strategy. Our implementation is based
on differential evolution for stochastic minimization [33]. It
makes no assumptions on the search space distribution, and
it is easy-to-use due to few hyperparameters. Differential
evolution is initialized with a population of starting points
in the search space. In rounds of mutation-recombination-
selection, it moves towards the optimum.

A subset of the initial population can be based on cached
w∗

ks. So, the N initial population (w0
1,w

0
2, . . .w

0
N) consists of

uniformly random candidates and previously computed w∗
k .

At each round G, differential evolution creates mutant vectors
storing combinations of individuals (wG

i ,w
G
j ,w

G
k) that are ran-

domly chosen from the current population. Mutant vectors
are then mixed with a pre-determined population candidate,
to produce a new trial candidate. With data points selected by
the Ingestion Engine, we then evaluate this trial candidate. If
the new trial candidate yields a better prediction accuracy, it
is added to the population.

This process of updating population repeats for a user-
defined number of rounds, or if the population converges for
several rounds. Upon termination, the population candidate
that best maximizes Equation 2 is returned.

1086 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.1.1 Learning Assignment APIs

LA.init(X_names, y_name) sets the labels for assign-
ment inputs and output.
LA.add(X, y, del) adds a new model, and trains the
new model with input X and output data y. del specifies
whether existing models should be deleted.
LA.input_selection(X, y) runs the input selection
strategy with the inputs X and output y.
LA.output_weighting(X, y) runs the output weight-
ing strategy with the inputs X and output y.
LA.predict(X) predicts for X.

4.1.2 Graph Update APIs

GE.add(s_name, p_name, a_ptr) adds a new
instance-vertex in the graph, to represent one instance of the
service s_name for the performance metric p_name. a_ptr
points to the learning assignment instance.
GE.connect(s1_name, s2_name) specifies the per-
formance dependency from the service s1_name to s2_name.
Since a service can have multiple performance metrics,
GE.connect adds directed edges for all combinations of
s1_name’s and s2_name’s metrics. It matches learning as-
signments’ input and output labels to make the connection.
GE.scale(s_name, num_inst) replicates/removes
instance-vertices to match num_inst, for all s_name’s per-
formance metrics. And, for each performance metric, it adds
a service-vertex to aggregate instance-vertices. These service-
vertices are initialized to an input dimension of num_inst,
and they can be trained by invoking GE.fit.
GE.replace(s_name, p_name, a_ptr) updates in-
stance vertices to reference the new learning assignment
a_ptr. Service-vertice needs to be initialized by GE.fit.
GE.fit(s_name, p_name, time_window) creates
a learning assignment, for the service-vertex of s_name ser-
vice and p_name metric. Then, it retrieves data points within
the last time_window seconds from IE, and invokes LA.add.

4.2 Testing Engine (TE)
TE implements functionalities to support graph testing. First,
TE.compute_err computes the per-vertex test error, with the
test dataset given in the argument. The current implemen-
tation uses the mean absolute error. The test dataset is in a
tabular format; each row represents one system benchmark,
and columns record service config knob settings and perfor-
mance measurements. Second, TE.debug starts the graph
debugging strategy and returns a learning assignment’s name.

4.3 Ingestion Engine (IE)
IE ingests and buffers per-service telemetry streams for ML
model training and testing. A stream contains one time-series

data type, which can be a performance metric, a configuration
knob, or an observable state. Data are published to IE by
IE.add_data. They are in JSON format with the following
fields: stream_uri, type, seq_num, and val. The type field
can be "continuous", "discrete", or "choices". The seq_num
field is an incrementing integer such as the Unix timestamp.

5 Evaluation

We evaluate and demonstrate the superior performance of
Fluxion, with three complex microservice systems on up to
100 VMs, under deployment dynamics like service scale-out
and replacement. Our major results include:

(1) Fluxion consistently maintains a lower performance
modeling MAE (mean absolute error). Considering the case of
gradually scaling Hotel Reservation from 15 to 142 services,
Fluxion’s MAE is 29.14% lower on average and up to 68.41%
lower than comparison baselines.

(2) Fluxion’s lower MAE enables better end-to-end sys-
tem latency. Considering the case of switching from base-
lines to Fluxion, auto-tuning optimizers achieve a speedup
of 1.24× on average (and up to 1.44×), for TrainTicket’s
90th-percentile latency.

(3) Using a 30-day Azure trace, results show that Fluxion
can capture system dynamics in the temporal dimension. By
recognizing and adapting to the recurring patterns, the daily
training time is reduced by up to 99.98%.

5.1 Microservice Systems
We evaluate the effectiveness of Fluxion, by measuring
both the performance modeling accuracy improvement (or
MAE reduction), and the resulting latency improvement for
microservice-based systems. Our evaluations are based on
case studies — as microservice systems are orchestrated to ex-
hibit deployment dynamics, we run auto-tuning to continually
optimize their tail latency, i.e., the 90th-percentile latency.

Microservice system setup. We deploy three systems: (1)
TrainTicket [31], with 41 unique services, (2) Hotel Reserva-
tion, with 15 unique services from DeathStarBench [11], (3)
Boutique, with 11 unique services from Google [15]. Services
are managed by Kubernetes, and they can be replicated and
replaced. KubeDNS is used for round-robin load-balancing.
Services log per-request latencies for all remote procedure
calls, and measurements are centrally stored in an InfluxDB.
Appendix lists each system’s knobs. For databases, we se-
lect top knobs that have been identified to impact read/write
latency in production, by Microsoft engineers.

Experiment setup. Our comparison baselines are perfor-
mance models of monolithic Gaussian process (GP) and multi-
layer perceptron (DNN) models. These baselines are common
in recent performance optimization efforts [2, 3, 6, 7, 9, 13,
14, 20, 21, 23, 34, 41]. GP uses Matern(5/2) kernel [3]. We

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1087

use NNI [27] to tune DNN hyper-parameters: number of hid-
den layers, hidden layer size, and initial learning rate. We
construct Fluxion graphs with APIs in §4.1.1, and learning
assignments use GP. Externally, baselines and Fluxion graph
have the same inputs and output (c.f. Appendix).

Our testbeds are 3 clusters on Azure — 100-VM cluster
(with Intel E5-2673 CPU and 54GB RAM) for Train Ticket
and Hotel Reservation; 6-VM cluster (with Intel 8272CL CPU
and 8GB RAM) for Hotel Reservation; a 9-VM cluster (with
Intel 8171M CPU and 16GB RAM) for Boutique.

Methodology. We send workloads of requests, with wrk2 [38]
and Locust [24] (c.f. Appendix). We periodically induce the
following stresses to trigger orchestrations, hence deployment
dynamics. First, we change the requests per second (RPS) or
ratio of request types, to stress different services and paths.
This stress then triggers Kubernetes’ HPA (Horizontal Pod
Autoscaler) to replicate or reclaim multiple services, to main-
tain an average service CPU utilization of 60%. Second, we
replace a service. Third, we scale-out the entire system.

After each orchestration operation (i.e., deployment dynam-
ics), we first ensure all modeling approaches’ inputs match
system knobs. This step involves training new baselines, and
also re-composing Fluxion’s graph. In addition, to evaluate
how different approaches would improve with further training,
we collect new training dataset. Each iteration performs one
random benchmark and measures per-request latencies for
∼10 minutes. To compare prediction MAE (mean absolute
error), we collect an additional 100 random benchmarks as
the testing dataset. MAE is computed as the average error
between a benchmark’s actual latency and predicted latency.

5.1.1 Performance Modeling Error Reduction

We evaluate how well Fluxion reduces the MAE of predict-
ing the end-to-end latency, as compared to baselines. In the
presence of deployment dynamics, a consistently lower MAE
suggests a more robust performance modeling.

For TrainTicket, Fig 5b shows that Fluxion consistently
maintains a lower MAE (i.e., MAE reduction is always greater
than 0) for predicting 90th-percentile latency. It achieves 7.30–
38.92% and 4.88%–29.22% lower MAE than monolithic GP
and DNN baselines, respectively; this translates to an average
MAE reduction of 2,181.89 µs and 1,547.27 µs. Similarly, for
Hotel Reservation on the 100-VM cluster, Fig 7b shows that
Fluxion achieves 34.82–60.05% and 27.24–57.39% lower
MAE than monolithic GP and DNN baselines, respectively;
this translates to an average MAE reduction of 7,298.78 µs
and 6,858.30 µs. For Hotel Reservation on the 6-VM clus-
ter, Fig 6b shows that Fluxion achieves 10.04–68.41% and
10.87–66.14% lower MAE than baselines; this translates to
an average MAE reduction of 2,814.09 µs and 2,205.70 µs.
Finally, Fig 8b shows Fluxion’s lower MAE, for Boutique.

Right after deployment dynamics happen (i.e., orchestra-
tion operations), the MAEs of all approaches increase. How-

Step Triggered orchestration Service Knob+state
(1) Init RPS (=50) Deploy "TrainTicket" 49 242
(2) Stress RPS (=100) Scale-out Station (2×) 50 247
(3) Change req ratio Scale-out Station (2×), 51 252

Route (2×)
(4) Change req ratio Scale-out Station (2×), 53 262

Route (2×), Order (2×)
(5) Stress RPS (=250) Scale-out Station (5×), 62 307

Route (6×), Order (4×)
(6) Stress scale Scale-out all services (3×) 105 510
(7) Replace services TiDB replaces MySQL 49 242

(a) Microservice orchestrations

Time (min)

M
A

E
 r

e
d
u
c
tio

n
 (

%
)

0 2000 4000 6000 8000 10000 12000 14000

0
1
5

3
0

4
5 (1) (2) (3) (4) (5) (6) (7)

vs. GP baseline
vs. DNN baseline

(b) Perf modeling error reduction for predicting p90 latency

Time (min)

S
p
e
e
d
u
p
 (

×
)

0 2000 4000 6000 8000 10000 12000 14000

1
1
.2

1
.4

1
.6

1
.8 (1) (2) (3) (4) (5) (6) (7)

vs. GP baseline
vs. DNN baseline
vs. default knobs

(c) System p90 latency speedup (w/ random optimizer)

Time (min)

S
p
e
e
d
u
p
 (

×
)

0 2000 4000 6000 8000 10000 12000 14000

1
1
.2

1
.4

1
.6

1
.8 (1) (2) (3) (4) (5) (6) (7)

vs. GP baseline
vs. DNN baseline
vs. default knobs

(d) System p90 latency speedup (w/ Metis optimizer)

Figure 5: TrainTicket on 100-VM cluster (Intel 2673).

ever, compared to baselines, the relative MAE reduction of
Fluxion becomes significantly higher after an orchestration
operation. Since monolithic baselines require entirely new
models, their modeling accuracy can improve only after col-
lecting sufficient data points and training. For example, as
we gradually scale-out Hotel Reservation from 15 to 142 ser-
vices, we need new GP and DNN baselines to accommodate
the input dimension that grows from 63 to 1,034. Further-
more, Table 6a shows an operation (Step #6) that replaces all
Memcached services by Redis. Although the input dimension
here does not change, we need new baselines because Redis

1088 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Step Triggered orchestration Service Knob+state
(1) Init RPS (=50) Deploy "Hotel Reservation" 15 63
(2) Stress RPS (=500) Scale-out Reservation (2×) 17 72
(3) Change req ratio Scale-out Reservation (2×), 19 80

Rate (2×)
(4) Stress RPS (=800), Scale-out all services (3×) 37 139

change req ratio
(5) Stress scale Scale-out all services (4×) 48 177
(6) Replace services Redis replaces Memcached 15 63

(a) Microservice orchestrations

Time (min)

M
A

E
 r

e
d
u
c
tio

n
 (

%
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0 (1) (2) (3) (4) (5) (6)

vs. GP baseline vs. DNN baseline

(b) Perf modeling error reduction for predicting p90 latency

Time (min)

S
p
e
e
d
u
p
 (

×
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

1
1
.1

1
.2

1
.3

1
.4

1
.5

1
.6 (1) (2) (3) (4) (5) (6)

vs. GP baseline vs. DNN baseline vs. default knobs

(c) System p90 latency speedup (w/ random optimizer)

Time (min)

S
p
e
e
d
u
p
 (

×
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

1
1
.1

1
.2

1
.3

1
.4

1
.5

1
.6 (1) (2) (3) (4) (5) (6)

vs. GP baseline vs. DNN baseline vs. default knobs

(d) System p90 latency speedup (w/ Metis optimizer)

Figure 6: Hotel Reservation on 6-VM cluster (Intel 8272CL).

brings a different set of configuration knobs to performance
modeling.

On the other hand, Fluxion is able to localize the inference
graph regions (or some learning assignments) that require
updating, without changing the rest of the graph. For example,
when Hotel Reservation scales-out from 15 to 142 services,
graph updates replicate all services’ instance-vertices and
train their service-vertices. The former incurs no costs, and
the latter represents only 15 of the 157 learning assignments
in the inference graph. Similar observations can be made for
TrainTicket (c.f. Fig 5) and Boutique (c.f. Fig 8).

Step Triggered orchestration Service Knob+state
(1) Init RPS (=50) Deploy "Hotel Reservation" 15 63
(2) Stress RPS (=1,200), Scale-out all services (6×) 70 253

change req ratio
(3) Stress scale Scale-out all services (6×), 142 1,034

all Memcached (10×)

(a) Microservice orchestrations

Time (min)

M
A

E
 r

e
d
u
c
tio

n
 (

%
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0 (1) (2) (3)

vs. GP baseline vs. DNN baseline

(b) Perf modeling error reduction for predicting p90 latency

Time (min)

S
p
e
e
d
u
p
 (

×
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

1
1
.1

1
.2

1
.3

1
.4

1
.5

1
.6 (1) (2) (3)

vs. GP baseline vs. DNN baseline vs. default knobs

(c) System p90 latency speedup

Figure 7: Hotel Reservation on 100-VM cluster (Intel 2673).

5.1.2 Model Adaptation Time Reduction

After each orchestration operation, all modeling approaches
are updated to match inputs to system knobs. While baselines
need to be re-trained, Fluxion minimizes the overhead by lo-
calizing updates to some inference graph regions. If none or
only a small number) of regions need updating, graph can
immediately achieve low prediction MAE, without collect-
ing training data points. Since collecting data points can be
time-consuming (c.f. §2.2), if more training data points are
necessary, the modeling accuracy will take longer to improve.

We take a deep dive into TrainTicket. After an orchestration
operation, both monolithic GP and DNN baselines generally
need at least 300–400 data points, in order to train new mono-
lithic models that have an MAE close to what Fluxion can
achieve with only 10–25 data points. If each system bench-
mark takes ∼10 minutes, this is a reduction of 2,900–3,750
minutes (or up to 30× reduction).

Furthermore, we highlight the case where Hotel Reserva-
tion is scaled-out to 142 services. With 500 data points, mono-
lithic GP and DNN models achieve an MAE of 29,576.57µs
and 22,575.57µs, respectively. On the other hand, with only
10 data points, Fluxion can already achieve an MAE of
17,716.25µs. Since Fluxion needs to update only a small
subset of the learning assignments in the graph, it requires

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1089

Step Triggered orchestration Service Knob+state
(1) Init RPS (=100) Deploy "Boutique" 11 63
(2) Stress RPS (=200), Scale-out all services (2×) 22 126

stress scale
(3) Stress RPS (=300), Scale-out all services (3×) 33 189

stress scale

(a) Microservice orchestrations

Time (min)

M
A

E
 r

e
d
u
ct

io
n
 (

%
)

0 1000 2000 3000

0
1
0

2
0

3
0

4
0

5
0

6
0 (1) (2) (3)

vs. GP baseline
vs. DNN baseline

(b) Error reduction for predicting p90 latency

Time (min)

S
p
e
e
d
u
p
 (

×
)

0 1000 2000 3000

1
1
.2

1
.4

1
.6

1
.8

2 (1) (2) (3)
vs. GP baseline
vs. DNN baseline
vs. default knobs

(c) System p90 latency speedup

Figure 8: Boutique on 9-VM cluster (Intel 8171M).

much fewer training data points.

5.1.3 End-to-end System Latency Speedup

Intuitively, a better performance model should enable better
performance optimization. Based on Fluxion’s MAE reduc-
tion shown in §5.1.1, this subsection now quantifies how it
can better reduce end-to-end system latencies. To do so, we
couple performance models with auto-tuning optimizers (c.f.
§2.1): (1) a random optimizer that selects the best knob setting
from randomly generated 100,000 settings, and (2) Metis [21].

Fig 5c and 5d show TrainTicket’s 90th-percentile latency
speedup from using Fluxion, over baselines. With Fluxion,
the random optimizer achieves a speedup up to 1.41× and
1.43×, over GP and DNN baselines, respectively; the Metis
optimizer achieves a speedup up to 1.52× and 1.62×. While
the choice of optimizer can impact the auto-tuning outcome,
using Fluxion can result in better performance optimization.
Even as we introduce deployment dynamics, the speedup
is always greater than 1. We note that figures also plot the
speedup over default knobs, to demonstrate the benefits of
performance optimization.

Fig 7c shows similar observations for Hotel Reservation on
the 100-VM cluster — with Fluxion, the random optimizer
achieves a 90th-percentile latency speedup up to 1.43× and

1.40×, as compared to relying on GP and DNN baselines,
respectively. Even for the last orchestration step where Hotel
Reservation is scaled-out to 142 services, the speedup can be
up to 1.40× and 1.39×. Furthermore, compared to the default
knob setting, Fluxion achieves a maximum speedup of 1.57×.

Fig 6c and Fig 6d illustrate the results for Hotel Reservation
on the 6-VM cluster. Fluxion helps the Metis optimizer to
achieve a speedup up to 1.49× and 1.47×, over GP and DNN
baselines, respectively. Fig 8c shows Boutique, where the
random optimizer achieves a speedup up to 1.81× and 1.79×,
over GP and DNN baselines, respectively.

5.2 Microbenchmarks
5.2.1 Exposing a Spectrum of Performance Metrics

We evaluate the benefits of exposing a spectrum of metrics for
external performance dependencies. To do so, we compare
the following inference graphs that predicting Hotel Reser-
vation’s 90th-percentile latency. In the first inference graph,
all services’ learning assignments consider (50, 80–99)th-
percentile latencies as external performance dependencies
from downstream services. In the second inference graph,
they consider only the target performance metric, or the 90th-
percentile latency. The last inference graph considers only
(50, 85, 90, 95)th-percentile latencies, which are suggested
by Fluxion’s input selection strategy.

We delve into the case when Hotel Reservation is scaled-
out by a factor of 6. If we consider all (50, 80–99)th-percentile
latencies, the graph MAE is 9,722.53µs. This is a 10.87%
lower MAE, as compared to the second inference graph’s
MAE of 10,779.22µs. Even across a sequence of orchestra-
tions on the 6-VM cluster, the first inference graph MAE is
at least 1.39% lower than the second inference graph. We
note that the trade off is the inference graph size — the first
graph has 2,170 vertices and 17,647 edges, but the second
graph has only 110 vertices and 167 edges. Since each vertex
references a learning assignment, this trade off can have a
significant implication in terms of the training costs, i.e., 660
more learning assignments to train.

The third latency graph tries to include only highly relevant
metrics. In the case of scaling-out Hotel Reservation above,
this graph achieves a MAE of 10,091.87µs, or 6.81% lower
than considering only the 90th-percentile latency. Further-
more, compared to considering all (50, 80–99)th-percentile
latencies, the third latency graph reduces the graph size to
419 vertices and 1,055 edges. Although there is a modest
3.80% increase in MAE, the number of necessary learning
assignments reduces by 561.

5.2.2 Capturing System’s Temporal Dynamics

We evaluate how well learning assignments can re-use previ-
ously trained models to adapt to recurring patterns in temporal
dynamics. Our evaluations are based on a case study, which

1090 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

auto-tunes per-service VM resource allocations by predicting
incoming VM request’s max CPU utilization and lifetime.
Particularly, as the VM utilization pattern changes over time,
models are trained and added to learning assignments, which
then use output weighting to compute outputs.

Experiment methodology. We use the 30-day Azure VM
utilization trace as the workload, and this production trace
was recorded in 2019 [26]. It records resource utilization
measurements (e.g., 5-min CPU utilization and VM lifetime)
and VM metadata (e.g., VM size and encrypted subscrip-
tion/deployment ID) for 2,695,548 VM requests.

Following Cortez et al. [7], our baselines are monolithic
random forest and extreme gradient boosting tree (XGBoost),
for modeling VM’s max CPU utilization and lifetime, re-
spectively. And, these metrics are bucketized. Model inputs
include encrypted subscription/deployment ID, requested VM
size/category, hour of the day, day of the week. We re-train
monolithic baselines at the beginning of each day in the trace,
with data points from the previous day or all past days. Fur-
thermore, to ensure comparison baselines are properly trained,
we tune their hyper-parameters with NNI [27].

For Fluxion, we set up two learning assignments to rep-
resent VM’s max CPU utilization and lifetime. We then dis-
cretize the continuous trace into non-overlapping batches by
days. At the end of each day in the trace, Fluxion evaluates
the mean absolute error (MAE). A new model is trained and
added only if this MAE is below 85%. The learning assign-
ment gradually accumulates models for future re-uses, and
its output is the weighted sum of all its models’ predictions.
We re-compute the weights by invoking GE.fit() every two
hours, with recent data points.

Performance modeling error reduction. Fig 9a and Fig 10a
suggest that Fluxion can significantly reduce the daily model-
ing MAE. One reason is that GE.fit() can quickly re-adjust
weights with the output weighting strategy, rather than going
through expensive model training. In summary, compared to
baselines trained with the previous day of data, the daily MAE
reduction is 2.04%–11.25% and 3.97%–25.43%, for predict-
ing max CPU utilization and lifetime, respectively. Compared
to baselines trained with all historic data, the daily MAE re-
duction is 0.64%–6.49% and -1.16%–11.20%, for predicting
max CPU utilization and lifetime, respectively. We note that
there are days (e.g., day #20) where Fluxion has a slightly
higher MAE than baselines. The reason is that these days
exhibit a pattern that significantly drifts from previous days.

Model adaptation cost reduction. Fig 9b and Fig 10b sug-
gest that Fluxion significantly reduces the daily training time,
i.e., the time spent on model training and GE.fit(). We note
that this reduction varies by days, as Fluxion does not need to
train new models every day. By re-using models, it trains only
a total of 20 and 23 models for predicting VM’s max CPU
utilization and lifetime, respectively. Furthermore, GE.fit()
is relatively lightweight — invoking GE.fit() 12 times a day

Day

M
A

E
 R

e
d
u
c
ti
o
n
 (

%
)

2 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30

-2
8

1
8

2
8

3
8

4
8

5
8

0

vs. monolithic model trained with 1 previous window of historic data
vs. monolithic model trained with all windows of historic data

(a) Perf modeling error reduction

Day

T
im

e
 R

e
d
u
ct

io
n
 (

%
)

2 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30

2
5

5
0

7
5

1
0
0

vs. monolithic model trained with 1 previous window of historic data
vs. monolithic model trained with all windows of historic data

(b) Adaptation time reduction

Figure 9: Benefits of learning assignments in predicting VM
lifetime in the Azure 30-day trace, compared to baselines.
The output weighting strategy promotes the re-use of models
trained at different time periods. We evaluate the prediction
error every two hours to produce daily boxplots.

takes ∼1,620 and ∼1,480 seconds, for modeling VM’s max
CPU utilization and lifetime, respectively. So, compared to
monolithic random forest and XGBoost baselines trained with
the previous day of data, Fluxion reduces the daily training
time by 34.93–99.97% and 68.99–99.98%, respectively. Com-
pared to monolithic random forest and XGBoost baselines
trained with all historic data, Fluxion reduces the daily train-
ing time by 64.55–99.96% and 96.51–99.98%, respectively.

5.2.3 Graph Re-training

As mentioned in §3.2.3, there are two error sources. As previ-
ous evaluation has shown Fluxion’s benefit on error source
#1 (new learning assignments), this section focuses on error
source #2 (unforseen prediction inputs). As the incoming re-
quest pattern changes, different service-to-service execution
paths are stressed. We evaluate how well Fluxion can identify
the learning assignments at fault in the inference graph.

We conduct experiments by altering the ratio of four request
types in the wrk2 workload generator: search, recommend,
reserve, and user. After we scale-out Hotel Reservation by
a factor of 6, we increase the ratio of search, recommend,
and user requests from 10% to 30%. At this point, the graph
MAE for predicting the 90th-percentile latency is 12,444.63µs.
Then, the first iteration of graph debugging identifies Mon-
goDB’s learning assignment. After adding a new model
trained with recent data points, the graph MAE reduces to

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1091

Day

M
A

E
 R

e
d
u
c
ti
o
n
 (

%
)

2 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30

-2
8

1
8

2
8

3
8

4
8

5
8

0

vs. monolithic model trained with 1 previous window of historic data
vs. monolithic model trained with all windows of historic data

(a) Perf modeling error reduction

Day

T
im

e
 R

e
d
u
ct

io
n
 (

%
)

2 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30

2
5

5
0

7
5

1
0
0

vs. monolithic model trained with 1 previous window of historic data
vs. monolithic model trained with all windows of historic data

(b) Adaptation time reduction

Figure 10: Benefits of learning assignments in predicting
VM’s max CPU utilization in the Azure 30-day trace, com-
pared to baselines. Output weighting promotes the re-use
of models trained at different time periods. We evaluate the
prediction error every two hours to produce daily boxplots.

11,024.66µs (or a 11.41% reduction). Subsequent iterations
identify the following services: User, Recommendation, and
Geo; updating these services reduces MAE to 10,190.89µs (or
a 18.11% reduction), 9,483.48µs (or a 23.79% reduction), and
9,352.04µs (or a 24.85% reduction). Beyond this point, the
graph MAE reduction starts to exhibit a diminishing return.

6 Related Work

Auto-tuning. Performance tuning for distributed systems is
a problem that has continuously received attentions. Instead
of relying on heuristics, previous efforts have demonstrated
the feasibility of ML-based auto-tuning, for systems ranging
from databases [2, 20, 21, 36], storage [6], VM instances [3, 7,
13, 14, 41], cloud services [23], and big data analytics [34].

The focus of this paper is not to apply auto-tuning to new
system scenarios, nor to propose new ML techniques. Rather,
we are motivated by the limitations of driving auto-tuning
with monolithic performance models, especially in the pres-
ence of deployment dynamics. We take the first step at ab-
stractions and pieces to systematically bring the concept of
modularity to performance modeling. Furthermore, one key
question addressed is how this process should be standardized
and generalized, without being coupled to specific modeling
techniques and systems.

Ensemble of models. The system community has proposed

model ensemble as a research opportunity to improve the
development speed and adoption in the real world. Stoica et
al. [32] describe this opportunity as composable AI systems.
Their goal is to query multiple models in different patterns to
balance the tradeoff between accuracy, latency, and through-
put of a model serving system. In contrast, Fluxion focuses
on providing performance modeling for modern systems.

Ensemble learning is a popular machine learning approach
that combines multiple models to achieve a higher prediction
accuracy on a given dataset [16,17,28]. Representative efforts
include bagging [5], boosting [8] and so on. Unlike Fluxion,
these techniques do not consider system deployment dynam-
ics and the inherent modularity of ML-based performance
model for large complex distributed systems.

Previous research efforts have also applied ensemble learn-
ing, to realize incremental learning [29, 35]. They inspire our
design for learning assignments to keep a list of models.

7 Discussion

We discuss overarching issues regarding modularity level.
Fluxion’s current design closely follows the system modular-
ity of services, but a finer or coarser modularity level might
also seem viable. For Fluxion, the main difference would be
in the number of learning assignments. Having said that, we
choose the modularity level of services, in order to align with
what deployment orchestrations typically operate on. While
developers could carefully craft a monolithic system that out-
performs service-based counterpart, doing so would compli-
cate everyday CI/CD orchestrations in production. Therefore,
we advocate developers to follow the well-known principle
of engineering cohesive and loosely coupled services. And,
for training, these services should expose appropriate knobs
and performance feedback.

8 Conclusion

We report the design and implementation of Fluxion. Fluxion
applies the principle of modularity to make performance mod-
eling practical for distributed systems such as microservices.
Even under deployment dynamics, empirical results show that
Fluxion consistently maintains a higher performance model-
ing accuracy than monolithic models. This in turn enables
auto-tuning tools to better reduce end-to-end system latencies.

Acknowledgments

We thank anonymous reviewers and our shepherd, Prof. Ravi
Netravali, for their extensive comments and suggestions.

1092 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Adam Gluck. Introducing Domain-Oriented Microser-
vice Architecture, 2020.

[2] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon,
and Bohan Zhang. Automatic Database Management
System Tuning Through Large-scale Machine Learning.
In SIGMOD. ACM, 2017.

[3] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
CherryPick: Adaptively Unearthing the Best Cloud Con-
figurations for Big Data Analytics. In NSDI. USENIX,
2017.

[4] auto-sklearn. auto-sklearn. http://github.com/
automl/auto-sklearn.

[5] Leo Breiman. Bagging predictors. Machine learning,
24(2):123–140, 1996.

[6] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez
Zadok. Towards Better Understanding of Black-box
Auto-tuning: A Comparative Analysis for Storage Sys-
tems. In ATC. USENIX, 2018.

[7] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource Central: Understandingand Predicting Work-
loads for Improved Resource Management in Large
Cloud Platforms. In SOSP. ACM, 2017.

[8] Yoav Freund and Robert E Schapire. A desicion-
theoretic generalization of on-line learning and an appli-
cation to boosting. In European conference on compu-
tational learning theory, pages 23–37. Springer, 1995.

[9] Silvery Fu, Saurabh Gupta, Radhika Mittal, and Sylvia
Ratnasamy. On the Use of ML for Blackbox System
Performance Prediction. In NSDI. USENIX, 2021.

[10] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and
Christina Delimitrou. Sage: Practical Scalable ML-
Driven Performance Debugging in Microservices. In
ASPLOS. ACM, 2021.

[11] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. Unveiling the Hardware and
Software Implications of Microservices in Cloud and
Edge Systems. IEEE Micro, 2020.

[12] Giulio Santoli. Microservices Architectures: Become a
Unicorn like Netflix, Twitter and Hailo, 2016.

[13] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,
Greg Kochanski, John Karro, and D. Sculley. Google
Vizier: A Service for Black-Box Optimization. In
SIGKDD. ACM, 2017.

[14] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. PRESS:
PRedictive Elastic ReSource Scaling for cloud systems.
In CNSM. IEEE, 2010.

[15] Google. Online Boutique. http://github.com/
GoogleCloudPlatform/microservices-demo.

[16] L.K. Hansen and P. Salamon. Neural Network Ensem-
bles. In Transactions on Pattern Analysis and Machine
Intelligence. IEEE, 1990.

[17] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan,
and Geoffrey E. Hinton. Adaptive Mixtures of Local
Experts. In Neural Computation. MIT, 1991.

[18] Jeremy Cloud. Decomposing Twitter: Adventures in
Service Oriented Architecture, 2013.

[19] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-Keras:
An Efficient Neural Architecture Search System. In
KDD. ACM, 2019.

[20] Feifei Li. Cloud-native Database Systems at Alibaba:
Opportunities and Challenges. In VLDB, 2019.

[21] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He, Lian-
jie Zhu, Wenjun Dai, Jin Jiang, and Guangzhong Sun.
Metis: Robustly Optimizing Tail Latencies of Cloud
Systems. In ATC. USENIX, 2018.

[22] Chieh-Jan Mike Liang, Hui Xue, Mao Yang, and Lidong
Zhou. The Case for Learning-and-System Co-design.
In SIGOPS Operating Systems Review. ACM, 2019.

[23] Chieh-Jan Mike Liang, Hui Xue, Mao Yang, Lidong
Zhou, Lifei Zhu, Zhao Lucis Li, Zibo Wang, Qi Chen,
Quanlu Zhang, Chuanjie Liu, and Wenjun Dai. AutoSys:
The Design and Operation of Learning-Augmented Sys-
tems. In ATC. USENIX, 2020.

[24] Locst. Locust - A Modern Load Testing Framework.
https://locust.io/.

[25] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye,
Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and
Chengzhong Xu. Characterizing Microservice Depen-
dency and Performance: Alibaba Trace Analysis. In
SoCC. ACM, 2021.

[26] Microsoft. Azure Public Datasets. http://github.
com/Azure/AzurePublicDataset.

[27] Microsoft. NNI. http://github.com/Microsoft/
nni.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1093

http://github.com/automl/auto-sklearn
http://github.com/automl/auto-sklearn
http://github.com/GoogleCloudPlatform/microservices-demo
http://github.com/GoogleCloudPlatform/microservices-demo
https://locust.io/
http://github.com/Azure/AzurePublicDataset
http://github.com/Azure/AzurePublicDataset
http://github.com/Microsoft/nni
http://github.com/Microsoft/nni

[28] Robi Polikar. Ensemble Based Systems in Decision
Making. IEEE Circuits and Systems Magazine, 2006.

[29] Robi Polikar, Lalita Udpa, Satish S. Udpa, and Vasant
Honavar. Learn++: An Incremental Learning Algorithm
for Supervised Neural Networks. In Transactions on
Systems, Man, and Cybernetics: Systems. IEEE, 2001.

[30] Daniel Russo, Benjamin Van Roy, Abbas Kazerouni,
Ian Osband, and Zheng Wen. A Tutorial on Thompson
Sampling, 2017.

[31] Software Engineering Laboratory of Fudan Univer-
sity. Train Ticket: A Benchmark Microservice System.
https://github.com/FudanSELab/train-ticket.

[32] Ion Stoica, Dawn Song, Raluca Ada Popa, David A.
Patterson, Michael W. Mahoney, Randy H. Katz, An-
thony D. Joseph, Michael Jordan, Joseph M. Hellerstein,
Joseph Gonzalez, Ken Goldberg, Ali Ghodsi, David E.
Culler, and Pieter Abbeel. A Berkeley View of Systems
Challenges for AI. Technical report, Berkeley, 2017.

[33] R Storn and K Price. Differential Evolution - a Simple
and Efficient Heuristic for Global Optimization over
Continuous Spaces. Journal of Global Optimization,
1997.

[34] Shivaram Venkataraman, Zongheng Yang, Michael
Franklin, Benjamin Recht, and Ion Stoica. Ernest: Effi-
cient Performance Prediction for Large-Scale Advanced
Analytics. In NSDI. USENIX, 2016.

[35] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han.
Mining Concept-Drifting Data Streams Using Ensemble
Classifiers. In KDD. ACM, 2003.

[36] Junxiong Wang, Immanuel Trummer, and Debabrota
Basu. UDO: Universal Database Optimization using
Reinforcement Learning. VLDB, 2021.

[37] Cort J. Willmott and Kenji Matsuura. Advantages of
the Mean Absolute Error (MAE) over the Root Mean
Square Error (RMSE) in Assessing Average Model Per-
formance. In Climate Research. Inter-Research, 2005.

[38] wrk2. wrk2. http://github.com/giltene/wrk2.

[39] Lei Zhang, Juncheng Yang, Anna Blasiak, Mike McCall,
and Ymir Vigfusson. When is the Cache Warm? Man-
ufacturing a Rule of Thumb. In HotCloud. USENIX,
2020.

[40] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin
She, Sifan Liu, Rui Gu, Beng Chin Ooi, and Junfeng
Yang. Overload Control for Scaling WeChat Microser-
vices. In SoCC. ACM, 2018.

[41] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang
Bao, Wenlong Ma, Zhuoyue Liu, Kunpeng Song, and
Yingchun Yang. BestConfig: Tapping the Performance
Potential of Systems via Automatic Configuration Tun-
ing. In SoCC. ACM, 2017.

1094 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/FudanSELab/train-ticket
http://github.com/giltene/wrk2

A Appendix

This appendix provides further information regarding our
experiment setup in §5.

• Table 1, 2, and 3 list features (i.e., configuration knobs
and states) that we use as performance model inputs, for
our three microservice systems. These tables break down
these features by microservices.

• Our Fluxion inference graphs use Gaussian Process (GP)
models in learning assignments. These GP models use
the Matern(5/2) kernel.

• We use NNI to automatically tune hyperparameters for
the DNN baseline: the number of hidden layers (3–7),
each hidden layer size (100–2,048), and the initial learn-
ing rate (0.001–0.1). We budget 24 hours of NNI for
each baseline.

• We rely on scripts provided by microservice
systems, to generate different request payloads.
These requests are then sent by wrk2 or Lo-
cust, as recommended by each system. They
are available here: Hotel Reservation (https:
//github.com/delimitrou/DeathStarBench/
tree/master/hotelReservation/wrk2), Boutique
(https://github.com/GoogleCloudPlatform/
microservices-demo/tree/main/src/
loadgenerator), and TrainTicket (https://github.
com/FudanSELab/train-ticket/issues/131).

Service type Configuration knob Observable state
"Frontend" net.ipv4.tcp_rmem (4,096–6,291,456) RPS

net.ipv4.tcp_wmem (4,096–4,194,304)
cpu.cfs_quota_us (100–300)

All innodb_thread_concurrency (8–128) RPS (read)
MySQL innodb_buffer_pool_size (512–3,072) RPS (write)

net.ipv4.tcp_rmem (4,096–6,291,456) RPS (update)
net.ipv4.tcp_wmem (4,096–4,194,304)

All eviction_dirty_target (10–99) RPS (read)
MongoDB eviction_dirty_trigger (1–99) RPS (write)

cache (50–200) RPS (update)
net.ipv4.tcp_rmem (4,096–6,291,456)
net.ipv4.tcp_wmem (4,096–4,194,304)

All storage.scheduler_worker RPS (read)
TiDB _pool_size (2–32) RPS (write)

rocksdb.write_buffer_size (64–256) RPS (update)
net.ipv4.tcp_rmem (4,096–6,291,456)
net.ipv4.tcp_wmem (4,096–4,194,304)

All other net.ipv4.tcp_rmem (4,096–6,291,456) RPS
services net.ipv4.tcp_wmem (4,096–4,194,304)

cpu.cfs_quota_us (100–300)

Table 1: Performance model inputs, for TrainTicket.

Service type Configuration knob Observable state
"Frontend" net.ipv4.tcp_rmem (4,096–6,291,456) RPS

net.ipv4.tcp_wmem (4,096–4,194,304)
cpu.cfs_quota_us (100–300)

All hash_max_ziplist_entries RPS (read)
Redis (32–4,096) RPS (write)

maxmemor_samples (1–10)
maxmemory (1–16)
net.ipv4.tcp_rmem (4,096–6,291,456)
net.ipv4.tcp_wmem (4,096–4,194,304)
cpu.cfs_quota_us (100–300)

"Email" max_workers (1–20) RPS
net.ipv4.tcp_rmem (4,096–6,291,456)
net.ipv4.tcp_wmem (4,096–4,194,304)
cpu.cfs_quota_us (100–300)

"Recommend" max_workers (1–20) RPS
max_response (1–5)
net.ipv4.tcp_rmem (4,096–6,291,456)
net.ipv4.tcp_wmem (4,096–4,194,304)
cpu.cfs_quota_us (100–300)

"Ad" max_ads_to_serve (1–10) RPS
net.ipv4.tcp_rmem (4,096–6,291,456)
net.ipv4.tcp_wmem (4,096–4,194,304)
cpu.cfs_quota_us (100–300)

All other net.ipv4.tcp_rmem (4,096–6,291,456) RPS
services net.ipv4.tcp_wmem (4,096–4,194,304)

cpu.cfs_quota_us (100–300)

Table 2: Performance model inputs, for Boutique.

Service type Configuration knob Observable state
"Frontend" net.ipv4.tcp_rmem (4,096–6,291,456) RPS

net.ipv4.tcp_wmem (4,096–4,194,304)
cpu.cfs_quota_us (100–300)

All memory-limit (30–100) RPS (read)
Memcached threads (1–16)

slab-growth-factor (1.1–2.2)
All eviction_dirty_target (10–99) RPS (read)
MongoDB eviction_dirty_trigger (1–99) RPS (write)

cache (50–200) RPS (update)
net.ipv4.tcp_rmem (4,096–6,291,456)
net.ipv4.tcp_wmem (4,096–4,194,304)

All other net.ipv4.tcp_rmem (4,096–6,291,456) RPS
services net.ipv4.tcp_wmem (4,096–4,194,304)

cpu.cfs_quota_us (100–300)

Table 3: Performance model inputs, for Hotel Reservation.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1095

https://github.com/delimitrou/DeathStarBench/tree/master/hotelReservation/wrk2
https://github.com/delimitrou/DeathStarBench/tree/master/hotelReservation/wrk2
https://github.com/delimitrou/DeathStarBench/tree/master/hotelReservation/wrk2
https://github.com/GoogleCloudPlatform/microservices-demo/tree/main/src/loadgenerator
https://github.com/GoogleCloudPlatform/microservices-demo/tree/main/src/loadgenerator
https://github.com/GoogleCloudPlatform/microservices-demo/tree/main/src/loadgenerator
https://github.com/FudanSELab/train-ticket/issues/131
https://github.com/FudanSELab/train-ticket/issues/131

SelfTune: Tuning Cluster Managers

Ajaykrishna Karthikeyan1 Nagarajan Natarajan1 Gagan Somashekar3 Lei Zhao2

Ranjita Bhagwan1 Rodrigo Fonseca2 Tatiana Racheva2 Yogesh Bansal2

1Microsoft Research 2Microsoft 3Stony Brook University

Abstract

Large-scale cloud providers rely on cluster managers for
container allocation and load balancing (e.g., Kubernetes),
VM provisioning (e.g., Protean), and other management tasks.
These cluster managers use algorithms or heuristics whose
behavior depends upon multiple configuration parameters.
Currently, operators manually set these parameters using a
combination of domain knowledge and limited testing. In very
large-scale and dynamic environments, these manually-set pa-
rameters may lead to sub-optimal cluster states, adversely
affecting important metrics such as latency and throughput.

In this paper we describe SelfTune, a framework that au-
tomatically tunes such parameters in deployment. SelfTune
piggybacks on the iterative nature of cluster managers which,
through multiple iterations, drives a cluster to a desired state.
Using a simple interface, developers integrate SelfTune into
the cluster manager code, which then uses a principled rein-
forcement learning algorithm to tune important parameters
over time. We have deployed SelfTune on tens of thousands
of machines that run a large-scale background task sched-
uler at Microsoft. SelfTune has improved throughput by as
much as 20% in this deployment by continuously tuning a
key configuration parameter that determines the number of
jobs concurrently accessing CPU and disk on every machine.
We also evaluate SelfTune with two Azure FaaS workloads,
the Kubernetes Vertical Pod Autoscaler, and the DeathStar
microservice benchmark. In all cases, SelfTune significantly
improves cluster performance.

1 Introduction

Large cloud services depend upon cluster managers such
as Protean [37], Borg [65], Twine [61], and Kubernetes [6]
for job scheduling [32, 33, 39, 47, 53], virtual machine pre-
provisioning [43], and resource autoscaling [42, 50, 51]. Clus-
ter managers employ algorithms or heuristics to improve
metrics such as throughput, latency, and resource utiliza-
tion. Often, these algorithms rely on multiple configuration

parameters that critically influence their behavior, that we
call cluster manager parameters. For instance, Kubernetes
exposes parameters cpu-histogram-decay-half-life
and recommender-interval to help the autoscaler [8] re-
act promptly to changes in cluster utilization without reacting
to extremely ephemeral changes in utilization.

Every cluster manager relies on developers1 to manually
set these configuration management parameters to “suitable”
values. Table 1 gives examples of such parameters (not ex-
haustive) for different cluster managers. Typically, developers
set these values using a combination of domain-knowledge
and a limited set of manually-run tests or canaries [38,60,62].
While using domain knowledge is a step in the right direc-
tion, limited testing has many disadvantages. First, the tests
may not widely explore different values of these parame-
ters in different environments. Second, the search space of
feasible values explodes exponentially when multiple inter-
dependent parameters can be tweaked simultaneously. Third,
cluster usage can change with time, and the best parame-
ter values would therefore change with time as well. Con-
sequently, clusters with manually tuned parameter values
may result in reduced throughput, high request latencies or
low resource utilization. For instance, we find that using the
default values for cpu-histogram-decay-half-life and
pod-recommendation-min-cpu parameters of the Kuber-
netes autoscaler drops the system throughput to nearly 50%
when the workloads arrive in short, heavy bursts (Section 7).

To address this problem, we observe an interesting simi-
larity between cluster manager algorithms and reinforcement
learning (RL) algorithms. Cluster managers (Table 1) often
use state reconciliation: periodically, they observe the current
state of a cluster in terms of health and utilization metrics,
compare it to a desired state, and take action to move the
observed state closer to the desired state [27]. For instance,
the Kubernetes autoscaler [8] continuously determines how to
update container sizes, by maintaining a histogram of recent
resource utilization values. RL algorithms are also iterative

1For brevity, we refer to anyone developing, deploying or monitoring
cluster managers – developers, operators, service engineers – as “developers”.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1097

Cluster manager Parameter Description Default

cpu-histogram-decay-half-life How long to wait before halving the weights of past CPU measurements 24 hours
recommendation-margin-fraction Fraction of usage added as the safety margin to the recommended request 0.15

Kubernetes pod-recommendation-min-cpu Minimum CPU recommendation for a pod 25 millicores
(Vertical Pod history-length Window length for CPU utilization histogram 24 hours
Autoscaler) pod-recommendation-min-memory Minimum memory recommendation for a pod 250 MB

memory-histogram-decay-half-life How long to wait before halving the weights of past memory measurements 24 hours
memory-aggregation-interval Window length for memory utilization histogram 24 hours
recommender-interval How often the resource utilization metrics should be fetched 1 minute

Azure FaaS prewarm Time to wait before pre-loading function code 5
(App manager) keepalive Time to wait before retiring the loaded VM 99

Azure Protean num-aa Number of rule-based VM allocation agents
(VM allocator) k k-highest quality clusters for VM placement [8,16]

Table 1: Key numerical configuration parameters of popular cluster management frameworks.

in nature, and use “rewards” to periodically improve and con-
verge a system to an optimal state. Hence we observe that
cluster managers are naturally amenable to RL techniques for
tuning configuration parameters.

In this paper, we propose SelfTune, a framework that au-
tomatically tunes such configuration parameters in deploy-
ment, rather than through testing. Three key aspects of our
framework are: (i) SelfTune piggybacks solely on cluster man-
ager’s periodic metric measurements, to help tune the cluster
manager parameters, so that both tuning and the cluster state
reconciliation can occur simultaneously with the same goal
of moving the cluster continuously towards optimal state; (ii)
SelfTune provides a light-weight API for the developers to
augment the cluster manager code specifying which parame-
ters to tune (as we illustrate with an example in Section 3), and
an objective, e.g., average CPU utilization should be ≥ 60%
but ≤ 90%; and (iii) SelfTune uses a principled algorithm
called Bluefin, based on theoretically-founded ideas for time-
varying rewards [35, 52], to optimize the developer-specified
objective; it gradually explores choices for the cluster man-
ager parameters, observes the cluster state, and iteratively
tunes the parameters to achieve the objective (Section 4).

We have deployed SelfTune on WLM, a scheduler which
manages background job scheduling for many Microsoft
M365 services including Exchange Online. WLM runs on
hundreds of thousands of machines, of which about a third cur-
rently use SelfTune’s parameter tuning. Our deployment has
been running for the last six months. We find that SelfTune
has improved cluster throughput by 15%–20% in multiple
clusters, while simultaneously improving the resource health
in some cases. Based on this, operators are in the process of
rolling out SelfTune on the entire fleet of machines.

Despite the simplicity of the Bluefin algorithm, SelfTune
is successful and has low sample complexity (i.e., number
of iterations to converge to the desired cluster state) across
applications (Sections 5, 6, 7). This stems primarily from the
fact that SelfTune does not learn a single complex model or
“policy” for the various scenarios (e.g., high/low workloads)
and states (e.g., resource utilization levels, failures) of the de-
ployment environment, unlike standard RL techniques used in

systems [45], to tune parameters. Instead, SelfTune relies on
pre-determined “scoping” of scenarios (by developers, which
is easy in practice) to learn optimal parameters per scope
(e.g., one model per machine in our WLM deployment). This
scoping, along with light-weight parameter updates (Bluefin)
within each scope, makes our solution sample efficient, requir-
ing only about 20 iterations to converge in all our case-studies.

This paper makes the following contributions.
(1) We present SelfTune, a framework that developers can
use to automate parameter search for their cluster manager
via a minimal interface (Section 3).
(2) We use a novel algorithm, Bluefin, based on rigorously-
studied ideas in online learning [35, 52], which allows
multiple parameters to be tuned quickly and jointly (Sec-
tion 4). SelfTune, with Bluefin, enables systems to converge
to their objective, i.e., their most desired state faster than
previous systems that use Bayesian Optimization [55] and
standard RL algorithms [26] (Sections 2.1, 7). We have open-
sourced an implementation of SelfTune with Bluefin [14].
(3) We describe our deployment of SelfTune on WLM and
show results from multiple clusters where SelfTune achieves
up to 15%–20% improvement in the throughput (Section 5).
(4) To the best of our knowledge, ours is the first developer-
centric framework for automated tuning of parameters of
online systems, not just cluster managers, with large-scale
deployments. We show SelfTune’s generality in the contexts
of (a) resource management for Azure FaaS with production
workloads [54] (Section 6) yielding significant improvement
in resource efficiency and (b) container rightsizing with Ku-
bernetes and DeathStar benchmark [36] (Section 7), yielding
significant improvements in tail latency and throughput.

2 Related Work

Optimally configuring systems is a long-studied research
problem in both systems and machine learning [34, 40, 44, 63,
64, 68]. In this section, we describe how SelfTune improves
upon previous work, in terms of both the core algorithm it
uses, and the framework it provides to the developer.

1098 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.1 Algorithm

Commonly-used techniques for tuning or learning system
parameters are variants of Bayesian Optimization [25, 55],
reinforcement learning [20, 67], and heuristic search [30].
Bayesian Optimization (BO): CherryPick [23] uses BO
to pick the best cloud configuration for big data analytics
while Metis [40] uses it to improve performance metrics like
tail latency by tuning key system parameters. BO is meant
for settings where one seeks global optima of a fixed reward
function, and requires users to specify a model for the function.
For example, CherryPick and Metis use Gaussian Processes
to model the prior function. In contrast, Bluefin focuses on
online settings where the reward function may change with
time, and so does the optimal solution. Also, BO algorithms
have high sample complexity, i.e., the number of parameter
deployments needed to converge to an optimal solution is
large, especially when the number of parameters is also large.
Thus BO is not ideal for tuning parameters in deployment or
online. Our evaluation in Section 7 confirms this.
Reinforcement learning (RL): RL solutions for tuning
database systems [67] or learning scheduling algorithms [45]
support continuous parameters but require the system to ex-
plicitly provide state information in addition to reward values.
For instance, Decima [45] needs every node to specify state
in terms of a feature vector consisting of average task dura-
tion, number of servers assigned to a node, etc. Defining and
implementing states needs domain expertise and engineering
effort which is hard to scale across diverse systems. In con-
trast, Bluefin works with just the reward values and does not
need the system to explicitly define such state.
Heuristic search: Using branch-and-bound [30] based tech-
niques for large combinatorial spaces, or domain-specific de-
ductive search for high-dimensional spaces [68] are primarily
meant for systems where the goal is to obtain the best config-
uration parameters for a fixed reward function, and a fixed set
of workloads. Often, these techniques do not apply to online
settings for the same reason as BO (discussed above); also,
heuristic search space modeling lacks the generality of RL
techniques like contextual bandits [20, 26] and Bluefin.

SelfTune’s Bluefin algorithm addresses the concerns in
both BO and state-of-the-art RL techniques. It is a princi-
pled gradient-descent based algorithm which (a) needs no
modeling, ML expertise, or non-trivial engineering effort, (b)
works seamlessly with large real-valued and discrete parame-
ter spaces, and (c) converges to local (or global) optima, with
fewer samples than previous approaches.

2.2 Framework

MLOS [31] is a framework to automatically tune configura-
tion parameters using BO; thus, its applicability is limited as
discussed above. OpenTuner [24] provides a meta-framework
using which domain-specific tuners can in turn be built. CG-

PTuner [29] considers contextual data, e.g., workload infor-
mation, for DBMS tasks and uses BO to guide tuning. Best-
Config [24] finds good configuration settings using heuristic
search and sampling techniques. As discussed in Section 2.1,
these techniques do not generalize to dynamic environments
unlike SelfTune, where the rewards observed change with
time, and in turn the optimal configurations themselves.

OtterTune [64, 66] is a framework for tuning DBMS con-
figuration parameters. Though it also uses a variant of BO for
tuning, it incorporates a novel technique to mitigate the risk
of using stale configurations for new workloads. It builds ML
models for selecting an appropriate workload (from a work-
load repository) that best represents the current workload, and
uses the selected workload to estimate the effect of parame-
ters on the current workload. In contrast, our online setting
is much more dynamic, where it is extremely challenging to
characterize and maintain such repositories.

AutoPilot [51] reduces resource wastage for containerized
workloads using ML techniques for setting job-specific re-
source limits based on resource utilization. SelfTune is orthog-
onal to such cluster management frameworks and solutions —
in fact, we show how SelfTune helps tune the key parameters
of the open-source version of AutoPilot, called Vertical Pod
Autoscaler [8], that is part of Kubernetes, in Section 7.

State-of-the-art RL frameworks, e.g., Microsoft’s Decision
Service [21] are suited for settings where the parameter (“ac-
tion”) space is discrete or categorical, as they rely on “multi-
arm bandit” formulations [20]. Extending these techniques
to multiple numerical parameters results in very large action
spaces which makes it much more challenging to learn (as
we see in Section 7). RL frameworks like SmartChoices [28]
naturally support numerical parameters, but rely on providing
explicit reward separately for each parameter. We, on the other
hand, do not require such disambiguation — our problem for-
mulation, and Bluefin, work with a single reward value (i.e.,
the desired system state objective) for tuning several, possibly
inter-dependent, parameters together.

3 SelfTune Overview

We provide an overview of SelfTune and, using a simple
example, explain how a developer uses it. Then we describe
SelfTune’s main system components and their functions.

3.1 SelfTune Interface
To use SelfTune, a developer augments their cluster man-
ager code in four ways. First, they specify the set of param-
eters SelfTune should tune. Second, they either initialize a
fresh SelfTune instance or connect to an existing one. Third,
they specify at what point in the code and at what frequency
SelfTune should update the values of these parameters. Fi-
nally, they use the current state of the cluster to determine a
reward, which captures the difference between the desired

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1099

state and the current state of the cluster. SelfTune’s algorithm
(in our implementation this is Bluefin) uses this reward to
set the parameter values in the next iteration. One of the
main insights of this work is that the cluster manager already
computes the current state of the cluster, and already has a
notion of the desired state of the cluster. Hence SelfTune
simply piggybacks on existing code to determine the reward,
which is essential for any reinforcement learning platform.
The example in Figure 1 shows how a simple token-based
job scheduler uses SelfTune to tune the frequency with which
it makes scheduling decisions. Using this example, we now
describe the SelfTune-specific additions to code in detail.

1: public const double optLoad = 0.80;
2: // UpdateCycle = new TimeDelta("00:00:05");

3: Config UpdateCycle = new Config("UpdateCycle",

4: 1 Specification "TimeDelta",

5: "00:00:01-00:00:30",

6: "00:00:05");

7: SelfTune st = new SelfTune.Create(UpdateCycle);

8: st.Connect(); 2 Creation

9: // This is the scheduler loop
10: var currentLoad = 0.0;
11: while(1)
12: {
13: if (currentLoad < optLoad)
14: {
15: int numTokens = GenerateTokens(currentLoad);
16: GrantTokensToJobs(numTokens);
17: }

18: Guid callId; 3 Prediction

19: UpdateCycle = st.Predict(callId, "UpdateCycle");

20: sleep(UpdateCycle);

21: currentLoad = CalculateLoad(); 4 Feedback

22: st.SetReward(callId, currentLoad - optLoad);

23: }

Figure 1: Token-based scheduler augmented with SelfTune to
tune the frequency with which its main algorithm runs — the
highlighted lines show the three basic additions for SelfTune.

Specify Tunable Parameters: For each parameter, the de-
veloper specifies its data type, and optionally, initial value, a
range of permissible values, and step-size (e.g., TimeDelta
data type with values in multiples of 5 seconds). Line 3 in
Figure 1 says that SelfTune should tune the UpdateCycle
parameter, which determines the time between consecutive
iterations of the main scheduler loop. Here, the developer has
specified that this parameter can lie between 1 second and 30
seconds. They also specify 5 seconds as its initial value.

The developer has determined that UpdateCycle should
be tuned because if the scheduler waits too long between
iterations, it will not react fast enough to changes in cluster
state, hence causing the cluster resources to be used sub-
optimally. If, on the other hand, the scheduler iterations run

very frequently, the scheduler may react prematurely to ex-
tremely transient changes to system state, thereby causing
sub-optimal resource usage. Note that though this example
shows SelfTune tuning only one parameter, one instance of
SelfTune can tune any number of parameters simultaneously.
Initialize and Connect to SelfTune Instance: Line 7 in Fig-
ure 1 starts a new SelfTune instance. In a cluster-wide deploy-
ment, the developer decides how many instances of SelfTune
to set up. In our WLM deployment, each machine initializes a
separate SelfTune instance. However, if needed, cluster man-
agers can reuse the same instance of SelfTune across various
machines, simply by connecting to an existing SelfTune in-
stance (Line 8).
Get Parameter Values: Lines 11 to 23 show the main sched-
uler loop. Lines 13 to 17 capture the main algorithm of the
scheduler. The developer measures the current cluster state as
currentLoad (set to 0 in Line 10 and updated by the function
CalculateLoad() in Line 21). The developer states the de-
sired cluster state, i.e. optLoad, in Line 1. If the current load
of the system currentLoad is less than the specified optimal
load optLoad, it generates a number of tokens proportional to
the difference between the optimal load and the current load.

After this, in Line 19, the scheduler invokes SelfTune’s
Predict function to determine the value of UpdateCycle,
and sleeps for UpdateCycle seconds. Without SelfTune, the
scheduler loop would have slept for a fixed value of 5 seconds,
as the commented Line 2 shows.
Set Reward Function: SelfTune needs the developer to spec-
ify a domain-specific function to determine the outcome of
tuning the specified parameters. Note that the developer’s
code already defined both optLoad and currentLoad since
the core scheduling algorithm uses them both. The developer
reuses this pre-existing code: in Line 22, the developer in-
puts the difference between currentLoad and optLoad to
SelfTune’s SetReward function as the reward value.

Every reward is a result of a certain set of parameter
values. So, the code associates the calls to Predict and
SetReward using the same callId. The Data Collector
stores this information for later use (details in Section 3.2).

3.2 SelfTune Components
We now describe the different components SelfTune needs
to support the functions in Section 3.1. Figure 2 depicts the
four main components: the Client API (which supports the
Predict and SetReward functions), the Learning Engine,
the Data Collector, and the Reward Tracker. Appendix A
discusses the specifics of the client API. We describe the rest
of the components here.
Learning Engine: The learning engine implements the neces-
sary optimization algorithms such as Bluefin. While SelfTune
primarily uses Bluefin, the framework itself is generic and
can therefore include other algorithms, e.g., Azure Decision
Service’s Contextual Bandits.

1100 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: SelfTune architecture. The cluster manager interacts
with the SelfTune server via client API. The learning happens
on the server side, and it is transparent to the cluster manager.

Section 4 describes Bluefin algorithm that uses a variant of
gradient descent. It determines the next value of the parameter
based on how the cluster reacted to past parameter choices.
For instance, in the example explained in Figure 1, Bluefin
observes past values of UpdateCycle and the corresponding
reward, and then determines the next value with the objective
of getting the load as close as possible to optLoad.

Data Collector: The data collector is a background service
that maintains the history of all parameter values and the
corresponding reward for each SelfTune instance. In the ex-
ample of Figure 1, whenever the client code makes a call to
Predict and a subsequent call to SetReward, the data
collector associates the parameter values and reward using
the callId and stores this as the tuple (callId,a,r) where a
is the value for UpdateCycle that the client code obtained by
calling Predict() and r is the resulting reward. The learn-
ing engine uses this data to set future parameter values as
described in Section 4. The data collector also stores refer-
ences to each SelfTune instance so that cluster managers can
lookup existing SelfTune instances and connect to them. In
our SelfTune implementation, since we use the Bluefin algo-
rithm (Algorithm 1), the space requirement for Data Collector
is negligible — it needs to persist only one (callId,a,r)
tuple (the most recent), per SelfTune instance (see Section 5).

Reward Tracker: In practical settings, the reward computa-
tion may have to happen asynchronously off the critical path;
there may not be a natural place in the main control flow to
call SetReward, unlike in the example of Figure 1. In fact,
the actual implementation of WLM discussed in Section 5 is
such a setting. To facilitate this scenario, SelfTune supports
another background service, called the Reward Tracker, which
computes rewards periodically, at a frequency determined by
the developer, and pushes the values to the data collector.

4 The Bluefin Algorithm

This section describes the Bluefin algorithm used by
SelfTune’s learning engine. We first define a “round”, that is
essential to explaining the algorithm. Next, we describe two
characteristics essential for making SelfTune generic as well
as lightweight. Finally, we describe the algorithm in detail
and explain how it achieves both the essential characteristics.

Definition of a round: Standard reinforcement learning
(RL) proceeds sequentially in “rounds” between the learning
engine and the system whose parameters are tuned. We define
a round in the context of tuning deployed systems as the du-
ration for which the system executes with a particular set of
parameter values as returned by the calls to Predict. The
client code terminates a round when it calls SetReward.
In Figure 1’s example, the developer may introduce an if
statement around Line 22, checking the last time the reward
was set, and setting the reward only if more than a day has
passed since. In this case, each day constitutes a round. Alter-
natively, the developer may share the same SelfTune instance
across multiple machines and call SetReward only after all
machines have had a chance to call Predict; here, a round
completes only when all machines have called Predict.

Characteristic 1: Bluefin uses One-point Feedback. Clus-
ter state is the result of a complex combination of parameter
values and external factors such as sudden bursts in work-
loads and time-of-day effects. Therefore, the reward, which is
a function of the cluster state, also changes with time. Model-
ing this behavior using a fixed function is extremely difficult,
if not impossible.

Bluefin (like any other RL approach) uses rewards only
at the parameter values that the cluster manager obtains by
calling Predict. It does not assume any other information
about the inherent, unknown function that determines the re-
ward. In other words, following standard practice in RL litera-
ture [21,56], Bluefin assumes only bandit-feedback or zeroth-
order access to the reward function. This constraint is referred
to as “one-point feedback” [35], as against multi-point feed-
back [22] in learning theory. Techniques such as Bayesian
Optimization, branch-and-bound heuristics [30], and genetic
algorithms [46, Chapter 1.6] need to compute the reward for
multiple parameter values that may not have been deployed
in the system. Hence they need a model to represent the po-
tentially complex and unknown reward function. Thus, these
techniques are much more suited to offline tuning than to
our setting of tuning in deployment to optimize cumulative
time-varying rewards.

Characteristic 2: Bluefin has Low Sample Complexity and
Low Engineering Overhead. Our goal is to reach the op-
timal parameters that maximize the cumulative reward over

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1101

time. The metric of efficiency is sample complexity, i.e., the
number of rounds it takes to converge to the optimal values.
Each round can be very resource-intensive (as we discovered
in SelfTune’s deployment on WLM, explained in Section 5),
so the fewer the number of rounds the less the overhead of the
parameter tuning framework itself. SelfTune reduces the en-
gineering overhead and makes tuning highly sample efficient
by letting developers statically identify suitable “scopes” for
tuning. That is, rather than learning a single global model to
account for all the complex behaviors of the underlying sys-
tem being tuned, it allows developers to instantiate a SelfTune
instance per scope (e.g., WLM uses machine as the scope, in
Section 5). Each instance executes Bluefin to learn optimal
parameters within its scope, thereby solving a relatively eas-
ier problem. Second, Bluefin algorithm (in each SelfTune
instance) can be thought of as learning a model of size equal
to the number of parameters tuned, unlike standard RL tech-
niques that use sophisticated models with orders of magnitude
more parameters to capture system states and behaviors. Thus,
both the sample and the engineering complexities of Bluefin
is much lower than the standard RL approaches.

Algorithm: We first define a few terms used to explain the
algorithm. Say the developer wants to tune m parameters. In
each round, the cluster manager receives an m-dimensional
vector a(t) when it calls Predict, and as a result of setting
these values, it measures cluster state and reports back a re-
ward value rt(.) : a(t) 7→ R. SelfTune then uses this reward to
update the parameter values.

Algorithm 1 presents the core function of Bluefin, which
leverages ideas from the rigorously-studied derivative-free
online optimization [35, 52] in the machine learning theory
community. There are two key challenges in our tuning setting.
First, if we know the exact reward function, rt , then we can
apply the standard online gradient descent techniques [69].
However, in a deployed cluster, we do not have any infor-
mation on rt other than the one-point black-box access to
it. Second, standard gradient-descent style updates are de-
rived for real-valued parameters. However, cluster manager
parameters can be discrete as well as real-valued.

To tackle the two challenges, we leverage the derivative-
free optimization ideas studied in learning theory [35, 52].
They showed that we can reliably estimate the gradient of
the black-box reward function by randomly perturbing the
parameters once, albeit under some assumptions on the func-
tion. In particular, the theory requires that the problem be
continuous, i.e., parameters are all real-valued. In practice,
we often have to tune discrete-valued parameters. To this end,
Bluefin introduces a function g, which it appropriately defines
during the Create call, to map the real-valued parameters
and the generic data-types that can be deployed in the sys-
tem. In other words, Bluefin executes the well-studied online
gradient descent updates in a suitably transformed parameter
space. We discuss the details next.

Algorithm 1 Online tuning of parameters in SelfTune

1: procedure Bluefin (radius δ > 0, learning rate η > 0)
2: Initialize the parameters w(0) ∈ Rm // Create
3: Initialize g(·) // Create
4: for t = 0,1,2, . . . do
5: Uniformly sample u ∈ Rm from {u : ∥u∥2 = 1}.
6: Compute perturbed parameters w̃(t) := w(t)+δu
7: Client receives perturbed decisions a(t) := g(w̃(t))

// Predict calls
8: Receive feedback r(t) := rt(a(t)) ∈ R //
SetReward

9: Do “one-point” gradient-ascent update (to maxi-
mize the reward): w(t+1)← w(t)+ 1

δ
·η · r(t) ·u

Initialization (Line 2). The algorithm works with a real-
valued parameter vector w ∈Rm, where m is the total number
of parameters to tune. If the developer does not give an initial
value for parameter i, the algorithm samples wi uniformly at
random from the specified range (suitably scaled, see below).
If the developer has not provided a range, it initializes wi to 0.

Defining g (Line 3). If the developer specified a step-size,
g appropriately scales the corresponding components of w.
For instance, if the developer specifies that the ith param-
eter is an integer that needs to have a step-size of 5, then
g(wi) = 5 ∗ round(wi), where wi is the real value that the
algorithm manipulates, and round is the round-to-the-nearest-
integer function. Similarly, if the developer specified range
constraints on the parameter, then g appropriately projects wi
to lie within the specified bounds. Predict applies the g
function before returning the parameter values, as in Line 7
of the Algorithm.

Update parameters (Lines 5, 6, 9). To update w, we use the
technique of [35], where we estimate the gradient of rt with
respect to w(t) by a random perturbation of w(t). Line 6 effec-
tively samples a vector w̃(t) from the hyper-sphere centered at
w(t) with a radius δ (input to the algorithm, appropriately set
as discussed below). Line 9 computes a gradient-ascent style
update (to maximize the cumulative reward) in the direction of
the random vector u scaled appropriately by the learning rate
η, and the observed reward value rt at the perturbed vector.
In some cases, such as in simulation settings, one may be
able to perturb the vector more than once and make reward
measurements. It turns out that with just two-point feedback,
we can get a very accurate estimate of the gradient (in lieu of
Line 9) as noted in the following remark.

Remark 1 (“Two-point feedback”). The accuracy of gradient
estimation, and in turn the sample complexity of Algorithm 1,
can be further improved [57] in settings (e.g., simulations in
Section 6) where it is possible to obtain reward rt(·) at two

1102 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

different a values. In that case, the gradient estimator in Line
9 of Algorithm 1 can be replaced with:

w(t+1)← w(t)+η
1
2δ

(
r(g(w(t)+δu))− r(g(w(t)−δu))

)
u

Setting radius δ, learning rate η. In general, choosing a
single real number δ can be tricky especially when the pa-
rameters have different scales. But, decoupling the deployed
parameters a (that may have very different scales) from the
weights w (that are in a normalized scale) via g(·) mitigates
this issue in practice. Given ∥w(t)∥2 = O(1) and ∥u∥2 = 1, we
set δ = O(1) and η = O(δ2), so that w(t+1) retains the scale
after the update in Line 9 of Algorithm 1.

5 Large-scale Workload Scheduling System

In this section, we describe our experiences deploying
SelfTune with WLM (short for “workload manager”), the
background task scheduler for Substrate, a large data man-
agement engine used by many of Microsoft’s services. We
first describe Substrate and WLM, and then the deployment
of SelfTune with WLM, and finally present evaluation.

5.1 Substrate

Substrate is a large-scale data management engine at Mi-
crosoft which hosts data for several of Microsoft’s enterprise
services such as Exchange Online, an enterprise email service,
and SharePoint, an online collaboration platform. Substrate
stores data in a local database on each machine. Substrate
runs upon hundreds of thousands of machines worldwide and
hosts billions of data items.

In Substrate, compute and storage are tightly coupled. Each
machine runs many user-facing tasks, such as reading emails,
writing documents, and searching through data. These tasks
are latency-sensitive and need to complete within a few mil-
liseconds. Simultaneously, Substrate runs a vast range of
background tasks on the same machines such as data index-
ing, data analytics, machine learning, and data defragmenta-
tion. More than 70% of all tasks that run on Substrate are
background tasks. An example background task analyses a
customer’s mailbox to provide daily to-do lists [10]. Most
tasks are defined to finish very quickly (e.g., process one
mailbox and return), in the order of a few seconds.

5.2 WLM

To ensure that background tasks do not interfere with user-
facing tasks, Substrate uses a background task scheduler
called WLM which regulates these tasks’ access to disk,2

CPU, memory, and network on that machine. WLM contin-
uously polls the background task queues, granting the tasks

2majority of Substrate data is hosted on cost-effective HDD media

Figure 3: WLM service architecture.

access to resources when permissible (to ensure high through-
put), while trying to keep resource utilization on the machine
within a specified range (to ensure room for user-facing tasks).

Figure 3 depicts WLM’s scheduling algorithm. WLM’s
resource monitor continuously tracks CPU, disk, network,
and memory usage (IO latency for disk, utilization % for
CPU and memory, and a function of bandwidth utilization
and ping losses for network). For each resource, developers
specify a lower and a higher usage threshold. If the resource’s
utilization is under the lower threshold, the resource is said to
be under-utilized. Similarly, if the resource’s utilization is over
the higher threshold, WLM considers it to be over-utilized.

Configuring WLM: Every few seconds, determined by a
configuration parameter called RefreshCycle,WLM updates
a state variable called MaxConcurrency. MaxConcurrency
determines the maximum number of background tasks that
can run on a machine simultaneously. WLM operates an
Additive Increase, Multiplicative Decrease (AIMD) algo-
rithm to determine MaxConcurrency: every RefreshCycle
seconds, it determines resource usage. If all four resources
are under-utilized, WLM increments MaxConcurrency by 1.
Even if even one of the resources is over-utilized, WLM cuts
MaxConcurrency to half its current value. For instance, the
developer may set the higher threshold for CPU usage to
60%, the idea being to reserve 40% for the more important
user-facing tasks. If WLM observes that background tasks are
using more than 60% CPU, it decreases MaxConcurrency to
half the current value, thereby going into a mode of rejecting
tasks until the usage comes down sufficiently. WLM thus grad-
ually schedules more tasks and increases resource utilization,
while also checking that no resource is over-utilized.

The ideal value of RefreshCycle depends on machine
type and workload characteristics. A less powerful ma-
chine might benefit from a larger RefreshCycle. A smaller
value of RefreshCycle may help machines with vari-
able workloads. In the absence of an automated tun-
ing framework, WLM’s developers have set up different
versions of this parameter such as CPU-RefreshCycle,
machine-type-A-RefreshCycle, etc. to control it in dif-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1103

ferent contexts. This approach increases the number of con-
figuration parameters, hence management overhead, as well
as the developer burden to continuously check cluster state in
these various contexts and manually tweak parameters.

Our deployment of SelfTune automatically and con-
tinuously tunes only one configuration parameter –
RefreshCycle – for every machine independently, which
is the scope identified by the domain experts. Developers
can now stop using the context-specific RefreshCycle
parameters, and also stop the continuous manual monitoring
of the parameter value and its effect on cluster state.

Performance metrics: WLM measures its performance us-
ing two metrics, and hence SelfTune uses either one of these
as its reward metric. The first, called a resource’s Healthy
Utilization Percent (HUP), measures the fraction of time the
resource is neither over-utilized nor under-utilized. The ideal
value of HUP is 1. WLM usually calculates HUP for every
hour and for every resource.

The second metric, grant ratio (GR), measures the ratio
of the total number of tasks that WLM runs in a given time-
period to the total number of tasks that were submitted to it
in the same time-period. A grant-ratio of 1 implies that WLM
did not reject any task. Thus ideally, WLM needs to drive the
cluster to have HUP=1 and GR=1. We use the same metrics,
aggregated over a day, as the reward function for SelfTune in
our deployments.

While these are the two primary metrics that WLM directly
exerts influence over, there are other workload-specific met-
rics, that are outside the scope of WLM, instrumented by the
teams who rely on the scheduler. For instance, background
task developers use a higher-level metric, i.e., background
task throughput, to determine how promptly WLM schedules
their tasks. This is measured as the total number of back-
ground tasks successfully completed within one day. While
SelfTune does not use this as a reward metric, we use this
metric to determine if SelfTune does indeed help improve the
efficiency of the system (Section 5.3).

Integrating SelfTune: We integrate SelfTune with WLM
to tune RefreshCycle separately for every machine. While
the WLM code-base consists of tens of thousands of lines
of code, we required less than 50 lines of code to inte-
grate SelfTune, most of which is replacing parameter usage
with Predict, and setting up the Reward Tracker service
(to invoke SetReward asynchronously, as discussed in Sec-
tion 3.2) with the appropriate reward function.

We look at aggregate metrics over a subset of machines for
a month to set the scale of δ (which helps exploration) and η

appropriately. We find that a single, fixed choice of δ and η

works across clusters; we do not shrink these parameters to
0 with increasing iterations, which is needed in theory. This
helps prevent stagnation when tuning in deployment.

Minimal overhead of running SelfTune: Each Substrate
machine runs its own local SelfTune (i.e., its component ser-
vices) instance; so Predict calls (executing Steps 5 and
6 of Bluefin) are just like any other local function calls in
the WLM code-base. Parameter updates (Step 9 of Bluefin)
are extremely light (at most 5 FLOPS) and are made once
a day when the reward arrives. To enable debugging, the
Data Collector (introduced in Section 3) persists a history
of (callId,a,r) tuples from the previous 30 days; this takes
at most a few hundred KBs space per instance in produc-
tion. Overall, there is minimal overhead to operationalizing
SelfTune in production, in terms of both compute and space.

We enable parameter tuning with SelfTune on individual
production servers via flights, a mechanism used for gradually
deploying any code change in production. Deployment starts
with a few hundred servers, and then slowly expands to more
servers. This helps us perform controlled experiments.

5.3 Evaluation
In this section, we first describe our evaluation methodology.
Then, we describe our experiments and results.

Evaluation Methodology: A significant challenge we
faced while evaluating SelfTune is that resource HUP varies
widely week over week in Substrate. Figure 4 shows the disk
HUP over six weeks in Aug-Sep 2021 for two randomly cho-
sen machine sets in a representative cluster in South America
consisting of 450 servers. The sets contained 225 machines
each, and were completely disjoint. The figure shows that, for
the same machine set, utilization changes significantly from
one week to the next. Hence we cannot evaluate the efficacy
of SelfTune simply by observing HUP on the machine set
before deploying SelfTune, and comparing it to HUP after
deploying SelfTune. However, we also observe that the distri-
butions of disk HUP computed on the two disjoint machine
sets are very similar (e.g., relative difference between HUP
P50 percentiles of the two sets was ≤ 0.5% for all weeks).
Therefore, to evaluate SelfTune, we deploy it on one machine
set, called the Treatment Group, and compare this machine
set’s HUP values after deployment to the HUP values on the
other machine set within the same cluster, which is the Con-
trol Group. Similarly, we evaluate grant ratios across the two
groups (for the same duration, the relative difference between
GR P50 percentiles of the two sets was ≤ 3.0%).

Results: We ran three large-scale experiments to evaluate
SelfTune. We chose three clusters with sub-optimal values
of resource HUP and GR: (1) We chose Cluster 1 because,
despite being under-utilized (and thus having low values of
HUP), it also had low GR. Developers were submitting back-
ground tasks to WLM but a significant fraction of them were
surprisingly getting rejected despite low resource utilization.
Developers thus reported a trouble-ticket for Cluster 1, and

1104 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Cluster Control Treatment Experiment Reward Metric Improvement RefreshCycle
Size Size Duration HUP GR Value (minutes)

P25 P50 P75 P25 P50 P75 P25 P50 P75

1 144 144 July 1–July 30 GR SI SI SI 214% 178% 169% 5.05 6.00 6.08
2 1000 1000 Aug 25–Oct 12 GR SI SI SI 34% 37% 25% 5.02 10.19 15.11
3 1950 1950 Oct 11–Nov 17 (CPU) HUP 2% 1% 3% 18% 18% 20% 0.016 0.043 0.071

Table 2: SelfTune experiment details, resulting performance improvement (SI=Statistically Insignificant) & RefreshCycle values.

Figure 4: Disk HUP for a cluster in South America (of 450
servers) during Aug-Sep 2021: The (normalized) percentiles
drift across weeks (1%− 32%) significantly; but they vary
much less (1%−2%) across the two disjoint server sets.

this made it a good candidate for SelfTune. (2) Cluster 2,
with predominantly disk-intensive workloads, faced heavy
disk throttling and consequently had poor GR. (3) Cluster 3,
with predominantly CPU-intensive workloads, had low CPU
HUP (CPUs were mostly in the over-utilized state), and conse-
quently, low GR (recall that the CPU MaxConcurrency will
quickly drop to 1, when it is in an over-utilized state for a
short amount of time).

Our objective was to see if SelfTune, by tuning
RefreshCycle on each machine in the cluster, could improve
GR for Cluster 1 and Cluster 2, and CPU HUP for Cluster 3.
Thus, in Cluster 1 and Cluster 2, we set up SelfTune with the
Grant Ratio (GR measured over a period of one day) as the re-
ward metric. For Cluster 3, we set up SelfTune with CPU HUP
as the reward. In Cluster 1, we initialized RefreshCycle to
20 minutes since it was the default value used for the cluster.
For Cluster 2 and Cluster 3, we initialized RefreshCycle to
the default value of 6 seconds that was already in use.

(1) SelfTune improves utilization metrics in all three clus-
ters significantly. Table 2 describes the duration of the experi-
ments, sizes of the control group and treatment group, and the
impact on the performance metrics using SelfTune. In particu-
lar, for each cluster, it shows the improvements in the resource
HUP and the GR metrics. Given confidentiality requirements,
we are unable to present absolute numbers, but present the
percentage improvements. Since SelfTune separately tunes
RefreshCycle on every machine, we present improvement
in utilization in terms of 25th%-ile (P25), 50%-ile and 75%-
ile of metric values across all machines in the treatment group
relative to the corresponding percentile values in the control

group (during the deployment period). For all the results, we
ensure statistical significance using the standard t-test, at a
p-value of 0.05.

From Table 2, we observe significant improvements in GR,
between 18% and 178% improvement in the median, across
all three clusters. We see drastic improvements in the GR met-
ric in Cluster 1, chiefly due to the sub-optimal and obsolete
choice of RefreshCycle value used in this cluster (reflected
in the Control Group). In Cluster 3, where SelfTune employed
CPU HUP as the reward, the improvement in the median CPU
HUP was around 2% (also see Figure 5 that shows relative
values for confidentiality reasons). Even though the improve-
ment in HUP is small (2%–3%), it is statistically significant;
importantly, even a 2% improvement in the median HUP im-
plies several minutes to an hour of better resource utilization
per machine per day for at least 50% of the machine-days in
the cluster. The actual impact is magnified manyfolds by the
number of machines in the cluster over weeks and months.
Furthermore, the small improvement in HUP led to significant
improvements (18%–20%) in the GR metric.

(2) SelfTune has to tune RefreshCycle separately and
continuously for each cluster. Table 2 gives the P25, P50 and
P75 values of RefreshCycle that SelfTune converged to in
each cluster. We find that Cluster 1’s RefreshCycle values
converged to a median value of about 6 minutes, Cluster 2’s
median value was about 10 minutes, whereas Cluster 3’s me-
dian value was much lower, i.e., 2.6 seconds. Additionally,
in some cases, there is a significant spread of converged val-
ues within a cluster, as the P25 and P75 values show. Such
differences in the ideal values of RefreshCycle are due to
various reasons, such as varying workload characteristics and
provisioned hardware even within the same cluster. Moreover,
these workload and hardware characteristics also change with
time, which means SelfTune should continuously run on every
cluster for WLM to be able to react appropriately and quickly
to such changes. Figures 11, 12, and 13 in Appendix B show
how RefreshCycle converges differently for the three clus-
ters over the course of deployment duration.

(3) SelfTune significantly improves background task
throughput. SelfTune uses either resource HUP or GR as
reward metrics since WLM already calculates these met-
rics. Ultimately, however, background task developers want a
high background task throughput. We therefore evaluate how
SelfTune improves this metric. Figure 6 shows the improve-
ment in the task throughput when SelfTune was enabled in the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1105

Figure 5: Both HUP (CPU) and GR (weekly P50 values) are
significantly better after SelfTune was enabled in Cluster 3,
with a 1% to 3% relative improvement over the control set in
utilization and a 12% to 34% improvement in GR.

Figure 6: Background task throughput (normalized w.r.t. Jan
21st) clearly improved when SelfTune was enabled.

first week of Jan 2022, in a random half of a 750-machine clus-
ter in the Asia-Pacific region. Before we enabled SelfTune,
the throughput of both control and treatment groups were
similar. Once enabled, SelfTune improves the background
task throughput by as much as 17%. We disabled SelfTune
on Jan 21, and the treatment group’s throughput went back to
being the same as that of the control group. This shows that by
improving resource HUP and/or GR, SelfTune significantly
improves the background task throughput as well.

Since SelfTune has shown significant improvements in
multiple metrics in our experiments, starting January 2022,
we have enabled SelfTune in all Substrate clusters in North
America, consisting of tens of thousands of machines.

6 Serverless Scheduling in the Cloud

Customers are increasingly using serverless computing, or
“Functions as a Service” (FaaS), for deploying applications
on the cloud [1, 3–5]. Previous work has proposed informed
resource management strategies to use cluster resources ef-
ficiently for FaaS applications [54]. We evaluated SelfTune
with this work and observed significantly improved resource
usage with minimal to no performance loss. This section

describes the problem, experiments, and results.

6.1 FaaS Resource Usage
Cloud providers charge FaaS-based applications for the num-
ber of functions executed, and not for the resources that the
applications use. Hence, to maximize their benefit, providers
seek to offer good function performance to customers with
the least resources assigned to run the customers’ functions.

To achieve good function performance, the provider should
load the customer’s application into memory before the cus-
tomer invokes the function (warm start), as opposed to load-
ing it from persistent storage only after the customer invokes
the function (cold start). However, keeping all applications
in memory at all times is prohibitively expensive. Ideally,
the provider should pre-load the customer code just before
the function is invoked. This approach will minimize the re-
sources that the provider assigns to this application and yet
provide good performance.

To achieve this, Shahrad et al. [54] have proposed a pol-
icy that predicts two key parameters for a FaaS platform: 1)
prewarm: The time the policy waits, since the last execution,
before it loads the application image expecting the next func-
tion invocation. A large value of prewarm reduces resource
usage but may cause cold starts. 2) keepalive: The time
for which an application is kept in memory after it has been
loaded in memory. A larger keepalive can reduce cold starts
but will also waste resources. Therefore, the challenge is to
predict suitable values of prewarm and keepalive that will
provide good function performance and, at the same time,
reduce resources used.

To determine these parameters, Shahrad et al. maintain
a histogram of time between function invocations for each
application, called the Idle Time (IT) histogram. Based on
an empirical study, they suggest using keepalive = 99th
percentile3 and prewarm= 5th percentile of the IT values in
the histogram for all applications.

6.2 Evaluation Setup and Goals
We hypothesize that it may be sub-optimal to set prewarm and
keepalive to the same value for all applications. Moreover,
the IT histogram can change with time, and therefore these
parameters should be set not once, but periodically. In this
section, we seek answers to the following two questions:
1. Per-application Tuning: Can SelfTune set prewarm and
keepalive for each application (i.e., use application as the
scope for SelfTune instance) based on its invocation pat-
terns, to achieve a better performance trade-off for the cloud
provider? (Section 6.3)
2. Time-varying Tuning: Can SelfTune periodically tune
these parameters to improve the trade-off, as the invocation
patterns could change over time? (Section 6.4)

3henceforth, we write keepalive= 99, dropping the percentile

1106 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Simulation setup: We use the Python-based simulator used
in [54] which replays real function invocation traces (obtained
from Azure as described in Sections 6.3 and 6.4), and infers
if each invocation creates a warm or cold start. The simulator
also keeps track of when each application image is loaded in
order to aggregate the wasted memory time for the application
(i.e., the time the image is kept in memory without execut-
ing any functions). Following [54], we simulate (a) function
execution times equal to 0 to quantify the worst-case wasted
resource time, and (b) all applications use the same amount
of memory (as memory data is only partially available).
Performance metrics: We focus on two metrics, following
the analysis presented in [54]: (i) distribution (in particular,
P75) of percentage of cold start invocations per application
(i.e., what fraction of invocations of the app during the time
period were cold starts), and (ii) wasted memory time (as
defined above). We normalize (ii) w.r.t. a baseline policy of
using no prewarm and a fixed 10-minute keepalive (abso-
lute value, unlike the percentile values used throughout this
section). We use the same metrics as reward for SelfTune.

6.3 Per-application Tuning

Figure 7: Performance of the VM management policy [54]
on AzureFaaS data: (left) sweep of prewarm and keepalive,
fixed for all apps; circled dots are the choices recommended
in [54]; (right) with SelfTune for tuning the two parameters
for each app, and memory wastage as reward; the dots are the
starting points for SelfTune, and the corresponding crosses
indicate the performance at convergence.

To answer the first question, we use the AzureFaaS
dataset [2] consisting of 14 days of function invocation traces
for about 22,000 applications running on Azure Functions.

Optimal global parameters: We first obtain the pareto-
optimal trade-off frontier for the two parameters when they
are fixed to the same value for all applications. To obtain this
frontier, we did a simple grid-search with 7 keepalive values
(100, 99, 97, 95, 90, 85, 80) and 5 prewarm values (1, 5, 10,
15, 20), i.e., we ran 35 simulations which took under three
hours on a standard 64-core machine for this dataset (obviat-
ing the need for clever optimization/search algorithms). Fig-

ure 7 (left) plots normalized wasted memory time vs P75 app
cold start percent. We see that one metric improves at the ex-
pense of the other metric, for various choices of prewarm and
keepalive parameters. Our findings here align with [54], and
the choices circled in black are indeed their recommendations:
prewarm= 5, and keepalive= 99 that favors cold starts; or
keepalive= 95 that reduces memory wastage by 15% at a
small cost (< 9%) of cold starts, relative to keepalive= 99.

Optimal application-specific parameters: Doing a grid-
search to determine application-specific parameters is very
expensive since there are tens of thousands of applications.
So we leverage SelfTune to determine per-application val-
ues of keepalive and prewarm. On one week of data, every
time a function is invoked in the trace, we call Predict
to determine the values of keepalive and prewarm for the
application. The reward metric used is either wasted memory
time or number of cold starts. We then evaluate the converged
per-application parameter values on the second week of data.

Figure 7 (right) plots wasted memory time vs cold start
percent when using SelfTune. We first observe that SelfTune,
with memory wastage as the reward, reduces memory wastage
by nearly 10% relative to the fixed optimal global choices
(indicated in circled dots on both the right and left plots)
without worsening cold starts. Second, application-specific
tuning yields strictly better choices than the global frontier —
the crosses (corresponding to the converged parameters) lie
below the dots (initial values). We made similar observations
when we used number of cold starts as the reward.

Figure 8: CDF of app-wise reduction in the cost metrics rel-
ative to the best global policy (circled in Figure 7) achieved
via SelfTune on AzureFaaS. All improvements come from ≲
20% of the apps (axis curtailed for clarity).

Figure 8 shows that the overall cost reduction
with SelfTune can be attributed to less than 20% of
the apps. SelfTune is able to exploit the behavior of a
fraction of apps to find better choices of parameter values,
while for the other apps, the default global policy parameters
already work quite well.

6.4 Time-varying Tuning

To answer the second question, i.e., whether SelfTune’s peri-
odic parameter tuning helps reduce resource usage over time,
we collected a much larger set of traces from the Azure FaaS

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1107

infrastructure between July 15 and Oct 31, 2019 and used
them to drive the simulator. As in the previous section, in this
large-scale study, we divide the traces into pairs of consecu-
tive weeks, use SelfTune to tune parameters per-application
on the first week, and evaluate the impact on the second week.
Since we use 14 weeks of data, we have 7 such pairs.

Figure 9: Performance of VM management policy [54] with
app-specific tuning of parameters via SelfTune on the large
Azure dataset: SelfTune is consistently superior or competi-
tive w.r.t. the baselines along both the metrics, across weeks.

Figure 10: Distribution of differences in converged values, for
the two parameters, over 3 months. SelfTune picked signifi-
cantly different values in October vs. August, for over 25%
apps, reflecting the temporal shift in the invocation patterns.

Figure 9 shows the value of P75 application cold starts
and normalized wasted memory time with SelfTune and three
baselines. We have included a baseline policy that achieves the
best possible cold starts (prewarm = 0, keepalive = 100)
for calibration. For SelfTune, we use multiple initial values
as in Figure 7, and pick the best results obtained. Relative
to the keepalive= 95 policy, on average, SelfTune reduces
the cold starts by 5%, while incurring a 2.1% larger mem-
ory wastage. Also, relative to the keepalive = 99 policy,
SelfTune yields 12.5% less memory wastage for a small
(0.5%) increase in cold starts.

Figure 10 shows how SelfTune changes parameter values
(for a random subset of apps) in October compared to Au-
gust. SelfTune picks significantly different values, up to 300%
relative change, for over 25% of the applications. This under-

scores the importance of continuously tuning the parameters.

7 Container Rightsizing

In this section, we show how SelfTune can be integrated with
microservices architecture and Kubernetes to improve (a) clus-
ter resource utilization, and (b) tail latencies of microservices-
based cloud applications. We also present comparisons with
BO and RL techniques.
Simulation setup: We use the social networking application
in the DeathStar microservices benchmark [36]. We set up a
cluster with 4 servers, each with 24 cores, 40GB of memory
and 250GB of disk space. We restrict monitoring services to
one server to avoid interference and deploy the microservices
on the other three servers based on the functionality (e.g.,
all backend microservices are on one server). We simulate a
diurnal workload, with short traffic bursts. Following [58], the
workload generator [16] issues GET (read timeline), POST
(create new post) requests continuously for 15 minutes at 500
requests per second, in the ratio 9 (GET):1 (POST).
Configuration parameters: We tune two types of parame-
ters: (i) the first 4 CPU-related parameters listed in Table 1
for the Kubernetes VPA (Vertical Pod Autoscaler) [8], which
impact the efficiency of autoscaling and throughput, and (ii)
about 85 key numerical configuration parameters (2–5 param-
eters per microservice) for the 28 microservices in DeathStar
(as identified in [58]), which impact the application latency.
Compared methods: We compare SelfTune’s Bluefin with
three standard techniques: (i) Bayesian Optimization — the
Gaussian Process (GP) method [25], implemented in [15],
and used in [23, 58, 66], (ii) Contextual Bandits [26] RL tech-
nique — the ε-greedy algorithm implemented in [19], and
used in [20, 21], and (iii) Deep Deterministic Policy Gradi-
ent (DDPG) [41], a popular deep RL technique for continuous
action spaces used by prior works to tune system parame-
ters [49,67]. For all the experiments, we initialize Bluefin and
BO (GP) with the default parameter values as well as ran-
dom values, and report the best results. We note that, in this
scenario, the initialization does not have a significant effect
on the algorithms’ convergence. For both the algorithms, the
difference in performances yielded by the best configurations
obtained with either initialization is around 2%–4%. Each
15-minute peak workload constitutes a sample (a round). We
fix a budget of 50 samples for all the methods for fair com-
parison. We configure the ε-greedy and DDPG algorithms to
explore for the first 25 rounds and then exploit for 25 rounds.

7.1 Results
Optimizing throughput: We now demonstrate the signif-
icance of tuning Kubernetes VPA parameters. We set up a
barebones version of DeathStar application, where Nginx
microservice with two replicas serves static content for the
GET requests. We use one of the servers in the cluster as

1108 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Metric Bluefin BO (GP) ε-greedy DDPG

Throughput % 86.1 ± 2.2 83.9 ± 3.1 71.2 ± 4.3 73.4 ± 5.4
Samples 12 14 13 50

Table 3: Tuning key parameters of Kubernetes VPA.

the controller node and another as the worker node [7]. As
the requests are light-weight, we ramp the workload up to
10000 rps, and see how quickly Kubernetes autoscales to
catch up with the workload. In general, it has been found
that default configuration for the Kubernetes VPA can hurt
system performance [17]. For instance, with the default value
of recommendation-margin-fraction = 0.15, Kubernetes
will add a margin of 0.15 * computed CPU recommendation
to allow the container to adapt to sudden changes in the work-
load. This ramp up can be quite slow at such high workloads.
On the other hand, setting the parameter to a very large value
might help quickly catch up with the heavy workload, but will
lead to severe resource wastage once the peak dies.

A natural question is if we can tune the VPA param-
eters (the CPU parameters from Table 1) to help im-
prove resource utilization. We use the throughput attained
(over the 15-minute peak workload), with a penalty on
the cpu-histogram-decay-half-life value as the reward
function, to minimize wastage during off-peak hours.

Table 3 shows the best throughput achieved (mean and
std. dev. over 5 deployments of the best parameters) and
the number of samples needed by each of the methods to
attain the best value. We find both BO and Bluefin con-
verge, fairly quickly, yielding over 75% better throughput
relative to the default configuration; Bluefin achieves the
best throughput overall (statistically significant), an abso-
lute improvement of 2.2% compared to BO. At conver-
gence, Bluefin sets recommendation-margin-fraction to
1.5, and pod-recommendation-min-cpu to 850 millicores
(see Table 1). This helps Kubernetes auto-scale the containers
sufficiently quickly (compared to the default values of 0.15
and 250 millicores respectively) and serve the peak work-
load of 10000 rps. At the same time, Bluefin (and the other
methods) converges to a small value (about 45 seconds) of
cpu-histogram-decay-half-life, which is ideal for short
bursts of workloads: Kubernetes evicts the worker containers
right after the peak, thereby freeing up resources.

In what follows, we show how we can also tune the config-
uration parameters of microservices (running in containers)
themselves, in order to improve application latency.

Optimizing tail latency: Microservices that are deployed
in containers have multiple configuration parameters [9, 11–
13, 18] that influence their performance. For instance, the
number of threads of performance-critical microservices (e.g.,
compose-post-service in DeathStar) is known to significantly
improve latency [58, 59]. We tuned 85 key numerical param-

Metric Bluefin BO (GP) ε-greedy DDPG

P95 latency (ms) 19.5 19.9 20.0 20.2
Samples 8 41 30 50

P50 iter. cost (ms) 20.5 23.3 29.2 20.6
P75 iter. cost (ms) 21.1 33.0 33.2 22.1
P95 iter. cost (ms) 28.3 76541.9 67640.3 148543.1

Table 4: Tuning parameters of microservices in DeathStar:
The second row indicates the number of samples (i.e., rounds)
it took for each method to attain the best P95 latency reported
in the first row. The last three rows show the spread of the
latencies while tuning over 50 rounds.

eters of the microservices in DeathStar with P95 latency as
the reward for all the methods.
Effectiveness of Bluefin in high dimensions: Table 4 shows
the best tail (P95) latency attained by each of the methods
and the number of samples they took to achieve the same. We
deployed each parameter setting three times, and report the
median number. This high-dimensional tuning setting clearly
brings out the superiority of Bluefin over the popular tech-
niques in terms of sample complexity. Even though there are
85 parameters, there are only a few parameters that critically
influence the reward value. Indeed, Bluefin quickly converges
to 19.5ms P95 latency (starting from 31.1ms, corresponding
to the default values), with just 8 samples; in contrast, BO and
ε-greedy algorithms take 3-5 times as many samples to attain
similar latencies. The multi-arm bandits approach (ε-greedy)
treats the parameter values as categorical choices and does not
exploit continuity of the problem or correlations across the
parameters. On the other hand, the deep RL method, DDPG,
does exploit, but it has a much higher sample complexity.

We also show the iteration cost, i.e., the latency incurred
through each round of tuning (which matters in deployments).
The spread of the iteration costs for SelfTune indicates con-
vergence close to 20ms. Even though all the compared al-
gorithms eventually converge to statistically similar latency
values, they incur several orders of magnitude worse P95
iteration costs than Bluefin. This is strong evidence of the
effectiveness of Bluefin for tuning in live deployments, where
the reward function can be highly ill-conditioned and can vary
wildly in some regions of the explored parameter space.

8 Conclusion

This paper presents SelfTune, an RL-based framework using
which cluster managers can tune parameters to improve clus-
ter performance. We have deployed SelfTune with a large-
scale task scheduler at Microsoft and show how it has im-
proved overall system throughput. We show that SelfTune
significantly improves system performance with experiments
on Azure FaaS workloads, Kubernetes’s Vertical Pod Au-
toscaler, and the DeathStarBench microservice benchmark.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1109

References

[1] AWS Lambda. https://aws.amazon.com/lambda/.

[2] Azure FaaS Public Dataset. https://github.
com/Azure/AzurePublicDataset/blob/master/
AzureFunctionsDataset2019.md.

[3] Azure Functions. https://azure.microsoft.com/
en-in/services/functions/.

[4] Google Cloud Functions. https://cloud.google.
com/functions/.

[5] IBM Cloud Functions. https://www.ibm.com/
cloud/functions.

[6] Kubernetes. https://kubernetes.io/.

[7] Kubernetes Components. https://kubernetes.io/
docs/concepts/overview/components/.

[8] Kubernetes Vertical Pod Autoscaler. https:
//github.com/kubernetes/autoscaler/blob/
master/vertical-pod-autoscaler/pkg/
recommender/main.go.

[9] memcached(1). https://linux.die.net/man/1/
memcached.

[10] Microsoft Viva Insights. https://docs.microsoft.
com/en-us/viva/insights/personal/teams/
viva-insights-home#microsoft-to-do.

[11] MongoDB Server Parameters. https://docs.
mongodb.com/manual/reference/parameters.

[12] Nginx core functionality. https://nginx.org/en/
docs/ngx_core_module.html.

[13] Redis configuration. https://redis.io/topics/
config.

[14] SelfTune implementation. https://github.com/
microsoft/selftune.

[15] The scikit-optimize library: Bayesian Op-
timization using Gaussian Process. https:
//scikit-optimize.github.io/stable/modules/
generated/skopt.gp_minimize.html.

[16] wrk2: HTTP benchmarking tool. https://github.
com/giltene/wrk2.

[17] Tuning CPU half-life decay parameter. https:
//github.com/kubernetes/autoscaler/issues/
3684.

[18] Tuning Nginx for Performance. https://www.nginx.
com/blog/tuning-nginx/.

[19] The Vowpal Wabbit library. https://github.
com/VowpalWabbit/vowpal_wabbit/wiki/
Contextual-Bandit-algorithms.

[20] Alekh Agarwal, Sarah Bird, Markus Cozowicz, Lu-
ong Hoang, John Langford, Stephen Lee, Jiaji Li, Dan
Melamed, Gal Oshri, Oswaldo Ribas, et al. Making con-
textual decisions with low technical debt. arXiv preprint
arXiv:1606.03966, 2016.

[21] Alekh Agarwal, Sarah Bird, Markus Cozowicz, Lu-
ong Hoang, John Langford, Stephen Lee, Jiaji Li,
Dan Melamed, Gal Oshri, Oswaldo Ribas, et al. A
multiworld testing decision service. arXiv preprint
arXiv:1606.03966, 7, 2016.

[22] Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal
algorithms for online convex optimization with multi-
point bandit feedback. In COLT, pages 28–40. Citeseer,
2010.

[23] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
CherryPick: Adaptively unearthing the best cloud config-
urations for big data analytics. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 469–482, Boston, MA, March 2017.
USENIX Association.

[24] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni,
Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May
O’Reilly, and Saman Amarasinghe. Opentuner: An ex-
tensible framework for program autotuning. In Proceed-
ings of the 23rd international conference on Parallel
architectures and compilation, pages 303–316, 2014.

[25] James Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. Algorithms for hyper-parameter optimiza-
tion. Advances in Neural Information Processing Sys-
tems, 24, 2011.

[26] Alberto Bietti, Alekh Agarwal, and John Langford. A
contextual bandit bake-off. Journal of Machine Learn-
ing Research, 22(133):1–49, 2021.

[27] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, omega, and kubernetes.
Communications of the ACM, 59(5):50–57, 2016.

[28] Victor Carbune, Thierry Coppey, Alexander Daryin,
Thomas Deselaers, Nikhil Sarda, and Jay Yagnik.
Smartchoices: Hybridizing programming and machine
learning. ICML Workshop RL4RealLife, 2019.

[29] Stefano Cereda, Stefano Valladares, Paolo Cremonesi,
and Stefano Doni. Cgptuner: a contextual gaussian
process bandit approach for the automatic tuning of it

1110 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://aws.amazon.com/lambda/
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsDataset2019.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsDataset2019.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsDataset2019.md
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://kubernetes.io/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/pkg/recommender/main.go
https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/pkg/recommender/main.go
https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/pkg/recommender/main.go
https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/pkg/recommender/main.go
https://linux.die.net/man/1/memcached
https://linux.die.net/man/1/memcached
https://docs.microsoft.com/en-us/viva/insights/personal/teams/viva-insights-home#microsoft-to-do
https://docs.microsoft.com/en-us/viva/insights/personal/teams/viva-insights-home#microsoft-to-do
https://docs.microsoft.com/en-us/viva/insights/personal/teams/viva-insights-home#microsoft-to-do
https://docs.mongodb.com/manual/reference/parameters
https://docs.mongodb.com/manual/reference/parameters
https://nginx.org/en/docs/ngx_core_module.html
https://nginx.org/en/docs/ngx_core_module.html
https://redis.io/topics/config
https://redis.io/topics/config
https://github.com/microsoft/selftune
https://github.com/microsoft/selftune
https://scikit-optimize.github.io/stable/modules/generated/skopt.gp_minimize.html
https://scikit-optimize.github.io/stable/modules/generated/skopt.gp_minimize.html
https://scikit-optimize.github.io/stable/modules/generated/skopt.gp_minimize.html
https://github.com/giltene/wrk2
https://github.com/giltene/wrk2
https://github.com/kubernetes/autoscaler/issues/3684
https://github.com/kubernetes/autoscaler/issues/3684
https://github.com/kubernetes/autoscaler/issues/3684
https://www.nginx.com/blog/tuning-nginx/
https://www.nginx.com/blog/tuning-nginx/
https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Contextual-Bandit-algorithms
https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Contextual-Bandit-algorithms
https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Contextual-Bandit-algorithms

configurations under varying workload conditions. Pro-
ceedings of the VLDB Endowment, 14(8):1401–1413,
2021.

[30] Jens Clausen. Branch and bound algorithms-principles
and examples. Department of Computer Science, Uni-
versity of Copenhagen, pages 1–30, 1999.

[31] Carlo Curino, Neha Godwal, Brian Kroth, Sergiy Kury-
ata, Greg Lapinski, Siqi Liu, Slava Oks, Olga Poppe,
Adam Smiechowski, Ed Thayer, et al. Mlos: An infras-
tructure for automated software performance engineer-
ing. In Proceedings of the Fourth International Work-
shop on Data Management for End-to-End Machine
Learning, pages 1–5, 2020.

[32] Christina Delimitrou and Christos Kozyrakis. Paragon:
Qos-aware scheduling for heterogeneous datacenters.
ACM SIGPLAN Notices, 48(4):77–88, 2013.

[33] Christina Delimitrou and Christos Kozyrakis. Quasar:
Resource-efficient and qos-aware cluster management.
SIGPLAN Not., 49(4):127–144, February 2014.

[34] Songyun Duan, Vamsidhar Thummala, and Shivnath
Babu. Tuning database configuration parameters with
iTuned. Proc. VLDB Endow., 2(1):1246–1257, Aug
2009.

[35] Abraham D Flaxman, Adam Tauman Kalai, and H Bren-
dan McMahan. Online convex optimization in the bandit
setting: gradient descent without a gradient. In Proceed-
ings of the sixteenth annual ACM-SIAM Symposium on
Discrete Algorithms, pages 385–394, 2005.

[36] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-
software implications for cloud & edge systems. In Pro-
ceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 3–18, 2019.

[37] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek
Pan, Esaias E Greeff, David Dion, Star Dorminey,
Shailesh Joshi, Yang Chen, Mark Russinovich, et al.
Protean:{VM} allocation service at scale. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 845–861, 2020.

[38] Jez Humble and David Farley. Continuous delivery:
Reliable software releases through build. Test, and de-
ployment automation. Pearson Education, 1, 2010.

[39] Tatiana Jin, Zhenkun Cai, Boyang Li, Chengguang
Zheng, Guanxian Jiang, and James Cheng. Improving
resource utilization by timely fine-grained scheduling.

In Proceedings of the Fifteenth European Conference
on Computer Systems, pages 1–16, 2020.

[40] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He,
Lianjie Zhu, Wenjun Dai, Jin Jiang, and Guangzhong
Sun. Metis: Robustly tuning tail latencies of cloud sys-
tems. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 981–992, Boston, MA, July
2018. USENIX Association.

[41] Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep rein-
forcement learning. CoRR, 09 2015.

[42] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A
Lozano. A review of auto-scaling techniques for elastic
applications in cloud environments. Journal of grid
computing, 12(4):559–592, 2014.

[43] Chuan Luo, Bo Qiao, Xin Chen, Pu Zhao, Randolph Yao,
Hongyu Zhang, Wei Wu, Andrew Zhou, and Qingwei
Lin. Intelligent virtual machine provisioning in cloud
computing. In IJCAI, pages 1495–1502, 2020.

[44] Ashraf Mahgoub, Alexander Michaelson Medoff,
Rakesh Kumar, Subrata Mitra, Ana Klimovic, Somali
Chaterji, and Saurabh Bagchi. OPTIMUSCLOUD: Het-
erogeneous configuration optimization for distributed
databases in the cloud. In 2020 USENIX Annual Tech-
nical Conference (USENIX ATC 20), pages 189–203.
USENIX Association, July 2020.

[45] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja
Venkatakrishnan, Zili Meng, and Mohammad Alizadeh.
Learning scheduling algorithms for data processing clus-
ters. In Proceedings of the ACM Special Interest Group
on Data Communication, SIGCOMM ’19. Association
for Computing Machinery, 2019.

[46] Melanie Mitchell. An introduction to genetic algorithms.
MIT press, 1998.

[47] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and
Ion Stoica. Sparrow: distributed, low latency scheduling.
In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pages 69–84, 2013.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1111

and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[49] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbig-
niew T. Kalbarczyk, and Ravishankar K. Iyer. FIRM:
An intelligent fine-grained resource management frame-
work for SLO-Oriented microservices. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 805–825. USENIX Associ-
ation, November 2020.

[50] Gourav Rattihalli, Madhusudhan Govindaraju, Hui Lu,
and Devesh Tiwari. Exploring potential for non-
disruptive vertical auto scaling and resource estimation
in kubernetes. In 2019 IEEE 12th International Con-
ference on Cloud Computing (CLOUD), pages 33–40.
IEEE, 2019.

[51] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski,
Przemyslaw Zych, Przemyslaw Broniek, Jarek Kus-
mierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, and John Wilkes. Autopilot: Workload
autoscaling at google. In Proceedings of the Fifteenth
European Conference on Computer Systems, EuroSys
’20, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[52] Aadirupa Saha, Nagarajan Natarajan, Praneeth Netra-
palli, and Prateek Jain. Optimal regret algorithm for
pseudo-1d bandit convex optimization. In International
Conference on Machine Learning, pages 9255–9264.
PMLR, 2021.

[53] Malte Schwarzkopf, Andy Konwinski, Michael Abd-
El-Malek, and John Wilkes. Omega: flexible, scalable
schedulers for large compute clusters. In Proceedings
of the 8th ACM European Conference on Computer
Systems, pages 351–364, 2013.

[54] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud
provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 205–218, 2020.

[55] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P
Adams, and Nando De Freitas. Taking the human out of
the loop: A review of bayesian optimization. Proceed-
ings of the IEEE, 104(1):148–175, 2015.

[56] Shai Shalev-Shwartz et al. Online learning and online
convex optimization. Foundations and Trends® in Ma-
chine Learning, 4(2):107–194, 2012.

[57] Ohad Shamir. An optimal algorithm for bandit and
zero-order convex optimization with two-point feedback.
The Journal of Machine Learning Research, 18(1):1703–
1713, 2017.

[58] Gagan Somashekar and Anshul Gandhi. Towards op-
timal configuration of microservices. In Proceedings
of the 1st Workshop on Machine Learning and Systems,
pages 7–14, 2021.

[59] Akshitha Sriraman and Thomas F. Wenisch. µTune:
Auto-Tuned threading for OLDI microservices. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 177–194, Carlsbad,
CA, October 2018. USENIX Association.

[60] Chunqiang Tang, Thawan Kooburat, Pradeep Venkat-
achalam, Akshay Chander, Zhe Wen, Aravind
Narayanan, Patrick Dowell, and Robert Karl. Holistic
configuration management at facebook. In Proceedings
of the 25th Symposium on Operating Systems Principles,
pages 328–343, 2015.

[61] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan,
Jonathan Kaldor, Scott Michelson, Thawan Kooburat,
Aravind Anbudurai, Matthew Clark, Kabir Gogia, Long
Cheng, et al. Twine: A unified cluster management sys-
tem for shared infrastructure. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), pages 787–803, 2020.

[62] Alexander Tarvo, Peter F Sweeney, Nick Mitchell,
VT Rajan, Matthew Arnold, and Ioana Baldini. Ca-
naryAdvisor: a statistical-based tool for canary testing.
In Proceedings of the 2015 International Symposium on
Software Testing and Analysis, pages 418–422, 2015.

[63] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and
Bohan Zhang. Automatic database management system
tuning through large-scale machine learning. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD ’17, page 1009–1024,
New York, NY, USA, 2017. Association for Computing
Machinery.

[64] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and
Bohan Zhang. Automatic database management system
tuning through large-scale machine learning. In Pro-
ceedings of the 2017 ACM international conference on
management of data, pages 1009–1024, 2017.

[65] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with Borg. In Pro-
ceedings of the Tenth European Conference on Com-
puter Systems, pages 1–17, 2015.

1112 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[66] Bohan Zhang, Dana Van Aken, Justin Wang, Tao Dai,
Shuli Jiang, Jacky Lao, Siyuan Sheng, Andrew Pavlo,
and Geoffrey J Gordon. A demonstration of the Ot-
terTune automatic database management system tun-
ing service. Proceedings of the VLDB Endowment,
11(12):1910–1913, 2018.

[67] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin
Cheng, Jiashu Xing, Yangtao Wang, Tianheng Cheng,
Li Liu, Minwei Ran, and Zekang Li. An end-to-end
automatic cloud database tuning system using deep rein-
forcement learning. In Proceedings of the 2019 Interna-
tional Conference on Management of Data, SIGMOD
’19, page 415–432, New York, NY, USA, 2019. Associ-
ation for Computing Machinery.

[68] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang
Bao, Wenlong Ma, Zhuoyue Liu, Kunpeng Song, and
Yingchun Yang. Bestconfig: tapping the performance
potential of systems via automatic configuration tun-
ing. In Proceedings of the 2017 Symposium on Cloud
Computing, pages 338–350, 2017.

[69] Martin Zinkevich. Online convex programming and gen-
eralized infinitesimal gradient ascent. In Proceedings of
the 20th International Conference on Machine Learning
(ICML-03), pages 928–936, 2003.

A SelfTune’s Client API Implementation

We now formally present the syntax and the semantics of
SelfTune’s client API (introduced informally in Section 3,
and in Figure 1).
Creation. The Create API creates an instance of the param-
eter learning problem for SelfTune. This API allows optional
arguments that encode domain knowledge for tuning the pa-
rameters:
(a) names for the parameters to learn,
(b) (optional) initial values for the parameters,
(c) (optional) constraints on the parameters to be tuned; the
API supports range constraints (min and max), type constraints
(e.g., isInt = TRUE if a parameter takes only integral values),
(d) (optional) for user-defined types, one could specify step-
size (e.g., memory sizes in multiples of 64MB), or scale (e.g.,
logarithmic or linear).
string Create(string[] params,
Dictionary<string, double> initValue,
Dictionary<string, Constraints> constraints,
Dictionary<string, Type> type)

Connection. The Create API sets up a data store instance
in the back-end for tuning the specified parameters, initializes
the necessary background services to maintain/update this
store. A unique identifier to this store instance is returned by

the call to Create. The Connect API connects a parameter
learning instance to a SelfTune object.

void Connect (int problemId)
Note that if a store already exists (for the parameter(s) of
interest), then the client can directly connect to the instance
by referencing the unique identifier to the instance, as the
store instances are persistent. This also enables multiple
clients (distributed spatially and/or temporally) to query the
latest decisions for, as well as give feedback to, the same
learning problem.

Prediction. With the Predict interface, the developer can
query the current values for the parameters. These values are
decided by the learning algorithm (presented subsequently).

(int, double[]) Predict (string[] params)

Note that Predict returns a pair of values – a unique
identifier which identifies the particular invocation of
Predict, and the predicted value.

Feedback. As shown in Figure 1, the SetReward interface
allows the client to specify a reward value. More generally,
it allows the client to associate the value with a particular
invocation of Predict:
void SetReward(int invocationId, double
reward)

The invocation id helps associate the reward to the parame-
ters (and their values) returned by previous Predict calls
— in particular, the reward value applies to all the parame-
ters that were part of all the Predict calls since the last
SetReward call.

B Parameter Convergence

In this section, we provide graphs to give the reader an idea
of how long it takes for RefreshCycle to converge in our
experiments with WLM (see Figure 11, Figure 12 and Figure
13)

Figure 11: Convergence of RefreshCycle with SelfTune in
the experiment using Cluster 1.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1113

Figure 12: Convergence of RefreshCycle with SelfTune in
the experiment using Cluster 2.

Figure 13: Convergence of RefreshCycle with SelfTune in
the experiment using Cluster 3.

C Baselines

In this section, we discuss the implementation details of dif-
ferent baselines used in Section 7.

For Bayesian Optimization (BO), we used the skopt li-
brary [15] with gp_hedge as the acquisition function. The
algorithm was initialized with the default configuration or
with 3 random configurations (uniform sampling), and we
reported the best results in Tables 3 and 4.

For Contextual Bandits (CB), we used the popular Vowpal
Wabbit library [19]. Since the configuration space is too huge
for the bandits formulation to handle, we restrict tuning to
the four important parameters (memory limit parameter of
the post-storage-memcached microservice, worker_processes
and worker_connections parameters of the frontend microser-
vice, memory limit of the post-storage-mongodb microser-

vice) based on empirical observations and recommendations
from prior work [58]. Since the algorithm expects discrete
actions spaces, we suitably quantize the configuration space
of each parameter. We use a step_factor for each parame-
ter which yields (upper_limit − lower_limit)/step_ f actor
number of quantized values per parameter. The value of step_-
factor is chosen such that the resulting (discrete) action space
is not too large. After discretizing the four parameters in this
fashion, we arrived at 24960 actions for the CB algorithm. We
used the “explore first” strategy in the ε-greedy algorithm via
the command -cb_explore num_actions -first num_-
random, which implies that the algorithm will (only) explore
the action space with uniform probability for the first num_-
random iterations.

We implemented Deep Deterministic Policy Gradient
(DDPG) [41] using PyTorch [48]. DDPG is a popular policy-
based Reinforcement Learning algorithm used by prior works
to tune system parameters [49,67]. We use the CPU and mem-
ory utilization of microservices on the nodes where microser-
vices are running, workload volume (requests per second),
number of clients, and request composition as state features.
Both the actor and the critic networks consist of 1 hidden
layer. The number of inputs to the actor layer is equal to the
number of state features and the output is equal to the number
of actions (i.e., parameters tuned). The input and the hidden
layer use ReLU as the activation function while the output
layer uses Tanh. For the critic network, the number of inputs is
equal to the number of state features + the number of actions
while the output is just 1-dimensional.

We use 1 step for each episode (to match how the iterations
of the baselines and Bluefin proceed) and run the algorithm
for 50 episodes. We let the algorithm explore random points
for the first 25 episodes followed by 25 episodes where the
explored configurations are chosen by the algorithm. To im-
prove the algorithm’s ability to explore, we add a Gaussian
noise to the action chosen which is controlled by a parameter
γ (γ = 0.1 in our experiments). We update the model after
every 5 steps. Once the 50 episodes are complete, we query
the model to provide the best configuration for the initial state.
We average the rewards over 5 such queries.

1114 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CausalSim: A Causal Framework for Unbiased Trace-Driven Simulation

Abdullah Alomar∗

MIT
aalomar@mit.edu

Pouya Hamadanian∗

MIT
pouyah@mit.edu

Arash Nasr-Esfahany∗

MIT
arashne@mit.edu

Anish Agarwal
MIT

anish90@mit.edu

Mohammad Alizadeh
MIT

alizadeh@mit.edu

Devavrat Shah
MIT

devavrat@mit.edu

Abstract
We present CausalSim, a causal framework for unbiased

trace-driven simulation. Current trace-driven simulators
assume that the interventions being simulated (e.g., a new
algorithm) would not affect the validity of the traces. However,
real-world traces are often biased by the choices algorithms
make during trace collection, and hence replaying traces
under an intervention may lead to incorrect results. CausalSim
addresses this challenge by learning a causal model of the
system dynamics and latent factors capturing the underlying
system conditions during trace collection. It learns these
models using an initial randomized control trial (RCT) under a
fixed set of algorithms, and then applies them to remove biases
from trace data when simulating new algorithms.

Key to CausalSim is mapping unbiased trace-driven sim-
ulation to a tensor completion problem with extremely sparse
observations. By exploiting a basic distributional invariance
property present in RCT data, CausalSim enables a novel
tensor completion method despite the sparsity of observations.
Our extensive evaluation of CausalSim on both real and
synthetic datasets, including more than ten months of real data
from the Puffer video streaming system shows it improves
simulation accuracy, reducing errors by 53% and 61% on
average compared to expert-designed and supervised learning
baselines. Moreover, CausalSim provides markedly different
insights about ABR algorithms compared to the biased
baseline simulator, which we validate with a real deployment.

1 Introduction

Causa Latet Vis Est Notissima – The cause is hidden, but the
result is known. (Ovid: Metamorphoses IV, 287)

Trace-driven simulation is a widely used method for
evaluating new ideas in systems. In contrast to full-system
simulation (e.g., NS3 [31]), which requires detailed knowledge
of system characteristics (e.g., topology, traffic patterns,
hardware details, etc.), trace-driven simulation does not
model all components of a system. Instead, it focuses on
simulating one (or a few) components of interest, where we
wish to experiment with an intervention, e.g., a new design,

*Equal contribution

algorithm, or architectural choice. To account for the effect of
the remaining components that are not simulated, we collect
a trace capturing their behavior and replay it while simulating
the component of interest with the proposed intervention.

The key assumption here is that the interventions would
not affect the trace being replayed, which we refer to as the
exogenous trace assumption. If this assumption does not
hold, replaying the trace is invalid and could lead to incorrect
simulation results. This problem has been referred to as bias
in trace-driven (or data-driven) simulation [15, 37].

It is difficult to guarantee the exogenous trace assumption
in traces collected from real-world systems. Consider, for
example, trace-driven simulation of adaptive bitrate (ABR)
algorithms [35, 50, 63, 75]. It is common to use network
throughput traces from real video streaming sessions on
Internet paths [38, 75]. However, the throughput achieved
when the player downloads a video chunk is caused by certain
latent properties of the network path (e.g., the underlying
bottleneck capacity, the number and type of competing
flows, etc.), as well as the particular choices made by the
ABR algorithm (the bitrate chosen for each chunk). In other
words, the trace data reflects the combined effect of these two
causes and is biased by the ABR algorithms used during trace
collection. To simulate a new algorithm, we need to tease apart
the effect of the two causes, and predict how the trace would
have changed under the decisions of the new algorithm.

We present CausalSim, a causal framework for unbiased
trace-driven simulation. CausalSim relaxes the exogenous
trace assumption by explicitly modeling the fact that
interventions can affect trace data. Using traces collected
from a randomized control trial (RCT) under a fixed set
of algorithms, it infers both the latent factors capturing the
underlying conditions of the system and a causal model of its
dynamics, including the unknown relationship between latents,
algorithm decisions, and observed trace data. To simulate a
new algorithm, CausalSim first estimates the latent factors at
every time step of each trace. Then, it uses the estimated latent
factors to predict the alternate evolution of the trace, actions,
and observed variables of the component of interest, under the
same latent conditions that were present when the trace was
collected. This two-step process allows CausalSim to remove
the bias in the trace data when simulating new algorithms.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1115

CausalSim provides two benefits: (i) it improves the accu-
racy of trace-driven simulation when the intervention could af-
fect (in possibly subtle ways) the trace data; (ii) it enables trace-
driven simulation of systems where defining an exogenous
trace is not possible and therefore standard trace-driven simu-
lation is not applicable. We evaluate both settings in this paper,
by simulating ABR and heterogeneous server load balancing
algorithms as examples for cases (i) and (ii) respectively.

CausalSim requires training data from an RCT. Large
network operators have increasingly invested in RCT infras-
tructure to evaluate new ideas, but due to their low throughput
and risk of disruptions or SLA violations [42], they can afford
to evaluate only a fraction of proposed ideas in RCTs. Causal-
Sim greatly extends the utility of RCT data by learning a model
that can simulate a wide range of algorithms using traces from
a fixed set of algorithms. Periodically or whenever an operator
believes the underlying system characteristics have changed
significantly, they can collect fresh data using an RCT (again,
with the same fixed set of algorithms) to retrain CausalSim.

CausalSim’s design begins with the observation that
unbiased trace-driven simulation can be viewed as a matrix (or
tensor) completion problem [9, 14]. Consider a matrix M of
traces (it is a tensor if traces are higher dimensional), with rows
corresponding to possible actions and columns corresponding
to different time steps in the trace data. For each column, the
entry for one action is “revealed”; all other entries are missing.
Our task can be viewed as recovering the missing entries.

A significant body of work has shown that it is possible to
recover a matrix from sparse observations under certain as-
sumptions about the matrix and the pattern of missing data.
Roughly speaking, the typical assumptions that make recovery
feasible are that the matrix has low rank, the entries revealed are
chosen at random, and that enough entries are revealed. Low-
rank structure is prevalent in many real-world problems [69]
and has also been observed in network measurement data [16,
43, 44, 60]. But unfortunately the other two assumptions do
not hold in our problem. As we detail in §4.3, one observed
entry per column is below the information-theoretic bound for
low-rank matrix completion (even for rank r=1). Moreover,
not only are the entries revealed in our problem not random,
they depend on other entries of the matrix, since the actions
are being taken by algorithms based on observed variables.

To overcome these challenges, CausalSim exploits two key
insights. First, it assumes a causal model (§3) where the latent
factors are exogenous and are not affected by the interventions
we want to simulate in the component of interest. This exoge-
nous latent assumption relaxes (and is therefore implied by)
the exogenous trace assumption in standard trace-driven simu-
lation. For example, in ABR, it says that underlying factors like
the bottleneck link speed on a network path are not affected by
a user’s ABR algorithm, whereas ABR decisions can impact
the trace that user observes (i.e., the achieved throughput).

Second, CausalSim uses a basic property of trace data
collected via an RCT. Since the assignment of an algorithm

to a trace is completely random in an RCT, the distribution of
latent factors should be the same for the traces obtained using
different algorithms, i.e., the latent distribution is invariant
to the algorithm. We provide conditions on the RCT data
(e.g., in terms of the number and diversity of algorithms) that
guarantee recoverability of the low-rank matrix using this
invariance property (§4.2), and we operationalize this idea in
a practical learning method that exploits the invariance using
an adversarial neural network training technique (§5).

We evaluate CausalSim on two use cases, ABR and server
load balancing, with both real-world and synthetic datasets, and
further verify CausalSim’s predictions with a test in the wild on
the Puffer [71] video streaming testbed. Our main findings are:

1. We use CausalSim to debug and improve an ABR
algorithm, BOLA1 [53,63]. In a ten month experiment on
Puffer [71], BOLA1 exhibited high stalling compared to
BBA [35], with slightly better quality. Using CausalSim,
we tune BOLA1’s parameters via Bayesian Optimization
and deploy our improved version on Puffer. We show that
it improves the stall rate of this well-known algorithm by
2.6×, achieving 0.7× the stall rate of BBA with similar
perceptual quality. The expert-designed baseline simu-
lator that ignores bias predicts the exact opposite: that
the new variant should stall 1.34× the stall rate of BBA.
This case study shows that removing bias is crucial to
draw accurate conclusions from trace-driven simulation.

2. Evaluation of CausalSim on more than ten months of real
data from Puffer shows that CausalSim’s error in stall
rate prediction is bounded to 28%, while expert-designed
and standard supervised learning baselines have errors in
the range of 49–68% and 29–187% respectively. Similar
observations are also made for perceptual quality metrics
and buffer occupancy levels.

3. CausalSim opens up new avenues to apply trace-driven
simulation to systems where the exogenous trace
assumption is invalid. Using a synthetic environment
modeling a heterogeneous server load balancing problem,
we show how CausalSim reduces average simulation
error by 5.1×, a stark improvement compared to a
baseline simulator with a median error of 124.3%.

This work does not raise any ethical issues. Our code is
available at https://github.com/CausalSim/Unbiased-Trace-
Driven-Simulation.

2 Motivation

2.1 Bias in Trace-Driven Simulation
Trace-driven simulation is a widely used technique to design
and evaluate systems. Unlike full-system simulation, it focuses
on simulating one (or a few) components of the system while
capturing the effect of remaining components by replaying
a trace. For example, to simulate new ABR algorithms, it is
common to replay network throughput traces from real Internet

1116 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/CausalSim/Unbiased-Trace-Driven-Simulation
https://github.com/CausalSim/Unbiased-Trace-Driven-Simulation

(a) Trace-driven simulation (b) CausalSim

Figure 1: CausalSim relaxes the exogenous trace assumption
in standard trace-driven simulation.1

paths in a simulator modeling only the video player/server.
As we alluded to earlier, the key assumption here is that the

interventions being simulated would not affect the trace being
replayed; otherwise, replaying the trace would be invalid. We
refer to this as the exogenous trace assumption, and it is central
to standard trace-driven simulation. Figure 1a is a visual
depiction of the exogenous trace assumption. In the figure, a
represents the intervention we want to simulate; for example,
the actions taken by a new algorithm. o is the observed state
of the component being simulated. u represents the latent state
of the rest of the system, which we do not observe or simulate.
Finally, m is the trace, which captures the behavior of the other
components.2 The existence of each edge represents a causal
effect. For example, the trace m and intervention a both affect
o. Note the absence of the edge from a to m, which implies
that the intervention cannot affect the trace (the exogenous
trace assumption).

The simulator designer must define the trace carefully to
meet this assumption. But what happens if it does not hold, i.e.,
there exists an edge from a to m (as in Figure 1b)? Ignoring
the violation of exogenous trace assumption leads to biased
simulation outcomes, as we will see next.

2.2 An Example Using Real-world Traces

In this section, we use more than ten months of real-world
data from Puffer [71], a recently deployed system for
experimenting with video streaming protocols, to illustrate
the issue of bias in trace-driven simulation.

Puffer collects data from a continual Randomized Control
Trial (RCT) that tests several Adaptive Bit Rate (ABR)

1In general, a and u can be correlated. For example, they can both depend
on prior latent conditions of the system. In ABR, for instance, recent latent
path conditions are correlated with current path conditions (u), and also affect
the action taken by the ABR algorithm (a). Correlation of a and u, however,
does not imply a causal relationship between them. In particular, our model
assumes exogenous latents, i.e. a does not affect u.

2Variables in Fig. 1a can be multidimensional and vary with time.

algorithms. In the period of interest (July 27, 2020 – June 2,
2021), the tested algorithms include Buffer-Based Algorithm
(BBA) [35], two versions of BOLA-BASIC (henceforth
called BOLA) [63]3, and two versions of an algorithm called
Fugu developed by the Puffer authors. The dataset includes
more than 56 million chunk downloads from more than 230
thousand streaming sessions, totaling 3.5 years of streamed
videos. For each streaming session, it provides logs of the
chosen chunk sizes, available chunk sizes, achieved chunk
download throughputs, and playback buffer levels.4

Consider a typical trace-driven simulation scenario, where
we wish to simulate a new ABR algorithm using traces from
previous video streaming sessions. We define such a task on
the Puffer data as follows. We let one of the algorithms, say
BBA, be the algorithm that we wish to simulate. We leave
out the data for this algorithm and ask whether it is possible
to predict its performance using the other algorithms’ traces.
In evaluating a new ABR algorithm, we may be interested in
various performance measurements, e.g. buffer occupancy,
rebuffering rate, chosen bitrates, etc. Here, we focus on
predicting the behavior of playback buffer occupancy, which is
one of the key indicators of an ABR algorithm’s behavior [35].

The goal of trace-driven simulation is to predict the
trajectory of the system (e.g., buffer, bitrates, etc.) for one
algorithm in the same underlying conditions that were present
when a trace was collected using a different algorithm. When
simulating algorithm B based on a trace collected using
algorithm A, we will refer to A as the “source” algorithm and
to B as the “target” algorithm.

It is generally not possible to evaluate the accuracy of indi-
vidual simulated trajectories using real-world data, because we
do not have ground truth trajectories for the target algorithm un-
der the same exact network conditions that were present when
running the source algorithm. However, since the Puffer data
was obtained using an RCT, we can evaluate predictions about
distributional properties of the target algorithm, such as the
distribution of the buffer occupancy achieved by the algorithm
over the population of network paths present in the RCT.

To summarize, our task is: predict the distribution of the
buffer occupancy for the users assigned to BBA (the target
algorithm) in the Puffer dataset, using only the data from the
other (source) algorithms.

2.2.1 Simulation via Expert Modeling (ExpertSim)

As our first strawman, we build a simple trace-driven simulator
(ExpertSim) using our knowledge of how an ABR system
works. ExpertSim models the playback buffer dynamics for
each step, where a step corresponds to one ABR decision and

3BOLA1 and BOLA2 are variations on BOLA adjusted to target the
SSIM quality metric instead of bitrate [53]. They pursue different objective
functions and use different principles for hyperparameter adjustment.

4We use ‘slow stream’ logs (by Puffer’s definition, streams with TCP
delivery rates below 6Mbps) available on the Puffer website [1].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1117

0 5 10 15

10

30

50

70

Buffer Occupancy (seconds)

C
D

F
(%

)
CausalSim

ExpertSim

SLSim

BBA (target)

BOLA2 (source)

(a)

1 2 3 4 5

10

30

50

70

Observed Throughput (Mbps)

C
D

F
(%

)

BBA

BOLA2

(b)

Figure 2: (a) CausalSim is accurate in predicting buffer
level distribution of BBA users, while baseline simulators’
predictions are similar to BOLA2 users. (b) Distribution of
achieved throughput is different in BBA and BOLA2 users.

the download of a single video chunk. Let ĉt be the throughput
achieved in step t (for the tth chunk) of a particular video stream-
ing session using, say, the BOLA2 algorithm. To simulate
BBA for the same user, ExpertSim assumes that the user would
achieve the same throughput ĉt in each step under the BBA al-
gorithm as well. In other words, it assumes that ABR decisions
do not affect the observed network throughput (the exogenous
trace assumption). Under this assumption, ExpertSim models
the evolution of the video playback buffer as follows. Let bt be
the buffer level at the beginning of step t (before the download
of chunk t), rt be the bitrate chosen in step t, and st be the size
of the t th chunk implied by the chosen bitrate. Then the buffer
at the end of step t is derived as: bt+1=max(0,bt−st/ĉt)+T ,
where T is the chunk duration.5 Although simple, the
assumption that throughput is an exogenous property of a
network path is common in modelling ABR protocols. For
example, both FastMPC [75] and FESTIVE [38] assume that
the observed throughput does not depend on the chosen bitrate.

Figure 2a shows the true distribution of buffer level for
BOLA2 and BBA users in the Puffer dataset (the two dashed
lines), as well as the distribution predicted by running BBA
on the traces collected from BOLA2 users using ExpertSim
(solid blue line). The predictions are inaccurate: the buffer
distribution generated by ExpertSim is more similar to the
buffer distribution of BOLA2 users (the source algorithm) than
the buffer distribution of BBA users (the target algorithm).

5The complete buffer dynamic equation is slightly more complex to handle
cases with full buffers. Refer to §C.1 in the appendix for further clarification.

2.2.2 Simulation via Supervised Learning (SLSim)

Perhaps the simple model of buffer dynamics in ExpertSim
does not accurately reflect the actual system behavior. As a next
attempt, we turn to machine learning and try to learn the system
dynamics from data. Specifically, we use supervised learning
to train a Neural Network (NN) that models the step-wise
dynamics of the system. This fully connected NN includes 2
hidden layers, each with 128 ReLU activated neurons. For each
timestep t, the NN takes as input the buffer level before down-
loading the t th chunk bt , the achieved throughput ĉt for chunk
t, and the chunk size st (which depends on the birate chosen by
ABR). The NN outputs the download time of the tth chunk, and
the resulting buffer level bt+1. We train the NN to minimize the
prediction error on our dataset. To avoid information leaking,
we exclude the logs for BBA from the training data.

Figure 2a shows the predicted buffer level distribution via
this approach (SLSim) for BBA. As with ExpertSim, we use
the traces collected from BOLA2 users as the source algorithm.
The results are similar to ExpertSim; once again, the predicted
buffer distribution is closer to that of BOLA2 than BBA.

2.2.3 What Went Wrong?

To understand the limitations of ExpertSim and SLSim, we
plot the distribution of achieved per-chunk throughput for users
assigned to BOLA2 and BBA in Figure 2b. Since algorithm
selection is completely random, we would expect inherent net-
work path properties such as bottleneck link capacity to have
the same distribution for users assigned to different ABR algo-
rithms. However, such an invariance should not be expected for
achieved throughput, because even on the same path different
ABR algorithms could achieve different throughput. For exam-
ple, since congestion control protocols take time to discover
available bandwidth (e.g., in slow start) or converge to their
fair share rate when competing against other flows, an ABR
algorithm that tends to choose lower bitrates (and hence down-
load less data per chunk) may achieve less throughput than an
ABR algorithm that picks higher bitrates [34, 64]. We can see
this behavior in the Puffer dataset. The achieved throughput
for BOLA2 and BBA is clearly different in Figure 2b.

This confirms that ABR algorithms cause a bias in the mea-
sured throughput traces, and the exogenous trace property does
not hold. To perform accurate trace-driven simulation, we need
to account for this bias when simulating new ABR algorithms.

2.3 Causal Inference to the Rescue!
If the traces were the underlying network capacity when each
chunk was downloaded (rather than the achieved throughput),
the exogenous trace assumption would hold and our problem
would be simple. First, we would learn the relationship
between network capacity and achieved throughput for
different ABR actions using our data. Then, to simulate BBA
for a given trace, we would start with the network capacity

1118 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

at each step of the trace and predict the achieved throughput
taking into account the bitrate chosen by BBA in that step.
This would then allow us to predict how the buffer evolves.
This works because unlike achieved throughput, underlying
capacity is an exogenous property of a network path and is
not affected by the ABR actions.

However, underlying network capacity is a latent quantity
— we do not observe it in our traces. The key challenge is
therefore to infer such latent quantities from observational
data. Concretely, in our running example, we wish to estimate
the latent factors like network capacity in each step of a trace,
using observations such as the bitrate, the chunk size, the
achieved throughput, etc.6

Inferring such latent confounders and using them for
counterfactual prediction is the core issue in the field of causal
inference [57, 58]. In this paper, we develop CausalSim, a
causal framework for unbiased trace-driven simulation. Causal-
Sim relaxes the exogenous trace assumption in trace-driven
simulation. It explicitly models the fact that interventions can
affect trace data (the edge from a to m in Figure 1b), and infers
both the latent factors and a causal model of the system dynam-
ics. This allows CausalSim to correct for the bias in trace data
when simulating an intervention. As an illustration, Figure 2a
shows the predicted buffer occupancy distribution when sim-
ulating BBA on the traces of users assigned to BOLA2, using
CausalSim. CausalSim matches the ground-truth distribution
for BBA much more accurately than the alternatives.

3 Model and Problem Statement

3.1 Causal Model

Consider the following discrete-time dynamical model7

corresponding to Figure 1b:

mt =Ftrace(at , ut), (1)
ot+1=Fsystem(ot , mt , at). (2)

Here, t denotes the time index, mt is the trace, at is the
intervention, ut is the latent factor, and ot is the observed state
of the component of interest. The function Ftrace models the
effect of interventions on the trace (which traditional methods
ignore), and Fsystem models the dynamics of the component
of interest. When the intervention changes an algorithm in the
component of interest, at can be viewed as the action taken
by that algorithm at time t.

We assume that interventions do not affect the internal state
of the rest of the system, i.e., that the latent factors are exoge-
nous. This assumption is implicit in the dynamical system

6For simplicity, we only mention network capacity here, but other latent
path conditions like the number of competing flows could also affect achieved
throughput and the same reasoning applies to them.

7This model is similar to a special type of Partially Observable Markovian
Decision Processes (POMDPs) in which the unobserved part of the state is
exogenous [51].

equations, and also visualized in Figure 1b by the absence
of the edge from a to u. Note that this is a strict relaxation
of the exogenous trace assumption in standard trace-driven
simulation. There, the trace itself is assumed to be unaffected
by intervention, which also implies exogenous latent factors.

In our running ABR example, we want to simulate the video
player and server (components of interest) without precisely
modeling the entire network path (the rest of the system). Each
time step t corresponds to the download of a new chunk, and ut
represents latent network conditions during that transmission,
e.g., bottleneck link speed, number of flows sharing the same
network path, type of congestion control used by competing
flows, etc. At each time step, the ABR algorithm chooses a
bitrate at , which together with ut generate mt , the achieved
throughput when downloading a chunk. Typically, latent
network conditions are exogenous factors, beyond the impact
of a particular user’s actions. For instance, the bottleneck link
speed and type of congestion control that competing flows use,
are not affected by the actions of the ABR algorithm.

Note that the achieved throughput depends on the ABR
action as well as the latent network conditions. Equation (1)
captures this relationship and is the source of the bias induced
by the ABR algorithm, which we demonstrated in §2.2.3.
When is the model applicable? The causal model applies
in any trace-driven simulation setting where the trace may be
impacted by interventions. Examples include:

• Job scheduling, where we wish to simulate a workload’s
performance under different types of machines. The trace
is the job performance (e.g., runtime), interventions are
the scheduling decisions, and latent factors are intrinsic
properties of each job (e.g., compute intensity) or latent
aspects of the machines such as collocated interfering
workloads.

• Network simulation, where we wish to simulate how
some aspect of network’s design (e.g., congestion control,
packet scheduling, traffic engineering, etc.) impacts
application performance. The trace is an application’s
traffic pattern, the intervention is the network design,
and latent factors are the internals of the application that
dictate its traffic demand.

In some cases, like our running ABR example, the exoge-
nous trace assumption may not hold exactly but still be
roughly valid.8 Here, CausalSim removes bias and improves
simulation accuracy. But in certain problems, ignoring the
effect of interventions is meaningless. For example, consider
scheduling or load balancing on heterogeneous machines
(e.g., with different hardware capabilities). Given a trace
of job performance on specific machines, it isn’t possible
to merely replay the trace for new machine assignments. In

8Even in these cases, these subtly biased simulations can produce entirely
incorrect conclusions (§6.2).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1119

such problems, CausalSim enables trace-driven simulation
by explicitly modeling the effect of interventions on the trace.
When is the model invalid? Our causal model relaxes the
exogenous trace assumption but still requires exogenous
latents, i.e. that the latents are unaffected by the intervention.
This won’t hold in all systems. For example, we cannot model
the effect of network routing policies (e.g., BGP) on observed
video streaming throughput in this way, since changing the
path would change the latent network conditions that impact
a video stream. Another example is simulating the effect
of a CPU feature like the branch predictor on instruction
throughput. Here, we can’t model the state of the instruction/-
data caches as an exogenous latent factor, since changing the
branch predictor can change their internal state significantly.

Overall, a simulation designer needs to reason about the
causal structure of observed and latent quantities to define
the appropriate model in the form of Equations (1) and (2).
However, the designer does not need to precisely specify the
meaning of the latents or the dynamics (the functions Ftrace
and Fsystem). CausalSim learns both from observational data.

3.2 Problem Formulation

We are given N trajectories, collected using K specific
policies.9 Let Hi be the length of trajectory i ∈ {1, ... ,N}.
For trajectory i, we observe (mi

t ,o
i
t ,a

i
t)

Hi
t=1. We assume that

trajectories are generated using an RCT, i.e., that each
trajectory is assigned to one of the K policies at random.

Our goal is to estimate the observations under an arbitrary
given intervention (e.g., a new algorithm) for each of the N
trajectories. Let {ui

t}Hi
t=1 be the exogenous latent factors for

trajectory i. Formally, for any given trajectory i and given a
sequence of actions {ãi

t}Hi
t=1, starting with observation oi

1 and
under the same sequence of latent factors {ui

t}Hi
t=1, we wish

to estimate the counterfactual observations {õi
t}Hi

t=1 that are
consistent with Equations (1) and (2).

This is a counterfactual estimation problem since it requires
(i) estimating latent {ui

t}Hi
t=1 factors for observed trajectory i

and using them along with the counterfactual actions {ãi
t}Hi

t=1
to predict the counterfactual trace {m̃i

t}Hi
t=1 consistent with

Equation (1), and then (ii) using the counterfactual trace
and actions to predict counterfactual observations {õi

t}Hi
t=1

consistent with Equation (2).
For (ii), learning Fsystem is a supervised learning task

because its inputs, (oi
t , mi

t , ai
t), and output, oi

t+1, are fully
observed. If {ui

t}Hi
t=1 was observed, then (i) would also boil

down to learning Ftrace in a supervised manner. It is the lack
of observability of {ui

t}Hi
t=1 that makes our simulation task

extremely challenging. In short, we are left with (i), the task
of estimating {m̃i

t}Hi
t=1 and learning Ftrace.

9We use policy and algorithm interchangeably in this paper.

4 CausalSim: Theoretical Insights

This section describes the theory behind CausalSim. We
discuss how to operationalize this theory in a practical learning
algorithm in §5. We begin by casting counterfactual estimation
as a challenging variant of the matrix completion problem [14].
We then formalize conditions that allow us to complete the
matrix using a certain distributional invariance property that
is present in data collected in an RCT.

4.1 Counterfactual Estimation
as Matrix Completion

Recall from §3.2 the task of estimating the counterfactual
trace {m̃i

t}Hi
t=1 consistent with Equation (1). In this section, we

pose this task as a variant of the classical matrix completion
problem. For simplicity, let action ai

t be one of the finitely
many options {1,...,A} for some A≥ 2. Imagine an A by U
matrix M, where rows correspond to A potential actions, and
columns corresponds to U = ∑N

i=1 Hi latent factors (ui
t for

different choices of i and t) in the dataset. To order the columns,
we may index ui

t as a tuple (i, t) and order these tuples in
lexicographic order. The matrix M is called the potential
outcome matrix in the causal inference literature [61].

At the t th step of the ith trajectory, we observe
mi

t = Ftrace(ai
t , ui

t), which is the entry in M in the row
corresponding to ai

t and the column corresponding to ui
t . The

counterfactual quantities of interest, m̃i
t = Ftrace(ãi

t , u
i
t) for

ãi
t ̸= ai

t , are the missing entries in M in the same column. In
summary, we observe one entry per column of the matrix M
and we wish to estimate the missing values in the matrix.

The task of filling missing values in a matrix based on its
partially observed entries is known as Matrix Completion [19],
a topic that has seen tremendous progress in the past two
decades [18, 20, 47]. However, standard matrix completion
methods do not apply to our problem (see §4.3 for details).

We use a distributional invariance property of data collected
using an RCT to complete the potential outcome matrix M.
The key observation is that, in an RCT, the latent factors for
trajectories collected under each of the policies will have the
same distribution. For example, in Puffer’s RCT, incoming
users are assigned to an ABR algorithm at random. Therefore
each ABR algorithm will “experience” the same distribution
of underlying latent network conditions, which is precisely
why we can compare their performance in the RCT. The same
property helps us recover the matrix M, as we show next.

4.2 Exploiting RCT for Matrix Completion
We use a minimal non-trivial example to give intuition about
how we can exploit an RCT for matrix completion, before
stating our main theoretical result.

Consider a simple example where A = 2 and U = 2n, and
the rank of potential outcome matrix M is equal to 1. Rank 1

1120 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

implies that M=auT for some a∈R2 and u∈R2n with Mα,β=

aα ·uβ.10 Suppose we have K=2 policies, where each policy al-
ways chooses only one of the two actions. Furthermore, we con-
sider an RCT setting. That is, the distribution of latent factors
across trajectories assigned to both policies should be the same.

Without loss of generality, we can re-order the columns of
M so that the first n columns correspond to the latent factors of
the trajectories assigned to policy 1, and the second n columns
are those assigned to policy 2. Then the observed entries of
matrix M appear as
[

M1,1 M1,2 ... M1,n ⋆ ... ⋆ ⋆
⋆ ⋆ ... ⋆ M2,n+1 ... M2,2n−1 M1,2n

]

where ⋆ represents the missing values.
Let us consider recovering the missing observation M2,1.

For column 1, we know the observation under the first action,
i.e. M1,1. Due to rank 1 structure, we have

M2,1

M1,1
=

a2u1

a1u1
=

a2

a1
. (3)

Therefore, to find M2,1 (and by a similar argument, to find all
missing entries of M), we need to estimate the ratio a2

a1
.

Due to the distributional invariance induced by RCT, the
samples u1, ... , un (which correspond to the latent factors
encountered by policy 1) come from the same distribution
as the samples un+1, ... ,u2n (which correspond to the latent
factors encountered by policy 2), for large enough n. Thus,
their expected value should be equal:

1
n

n

∑
β=1

uβ≈
1
n

2n

∑
β=n+1

uβ (4)

Equation (4) implies

∑n
β=1M1,β

∑2n
β=n+1M2,β

=
∑n

β=1a1 ·uβ

∑2n
β=n+1a2 ·uβ

≈ a1

a2
. (5)

This provides precisely the quantity of interest in Equation (3)
based on the observed entries, enabling us to complete the
matrix.
Formal Result. This simple illustrative example relied on
a convenient observational pattern (based on policies that
always choose one action) and rank 1 structure. But the idea
can be generalized. If the trace includes D measurements,
Mα,β,γ∈RA×U×D becomes a tensor rather than a matrix, where
α, β, and γ index the actions, latent factors, and measurements,
respectively. The following theorem provides conditions
where completion is possible for a rank r tensor. For more
details and the proof, refer to Appendix A.

Theorem 4.1. We can recover all entries of M by only
observing one D−dimensional element in each column (corre-
sponding to one latent and action) if the following is satisfied:

10Note that for readability, we are abusing notation by overloading a and
u to refer to both the action and latent, and their encodings in the factorization.

1. (Low-Rank Factorization) M is a low-rank tensor
(rank = r), i.e., it admits the following factorization:
Mα,β,γ=∑r

ℓ=1aαℓuβℓzγℓ.
2. (Invertibility) The factorization implies existence of a

linear mapping from latent encoding to trace for each
action. This linear mapping is invertible.

3. (Sufficient measurements) D≥r.
4. (Sufficient, Diverse Policies) The number of policies

K ≥ Ar, and the matrix S ∈ RAr×K is full-rank where
Sw.D:(w+1).D,x = E[m|action_index = w,policy_index =
x]P(action_index = w|policy_index = x). Linear inde-
pendence of columns of S can be interpreted as diversity
among policies (Appendix A).

4.3 Discussion

Why not standard tensor completion? Tensor completion
methods [26, 41, 48, 78] make several assumptions. First,
the tensor M must be (approximately) low rank, which
CausalSim also requires. Low-rank structure holds in many
real-world problems [69] and has been observed in network
measurements, e.g., in traffic matrices [16, 43, 44, 60] and
network distance (i.e., RTT) [46, 52, 66]. As an example of
how it emerges in the problems we study in this paper, we
use a simple model of congestion control in Appendix C.4 to
provide intuition about low-rank structure in ABR data.

Second, the pattern of missing entries should be random.
If the missing patterns is not random and depends on latent
factors or the entries themselves [8], standard approaches
have difficulty recovering the tensor. This assumption does
not hold in trace-driven simulation. Revealed entries are
determined by the actions taken by the policies, which often
use recent observations to make their decisions (e.g., an ABR
policy may use recent throughput measurements). Hence
the revealed/missing entries in a column are not random and
depend on the entries in previous columns.

Third, a sufficient number of entries need to be revealed.
For example, when D = 1 (i.e., when M is a matrix), the in-
formation theoretic lower bound to on the number of revealed
entries needed to recover M is 4Ur− r2 [39, 70]. Thus even
for rank r=1, it requires 4 entries per column, whereas only
one entry per column is revealed in trace-driven simulation.

Since the second and third assumptions do not necessarily
hold in our setup, we cannot use existing tensor completion
methods. However, as we argued in §4.2, exploiting the
additional problem structure imposed by RCT data can make
tensor completion feasible in certain conditions.
Limitations of Theorem 4.1. The proof of Theorem 4.1
(Appendix A) provides an analytical method for recovering
the tensor M that generalizes the procedure described for the
simple example in §4.2. While this provides a theoretical basis
for why tensor recovery is possible, the analytical approach
is not practical. First, it relies on M being exactly rank r; if it
is approximately rank r, we have found the calculation to be

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1121

mt

̂ut

̂oi
t+1

at

P(πt | ̂ut)

ãt

Latent
Factor

Extractor

+

Policy
Discriminator

̂oi
t

Figure 3: CausalSim Architecture

brittle. Second, it applies only to discrete action spaces. Third,
it gives sufficient conditions for recovery, but they’re not all
necessary. One reason is that the analytical method uses only
mean invariance, i.e. the fact that the mean of the latent factors
is the same across all policies (as in Eq. (4)), even though RCT
data has the stronger property that the entire distribution of
latents does not depend on the policy. In the next section, we
describe our practical implementation of CausalSim that uses
learning techniques and NNs to overcome these limitations
(at the expense of theoretical guarantees).

5 CausalSim: Algorithm

CausalSim builds upon the insights presented earlier but
replaces the factorized model with a learning algorithm based
on NNs. For ease of notation, we will drop the trajectory index
for all variables in the dataset, e.g. we will refer to the latent
factor ui

t : t≤Hi,i≤N as ut : t≤H.

CausalSim architecture. As discussed, CausalSim aims
to extract ut and learn Ftrace and Fsystem from observed
trajectories (ot+1,ot ,mt ,at) : t < H. Figure 3 summarizes
CausalSim’s algorithmic structure.

To extract latent factors, we use a NN that takes in at and mt ,
and computes ût (an estimate of ut). To apply invariance on the
extracted latents, i.e. distribution of ut being the same regard-
less of the policy applied to it, we use a NN called the Policy
Discriminator. This NN aims to predict the policy pertaining
to that sample given ût , and if invariance is upheld, it will fail to
do so. Unlike the analytical approach, the policy discriminator
can enforce policy invariance on the entire latent distribution,
potentially improving the accuracy of the estimate.

To calculate the counterfactual traces and observations,
we need to learn Ftrace and Fsystem. However, we can simplify
the learning problem by merging these two into one single
combined function. Thus, we use a NN that takes in counter-
factual actions ãt , observation ot and estimated latent ût , and
computes counterfactual observation õt+1. Of course, we can
explicitly use separate NNs for Ftrace and Fsystem if we require

Algorithm 1 CausalSim Training
1: initialize parameter vectors γ,θ,ϕ
2: initialize hyper-parameters num_disc_it, κ
3: initialize dataset D←{(oi,mi,ai,πi)}m

i=1 from an RCT
4: for each iteration do
5: for num_disc_it do
6: sample minibatch B←{(ol ,ml ,al ,πl)}b

l=1
7: ul←Eθ(ml ,al) for l∈{1,...b}
8: Ldisc← 1

b Σb
l=1

[
−logWγ(πl |ul)

]

9: γ=γ−λγ ·∇γLdisc
10: end for
11: sample minibatch B←{(ol+1,ol ,ml ,al ,πl)}b

l=1
12: ul←Eθ(ml ,al) for l∈{1,...b}
13: Ldisc← 1

b Σb
l=1

[
−logWγ(πl |ul)

]

14: Lpred← 1
b Σb

l=1

[(
ol+1−Pϕ(ol ,al ,ul)

)2
]

15: Ltotal←Lpred−κ·Ldisc
16: θ=θ−λθ ·∇θLtotal
17: ϕ=ϕ−λϕ ·∇ϕLpred
18: end for

D
is

cr
im

in
at

or
Si

m
ul

at
io

n
M

od
ul

es
access to the simulated trace (m̃t) values.

Overall, CausalSim uses three NNs for counterfactual
simulation; Eθ as the latent factor extractor, Wγ as the policy
discriminator and Pϕ as the combination of Ftrace and Fsystem.
Figure 3 depicts the structure. Training these NNs is quick;
on an A100 Nvidia GPU, CausalSim’s time to convergence
on 56M data points (230K streams) was less than 10 minutes,
and each simulation step in inference (on CPU) takes less
than 150µs. A full inference run on the same volume of data
takes less than 6 hours on a single CPU core and less than 20
minutes on 32 cores.

Training procedure. CausalSim’s training procedure
alternates between: (i) training the policy discriminator using a
discrimination loss Ldisc; and (ii) training other modules using
an aggregated loss Ltotal. Algorithm 1 provides a detailed
pseudo code of this training procedure.

Training the policy discriminator (Lines 5–10 in Algo-
rithm 1). Distributional invariance means restricting the
distribution of latent factors u to be identical across policies.
To that end, we first use Eθ to extract latents ût , and then search
for invariance violations via a discriminator NN, a standard
approach in the paradigm of adversarial learning [29, 68].
Specifically, the policy discriminator aims to predict the policy
πi that took action at from the estimated latent factor ût (see
Figure 3). Towards that, we use a cross-entropy loss to train
the policy discriminator:

Ldisc=EB[−logWγ(π|û)], (6)

where the expectation is over the a sampled minibatch B from
dataset D. We train the policy discriminator to minimize this
loss, by repeating gradient decent num_disc_it times, as the

1122 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

policy discriminator needs multiple iterations to catch up to
changes in the latent factors.
Training simulation modules (Lines 11–17 in Algorithm 1).
In this step, we need to impose consistency with observations,
all while preserving the distributional invariance. Thus, we
compute latent factors ût with Eθ and simulate the next step
of the trajectory ôt+1 with Pϕ. We use an aggregated loss to
enforce consistency and invariance. This loss combines the
negated discriminator loss with a quadratic consistency loss
using a mixing hyper-parameter κ.

Ltotal=EB

[
(ot+1−ôt+1)

2
]
−κLdisc, (7)

where the expectation is over the a sampled minibatch B
from dataset D. Here, we used a quadratic loss function, but
one could use any consistency loss fit to the specific type of
variable (e.g. Huber loss, Cross entropy, ...).

Note the negative sign of discriminator loss, which means
we train these NNs to maximize discriminator loss i.e., fool
the discriminator to ensure policy invariance. If the extracted
latent factors are policy invariant, the policy discriminator
should do no better at its task than guessing at random.
Counterfactual estimation. To produce counterfactual esti-
mates, as described above, the estimated latents ût are extracted
from observed data. Using the extracted latents factors, along
with the learned combined function Pγ, we start with o1 and
predict counterfactual observations ôt+1, one step at a time.

6 Evaluation

We evaluate CausalSim’s ability to do accurate counterfactual
simulation (§6.1 and §6.3) using trace data from one real-world
and one synthetic dataset. As a rigorous proof of concept,
we debug and improve an ill-performing ABR policy with
CausalSim (§6.2), and verify it through deployment on a public
ABR testing infrastructure. Our baselines are as follows:

1. ExpertSim: Uses the analytical model described in §2.2.1.
2. SLSim: Uses a standard supervised-learning technique to

learn system dynamics from data, as described in §2.2.2.
Finally, we show how CausalSim enables trace-driven

simulation in problems where defining an exogenous trace
is not straightforward and traditional trace-driven simulation
is not applicable (§6.4). Further supporting experiments in the
appendix provide more details about how CausalSim operates
(§B.1, §B.2, §B.3, §B.4, §B.5, §B.7, §C.2, §C.3, §C.4 and
§D.1).

6.1 Simulation Accuracy
We use CausalSim to predict the end performance of ABR
policies, and compare them with ground truth data. We
explore the same two metrics reported by Puffer to evaluate
algorithms; 1) stall rate, which is the fraction of time a user
spent rebuffering, i.e. paused and waiting for a new chunk

to download; 2) average Structural Similarity Index Measure
(SSIM) in decibels, which is a perceptual quality metric. Our
ground truth data comes from public logs of ‘slow streams’ on
Puffer. Whenever a client initiates a video streaming session
in Puffer’s website, a random ABR algorithm is chosen and
assigned to that session. Sessions are logged (buffer levels,
chunk sizes, timestamps, download times, etc) anonymously
and the data is available for public use. Our dataset contains
more than 230K trajectories from an RCT during July 2020
to June 2021, where five ABR algorithms (BBA, BOLA1,
BOLA2, Fugu-CL, Fugu-2019) were evaluated. Exhaustive
details of the setup and data can be found in §B.8.

6.1.1 Can CausalSim simulate a policy it has not seen?

We choose one of BBA, BOLA1, and BOLA211 as the new
policy that we want to simulate, and call it the target policy.
The remaining four policies are called source policies. Traces
assigned to the four source policies comprise our training
dataset, which we use for training CausalSim and the two base-
lines. The goal is to simulate the outcome of applying the target
policy on trajectories assigned to any of the source policies.

Figure 4a plots the stall rate and SSIM in the simulated
trajectories and ground truth, denoting each target policy with
a different color. Four source policies give us four separate
predictions per target policy and simulator. Each point depicts
the average of these four predictions, and the intervals show
the minimum and maximum among the four. For either metric,
CausalSim is the most faithful to ground truth among all
simulators. For instance, in stall rate, CausalSim’s relative
error spans 2 − 28%, while ExpertSim spans 49 − 68%
and SLSim spans 29 − 187%. CausalSim may not always
predict the correct relative ordering among policies with close
performance. For example, BOLA1 and BOLA2 (shown in
orange and red) have similar performance in both stall rate and
SSIM. CausalSim predicts that these policies are similar but it
infers their relative ordering incorrectly. However, CausalSim
avoids the large errors made by the baseline simulators. In
absolute terms, its predictions are close to the ground truth.

CausalSim also has the most consistent predictions across
different source policies, because it removes the biases of the
source policies. As an example, we investigate all four simula-
tion results for BOLA1 in Figure 4b. SLSim and ExpertSim’s
simulation results are only good when the source algorithm
is BOLA2 (a similar algorithm to BOLA1 performance-wise).
However, their predictions are far off from the ground truth
for the other three source algorithms. CausalSim’s simulation
results, on the other hand, are all close to the ground truth
target. Appendix §B.7 demonstrates the same observation for
other target algorithms, i.e. BBA and BOLA2.

11We exclude Fugu as a test policy since we could not reproduce its logged
actions (see §B.8).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1123

246810
Time Spent Stalled (%)

15.00

15.25

15.50

15.75

A
ve

ra
ge

SS
IM

(d
B

)

Ground Truth CausalSim ExpertSim SLSim

(a)

246810
Time Spent Stalled (%)

15.00

15.25

15.50

15.75

A
ve

ra
ge

SS
IM

(d
B

)

Ground Truth CausalSim ExpertSim SLSim

(b)

Figure 4: (a) In a real-world dataset of live video streaming,
CausalSim is the most faithful, compared to traditional trace-
driven (ExpertSim) or data-driven (SLSim) simulators. Colors
indicate different target ABR algorithms. (b) Predictions
for BOLA1, separated by the source policy. Each point
indicates a different source ABR algorithm. ExpertSim and
SLSim predictions carry over biases of the source data, while
CausalSim mitigates the bias.

6.2 Case Study: CausalSim in the Wild
An accurate simulator allows researchers to debug and
improve protocols without repeated and invasive deployments.
We shall demonstrate this with CausalSim, by improving a
well-known ABR policy, and verifying our findings with a
real-world deployment on Puffer.

Recall that in the particular RCT we used in §6.1, five ABR
algorithms (BBA, BOLA1, BOLA2, Fugu-CL, Fugu-2019)
were evaluated. Figure 5 shows the result of this evaluation
for BBA, BOLA1 and BOLA2, across ‘slow streams’.12

Similar to Figure 4a, the X-axis shows the stall rate, and the
Y-axis is the average SSIM. BOLA1 exhibited 82% more
rebuffering compared to BBA. A revised version of BOLA1,
called BOLA2, was deployed alongside it, since the Puffer

12The data for this plot comes directly from Puffer [2, 3].

2.5 2.0 1.5 1.0
Time Spent Stalled (%)

14.5

15.0

15.5

A
ve

ra
ge

SS
IM

(d
B

)

BBA (Jul’20-Jun’21)
BOLA1 (Jul’20-Jun’21)
BOLA2 (Jul’20-Jun’21)

BBA (Aug’22-Dec’22)
BOLA1-CausalSim (Aug’22-Dec’22)

Figure 5: In an experiment preceding this work, BOLA1
exhibits high stalling. By deploying a BOLA1 variant in a later
experiment CausalSim improved the stall rate by 2.6×, with
comparable quality to BBA. User population is ‘slow streams’
and error bars denote 2.5%–97.5% confidence intervals.

team and the authors of BOLA believed the SSIM metric (in
decibels) is incompatible with the protocol [53]. This new
version had 12.8% less rebuffering and slightly higher quality,
but still far too much stalling compared to BBA.

BOLA1 is an ABR policy with two hyperparameters,
similar to BBA, and our hypothesis was that BOLA1 uses
sub-optimal hyperparameters. To investigate this, we used the
logged data pertaining to that plot along with CausalSim to
exhaustively analyze the performance of BOLA1 and BBA for
a range of hyperparameters. Using Bayesian Optimization13,
we explored the parameter space and created a Pareto frontier
curve for each policy. During this process, we evaluated over
150 different algorithms in two days, which is achievable only
in a simulator. Each curve demonstrates the trade-off between
quality and stall rate in that policy. Figure 6 presents the curves,
where the left and right plots show CausalSim and ExpertSim
predictions. For ease of comparison, we highlight where the
original BOLA1 and BBA lie. CausalSim confirms our sus-
picion; the curve for BOLA1 is strictly better than that of BBA.
We can revise the hyperparameters in BOLA1 for an improved
BOLA1 variant, henceforth called ‘BOLA1-CausalSim’. We
chose BOLA1-CausalSim, such that it would have better stall
rate and marginally better SSIM compared to BBA.

Interestingly, ExpertSim predicts the complete opposite.
It predicts that not only will BBA always improve on any
BOLA1 variant in at least one metric, but also that any BOLA1
variant will stall more. This serves as a great opportunity
to test CausalSim’s edge compared to traditional (biased)
trace-driven simulation, which is used in prior work [38,50,75].
The results of BOLA1-CausalSim’s deployment can be seen
in Figure 5. Considering confidence intervals, it is clear that
it stalls less than BBA; in fact, BBA stalls 43% more than
BOLA1-CausalSim on average. The confidence intervals for

13We use a Gaussian Process prior with a Matern Kernel [54].

1124 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.55.0

14.75

15.00

15.25

15.50

CausalSim

BBA Pareto
BOLA1 Pareto

BBA
BOLA1

BOLA1-CausalSim

Better

2.55.0

ExpertSim

Time Spent Stalled (%)

A
ve

ra
ge

SS
IM

(d
B

)

Figure 6: Pareto frontier curves for BOLA1 and BBA variants.
CausalSim correctly predicts BOLA1’s potential, while
ExpertSim fails to do so.

quality are wide and will need more data to be separable14,
but based on the ongoing trend, BOLA1-CausalSim will have
similar quality compared to BBA.

Our goal was to show CausalSim’s potential, and for that
we targeted one of several plots on Puffer (‘slow streams’).
We could have chosen a different plot to optimize on, but it
would not affect the takeaway. Note that our opportunities
for deployment on Puffer are limited, as other researchers
use Puffer as well; hence we only deployed one BOLA1
variant. Furthermore, we hoped to also compare CausalSim’s
prediction of stall rate and quality with the deployment results,
but the client and network population has clearly changed; as
shown in Figure 5, BBA achieves a different SSIM value for
the two periods of time. Since CausalSim’s predictions are
based on data from the previous RCT, directly comparing the
predicted values to results from the new RCT isn’t meaningful.
However, as our results show, the old RCT data allows us to
compare different schemes. For example, CausalSim predicts
BBA stalls 58% more than BOLA1-CausalSim on network
distribution of the old RCT, which is reasonably close to the
43% observed in the new RCT (ignoring confidence intervals).

6.3 A Closer Look at Simulated Trajectories

For a deep dive in simulator accuracy, we focus on buffer
occupancy level, a key indicator of ABR algorithm behavior.
Ideally, we would like to compare simulated trajectories to
ground truth. But this isn’t possible using real trace data,
since it requires us to have multiple traces of different policies
running under the exact same underlying path conditions. To
overcome this issue, we resort to distributional evaluation.
Puffer data is collected in an RCT setting; hence the character-
istics of network paths assigned to each policy is the same. If
we accurately simulate the target policy on traces assigned to
one of the source policies, the distribution of each variable (e.g.

14Updated plots can be found on the ‘Experimental Results’ page of the
Puffer website [1], under "Current experiment, full contiguous duration, slow
streams only".

0.0 0.3 0.6 0.9

10

30

50

70

90

CausalSim
ExpertSim
SLSim

EMD

C
D

F
(%

)

(a)

0.50 0.75 1.00

0.1

0.3

0.5

0.7 Harder

E
M

D

Bitrate MAD (Mbps)

(b)
Figure 7: On average, CausalSim improves the EMD distance
metric compared to ExpertSim and SLSim by 53% and 61%
respectively. (a) Distribution of CausalSim, ExpertSim, and
SLSim EMDs over all possible source/target choices. (b)
Error (EMD) increases for baseline as simulation scenarios
get harder, but CausalSim maintains good accuracy.

buffer level) must be similar in the simulated trajectory and
ground truth trace assigned to the target policy. This motivates
using distributional similarity as our performance metric.

To quantify the similarity of two distributions, we use
the Earth Mover Distance (EMD) [62]. We can calculate
EMD for one-dimensional distributions as EMD(P ,Q) =∫ +∞
−∞ |P (x) − Q (x)|dx, where P and Q are the Cumulative

Distribution Function (CDF)s of p and q, respectively. A small
EMD between two distributions implies that they are similar.

Figure 7a shows the CDF of the EMD (between actual
and simulated buffer level distributions) for CausalSim and
baselines, over all possible source/target policy pairs. EMD
of CausalSim is smaller than EMD of baselines across almost
all experiments. In terms of the average EMD across all
experiments, CausalSim bests ExpertSim and SLSim by 53%
and 61% respectively. Figure 2a visualized differences in
buffer level distributions for the simulation scenario where
BOLA2 and BBA are source and target policies, respectively.
To observe buffer level distributions for all scenarios, refer to
Figure 9.

In about 30% of cases, SLSim is slightly better than
CausalSim. These cases are “easy” simulation scenarios
where the source and target policies make similar actions
(For more details see §B.3). In these cases, the EMD is low
for both CausalSim and baseline simulators (<0.15), and all
perform well. For instance, Figure 9c (in the Appendix) shows
source, target, and simulated buffer level distribution in an
easy scenario, where BOLA2 and BOLA1 are the target and
source policies respectively. In this example, all simulated
distributions match the target distribution quite well.

Figure 7b shows where CausalSim most shines, i.e. hard
simulation scenarios. The Y-axis is the error (EMD), and the
X-axis is the mean absolute difference (MAD) between actions
taken by the source policy and the target policy, in SLSim simu-
lation. The larger the action difference, the harder the scenario
(§B.3). As we move toward harder scenarios, the error increases

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1125

significantly for the baselines, while CausalSim is more robust.

6.3.1 Additional experiments

We perform further evaluations of CausalSim in the ABR
environment. Due to space constraints, we summarize these
results here and defer details to the appendix.
A more fine-grained evaluation. In the results above, we eval-
uated the performance of CausalSim and baselines using the
distribution of buffer occupancy across the whole population.
One way to further validate the results is to test whether they
will hold on carefully partitioned sub-populations. In §B.4,
we show that this is indeed the case when the sub-populations
are partitioned according to the Min Round Trip Time (RTT),
a network property that is independent of the selected ABR
algorithm in Puffer.
Hyperparameters tuning. Counterfactual estimation (§3.2)
is inherently an Out of Distribution (OOD) prediction task.
Hence, typical supervised-learning hyper-parameter tuning
methods do not work. In §B.5, we describe and evaluate
CausalSim’s hyper-parameter tuning procedure.
Ground truth evaluation. Real data never comes with ground
truth counterfactual labels. As a result, we cannot evaluate
CausalSim’s simulations for each time step in real data, but we
can do this in a reproducible synthetic environment. In §C.2,
we evaluate CausalSim using ground truth counterfactual
labels and show that it still outperforms baselines in the Mean
Absolute Percentage Error (MAPE) metric.15 Specfically,
CausalSim achieves an MAPE of (∼5%), which is significantly
lower than both ExpertSim’s and SLSim’s (∼10%).

6.4 A Second Example: Server Load Balancing
We now focus on simulating load balancing policies with
heterogeneous servers, where defining an exogenous trace is
not possible and therefore standard trace-driven simulation
is not applicable. This example shows how CausalSim opens
up new avenues in trace-driven simulation.

We use a synthetic environment which consists of N = 8
servers (and a queue for each) with different processing
powers, a load balancer, and a series of jobs that need to be
processed on these servers. Each job has a specific size which
is unknown to the load balancer. Each server can process jobs
at a specific rate {ri}N

i=1, which is also unknown to the load
balancer. The load balancer receives jobs and must assign
them to one of N servers. Assuming the kth arriving job has
size Sk and gets assigned to server ak, the job processing time
will be Sk/rak . If this job is not blocked by some other job
being processed, its latency will equal its processing time. If
it is blocked, and the jobs ahead of it in the queue take Tk to
be processed, the incurred latency is Sk/rak +Tk.

15Let p̂ = { p̂i}N
i=1 and p = {pi}N

i=1 denotes the vectors of predicted and
ground truth quantity of interest, respectively. Then, MAPE is defined as
MAPE(p,p̂)= 100

N ∑N
i=1
|p̂i−pi|

pi
.

We generate a collection of 5000 trajectories each with 1000
steps and use 16 policies in the load balancer. For a detailed
explanation of the policies, job size generation process, and
server processing rates, refer to §D.2.

6.4.1 Experiment setup

The aim of this experiment is to evaluate whether we can
simulate new unseen server assignment policies in this
environment, using traces collected with other policies. Recall
that while we observe the processing time of each job, the
actual size of the job is not observed, i.e., it acts as the latent
factor in this problem. For all simulators, we assume access to
Fsystem (the queue model) and focus on the more challenging
task of learning Ftrace and estimating the counterfactual traces
m̂t

i for i≤5000, and t≤1000. Algorithmically, this translates
to enforcing consistency for the observed traces (mt), rather
than the observations (ot) (see §5). The trace we collect is
the processing time when using a source server assignment
policy. To simulate a target server assignment policy, we need
to estimate the processing time of a job on servers other than
the one where its processing time was measured (without
knowing either the job size or the server processing rates).

Standard trace-driven simulation assumes an exogenous
trace (job processing time), but this is the same as assuming
servers have equal processing rates. This contradicts the prob-
lem setup, and standard trace-driven simulation (analogous to
ExpertSim in ABR) is not applicable to this problem. Thus, we
compare CausalSim with SLSim simulations. SLSim (realized
by an NN) takes as input the observed processing time and the
target server, and its output is the processing time under the
targeted server. However, the observed and target processing
time are always the same in training data, and hence it is
impossible for SLSim to learn the true dynamics (e.g., the
server’s underlying processing power). CausalSim sidesteps
this problem by explicitly estimating latent factors. For details
regarding the network architecture and training details for
both SLSim and CausalSim, refer to Table 8 in the appendix.
Performance Metric. We compare CausalSim and SLSim
with the underlying ground truth using the MAPE metric.

6.4.2 Can CausalSim Faithfully Simulate New Policies?

As is done in the ABR case studies, we train CausalSim and
SLSim models based on a dataset generated using all policies
except one, which will be the target policy. We use the same
hyper-parameter tuning approaches explained in §B.5 for
CausalSim and §B.6 for SLSim. We carry out this evaluation
on eight target policies. We evaluate the performance for each
pair of source-target policies, as was done in §6.1. In total, we
have 120 different source/target policy pairs.

In Figure 8a and Figure 8b, we show the CDF of the MAPE
of estimating the processing time and the latency, respectively,
using both CausalSim and SLSim. As evident in these two
figures, CausalSim’s error is significantly lower than that of

1126 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 100 200 300

0

50

100

Processing time MAPE (%)

C
D

F
(%

)

CausalSim

SLSim

(a)

0 200 400

0

50

100

Latency MAPE (%)

C
D

F
(%

)

CausalSim

SLSim

(b)

Figure 8: Distribution of CausalSim and SLSim MAPEs over
all source target pairs.

SLSim for both the processing time and latency. In particular,
the median MAPE when estimating processing time/latency is
24.4%/27.0% for CausalSim and 124.3%/467.8% for SLSim.
For a complementary view, we compare the latent factors
CausalSim extracts to the real latent job sizes and observe how
closely they match, in §D.1 in the appendix.

7 Related-Work

Data-driven simulation. Traditional packet-level sim-
ulators [21, 31, 45] tend to sacrifice either scalability or
accuracy when simulating large networks. MimicNet [77]
and DeepQueueNet [73] use machine learning to improve
simulation speed of datacenter networks. The aforementioned
approaches are all full-system packet-level simulators,
whereas CausalSim focuses on trace-driven simulation of a
specific system component and must therefore deal with latent
factors and biases present in trace data.

A very recent work, Veritas [17] (published on arXiv in Aug.
2022), models trace-driven simulation for ABR as a Hidden
Markov Model (HMM) with a known emission process. This
is equivalent to assuming that Ftrace is known in our model (see
Eq. (1)). Veritas uses the Viterbi algorithm to decode the latent
factors, which are then used for counterfactual simulation.
CausalSim solves a more general problem where Ftrace is not
known and must be learned. It therefore requires less knowl-
edge of the system’s latents and underlying dynamics to apply.
On the other hand, CausalSim requires RCT data whereas
Veritas does not. Comparing the fidelity of these approaches
using real-world ABR data would be interesting future work
(Veritas evaluates its method in a network emulator).

Panthon’s calibrated emulators [72] model the end-to-end
behaviour of a network path with a simple model including
a handful of parameters, e.g., bottleneck link rate, constant
propagation delay, etc., which are tuned to fit a collection
of packet traces collected from this path using a variety of
congestion control protocols. iBox [13] extends this approach
by modeling cross-traffic. CausalSim does not assume any
known model for the dynamics of the network. Furthermore,
it has access to only a single trace from each network path.
Policy evaluation. Policy evaluation techniques such as

Inverse Propensity Scoring [33] and Doubly Robust [15] aim
to predict population-level performance statistics for a given in-
tervention. WISE [67] builds a Causal Bayesian Network from
the data that is able to answer interventional (what-if) queries
about the future, but the method requires absence of latent con-
founding variables. Sage [25] uses a Causal Bayesian Network
model with latent factors to diagnose performance issues in
microservice applications. It answers what-if questions about
how interventions like changing the resources allocated to a mi-
croservice impacts the end-to-end application latency. Trace-
driven simulation is distinct from all these methods, in that
it requires counterfactual predictions of how an intervention
would have changed specific previously-measured trajectories
rather than how it changes population-level statistics.16

8 Concluding Remarks

The exogenous trace assumption is central to traditional trace-
driven simulation. CausalSim relaxes this key assumption,
by modeling the intervention effect on the trace and learning
to replay the trace in an unbiased manner. We showed how
this improves the accuracy of trace-driven simulation using
real-world ABR data, and how CausalSim provides insights
for algorithm improvement that are in contrast with standard
trace-driven simulators’ predictions, which we validated in a
real-world deployment. Furthermore, we showed how this ex-
pands the applicability of trace-driven simulation to problems
where defining an exogenous trace is not possible by applying it
to heterogeneous server load balancing. We believe CausalSim
could be applied to many other system simulation tasks.

CausalSim opens up several interesting paths for future
work. First, evaluating CausalSim in problems with a higher-
dimensional latent factors would be interesting. Second, it is
a natural next step to use CausalSim for more complex policy
optimization methods, e.g., using reinforcement learning. Last,
as discussed in §4.3, our theoretical analysis of CausalSim’s
approach, i.e. exploiting the policy invariance of latent factors
distributions, is not tight, and improving it could potentially
relax the assumptions of our analytical method.

9 Acknowledgement

We thank our shepherd Keith Winstein for in-depth suggestions,
and our reviewers for insightful comments. We thank the Puffer
team, specifically Emily Marx and Francis Y. Yan for providing
us with the data we used in §6.1 and the algorithm deployment
in §6.2. This work was supported by NSF grants 1751009
and 1955370, an award from the SystemsThatLearn@CSAIL
program, and a gift from Intel as part of the MIT Data Systems
and AI Lab (DSAIL). A. Alomar and D. Shah were supported
in part by DSO-Singapore project, MIT-IBM project on Causal
representation learning and NSF FODSI project.

16Appendix E provides a broader overview of the causal inference literature.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1127

References

[1] Puffer: Experimental results. https://puffer.
stanford.edu/results/. Accessed: 2023-2-22.

[2] Puffer: Total scheme statistics - decmeber
27th, 2022. https://storage.googleapis.
com/puffer-data-release/2022-12-27T11_
2022-12-28T11/duration_slow_scheme_stats_
2022-12-27T11_2022-12-28T11.txt. Accessed:
2023-2-22.

[3] Puffer: Total scheme statistics - july 2nd,2021. https://
storage.googleapis.com/puffer-data-release/
2021-06-01T11_2021-06-02T11/duration_slow_
scheme_stats_2021-06-01T11_2021-06-02T11.
txt. Accessed: 2023-2-22.

[4] A. Abadie, A. Diamond, and J. Hainmueller. Synthetic
control methods for comparative case studies: Estimat-
ing the effect of californiaâs tobacco control program.
Journal of the American Statistical Association, 2010.

[5] A. Abadie and J. Gardeazabal. The economic costs of
conflict: A case study of the basque country. American
Economic Review, 2003.

[6] Anish Agarwal, Abdullah Alomar, Varkey Alumootil,
Devavrat Shah, Dennis Shen, Zhi Xu, and Cindy Yang.
Persim: Data-efficient offline reinforcement learning
with heterogeneous agents via personalized simulators.
arXiv preprint arXiv:2102.06961, 2021.

[7] Anish Agarwal, Abdullah Alomar, and Devavrat Shah.
On multivariate singular spectrum analysis. arXiv
e-prints, pages arXiv–2006, 2020.

[8] Anish Agarwal, Munther A. Dahleh, Devavrat Shah,
and Dennis Shen. Causal matrix completion. ArXiv,
abs/2109.15154, 2021.

[9] Anish Agarwal, Devavrat Shah, and Dennis Shen. Syn-
thetic interventions. arXiv preprint arXiv:2006.07691,
2021.

[10] Anish Agarwal, Devavrat Shah, Dennis Shen, and
Dogyoon Song. On robustness of principal compo-
nent regression. Journal of the American Statistical
Association, 2021.

[11] Muhammad Amjad, Vishal Misra, Devavrat Shah, and
Dennis Shen. Mrsc: Multi-dimensional robust synthetic
control. Proc. ACM Meas. Anal. Comput. Syst., 3(2),
June 2019.

[12] Muhammad Amjad, Devavrat Shah, and Dennis Shen.
Robust synthetic control. Journal of Machine Learning
Research, 19(22):1–51, 2018.

[13] Sachin Ashok, Shubham Tiwari, Nagarajan Natarajan,
Venkata N Padmanabhan, and Sundararajan Sellaman-
ickam. Data-driven network path simulation with ibox.
Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 6(1):1–26, 2022.

[14] Susan Athey, Mohsen Bayati, Nikolay Doudchenko,
Guido Imbens, and Khashayar Khosravi. Matrix com-
pletion methods for causal panel data models. Journal of
the American Statistical Association, pages 1–15, 2021.

[15] Mihovil Bartulovic, Junchen Jiang, Sivaraman Balakr-
ishnan, Vyas Sekar, and Bruno Sinopoli. Biases in
data-driven networking, and what to do about them. In
Proceedings of the 16th ACM Workshop on Hot Topics
in Networks, pages 192–198, 2017.

[16] Vineet Bharti, Pankaj Kankar, Lokesh Setia, Gonca
Gürsun, Anukool Lakhina, and Mark Crovella. Inferring
invisible traffic. In Proceedings of the 6th International
COnference, Co-NEXT ’10, New York, NY, USA, 2010.
Association for Computing Machinery.

[17] Chandan Bothra, Jianfei Gao, Sanjay Rao, and Bruno
Ribeiro. Veritas: Answering causal queries from video
streaming traces. arXiv/2208.12596, August 2022.

[18] Changxiao Cai, Gen Li, Yuejie Chi, H Vincent Poor,
and Yuxin Chen. Subspace estimation from unbalanced
and incomplete data matrices: ℓ2,∞ statistical guarantees.
The Annals of Statistics, 49(2):944–967, 2021.

[19] Emmanuel J Candès and Benjamin Recht. Exact matrix
completion via convex optimization. Foundations of
Computational mathematics, 9(6):717–772, 2009.

[20] Emmanuel J Candès and Terence Tao. The power of con-
vex relaxation: Near-optimal matrix completion. IEEE
Transactions on Information Theory, 56(5):2053–2080,
2010.

[21] Xinjie Chang. Network simulations with opnet. In Pro-
ceedings of the 31st Conference on Winter Simulation:
Simulation—a Bridge to the Future - Volume 1, WSC ’99,
page 307–314, New York, NY, USA, 1999. Association
for Computing Machinery.

[22] DASH Industry Form. Reference client 2.4.0, 2016.

[23] Rajeev H Dehejia and Sadek Wahba. Causal effects in
nonexperimental studies: Reevaluating the evaluation
of training programs. Journal of the American statistical
Association, 94(448):1053–1062, 1999.

[24] Andrew Forney, Judea Pearl, and Elias Bareinboim.
Counterfactual data-fusion for online reinforcement
learners. In International Conference on Machine
Learning, pages 1156–1164. PMLR, 2017.

1128 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://puffer.stanford.edu/results/
https://puffer.stanford.edu/results/
https://storage.googleapis.com/puffer-data-release/2022-12-27T11_2022-12-28T11/duration_slow_scheme_stats_2022-12-27T11_2022-12-28T11.txt
https://storage.googleapis.com/puffer-data-release/2022-12-27T11_2022-12-28T11/duration_slow_scheme_stats_2022-12-27T11_2022-12-28T11.txt
https://storage.googleapis.com/puffer-data-release/2022-12-27T11_2022-12-28T11/duration_slow_scheme_stats_2022-12-27T11_2022-12-28T11.txt
https://storage.googleapis.com/puffer-data-release/2022-12-27T11_2022-12-28T11/duration_slow_scheme_stats_2022-12-27T11_2022-12-28T11.txt
https://storage.googleapis.com/puffer-data-release/2021-06-01T11_2021-06-02T11/duration_slow_scheme_stats_2021-06-01T11_2021-06-02T11.txt
https://storage.googleapis.com/puffer-data-release/2021-06-01T11_2021-06-02T11/duration_slow_scheme_stats_2021-06-01T11_2021-06-02T11.txt
https://storage.googleapis.com/puffer-data-release/2021-06-01T11_2021-06-02T11/duration_slow_scheme_stats_2021-06-01T11_2021-06-02T11.txt
https://storage.googleapis.com/puffer-data-release/2021-06-01T11_2021-06-02T11/duration_slow_scheme_stats_2021-06-01T11_2021-06-02T11.txt
https://storage.googleapis.com/puffer-data-release/2021-06-01T11_2021-06-02T11/duration_slow_scheme_stats_2021-06-01T11_2021-06-02T11.txt

[25] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and
Christina Delimitrou. Sage: Practical and scalable
ml-driven performance debugging in microservices. In
Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’21, page 135–151,
New York, NY, USA, 2021. Association for Computing
Machinery.

[26] Silvia Gandy, Benjamin Recht, and Isao Yamada. Tensor
completion and low-n-rank tensor recovery via convex
optimization. Inverse problems, 27(2):025010, 2011.

[27] Sahaj Garg, Vincent Perot, Nicole Limtiaco, Ankur Taly,
Ed H Chi, and Alex Beutel. Counterfactual fairness in
text classification through robustness. In Proceedings
of the 2019 AAAI/ACM Conference on AI, Ethics, and
Society, pages 219–226, 2019.

[28] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
nets. Advances in neural information processing systems,
27, 2014.

[29] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.

[30] Ruocheng Guo, Lu Cheng, Jundong Li, P Richard Hahn,
and Huan Liu. A survey of learning causality with
data: Problems and methods. ACM Computing Surveys
(CSUR), 53(4):1–37, 2020.

[31] Thomas R Henderson, Mathieu Lacage, George F Riley,
Craig Dowell, and Joseph Kopena. Network simulations
with the ns-3 simulator. SIGCOMM demonstration,
14(14):527, 2008.

[32] Paul W Holland. Statistics and causal inference.
Journal of the American statistical Association,
81(396):945–960, 1986.

[33] Daniel G Horvitz and Donovan J Thompson. A
generalization of sampling without replacement from
a finite universe. Journal of the American statistical
Association, 47(260):663–685, 1952.

[34] Te-Yuan Huang, Nikhil Handigol, Brandon Heller,
Nick McKeown, and Ramesh Johari. Confused, timid,
and unstable: picking a video streaming rate is hard.
In Proceedings of the 2012 internet measurement
conference, pages 225–238, 2012.

[35] Te-Yuan Huang, Ramesh Johari, Nick McKeown,
Matthew Trunnell, and Mark Watson. A buffer-based
approach to rate adaptation: Evidence from a large

video streaming service. In Proceedings of the 2014
ACM Conference on SIGCOMM, SIGCOMM ’14, page
187–198, New York, NY, USA, 2014. Association for
Computing Machinery.

[36] Guido W Imbens. Nonparametric estimation of average
treatment effects under exogeneity: A review. Review
of Economics and statistics, 86(1):4–29, 2004.

[37] Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang.
Unleashing the potential of data-driven networking. In
International Conference on Communication Systems
and Networks, pages 110–126. Springer, 2017.

[38] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving
fairness, efficiency, and stability in http-based adaptive
video streaming with festive. In Proceedings of the
8th international conference on Emerging networking
experiments and technologies, pages 97–108, 2012.

[39] Maryia Kabanava, Holger Rauhut, and Ulrich Terstiege.
On the minimal number of measurements in low-rank
matrix recovery. In 2015 International Conference on
Sampling Theory and Applications (SampTA), pages
382–386, 2015.

[40] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[41] Daniel Kressner, Michael Steinlechner, and Bart
Vandereycken. Low-rank tensor completion by rie-
mannian optimization. BIT Numerical Mathematics,
54(2):447–468, 2014.

[42] S Shunmuga Krishnan and Ramesh K Sitaraman. Video
stream quality impacts viewer behavior: inferring
causality using quasi-experimental designs. IEEE/ACM
Transactions on Networking, 21(6):2001–2014, 2013.

[43] Anukool Lakhina, Mark Crovella, and Christophe
Diot. Diagnosing network-wide traffic anomalies.
ACM SIGCOMM computer communication review,
34(4):219–230, 2004.

[44] Anukool Lakhina, Konstantina Papagiannaki, Mark
Crovella, Christophe Diot, Eric D. Kolaczyk, and Nina
Taft. Structural analysis of network traffic flows. SIG-
METRICS Perform. Eval. Rev., 32(1):61–72, jun 2004.

[45] Bob Lantz, Brandon Heller, and Nick McKeown. A net-
work in a laptop: rapid prototyping for software-defined
networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, pages 1–6, 2010.

[46] Yongjun Liao, Wei Du, Pierre Geurts, and Guy Leduc.
Dmfsgd: A decentralized matrix factorization algorithm
for network distance prediction. IEEE/ACM Trans.
Netw., 21(5):1511–1524, oct 2013.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1129

[47] Greg Linden, Brent Smith, and Jeremy York. Amazon.
com recommendations: Item-to-item collaborative
filtering. IEEE Internet computing, 7(1):76–80, 2003.

[48] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping
Ye. Tensor completion for estimating missing values in
visual data. IEEE transactions on pattern analysis and
machine intelligence, 35(1):208–220, 2012.

[49] Dong Lu, Yi Qiao, P.A. Dinda, and F.E. Bustamante.
Characterizing and predicting tcp throughput on the wide
area network. In 25th IEEE International Conference
on Distributed Computing Systems (ICDCS’05), pages
414–424, 2005.

[50] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with pensieve. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 197–210, 2017.

[51] Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte
Schwarzkopf, and Mohammad Alizadeh. Variance
reduction for reinforcement learning in input-driven
environments, 2018.

[52] Yun Mao, Lawrence K. Saul, and Jonathan M. Smith.
Ides: An internet distance estimation service for
large networks. IEEE Journal on Selected Areas in
Communications, 24(12):2273–2284, 2006.

[53] Emily Marx, Francis Y. Yan, and Keith Winstein.
Implementing bola-basic on puffer: Lessons for the use
of ssim in abr logic, 2020.

[54] Bertil Matérn. Spatial variation, volume 36. Springer
Science & Business Media, 2013.

[55] Cross-Disorder Group of the Psychiatric Genomics Con-
sortium et al. Identification of risk loci with shared effects
on five major psychiatric disorders: a genome-wide
analysis. The Lancet, 381(9875):1371–1379, 2013.

[56] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information
processing systems, 32:8026–8037, 2019.

[57] Judea Pearl. Causality: Models,Reasoning and Inference.
Cambridge University Press, USA, 2nd edition, 2009.

[58] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf.
Elements of causal inference: foundations and learning
algorithms. The MIT Press, 2017.

[59] James M Robins, Miguel Angel Hernan, and Babette
Brumback. Marginal structural models and causal
inference in epidemiology, 2000.

[60] Matthew Roughan, Yin Zhang, Walter Willinger, and
Lili Qiu. Spatio-temporal compressive sensing and
internet traffic matrices (extended version). IEEE/ACM
Transactions on Networking, 20(3):662–676, 2012.

[61] Donald B Rubin. Causal inference using potential out-
comes: Design, modeling, decisions. Journal of the Amer-
ican Statistical Association, 100(469):322–331, 2005.

[62] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas.
A metric for distributions with applications to image
databases. In Sixth International Conference on
Computer Vision (IEEE Cat. No. 98CH36271), pages
59–66. IEEE, 1998.

[63] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K.
Sitaraman. Bola: Near-optimal bitrate adaptation for
online videos. IEEE/ACM Transactions on Networking,
28(4):1698–1711, 2020.

[64] P. C. Sruthi, Sanjay Rao, and Bruno Ribeiro. Pitfalls of
data-driven networking: A case study of latent causal
confounders in video streaming. In Proceedings of
the Workshop on Network Meets AI & ML, NetAI ’20,
page 42–47, New York, NY, USA, 2020. Association for
Computing Machinery.

[65] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan
Lin, Nanshu Wang, Tao Liu, and Bruno Sinopoli. Cs2p:
Improving video bitrate selection and adaptation with
data-driven throughput prediction. In Proceedings of
the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,
page 272–285, New York, NY, USA, 2016. Association
for Computing Machinery.

[66] Liying Tang and Mark Crovella. Virtual landmarks for
the internet. In Proceedings of the 3rd ACM SIGCOMM
Conference on Internet Measurement, IMC ’03, page
143–152, New York, NY, USA, 2003. Association for
Computing Machinery.

[67] Mukarram Tariq, Amgad Zeitoun, Vytautas Valancius,
Nick Feamster, and Mostafa Ammar. Answering what-if
deployment and configuration questions with wise. In
Proceedings of the ACM SIGCOMM 2008 conference
on Data communication, pages 99–110, 2008.

[68] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor
Darrell. Adversarial discriminative domain adaptation.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7167–7176, 2017.

[69] Madeleine Udell and Alex Townsend. Why are big data
matrices approximately low rank? SIAM Journal on
Mathematics of Data Science, 1(1):144–160, 2019.

[70] Zhiqiang Xu. The minimal measurement number for
low-rank matrix recovery. Applied and Computational
Harmonic Analysis, 44(2):497–508, 2018.

1130 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[71] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Levis, and
Keith Winstein. Learning in situ: a randomized experi-
ment in video streaming. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 495–511, Santa Clara, CA, February 2020.
USENIX Association.

[72] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan,
Riad S Wahby, Philip Levis, and Keith Winstein. Pan-
theon: the training ground for internet congestion-control
research. In 2018 {USENIX} Annual Technical Confer-
ence ({USENIX}{ATC} 18), pages 731–743, 2018.

[73] Qingqing Yang, Xi Peng, Li Chen, Libin Liu, Jingze
Zhang, Hong Xu, Baochun Li, and Gong Zhang. Deep-
queuenet: Towards scalable and generalized network
performance estimation with packet-level visibility. In
Proceedings of the ACM SIGCOMM 2022 Conference,
SIGCOMM ’22, page 441–457, New York, NY, USA,
2022. Association for Computing Machinery.

[74] Yuzhe Yang, Guo Zhang, Dina Katabi, and Zhi Xu. Me-
net: Towards effective adversarial robustness with matrix
estimation. arXiv preprint arXiv:1905.11971, 2019.

[75] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno
Sinopoli. A control-theoretic approach for dynamic
adaptive video streaming over http. SIGCOMM Comput.
Commun. Rev., 45(4):325–338, August 2015.

[76] Dong Zhang, Hanwang Zhang, Jinhui Tang, Xiansheng
Hua, and Qianru Sun. Causal intervention for weakly-
supervised semantic segmentation. arXiv preprint
arXiv:2009.12547, 2020.

[77] Qizhen Zhang, Kelvin K. W. Ng, Charles Kazer, Shen
Yan, João Sedoc, and Vincent Liu. Mimicnet: Fast
performance estimates for data center networks with
machine learning. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, page
287–304, New York, NY, USA, 2021. Association for
Computing Machinery.

[78] Zemin Zhang and Shuchin Aeron. Exact tensor
completion using t-svd. IEEE Transactions on Signal
Processing, 65(6):1511–1526, 2016.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1131

Appendix A Tensor Completion
with policy invariance

Here, we discuss a more generic version of the problem
considered in §4.2 from the lens of tensor completion.
Specifically, in §4 we considered the simplified setting where
the trace was considered to be one-dimensional. Here, we shall
consider higher dimensional traces. This, naturally suggests
using the lens of Tensor instead of Matrix completion. We will
also discuss how higher dimensional trace can enable recovery
of more complex system dynamics or models compared to the
simple solution we discussed in §4 for rank 1 setup.

Potential Outcomes Tensor. As considered in §4 let all
possible actions be denoted as [A] = {1, ... , A} for some
A≥ 2. Let the trace be of D dimension. As before, we have
N trajectories of interest with trajectory i∈ [N] being of length
Hi≥1 time steps. As before, let U =∑N

i=1Hi.
Consider an order-3 tensor M of dimension A ×U × D,

where M = [mαβγ : α ∈ [A], β ∈ [U], γ ∈ [D]] with mαβγ
corresponds to the γth co-ordinate of the D-dimensional trace
corresponding to action at =α∈ [A] when latent factor is ui,t
with β corresponding to enumeration of (i,t) for some i∈ [N]
and t≤Hi. Recall that, as explained in Section 4, all possible
(i,t) : t ≤Hi,i∈ [N] are mapped to an integer in [U]. We call
this tensor M as the Potential Outcomes Tensor.

Indeed, if we know M completely, then we can answer the
task of simulation or counterfactual estimation well since
we will be able to estimate the mediator for each trajectory
under a given possible sequence of counterfactual actions,
and subsequently estimate the counterfactual observation
(assuming we could learn the Fsystems).

We shall assume that there are P≥1 policies under which
these traces where observed. In particular, each trajectory was
observed under one of these P policies and the assignment of
policy to the trajectory was done uniformly at random. Define
Πp⊂ [U] as collection of indices corresponding to trajectories
i∈ [N] and their times t≤Hi where trajectory i was assigned
policy p for p∈ [P]. Let Up= |Πp|.
Tensor factorization, low CP-rank. The tensor M admits
(not necessarily unique) factorization of the form: for any
α∈ [A],β∈ [U],γ∈ [D]

mαβγ=
r

∑
ℓ=1

xαℓyβℓzγℓ, (8)

for some r≥1. For any tensor, such a factorization exits with
r at most poly(A,U,D).

Assumption 1 (low-rank factorization). We shall make an
assumption that r is small, i.e. does not scale with A,U,D and
specifically a small constant.

Assumption 2 (sufficient measurements). We shall assume
that number of measurements per instance, D, is at least as
large as the underlying rank r of the tensor M, i.e. D≥r.

Distributional invariance and RCT. As before, we shall
assume that the distribution of latent factors is the same across
different policies due to random assignment of policies to
trajectories in the setup of RCT. In the context of the tensor
M, this corresponds to the distribution invariance of factors
yβ· ∈ Rr over β ∈ Πp for any p ∈ [P]. Concretely, for any
p ̸= p′∈ [P] and ℓ∈ [r], we have

1
Up

∑
β∈Πp

yβℓ≈
1

Up′
∑

β′∈Πp′
yβ′ℓ. (9)

More generally, any finite moment (not just first moment
or average) of latent factors should be empirically invariant
across policies. As in §4, we would like to utilize property (9)
to estimate the tensor M.

A Simple Estimation Method and When It Works. We
describe a simple method that can recover entire tensor as
long as rank r≤D. For simplicity, we shall assume r=D (the
largest possible rank for which method will work). By (8), for
a given fixed α∈ [A] and across β∈ [U],γ∈ [D],

mαβγ=
r

∑
ℓ=1

yβℓz̃
α
γℓ, (10)

where z̃α
γℓ=xαℓzγℓ. Since D=r, the matrix Z̃α=[z̃α

γℓ :γ∈ [D],ℓ∈
[r]] is a square matrix. With this notation, we have that for any
fixed α∈ [A], the matrix Mα=[mαβγ :β∈ [U],γ∈ [D]]∈RU×D

(or RU×r since r=D) can be represented as

Mα=Y Z̃α,T , (11)

where Y =[yβℓ :β∈ [U],ℓ∈ [r]]∈RU×r.

Assumption 3 (invertibility). We shall assume that the D×D
(i.e. r×r) square matrices Z̃α for each α∈ [A] are full rank and
hence invertible.

The Assumption 3 implies that Y = Mα(Z̃α,T)−1 for all
α∈ [A].

For policy p∈ [P], indices β∈Πp are relevant. For a given
β ∈Πp, if the policy p utilized action α ∈ [A], mαβ· ∈ RD is
observed. To that end, let Πp,α = {β ∈ Πp : policy utilized
action α}. Let Up,α = |Πp,α| for any α ∈ [A]. Then, define
Y p,α = [yβℓ : β ∈Πp,α,ℓ ∈ [r]] ∈RUp,α×r, Mα,p = [mαβγ : β ∈
Πp,α,γ∈ [D]]. Then we have Y p,α=Mα,p(Z̃α,T)−1.

Therefore, for any ℓ∈ [r=D],

∑
β∈Πp,α

yβℓ=1p,α,TY p,αeℓ

=eT
ℓ Y p,α,T 1p,α

=eT
ℓ

(
Z̃α)−1Mα,p,T 1p,α, (12)

where 1p,α ∈ RUp,α is vector of all 1s, and eℓ ∈ Rr be vector
with all entries 0 but the ℓ∈ [r]th co-ordinate 1 .

1132 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Then, for any ℓ∈ [r] and p∈ [P],
1

Up
∑

β∈Πp

yβℓ=
1

Up
∑

α∈[A]
∑

β∈Πp,α

yβℓ

=
1

Up
∑

α∈[A]
eT
ℓ

(
Z̃α)−1Mα,p,T 1p,α

= ∑
α∈[A]

eT
ℓ

(
Z̃α)−1

(1
Up

Mα,p,T 1p,α
)

= ∑
α∈[A]

eT
ℓ

(
Z̃α)−1M α,p, (13)

where M α,p = 1
Up

Mα,p,T 1p,α ∈Rr,1 is an observed quantity,

while Z̃α,T is unknown. Using (13) and (9), we obtain that for
any ℓ∈ [r] and p ̸= p′∈ [P],

∑
α∈[A]

eT
ℓ

(
Z̃α)−1M α,p≈ ∑

α∈[A]
eT
ℓ

(
Z̃α)−1M α,p′ . (14)

Let z̃α,ℓ= eT
ℓ

(
Z̃α)−1 ∈R1,r be the ℓth row the of r×r matrix(

Z̃α)−1. Then (14) implies that for any ℓ∈ [r] and p ̸= p′∈ [P],

∑
α∈[A]

z̃α,ℓ(M α,p−M α,p′)≈0. (15)

Which can be written in matrix form as

[
z̃1,ℓ z̃2,ℓ ... z̃A,ℓ

]




M 1,p−M 1,p′

M 2,p−M 2,p′

...
M A,p−M A,p′


=0 (16)

By noting that that this hold for all ℓ∈ [r], and recalling that
z̃α,ℓ is the ℓ-th row the of the r×r matrix

(
Z̃α)−1, we get,

[(
Z̃1

)−1 (
Z̃2

)−1
...

(
Z̃A

)−1
]



M 1,p−M 1,p′

M 2,p−M 2,p′

...
M A,p−M A,p′


=0,

(17)

where 0 is a vector of zeros of size r. Note that the above is a
system of r linear equations, with Ar2 unknowns (recall that the
r×r matrices

(
Z̃α)−1 are unknown for α∈ [A]). Let Z∈Rr×Ar

and vp,p′ ∈RAr denote the first and second matrix in the left
hand side, respectively, then (17) can be re-written as,

Zvp,p′≈0. (18)

By definition, vp,p′ is observed quantity for each p ̸= p′∈ [P].
Now if we consider P−1 equations produced by considering
pair of policies (1,2),(1,3),...,(1,P) in (18), by design they are

non-redundant linear equations. Let matrix V∈RAr×P−1 be
formed by stacking v1,2,...,v1,P column-wise.

Furthermore, let us define sp ∈ RAr as [M 1,p, ··· ,M A,p]⊺.
Define S∈RAr×P by stacking s1,···,sP column-wise.

Assumption 4 (Sufficient, Diverse Policies). Let P≥Ar and
the rank of S=Ar.

Note that we can derive V from S by subtracting the first
column from all other columns, and removing the first column.
Thus, Under Assumption 4, the +rank of V is at least Ar−1.
Further,given Assumption 3 which excludes the scenario Z=0,
it follows that the rank of V is Ar−1. As rank of V is Ar−1, we
can uniquely (up to scaling) recover Z by solving for system of
linear equation ZV=0 as the null space of V is of dimension 1.

Once we know z, i.e. by undoing flattening, we obtain(
Z̃α,T)−1 for each α∈ [A]. Since for each policy p∈ [P] and

α∈ [A], Y p,α =Mα,p(Z̃α,T)−1 and we observe Mα,p, we can
recover Y p,α and hence subsequently Y ∈RU×r.

By (11), we can now recover slice of tensor M, the Mα for
each α ∈ [A], and hence we can recover entire tensor M as
desired.
Interpretation of Assumption 4. Consider βth Column of
the matrix S, i.e.,

[
E[m⊺|i = 1,πβ]P(i = 1|πβ), ··· ,E[m⊺|i =

A,πβ]P(i=A|πβ)
]⊺ where i denotes the action index and β the

policy index. This column is a vector of statistics associated
with traces collected using policy β. Each element in this
vector consists of two components: the first component is the
conditional mean of the trace given a specific action, and the
second element is the probability of taking this action. We
interpret linear independence of each of these components for
different policy vectors as policy diversity. For instance, think
of the second component which captures probability vectors
of different actions for each policy. Its linear independence
across different policies roughly means that each policy
should assign new probability vectors to different actions,
and not a probability vector similar (linearly dependent) to
that of previous policies. Also note that this assumption is not
satisfied if an action is not taken by any of the policies which
makes all elements of the corresponding row equal to zero.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1133

Appendix B Real-world ABR

B.1 Comprehensive results
In Figure 7a, we presented a concise view of simulator
fidelity, for an internal variable in ABR sessions called
buffer occupancy level. Specifically, we considered the
simulation of a target policy, given trajectories collected using
a different source policy. We measured the error between
buffer simulations and ground truth through EMD, a similarity
index for distributions. For a complementary view, we provide
the full distributions in Figure 9, for all simulators and ground
truth for target and source policies. Below each plot, we also
report the EMD of CausalSim predictions.

B.2 Policy Discriminator and
Latent Invariance

The policy discriminator (Wγ in Figure 3) described in §5
has the goal of predicting the source policy, given a latent
factor generated by the latent factor extractor (Eθ in Figure 3).
Since our data is collected with an RCT, the true latent
factor distribution should be indifferent to the source policy.
Therefore, if the latent factor extractor generates the ground
truth latent factors, the policy discriminator should not be able
to predict the source policy accurately. In fact, even the optimal
policy discriminator outputs the population share of each
source policy (e.g. what fraction of the data comes from BBA)
in the training data [28]. To assess this statement, we present
the confusion matrix and population share of source data, for
three left-out policies in Table 1. Each row corresponds to
one source policy, and each column corresponds to the policy
discriminator’s prediction of the source policy. We observe
that predictions do not change noticeably with different source
policies, and that they closely match the population share for
each left-out policy. This demonstrates that the extracted latent
features were indeed invariant to the source policy.

B.3 What makes a simulation
scenario easy/hard?

In §6.3, we compared the accuracy of CausalSim, ExpertSim
and SLSim, in a simulation task on real ABR data. We
observed that in about 30% of scenarios, which we call easy
scenarios, all simulators perform well. However, in about 70%
of the source/target scenarios, which we call hard simulation
scenarios, baseline predictions are highly biased towards the
source distributions. In these hard scenarios, CausalSim is
able to de-bias the trajectories and its predictions match the
target distribution well, as observable in Figure 9.

So it is natural to wonder what makes a simulation scenario
easy/hard? An easy simulation scenario happens when source
and target policies take similar actions. Similar action means
that the factual achieved throughput (of the source policy)

Prediction

Source Policy BOLA2 BOLA1 Fugu-CL Fugu-2019

BOLA2 22.44% 22.58% 26.99% 27.99%
BOLA1 22.43% 22.58% 26.99% 27.99%
Fugu-CL 22.44% 22.58% 26.99% 27.99%
Fugu-2019 22.44% 22.58% 26.99% 28.00%

Source Policy

BOLA2 BOLA1 Fugu-CL Fugu-2019

Population 22.45% 22.50% 27.11% 27.94%

(a) Left-out policy is BBA

Predictions

Source Policy BOLA2 Fugu-CL Fugu-2019 BBA

BOLA2 21.34% 26.04% 26.75% 25.87%
Fugu-CL 21.33% 26.05% 26.75% 25.87%
Fugu-2019 21.33% 26.04% 26.77% 25.86%
BBA 21.33% 26.04% 26.76% 25.87%

Source Policy

BOLA2 Fugu-CL Fugu-2019 BBA

Population 21.48% 25.94% 26.74% 25.84%

(b) Left-out policy is BOLA1

Predictions

Source Policy BOLA1 Fugu-CL Fugu-2019 BBA

BOLA1 21.46% 26.00% 26.76% 25.78%
Fugu-CL 21.45% 26.01% 26.77% 25.76%
Fugu-2019 21.45% 26.00% 26.79% 25.76%
BBA 21.45% 25.99% 26.76% 25.80%

Source Policy

BOLA1 Fugu-CL Fugu-2019 BBA

Population 21.52% 25.93% 26.72% 25.83%

(c) Left-out policy is BOLA2

Table 1: Confusion matrix and population statistics for the
policy discriminator with three left out policies.

is similar to the counterfactual achieved throughput (of the
target policy). This is what both ExpertSim (explicitly) and
SLSim (implicitly) assume for doing simulation. Making this
assumption is the core reason their simulations are biased in
hard cases, where source and target policies take different
actions, as we discussed in detail in §2.2.3.

Figure 10 validates our reasoning for what makes a
simulation scenario difficult. The X axis shows the Mean
Absolute Difference (MAD) between source and simulation
actions (bitrates) when simulating with SLSim in a specific

1134 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10 15

10

30

50

70

90

Buffer Occupancy (seconds)

C
D

F
(%

)

CausalSim predictions

ExpertSim predictions

SLSim predictions

BBA (left-out)

BOLA1 (source)

(a) CausalSim EMD=0.19

0 5 10 15

10

30

50

70

90

Buffer Occupancy (seconds)
C

D
F

(%
)

CausalSim predictions

ExpertSim predictions

SLSim predictions

BOLA1 (left-out)

BOLA2 (source)

(b) CausalSim EMD=0.10

0 5 10 15

10

30

50

70

90

Buffer Occupancy (seconds)

C
D

F
(%

)

CausalSim predictions

ExpertSim predictions

SLSim predictions

BOLA2 (left-out)

BOLA1 (source)

(c) CausalSim EMD=0.13

0 5 10 15

10

30

50

70

90

Buffer Occupancy (seconds)

C
D

F
(%

)

CausalSim predictions

ExpertSim predictions

SLSim predictions

BBA (left-out)

BOLA2 (source)

(d) CausalSim EMD=0.16

0 5 10 15

10

30

50

70

90

Buffer Occupancy (seconds)

C
D

F
(%

)

CausalSim predictions

ExpertSim predictions

SLSim predictions

BOLA1 (left-out)

BBA (source)

(e) CausalSim EMD=0.31

0 5 10 15

10

30

50

70

90

Buffer Occupancy (seconds)

C
D

F
(%

)

CausalSim predictions

ExpertSim predictions

SLSim predictions

BOLA2 (left-out)

BBA (source)

(f) CausalSim EMD=0.22

0 5 10 15

10

30

50

70

90

Buffer Occupancy (seconds)

C
D

F
(%

)

CausalSim predictions

ExpertSim predictions

SLSim predictions

BBA (left-out)

Fugu-2019 (source)

(g) CausalSim EMD=0.14

0 5 10 15

10

30

50

70

90

Buffer Occupancy (seconds)

C
D

F
(%

)

CausalSim predictions

ExpertSim predictions

SLSim predictions

BOLA1 (left-out)

Fugu-2019 (source)

(h) CausalSim EMD=0.25

0 5 10 15

10

30

50

70

90

Buffer Occupancy (seconds)

C
D

F
(%

)

CausalSim predictions

ExpertSim predictions

SLSim predictions

BOLA2 (left-out)

Fugu-2019 (source)

(i) CausalSim EMD=0.22

0 5 10 15

10

30

50

70

90

Buffer Occupancy (seconds)

C
D

F
(%

)

CausalSim predictions

ExpertSim predictions

SLSim predictions

BBA (left-out)

Fugu-CL (source)

(j) CausalSim EMD=0.09

0 5 10 15

10

30

50

70

90

Buffer Occupancy (seconds)

C
D

F
(%

)

CausalSim predictions

ExpertSim predictions

SLSim predictions

BOLA1 (left-out)

Fugu-CL (source)

(k) CausalSim EMD=0.21

0 5 10 15

10

30

50

70

90

Buffer Occupancy (seconds)

C
D

F
(%

)

CausalSim predictions

ExpertSim predictions

SLSim predictions

BOLA2 (left-out)

Fugu-CL (source)

(l) CausalSim EMD=0.17

Figure 9: Buffer level distribution of source, target,CausalSim predictions,and baseline predictions across all source/target scenarios.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1135

0.50 0.75 1.00

0.1

0.3

0.5

0.7

0.9 ExpertSim Predictions
SLSim Predictions

E
M

D

Bitrate MAD (Mbps)

Figure 10: Simulation difficulty is related to how different
counterfactual actions are from factual ones. This figure shows
scatterplot of EMD versus mean absolute bitrate difference,
for ExpertSim and SLSim, over all possible source left-out
pairs. The pink cluster signifies the ‘easy’ scenarios and the
green cluster signifies ‘hard’ ones.

source/target scenario. Y axis shows EMD (Our performance
metric for simulation, smaller is better) of both baselines in
that specific scenario.

Two main cluster of points are clearly visible in this figure.
The pink cluster on the bottom left corresponds to easy
simulations. It includes all source/target simulation scenarios
where baselines perform well (bottom), and at the same time,
source and target actions are quite similar (left).

The green cluster at the top right corresponds to the hard
simulations. It includes all source/target simulation scenarios
where baselines fail to perform an unbiased simulation (top),
and at the same time, source and target actions are quite
different (right).

B.4 A More Fine-grained
Evaluation

Ideally, we would like to evaluate CausalSim’s simulation to
ground truth on a step-by-step basis for a given trajectory. But
as discussed in §6.3, this is not possible in real-world data,as we
only see the outcome of one ABR algorithm’s chosen action for
a single step. In other words, there is no way to get ground truth
for individual steps in the observational data, which is referred
to as the fundamental problem of Causal Inference [32]. This
is the reason we evaluated predictions on a distributional level.

However, there is a way to evaluate CausalSim’s predictions
at a more fine-grained level. Instead of evaluating the predicted
distribution of buffer occupancy across the whole population,
we can evaluate on certain sub-populations of users. The only
requirement is that the way we select these sub-populations
should be statistically independent of the ABR algorithm. For
example, we can partition users by a metric such as Min RTT,
which is independent of the policy chosen for each user in the

RCT. Min RTT is an inherent property of a network path17,
and we would expect Min RTT distribution to be the same for
users assigned to different ABR policies.

We use the MinRTT to create the following four
sub-populations:

1. Sub1: users with Min RTT<35ms

2. Sub2: users with 35ms≤Min RTT<70ms

3. Sub3: users with 70ms≤Min RTT<100ms

4. Sub4: users with 100ms≤Min RTT

Now, we can ask question of the following type: had the users
in sub-population two, who were assigned the source ABR algo-
rithm, instead used the left-out ABR algorithm, what would the
distribution of their buffer level look like? As the ground truth
answer to this question, we can use the buffer level distribution
of users in sub-population two assigned to the left-out policy.

Figure 11a shows the CDF of CausalSim’s EMD when sim-
ulating the left-out ABR algorithm over each of the above sub-
populations. We can see that CausalSim maintains a superior
EMD CDF compared to ExpertSim and SLSim,and remains ac-
curate across different sub-populations. This further suggests
that even at surgically small subpopulations, CausalSim main-
tains accuracy, and does not overfit to the whole distribution.

B.5 How to Tune CausalSim’s
Hyper-parameters?

Counterfactual prediction is not a standard supervised learning
task that optimizes in-distribution generalization. Rather, it
is always an OOD generalization problem, i.e., we collect
data from a training policy (distribution 1), and want to
accurately simulate data under a different policy (distribution
2). Since we do not use data from the test policy when we
train CausalSim, we use the following natural proxy for tuning
hyper-parameters: Simulating ABR algorithms in the training
data using trajectories of other ABR algorithms in the training
data. This of course can be viewed as an OOD problem as
well. We claim that if a choice of hyper-parameters results in
a robust model that performs well OOD across all validation
ABR algorithms in the training data, it should work well for
the actual left-out test policy as well.

We verify this hyper-parameter tuning procedure empiri-
cally. For each choice of the three left-out ABR algorithms
(hence training dataset), we train eleven different CausalSim
models with different choices of κ (defined in Equation (7)).
We consider two metrics: (i) Test EMD, defined as the average
EMD when simulating the left-out ABR algorithm with trajec-
tories in the training dataset. This is our main performance ob-
jective. (ii) Validation EMD, defined as the average EMD when

17This is true to a first order approximation, if we ignore the possibility that
a video streaming session drives up queueing delays throughout the course
of a video, thereby inflating the observed Min RTT.

1136 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

20

50

80

min rtt ∈ [0,35)

CausalSim ExpertSim SLSim

min rtt ∈ [35,70)

0.1 0.5 0.9

20

50

80

min rtt ∈ [70,100)

0.1 0.5 0.9

min rtt ∈ [100,∞)

EMD

C
D

F
(%

)

(a)

0 0.5 1 1.5 2 2.5

0

1

2

3

Validation EMD

Te
st

E
M

D

(b)

Figure 11: (a) Comparing the distribution of CausalSim EMDs
with ExpertSim and SLSim over different sub-populations.
(b) Validation EMD and test EMD are highly correlated. This
justifies our hyper-parameter tuning strategy.

simulating ABR algorithms in the training dataset with trajecto-
ries in the training data that were collected with other ABR algo-
rithms. This is our proxy objective for hyper-parameter tuning.

For each model (33 in all: 3 datasets, 11 example hyper-
parameters), we calculate both Test EMD and Validation
EMD, which results in one (Validation EMD, Test EMD) point
in Figure 11b. The Pearson Correlation Coefficient (PCC)
between Valid EMD and Test EMD is 0.92, which shows high
linear correlation. Hence, though CausalSim might not always
perform well (i.e., Test EMD is not low for some combinations
of training dataset and hyper-parameters), we can have a very
good idea of how well it works by measuring Validation EMD.

B.6 How to Tune SLSim’s
Hyper-parameters?

SLSim takes as input the current buffer value, selected chunk
size and observed throughput, and similar to CausalSim,
predicts the next buffer b̂t+1 and download time d̂t . We
add two knobs to tune while training SLSim: (1) The loss
function Lξ(·,·) used to steer the NN output to the ground truth
output, and (2) The relative weighting of the loss function for
download time with respect to that of the buffer occupancy,
η. Concretely, we use the following total loss:

Lslsim=EB

[
1

η+1
.Lξ(b̂t+1,bt+1)+

η
η+1

.Lξ(d̂t ,dt)

]
(19)

where the expectation is over the a sampled minibatch B
from dataset D, and bt+1 and dt denote the ground truth values
for next buffer level and chunk download time. Table 3 lists
the loss functions and η values considered.

To tune these values, we use ground truth data from all
policies except a left out policy. We then proceed with the
proxy tuning objective used in §B.5, i.e. we look for the con-
figuration with the highest accuracy at simulating algorithms
in the training data using trajectories of other algorithms in
the training data. We then use the resulting configuration (and
model) to simulate the left-out policy on the training data.

From the perspective of tuning, this methodology puts
SLSim on equal ground with respect to CausalSim, and makes
for a fair comparison. Note that we do not tune loss function
type or η with CausalSim due to limited computational
resources, but tuning those as well could potentially improve
CausalSim’s accuracy.

B.7 Simulation Accuracy: Continued
In §6.1.1, we stated that ExpertSim and SLSim predictions are
significantly affected by the source data they are simulating
on, and demonstrated the effect of source policies on BOLA1
predictions in Figure 4b. Here, we demonstrate the same
figure for BBA in Figure 12a and BOLA2 in Figure 12b.
CausalSim is designed to remove the bias of the algorithm
used for collecting source data when simulating a target policy
and its predictions remains unaffected by the performance
of that source policy. ExpertSim and SLSim however, due to
the violation of the exogenous trace assumption, will predict
different metrics when using different source traces.

B.8 Dataset & Algorithms
Our trajectories in the real-world (Puffer) data come from ‘slow
streams‘ in the time span of July 27, 2020 until June 2, 2021. In
this period of time, 5 ABR algorithms appear consistently and
are listed in Table 2. Each trajectory is an active client session
streaming a live TV channel. We follow Puffer’s definition of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1137

Policies Hyperparameter Value Used as source Used as left out

BBA Cushion 3 (as used in puffer)
✓ ✓

Reservoir 10.5 (as used in puffer)

BOLA-BASIC v1

V 0.67 (As computed in puffer)

✓ ✓
γ -0.43 (As computed in puffer)

Utility function log10(1−ssim) (As used in puffer)

Minimum utility 0 dB (As used in puffer)

Maximum utility 60 dB (As used in puffer)

BOLA-BASIC v2

V 51.4 (As computed in puffer)

✓ ✓
γ -0.43 (As computed in puffer)

Utility function ssim (As used in puffer)

Minimum utility 0 (As used in puffer)

Maximum utility 1 (As used in puffer)

Fugu-CL - - ✓ ×
Fugu-2019 - - ✓ ×

Table 2: ABR algorithms used in the real-world dataset and experiments

‘slow streams’; streams with TCP delivery rates below 6 Mbps.
We use ‘slow streams‘ data, since the highest quality chunks
rarely surpass 6−7 Mbps, and paths with higher bandwidth
will always stream the highest quality chunks under all policies.
Puffer uses the same reasoning and evaluates algorithms at
two population levels; ’slow streams’ and ’all streams’.

In aggregating ‘slow stream‘ logs, we met several difficul-
ties that we outline here for reproducibility. Data without these
difficulties would potentially improve CausalSim’s accuracy.
Note that this does not affect Figure 5, as the data for that
figure is reported directly on Puffer [2, 3].

Puffer logs are reported as three separate event groups;
1) ‘video_sent’: the first packet of a chunk is sent, 2)
‘video_acked’: The last packet of a chunk is acknowledged, 3)
‘client’: The client sent a message. Stall rate is computed using
the ‘client’ logs and quality is computed using the ‘video_sent’
logs.

1. To compute download time, we have to merge
‘video_sent’ and ‘video_acked’, and ensure that merged
logs are consecutive in timestamps, i.e. no chunk is
missing in between two other chunks. However, in the
current data this removes all chunks that have been sent
but not acknowledged, usually the last chunk. Puffer uses
these chunks in measuring quality level, but we can’t.
This did not have any measurable impact, however.

2. To compute stall rate, both total stall time and total watch
time are computed with ‘client’ logs. For this, the latest

report that obeys a set of rules is used. We, however,
have to compute stall time and watch time using our
merged logs (merged logs are also what we get out of
simulation). This would be easy on the original data,
if ‘client‘ logs and ‘video_sent’ were in sync, but they
are not; whenever a rebuffering is reported by the client,
‘client’ log is updated but ‘video_sent’ is updated in
the next few chunks. To circumvent this, we recompute
rebuffering as tr =max(0,td−b), where tr is rebuffering,
b is buffer occupancy and td is download time. This
formula is off by half of an RTT, and empirically inflates
stall rates by 1.26−1.31x, for all policies. In the absence
of synchronized data, this is the best we can recover,
but it does not affect the comparison among policies.
Hence, we believe simulating with this data should lead
to similar trends as with clean unperturbed data.

3. We cannot calculate watch time as Puffer does, since
we have to use the merged log. We tried several simple
formulas that should calculate watch time, but oddly
most turn out to be inaccurate. One reason is that in some
streams, buffer playback rate is not 1, i.e. one second of
buffer is not depleted per second. These streams are likely
due to browser tabs put in background, and throttled by
the browser threading system. As a workaround, we use
the original watch time minus the original stall time that
Puffer computed for a stream, and offset it by the total
stall time in the simulation.

1138 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.51.01.52.0
Time Spent Stalled (%)

15.0

15.2

15.4

15.6

A
ve

ra
ge

SS
IM

(d
B

)

Ground Truth CausalSim ExpertSim SLSim

(a)

46810
Time Spent Stalled (%)

15.2

15.4

15.6

A
ve

ra
ge

SS
IM

(d
B

)

Ground Truth CausalSim ExpertSim SLSim

(b)

Figure 12: Predictions for (a) BBA and (b) BOLA2, separated
by the ABR algorithm source data was collected with. Each
point indicates a specific source ABR algorithm.

4. At each step, the buffer should not increase by more than
a single chunk, 2.002 seconds, but it does (sometimes
by as much as 14 seconds). We filter such data out.

5. When we are about to send a chunk, our last reported
buffer value must never dip below 2.002 (except in the
beginning). When buffer is below 15 seconds, the next
chunk must be sent immediately after the last one. If
rebuffering occurs, the next buffer value will be exactly
2.002 and if it doesn’t, it will be larger than 2.002. We
frequently (more than one million instances) observe
buffer values below 2.002. We do not filter them out, as
this would invalidate most logs.

To test out CausalSim, we need to simulate the streaming
session using a different algorithm than the one that was
actually used in that session. This requires implementation
of the ABR algorithms. To ensure our implementations
are correct, we attempt to reconstruct the choices made at
runtime by each policy, and compare them to the logged
choices. We expect our reproduction to match 100% when

our implementation is faithful and logs match runtime inputs.
For the logs in July 27th, 2020, we observe 100% matching
for BOLA1 and BOLA2 and 99.993% for BBA. For the latter,
there are rare cases where two encodings are seemingly equal
in SSIM up to the 6 logged decimal places, but were likely
slightly different in double precision format at runtime. These
instances are rare enough that we can ignore them.

For Fugu-2019 or Fugu-CL however, our reproductions
did not match in 6% and 19% of cases, whether we used
the original C implementation or our own Python port. The
Puffer team informed us of a use-after-free issue regarding
the Transmission Control Protocol (TCP) info struct that was
fixed in March 7th, 2022. Hence we retried this process for
the logs pertaining to July 27th, 2022 and the error rate shrank
to 0.53% and 0.64%. Unfortunately, a 0.5% error rate is still
too high and even if we ignore that, limits us to RCT logs
after March 7th. Therefore, we do not consider Fugu-2019
or Fugu-CL as candidates for left-out algorithms.

B.9 Training setup
We use Multi Layer Perceptrons (MLPs) as the NN structures
for CausalSim models and the SLSim model. All implementa-
tions use the Pytorch [56] library. Table 3 is a comprehensive
list of all hyperparameters used in training.

Appendix C Synthetic ABR

As explained in §6.3.1, we also evaluate CausalSim in
a synthetic ABR environment, in which we can obtain
ground truth for individual counterfactual predictions on a
step-by-step basis for a trajectory. In these experiments, we
also use a larger set of policies than available in the real data.

C.1 Simulation Dynamics
In each simulated training session, we start with an empty
playback buffer and a latent network path characterized by
an RTT and a capacity trace. In each step, an ABR algorithm
chooses a chunk size, which is transported over this network
path to the client as the buffer is depleting. Once the user
receives the chunk, the buffer level increases by the chunk
duration. This simple system can be modeled as follows:

bt+1=min(bt−dt ,0)+c (20)

where bt , dt and c refer to the buffer level at time step t, the
download time of the chunk at time step t, and the chunk video
length in seconds, respectively. Streaming the next chunk
is started immediately following receiving the previous one,
except when the buffer level surpasses a certain value (in
our case, 10 seconds to mimic a live-stream ABR setting).
To compute dt , we model the transport as a TCP session
with an Additive Increase - Multiplicative Decrease (AIMD)

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1139

Model Hyperparameter Value

SLSim (1 network), CausalSim (3 networks)

Hidden layers (128, 128)

Hidden layer Activation function Rectified Linear Unit (ReLU)

Output layer Activation function Identity mapping

Optimizer Adam [40]

Learning rate 0.001

β1 0.9

β2 0.999

ε 10−8

Batch size 217

CausalSim

κ {0.05, 0.1, 0.5, 1, 5,
10, 15, 20 ,25, 30, 40}

Training iterations (num_train_it) 5000

num_disc_it 10

Loss function Huber(δ=0.2)

η (download time weight wrt buffer) 1

SLSim

Training iterations 10000

Loss function {Huber(δ=0.2), L1, MSE}

η (download time weight wrt buffer) {0.5, 1, 10}

Table 3: Training setup and hyperparameters for the real-world ABR experiment

congestion control mechanism with slow start. For every
chunk, the TCP connection starts from the minimum window
size of 2 packets and increases the window according to
slow start. Therefore, it takes the transport some time to
begin fully utilizing the available network capacity. The
overhead incurred by slow start depends on the RTT and
bandwidth-delay product of the path. When downloading
chunks with large sizes, the probing overhead is minimal but it
can be significant for small chunks. Therefore, as we observed
in the Puffer data, the throughput achieved for a given chunk
in this synthetic simulation depends on the size of the chunk.

Performance Metric: We compare CausalSim predictions
with ground truth counterfactual trajectories, via the Mean
Squared Error (MSE) distance between the two time series:

MSE(p,q)= ||p−q||22 (21)

Here, p = {pt}N
t=1 and q = {qt}N

t=1 are time series vectors.
Better predictions yield smaller MSE values, where an ideal
MSE is 0.

C.1.1 Data & Algorithms

Simulating a trajectory in our synthetic ABR environment
needs three components:

• A video, with several bit-rates available. We use
"Envivio-Dash3" from the DASH-246 JavaScript
reference client [22].

• An ABR algorithm. We have a set of 9 policies to choose
from, presented in Table 4.

• A network path, which is characterized by the latent
network capacity and the path RTT.

We use random generative processes to generate 5000
network traces and RTTs. The RTT for a streaming session
is sampled randomly, according to a uniform distribution:

rtt ∼ Uni f (10 ms, 500 ms)

Our trace generator is a bounded Gaussian distribution, whose
mean comes from a Markov chain. Prior work shows Markov
chains are appropriate models for TCP throughput [65], and
Gaussian distributions can model throughputs in stationary
segments of TCP flows [49].

Concretely, at the start of the trace, the following parameters

1140 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Policies Hyperparameter Value Used as source Used as left out

BBA Cushion 5
✓ ✓

Reservoir 10

BOLA-BASIC
V 0.71 (Computed using puffer formula)

✓ ✓γ 0.22 (Computed using puffer formula)

Utility function ln(chunk sizes) (As used in BOLA paper [63])

Random - - ✓ ✓

BBA-Random mixture 1
Cushion 5

✓ ✓Reservoir 10

Random choices 50%

BBA-Random mixture 2
Cushion 10

✓ ✓Reservoir 20

Random choices 50%

MPC

Lookback length 5

✓ ✓Lookahead length 5

Rebuffer penalty 4.3

Throughput estimate Harmonic mean

Rate-based Lookback length 5
✓ ✓

Throughput estimate Harmonic mean

Optimistic Rate-based Lookback length 5
✓ ✓

Throughput estimate Max

Pessimistic Rate-based Lookback length 5
✓ ✓

Throughput estimate Min

Table 4: ABR algorithms used in the synthetic ABR experiments.

are randomly sampled:

v ∼ Uni f (30, 100)
p = 1/v

l, h ∼ Uni f (0.5, 4.5)

s.t.
h−l
h+l

> 0.3

s0 ∼ Uni f (l, h)

cσ ∼ Uni f (0.05, 0.3)

At each time step, the state remains unchanged with probability
1− p and changes otherwise. When changing, the next state
is sampled from a double exponential distribution centered
around the previous state:

λ = solvex∈R+(1− ex(h−st−1)− ex(st−1−l)=0)
st = DoubleExp(st−1, λ)

The point for this specific transition kernel is that small changes
in network capacity should be more likely than drastic changes.

Finally, the network capacity ct in each step is sampled from
a Gaussian distribution, defined by these parameters:

ct ∼ Normal(st , st ·cσ)

C.1.2 Training setup

Similar to the real-world ABR experiment, we use MLPs as
the NN structures for CausalSim models and the SLSim model.
We tune all the hyperparameters of both baselines as is done in
the real-world ABR experiment (see §B.5 and §B.6). Table 5
comprehensively lists all hyperparameters used in training.

C.2 Can CausalSim Faithfully Simulate
New Policies?

Similar to our real-data evaluations, we train models based on
training data generated using all policies except a left-out pol-
icy, for which the model does not observe any data. Although

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1141

Model Hyperparameter Value

Hidden layers (SLSim) (128, 128)

Hidden layers (CausalSim: Extractor, Discriminator and Fsystem) (128, 128)

Hidden layers (CausalSim: Action encoder) (64, 64)

Rank r 2

CausalSim (4 networks) Hidden layer Activation function ReLU

Output layer Activation function Identity mapping

Optimizer Adam [40]

SLSim (1 network) Learning rate 0.0001

β1 0.9

β2 0.999

ε 10−8

Batch size 213

CausalSim

κ {0.01, 0.1, 1, 10, 100}

Training iterations (num_train_it) 20000

num_disc_it 10

Loss function {MSE}

SLSim Training iterations 20000

Loss function {Huber(δ=1.0), L1, MSE}

Table 5: Training setup and hyperparameters for the synthetic ABR experiments.

traces come from the same generative process, no two trajec-
tories in the dataset collected with different policies share the
exact same trace, as this would be an unrealistic data collection
scenario. Given that we have 9 possible policies to leave out,
we have 9 possible datasets and models. There are 8 possible
groups of trajectories to choose as sources, based on the policy
that generated them. In total this leaves 72 different combina-
tions and scenarios. We use the same hyper-parameter tuning
approach examined in §B.5. Figure 13a compares the CDF of
MSE values resulting from CausalSim and the two baselines.
As evident, both baselines suffer from inaccurate predictions
and in some cases are catastrophically inaccurate. On the
contrary, CausalSim maintains favorable performance, even in
the tail of its MSE distribution. Figure 13b gives a closer look
at the CDF curves. We see CausalSim dominates at every scale.

Figure 13c is a heatmap of the two dimensional histogram
of CausalSim predictions and ground truths. A fully accurate
prediction scheme would perfectly match the ground truth
and only the diagonal of this histogram would be populated.
CausalSim almost achieves that, indicating it produces
accurate trajectories on a step-by-step basis.

Further, in Figure 14, we compare the the Mean Absolute
Percentage Error (MAPE) of CausalSim, ExpertSim and
SLSim predictions across all trajectories at each time step
for the first 35 steps. Note that the error naturally accumulates

for all three methods as we move froward in time. However,
CausalSim maintains a MAPE of (∼5.1%) which significantly
lower than both ExpertSim’s and SLSim’s (∼10%).

C.3 Learning ABR policies with CausalSim
We observed how CausalSim can be used to design an im-
proved policy in §6.2, and verified this through deployment in
the wild. We would like to take these experiments one step fur-
ther and ask can CausalSim be used to design learning-based
policies, such as with Reinforcement Learning (RL)?

Recent work has shown that RL algorithms can learn
strong ABR policies by learning through interactions with the
environment [50]. Could we use a CausalSim model to train
high-performance ABR policies without direct environment
interaction? As a first step, we decided to carry out an initial
experiment in the synthetic ABR environment. We build a
CausalSim model using traces from a “simulated RCT” on
the synthetic environment.

Performance Metric. ABR algorithms are typically evaluated
through QoE metrics [75]. Assuming the chosen bitrate at step
t was qt , the download time was dt and the buffer was bt , we
use the following QoE definition:

QoEt =qt−|qt−qt−1|−µ·max(0,dt−bt−1)

1142 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 10 20 30

10

30

50

70

90

MSE

C
D

F
(%

)

CausalSim predictions

ExpertSim predictions

SLSim predictions

(a)

0 0.5 1 1.5 2

10

30

50

70

90

MSE
C

D
F

(%
)

CausalSim predictions

ExpertSim predictions

SLSim predictions

(b)

4 6 8 10
4

6

8

10

Ground Truth

C
au

sa
lS

im
’s

Pr
ed

ic
tio

ns

0

1

2

3

Po
pu

la
tio

n
(%

)

(c)

Figure 13: (a) Distribution of CausalSim, ExpertSim, and SLSim MSEs over all possible source left-out pairs. (b) The same figure
with a smaller MSE range. In this magnified view, CausalSim clearly outperforms the baselines. (c) Two-dimensional histogram
heatmap of CausalSim predictions vs. ground truth.

0 5 10 15 20 25 30

0

5

10

Chunk index

M
A

PE
(%

)

CausalSim predictions

ExpertSim predictions

SLSim predictions

Figure 14: A time series plot of the Mean Absolute Percentage
Error (MAPE) across all trajectories, for CausalSim, Expert-
Sim and SLSim predictions. Notice how errors accumulate
in trajectory simulation.

This QoE metric captures three goals (in succession): 1)
Stream in high quality, 2) Maintain a stable quality, 3) Avoid
rebuffering. Better policies yield higher QoE values, where
an ideal QoE is equal to the max bitrate.

C.3.1 How to train policies via simulators?

To train the RL agent, we take a set of logged trajectories
where the source policy was MPC and feed them to CausalSim.
In each step, CausalSim will predict the next counterfactual
observation and reward, and the RL agent will choose the
next counterfactual action based on that observation. This
process repeats until this simulated session is over, after which
the counterfactual trajectory is used to train the RL agent.
For the RL algorithm, we utilize the Advantage Actor Critic
(A2C) method, a prominent on-policy algorithm, along with
Generalized Advantage Estimation (GAE). Table 6 lists all
hyperparameters for the RL training.

C.3.2 Does CausalSim train better policies?

Figure 15a plots the CDF of average session QoE that each
policy attains. Here, Real Environment refers to training
directly with the synthetic ABR environment, and CausalSim,
ExpertSim and SLSim refer to policies trained by using each
of these simulators. CausalSim trains policies nearly as well
as training directly on the environment, while ExpertSim
and SLSim fail to provide robust policies across all sessions.
Figure 15b plots the CDFs for the high RTT (above 300 ms)
clients, where the gap between CausalSim and the baseline
simulators is even larger.

In this environment, chunk are downloaded according to
the slow start model, where congestion control must ramp up
its window size over several RTTs before the download rate
can reach the available bandwidth. As a result, downloads of
smaller chunks (with lower bitrates) incur a noticeable over-
head, particularly on high-RTT paths. This overhead becomes
less apparent as chosen bitrates become larger. Biased sim-
ulators such as SLSim and ExpertSim, which assume all ac-
tions lead to the same observed bandwidth, overestimate the
achieved rate when counterfactual bitrates are smaller than
factual ones (chosen by the source policy) and underestimate
it when the counterfactual bitrates are larger. Since the source
policy is conservative and tends to choose low bitrates, Expert-
Sim and SLSim find larger bitrates to be undesirable in the
QoE trade-off. This can be seen in Figure 15c, which visualizes
the 3 aspects of QoE in terms of the rebuffering rate and the
smoothed birate, i.e the chosen bitrates with the smoothnes
penalty. Notice how policies trained on the real environment
and CausalSim utilize the network by 200 kbps more than other
policies. The extra rebuffering that CausalSim incurs is neg-
ligible compared to the extra bitrate: 5.9 seconds every hour.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1143

0 0.5 1 1.5 2

10

30

50

70

90

QoE

C
D

F
(%

)

Real Environment

CausalSim

ExpertSim

SLSim

MPC

(a) Full population

0 0.5 1 1.5

10

30

50

70

90

QoE

C
D

F
(%

)

(b) High RTT clients

0.1% 0.2% 0.3%
0.6

0.7

0.8

0.9

QoE=0.65

QoE=0.75

Real CausalSim

ExpertSim

SLSim MPC

Rebuffering Rate

Sm
oo

th
B

itr
at

e
(M

bp
s)

(c) QoE breakdown in High RTT clients

Figure 15: CausalSim trained policies perform well, only marginally behind training on the real environment. Distribution of Quality of
Experience (QoE) in policies trained with the real environment, CausalSim, ExpertSim, and the MPC policy. CausalSim does not underestimate
bandwidth in high RTT clients and trains policies that strike the best balance in QoE goals.

Group Hyperparameter Value

Neural Network

Hidden layers (32, 32)

Hidden layer activation function ReLU

Output layer activation function
A2C actor: Softmax

A2C critic: Identity mapping

Optimizer Adam [40]

Learning rate 0.001

β1 0.9

β2 0.999

ε 10−8

Weight decay 10−4

A2C training

Episode lengths 490

Epochs to convergence (Tc) 8000 (3920000 samples)

Random seeds 4

γ 0.96

Entropy schedule 0.1 to 0 in 5000 epochs

λ (for GAE) 0.95

Environment
Chunk length c 4

Number of actions (bitrates) 6

Table 6: Training setup and hyperparameters for learning RL policies in the synthetic ABR environment.

C.4 Low-rank structure

As discussed in §4.1, we can formulate the counterfactual
estimation problem in the context of matrix completion.
For each time step, we know the chosen bitrate (action) and
the achieved throughput (trace). We also know the trace is
computed using a latent factor and the action. Suppose the

latent factor is the network bottleneck capacity ct
18. Ftrace

describes how the achieved throughput (the trace) relates to
this latent factor. Intuitively, this should be a close-to-linear
function, mt ≈ ct . But it’s not exactly linear; for example,
congestion control may under-utilize the network capacity for

18There may be other latent factors but bottleneck capacity is likely to have
the strongest influence on the achieved throughput.

1144 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6
0

200

400

Singular Value Index

Si
ng

ul
ar

V
al

ue
M

ag
ni

tu
de

Figure 16: Singular values of matrix M in synthetic ABR
suggest that M is approximately rank 2.

small transfers on high-RTT paths.
We form a matrix M, where the rows denote actions at ∈ [A]

and the columns denote the latent factors ui
t for each trajectory.

The ‘factual’ data we have are single observed trace values in
each column, i.e for each step and each latent, we have observed
the trace from a single action. To estimate counterfactuals, we
must complete the matrix. We have no way of knowing the true
Ftrace in the Puffer dataset. But to get a sense for what it might
look like and whether it’s plausible that M is low rank, we can
investigate this in the synthetic ABR environment instead.

For the TCP slow start model this environment uses, Ftrace
takes the following form:

Let ˆRT T :=
RT T
ln(2)

(22)

mt =





ct

1+
ˆRT T ·(ln(ct/ċ)−ct+ċ)

st

if st≥ ˆRT T .(ct−ċ)

st
ˆRT T ·ln(st

ˆRT T ·ċ +1)
otherwise

(23)

where st is the chunk size (which itself is determined by
the bitrate chosen by ABR) and ċ is the starting download
rate in the slow start algorithm (in our case, equal to 2 MTUs).
We use this model to generate a version of M with A = 6
actions and U =49000 latent network conditions. We compute
the singular value decomposition with the 6 singular values
represented in non-increasing order (σ1≥σ2≥···≥σ6). The
total “energy” of matrix is given by sum of squares of these

singular values. It turns out that σ2
1+σ2

2
total energy is more than 0.999.

This suggests that most of the matrix is captured by its rank-2
approximation, as depicted in Figure 16. In other words, M
is approximately low (=2) rank.

Appendix D Load Balancing

D.1 Does CausalSim Faithfully Infer Latent
States?

We test the claim that estimating the exogenous latent state
and using it to predict the next state was indeed the key to pro-

0 500 1,000

0

10

20

Latent job size

C
au

sa
lS

im
’s

ex
tr

ac
te

d
fe

at
ur

e

0
1,000
2,000
3,000
4,000
5,000

Po
pu

la
tio

n
co

un
t

Figure 17: Two-dimensional histogram heatmap of CausalSim
extracted latent state vs. latent job sizes.

ducing accurate counterfactual predictions, as the architecture
of CausalSim suggests. To do so, we compare CausalSim’s es-
timated latent state with the underlying job sizes—the job size
is indeed the latent state that dictates the dynamics in the load
balancing environment. We find that the estimated latent states
and the job sizes are highly correlated, as illustrated in Fig-
ure 17, with a PCC of 0.994. This demonstrates that CausalSim
can learn faithful representations of true latent states.

D.2 Data & Algorithms
To simulate the load balancing problem described in §6.4.1,
we need to set the server processing rates {ri}N

i=1, and arriving
job sizes Sk. Server rates are generated randomly, as follows:

ri = eui (24)
where ui ∼ Uni f (−ln(5),ln(5)) (25)

We generate job sizes using a time-varying Gaussian
distribution. At step k of the trajectory, job size Sk is sampled
as follows:

Sk∼Normal(µk,σk)

where µk and σk signify the mean and variance of the generative
distribution at time step k. At each time step, with a probability
of p=1/12000, the mean and variance change and with a prob-
ability of 1−p, they remain the same. The mean and variance
values are drawn from random distributions, both at the start of
a trajectory and when a change occurs, in the following manner:

If k=0 (start of trace) or, mean and variance must change:

µk∼Pareto(α=1, L=101, H=102.5) (26)
σk∼Uni f (0, 0.5µk) (27)

Else:
µk =µk−1 (28)
σk =σk−1 (29)

Jobs generated according to this process are temporally
correlated, and therefore not independent and identically
distributed. Training data consists of 5000 trajectories of
length 1000, each of which was randomly assigned a policy
from a set of 16 policies, described in Table 7.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1145

Policies Description Used as source Used as left out

Server limited policy (8 variations) Randomly assign to only two servers ✓ ×
Shortest queue Assign to server with smallest queue ✓ ✓

Power of k (k∈{2,3,4,5}) Poll queue lengths of k server and assign to shortest queue ✓ ✓

Oracle optimal
Normalize queue sizes with server rates

✓ ✓
and assign to shortest normalized queue

Tracker optimal
Similar to oracle, but estimates server rates

✓ ✓
with historical observations of processing times

Table 7: Scheduling policies used in the load balancing experiment.

D.3 Training setup
As before, we use MLPs as the NN structures for CausalSim
models and the SLSim model and Table 8 is a comprehensive
list of all hyperparameters used in training. We tune the
parameter κ for CausalSim and the loss function in SLSim in a
similar fashion to what is described in §B.5 and §B.6. Note that,
as mentioned in §6.4.1, we assume access to Fsystem and focus
on the more challenging task of estimating the trace quantities,
for both CausalSim and SLSim. Therefore, in training, there
are no observations and hence Ltotal consist of two terms: the
squared loss of the trace quantities and the discriminator loss.

Appendix E Causal Inference Related Work

Identifying causal relationships from observational data is a
critical problem in many domains [30], including medicine
[55], epidemiology [59], economics [36], and education [23].
Indeed, identifying causal structure and answering causal
inference queries is an emerging theme in different machine
learning tasks recently, including computer vision [74, 76],
reinforcement learning [6, 24], fairness [27], and time-series
analysis [7] to name a few. One important aspect about
causal inference is its ability to answer counterfactual queries.
For such queries, many methods were developed; where
some approaches are motivated by Pearl’s structural causal
model [57], and by Rubin’s potential outcome framework [61].
We refer the interested reader to recent surveys such as [30] and
references there in for an overview of recent advances in our
ability to infer causal relationships from observational data.

Another related line of work within this literature is syn-
thetic controls and its extension synthetic interventions, which
aims to build synthetic trajectories of different units (e.g. indi-
viduals, geographic locations) under unseen interventions by
appropriately learning across observed trajectories [4,5,9–12].
However, these approaches assume a static set of intervention
and do not apply to our setting.

1146 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Model Hyperparameter Value

Hidden layers (SLSim) (128, 128)

Hidden layers (CausalSim: Extractor, Discriminator) (128, 128)

Hidden layers (CausalSim: Action encoder) No hidden layers

Rank r 1

CausalSim (3 networks) Hidden layer Activation function ReLU

Output layer Activation function Identity mapping

Optimizer Adam [40]

SLSim (1 network) Learning rate 0.0001

β1 0.9

β2 0.999

ε 10−8

Batch size 213

CausalSim
κ {0.01, 0.1, 1, 10, 100}

Training iterations (num_train_it) 10000

num_disc_it 10

SLSim Training iterations 10000

Loss function Huber, L1, MSE

Table 8: Training setup and hyperparameters for the load balancing experiment.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1147

HALP: Heuristic Aided Learned Preference Eviction Policy for
YouTube Content Delivery Network

Zhenyu Song∗†, Kevin Chen∗, Nikhil Sarda∗, Deniz Altınbüken, Eugene Brevdo,
Jimmy Coleman, Xiao Ju, Pawel Jurczyk, Richard Schooler, Ramki Gummadi∗

Google

Abstract
Video streaming services are among the largest web applica-
tions in production, and a large source of downstream inter-
net traffic. A large-scale video streaming service at Google,
YouTube, leverages a Content Delivery Network (CDN) to
serve its users. A key consideration in providing a seam-
less service is cache efficiency. In this work, we demonstrate
machine learning techniques to improve the efficiency of
YouTube’s CDN DRAM cache. While many recently pro-
posed learning-based caching algorithms show promising
results, we identify and address three challenges blocking
deployment of such techniques in a large-scale production
environment: computation overhead for learning, robust byte
miss ratio improvement, and measuring impact under produc-
tion noise. We propose a novel caching algorithm, HALP,
which achieves low CPU overhead and robust byte miss ratio
improvement by augmenting a heuristic policy with machine
learning. We also propose a production measurement method,
impact distribution analysis, that can accurately measure the
impact distribution of a new caching algorithm deployment
in a noisy production environment.

HALP has been running in YouTube CDN production as
a DRAM level eviction algorithm since early 2022 and has
reliably reduced the byte miss during peak by an average of
9.1% while expending a modest CPU overhead of 1.8%.

1 Introduction

YouTube is one of the largest sources of downstream internet
traffic, accounting for 15% of global application traffic in
2021 [27]. It leverages a Content Delivery Network with a
presence in more than 200 countries and territories to serve
videos to over 2 billion users [30]. Caching in CDNs is done
by storing content, such as videos, in proxy servers that are
distributed closer to end users instead of delivering content
from the origin servers. A CDN uses multiple levels of caches

*Equal technical contributions. The corresponding author is Pawel Jur-
czyk (pawelj@google.com).

†Zhenyu is affiliated with Princeton University, but this work was done
during his internship in Google.

0 2 4 6 8 10 12 14
Day

0.450

0.475

0.500

0.525

0.550

0.575

0.600

N
o
rm

a
liz

e
d
 b

yt
e
 m

is
s

ra
ti
o

machine0
machine1
machine2

machine3
machine4
machine5

Figure 1: Byte miss ratios over time for six machines on a
rack, normalized by dividing with a reference constant to hide
the proprietary absolute values. The substantial differences
across machines and over time make it hard to measure a new
cache algorithm’s production impact accurately.

to reduce the cost of content distribution and access latency
for end users. A key metric to optimize in CDN caches is byte
miss ratio, i.e., the portion of user-requested bytes missed in
the CDN cache.

Recently, machine learning techniques have been used to
improve cache eviction and admission policies (e.g., [32,34]).
Caching algorithms can benefit from learning patterns from
existing workloads, predicting which byte is more likely to be
accessed in the future, and using this information to improve
caching decisions.

In this paper, we present a new cache eviction algorithm
called Heuristic-Augmented Learned Preferences (HALP),
and share our experience in deploying HALP at a large scale.
From our experience, while reducing the byte miss ratio is im-
portant to improve cache efficiency, it is not the sole criterion
for deployment. For a solution that uses machine learning to
be deployed in a large-scale production environment, there
are three main challenges that need to be tackled:

• Computation overhead for learning. Learning-based
cache algorithms can be more computationally expen-
sive to run compared to heuristic-based algorithms. The
model training and prediction cost is high compared to

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1149

normal cache operation such as LRU eviction. Using
LRB [32] as an example, for each eviction it needs to
run predictions for 64 objects, which makes deployment
cost-prohibitive (≈ 19.2% additional CPU overhead)

• Robust byte miss ratio improvement. Learning-based
cache algorithms can introduce regressions if their de-
sign does not include a regression prevention mecha-
nism. For large-scale systems, bounding regression of
byte miss ratio is crucial. YouTube CDN contains a large
number of locations, and byte miss ratio regressions in
even a few locations could result in degraded user ex-
perience. In addition, having a robust algorithm also
increases our confidence in the design.

• Measuring impact under production noise. It is chal-
lenging to accurately measure the impact of a new evic-
tion algorithm in a large-scale deployment. We cannot
solely rely on simulations as they are imperfect proxies
for production behavior. It is also impractical to replicate
user requests and test different algorithms at every lo-
cation. Therefore, current production practice uses A/B
testing. An example is to compare different machines on
a rack because machines on a rack share the same hard-
ware/software configurations, and the request mix they
receive should be similar. However, in practice, the be-
haviors of machines are never identical. Figure 1 shows
byte miss ratios over time for six machines on a rack.
The substantial differences across machines and over
time make it hard to measure the production impact of a
new algorithm accurately.

To tackle the first two challenges, we develop a novel ap-
proach, the HALP policy, to perform eviction decisions with
low-overhead and to generalize over the whole production sys-
tem with limited regressions. It achieves this by augmenting
a heuristic policy with machine learning instead of learning a
policy end-to-end. The HALP eviction policy uses the heuris-
tic policy to select eviction candidates and the learning policy
to pick the final object to evict from those candidates.

To address the third challenge, we developed an impact dis-
tribution analysis that evaluates the impact of a new caching
algorithm deployment in a noisy production environment.

HALP has been deployed in YouTube’s CDN as a DRAM
level eviction algorithm since early 2022. It has robustly re-
duced the byte miss by an average of 9.1%. In addition, these
improvements were achieved with a modest 1.8% CPU over-
head.

In this paper we make the following three contributions:

• We present Heuristic Augmented Learned Preferences
(HALP), a learned cache eviction algorithm with low
computation overhead and robust byte miss ratio im-
provement by augmenting a heuristic policy with a learn-
able scoring function.

• We propose an impact distribution analysis to measure

the impact of a caching algorithm in the presence of
production noise.

• We evaluate HALP in YouTube’s large-scale production
environment and provide a detailed analysis on how it
improves the cache efficiency of YouTube CDNs. 1

The paper is structured as follows: §2 describes the back-
ground of the problem. §3 covers the design of HALP. §4
introduces our impact distribution analysis design, and §5
shows the evaluation results.

2 Background

In this section, we give an overview of the YouTube CDN
architecture. We then describe heuristic-based caching al-
gorithms and learning-based caching algorithms. Lastly, we
describe the key ideas for deploying a learned cache algorithm
in a large-scale production environment.

2.1 YouTube CDN Edge Cluster Architecture

 Edge Cluster

 Rack 2

DRAM SSD/HDD

 Rack 1

Client playerrequest
Cache
lookup

Origin Servers

Data
retrieval

Figure 2: A YouTube CDN edge cluster contains multiple
racks of servers. Machines in a rack are of the same type.

YouTube CDN [4, 11] contains edge clusters spreading
more than 200 countries and territories globally. As shown in
Figure 2, an edge cluster consists of multiple racks. Each rack
contains multiple cache servers configured homogeneously
using the same type of machines. Servers from different racks
may have hardware from different generations. Each cache
server is equipped with DRAM, SSDs and HDDs used for
caching data chunks. A video is stored in these data chunks
on the cache server.

Client player requests are sharded amongst machines in an
edge cluster. A request includes a key and a byte range of
a data chunk. Because a video is played sequentially, video
range requests are issued sequentially as well. On the arrival
of a request, the server checks if the requested data chunk is

1Two traces from a developed market region and an emerging market
region (§5.2) can be shared with interested parties, but a signed data sharing
agreement between Google and the outside institutions is required.

1150 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

in its DRAM. If it is not present (a.k.a. is missed), the data
will be fetched from other cache layers such as local SSDs
and HDDs, with the remote origin server being the last resort.
When the DRAM cache is full and a miss occurs, an eviction
algorithm is used to remove data chunks from the cache to
insert new data chunks.

As the first caching tier, the DRAM cache serves an im-
portant role in reducing traffic for subsequent tiers. It also
contributes to the overall storage costs of the YouTube CDN.
A better DRAM eviction algorithm with a lower byte miss ra-
tio would require less DRAM to be provisioned while keeping
a similar traffic reduction on subsequent tiers. This saves the
overall resource cost as long as the computation overhead is
modest (which requires additional CPU resources). We focus
on the byte miss ratio during the peak hours. This is because
during peak hours, large numbers of videos are concurrently
accessed, causing the byte miss ratio peaks, which could de-
grade Quality of Experience (QoE). We therefore focus on
reducing the 95th percentile byte miss ratio: P95 byte miss
ratio. We choose to not directly optimize QoE because it is
too noisy as feedback for each cache eviction. §5.3 and §5.4
list other metrics related to cache performance.

The previous eviction algorithm used in production [28]
uses heuristic to rank chunks. A score is computed for each
chunk by summing its request rate score and end of chunk
score, and the chunk with lowest score would be evicted. The
request rate score is calculated based on the chunk’s past
request rate, which captures the temporal locality. The end of
chunk score is a binary score indicating whether the previous
range request hits the chunk end. Since range requests for a
chunk are issued sequentially, after a client requests the last
byte of a video chunk, the same chunk is less likely to be
fetched again. This score captures the spatial locality.

2.2 Heuristic and Learned Cache Algorithms

Many heuristic cache algorithms maintain a priority queue
for objects in the cache and select the lowest priority object
to evict when a miss occurs. For example, A Least Recently
Used (LRU) policy uses the latest time of access for an object
to determine evictions. This ordering is good for workloads
where objects that have been accessed recently are more likely
to be accessed repeatedly. A First In First Out (FIFO) policy
uses the order in which items were inserted into the cache
for determining evictions. This ordering performs well for
workloads where objects are accessed sequentially. Managing
priority queues is efficient, which makes these algorithms
efficient as well. However, these algorithms work well in
some workloads, but not in others. Caching policies that can
self-tune and balance between different features, recency and
frequency in Adaptive Replacement Cache (ARC) [25] or
object size and frequency in Greedy-Dual-Size-Frequency
(GDSF) [12, 13], can cover a wider range of workloads but
only adapt to specific features [21], limiting their performance

for changing workloads.
Learning-based algorithms like LRB [32] achieve better

performance than heuristic algorithms, because they train a
model to learn the cache access pattern directly from the
trace instead of assuming a static workload behavior. As an
example, LRB maintains features for objects that are both
currently, and historically present in the cache, and trains a
regression model to predict an object’s time to next access.
When an eviction is required, it randomly samples 64 objects
and runs this predictive model on them and evicts the object
which is predicted to be accessed furthest in the future.

When optimizing the byte miss ratio for variable-size ob-
jects, the eviction methodology is similar to optimizing the
miss ratio for uni-size objects. This is because in the variable-
size object scenario, we can treat each eviction decision as
a group of decisions, which evicts each byte of an object
individually.

3 HALP Eviction Policy Design

Heuristic policy

C1
C2
C3
C4

Select
candidates

C4

Eviction
decision

Pairwise comparisons

Model weight update Unlabeled training data

<C1, C2, ?>
<C3, C4, ?>
<C1, C4, ?>

Post-hoc Labels

1 (C1 first re-accessed)
0 (C4 first re-accessed)
1 (C1 first re-accessed)

Training data queue

<C1, C2, 1>
<C3, C4, 0>
<C3, C4, 0>
<C1, C4, 1>

Model

Object
features

Score

Future requests

C1

Eviction

Online training

Figure 3: The architecture of HALP. A key component of
HALP is a neural network based score function, whose inputs
correspond to the features for a single eviction candidate, and
whose output is a real valued score which tracks the likelihood
of a quick re-access to the same object. When an eviction is
required, a heuristic policy (e.g., LRU) is used to propose
a small set of eviction candidates. Then a neural network-
based model ranks the eviction candidates and selects the
final eviction decision by pairwise comparisons. The same
pairwise comparisons are also used to generate training data
for online training.

This section describes the design of HALP, which is illus-
trated in Figure 3. A key component of HALP is a neural
network based score function, whose inputs correspond to
the features for a single eviction candidate, and whose output
is a real valued score which tracks the likelihood of a quick
re-access to the same object. When an eviction is required, a

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1151

heuristic policy is first used to propose a small set of eviction
candidates. Then, a neural network score function is used
to re-rank this small set of candidates, to identify the final
eviction decision. A key design challenge involves how to
learn the scoring function, which involves both generating the
training data and adjusting the weights of the neural network.
As part of its design, HALP also includes the steps required to
efficiently update this score function, starting with randomly
initialized weights.

Because of these design choices, HALP can be deployed
without the operational overhead of having to separately man-
age the labeled examples, training procedure and the model
versions in separate offline pipelines. Therefore, HALP has
minimal extra overhead for operation similar to other heuris-
tic policies, but has the added benefit of being able to take
advantage of additional features to make its eviction decisions
and continuously adapt to a changing access patterns.

To learn the score function efficiently, we convert the rank-
ing problem into a small set of pairwise preference queries,
which is a general and robust framework for learning to
rank [9, 29] multiple items from a list. As a result, HALP
makes repeated use of pairwise comparisons during decision
making to simultaneously generate training data for online
training. One challenge in efficiently managing the training
data is that the time required to identify the labels is non-
deterministic and depends on the future re-accesses to items.
HALP snapshots the features generated for pairwise com-
parisons used at eviction decision time saved as unlabeled
training data tuples (see Figure 3). In parallel, HALP contin-
uously observes incoming requests to resolve any pending
labels for prior comparisons and generate training data that
continuously updates the model.

3.1 Heuristic-based Candidate Selection

A key insight for ensuring a low overhead is that many objects
can be easily excluded from eviction consideration without
the need to use expensive computations, ML or otherwise.
For example, objects near the head of an LRU priority queue
are less likely to be good eviction candidates as opposed to
objects near the tail. Therefore, we can appropriately bias our
learned eviction towards only the tail instead of considering
the entire cache, saving overhead on training and inference.

The goal of using a heuristic policy for candidate selection
is to reduce the ML computational overhead. It also provides
a lower limit on decision quality. This heuristic algorithm can
be selected as LRU, LFU, or other heuristic policies. We find
in practice LRU policy is sufficient to achieve good perfor-
mance.

The number of eviction candidates is a hyperparameter. If
too many candidates are selected, the ML pipeline overhead
will be too high. But too few candidates may lead to not a
single good candidate to evict. We find empirically selecting
four candidates achieves a good balance between the recall of

good candidates and the incurred CPU overhead.

3.2 Ranking-based Learned Eviction

HALP is designed to provide better eviction decisions than
the heuristic algorithm in the general case. To achieve this, the
pairwise comparisons should pick the eviction decision that
is the best for improving cache efficiency. Since the goal of
cache eviction is to use the limited size of the cache to receive
as many hits as possible, finding the best eviction decision
is equivalent to ranking the candidate that will be accessed
furthest in the future (or not at all) highest, in effect evicting
it before other candidates.

After four eviction candidates are selected from the heuris-
tic, the best candidate is selected based on three pairwise
comparisons done in tournament style. The deselected can-
didates are re-inserted into the heuristic policy. In the case
for LRU, those deselected candidates are re-inserted into the
head of LRU queue.

To have a theoretical intuition that the combination of a
heuristic and a learning policy can increase the robustness of
eviction candidate selection, we analyze a simple Gaussian
model for the benefits of re-ranking in Appendix B. This anal-
ysis underlines the conditions under which such re-ranking
might generate more utility than the baseline heuristic.

Online Training. As shown in Figure 3, when a pairwise
comparison is done, the same pair of candidates is selected
to generate training data. However, at the time of prediction,
the required label (i.e., which of these two candidates will be
accessed further in the future) is not available. Therefore, an
initial feature snapshot is taken at the pairwise comparison
during eviction and is buffered in an unlabeled state with a
label placeholder until one of the candidates is accessed again,
making the label available. Accordingly, HALP maintains a
collection of pending comparisons. This collection of pending
comparisons continuously observes all incoming requests,
and upon the first access to either candidate, a binary label is
assigned to construct the training example.

HALP keeps the feature metadata of objects in a “ghost
cache”. For our application of video caching, this metadata is
lightweight relative to the sizes of the objects being cached,
therefore the information continues to be stored for keys that
are evicted from the cache up to a limit. This limit is set to be a
multiple of the number of elements in the actual cache to track
enough history. Evictions from the ghost cache are performed
using LRU when the size exceeds this set limit. When a
key is removed from the ghost cache, pending comparisons
associated with the key are also deleted.

The training data generated from the above procedure is
stored in an in-memory replay buffer. When the replay buffer
accumulates 1024 training entries, it creates a mini-batch to
update the ML model. The retrain batch size is a hyperparam-
eter of HALP and was chosen empirically. Theoretically, a

1152 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

pathological workload could have access pattern shifts align-
ing with the retraining period, causing HALP performance
degradation. However, we didn’t observe this in our produc-
tion workloads.

The online training framework and the model itself are writ-
ten using XLA [2] and carefully crafted C++ code to ensure
low overhead. We also leverage uncommon synchronization
primitives such as user space per CPU spinlocks and RCUs to
ensure maximum performance without sacrificing scalability
and thread safety in highly concurrent environments.

ML Model. The model is trained as a binary classification
task (which of a pair gets re-accessed first) with cross entropy
loss. It is a simple neural network model with one hidden
layer. We found that increasing the number of layers did not
help improve the model further. With this simple model, we
are able to run a pairwise prediction in 720 ns, and each
training in several ms. And HALP implementation is based
on Google’s SmartChoices service [10]. Details about the
loss function and the model weight updates are provided in
Appendix A.

Feature name Dimension

Access-based
Time between accesses 32
Exponential decay counters 10
Number of accesses 1
Average time between accesses 1
Time since last access 1

Video-specific
End of chunk 1

Table 1: Features used by HALP.

Features. Table 1 shows the features HALP uses. Of these
features, time since last access, time between accesses, and
exponential decay counters are the same as the features used
in [32]. Time since last access and time between accesses
capture short-term access patterns while they retain informa-
tion about at most 32 accesses. Exponential decay counters
(EDCs) capture longer term trends. The end of chunk score is
identical to the previous production algorithm (§2.1).

4 Impact Distribution Analysis

Comparing cache algorithms may seem like a straightforward
hypothesis test (e.g., t-test or z-test) over an A/B testing ex-
periment. A new algorithm with lower byte miss ratio that
passes the hypothesis test would generally be considered as an
improvement. However, the operating conditions in a large-
scale system could be very diverse, and understanding the

robustness of an improvement is critical to decision making
in practice.

To illustrate the risk of solely relying on mean-shift esti-
mates, consider a scenario where a new algorithm is beneficial
for most machines but performs extremely poorly for some
small set of machines. In that case, applying the new algorithm
everywhere could be sub-optimal. Any algorithms without a
theoretical performance lower-bound (relative to an optimal
solution) have these risks, but the concern is exacerbated for
learning algorithms that are prone to over-fitting.

A naive approach to the diversity problem is to enumerate
all configurations and perform separate A/B tests (e.g., one
test for each rack where workload and hardware is assumed
to be similar). However, this severely limits the number of
data points, and the signal to noise ratio for each configuration
could be very poor in a production setting. Figure 1 is a typical
example of byte miss ratio variation for production machines
on the same rack with identical setting.

We propose a novel impact distribution analysis to get a
more holistic picture of how a new algorithm is affecting the
fleet. Specifically, instead of estimating the average perfor-
mance change, we try to estimate the distribution of perfor-
mance changes across different conditions.

4.1 Model of Measurements

We model the measured relative improvement as

M = I +N (1)

where I represents actual impact and N represents the noise.
In other words, we model the PDF of M as a convolution
between I and N.

The core idea is that we could directly sample M by A/B
tests, and sample N by A/A tests (performance difference
measured in no-op experiment), and once we have those two
distributions, we can get to I by deconvolution.

4.2 Measurement Setup

The environment we want to measure the effect of using
HALP comprises of racks from hundreds of locations. In our
experiment setup, we randomly split machines in a rack into
three different configurations:

• Experiment Machines: Experiment machines use the
HALP algorithm.

• No-op Machines: No-op machines use the baseline
caching algorithm. They are used to measure the produc-
tion environment noise.

• Control Machines: Control machines also use the base-
line caching algorithm. They are selected as the baseline
to compare with the experiment group and no-op group.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1153

 Rack 1 exp
no-op

ctrl

Measurement 1

Noise 1
3

1

2

.

 Rack n exp
no-op

ctrl

Measurement n

Noise n

Figure 4: Impact distribution analysis procedure: 1. Estimate measurement distribution. 2. Estimate noise distribution. 3. Fit
impact distribution.

Figure 4 shows how the measurements from these three
groups are used to calculate the impact distribution. We first
collect the relative values (e.g., relative byte miss ratios) of
experiment machines over control machines as measurement
samples (Measurement M). Then we collect the relative val-
ues of no-op machines over control machines as an estimation
of the environment noise (Noise N). Finally, we fit an im-
pact distribution from the measurement distribution and noise
distribution using each comparison as a data point, as we
describe in the next subsection.

4.3 Fitting Impact Distribution

Algorithm 1 Algorithm for fitting impact distribution

Input: measurement samples M, noise samples N, and dis-
tribution candidates.

Output: measurement distribution PM , impact distribution
PI , noise distribution PN .

1: PN = FitByMLE(dist=“t-dist”,N)

2: for candidate_dist in candidate_distributions do
3: // Approximate PM by discretized grid G.
4: PI = FitByMLE(dist=candidate_dist,M,PN), with

PM(m)≈ ∑v∈G PN(v)PI(m− v)
5: end for
6: return PI with the highest likelihood

Algorithm 1 describes our algorithm to fit the impact dis-
tribution given sample M and N. We first fit the noise dis-
tribution PN using noise samples with maximum likelihood
estimation (MLE) (Line 1). We assume the noise has zero
mean and follows a t-distribution. We choose a t-distribution
because we expect noise to exhibit a symmetric and bell-
shaped behavior like the normal distribution but allow fitting

to have more degrees of freedom.
Next, we fit the impact distribution (Lines 2-5). This is

done in two steps. First, a distribution type for impact needs
to be chosen (Line 2). Since this depends on the setting, sev-
eral well-known distributions could be reasonable candidates.
Therefore, we iterate over a list of common distributions (beta,
non-central student, and skewed normal) and pick the one that
best fits our data. Second, we estimate the measurement dis-
tribution by discretizing the distribution into a fine-grained
grid G. Then we use the maximum likelihood estimation to
fit the chosen distribution candidate to find the measurement
distribution that is the best fit (Line 4).

Note that this method is only feasible because we have
machine data from more than 200 countries and territories.
Without enough samples the fitting will not be able to recover
impact accurately from the noise.

5 Evaluation

In this section, our goal is to answer the following questions
for HALP and our impact distribution analysis:

• Can HALP improve cache performance without causing
regression in production? (§5.3)?

• What is the computation overhead of HALP compared
to the previous production algorithm (§5.4)?

• How does HALP compare to other learned and heuristic
algorithms (§5.5)?

• What are the effects when changing HALP’s hyperpa-
rameters (§5.6)?

5.1 Deployment Setup
Deployment HALP was rolled out in production in early
2022. The rollout was done in stages, and the impact of the
new algorithm was monitored using the impact distribution

1154 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 7 14
Day

0.46

0.48

0.50

0.52

0.54

N
o
rm

a
liz

e
d
 b

yt
e
 m

is
s

ra
ti
o Rollout

Figure 5: YouTube fleet normalized byte miss ratio for the
DRAM level, before and after rollout.

analysis on the changes in DRAM byte miss ratio. Figure 5
shows the DRAM byte miss ratio changes in the fleet before
and after the rollout, which shows a fleet-wide drop.

Release Process HALP has an online design to make sure
that the model does not degrade over time. As a result, the
online model does not require new releases. While the model
does not need to go through production releases, code changes
and any improvements in HALP design go into production
through releases that happen periodically. HALP is integrated
into the existing YouTube release process, which guarantees
that during rollout, HALP goes through the release tests and
any code changes are released in a safe manner.

Monitoring As part of maintaining stable performance,
HALP is integrated into the monitoring setup used for moni-
toring YouTube deployment. In addition to existing metrics
that monitor cache efficiency, two new metrics were added to
monitor HALP performance: 1) model accuracy, and 2) the
byte miss ratio difference between HALP and a holdout pre-
vious production algorithm. For model accuracy, we monitor
model loss which is an indicator of how good the model deci-
sions are. For the byte miss ratio difference, we keep 1% of
the machines running with previous production algorithm and
alert if the byte miss ratio for machines using HALP become
worse than the heuristic algorithm. We do not use the impact
distribution analysis here as our goal is to detect abnormal
behaviors with a low false positive ratio.

5.2 Experimental Methodology

Production experiments. To measure reduction in the byte
miss ratio and overhead, we used production experiments and
our impact distribution analysis. To use the impact distribu-
tion analysis, we randomly selected a small percentage of
racks from all locations. For each rack, we selected one ex-
periment machine, one no-op machine, and the rest as control
machines (§4). We use one day of data for our measurement
after observing HALP training is stable.

-20 -10 0 9
Impact (%) on P95 byte miss ratio

0

5

10

15

20

D
e
n
si

ty

1.5% of machines show
small regressions when
noise is not taken
into account.

Noise fit
Measurement fit
Impact fit
Noise hist
Measurement hist

Figure 6: Our impact distribution analysis can “denoise" the
experiment measurements from the no-op measurements and
reveals HALP’s clear average 9.1% byte miss ratio reduc-
tion with negligible regression. When noise is not taken into
account, the measurements show 1.5% of racks that were im-
pacted negatively, where some machines showed up to 4%
byte miss ratio increase.

Simulation experiments. We use simulation to measure
how HALP compares to other cache algorithms and how
the changes in hyperparameters effect the performance of
HALP. Because simulation does not have production noise
and is deterministic, and direct comparisons can be set up
reliably, we compare the byte miss ratio from simulations
directly instead of using our impact distribution analysis.

For simulation experiments (except two experiments in
§5.5), we use traces from a small percentage of randomly
selected locations. For each location selected, we choose four
traces, each three days long, with each trace coming from
different quarters in the calendar year of 2021 (except the
retrain interval experiment uses six days long trace). Using a
diverse set of traces helps reduce seasonal/weekly noise. For
each simulation, the first day of the trace is used as a warm-up,
and we measure the P95 byte miss ratio of the next two days.

5.3 HALP Improvements in Production

P95 byte miss ratio. This experiment measures the impact
of HALP on the byte miss ratio, disk latency, and joint latency
during production. To measure the improvement, we collected
byte miss ratios from machines on randomly selected racks
and applied our impact distribution analysis. Figure 6 shows
the relative change in the byte miss ratio distribution. The
regions and lines are the P95 byte miss ratio distribution
relative to the control groups.

The blue region is the no-op group relative change distribu-
tion. Although the no-op group uses the same configuration
as the control group, the noise can cause up to 10% differ-
ence in P95 byte miss ratio. The blue dash line shows the
fitted t-distribution of the noise. The orange region is the mea-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1155

-25 0 25 50 75 100
Impact (%) on P50 disk latency

0

2

4

6

8

10
D

e
n
si

ty
Noise fit
Measurement fit
Impact fit
Noise hist
Measurement hist

Figure 7: Compared with the previous production algorithm,
HALP reduces disk first byte latency by an average of 3.8%.

surement distribution. The orange dash line shows the mea-
surement fitted gamma distribution, which was picked as the
best distribution for this specific measurement. When noise
is not taken into account, as shown by the orange dash line
there is 1.5% of racks that were impacted negatively, where
some machines showed up to 4% byte miss ratio increase.
However, just looking at the measurement fit, we do not know
whether the negative impact is because of the algorithm or
the production noise.

Our impact distribution analysis (Section 4) can “denoise"
the experiment measurements from the no-op measurements,
and the result is the green curve showing a clean byte miss
ratio reduction up to 24% with negligible regression, with an
average reduction of 9.1%. This shows HALP can not only
improve the average byte miss ratio, but also has negligible
regression. In addition, the variance of improvements also
shows different locations have different access patterns which
have different difficulty for learning.

Disk first byte latency. Disk first byte latency is the time
between a disk cache receives a request and returns the first
byte. It is a good indicator of DRAM cache efficiency because
a better DRAM eviction algorithm reduces the number of
requests to the disk layer, thus reducing the disk request queue
length. Figure 7 shows the disk first byte latency impact of
HALP. Compared with the previous production algorithm,
the change in latency ranges from a 13% reduction to a 5%
increase, with an average reduction of 3.8%.

The tail increase (the part of the impact fit that is above 0)
is likely to come from the object miss ratio increase, which is
more correlated with disk first byte latency than the byte miss
ratio. Different from the byte miss ratio, the object miss ratio
is the fraction of user requests missed in the cache. These two
metrics may conflict with each other. Since HALP’s primary
goal is to reduce the byte miss ratio, it may slightly increase
the object miss ratio in certain cases.

Join latency. Join latency is the time taken to start video
playback after the user hits “play”, and one of the most im-

portant metrics of streaming. Since join latency is a playback
metric that involves both clients and servers instead of servers
only, we are unable to use our impact distribution analysis to
measure it. We set up an experiment that distributes playbacks
from clients to server machines with and without HALP and
compares latency on clients. HALP reduces join latency from
1.03% to 1.41%, with an average reduction of 1.22%. This
shows that the improvement of the memory cache has a strong
impact on the end-to-end user experience.

5.4 HALP Computation Overhead

-40 -20 0 19
Impact (%) on P95 CPU per req

0

2

4

6

8

10

12

14

D
e
n
si

ty

Noise fit
Measurement fit
Impact fit
Noise hist
Measurement hist

Figure 8: The CPU overhead of HALP is 1.8% per request
with low variance. This implies the additional CPU cost is
roughly linear to the number of requests.

Learning comes with overheads, so it is important to mea-
sure these overheads and underline the trade-offs. In this
section, we show the computation overhead associated with
using HALP for cache eviction decisions, including prediction
and online training.

We have analyzed the extra CPU overhead that is incurred
while using HALP using our impact distribution analysis,
and Figure 8 shows the impact of P95 CPU normalized per
request. The CPU impact is consistently at 1.8% with low
variance, meaning the additional CPU cost is roughly lin-
ear to the number of requests. This is because both training
and prediction costs are roughly linear to the number of re-
quests. For training, the cost is roughly linear to the amount
of training data, and on average each prediction generates a
single pair of training data. In addition, each eviction requires
three pairwise comparisons. Finally, since all locations have
similar byte miss ratios, the number of evictions (misses) is
roughly linear in the number of requests. To conclude, the
computation overhead is small compared to the byte miss
ratio improvement.

5.5 HALP vs. Other Cache Algorithms
To further evaluate HALP, we ran simulation experiments to
compare it with other cache eviction algorithms.

1156 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.0

0.2

0.4

0.6

0.8

1.0

P9
5
 b

yt
e
 m

is
s

ra
ti
o
 (

n
o
rm

a
liz

e
d
)

LRU

FIFO

HALP

ARC

Trace id (sorted by HALP P95 byte miss ratio)

(a)

0 1 2 3
Time (day)

0.35

0.40

0.45

0.50

N
o
rm

a
liz

e
d
 b

yt
e
 m

is
s

ra
ti
o

Adaptive-TinyLFU
LRB_4_Eviction
LRB
HALP

(b) Developed market

0 1 2 3
Time (day)

0.45

0.50

0.55

0.60

N
o
rm

a
liz

e
d
 b

yt
e
 m

is
s

ra
ti
o

Adaptive-TinyLFU
LRB_4_Eviction
LRB
HALP

(c) Emerging market

Figure 9: (Fig. 9a) P95 byte miss ratios for different cache algorithms over a variety of traces in simulation. HALP achieves a
strictly better performance than all other algorithms on 92.6% of traces, and achieves the same performance as the best of the
other algorithms on 7% of traces, in effect performing worse than the best algorithm on only 0.4% of traces. (Figs. 9b and 9c)
Normalized byte miss ratio over time for HALP and LRB [32] on production traces from a developed market region, and an
emerging market region. HALP achieves a similar byte miss ratio, but only needs 4 eviction candidates compared to 64 for LRB.
Tuning LRB’s eviction candidates from 64 to 4 would increase P95 byte miss by about 2%.

Comparison with classic cache algorithms
We compared HALP with three heuristic cache algorithms:

LRU, FIFO, and ARC [25]. Figure 9a shows the normalized
P95 byte miss ratios for different traces, sorted by HALP P95
byte miss ratio. HALP achieves a strictly better performance
than all other algorithms on 92.6% of traces, and achieves the
same performance as the best of the other algorithms on 7%
of traces, in effect performing worse than the best algorithm
on only 0.4% of traces.

Comparison with advanced cache algorithms
We compared HALP with a state-of-the-art learned cache

algorithm LRB [32] and heuristic cache algorithm Adaptive-

64 128 256 512 1024
Cache size (GiB), log scale

20

10

0

10

20

30

B
yt

e
 m

is
s

re
d
u
ct

io
n
 (

%
)

to
 B

-L
R
U

LRB
Adaptive-TinyLFU
LRU

LeCaR
B-LRU

HALP

Figure 10: The byte miss reduction of different algorithms
compared to B-LRU on a public trace from a Wikipedia CDN
node. LRB, Adaptive-TinyLFU, HALP, and B-LRU achieve
the best performance individually at cache size 64 GiB, 128
GiB, 256 GiB, 512 GiB. At 1024 GiB, the cache is big enough
that all cache algorithms converge.

TinyLFU [15]. We use two YouTube production traces from
a developed market region and an emerging market region
in 2020 to get robust results. These traces are four days long.
Our implementation of LRB and Adaptive-TinyLFU is based
on LRB’s open-source simulator [1]. For a fair comparison,
we extended LRB’s features to be identical as HALP. We
tuned LRB’s major hyperparameter (memory window) using
its public implementation. In additional to using LRB’s orig-
inal 64 eviction candidates, we also tested using 4 eviction
candidates identical as HALP. Figure 9b and 9c show normal-
ized byte miss ratios over time for Adaptive-TinyLFU, LRB
with 4/64 eviction candidates, and LRB. We use the first day
of each trace as a warm-up, and exclude it from the figures.

Adaptive-TinyLFU achieves P95 byte miss ratios of 0.515
and 0.598 on two traces. Compared to it, LRB and HALP
achieve smaller ratios (0.479/0.565 for LRB, 0.475/0.564 for
HALP). HALP achieves similar P95 byte miss ratios com-
pared to LRB (0.17%/0.83% less byte misses) with less than
an order of magnitude computation overhead. For each evic-
tion it only compares 4 eviction candidates instead of 64
for LRB. As a result, HALP computes a prediction for each
eviction in 2.1 µs in comparison to 60 µs that is required by
LRB [32]. Tuning LRB’s eviction candidates from 64 to 4
would increase P95 byte misses by about 2% (to 0.489/0.575).
And this increase would be higher with larger cache sizes
given there are more number of objects in cache. In addition,
LRB’s performance is sensitive to the selection of its memory
window, which requires extensive tuning.

Comparison on a public general CDN trace
To test HALP’s performance on a general CDN workload, we

evaluated HALP on a trace from a Wikipedia CDN node [32].
We mimic LRB evaluation settings in cache sizes, the warmup
length, and the byte miss reduction metric (Figure 9(a) in
LRB), but we converted the object sizes into uni-size. We

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1157

select the uni-size to be 32 KiB to match the average request
size of the original trace. We compare HALP with the best-
performing cache algorithms in LRB evaluations, i.e., LRB,
Adaptive-TinyLFU, LeCaR, B-LRU, and LRU. We ran HALP
by our simulator, and baseline algorithms by LRB public sim-
ulator. For LRB, we use the hyperparameter values described
in the paper and its website. Compared to LRB, HALP does
not use the additional categorical feature in the trace.

Figure 10 shows the byte miss reduction of different algo-
rithms compared to an industry standard algorithm B-LRU
(LRU-eviction policy using a Bloom filter as admission con-
trol [24]). None of the algorithms achieves the best per-
formance across all cache sizes. LRB, Adaptive-TinyLFU,
HALP, and B-LRU achieve the best performance individu-
ally at cache size 64 GiB, 128 GiB, 256 GiB, 512 GiB. At
1024 GiB, the cache is big enough that all cache algorithms
converge. At such cache size B-LRU suffers from its admis-
sion control. Our observation for this trace is the frequency of
objects remains stable over time, making past frequency a reli-
able indicator of future frequency and allowing the frequency-
based heuristic algorithms such as Adaptive-TinyLFU to per-
form well. In contrast, the workload on YouTube exhibits
strong spatial locality, which means that past frequency is
less indicative of future frequency, resulting in a lower perfor-
mance of the frequency-based heuristic algorithms. Note the
differences between these results and Figure 9(a) in LRB are
likely due to the uni-size object transformation.

5.6 Hyperparameter Selection
We validate the effect of different hyperparameters. This in-
cludes different numbers of eviction candidates, different neu-
ral network architectures, and different retrain intervals.

Neural network architecture
HALP uses a simple neural network with one hidden layer.

Here we vary the number of hidden neurons in the hidden
layers and measure the byte miss ratio.

Fig. 11a shows the relationship between the geometric
mean of P95 normalized byte miss ratio of all traces as the
number of neurons in the hidden layers increase logarithmic
from 1 to 256. We see a marginal benefit by increasing the
number of neurons up to 8. Beyond this point, more hidden
representations do not help. To keep a safe margin, we select
the number of hidden neurons in our deployment to be 20.

Number of eviction candidates
HALP uses this parameter in training and prediction. After

candidates are selected by the heuristic policy, it iteratively
does pairwise ranking to select the final chunk to evict, and
later uses these comparisons to generate training data. We
vary the number of eviction candidates in the simulation, and
measure the byte miss ratio. Note that this changes training
and prediction distributions in lock-step.

Fig. 11b shows the relationship between the geometric

mean of P95 normalized byte miss ratio of all traces and
the number of candidates selected by the heuristic algorithm
varying from 2 to 16. As the number of eviction candidates in-
creases from 2 to 4, the byte miss ratio reduces from 60.4% to
59.3%. Further increasing the number of eviction candidates
has a marginal effect. Large numbers of eviction candidates
have a marginal benefit of the byte miss ratio, but too large
a number may harm the byte miss ratio if the other training
hyperparameters are not adjusted accordingly.

The number of pairwise comparisons per eviction increases
from 3 to 7 when the number of eviction candidates increases
from 4 to 8. This increase in CPU does not justify the less than
1% relative byte miss ratio reduction, as a result HALP uses
four eviction candidates and does three pairwise comparisons.

Retrain interval
HALP trains online as new requests are processed. We con-

duct simulation experiments to test different retrain intervals.
In order to only test the difference in updating the model
online, we increase the trace length to be 6 days from 3 days.
We use the first 3 days to train the model in the same retrain
interval, and validate that the training loss has been stable.
After that, we vary the retrain intervals in the next 3 days, and
only measure the byte miss ratio during the latter 3 days.

Fig. 11c shows the relationship between the geometric
mean of P95 normalized byte miss ratio of all traces and the
retrain intervals. As the retrain intervals increases from pro-
cessing every 1 new training data input to every 108 new train-
ing data input, the byte miss ratio slightly increases by less
than 0.2%. Our hypothesis is that the traffic pattern change is
slow in most traces. But to increase the algorithm robustness,
we keep the retrain interval to be every 1024 training data in-
put. This is acceptable in production given the CPU increase
is only 1.8% and enables the model to adjust to unpredictable
quick workload changes.

6 Related Work

Heuristic-based cache algorithm. Many heuristic-based
cache algorithms have been proposed in the past six decades,
and from them the most impactful ones include LRU,
FIFO, CLOCK [3], SLRU [19], 2Q [18], ARC [25], and
TinyLFU [15,16]. Many heuristic algorithms have low compu-
tation overhead and provable competitive ratios. But because
they are not adaptive enough, they work well in some traces
but not in others.

Learned cache eviction. Recently, many learning-based
cache algorithms have been proposed to make cache eviction
decisions. Table 2 summarizes the state-of-the-art learned
cache eviction and admission algorithms. We list four prop-
erties of learning-based cache algorithms: target application,
whether they are used to make admission or eviction deci-
sions, if they employ online learning, and which underlying
machine learning algorithm they employ.

1158 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 4 8 16 32 64 128 256
Number of neurons in the hidden layer

0.60

0.61

0.62

0.63

0.64

G
e
o
 m

e
a
n
 o

f
P9

5
 n

o
rm

a
liz

e
d
 B

M
R

(a)

2 4 8 16
Number of eviction candidates

0.590

0.592

0.594

0.596

0.598

0.600

0.602

0.604

G
e
o
 m

e
a
n
 o

f
P9

5
 n

o
rm

a
liz

e
d
 B

M
R

(b)

102 104 106 108

Retrain interval (#training data)

0.5946

0.5948

0.5950

0.5952

0.5954

0.5956

0.5958

G
e
o
 m

e
a
n
 o

f
P9

5
 n

o
rm

a
liz

e
d
 B

M
R

(c)

Figure 11: Geometric mean of P95 normalized byte miss ratio of all traces (a) as the number of neurons in the hidden layers
increases logarithmically from 1 to 256. We see a marginal benefit by increasing the number of neurons up to 8. (b) as the number
of candidates selected by the heuristic algorithm varies from 2 to 16. As the number of eviction candidates increases from 2 to 4,
the byte miss ratio reduces from 60.4% to 59.3%. Further increasing the number of eviction candidates has a marginal effect. (c)
as the retrain interval increases by how much training data is processed. As the retrain interval increases from processing every 1
new training data input to every 108 new training data input, the byte miss ratio slightly increases by less than 0.2%.

CACHEUS [26] proposes two new heuristic algorithms:
SR-LRU, a scan-resistant version of LRU, and CR-LFU, a
churn-resistant version of LFU. Then it proposes a regret
minimization algorithm to switch between these two experts.
As a limitation, the overall algorithm cannot adapt to a new
workload if neither of the two experts can adapt to it. In
addition, the metadata overhead scales linearly with the num-
ber of experts because each one needs to maintain its pri-
ority queue. [36] learns next request distribution from tags
collected by a distributed tracing framework. It combines a
lookup table, a K-Nearest Neighbor approach, and a Trans-
former model to achieve low overhead and high accuracy.
But it has a high learning overhead. LRB [32] uses a regres-
sion model to approximate Relaxed Belady, a relaxed oracle
algorithm. It uses random sampling to generate eviction can-
didates and training data. Because of a large number (64) of
candidates are needed, the eviction has a high computation
overhead. In addition, generating training data with enough
critical objects is costly due to the uniform sampling process.
And LRB’s performance is sensitive to the selection of the
memory window (its major hyperparameter).

Parrot [22] and LFO [8] use imitation learning to mimic
the oracle algorithm. The objective is to achieve an end-to-
end design, but they suffer from a distribution shift. This is
because they train their models in an offline fashion, and in
practice learning-based cache algorithms have a substantial
gap from an oracle, and the objects in the cache as a result
differ from a cache that would use an oracle algorithm.

AViC [5] is designed for a video streaming CDN, leverag-
ing the constant speed sequential access patterns, and predicts
the time to the next access for the following chunks. However,
it has a high implementation overhead because of the complex
synchronization between video sessions. Glider [31] targets
an eviction policy for CPU caches, and uses an LSTM model

for offline analysis. It uses a fast SVM model for an online
policy heavily leveraging the program counter (PC) address
feature, which is unavailable in the CDN domain.

LHD [6] estimates the hit density of an object between ad-
mission and eviction using Bayesian approaches. But it cannot
scale with increasing number of features since it does not have
a general model for prediction. Predictive Marker [23] is a
theoretical work using learning to augment a cache using the
Marker algorithm. This idea inspires the design of HALP.

Another line of works [14,20] use reinforcement learning to
directly optimize an eviction policy with the target objective.
But because cache feedback (hit) can take tens of millions
of steps, reinforcement learning approaches suffer from such
long feedback and currently have lower performance than
supervised learning approaches in practice.

Learned cache admission. In addition to learned eviction
policies, many recent research proposed to use learning in
cache admission. Cache admission is helpful when a cache
has a bottleneck in write constraints (e.g. SSD write amplifi-
cation and endurance), or a large portion of objects are never
reaccessed. The prominent papers include Flashield [17],
CacheLib [7], and CacheSack [35]. Because their decision
space is more limited than that of eviction algorithms, they
have worse performance. HALP’s eviction policy can be used
jointly with a learned admission policy.

Statistical hypothesis test. Many statistical hypothesis tests
have been proposed. But they often focus on using small data,
and not on measuring the distribution change. For example, a
standard t-test [33] measures the change of mean value.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1159

Algorithm Year
Target
application

Learned admission
or eviction Online learning? Algorithm

HALP (ours) 2022 CDN Eviction Yes
1-hidden-layer MLP,
Heuristic + pairwise preference
ranking from re-accesses.

CacheSack [35] 2022 Flash cache Admission Yes Greedy optimization

CACHEUS [26] 2021 Storage Eviction Yes
Heuristic algorithms
w. regret minimization

Learning on distributed
traces [36] 2021 Storage Eviction No

Lookup Table, K-Nearest
Neighbors, Transformers

LRB [32] 2020 CDN Eviction Yes Decision trees

Parrot [22] 2020 CPU Eviction No Transformers

CacheLib [7] 2020 Multipurpose Admission No Private

AViC [5] 2019 CDN Both No Decision trees

Glider [31] 2019 CPU Eviction Yes SVM

Flashield [17] 2019 Flash cache Admission No SVM

LHD [6] 2018 KV store Eviction Yes Probability model

LFO [8] 2018 CDN Eviction No Decision trees

Predictive Marker [23] 2018 / Eviction / Learning + Marker algorithm
Harvesting
randomness [20] 2017 KV store Eviction Yes Reinforcement learning

Table 2: A summary of state-of-the-art learned cache eviction and admission algorithms

7 Future Work

For future work, we aim to expand HALP to the SSD and
HDD caching tiers of the YouTube CDN. We also seek to
jointly optimize eviction and admission policies. Another line
of future work we plan to explore is to redesign the features
and model architecture leveraging existing hardware accel-
erators. Right now, HALP uses only CPUs and the pairwise
comparisons that use the model to pick candidates are subject
to the CPU overhead limits acceptable in production. With
accelerators like GPUs or TPUs we will be able to explore a
larger design space of features and model architectures. One
challenge here is how to design an asynchronous batched
eviction algorithm to achieve a high utilization of accelerators
while preventing it on path of cache operations that require a
low latency.

8 Conclusion

This work describes the design, implementation, and evalu-
ation of HALP, a learned caching algorithm that has been
deployed to a large-scale production CDN. We also describe
an impact distribution analysis method that allows us to mea-
sure the impact of deploying a new cache algorithm in a

production setting with significant measurement noise. The
key insight of HALP is to augment a preexisting heuristic
caching policy with machine learning, using the heuristic
policy to pick candidates for eviction and the ML model to
decide which candidate to evict. The key insight of our impact
distribution analysis is modeling machine level measurement
noise by comparing machines with HALP deployed against
no-op machines.

These design decisions enable HALP’s robust byte miss
reduction by an average of 9.1%. In addition, these improve-
ments were achieved with a modest CPU overhead of 1.8%.

Acknowledgements

We are grateful to our anonymous reviewers, our shepherd
Francis Yan, Ken Barr, Nils Krahnstoever, Jeff Dean, Martin
Maas whose extensive comments substantially improved this
work. We also thank Yundi Qian and Richard McDougall who
contributed to the early stages of the project.

1160 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] LRB open-source simulator. https://github.com/
sunnyszy/lrb.

[2] XLA. https://www.tensorflow.org/xla.

[3] A paging experiment with the multics system. MIT Press,
1969.

[4] Vijay Kumar Adhikari, Sourabh Jain, and Zhi-Li Zhang.
Youtube traffic dynamics and its interplay with a tier-
1 isp: An isp perspective. In Proceedings of the 10th
ACM SIGCOMM Conference on Internet Measurement,
IMC ’10, page 431–443, New York, NY, USA, 2010.
Association for Computing Machinery.

[5] Zahaib Akhtar, Yaguang Li, Ramesh Govindan, Emir
Halepovic, Shuai Hao, Yan Liu, and Subhabrata Sen.
Avic: a cache for adaptive bitrate video. In Proceedings
of the 15th International Conference on Emerging Net-
working Experiments And Technologies, pages 305–317,
2019.

[6] Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
LHD: Improving cache hit rate by maximizing hit den-
sity. In USENIX NSDI, pages 389–403, 2018.

[7] Benjamin Berg, Daniel S Berger, Sara McAllister, Isaac
Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar,
Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, et al.
The CacheLib caching engine: Design and experiences
at scale. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
753–768, 2020.

[8] Daniel S Berger. Towards lightweight and robust ma-
chine learning for cdn caching. In ACM HotNets, pages
134–140, 2018.

[9] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari
Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullen-
der. Learning to rank using gradient descent. Proceed-
ings of the 22nd international conference on Machine
learning, 2005.

[10] Victor Carbune, Thierry Coppey, Alexander Daryin,
Thomas Deselaers, Nikhil Sarda, and Jay Yagnik.
Smartchoices: hybridizing programming and machine
learning. arXiv preprint arXiv:1810.00619, 2018.

[11] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez,
Yong-Yeol Ahn, and Sue Moon. I tube, you tube, every-
body tubes: Analyzing the world’s largest user generated
content video system. In Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement, IMC
’07, page 1–14, New York, NY, USA, 2007. Association
for Computing Machinery.

[12] Ludmila Cherkasova. Improving WWW proxies perfor-
mance with greedy-dual-size-frequency caching policy.
Technical report, Hewlett-Packard Laboratories, 1998.

[13] Ludmila Cherkasova and Gianfranco Ciardo. Role of
aging, frequency, and size in web cache replacement
policies. In Bob Hertzberger, Alfons Hoekstra, and Roy
Williams, editors, High-Performance Computing and
Networking, pages 114–123, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

[14] Renato Costa and Jose Pazos. Mlcache: A multi-armed
bandit policy for an operating system page cache. Tech-
nical report, University of British Columbia, 2017.

[15] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben
Manes. Adaptive software cache management. In ACM
Middleware, pages 94–106, 2018.

[16] Gil Einziger and Roy Friedman. TinyLFU: A highly
efficient cache admission policy. In IEEE Euromicro
PDP, pages 146–153, 2014.

[17] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a hybrid key-value cache
that controls flash write amplification. In USENIX NSDI,
pages 65–78, 2019.

[18] Theodore Johnson and Dennis Shasha. 2Q: A low over-
head high performance buffer management replacement
algorithm. In VLDB, pages 439–450, 1994.

[19] Ramakrishna Karedla, J Spencer Love, and Bradley G
Wherry. Caching strategies to improve disk system
performance. IEEE Computer, 27(3):38–46, 1994.

[20] Mathias Lecuyer, Joshua Lockerman, Lamont Nelson,
Siddhartha Sen, Amit Sharma, and Aleksandrs Slivkins.
Harvesting randomness to optimize distributed systems.
In ACM HotNets, pages 178–184, 2017.

[21] Jie Li, Jinlong Wu, György Dán, Åke Arvidsson, and
Maria Kihl. Performance analysis of local caching
replacement policies for internet video streaming ser-
vices. In 2014 22nd International Conference on
Software, Telecommunications and Computer Networks
(SoftCOM), pages 341–348, 2014.

[22] Evan Liu, Milad Hashemi, Kevin Swersky, Parthasarathy
Ranganathan, and Junwhan Ahn. An imitation learn-
ing approach for cache replacement. In International
Conference on Machine Learning, pages 6237–6247.
PMLR, 2020.

[23] Thodoris Lykouris and Sergei Vassilvtiskii. Competitive
caching with machine learned advice. In International
Conference on Machine Learning, pages 3296–3305.
PMLR, 2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1161

https://github.com/sunnyszy/lrb
https://github.com/sunnyszy/lrb
https://www.tensorflow.org/xla

[24] Bruce M Maggs and Ramesh K Sitaraman. Algorithmic
nuggets in content delivery. ACM SIGCOMM CCR,
45:52–66, 2015.

[25] Nimrod Megiddo and Dharmendra S. Modha. ARC: A
Self-Tuning, low overhead replacement cache. In 2nd
USENIX Conference on File and Storage Technologies
(FAST’03), San Francisco, CA, March 2003.

[26] Liana V Rodriguez, Farzana Yusuf, Steven Lyons, Eysler
Paz, Raju Rangaswami, Jason Liu, Ming Zhao, and
Giri Narasimhan. Learning cache replacement with
CACHEUS. In 19th USENIX Conference on File and
Storage Technologies (FAST 21), pages 341–354, 2021.

[27] Sandvine. The global internet phenomena re-
port january 2022, January 2022. Available at
https://www.sandvine.com/hubfs/Sandvine_
Redesign_2019/Downloads/2022/Phenomena%
20Reports/GIPR%202022/Sandvine%20GIPR%
20January%202022.pdf?utm_referrer=https%3A%
2F%2Fwww.sandvine.com%2Fphenomena, accessed
06/17/22.

[28] Richard Schooler and Pawel Jurczyk. Streaming media
cache for media streaming service, August 27 2019. US
Patent 10,397,359.

[29] Nihar Shah and Martin Wainwright. Simple, robust and
optimal ranking from pairwise comparisons. Journal of
Machine Learning Research, 18:1–38, 2018.

[30] Shailesh Shukla. Introducing media cdn—the
modern extensible platform for delivering im-
mersive experiences, April 2022. Available at
https://cloud.google.com/blog/products/
networking/introducing-media-cdn, accessed
09/07/22.

[31] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin
Lin. Applying deep learning to the cache replacement
problem. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages
413–425, 2019.

[32] Zhenyu Song, Daniel S Berger, Kai Li, and Wyatt Lloyd.
Learning relaxed belady for content distribution network
caching. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
529–544, 2020.

[33] Student. The probable error of a mean. Biometrika,
pages 1–25, 1908.

[34] Giuseppe Vietri, Liana V Rodriguez, Wendy A Martinez,
Steven Lyons, Jason Liu, Raju Rangaswami, Ming Zhao,
and Giri Narasimhan. Driving cache replacement with
ML-based LeCaR. In USENIX HotStorage, 2018.

[35] Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Mer-
chant, and Homer Wolfmeister. CacheSack: Admission
optimization for google datacenter flash caches. In 2022
USENIX Annual Technical Conference (USENIX ATC
22), pages 1021–1036, 2022.

[36] Giulio Zhou and Martin Maas. Learning on distributed
traces for data center storage systems. Proceedings of
Machine Learning and Systems, 3, 2021.

A Details about the loss function and model
weight updates

To explain why we use a cross entropy loss: let w denote the
neural network weight parameters and sw(f (k, t)) denote the
score output of the neural network for features corresponding
to cache key k at time t. Assume that the feedback generation
process for the pairwise comparison orders the cache key
k1 ahead of k2 while querying for the first access to either
after time t (i.e. k1 arrives before k2 for the first access to
either of them after time t). In this case, the cross entropy loss
penalizes the loss according to how much the predicted score
for k2 exceeds that of k1. Specifically, with ∆ = sw(f (k2, t))−
sw(f (k1, t)), as the difference in scores, the neural network
weight parameters w are adjusted based on the gradient of the
loss function log(1+e∆). When ∆ << 0, the loss is close to 0,
but when ∆ >> 0, the loss is linear in ∆ and varies smoothly
around 0.

B Analysis of a simple model for reranking

Let (U,H,L) be a triple of jointly distributed random vari-
ables. Let

(U1,H1,L1), . . . ,(Un,Hn,Ln)

be id samples ∼ (U,H,L). The value Hi corresponds to the
score for item i predicted by some (heuristic) ranking policy
and similarly, Li corresponds to the score predicted by, (say
a learned) ranking policy L. Ui denotes the true utility from
object i, but this is a latent variable. The problem is to choose
an index i such that Ui is as large as possible. Define the
expected utility of a policy X ∈ {U,H,L} as follows:

U(X) = E[Uargmaxi(Xi)]

We’d like to pick i∗ , argmaxi(Ui), which achieves the op-
timal utility U(U), but we only observe (H,L) with U be-
ing a latent variable. Given two ranking policies H and L,
define an aggregate selection policy on them, π(H,L) as a
map 2, π : R2n 7→ [n], and the resulting expected utility as
U(π), E[Uπ(H,L)]. Next, we describe and analyze a simple
aggregation strategy that we’ve discovered to be useful in
learned caching. Let λX (i) be defined as the item with ranked

2[n] denotes the set {1, . . . ,n}

1162 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2022/Phenomena%20Reports/GIPR%202022/Sandvine%20GIPR%20January%202022.pdf?utm_referrer=https%3A%2F%2Fwww.sandvine.com%2Fphenomena
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2022/Phenomena%20Reports/GIPR%202022/Sandvine%20GIPR%20January%202022.pdf?utm_referrer=https%3A%2F%2Fwww.sandvine.com%2Fphenomena
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2022/Phenomena%20Reports/GIPR%202022/Sandvine%20GIPR%20January%202022.pdf?utm_referrer=https%3A%2F%2Fwww.sandvine.com%2Fphenomena
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2022/Phenomena%20Reports/GIPR%202022/Sandvine%20GIPR%20January%202022.pdf?utm_referrer=https%3A%2F%2Fwww.sandvine.com%2Fphenomena
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2022/Phenomena%20Reports/GIPR%202022/Sandvine%20GIPR%20January%202022.pdf?utm_referrer=https%3A%2F%2Fwww.sandvine.com%2Fphenomena
https://cloud.google.com/blog/products/networking/introducing-media-cdn
https://cloud.google.com/blog/products/networking/introducing-media-cdn

order3 i when using the ranking policy X for X ∈ {U,H,L}.
For each k ∈ [n], define πk(H,L) as the item chosen when
re-ranking the top k items in the heuristic H according to L.

πk(H,L), λH(j), where j = argmax
i∈[k]

LλH (i)

Figure 12: The benefit of rank aggregation evaluated over var-
ious configurations for the correlation coefficients based on a
sample of N = 20 items. The diagonal line indicates points
at which ρH = ρL. The green region indicates configurations
where U(π2(H,L))> U(H) based on a 95% confidence in-
terval generated from bootstrap estimates of the sample mean.
the blue region indicates areas where U(π2(H,L))> U(H)
with at least a 95% CI. The grey areas are where the con-
fidence interval overlaps with 0. Interestingly, even when
ρH > ρL, it could be advantageous to switch to the lightweight
reranking of just the top two items despite having a poor (e.g.,
learned) policy L. Our experiments indicate that as we in-
crease n, it is better to uniformly switch from H to π2(H,L)
for all configurations.

The notation implies π1(H,L) = λH(1) and
πn(H,L) = λL(1). In other words, U(π1(H,L)) = U(H) and
U(πn(H,L)) = U(L). To understand precisely when the
proposed aggregation might help, we now make some as-
sumptions to help with mathematical tractability, analysis and
visualization. Let ρH ≥ 0,ρL ≥ 0 be such that ρ2

H +ρ2
L ≤ 1,

and consider the jointly Gaussian distribution,

(U,H,L)∼N

0,


1 ρH ρL

ρH 1 0

ρL 0 1




It is clear that U(H) and U(L) are monotone in ρH ,ρL respec-
tively under the above assumptions. To map the above model

3order 1 is the largest item.

to a motivating practical scenario, think of H as an efficient
heuristic strategy (e.g. LRU). L could be imagined to be a
learned policy that is (1) expensive to evaluate (2) not always
safe, i.e. we can end up with ρL < ρH . The proposed mecha-
nism addresses both of these issues simultaneously. For (1)
we only need to invoke L on at most e.g. k = 2 items, and for
(2) the below claim argues that we get an improved outcome,
U(π2(H,L)) compared to the baseline strategy U(H) (which
is also naturally greater than U(L), when ρH > ρL). Based on
numerical analysis, we observe, and hypothesize more gener-
ally, that as n→ ∞, the re-ranking strategy improves over the
pure heuristic policy, i.e. U(π2(H,L)) > U(H). The above
hypothesis applies to arbitrary positive values of ρH and ρL.
It says that we can improve on H even with a worse alternate
policy L. This helps give some evidence for why such a strat-
egy appears to be “safe” in terms of improvement over the
baseline. In Figure 12, we plot the situation numerically for
N = 20, for all possible problem configurations of ρH ,ρL.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1163

OpenLoRa: Validating LoRa Implementations
through an Extensible and Open-sourced Framework

Manan Mishra
University of Wisconsin-Madison

Daniel Koch
University of Wisconsin-Madison

Muhammad Osama Shahid
University of Wisconsin-Madison

Bhuvana Krishnaswamy
University of Wisconsin-Madison

Krishna Chintalapudi
Microsoft Research

Suman Banerjee
University of Wisconsin-Madison

Abstract
LoRa is one of the most widely used LPWAN communication
techniques operating in the unlicensed sub-GHz ISM bands.
Its long range however also results in increased interference
from other LoRa and non-LoRa networks, undermining net-
work throughput due to packet collisions. This has motivated
extensive research in the area of collision resolution tech-
niques for concurrent LoRa transmissions and continues to
be a topic of interest. In this paper, we verify the implementa-
tion and efficacy of four of the most recent works on LoRa
packet collisions, in addition to standard LoRa. We implement
OpenLoRa, an open-source, unified platform to evaluate these
works and extensible for future researchers to compare against
existing works. We implement each of the four techniques
in Python as well as separate the demodulator and decoder
to provide benchmarks for future demodulators that can be
plugged into the framework for fair and easy comparison
against existing works. Our evaluation indicates that existing
contention resolution techniques fall short in their throughput
performance in practical deployments, especially due to poor
packet detection in low and ultra-low SNR regimes.

1 Introduction

LoRa is one of the most widely used Low Power Wide Area
Network (LPWAN) technologies for IoT applications such
as smart cities [1, 2], smart agriculture [3, 4], and industrial
IoT [5, 6]. LoRa’s popularity stems from its long operating
range, low power consumption, low-cost, and ease of deploy-
ment [7–10]. Its long range however, is a double-edged sword
as it also results in increased interference from other inde-
pendently deployed LoRa networks, leading to poor network
throughput due to packet collisions [11, 12]. Ghena et.al [13]
show that LoRa falls short of meeting the requirements for
a large variety of IoT applications due to two key reasons :
(a) under-utilization of the network capacity and (b) lack of
co-existence between networks.

Recently, a large number of LoRa collision resolution
techniques have been proposed to address the above chal-

lenges: Choir [14], FTrack [15], NScale [16], CoLoRa [17],
mLoRa [18], CIC [19], Pyramid [20], and AlignTrack [21].
These techniques develop novel LoRa de-modulation algo-
rithms that can simultaneously decode multiple colliding
LoRa packets to improve network throughput and address
scalability challenge faced by LoRa networks.

In this paper, we seek to compare and verify the efficacy of
state-of-the-art in LoRa collision resolution algorithms and
ask the question, “How effective are state-of-the-art collision
resolution techniques in improving network throughput?” .
Our goal is to evaluate and analyze various existing techniques
in a variety of important scenarios such as indoor/outdoor and
low/high-SNR networks. Towards this evaluation, we have
developed OpenLoRa, an extensible, open-source framework
using Python to implement each of the demodulators and
design an evaluation pipeline, along with extensive datasets
that can be used for benchmarking future works in LoRa
receiver designs. To this end, we pick four recent techniques,
(i) FTrack [15], (ii) NScale [16], (iii) CoLoRa [17], and (iv)
CIC [19] that provide public implementations.

The motivation for our paper stems from several key gaps
in the available implementations and evaluations.
Lack of throughput evaluations. While increasing network
throughput (in kilo bits per second) is their key goal, most
LoRa packet collision resolution literature evaluates the per-
formance of the demodulator only, which outputs data sym-
bols rather than bits; this can perhaps be attributed to the
difficult task of recreating LoRa’s encoder and decoder. In
the absence of the decoder, one can only evaluate the average
symbol error rate, but not bit or packet error rates and hence
network throughput in kbps. As we demonstrate in Section
§5.1, lower symbol error rates do not necessarily translate to
lower packet error rates and corresponding higher network
throughput. In fact, seemingly lower symbol error rates com-
pared to standard LoRa might still result in lower throughput!
Lack of co-existence evaluation. Although co-existence of
LoRa networks has been identified as a key challenge [11–13],
to the best of our knowledge existing literature has not studied
the impact of interference due to other LoRa and non-LoRa

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1165

Figure 1: Overview of OpenLoRa, the proposed open-source framework

networks on the efficiency of collision resolution. In this
paper, we design and perform a new set of experiments to
measure the impact of LoRa interference from networks with
different SF and non-LoRa interference such as FSK on the
network throughput performance.
Lack of a uniform evaluation and a benchmark datasets.
Understanding and analyzing the performance of various tech-
niques in different settings is crucial to future research. Exist-
ing evaluations differ in terms of evaluation metrics, method-
ology, scenarios that impact performance such as signal-to-
noise-ratio (SNR), indoor/outdoor settings, nature of traffic,
effect of bursts etc. In some cases, these have only been stud-
ied using simulations. In this paper, we create a set of bench-
mark datasets spanning various important LoRa scenarios that
can be used to evaluate uniformly. In our experiments we find
that existing techniques under-perform compared to standard
LoRa in very low SNR scenarios.
Implementation variability. Current implementations do
not use a common tool: Python, GNURadio, and MATLAB
are some of the tools used. Additionally, each of the imple-
mentations have a different data preprocessing methodology,
making it a challenging task to input a sample file and deter-
mine the metrics of interest. Therefore, despite the availability
of public code repository, it is a challenging task to input a
new file and obtain the performance of the demodulator.

In order to address the above gaps, we have implemented
an evaluation framework (depicted in Figure 1) with the goal
of providing a common framework to benchmark existing
methods. We believe that our extensible framework will help
future researchers evaluate LoRa collision resolution tech-
niques uniformly against prior works with common datasets,
and analyze them. OpenLoRa includes a pipeline of four key
stages. First, a suite of experimental datasets comprising re-
ceived raw samples of LoRa transmissions obtained from
various experimental deployments, specifically designed to
evaluate various important aspects of collision resolution algo-
rithms. Second, a uniform Python based interface to interact
with each demodulator. A future LoRa demodulator algorithm
can be simply plugged into this framework and compared
against other implementations on the metrics of interest for

real-world deployments. Third, a standard LoRa decoder that
can convert symbols generated by any demodulator into pack-
ets, so that we can measure bit error rates, packet error rates,
and throughput. Last but not the least we provide a suite of
important metrics such as bit error rate, packet reception rate,
and network throughput.

In summary, we make the following contributions towards
our verification of state-of-the-art LoRa demodulators:

• We present OpenLoRa, an extensible, open-source frame-
work to evaluate and compare different techniques that we
hope future researchers will be able to use (provided in
GitHub repository1 as well as in a Docker container2 en-
abling environment-independence to run the demodulators
locally). Our framework comprises benchmark datasets, a
standard interface to plug in various demodulators, a LoRa
decoder that outputs bits and a suite of relevant metrics.

• We implement and verify the performance of four state-of-
the-art LoRa collision resolution demodulators and standard
LoRa, comparing their throughput (in kbps) improvements.
We find a surprising fact that even though many techniques
decode more symbols on average than standard LoRa, this
does not necessarily translate to throughput improvements.
As the network traffic increases in long-range outdoor sce-
narios, standard LoRa outperforms all existing techniques.

• In order to cross-validate the results reported in original
works, we recreate the key experimental scenarios presented
by each and compare the results. Our results are in line with
the results in the respective papers evaluated. This extra
effort validates the fidelity of our framework and implemen-
tation of various demodulators.

• We develop a web interface3 for users to easily add new
custom demodulation techniques for benchmarking and
analyze the performance of implemented techniques.

1https://github.com/UW-CONNECT/OpenLora
2Linked in OpenLoRa Github page.
3https://openlora.wisc.edu

1166 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://openlora.wisc.edu

• We implement and validate the standard LoRa decoder in
Python, allowing the comparison of different demodulation
techniques based on end-to-end metrics such as throughput
(in kbps) and the number of successfully received packets
after error correction. We hope this openly accessible im-
plementation enables future researchers to evaluate their
works based on similar end-user metrics.

• We design new experiments to study the effects of colli-
sions under extremely-low SNR, interference from LoRa
networks with different spreading factor and non-LoRa in-
terference such as Frequency-Shift-Keying from other net-
works on the throughput performance.

2 LoRa Demodulators Validated

In LoRa, data is modulated using a Chirp Spread Spec-
trum (CSS) scheme which confers it long range and sub-
noise decoding ability. We present details on LoRa’s mod-
ulation/demodulation and effects of collision on network
throughput in Appendix A. Choir [14] is a pioneering work in
LoRa collision resolution with the goal of improving network
throughput. It leverages the inherent hardware imperfections
in the radio of LoRa transmitters and distinguishes collid-
ing packets by uniquely mapping their imperfections to the
transmitters. mLoRa [18] leverages Successive Interference
Cancellation to iteratively decode the symbols with the high-
est power and remove them from consideration. In this paper,
we implement four demodulator algorithms that improve upon
Choir and mLoRa to decode multi-packet collisions. We dis-
cuss these demodulators in the rest of the section.

2.1 FTrack [15]
FTrack is one of the first approaches to use time and fre-
quency domain features to resolve LoRa collisions. FTrack
relies on Short Time Fourier Transform (STFT) to obtain time
and frequency features. FTrack proposes to apply STFT on
the dechirped LoRa symbol to leverage the spread spectrum
gain as well as to remove the linear change in frequency with
time. Appendix B.1 explains how FTrack chooses an appropri-
ately sized window and leverages time-frequency resolution
to resolve collisions.

2.2 CoLoRa [17]
CoLoRa, similar to FTrack, leverages time offsets and fre-
quency features to resolve collisions. CoLoRa observes that
collided packets are misaligned in time and therefore have
different lengths of symbol segments appearing in the de-
modulation window. This results in FFT peaks with heights
proportional to the length of the symbol in the current demod-
ulation window. CoLoRa also observes that the ratio of FFT
peak between two consecutive windows remains the same

throughout a packet. It uses these key insights to translate
time offsets to frequency features and differentiate colliding
packets. Details on CoLoRa’s demodulation window choice
and the use of peak ratios can be found in Appendix B.2.

2.3 NScale [16]
As the range increases, the SNR of LoRa packets decreases
and the relative performance improvement of FTrack and
CoLoRa degrades. NScale [16] focuses on decoding packet
collisions at SNRs as low as -10dB. Similar to CoLoRa, it
translates the timing offsets to frequency features and further
amplifies the time offsets by non-stationary signal scaling.
NScale’s strength lies in its ability to decode and resolve
LoRa packet collisions at SNRs below -10 dB. In Appendix
B.3, we explain how NScale achieves sub-noise decodability.

2.4 Concurrent Interference Cancellation [19]
Concurrent Interference Cancellation (CIC) also leverages
time and frequency domain analysis to decode multi-packet
collisions. CIC identifies that due to Heisenberg’s Time Fre-
quency Uncertainty Principle, one can achieve either the best
frequency resolution or best time resolution, not both. CIC
attempts at getting the best of both resolutions by accumulat-
ing multiple windows of varying lengths, resulting in varying
time and frequency resolutions. Appendix B.4 explains CIC’s
technique to resolve packet collisions.

3 Framework Implementation

We implement OpenLoRa and evaluate standard LoRa,
FTrack, CoLoRa, NScale, and CIC in a uniform framework
using Python as illustrated in Fig. 1. The extensible frame-
work also provides the ability to add a new demodulator and
evaluate its performance against the implemented techniques
over the datasets collected over a range of scenarios.

We have built an easy-to-use web interface to help users
analyze the implemented demodulators’ performance in more
detail. We also provide the option to plug-in one’s own new de-
modulator for benchmarking, with a few simple steps. Some
screenshots to walk through the web page are provided in
Fig. 2. The homepage asks for user selection to either add
a new demodulator or run existing techniques as shown in
Fig. 2(a). Fig 2(b-c) show the flow to add a new custom de-
modulator with the user downloading the existing framework,
adding their files, testing on a sample dataset and uploading
to run and compare against already implemented techniques.
Similarly, Fig 2(d-f) show the flow to analyze the existing de-
modulators in detail by choosing a scenario and configuration
among those presented in Section §5 and presenting detailed
data points as well as plots.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1167

OpenLoRa has a pipeline of four major blocks: datasets,
interface to the demodulators, decoder, and metrics. We de-
scribe each one of these blocks in detail below.

3.1 Datasets : Experimental setup for data col-
lection

For a thorough and fair evaluation of the demodulation algo-
rithms, a uniform set of data sample files is necessary. We
deployed practical networks of LoRa nodes in varying config-
urations (SF and BW) and scenarios (Line-of-Sight, SNR) as
shown in Fig 3. We believe the presented evaluation accounts
for a comprehensive (but not exhaustive) set of conditions
to assess the feasibility of real-world usage, and serve as a
benchmark to gauge the performance of future work in this
domain. We will make the datasets, along with the ground
truth, publicly available for reproducibility. We believe this
will help other researchers to evaluate their work on a variety
of scenarios as well.

We used 20 battery-powered Adafruit Feather M0 with
RFM95 [22] as LoRa transmitters deployed in the following
settings, with a USRP B200 as the receiver. Unless other-
wise mentioned, by default, each transmitter sends a known
message, while the duty cycle and the load follows a Poisson
distribution. The arduino code flashed onto Adafruit Feather
M0 boards and the circuit diagram to setup the boards can
be found in the github repository 4 under the folder Exper-
iment_ Setup. At each of the locations (red dots in Fig. 3),
the individual transmitters were verified to be reachable from
the receiver i.e.,in the absence of collisions, LoRa packets
from each of the transmitters were successfully received us-
ing the standard LoRa demodulator. Each data point in the
evaluation results was averaged over multiple iterations of
data transmissions (ranging from a minimum of 200 packets
to over 6000 packets depending on the scenario). The details
on each experimental setup and the methodology specific to
each experiment can be found in the Appendix E. The three
settings used in our experiments are:

1. Indoor Line-of-Sight (LoS) : This setting serves as a high-
SNR scenario in our experiments. Twenty LoRa nodes
were deployed in a 15m x 10m room, distributed uniformly
in LoS with the receiver as shown in Fig. 3 (a). This setting
emulates a deployment similar to a smart home, with IoT
nodes distributed in a small space, many of which have LoS
to the receiver. In this setup, we performed experiments
which required precise control over collision parameters,
parametric analysis with controlled time offset between
colliding packets, concurrent collisions, and high SNR
collisions.

2. Indoor Non-Line-of-Sight (NLoS) : This setting serves
as a low-SNR setting inside a building spanning an area of

4https://github.com/UW-CONNECT/OpenLora/tree/main/Experiment_
Setup

150 m x 75 m (per floor) over two floors. The transmitters
were deployed as per Fig. 3 (c) and (d), showing the distri-
bution of nodes on first and second floor respectively. The
nodes were distributed in NLoS setting, separated from
the receiver by multiple concrete walls, elevator shafts,
and metal obstructions. This setting emulates a typical
deployment of IoT nodes in an indoor office or factory
building, with human movement as well as wireless traf-
fic interfering with active transmissions. This setup was
used to collect datasets for collisions with increasing ag-
gregate transmission rate. We also performed controlled
interference experiments here.

3. Long-range outdoor : This setting serves as an extremely
low-SNR setting with nodes at distances of 1 to 8.25 km
from the receiver. The nodes were distributed across urban
areas and along a lake shore as seen in Fig. 3 (b). This set-
ting emulates applications which particularly befit the use
of LoRa modulation where communication over long dis-
tances is necessary, such as city monitoring applications or
sensor deployment across huge agricultural fields. We col-
lected datasets for various transmission rates in extremely
low-SNR conditions.

3.2 Demodulators Block
Fig. 13 in Appendix C.1 shows an overview of the Python
implementation and how the demodulators were integrated
into the overall flow of the framework. Appendix C.2 also
describes the organization of the implementation code into
Python modules. We thank the authors of each of the works
presented here for sharing their implementations with us. In
addition to re-implementing the code in Python, the following
refinements were made to accept and pre-process a variety
of datasets, as well as to reduce the computation time of
demodulation using parallel processes:
FTrack : FTrack processes the entire input data file at once.
While it is feasible for slices with a few packets, it is com-
putationally intensive for real-life data capture with tens of
million of samples. This also posed a challenge in the mem-
ory constraints for practical datasets such as those from our
experiments. To mitigate this, we built a pre-processing block
that separates out the active data transmission from silence
periods based on energy thresholds of the signal and passes
only the valid transmission data to the demodulator. FTrack’s
demodulator algorithm uses a number of threshold parame-
ters for separating collisions such as peak power ratio, noise
floor power, and ratio of stronger to weaker peaks, among
others. These parameters need to be modified based on the
input dataset for accurate functioning of the algorithm. We set
these parameters based on our datasets empirically, however a
formal procedure for the derivation of these thresholds would
be highly beneficial for any user.

1168 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) (b) (c)

Figure 2: Screenshots from the system interface web page : (a) Flow to add a new demodulator (b) choose a scenario to
benchmark (c) Flow to run an existing demodulator for analysis with network setting and SF configuration

NScale : In addition to re-implementing in Python, we param-
eterized NScale implementation to accept datasets with differ-
ent LoRa configurations. Various parameters and thresholds
for recognizing sync words, clustering packets from the same
transmitters together, and choosing the correct demodulation
window were generalized to get the optimal demodulation
results. The original implementation resulted in missed or
repeated symbols when any of the collided packets was split
approximately in half by the demodulation window due to am-
biguity in length and peak ratios. We implemented an up-chirp
correlation-based packet identification, as described in the pa-
per, and aligned the demodulation window appropriately to
avoid this corner case.
CoLoRa :We implemented an up-chirp correlation based strat-
egy to process the input file parallelly using Python multipro-
cessing. This enabled us to identify the start of packets and
choose a reception window, ensuring any symbol’s split ratio
to be between 1/3 and 3 as derived in the paper. We imple-
mented the Akaike Information Criterion based algorithm to
detect the onset of the received packet.
CIC: CIC iteratively decodes packets and hence stores the
entire data transmission session. At higher data rates, frequent
transmissions can lead to very long packet transmissions that
can overflow the memory. We overcome this challenge by
splitting active data transmissions longer than a threshold into
multiple sessions and process them separately.
Std-LoRa Demodulator: For the implementation of the stan-
dard LoRa demodulator, we used rpp0/gr-LoRa [23], an open
source GNURadio block for decoding LoRa packets. gr-LoRa
has demodulator and decoder integrated as a single block. We
split the two into separate blocks and used the demodula-
tor as part of our std-LoRa demodulator implementation. It
looks for the strongest peak in each demodulation window
and tries to find consecutive occurrences of the same symbol
to detect preambles. Once all the preambles are detected and
the preamble indices saved, it continues finding the strongest

peak in every demodulation window of the detected packet
and outputs the corresponding symbols.

3.3 Standard LoRa Decoder Block
Majority of the existing works focus on demodulator perfor-
mance as a function of the symbols received. A LoRa receiver
consists of a demodulator followed by a decoder. The de-
coder maps received symbols to message. LoRa decoder (and
encoder) is responsible for performing forward error correc-
tion using Hamming codes, interleaving, whitening, and gray
coding to decode symbols to bits and then message. LoRa
supports four coding rates ranging from 4/5 having the least
redundancy to 4/8 having the highest. This redundancy allows
the LoRa signal to endure interferences and correct small
errors. While the demodulated symbols provide some under-
standing of the receiver, the output of the decoder is required
to obtain metrics such as throughput, bit error rate, and num-
ber of packets successfully received. Additionally, the number
of symbol errors that can be corrected by the receiver depends
on the coding rate used by the LoRa transmitter.

In order to evaluate the throughput performances of the
demodulators, we implemented LoRa decoder in Python.
We used an open-source LoRa receiver framework [23] that
jointly demodulates and decodes LoRa samples and separated
the decoder and demodulator modules. We then implemented
the decoder module separately in Python such that the output
of any demodulator can be decoded. This allows for a modu-
lar implementation of a LoRa receiver pipeline. Our decoder
implementation first extracts the symbols corresponding to
LoRa header from the demodulator output. It infers the pay-
load CRC and payload length information by reversing the
process of Gray encoding, interleaving, shuffling, and Ham-
ming encoding. Finally, these operations are performed on
the symbols corresponding to the payload and the final mes-
sage is displayed as the output. This process is repeated for

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1169

(a) (b)

(c) (d)

Figure 3: Experimental Setup for LoRa deployments. (a) Indoor LoS, (b) Outdoor, (c) 1st and (d) 2nd Floor Indoor NLoS.
Triangle:Base Station, Circles:Transmitters

each demodulator’s symbols and the final output is used to
calculate the metrics. We validate this Python implementation
of the standard LoRa decoder in Section §4. As shown in
Fig. 13 in Appendix C.1, the implemented decoder is inde-
pendent of the demodulators and thus can be integrated with
any other demodulator in the pipeline. This openly accessible
implementation we have made available, can be used by other
researchers to evaluate their demodulator on end-user metrics.

3.4 Metrics
The final module of OpenLoRa is the set of metrics that eval-
uate the end-to-end-performance. This module takes in the
demodulated symbols and decoded bits and outputs the calcu-
lated metrics. We use the following definitions for the metrics
exposed by our framework:

1. Symbol Error Rate (SER): SER is calculated as the ratio
of number of incorrect symbols to the total number of
transmitted symbols. This metric evaluates the efficiency
of demodulator algorithms. With prior knowledge of the
transmitted symbols, a one-to-one comparison is used to
determine the number of incorrect symbols per packet.

2. Packet Reception Rate (PRR): PRR is calculated as the
ratio of number of correct packets received to the total
number of transmitted packets. A packet is considered
correct if and only if the received message (after error
correction) is equal to the transmitted message. Thus, PRR
is determined from the output of the decoder.

3. Throughput: This is the one of the most important metrics
from an end-to-end workflow perspective. Throughput is
defined as the number of correct bits received per second.
Towards calculating throughput, we only consider correct
packets i.e.,packets where all the received bits are correct.

Calculating metrics from the decoded bits provides a holis-
tic evaluation of the receiver performance of the demodulator
algorithms, which we believe is critical in practical LoRa de-
ployments. We will use the metrics used in the papers being
validated first, in order to cross-validate our implementation
in Section §4. Then, we will present our evaluations using the
end-to-end metrics of Packet Reception Rate and Through-
put obtained from the output of decoder in Section §5 under
varying settings, configurations, and scenarios.

4 Cross Validation of the Demodulators

In order to validate the fidelity of our framework and imple-
mentation of the various demodulators, we recreate a repre-
sentative result from each of the four papers considered. As
mentioned in Section §2, each existing work proposes unique
techniques to resolve multi-packet collisions. Existing works
compare their performance against standard LoRa and a few
other existing state-of-the-art. However, each one of them
uses a dataset that has been captured in different experimental
scenarios, using different configurations for Spreading Factor,
Bandwidth, duty cycle and concurrency.

In this section, we recreate the experimental setup as dis-
cussed in the original papers to the best of our knowledge and

1170 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 15 25
SNR (dB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
SE

R

(a)

-15 -10 -5 0 5 10
SNR (dB)

0

100

200

300

400

500

600

T
hr

ou
gh

pu
t

(b
it

s/
s)

(b)

-10 0 10 20
SNR (dB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

SE
R

(c)

0 10 20 30 40 50 60 70 80 90 100

Transmission Rate (packets/s)

0

10

20

30

40

50

T
hr

ou
gh

pu
t

(p
ac

ke
ts

/s
)

(d)

4/5 4/6 4/7 4/8
Coding Rate

0

0.02

0.04

0.06

0.08

0.1

E
rr

or
 R

at
e

SER BER

(e)

Figure 4: Cross-validation of results from original papers : (a) FTrack: SER vs SNR (b) CoLoRa: Network Throughput vs SNR
(c) NScale: SER vs SNR (d) CIC: Throughput vs Aggregate rate

(e) Cross-validation of Std-LoRa Decoder : SER and BER for varying coding rates of a single transmitter

report the same result metrics. The goal of this exercise is
two-fold : 1) To validate our implementation by recreating
the original reported results in each of the papers considered
2) To provide a module in our framework for future works to
recreate the existing works and their results.

We have selected the following results to recreate :
1. FTrack’s Fig. 14 : SER vs SNR
2. CoLoRa’s Fig. 12 : Throughput vs SNR
3. NScale’s Fig. 11a : SER vs SER
4. CIC’s Fig. 28 : Throughput vs transmission rate

FTrack: Following FTrack’s setup, we created the two-node
collisions initiated by beacon packets. Upon listening to the
beacon packets, the two LoRa nodes send packets with a ran-
dom delay within a packet duration ensuring collisions. Each
node transmitted packets of fixed length with SF8 and BW
250kHz. To achieve the SNR ranges of low (<5dB), medium
(5 – 20 dB) and high (>20dB) as mentioned in the paper, we
installed nodes at appropriate distances to achieve SNRs of
5, 15 and 25dB respectively. Fig. 4 (a) shows that the SER
decreases with increasing SNR, implying better collision res-
olution at high SNRs by FTrack. SER of ≈ 0.1 is in complete
agreement with the results presented in the original work.

CoLoRa: We design the experiment with a 20-node architec-

ture that closely follows the description in the original paper.
Each node transmitted SF10, BW 250kHz packets at a fixed
rate of 1 packet per second. As mentioned in the paper, we
captured data for high SNR packets and then added Additive
White Gaussian Noise (AWGN) on the captured data to vary
its SNR in a controlled manner. Fig. 4 (b) shows the through-
put that we obtain for varying levels of emulated SNR. As the
SNR increases from -15dB to 10dB, the network throughput
increases from 200 bits/s to over 400 bits/s. This result is in
complete agreement with the original work.

NScale: For NScale, we generated beacon-initiated collisions
with the responding nodes transmitting packets with SF10 and
BW 125kHz, following the experimental setup of NScale. We
installed nodes at distances that ensured SNRs of -10, 0, 10,
and 20 dB. As shown in Fig. 4 (c), lower SER of 0.04 at 20dB
SNR indicates strong collision resolution capability of NScale.
SER increases slightly for -10dB SNR to approximately 0.1,
close to the results presented in NScale. This trend is similar
to the original results presented and verifies that NScale is
able to achieve low SER even at -10dB SNR.

CIC: In order to recreate the result in CIC, we used the open
source data-set provided by CIC in the GitHub repo instead of
designing a new experiment. The results, as shown in Fig. 4

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1171

(d) are in complete agreement with actual results presented
in the paper. CIC’s throughput improves from 5 packets per
second to over 40 packets per second as the aggregate rate
increases, indicating its ability to resolve collisions.

Std-LoRa Decoder : We also validate the correctness of our
decoder implementation, since it forms the basis of through-
put in Section §5. To validate the decoder, we designed an
experiment to study the impact of Forward Error Correction
(FEC) over raw symbols. LoRa offers 4 coding rates : 4/5, 4/6,
4/7, 4/8 where 4/8 implies twice as many redundant bits as
data bits. Therefore, higher coding rates lead to better reliabil-
ity and resilience to bit errors, but lowers effective data-rate.
We placed a LoRa transmitter in a NLoS setting from the
receiver to ensure low SNR of approximately -15dB. We
transmit SF8 packets with 250 kHz BW and vary the coding
rate of the transmitter for the same message. Fig 4 (e) shows
SER and BER for varying coding rates. We can observe that
the SER remains almost constant, since SER is unaffected by
the coding rate and only depends on the SNR. However as
the coding rate varies from 4/5 to 4/8, redundancy increases
and as expected, the decoder is able to correct more errors
such that the Bit Error Rate decreases from 7.7% to 1.2%.
This result establishes the expected decoder operation and
validates our implementation of the standard LoRa decoder.
This reliability comes at the cost of longer packet time with
the coding rate of 4/8 needing 64 ms to transmit the same
data as compared to 49 ms for 4/5 coding rate.

To summarize, we recreated one representative result from
each of the papers being validated to verify the correctness
of our implementation as well as validate the results with the
exact same experimental setup described in the respective
papers. We show that the results recreated are in complete
agreement with that in the original papers. We also validated
the decoder block implemented by comparing the SER and
BER performance for varying coding rates. In the next section,
we design new experiments to further test the throughput
performance of each of these demodulators integrated with
our LoRa decoder block.

5 Experimental Evaluation

We evaluate the performance of the five demodulators on
several metrics and configurations. We aim to answer the
following questions in this section through our experiments:

• Do collision resolution techniques improve the overall
network throughput in the presence of collisions?

• What is the impact of variations in the SNR for different
transmitters on decoding multi-packet collisions?

• What is the impact of LoRa and other non-LoRa narrow-
band interferers in decoding concurrent transmissions?

• How many concurrent transmissions can be successfully
decoded from the cumulative signal?

• How does the time offset between two colliding packets
affect the demodulation and throughput performance?

In the rest of this section, we describe the experiments per-
formed and the results observed to answer these questions.
Most of the experiments were repeated for two different con-
figurations: SF8, BW 125kHz and SF10, BW 250kHz, to
represent low and high air-times respectively. Unless other-
wise mentioned, the default configuration is the larger packet
airtime with SF10, BW 250kHz, and a coding rate of 4/5.

5.1 Impact of transmission rate on Network
Throughput

In this section we evaluate the overall network throughput
achieved by various techniques for Indoor LoS, Indoor NLoS
and Outdoor data sets for a 20-node network. The transmis-
sion rate of each node is varied from 1 packet/s to 5 pack-
ets/s, resulting in an aggregate network rate of 20 packets/s
to 100 packets/s as the x-axis. Packets were generated with
inter-arrival times following an exponential distribution. We
collected upto 6000 packets for each iteration of this exper-
iment for different transmission rates, repeated for both SF,
BW configurations. Each data point in the figures presented
is averaged over all these packets.
Indoor LoS: In this scenario, packets from almost all the
nodes are captured at high SNR therefore, all techniques per-
form at their best. We present the results and analysis of this
scenario in Appendix D.1.
Indoor NLoS: At low-SNR indoor NLoS scenario, where 20
nodes are deployed across two floors in an office building, a
trend similar to indoor-LoS can be observed with increasing
Transmission Rate. As shown in Fig. 5 (a) and (b), at low
SNR, the average network throughput is lower than that of
higher SNR for most demodulators. All the demodulators
achieve their peak throughput at 40 packets/s in case of SF8
transmissions, beyond which it decreases with an increase
in the aggregate transmission rate. In case of SF10 transmis-
sions, a much sharper descent in the throughput curve can be
seen due to the compounding of the lower SNR with more
severe collisions. As noted by the authors themselves in [15],
FTrack fails to detect packets at SNRs lower than 10dB. Since
majority of the nodes operated near the noise floor (0dB SNR)
in this setting, FTrack failed to detect any packets and is not
shown in the corresponding Fig. 5.
Long Range Outdoor: To test the long-range capability of
LoRa and the demodulators, we deployed LoRa nodes in
outdoor environments at distances as far as 8 km from the
receiver. Transmissions from these devices were received at
SNRs as low as -15dBm. At this low SNR, even schemes that
are specifically designed for low-SNR such as NScale were
unable to detect any packets. While only CIC was able to

1172 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

20 40 60 80 100
Transmission Rate (packets/s)

200

400

600

800

1000

1200

T
hr

ou
gh

pu
t

(b
it

s/
s)

(a)

20 40 60 80 100
Transmission Rate (packets/s)

0

200

400

600

800

1000

T
hr

ou
gh

pu
t

(b
it

s/
s)

(b)

20 40 60 80 100
Transmission Rate (packets/s)

0

20

40

60

80

100

T
hr

ou
gh

pu
t

(b
it

s/
s)

(c)

Figure 5: Throughput of a 20-node indoor NLoS network with increasing aggregate transmission rates
(a) SF8, 125kHz bandwidth (b) SF10, 250 kHz bandwidth

(c) Throughput of a 20-node outdoor network with SF10, 250 kHz bandwidth

receive packets, its network throughput is worse than that of
standard LoRa as seen in Fig. 5 (c).
Summary: In summary we arrive at the following conclu-
sions : on an average, the network throughput is higher for
SF8/125kHz than that of SF10/250kHz for every demodu-
lator. This is because, for the same message, SF10/250kHz
packets have twice the duration of SF8/125kHz, which leads
to a higher probability of collisions. As the aggregate rate
increases, the network throughput peaks due to higher traffic.
Further increments lead to an increased number of collisions,
thus reducing network throughput. Extreme combination of
configuration parameters: NLoS, SF10, 100 packets/s (Fig. 5
(b)), leads to comparable throughput for all demodulators,
with excessive collisions nullifying any gains from the elabo-
rate demodulation techniques as compared to the simplistic
Std-LoRa. CIC demonstrates significant throughput gains
over Std-LoRa in both high (>10dB) and low SNR (around
0dB) settings, followed by FTrack (in high SNR scenario) and
NScale. CoLoRa despite performing better on the metrics of
SER and BER, falls short of matching Std-LoRa’s throughput.
FTrack fails to demodulate any packets in the low SNR set-
tings. Most techniques perform poorly at extremely low SNRs
(around -15dB) as their preamble detection fails and is not as
robust as Std-LoRa. Based on our experiments we believe that
further study and novel techniques for packet detection and
collision resolution, especially in low-SNR regimes is needed.

5.2 Impact of Signal to Noise Ratio (SNR) on
Network Throughput

We note from the network throughput in the long-range out-
door settings above that none of the existing techniques per-
form better than Std-LoRa at extremely low SNR scenarios.
To study the impact of SNR on the throughput performance
of each demodulator, we design a new controlled experiment.

In the Indoor setup, we deploy 20 LoRa nodes and accurately
control their transmit power and physical placement such that
all the nodes have comparable SNR that falls under one of
the following categories. We repeat the experiment such that
all the nodes are in High, Medium, Low, and Extremely-low
SNR categories, as defined below :

• High SNR : >10 dB

• Medium SNR : 5 to 10 dB

• Low SNR : -5 to 5 dB

• Extremely Low SNR : <-5 dB

Each transmitter was configured at SF10, BW 250kHz; we
collected upto 3000 colliding packets for each combination
of SNR and transmission rate. Fig. 6 shows the throughput
of the network as a function of decreasing SNR regime de-
fined above, repeated for aggregate transmission rates of 20,
60 and 100 packets/s respectively. Due to the controlled set-
ting needed for this experiment, it was not performed in the
outdoor setting.
Summary: The results corroborate the earlier observations in
indoor and outdoor experiments. CIC, NScale, and FTrack out-
perform Std-LoRa in high SNR, low traffic scenarios (Fig. 6
(a)) because of lesser collisions. However, as the SNR drops
below noise floor, the throughput gains delivered by these
demodulators decline sharply. FTrack fails to detect packets
in lower SNR settings, whereas the throughput for other de-
modulators drop as we move towards lower SNR and higher
transmission rates (Figs. 6 (b) and (c)). As stated in NScale,
its performance is comparable to FTrack at high and medium
SNR, and outperforms FTrack at lower SNRs. CIC improves
the most over Std-LoRa in most of the scenarios, NScale
also performs well in medium and low SNR regimes, not

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1173

High Medium Low Ex Low
SNR

0

200

400

600

800

1000

T
hr

ou
gh

pu
t

(b
it

s/
s)

(a)

High Medium Low Ex Low
SNR

0

100

200

300

400

500

600

T
hr

ou
gh

pu
t

(b
it

s/
s)

(b)

High Medium Low Ex Low
SNR

0

100

200

300

400

500

T
hr

ou
gh

pu
t

(b
it

s/
s)

(c)

Figure 6: Throughput of a 20-node SF10 network with varying SNR and aggregate transmission rates
(a) 20 packets/s (b) 60 packets/s (c) 100 packets/s

suffering excessive drop in throughput with lower SNR. At
extremely-low SNR settings, all these techniques fail to de-
modulate most of the packets, which is further worsened at
higher traffic rate. Similar to our earlier observations, the SER
analysis of CoLoRa indicates that even though it has low
SER, at low and extremely low SNRs, the overall throughput
is worse than that of Std-LoRa. From these experiments, we
conclude that further research is required to achieve signifi-
cant throughput gains over standard LoRa in extremely-low
SNR and/or dense deployments, that are typical scenarios for
LoRa applications.

5.3 Impact of Interference on Network
Throughput

In addition to underutilized network capacity, co-existence
of multiple LoRa networks as well as across technologies
was identified as a bottleneck for scalability [11, 13]. In this
experiment, we evaluate the throughput performance of the
five demodulators in the presence of LoRa transmissions from
neighboring LoRa networks as well as non-LoRa, Gaussian
Frequency Shift Keying (GFSK) narrow-band transmissions,
representing other LPWANs operating in the same band. To
the best of our knowledge, this is the first work to design an
experiment and evaluate the impact of interference on the
demodulator performance.

The primary LoRa network in this setup consists of 20
nodes, configured at SF10, BW 250kHz setting. We study the
impact of the following three interfering nodes, each placed
within few meters from the receiver; the interfering signal
transmits at a duty cycle of 50% with an SNR of approxi-
mately 7 dB at the receiver.

i SF8, BW 125kHz LoRa node sending 93 ms packets

ii SF12, BW 500kHz LoRa node sending 290 ms packets

iii GFSK node sending 50 ms packets

Summary: Fig 7 shows the network throughput under these
three types of interference. Ambient shows the results with
no added interference. Due to the orthogonality of CSS, we
expected no impact from SF8, BW 125kHz node. However, it
does have a very minor impact on the performance of SF10
nodes for most demodulators. Although LoRa signals with
different SFs are typically assumed to be perfectly orthogo-
nal, this result attests to the Quasi-Orthogonality of different
SFs (discussed in [24]). This quasi-orthogonality leads to
residual interference even after dechirping which raises the
noise floor and consequently reduces the SINR (Signal to In-
terference + Noise Ratio). GFSK interference has a minimal
impact on the throughput performance, with a minor drop
attributed to SINR. This showcases the inherent robustness of
CSS to other narrow-band interference. SF12, BW 500kHz
interference however notably reduces the throughput of all
demodulator algorithms by almost 50%. This is primarily due
to the longer packet duration of SF12 which has higher prob-
ability of interfering with complete SF10 packets whereas
shorter duration of SF8 packets are less likely to interfere
complete SF10 packets. Thus, higher SFs have more impact
on lower SF transmissions due to the increased probability
of collision. This is critical to notice in practical deployments
where multiple LoRa networks, each operating at a different
SF would co-exist. Additionally, SF-based MAC protocols
have been proposed as a way to improve LoRa’s scalability.
Thus, we believe that collision resolution techniques that con-
sider the impact of interference from other LoRa networks
with multiple SFs remains to be developed.

5.4 Impact of concurrent transmissions on
Packet Reception Rate

In the experiments so far, the nodes transmitted packets ran-
domly at a predetermined rate. As the rate increased, packet
collisions increased, affecting network throughput. To under-
stand the efficacy and limitations of each algorithm in decod-

1174 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Ambient SF12 LoRa SF8 LoRa GFSK
Type of Interference

0

100

200

300

400

500

600

700

T
hr

ou
gh

pu
t

(b
it

s/
s)

Figure 7: Throughput of a 20-node SF10 network in the pres-
ence of various interference signals

ing concurrent collisions, we performed controlled collision
experiments. We synchronized all the nodes with a beacon
packet: on receiving a beacon, each sender transmits a single
packet with a random delay between 0 and packet duration.
We define concurrency to be the number of colliding packets
within one packet duration i.e.,each packet partially overlaps
with every other packet.

We evaluate the number of colliding packets that can be
resolved by each demodulator using the metric Packet Recep-
tion Rate (PRR). We measure PRR as we increase the number
of concurrent packets from 2 to 12 in indoor LoS setup. We
define PRR as the ratio of fully correct packets decoded at
the receiver to the total number of packets transmitted from
the transmitters. We collect upto 180 such colliding packets
for each iteration of the experiment and present the metrics
averaged over this dataset. Figs. 8 (a) and (b) show the PRR
for SF8/125kHz and SF10/250kHz.

As the number of concurrent transmissions increases, PRR
decreases for every demodulator. As expected, Std-LoRa has
a sharp decrease in PRR since it demodulates at most one
packet at a given time. We notice that irrespective of the
number of nodes, Std-LoRa aligns with the strongest signal
and successfully demodulates symbols corresponding to that
packet. CoLoRa intentionally misaligns its demodulation win-
dow to detect more packets. Although CoLoRa detects most
of the packets, it fails to demodulate when the majority of a
packet overlaps with other packets. This is because of errors
in finding peak ratios accurately. NScale builds on CoLoRa
and improves demodulation; PRR using NScale is higher than
that of CoLoRa. However, it suffers from not recognizing
frequency bins of the detected peaks in presence of collisions,
often leading to small offsets in the demodulated symbols.
FTrack’s use of time and frequency domain features to create
frequency tracks and separate out collisions enables it to infer
more number of colliding packets. FTrack is able to correctly

output 3% to 5% more packets as compared to Std-LoRa.
CIC, which improves on FTrack has the highest PRR. CIC’s
use of interference cancellation and spectral intersection fea-
tures to demodulate enables it to demodulate most number of
colliding packets. Beyond 8 concurrent collisions, PRR of all
the approaches is below 0.2.
Summary: We observe a sharp decrease in PRR with in-
creasing concurrency for all techniques because increasing
concurrency reduces SINR. In this controlled collision setting,
we see that SF10 transmissions result in a higher PRR, in con-
trast to the observations for scenarios with random collisions.
This is because higher packet air-time with SF10 works in
favor of demodulators here as there is more leeway in how
closely in time the transmitters can collide. As the network
scale of LoRa deployments increases, we expect concurrent
collisions to occur with higher probability. We study the im-
pact of the time between two colliding transmissions in more
detail in the following section. We believe that there is still
room to improve in decoding collisions with more than two
concurrent transmissions.

5.5 Impact of Packet Time Offset (PTO) on
Packet Reception Rate

It is evident from the concurrent transmission experiments
that as the number of concurrent transmissions increases, the
packet reception rate and hence network throughput decreases.
Prior work [15] has also observed that the relative time (and
frequency) offsets between two colliding packets plays a criti-
cal role in the throughput performance. Therefore, the impact
of concurrent transmissions on throughput is a function of the
time offset between the colliding packets. To understand the
impact of time offsets, we design the following experiment:
two LoRa nodes are connected to an Arduino microcontroller
(MCU). The MCU, using a hardware interrupt, triggers the
LoRa nodes such that the difference in the start of their packet
transmission is configurable, thus controlling time offsets.
Both the nodes transmit the same data. We repeat the exper-
iment 20 times for each offset value and present the PRR
metric averaged over the whole data.
Summary: Figs 9 (a) and (b) show the PRR as a function of
increasing time offsets between two LoRa nodes. NScale and
CoLoRa depend heavily on packet offsets and peak ratios to
demodulate symbols and to group symbols from each trans-
mitter together. As the packet time offset increases, their PRR
performance improves as accuracy in peak estimation and
peak ratio will increase. So, these show significantly better
performance as the packet offset time increases, with NScale
improving its PRR from 0 to 0.9 when changing collision
time offset from 5% to 30% for SF8 packets. Similarly, CoL-
oRa shows a notable improvement in PRR over the same
range, going from 0 to 0.4. Std-LoRa is unaffected by the
time offsets since it always decodes the strongest signal. CIC
and FTrack demodulate packets iteratively and use time and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1175

2 4 6 8 10 12
Concurrent Nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ac

ke
t

R
ec

ep
ti

on
 R

at
e

(a)

2 4 6 8 10 12
Concurrent Nodes

0

0.2

0.4

0.6

0.8

1

P
ac

ke
t

R
ec

ep
ti

on
 R

at
e

(b)

Figure 8: Reception rate of fully correct packets with increasing concurrent transmissions
(a) SF8, 125kHz bandwidth (b) SF10, 250 kHz bandwidth

frequency information to separate collisions. The impact of
time offsets on FTrack and CIC is also therefore negligible.
We conclude that although most demodulators focus on im-
proving network throughput by resolving collisions, some
are better suited for collisions with a higher overlap in time
than others. We observe that demodulation techniques that
utilize both time and frequency resolutions are more resilient
to PTO. Therefore, more study is needed on improving time-
frequency resolution when multiple concurrent nodes collide
within short time offsets.

6 Discussions and Limitations

Our results shows that packet decobability and hence network
throughput differs significantly under varying network condi-
tions. Therefore, rigorous evaluation of the existing and future
LoRa demodulators over a wide variety of network conditions,
as described in Section 5. We have made the datasets of the
various network conditions and scenarios evaluated publicly
available. Although this is an extensive set of scenarios, it
certainly is not an exhaustive list. We strongly encourage the
community to share new scenarios and datasets.

In OpenLoRa, we focused on network throughput com-
parisons across multiple demodulators. However, we did not
compare the computational complexity of existing techniques.
Since we relied on accurate recreation of existing works, op-
timizing each technique’s implementation was not the focus.
In order to evaluate the practical usability of a demodulator,
computational complexity is critical. For example, Std-LoRa
and CoLoRa rely on dechirping followed by FFT for packet
detection and demodulation and cost the least in terms of
number of computations, but also have the lowest throughput
improvements, i.e., the computational complexity for both

is Nlog(N) where N is the number of samples per symbol
and is typically the size of the FFT window as well. On the
other hand, FTrack, NScale, and CIC use auto-correlation to
detect the start of packets and therefore their packet detec-
tion cost these schemes N2 computations. FTrack computes
the spectrogram for the whole received buffer using a sliding
window and tracks the frequencies in each window of the
spectrogram; therefore, its demodulation block has N2log(N)
complexity per window. CIC computes spectrogram for a
fixed number of sliding windows regardless of SF as opposed
to sliding over whole demodulation window and therefore
has computation cost of cNlog(N) where c is a constant that
depends on the number of fixed sliding windows. NScale
performs multiple dechirpings followed by FFT to translate
timing offsets to frequency features and have a computation
cost of kNlog(N) where k is the number of multiple dechirp-
ings. The computation cost for CIC and NScale is therefore
lower than that of FTrack and more than standard LoRa’s
and CoLoRa’s computation cost. Thus, further evaluations
on the network throughput improvements along with their
computational complexity is needed to idenitfy the practical
challenges in deploying the demodulators.

In this work, we focused on novel demodulators that receive
from commercially available LoRa transmitters. More recent
works such as CurvingLoRa [25] and NetScatter [26] have
proposed changes to the transmitter to improve resilience to
packet collisions, communication range, and network through-
put. Although our framework cannot be used for non-standard
LoRa transmitters, the new techniques can still use our experi-
mental scenarios to test their performance in different network
conditions and compare against standard LoRa.

1176 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 10 15 20 25 30 35 40 45 50 55
Collision Time Offset (% of packet time)

0

0.2

0.4

0.6

0.8

1
P

ac
ke

t
R

ec
ep

ti
on

 R
at

e

(a)

5 10 15 20 25 30 35 40 45 50 55
Collision Time Offset (% of packet time)

0

0.2

0.4

0.6

0.8

1

P
ac

ke
t

R
ec

ep
ti

on
 R

at
e

(b)

Figure 9: Reception rate of fully correct packets with increasing collision time offset
(a) SF8, 125kHz bandwidth (b) SF10, 250 kHz bandwidth

7 Conclusions

In this work, we implement and validate four state-of-the-art
collision resolution techniques for LoRa on a variety of sys-
tem configurations and scenarios. We developed OpenLoRa, a
Python framework that provides a uniform platform to evalu-
ate existing works over the same datasets and metrics. We also
design a standard LoRa decoder in order to study the end-to-
end performance. This platform will allow future researchers
to plug-in their demodulator and benchmark against existing
works. We observe that metrics such as network throughput
are more meaningful for practical deployments. We study the
impact of interference and variations in SNR on the network
throughput performance. We perform a wide range of experi-
ments to emulate practical deployment settings, showcasing
the strengths and challenges of existing LoRa demodulators.
Our evaluations show that there are open challenges in the
low-SNR, long-range regime, with more room for innovations
in LoRa packet collision resolution.

8 Acknowledgements

We would like to thank our shepherd Aaron Schulman and
the anonymous reviews for the valuable comments and help-
ing us improve the paper. The authors are partially sup-
ported through the following NSF grants : CCSS-2034415,
CNS-2142978, CNS-2213688, CNS-1838733, CNS-2112562,
CNS-1719336, CNS-1647152, CNS-1629833, CNS-2107060,
and CNS-2003129 and an award from the US Department of
Commerce with award number 70NANB21H043.

References

PRODUCTION.

[1] E. Asimakopoulou and N. Bessis. Buildings and crowds:
Forming smart cities for more effective disaster man-
agement. In 2011 Fifth International Conference on
Innovative Mobile and Internet Services in Ubiquitous
Computing, pages 229–234, 2011.

[2] María V Moreno, Miguel A Zamora, and Antonio F
Skarmeta. User-centric smart buildings for energy sus-
tainable smart cities. Transactions on emerging telecom-
munications technologies, 25(1):41–55, 2014.

[3] Achim Walter, Robert Finger, Robert Huber, and Nina
Buchmann. Opinion: Smart farming is key to developing
sustainable agriculture. Proceedings of the National
Academy of Sciences, 114(24):6148–6150, 2017.

[4] Climate Smart Agriculture. https://www.worldbank.
org/en/topic/climate-smart-agriculture.

[5] Fei Tao, Qinglin Qi, Ang Liu, and Andrew Kusiak. Data-
driven smart manufacturing. Journal of Manufacturing
Systems, 48:157–169, 2018.

[6] Harsha V Madhyastha and Chinedum Okwudire. Re-
motely controlled manufacturing: A new frontier for
systems research. In Proceedings of the 21st Interna-
tional Workshop on Mobile Computing Systems and
Applications, pages 62–67, 2020.

[7] Smart Animal Production. https://lora-alliance.
org/wp-content/uploads/2020/12/
THE-FARMING-OF-TOMORROW-IS-ALREADY-HERE-HOW-LoRaWAN%
C2%AE-TECHNOLOGY-SUPPORTS-SMART-AGRICULTURE-PRECISE-
ANIMAL-pdf.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1177

https://www.worldbank.org/en/topic/climate-smart-agriculture
https://www.worldbank.org/en/topic/climate-smart-agriculture
https://lora-alliance.org/wp-content/uploads/2020/12/THE-FARMING-OF-TOMORROW-IS-ALREADY-HERE-HOW-LoRaWAN%C2%AE-TECHNOLOGY-SUPPORTS-SMART-AGRICULTURE-PRECISE-ANIMAL-PRODUCTION.pdf
https://lora-alliance.org/wp-content/uploads/2020/12/THE-FARMING-OF-TOMORROW-IS-ALREADY-HERE-HOW-LoRaWAN%C2%AE-TECHNOLOGY-SUPPORTS-SMART-AGRICULTURE-PRECISE-ANIMAL-PRODUCTION.pdf
https://lora-alliance.org/wp-content/uploads/2020/12/THE-FARMING-OF-TOMORROW-IS-ALREADY-HERE-HOW-LoRaWAN%C2%AE-TECHNOLOGY-SUPPORTS-SMART-AGRICULTURE-PRECISE-ANIMAL-PRODUCTION.pdf
https://lora-alliance.org/wp-content/uploads/2020/12/THE-FARMING-OF-TOMORROW-IS-ALREADY-HERE-HOW-LoRaWAN%C2%AE-TECHNOLOGY-SUPPORTS-SMART-AGRICULTURE-PRECISE-ANIMAL-PRODUCTION.pdf
https://lora-alliance.org/wp-content/uploads/2020/12/THE-FARMING-OF-TOMORROW-IS-ALREADY-HERE-HOW-LoRaWAN%C2%AE-TECHNOLOGY-SUPPORTS-SMART-AGRICULTURE-PRECISE-ANIMAL-PRODUCTION.pdf

[8] Precision Agriculture. https://cdn2.hubspot.net/
hubfs/2507363/Semtech_Smart_Agriculture_
White_Paper.pdf.

[9] Smart Building. https://lora-alliance.org/
wp-content/uploads/2020/11/LA_WhitePaper_
SmartBuildings_0520_v1.1_1.pdf.

[10] Smart Planet. https://info.semtech.com/
hubfs/Semtech-UseCase-EBook-SmartPlanet_
locked.pdf?hsCtaTracking=
a1c4b6e2-c4a4-4fa6-942f-639ad15a6518%
7C769d05d8-4178-4854-8ee6-f34d756fc141.

[11] LoRaWAN capacity trial. https://info.semtech.
com/hubfs/machineQ_LoRaWAN_Capacity_
Trial-2.pdf?hsLang=en-us.

[12] LoRaWAN capacity trial. https://cdn2.hubspot.
net/hubfs/2507363/Semtech_Network_Capacity_
White_Paper.pdf.

[13] Branden Ghena, Joshua Adkins, Longfei Shangguan,
Kyle Jamieson, Philip Levis, and Prabal Dutta. Chal-
lenge: Unlicensed lpwans are not yet the path to ubiqui-
tous connectivity. In The 25th Annual International Con-
ference on Mobile Computing and Networking, pages
1–12, 2019.

[14] Rashad Eletreby, Diana Zhang, Swarun Kumar, and Os-
man Yağan. Empowering low-power wide area networks
in urban settings. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communica-
tion, SIGCOMM ’17, page 309–321. Association for
Computing Machinery, 2017.

[15] Xianjin Xia, Yuanqing Zheng, and Tao Gu. Ftrack: Par-
allel decoding for lora transmissions. In Proceedings of
the 17th Conference on Embedded Networked Sensor
Systems, pages 192–204, 2019.

[16] Shuai Tong, Jiliang Wang, and Yunhao Liu. Combating
packet collisions using non-stationary signal scaling in
lpwans. In Proceedings of the 18th International Con-
ference on Mobile Systems, Applications, and Services,
pages 234–246, 2020.

[17] Shuai Tong, Zhenqiang Xu, and Jiliang Wang. Col-
ora: Enabling multi-packet reception in lora. In IEEE
INFOCOM 2020-IEEE Conference on Computer Com-
munications, pages 2303–2311. IEEE, 2020.

[18] Xiong Wang, Linghe Kong, Liang He, and Guihai Chen.
mlora: A multi-packet reception protocol in lora net-
works. In 2019 IEEE 27th International Conference on
Network Protocols (ICNP), pages 1–11. IEEE, 2019.

[19] Muhammad Osama Shahid, Millan Philipose, Krishna
Chintalapudi, Suman Banerjee, and Bhuvana Krish-
naswamy. Concurrent interference cancellation : Decod-
ing multi-packet collisions in lora. In Proceedings of
the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’21. Association for
Computing Machinery, 2021.

[20] Zhenqiang Xu, Pengjin Xie, and Jiliang Wang. Pyramid:
Real-time lora collision decoding with peak tracking. In
IEEE INFOCOM 2021-IEEE Conference on Computer
Communications. IEEE, 2021.

[21] Qian Chen and Jiliang Wang. Aligntrack: Push the
limit of lora collision decoding. In 2021 IEEE 29th
International Conference on Network Protocols (ICNP),
pages 1–11. IEEE, 2021.

[22] Adafruit Feather M0 with RFM95 LoRa Radio. https:
//www.adafruit.com/product/3178.

[23] RPPO. https://github.com/rpp0/gr-lora.

[24] Yujun Hou, Zujun Liu, and Dechun Sun. A novel mac
protocol exploiting concurrent transmissions for mas-
sive lora connectivity. Journal of Communications and
Networks, 22(2):108–117, 2020.

[25] Chenning Li, Xiuzhen Guo, Longfei Shangguan,
Zhichao Cao, and Kyle Jamieson. CurvingLoRa to boost
LoRa network throughput via concurrent transmission.
In 19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22), pages 879–895,
Renton, WA, April 2022. USENIX Association.

[26] Mehrdad Hessar, Ali Najafi, and Shyamnath Gollakota.
NetScatter: Enabling Large-Scale backscatter networks.
In 16th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 19), pages 271–284,
Boston, MA, February 2019. USENIX Association.

[27] Chenning Li, Hanqing Guo, Shuai Tong, Xiao Zeng,
Zhichao Cao, Mi Zhang, Qiben Yan, Li Xiao, Jiliang
Wang, and Yunhao Liu. Nelora: Towards ultra-low snr
lora communication with neural-enhanced demodula-
tion. In Proceedings of the 19th ACM Conference on
Embedded Networked Sensor Systems, SenSys ’21, page
56–68, New York, NY, USA, 2021. Association for Com-
puting Machinery.

1178 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://cdn2.hubspot.net/hubfs/2507363/Semtech_Smart_Agriculture_White_Paper.pdf
https://cdn2.hubspot.net/hubfs/2507363/Semtech_Smart_Agriculture_White_Paper.pdf
https://cdn2.hubspot.net/hubfs/2507363/Semtech_Smart_Agriculture_White_Paper.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/LA_WhitePaper_SmartBuildings_0520_v1.1_1.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/LA_WhitePaper_SmartBuildings_0520_v1.1_1.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/LA_WhitePaper_SmartBuildings_0520_v1.1_1.pdf
https://info.semtech.com/hubfs/Semtech-UseCase-EBook-SmartPlanet_locked.pdf?hsCtaTracking=a1c4b6e2-c4a4-4fa6-942f-639ad15a6518%7C769d05d8-4178-4854-8ee6-f34d756fc141
https://info.semtech.com/hubfs/Semtech-UseCase-EBook-SmartPlanet_locked.pdf?hsCtaTracking=a1c4b6e2-c4a4-4fa6-942f-639ad15a6518%7C769d05d8-4178-4854-8ee6-f34d756fc141
https://info.semtech.com/hubfs/Semtech-UseCase-EBook-SmartPlanet_locked.pdf?hsCtaTracking=a1c4b6e2-c4a4-4fa6-942f-639ad15a6518%7C769d05d8-4178-4854-8ee6-f34d756fc141
https://info.semtech.com/hubfs/Semtech-UseCase-EBook-SmartPlanet_locked.pdf?hsCtaTracking=a1c4b6e2-c4a4-4fa6-942f-639ad15a6518%7C769d05d8-4178-4854-8ee6-f34d756fc141
https://info.semtech.com/hubfs/Semtech-UseCase-EBook-SmartPlanet_locked.pdf?hsCtaTracking=a1c4b6e2-c4a4-4fa6-942f-639ad15a6518%7C769d05d8-4178-4854-8ee6-f34d756fc141
https://info.semtech.com/hubfs/machineQ_LoRaWAN_Capacity_Trial-2.pdf?hsLang=en-us
https://info.semtech.com/hubfs/machineQ_LoRaWAN_Capacity_Trial-2.pdf?hsLang=en-us
https://info.semtech.com/hubfs/machineQ_LoRaWAN_Capacity_Trial-2.pdf?hsLang=en-us
https://cdn2.hubspot.net/hubfs/2507363/Semtech_Network_Capacity_White_Paper.pdf
https://cdn2.hubspot.net/hubfs/2507363/Semtech_Network_Capacity_White_Paper.pdf
https://cdn2.hubspot.net/hubfs/2507363/Semtech_Network_Capacity_White_Paper.pdf
https://www.adafruit.com/product/3178
https://www.adafruit.com/product/3178
https://github.com/rpp0/gr-lora

A Appendix: LoRa Primer

LoRa Modulation. In LoRa, data is modulated using a Chirp
Spread Spectrum (CSS) scheme. In CSS, symbols are chirp
signals whose instantaneous frequency increases linearly with
time as shown in Figure 10 (a). A base chirp starts from a
frequency of −BW

2 and increases linearly to BW
2 over a symbol

duration of Ts where BW is the bandwidth of transmission
and Ts can be defined as Ts =

2SF

BW . SF ∈ {7,8,9,10,11,12}
defines a packet’s Spreading Factor, a value that dictates the
data-rate, resistance to interference and range of transmission.

Every symbol S(t, fsym) is derived by cyclically shifting
a base chirp C(t), as shown in Equation 1. For example in
Figure 10 (b) and (c), S(t, f1) and S(t, f2) are obtained by in-
troducing a frequency offset of f1 and f2 to the base chirp. The
data to be transmitted modulated these starting frequencies
viz., f1 and f2.

C(t) = e j2π(0.5 BW2

2SF t− BW
2)t

, 0 ≤ t ≤ Ts (1)

S(t, fsym) =C(t) · e j2π fsymt (2)

LoRa Demodulation. To demodulate a symbol, a LoRa re-
ceiver aligns and multiplies a down-chirp C−1(t) (the complex
conjugate of C(t)) with the received symbol S(t, fsym) (Equa-
tion 3). Dechirping transforms the chirp signal to a sinusoid
with a constant frequency equal to the start frequency fsym.
This frequency is located by finding the peak in the FFT of
the dechirped signal. The operation of dechirping followed by
FFT concentrates the symbol’s energy into a single frequency,
thus providing the spread spectrum gain necessary to decode
symbols in sub-noise conditions.

C−1(t) ·S(t, fsym) = e j2π fsymt (3)

Since dechirping requires the downchirp to align with the
received symbol, a LoRa receiver determines the onset of a
new packet by searching for its preamble and uses it to identify
the symbol boundaries of symbols. LoRa preamble comprises
of a sequence of N = 6 to 65535 consecutive C(t) symbols,
followed by two SYNC symbols S(t,s1),S(t,s2)(s1 ̸= 0, s2 =
s1 +8) and 2.25 down-chirps C−1(t). To detect a new packet,
the receiver continuously de-chirps and performs an FFT until
it finds N consecutive peaks with the same frequency. The
SYNC words and down-chirps then help locate the symbol
boundaries. In CSS, time offsets are equivalent to frequency
offsets. For example, as shown in Figure 11 time shifting
a chirp symbol by τ will introduce an equivalent frequency
offset in the starting frequency. Therefore, frequency offsets in
LoRa can easily be compensated by identifying the equivalent
time shifts during preamble detection.
Effect of collisions on demodulation. Standard LoRa is in-
capable of demodulating data symbols in case if multiple
packets collide. Should multiple LoRa packets arrive simulta-
neously at the receiver, there will be multiple fsym values to

detect for any given symbol window, making it difficult for
standard LoRa to choose one. Standard LoRa assumes that
the maximum peak in the FFT always corresponds to the data
value of the packet of interest. Whereas, in case of packet col-
lision, multiple peaks from interfering packets show up in the
FFT as shown in Figure 12 and the assumption of maximum
peak’s link to the packet of interest is not guaranteed anymore
since height of interfering peaks may surpass the height of
true peak.

B Appendix: LoRa Demodulators Validated

B.1 FTrack [15]
FTrack [15] relies on Short Time Fourier Transform (STFT)
to obtain time and frequency features. Applying STFT to the
LoRa symbols would result in frequency tracks that increases
linearly with time. An appropriate STFT window size that
offers good frequency resolution to identify the frequency
and good time resolution to follow the progression of a chirp
is challenging to determine. FTrack proposes to apply STFT
on the dechirped LoRa symbol to leverage the spread spec-
trum gain as well as to remove the linear change in frequency
with time. Dechirping the received buffer results in a sinusoid
whose frequency remains constant throughout the symbol
duration. This allows FTrack to choose a window size of a
symbol length that yields a good frequency resolution (of
upto 1 bin) if perfectly aligned with the symbol boundaries.
Dechirping allows STFT to have the least possible frequency
variation with time (single frequency over a symbol duration)
and therefore yields the best possible frequency resolution.
It yields a constant frequency track over a symbol duration,
rendering it simpler to track the frequency of a packet of in-
terest. FTrack, thus, employs dechirping followed by STFT
to extract the longest frequency tracks to detect preamble as
well as data symbols. Typical LoRa preambles consists of 8
base upchirps, that promise a constant frequency track for a
duration of 8 symbols in the final spectrum. FTrack extracts
symbol edges from preambles and uses this time information
to detect the symbol boundaries of payload. FTrack builds on
the observation that all the interfering packets are misaligned
in time and hence their symbol boundaries are misaligned in
time. FTrack detects the preambles of all colliding packets
and leverages the time offset between colliding packets to
differentiate transmitters. The receiver aligns itself with the
boundaries of a packet of interest : once aligned, it observes
the frequency tracks of current packet as well as that of the
interfering tracks. The frequency track of the packet of in-
terest will be continuous in the given window whereas all
the interfering tracks will change abruptly. Therefore, after
detecting all the LoRa packets in a received buffer, FTrack
iteratively demodulates each packet. While demodulating a
specific packet, FTrack cancels out interfering symbols by
tracking the frequency continuity. At the end of this itera-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1179

(a) (b) (c)
Figure 10: An illustration of Chirp spread spectrum (a) Base Upchirp (b) Data-Chirp 1 (c) Data-Chirp 2

Figure 11: Time offsets in LoRa symbols translates to
Frequency offsets

Figure 12: Symbol spectrum with and without collisions

tive process, FTrack receiver detects and demodulates data
symbols from multiple transmitters that collided with each
other. FTrack’s performance suffers in low-SNR conditions.
At SNRs below 5 dB, energy of the frequency tracks corre-
sponding to preamble and data symbols are not high enough
and hence are buried in the noise floor and is not decoded.
Thus, it fails to detect and/or demodulate LoRa packets at
SNRs below 5 dB.

B.2 CoLoRa [17]
CoLoRa [17] proposes a novel technique to translate time
offsets to frequency features, in turn using that to resolve
packet collisions at low-SNR regimes. CoLoRa starts with a
misaligned window size of one symbol length. It determines
the presence of interference based on the number of peaks
appearing in the FFT obtained after dechirping; since multi-
ple peaks imply packet collisions as discussed in Appendix
A. Once collisions are confirmed, CoLoRa proposes an in-
terleaved window selection strategy. It chooses a misaligned
window such that no chirp is covered fully by the window
i.e.,each chirp is segmented and thus falls into two consecu-

tive windows such that the normalized FFT peak is bounded
within [1/3,3] in each window. It then jumps the window over
received buffer and performs dechirping followed by FFT
at each point.The resulting spectrum contains peaks whose
height is proportional to the segment of chirp appearing in the
current window. CoLoRa observes that when a chirp is split
into 2 windows, the frequency at which the peaks appear in
the FFT remains the same across the 2 windows. However,
the energy and hence the height of the FFT peak at the cor-
responding frequency in each window is proportional to the
duration of the chirp segment within that window.

CoLoRa proposes Peak Ratio, which is defined as the ra-
tio of peak heights of a chirp appearing in two consecutive
windows; it captures time misalignment through frequency
features. It proves that the peak ratio is identical for all chirps
of the same packet since the in-window distribution of chirps
is identical for all the symbols of the same packet. Addition-
ally, peak ratios differ across packets since the in-window
distribution of chirps is different due to misalignment of inter-
fering packets. Since CoLoRa relies on accurate estimation
of Peak ratio, it proposes an iterative peak recovery algorithm
to estimate the heights of strong peaks first and cancel their
contribution while estimating the low-SNR peaks. Since the
chirps are segmented, wide side lobes appear around peaks
that may bury low SNR peaks. CoLoRa uses k-means cluster-
ing (where k is the number of packets detected) to classify the
packets of different clients. Peaks with identical peak ratios
are clustered together, following the observation that the sym-
bols of the same packet have the same peak ratio. Each cluster
represents a unique packet, thus decoding multiple packets
from the collided signal.

B.3 NScale [16]
While FTrack and CoLoRa focus on decoding multi-packet
collisions, their performance improvements over standard
LoRa demodulator is noticeable at high SNR. NScale [16]
focuses on decoding packet collisions at SNRs as low as -
10dB where the relative performance improvement of FTrack
and CoLoRa degrades. Similar to CoLoRa, NScale translates
the timing offsets to frequency features and further amplifies
the time offsets by non-stationary signal scaling. NScale’s
strength lies in its ability to decode and resolve collisions
of LoRa packets below -10 dB SNR. Instead of sliding the
window as FTrack does, NScale jumps the window of size

1180 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

that promises maximum frequency resolution i.e.,duration
of a symbol. To retain sub-noise decodability, NScale relies
on dechirping to accumulate energy at the single frequency.
While jumping the window across the received buffer, NScale
observe that, for a specific LoRa packet, all the symbols of
interest will have same in-window distribution in consecu-
tive windows whereas in-window distribution for interfering
symbols will be different. Simply put, the location of symbol
edges where the symbols transition to next symbol is same
across all the windows of a given packet but across different
packets, these symbol edges are different. This essentially
stems from the fact that collisions are misaligned in time.
Similar to CoLoRa, NScale translates symbol edge offsets to
the peak heights.

NScale introduces a novel non-stationary scaled window as
opposed to conventional rectangular window of FTrack and
CoLoRa. Non-stationary scaling across the windows ampli-
fies the timing misalignment of symbols of interfering packets.
The linear amplitude scaled window scales the amplitude of
peaks with respect to their in-window distribution and there-
fore amplifies the misalignment of different packets. This
amplification helps estimate the time offsets for very low
SNR packets. Consequently, different packets get a unique
fingerprint in terms of peak heights while symbols of a spe-
cific packet share the same fingerprint. NScale detects the
number of packets and their corresponding start and end in-
dices using correlation and then performs k-means clustering
to classify symbols based on their fingerprint.

B.4 Concurrent Interference Cancellation [19]
Concurrent Interference Cancellation (CIC) [19], similar to
FTrack, leverages time and frequency domain analysis to
decode multi-packet collisions. CIC introduces the concept
of sub-windows, which are a portion of the demodulation
window. It observes that, for a given packet of interest, sym-
bols from the packet appear in all the sub-windows; sym-
bols from interfering packets appear only in a subset of the
sub-windows. Therefore, the intersection of FFT of all the
sub-windows would result in the symbol of interest. CIC
proposes a sub-window selection algorithm that maximizes
interference cancellation.

CIC looks for the best sub-window which promises an
acceptable time resolution while compromising the least on
frequency resolution. It uses packet detection to determine the
start of all the colliding packets inorder to select the best set of
sub-windows. Unlike standard LoRa, CIC uses downchirp cor-
relation to detect the start of a packet. With prior knowledge of
symbol duration, CIC determines symbol boundaries within
each of the colliding packet. The sub-windows are chosen
such that it contains the most of each interfering symbol, us-
ing CIC’s knowledge of the symbol boundaries of interfering
packets. Spectral intersection of the FFT of the demodulating
window and the optimum set of sub-windows selected results

in a single FFT peak that corresponds to the symbol of inter-
est. It iteratively demodulates the rest of the packets in the
collided signal. CIC also proposes fractional frequency offset
to filter out interfering peaks that were not cancelled in the
spectral intersection. Additionally, it uses power-filtering to
estimate received power of each packet from its preamble and
discards symbols which do not qualify a certain power thresh-
old. Finally Spectral Edge Difference, filters interfering peaks
further and chooses one peak to be the final demodulated
peak.

B.5 Other recent works on LoRa demodula-
tion

In addition to the works presented above, other papers have
focused on LoRa demodulator design. The modular design of
our proposed framework renders it simple to integrate them.
Pyramid [20] is one such work which tries to resolve LoRa
collisions by tracking the change in FFT peak heights corre-
sponding to different interfering symbols. AlignTrack [21]
tracks and translates time offsets to frequency features, i.e.
peak heights, similar to CoLoRa. AlignTrack chooses a win-
dow which completely overlaps the packet of interest instead
of a misaligned window used by CoLoRa. AlignTrack’s com-
plete overlap gives highest peaks in FFT and therefore, has
least SNR loss. NeLoRa [27] is another work which tries to
push the limit of LoRa’s range by using deep-neural-network.
Their results show that its ability to decode packets with SNR
as low as -30dB.

C Appendix: Implementation Overview

C.1 Python Implementation

Figure 13: Flowchart of the Python implementation of the
proposed framework

C.2 Code Organization
The implementation has been organized into the following
major Python modules:

• config.py: Configures demodulation parameters such as
SF, BW, sampling rate to pass to the demodulators as

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1181

(a) (b)

Figure 14: Throughput of a 20-node Indoor LoS network with increasing aggregate transmission rates
(a) SF8, 125kHz bandwidth (b) SF10, 250 kHz bandwidth

well as the transmitted symbols and bits to compare
against and evaluate the desired metrics.

• master.py: Performs the highest level tasks and interfaces
with other modules. Reads in the input file, calls each
demodulator module to get the symbols and gets calcu-
lated metrics after decoding. Also implements parallel
upchirp-based preamble detection using Python multi-
processing capabilities.

• demod.py: Imports each demodulator implementation
and interfaces with each block to pass the data and pa-
rameters in appropriate format. Returns demodulated
symbols to the master block.

• decode.py: Implements the standard LoRa decoder as
described in the following subsection. Returns decoded
bits to the master block.

• metrics.py: Takes in the demodulated symbols, decoded
bits, and the configuration information to calculate all
the relevant metrics and saves then in the specified output
file.

D Appendix: Additional Results

D.1 Impact of transmission rate on Network
Throughput

Indoor LoS: Figs. 14 (a) and (b) depict the average network
throughput as a function of aggregate transmission rate in in-
door LoS setting. Network throughput is calculated as the sum
of the bits of successfully decoded packets per unit time. In
case of SF8 transmissions, the network throughput increases
with increasing aggregate rate upto the rate of 40 packets/s
for most demodulators, due to increase in traffic. However,

beyond a threshold, packet collisions are too high for a de-
modulator to resolve, leading to a drop in throughput. CIC
achieves its peak throughput at 60 packets/s because of its
power filtering and down-chirp based preamble detection fea-
tures. FTrack and NScale perform considerably well in this
high SNR scenario giving significant gains over Std-LoRa.
Even though Std-LoRa is unable to demodulate concurrent
transmissions, it latches on to the strongest signal due to cap-
ture effect and often correctly demodulates the packet from
the strongest transmission. This results is throughput num-
bers of Std-LoRa being comparable to other demodulators at
higher transmission rates when they suffer from abundance
of collisions. Another interesting observation is CoLoRa’s
throughput being slightly lesser than that of Std-LoRa despite
having a lower Symbol Error Rate (SER) and Bit Error Rate
(BER). Our analysis indicates that the reason is its erroneous
identification of peak frequencies and calculation of peak ra-
tios in the presence of high amount of collisions. CoLoRa
detects and correctly demodulates larger number of symbols
on average but the symbol errors are distributed across all
concurrent transmissions. It consistently makes errors in a
few of the bits in packets, which result in those packets being
discounted from throughput calculation.

This result is an important observation we make in noticing
the significance of end-to-end metrics such as Throughput
and Packet Reception Rate over Symbol Error Rate, which
could be misleading for end users. For SF10 transmissions,
due to its longer air-time, the impact of collisions lead to a
decreasing network throughput for all demodulators even at
transmission rates as low as 1 packet/second per node.

1182 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

E Appendix: Experimental Setup & Method-
ology

E.1 Network Experiments
All the network experiments and SNR experiments were per-
formed using 20 transmitting nodes T1 through T20, a roll-call
node R, as well as a beacon node B. R helped in setting up
the parameters for each experimental setup without manually
changing the setting at each location serially. Each transmit-
ter node (T1 through T20) would reply only to their specific
roll-call message from R. The roll-call messages were sent
at a predefined SF and BW. Therefore, all the nodes reset to
this SF and BW to listen and respond to the roll-call message.
These replies were also used for calculating node-specific
SNR at the USRP B200 (serving as a base station for each
experiment). Using the received SNR for each node Ti, we
could ensure every Ti would hear broadcasts from B. Simi-
larly, B transmits a broadcast to inform the nodes about the
settings such as SF, BW, transmission rate for the upcoming
experiment. After setup, B would broadcast control messages
to all 20 nodes telling each to begin transmitting messages
randomly. The beacon information about transmission rates
that each node Ti had to follow with a random time offset.
The time offsets were generated through Poisson distribution.
Each node transmitted to the base station for approximately
30 seconds. All network and SNR experiments were repeated
following the aforementioned roll-call and beacon process to
ensure no nodes were lost.

E.2 Interference Experiments
Interference tests utilized a similar setup to the Network Ex-
periments, however interfering transmitters were deployed
near(<10m) the receiving USRP B200. Interfering nodes in-
cluded a LoRa transmitter with varying SF’s and BW’s as
well as a GFSK transmitter. Network and interference ex-
periment Arduino code can be located within the Experi-
ment_Setup/Random_Network directory on the OpenLoRa
Github page5.

E.3 Concurrent Transmissions Experiment
Concurrent transmission experiments were performed using
a separate beacon node B to continually synchronize up
to 12 transmitting nodes T1 through T12. B would broad-
cast a short message instructing all nodes Ti to respond
within a pre-determined time. These time-limits were de-
termined by recording transmissions from a USRP B200
and measuring total transmit time. Offsets followed a uni-
form distribution within these time limits thus ensuring ran-
dom transmission overlaps. The concurrent transmission ex-
periment’s Arduino code can be located within the Exper-

5https://github.com/UW-CONNECT/OpenLora

iment_Setup/Random_Offset directory on the OpenLoRa
Github page5.

E.4 Packet Time Offset Experiment
To achieve reliable, and precise collisions with microsecond
accuracy, we relied on interrupt-driven transmissions. Two
transmitting nodes T1 and T2 (Adafruit Feather M0 boards),
were connected to a third driving node D periodically trig-
gering interrupts via a pin tied on T1 and T2. Upon receiving
the interrupt, T1 immediately transmitted its LoRa packet.
Node T2 however utilized a pre-determined delay before
transmitting. Delays on T2 were experimentally gathered
ahead of time by measuring packet transmission times on
a USRP B200. These delays were then calculated as some
fraction of the total transmit time for a single packet, and then
flashed onto T2. Both transmitting nodes were connected to
the same breadboard with similarly oriented antennas thus
ensuring similar SINR at the receiver. The packet time offset
experiment’s Arduino code can be located within the Ex-
periment_Setup/Precise_Offset directory on the OpenLoRa
Github page5.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1183

VECARE: Statistical Acoustic Sensing for Automotive In-Cabin Monitoring

Yi Zhang∗,†, Weiying Hou∗, Zheng Yang†, Chenshu Wu∗
∗The University of Hong Kong

†Tsinghua University

{zhangyithss@gmail.com, wyhou@cs.hku.hk, hmilyyz@gmail.com, chenshu@cs.hku.hk}

Abstract

On average, every 10 days a child dies from in-vehicle heat-
stroke. The life-threatening situation calls for an automatic
Child Presence Detection (CPD) solution to prevent these
tragedies. In this paper, we present VECARE, the first CPD
system that leverages existing in-car audio without any hard-
ware changes. To achieve so, we explore the fundamental
properties of acoustic reflection signals and develop a novel
paradigm of statistical acoustic sensing, which allows to de-
tect motion, track breathing, and estimate speed in a unified
model. Based on this, we build an accurate and robust CPD
system by introducing a set of techniques that overcome mul-
tiple challenges concerning sound interference and sensing
coverage. We implement VECARE using commodity speak-
ers and a single microphone and conduct experiments with
infant simulators and adults, as well as 15 young children
for the real-world in-car study. The results demonstrate that
VECARE achieves an average detection rate of 98.8% with a
false alarm rate of 2.1% for 15 children in various cars, boost-
ing the coverage by over 2.3× compared to state-of-the-art
and achieving whole-car detection with no blind spot.

1 Introduction

The ability of cars to sense, and save lives, inside a car remains
to be improved. One life-critical feature that is widely missing
is in-vehicle Child Presence Detection (CPD). Every year,
many children have been unintentionally and unknowingly
left in parked cars, or have got stuck into a car independently.
As the temperature inside a car can rise rapidly1, especially in
hot months, serious injuries or heatstroke deaths could happen
to children being left alone inside a car. It takes only a matter
of minutes before the heat can overwhelm a child’s ability to
regulate his/her internal temperature and cause injuries/deaths

This work was done when Yi Zhang was a Research Assistant at HKU.
1A car can heat up by 19 degrees in just 10 minutes. Even on a mild

day, the temperature in a parked car can rise to extremely dangerous and
potentially fatal levels for infants and toddlers. As reported, heatstroke can
occur even when outside temperatures are just 57◦F [3].

CPD

Child

Detected!!!

Figure 1: Application scenario of VECARE. It detects an
unattended child using in-car audio and alert registered parties
for immediate responses and/or activate the air conditioner to
keep the child safe automatically.

as a child’s core temperatures increase three to five times
faster than an adult’s [3]. On average, around 40 children
dying from hot cars have been witnessed each year (about
one every 10 days), leading to over 900 pediatric vehicular
heatstroke (PVH) deaths on record since 1998 in the US
alone [50]. Despite remarkable advances in automobiles in
recent years, unfortunately, the cases of hot car deaths are only
increasing, with 2018 and 2019 being the record years of 54
and 53 deaths each [50]. All of these deaths could have been
prevented, if the car can detect the unattended child timely and
responsively alert concerned parties or take prompt actions to
keep the car cool and the child safe (as depicted in Fig. 1).

The widespread and tragic problem has driven govern-
ments and the auto industry to take initiatives to make CPD
a compulsion for future cars [49, 76], which fosters an ex-
pected market of $400 million by 2025 [27]. Existing so-
lutions include early systems using special sensors such as
optical/weight/pressure/ultrasonic sensors [4,20,21,54], cam-
eras [10,13,85], as well as recent efforts with Ultra-Wideband
(UWB) or millimeter-wave (mmWave) radars [26, 28, 66],
WiFi [45, 81], etc. These solutions, however, suffer from dif-
ferent limitations. Many works focus on adult passenger mon-
itoring, and cannot generalize well to infants and toddlers.
And the sensing coverage is mostly limited to only the seats
(for special seat sensors) or a certain Field-of-View (FoV) (for

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1185

cameras/UWB/mmWave radars), leading to degraded accu-
racy in Non-Line-Of-Sight (NLOS) scenarios and blind spots,
e.g., when a child is in a rear-facing car seat, blocked by a
seat, or on the car floor. More importantly, these techniques
require extra hardware that is not standard offerings in today’s
cars to be precisely installed2. This not only introduces ad-
ditional hardware and manufacturing costs, which are huge
considering more than 80 million new cars annually, but is
also backward-incompatible with most of the over one bil-
lion existing cars in the world. A truly pervasive system that
requires no extra hardware and works for all cars still lacks.

In this paper, we ask the following question: Can we build

an accurate and robust in-cabin monitoring system by using

only readily available in-car modules without any hardware

modifications? We present the design and implementation of
such a system, named VECARE, by leveraging in-car audio
systems, which are widely available in most, if not all, mod-
ern cars. As illustrated in Fig. 1, it operates by transmitting
sound signals from the speakers and analyzing their reflec-
tions recorded on a microphone, which have interacted with
the human body, if present. VECARE accurately and respon-
sively detects tiny motions and extremely weak breathing of
young children including newborns. It can reliably detect the
presence of a child in a car, achieving whole-car detection
with no blind spots. Importantly, it can be readily deployed in
existing and emerging car models, offering the best ubiquity
superior to the aforementioned other solutions.

Albeit acoustic sensing has been extensively studied, VE-
CARE introduces a novel paradigm of Statistical Acous-

tic Sensing (SAS). The mainstream practice in the litera-
ture mostly focuses on geometrical parameters, e.g., Time
of Flight (ToF) and Doppler Frequency Shift (DFS), of a
few multipath reflections around the range where a target
presents. Differently, inspired by recent advances in WiFi
sensing [79, 88, 89], we propose to analyze the statistical

characteristics of acoustic signals by leveraging all multipath
reflections, which can be all affected by the target and there-
fore can contribute to sensing if utilized properly. Towards
that end, we explore unseen properties of acoustic multipath
signals and accordingly develop a novel SAS model that un-
derpins a unified pipeline for detecting motion, estimating
breathing rates, and even measuring moving speeds. The pro-
posed SAS model truly embraces all the reflections and favors
complex multipath environments, while requiring only a sin-
gle microphone rather than a microphone array.

Based on the SAS model, we develop a set of techniques
that overcome multiple challenges in translating SAS into a
practical CPD system. First, effective acoustic channel estima-
tion is non-trivial, mainly because of ambient sound noises,
limited frequency band (up to 24kHz) on commodity de-
vices, and multiple concurrently-transmitting speakers. In
VECARE, we adopt Kasami Sequence, a pseudo-noise or-

2WiFi is becoming popular in modern cars, but still many do not have it.

thogonal sequence for channel measurement, which provides
resilience to environmental noises as well as orthogonality
for multi-speaker sensing. Second, acoustic sensing is known
to suffer from limited coverage, e.g., typically within 1-meter
range [53, 71], mainly because sound reflections off the hu-
man body are considerably weak. The problem is aggravated
for young children who have even weaker motion/breathing.
We boost the sensing coverage by statistically leveraging all
multipaths (time diversity), optimally combining multiple sub-
carriers (frequency diversity), and opportunistically exploiting
multiple speakers (space diversity), which ultimately allows
comprehensive detection in a car. Last, CPD is a time-critical
mission requiring fast response (e.g., detection within 10 sec-
onds [49]). We design an instantaneous motion/breathing
detector for CPD based on a time-domain approach, which
can detect child presence rapidly (motion in a few seconds
and breathing with a minimum delay slightly exceeding one
breathing cycle).

We prototype an end-to-end system using commodity off-
the-shelf (COTS) microphones and speakers, including car
speakers and microphones. We first use infant simulators and
recruit adults to systematically evaluate VECARE under vari-
ous conditions both in buildings and in cars. Then we conduct
a real-world study with 15 children, aged 0 to 6 except for one
10-year-old, for testing in various cars. Our results show that
VECARE achieves an overall detection rate of 98.8% with a
false alarm rate of 2.1%, using a single microphone. It can
detect motion accurately up to 5 m, and estimate breathing at
a distance of 4.5 m for an adult and 1.6 m for an infant, out-
performing the state-of-the-art by 2.3×. Using in-car audio
without any hardware changes, VECARE holds great potential
to be widely adopted for practical CPD.
Contributions: In summary, our goal is to enable a ubiqui-
tous solution to accurate and robust in-car CPD to prevent
PVH deaths. To this end, we make three key contributions to
delivering the first CPD system using accessible in-car audio:
(1) We introduce a novel statistical acoustic sensing model
that can detect motion, track breathing, and estimate speed
by leveraging all the reflections. (2) We present a pipeline of
techniques to detect motion, speed, and breathing based on
the SAS model accurately and robustly, with a significantly
enlarged coverage. (3) We design and implement a prototype
CPD system VECARE on COTS devices and conduct exten-
sive experiments in the real world with infant simulators and
young children. Not only is VECARE a promising solution to
the critical application of CPD, we also believe the proposed
SAS opens a new paradigm in acoustic sensing for various
applications in smart homes, healthcare, and beyond.

2 Design Space

Design Scope: Among over 900 deaths reported since 1998
[50], the primary circumstances resulting in PVH deaths in-
clude a caregiver forgetting a child in a vehicle (about 55% of

1186 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the cases), someone knowingly leaving a child in the vehicle
(∼20%, e.g., running a quick errand), and the child gaining
access to and getting stuck in the vehicle (about 25%). For
all of these circumstances, if the car can detect the child left
behind and remind/alert parents and caregivers promptly, im-
mediate actions can be taken, by caregivers or by the car, to
end these entirely preventable tragedies.

CPD systems are designed for this purpose. Typically, a
CPD system is expected to run, for a short period of time, after
the driver turns the engine off and locks the doors. Therefore,
we mainly focus on in-cabin monitoring of a parked, closed
car and do not consider a driving car. The system should then
detect a child presenting anywhere inside the car quickly (e.g.,
within 10s [49]), and take registered actions responsively, such
as alerting corresponding parties (e.g., car owners, parents,
caregivers) via horn alarms and/or messages, activating the
air conditioner automatically if the temperature goes high,
etc. Yet how a CPD system exactly reacts is not our focus in
this paper. For example, questions like how a CPD system
integrates into the car system and responds to child presence
(which depends on auto manufacturers, car owners, parents
and caregivers), and whether the system should be a built-in
component or a standalone module are out of our scope.

Why Acoustics? Although presence detection is not a new
topic, existing works mostly focus on adult subjects in build-
ings. In-car CPD is particularly challenging because it de-
mands a very high detection rate (any miss detection can lead
to a potential tragedy) and it requires such a high accuracy for
extremely tiny motion/breathing from an infant, which prior
methods cannot achieve. Different modalities can be used for
CPD, such as WiFi, UWB, mmWave, cameras, etc. In VE-
CARE, we choose audio modules mainly because of the best
ubiquity: Audio systems have been standard components in
modern cars, which are nowadays commonly equipped with
two, four, or more speakers plus one microphone. These speak-
ers are most commonly installed around the dashboard, the
front/back doors, and/or the rear deck, while the microphone
is usually installed on the dashboard, around the rear-view
mirror, or behind the steering wheel. They are placed in such
a way primarily for high sound quality, which also turns out
to support a good whole-car coverage for sensing.

While acoustic sensing is usually vulnerable to ambient
sounds, vehicles today are designed and manufactured to pro-
vide the necessary level of safety and to muffle as much road
noise as possible. Therefore, in the CPD application, the im-
pact from the noise outside a closed car is insignificant. On
the other hand, embedding sensing signals on the audible fre-
quency band may result in shrill noises that are intrusive to
human ears. Previous work has nicely modulated sensing sig-
nals into white noise [71] or on only the inaudible frequency
band [9] to solve the problem. In our case, VECARE can work
on either the full bandwidth (e.g., up to 24kHz) or only the
inaudible band (e.g., above 18kHz), depending on practical
choices. While existing works like BreathJunior [71] also

monitor infants’ vital signs, they are not suitable for in-car
CPD as they rely on a large microphone array that is unavail-
able in commercial cars. Overall, acoustic signals appear to be
an attractive choice for ubiquitous and practical in-car CPD,
yet it entails numerous challenges to build an accurate and
robust system using a single microphone.

3 Statistical Acoustic Sensing

We first present a novel statistical acoustic sensing paradigm.
Our model is inspired by the success of statistical approaches
in WiFi sensing [78, 79, 88, 89]. To put it briefly, this line of
work treats each multipath component as a scatterer and inves-
tigates the spatial-temporal statistical properties of WiFi Chan-
nel State Information (CSI), which have been shown to imply
important information such as motion [89], speed [79, 88], as
well as breathing [90]. These approaches show superiority
in complex environments and have been commercialized as
real-world products on commercial WiFi devices [24, 25, 39].
In below, we first present our new observations on multipath
propagation of acoustic signals, and then show that similar
statistical properties also hold for acoustics.
Acoustic Multipaths: Unlike WiFi signals, one can effec-
tively resolve multipath signals due to the high range resolu-
tion of acoustic signals. As a result, previous works mostly
only focus on reflections from the range of interest and seg-
ment others out. However, our measurements show that a
target at a certain range not only alters the reflection around
that range, but also distorts multipath signals arriving later to a
considerable extent. As shown in Fig. 2, while a human target
contributes the strongest reflection at the Channel Impulse
Response (CIR) taps corresponding to her/his range (i.e., 1.25
m), the CIR taps up to 7 m after that range are also altered
remarkably. In comparison, the CIR taps are mostly noises
in the empty case without human presence. Our key insight
is that all these multipath distortions, if aggregated properly,
can contribute useful information for sensing. The problem is,
how can we truly leverage these weak and noisy multipaths?
SAS Model: CSI, a.k.a Channel Frequency Response (CFR),
is the frequency-domain counterpart of CIR. CSI for an acous-
tic multipath channel of frequency f at time t is denoted as

H(f , t) =
R

∑
r=1

ar(t)exp(− j2π f τr(t)), (1)

where ar(t) and τr(t) are the complex amplitude and prop-
agation delay of the r-th reflection path, respectively, while
R denotes the total number of paths. From a rich-scattering
perspective, each reflection path can be treated as a scatterer
that scatters the incoming energy back to the receiver (i.e.,
microphone) [22, 33, 89]. Thus, we have

H(f , t) = ∑
i∈RD

Hi(f , t)+ ∑
j∈RS

H j(f , t)+N(f , t), (2)

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1187

1

0.5

0

0.5

1

N
o

rm
a

liz
e

d
 C

IR
 V

a
r.

LOS

Motion Range

0 100 200 300 400 500 600 700 800 900 1000

CIR Taps

1

0.5

0

0.5

1

N
o

rm
a

liz
e

d
 C

IR
 M

e
a

n

Static Mean

Motion Mean

Static Var.

Motion Var.

Figure 2: CIR measurements with and without human motion.
The large CIR values at the motion range are truncated for
the sake of visualization.

where Hi(f , t) denotes the component contributed by the i-
th scatterer, N(f , t) is the noise term with variance σ2

N , and
RS and RD denote the set of static and dynamic scatterers,
respectively. Assuming all scatterers are statistically inde-
pendent of each other, each with the same variance σ2

i (f)
and approximately zero means, it has been established in the
context of WiFi signals [22, 79, 88], that the Autocorrelation
Function (ACF) of H(f , t) obeys the 0th-order Bessel func-
tion of the first kind. That is, denoting ρi(f ,τ) as the ACF of
Hi(f , t) with time lag τ, we have ρi(f ,τ) = J0(kviτ), where
J0(x) =

1
2π

∫ 2π
0 exp(− jxcos(θ))dθ, vi is the moving speed of

Hi(f , t), and k is the wavenumber. Suppose there is one single
moving target, and thus all dynamic scatterers have approxi-
mately the same speed v, vi ≈ v,∀i ∈ RD. This assumption is
realistic because, for human subjects, the torso scatterers dom-
inate others and have a similar speed. Then the ACF ρ(f ,τ)
of H(f , t) can be associated with the target’s moving speed v

as follows [79, 88]: For τ ̸= 0,

ρ(f ,τ) =
∑i∈RD

2πσ2
i (f)+σ2

N(f)δ(τ)

∑i∈RD
2πσ2

i (f)+σ2
N(f)

J0(kvτ)

≜ g(f)J0(kvτ),

(3)

where δ(·) is the Dirac’s delta function and g(f) is defined
as the channel gain of H(f , t). Eq. (3) bridges the ACF of
the CSI with the target’s moving speed. In practice, we can
calculate the sample ACF, ρ̃(f ,τ) = ρ(f ,τ)+n(f ,τ), from a
time series of CSI measurements with a noise term n(f ,τ).

While statistical approaches in WiFi sensing [79, 88–90]
have demonstrated success for practical solutions and com-
mercialized products [25,39,60,67], they have not been previ-
ously explored in acoustic sensing. VECARE brings statistical
sensing approaches to acoustic sensing. In the following, we
perform real-world measurements to demonstrate the proper-
ties of acoustic CSI and explain how to derive motion, speed,
and breathing based on the SAS model.

1) Detecting Motion: Similar to the motion statistic de-
fined in [89] for WiFi CSI, we find that the defined chan-
nel gain g(f) in Eq. (3) is a sensitive and robust indica-
tor for acoustic motion detection. From Eq. (3), we have
g(f) = limτ→0 ρ(f ,τ) since limτ→0 J0(kvτ) = 1. Hence, given
a sufficient CSI sampling rate Fs, we can approximate g(f)
as the value of the first tap of the ACF, i.e.,

g(f) = ρ̃(f ,τ = 1/Fs). (4)

(a) The ACF matrix. Each column indicates an ACF.

0 50 100 150 200 250 300 350

Time/s

0

0.1

0.2

0.3

0.4

0.5

M
o

ti
o

n
 S

ta
ti
s
ti
c

Sit Down

Breath

Stand Up

Walk Close Door

Wander Outside Door

Open Door
Walk

Sit Down

Breath

(b) The extracted motion level

Figure 3: Human motion and breathing in a bedroom.

If any motion presents, the value of g(f) is greater than
zero; otherwise g(f)→ 0. Fig. 3 shows an example of g(f) in
the case of human presence and absence, respectively. As seen,
there is a clear gap between the empty level and the values
for motion. Additionally, g(f) exhibits larger values when
the motion is stronger/closer, implying that it also indicates
motion strengths.

2) Tracking Breathing: ACF itself is a time-domain ap-
proach to identifying periodic signals. Therefore, we can also
detect breathing signals from the ACF, which are periodic
signals induced by repeated chest movements. If a breathing
signal is captured by CSI, the ACF will observe a promi-
nent peak at the time lag τb corresponding to the cycle time,
as in Fig. 3(a). Thus, by finding time lags of these peaks
over time, we can track one’s breathing rates as 60/τb BPM
(breath per minute). Note that as a time-domain approach,
ACF in principle is faster for breathing estimation compared
to spectrum-based approaches, which usually require a much
longer window to yield better frequency resolution.

3) Estimating Speed: As indicated by Eq. (3), the ACF of
CSI is a function of speed v, which underpins a statistical
approach entirely different from the Doppler effect for speed
estimation [88]. Specifically, as shown in Fig. 4b, the shape
of the ACF ρ(f ,τ) resembles the Bessel function J0(x) with
x = kvτ, meaning that we can estimate the speed by aligning
ρ(f ,τ) with J0(x). Assuming x0 is the constant value corre-
sponding to the first peak of J0(x), then the moving speed

v can be calculated as [79, 88]: v̂ = x0
kτs

= x0λ(f)
2πτs

, where τs

is the time lag corresponding to the first local peak of the
ACF ρ(f ,τ) and λ(f) is the wavelength of subcarrier f . Fig.
4 illustrates an example of speed estimation with the setup
in Fig. 8(c), which shows that the ACF reacts to the moving
speed faithfully as the above equation implies.

Remark: As seen, a peak in the ACF can either indicate
a speed signal or a periodic signal. However, we notice that
the peak locations for breathing (e.g., 1-5s for breathing rates

1188 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) ACF matrix

0 0.1 0.2 0.3 0.4 0.5

Time Lag ()/s

-0.2

0

0.2

0.4

0.6

0.8

A
C

F

20cm/s

30cm/s

 = 0.23s

 = 0.12s

(b) ACF

Figure 4: Speed estimation. A plate moves along a track
programmed with different speeds (frequency @ 10 kHz).

60-12 BPM) are usually of magnitude longer than those for
speed (e.g., <0.5s for 0.5 m/s using 10 kHz sound, and the
faster the speed, the smaller the delay), a sufficient difference
to determine whether to estimate breathing or speed. We do
not involve speed in the current VECARE for CPD as motion
and breathing will be sufficient. Yet we still present a brief
description here, with an analysis of a few more issues in
Appendix A.1, to show a unique approach offered by the SAS
model. We keep the exploration of the full potential of SAS
speed estimation for future work.

4 VECARE Design

Translating the proposed SAS model into a practical CPD
system on commodity speakers and microphones still entails
multiple challenges. In this section, we overcome these prac-
tical challenges and present the design of VECARE.

4.1 Acoustic Channel Estimation

The proposed SAS model leverages acoustic CSI, which de-
mands effective channel estimation. Several unique character-
istics of sound waves make it particularly challenging. First,
the sound wave speed is orders of magnitude slower than
that of light and EM waves, which imposes limitations on
the max possible CSI sampling rate of the acoustic channel.
For example, given the in-air sound speed of around 343 m/s,
the propagation delay of a path of 7 meters in length will
be greater than 20 ms, requiring a minimum channel mea-
surement internal larger than 20 ms to avoid signal mixture.
Second, acoustic sensing is vulnerable to environmental sound
interference, especially when it is limited to a frequency band
under 24 kHz on commodity devices. Ambient interference
like the human voice, music, and natural sounds, can smear
channel measurements for certain frequency bands. Moreover,
concurrent sensing signals transmitted on multiple speakers,
if used, may also interfere with each other.

In VECARE, we investigate Pseudo-Noise (PN) sequence
[57] for CIR measurements. PN sequence is a set of noise-
like signals and can be effectively distinguished from both a
time-shifted version of itself (a.k.a, excellent auto-correlation
properties) and every other signal in the set (a.k.a, excellent
cross-correlation properties), which have been used in spread-
spectrum communications, radar sensing, etc [52]. Among

different types of PN sequences such as m-sequence [58], Go-
lay sequence [64], GSM training sequence [86], and Zadoff-
Chu (ZC) [63], we choose Kasami sequence [31] for CSI
estimation because of its superior properties of orthogonality
and noise tolerance. Fig. 5a shows the auto-correlation and
cross-correlation of a pair of example Kasami sequences with
period 26 −1. The auto-correlation produces an impulse-like
signal with minor side lobes, while the cross-correlation only
produces minor values that are much smaller than the impulse
of auto-correlation. Note that our approach is not limited to
a particular channel estimation technique, but can work with
any approach, including the widely used FMCW, that provides
effective CSI.
CIR estimation with Kasami sequence: Fig. 6 shows the
channel estimation process in VECARE, with two speakers as
an example. We generate two orthogonal Kasami sequences
s1 and s2 with the same length and periodically transmit them
on both speakers simultaneously. The transmitted sequences
undergo different time delays and attenuation before being
captured by the microphone. On the receiver side, we corre-
late the microphone recordings with s1 and s2 separately to
get CIR streams of the two channels, and slice them into seg-
ments with the same length as s1 and s2, resulting in the CIR
estimates h1(t) and h2(t). We can then convert h1(t) and h2(t)
into the frequency domain by performing Fourier transform
and obtaining the CSI H1(f , t) and H2(f , t).

Since a correlation operation is equivalent to a conjugate
multiplication in the frequency domain, the measured CSI
H̃(f) using Kasami sequence can be represented as

H̃(f) = [S(f) ·H(f)+N(f)] ·S∗(f)

= ∥S(f)∥2 ·H(f)+N(f) ·S∗(f),
(5)

where H(f) denotes the ideal CSI, and S(f) and N(f) are the
frequency-domain representations of Kasami sequence and
sound noises respectively. S(f) is a wideband signal spanning
over the whole spectrum, and S∗(f) is its conjugate. The term
∥S(f)∥2 ·H(f) approximates to a scaled version of H(f). An
example of the measured CIR is shown in Fig. 2.

We generate Pulse Coded Modulation (PCM) samples from
the Kasami sequence and play them on the speaker without
an extra modulation process. Several previous works have
exploited more complicated signal modulation techniques
to improve measurement performance including Orthogonal
Frequency-Division Multiplexing (OFDM) [48] and BPSK
[86], which is not necessary for VECARE.

Audibility and Interference: There are two issues with
the above channel estimation process. First, the Kasami se-
quences composed of 1’s and -1’s with sharp transitions in
between can be intrusive to human ears. Second, by trans-
forming CIR, the obtained CSI spans the full spectrum, which
might be polluted by the ambient sound noises, especially on
the audible frequency band. To circumvent these problems,
we apply a high-pass filter (HPF) on both the transmitted
and received signals. The passband can be set flexibly, and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1189

0 10 20 30 40 50 60

Sample

-20

-10

0

10

20

30

40

50

60

70

Auto-correlation

Cross-correlation

(a)

0 10 20 30 40 50 60

Sample

-20

-10

0

10

20

30

40

50

Auto-correlation

Cross-correlation

(b)

0 10 20 30 40 50 60

Sample

-1.5

-1

-0.5

0

0.5

1

1.5

w/o filter

w/ filter

(c)

2 4 6 8 10 12 14 16 18 20 22 24

Frequency/kHz

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 A

m
p

lit
u

d
e

Interference

CFR w/ filter

(d)

Figure 5: Kasami sequence. The auto-correlation and cross-
correlation of (a) Kasami sequence and (b) Kasami sequence
after applying a 10 kHz high-pass filter. (c) The Kasami se-
quence before and after a 10 kHz high-pass filter. (d) The
spectrum of background traffic interference and CSI after the
10 kHz high-pass filter. The sound sampling rate is 48 kHz.

𝑠!(𝑡) ℎ!(𝑡)

𝑛(𝑡)

𝑟(𝑡)

𝑠!(𝑡) ℎ"(𝑡)

𝑠!⨂

𝑠"⨂

ℎ!(𝑡)

ℎ"(𝑡)

𝐹𝐹𝑇

𝐹𝐹𝑇

𝐻!(𝑓, 𝑡)

𝐻"(𝑓, 𝑡)

Channel #1

Channel #2

HPF HPF

Figure 6: CSI estimation process with Kasami sequence.

VECARE can work reliably even with only the inaudible
pseudo-ultrasound band, e.g., above 18kHz. Here we use an
empirical passband of 10 kHz as an example for illustration
and will evaluate difference choices extensively in §6.

Transmitter Filtering: When we apply the filter on the
transmitter side, as shown in Fig. 5c, the binary values on
the time domain signal are softened, and the output sound
contains fewer intrusive bursts. The major concern is whether
this filter operation breaks the auto-correlation and cross-
correlation properties of Kasami sequences or not. To validate,
we plot the auto-correlation and cross-correlation between
the original and filtered Kasami sequence in Fig. 5b. It can
be seen that, after applying the filter, the auto-correlation still
observes an impulse (with a decrease in SNR) while the cross-
correlation approximates the noise.

Receiver Filtering: On the receiver side, the term N(f) ·
S∗(f) in Eq. 5 is eliminated by high-pass filtering. This is
because typical daily sound interference, such as traffic and
human voice, mostly occurs in the frequency band below
10 kHz. Fig. 5d shows the spectrum of traffic noise and the
measured CSI after applying the HPF. As seen, the noise
is successfully removed. Meanwhile, we are left with fewer
subcarriers for sensing because of the filtering, motivating us
to maximize the sensing signals (§4.2).

Resilience to asynchronization: The speakers and micro-
phones are connected to the same controller in our prototype
and in cars as well. Due to hardware imperfections and soft-
ware latency, however, they are not perfectly synchronized,
which makes it difficult to measure accurate channel response.
Fortunately, synchronization errors only introduce phase off-
sets in CSI, which does not affect VECARE because CSI is
measured consecutively without blanks in between and we
only use the amplitude. We will experimentally verify this in
§6 and show that VECARE even works with separate speaker
and microphone, while providing proof in Appendix A.2.

4.2 Sensing Signal Enhancement

Sound reflection off human bodies is considerably weak, a ma-
jor reason confining the coverage of human-centric acoustic
sensing [71, 74]. The problem is aggravated when the target
is an infant/toddler in CPD applications. Our SAS model
utilizes all multipaths for better coverage. We now present
an effective technique to exploit subcarrier diversity which
further boosts the sensing signals, particularly for breathing.

Subcarrier diversity is attributed to frequency selective fad-
ing, a well-known phenomenon in wireless communications.
Fig. 7 demonstrates a breathing example, with the calculated
ACF matrix on different subcarriers in Fig. 7a and the raw
amplitude of good subcarriers (manually selected) in Fig. 7b.
Some subcarriers capture dominant breathing signals, while
others merely observe noises, even in such an example with
strong breathing signals. We also notice that, because of the
complex multipath propagation, the most sensitive subcarriers
can vary over time randomly. Therefore, it is critical to dy-
namically find the best subsets of subcarriers and effectively
combine them to maximize the signal SNR.

Like in WiFi sensing works [79, 90], we employ Maximal
Ratio Combining (MRC) [6], a classical diversity combin-
ing method in wireless communications which optimizes the
receiving SNR, to combine multiple subcarriers optimally.
Since the noise terms on different subcarriers are statistically
independent, we can maximize the signal SNR by MRC as

ρ̂(τ) = ∑
f∈F

w(f)ρ̃(f ,τ), (6)

where ρ̂(τ) is the combined ACF, w(f) denotes the normal-
ized weight for combining subcarrier f (i.e., ∑ f∈F w(f) = 1),
and F is the set of all subcarriers. The optimal weight w(f)
should be linearly proportional to the gain on each subcarrier.
Following [90], we adopt the normalized g(f), defined in Eq.
(4), as the weight w(f) in VECARE. Note that, some intuitive
criteria commonly used like mean/variance of CSI amplitude
cannot serve as the optimal weights for MRC, as they are not
linearly proportional to the gain g(f) and subcarriers with
higher amplitude means/variances do not necessarily better
capture the sensing signals, as shown by Fig. 7a.

1190 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 12 14 16 18 20 22 24

Frequency/kHz

0

1

2

3

4

5

6

T
im

e
 L

a
g

/s

Breath @ 15BPM

Sensitive

Subcarriers

g(f)
mean

var

(a)

0 5 10 15 20 25 30

Time/s

5

10

15

20

C
S

I
A

m
p
lit

u
d
e
 (

*e
-3

)

Subc. #1

Subc. #2

Subc. #3

Subc. #4

Subc. #5

(b)

1 2 3 4 5 6 7

Time Lag/s

-0.2

-0.1

0

0.1

0.2

0.3

0.4
A

C
F

Subc. #1

Subc. #2

Subc. #3

Subc. #4

MRC

(c)

Figure 7: Breathing signals. (a) The ACF over all the subcar-
riers, with gain g(f), mean and variance of CSI amplitude
marked on the top. (b) The CSI amplitude on different sub-
carriers. (c) ACF on subcarriers and after MRC.

We can combine multiple subcarriers here because, by tak-
ing the ACF, the sensing signals (either breathing or speed) are
synchronized across different subcarriers (Fig. 7c). It cannot
be done directly on the raw amplitude due to the considerable
phase offsets of breathing/speed signals on different subcarri-
ers, as demonstrated by Fig. 7b. In case multiple speakers are
available, the subcarriers on different speakers can be com-
bined similarly, and again, asynchronization among different
speakers is not an issue. By combining them, we can further
boost the SNR and extend the sensing coverage.

4.3 Child Presence Detection

VECARE combines motion and breathing detection for CPD.
Motion detection: It is straightforward to detect motion. We
first average the gains g(f) across all subcarriers and obtain
ḡ = 1

|F | ∑ f∈F g(f). Then given a preset motion threshold ε,

the system detects motion at any given time t if ḡ(t)> ε; oth-
erwise no motion presents. We use equally averaged ḡ instead
of using MRC because the averaged values across all subcar-
riers with equal gains will approximate zero in absence of
motion, allowing us to find a generic threshold ε for different
environments and cars.
Breathing Detection: To estimate the breathing rate, we first
need to find whether there exists a dominant peak in the en-
hanced sensing signal ρ̂(τ). To achieve so, we adopt similar
criteria in [90] for peak finding. Basically, we first examine
the peak prominence, width, and amplitude to identify poten-
tial peaks. Then we further check the peak location to sift out
those beyond the typical range of human breathing rates, e.g.,
10-60 BPM. We also compare the motion level ḡ against the
peak value as there will be unlikely breathing if the motion
level is way larger than the peak value. Once we find the

peaks corresponding to breathing, we will estimate the peak
location τb and accordingly derive the breathing rate.
Real-time CPD: In real-time, we employ a sliding window
on the continuous CSI to calculate the ACF. We employ a
shorter window of CSI (e.g., 1s) for calculating the ACF for
motion detection to make it more responsive while saving
computation. While for breathing, a minimum window larger
than a typical breathing cycle (e.g., 6s, which can be shorter
for children who usually have higher breathing rates) is de-
sired. As motion is more common and the computation is
more efficient, we will only further perform breathing estima-
tion when no motion can be detected. Note that the system
can output detection decisions as fast as every CSI sample,
or at a predefined lower rate, e.g., every 1 second, to save
energy. Once we have the time series of motion/breathing
decisions, we check them within a certain window, e.g., 5s,
and child presence is claimed if there is a certain amount of
motion/breathing detection, e.g., >30% of the window.

5 Implementation

Hardware: We implement VECARE using a programming
audio prototype, which consists of a MiniDSP UMA-8-
SP USB microphone array [44] with 7 built-in Knowles
SPH1668LM4H microphones (we use only one of them)
and PUI Audio AS07104PO-R speakers [5] connected to the
MiniDSP board via cables. As in Fig. 8(g), we also evaluate
the performance on a variety of commodity devices used in
consumer electronics and cars, including JBL Stage1 621 car
speaker [29] and Linhuipad car microphone [38], JBL Clip
4 speaker, Sony SRS-XB23 speaker, Razer Seiren Mini Mic,
and speakers and microphones on Macbook and iPhone, etc.
Again, we always use only one single microphone throughout
our experiments, even if more are available. We connect this
prototype to either a computer or Raspberry PI 3 Model B+.
Software: We implement signal generation and transmission
as well as all our algorithms using MATLAB mainly for
benchmark analysis. We also build an end-to-end prototype
of our system running in real-time using Python3.9, which
can run on embedded devices (Raspberry PI in our case).
Kasami Sequence: A longer period of Kasami Sequence
allows higher SNR for channel estimation, which, however,
creates an immediate conflict with sampling rates. To trade-
off, we use a sequence of period 210 −1 modulated into 0.02
s, which allows a desired sampling rate of 50 Hz to use in
VECARE. By default, we use 3 seconds of CSI for motion
calculation and use 8 seconds for breathing rate estimation.
Handling Sharp Interference: By applying a high-pass filter,
we successfully get rid of most of the daily environmental
noises. However, if there are sharp and short impulse-like
noises (e.g., horn honk/beep), the impacts may go above 10
kHz and cause false motion detection. We notice that these
kinds of sharp noises will impose a sudden change in the
CSI amplitudes, which translates into a special ACF pattern,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1191

which linearly decreases first and then linearly increases (See
Appendix A.3 for more details). Therefore, we design a detec-
tor to identify this linear decrease-then-increase pattern and
skip CPD during the interfered period. By doing so, VECARE

becomes immune to sharp noise like horn beep, an important
feature making it more practical. Although this would reduce
the effective protection time (the system is not working in
presence of such noises), we argue the impact is minimal
because these noises are usually short (∼1s) while VECARE

detects so rapidly that it can find a period for detection.

6 Evaluation

6.1 Experimental Setup

We conduct experiments both in office environments and in
cars, as Fig. 8 illustrates, which mainly consist of three parts:
1) Indoor experiments with adults to evaluate the performance
in large space against various parameters. 2) Indoor and in-car
experiments with infant simulators. Our evaluation involves
two infant simulators. One is Laerdal SimNewB (Fig. 8(b)), a
high-end model (retail price around $30,000) offered by the
clinical facility in our university’s medical school, which is
co-created by the American Academy of Pediatrics and allows
to set the breathing rate as well as move various body parts.
The second one comes with a breathing motor and does not
support body movements. 3) Real-world in-car experiments
with children. We recruit 15 young children and perform CPD
in 7 different cars including sedan and SUV.

Ground truth for adult breathing is measured by Plux piezo-
electric Respiration (PZT) sensor [7]. Infant simulators have
a preset fixed breathing rate. We did not record the ground
truth breathing rate of children participants as it is difficult
to have their cooperation. Motion and presence ground truths
are manually labelled. This work does not raise any ethical
issues and has been approved by our university’s IRB. No
sensitive data like personal identifiers were collected.

To show our performance under extreme responsiveness
constraints, by default we use a 2-second window for the
decision below. A higher detection rate is expected if a longer
decision window is applied. Also, we use only one speaker for
evaluation unless otherwise specified. Using more speakers is
expected to provide larger coverage. We mainly use detection
rate (DR) and false alarm rate (FAR) as the evaluation metrics
for motion, breathing, and overall presence detection, while
we also evaluate the mean absolute breathing rate error.

6.2 Indoor Performance

We first evaluate with comprehensive indoor experiments to
validate motion detection and breathing estimation.
Motion Detection: We first evaluate the motion detection
performance in a 7m×5m conference room. We set up one
microphone and one speaker in the corner. The room is in an

(g)
Sony speaker

Macbook

iPhone

Razer mic

JBL Clip 4

miniDSPPUI

JBL Stage1 621

Car speaker

Linhuipad
car mic

Figure 8: Experimental setups

office building, with constant noise from the central fan and
occasional footstep sounds when people pass by the outside
corridor. An adult is asked to sit in a chair, at various distances
from 1m to 5 m, and only move his one hand slowly to mimic
the tiny motion of a child. We also test with the speaker facing
different angles with respect to the subject. As shown in Fig. 9,
VECARE achieves an average detection rate of 98.1%, which
maintains 94.1% even when the user is 4∼5 m away from the
speaker and microphone, while the false alarm rate is only
1.1%. The performance degrades slightly when the subject
is at a distance and at an angle of 60◦. Note that the motion
detection rate is almost 100% when the user is within 3.5 m,
a sufficient distance to cover a typical car.
Breath Estimation: Now we evaluate the breathing estima-
tion performance in the same environment. First, we also
test with an adult subject at different distances, sitting still
in a chair. As shown in Fig. 10, we achieve a mean absolute
error of 0.88 BPM within the distance of 3 m, including all
orientations. More importantly, VECARE can detect breath-
ing rate at a range as far as 4.5 m, with a slight increase in
breathing rate error. We also evaluate the case when there is
no Line-Of-Signt (LOS) between the speaker and the subject,
as well as the case when the user wears a thick down jacket.
As portrayed in Fig. 11, even when a user is wearing a thick
coat, VECARE can still pick up the breathing rate at distance
up to 4 m. When the speaker is blocked, the maximum range
of breathing estimation decreases to 2.5 m, still more than
enough to cover an entire car. Note that the accuracy under oc-
clusion is not necessarily lower than that for LOS cases since
VECARE embraces all multipath reflections to significantly
enhance the NLOS scenarios, which may experience richer
multipath effects.
Evaluation with SimNewB: Now we carry out a feasibility
study with the SimNewB newborn simulator in a clinical facil-
ity, which features tens of beds and has continuous machinery
and HVAC noises. The experimental setup is illustrated in
Fig. 8(a). During the tests, the laboratory technician randomly
set the breathing rate of the newborn simulator. As shown in
Fig. 13, VECARE can detect the newborn simulator’s very
weak breathing reliably, achieving an average detection rate
of 87.8% with a mean error of 3.43 BPM, which decreases
to 78.0% with an increased mean error of 8.6 BPM when
the newborn is covered with a blanket. Note that we didn’t
exhaust various breathing rates due to limited access to the fa-

1192 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 1.5 2 2.5 3 3.5 4 4.5 5
0.6

0.7

0.8

0.9

1

M
o

ti
o

n
 D

R

Orient 0

Orient 30

Orient 60

N/A
0

0.02

0.04

M
o

ti
o

n
 F

A
R

Figure 9: Indoor motion detec-
tion performance.

1 1.5 2 2.5 3 3.5 4 4.5

Distance/m

0

2

4

6

8

B
re

a
th

 E
rr

o
r/

B
P

M Orient 0

Orient 30

Orient 60

Figure 10: Indoor breath estima-
tion performance.

1 1.5 2 2.5 3 3.5 4 4.5

Distance/m

0

2

4

6

8

B
re

a
th

 E
rr

o
r/

B
P

M LOS

NLOS

w/ Coat

Figure 11: Breath estimation in
NLOS and with coat.

0 0.05 0.1 0.15

Speed Error (m/s)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 12: Speed estima-
tion performance.

cility and SimNewB during the pandemic time, yet we believe
the results already show the capability to detect a newborn’s
breathing at a distance. We will further study the impact of
breathing rates later. In another test case, we configure the
neonatal simulator to move her forearms, for which we detect
the motion for 100%.
Speed Estimation: We also conduct a preliminary evaluation
of our speed estimation by moving a plate back and forth at
speeds from 15 cm/s to 25 cm/s along a 1.8m long straight
programming track, as in Fig. 8(c). As shown in Fig. 12, VE-
CARE achieves a considerable 80%ile accuracy of 5 cm/s.
Errors mainly occur around the turning points when the plate
slows to stop and starts moving again. We believe the re-
sults are encouraging and plan to further investigate statistical
acoustic speed estimation for other applications in the future.

6.3 Real-World CPD Study

We conduct a real-world study with young children in differ-
ent cars and parking scenarios, such as parking lots, roadside
parking, garage, etc. For each child, we test different loca-
tions, with either forward-facing or rear-facing car seats as
regulated. For older children who can sit/crawl independently,
we also test seats without the baby car seat. All the children
wear their regular winter coats. We test motion (awake) cases
for every child and evaluate breathing for children who are
able to get asleep (or stay very quiet) during the test. The data
collection for each child lasts about 30-60 minutes. During
tests, the car is parked and locked with windows closed, the
typical scenario that hot-car deaths may occur. There are cars
parking around and/or passing by, and parents and our experi-
menters talking/standing/walking around the car. There are
frequent traffic noises during most of the tests, done in central
downtown Hong Kong. In total, we have 15 children (aged
7 months, 12 months, 18 months, 2 (2×), 3 (4×), 4 (2×), 5
(3×), and 10 years old, respectively) tested in 7 different cars,
including Lexus LS430, BMW 330, Mercedes-Benz C200,
Mercedes-Benz S320, Tesla Model 3, Honda Jazz, Nissan
Serena. We use one or two speakers for the real-world study,
considering not all cars have four or more, and always use
one single microphone. In most cases, the LOS condition is
occluded, provided that the devices are installed in the front
row while the kids are seated in the back. Example setups are
shown in Fig. 8(d) and (e).

We mainly focus on the overall presence detection rate
for this CPD test. Fig. 14 shows that VECARE achieves an

average detection rate of 98.8% with an average false alarm
rate of 2.1% for all age groups of children. As expected, the
detection rate for infants (one 7-month-old and one 12-month-
old in our experiments) is relatively lower than older kids,
but is still around 90%. The high performance is consistently
achieved across different cars, varying from 95% to 100%
with marginal differences, as portrayed in Fig. 15. The FARs
in Fig. 14 vary slightly because different kids are tested in
different cars that have different enclosure materials and in-
car noise levels. False negatives are most likely to occur when
there is a lack of awake motion and the infant’s breathing is
extremely weak.

Furthermore, we analyze the performance at different in-car
locations. As shown in Fig. 16, we group the results based on
where the child seats, i.e., driver seat (L-F), passenger seat (L-
R), two back seats (L-B and R-B), as well as the case when the
child is on the back row floor (B-G). As seen, VECARE main-
tains a consistently high detection rate and low false alarm
rate across different locations. Overall, the results demonstrate
VECARE’s remarkable performance in real-world scenarios,
promising its potential for practical adoption.

To further understand the detection coverage in a car, we
use a small toy car, as shown in Fig. 8(f), to simulate tiny
motions at nine different on-seat and on-floor locations. Two
speakers are installed on the left and right front doors, respec-
tively. As depicted in Fig. 17(a), VECARE achieves a 100%
detection rate for all the 9 testing locations, using either two
speakers or only one single speaker on the left or the right.

Long-term Study: Besides the high accuracy, it is also crit-
ical to study false alarms, especially over a long period in
diverse noisy environments like busy streets, noisy garages,
etc. We first note that the above real-world experiments were
conducted in noisy urban areas (including noisy garages, busy
streets, parking lots next to highways, etc) in downtown Hong
Kong in the presence of cars, sirens, pedestrians, etc. To fur-
ther understand the performance in different environments,
we carry out a relatively long-term evaluation in the busy
Beijing City. We park the car, without kids inside, in a busy
garage and a crowded street for about 10 hours, respectively.
We report a false alarm if motion is detected for over 10%
of the time for a sliding window of 2s. Our results show that
VECARE observes a false alarm rate of 0.12% in the garage
and 0.28% for the roadside parking case. In practice, a CPD
system may not need to run for a long time, but perhaps only
for a few minutes after the car is parked and locked, which
will further reduce the chance of observing false alarms.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1193

25BPM 33BPM 35BPM w/ towel

Breath of Neonatal Simulator

0.6

0.7

0.8

0.9

1

B
re

a
th

 D
R

1

3.25

5.5

7.75

10

B
re

a
th

 E
rr

o
r/

B
P

M

DR

Error

Figure 13: Evaluation with a
neonatal simulator.

0~1 2 3 4 5 10

Baby Age

0.8

0.85

0.9

0.95

1

P
re

s
e
n
c
e
 D

R

0

0.05

0.1

0.15

0.2

P
re

s
e
n
c
e
 F

A
R

DR

FAR

Figure 14: VECARE for chil-
dren at different ages.

A B C D E F G

Car Type

0.8

0.85

0.9

0.95

1

P
re

s
e
n
c
e
 D

R

0

0.05

0.1

0.15

0.2

P
re

s
e
n
c
e
 F

A
R

DR

FAR

Figure 15: VECARE for chil-
dren in different cars.

L-F R-F L-B R-B B-G

In-Car Location

0.8

0.85

0.9

0.95

1

P
re

s
e
n
c
e
 D

R

Figure 16: VECARE for differ-
ent in-car locations.

System Latency: As a time-critical task, we now analyze the
detection latency of VECARE. To do so, we evaluate the delay
of the first decision for each test. We use a 3s window for ACF
calculation for motion and an 8s window for breathing, and
then use another 2s window for presence detection. Hence,
the minimum delay will be 5s if motion is detected and 10s
if there is no motion but breathing. With this configuration,
the results show that VECARE can output the first detection
within 5.7s for 81.9% of the time, 11.2s for 95.2%, and 15.2s
for 98.8%. The minimum delays and thus the overall latency
can be reduced by using a shorter window (e.g., 1s) for motion
detection, the most common case for CPD.

6.4 Comparative Study

Baseline Comparison: We compare VECARE with the state-
of-the-art approach BreathJunior [71], the closest to our work
which successfully uses white noise for infant breathing mon-
itoring. We implement BreathJunior and perform comparison
experiments using an infant simulator. The results demon-
strate that VECARE outperforms BreathJunior in both ac-
curacy and coverage. As shown in Fig. 18, the maximum
distance BreathJunior achieved is 70 cm (with a considerable
error of 8 BPM), while VECARE goes to 1.6 meters under
the same condition, which is 2.3× improvement. In addition,
while BreathJunior is accurate within 0.5 m, the breathing
estimation error quickly increases at a distance of 70 cm. In
comparison, VECARE maintains a breathing rate error be-
low 2 BPM at a distance of 90 cm, smaller than the error
BreathJunior experiences at 60 cm.
Channel Estimation Methods: As said, VECARE can work
with any channel estimation methods that output CIR. We
now compare the performance of using Kasami Sequence
against using different CIR estimation methods, including
chirp signals (FMCW) [15], Golay Sequence [64], MLS [59],
Gold Sequence [19]. As shown in Fig. 19, while all these
methods produce a high detection rate above 90%, Kasami
Sequence demonstrates its superior performance with the
lowest breathing rate error and the highest detection rate.
Device Diversity: We now examine VECARE’s performance
on different devices. We are most interested in how it works on
commodity car speakers and microphones. We thus evaluate
it using JBL Stage1 621 car speaker and Linhuipad car micro-
phone, both adopted in existing automobile audio systems. As
shown in Fig. 20, VECARE maintains high performance and
large coverage. We further test motion detection at 2m on var-
ious speaker/microphone combinations as summarized in Fig.

Speaker #1

Speaker #2

microphone

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

8
7
.4
%

1
0
0
%

9
3
.5
%

9
8
.0
%

8
8
.2
%

7
3
.5
%

9
1
%

1
0
0
%

3

2
1

4

5

6

7

8

9

Speaker #1

Only

Use Both

Speakers

6m

4m

4m

6m

6

19

28

37

4

5

On car floor

On car seats

(b)(a)

100%

Figure 17: Motion coverage (a) in a car and (b) in a room.

21, which indeed show device diversity yet good performance
retains in most cases.

6.5 Benchmark Study

In this section, we evaluate the impacts of various factors and
validate the robustness of VECARE. For more controllable
data collection, we use the infant simulator instead of real
babies for this study, and focus more on breathing estimation.
Background Interference Type: We first study the impact
of background sound interference of different types, includ-
ing human voices, traffic noise, rain sound, wind sound, hail-
stone sound, and music. To better control the experiments, we
download sound files of these noises and play them through a
loudspeaker around 50 dB next to the VECARE system. As
shown in Fig. 22, VECARE maintains high accuracy regard-
less of different types of natural sound interference, with only
marginal differences among them. This has also been partly
verified in our real-world testing in §6.3 where we tested
under real environments with all different ambient noises.
Background Interference Level: We also evaluate the per-
formance under various background noise levels. We mainly
focus on traffic noise and human voices for this test. We play
sound files of noise through a loudspeaker at various powers
and distances and record the actual sound level received at the

microphone. As shown in Fig. 23, the BPM error increases
with higher surrounding noises, especially over 50 dB level.
Transmitter Sound Level: The transmitting power of the
speaker can affect performance. To verify this, we vary the
transmitted sound from 46 dB to 53 dB and evaluate the
breathing estimation error accordingly. As seen in Fig. 24,
the breathing rate error quickly drops from about 7 BPM to
below 2 BPM when the sound level exceeds 49 dB. Sensing
sound at this level is perceived acceptable, according to our
observations of the response of children participants and their
parents’ feedback, and users outside the car can barely hear
the sound. Also, note that previous works [71] use higher
sound levels (reportedly 56 dB [71] and 75 dB [70]) than

1194 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

40 50 60 70 80 90 100 120 140 160

Distance/cm

0

2

4

6

8

B
re

a
th

 E
rr

o
r/

B
P

M BreathJunior

VeCare

Figure 18: Performance com-
parison with baseline.

Chirp Golay MLS Gold Kasami

Channel Estimation Methods

0.6

0.7

0.8

0.9

1

B
re

a
th

 D
R

1

3.25

5.5

7.75

10

B
re

a
th

 E
rr

o
r/

B
P

M

DR

Error

Figure 19: Comparing channel
estimation methods.

1 1.5 2 2.5 3 3.5 4 4.5 5

Distance/m

0

0.2

0.4

0.6

0.8

1

M
o
ti
o
n
 D

R

(a) Motion detection. FAR=3%.

0.4

0.6

0.8

1

1.2

B
re

a
th

 E
rr

o
r/

B
P

M

1 1.5 2 2.5 3 3.5 4 4.5 5

Distance/m

0

0.2

0.4

0.6

0.8

1

B
re

a
th

 D
R

(b) Breathing estimation
Figure 20: Performance using car speaker and mic.

Speaker Linhuipad MiniDSP Razer Macbook iPhone

JBL Stage1

Car Speaker

DR 1.00 1.00 1.00 1.00 1.00

FAR 0.00 0.00 0.00 0.00 0.00

PUI Audio
DR 1.00 1.00 1.00 1.00 0.96

FAR 0.00 0.00 0.00 0.00 0.18

JBL Clip4
DR 0.94 0.98 1.00 1.00 0.87

FAR 0.07 0.00 0.00 0.00 0.03

iPhone
DR 0.92 1.00 0.87 1.00 1.00

FAR 0.06 0.00 0.03 0.00 0.00

Sony SRS-

XB23

DR 1.00 1.00 0.68 0.62 0.88

FAR 0.00 0.00 0.16 0.41 0.28

Mic

Figure 21: Motion detection on
various devices.

Voice Traffic Rain Wind Hailstone Music

Background Interference

0.6

0.7

0.8

0.9

1

B
re

a
th

 D
R

1

3.25

5.5

7.75

10

B
re

a
th

 E
rr

o
r/

B
P

MDR

Error

Figure 22: Impact of back-
ground interference.

Interference Level/dB
0

0.4

0.8

1.2

1.6

2

B
re

a
th

 E
rr

o
r/

B
P

M

48
45

53
48 58

53

62

57

Traffic Noise

Human Voice

Figure 23: Impact of back-
ground interference level.

46dB 49dB 51dB 53dB

Sound Level

0

2

4

6

8

B
re

a
th

 E
rr

o
r/

B
P

M

Figure 24: Impact of transmit-
ting sound level.

VECARE. Nevertheless, a higher sound level is more favored
in VECARE as a relatively high sound level could benefit CPD
applications since it promises a better chance to wake up a
sleeping baby for more reliable detection via awake motion.
As research [16, 51] reports that a sound level higher than 75
dB will disturb the infants, we set the default sound level as
50 dB. Based on our real-world experiments with children,
such a sound level appears to be tolerable to kids including
infants and toddlers: We received no cases to complain about
the sound intrusiveness and annoyance.

Frequency Bandwidth: We use the band above 10 kHz by
default in our experiments, which may still be intrusive to
human ears. We now study the performance with narrower
and higher frequency bands. To do so, we adapt the passband
of the high-pass filter from 10 kHz to 22 kHz with a 2 kHz
step. Fig. 25 shows that VECARE retains a good performance
until the passband exceeds 20 kHz. Larger bandwidths allow
better performance, while VECARE still performs well using
18-24 kHz, the commonly used inaudible band in the literature.
Commodity devices like Google Nest start to support acoustic
frequencies up to 30 kHz [70], which we believe will become
more common in the future. Such devices allow a sufficiently
large and truly inaudible band across the age spectrum for
non-intrusive acoustic sensing.

Impact of Temperature: As sound speed depends on tem-
perature, we are curious how VECARE works under high
temperatures. To do so, we heat up the surrounding air to
about 120◦F and then let it naturally cool down in a warm
room of about 70◦F. We keep the system running during the
process and show the breathing estimation results in Fig. 26.
As seen, VECARE failed to work when the devices overheat,
but resumes excellent performance when they slightly cool
down (after 30 seconds). We argue that a CPD system is ex-
pected to work before rather than after the car has heated up,
as intervention actions are most effective right after the car
is parked and locked. Therefore, we believe VECARE’s CPD
effectiveness will not be affected even though its performance
degrades under overly high temperatures.

Multiple Speakers: Multiple speakers, if available, can fur-
ther increase the sensing coverage. We present a case study
with two speakers in a meeting room, where an adult sits in a
chair moving one hand. As portrayed in Fig. 17(b), while the
coverage with a single speaker is already good, by adding one
speaker, we achieve a 100% motion detection rate through
the 6m×4m area. We didn’t continue with more speakers as
the system already covers the entire room using two.
Synchronization Errors: We manually introduce large syn-
chronization errors to show that VECARE is resilient to phase
offsets. Particularly, we shift the starting point of the received
signals by an amount of time ranging from 0 to 1 second
with a step of 0.1 s. As shown in Fig. 27, VECARE maintains
similar accuracy without being affected by the time offsets,
which confirms our theoretical analysis.
Breath Intensity: Infants and toddlers usually have higher
breathing rates than adults. We evaluate the performance of
VECARE with respect to a range of breathing rates from 30
BPM to 60 BPM. We fix the breathing rate for each run by
controlling the motor of our infant simulator. The results show
insignificant differences for various breathing rates.
System Overhead: We benchmark the system overhead on a
desktop (Intel i7-11700 @ 4.9GHz CPU), a MacBook Air M1,
and a Raspberry Pi 3 Model B+, on which VECARE use 0.52s,
0.73s, and 3.97s respectively to process 10s of the data stream.
The results show that VECARE can run in real-time on embed-
ded devices, promising its integration into existing car control
systems. The current prototype of VECARE using MiniDSP
microphones introduces an extra power consumption of about
3W on Raspberry PI 3 B+, resulting in a total of 6W. The
energy consumption can be optimized by improved hardware
and software implementation. Additionally, the power usage
is overall negligible as, again, we believe the CPD system can
run only for minutes after a car is parked.

7 Discussions and Limitations

VECARE takes an important and promising step towards a
ubiquitous solution to accurate and robust in-car CPD, an

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1195

0

0.1

0.2

0.3

0.4

0.5

M
o

ti
o

n
 F

A
R

10kHz 12kHz 14kHz 18kHz 20kHz

Frequency passband (Hz)

0

0.2

0.4

0.6

0.8

1

M
o

ti
o

n
 D

R

(a) Motion detection

0.5

1

1.5

2

2.5

3

B
re

a
th

 E
rr

o
r/

B
P

M

10k 12k 14k 16k 18k 20k

Frequency passband (Hz)

0

0.2

0.4

0.6

0.8

1

B
re

a
th

 D
R

(b) Breathing estimation

Figure 25: Impact of frequency band

0 20 40 60 80 100 120

Time/s

1

2

3

4

5

6

E
s
ti
m

a
ti
o
n
 E

rr
o
r/

B
P

M

0

0.2

0.4

0.6

0.8

1

D
e
te

c
ti
o
n
 R

a
te

Estimation Error

Detection Rate

Figure 26: Impact of tempera-
ture (cooling from 120 ◦F)

0 100 200 300 400 500 600 700 800 900 1000

Asynchronous Time/ms

0

0.5

1

1.5

2

B
re

a
th

 E
rr

o
r/

B
P

M

User #1

User #2

Figure 27: Impact of synchro-
nization errors

extremely challenging task. However, there is certainly room
for improvement and more to explore.

First, we cannot differentiate between an adult, a child, or
a pet. Neither do we distinguish a single subject from mul-
tiple ones, as the proposed SAS currently is limited to one
single user. A CPD system is expected to detect the pres-
ence of one or more children or pets, and the case of an adult
being locked in a car is uncommon. While it is possible to
distinguish between a child and an adult, to some extent, by
examining the range of the breathing rates, we leave this task
as an open challenge for the community. Second, although
the proposed SAS model presents a new approach to speed
estimation, the capability to estimate high speed is limited
by the sampling rate of acoustic CSI. It is worth exploring
how to break down this limit and enable speed tracking for
normal walking speed, which will foster many applications.
Third, there are more applications of the proposed SAS model
in smart homes and non-contact healthcare to be explored.
Towards that, one particular problem is to further improve the
sound audibility, including reducing transmit sound level and
shifting more to the inaudible frequency bands, e.g., 20-30
kHz used in commercial smart speakers like Amazon Echo
and Google Home. Fourth, while a universal threshold ε ap-
plies to different environments and cars, we notice one-time
calibration is needed for different devices due to hardware
diversity (Fig. 21). Future work explores to relax it. Last,
current evaluation is limited to children older than 7 months.
Although we have experimented with the neonatal simulator,
evaluation with real newborns is a worthwhile exploration.

VECARE can be deployed without any hardware modifi-
cation: It works with legacy in-car audio systems, and we
can leverage existing car control units for the computation
and necessary alert functions. Alternatively, it can also be
deployed as a standalone system to promote rapid adoption.
Additionally, system integration with other available sensing
modalities, such as seat sensors, radar, or WiFi, would promise
a more reliable CPD system, but at a higher cost and lower
ubiquity. These issues are, however, out of the scope of this
work, and we seek to learn more about real deployment with
industrial collaborations.

8 Related Work

Car Occupancy Sensing: CPD, or car occupancy detection
in general, has recently gained tremendous attention with vari-
ous technologies being explored. Early systems install special

sensors, such as optical/weight/pressure sensors [12, 32] as
well as capacitive sensors [4, 18, 54], on passenger seats/baby
car seats for detection (e.g., for seat belt reminder). These sys-
tems cannot detect a left-in-car child not in a designated seat.
Nor can they reliably differentiate animate targets from inan-
imate objects. PIR sensors [21, 55, 87] can extend the range
beyond the seats, but are limited to the LOS view and sensitive
to temperature changes. Camera-based systems [10, 13, 85]
can be accurate given good lighting conditions3, but cannot
see through seats, in addition to being privacy-invasive and
computation hungry. Radio-based systems have been recently
popular. The radar industry is promoting radar systems for
CPD in new car models [26, 28, 66]. UWB and mmWave
radars [8, 14, 34] feature high sensing resolution, yet the cov-
erage is limited to the FoV and the performance degrades
for NLOS scenarios. Moreover, they need precise installa-
tion with wire/cable harnesses, usually on the roof of a car,
to provide good coverage. With WiFi becoming prevalent
for in-car connectivity, it has been exploited by the indus-
try for CPD [45, 81]. Yet due to the innate limitations, it is
challenging to detect vital signs of little infants using WiFi.
Ultrasonic motion sensors have been used, e.g., in Hyundai
cars [20], yet only report low detection accuracy and are being
replaced [20]. Most importantly, all these solutions will incur
additional dedicated hardware and/or costly installation as
being non-standard offerings in cars, preventing their wide
adoption, especially for old car models.

Beyond CPD, there are more works on in-car driver mon-
itoring [68, 72, 80, 82, 83] and/or (adult) passenger detec-
tion [1,2,40] and even more on general human presence detec-
tion in homes especially using radio signals [30,61,77,84,89].
As the motion and vital signs of adults are of magnitude
stronger than those of young children, these approaches can-
not be directly applied to solve CPD. The closest to VECARE

is BreathJunior [71], which nicely embeds FMCW signals
into white noise for infant breathing monitoring, yet relies on
a microphone array and has a limited coverage of <1m.
Acoustic Sensing: Acoustic sensing has been an active area in
recent years. Various applications have been studied, includ-
ing gesture recognition [74,75], imaging [37,42], localization
and tracking [17, 41, 43, 56, 65, 69, 73, 86], vital sign moni-
toring [36, 53, 70, 71, 82], and healthcare [11, 46, 47], etc. A
recent work [35] points out several practical challenges of
acoustic sensing, such as audible sound leakage, affecting

3Infrared cameras can detect humans at night, but could still fail in dan-
gerous cases where the car interior is already heated up.

1196 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

music play and voice call, which are less concerned in our
CPD application as the system is expected to only run for a
short period after a car is parked. Most of the existing works
explore geometrical features such as phase changes, Doppler
shifts, TDoA/ToA, etc [9, 53, 74]. Many even rely on a bulky
microphone array [69,71] for phased signal processing. While
these works are mostly resilient to multipaths, they do not
fully leverage them. In contrast, VECARE investigates a novel
statistical acoustic sensing model, which aims to leverage
all reflections. Despite extensive studies of statistical WiFi
sensing [23, 78, 79, 88–90] and statistical studies on acoustic
communication [33,62], none of the existing work has studied
statistical acoustic sensing. We introduce statistical models to
acoustic sensing, which we believe will open new directions
and inspire follow-up works in the community.

9 Conclusion

We present VECARE, the first CPD system using in-car speak-
ers and microphones. VECARE is an accurate and robust
solution to the critical hot car death problem, which can be
deployed on massive cars without any hardware changes. To
achieve so, we introduce a novel paradigm of statistical acous-
tic sensing and develop a pipeline of techniques that allows
motion detection, breathing estimation, and speed monitoring
in a unified framework. Real-world experiments show the
remarkable performance of VECARE, rendering it a promis-
ing solution in practice. The proposed SAS will inspire more
exciting research in the increasingly hot acoustic sensing area.

Acknowledgments

We are grateful to all children participants in the real-world
CPD study and their parents. We thank the School of Nursing
at HKU for free access to the Laerdal SimNewB simulator.
Thanks also go to the anonymous reviewers and to our shep-
herd, Nirupam Roy. This work is supported in part by NSFC
under grant No. 62222216, No. 61832010 and No. 62202262,
and Hong Kong RGC ECS under grant 27204522.

References

[1] Hajar Abedi, Clara Magnier, Vishvam Mazumdar, and George Shaker.
Improving passenger safety in cars using novel radar signal processing.
Engineering Reports, page e12413, 2021.

[2] Hajar Abedi, Clara Magnier, and George Shaker. Passenger monitoring
using ai-powered radar. In Proceedings of the IEEE International

Symposium on Antenna Technology and Applied Electromagnetics,
pages 1–2, 2021.

[3] National Highway Traffic Safety Administration. Prevent hot car deaths.
https://www.nhtsa.gov/campaign/heatstroke, 2022. Accessed:
Sep 2022.

[4] Joan Albesa and Manel Gasulla. Occupancy and belt detection in
removable vehicle seats via inductive power transmission. IEEE Trans-

actions on Vehicular Technology, 64(8):3392–3401, 2014.

[5] PUI Audio. https://www.puiaudio.com/products/as07104po-
r, 2022. Accessed: Jan 2022.

[6] John R. BarryEdward, A. LeeDavid, and G. Messerschmitt. Digital

Communication. Springer, Boston, MA, 2004.

[7] Plux biosignalsplux piezoelectric Respiration (PZT) sensor. http

s://plux.info/sensors/316-respiration-pzt.html, 2022.
Accessed: Jan 2022.

[8] A Caddemi and E Cardillo. Automotive anti-abandon systems: A
millimeter-wave radar sensor for the detection of child presence. In
Proceedings of the IEEE International Conference on Advanced Tech-

nologies, Systems and Services in Telecommunications, pages 94–97,
2019.

[9] Chao Cai, Rong Zheng, and Jun Luo. Ubiquitous acoustic sensing on
commodity iot devices: A survey. IEEE Communication Survey and

Toturials, page to appear, 2022.

[10] Haibin Cai, Donghee Lee, Hwang Joonkoo, Yinfeng Fang, Song Li,
and Honghai Liu. Embedded vision based automotive interior intrusion
detection system. In Proceedings of the IEEE International Conference

on Systems, Man, and Cybernetics, pages 2909–2914. IEEE, 2017.

[11] Justin Chan, Thomas Rea, Shyamnath Gollakota, and Jacob E Sunshine.
Contactless cardiac arrest detection using smart devices. NPJ digital

medicine, 2(1):1–8, 2019.

[12] Charles J Cole. System to detect the presence of an unattended child in
a vehicle, January 30 2007. US Patent 7,170,401.

[13] Michel Devy, Alain Giralt, and Antonio Marin-Hernandez. Detection
and classification of passenger seat occupancy using stereovision. In
Proceedings of the IEEE Intelligent Vehicles Symposium, pages 714–
719, 2000.

[14] Andreas R Diewald, Jochen Landwehr, Dimitri Tatarinov, Patrick
Di Mario Cola, Claude Watgen, Catalin Mica, Mathieu Lu-Dac, Peter
Larsen, Oscar Gomez, and Thierry Goniva. Rf-based child occupation
detection in the vehicle interior. In Proceedings of the IEEE Interna-

tional Radar Symposium, pages 1–4, 2016.

[15] Angelo Farina. Simultaneous measurement of impulse response and
distortion with a swept-sine technique. In Audio Engineering Society

Convention 108. Audio Engineering Society, 2000.

[16] ROLAND GÄDEKE, BERNHARD DÖRING, FRIEDRICH KELLER,
and ANDRES VOGEL. The noise level in a childrens hospital and the
wake-up threshold in infants. Acta Paediatrica, 58(2):164–170, 1969.

[17] Nakul Garg, Yang Bai, and Nirupam Roy. Owlet: Enabling spatial
information in ubiquitous acoustic devices. In Proceedings of the ACM

MobiSys, pages 255–268, 2021.

[18] Boby George, Hubert Zangl, Thomas Bretterklieber, and Georg
Brasseur. Seat occupancy detection based on capacitive sensing. IEEE

Transactions on Instrumentation and Measurement, 58(5):1487–1494,
2009.

[19] Robert Gold. Optimal binary sequences for spread spectrum multiplex-
ing (corresp.). IEEE Transactions on information theory, 13(4):619–
621, 1967.

[20] Hyundai Motor Group. The new radar-based occupant alert system to
keep your children safe. https://tech.hyundaimotorgroup.com
/article/the-new-radar-based-occupant-alert-system-to-

keep-your-children-safe/, 2020. Accessed: Sep 2022.

[21] NMZ Hashim, HH Basri, A Jaafar, MZAA Aziz, A Salleh, and AS Ja.
Child in car alarm system using various sensors. ARPN Journal of

Engineering and Applied Sciences, 9(9):1653–1658, 2014.

[22] David A Hill. Electromagnetic fields in cavities: deterministic and

statistical theories, volume 35. John Wiley & Sons, 2009.

[23] Yuqian Hu, Feng Zhang, Chenshu Wu, Beibei Wang, and KJ Ray
Liu. Defall: Environment-independent passive fall detection using
wifi. IEEE Internet of Things Journal, 9(11):8515–8530, 2021.

[24] Origin Wireless Inc. Hex home: Redefining smart home security.
https://myhexhome.com/, 2022. Accessed: Sep 2022.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1197

https://www.nhtsa.gov/campaign/heatstroke
https://www.puiaudio.com/products/as07104po-r
https://www.puiaudio.com/products/as07104po-r
https://plux.info/sensors/316-respiration-pzt.html
https://plux.info/sensors/316-respiration-pzt.html
https://tech.hyundaimotorgroup.com/article/the-new-radar-based-occupant-alert-system-to-keep-your-children-safe/
https://tech.hyundaimotorgroup.com/article/the-new-radar-based-occupant-alert-system-to-keep-your-children-safe/
https://tech.hyundaimotorgroup.com/article/the-new-radar-based-occupant-alert-system-to-keep-your-children-safe/
https://myhexhome.com/

[25] Origin Wireless Inc. Origin health - remote patient monitoring. https:
//www.ces.tech/Innovation-Awards/Honorees/2021/Best-Of

/O/Origin-Health-Remote-Patient-Monitoring.aspx, 2022.
Accessed: Sep 2022.

[26] Infineon. Infineon in-cabin monitoring. https://www.infineon.c
om/cms/en/tools/aurix-embedded-sw/AURIX-Applications-s

oftware/in-cabin-monitoring/, 2021. Accessed: Sep 2022.

[27] UnivDatos Market Insights. Child presence detection sys-
tem market: Current analysis and forecast (2019-2025).
https://univdatos.com/report/child-presence-detection-system-
market-current-analysis-and-forecast-2019-2025/, 2019. Accessed:
Sep 2022.

[28] Texas Instruments. Vehicle occupant detection reference design. ht
tps://www.ti.com/lit/ug/tidue95a/tidue95a.pdf, 2020.
Accessed: Sep 2022.

[29] JBL. Jbl stage1 621 two way car speaker. https://www.jbl.com.my
/car-speakers/STAGE1+621.html, 2022. Accessed: Sep 2022.

[30] Avinash Kalyanaraman, Elahe Soltanaghaei, and Kamin Whitehouse.
Doorpler: A radar-based system for real-time, low power zone occu-
pancy sensing. In Proceedings of the IEEE RTAS, pages 42–53, 2019.

[31] Tadao Kasami. Weight distribution formula for some class of cyclic
codes. Coordinated Science Laboratory Report no. R-285, 1966.

[32] K. N. Khamil, S. Rahman, and M. Gambilok. Babycare alert system
for prevention of child left in a parked vehicle. ARPN Journal of

Engineering and Applied Sciences, 10(22):17313–17319, 2015.

[33] Heinrich Kuttruff. Room acoustics. CRC Press/Taylor & Francis
Group, Boca Raton, sixth edition edition, 2017.

[34] Antonio Lazaro, Marc Lazaro, Ramon Villarino, and David Girbau.
Seat-occupancy detection system and breathing rate monitoring based
on a low-cost mm-wave radar at 60 ghz. IEEE Access, 9:115403–
115414, 2021.

[35] Dong Li, Shirui Cao, Sunghoon Ivan Lee, and Jie Xiong. Experience:
Practical problems for acoustic sensing. In Proceedings of ACM Mobi-

Com, 2022.

[36] Dong Li, Jialin Liu, Sunghoon Ivan Lee, and Jie Xiong. Lasense:
Pushing the limits of fine-grained activity sensing using acoustic sig-
nals. Proceedings of the ACM on Interactive, Mobile, Wearable and

Ubiquitous Technologies, 6(1):1–27, 2022.

[37] David B Lindell, Gordon Wetzstein, and Vladlen Koltun. Acoustic
non-line-of-sight imaging. In Proceedings of the IEEE/CVF CVPR,
pages 6780–6789, 2019.

[38] Linhuipad. Linhuipad car stereo microphone. https://www.amazon
.co.uk/LINHUIPAD-Microphone-External-Compatible-Naviga

tion-Black/dp/B08LR48PZK, 2022. Accessed: Sep 2022.

[39] LinkSys. Linksys aware: Introducing the first-ever mesh wifi motion
sensing technology. https://www.linksys.com/us/linksys-awa
re/, 2022. Accessed: Sep 2022.

[40] Yongsen Ma, Yunze Zeng, and Vivek Jain. Carosense: Car occupancy
sensing with the ultra-wideband keyless infrastructure. Proceedings of

the ACM IMWUT, 4(3):1–28, 2020.

[41] Wenguang Mao, Wei Sun, Mei Wang, and Lili Qiu. Deeprange: Acous-
tic ranging via deep learning. Proceedings of the ACM IWMUT, 4(4):1–
23, 2020.

[42] Wenguang Mao, Mei Wang, and Lili Qiu. Aim: Acoustic imaging on a
mobile. In Proceedings of the ACM MobiSys, pages 468–481, 2018.

[43] Wenguang Mao, Zaiwei Zhang, Lili Qiu, Jian He, Yuchen Cui, and
Sangki Yun. Indoor follow me drone. In Proceedings of the ACM

MobiSys, pages 345–358, 2017.

[44] UMA-8-SP USB mic array. https://www.minidsp.com/products
/usb-audio-interface/uma-8-sp-detail, 2022. Accessed: Jan
2022.

[45] Murata. Wi-fi sensing for child presence detection (cpd). https:

//solution.murata.com/en-eu/technology/child-presence-

detection, 2021. Accessed: Sep 2022.

[46] Rajalakshmi Nandakumar, Shyamnath Gollakota, and Jacob E Sunshine.
Opioid overdose detection using smartphones. Science translational

medicine, 11(474):eaau8914, 2019.

[47] Rajalakshmi Nandakumar, Shyamnath Gollakota, and Nathaniel Wat-
son. Contactless sleep apnea detection on smartphones. In Proceedings

of the 13th annual international conference on mobile systems, appli-

cations, and services, pages 45–57, 2015.

[48] Rajalakshmi Nandakumar, Vikram Iyer, Desney Tan, and Shyamnath
Gollakota. Fingerio: Using active sonar for fine-grained finger tracking.
In Proceedings of ACM CHI, pages 1515–1525, 2016.

[49] European New Car Assessment Programme (Euro NCAP). Test and
assessment protocol - child presence detection. https://cdn.euro
ncap.com/media/64101/euro-ncap-cpd-test-and-assessme

nt-protocol-v10.pdf, 2021. Accessed: Sep 2022.

[50] noheatstroke.org. Heatstroke deaths of children in vehicles. https:
//www.noheatstroke.org/, 2022. Accessed: Sep 2022.

[51] M Kathleen Philbin. The influence of auditory experience on the
behavior of preterm newborns. Journal of perinatology, 20(1):S77–
S87, 2000.

[52] Markku Pukkila. Channel estimation modeling. Nokia Research Center,
17:66, 2000.

[53] Kun Qian, Chenshu Wu, Fu Xiao, Yue Zheng, Yi Zhang, Zheng Yang,
and Yunhao Liu. Acousticcardiogram: Monitoring heartbeats using
acoustic signals on smart devices. In Proceedings of the IEEE INFO-

COM, pages 1574–1582, 2018.

[54] Abhishek Ranjan and Boby George. A child-left-behind warning sys-
tem based on capacitive sensing principle. In Proceedings of the IEEE

International Instrumentation and Measurement Technology Confer-

ence, pages 702–706. IEEE, 2013.

[55] Fairuz RM Rashidi and Ikhwan H Muhamad. Vehicle’s interior move-
ment detection and notification system. Recent advances in automatic

control, modelling and simulation, pages 139–144, 2013.

[56] Mirco Rossi, Julia Seiter, Oliver Amft, Seraina Buchmeier, and Gerhard
Tröster. Roomsense: an indoor positioning system for smartphones
using active sound probing. In Proceedings of the 4th Augmented

Human International Conference, pages 89–95, 2013.

[57] D.V. Sarwate and M.B. Pursley. Crosscorrelation properties of pseudo-
random and related sequences. Proceedings of the IEEE, 68(5):593–
619, 1980.

[58] M. R. Schroeder. Integrated-impulse method measuring sound decay
without using impulses. The Journal of the Acoustical Society of

America, 66(2):497–500, 1979.

[59] Manfred R Schroeder. Integrated-impulse method measuring sound
decay without using impulses. The Journal of the Acoustical Society of

America, 66(2):497–500, 1979.

[60] Signify. Wiz enables its products with new motion detection technology.
https://www.signify.com/en-us/our-company/news/press-r

eleases/2022/20220916-surprisingly-thoughtful-lighting

-for-everyone-signify-brings-to-light-motion-detection

-technology-spacesense, 2022. Accessed: Sep 2022.

[61] Elahe Soltanaghaei, Rahul Anand Sharma, Zehao Wang, Adarsh Chitti-
lappilly, Anh Luong, Eric Giler, Katie Hall, Steve Elias, and Anthony
Rowe. Robust and practical wifi human sensing using on-device learn-
ing with a domain adaptive model. In Proceedings of the 7th ACM

International Conference on Systems for Energy-Efficient Buildings,

Cities, and Transportation, pages 150–159, 2020.

[62] Milica Stojanovic and James Preisig. Underwater acoustic communi-
cation channels: Propagation models and statistical characterization.
IEEE communications magazine, 47(1):84–89, 2009.

1198 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.ces.tech/Innovation-Awards/Honorees/2021/Best-Of/O/Origin-Health-Remote-Patient-Monitoring.aspx
https://www.ces.tech/Innovation-Awards/Honorees/2021/Best-Of/O/Origin-Health-Remote-Patient-Monitoring.aspx
https://www.ces.tech/Innovation-Awards/Honorees/2021/Best-Of/O/Origin-Health-Remote-Patient-Monitoring.aspx
https://www.infineon.com/cms/en/tools/aurix-embedded-sw/AURIX-Applications-software/in-cabin-monitoring/
https://www.infineon.com/cms/en/tools/aurix-embedded-sw/AURIX-Applications-software/in-cabin-monitoring/
https://www.infineon.com/cms/en/tools/aurix-embedded-sw/AURIX-Applications-software/in-cabin-monitoring/
https://www.ti.com/lit/ug/tidue95a/tidue95a.pdf
https://www.ti.com/lit/ug/tidue95a/tidue95a.pdf
https://www.jbl.com.my/car-speakers/STAGE1+621.html
https://www.jbl.com.my/car-speakers/STAGE1+621.html
https://www.amazon.co.uk/LINHUIPAD-Microphone-External-Compatible-Navigation-Black/dp/B08LR48PZK
https://www.amazon.co.uk/LINHUIPAD-Microphone-External-Compatible-Navigation-Black/dp/B08LR48PZK
https://www.amazon.co.uk/LINHUIPAD-Microphone-External-Compatible-Navigation-Black/dp/B08LR48PZK
https://www.linksys.com/us/linksys-aware/
https://www.linksys.com/us/linksys-aware/
https://www.minidsp.com/products/usb-audio-interface/uma-8-sp-detail
https://www.minidsp.com/products/usb-audio-interface/uma-8-sp-detail
https://solution.murata.com/en-eu/technology/child-presence-detection
https://solution.murata.com/en-eu/technology/child-presence-detection
https://solution.murata.com/en-eu/technology/child-presence-detection
https://cdn.euroncap.com/media/64101/euro-ncap-cpd-test-and-assessment-protocol-v10.pdf
https://cdn.euroncap.com/media/64101/euro-ncap-cpd-test-and-assessment-protocol-v10.pdf
https://cdn.euroncap.com/media/64101/euro-ncap-cpd-test-and-assessment-protocol-v10.pdf
https://www.noheatstroke.org/
https://www.noheatstroke.org/
https://www.signify.com/en-us/our-company/news/press-releases/2022/20220916-surprisingly-thoughtful-lighting-for-everyone-signify-brings-to-light-motion-detection-technology-spacesense
https://www.signify.com/en-us/our-company/news/press-releases/2022/20220916-surprisingly-thoughtful-lighting-for-everyone-signify-brings-to-light-motion-detection-technology-spacesense
https://www.signify.com/en-us/our-company/news/press-releases/2022/20220916-surprisingly-thoughtful-lighting-for-everyone-signify-brings-to-light-motion-detection-technology-spacesense
https://www.signify.com/en-us/our-company/news/press-releases/2022/20220916-surprisingly-thoughtful-lighting-for-everyone-signify-brings-to-light-motion-detection-technology-spacesense

[63] Ke Sun, Ting Zhao, Wei Wang, and Lei Xie. Vskin: Sensing touch
gestures on surfaces of mobile devices using acoustic signals. In
Proceedings of ACM MobiCom, pages 591–605, 2018.

[64] Chin-Chong Tseng and C. Liu. Complementary sets of sequences.
IEEE Transactions on Information Theory, 18(5):644–652, 1972.

[65] Yu-Chih Tung and Kang G Shin. Echotag: Accurate infrastructure-free
indoor location tagging with smartphones. In Proceedings of the ACM

MobiCom, pages 525–536, 2015.

[66] Vayyar. Vayyar child presence detection. https://vayyar.com/aut
o/solutions/in-cabin/cpd/, 2021. Accessed: Sep 2022.

[67] Verizon. Verizon launches new tech to monitor activity on home wifi.
https://www.verizon.com/about/news/verizon-launches-

new-tech-monitor-activity-home-wifi, 2023. Accessed: Feb
2023.

[68] Eric Wahlstrom, Osama Masoud, and Nikos Papanikolopoulos. Vision-
based methods for driver monitoring. In Proceedings of the IEEE

International Conference on Intelligent Transportation Systems, vol-
ume 2, pages 903–908. IEEE, 2003.

[69] Anran Wang and Shyamnath Gollakota. Millisonic: Pushing the limits
of acoustic motion tracking. In Proceedings of the ACM CHI, pages
1–11, 2019.

[70] Anran Wang, Dan Nguyen, Arun R Sridhar, and Shyamnath Gollakota.
Using smart speakers to contactlessly monitor heart rhythms. Commu-

nications biology, 4(1):1–12, 2021.

[71] Anran Wang, Jacob E Sunshine, and Shyamnath Gollakota. Contactless
infant monitoring using white noise. In Proceedings of the ACM

MobiCom, pages 1–16, 2019.

[72] Fengyu Wang, Xiaolu Zeng, Chenshu Wu, Beibei Wang, and KJ Ray
Liu. Driver vital signs monitoring using millimeter wave radio. IEEE

Internet of Things Journal, 2021.

[73] Mei Wang, Wei Sun, and Lili Qiu. MAVL: Multiresolution analysis of
voice localization. In Proceedings of the IEEE USENIX NSDI, pages
845–858, 2021.

[74] Wei Wang, Alex X Liu, and Ke Sun. Device-free gesture tracking using
acoustic signals. In Proceedings of the ACM MobiCom, pages 82–94,
2016.

[75] Yanwen Wang, Jiaxing Shen, and Yuanqing Zheng. Push the limit of
acoustic gesture recognition. IEEE Transactions on Mobile Computing,
2020.

[76] Safe Kids Worldwide. https://www.safekids.org/, 2022. Ac-
cessed: Sep 2022.

[77] Chenshu Wu, Zheng Yang, Zimu Zhou, Xuefeng Liu, Yunhao Liu,
and Jiannong Cao. Non-invasive detection of moving and stationary
human with wifi. IEEE Journal on Selected Areas in Communications,
33(11):2329–2342, 2015.

[78] Chenshu Wu, Feng Zhang, Yusen Fan, and K. J. Ray Liu. Rf-based
inertial measurement. In ACM SIGCOMM, 2019.

[79] Chenshu Wu, Feng Zhang, Yuqian Hu, , and K. J. Ray Liu. Gaitway:
Monitoring and recognizing gait speed through the walls. In IEEE

Transactions on Mobile Computing, pages 2186–2199, June 2021.

[80] Xiufeng Xie, Kang G Shin, Hamed Yousefi, and Suining He. Wireless
csi-based head tracking in the driver seat. In Proceedings of the ACM

CoNext, pages 112–125, 2018.

[81] Qinyi Xu, Beibei Wang, Feng Zhang, Deepika Sai Regani, Fengyu
Wang, and KJ Ray Liu. Wireless ai in smart car: How smart a car can
be? IEEE Access, 8:55091–55112, 2020.

[82] Xiangyu Xu, Jiadi Yu, Yingying Chen, Yanmin Zhu, Linghe Kong,
and Minglu Li. Breathlistener: Fine-grained breathing monitoring in
driving environments utilizing acoustic signals. In Proceedings of the

ACM MobiSys, pages 54–66, 2019.

[83] Jie Yang, Simon Sidhom, Gayathri Chandrasekaran, Tam Vu, Hongbo
Liu, Nicolae Cecan, Yingying Chen, Marco Gruteser, and Richard P
Martin. Detecting driver phone use leveraging car speakers. In Proceed-

ings of the 17th annual international conference on Mobile computing

and networking, pages 97–108, 2011.

[84] Yuzhe Yang, Yuan Yuan, Guo Zhang, Hao Wang, Ying-Cong Chen,
Yingcheng Liu, Christopher G Tarolli, Daniel Crepeau, Jan Bukartyk,
Mithri R Junna, Aleksandar Videnovic, Terry D Ellis, Melissa C Lip-
ford, Ray Dorsey, and Dina Katabi. Artificial intelligence-enabled
detection and assessment of parkinson’s disease using nocturnal breath-
ing signals. Nature medicine, 28(10):2207–2215, 2022.

[85] Hee Jung Yoon, Ho-Kyeong Ra, Can Basaran, Sang Hyuk Son, Taejoon
Park, and Jeonggil Ko. Fuzzy bin-based classification for detecting
children’s presence with 3d depth cameras. ACM Transactions on

Sensor Networks, 13(3):1–28, 2017.

[86] Sangki Yun, Yi-Chao Chen, Huihuang Zheng, Lili Qiu, and Wenguang
Mao. Strata: Fine-grained acoustic-based device-free tracking. In
Proceedings of the ACM MobiSys, pages 15–28, 2017.

[87] Piero Zappi, Elisabetta Farella, and Luca Benini. Tracking motion
direction and distance with pyroelectric ir sensors. IEEE Sensors

Journal, 10(9):1486–1494, 2010.

[88] Feng Zhang, Chen Chen, Beibei Wang, and KJ Ray Liu. Wispeed:
A statistical electromagnetic approach for device-free indoor speed
estimation. IEEE Internet of Things Journal, 5(3):2163–2177, 2018.

[89] Feng Zhang, Chenshu Wu, Beibei Wang, Hung-Quoc Lai, Yi Han, and
K. J. Ray Liu. Widetect: Robust motion detection with a statistical
electromagnetic model. In Proceedings of the ACM IMWUT, Sep 2019.

[90] Feng Zhang, Chenshu Wu, Beibei Wang, Min Wu, Daniel Bugos, Hang-
fang Zhang, , and K. J. Ray Liu. Smars: Sleep monitoring via ambient
radio signal. In IEEE Transactions on Mobile Computing, pages 217–
231, Jan 2019.

A Appendix

A.1 Speed Estimation

Sampling Rate and Speed: A sufficient sampling rate of CSI
is required to estimate speed. We now discuss the relationship.
Given a sound frequency f with wavelength λ(f), a mov-
ing speed v is expected to experience a peak at the delay of

τ = x0λ(f)
2πv

. Assume we will need at least Q samples to reliably
detect a peak, which corresponds to a delay of τmin = Q/Fs.
Then we can derive the minimum sampling rate required to

measure a speed of v by τ = x0λ(f)
2πv

> τmin = Q/Fs, which

implies Fs >
2πQv

x0λ(f) . In other words, the maximum speed we

can support can be calculated as v < x0λ(f)Fs

2πQ
, which becomes

about 0.1 m/s at f = 20kHz (wavelength 1.7 cm), about 0.2
m/s at f = 10 kHz, and about 2 m/s at f = 1kHz, assuming
Q = 5 and a sampling rate of about 50 Hz (considering the
sound speed of c = 343m/s). Using lower frequencies imme-
diately allows to support higher speed, which however may
suffer more from ambient noises. How to break down the sam-
pling rate limitations and achieve estimation of daily speed
(e.g., 0.5 m/s to 2 m/s) using pseudo-ultrasound frequencies
remains worthwhile direction.
Speed MRC: For breathing signals, since the periodicity is
independent of subcarrier frequency, we can directly perform

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1199

https://vayyar.com/auto/solutions/in-cabin/cpd/
https://vayyar.com/auto/solutions/in-cabin/cpd/
https://www.verizon.com/about/news/verizon-launches-new-tech-monitor-activity-home-wifi
https://www.verizon.com/about/news/verizon-launches-new-tech-monitor-activity-home-wifi
https://www.safekids.org/

MRC across subcarriers. However, a further trick is needed to
combine speed signals because, for acoustic signals from 10
kHz to 24 kHz, the difference in the wavelengths cannot be
neglected (the wavelength at 10 kHz is approximately twice

of that at 24 kHz). Recall v̂ = x0λ(f)
2πτs

. Given the same speed v,
the first local peaks of the ACF on different subcarriers will
appear at different delays τs. Hence, to combine subcarriers
for speed signals, we need to first compensate the linear offsets
due to different wavelengths. Specifically, we can express
the ACF ρ̃(f ,τ) w.r.t a unit linearly proportional to λ(f),
i.e., µ = τ

λ(f) , and then average on ρ̃(f ,µ). The operation

is equivalent to scaling the ACF in the time lag dimension,
which can be achieved by interpolation in practice.

A.2 Synchronization

Here we show a simple but stringent proof of that synchroniza-
tion errors do not affect VECARE. Denote the CIR measured
under synchronization offsets as h̃(t):

h̃(t) = circshi f t(h(t),τo f f), (7)

where h(t) is the true CIR, τo f f is the timing offset caused
by asynchronization, and circshi f t(·) represents circular shift.
The time offsets correspond to phase shifts in the frequency
domain. Thus we have the asychronized CSI:

H̃(f) = H(f) · e− j2π f τo f f , (8)

where H(f) is the true CSI. Thus we get |H̃(f)| = |H(f)|,
meaning that VECARE is resilient to sychronization errors.

A.3 ACF Outliers

0 1 2 3 4 5

Time Lag ()/s

-0.3

-0.1

0.1

0.3

0.5

A
C

F

Empty

Breath

Breath

Sharp Interference

Figure 28: ACF outliers of sharp interference.

Sudden impulse-like noises will cause an abrupt status
change in the CSI stream, which will smear the ACF cal-
culation and may lead to false motion detection. We notice
that ACF calculated with CSI of an abrupt status change will
exhibit a special pattern, which linearly decreases and then
linearly increases, as shown in Fig. 28. We also confirmed this
by simulation with data stream containing a sudden change
in the middle. The ACF pattern is unique and distinguishable
from normal ACF in case of motion, breathing, or empty en-
vironment. Based on this observation, we design a detector to
identify such abnormal ACFs and sift them out for presence
detection. The idea is to examine a single valley in the ACF
with linear increasing/decreasing trends on the two sides of
the valley. The approach turns out to be effective and accurate.

1200 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SlimWiFi: Ultra-Low-Power IoT Radio Architecture
Enabled by Asymmetric Communication

Renjie Zhao1, Kejia Wang2, Kai Zheng1, Xinyu Zhang1, Vincent Leung2

1University of California San Diego, 2Baylor University
1{r2zhao, kazheng, xyzhang}@ucsd.edu, 2{kejia_wang1, vincent_leung}@baylor.edu

Abstract
To communicate with existing wireless infrastructures such

as Wi-Fi, an Internet of Things (IoT) radio device needs to

adopt a compatible PHY layer which entails sophisticated

hardware and high power consumption. This paper breaks the

tension for the first time through a system called SlimWiFi.

A SlimWiFi radio actively transmits on-off keying (OOK)

modulated signals. But through a novel asymmetric commu-
nication scheme, it can be directly decoded by off-the-shelf

Wi-Fi devices. With this measure, SlimWiFi radically simpli-

fies the radio architecture, evading power hungry components

such as data converters and high-stability carrier generators.

In addition, it can cut the transmit power by around 18 dB,

while keeping a similar link budget as standard Wi-Fi. We

have implemented SlimWiFi through PCB prototype and IC

tape-out. Our experiments demonstrate that SlimWiFi can

reach around 100 kbps goodput at up to 60 m, while reducing

power consumption by around 3 orders of magnitude com-

pared to a standard Wi-Fi transmitter.

1 Introduction

The Internet of Things (IoT) is playing a key role in bridging

the physical and digital worlds. IoT will act as the workhorse

to fully automate human life, through a new wave of applica-

tions in environment/behavior sensing, asset tracking, ambient

human-computer interaction, etc. As of 2021, the popula-

tion of active IoT endpoints already reached 12.2 billion, and

will surge towards 27 billion in 2025 [27]. Maintaining the

connectivity between the IoT fabric and the existing Inter-

net infrastructure entails non-trivial human efforts, and will

ultimately be feasible only if the IoT devices can sustain

themselves, e.g., through RF energy harvesting. In prac-

tice, RF energy harvesting can usually reach at most tens of

μW [75] for IoT devices, so any self-sustainable communica-

tion paradigm has to adhere to this limit. RFID represents one

such paradigm, which is truly battery-free and communicates

by merely harvesting and remodulating the RF power from an

interrogator (reader). Yet to date, RFID has witnessed limited

adoption in consumer applications, due to its limited commu-

nication range, relatively high cost of the reader, and limited

functionality (mostly restricted to reading preprogrammed

information on passive tags).

Ideally, we would prefer to reuse the existing wireless in-

frastructures (e.g., the pervasive Wi-Fi) as gateways to connect

DAC

PLL+VCO

PA

Mixer

XO
COTS Wi-Fi

COTS radio
OFDM+QAM

(a) COTS Wi-Fi symmetric communication.

Ring
oscillator

PA
SlimWiFi radio

COTS Wi-Fi +
asym demodOOK

(b) SlimWiFi asymmetric communication.

Figure 1: Comparison between COTS Wi-Fi and SlimWiFi.

the ultra-low-power (ULP) IoT radios to the Internet. Unfortu-

nately, mainstream wireless communication standards cannot

support battery-free operations due to their high peak power.

For example, the commercial off-the-shelf (COTS) Wi-Fi,

BLE, ZigBee, NB-IoT, and LoRa devices all require tens to

hundreds of mW of peak power [34, 60, 61, 70], orders of

magnitude higher than that available from RF energy harvest-

ing. Their self-sustained operations are feasible only under an

extremely low duty cycle (a few dozen bytes per day) while

supported by a bulky power source (e.g., a solar panel).

We argue that the root cause of the high power consumption

of such systems lies in the requirement of symmetric commu-
nication, i.e., the IoT radios must adopt the same high-profile

modulation/demodulation hardware as the existing wireless

infrastructures. As illustrated in Fig. 1a, to be compatible with

existing Wi-Fi access points (APs), an IoT radio needs to sup-

port OFDM and QAM, which entails stringent hardware re-

quirements, such as accurate and stable carrier frequency, low

phase noise, wideband and high-resolution ADC/DAC, and a

high-gain high-linearity (but often low-efficiency) power am-

plifier, all of which translate into power hungry components.

We thus pose an important question: Is it possible to relax
such requirements and make the communication hardware
and modulation asymmetric?

We explore the answers through a novel system design

called SlimWiFi. SlimWiFi adopts a novel asymmetric com-
munication scheme to realize Wi-Fi-compatible ULP radio.

Specifically, the SlimWiFi ULP radio builds on a highly sim-

plified architecture as shown in Fig. 1b, capable of only mod-

ulating/demodulating on-off keying (OOK) waveforms. But

it can directly communicate with existing Wi-Fi APs that

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1201

are designed to modulate/demodulate sophisticated OFDM

waveforms. Essentially, SlimWiFi shifts the PHY layer com-

plexity to the high-power infrastructure side, and by doing

so, it can improve the energy efficiency of the IoT radio

by orders of magnitude. Unlike the backscatter-based sys-

tems [29, 35, 42, 79] that rely on additional helper devices to

generate external carrier signals, SlimWiFi is an active, stand-

alone radio transceiver. To materialize the design principles

behind SlimWiFi, we need to address two key challenges.

(a) How to enable direct communication between asym-
metric hardware, i.e., the OFDM-based Wi-Fi device and the
OOK based SlimWiFi device? The uplink communication,

i.e., demodulating the OOK signal with an unmodified Wi-Fi

OFDM device, is very challenging due to the highly incompat-

ible waveforms and demodulation hardware. Note, however,

that any demodulation process is essentially sampling and

mapping analog waveforms into a binary sequence. The

SlimWiFi Wi-Fi receiver thus reverses its OFDM demodu-

lation steps, as well as the Forward-Error-Correction (FEC)

decoder, and descrambler, and then reconstruct the incom-

ing OOK symbols merely based on the payload bits reported

by the Wi-Fi driver. With this measure, an ordinary Wi-Fi

AP can decode the OOK signals from the ULP SlimWiFi

transmitter, without any hardware modifications. On the other

hand, the downlink modulation is straightforward, as recent

work [35, 78, 79] has well-explored ways of mapping a se-

quence of bits into a pseudo-OOK waveform using a WiFi

transmitter. To achieve MAC layer compatibility, SlimWiFi

delegates the carrier sensing task to the Wi-Fi AP, which uses

the CTS-to-self packets to virtually reserve the channel, and

then informs the SlimWiFi node to start its transmission.

(b) How to optimize the SlimWiFi radio hardware to mini-
mize power consumption while maintaining Wi-Fi compatibil-
ity? In commensurate with the complicated modulation, the

typical hardware architecture of a COTS Wi-Fi radio neces-

sarily consists of a power amplifier (PA) for a high transmit

power, high precision and wideband digital-to-analog con-

verter (DAC) for high-order modulation, and phase-locked

loop (PLL) and voltage-controlled oscillator (VCO) for ac-

curate carrier generation. The power consumption of these

components is fundamentally governed by physical laws, and

almost impossible to fall below several mW [9, 16, 55, 63].

SlimWiFi circumvents the fundamental limitation with a

highly simplified radio architecture that leverages asymmet-

ric communication. The SlimWiFi ULP radio eliminates the

power hungry DAC/ADC and PLL and affords a more effi-

cient PA owing to the lower power and linearity requirements.

As for carrier generation, we adopt a free-running ring oscil-

lator [82], which bears a low frequency stability, but suffices

for SlimWiFi as its narrowband OOK signal can be asymmet-

rically demodulated as long as the carrier falls within the 2.4

GHz ISM band.

To verify the effectiveness of our design, we implement

asymmetric communication with a COTS Wi-Fi device and a

COTS Wi-Fi

TX

RX

2: Trigger transmission

3: Uplink transmission

1: Channel sensing and reservation
SlimWiFi device

TX

RX OOK demod

Ring
oscillatorPA

4: Asymmetric demodulation

Figure 2: Workflow of a SlimWiFi uplink transmission.

prototype SlimWiFi device. Our experiments demonstrate that

the OOK based SlimWiFi signals can be decoded from the

payload bits of the Wi-Fi device over a range of 60 m, with a

goodput of around 100 kbps. We have also designed and taped

out a SlimWiFi IC based on the aforementioned SlimWiFi

radio architecture. Our measurement shows that the SlimWiFi

only consumes around 90 μW of power, approximately 3

orders of magnitude lower compared with COTS WiFi radios.

To summarize, we make the following contributions

through the SlimWiFi design and implementation.

• We propose SlimWiFi, a novel asymmetric communi-

cation paradigm that enables COTS Wi-Fi devices to

decode OOK signals from ULP radios. The design en-

ables such ULP radios to reuse the existing Wi-Fi as the

IoT infrastructure, which can substantially reduce the

deployment cost for attaining ubiquitous connectivity.

• We introduce a new SlimWiFi ULP radio architecture,

which leverages the asymmetric communication to en-

able the first active Wi-Fi-compatible transmitter at a

peak power of tens of μW.

• We implement the asymmetric communication system

through a PCB prototype and IC tape-out. Our exper-

iments verify the potential of SlimWiFi in supporting

self-sustained IoT communication.

2 System Workflow

The SlimWiFi design mainly focuses on the IoT uplink, con-

sisting of the SlimWiFi device and the COTS Wi-Fi radio.

The former transmits OOK modulated data, through a highly

simplified ULP radio architecture. The latter acts as the de-

modulator and gateway to connect the SlimWiFi device to the

Internet. As illustrated in Fig. 2, a typical uplink transmission

attempt involves the following workflow.

(1) The Wi-Fi device first runs standard carrier sensing to

acquire the channel and reserves access by transmitting the

CTS-to-self frame.

(2) The Wi-Fi device emulates an OOK modulated trigger

frame by manipulating the Wi-Fi bit sequence. The SlimWiFi

device’s ULP OOK receiver decodes the information and

synchronizes with the trigger frame.

(3) Following step (2) immediately, the Wi-Fi device ini-

tiates the demodulation procedure of its receiver chain, and

meanwhile, the SlimWiFi device sends an OOK modulated

uplink signal to the Wi-Fi device.

(4) The Wi-Fi device decodes the OOK modulated signal

1202 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

by applying asymmetric demodulation.

In what follows, we introduce the SlimWiFi asymmetric

communication design (Sec. 3) and the SlimWiFi ULP radio

hardware (Sec. 4). Our exposition mainly focuses on the novel

uplink design (steps 3 and 4). The ULP downlink design (step

2) follows the same asymmetric modulation + simplified hard-

ware principle. It builds on recent cross-technology commu-

nication (CTC) and backscatter techniques [20, 35, 45, 67, 78],

and will be discussed briefly in Sec. 4.4.

3 Asymmetric Demodulation for SlimWiFi
In this section, we first provide a quick primer on the stan-

dard Wi-Fi receiver. Then we introduce the Wi-Fi compatible

asymmetric communication in SlimWiFi.

3.1 A Primer on Standard Wi-Fi Receiver
Without loss of generality, we focus on 802.11n, a standard

adopted by most modern COTS Wi-Fi devices, running on

a 20 MHz channel and single antenna [43]. The upper part

of Fig. 3 shows the 802.11n demodulation procedure, which

is hard coded into the receiver’s IC. The incoming analog

signals are first captured by the RF front end and converted

into baseband samples. The receiver searches across the

samples to identify a standard 802.11 preamble–a predefined

OFDM modulated training sequence. If no valid preamble

is detected, the samples will be discarded. Otherwise, the

receiver will proceed to additional demodulation steps.

The samples are first sliced into OFDM symbols, each con-

sisting of 16 samples of cyclic prefix (CP) and 64 samples of

data. The CP is redundant samples used to overcome inter-

symbol interference due to the multi-path effect. The Wi-Fi

demodulator needs to remove the CP and apply a 64-point

FFT to convert the 64 data samples into frequency-domain,

which essentially slices the entire 20 MHz band into 64 sub-
carriers. Only 52 of the subcarriers are extracted as valid data.

The remaining are either null subcarriers to mitigate adja-

cent channel interference or pilots for calibrating the residual

offsets of the channel estimation.

Afterwards, a QAM block demaps the complex sample

on each subcarrier into one or more bits, depending on the

baseband modulation method, i.e., BPSK, QPSK, 16-QAM,

and 64-QAM. The resulting bit sequence X contains redun-

dant bits due to forward-error-control (FEC) and needs to be

decoded into a sequence Y . The ratio between the length of

Y and X is called coding rate and can be 1/2, 2/3, 3/4, or 5/6.

The decoded bits Y need to be further reordered to recover

the original transmitted bits. This so-called descrambling is

performed by an XOR operation with a repeatedly generated

127-bit sequence whose initial state is determined by a scram-
bler seed. The PHY layer processing ends here and the output

bits will be reported to the upper layer as a MAC frame. We

emphasize that the entire PHY-layer demodulation is imple-
mented in the Wi-Fi IC and thus cannot be bypassed without
hardware modification.

On the other hand, the MAC layer control, management,

and frame processing are usually implemented in software

(Soft MAC) or firmware (Full MAC) [31, 47]. The MAC

frames will be passed to the Wi-Fi driver and can be post-

processed in software.

3.2 Overview and Challenges in Asymmetric
Demodulation

The asymmetric demodulation design is grounded on a key

observation: The Wi-Fi OFDM demodulation procedure is
deterministic and at least partially reversible. An OFDM re-

ceiver essentially converts the incoming time domain samples

into frequency domain through FFT, and then “quantizes”

the samples through QAM demapping. Theoretically, any

signals within the 20 MHz bandwidth can be reconstructed
from the OFDM receiver’s bit sequence output, by reversing

the Wi-Fi demodulation procedure. The SlimWiFi asymmet-
ric demodulator essentially performs such reconstruction in
software at the Wi-Fi receiver to recover the incoming OOK
waveforms and subsequently demodulate them, as illustrated

in the bottom part of Fig. 3.

Unfortunately, the standard Wi-Fi receiver blocks, such as

CP removal, QAM, and FEC, inevitably induce information

loss or ambiguities. As a result, SlimWiFi must address the

following key challenges.

(1) How to design the OOK signal in order to avoid the
impact of information loss while enabling asymmetric demod-
ulation? The hard-coded OFDM demodulation procedure

does eliminate certain incoming samples. For example, CP

removal erases part of the signal in the time domain, and data

subcarrier extraction removes all information in the non-data

subcarriers (i.e., null and pilot subcarriers). If the removed

segments contain useful data symbols from the SlimWiFi

device, it would be hard to reconstruct them. We thus need

to carefully design the SlimWiFi OOK waveform to avoid the

impact of information loss (Sec. 3.3).

(2) How to deal with the reconstruction errors introduced
by the COTS receiver? Besides the information loss from

the OFDM block, the QAM and FEC blocks also cause two

types of reconstruction errors: Quantization error, i.e., the

difference between the SlimWiFi signal and the closest point

in Wi-Fi’s QAM constellation; and coding error, i.e. the mis-

match between the Wi-Fi demodulated bit sequence X and

the regenerated bit sequence X ′ after reversing the FEC, as

shown in Fig. 3. SlimWiFi addresses the reconstruction errors

by (i) judiciously configuring the receiver parameters and (ii)

performing additional channel coding on top of the SlimWiFi

signals, as to be described in Sec. 3.4.

(3) How to integrate SlimWiFi with standard Wi-Fi pro-
tocols? To make SlimWiFi fully compatible with standard

Wi-Fi, several PHY/MAC layer primitives are needed, e.g.,
generating PHY preamble, PHY/MAC headers, and trigger-

ing the Wi-Fi receiver to start demodulation. We address

these practical challenges in Sec. 3.5.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1203

OFDM

symbols

Samples Demod

bits

Decoded

bits

Regen

bits

Scrambled

bits

Reconstructed

samples
FEC

encoding Scramble MAC
payload

Demodulate
OOK signal

QAM FEC
decoding Descramble MAC

payload

COTS Wi-Fi OFDM demodulation (on chip)

SlimWiFi asymmetric demodulation Report to WiFi driver

CP removal,
FFT

QAM

Preamble
detect

Analog
front end

Data FEC decoding
for OOK bits

Figure 3: Receiving procedure of a SlimWiFi uplink receiver, i.e., the COTS Wi-Fi device.

SC1

CP removal

Identical CP Identical

SC2

CP No information loss

1 0 1 0

1 0 1 0

…

(a) Wi-Fi OFDM signal (“SC” denotes subcarrier).

Lost LostNot identical Not Identical

CP removal

1 1 0 1 0 0 1 X 1 0 X 0 0 1

(b) Non-Wi-Fi signal with random symbol clock.

CP removal

1 0 1 0

No information loss

(c) SlimWiFi signal whose symbol clock is synchronized to the Wi-

Fi receiver’s OFDM symbol clock.

CP removal

1 0 1 0

Sync error Clean signal

(d) SlimWiFi signal with synchronization error.

Figure 4: Symbol clock sync to counteract CP removal.

3.3 SlimWiFi Signal Design
3.3.1 Overcoming signal erasures on the COTS Wi-Fi

demodulator
In this section, we introduce the transmission waveform of

the SlimWiFi device which are designed to circumvent the

signal erasures on the COTS Wi-Fi demodulator.

As shown in Fig. 4a, the standard Wi-Fi waveform inside a

CP is a replica of the last 0.8 μs of the OFDM symbol (4 μs

in total) hosting the CP. Therefore, removing the CP does

not cause any information loss for the Wi-Fi demodulator.

In contrast, for a non-Wi-Fi signal with an arbitrary symbol

clock (Fig. 4b), this operation may inadvertently erase 20% of

the original signal which makes the demodulation unreliable.

To overcome this issue, we choose to synchronize the OOK

symbol clock of the SlimWiFi device with the OFDM symbol

clock of the Wi-Fi receiver, i.e., 250 kHz for 802.11n. Fig. 4c

shows that, with such symbol-level clock synchronization,

the SlimWiFi signal acts the same as the signal of one Wi-Fi

subcarrier (in Fig. 4a). Therefore, the signal erasure caused

by CP removal can be avoided. To realize the symbol level

clock synchronization, the SlimWiFi device simply generates

a 250 kHz clock and aligns its transmission time to the afore-

mentioned trigger frame (Sec. 2). Such synchronization relies

on symbol energy detection and may not be precise. However,

as shown in Fig. 4d, the redundant CP part can be utilized

to tolerate the synchronization errors, which we will further

verify in Sec. 6.2.

Recall that 12 out of the 64 subcarriers within the 20 MHz

Wi-Fi channel are null or pilot subcarriers, eventually dis-

carded by the Wi-Fi demodulator. Therefore, to prevent infor-

mation loss, the SlimWiFi device should avoid modulating its

OOK waveform at the same frequencies as the non-data sub-

carriers. This in turn imposes more constraints on its signal

bandwidth and carrier frequency, which we address below.

3.3.2 Relaxing the hardware requirements on the
SlimWiFi radio device

Range, TX power, and bandwidth. The communication

range of the SlimWiFi uplink can be estimated based on the

classical link budget equation [85]:

kbTaB+NF+SNRo =PT X +GT X +GRX −20log10(4πd fc/c)

where kb is the Boltzmann constant, and Ta is the equivalent

noise temperature in [K]. B, NF , and SNRo denote the signal

bandwidth, RX noise figure, and SNR threshold for robust

decoding, respectively. PT X , GT X , and GRX are TX power, TX,

and RX antenna gain, respectively. d is the operating range,

fc is the carrier frequency and c is the light speed.

To achieve a target range d while keeping the SlimWiFi

device at ULP, we propose to reduce B, which can in turn

lower the total transmit power PT X . This design choice hinges

on the observation that we can treat each subcarrier of the

OFDM receiver as an individual narrow-band (312.5 kHz)

channel. As long as the SlimWiFi signal falls within one

of the subcarriers, it can be captured and demodulated by

the OFDM receiver. Therefore, even if its PT X is reduced

by 10log10(20000/312.5) = 18 dB, the total power of a

SlimWiFi symbol can still be equivalent to that of a Wi-Fi

subcarrier, and SlimWiFi can still keep the same transmission

range as a normal Wi-Fi! The operating range can be further

traded off for even lower transmit power. In fact, with the

250 kHz OOK symbol rate the SlimWiFi signal bandwidth is

250 kHz which can already fit within one Wi-Fi subcarrier.

Carrier frequency requirement. Most existing commu-

nication standards require an accurate carrier frequency. In

particular, a highly stable carrier is crucial for synchronizing

OFDM TX and RX, and reducing leakage between subcarriers.

However, this usually entails a high-profile carrier generator,

1204 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Null SC Data SC
Pilot SC

CH 1
CH 2

CH 3
CH 4

Figure 5: Subcarrier mapping between different channels of

Wi-Fi on the 2.4 GHz band. Only 4 channels are illustrated.

No CFO

Index0 1 2 3-2 -1-3

Noise
floor

Small CFO

Index0 1 2 3-2 -1-3

Large CFO

Index0 1 2 3-2 -1-3

Max signal

Loss

Figure 6: Amplitude of different subcarriers with or without

the CFO, when receiving a single tone OOK signal.

consisting of a VCO and PLL which consumes several mW

power [54, 66, 71]. The SlimWiFi asymmetric demodulation

circumvents this requirement for the first time. As long as

the OOK signal’s carrier frequency fC is located within the

20 MHz Wi-Fi band, it can be captured and recovered by

demodulating the Wi-Fi receiver’s subcarrier that covers fC.

However, two issues need to be solved to accommodate the

inaccurate carrier frequency.

First, fC might be in the non-data subcarriers which are

discarded by the Wi-Fi receiver. We overcome this problem

by making use of the partially overlapped Wi-Fi channel des-

ignated in the 2.4 GHz band, where the non-data subcarriers

of one channel are the data subcarriers of an adjacent channel,

as shown in Fig. 5. With this mechanism, the carrier frequency

requirement can be further relaxed from 20 MHz (a single

Wi-Fi channel) to 80 MHz (the entire 2.4 GHz ISM band cov-

ering 13 Wi-Fi channels). Note that, the Wi-Fi receiver can

identify the subcarrier where the SlimWiFi signal is located

by simply checking the subcarrier energy level. If the Wi-Fi

receiver does not observe any uplink signal after the trigger

frame (Sec. 2), then the signal may fall on a non-data sub-

carrier, and the receiver should switch to an adjacent channel

instead.

The second issue is that the OOK carrier frequency fC
may not be aligned exactly with an OFDM subcarrier. Al-

though OOK can be demodulated non-coherently, the carrier

frequency offset (CFO) leads to non-orthogonality in the Wi-

Fi receiver’s FFT processing, which may in turn affect the

asymmetric demodulation. Fig. 6 illustrates a case where a

single tone signal (OOK with ON state) spreads to multiple

subcarriers due to CFO. Demodulating the OOK signal on

a single subcarrier will result in a low SNR. Combining the

signal energy across subcarriers does not necessarily help

either because it increases the noise bandwidth. Nonetheless,

the worst-case SNR loss due to CFO is only 3 dB (signal

spreads evenly between two adjacent subcarriers), which will

be verified in Sec. 6.2.

I

Q
OOK ON state OOK OFF state

Quantization

Reconstructed with
quantization error

Original signal

Figure 7: OOK modulated signal with QAM demodulation.

3.4 Resolving Quantization and Coding Errors
3.4.1 QAM and quantization error
The Wi-Fi receiver’s QAM demapping block quantizes the

phase and amplitude of the signal on each subcarrier. Fig. 7

illustrates the case when a SlimWiFi OOK signal is demapped

on a 64-QAM constellation diagram. For the ON state of

OOK, the signal sample will have a non-zero amplitude with

an arbitrary phase, hence falling at the outer circle. For the

OFF state, the sample will have a near-zero amplitude, falling

at the origin point. For other subcarriers where no active

signals are located, the demapped sample will be the same as

the OFF state.

Essentially, the QAM demapping is performing quantiza-

tion in the complex domain. Thus the original OOK signal

on the active subcarrier can be easily reconstructed through

the reverse operation, i.e., QAM mapping which converts

bits to a complex number. However, this process will intro-

duce quantization errors, which compromises the SNR of

the reconstructed signal. The quantization error depends on

the precision of quantization which is determined by QAM

modulation order. We thus configure the Wi-Fi receiver to

the highest modulation order 64-QAM, leading to the lowest

quantization error.

3.4.2 FEC and coding error
When receiving the non-OFDM SlimWiFi signal, the FEC

block causes a mismatch between the demodulated bit se-

quence X and regenerated bit sequence X ′ shown in Fig. 3.

The fundamental reasons are two-fold: (i) The demodulated

bit sequence can be treated as an arbitrary bit sequence in-

stead of a valid codeword of FEC; (ii) The standard Wi-Fi

FEC decoding is a many-to-one mapping, whereas the reverse

operation (i.e., FEC encoding in Fig. 3) is a one-to-one map-

ping. So there is no guarantee that the reconstructed X ′ can

match the original X by simply reversing the FEC.

Fortunately, we found that the number of mismatched bits is

limited and can be mitigated with a careful design. The coding

errors induced by the two standard FEC schemes in Wi-Fi, i.e.,
binary convolutional coding (BCC) and low-density parity

check (LDPC), are different. Here we only summarize their

properties. The detailed proofs are in Appendix A.

(1) Both BCC and LDPC incur fewer coding errors at a
higher coding rate. Therefore, we configure the Wi-Fi receiver

to the highest available coding rate (i.e., 5/6) when performing

the asymmetric demodulation. With this measure, the fraction

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1205

0 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0

0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0

0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 0

Data bits Parity bitsCorrect Error

BCC

LDPC

Figure 8: Distribution of coding errors (mismatch between X
and X ′), for BCC and LDPC, respectively.

of FEC-induced errors can be reduced to around 1/6 and can

be further reduced if we apply a separate FEC coding on the

SlimWiFi OOK transmitter.

(2) When the Wi-Fi receiver runs the LDPC decoder, the
locations of the FEC errors are known a priori on the time-
frequency domain. Fig. 8 shows an example of the error dis-

tributions when using BCC and LDPC with 5/6 coding rate.

X ′
BCC and X ′

LDPC are the regenerated bit sequence under BCC

and LDPC, respectively. The mismatched bits of the BCC

scheme are spread randomly all over the bit sequence X ′
BCC

due to the BCC decoding and interleaving. In contrast, the

mismatched bits of the LDPC scheme is always located at the

parity bits block (also proven in Appendix A.2).

Based on this observation, we configure the Wi-Fi receiver

to LDPC mode in the asymmetric demodulation, which brings

two advantages: (i) The error bits are distributed in a periodic

way across the reconstructed sequence X ′ (more details in

Sec. 3.6). Therefore, they can be easily corrected by applying

a convolutional encoding on the data from SlimWiFi device

and using a convolutional decoder on the asymmetric demod-

ulator. (ii) The receiver knows which bits are parity bits (i.e.,
where the coding errors are clustered). The convolutional de-

coder can adopt a soft decision decoder which sets those bits

with a low log-likelihood ratio, thus improving the decoding

performance.

3.5 Practical Challenges
3.5.1 MAC layer configuration
To ensure the MAC payload bits can be used to reconstruct the

SlimWiFi signal, we need to resolve two issues: (i) incorrect

frame check sequence (FCS), and (ii) limited MAC frame

length.

Incorrect FCS. As shown in Fig. 9, the FCS, a 32-bit

cyclic redundancy check (CRC) located at the end of the

whole frame, is adopted for error protection. Since the re-

ceived signal is an OOK modulated instead of a valid Wi-Fi

signal, it is nearly impossible that the FCS is correct. But we

need to capture the data frames through the Wi-Fi driver, even

if they fail the FCS check. This is supported by many COTS

Wi-Fi devices [2, 21]. A simple software/firmware update can

enable the same capability on other Wi-Fi devices.

Data frame length. The length of the payload in a normal

Wi-Fi frame is limited by the 2,304 bytes maximum size of

the MAC Service Data Unit (MSDU). Recall that SlimWiFi

needs to configure the Wi-Fi receiver to the highest data rate

(64-QAM, 5/6 code rate, Sec. 3.4). Under this configuration,

the maximum number of OFDM symbols is less than 70,

A-MSDU subframe 1 A-MSDU subframe 2 … A-MSDU subframe n

Normal 802.11 frame

802.11 A-MSDU frame

MSDU

SlimWiFi frame

MAC header Frame body (payload) FCS

~70 OOK symbols ~240 OOK symbols

Figure 9: Mapping between the standard Wi-Fi MAC frame

and SlimWiFi signal waveform.

corresponding to only 70 OOK symbols as illustrated in Fig. 9.

To create a longer frame, we choose to use the aggregate

MAC service data unit (A-MSDU) with a quality of service

(QoS) data frame, whose maximum size is 7,935 bytes, which

extends the frame length to about 240.

3.5.2 Scrambler seed
Since the descrambling is a one-to-one mapping operation

on the Wi-Fi receiver, it can be easily reversed by applying a

scrambling block with the same scrambler seed. Although the

scrambler seed is not reported to the driver, it is set by the PHY

header which triggers the receiver’s demodulation process

(Sec. 3.5.3). Therefore, we can just set a fixed scrambler seed,

which can be used to reverse the descrambling block.

3.5.3 Initiating the receiving procedure on Wi-Fi
The final practical challenge lies in generating a valid Wi-Fi

preamble and PHY/MAC header. The preamble is needed for

triggering the Wi-Fi receiver to start the receiving procedure

(packet detection), and is also used for auto gain control, syn-

chronization, and channel estimation. The PHY/MAC header

is needed for specifying demodulation parameters such as

QAM order, coding rate, scrambling seed, and packet length.

Unfortunately, the Wi-Fi preamble and PHY/MAC header are

complex OFDM modulated signals, and cannot be directly

generated by the SlimWiFi ULP transmitter.

Note that many Wi-Fi devices have separate but co-located

transmitter and receiver modules. For example, many Wi-

Fi APs [7, 8, 59] usually have multiple transceiver chips (to

support concurrent multi-band and multi-antenna operation)

which can be configured as co-located TX and RX modules.

Therefore, we repurpose the co-located Wi-Fi TX module

as an initiator to emit a self-initiation frame, comprised of

the legitimate preamble and PHY/MAC header but without

any payload. Such zero-payload frames are supported by

Wi-Fi drivers such as Nexmon [69], or through Wi-Fi frame

emulation methods [37]. Upon receiving the initiation frame,

the receiver starts its Wi-Fi demodulation workflow followed

by the asymmetric demodulation (Fig. 3). Notably, since

the transmission of the initiation frame and the reception of

OOK data occur consecutively, there is no self-interference

between the co-located transmitter and receiver. Therefore,

unlike backscatter communication systems, the link budget

and receiving sensitivity is not affected by direct Tx leakage

or near-far problems [40]. For those Wi-Fi devices with inte-

grated transceivers, a firmware update is needed to enable the

receiver to start its demodulation workflow immediately after

the transmitter sends out the trigger frame.

1206 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A-MSDU subframe 1 A-MSDU subframe 2 … A-MSDU subframe n

Normal 802.11 frame

802.11 A-MSDU frame

MSDU

SlimWiFi frame

MAC header Frame body (payload) FCS

~70 OOK symbols ~240 OOK symbols

Figure 10: Demodulating the SlimWiFi OOK symbols di-

rectly in the frequency domain. The subcarrier with non-zero

signal power contains the OOK symbols.

Optimizing receiver gain and sensitivity. A standard Wi-

Fi receiver performs automatic gain control (AGC) based on

the signal strength of the preamble from the transmitter. For

SlimWiFi, since the preamble is from the co-located initiator

instead of the actual transmitter, the AGC may be misconfig-

ured. If the initiation frame is too strong, the receiver will

set a low gain, leading to insufficient amplification of the in-

coming SlimWiFi signals. In this situation, the demodulation

performance will be bottlenecked by the quantization error

(Sec. 3.4.1). Therefore, to achieve the best receiver sensitivity,

we would prefer to reduce the power of the initiation frame.

This may risk forcing the receiver to tune to a high gain, re-

sulting in the clipping of high amplitude signals. Fortunately,

for OOK signals, the clipping effect will not impact demodu-

lation, since clipped signals are recognized as “1” regardless

of their amplitude. We will evaluate the effects of the receiver

gain in Sec. 6.2.

3.6 Putting Everything Together
Overall, the Wi-Fi receiver follows the processing blocks

shown in Fig. 3 to perform the asymmetric demodulation.

At a high level, the incoming OOK samples go through the

hard-coded normal Wi-Fi demodulation steps which result

in a MAC frame. Our asymmetric demodulator reconstructs

the complex samples from the MAC frame, by reversing the

Wi-Fi demodulation steps, and then decodes the desired bit

sequence from the reconstructed samples.

Note that the reverse processing skips the IFFT. Since the

OOK signal is narrowband and only occupies one subcarrier,

we can directly process the complex samples on that subcar-

rier, without IFFT-converting them to the time domain, as

shown in Fig. 10. The amplitude of the complex sample is

used directly to decode the OOK modulated symbol.

To visualize the samples in the time-frequency domain, we

collect an example trace with the following configurations:

802.11n with 20 MHz bandwidth, 64-QAM modulation, 5/6

coding rate, LDPC code, and frame length of 2,000 bytes.

The waterfall plot in Fig. 11a shows the case without any

active transmission. The x and y axis are the symbol index in

the time domain, and the subcarrier index in the frequency

domain, respectively. The color represents the amplitude of

the samples. It can be seen that the samples corresponding to

the data bits of the LDPC coded sequence always have a low

amplitude (since no coding errors occur there), while the ones

corresponding to the parity bits have uncertain results. If we

pick the time domain symbols within one subcarrier, the sym-

Symbol Index

Su
bc

ar
rie

r I
nd

ex

10 20 30 40 50

5
10
15
20
25
30
35
40
45
50

0.5

1

1.5

Data Bits

Parity Bits

(a) Without active transmission.

5 10 15 20 25 30 35 40 45 50 55

5
10
15
20
25
30
35
40
45
50

Su
bc

ar
rie

r I
nd

ex

SlimWiFi signal

Symbol Index
(b) With OOK signal.

Figure 11: Waterfall plots of reconstructed time-frequency

domain samples.

DAC

PLL+VCO

PA

Mixer

XO

(a) Traditional active transmitter.

Open-loop
oscillator

OOK
Modulation

-20 dBm PA

(b) SlimWiFi active transmitter.

Figure 12: Transmitter radio hardware architecture.

bols with coding errors (i.e. contain parity bits) appear once

every 6 symbols. The result corroborates our observations in

Sec. 3.4.2.

Fig. 11b shows the case when a SlimWiFi device is trans-

mitting signals, causing a high amplitude to appear at sub-

carrier 15 of the Wi-Fi demodulator. The other subcarriers

remain the same as the idle case. The OOK signals can thus

be demodulated using the samples on subcarrier 15.

4 SlimWiFi ULP Radio Hardware Design

In this section, we focus on the SlimWiFi transmitter hard-

ware, which is designed for asymmetric demodulation. We

also provide a brief discussion on the ULP OOK receiver

which explains how SlimWiFi device interacts with the COTS

Wi-Fi device on the downlink.

4.1 High Power Consumption in Traditional
IoT Radios

Modern IoT radio designs need to make challenging trade-

offs between power consumption and other competing re-

quirements, including range, bit rate, spectrum efficiency, etc.
Regardless of how they bias the trade-offs, the IoT radio ar-

chitecture invariantly comprises 3 key components (Fig. 12a):

a high power PA to ensure sufficiently high transmit power; a

crystal oscillator (XO) reference and carrier generator consist-

ing of a PLL and VCO, to ensure a stable carrier frequency; a

high-resolution DAC to support complex modulation schemes.

These high-profile hardware components are the main culprit

behind the high power consumption [10].

For example, the industry’s most power efficient Wi-Fi

radio consumes around 300 mW for TX and 100 mW for

RX [34]. BLE consumes 5.1 mW at -20 dBm transmit power

and 8.1 mW for RX [61]. ZigBee chip consumes 6.9 mW for

transmission and 6 mW receiving [60]. LoRa takes 32.4 mW

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1207

Table 1: Power break down of IC implementation

BLE [63] SlimWiFi (Simulated)

Power amplifier 2.5 mW 43 μW

Carrier generation 0.7 mW 30 μW

Modulation 0.5 mW ∼0 μW

Rest 0.2 mW N/A

Sum 3.9 mW 73 μW

and 14.8 mW for TX and RX, respectively [70]. Even the

most advanced low power BLE IC [63] which adopts many

aggressive optimizations consumes more than 3.9 mW. Ta-

ble. 1 shows a breakdown of the power consumption of each

component. All in all, to achieve extremely low power and

open the pathways for battery-free operations, a fundamen-

tally different architecture is needed that evades all the power

hungry components.

4.2 SlimWiFi Transmitter Architecture
Owing to the asymmetric communication design (Sec. 3),

the SlimWiFi device only needs to generate signals with low

transmit power, low-accuracy carrier frequency, and simple

OOK waveforms. Therefore, we propose the SlimWiFi active

transmitter architecture shown in Fig. 12b. Compared to the

traditional active transmitters, the SlimWiFi transmitter: (i)

replaces the high-power PA with a low-power PA optimized

for constant-amplitude signals at -20 dBm output power; (ii)

replaces the closed-loop PLL+VCO with a simple open-loop

oscillator; (iii) removes the DAC and uses an RF switch for

OOK modulation. With such optimizations, SlimWiFi can

bring the power consumption down to 73 μW in simulation.

Table. 1 provides the power breakdown of SlimWiFi in com-

parison with the aforementioned BLE IC. Now we explain

how the extremely low power is achieved.

4.2.1 Transmit power
Existing IoT radio designs aim for long-range, high through-

put, and robust communication, which in turn requires a high

transmit power. For example, Wi-Fi devices usually trans-

mit at more than 20 dBm (i.e., 100 mW). BLE, ZigBee, or

LoRa devices are at around 0 dBm (i.e., 1 mW). The transmit

power, and the associated PA hardware, dominates the power

consumption of the entire transmitter.

For SlimWiFi, recall it can reduce the transmit power by

18 dB while keeping the same link budget, owing to the nar-

rower bandwidth (250 kHz) (Sec. 3). This comes at the cost of

a lower bit-rate, but is a much preferred trade-off for most IoT

applications, especially considering the existing Wi-Fi infras-

tructure can be reused. Since the Wi-Fi preamble is generated

by the initiator instead of the SlimWiFi device, the PA only

needs to support a narrow bandwidth and can be optimized

for high efficiency. Our actual on-chip PA is optimized for

-20 dBm, whose power consumption can be as low as 43 μW

with 24 % drain efficiency. This would be equivalent to a

Wi-Fi transmitter at 18−20 =−2 dBm, and comparable to

the emission power of BLE, LoRa, and ZigBee radios.

VDD2Class-C PA
On-chip

Driver
50 Ω
Load

VDD1OOK data

Ring oscillator

1 0 1 0
0 1 0 1

OMN

CTRL<4:0>

L C1

C
2

W/L = 120 nm/60 nm ZOPT Output
matching
network

Figure 13: Circuit diagram of the SlimWiFi chip.

However, reducing the transmit power alone cannot bring

the peak power to tens of μW. For example, a BLE IC [61]

still consumes 4.5 mW when transmitting at -40 dBm (1 μW),

and [63] still consumes 1.4 mW even without a PA (Table. 1).

At an extremely low transmit power, the carrier generator and

modulation blocks will become the bottleneck.

4.2.2 Open-loop carrier generation

Traditional closed-loop carrier generators are based on PLL,

which can generate a highly accurate carrier frequency but

consumes high power due to the requirement of phase de-

tection. For example, typical analog PLLs for IoT consume

power in the mW level [54, 71]. All digital PLLs can poten-

tially bring down the power consumption to several hundred

μW [9, 49, 63], but still around one order of magnitude higher

than our target power consumption. The asymmetric demod-

ulation design enables SlimWiFi to drastically relax the re-

quirements of frequency stability. Instead of tolerating around

48 kHz (± 20 ppm) of carrier frequency offset as in COTS

Wi-Fi devices [43], SlimWiFi works as long as its carrier falls

within the 80 MHz range of the entire 2.4 GHz Wi-Fi band!

Therefore, SlimWiFi can use an open-loop oscillator with low

frequency accuracy as the carrier generator. More specifically,

we chose an open-loop ring oscillator for the 2.4 GHz car-

rier generation which consumes only around 30 μW when

implemented on an IC (more details in Sec. 4.3.1).

4.2.3 Low power modulation

To synchronize with the symbol clock of the Wi-Fi receiver

(Sec. 3.3.1), the SlimWiFi transmitter uses an RF switch at

250 kHz switching rate to generate the OOK symbols. In

fact, our IC implementation realizes OOK by simply power-

ing on and off the PA, without the need of an additional RF

switch. Since the open-loop ring oscillator’s start-up time (ns

level) is much shorter than the symbol period, it can also be

power-cycled with the PA, which together can reduce the

modulation power consumption to nearly zero.

4.3 IC design
Fig. 13 shows the circuit diagram of our SlimWiFi IC, con-

sisting of an open-loop ring oscillator and a PA optimized for

OOK signal at -20 dBm.

1208 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.3.1 Ring oscillator
The ring oscillator consists of an odd number (3-stage in

our design) of inverters cascaded into a ring, as illustrated

in Fig. 13. The logic input is inverted after passing through

the inverters, which causes oscillation between two voltage

levels. The open-loop design circumvents the requirement

of an external reference clock (e.g., crystal oscillator), thus

further reducing the radio cost and form-factor.

The zoom-in plot in Fig. 13 shows the detailed on-chip

design of the ring oscillator. It is composed of minimum size

transistors (W/ L = 120 nm/ 60 nm) for the minimum area

and lowest power consumption. The ring oscillator’s actual

carrier frequency output is affected by the process, voltage

and temperature (PVT) variations. We introduce a 5-bit binary

weighted capacitor bank (CTRL〈4 : 0〉) loading the first stage

of the inverter to tune the propagation delay across different

stages of the circuit. This in turn allows us to empirically

adjust the oscillation frequency at design time, so it falls

within the 2.4 GHz band under typical PVT conditions.

4.3.2 Class-C PA
The carrier is directly modulated by a 250 kHz data sequence

and then fed to the inverter-based driver to drive a PA. We

choose a Class-C PA for its easy implementation in terms

of harmonic terminations and better efficiency at low output

power [36]. This comes at the cost of low linearity but is

acceptable for SlimWiFi since its OOK waveform is insen-

sitive to clipping distortion (Sec 3.5.3). For a Class-C PA,

the relationship between the output power Pout , optimal load

impedance ZOPT and supply voltage VDD follows [36]:

Pout =V 2
DD/(2 ·ZOPT)

For the target of -20 dBm output power, the optimal load

impedance can be 18 kΩ, which would be impractical to

match to the standard 50 Ω. To alleviate this problem, a dual-

supply voltage scheme [32] is applied for efficiency enhance-

ment. Specifically, we use a 0.9 V VDD1 to supply the VCO

and driver stage, and 0.3 V VDD2 to supply the final PA stage.

Off-chip high-Q components [77] are utilized in the tapped-

capacitor output matching network to achieve the impedance

transformation.

Table. 2 compares the simulated IC performance with and

without the PCB parasitic S-parameter (SP) model (extracted

using ADS Momentum). Both simulation results are obtained

with chip post-layout parasitic extraction (LPE). The table

shows that, when co-simulated with the PCB SP model, the

output power and efficiency are degraded, indicating that the

PCB parasites can have a detrimental effect on the IC perfor-

mance. This problem can be solved by integrating the capaci-

tors on-chip to ensure a good match and carefully modeling

the inductor on PCB to co-optimize the performance.

Another potential solution is to replace the 50 Ω termina-

tion with a non-50 Ω antenna. For example, a patch antenna

can have an input impedance of 100-400 Ω at resonance [11],

Table 2: Simulated IC performance

LPE LPE +PCB SP

Frequency (MHz) 2451 2438

Pout (dBm) -19.9 -21.3

Pdrain (μW) 42.9 43.4

Pvco+driver (μW) 29.2 29.3

Drain efficiency (%) 23.7 16.9

Global efficiency (%) 14.1 10.1

which can effectively lower the impedance transformation

ratio, thus reducing loss in the matching network.

4.4 Downlink ULP Receiver
To enable downlink communication for SlimWiFi, the COTS

Wi-Fi transmitter needs to emulate OOK waveforms using

OFDM. Such emulation has been well explored in recent

cross-technology communication and backscatter systems

[20, 35, 45, 67], and can be directly adopted by SlimWiFi.

The resulting OOK receiver does not need a carrier generator

or PA, and thus consumes even less power than the transmitter.

Considering that the TX power of the COTS Wi-Fi de-

vice can be 30 dBm, 50 dB higher than the SlimWiFi de-

vice’s transmit power, a similar uplink and downlink range

can be achieved even if the downlink OOK receiver’s sen-

sitivity is 50 dB worse than the uplink Wi-Fi receiver. To

achieve a 100 m target range, the required receiver sensitiv-

ity is 30 dBm + 6 dBi + 2 dBi - 80 dB (FSPL) = -42 dB,

which has been achieved in many existing systems. For exam-

ple, [78] achieves -42.6 dBm sensitivity at 2.8 μW power; [15]

achieves -50 dBm sensitivity at 4.5 μW. Much better sensi-

tivity (smaller than -70 dBm) can be achieved with wake-up

radio designs [3, 17, 30] at tens of μW power consumption.

Other than the 2.4 GHz carrier, the SlimWiFi device also

requires a 250 kHz symbol clock. Such low frequency clock

can be generated with a ULP oscillator (e.g., 0.3 μW [14]) or

extracted from the 2.4 GHz carrier through a ULP fraction

counting clock as proposed in [84]. The symbol clock can

also be calibrated based on the downlink trigger frame which

has a 250 kHz OFDM symbol rate.

5 Implementation

5.1 SlimWiFi Device
We have implemented three versions of the SlimWiFi device

for different evaluation purposes.

Emulation. To benchmark the performance of the asym-

metric demodulation, we need to flexibly control SlimWiFi’s

signal transmission, such as carrier frequency, symbol time,

transmit power, etc. Therefore, we use the WARP software

radio [56] to emulate the SlimWiFi signals. To faithfully

represent the performance of a real SlimWiFi device, we care-

fully tune the amplitude of the samples and the RF gain of

the WARP board, so that the emulated signal has a calibrated

transmission power of -20 dBm, consistent with other versions

of implementation.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1209

LC oscillator RF switch

OOK receiver

(a) Prototype version.

Core circuit

GND RF output

CTRL<4:0>

700 um

55
0

um

VDD

VC
Data

(b) IC version.

Figure 14: Two versions of the SlimWiFi device implemen-

tation.

Discrete circuit prototype. The prototype version thor-

oughly implements both the SlimWiFi TX and RX on a PCB

(Fig. 14a), and is used for end-to-end functional validation of

the SlimWiFi design. Following the hardware architecture in

Sec. 4.2, the TX device consists of an open-loop LC oscillator

BFP720 [33] and an RF switch HMC8038 [5] for OOK mod-

ulation. The RLC components of the oscillator are carefully

designed to tune the oscillation frequency to the 2.4 GHz

ISM band. The OOK RX is implemented by a power detector

LT5534 [6] and the sensitivity is tuned to -45 dBm. A Cmod

A7 [24] FPGA evaluation board is used to process the trigger

frame, synchronize the symbol clock, and generate TX data.

IC fabrication. We also tape out a SlimWiFi transmitter

following Sec. 4.3 in TSMC 65 nm RF LP process [74] to

evaluate its functionality and power consumption. Die photo

of the fabricated chip is shown in Fig. 14b, whose core size is

30×25 μm2. The die is directly bonded to a PCB for testing.

More advanced process nodes can be utilized to further scale

down the chip size and power consumption.

5.2 COTS Wi-Fi Device
We use DWA-192 [21], a Wi-Fi dongle that supports LDPC

code and A-MSDU, to communicate with the SlimWiFi de-

vice. To calibrate the antenna gain, we replace the original

antennas of unknown gain with two 8 dBi antennas [4]. To im-

plement the asymmetric demodulation on this Wi-Fi receiver,

we capture the data frames with CommView [73] on the user

space of the PC host and implement the signal processing

workflow in Matlab. No additional software, firmware, or

hardware modification is needed for receiving.

For the initiation procedure discussed in 3.5.3, the DWA-

192 firmware does not support the generation of a zero-

payload initiation frame. As a workaround, we verified that

a COTS Nexus 5 smartphone with Nexmon Wi-Fi driver

[57, 69] can be used as the initiator to send the CTS-to-self,

trigger frame and initiation frame, thus triggering the demodu-

lation procedure on DWA-192. However, the signal strength

of the COTS devices cannot be well calibrated and controlled

which hinders us from benchmarking the impact of the power

difference between the initiation frame and the SlimWiFi’s

signal. Therefore, we use the WARP software radio [56]

to send the initiation frame for emulation-based evaluation

 2000
 2200
 2400
 2600
 2800

 0 5 10 15 20 25 30

Fr
eq

ue
nc

y
(M

H
z)

CTRL<4:0>
(a) Frequency v.s. CTRL〈4 : 0〉.

 2400

 2420

 2440

 2460

 2480

 0 10 20 30 40 50 60 70

Fr
eq

ue
nc

y
(M

H
z)

Temperature (°C)
(b) Frequency v.s. temperature.

Figure 15: SlimWiFi IC carrier frequency drift corresponding

to CTRL〈4 : 0〉 and temperature.

Table 3: SlimWiFi prototype and chip performance

Frequency (Drift) Power Consumption

@ TX Power

Emulation Tunable N/A @ -20 dBm

Prototype 2460 (± 5) MHz 1 mW @ -20 dBm

Simulated IC 2438 (± 10) MHz 73 μW @ -21 dBm

Fabricated IC 2465 (± 10) MHz 90 μW @ -24 dBm

(Sec. 6.2).

6 System Evaluation
Our evaluation mainly focuses on the SlimWiFi uplink, since

the OFDM-to-OOK downlink has been studied in prior re-

search (Sec. 4.4).

6.1 SlimWiFi Device Microbenchmark
We first benchmark the different implementations of the

SlimWiFi device. Table. 3 summarizes some important pa-

rameters of the SlimWiFi device.

Carrier frequency. We first profile the frequency stability

of the SlimWiFi IC with the open-loop ring oscillator. Fig. 15a

illustrates the measured carrier frequency when varying the

CTRL〈4 : 0〉 from 0 to 31 with 0.95 V supply voltage at

room temperature (25 ◦C). We see that the ring oscillator

design achieves a wide tuning range (around 1 GHz) and

fine steps (30 MHz) compared to the 80 MHz frequency

tolerance. In addition, as shown in Fig. 15b, the frequency

variance is within 54 MHz even when considering a very

wide temperature range of 0 to 75 ◦C. Therefore, it suffices

to perform a one-time calibration to tune the oscillator to the

center of the the 2.4 GHz band and let it run freely.

We found that the emulated and prototype version of

SlimWiFi show consistent behavior compared with the IC

version. The prototype board also has an inaccurate carrier

frequency, though a relatively lower drift (around 5 MHz).

The WARP setup can emulate arbitrary carrier frequencies

for evaluation purposes.

Power consumption and transmit power. The discrete

prototype version of the SlimWiFi transmitter consumes

around 1 mW power when transmitting at -20 dBm. This

is already superior to state-of-the-art IoT ICs (Sec. 4). The

chip version further cuts the power consumption by an order

of magnitude owing to the highly optimized oscillator and

PA. Sub-100 μW of power consumption is achieved, for both

the simulated and fabricated SlimWiFi chips. The measured

1210 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0
 20
 40
 60
 80

 100

-10 -5 0 5 10

FE
R

 (%
)

Relative Power (dB)

Figure 16: Frame error rate with differ-

ent relative power between the SlimWiFi

signal and the initiation signal.

 0
 20
 40
 60
 80

 100

-200 -150 -100 -50 0 50 100 150 20

FE
R

 (%
)

CFO (kHz)

Figure 17: Frame error rate under differ-

ent carrier frequency offset.

 0
 20
 40
 60
 80

 100

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

FE
R

 (%
)

STO (s)

Figure 18: Frame error rate under differ-

ent symbol time offset.

output power is -24 dBm, which is 3 dB lower than the sim-

ulated results. We suspect this is due to the tolerance of the

inductor and capacitors used for the high-Q output matching

and/or the PCB parasitics (e.g. bond wire inductance) not

fully captured by the EM simulation. We expect much lower

power consumption and a higher PA efficiency is feasible

by optimizing the PCB peripherals and by using advanced

fabrication processes (lower than 65 nm).

6.2 Microbenchmark for Asymmetric Demod-
ulation

The demodulation performance depends on various parame-

ters, including CFO, symbol time offset (STO), receiver gain,

etc. Since SlimWiFi uses an open-loop carrier generator that

keeps drifting, it is impossible to manually fix these parame-

ters for controlled experiments. We thus calibrated the signal

strength and used WARP to decouple and benchmark the

impact of each parameter individually.

We conduct link-level experiments in an outdoor parking

space, with the following default configurations of the Wi-

Fi receiver: 20 MHz 802.11n OFDM, 64-QAM modulation,

LDPC coding with 5/6 coding rate and 7935 bytes frame

length. Meanwhile, we use WARP to emulate the SlimWiFi

device transmitting OOK modulated signals with a frame

length of 240 bits and 1/2 BCC coding rate. By default, the

link distance is 20 m.

Impact of receiver gain. Recall that the mismatch of sig-

nal strength between the initiation signal and the SlimWiFi

signal may mislead the Wi-Fi receiver towards a suboptimal

gain setting (Sec. 3.5.3). To evaluate its impact, we use the

WARP board to transmit the initiation frame along with the

emulated signal, so that the strength difference can be inten-

tionally controlled. We consider the relative power of the

emulated SlimWiFi signal as 0 dB when the signal strength

is the same as that of one subcarrier in the initiation frame.

Fig. 16 shows that the receiver performance does not degrade

significantly until the relative power is lower than -9 dB, when

the receiver gain is too low for robust demodulation. This cor-

roborates our explanation in Sec. 3.5.3. Therefore, instead of

adjusting the power of the initiation frame which will lead to

complicated management overhead, we can just transmit an

initiation frame at a fixed low power. By default, our experi-

ments control the relative power to -6 dB to prevent degrading

the demodulation performance.

Impact of carrier frequency offset. Note that the 802.11n

subcarrier spacing is 312.5 kHz, and asymmetric demodula-

tion works as long as the SlimWiFi signals overlap with one

of the subcarriers. We thus only evaluate the case when the

SlimWiFi transmitter’s carrier frequency deviates from a rep-

resentative Wi-Fi subcarrier 15. To achieve higher SNR, we

combine the samples of the two subcarriers that partially over-

lap with SlimWiFi’s signals, only when the frequency offsets

by 140 to 180 kHz (around half of the subcarrier width). Oth-

erwise, the combination may induce more noise (Sec. 3.3.2).

With this setting, the worst-case SNR loss is only 3 dB, i.e.,
when nearly half of the signal power spills into an unusable

adjacent subcarrier. To summarize, the asymmetric demodu-

lator can tolerate arbitrary frequency offsets of the SlimWiFi

signals in common cases.

Impact of synchronization. To evaluate how the symbol

time offset (STO) influences the receiver performance, we

manually introduced a delay between the emulated SlimWiFi

signal and the initiation frame (both transmitted by the WARP

board). The result in Fig. 18 shows that within an STO from

-1 μs to 1.5 μs, the receiver performance is not affected in a

noticeable manner. Therefore, the system performance should

not be affected by the STO since a much better symbol level

synchronization can be achieved by the OOK receiver [78,79].

Notably, the performance is not symmetric around 0 offset

(i.e., there is around 0.5 μs more tolerance on positive STO),

because of the 0.8 μs redundancy introduced by the CP.

Range and coding rate on SlimWiFi device. Fig. 19a

and Fig. 19b show the frame error rate (FER) and goodput

with different link distances and BCC coding rate (applied

on the data from SlimWiFi device to combat with the coding

error discussed in Sec. 3.4.2). The goodput is calculated by

only counting the frames with no bit error and including the

overhead of channel access, initiation, and trigger frame as

discussed in Sec. 2. It can be seen that SlimWiFi maintains a

low FER of below 5% even at 60 m of communication range.

A goodput of around 100 kbps can be achieved within the

range of 60 m. A higher coding rate leads to higher goodput,

with some sacrifice on the FER.

Non-line-of-sight (NLoS). We finally evaluate SlimWiFi

in an indoor NLoS environment with rich multipath. Fig. 20

shows the deployment setup. We place the Wi-Fi receiver in

the living room of a 3B2B apartment, and vary the location

of the SlimWiFi transmitter (emulated by WARP). It can be

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1211

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50 60 70

FE
R

 (%
)

Range (m)

1/2
2/3
3/4
5/6

(a) Frame error rate.

 0
 30
 60
 90

 120
 150

 0 10 20 30 40 50 60 70

G
oo

dp
ut

 (k
bp

s)

Range (m)

1/2
2/3
3/4
5/6

(b) Goodput.

Figure 19: Performance of the asymmetric demodulation

receiver w.r.t. (a) frame error rate (FER) and (b) goodput at

different range and coding rate.

Wi-Fi
RX

WD

L3

L2

L1 L4

L5

L6

36 ’

34 ’

Location FER

L1 1.382%

L2 0.311%

L3 0.340%

L4 0.218%

L5 0.411%

L6 0.043%

Figure 20: Experimental setup and result for NLoS deploy-

ment.

seen that a FER lower than 0.5% is achieved for all the lo-

cations except “L1”, despite the multipath and under NLoS.

A FER of 1.3% can be achieved at “L1” even though the

emulated transmitter is placed at the furthest end of the apart-

ment with 2 concrete walls blocking the LoS. We note that

the non-coherent demodulation of SlimWiFi is insensitive

to the signals’ phase variations and naturally resilient to the

multipath effects. In addition, as discussed in Sec. 4.2.1, al-

though SlimWiFi bears a low transmit power, it still keeps an

ample link budget owing to the high sensitivity of asymmetric

demodulation, thereby easily achieving whole-home coverage

even with NLoS links.

6.3 System Level Evaluation
We now put the workflow in Fig. 2 together and evaluate the

SlimWiFi system end-to-end. We use the prototype SlimWiFi

device to transmit an OOK signal with a 1/2 coding rate. The

initiator’s output power is tuned for the highest receiving gain.

The experiments are conducted in an outdoor parking lot.

Fig. 21 shows that SlimWiFi can achieve a working range

of around 30 m at a FER of 11% and goodput of 78.0 Kbps,

and 35 m at a FER of 30% and goodput of 61.5 Kbps. Com-

pared to the result in Fig. 19, the range is reduced by around

1/2. This is reasonable because the impacts of receiver gain,

CFO, synchronization error, etc. are combined together. For

example, unlike the emulated SlimWiFi device, the carrier

frequency of the prototype device or IC is not strictly con-

trolled. The resulting carrier frequency offset is unpredictable

and will cause up to 3 db of SNR loss (Sec. 6.2) which trans-

lates into a range reduction. The result also indicates that the

proposed symbol synchronization scheme based on a simple

 0
 20
 40
 60
 80

 100

 0 5 10 15 20 25 30 35 40

FE
R

 (%
)

Range (m)

1/2

(a) Frame error rate.

 0
 20
 40
 60
 80

 100

 0 5 10 15 20 25 30 35 40

G
oo

dp
ut

 (k
bp

s)

Range (m)

1/2

(b) Goodput.

Figure 21: Performance of the SlimWiFi system w.r.t. (a)

frame error rate (FER) and (b) goodput at different range.

OOK receiver can satisfy the synchronization requirement.

7 Discussion

Other Wi-Fi standards. We use 802.11n Wi-Fi as the

Internet gateway for SlimWiFi devices because the 802.11n

standard is supported by mainstream Wi-Fi devices. Other

OFDM-based Wi-Fi standards can also support asymmetric

modulation, albeit with a few limitations: 802.11a/ac only

resides in the 5 GHz band which is not ideal for ULP commu-

nication due to the larger path loss; 802.11g, the predecessor

of 802.11n, does not support A-MSDU and hence can only

accommodate 70 OOK symbols in one frame (Sec. 3.5.1);

802.11ax devices are still not widely deployed and the longer

symbol period will lead to lower SlimWiFi throughput.

Initiating the Wi-Fi demodulation. The current SlimWiFi

implementation requires an initiator as a workaround to trig-

ger the standard Wi-Fi receiver’s demodulation procedure

(Sec. 3.5.3). We expect a firmware update to the receiver can

enable its self-triggering of the demodulation following the

CTS-to-self, as discussed in Sec. 3.5.3. An alternative way to

circumvent the initiator is to use the spectral scan function

of certain Wi-Fi cards (e.g., the Atheros Wi-Fi [48]), which

can continuously report the samples before the QAM block

without explicit triggering. We leave the implementation of

these approaches for future work.

Ethical consideration. This paper does not involve human

subjects and thus does not raise any ethical issues.

8 Related Work

Low-power communication hardware. ULP radio hard-

ware design has been the holy grail of the IoT industry. Many

RFIC techniques have been proposed for ULP radios, such

as harmonic injection-locked carrier generator [28, 46, 64],

crystal-free design [13, 65], power oscillator [58], etc. How-

ever, these radical radio designs are incompatible with ex-

isting IoT network infrastructures. In contrast, SlimWiFi

demonstrates for the first time that signals from a ULP OOK

radio can be demodulated by a COTS Wi-Fi device. The

SlimWiFi ULP radio is extremely simple and can be easily

mass-produced and embraced into the existing IoT ecosystem.

We note that most modern network standards have protocol-

level power-saving mechanisms [1, 23, 43] based on sleep

1212 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 4: Comparing SlimWiFi with representative state-of-the-art low-power communication

Radio architecture Power Data rate Interference Range Infrastructure

Wi-Fi [34] Active 100s mW High Low Long COTS Wi-Fi

BLE [62] Active ∼ 5 mW Medium Low Medium COTS BLE

Wi-Fi backscatter [41] Direct backscatter 1s μW Low Low Short COTS Wi-Fi

Braidio [29] Direct backscatter 10s μW Medium Low Short Customized device

PassiveWiFi [42] FS backscatter 10s μW Medium High Medium Single tone generator

to high + COTS Wi-Fi

HitchHike [79] FS backscatter 10s μW Medium High Medium COTS Wi-Fi

SlimWiFi Slim active 10s μW Medium Low Long COTS Wi-Fi

scheduling. These mechanisms cannot reduce the peak power

consumption–a more essential metric for battery-free com-

munication hardware. Nevertheless, they are complementary

to the SlimWiFi design and can be used to further reduce its

average power consumption.

Cross technology communication (CTC). The primary

motivation behind CTC is to allow different communication

standards to exchange messages, so as to reduce interference

and enable sharing of data/control information. Recent work

has explored both receiver-transparent CTC [18,20,39,44,45,

50] and transmitter-transparent CTC [26,37,38,51]. However,

CTC mainly sticks to the complex modulation adopted by

the COTS IoT devices. In contrast, SlimWiFi aims to design

the SlimWiFi signal so that it can be effectively decoded by

high-profile OFDM demodulators while relaxing the hard-

ware requirement of the transmitter. In addition, existing CTC

systems can not be used in ULP settings due to two reasons.

First, none of the existing CTC designs can reduce power con-

sumption because they rely on standard transceivers such as

Wi-Fi, BLE, ZigBee, and LoRa. Second, they have relatively

low communication performance. For example, the recently

proposed XFi [51] can only reach 10 m range at 3% FER. For

such CTC systems, the majority of the energy is wasted to

maintain an unreliable link between heterogeneous hardware,

which is not desired in ULP IoT applications. In contrast,

SlimWiFi is optimized to achieve a reasonable communica-

tion performance targeting IoT applications, with around 3

orders of magnitude lower power than standard transceivers.

Backscatter communication. Recent work has extended

classical UHF RFID backscatter communication to realize

ambient backscatter, which piggybacks on existing commu-

nication links to convey information. For example, Wi-Fi

backscatter et al. [12, 29, 41, 52, 68] adopt direct backscat-

ter where the tag data is directly modulated to the exci-

tation signal. But due to the self-interference, they usu-

ally operate within a very short range and have a very

low data rate. PassiveWiFi et al. [42, 72, 76, 81, 84] intro-

duces frequency shifting backscattering to deal with the self-

interference issues. A single-tone excitation signal is required

as an RF carrier source for a low-power backscatter tag,

and the tag can reflect and remodulate standard-compatible

signals (Wi-Fi, BLE, LTE, ZigBee, etc.). HitchHike et al.
[19, 25, 35, 44, 53, 78–80, 83] apply codeword translation, so

that a COTS transmitter, instead of a dedicated single-tone

generator, can be used as an excitation signal source.

Tab. 4 compares SlimWiFi with the representative commu-

nication schemes discussed above. Unlike these systems that

backscatter signals from existing links, the SlimWiFi device

is a standalone active transmitter and does not require an

external RF carrier signal transmitter. Moreover, as verified

in [22], Wi-Fi backscatter systems can cause interference to

adjacent Wi-Fi channels, and may inadvertently remodulate

and interfere with 5G NR links due to lack of frequency se-

lectivity. Active transmitters like SlimWiFi do not have such

out-of-band interference problems. On the other hand, the

asymmetric demodulation design in SlimWiFi can also facili-

tate existing backscatter systems. Owing to the asymmetric

demodulation design of SlimWiFi, the backscatter tag can

generate a simple modulated signal instead of the sophisti-

cated Wi-Fi compatible signal. Therefore, the tag can evade

the need for an accurate and high frequency (tens of MHz)

clock source for channel level frequency shifting, which can

potentially cut its power consumption by multi-folds.

9 Conclusion
To our knowledge, SlimWiFi represents the first active OOK-

modulated radio that can directly communicate with existing

Wi-Fi infrastructures. Such asymmetric communication ca-

pabilities enable radical simplifications to the radio architec-

ture, opening pathways towards standalone, battery-free Wi-Fi

compatible IoT communication. Our SlimWiFi IC achieves

a peak power consumption of 90 μW, but still leaves ample

space for optimization, e.g., through more advanced fabrica-

tion processes. The asymmetric communication paradigm can

be similarly applied to other wireless standards, which we

leave for future exploration.

Acknowledgments
We thank our shepherd Rajalakshmi Nandakumar and the

anonymous reviewers for their insightful comments and feed-

back. The work reported in this paper is supported in part

by the NSF under Grant CNS-1901048, CNS-1925767, and

CNS-2128588.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1213

References
[1] 3GPP. Non-Access-Stratum (NAS) protocol for

Evolved Packet System (EPS); Stage 3 (3GPP TS

24.301). https://portal.3gpp.org/desktopmodu
les/Specifications/SpecificationDetails.as
px?specificationId=1072.

[2] ALFA Network Inc. AWUS036ACM. https://www.
alfa.com.tw/products/awus036acm.

[3] Erkan Alpman, Ahmad Khairi, Richard Dorrance, Miny-

oung Park, V. Srinivasa Somayazulu, Jeffrey R. Foerster,

Ashoke Ravi, Jeyanandh Paramesh, and Stefano Peller-

ano. 802.11g/n compliant fully integrated wake-up re-

ceiver with -72-dbm sensitivity in 14-nm finfet cmos.

IEEE Journal of Solid-State Circuits, 53(5):1411–1422,

2018.

[4] Amazon. 2 x 8dBi WiFi RP-SMA Male An-

tenna 2.4GHz 5.8GHz Dual Band. https:
//www.amazon.com/Antenna-Pigtail-Wirel
ess-Routers-Repeater/dp/B07R21LN5P/ref=pd_
lpo_1?pd_rd_i=B07R21LN5P&psc=1.

[5] Analog Devices. HMC8038. https://www.analog.c
om/en/products/hmc8038.html.

[6] Analog Devices. LT5534. https://www.analog.com
/en/products/lt5534.html.

[7] ASUSTeK Computer Inc. RT-AC68U. https:
//www.asus.com/Networking-IoT-Servers/WiF
i-Routers/ASUS-WiFi-Routers/RTAC68U/.

[8] ASUSTeK Computer Inc. RT-AX3000. https:
//www.asus.com/Networking-IoT-Servers/WiF
i-Routers/ASUS-WiFi-Routers/RT-AX3000/.

[9] Masoud Babaie, Feng-Wei Kuo, Huan-Neng Ron Chen,

Lan-Chou Cho, Chewn-Pu Jou, Fu-Lung Hsueh, Mina

Shahmohammadi, and Robert Bogdan Staszewski. A

fully integrated bluetooth low-energy transmitter in 28

nm cmos with 36% system efficiency at 3 dbm. IEEE
Journal of Solid-State Circuits, 51(7):1547–1565, 2016.

[10] Torikul Islam Badal, Mamun Bin Ibne Reaz, Moham-

mad Arif Sobhan Bhuiyan, and Noorfazila Kamal. Cmos

transmitters for 2.4-ghz rf devices: Design architectures

of the 2.4-ghz cmos transmitter for rf devices. IEEE
Microwave Magazine, 20(1), 2019.

[11] Constantine A Balanis. Antenna Theory: Analysis and
Design. John Wiley & Sons, 2016.

[12] Dinesh Bharadia, Kiran Raj Joshi, Manikanta Kotaru,

and Sachin Katti. Backfi: High throughput wifi backscat-

ter. In Proceedings of the 2015 ACM Conference on

Special Interest Group on Data Communication, SIG-

COMM ’15, page 283–296, New York, NY, USA, 2015.

Association for Computing Machinery.

[13] Mengye Cai, Alireza Asoodeh, Yi Luo, and Shahriar

Mirabbasi. An ultralow-power crystal-free batteryless

tdd radio for medical implantable applications. IEEE
Transactions on Microwave Theory and Techniques,

68(11):4875–4885, 2020.

[14] Sheng-Kai Chang, Zhi-Ting Tsai, and Kuang-Wei

Cheng. A 250 khz resistive frequency-locked on-chip os-

cillator with 24.7 ppm/◦c temperature stability and 2.73

ppm long-term stability. In 2020 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–4,

2020.

[15] Shih-En Chen, Chin-Lung Yang, and Kuang-Wei Cheng.

A 4.5 μw 2.4 ghz wake-up receiver based on comple-

mentary current-reuse rf detector. pages 1214–1217,

2015.

[16] Xing Chen, Jacob Breiholz, Farah B. Yahya, Christo-

pher J. Lukas, Hun-Seok Kim, Benton H. Calhoun, and

David D. Wentzloff. Analysis and design of an ultra-

low-power bluetooth low-energy transmitter with ring

oscillator-based adpll and 4 × frequency edge combiner.

IEEE Journal of Solid-State Circuits, 54(5):1339–1350,

2019.

[17] Kuang-Wei Cheng and Shih-En Chen. An ultralow-

power ook/bfsk/dbpsk wake-up receiver based on

injection-locked oscillator. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 29(7):1379–

1391, 2021.

[18] Zicheng Chi, Yan Li, Yao Yao, and Ting Zhu. Pmc:

Parallel multi-protocol communication to heterogeneous

iot radios within a single wifi channel. In 2017 IEEE
25th International Conference on Network Protocols
(ICNP), pages 1–10, 2017.

[19] Zicheng Chi, Xin Liu, Wei Wang, Yao Yao, and Ting

Zhu. Leveraging ambient lte traffic for ubiquitous pas-

sive communication. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communica-
tion, SIGCOMM ’20, page 172–185, New York, NY,

USA, 2020. Association for Computing Machinery.

[20] Hsun-Wei Cho and Kang G. Shin. Bluefi: Bluetooth over

wifi. In Proceedings of the ACM SIGCOMM Conference,

2021.

[21] D-Link. DWA-192. https://us.dlink.com/en/pr
oducts/dwa-192-ac1900-ultra-wi-fi-usb-ada
pter.

1214 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[22] Farzan Dehbashi, Ali Abedi, Tim Brecht, and Omid

Abari. Verification: Can wifi backscatter replace rfid? In

Proceedings of the Annual International Conference on
Mobile Computing and Networking (MobiCom), 2021.

[23] Artem Dementyev, Steve Hodges, Stuart Taylor, and

Joshua Smith. Power consumption analysis of blue-

tooth low energy, zigbee and ant sensor nodes in a cyclic

sleep scenario. In 2013 IEEE International Wireless
Symposium (IWS), pages 1–4, 2013.

[24] Digilent. Cmod A7. https://digilent.com/refer
ence/programmable-logic/cmod-a7/start.

[25] Manideep Dunna, Miao Meng, Po-Han Wang, Chi

Zhang, Patrick Mercier, and Dinesh Bharadia. Sync-

Scatter: Enabling WiFi like synchronization and range

for WiFi backscatter communication. In 18th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2021.

[26] Xiuzhen Guo, Yuan He, Xiaolong Zheng, Zihao Yu, and

Yunhao Liu. Lego-fi: Transmitter-transparent ctc with

cross-demapping. IEEE Internet of Things Journal,
8(8):6665–6676, 2021.

[27] Mohammad Hasan. State of IoT 2022: Number of con-

nected IoT devices growing 18% to 14.4 billion glob-

ally. https://iot-analytics.com/number-conne
cted-iot-devices/.

[28] Huan Hu, Chung-Ching Lin, and Subhanshu Gupta. A

197.1-μw wireless sensor soc with an energy-efficient

analog front-end and a harmonic injection-locked ook tx.

IEEE Transactions on Circuits and Systems I: Regular
Papers, 68(6):2444–2456, 2021.

[29] Pan Hu, Pengyu Zhang, Mohammad Rostami, and

Deepak Ganesan. Braidio: An integrated active-passive

radio for mobile devices with asymmetric energy bud-

gets. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, page 384–397, New York,

NY, USA, 2016. Association for Computing Machinery.

[30] Xiongchuan Huang, Simonetta Rampu, Xiaoyan Wang,

Guido Dolmans, and Harmke de Groot. A

2.4ghz/915mhz 51μw wake-up receiver with offset and

noise suppression. In 2010 IEEE International Solid-
State Circuits Conference - (ISSCC), pages 222–223,

2010.

[31] Hugues Anguelkov. Reverse-engineering Broadcom

wireless chipsets. https://blog.quarkslab.com/r
everse-engineering-broadcom-wireless-chips
ets.html.

[32] Shunta Iguchi, Akira Saito, Kazunori Watanabe,

Takayasu Sakurai, and Makoto Takamiya. Design

method of class-f power amplifier with output power

of − 20 dbm and efficient dual supply voltage trans-

mitter. IEEE Transactions on Circuits and Systems I:
Regular Papers, 61(10):2978–2986, 2014.

[33] Infineon Technologies. BFP720. https:
//www.infineon.com/cms/en/product/rf/rf-tra
nsistor/low-noise-rf-transistors/bfp720/.

[34] InnoPhase. Talaria TWO Modules. https://innoph
aseinc.com/talaria-two-modules/.

[35] Vikram Iyer, Vamsi Talla, Bryce Kellogg, Shyamnath

Gollakota, and Joshua Smith. Inter-technology backscat-

ter: Towards internet connectivity for implanted devices.

In Proceedings of the 2016 ACM SIGCOMM Confer-
ence, 2016.

[36] Daechul Jeong, Hankyu Lee, Taeyoung Chung, Seok-

won Lee, Jaesup Lee, and Bumman Kim. Optimized

ultralow-power amplifier for ook transmitter with shaped

voltage drive. IEEE Transactions on Microwave Theory
and Techniques, 64(8):2615–2622, 2016.

[37] Woojae Jeong, Jinhwan Jung, Yuanda Wang, Shuai

Wang, Seokwon Yang, Qiben Yan, Yung Yi, and

Song Min Kim. Sdr receiver using commodity wifi

via physical-layer signal reconstruction. In Proceed-
ings of the Annual International Conference on Mobile
Computing and Networking (MobiCom), 2020.

[38] Wenchao Jiang, Song Min Kim, Zhijun Li, and Tian

He. Achieving receiver-side cross-technology commu-

nication with cross-decoding. In Proceedings of the
24th Annual International Conference on Mobile Com-
puting and Networking, MobiCom ’18, page 639–652,

New York, NY, USA, 2018. Association for Computing

Machinery.

[39] Wenchao Jiang, Zhimeng Yin, Ruofeng Liu, Zhijun Li,

Song Min Kim, and Tian He. Bluebee: A 10,000x faster

cross-technology communication via phy emulation. In

Proceedings of the 15th ACM Conference on Embedded
Network Sensor Systems (SenSys), 2017.

[40] Mohamad Katanbaf, Anthony Weinand, and Vamsi Talla.

Simplifying backscatter deployment: Full-Duplex LoRa

backscatter. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2021.

[41] Bryce Kellogg, Aaron Parks, Shyamnath Gollakota,

Joshua R. Smith, and David Wetherall. Wi-fi backscat-

ter: Internet connectivity for rf-powered devices. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM,

SIGCOMM ’14, page 607–618, New York, NY, USA,

2014. Association for Computing Machinery.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1215

[42] Bryce Kellogg, Vamsi Talla, Shyamnath Gollakota, and

Joshua R. Smith. Passive Wi-Fi: Bringing low power to

Wi-Fi transmissions. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2016.

[43] LAN/MAN Standards Committee of the IEEE Com-

puter Society. Ieee standard for information technology–

telecommunications and information exchange between

systems - local and metropolitan area networks–specific

requirements - part 11: Wireless lan medium access con-

trol (mac) and physical layer (phy) specifications. IEEE
Std 802.11-2020 (Revision of IEEE Std 802.11-2016),
pages 1–4379, 2021.

[44] Yan Li, Zicheng Chi, Xin Liu, and Ting Zhu. Passive-

zigbee: Enabling zigbee communication in iot networks

with 1000x+ less power consumption. In Proceedings
of the 16th ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2018.

[45] Zhijun Li and Tian He. Webee: Physical-layer cross-

technology communication via emulation. In Proceed-
ings of the Annual International Conference on Mobile
Computing and Networking (MobiCom), 2017.

[46] Chung-Ching Lin, Huan Hu, and Subhanshu Gupta. Im-

proved performance tradeoffs in harmonic injection-

locked ulp tx for sub-ghz radios. IEEE Transactions on
Microwave Theory and Techniques, 69(6):2885–2898,

2021.

[47] Linux Wireless. About mac80211. https:
//wireless.wiki.kernel.org/en/developers
/documentation/mac80211.

[48] Linux Wireless. ath9k spectral scan. https:
//wireless.wiki.kernel.org/en/users/driver
s/ath9k/spectral_scan.

[49] Hanli Liu, Dexian Tang, Zheng Sun, Wei Deng, Huy Cu

Ngo, and Kenichi Okada. A sub-mw fractional- N adpll

with fom of -246 db for iot applications. IEEE Journal
of Solid-State Circuits, 53(12):3540–3552, 2018.

[50] Ruofeng Liu, Zhimeng Yin, Wenchao Jiang, and Tian

He. Lte2b: Time-domain cross-technology emulation

under lte constraints. In Proceedings of the 17th ACM
Conference on Embedded Networked Sensor Systems
(SenSys), 2019.

[51] Ruofeng Liu, Zhimeng Yin, Wenchao Jiang, and Tian He.

Xfi: Cross-technology iot data collection via commodity

wifi. In IEEE International Conference on Network
Protocols (ICNP), 2020.

[52] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gol-

lakota, David Wetherall, and Joshua R. Smith. Ambient

backscatter: Wireless communication out of thin air. In

Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, SIGCOMM ’13, page 39–50, New York,

NY, USA, 2013. Association for Computing Machinery.

[53] Xin Liu, Zicheng Chi, Wei Wang, Yao Yao, Pei Hao,

and Ting Zhu. Verification and redesign of OFDM

backscatter. In USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2021.

[54] Yao-Hong Liu, Johan Van Den Heuvel, Takashi Ku-

ramochi, Benjamin Busze, Paul Mateman, Vamshi Kr-

ishna Chillara, Bindi Wang, Robert Bogdan Staszewski,

and Kathleen Philips. An ultra-low power 1.7-2.7 ghz

fractional-n sub-sampling digital frequency synthesizer

and modulator for iot applications in 40 nm cmos. IEEE
Transactions on Circuits and Systems I: Regular Papers,

64(5), 2017.

[55] Paolo Madoglio, Hongtao Xu, Kailash Chandrashekar,

Luis Cuellar, Muhammad Faisal, William Yee Li,

Hyung Seok Kim, Khoa Minh Nguyen, Yulin Tan, Brent

Carlton, Vaibhav Vaidya, Yanjie Wang, Thomas Tet-

zlaff, Satoshi Suzuki, Amr Fahim, Parmoon Seddighrad,

Jianyong Xie, Zhichao Zhang, Divya Shree Vemparala,

Ashoke Ravi, Stefano Pellerano, and Yorgos Palaskas.

13.6 a 2.4ghz wlan digital polar transmitter with syn-

thesized digital-to-time converter in 14nm trigate/fin-

fet technology for iot and wearable applications. In

2017 IEEE International Solid-State Circuits Confer-
ence (ISSCC), pages 226–227, 2017.

[56] Mango Communications. Wireless Open-Access Re-

search Platform (WARP), 2016.

[57] Matthias Schulz, Daniel Wegemer and Matthias Hollick.

Nexmon: The C-based Firmware Patching Framework.

https://nexmon.org/.

[58] Patrick P. Mercier, Saurav Bandyopadhyay, Andrew C.

Lysaght, Konstantina M. Stankovic, and Anantha P.

Chandrakasan. A sub-nw 2.4 ghz transmitter for low

data-rate sensing applications. IEEE Journal of Solid-
State Circuits, 49(7):1463–1474, 2014.

[59] NETGEAR. AX1800 WiFi Router (RAX20). https:
//www.netgear.com/home/wifi/routers/rax20/.

[60] Nordic Semiconductor. NCS36510. https:
//www.onsemi.com/products/wireless-connect
ivity/wireless-rf-transceivers/ncs36510.

[61] Nordic Semiconductor. nRF5340. https://www.nord
icsemi.com/Products/nRF5340.

1216 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[62] NXP Semiconductors. QN908x. https:
//www.nxp.com/products/wireless/bluetooth-l
ow-energy/qn908x-ultra-low-power-bluetooth
-low-energy-system-on-chip-solution:QN9080.

[63] SeongJin Oh, SungJin Kim, Imran Ali, Truong Thi Kim

Nga, DongSoo Lee, YoungGun Pu, Sang-Sun Yoo, Min-

jae Lee, Keum Cheol Hwang, Youngoo Yang, and Kang-

Yoon Lee. A 3.9 mw bluetooth low-energy transmitter

using all-digital pll-based direct fsk modulation in 55

nm cmos. IEEE Transactions on Circuits and Systems I:
Regular Papers, 65(9), 2018.

[64] Jagdish Pandey and Brian P. Otis. A sub-100 μ w mic-

s/ism band transmitter based on injection-locking and

frequency multiplication. IEEE Journal of Solid-State
Circuits, 46(5):1049–1058, 2011.

[65] Giuseppe Papotto, Francesco Carrara, Alessandro Finoc-

chiaro, and Giuseppe Palmisano. A 90-nm cmos 5-mbps

crystal-less rf-powered transceiver for wireless sensor

network nodes. IEEE Journal of Solid-State Circuits,

49(2):335–346, 2014.

[66] Naser Pourmousavian, Feng-Wei Kuo, Teerachot Siribu-

ranon, Masoud Babaie, and Robert Bogdan Staszewski.

A 0.5-v 1.6-mw 2.4-ghz fractional-n all-digital pll for

bluetooth le with pvt-insensitive tdc using switched-

capacitor doubler in 28-nm cmos. IEEE Journal of
Solid-State Circuits, 53(9):2572–2583, 2018.

[67] Mohammad Rostami, Xingda Chen, Yuda Feng,

Karthikeyan Sundaresan, and Deepak Ganesan. Mixiq:

Re-thinking ultra-low power receiver design for next-

generation on-body applications. In Proceedings of the
Annual International Conference on Mobile Computing
and Networking (MobiCom), 2021.

[68] Mohammad Rostami, Jeremy Gummeson, Ali Kiaghadi,

and Deepak Ganesan. Polymorphic radios: A new de-

sign paradigm for ultra-low power communication. In

Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM

’18, page 446–460, New York, NY, USA, 2018. Associ-

ation for Computing Machinery.

[69] Matthias Schulz, Jakob Link, Francesco Gringoli, and

Matthias Hollick. Shadow wi-fi: Teaching smartphones

to transmit raw signals and to extract channel state in-

formation to implement practical covert channels over

wi-fi. In Proceedings of the 16th ACM Annual Interna-
tional Conference on Mobile Systems, Applications, and
Services (MobiSys), 2018.

[70] SEMTECH. SX1261. https://www.semtech.com/
products/wireless-rf/lora-core/sx1261.

[71] Kuan-Yueh Shen, Syed Feruz Syed Farooq, Yongping

Fan, Khoa Minh Nguyen, Qi Wang, Mark L. Neidengard,

Nasser Kurd, and Amr Elshazly. A flexible, low-power

analog pll for soc and processors in 14nm cmos. IEEE
Transactions on Circuits and Systems I: Regular Papers,

65(7), 2018.

[72] Vamsi Talla, Mehrdad Hessar, Bryce Kellogg, Ali Na-

jafi, Joshua R. Smith, and Shyamnath Gollakota. Lora

backscatter: Enabling the vision of ubiquitous connec-

tivity. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., 1(3), sep 2017.

[73] TamoSoft. CommView for WiFi. https://www.tamo
s.com/products/commwifi/.

[74] TSMC. 65nm RF LP Process. https:
//www.tsmc.com/english/dedicatedFoundry/
technology/logic/l_65nm.

[75] Rudd J.M. Vullers, Rob van Schaijk, Hubregt J. Visser,

Julien Penders, and Chris Van Hoof. Energy harvesting

for autonomous wireless sensor networks. IEEE Solid-
State Circuits Magazine, 2(2), 2010.

[76] Anran Wang, Vikram Iyer, Vamsi Talla, Joshua R. Smith,

and Shyamnath Gollakota. FM backscatter: Enabling

connected cities and smart fabrics. In 14th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2017.

[77] Kejia Wang, Sravya Alluri, Xinyu Zhang, and Vincent W.

Leung. A sub-100μw 2ghz ook pa for iot applications.

In IEEE Texas Symposium on Wireless and Microwave
Circuits and Systems (WMCS), 2022.

[78] Po-Han Peter Wang, Chi Zhang, Hongsen Yang, Dinesh

Bharadia, and Patrick P. Mercier. 20.1 a 28μw iot tag

that can communicate with commodity wifi transceivers

via a single-side-band qpsk backscatter communication

technique. In 2020 IEEE International Solid- State
Circuits Conference - (ISSCC), pages 312–314, 2020.

[79] Pengyu Zhang, Dinesh Bharadia, Kiran Joshi, and

Sachin Katti. Hitchhike: Practical backscatter using

commodity wifi. In Proceedings of the ACM Confer-
ence on Embedded Network Sensor Systems (SenSys),
2016.

[80] Pengyu Zhang, Colleen Josephson, Dinesh Bharadia,

and Sachin Katti. Freerider: Backscatter communica-

tion using commodity radios. In Proceedings of the
13th International Conference on Emerging Networking
EXperiments and Technologies (CoNEXT), 2017.

[81] Pengyu Zhang, Mohammad Rostami, Pan Hu, and

Deepak Ganesan. Enabling practical backscatter com-

munication for on-body sensors. In Proceedings of the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1217

2016 ACM SIGCOMM Conference, SIGCOMM ’16,

page 370–383, New York, NY, USA, 2016. Association

for Computing Machinery.

[82] Xuan Zhang and Alyssa B. Apsel. A low-power,

process-and- temperature- compensated ring oscillator

with addition-based current source. IEEE Transactions
on Circuits and Systems I: Regular Papers, 58(5):868–

878, 2011.

[83] Jia Zhao, Wei Gong, and Jiangchuan Liu. Spatial stream

backscatter using commodity wifi. In Proceedings of
the 16th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2018.

[84] Renjie Zhao, Fengyuan Zhu, Yuda Feng, Siyuan Peng,

Xiaohua Tian, Hui Yu, and Xinbing Wang. Ofdma-

enabled wi-fi backscatter. In The 25th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, MobiCom ’19, New York, NY, USA, 2019. Associ-

ation for Computing Machinery.

[85] Jim Zyren and Al Petrick. Tutorial on Basic Link

Budget Analysis. http://www.sss-mag.com/pdf/a
n9804.pdf.

A FEC Errors in Asymmetric Demodulation

In this section, we discuss the behavior of BCC and LDPC

when decoding a non-Wi-Fi frame which supports our design

in Sec. 3.4.2

A.1 BCC
Viterbi algorithm is widely adopted for BCC decoding. To

achieve the maximum likelihood decoding, the algorithm

searches among all valid codewords {C}, to identify the code-

word Cl which has the shortest Hamming distance with the

input bit sequence. It then outputs the decoded bit sequence

Y which can generate the codeword Cl by performing BCC

encoding. This means that when we use the decoded bits Y
to get the regenerated bits, the regenerated bits X ′ =Cl will

be the exact codeword that has the shortest hamming dis-

tance with the original bit sequence X . Since the demodulated

bit sequence X has a very low chance to be the same as a

valid codeword, the mismatch between X ′ and X is almost

inevitable. However, we found that the number of mismatches

between regenerated bit sequence X ′ and demodulated bit se-

quence X has an upper limit. Here we provide a quick proof.

For the BCC code with the basic coding rate 1/2, the code-

words are generated by bitwise XOR in Eq. 1 where d[k] is the

k-th input data bit and c1[k] and c2[k] are the corresponding

bits in the codeword.

c1[k] = d[k]⊕d[k−2]⊕d[k−3]⊕d[k−5]⊕d[k−6]

c2[k] = d[k]⊕d[k−1]⊕d[k−2]⊕d[k−3]⊕d[k−6]
(1)

Consider a data sequence D = {d[1],d[2], ...,d[K]} where

K is the length of the input sequence. The corresponding

codeword will be C = {c1[1],c2[1], ·,c1[K],c2[K]}. For one

valid codeword Cl generated by Dl , the bitwise inverted ver-

sion (complementary codeword) C̄l = Cl ⊕ 1 will also be a

valid codeword whose corresponding data bits is D̄l = Dl ⊕1.

When we get the regenerated bit sequence X ′ =Cl , if the mis-

match number between X ′ and X is more than 1/2 of the total

bit number, the mismatch number between C̄l and X will be

smaller than 1/2 of the total bit number. Therefore, the ham-

ming distance between X ′ and X will be higher than C̄l and X ,

which is against the shortest hamming distance principle of

the decoder. Therefore, the number of mismatches between

regenerated bit sequence X ′ and demodulated bit sequence X
should be lower than 1/2 of the total bit number. Fig. 22 gives

an example that illustrates the proof.

0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 1 1 1 0 1BCC
encode0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0

1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1

BCC decode
(shorter Hamming distance)

Error < 1/2

Figure 22: An example of the BCC decoding with comple-

mentary codewords at 1/2 coding rate.

For a higher coding rate, the codeword is generated by

puncturing the codeword generated by the basic coding rate.

Fig. 23 provides an example of how the puncturing is con-

ducted with a 3/4 coding rate while processing the same

1218 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sequence in Fig. 22. So the proof still holds, but only for the

depunctured sequence. Therefore, to reduce the number of

mismatches, we should choose the highest coding rate of 5/6.

Encode

0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0
0 0 0 X X 0 1 0 0 X X 1 1 0 0 X X 0 0 1 0 X X 1 1 1 0 X X 0 0 0 0 X X 0

0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0

Depuncture
Decode

Puncture

Figure 23: An example of the BCC decoding and regenera-

tion at 3/4 coding rate.

In the previous proof, we only explained the BCC decod-

ing with a hard decision and optimal maximum likelihood

decoding. In practice, the error number might vary when con-

sidering the soft decision and imperfect maximum-likelihood

decoder implementation. But the variation will not diverge

the claim.

Data bits Parity bits Data bits Parity bits Data bits Parity bits

Variable
nodes

Check nodes

Data inputs Parity inputs

Figure 24: Bit sequence slicing of LDPC coding and an exam-

ple connection between data bits and parity bits corresponding

to one parity-check matrix.

A.2 LDPC
As illustrated in Fig. 24, an LDPC-coded bit sequence is orga-

nized into blocks. Each block consists of data bits and parity

bits. A predefined parity-check matrix characterizes the con-

nection between variable nodes and check nodes. For LDPC

decoding, belief propagation decoders based on the message-

passing algorithm are widely adopted. For a soft decision

decoder, the inputs of the variable nodes are log-likelihood

of the corresponding bits instead of quantized bits. The de-

coder iteratively updates the log-likelihood of the variable

nodes and check nodes based on the inputs and the previous

status of the nodes by using the sum-product or min-sum al-

gorithm. After iteratively repeating the log-likelihood update,

whether the data or parity bits should be flipped will be de-

termined by the final bit log-likelihood of the variable nodes.

The bit-flip of the variable nodes happens when the sum of

the log-likelihood from the connected check nodes is larger

than the input, which in exchange requires that the inputs

have a predefined relation corresponding to the parity-check

matrix.

Specific to the SlimWiFi asymmetric demodulation, the

bit-flip ratio will be extremely low. This is mainly because

the inputs are from the OOK signal which does not have the

aforementioned relation. Under such conditions, the LDPC
decoder is ineffective when decoding, and thus an extremely

limited number of the demodulated bits will be falsely “cor-

rected”. A theoretical proof of this conclusion can be found

in [51]. Therefore, the data bits part of the regenerated bit

sequence will be nearly the same as that of the demodulated

bit sequence.

0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0

Data bits Parity bitsCorrect Error

LDPC encode

Belief propagation

0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0
0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 0

0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0

0

Remove parity

Figure 25: An example of LDPC decoding procedure and the

regenerated bit sequence at 5/6 coding rate.

One thing to note is that even though the parity bits part

will not be falsely corrected by the decoder, they will be re-

moved after decoding. Since the original data bits do not have

a high correlation with the parity bits, the parity bits part of

the regenerate bits are not related to that of the demodulated

bits. Thus the parity bits part should be treated as unreliable

after the regeneration. Then, all bit errors introduced by de-

coding will be on the parity bits part as illustrated in Fig. 25.

Therefore, it is preferable for SlimWiFi to reduce the ratio of

parity bits which requires a higher coding rate.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1219

SLNet: A Spectrogram Learning Neural Network for
Deep Wireless Sensing

Zheng Yang1, Yi Zhang1, Kun Qian2, Chenshu Wu3∗

1 Tsinghua University, 2 University of California San Diego, 3 The University of Hong Kong
{hmilyyz,zhangyithss,qiank10}@gmail.com,chenshu@cs.hku.hk

ABSTRACT

Advances in wireless technologies have transformed wireless
networks from a pure communication medium to a perva-
sive sensing platform, enabling many sensorless and con-
tactless applications. After years of effort, wireless sensing
approaches centering around conventional signal processing
are approaching their limits, and meanwhile, deep learning-
based methods become increasingly popular and have seen
remarkable progress. In this paper, we explore an unseen
opportunity to push the limit of wireless sensing by jointly
employing learning-based spectrogram generation and spec-
trogram learning. To this end, we present SLNet, a new
deep wireless sensing architecture with spectrogram anal-
ysis and deep learning co-design. SLNet employs neural
networks to generate super-resolution spectrogram, which
overcomes the limitation of the time-frequency uncertainty.
It then utilizes a novel polarized convolutional network that
modulates the phase of the spectrograms for learning both
local and global features. Experiments with four applications,
i.e., gesture recognition, human identification, fall detection,
and breathing estimation, show that SLNet achieves the
highest accuracy with the smallest model and lowest com-
putation among the state-of-the-art models. We believe the
techniques in SLNet can be widely applied to fields beyond
WiFi sensing.

1 INTRODUCTION

We are entering the era of Artificial Intelligence of Things
(AIoT) where trillions of devices are pervasively connected
and, more importantly, equipped with advanced sensing in-
telligence. They can sense the physical space and gain aware-
ness of contexts such as locations, activities, motion, vital
signs, etc. With advances in wireless sensing, all these could
be achieved using pervasive wireless infrastructure, without
dedicated sensors, wearables, or cameras. As promising as it
is, existing wireless sensing is approaching its limits using
conventional signal processing methods and faces perfor-
mance bottlenecks in distinguishing task-relevant features

∗Zheng Yang is the corresponding author and Yi Zhang is the first student

author.

from entangled irrelevant features in signals.
With its remarkable success in numerous fields, deep learn-

ing has become increasingly popular, and also seemingly
effective, for wireless sensing, promising the next break-
through for practical wireless sensing systems for AIoT. Most
of the prior works perform conventional signal processing
(e.g., frequency transformation) in tandem with deep neural
networks, such as convolutional neural networks, which are
mainly designed for visual data like images and videos. RF
data, most commonly Channel State Information (CSI) data,
however, fundamentally differs from visual data in multiple
unique aspects: 1) Non-visual1: RF data contains physical
and geometric connotations in time, space, and frequency
domains that are not visually intelligible; 2) Complex: RF
data is complex-valued with both amplitude and phase infor-
mation; 3) High-dimensional: While visual data are mostly
2D or 3D, RF data comes with multiple dimensions of time,
subcarriers, antennas, and/or transceivers. In addition, it
is generally more difficult to build a large RF dataset for
training than in the computer vision field, both because that
RF data collection is cumbersome as it depends on many
environmental factors and that RF data cannot be labeled
offline since they are not visually intelligible to human eyes.
There exists a gap between prior neural networks and the
distinct RF data, rendering existing deep wireless sensing
systems suboptimal in performance yet over-complicated
in model complexity. While there are also other non-visual,
complex, and/or high-dimensional data like speech [28, 50],
the unique characteristics of RF sensing call for a separate
design to push the limit of deep wireless sensing.
We present SLNet, a novel neural network architecture

with a spectrogram analysis-deep learning co-design for RF
data. Rather than performing spectrogram analysis sepa-
rately from deep learning, SLNet couples them tightly based
on an in-depth understanding of their respective limitations
in processing RF data. By doing so, SLNet significantly
boosts the effectiveness and efficiency of deep wireless sens-
ing. It consists of three major modules:
Learning-Assisted Spectrogram Enhancement: Many

1RF data can certainly be visualized in many ways. However, we argue that

RF data itself is not visually intelligible like images to humans.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1221

NSDI, 2023 Zheng Yang, Yi Zhang, et al.

 0 5.5 11 17 22 28 33
#Operations [G-Ops]

86

88

90

92

94

96

98

T
o
p
-1

 a
c
c
u
ra

c
y
 [
%

]

A

B

C

D

E

F

AlexNet

VGG-11

VGG-16
ResNet-18 ResNet-34

ResNet-101
DenseNet

SLNet

1.5M 60M 135M

#Parameters

Better
Wireless

Sensing

Computer

Vision

Figure 1: A comparison between SLNet and the state-

of-the-art neural networks for WiFi-based gesture

recognition task. CV models are accurate but bigger,

while existing networks for wireless sensing are rel-

atively small but less accurate. SLNet achieves the

highest performance on wireless sensing tasks while

reducing computing and memory consumption for

practical applications. The radii of the circles repre-

sent the number of model parameters. (References: A:

[90], B: [22], C: [87], D: [84], E: [30], F: [46])

wireless sensing approaches, either model-driven or data-
driven, employ the Fast Fourier Transform (FFT) on a time
series of RF data to obtain time-frequency spectrograms of
human activities. FFT suffers from errors due to an effect
known as leakage, when the block of data is not periodic (the
most common case in practice), which results in a smeared
spectrum of the original signal and further leads to mislead-
ing data representation for learning-based sensing: First, the
side lobes łpollutež the spectrograms as they are not from
actual human motions but simply the results of spectral
leakage. Second, human activities typically contain multiple
frequency responses that may be severely affected by the
leakage, leading to a łblurredž spectrogram with mixed lobes.
Classical approaches reduce leakage by windowing, which
cannot eliminate leakage entirely. In effect, they only change
the shape of the leakage with different windowing func-
tions to achieve a trade-off between temporal and frequency
resolutions. Differently, utilizing learning-based methods
promises to push the boundaries beyond classical limitations
and, in turn, provide high-fidelity spectrograms for further
learning tasks. SLNet introduces a spectrogram enhance-
ment network (ğ3.1) to learn the best function to minimize
or nearly eliminate the leakage, thereby outputting an un-
paralleled spectrum with high accuracy.
Multi-Resolution Spectrogram Fusion: The frequency
resolution of FFT depends on its window size, i.e., the length
of the input data block. Using a larger window promises

higher resolution, but only generates a more accurate spec-
trum when the underlying frequency is quasi-static within
thewindow. In contrast, applying a shorter window improves
the responsiveness to fast-changing frequencies, but immedi-
ately loses high resolution. Therefore, instead of balancing be-
tween conflicting goals of resolution and responsiveness by
finding a fixed window length, SLNet employs multiple win-
dows jointly and generates a hologram of multi-resolution
spectrograms, which then serves as multi-channel inputs
that a neural network can adaptively learn from (ğ3.2).
Polarized Convolutional Network: The hologram is like
an image by format, with each spectrogram serving as a
łcolorž channel. Thus it is straightforward to employ convo-
lutional neural networks (CNN) to extract underlying fea-
tures from it. Invented for visual data, CNN mainly learns
local features irrespective of global locations of objects in
an image, allowing images to be shifted. Unfortunately, the
locality property makes CNN inappropriate for spectrogram
learning, as the global locations, i.e., frequencies, are corre-
lated with the physical properties of a person’s activities,
which is not shift-invariant. To preserve global discrimina-
tion, we propose a Polarized Convolutional Network (PCN,
ğ3.3). First, we polarize the spectrograms via specially mod-
ulated phase information, making them locally unaltered
while globally differentiated. Then we design a special con-
volutional operator to extract features from the polarized and
thus complex-valued spectrogram. Compared to CNN, PCN
preserves the local features and the global discrimination
simultaneously and thus boosts the learning performance.
Based on this, we further adopt a compression network for
feature deduction and build a task-adaptive network that
can be flexibly customized for different sensing tasks.

We implement SLNet on commodity off-the-shelf (COTS)
WiFi devices and evaluate its performance for four human-
centered sensing applications, i.e., gesture recognition, gait-
based person identification, fall detection, and breathing rate
estimation. Extensive experiments are conducted in four
typical indoor environments including a classroom, a hall,
an apartment, and an office. Our results show that SLNet
achieves 96.6% accuracy on gesture recognition, 98.9% ac-
curacy on gait identification, 99.8%/97.2% precision/recall
for fall detection, and an average error of 2.4 BPM for multi-
person breath estimation. Experimental comparisons with
over 10 state-of-the-art deep learning models demonstrate
that SLNet achieves the highest accuracy with the fewest
model parameters and computation operations, as illustrated
in Fig. 1, making it more practical and preferable for edge
devices (e.g., home routers).
Contributions: SLNet presents a spectrogram analysis-
deep learning co-design network distinctively customized for
deep wireless sensing on the time series of high-dimensional,
complex-valued RF data. We envision that SLNet inspires

1222 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SLNet NSDI, 2023

tailored deep-learning architectures that are generalizable
to multiple tasks and environments of wireless sensing. Fur-
ther, we believe the techniques introduced in SLNet, includ-
ing SEN and PCN, are applicable to many fields involving
timeśfrequency signal analysis and spectrogram learning.
SLNet is open-sourced here [41].

2 PRIMER

2.1 Preprocessing of RF Data

CSI reflects the channel through which wireless signals prop-
agate. When a person performs an activity, his or her impact
on the channel is encoded in CSI, and the activity can thus
be inferred from the CSI. Suppose that the person creates 𝐿
propagation paths between the transmitter and the receiver,
the measured CSI is [36]:

𝐻 (𝑡) =𝐻𝑠 +

𝐿∑

𝑙=1

𝛼𝑙 (𝑡)𝑒
𝑗2𝜋

∫
𝑡

−∞
𝑓𝐷𝑙

(𝑢)du + 𝑛(𝑡), (1)

where 𝛼𝑙 , 𝑓𝐷𝑙
are the complex attenuation and Doppler fre-

quency shift of the signal of the 𝑙-th path, 𝐻𝑠 is the static
part of the channel between the transmitter and the receiver,
and 𝑛 is the additive Gaussian noise.

To recognize the activity of the person, the raw temporal
CSI signals are usually transformed into spectrograms via
Short-Time Fourier Transform (STFT):

𝑆 (𝑓 , 𝑡) =STFT[𝐻 (𝑡)] =FFT[𝜛] ∗

𝐿∑

𝑙=1

𝛼𝑙 (𝑡)𝛿 (𝑓 − 𝑓𝐷𝑙
)+𝑁 (𝑓 , 𝑡),

(2)
where 𝜛 represents the windowing function in the time do-
main, ∗ the convolution operation, and 𝛿 the impulse func-
tion. 𝑁 is the frequency response of the Gaussian noise. In

Eq. 2,
∑𝐿

𝑙=1 𝛼𝑙 (𝑡)𝛿 (𝑓 − 𝑓𝐷𝑙
) reflects the activity of the person.

However, it is distorted by the windowing effect of FFT[𝜛]
and the noise𝑁 . As a result, the data fidelity of a spectrogram
in representing a person’s activity is impaired. To remove
these negative effects in the spectrogram and make the fre-
quency components of interest prominent, a spectrogram
enhancement network is developed in SLNet.
Hereafter, we refer to the 2-D output of STFT as spectro-

gram and the 1-D output of FFT as spectrum.

2.2 Complex-Valued Neural Network

The neural network acts as one of the most powerful tools
in solving various cognitive problems, such as image clas-
sification [24], speech enhancement [16], and text transla-
tion [31]. A neural network consists of layers of neurons that
generate responses according to their inputs. As shown in
Fig. 2a, a neuron calculates the sum of the input x weighted
with parameters w and the bias and applies a nonlinear ac-
tivation function 𝜎 (e.g., tanh) to generate the output 𝑥 ′,

(a)

Real Imag

(b)

Figure 2: Comparison between (a) real-valued and (b)

complex-valued neurons.

i.e., 𝑥 ′
=𝜎 (

∑
wx + 𝑏). Recently, neural networks have been

used for applications of wireless sensing, such as activity
classification [22], gait identification [91], and gesture recog-
nition [90]. However, the phase information of CSI is less
exploited or even abandoned in the existing approaches. Ac-
cording to Eq. 1, the CSI phase also encodes important infor-
mation related to the person’s activity, which, once exploited,
can benefit the recognition process. Thus, instead of using a
real-valued neural network, SLNet devises a complex-valued
neural network, whose neuron processes complex values
and fits the complex-valued spectrogram of CSI. As shown
in Fig. 2b, a complex-valued neuron consists of two real-
valued neurons, which process the real and imaginary parts
of the input, respectively. Specifically, suppose the input is
z=x+𝑖y, the weight isw=w1+𝑖w2, and the bias is b=b1+𝑖b2,
then the output of the complex neuron is 𝑧 ′=𝑥 ′ + 𝑖𝑦 ′, where
𝑥 ′

=𝜎 (Re(
∑
wz + 𝑏)) and 𝑦 ′

=𝜎 (Im(
∑
wz + 𝑏)).

3 SLNET ARCHITECTURE

SLNet is designed as a customized spectrogram learning
framework assisted with deep learning for RF data appli-
cations. It identifies the limitations of the standard signal
processing methods for wireless signals and employs specif-
ically designed deep learning modules to overcome them.
Fig. 3 shows the workflow of SLNet, which consists of four
parts. First, the spectrogram enhancement network (SEN) takes
as input a spectrogram transformed from wireless signals
via STFT, removes the spectral leakage in the spectrogram,
and recovers the underlying actual frequency components.
Second, the Fusion module combines SEN-enhanced spectro-
grams with various temporal and frequency resolutions to
form a hologram of spectrograms. To coherently combine
all spectrograms, SLNet modulates them with linear phases,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1223

NSDI, 2023 Zheng Yang, Yi Zhang, et al.

Polarized Convolutional

Network (PCN)

P
o

la
rize

d
 C

o
n

v

M
a
x
 P

o
o

lin
g

P
o

la
rize

d
 C

o
n

v

M
a
x
 P

o
o

lin
g

Polarized
Hologram

Fusion

P
h

a
s
e

M
o

d
u

la
tio

n
Spectrogram
w/o Leakage

STFT

C
o

m
p

le
x

 F
C

C
o

m
p

le
x

 F
C

ta
n

h

ta
n

h

x4

Spectrogram Enhancement

Network (SEN)

C
o

m
p

le
x

 F
C

C
o

m
p

le
x

 F
C

ta
n

h

ta
n

h

x4

Spectrogram Enhancement

Network (SEN)Spectrogram
w/ Leakage Compression

Flatten

C
o

m
p

le
x

 F
C

ta
n

h

C
o

m
p

le
x

 F
C

ta
n

h

F
C

R
e

L
U

F
C

R
e

L
U| · |

Task #1

Task #n

Hologram

Task-Adaptive Network (TAN)

C
o

m
p

le
x

 F
C

C
o

m
p

le
x

 F
C

ta
n

h

ta
n

h

x4

Spectrogram Enhancement

Network (SEN)

C
o

m
p

le
x

 F
C

C
o

m
p

le
x

 F
C

ta
n

h

ta
n

h

x4

Spectrogram Enhancement

Network (SEN)

Figure 3: Overview of SLNet. The temporal CSI signal is transformed into spectrograms via a bank of STFT oper-

ators with different temporal and frequency resolutions. Each spectrogram is fed into the SEN to remove spectral

leakage. Then, a hologram of spectrograms is generated by stacking all enhanced spectrograms and modulating

them with linear phases. Next, the hologram is processed with the PCN to generate feature maps, and the com-

pression networks to generate abstract features for specific learning tasks.

-60 -40 -20 0 20 40 60

Frequency/Hz

0

0.5

1

1.5

2

2.5

A
m

p
lit

u
d

e

(a)

-60 -40 -20 0 20 40 60

Frequency/Hz

0

0.05

0.1

0.15

0.2

0.25

A
m

p
lit

u
d

e

(b)

-60 -40 -20 0 20 40 60

Frequency/Hz

0

0.05

0.1

0.15

0.2

0.25

A
m

p
lit

u
d

e

(c)

-60 -40 -20 0 20 40 60

Frequency/Hz

0

0.5

1

1.5

2

2.5

A
m

p
lit

u
d

e

(d)

Figure 4: Illustration of spectral leakage. (a) The ideal

frequency spectrum with discrete frequency compo-

nents. (b) Themeasured frequency spectrum obtained

via FFT. (c) The frequency components recovered via

least mean square regression. (d) The frequency com-

ponents recovered from SLNet’s SEN.

and the result is termed a polarized hologram. Third, the
polarized convolutional network (PCN) module processes the
hologram to obtain feature maps with general representa-
tivity. Finally, we adopt a compression network for feature
deduction and build a task-adaptive network (TAN), which
can be flexibly adapted for different sensing tasks.

3.1 Spectrogram Enhancement Network

Standard signal processing transforms temporal CSI signals
to a time-frequency spectrogram via STFT. A certain STFT
operator truncates the time series of signals using a slid-

ing window with a fixed length. However, the truncation
results in the windowing effect, which convolves the ideal
frequency spectrum with a sinc function and creates spectral
leakage in the frequency domain. Some classical windowing
functions (like Hamming or Gaussian window [13]) can be
multiplied with the truncated signal to mitigate the spectral
leakage, but none of them completely removes the leakage.
Fig. 4a illustrates an ideal frequency spectrum with two fre-
quency components at 15 and 30 Hz. As shown in Fig. 4b, the
estimated frequency spectrum obtained via STFT and Gauss-
ian window has significant spectral leakage and additive
Gaussian noise. Formally, suppose the ideal and estimated
frequency spectrums are s and ŝ respectively. We have:

ŝ=As + n, (3)

where n represents the additive Gaussian noise vector and A
is the convolution matrix of the windowing function in the
frequency domain. Based on Eq. 2, the 𝑖-th column of A is:

A(:,i) =FFT(𝜛) ∗ 𝛿 (𝑖). (4)

The spectral leakage significantly distorts the frequency
spectrum, producing unwanted side lobes and inaccurate fre-
quencies and amplitudes. For example, when two frequency
components are close to each other, their spectral leakage
interacts, and the weaker component becomes less promi-
nent, as shown in Fig. 4b. Such spectral leakage is caused
by the truncation of the STFT operation and is not relevant
to the sensing targets, and is essential to be removed before
applying the frequency spectrum to sensing tasks.
Given the relation between the ideal and estimated spec-

trum as in Eq. 3, it is straightforward to recover the ideal
spectrum via the least mean square (LMS) regression:

s= argmins | |ŝ − As| |2. (5)

However, the LMS regression tends to output suboptimal

1224 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SLNet NSDI, 2023

Data Synthesis

Model Training

Frequency

A
m

p
litu

d
e

Frequency

A
m

p
litu

d
e

Frequency

A
m

p
litu

d
e

Frequency

A
m

p
litu

d
e

Leaked

Spectrum

Frequency

A
m

p
litu

d
e

Leaked

Spectrum

Measured

Spectrum

Measured

Spectrum

Frequency

A
m

p
litu

d
e

Frequency

A
m

p
litu

d
e

Frequency

A
m

p
litu

d
e

Measured

Spectrum

Frequency

A
m

p
litu

d
e

Measured

Spectrum

Frequency

A
m

p
litu

d
e

Windowing

Enhanced

Spectrum

Enhanced

Spectrum

Frequency

A
m

p
litu

d
e

Frequency

A
m

p
litu

d
e

Frequency

A
m

p
litu

d
e

Enhanced

Spectrum

Frequency

A
m

p
litu

d
e

Enhanced

Spectrum

Frequency

A
m

p
litu

d
e

Enhanced

Spectrum

Frequency

A
m

p
litu

d
e

C
o

m
p

le
x
 F

C

ta
n

h

x4
SEN

C
o

m
p

le
x
 F

C

ta
n

h

C
o

m
p

le
x
 F

C

ta
n

h

x4
SEN

C
o

m
p

le
x
 F

C

ta
n

h

C
o

m
p

le
x
 F

C

ta
n

h

x4
SEN

C
o

m
p

le
x
 F

C

ta
n

h

Ideal

Spectrum

Ideal

Spectrum

Frequency

A
m

p
litu

d
e

Frequency

A
m

p
litu

d
e

Frequency

A
m

p
litu

d
e

Ideal

Spectrum

Frequency

A
m

p
litu

d
e

Ideal

Spectrum

Frequency

A
m

p
litu

d
e

Ideal

Spectrum

Frequency

A
m

p
litu

d
e

Figure 5: Data synthesis and training process of SEN.

solutions with inaccurate side peaks, as shown in Fig. 4c,
due to the existence of Gaussian noises. In contrast, the ideal
frequency spectrum of CSI signals tends to be sparse, due to
the sparsity of moving objects exposed in the wireless chan-
nel [90]. By adding the 𝑙0-norm regularization, the recovered
spectrum is closer to the ideal spectrum. However, the 𝑙0-
norm regularization makes the computational complexity of
the problem exponential to the dimension of the frequency
spectrum s [6], which is thus intractable. Besides, the sparse
Fourier transform that aims to solve this issue also suffers
from high complexity [14].

To efficiently recover the ideal spectrum, we resort to the
neural network. Compared with the optimization methods,
the learning-based method offloads the computation efforts
to the training phase and enables efficient linear computation
in the testing phase. In addition, the neural network can
regress arbitrary functions and is resistant to noises thanks
to its continuity in the hidden space. To achieve it, we develop
the dedicated network SEN. As shown in Fig. 5, the SEN takes
as input the measured complex-valued frequency spectrum
and outputs the recovered spectrum. The SEN consists of four
complex-valued fully connected layers with the hyperbolic
tangent activation function.

To train the SEN, the training dataset has to embrace the
complexity of the frequency spectrum, which is extremely
high due to the wide amplitude and phase range of wire-
less signals and random channel noises. For example, the
frequency of interest for human-centered sensing is within
[−60, 60] Hz and usually, at most five frequency compo-
nents can be observed for major reflections from the hu-
man body [55]. That is, after normalizing the signal ampli-
tude, a spectrogram can consist of 1 to 5 frequency com-
ponents, whose amplitudes, phases, and frequencies are in
[0, 1], [0, 2𝜋], [−60, 60] Hz, respectively. As collecting data
with labeled ground truth from real scenarios is challenging,

we instead synthesize the training data, which turns out to
be sufficiently effective. As shown in the upper part of Fig. 5,
we randomly generate ideal spectrums with 1 to 5 frequency
components, whose amplitudes, phases, and frequencies are
uniformly drawn from their ranges of interest.
Then, the ideal spectrum is converted to the leaked spec-

trum following the process in Eq. 3 to simulate the win-
dowing effect and random complex noises. The amplitude
of the noise follows a Gaussian distribution, and its phase
follows a uniform distribution in [0, 2𝜋]. The SEN takes the
leaked spectrum as input and outputs the enhanced spec-
trum close to the ideal one. Thus, we minimize the 𝐿2 loss
𝐿SEN = | |SEN(ŝ) − s| |2 during training. During inference, the
spectrums measured from real-world scenarios are normal-
ized to [0, 1] and fed into the SEN to obtain the enhanced
spectrum for further processing. Fig. 6 shows an example
of the spectrogram when a person performs a gesture. As
is shown, the frequency components caused by the pushing
and pulling gesture are clearly recovered by the SEN.

3.2 Multi-Resolution Spectrogram Fusion

The SEN refines the frequency spectrum of the CSI signals
by recovering its underlying frequency components. Thus, it
assumes that the frequency components remain quasi-static
during the sliding window where the frequency spectrum is
generated. However, the Doppler frequency shifts induced
by human activities keep changing, which may violate this
assumption. For example, in the fall detection scenario, the
speed of the human body changes between 0 m/s and 5
m/s, creating significant variations in signal frequencies. To
illustrate its impact on SEN, we use an example of two com-
ponents with changing frequencies, as shown in Fig. 7a. The
measured spectrogram with a sliding window of 251 ms is
shown in Fig. 7b and the refined spectrogram from SEN in
Fig. 7c. While SEN correctly distinguishes the two compo-
nents in the first half of the spectrogram, it fails to recover
them clearly in the second half, due to the rapidly changing
frequencies of the components.
One straightforward solution is to use a shorter sliding

window, during which the rapidly changing frequencies can
be approximately viewed as quasi-static. However, using a
shorter sliding window reduces the frequency resolution,
which limits the ability of the SEN to remove the spectral
leakage of the two close frequency components. Fig. 7d
shows the output of the SEN using a sliding window of
125 ms. With a shorter sliding window, the SEN recovers the
second half of the spectrogram with fast-changing frequen-
cies. However, it does not separate well the close frequency
components in the first half of the spectrogram, due to the
coarse frequency resolution of the short sliding window.

To overcome the limitation of the temporal and frequency

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1225

NSDI, 2023 Zheng Yang, Yi Zhang, et al.

Push

Pull

(a)

Push

Pull

(b)

Figure 6: Illustration of the spectrogram of a push-

ing and pulling gesture. (a) Themeasured spectrogram

and (b) the enhanced spectrogram from SEN.

(a) (b)

(c) (d)

Figure 7: Illustrations of SEN-enhanced spectrograms.

(a) The ideal spectrogram with two frequency compo-

nents. (b) The measured spectrogram from STFT with

a sliding window size of 251 ms. (c) The enhanced

spectrogram with a window size of 251ms. (d) The en-

hanced spectrogram with a window size of 125 ms.

resolutions of the spectrogram, instead of using a fixed slid-
ing window, SLNet employs a bank of sliding windows with
different lengths (similar to [73]). For each sliding window,
the corresponding spectrogram is processed via the SEN that
is pre-trained with the synthesis spectrograms with the same
window length. All SEN-enhanced spectrograms are then
concatenated as multiple channels to form a hologram of
spectrograms. As each spectrogram encodes useful informa-
tion for a certain range of temporal and frequency resolu-
tions, we further resort to the neural network to adaptively
combine all the spectrograms.

3.3 Task-Adaptive Network

SLNet employs the Task-Adaptive Network to further adapt
the hologram of enhanced spectrograms to various sensing
tasks, such as gesture recognition, gait identification, and
fall detection. As shown in Fig. 3, the TAN consists of two
modules, the PCN module that captures high-level feature
maps of the hologram and the compression module that

reduces feature dimension for specific tasks.
Polarized Convolutional Network. A hologram can be

treated as an image where each spectrogram spanning in
2-D time and frequency dimension is as one of its łcolorž
channels, and, by doing so, a CNN [15, 24] can be applied to
extract the underlying features of the hologram. However,
the solution is not optimal, as explained below.

Each neuron in CNN only takes a local field of the input to
generate the output. All the neurons in each layer share the
same weights to ensure that the local features are preserved
irrespective of their global locations. As a result, CNN is
particularly tailored for visual data since it focuses on local
dependencies and is invariant to global shifts of objects in
images. This shift-invariant property makes CNN inappro-
priate for spectrogram processing, as the global locations,
i.e., frequencies, of the frequency components are correlated
with the physical properties of the person’s activities. In an-
other word, a shift along the frequency dimension means a
change in the moving status of the person, which is highly
possible due to a different activity. Besides, the local pat-
terns of the spectrogram capture the instant motion status
of the target, which is still needed for sensing tasks. Hence,
it is necessary to develop a new model that simultaneously
preserves local dependency and global discrimination.

We propose to modulate the spectrograms with phase in-
formation, which is discarded in existing wireless sensing
models, to explicitly encode global locations in the spectro-
gram while retaining its local correlations. Specifically, it is
expected that the adjacent frequency components have simi-
lar phases while the distant ones have discriminative phases.
Thus, we modulate the spectrogram with phases that vary
linearly along the frequency dimension, i.e., the modulated
phase of the 𝑖-th frequency bin is:

𝜙𝑖 = 𝑖
𝜙ℎ − 𝜙𝑙

𝑀
+ 𝜙𝑙 , (6)

where 𝜙ℎ and 𝜙𝑙 are the phases modulated to the lowest and
highest frequency bins, and 𝑀 is the number of total fre-
quency bins. As a result, global discrimination is introduced
along the frequency dimension while the shift-invariant
property is preserved along the time dimension. Note that
we apply the proposed polarized phase modulation, rather
than incorporating the original phase information because
the raw phase contains significant errors due to carrier fre-
quency offsets and timing offsets, etc. [37, 57].
The frequency components modulated with phases can

be viewed as polarized in a 2-D complex plane. To process
the polarized spectrograms, we propose the PCN network.
PCN consists of two pairs of convolutional layers and max-
pooling layers, which are responsible for higher-level fea-
ture extraction and dimension reduction, respectively. As
shown in Fig. 8a, the polarized hologram is applied with
a convolutional layer to extract local features followed by

1226 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SLNet NSDI, 2023
Im

a
g

Im
a
g

Convolution

Max-

pooling

Input
channel

Input
channel

Output
channel
Output
channel

(a)

Real

ImagComplex-

valued

Kernel

Real-valued

Complex-

valued

Shared

weights

(b)

Figure 8: The (a) structure and (b) convolutional oper-

ations of the Polarized Convolutional Network.

a max-pooling layer to reduce the feature dimension. The
elements within each kernel are locally clustered, while the
elements within different kernels are globally polarized to
have better global discrimination benefiting from the linear
phase introduced. In practice, several convolutional layers
can be cascaded to obtain higher-level features of the input
spectrograms. The input channel represents the number of
fused spectrograms in the hologram or the number of out-
put channels in the previous convolutional layer. For each
convolutional layer, Fig. 8b illustrates the convolutional op-
erations in complex domain. The real-valued kernels are
convolved with the real and imaginary parts of the spectro-
grams separately and combined with a bias to get the final
complex-valued output. The max-pooling layer downsam-
ples the features with the maximum amplitude and outputs
the complex-valued features.
Featuremap compression. SLNet further adopts a com-

pression network to reduce the high dimensions of the fea-
ture maps generated by the PCN and obtains a condensed
representation of features for specific tasks. The compression
network consists of a complex-valued fully connected (FC)
layer with the 𝑡𝑎𝑛ℎ activation function and a real-valued
FC layer with the 𝑅𝑒𝐿𝑈 activation function. To connect two

FC layers, SLNet calculates the absolute value of the out-
put from the complex-valued FC layer and inputs it to the
real-valued FC layer. The output features can be further fed
into additional FC layers customized for different tasks. For
example, an FC layer with 𝑁 output units followed by a
softmax activation function can be used for a gesture classifi-
cation task with 𝑁 gestures, while an FC layer with 1 output
unit followed by a sigmoid layer can be used to predict the
likelihood of human fall for the fall detection task.
We employ the pre-trained SENs to obtain the enhanced

spectrograms and feed them into the TAN for training. The𝐿2
loss between the output of the TAN and the ground-truth la-
bel is minimized, and the RMSprop optimizer is used. During
inference, SLNet takes as input the measured CSI spectro-
grams and outputs the prediction result.

4 IMPLEMENTATION & EXPERIMENTS

4.1 Implementation

Hardware. SLNet collects CSI measurements from com-
modity Intel 5300 WiFi Network Interface Cards (NICs)
equipped on off-the-shelf mini-computers. The three an-
tennas of the NIC are separated apart by half of the signal
wavelength, i.e., 2.85 cm. The operating system of the mini-
computer is Ubuntu 10.04 with Linux CSI Tool [12] installed
to log CSI readings. The NIC is set to operate on channel 165
with a center frequency of 5.825 GHz. We set all the receivers
to work on monitoring mode and inject the transmitter to
broadcast at a rate of 1,000 packets per second. All the de-
vices are connected to a router and remotely controlled. We
employ a workstation equipped with an NVIDIA GeForce
2080Ti GPU to host the DNN model.
Software.We implement SLNetmainly for benchmark anal-
ysis. The data2 is collected with a Linux shell script, and
CSI measurements are preprocessed [36] with Matlab. The
dataset [70] and code [69] is available to public. Instructions
to use this dataset can be found in our released tutorial [68].
The PyTorch [34] library is adopted to implement the cus-
tom complex-valued neurons. Raw CSI is preprocessed in
a similar way as in [90]. The SEN module is trained offline
with randomly generated spectrums. A total of 5,000 epochs
is used to train the SEN models, each of which contains 100
batches × 128 instances of generated spectrums. We pre-
train an SEN for each resolution of the spectrogram. Three
resolutions are used with window sizes of 125 ms, 251 ms,
and 501 ms, respectively. The TAN is trained by the data
measured from real deployment scenarios and enhanced by
the pre-trained SEN. All the models are trained with Adam
optimizer at a learning rate of 0.001. Batch normalization and
dropout techniques are applied during training. In practice,
the model can be trained offline, except for the use case of

2All experiments that involve humans satisfy our IRB requirements.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1227

NSDI, 2023 Zheng Yang, Yi Zhang, et al.

DeskDesk

D
e
sk

DeskDesk

DeskDeskDeskDesk

Chairs and Desks

Tx

(0,0)
Rx-1

(0.5,-0.5)

ChairsChairs

ChairsChairs

Rx-2

(1.4,-0.5)

Rx-3

(2,0)

Rx-5

(-0.5,1.4)

Rx-4

(-0.5,0.5)

Rx-6

(0,2)

5
m

5
m

8m8m

x

y

(meter)
x

y

(meter)

(a)

Tx

(0,0)
Rx-1

(1.7,-0.5)

Rx-2

(3.4,-0.5)

Rx-3

(4.6,0)
Rx-4

(-0.55,1.65)

Rx-6

(0,4.4)

CorridorCorridor
Rx-5

(-0.55,3.3)

6
m

6
m

10m10m

Vender

Stairs

x

y

(meter)
x

y

(meter)

(b)

Living Room

Balcony

3
.6

m
3
.6

m

6.6m6.6m

Washer

Sofa

T
a
b
l
e

C
a
b
i
n
e
t

TV

Tx

Rx

(c)

TxRx

8
m

8
m

12m12m

1.9m

Discussion Zone

Walk Way

(d)

Figure 9: Experimental settings established in SLNet. (a) Classroom for gesture recognition. (b) Hall for gait iden-

tification. (c) Apartment for fall detection. (d) Office for breath estimation.

gait recognition where a user needs to register himself first.

4.2 Experiments

We evaluate SLNet in four WiFi sensing applications, includ-
ing gesture recognition, gait identification, fall detection,
and breath estimation. We mainly focus on WiFi CSI sensing
in this paper and leave it for the future to explore SLNet’s
potential for other modalities like acoustic sensing.
Gesture recognition. Device-free gesture recognition [2,
90] is one of the core enablers for human-computer interac-
tion. To evaluate the performance of SLNet for gesture recog-
nition, we conduct experiments in a classroom (sketched
in Fig. 9a). One WiFi transmitter and six receivers are placed
at a height of 110 cm to capture the motion of human arms.
The users are asked to stand at the five marked positions
and face the second, third, or fourth quadrant. Eight users
(6 males and 2 females) participate in this experiment, with
heights varying from 155 cm to 185 cm and ages from 22
to 28. They perform 16 gestures, including 6 sign gestures
(push and pull, sweep, clap, slide, draw a circle, and draw
zigzag), and 10 input gestures (draw digits 0 to 9). We collect
a total of 6,000 data samples (8 people × 6 gestures × 125
instances) for the sign gestures and 5,000 samples (2 people
× 10 gestures × 250 instances) for the input gestures. The
sign gestures are used in ğ5.1, and the input gestures are
used in the other evaluations. We use the ratio between the
number of correctly recognized gestures and the number of
all samples as metrics.
Gait identification. Gait has been exploited [18, 64] for hu-
man identification. To evaluate the performance of SLNet
for gait identification, we conduct experiments in a hall
(sketched in Fig. 9b). The devices are placed similarly to
that in the gesture experiment. The users are asked to walk
freely across the center of the area with eight directions sepa-
rating 45 degrees apart. Eleven users (7 males and 4 females)
participate in this experiment, and their heights vary from
155 cm to 183 cm, and their ages vary from 20 to 26. We
collect a total of 3,600 data samples, among which 2,800 sam-
ples (7 people × 8 directions × 50 instances) are from 7 users,
and 800 samples (4 people × 8 directions × 25 instances) are

Motion Types Sub variations

Fall

sit-then-fall, lose-balance,
kneel-then-fall, trip
walk-then-fall, slip

forward, backward,
lateral, on-position

Normal
walk, sit-down/stand-up, run, bend-and-pickup,
squat, dance, open/close door, open/close fanner

Table 1: Fall and normal activities in SLNet

from the other 4 users. We use the ratio between the number
of correctly identified gait samples and the number of all
samples as metrics.
Fall detection. Fall is a major cause of impairment among
senior citizens, and some works [33, 52] have tried to de-
tect falls with wireless signals. To evaluate the performance
of SLNet for fall detection, we conduct experiments in an
apartment (sketched in Fig. 9c). A pair of WiFi devices are
placed at the height of 135 cm and 40 cm, respectively, in the
living room and the balcony at a distance of 4.5 m. We recruit
a voluntary family with 5 members (two males and three
females with heights varying from 160 cm to 181 cm and
ages varying from 20 to 50). The observed fall and normal
activities are described in Tab. 1. When collecting fall data,
we require the users to wear protective gear, and the floor is
covered with foam. Additionally, we augment the dataset by
leveraging a manikin [25] to fall. In total, we collect 2,000
normal instances and 556 fall instances, among which 300
falls are from the manikin, and 256 are from the five users.
We use precision and recall as metrics [45].
Breath estimation. Breath rate [67, 78, 83] is an important
vital sign that can indicate the condition of physical health.
To evaluate the performance of SLNet for breath estimation,
we conduct experiments in an office (sketched in Fig. 9d).
A pair of WiFi devices are placed at a height of 1 meter to
capture the signal reflection from seated participants in the
discussion zone. We recruit three participants with heights
varying from 172 cm to 185 cm and ages varying from 22 to
26. For each experiment, two of the participants sit in the
chairs and breathe naturally. We collect a total of 19 groups
of data with a duration of approximately 44 minutes. We use
the Breath Per Minute (BPM) error between the estimated

1228 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SLNet NSDI, 2023

respiration rate and the ground truth as metrics.
We first conduct experiments on all tasks to demonstrate

the generality for multiple tasks. Then we carry out ablation
and parameter study with gesture recognition as the example
task due to the space limit. Unless otherwise stated, the
results below are obtained on a 10-fold validation basis where
we randomly split the datasets into training and testing parts.

5 EVALUATION

5.1 Comparison Study

5.1.1 Comparison between learning models. To validate
the effectiveness of the whole SLNet for wireless sensing,
we compare it with 12 typical neural models used in differ-
ent modalities, including WiFi sensing, FMCW-radar sens-
ing, acoustic sensing, computer vision, and other tasks that
leverage Complex-Valued Neural Networks (CVNNs). It is
worth noting that the implementations of these networks
differ slightly from those in the cited works. As the networks
presented in those citations are designed for tasks beyond
WiFi sensing, we borrow the backbone architectures and cus-
tomize them for our own tasks and datasets. The comparison
is performed with multiple metrics in terms of model com-
plexity and recognition performance. For model complexity,
we evaluate the number of parameters of the models, which
is perceived as an effective estimate of the memory require-
ments and training overhead. For recognition performance,
the metrics are discussed in ğ4.2.
WiFi (4 baselinemodels):We compare a hybrid CNN-RNN
model similar to [23, 90] with three convolutional layers,
a GRU layer, and four FC layers; an adversarial model [8,
22] with three convolutional layers as the feature extractor,
two FC layers as the activity recognizer, and two FC layers
as domain discriminator; an encoder-decoder model with
ten FC layers as in [39, 79]; and the time-frequency feature
learning model introduced in STFNet [73].
FMCW (2 baseline models): Similar to [87], we design an
adversarial model with three convolutional layers and a GRU
layer as the feature extractor, two FC layers as the activity
recognizer, and two FC layers as the domain discriminator.
We further compare a CNN model with three convolutional
layers and four FC layers as in [84, 86]. The model is applied
to the real and imaginary parts of complex-valued features
separately.
Acoustic (1 baseline model): We compare an RNN model
with a GRU layer and six FC layers as in [30].
Vision (3 baseline models): We compare three base-
line models including VGG-11 [40], resnet-18 [15], and
densenet [20]. The input and output layers are reshaped to
accommodate our tasks.
CVNN (2 baseline models):We compare two CVNN net-
works that are not originally designed for wireless sensing

Modality Ref. Gesture Gait Fall1 Para2

WiFi
[23, 90] 90.6% 95.1% 92.8%, 96.3% 1.07M
[8, 22] 89.0% 96.6% 96.4%, 84.3% 2.72M
[39, 79] 84.3% 83.3% 96.8%, 93.8% 5.77M
[73]3 78.9% 70.9% 95.5%, 96.8% 0.06M

FMCW
[87] 88.0% 95.4% 96.0%, 96.0% 1.06M

[84, 86] 91.6% 96.4% 99.7%, 95.7% 2.76M

Acoustic [30] 89.6% 95.4% 90.6%, 98.3% 6.08M

Vision
[40] 88.3% 90.1% 95.3%, 95.3% 128.8M
[15] 91.9% 96.6% 97.0%, 95.6% 11.18M
[20] 91.0% 97.7% 99.8%, 96.3% 6.96M

CVNN
[17, 32] 72.3% 96.0% 95.2%, 93.7% 115.6M
[46] 92.0% 96.3% 98.4%, 93.8% 2.94M

WiFi SLNet 96.6% 98.9% 99.8%, 97.2% 1.48M

Table 2: Comparison against 12 baseline models. 1 The
two metrics are precision and recall. 2 Number of parameters
in Million. 3 Trained with 10,000 epochs to converge.

tasks. Similar to [17, 32], we implement an encoder-decoder
model with five complex-valued FC layers and three real-
valued FC layers. Similar to [46], we evaluate a CNN model
with two complex-valued convolutional layers, two complex-
valued FC layers, and two real-valued FC layers.

The input of the baseline model [73] is CSI amplitude with
a size of (𝑇, 30,𝐶), where𝑇 represents the time snapshots of
data samples, 30 represents the number of subcarriers, and
𝐶 represents the number of WiFi antennas. The input of the
other baseline models is raw DFS with a size of (121,𝑇 ,𝐶),
where 121 represents the frequency bins within [−60, 60] Hz.
For the signals collected by multiple antennas, we perform
PCA analysis on the subcarriers of all three antennas and
use the principle components for spectrogram1 analysis.

Tab. 2 presents the performance of the baseline models and
SLNet. Three key observations can be derived from the re-
sults. First, the models used in computer vision tasks achieve
better performance than most of the other baseline models.
This is because the vision models are heavily parameterized,
which endows them with strong representation capabilities.
However, for wireless sensing tasks, a less parameterized
neural network is preferable due to the cumbersome data col-
lection and the lack of the wide availability of public datasets.
SLNet is designed for this purpose. Second, the models that
work in complex domain [17, 32, 46, 84, 86] achieve better
performance than those real-valued models. This verifies
our assumption that the phase of wireless signals embodies
valuable information. SLNet strives to exploit this informa-
tion with its custom neurons. Third, the advantage of SLNet
over baseline models is more significant for the gesture and
gait tasks than the fall detection task. This is because fall
detection is a binary classification problem that is simpler
than the other tasks. SLNet is advantageous in complicated

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1229

NSDI, 2023 Zheng Yang, Yi Zhang, et al.

Gesture

IntraCross

Environment

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

Gait

IntraCross

Environment

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

Fall

Intra Cross

Environment

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Figure 10: Performance across envi-

ronments.

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

Ours Cross Open

Dataset

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Figure 11: Performance on open

dataset [33].

Full S+P S+F P+F P

Modules Used

0.9

0.925

0.95

0.975

1

A
c
c
u

ra
c
y

S: SEN
F: Fusion
P: PCN

Figure 12: Ablation study on the

modules of SLNet.

human sensing scenarios. The most relevant work to SLNet

is STFNet [73], which designs customized neural operations
to process sensor and RF data. However, while the perfor-
mance on fall detection is comparable with the other models,
it is not desirable for gesture and gait identification tasks.
This is because STFNet is built upon the traditional STFT that
suffers from spectral leakage. This leakage, when appearing
in the spectrogram with clustered frequency components
(typical for gesture and gait motion), will distort and even
mislead the learning process when searching for the un-
derlying signal structures. The lightly parameterized model
in STFNet makes this problem even more challenging. On
the contrary, SLNet alleviates this leakage with SEN before
learning the hidden features with task-specific networks,
ensuring high-fidelity motion representations.

5.1.2 Performance for unseen environments. Wireless
sensing systems are prone to environmental changes when
deployed in various environments. In this experiment, we
evaluate the performance of SLNet when it is applied in
unseen environments/users after training. Specifically, for
the gesture recognition task, we set up another system in an
office, which has different layouts and sizes with the class-
room illustrated in Fig. 9a. Four volunteers participate in the
experiments, and we collect a total of 3,000 gesture samples.
For the gait identification task, we collect 600 instances of
walking samples from three volunteers in a discussion room,
which has a smaller size and more furniture compared with
the hall illustrated in Fig. 9b. For the fall detection task,
we collect 500 walking samples and 200 falling samples in
an office room with different layouts and sizes from the
apartment in Fig. 9c. For each task, we train SLNet from
scratch with the data collected from one site and test it with
the data collected from another.

Fig. 10 demonstrates the performance. As is shown, when
deployed in unseen environments without any model adapta-
tion, the performance of SLNet slightly decreases but is still
encouraging. SLNet is based on the spectrograms of wireless
signals, making it more robust to the surrounding static ob-

jects. However, this also makes it prone to changes in relative
locations and orientations between users and devices. This is
because the frequency components in RF spectrograms are
induced by the Doppler shifts, which depend on the moving
direction and locations. SLNet is not particularly designed
to resolve this problem, yet we believe it can be further ad-
dressed by domain adaptation mechanisms [10, 22, 90].

5.1.3 Performance on open datasets. We further evalu-
ate SLNet on a publicly available open datasets. We mainly
study fall detection using the dataset released in [33], since
it is nearly impossible to find open datasets that have the
same types of gestures for gesture recognition or have the
same users for gait recognition. This dataset has a total of 181
clearly annotated fall samples and 297 samples of normal ac-
tivities collected from five rooms of a typical apartment. We
compare three settings: 1) We only use our own dataset and
split it into non-overlapped train and test parts; 2) We train
the model with our dataset and test it with the open dataset;
3) We only use the open dataset and split it into separate
train and test parts. The results in Fig. 11 show that SLNet
achieves close to 90% precision and recall when trained on
our dataset and tested on the open dataset. Despite being
degraded, we believe the performance is still encouraging,
as the testing data are from completely different and unseen
settings with different users, environments, devices, types
of falls, etc. Compared with the performance in [33], the
precision of our system increases by around 5%, demonstrat-
ing the effectiveness of the proposed spectrograms learning
pipeline. Considering the promissing performance of SLNet
in both intra-domain and cross-domain scenarios, We be-
lieve SLNet points a valuable direction to applying wireless
sensing systems for real-world applications.

5.2 Ablation Study

SLNet consists of three key modules, i.e., SEN, Fusion, and
PCN. To validate their effectiveness, we perform an ablation
study for these modules. To do so, we remove it from SLNet

while adapting the two modules to the input and output

1230 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SLNet NSDI, 2023

(a) (b)

0 5 10 15 20

Error (BPM)

0

0.2

0.4

0.6

0.8

1

E
m

p
ir
ic

a
l
C

D
F

with SEN

w/o SEN

(c)

Figure 13: Accuracy for breath estimation. (a) The raw spectrogram from traditional FFT. Spectral leakage causes

severe interference for the close frequency components, making it hard to differentiate the breath rates of differ-

ent people. (b) The enhanced spectrogram with SEN. Frequency components can be clearly discriminated. (c) The

accuracy of breath rate estimation with raw and enhanced spectrograms.

format. Specifically, for the SENmodule, the originally leaked
spectrograms are used as the input of the Fusion and PCN
modules. For the Fusion module, only the spectrograms with
a window size of 251 ms are enhanced by the SEN and used
as the input of the PCN. For the PCN module, the output of
the Fusion module is fed to two conventional CNN layers
and one max-pooling layer, followed by one FC layer as the
output layer. In addition, we further remove both the SEN
and the Fusion modules to evaluate their joint performance.
As shown in Fig. 12, the accuracy decreases from 97.5%

to 96.2%, 95.6% and 95% when the Fusion, PCN and SEN
are removed respectively. The accuracy further decreases to
91.2% when only the PCN is used. The result of the ablation
study demonstrates the effectiveness of the three modules of
SLNet. It is also worth noting that the benefit brought by the
SEN module is more significant than others, meaning that
the spectral leakage problem cannot be neglected in wireless
sensing tasks, and SLNet successfully resolve the problem.
Multi-Person Breathing Rate Estimation Perfor-

mance. Even though SLNet is designed for motion recogni-
tion tasks that attempt to leverage deep learning schemes,
its components are valuable beyond that scope. For example,
the SEN module can be used to mitigate the spectral leakage
induced by the Fourier transform, which could potentially
boost the performance of sensing systems that involve spec-
tral analysis. To validate the effectiveness of SEN, we design
a human breath estimation experiment in this part.
Breath estimation plays an important role in healthcare,

and some recent works [51, 78] exploit the feasibility of using
WiFi signals to estimate the respiration rate. A typical way to
do this job is to convert the time domain CSI measurements
into a frequency domain spectrogram and characterize res-
piration rates with the prominent frequency components.
However, when multiple people breathe concurrently, the
spectral leakage problem will severely blur the spectrogram

components and make it difficult to discriminate the respira-
tion of different people. With the SEN module, we envision
that the leakage will be mitigated or even eliminated, con-
tributing to improved respiration rate estimation accuracy.
In this experiment, two participants sit in chairs and

breathe naturally. One of them has just finished some exer-
cise. To obtain ground truth, each of the participants has a
smartphone tied to his chest to measure the acceleration of
the body induced by breath movements. We apply STFT with
a window width of 6,000 (60 seconds) on the acceleration
measurements and detect peaks in the spectrogram to repre-
sent the respiration rate of each participant. We downsample
CSI to 10 Hz and apply STFT with a window width of 251
(25.1 seconds) to get the spectrograms of CSI measurements.
We then apply SEN to the spectrograms and pinpoint the two
most prominent peaks therein to characterize the respiration
rates of the two participants.
Fig. 13a and Fig. 13b demonstrate the raw and enhanced

spectrograms of WiFi. As can be seen, the raw spectro-
gram is severely distorted by the leakage effect, and the
frequency components corresponding to the two participates
are blurred. By applying SEN, two distinct frequency compo-
nents can be observed and approximate ground truth very
well. Fig. 13c presents the empirical CDF of the respiration
rate estimation error. With SEN applied, the average error is
2.4 BPM and the 80%-tile error is 1.4 BPM. Without SEN, the
performance deteriorates to 5.0 BPM for average error and
9.5 BPM for 80%-tile error. This experiment demonstrates
SEN’s strong capability of removing spectral leakage. This
merit makes it especially suitable for human-centered sens-
ing tasks, where the human-induced frequency components
are tightly clustered and demand to be discriminated.

5.3 Parameter Study

5.3.1 Impact of training epochs of the SEN. In practice,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1231

NSDI, 2023 Zheng Yang, Yi Zhang, et al.

40 100 200 400 1000 2000 2500

SEN Training Epoch

0

2.8

5.6

8.4

11.2

14

L
o
s
s
 (

*e
-2

)

0.8

0.9

1

0.8

0.9

1

A
c
c
u
ra

c
y

12.5

0.82
3.6

0.83
1.6

0.85

0.8

0.91

0.5

0.94

0.4

0.97

0.4

0.97

Figure 14: Impact of SEN training

epochs.

Gussian Hamming Hanning Blackman Rect

Window Type

0.9

0.92

0.94

0.96

0.98

1

A
c
c
u

ra
c
y

* w/o Fusion

Figure 15: Impact of window type.

31 51 61 125 251 501 1001

Window Width/ms

0.5

...

0.8

0.85

0.9

0.95

1

A
c
c
u

ra
c
y

* w/o Fusion

Figure 16: Impact of window width.

(31,61,125) (61,125,251) (125,251,501)(251,501,999)

Fused Windows/ms

0.85

0.9

0.95

1

A
c
c
u

ra
c
y

Figure 17: Impact of fused window

width.

1 1/2 1/8 1/32 1/64 0

Polarization Range (*[- ,])

0.94

0.95

0.96

0.97

0.98

0.99

1
A

c
c
u

ra
c
y

Figure 18: Impact of phase modula-

tion range.

1000 750 500 250

CSI Sampling Rate/Hz

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

Figure 19: Impact of CSI sampling

rate.

we randomly generate data samples during each training
epoch. With more training epochs, the SEN should capture
the underlying structure of spectrograms better and improve
the system recognition accuracy. To reveal the relationship
between training epochs and performance, we train the SEN
with different numbers of training epochs from 40 to 2500
and integrate them into SLNet. For each SEN, the TAN mod-
ule is retrained from scratch. We record the validation loss of
the SEN and the recognition accuracy of the overall SLNet.
As shown in Fig. 14, the validation loss for SEN training tum-
bles and the overall accuracy proliferates when the epochs
increase from 40 to 2,000. The performance becomes stable
when the SEN is trained with more epochs.

5.3.2 Impact of window type. Some window func-
tions [13] have been proposed to suppress spectral leakages,
such as Hamming, Hanning, and Blackman windows. In this
experiment, we evaluate the system performance with re-
gard to these windows. For each window function, we train
an independent SEN module with spectrograms calculated
with it. The TAN module is then trained from scratch with
different SEN modules. We record the overall recognition
accuracy concerning different window functions. As shown
in Fig. 15, different window functions have little impact on
the performance of SLNet, demonstrating the effectiveness
of SEN for the removal of spectral leakage.

5.3.3 Impact of window width. In this experiment, we

evaluate the impact of the window width on the system
performance. Specifically, we train an SEN module for each
window width. The Fusion module of SLNet is removed to
evaluate eachwindowwidth. The TANmodules are retrained
accordingly, and the overall recognition accuracy is recorded.
As shown in Fig. 16, when window width increases from 31
ms to 251 ms, the overall accuracy proliferates from 74%
to 96%, but tumbles to 92.5% when window width further
increases to 1001 ms. It is because a very small window
leads to a coarse-grained frequency resolution, while a very
large window cannot capture the rapid change of frequency
components in the time domain. The result reveals that a
width of 251 ms is the best for the gesture recognition task.
However, it is noted that a single-resolution spectrogram for
wireless sensing tasks is not the optimal solution, as verified
by the ablation study.

5.3.4 Impact of combinations of different window widths.

In this experiment, we evaluate the impact of different com-
binations of window widths. For each combination, we use
the corresponding SEN modules to enhance the spectro-
grams and combine them as holograms. The TAN mod-
ule is retrained for each combination. The overall recog-
nition accuracy with different combinations is reported. As
shown in Fig. 17, the best combination of window widths
is (125, 251, 501) ms and the worst is (31, 61, 125) ms. The
combination of three windows outperforms either one of
these windows independently. The performance could be

1232 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

SLNet NSDI, 2023

further improved with more window widths fused at the
cost of increased computational complexity, which is limited
in edge devices in practice. For SLNet, the combination of
(125, 251, 501) ms is adopted to achieve a trade-off between
performance and complexity.

5.3.5 Impact of polarization range of PCN. The PCN mod-
ule of SLNet is designed to extract both local and global
features simultaneously from the holograms. In this experi-
ment, we evaluate the impact of the range of the linear phase
modulated to spectrograms in SEN. Specifically, the phases
are set to be within 𝑘 ∗ [−𝜋, 𝜋], where 𝑘 changes from 0 to 1.
For each phase range, we retrain the TANmodel from scratch.
The overall recognition accuracy concerning different phase
ranges is reported. As shown in Fig. 18, the accuracy de-
creases from 97.5% to 96.0% when the polarization range
decreases from [−𝜋, 𝜋] to [0, 0], which reveals that the PCN
with phase modulation is effective in spectrogram-based
sensing tasks.

5.3.6 Impact of CSI sampling rate. The impact of the CSI
sampling rate is evaluated in this part. Specifically, we down-
sample the original CSI streams (1,000 Hz) before spectral
analysis and input the corresponding spectrograms in SLNet.
Both SEN and TAN are retrained for each downsampling rate.
As shown in Fig. 19, when the CSI sampling rate decreases
from 1,000 Hz to 500 Hz, the accuracy gradually decrease
from 97.5% to 90% and further tumbles to 76% with a sam-
pling rate of 250 Hz. It is because, with a lower sampling
rate, the CSI signals have a poorer temporal resolution and
cannot capture the rapidly changing frequency components.
In addition, the signal-to-noise ratio decreases with the re-
duced number of samples for spectral analysis. These factors
together deteriorate the recognition performance of SLNet.

6 RELATED WORK

Model-based wireless sensing. Model-based wireless
sensing works [2, 4, 38, 49, 52, 60, 62, 74] try to establish
quantitative relations between wireless signals and human
activities via non-learning based approaches. Many applica-
tions have been explored and enabled, including gestures
[2, 35, 44, 47, 75], walking [56, 57, 64, 76], falls [19, 21, 33, 45],
and respiration [1, 27, 58, 61, 78], and tracking [3, 37, 63, 66],
etc. These approaches have the benefit of being interpretable
and usually efficient. For example, WiGest [2] empirically
builds a link between received signal strength (RSSI) and
hand-moving patterns. SMARS [78] exploits breathing esti-
mation by periodicity finding. However, these approaches
are constrained by the coarse-grained signal and motion
models and are approaching performance limits in real envi-
ronments. More works are seeking learning-based schemes
for better performance, and SLNet is one among them.

Learning-based wireless sensing. Early works mainly
rely on signal processing and employ traditional machine
learning [48, 56, 57, 59, 64, 76, 77]. With the impressive
achievements in computer vision using deep neural net-
works, more effort [9, 10, 22, 45, 54, 71, 72, 79, 80, 82, 85, 86, 88,
90] has been put into applying deep learning models in wire-
less sensing tasks. Among them, Widar3.0 [81, 90] leverages
CNN and RNN networks to learn from its novel motion fea-
ture BVP. RFPose [84], RFPose3D [86], and RFAvatar [85] use
CNN models to capture human skeleton and mesh of body.
Many works [10, 22, 49, 79, 90] employ sophisticated net-
work architectures like adversarial learning, transfer learn-
ing, andmeta-learning to solve the environment-dependency
problem of wireless sensing, while others aim to reduce cum-
bersome data collection for training [7, 11, 42, 53, 65]. Some
works e.g., [84ś86] on FMCW sensing, have further con-
sidered customized models for the unique properties of RF
data. Existing works either learn from the time series of
raw CSI, with both amplitude and phase, or convert them
into the frequency-domain representation or other feature
space. Despite some time-domain approaches for speech
separation [29, 43], recent works like STFNets [73], which
extends DeepSense [72], and UniTS [26] both pursue and
demonstrate superior performance of temporal-spatial learn-
ing with STFT operators. Noticing phase encodes essential
spatial information, complex-valued neural networks [5]
have been explored in the DL community [17, 32, 46] and
exploited especially for radar sensing [89], acoustic sensing
and speech processing [28, 50].

7 CONCLUSION

This paper presents SLNet, a spectrogram analysis-deep
learning co-design for deep wireless sensing. We demon-
strate SLNet’s remarkable performance in gesture recogni-
tion, gait recognition, fall detection, and breath estimation,
showing the highest accuracy and lowest computation com-
pared to the state-of-the-art models. We believe SLNet is a
unique deep-learning framework for WiFi sensing. At the
same time, the techniques can be used, jointly or separately,
to augment the spectrogram quality and enhance learning
performance for many applications in signal estimation, fre-
quency analysis, sensing with acoustic/millimeter-wave sig-
nals, etc.

ACKNOWLEDGMENTS

We thank our shepherd Dr. Srikanth Kandula and the anony-
mous reviewers for their feedback, which greatly improved
the paper. This work is supported in part by the NSFC under
grants No. 61832010, No. 62202262, and No. 62222216, and
Hong Kong RGC ECS under grant 27204522.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1233

NSDI, 2023 Zheng Yang, Yi Zhang, et al.

REFERENCES
[1] Heba Abdelnasser, Khaled A Harras, and Moustafa Youssef. 2015.

UbiBreathe: A ubiquitous non-invasive WiFi-based breathing esti-

mator. In Proceedings of the 16th ACM International Symposium on

Mobile Ad Hoc Networking and Computing. 277ś286.

[2] Heba Abdelnasser, Moustafa Youssef, and Khaled A Harras. 2015.

Wigest: A Ubiquitous Wifi-based Gesture Recognition System. In Pro-

ceedings of IEEE INFOCOM.

[3] Fadel Adib, Zachary Kabelac, and Dina Katabi. 2015. Multi-Person

Localization via RF Body Reflections. In Proceedings of USENIX NSDI.

[4] Kamran Ali, Alex X Liu, Wei Wang, and Muhammad Shahzad. 2017.

Recognizing keystrokes using WiFi devices. IEEE Journal on Selected

Areas in Communications 35, 5 (May 2017), 1175ś1190.

[5] Joshua Bassey, Lijun Qian, and Xianfang Li. 2021. A survey of complex-

valued neural networks. arXiv preprint arXiv:2101.12249 (2021).

[6] Holger Boche, Robert Calderbank, Gitta Kutyniok, Jan Vybíral, et al.

2015. Compressed sensing and its applications. Springer.

[7] Hong Cai, Belal Korany, Chitra R Karanam, and Yasamin Mostofi. 2020.

Teaching rf to sense without rf training measurements. Proceedings of

the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies

4, 4 (2020), 1ś22.

[8] Xi Chen, Hang Li, Chenyi Zhou, Xue Liu, Di Wu, and Gregory Dudek.

2020. FiDo: Ubiquitous Fine-Grained WiFi-Based Localization for Un-

labelled Users via Domain Adaptation. In Proceedings of ACM WWW.

[9] Zhe Chen, Tianyue Zheng, Chao Cai, and Jun Luo. 2021. MoVi-Fi:

Motion-robust vital signs waveform recovery via deep interpreted RF

sensing. In Proceedings of the 27th Annual International Conference on

Mobile Computing and Networking. 392ś405.

[10] Shuya Ding, Zhe Chen, Tianyue Zheng, and Jun Luo. 2020. RF-Net: A

Unified Meta-Learning Framework for RF-Enabled One-Shot Human

Activity Recognition. In Proceedings of ACM SenSys.

[11] Yu Gu, Huan Yan, Mianxiong Dong, MengWang, Xiang Zhang, Zhi Liu,

and Fuji Ren. 2021. Wione: One-shot learning for environment-robust

device-free user authentication via commodity wi-fi in manśmachine

system. IEEE Transactions on Computational Social Systems 8, 3 (2021),

630ś642.

[12] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall.

2011. Tool Release: Gathering 802.11n Traces with Channel State

Information. SIGCOMM Comput. Commun. Rev. 41, 1 (2011), 53.

[13] Fredric J. Harris. 1978. On the use of windows for harmonic analysis

with the discrete Fourier transform. Proc. IEEE 66, 1 (1978), 51ś83.

[14] Haitham Hassanieh. 2018. The Sparse Fourier Transform: Theory and

Practice. Association for Computing Machinery and Morgan & Clay-

pool.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep

Residual Learning for Image Recognition. CoRR abs/1512.03385 (2015).

[16] Geoffrey Hinton, li Deng, Dong Yu, George Dahl, Abdel-rahman Mo-

hamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Phuong-

trang Nguyen, Tara Sainath, and Brian Kingsbury. 2012. Deep Neural

Networks for Acoustic Modeling in Speech Recognition: The Shared

Views of Four Research Groups. IEEE Signal Processing Magazine 29, 6

(2012), 82ś97.

[17] Akira Hirose and Shotaro Yoshida. 2012. Generalization Characteristics

of Complex-Valued Feedforward Neural Networks in Relation to Signal

Coherence. IEEE Transactions on Neural Networks and Learning Systems

23, 4 (2012), 541ś551.

[18] Chen-Yu Hsu, Yuchen Liu, Zachary Kabelac, Rumen Hristov, Dina

Katabi, and Christine Liu. 2017. Extracting Gait Velocity and Stride

Length from Surrounding Radio Signals. In Proceedings ACM CHI.

[19] Yuqian Hu, Feng Zhang, Chenshu Wu, Beibei Wang, and K. J. Ray Liu.

2020. A WiFi-based Passive Fall Detection System. In Proceedings of

IEEE ICASSP.

[20] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. 2016. Densely

Connected Convolutional Networks. CoRR (2016).

[21] Sijie Ji, Yaxiong Xie, and Mo Li. 2022. SiFall: Practical Online Fall Detec-

tion with RF Sensing. In Proceedings of the Twentieth ACM Conference

on Embedded Networked Sensor Systems. 563ś577.

[22] Wenjun Jiang, Chenglin Miao, Fenglong Ma, Shuochao Yao, Yaqing

Wang, Ye Yuan, Hongfei Xue, Chen Song, Xin Ma, Dimitrios Kout-

sonikolas, Wenyao Xu, and Lu Su. 2018. Towards Environment Inde-

pendent Device Free Human Activity Recognition. In Proceedings of

ACM MobiCom.

[23] Wenjun Jiang, Hongfei Xue, Chenglin Miao, Shiyang Wang, Sen Lin,

Chong Tian, Srinivasan Murali, Haochen Hu, Zhi Sun, and Lu Su. 2020.

Towards 3D Human Pose Construction Using Wifi. In Proceedings of

ACM MobiCom.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Ima-

geNet Classification with Deep Convolutional Neural Networks. In

Proceedings of NIPS.

[25] Laerdal. Accessed 2021. Resusci Anne QCPR Manikin. https://

laerdal.com/us/products/simulation-training/resuscitation-training/

resusci-anne-qcpr/. (Accessed 2021).

[26] Shuheng Li, Ranak Roy Chowdhury, Jingbo Shang, Rajesh K Gupta,

and Dezhi Hong. 2021. UniTS: Short-Time Fourier Inspired Neural

Networks for Sensory Time Series Classification. In Proceedings of the

19th ACMConference on Embedded Networked Sensor Systems. 234ś247.

[27] Jian Liu, Yan Wang, Yingying Chen, Jie Yang, Xu Chen, and Jerry

Cheng. 2015. Tracking vital signs during sleep leveraging off-the-shelf

wifi. In Proceedings of the 16th ACM international symposium on mobile

ad hoc networking and computing. 267ś276.

[28] Yi Luo, Zhuo Chen, Nima Mesgarani, and Takuya Yoshioka. 2020. End-

to-end microphone permutation and number invariant multi-channel

speech separation. In ICASSP 2020-2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 6394ś6398.

[29] Yi Luo and Nima Mesgarani. 2019. Conv-tasnet: Surpassing ideal

timeśfrequency magnitude masking for speech separation. IEEE/ACM

transactions on audio, speech, and language processing 27, 8 (2019),

1256ś1266.

[30] Wenguang Mao, Mei Wang, Wei Sun, Lili Qiu, Swadhin Pradhan, and

Yi-Chao Chen. 2019. RNN-Based Room Scale Hand Motion Tracking.

In Proceedings of ACM MobiCom.

[31] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Effi-

cient Estimation of Word Representations in Vector Space. In Proceed-

ings of ICLR.

[32] Nils Moenning and Suresh Manandhar. 2018. Complex- and Real-

Valued Neural Network Architectures. In International Conference on

Learning Representations (openreview). https://openreview.net/forum?

id=HkCy2uqQM

[33] Sameera Palipana, David Rojas, Piyush Agrawal, and Dirk Pesch. 2019.

FallDeFi: Ubiquitous Fall Detection Using Commodity Wi-Fi Devices.

In Proceedings of ACM IMWUT.

[34] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward

Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,

and Adam Lerer. 2017. Automatic differentiation in PyTorch. (2017).

[35] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel.

2013. Whole-home gesture recognition using wireless signals. In Pro-

ceedings of the 19th annual international conference onMobile computing

& networking. 27ś38.

[36] Kun Qian, Chenshu Wu, Zheng Yang, Yunhao Liu, and Kyle Jamieson.

2017. Widar: Decimeter-level passive tracking via velocity monitoring

with commodity Wi-Fi. In Proceedings of ACM MobiHoc.

[37] Kun Qian, Chenshu Wu, Yi Zhang, Guidong Zhang, Zheng Yang, and

Yunhao Liu. 2018. Widar2.0: Passive Human Tracking with a Single

1234 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://laerdal.com/us/products/simulation-training/resuscitation-training/resusci-anne-qcpr/
https://laerdal.com/us/products/simulation-training/resuscitation-training/resusci-anne-qcpr/
https://laerdal.com/us/products/simulation-training/resuscitation-training/resusci-anne-qcpr/
https://openreview.net/forum?id=HkCy2uqQM
https://openreview.net/forum?id=HkCy2uqQM

SLNet NSDI, 2023

Wi-Fi Link. In Proceedings of ACM MobiSys.

[38] Kun Qian, Chenshu Wu, Zimu Zhou, Yue Zheng, Zheng Yang, and

Yunhao Liu. 2017. Inferring Motion Direction Using Commodity Wi-Fi

for Interactive Exergames. In Proceedings of ACM CHI.

[39] Cong Shi, Jian Liu, Hongbo Liu, and Yingying Chen. 2017. Smart

User Authentication through Actuation of Daily Activities Leveraging

WiFi-Enabled IoT. In Proceedings of ACM MobiHoc.

[40] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-

lutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556 (2014).

[41] SLNet. 2022. https://github.com/SLNetRelease/SLNetCode. (2022).

[42] Ruiyuan Song, Dongheng Zhang, Zhi Wu, Cong Yu, Chunyang Xie,

Shuai Yang, Yang Hu, and Yan Chen. 2022. RF-URL: unsupervised

representation learning for RF sensing. In Proceedings of the 28th An-

nual International Conference on Mobile Computing And Networking.

282ś295.

[43] Daniel Stoller, Sebastian Ewert, and Simon Dixon. 2018. Wave-u-net:

A multi-scale neural network for end-to-end audio source separation.

arXiv preprint arXiv:1806.03185 (2018).

[44] Sheng Tan and Jie Yang. 2016. WiFinger: Leveraging commodity

WiFi for fine-grained finger gesture recognition. In Proceedings of the

17th ACM international symposium on mobile ad hoc networking and

computing. 201ś210.

[45] Yonglong Tian, Guang-He Lee, Hao He, Chen-Yu Hsu, and Dina Katabi.

2018. RF-Based Fall Monitoring Using Convolutional Neural Networks.

Proceedings of ACM IMWUT (2018).

[46] Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk,

Sandeep Subramanian, João Felipe Santos, Soroush Mehri, Negar Ros-

tamzadeh, Yoshua Bengio, and Christopher J Pal. 2018. Deep Complex

Networks. (2018). arXiv:1705.09792

[47] Raghav H Venkatnarayan, Griffin Page, andMuhammad Shahzad. 2018.

Multi-user gesture recognition using WiFi. In Proceedings of the 16th

Annual International Conference on Mobile Systems, Applications, and

Services. 401ś413.

[48] Raghav H. Venkatnarayan, Griffin Page, and Muhammad Shahzad.

2018. Multi-User Gesture Recognition Using WiFi. In Proceedings of

ACM MobiSys.

[49] Aditya Virmani and Muhammad Shahzad. 2017. Position and Orienta-

tion Agnostic Gesture Recognition Using WiFi. In Proceedings of ACM

MobiSys.

[50] Anran Wang, Maruchi Kim, Hao Zhang, and Shyamnath Gollakota.

2022. Hybrid neural networks for on-device directional hearing. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36.

11421ś11430.

[51] Fengyu Wang, Feng Zhang, Chenshu Wu, Beibei Wang, and K. J. Ray

Liu. 2020. Respiration Tracking for People Counting and Recognition.

IEEE Internet of Things Journal 7, 6 (2020), 5233ś5245.

[52] Hao Wang, Daqing Zhang, Yasha Wang, Junyi Ma, Yuxiang Wang, and

Shengjie Li. 2017. RT-Fall: A Real-Time and Contactless Fall Detection

System with Commodity WiFi Devices. IEEE Transactions on Mobile

Computing 16, 2 (2017), 511ś526.

[53] Jie Wang, Qinhua Gao, Xiaorui Ma, Yunong Zhao, and Yuguang Fang.

2020. Learning to sense: Deep learning for wireless sensing with less

training efforts. IEEE Wireless Communications 27, 3 (2020), 156ś162.

[54] Mei Wang, Wei Sun, and Lili Qiu. 2021. MAVL: Multiresolution Anal-

ysis of Voice Localization. In 18th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 21). 845ś858.

[55] Wei Wang, Alex X. Liu, Shahzad Muhammad, Kang Ling, and Sanglu

Lu. 2017. Device-Free Human Activity Recognition Using Commercial

WiFi Devices. IEEE Journal on Selected Areas in Communications 35, 5

(2017), 1118ś1131.

[56] Wei Wang, Alex X Liu, and Muhammad Shahzad. 2016. Gait Recogni-

tion Using WiFi Signals. In Proceedings of ACM UbiComp.

[57] Wei Wang, Alex X. Liu, Muhammad Shahzad, Kang Ling, and Sanglu

Lu. 2015. Understanding and Modeling of WiFi Signal Based Human

Activity Recognition. In Proceedings of ACM MobiCom.

[58] Xuyu Wang, Chao Yang, and Shiwen Mao. 2017. TensorBeat: Tensor

decomposition for monitoring multiperson breathing beats with com-

modity WiFi. ACM Transactions on Intelligent Systems and Technology

(TIST) 9, 1 (2017), 1ś27.

[59] Yan Wang, Jian Liu, Yingying Chen, Marco Gruteser, Jie Yang, and

Hongbo Liu. 2014. E-eyes: Device-free Location-oriented Activity

Identification Using Fine-grained WiFi Signatures. In Proceedings of

ACM MobiCom.

[60] Yuxi Wang, Kaishun Wu, and Lionel M. Ni. 2017. WiFall: Device-Free

Fall Detection by Wireless Networks. IEEE Transactions on Mobile

Computing 16, 2 (2017), 581ś594.

[61] Chenshu Wu, Zheng Yang, Zimu Zhou, Xuefeng Liu, Yunhao Liu, and

Jiannong Cao. 2015. Non-invasive detection of moving and stationary

human with WiFi. IEEE Journal on Selected Areas in Communications

33, 11 (2015), 2329ś2342.

[62] Chenshu Wu, Zheng Yang, Zimu Zhou, Kun Qian, Yunhao Liu, and

Mingyan Liu. 2015. PhaseU: Real-time LOS identification with WiFi.

In Proceedings of IEEE INFOCOM.

[63] Chenshu Wu, Feng Zhang, Yusen Fan, and KJ Ray Liu. 2019. RF-based

inertial measurement. In Proceedings of the ACM Special Interest Group

on Data Communication. 117ś129.

[64] ChenshuWu, Feng Zhang, Yuqian Hu, and K. J. Ray Liu. 2020. GaitWay:

Monitoring and Recognizing Gait Speed Through the Walls. IEEE

Transactions on Mobile Computing (2020).

[65] Rui Xiao, Jianwei Liu, Jinsong Han, and Kui Ren. 2021. OneFi: One-

Shot Recognition for Unseen Gesture via COTS WiFi. In Proceedings

of the 19th ACM Conference on Embedded Networked Sensor Systems.

206ś219.

[66] Yaxiong Xie, Jie Xiong, Mo Li, and Kyle Jamieson. 2019. MD-Track:

Leveraging Multi-Dimensionality for Passive Indoor Wi-Fi Tracking.

In Proceedings of ACM MobiCom.

[67] Xiangyu Xu, Jiadi Yu, Yingying Chen, Yanmin Zhu, Linghe Kong, and

Minglu Li. 2019. BreathListener: Fine-Grained Breathing Monitoring

in Driving Environments Utilizing Acoustic Signals. In Proceedings

ACM MobiSys.

[68] Zheng Yang, Yi Zhang, Guoxuan Chi, and Guidong Zhang. 2022. Hands-

on Wireless Sensing with Wi-Fi: A Tutorial. (2022). https://arxiv.org/

abs/2206.09532

[69] Zheng Yang, Yi Zhang, Kun Qian, and Chenshu Wu. 2023. SLNet

Release Code. https://github.com/SLNetRelease/SLNetCode. (2023).

[70] Zheng Yang, Yi Zhang, Guidong Zhang, and Yue Zheng. 2020. Widar

3.0: WiFi-based Activity Recognition Dataset. (2020). https://doi.org/

10.21227/7znf-qp86

[71] Zheng Yang, Yi Zhang, and Qian Zhang. 2022. Rethinking Fall Detec-

tion With Wi-Fi. IEEE Transactions on Mobile Computing (2022).

[72] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek

Abdelzaher. 2017. DeepSense: A Unified Deep Learning Framework

for Time-Series Mobile Sensing Data Processing. In Proceedings of

ACM WWW.

[73] Shuochao Yao, Ailing Piao, Wenjun Jiang, Yiran Zhao, Huajie Shao,

Shengzhong Liu, Dongxin Liu, Jinyang Li, Tianshi Wang, Shaohan Hu,

Lu Su, Jiawei Han, and Tarek Abdelzaher. 2019. STFNets: Learning

Sensing Signals from the Time-Frequency Perspective with Short-Time

Fourier Neural Networks. In Proceedings of ACM WWW.

[74] Nan Yu, Wei Wang, Alex X. Liu, and Lingtao Kong. 2018. QGesture:

Quantifying Gesture Distance and Direction with WiFi Signals. Pro-

ceedings of ACM IMWUT 2, 1 (2018), 23.

[75] Nan Yu, Wei Wang, Alex X Liu, and Lingtao Kong. 2018. QGesture:

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1235

https://github.com/SLNetRelease/SLNetCode
http://arxiv.org/abs/1705.09792
https://arxiv.org/abs/2206.09532
https://arxiv.org/abs/2206.09532
https://github.com/SLNetRelease/SLNetCode
https://doi.org/10.21227/7znf-qp86
https://doi.org/10.21227/7znf-qp86

NSDI, 2023 Zheng Yang, Yi Zhang, et al.

Quantifying gesture distance and direction with WiFi signals. Pro-

ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies 2, 1 (2018), 1ś23.

[76] Yunze Zeng, Parth H Pathak, and Prasant Mohapatra. 2016. WiWho:

WiFi-Based Person Identification in Smart Spaces. In Proceedings of

ACM/IEEE IPSN.

[77] Shuangjiao Zhai, Zhanyong Tang, Petteri Nurmi, Dingyi Fang, Xiao-

jiang Chen, and Zheng Wang. 2021. RISE: Robust wireless sensing

using probabilistic and statistical assessments. In Proceedings of the

27th Annual International Conference on Mobile Computing and Net-

working. 309ś322.

[78] Feng Zhang, ChenshuWu, Beibei Wang, MinWu, Daniel Bugos, Hang-

fang Zhang, and KJ Ray Liu. 2019. SMARS: Sleep monitoring via

ambient radio signals. IEEE Transactions on Mobile Computing 20, 1

(2019), 217ś231.

[79] Jie Zhang, Zhanyong Tang, Meng Li, Dingyi Fang, Petteri Tapio Nurmi,

and Zheng Wang. 2018. CrossSense: Towards Cross-Site and Large-

Scale WiFi Sensing. In Proceedings of ACM MobiCom.

[80] Yi Zhang, Zheng Yang, Guidong Zhang, Chenshu Wu, and Li Zhang.

2021. XGest: Enabling Cross-Label gesture recognition with RF signals.

ACM Transactions on Sensor Networks (TOSN) 17, 4 (2021), 1ś23.

[81] Yi Zhang, Yue Zheng, Kun Qian, Guidong Zhang, Yunhao Liu, Chenshu

Wu, and Zheng Yang. 2021. Widar3. 0: Zero-effort cross-domain gesture

recognition with wi-fi. IEEE Transactions on Pattern Analysis and

Machine Intelligence (2021).

[82] Yi Zhang, Yue Zheng, Guidong Zhang, Kun Qian, Chen Qian, and

Zheng Yang. 2021. GaitSense: towards ubiquitous gait-based human

identification withWi-Fi. ACM Transactions on Sensor Networks (TOSN)

18, 1 (2021), 1ś24.

[83] Mingmin Zhao, Fadel Adib, and Dina Katabi. 2016. Emotion Recogni-

tion Using Wireless Signals. In Proceedings of ACM MobiCom.

[84] Mingmin Zhao, Tianhong Li, Mohammad Abu Alsheikh, Yonglong

Tian, Hang Zhao, Antonio Torralba, and Dina Katabi. 2018. Through-

Wall Human Pose Estimation Using Radio Signals. In Proceedings of

IEEE/CVF CVPR.

[85] Mingmin Zhao, Yingcheng Liu, Aniruddh Raghu, Hang Zhao, Tian-

hong Li, Antonio Torralba, and Dina Katabi. 2019. Through-Wall Hu-

man Mesh Recovery Using Radio Signals. In Proceedings of IEEE/CVF

ICCV.

[86] Mingmin Zhao, Yonglong Tian, Hang Zhao, Mohammad Abu Alsheikh,

Tianhong Li, Rumen Hristov, Zachary Kabelac, Dina Katabi, and An-

tonio Torralba. 2018. RF-Based 3D Skeletons. In Proceedings of ACM

SIGCOMM.

[87] Mingmin Zhao, Shichao Yue, Dina Katabi, Tommi S. Jaakkola, and

Matt T. Bianchi. 2017. Learning Sleep Stages from Radio Signals: A

Conditional Adversarial Architecture. In Proceedings of ACM ICML.

[88] Tianyue Zheng, Zhe Chen, Shuya Ding, and Jun Luo. 2021. Enhancing

RF sensing with deep learning: A layered approach. IEEE Communica-

tions Magazine 59, 2 (2021), 70ś76.

[89] Tianyue Zheng, Zhe Chen, Shujie Zhang, Chao Cai, and Jun Luo. 2021.

MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via

Deep-Learning UWB Radar. In Proceedings of the 19th ACM Conference

on Embedded Networked Sensor Systems. 111ś124.

[90] Yue Zheng, Yi Zhang, Kun Qian, Guidong Zhang, Yunhao Liu, Chen-

shu Wu, and Zheng Yang. 2019. Zero-effort cross-domain gesture

recognition with Wi-Fi. In Proceedings of ACM Mobisys.

[91] Han Zou, Yuxun Zhou, Jianfei Yang, Weixi Gu, L. Xie, and C. Spanos.

2018. WiFi-Based Human Identification via Convex Tensor Shapelet

Learning. In Proceedings of AAAI.

1236 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A High-Speed Stateful Packet Processing Approach
for Tbps Programmable Switches

Mariano Scazzariello1,2, Tommaso Caiazzi1,2, Hamid Ghasemirahni1,
Tom Barbette3, Dejan Kostić1, and Marco Chiesa1

1KTH Royal Institute of Technology
2Roma Tre University

3UCLouvain

Abstract
High-speed ASIC switches hold great promise for offload-
ing complex packet processing pipelines directly in the high-
speed data-plane. Yet, a large variety of today’s packet pro-
cessing pipelines, including stateful network functions and
packet schedulers, require storing some (or all the) packets
for short amount of times in a programmatic manner. Such a
programmable buffer feature is missing on today’s high-speed
ASIC switches.

In this work, we present RIBOSOME, a system that extends
programmable switches with external memory (to store pack-
ets) and external general-purpose packet processing devices
such as CPUs or FPGAs (to perform stateful operations). As
today’s packet processing devices are bottlenecked by their
network interface speeds, RIBOSOME carefully transmits only
the relevant bits to these devices. RIBOSOME leverages spare
bandwidth from any directly connected servers to store the
incoming payloads through RDMA. Our evaluation shows
that RIBOSOME can process 300G of traffic through a state-
ful packet processing pipeline (e.g., firewall, load balancer,
packet scheduler) by running the pipeline logic on a single
server equipped with one 100G interface.

1 Introduction

Network Function Virtualization is an essential architectural
paradigm of today’s networks [32]. Operators create and man-
age complex packet processing pipelines by combining to-
gether Network Functions (NFs), which are then deployed
on the infrastructure. Network functions that require sim-
ple computations are generally deployed onto cost-effective
ASIC-based switches, whereas more complex packet process-
ing computations must be deployed on expensive general-
purpose CPUs or FPGAs due to the inherent difficulty and
cost of designing complex ASIC circuits [4]. Unfortunately,
the networking stack of general-purpose servers and FPGAs
is significantly slower in processing packets than dedicated
ASIC hardware counterparts, ultimately increasing the energy
footprint and cost of operating a large network.

Deploying network functions that have to manage large
amounts of frequently changing stateful per-flow information
in a cost-effective manner (i.e., entirely on an ASIC switch)
has been an elusive goal.

To understand the requirements posed by multi-terabit per
second stateful packet processing, we analyze a set of real-
world CAIDA traces in the 2013–2019 period [6]. Through a
linear regression, we observe that i) the number of active flow
connections traversing a switch is 120 K for every gigabit of
forwarded traffic and ii) there are 4 K new flow connections
for every gigabit of forwarded traffic. This translates to 385 M
active flows and 12.8 M new flow-table insertions per second
on a 3.2 Tbps forwarding pipe. With a 17 B flow-state entry
(i.e., a 5-tuple + action), as in a Layer-4 load balancer, the
memory requirement becomes 6.5 GB, which go beyond the
stateful memory that is available on today’s ASIC chips.

In this work, we aim at designing a stateful per-flow packet
processor system that satisfies the following requirements:
• Expressiveness, by supporting a variety of complex stateful

logic (e.g., load balancers, packet schedulers).
• High Throughput, by achieving superior performance

compared to existing expressive designs.
• Dynamicity, by supporting very frequent modifications to

its stateful data structures.
• Cost Effectiveness, by reducing the costs and power con-

sumption for operating this system.
Building a system that supports the above requirements is

highly challenging. The expressiveness requirement requires
a system to rely (at least to some degree) on general-purpose
CPUs or FPGAs. We distinguish between two types of sys-
tems that require external resources:
• Systems that use dedicated external devices to realize com-

plex NFs. An example within the first category is Tiara [46],
a clever load balancer system that reroutes packets from a
switch to 16 ports that are connected to FPGAs performing
per-packet load balancer calculations. While such solutions
are expressive, they are not cost-effective. Half of the de-
vices connected to a 32-port programmable switch are used
exclusively to perform stateful packet processing operations.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1237

This reasoning motivates the next type of approaches.
• Systems that rely on shared external devices whose re-

sources are primarily used for running customers’ appli-
cations. Such systems embrace emerging disaggregation
paradigms in which applications runs on resources that are
combined together on demand. As an example, TEA [21]
is the first system to efficiently enlarge the memory of
the switch by cleverly crafting RDMA messages to access
remote memory on shared CPU-based servers. TEA ex-
ploits the well-known large amount of spare of bandwidth
and memory resources in datacenters [23]. This design al-
lows operators to make better utilization of the resources
available on an external general-purpose server: customers’
applications run on general-purpose servers and any spare
bandwidth and memory resources are used by the switch to
store all the per-flow connection states that are required to
process terabits of traffic. Unfortunately, as we show in our
motivation section, TEA cannot support expressive network
functions, as only the state is stored on external servers
while the forwarding rules are applied on the ASIC switch,
which does not support advanced logic.

In this work, we present RIBOSOME, a system that is expres-
sive, flexible, cost effective, and achieves high-throughput
packets processing. RIBOSOME relies on two fundamental
observations. First, in a large fraction of stateful per-flow net-
work functions the bottleneck is the bandwidth between the
switch and the packet processor. For example, a load balancer
saturates a 100Gbps interface with just 3 CPU cores on a
real-world trace [12]. Second, many network functions do not
need to analyze the entire packet but only the relatively small
portion of a packet containing its headers.1 To put things into
perspective, a load balancer that operates on a 5-tuple (13
bytes) field, would only require receiving 13 B per packet
instead of potentially 1.5 KB full size packets.

RIBOSOME relies on dedicated external packet processors
to process packet headers while storing packet payloads on
shared general-purpose servers without any CPU interven-
tion (i.e., using RDMA technology). More specifically, we
leverage the advanced capabilities of emerging high-speed
programmable switches to receive packets, split them into
headers and payloads, and reconstruct them after the NF pro-
cessor has updated their headers or re-schedule their transmis-
sion. By only processing packet headers, we overcome the
bandwidth bottleneck at the dedicated devices, which allows
us to process significantly higher numbers of packets on the
same dedicated machine. As all data structures are handled
by CPUs, we support high numbers of modifications to these
data structures.

We motivate this design approach with the following ob-
servation: storing & fetching payloads are two operations
that only require simple support for writing & reading on

1We do not claim novelty for this observation but rather for the novel
trade-off achieved by the design of our packet processing architecture and
our fine-grained evaluation.

a memory. These memory operations are general, making
it attractive to offload the storage & fetching of payloads
on shared memory resources (e.g., RDMA). Using shared
resources to store payloads allow operators to make more
efficient utilization of the memory resources existing in a
network (such as a datacenter). We then rely on dedicated
resources for processing packet headers. In this case, the ratio-
nale is that the performance achievable by a stateful network
functions highly depends on temporal and spatial factors (e.g.,
high cache-locality), and is therefore less suitable to be exe-
cuted on shared resources. Finally, RIBOSOME brings benefits
when an NF only needs to inspect a small part of a packet, e.g.,
a load balancer. RIBOSOME does not bring benefits when the
NF requires access to the entire packet (e.g., a deep packet
inspection function).

We implement RIBOSOME on an ASIC programmable
switch, with FastClick [1] as the NF packet processor, and
RDMA to store payloads on other servers. We evaluate
RIBOSOME using an empirically-derived multi-100G traf-
fic trace. Our micro-benchmarks show that a general-purpose
server processes 70 Mpps on a single server, which would
correspond to 560 Gbps of traffic with 1KB average packet
size. Based on this estimate, we observe that one would need
only three 100G ports on the programmable switch to process
1.6 Tbps of traffic (whereas systems like Tiara would need 16
ports).

We also evaluate the entire system using 4 RDMA servers
and a single 100-Gbps dedicated server to process 300 Gbps
of traffic. Our results show that the bandwidth requirements
at the dedicated server are merely 20 Gbps.

To summarize, our contributions are:
• We propose a new disaggregation-based architecture to

circumvent the inherent constraints of high-speed ASIC
switches both in terms of logic and memory. We design a
system to perform stateful packet processing that carefully
splits operations between dedicated and shared resources,
where headers are processed by dedicated servers while
payloads are stored on shared resources.

• We present the first programmable buffer abstraction that is
suitable for Tbps NF packet processing.

• We make the observation that today’s deployment of NFs
onto general-purpose CPUs is severely bottlenecked by
the server bandwidth, thus motivating the splitting of the
packets into headers and payloads.

• We demonstrate a single server processes up to 70 M small-
size packets per second and the bottleneck moves onto the
PCIe. With 3 servers, one could process 210 M packets per
second, which is equivalent to roughly 1.6 Tbps of 1KB-
size packets. We discuss future optimizations to overcome
this limit with future-available hardware.

• We demonstrate in a small testbed that RIBOSOME pro-
cesses 300 Gbps using a single dedicated NF processor,
whose bandwidth requirement is just 20 Gbps.

• We demonstrate a 2.2× speedup over the state of the art for

1238 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

running complex packet schedulers [11], on similar server
hardware. By doing so, we show that we have fundamen-
tally pushed the performance barrier achievable with a com-
bination of a programmable switch and commodity servers.

• We release all our P4 and FastClick code for running
RIBOSOME including a high-speed implementation of
RDMA on the Tofino programmable switch [40].

2 Motivation

We start this section by quantifying the memory and flow-
table update requirements of general ASIC switches. Based
on an analysis of real-world traffic traces, we posit that today’s
(but also next-generation) ASIC switches do not have enough
memory to support stateful per-flow NFs. We then quantify
and discuss the limitations of the state-of-the-art systems
using dedicated resources (i.e., PayloadPark [13] and Tiara)
as well as shared resources (i.e., TEA [21]).
ASIC switches have constrained memory. Several exist-
ing approaches, such as SilkRoad [31], Cheetah [3] and
SwiSh [47], propose to store the entire state required to oper-
ate a specific NF entirely on the memory available on the chip
of an ASIC switch. However, the amount of memory available
to store per-flow state on existing high-speed ASIC chips is a
renowned constrained resource that may not be sufficient for
NF applications that handle very large amounts of flows. We
run some back-of-the-envelope calculations to upper bound
the amount of state that could potentially be stored on an
ASIC using SRAM technology. Assuming one could use the
entire chip area for SRAM memory (i.e., no I/O, no buffers),
an 826 mm2 chip using 7nm technology would only store at
most 5GB of flow state in SRAM [7]. We show in this section
that this amount of memory would suffice to only store ~10%
of the state required on a multi-terabit per second switch. In
practice, the amount of memory is below this estimate as typ-
ically I/O and buffers occupy roughly 50% of the chip area
and some memory is used to implement the packet processing
logic. For example, a 16-nanometer high-speed ASIC switch
contains 1.5-15.4MB per terabit of forwardable traffic (i.e.,
10-100MB of SRAM on a 6.5 Tbps ASIC chip) [14, 29, 31].

To understand the implications of potential future trends
on the feasibility of storing per-flow state on ASIC chips,
we analyze CAIDA traces in the 2013 – 2019 period for the
NYC and CHI monitored links, for which there are publicly
available statistics [6].2 The throughput for these traces ranges
from 2 Gbps to 6.5 Gbps. Each trace contains the number of
IPv4 and IPv6 forwarded packets, their mean packet size,
the trace duration and the flows per second. The flow per
second field represents the number of distinct flows in the
trace divided by the duration of the trace.3 We define a flow to

2We select this type of traces as we do not have access to datacenter traces
at per-packet granularity (i.e., no sampling).

3We verified it by taking the Caida-nyc 2018-03-15 trace, counting the

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

Trace throughput [Gbps]

0.0

0.5

1.0

1.5

2.0

M
ea

n
nu

m
be

ro
fa

ct
iv

e
flo

w
s

[x
1
0

6
]

y = (199 + 120x)× 103

Figure 1: Number of active flows in historical CAIDA traces
from 2013 – 2019 from Chicago and NYC.

be active if that flow has sent a packet in the last 30 seconds.4

If a flow is active, it means the stateful processor must keep
state for that flow. In the following analysis, we assume that
one needs to deploy a basic load balancer that stores 17 B for
each single flow (e.g., 13 B for the 5-tuple and 4 B to store the
private IP destination address). We define the mean number of
active flows in a trace as the number of active flows divided by
the duration in seconds of the trace multiplied by 30 (i.e., the
threshold to determine if a flow is active). In Fig. 1, we report
the mean number of active flows (y-axis in millions, blue
crosses) with respect to the trace throughput (x-axis) for each
single trace in the studied period. We first observe that 3 out of
53 traces already require more memory resources than those
available on a real-world pipe of a high-speed ASIC, i.e., the
traces require above 20 MB of memory as they contains more
than 1.1 M active flows.5 This means that storing state for a
real-world trace recorded at roughly 10 Gbps would require
roughly 20% of the existing memory on a 16-nm ASIC switch
chip (which is in the 10-100 MB range).

We also plot a linear regression (green dashed line) that
we use to estimate the memory requirements for a switch
transporting terabits of traffic (such as recent 25.6 Tbps
switches [5, 18]).6 The steepness of the regression line is
120 K active flows per Gbps of traffic. We estimate the mean
number of active flows on a 25.6 Tbps switch to be 3 072 M,
which would require 52 GB of memory to store the corre-
sponding state for a load balancer (i.e., 17B per flow). This
memory requirement is 300× higher than what is available
on 7nm high-speed ASIC switches today [18] and roughly
10x the maximum amount of SRAM memory realizable on a

number of flows, and dividing by the trace duration, obtaining the same
number.

4We use a 30-second threshold based on real-world timeouts used in the
Facebook Katran load balancer [9].

5This is a lower bound since we take the mean of the active flows but
peaks with higher number of active flows are likely to arise in the traces.

6The assumption may not be perfectly accurate but we do not have access
to a datacenter trace at terabits per second speed and per-packet granularity
(i.e., no sampling).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1239

Ideal PayloadPark-like PayloadPark-like
(w/ recirculation)

0

1

2

3

4

Sw
itc

h-
to

-N
F

Lin
k

Ra
te

 [G
bp

s]

16x

0.19

3.11
2.67

Figure 2: Ideal vs PayloadPark-like on CAIDA trace.

825mm2 ASIC chip. Finally, we also note the memory on the
pipe should be used for implementing other functionalities.
ASIC switches cannot support frequent per-flow state in-
sertions from the control plane. Today’s ASIC chips support
a specific amount of modifications to their flow-tables through
the control plane [3,31]. For example, a 16-nm 3.2 Tbps ASIC
switch supports ~100K flow-table entry modifications per
second only [46]. To the best of our knowledge, this is the
highest (publicly available) table update frequency achieved
by a 16-nm ASIC switch through the control plane and we
are not aware of public measurement studies showing such
high-frequency insertions entirely in the faster data-plane of a
multi-Tbps ASIC switch. Based on our analysis of the afore-
mentioned CAIDA packet trace, we observe that the number
of rule modifications is lower bounded by the amount of flows
per second. Based on a similar regression, we obtain that the
number of flow insertions per second grows by 4 K per Gbps
of traffic. When we use this linear regression to estimate the
amount of flow insertions on a 3.2Tbps ASIC switch, we ob-
tain 12.8 M per-flow insertions per second, which is roughly
100× higher than the aforementioned 100 K flow-table modi-
fications using an ASIC switch.

Now that we have quantified the amount of memory re-
sources required to store the per-flow state of an NF, we
discuss advantages and limitations of the three main state-
of-the-art approaches to implement NF processors on top of
programmable network hardware. We focus on the work that
closely relates to our system and we defer the reader to Sect. 8
for a broad discussion of the existing related work.
NIC-based approaches that split packets are bottlenecked
by the NIC speed. The nicmem system [35] is an NF acceler-
ator that resides completely on a general-purpose server and
does not involve any programmable switch. A packet arriving
at the Network Interface Card (NIC) of a nicmem-equipped
server is split into a header that is sent to the CPU cores and
a payload that is stored on the small NIC memory. This ap-
proach comes with several benefits: higher hit cache ratio as
payloads do not pollute CPU caches and 80% higher packet
processing throughput. The inherent limitation of this work
is that the throughput of the NF server is limited by the NIC
speed (e.g., a 100 G NIC can only process 10 M packets with
size 1.25 KB). To process 800 Gbps of traffic, nicmem must
connect to 8×100G ports on the switch. In this paper, we

argue that an NF server should only receive the relevant bits
(e.g., the packet headers). This approach reduces bandwidth
overheads toward external NF servers, reducing the number
of ports on the switch that must be connected to dedicated
resources. The remaining ports can be used for connecting the
switch to other shared resources (where the payloads could
be buffered) or devices. Moreover, traditional server- or NIC-
based approaches (including nicmem) force the storage of
the payload to be performed on the same machine that pro-
cesses the header. Conversely, RIBOSOME decouples these
two operations and it leverages spare memory resources in
the network for performing the simpler payload storage.
Storing payloads at the switch does not mitigate band-
width overheads. The PayloadPark [13] system also splits
headers from payload but performs this operation directly
on a programmable switch instead of the general-purpose
server. The benefits of splitting a packet at the programmable
switch instead of doing that at the server (as in nicmem) is
that one can forward just the headers to the servers and store
the payloads on the programmable switch. To implement
a load balancer, a server could receive just 13 B from each
packet (i.e., the 5-tuple), thus potentially processing almost
one billion packet headers per second through a 100 G in-
terface. Unfortunately, PayloadPark suffers from an inherent
constraint of high-speed ASIC devices. First, it is not pos-
sible to store the entire payload of a packet into the switch
memory in a programmable manner.7 Consequently, Payload-
Park only stores the first 160 (352) bytes of payload for each
packet without (with) recirculating it, thus letting most of the
payloads still going to the external server.

To quantify the reduced performance gains, we have ana-
lyzed again the aforementioned CAIDA trace for three sce-
narios: i) when only a 54-byte header is sent to an external
NF server, which we call Ideal, ii) when only 160 bytes of
payloads are removed from the packet sent to the external NF
server, which we call PayloadPark-like, and iii) a PayloadPark-
like system that recirculates packets to store 352 bytes. Fig. 2
shows the link rate in Gbps between the switch and the exter-
nal NF server (y-axis) for the three aforementioned systems.
The ideal system requires 16× and 14× less bandwidth than
the PayloadPark-like system with and without packet recir-
culation. We note that producing ASICs that would store
larger parts of the packet in a programmatic manner would
become significantly more complex and expensive [4] and are
therefore neither available today nor in the near future.
Desiderata: large external memories shared with other ap-
plications. The goal of our work is to overcome the inherent
limitations of ASIC switches and find an alternative design
that keeps bandwidth requirements as close as possible to
the ideal bar in Fig. 2. Since the memory on a switch cannot
be used to store payloads in a programmatic manner, we fo-

7The payload is temporarily stored by the switch while the headers are
being processed.

1240 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cus our attention to leveraging external unused resources that
are shared with customers’ applications. As storing payloads
only requires storing information into memory (without any
complex logic), we focus our attention onto RDMA technol-
ogy to store and retrieve payloads between a programmable
switch and a set of external servers that are deployed to run
customers’ applications. Leveraging RDMA from a Tofino
switch is not a new idea per-se as it has been already explored
in TEA [21], a network function accelerator, and Dart [24],
a monitoring system. We now discuss existing limitations
of TEA, which will motivate our design. We note that some
limitations of TEA are due to its design while some others
are related to the functionalities that are today available on
ASIC switches.
TEA cannot run complex NF logic such as packet sched-
ulers. TEA [21] is the first framework to implement NFs using
a programmable switch and leveraging additional RDMA-
accessible memory to store per-flow state. In TEA, a packet is
forwarded from the switch to the RDMA server that stores the
rule used to process the packet. Both the packet and the rule
are forwarded back to the switch, where the rule is applied to
the packet. Unfortunately, this design does not support more
complex per-flow network functions (e.g., advanced load bal-
ancers, batch-based NF processing, etc.) since the only logic
that can be performed in TEA is the one that is supported by
the switch. For example, TEA cannot support advanced per-
flow packet scheduler such as Reframer [11], where packets
arriving at an NF are buffered for a few tens of microseconds
and are then reordered to increase their per-flow spatial local-
ity (i.e., placing packets belonging to the same flow close to
each other). The reason why TEA cannot support such NFs
is that TEA can only "buffer" a single packet while reading
its rule but it cannot buffer arbitrary sets of packets in a pro-
grammatic manner. We are not aware of any existing ASIC
switch supporting such programmable buffers for packets.
TEA cannot handle per-flow rule insertions at high speed.
When a new packet of a flow arrives at the switch, TEA states
that “since it takes some time to complete an insertion op-
eration, new entries are first inserted in to an SRAM stash”.
However, the insertions into the Stash are performed through
the control-plane, which is renown to take up to 1ms to per-
form insertions [31].8 In any case, the limit of flow-table
insertions per second derived in Tiara [46] also applies to
any table modification on TEA, which severely undermines
the ability of TEA to perform a large number of flow-table
insertions per second.
In the remaining sections, we address the following question:

“Can we design an NF packet processor that retains the
high-throughput of an ASIC switch while supporting

dynamic per-flow stateful network functions in a
cost-effective manner?”

8We do not have access to the original P4 code of TEA.

3 System Design

We now present an overview of RIBOSOME, a NF accelerator
for stateful per-flow packet processing that relies on a novel
design to overcome the limitations of existing architectures
based on programmable switches and external devices.
Design space. We first divide the design space into i) systems
built entirely within a switch and ii) systems using external de-
vices. In the first category, realizing stateful packet processing
entirely using ASIC-based switches is out of reach because
of both memory limitations and limited modifications per
second to the stateful data structures. In the second category
(i.e., systems with external devices), we further divide into
two categories: a) systems that only use external dedicated
resources and b) systems that also rely on external shared
resources. In the following, we discuss these two types of
systems and we refer the reader to Table 1 for a summary of
the architectural and communication overhead differences

The table covers three types of operations (i.e., the process-
ing of the header, the storage of the packet, and the splitting
and merging of the packet with the header (if any)) as well as
the communication overheads in terms of bits and number of
packets transmitted to the NF and the shared servers for each
incoming packet at the switch.

Delegating all stateful packet processing functionalities
to dedicated external FPGAs or CPUs (e.g., Tiara [46],
nicmem [35]) results in a high utilization of the switch ports
to interconnect the external dedicated devices (i.e., to pro-
cess 800 Gbps of traffic, 8x100G ports on a switch must be
connected to dedicated devices). PayloadPark [13] reduces
bandwidth requirements toward externally dedicated devices.
However, it only saves 1280 bits of bandwidth per transmitted
packet, which only slightly reduces the number of ports on
the switch that are connected to dedicated devices when the
average packet size of a trace is in the 1 KB range.

Leveraging shared resources mitigates these overheads as
ports on a switch can be connected to devices running other
types of computations. Some recent work (e.g., TEA [21])
delegates the storage of payloads on shared memory while
relying on the switch to run the stateful packet processing
logic. However, the logic implementable on an ASIC switch is
limited (e.g., no batch-based stateful processing as in packet
schedulers or rate limiters). Moreover, it is difficult to use
CPU-bypass technologies like RDMA to insert per-flow state
inside the external server memory because RDMA only sup-
ports basic primitives (e.g., Read, Write) and cannot be easily
used to perform insertions at high-frequency [37]. Striking the
correct balance in the usage of dedicated and shared resources
and the architectural choices is the main goal of this section.
Our design principles. In this work, we explore a trade-
off in the design space between the usage of dedicated and
shared resources to accelerate stateful packet processing. Our
observation from Sect. 2 is that any stateful packet processing
should support i) high-speed insertions into per-flow state data

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1241

Operations Communication overhead (per packet)

Header Payload Split & NF server Shared server
processing store merge [bits, # pkts] [bits, # pkts]

Traditional NF server NF server - pkt.size, 1 -

nicmem [35] NF server NIC NIC pkt.size, 1 -

Tiara [46]
NF server

server CPU
FPGA and

- pkt.size, 1 -(fast path on
FPGA on NIC)

PayloadPark [13] NF server switch switch pkt.size - 1280 b, 1 -

TEA [21] switch RDMA server - - pkt.size, 2

RIBOSOME NF server RDMA server switch pkt.header, 1 pkt.payload, 2

Table 1: Qualitative comparison among existing systems in the design space and RIBOSOME.

structures (in the order of tens of millions per second) and
ii) more complex stateful logic (e.g., batch-based processing)
when deployed on a multi terabits per second switch. Our
design is inspired by the following principles:

• Offload complex logic to dedicated devices. As ASIC
switches support a limited number of flow-table updates per
second and provide limited memory space, we argue that
non-trivial network functions, whether for inserting high
volumes of per-flow entries into the per-flow data struc-
tures or processing packets in a batch (e.g., for scheduling),
should be realized on dedicated general-purpose servers.

• Process only relevant bits. Our design targets network
functions (e.g., load balancers, NATs, rate limiters, packet
schedulers) that do not require inspecting the entire packet,
but rather just a few bytes such as a flow identifier. We there-
fore propose to only send the relevant bits to the dedicated
general-purpose servers and store the payloads on shared
servers while the headers are being processed. Splitting
headers is not a new idea per-se (see [13, 35]), however
we leverage it in such a way that the large gains material-
ize in practice, as shown in our evaluation section. Notice
that our design also provides the possibility to disable the
packet splitting for specific traffic classes. This allows the
coexistence between RIBOSOME and NFs that require fully
inspecting packets.

• A programmable buffer on shared resources. ASIC
switches (including programmable ones) do not provide an
interface for buffering packets in a programmatic manner.
Packets are stored either while their headers are processed
through the pipeline or in port queues. We argue that a net-
work function system should be able to buffer packets in a
programmatic manner, operate on batches of packets and
schedule their transmission (to a certain degree of granu-
larity, see Sect. 4). We rely on RDMA to bypass CPU and
avoid wasting CPU cycles on shared machines. Note that
our approach does not rule out the possibility of accessing

1. Header + Payload . Programmable
Switch

2a. Process Header

5. Processed Header + Payload

3. Store Processed Header

2b. Store Payload 4. Retrieve Payload

NFNFNF packet
processor

RDMA
Server
RDMA
Server

RDMA
Server

Figure 3: RIBOSOME overview.

other types of memory for storing payloads. We embrace
disaggregation paradigms where the storage of payloads
is performed on any shared memory resources in the net-
work. As an example, switches could potentially support
a programmable interface to store and fetch packets in an
internal DRAM or HBM.
To summarize, the main benefits of RIBOSOME are that

it relies on dedicated devices only for realizing the NF pro-
cessing logic and delegates the storage of the payload on
external RDMA servers. RIBOSOME does not use any CPU
cores on these RDMA servers. It only shares memory and
NIC bandwidth with applications running on these servers.
The benefits of RIBOSOME come with a cost: doubling the
number of packets in a network since each packet will be split
into a header and a payload packet.
System overview. RIBOSOME consists of a high-speed pro-
grammable switch, a set of dedicated external NF packet
processors (e.g., CPUs, FPGAs) and a set of shared servers.
We leverage recent advancements in high-speed ASIC pro-
grammable switches [19], CPU-bypass memory storage
(i.e., RDMA [17]), and NF-specific CPU compiler optimiza-

1242 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tions [10] to design a system where dedicated packet pro-
cessors only process the relevant portions of a packet while
their payloads are stored on RDMA servers. We show a di-
agram of the high-level RIBOSOME architecture in Fig. 3.
The programmable switch receives incoming packets (step
1) and splits each packet whose size is above a predefined
threshold into a small header and a larger payload chunks.
The programmable switch assigns an ID to both the header
and the payload chunks. The switch assigns increasing IDs
to each received packet within a predefined range (in a mod-
ulo manner). The switch forwards the header of the packet
to one of the external NF packet processors (step 2a) and
the payload to one of the shared servers (chosen hashing the
flow 5-tuple) using RDMA (step 2b). The NF packet proces-
sors store the per-flow state needed to process any incoming
packets. The NF uses this state to transform each incoming
header into a new processed header, which is sent back to the
programmable switch where it is stored on its small memory
using the header ID as an index into an array in the switch
SRAM memory (step 3). After storing a packet header, the
programmable switch retrieves the corresponding payload
from the RDMA servers (step 4). The programmable switch
combines then the payload with the stored header using the
ID and outputs the transformed packet (step 5).

We now discuss the different relevant operations and com-
ponents of RIBOSOME, focusing on the main design chal-
lenges and our proposed solutions.

3.1 Splitting and Merging Packets
Deciding i) how many bits of a packet should be sent to
the NF processor, ii) when a packets should be split into a
header and payload, and iii) how to store the headers before
the payloads are recollected are all questions that affect the
overall performance of the system.
Challenges. Splitting a packet into a header and payload bring
several benefits: it reduces both bandwidth overheads and
cache pollution on the dedicated resources. However, split-
ting a packet also comes with some overheads: when we split
a packet, i) we need to process a higher number of packets on
the switch and ii) we need to use the switch memory to store
the headers before recombining them with their corresponding
payloads. More specifically, a single incoming packet arriving
at a switch requires two packet processing if the packet is not
split (i.e., forwarding the packet to the NF and forwarding the
modified packet from the NF to the output port) whereas a
packet that is split results in 4 packet processing operations
(i.e., forwarding the header to the NF, forwarding the pay-
load to the RDMA server, forwarding the NF response to the
RDMA server to retrieve the payload, forwarding the recom-
bined payload on the output port). Moreover, RDMA comes
with limits on the number of operations per second that it
can perform, which means transmitting small payloads may
overload the server NICs without bringing any meaningful

performance improvement.
Our approach. We devise a mechanism in RIBOSOME that
splits a packet based on a threshold. There are two key thresh-
olds in RIBOSOME: one threshold to specify when a packet
should be split and one threshold to specify how many bits
should be sent to the NF. We split packets at 72 bytes, con-
sidering the minimum Ethernet frame size of 64 bytes plus
8 bytes of additional custom RIBOSOME headers. Notice that
the split threshold is configurable depending on the use case.9

RIBOSOME does not need to store any information on the
switch when the packet has been split. Our system stores
an header received from the NF on an array in the switch
SRAM memory. Every time we split a packet, the switch
increases the array index by one (modulo size of the array).
This information is carried over in the header and the payload.
When the header comes back to the NF, it is stored in the
switch memory, and it also issues an RDMA Read Request to
retrieve the corresponding payload.

The headers are stored until either i) the payload comes
back to the RDMA server or ii) a new packet header is stored
at the same array index, i.e., the index pointer looped over the
array size. We micro-benchmark the RDMA Read Request
time (see Appendix F), finding that the maximum latency is
at 4µs (with a 4096B payload). At 1.6 Tbps with an average
packet size of 1 KB, this means we only need to store less
than 800 headers in the array without risking to overwrite
any header and combining it with the wrong payload. We
configure the array with a size of 2K entries, which is large
enough to guarantee that when the payloads come back, the
header has not been replaced by a different header. By storing
only 72 B of the packet header, RIBOSOME requires less than
60 KB of SRAM to store all the headers.

Our approach brings a significant advantage compared to
alternative switch-based approaches like PayloadPark [13].
RIBOSOME only stores headers while retrieving payloads
using RDMA, while PayloadPark must store payloads while
waiting for the NF to process the headers. We observe that
RDMA has more deterministic and lower response time than
arbitrary NF processors. For instance, Batchy [25] reports
processing times ranging from 100s of µs to few milliseconds
to process a packet even for NFs that only look at packet
headers (no heavy intrusion detection systems). At 1.6 Tbps
with an average packet size of 1 KB and a response time of
1 ms, PayloadPark would need to store 185 MB of payloads,
almost 10× the available memory on a 3.2 Tbps pipe.
Avoiding RDMA memory collisions. Packet payloads are
stored contiguously in the external memory and are retrieved
with the information contained in custom headers, hence there
is no chance that two packets close in time read the same
memory chunk. RIBOSOME conceptually uses the RDMA

9Ideally, the switch would only extract the bits relevant for a specific NF
and batch the bits extracted from different packets into a single packet that
is sent to the NF. Unfortunately, creating such batches is not supported by
today’s ASIC switches. We leave such optimizations as future work.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1243

memory as a circular ring buffer, with a size provisioned large
enough to prevent collisions.
Exploiting spare bandwidth on the RDMA servers.
RIBOSOME leverages shared servers as remote buffers and
it is therefore critical to use only the spare bandwidth of
the server links without affecting the hosted services. Thus,
RIBOSOME includes a control-plane mechanism that moni-
tors the link bandwidth. When a link carries above a user-
configured back-off RDMA threshold, the system stops send-
ing payloads to the overloaded server.
Packets-per-second overhead. As RIBOSOME split packets,
it also doubles the number of packets-per-second to be pro-
cessed on both the switch (where we split the packets) and
across the NF and RDMA-enabled devices when compared
to a traditional approach. This is an inherent cost of splitting
packets that is part of the RIBOSOME architecture. Table 2
compares per-packet processing overheads on each single
component of three different NF approaches: i) Traditional
NF processing where a switch sends the entire packet to an ex-
ternal NF processor, ii) a Payload-on-Switch (PoS) approach
in which the payload is entirely stored on the switch (e.g., Pay-
loadPark), and iii) RIBOSOME. As it can be seen, RIBOSOME
has the highest overhead. We first discuss the overhead on
the switch. We note that several ASIC switches today support
line-rate forwarding for small packets (e.g., 300-Byte packets
on general switches [18]). This means that RIBOSOME would
support line-rate for packets with doubled size (e.g., 600-Byte
packets). This seems a reasonable trade-off in RIBOSOME
as splitting a packet brings substantial benefits only when
the packet is large-sized. As for the dedicated NF and shared
RDMA-enabled servers, the number of PPS handled by the set
of all these servers is twice as in a traditional approach. More
specifically, the number of PPS handled by the NF servers is
equal to that of the shared RDMA-enabled servers.

Trad. PoS RIBOSOME
Switch 2/2 2/2 3/4

NF Server 1/1 1/1 1/1
RDMA Server - - 1/1

Table 2: Number of RX/TX packets for each approach (tradi-
tional, store payload on the switch, and RIBOSOME) in each
component for each processed input packet.

3.2 High-Speed Reliable RDMA

To obtain a high-speed reliable RDMA implementation from
the programmable switch, RIBOSOME has to overcome two
main technical challenges. To support both RDMA Write and
Read operations, Queue-Pairs (QPs) (virtual queues always
composed of a send and a receive queue used to manage con-
nections) must use the Reliable Connection transport mode.
In this mode, the QP sends an acknowledgement for each

packet received correctly, or a Nak in case of transmission
problems. Detecting and recovering an RDMA Nak from a
programmable switch is complex. For instance, receiving a
PSN Error Nak would require transmitting the Nak-ed packet,
and it is infeasible to store pending requests on the switch
memory (especially RDMA Write operations that could con-
tain a payload up to 4096 B). It is even more complex to
recover from an Invalid Request Nak, triggered when the max-
imum number of outstanding RDMA Read Requests limit
is reached. In fact, Infiniband specifications [42] limit the
maximum number of outstanding Read Requests targeting a
responder QP at any one time to a fixed amount (that is 16
with Nvidia Mellanox ConnectX-5 NICs [33]). To recover
from this error, the QP state must be entirely reset.

We present a mechanism for recovering from the aforemen-
tioned failures with a minimal drop of packets in Appendix C.
Moreover, we show in Sect. 5 how it is possible to handle
multiple QPs, incrementing the maximum number of out-
standing Read Requests, using a lower level API available
within InfiniBand verbs [28].

4 Supporting Advanced Network Functions

Several common per-flow stateful operations require either
batching a set of incoming packets (e.g., [11, 25]), or keeping
track of highly frequently arriving connections (e.g., load bal-
ancers, NATs). In the following, we discuss three use cases for
RIBOSOME that leverage advanced NFs whose logic would
be difficult to realize on today’s ASIC switches with large
amounts of flows.
Stateful Load Balancers and NATs. Stateless load balancers
suffer from high load imbalance [3] while software load bal-
ancers such as Maglev [8] must rely on many servers to re-
member which servers are taking care of every new selection.
In RIBOSOME, we support stateful load balancers by storing
the per-flow state on the NF processors and sending the head-
ers of all packets to these processors. The main challenge is
to support both high-throughput with millions of connections
(which may not fit in the CPU caches) and forwarding rule in-
sertions in the order of millions per second. In RIBOSOME, we
use per-core Cuckoo++ [41] hash-tables, which have demon-
strated superior performance [12]. The state management is
using the recent FastClick’s flow system, which finds a min-
imal per-flow state layout and handle state allocations and
releases [2]. We support NATs similarly to load balancers.
Advanced per-packet software telemetry. Network teleme-
try is an indispensable component of today’s networks, for
both traffic optimization and security. Traditional monitoring
tools such as NetFlow [16] rely on packet sampling and ag-
gregation to perform off-path monitoring of the traffic, where
“off-path” refers to the fact that network events are not de-
tected on the data-path. Per-packet software monitoring has
been proposed in *Flow [44], which however is also off-path,

1244 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

thus cannot support advanced NFs. Emerging data-plane ap-
proaches such as ElasticSketch [45] detects network events
directly in the ASIC data-plane using approximate data struc-
tures. However, ASIC switches have constrained memory
for storing information about all flows. Through RIBOSOME,
an operator leverages the large server memory to monitor
in software and on-path all the packets processed by other
advanced network functions, including load balancers and
packets schedulers, which we discuss next.
Packet Schedulers. Packet schedulers are an example of
network functions that determines the rate at which a flow or
a traffic class should transmit traffic on a port or a destination
server. Most importantly, they only need to inspect the packet
headers and buffer packets for a limited amount of time (e.g.,
on RDMA servers), which fits well within the RIBOSOME
design. Realizing a per-flow packet scheduler on a hardware
switch is hard for a number of reasons. Switches typically
offer basic packet scheduler policies that scale to few traffic
classes (up to 32 in general [43]). Realizing packet schedulers
at the per-flow granularity or for more than 32 traffic classes
is therefore hard to realize entirely in hardware.

RIBOSOME supports packet schedulers at the per-flow gran-
ularity, for instance, it support a per-flow leaky bucket rate lim-
iter and the advanced Reframer [11] scheduler. RIBOSOME
guarantees that packets belonging to the same traffic class
leave the switch in the desired order. The main challenge
in building a packet scheduler on RIBOSOME is that even
if the NF processor reorders packets, there is no guarantee
those packets will be output in the correct order from the
RDMA servers. In fact, an RDMA Queue-Pair guarantees
RDMA Read Request are served sequentially but Read Re-
quests spread over different Queue-Pairs are not. Our key intu-
ition is to guarantee that payloads of packets belonging to the
same traffic class are read from the same RDMA Queue-Pair.
The maximum throughput at which RIBOSOME guarantees an
ordering of packets in a traffic class is limited by the hardware
throughput of an RDMA Queue-Pair.
Example with a Reframer packet scheduler. We show an
example of our approach implementing the Reframer packet
scheduler [11]. Reframer is a NF that buffers packets for tens
of microseconds and reorders them so that packets belonging
to the same flow are transmitted back-to-back. We show that
this functionality can be implemented on top of RIBOSOME.

Consider Fig. 4, where the RIBOSOME switch receives 8
packets from four ports belonging to four flows called A (black
squares), B (yellow squares), C (blue squares), and D (green
squares). Assume flows A and B are mapped to core 1 of the
NF and they should be forwarded on port 1 of the switch
while flows C and D are mapped to core 2 and they will end
up on port 2. The switch is connected to one RDMA server
which has 2 active Queue-Pairs; hence, all the payload data
will be written on the same RDMA server. We use dashed
orange (green solid) arrows to denote packets moving from
the switch to external entities (from external entities to the

multi-core
NF server

ou
tg

oi
ng

 tr
af

fic

in
co

m
in

g
tr

af
fic

splitter header storage rebuilder

programmable switch

B

A

C

D

C

A

CB

D

A
B
A
D
C
B
D

core 1 core 2

A
C
A
B
C
D
B
D

D
C
D
C

D
D
C
C

B
A
B
A

B
B

A
A

he
ad

er
s

D

C
D

C

D
D
C
C

B

A
B

A

B
B

A
A

RD
M

A
re

ad
s

D B D C B A C A
BBA A

DDCC

1

2

RDMA server

QP1 QP2

Figure 4: Supporting packet schedulers with RIBOSOME.

switch). The packets are initially split into a header that is
forwarded to the NF server and a payload that is stored on
the RDMA server (this RDMA Write operation is not shown
in the figure). The headers will traverse the NF link in any
extension of the partial order in which they arrived at the 4
ports. The switch tags headers with information about which
RDMA server is used to store packets content (in this case,
we have only one RDMA server and all packets have the same
tag) 10. On the NF side, core 1 (core 2) receives a sequence
of packets < B,A,B,A > (< D,C,D,C >) and reorders it into
< B,B,A,A > (< D,D,C,C >). To avoid Queue-Pairs over-
loading and to preserve packets ordering, the NF is enabled to
add a new tag to packets determining the preferred Queue-Pair
index for reading the content from the RDMA server. In this
scenario, core 1 tags packets with QP1 and core 2 tags packets
with QP2. Finally, the NIC forwards these headers back to
the switch, possibly interleaving packets from the two cores.
When packets arrive at the switch, the headers are stored in
the order in which they are received and the corresponding
RDMA Read Request are generated according to tags added
by the NF cores. As a result, the RDMA server receives the
Read Requests in two Queue-Pairs exactly in the order in
which the corresponding NF cores have generated them. The
payloads also return in the same order of the Read Requests.

5 Implementation

We implemented RIBOSOME’s data plane in P4_16 language
and compiled it to a Intel Tofino ASIC [19]. The server pro-

10We encode this tag in the MAC destination address which gives the
flexibility to users to dispatch packets among cores based on corresponding
RDMA servers if it is needed.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1245

cess that manages RDMA connections and remote buffers is
written in C++, using Infiniband Verbs [28].

Server Connection Establishment. For initializing a con-
nection with the switch, the server agent takes as input the
Infiniband interface name and the Server ID (an incremental
index that starts from 0). It allocates a memory buffer enabled
for remote write/read access. The process sends to the switch
all the information to identify the connection using several
different custom Ethernet frames (described in Appendix E).

The switch saves this information in different registers
(base_addr, rkey, mac, and ip), using the Server ID as index.

After this initial setup, the process creates a user-defined
number Nqp of Queue-Pairs. Each QP qi (i= 0, . . . ,Nqp) is cre-
ated using the Reliable Connection transport mode. A unique
local Queue-Pair ID Lqi is assigned by the NIC. Instead of
pairing qi with a remote QP, RIBOSOME fakes the connec-
tion to a remote endpoint, avoiding the need of a second
Infiniband-capable device. A fake remote Queue-Pair ID Rqi

is computed using the formula Rqi = i+(Server_ID ∗Nqp).
The remote and local initial PSNs are set to 0. At this point,
the server sends the Queue-Pair information to the switch
with a Server Queue-Pair Info frame, containing Lqi and Rqi .
The switch stores Lqi in the qp register at index Rqi , it writes
the enabled_qp register at index Rqi , enabling the QP, and it
also sets the register psn to 0 at the same index Rqi .

RIBOSOME Headers. RIBOSOME uses two custom headers,
that contain information needed to retrieve a payload and
merge it with its correct headers. We provide a description of
the headers and their fields in Appendix E.

Splitter. When a packet is received on a RIBOSOME enabled
port, the switch checks that the length of the packet is higher
than a definable threshold. If it is under the threshold, the
packet is not split and sent to the NF. Otherwise, the switch
applies a hash function (on a 4-tuple composed of SrcIP, DstIP,
SrcPort, DstPort) to index a Match-Action Table to select the
server and the index i of the QP qi that will store the relative
payload. This ensures that payloads of the same flow will be
managed by the same server and QP, and avoids reordering
packets belonging to the same flow. The switch reads the
enabled_qp register: if the QP is not enabled (equal to 0), the
packet is sent to the NF without splitting it. Else, the switch
retrieves (using i) the server data from mac, ip, base_addr
and rkey registers. The packet is then transformed into a
RoCEv2 RDMA Write. The PSN field of the BTH header is
set by reading and incrementing the register psn at index i.
The switch also appends the Header Info, selecting an index
h where the header will be stored after being processed by
the NF. It also appends the exact padding bytes to align the
payload to a 4-byte boundary. The packet is mirrored to the
Egress pipeline, where it is truncated to the header size. The
switch appends both Payload Info and Header Info, that will
be used for reconstructing the packet after the NF processing.

We show a high level overview of the flow in Appendix D.

Rebuilder. When the switch receives a processed header from
the NF, if it contains the Payload Split header, it means that
the packet must be reconstructed, else the packet is normally
routed. Before reconstructing the packet, the switch saves the
processed header into several registers hdrs at the index h
specified by the Header IDX field in Header Info. The packet
is then transformed into a RoCEv2 RDMA Read Request.
The switch reads the Payload Info header and retrieves the
index i to read the information of the server that contains the
payload (mac, ip, and rkey registers). The PSN field of the
BTH header is set by reading and incrementing the register
psn at index i. The switch fills RETH header with the Payload
Address and Payload Length fields stored in Payload Info.

The RDMA Read Request is sent to the corresponding
server, which answers with an RDMA Read Response con-
taining Header Info and the payload. The switch parses the re-
sponse, reads h from the Header IDX field of Header Info and
uses it to load the right header from registers hdrs. It removes
the additional padding and prepends the processed header, re-
constructing the entire packet that is normally routed. The
reconstructed packet is 4 bytes longer than the original one
as the switch cannot remove the ICRC appended by RoCEv2.

We show a high level overview of the flow in Appendix D.
Spare Bandwidth Exploitation. To ensure that RIBOSOME
uses only the spare bandwidth of the shared servers with-
out affecting hosted services, we implement a control plane
mechanism that monitors the actual usage of the links. If
the per-port bandwidth usage is under a configured back-off
RDMA threshold, RIBOSOME uses the link for storing pay-
loads in the remote memory of the server. Instead, if the port
usage is above the threshold, the switch stops using that link
for payloads, preserving the bandwidth for services. In this
case, RIBOSOME remaps the Match-Action Table that selects
QPs and servers, equally redistributing the entries of the over-
loaded server among the others. When the port bandwidth
usage goes below the threshold, RIBOSOME restores the orig-
inal mapping of the table, re-enabling the server.

6 Evaluation
RIBOSOME is the first programmable buffer abstraction that
is suitable for Tbps advanced NF packet processing. It per-
forms stateful packet processing, carefully splitting operations
between dedicated and shared resources, dedicated servers
process headers and servers hosting customers’ services store
payloads without CPU interference. In this section, we demon-
strate the performance gains achievable by RIBOSOME. All
scripts, including documentation for full reproducibility, are
available [39]. We aim to answer five main questions:
• “How much RIBOSOME improves the per-packet through-

put and latency gain on the NF server?”
• “How does the packet size impact the throughput gains?”
• “Can we build advanced NFs on top of RIBOSOME?”
• “What are the overheads on the RDMA servers?”
• “How many ASIC resources does RIBOSOME require?”

1246 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RIBOSOME’s data plane is deployed on a 64×100 Gbps
Stordis BF6064X with Intel Tofino ASIC [19]. Four of
its ports are connected to a 32 × 100 Gbps Edgecore
Wedge100BF-32X with Intel Tofino ASIC. Four commod-
ity servers run the server agent and are equipped with In-
tel®Xeon®Gold 6140 CPU @ 2.30GHz and Nvidia Mel-
lanox ConnectX-5 NICs [33]. All CPUs are set at their nomi-
nal frequency. The testbed is wired with 100Gbps links. The
experimental setup is depicted in Appendix A.
Workload generation. To generate different loads, we use an
additional server equipped with Intel®Xeon®Gold 6140 CPU
@ 2.30GHz, and Nvidia Mellanox ConnectX-5 NICs [33],
connected to the 32-port switch. The switch multicasts
the incoming traffic to three ports unless stated differently.
We inject both synthetic and real-world traffic traces using
FastClick [1]. Another server with the same hardware runs
different NFs, also implemented in FastClick. All the experi-
ments are repeated 3 times.

6.1 Throughput and Latency Gains

RIBOSOME enables multi-100G packet processing. Fig. 5
shows the throughput of the NF (in pps) and the output
throughput of the system (in Gbps) for three systems: a base-
line where the NF receives the entire packet (dashed-dotten
orange line), a PayloadPark-like system that removes 160
bytes of a payload when transmitting a packet to the NF
server (dashed light blue line), and RIBOSOME (solid dark
blue line). The average packet size is 1KB. The x-axis is the
packet rate injected by the traffic generator (in Mpps). The
baseline rapidly saturates the available 100 Gbps link band-
width, consequently capping the NF throughput to this rate.
The PayloadPark-like performance shows that only a limited
increase in throughput can be achieved as the switch can store
just a small part of the payload. RIBOSOME achieves higher
throughput by sending only the headers to the NF, showing
the system can keep up the processing of the 300Gbps in-
put traffic. We note that only ~75 Gbps of payloads can be
handled by the RDMA NICs in our testbed due to RDMA
overheads. Therefore, the 300 Gbps of generated traffic is
limited by the 4 RDMA servers. So in order to process 1.6
Tbps of traffic, RIBOSOME would need to be connected to
22 shared RDMA-enabled servers. The gains for this simple
forwarding NF could potentially be even higher by deploying
more RDMA servers, which we could not do in our testbed.
RIBOSOME improves latency. While one would expect de-
laying packets to recover the payload through RDMA takes
time, the advantage of reducing the queue sizes and the trans-
mission rate at the NF compensates. In Fig. 6, we show the
median latency (y-axis) with respect to the input rate (x-axis).
Even at a medium input rate, the latency of the baseline sys-
tem (which does not split packets) increases, while the latency
of RIBOSOME is kept constant, achieving a 4× gain. We also
verified that tail latency follows a similar trend: the baseline

0 5 10 15 20 25 30 35
Input Packet Rate (Mpps)

0

10

20

30

Ou
tp

ut
 p

ac
ke

t r
at

e
(M

pp
s)

Ribosome PayloadPark-like Baseline

0 5 10 15 20 25 30 35
Input Packet Rate (Mpps)

0

100

200

Ou
tp

ut
 th

ro
ug

hp
ut

 (G
bp

s)

Ribosome PayloadPark-like Baseline

Figure 5: Bandwidth advantage of sending only headers to a
forwarding NF, 1024 B packets.

reaches up to ~500 µs tail latency because of the queuing
happening on the NF server, while Ribosome maintains a
constant ~60 µs latency.11

10 20 30 40 50 60 70 80 90
Input Rate (Gbps)

0

25

50

75

100

125

 M
ed

ia
n

la
te

nc
y

(μ
s) Ribosome

Baseline

Figure 6: Median RTT latency for 1024 B packets sent by the
generator to a forwarding NF under varying input rate.

RIBOSOME retains high performance regardless of the
input packet size. Fig. 7 shows the output throughput (y-
axis) of our baseline forwarding NF that does not split packets
(dashed line) and RIBOSOME (blue line). The x-axis is the
packet length in bytes. The split threshold is set to 64 bytes.
Varying the packet size does not affect the overall throughput
as the NF is still capable of processing 300 Gbps. Moreover,
this also demonstrates that RIBOSOME is highly effective for
the relevant real-world scenarios, where the average packet
size ranges between 500 and 1K bytes [6]. We reach 300 Gbps
of throughput already with 400 B packets (i.e., 93Mpps). This
graph demonstrates that the bottleneck with 1KB packets is
not the CPU but rather the limited number of RDMA servers.
We hypothesize that RIBOSOME could potentially operate

11Fig. 11 in Appendix B shows 99th percentile tail latency.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1247

above 600Gbps (75Mpps) with a simple NF forwarder.

200 400 600 800 1000
Packet length (B)

0

100

200

300

Ou
tp

ut
 th

ro
ug

hp
ut

 (G
bp

s) Ribosome
Baseline

Figure 7: Bandwidth gain according to packet length.

6.2 Advanced Network Functions

We have successfully integrated and evaluated the three appli-
cations presented in Sect. 4 within RIBOSOME. Fig. 8 shows
the RIBOSOME output throughput (in Gbps, y-axis) for the
Reframer [11] advanced packet scheduler (blue solid line), a
per-flow rate limiter (light blue dashed line), and a Layer-4
load balancer (orange dashed-dotted line). We vary the num-
ber of CPU cores used on the NF (x-axis). We replay a CAIDA
trace that runs for 3.7s and contains 13.4 M flows.

RIBOSOME supports the Reframer packet scheduler at
about 150 Gbps with 4 CPU cores and about 220 Gbps with
8 CPU cores (hyperthreading enabled). To put things into per-
spective, this level of throughput is almost 2.2× higher than
the one achieved in the original paper on a single server (i.e.,
100 Gbps) [11]. We observe that a single Queue-Pair has a
throughput limitations of 2.5 Gbps. This means that currently
RIBOSOME, combined with Reframer, can only guarantee
packet ordering for traffic classes whose throughput is at most
2.5 Gbps. We expect such limitations to ease in future genera-
tions of RDMA.

Similarly, Fig. 8 shows the performance of the per-flow rate
limiter that independently tracks the rate of each individual
micro-flow going through the switch and limits them using a
per-flow token bucket. The rate-limiter NF achieves close to
300 Gbps similarly to the load balancer function. Both these
NFs require keeping track of individual Layer-4 connections.
In both cases, the NF server handles 3 M new flows per second,
whereas an ASIC switch can only support ~100 K flow-table
entry modifications [46].
RIBOSOME preserves the order of packets. As discussed in
Sect. 4, there is a possibility that packets from different Queue-
Pairs got interleaved during RDMA Reads. We investigate
the amount of unordered packets by measuring the average
Spatial Locality Factor (SLF) of the traffic on the RIBOSOME
output and comparing it with the SLF value right after Re-
framer instances on the NF. It is the parameter used in [11] to
measure the ordering level of the traffic. We observe that using

2 4 6 8 10 12 14 16
CPU cores on the NF

0.00

100.00

200.00

300.00

Ou
tp

ut
 th

ro
ug

hp
ut

 (G
bp

s)

Advanced scheduler
Per-flow rate limiter
Load-Balancer

Figure 8: Throughput of three advanced Network Functions.

our trace file, the SLF value on the NF server is 1.31 while
it only drops slightly to 1.29 on the output of RIBOSOME,
which demonstrates its ability to primarily preserve the order
of packets according to the advanced scheduler.

6.3 RDMA Interference Analysis

Storing payloads on RDMA servers may impact applications
running on those servers, and specifically, their available net-
work and memory bandwidth.

Little impact of RDMA on memory bandwidth and CPU.
We generate RDMA operations that fill the NIC capacity
(nearly 100 Gbps) and verify that the CPU load is 0% as
RDMA traffic bypasses the CPU. We then use STREAM [30]
to benchmark the CPU-to-memory bandwidth. We see that
the available CPU-to-memory bandwidth decreases by ~25%
when using 100% of the NIC for RDMA operations. De-
spite such bandwidth decrease, RIBOSOME leaves plenty of
memory spare bandwidth on the RDMA servers.

RIBOSOME reactively releases network bandwidth re-
sources from RDMA servers. We craft a synthetic trace
where RIBOSOME does not split a specific traffic class and
forwards it directly to the RDMA Server 1. This “unsplit”
traffic gradually increases over time simulating an increased
bandwidth demand on Server 1. We run this experiment with-
out 3× multicasting enabled and we set the back-off RDMA
threshold at 40 Gbps. Fig. 9 shows the input throughput of
the “unsplit” traffic (violet line) and that of the four RDMA
servers. We see that the RDMA throughput on each RDMA
servers is around 7 Gbps at time 15s. When the “unsplit” traf-
fic reaches roughly 33Gbps (at time 16s), this event triggers
RIBOSOME’s control mechanism, which stops sending pay-
loads to Server 1 and redistributes the load on the other three
servers. In future work, we will design an adaptive algorithm
(instead of an on/off control mechanism) to share the NIC
bandwidth in a fine-grained manner. This will also decrease
the CPU memory controller utilization of RIBOSOME when
the server is used for a network workload.

1248 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 9: RIBOSOME stops sending payloads to Server 1
when it becomes overloaded.

6.4 ASIC Resource Usage

Table 3 shows the additional ASIC resources consumed by
RIBOSOME based on the Tofino compiler’s output. Overall,
RIBOSOME consumes a similar amount of VLIW Instructions
and Match Crossbar than TEA [21] and occupies a negligible
amount of TCAM. For SRAM memory usage, we allocate
1.5K×15×4B register entries to store headers while fetching
the payloads with RDMA, which suffice to sustain the 4µs
RDMA maximum response time. Moreover, RIBOSOME also
relies on several registers to store RDMA connections data,
which justifies the additional memory usage.

Resource Additional Usage
SRAM 7.84%
TCAM 1.14%

VLIW Instruction 13.82%
Exact Match Crossbar 13.92%

Ternary Match Crossbar 0.69%

Table 3: Additional ASIC resources used by RIBOSOME.

7 Discussion
How many NF-dedicated ports to achieve full-throughput
on a high-speed ASIC switch? Similarly to Tiara,
RIBOSOME only achieves half of the switch throughput as
half of the ports store payloads. One RIBOSOME server pro-
cesses up to 80 Mpps for a forwarding NF. We need to use
three ports of the switch exclusively for NF processing to
process the equivalent of 1.6 Tbps of 1 KB packets. With ad-
vanced NFs, we must reserve 6-7 ports on the switch whereas
Tiara requires 8 ports to connect its FPGAs. Replacing our
NF servers with FPGAs may lower the number of dedicated
ports to our lower bound of 3 ports, which is future work.
Can RIBOSOME offload heavy-hitter entries to the switch
after an insertion? Yes, this is doable (whenever the NF
function is realizable on a programmable switch) and similar
to what TEA or CRAB [22] do. We believe this optimization
is orthogonal to our approach and we leave it as future work.

8 Related Work
We discuss related work that we have not already mentioned.
Dedicated external devices. Several systems require send-
ing the entire packet to the NF processor [8, 15, 20, 26, 34–
36, 46, 49]. Gallium [48] enables offloading a part of the NF
processing on the switch, but complex processing still needs
to be executed on the NFs servers. In contrast, we minimize
the amount of dedicated resources needed to run complex
NFs by relying on shared resources to store and retrieve pay-
loads, thus minimizing the number of ports on the switch
connected to dedicated devices. Moreover, we present a novel
programmable buffer that supports packet schedulers or batch-
based NFs.
RDMA on a high-speed ASIC switch. TEA [21],
SwitchML [38], and Dart [24] all propose to use RDMA
directly on the Intel Tofino switch. TEA (SwitchML) im-
plements reliable (unreliable) RDMA transport. TEA code
is not publicly available. Unreliable RDMA does not sup-
port RDMA Reads. Dart sketches an implementation without
providing code. We implement reliable RDMA, evaluate bot-
tlenecks, and make all our code public.

9 Conclusion
We presented RIBOSOME, a high-speed stateful packet pro-
cessor that reduces the amount of dedicated NF processors
by carefully sending only headers to the external NFs. We
showed in our testbed that RIBOSOME scales throughput by
up to a factor of 3× with a single NF processor (potentially
up to 10× with additional RDMA servers for storing pay-
loads). We believe that RIBOSOME aligns with the current
trends towards disaggregating architecture in which resources
are shared for different purposes. We leave as future work the
fundamental problem of further improving the performance
of CPU-based NF processors given the observed high cost
of retrieving the flow state from memory (especially when
it resides outside the cache). Also, we will further investi-
gate optimizations for reducing packet-per-second overheads
introduced when splitting packets.

Acknowledgements
We would like to thank our shepherd Jeongkeun Lee, the
anonymous reviewers for their insightful comments and sug-
gestions on this paper. This work has been partially sup-
ported by the Swedish Research Council (agreement No.
2021-04212) and KTH Digital Futures. This work has re-
ceived funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and in-
novation programme (grant agreement No. 770889). Tom
Barbette has been funded by an FSR Post-doc Fellowship
from UCLouvain.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1249

References

[1] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast
userspace packet processing. In 2015 ACM/IEEE Sym-
posium on Architectures for Networking and Communi-
cations Systems (ANCS), pages 5–16, 2015.

[2] Tom Barbette, Cyril Soldani, and Laurent Mathy. Com-
bined stateful classification and session splicing for high-
speed NFV service chaining. IEEE/ACM Transactions
on Networking, 29(6):2560–2573, 2021.

[3] Tom Barbette, Erfan Wu, Dejan Kostić, Gerald Q.
Maguire, Panagiotis Papadimitratos, and Marco
Chiesa. Cheetah: A High-Speed Programmable
Load-Balancer Framework With Guaranteed Per-
Connection-Consistency. IEEE/ACM Transactions on
Networking, pages 1–14, 2021.

[4] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding Metamorphosis:
Fast Programmable Match-Action Processing in Hard-
ware for SDN. SIGCOMM Comput. Commun. Rev.,
43(4):99–110, aug 2013.

[5] Broadcom. Tomahawk4, 2022. https:
//www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56990-
series.

[6] CAIDA . Trace Statistics for CAIDA Passive OC48
and OC192 Traces, 2019. https://www.caida.org/
catalog/datasets/trace_stats/.

[7] Don Draper. TSMC’s 5nm 0.021um2 SRAM
Cell Using EUV and High Mobility Channel
with Write Assist at ISSCC2020, 2020. https:
//semiwiki.com/semiconductor-manufacturers/
tsmc/283487-tsmcs-5nm-0-021um2-sram-cell-
using-euv-and-high-mobility-channel-with-
write-assist-at-isscc2020/.

[8] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and
Implementation, NSDI’16, page 523–535, USA, 2016.
USENIX Association.

[9] Facebook. Katran Load Balancer, 2021. https:
//github.com/facebookincubator/katran/blob/
3fadb1eaaff719980a3cc9dc8870f88d442a40e1/
katran/lib/bpf/balancer_consts.h#L100.

[10] Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q.
Maguire Jr., and Dejan Kostić. PacketMill: Toward per-
Core 100-Gbps Networking. In Proceedings of the 26th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS 2021, page 1–17, New York, NY, USA, 2021.
Association for Computing Machinery.

[11] Hamid Ghasemirahni, Tom Barbette, Georgios P. Kat-
sikas, Alireza Farshin, Amir Roozbeh, Massimo Girondi,
Marco Chiesa, Gerald Maguire, and Dejan Kostic.
Packet Order Matters! Improving Application Perfor-
mance by Deliberately Delaying Packets. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), 2021.

[12] Massimo Girondi, Marco Chiesa, and Tom Barbette.
High-speed Connection Tracking in Modern Servers.
In 22nd IEEE International Conference on High Per-
formance Switching and Routing, HPSR 2021, Paris,
France, June 7-10, 2021, pages 1–8. IEEE, 2021.

[13] Swati Goswami, Nodir Kodirov, Craig Mustard, Ivan
Beschastnikh, and Margo Seltzer. Parking Packet Pay-
load with P4, page 274–281. Association for Computing
Machinery, New York, NY, USA, 2020.

[14] Vladimir Gurevich and Andy Fingerhut. P4_16
Programming for Intel Tofino using Intel P4
Studio, 2021. https://opennetworking.org/
wp-content/uploads/2021/05/2021-P4-WS-
Vladimir-Gurevich-Slides.pdf.

[15] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue
Moon. PacketShader: A GPU-Accelerated Software
Router. In Proceedings of the ACM SIGCOMM 2010
Conference, SIGCOMM ’10, page 195–206, New York,
NY, USA, 2010. Association for Computing Machinery.

[16] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio
Drago, Ramin Sadre, Anna Sperotto, and Aiko Pras.
Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix. IEEE Communications
Surveys Tutorials, 16(4):2037–2064, 2014.

[17] InfiniBand Trade Association. Supplement to Infini-
Band Architecture Specification - Annex A17: RoCEv2,
2014. https://cw.infinibandta.org/document/
dl/7781.

[18] Intel. Intel Tofino 3 Intelligent Fabric Processor
Brief, 2022. https://www.intel.com/content/
www/us/en/products/network-io/programmable-
ethernet-switch/tofino-3-brief.html.

[19] Intel. Intel Tofino Series, 2022. https:
//www.intel.com/content/www/us/en/products/

1250 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.caida.org/catalog/datasets/trace_stats/
https://www.caida.org/catalog/datasets/trace_stats/
https://semiwiki.com/semiconductor-manufacturers/tsmc/283487-tsmcs-5nm-0-021um2-sram-cell-using-euv-and-high-mobility-channel-with-write-assist-at-isscc2020/
https://semiwiki.com/semiconductor-manufacturers/tsmc/283487-tsmcs-5nm-0-021um2-sram-cell-using-euv-and-high-mobility-channel-with-write-assist-at-isscc2020/
https://semiwiki.com/semiconductor-manufacturers/tsmc/283487-tsmcs-5nm-0-021um2-sram-cell-using-euv-and-high-mobility-channel-with-write-assist-at-isscc2020/
https://semiwiki.com/semiconductor-manufacturers/tsmc/283487-tsmcs-5nm-0-021um2-sram-cell-using-euv-and-high-mobility-channel-with-write-assist-at-isscc2020/
https://semiwiki.com/semiconductor-manufacturers/tsmc/283487-tsmcs-5nm-0-021um2-sram-cell-using-euv-and-high-mobility-channel-with-write-assist-at-isscc2020/
https://github.com/facebookincubator/katran/blob/3fadb1eaaff719980a3cc9dc8870f88d442a40e1/katran/lib/bpf/balancer_consts.h#L100
https://github.com/facebookincubator/katran/blob/3fadb1eaaff719980a3cc9dc8870f88d442a40e1/katran/lib/bpf/balancer_consts.h#L100
https://github.com/facebookincubator/katran/blob/3fadb1eaaff719980a3cc9dc8870f88d442a40e1/katran/lib/bpf/balancer_consts.h#L100
https://github.com/facebookincubator/katran/blob/3fadb1eaaff719980a3cc9dc8870f88d442a40e1/katran/lib/bpf/balancer_consts.h#L100
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://cw.infinibandta.org/document/dl/7781
https://cw.infinibandta.org/document/dl/7781
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html

network-io/programmable-ethernet-switch/
tofino-series.html.

[20] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Re-
becca Steinert, and Gerald Q. Maguire Jr. Metron: NFV
Service Chains at the True Speed of the Underlying
Hardware. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
171–186, Renton, WA, April 2018. USENIX Associa-
tion.

[21] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon
Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Se-
shan. TEA: Enabling State-Intensive Network Functions
on Programmable Switches. In Proceedings of the An-
nual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communi-
cation, SIGCOMM ’20, page 90–106, New York, NY,
USA, 2020. Association for Computing Machinery.

[22] Marios Kogias, Rishabh Iyer, and Edouard Bugnion. By-
passing the Load Balancer without Regrets. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing,
SoCC ’20, page 193–207, New York, NY, USA, 2020.
Association for Computing Machinery.

[23] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal,
Neha Agarwal, Radoslaw Burny, Shakeel Butt, Jichuan
Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and
Parthasarathy Ranganathan. Software-defined far mem-
ory in warehouse-scale computers. In International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2019.

[24] Jonatan Langlet, Ran Ben-Basat, Sivaramakrishnan Ra-
manathan, Gabriele Oliaro, Michael Mitzenmacher, Min-
lan Yu, and Gianni Antichi. Zero-CPU Collection with
Direct Telemetry Access, page 108–115. Association for
Computing Machinery, New York, NY, USA, 2021.

[25] Tamás Lévai, Felicián Németh, Barath Raghavan, and
Gabor Retvari. Batchy: Batch-scheduling Data Flow
Graphs with Service-level Objectives. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 633–649, Santa Clara, CA,
February 2020. USENIX Association.

[26] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng,
Renqian Luo, Ningyi Xu, Yongqiang Xiong, Peng
Cheng, and Enhong Chen. ClickNP: Highly Flexible
and High Performance Network Processing with Recon-
figurable Hardware. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 1–14,
New York, NY, USA, 2016. Association for Computing
Machinery.

[27] Linux. perftest, 2022. https://github.com/linux-
rdma/perftest.

[28] Linux. RDMA Core, 2022. https://github.com/
linux-rdma/rdma-core.

[29] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis,
Jeongkeun Lee, Changhoon Kim, Xin Jin, Vladimir
Braverman, Minlan Yu, and Vyas Sekar. Jaqen: A
High-Performance Switch-Native approach for detect-
ing and mitigating volumetric DDoS attacks with pro-
grammable switches. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 3829–3846. USENIX
Association, August 2021.

[30] John D McCalpin et al. Memory bandwidth and ma-
chine balance in current high performance computers.
IEEE computer society technical committee on computer
architecture (TCCA) newsletter, 2(19-25), 1995.

[31] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. SilkRoad: Making Stateful Layer-4
Load Balancing Fast and Cheap Using Switching ASICs.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
’17, page 15–28, New York, NY, USA, 2017. Association
for Computing Machinery.

[32] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels
Bouten, Filip De Turck, and Raouf Boutaba. Network
Function Virtualization: State-of-the-Art and Research
Challenges. IEEE Communications Surveys Tutorials,
18(1):236–262, 2016.

[33] NVIDIA Networking. NVIDIA Mellanox ConnectX-
5 adapters, 2021. https://www.nvidia.com/en-us/
networking/ethernet/connectx-5/.

[34] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A. Maltz, Randy Kern,
Hemant Kumar, Marios Zikos, Hongyu Wu, Changhoon
Kim, and Naveen Karri. Ananta: Cloud Scale Load
Balancing. SIGCOMM Comput. Commun. Rev.,
43(4):207–218, aug 2013.

[35] Boris Pismenny, Liran Liss, Adam Morrison, and Dan
Tsafrir. The Benefits of General-Purpose On-NIC Mem-
ory. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’22), pages
1–18. Association for Computing Machinery, New York,
NY, USA, February 2022.

[36] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola,
Carmelo Cascone, Marco Spaziani, Valerio Bruschi, Da-
vide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, Felipe Huici, and Giuseppe Siracusano.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1251

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/

FlowBlaze: Stateful Packet Processing in Hardware. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 531–548, Boston,
MA, February 2019. USENIX Association.

[37] Waleed Reda, Marco Canini, Dejan Kostić, and Simon
Peter. RDMA is Turing complete, we just did not know it
yet! In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), Renton, WA,
April 2022. USENIX Association.

[38] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with In-
Network aggregation. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 785–808. USENIX Association, April 2021.

[39] Mariano Scazzariello, Tommaso Caiazzi, Hamid
Ghasemirahni, Tom Barbette, Dejan Kostic, and Marco
Chiesa. Ribosome Experiments Github Repository,
2022. https://github.com/Ribosome-Packet-
Processor/Ribosome-experiments.

[40] Mariano Scazzariello, Tommaso Caiazzi, Hamid
Ghasemirahni, Tom Barbette, Dejan Kostic, and
Marco Chiesa. Ribosome Github Repository,
2022. https://github.com/Ribosome-Packet-
Processor/Ribosome.

[41] Nicolas Le Scouarnec. Cuckoo++ hash tables: High-
performance hash tables for networking applications. In
Proceedings of the 2018 Symposium on Architectures for
Networking and Communications Systems, pages 41–54,
2018.

[42] Tom Shanley. Infiniband Network Architecture.
Addison-Wesley Longman Publishing Co., Inc., USA,
2002.

[43] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and
Arvind Krishnamurthy. Approximating Fair Queueing
on Reconfigurable Switches. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 18), pages 1–16, Renton, WA, April 2018.
USENIX Association.

[44] John Sonchack, Oliver Michel, Adam J. Aviv, Eric
Keller, and Jonathan M. Smith. Scaling hardware accel-
erated network monitoring to concurrent and dynamic
queries with *Flow. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 823–835, Boston,
MA, July 2018. USENIX Association.

[45] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve

Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communi-
cation, SIGCOMM ’18, page 561–575, New York, NY,
USA, 2018. Association for Computing Machinery.

[46] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong
Wang, Luyang Li, Wenchen Han, Nan Chen, Lebing
Wan, Lichao Liu, Zhipeng Ding, Xiongfei Geng, Tao
Feng, Feng Ning, Kai Chen, and Chuanxiong Guo. Tiara:
A Scalable and Efficient Hardware Acceleration Ar-
chitecture for Stateful Layer-4 Load Balancing. In
19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22), Renton, WA, apr
2022. USENIX Association.

[47] Lior Zeno, Dan R. K. Ports, Jacob Nelson, Daehyeok
Kim, Shir Landau-Feibish, Idit Keidar, Arik Rinberg,
Alon Rashelbach, Igor De-Paula, and Mark Silberstein.
SwiSh: Distributed shared state abstractions for pro-
grammable switches. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pages 171–191, Renton, WA, April 2022. USENIX
Association.

[48] Kaiyuan Zhang, Danyang Zhuo, and Arvind Krishna-
murthy. Gallium: Automated software middlebox of-
floading to programmable switches. In Proceedings
of the Annual Conference of the ACM Special Inter-
est Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’20, page 283–295, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

[49] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe,
Vyas Sekar, and Justine Sherry. Achieving 100Gbps In-
trusion Prevention on a Single Server. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 1083–1100. USENIX As-
sociation, November 2020.

A Experimental Setup

Fig. 10 depicts the experimental setup. The Traffic Generator
is connected to the Multicast Tofino with a 100-Gbps link. The
Multicast Tofino has four of its 100-Gbps ports connected
to the RIBOSOME Tofino, and it multiplexes the incoming
traffic from the Generator. It modifies each packet to have two
additional copies with different 4-tuple values before sending
them to the RIBOSOME Tofino. RIBOSOME Tofino is attached
to four commodity servers running the RDMA server, and
one server that implements the NF, all with 100 Gbps links.
When a packet is reconstructed after the NF processing, the
RIBOSOME Tofino sends it back to the Multicast Tofino. If

1252 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/Ribosome-Packet-Processor/Ribosome-experiments
https://github.com/Ribosome-Packet-Processor/Ribosome-experiments
https://github.com/Ribosome-Packet-Processor/Ribosome
https://github.com/Ribosome-Packet-Processor/Ribosome

the packet is an original one (with no flow modifications), it
is sent back to the Traffic Generator.

B RIBOSOME Tail Latency Impacts

Fig.11 demonstrates the impact of RIBOSOME on packets
99th percentile tail latency when the NF server is running a
simple forwarder.

C Recovering RDMA Queue-Pairs

We illustrate the implementation of the QP Recover mecha-
nism discussed in Sect. 3.

For supporting both RDMA Write and Read operations,
Queue-Pairs are created using the Reliable Connection trans-
port mode. This mode expects that packets are received in
the correct order, by checking their PSN. If a packet is out
of order, the QP sends back a PSN Error Nak, requesting the
retransmission. RIBOSOME’s implementation does not store
RDMA Write or Read Request packets in the switch (it only
keeps the current PSN). Hence, it is not able to retransmit a
Nak-ed packet. Additionally, Infiniband specifications limit
the maximum number of outstanding RDMA Read Requests
on each QP. If there are more of such requests, the QP transits
into an invalid state, sending an Invalid Request Nak.

To overcome these limitations, RIBOSOME exploits several
QPs on each server, and it also implements a QP recovery
mechanism, that allows to reset a QP in case of errors.

When the programmable switch receives a Nak, it puts the
corresponding Queue-Pair qi in a disabled state writing the
enabled_qp register to 0. The index i to access the register is
the DestQP field of the BTH header, that is the value Rqi = i+
(Server_ID∗Nqp). The enabled_qp register is periodically
checked by a control plane script, that takes all the entries
with a value of 0 and, for each index j, reads register qp at
index j. If the Queue-Pair ID is set, the switch writes another
register (called qp_to_restore) at index j with a value 1.

Traffic
Generator

RDMA
Server 1

RDMA
Server 2

RDMA
Server 3

RDMA
Server 4

Multicast Tofino

Ribosome Tofino NF

Figure 10: RIBOSOME testbed.

When receiving a packet in the Splitter component, if
the Queue-Pair qi is selected, and the value of enabled_qp
register at index i is 0, and the value of qp_to_restore
register at index i is 1, the packet is sent to the NF with-
out splitting it. Also, the packet is mirrored to the Egress
pipeline, and transformed into a simple Ethernet frame with
EtherType= 0x4321, containing the index of the Queue-Pair
to restore. The server agent has a raw L2 socket listening on
the interface used to open the connection. When the afore-
mentioned frame is received, the associated QP is reset and
re-initialized. At this point, a Server Queue-Pair Info packet
is sent to the switch, that re-enables the QP.

D Splitter and Rebuilder Components

We illustrate a high level overview of the two main
RIBOSOME’s components. Fig. 12 depicts the Splitter com-
ponent, while Fig. 13 shows the Rebuilder component.

E Custom Ethernet Frames and Headers

RIBOSOME leverages on several custom Ethernet frames to
identify a server connection, depicted in Fig. 14.

Also, the system uses two custom headers (showed in
Fig. 15), that contain information needed to retrieve a payload
and merge it with its correct headers:
a) Payload Info: appended to truncated headers when the

packet is split. The Marker field is used by the switch
to identify the header. The Payload Address indicates
the starting address of the payload in the remote RDMA
buffer. The Length field is the length of the payload in
the buffer. The Index is used by the switch to request the
payload on the same Queue-Pair used when sending the
RDMA Write request.

b) Header Info: appended to the Payload Info when the
packet is split. It is also prepended to the payload before
sending it to the remote buffer. The Pad Count field stores
the number of bytes of the Additional Padding field to
align the payload to a 4-byte boundary as per Infiniband

10 20 30 40 50 60 70 80 90
Input Rate (Gbps)

0.00

100.00

200.00

300.00

400.00

500.00

99
th

 p
er

ce
nt

ile
 la

te
nc

y
(μ

s)

Ribosome
Baseline

Figure 11: RIBOSOME 99th percentile latency of packets
w/wo existence of Ribosome.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1253

Craft RDMA Write

Headers Payload Info Header Info
Mirror and
Truncate

PayloadHeaders
Servers

Remote
Buffer

NF

Data Plane

Per-QP Data: [qp_number, enabled_qp, qp_to_restore, psn]
Per-Server Data: [mac, ip, base_addr, rkey, memory_offset]

Global Data: [header_chunks, current_hdr_index]

RoCEv2 PayloadPadHeader Info

Figure 12: RIBOSOME’s Splitter Component Overview.

Data Plane

RoCEv2
Store

Registers

hdrs_0 hdrs_1 hdrs_n…

Craft RDMA Read Request

Read PayloadHeaders

Merge

Destination

RDMA Read Response

NF

Per-QP Data: [qp_number, enabled_qp, qp_to_restore, psn]
Per-Server Data: [mac, ip, base_addr, rkey, memory_offset]

Global Data: [header_chunks, current_hdr_index]

Headers Payload Info Header Info

RoCEv2 PayloadPadHeader Info

Servers

Remote
Buffer

Figure 13: RIBOSOME’s Rebuilder Component Overview.

specifications [42]. The Header IDX indicates the index
of the register where the header processed by the NF is
saved while the switch is fetching the payload from the
remote buffer.

Code = 1
1 byte

Server ID
2 bytes

Remote Base Address
8 bytes

Remote Key
4 bytes

Ethernet
(Ether Type = 0x1234)

Server Memory Info

Code = 2
1 byte

Server ID
2 bytes

MAC Address
6 bytes

IP Address
4 bytes

Ethernet
(Ether Type = 0x1234)

Server Interface Info

Code = 0
1 byte

Queue Pair ID
4 bytes

Ethernet
(Ether Type = 0x1234)

Server Queue Pair Info

QP Switch Idx

2 bytes

Figure 14: Server Info Ethernet Frames.

Length
2 bytes

Payload Address
8 bytes

ETH Marker
4 bytes

IP
TCP/
UDP

Index
2 bytes

Pad Count
2 bytes

Header IDX
2 bytes

ETH IP UDP IB BTH RETH Padding
2 byte

Header IDX
2 bytes

Additional
Padding

Payload

Payload Info

Pad Count
2 bytes

Header Info

Header Info

Figure 15: RIBOSOME Headers.

F RDMA Latency Microbenchmark

We performed a microbenchmark of RDMA operations using
the Linux Infiniband perftest suite [27] on two servers,
equipped with Intel®Xeon®Gold 6140 CPU @ 2.30GHz,
and Nvidia Mellanox ConnectX-5 NICs. Fig. 16 shows the
average latency of 1 K iterations (y-axis) of both RDMA Read
and Write operations with different payload lengths (x-axis).

1254 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 16: RDMA Operations Microbenchmark.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1255

ExoPlane: An Operating System for On-Rack Switch Resource Augmentation

Daehyeok Kim†‡ Vyas Sekar§ Srinivasan Seshan§

†Microsoft ‡University of Texas at Austin §Carnegie Mellon University

Abstract
The promise of in-network computing continues to be unreal-
ized in realistic deployments (e.g., clouds and ISPs) as serving
concurrent stateful applications on a programmable switch is
challenging today due to limited switch’s on-chip resources.
In this paper, we argue that an on-rack switch resource aug-
mentation architecture that augments a programmable switch
with other programmable network hardware, such as smart
NICs, on the same rack can be a pragmatic and incrementally
scalable solution. To realize this vision, we design and im-
plement ExoPlane, an operating system for on-rack switch
resource augmentation to support multiple concurrent applica-
tions. In designing ExoPlane, we propose a practical runtime
operating model and state abstraction to address challenges in
managing application states correctly across multiple devices
with minimal performance and resource overheads. Our eval-
uation with various P4 applications shows that ExoPlane can
provide applications with low latency, scalable throughput,
and fast failover while achieving these with small resource
overheads and no or little modifications on applications.

1 Introduction
While recent efforts have demonstrated the feasibility of using
programmable switches to implement network functions, such
as NATs, firewalls, and load balancers (e.g., [4, 38, 46]) and
to accelerate distributed systems (e.g., [43, 44, 52, 55]), there
is still significant apprehension from practitioners whether
in-network computing is ready for prime time. In many ways,
this apprehension is justified as serving concurrent stateful
applications in production-scale clouds and cellular networks
is not possible today or in the foreseeable future. The fun-
damental issue is that due to limited on-chip resources (e.g.,
10s MB of SRAM), these switches cannot keep up with the
increasing number of stateful applications [33, 39] which op-
erators want to run on a switch and the demand to handle
heavier workloads in terms of traffic volume and flows [8,26].

Instead of arguing for beefing up the switch ASICs or cre-
ating hyper-optimized applications, we explore a pragmatic
alternative and make a case for on-rack switch resource aug-
mentation architecture. We envision a deployment that con-
sists of a programmable switch, other data plane devices (e.g.,
smart NICs [7, 11, 14, 18], and software switches running on
servers [19, 56]) connected to the switch on the same rack.
These external devices offer more resources to offload state-
ful packet processing, albeit with some performance penalty.

Perhaps more significantly, they offer a path to affordably and
incrementally scale the effective capacity of a programmable
network to handle future workload demands.

To effectively realize this vision of on-rack switch resource
augmentation, we argue that we need an operating system
(OS) to manage resources spread across multiple on-rack
devices. To borrow from Anderson and Dahlin [21], we can
draw a first-principles analogy to the three roles that any OS
serves: (1) a “glue” to provide a set of common services that
facilitate the sharing of resources among applications; (2) an
“illusionist” to provide an abstraction of physical hardware to
simplify application design; and (3) a “referee” for managing
resources shared between multiple applications. While there
is some recent work on mapping a single switch application to
heterogeneous devices or to augment memory (e.g., [30,40,42,
54]), these fundamentally do not tackle multiple concurrent
applications or provide these capabilities.

However, realizing such components in our context is
uniquely challenging because of hardware and workload char-
acteristics. More specifically, we observe that managing states
correctly while minimizing the performance and resource
overhead is difficult, especially under high packet processing
speed and dynamically changing workloads. In our setting,
application states can be placed, and workloads (i.e., packets)
can be executed on multiple devices. Thus, state management
becomes critical for application correctness (e.g., accessing
incorrect state), performance (e.g., high packet processing
latency due to inter-device communications), and resource
overhead (e.g., additional switch resources).

In designing ExoPlane,1 an OS for switch resource aug-
mentation, we address these challenges as follows:
• Runtime service (the glue): To avoid frequent inter-device

communications during packet processing, we propose
a packet-pinning operating model that guarantees that a
packet is processed entirely on a single device.

• State abstraction (the illusionist): To enable correct stateful
processing of packets even under dynamically changing
workloads, we design a two-phase state management that
places application states correctly on different devices as
the workload changes. We also design appropriate levels
of consistency for different types of stateful objects that
appear in applications.

1The name denotes an external (exo-) data plane.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1257

Applications States

Per-tenant VPN gateway +
Packet counter

Ext.-to-int. tunnel mapping and processed
packet counter for each tenant.

Per-tenant NAT Per-flow address mapping for each tenant. Per-
flow address mapping for each tenant.

Per-tenant ACL + Filtered
packet counter

Per-flow ACL and dropped packet counter for
each tenant.

Sketch-based monitor UnivMon [45] for remaining traffic classes.

Table 1: P4 applications deployed in a gateway switch of the data
center in our motivating scenario.

• Resource allocation (the referee): To achieve performance
and policy goals specified by developers and operators, we
formulate and solve an optimal resource allocation prob-
lem that accommodates heterogeneity across applications
and data plane device capabilities.
ExoPlane consists of two key components: the planner

and runtime environment. The planner takes multiple P4 [25]
applications written for a switch with no or little modifications
and optimally allocates resources to each application based
on inputs from a network operator and developers. It requires
developers to add application-specific logic using our APIs
only if the program contains an object that can be updated
in the data plane. Then, the ExoPlane runtime environment
executes workloads across the switch and external devices by
correctly managing state, balancing loads across devices, and
handling device failures.

We implement the planner in C++, the data plane of the
runtime environment in P4, and the control plane of the
runtime environment in Python and C++. We evaluate it
using various P4 programs in our testbed consisting of a
Tofino-based programmable switch [9] and servers equipped
with Netronome Agilio CX smart NICs [7]. Our evaluations
show that ExoPlane achieves low latency (e.g., ≈300 ns at
the switch and 5.5 µs at an external device in steady-state)
and scalable throughput with more external devices (e.g., up
to 394 Gbps, the maximum rate in our testbed). In case of
an external device failure, ExoPlane can recover an end-to-
end TCP throughput within 200 ms. ExoPlane achieves these
with small control plane (a few tens MB) and switch ASIC
resource overheads (less 4.5% of ASIC resources).

2 Motivation and related work
In this section, we motivate the need for supporting multiple
concurrent stateful applications in the network, provide a
primer on in-switch stateful applications, and discuss why
prior work falls short.

2.1 Motivating example
We observe two key trends in in-network computing that
increase demands on switch resources. First, the number
of applications that need to run concurrently will likely in-

104 105 106 107

Number of flows

0.1

1.0

10.0

N
or

m
.

S
R

A
M

re
q

.

Infeasible

(a) Four applications with varying
numbers of flows (log-scaled).

1 2 3 4

Number of applications

1

2

N
or

m
.

S
R

A
M

re
q

.

Infeasible

(b) Varying number of applications
with 1 million flows.

Figure 1: SRAM requirements (normalized to the total amount of
SRAM on a switch) with varying workload sizes and numbers of
applications. If the requirement > 1, it is infeasible.

crease [33,39]. Second, the per-app workload size in terms of
traffic volume and the number of flows keeps growing [8, 26].

As a concrete example, suppose a cloud or cellular operator
wants to deploy four applications in Table 1 on the edge router
(e.g., [47, 49]) processing traffic entering/leaving the network.
Each application maintains per-flow states for each tenant to
enable virtual private networks (VPN gateway), route traffic
from tenants’ on-premise networks to VMs running services
(NAT), or control access to services running on tenants’ VMs
(ACL). The sketch-based monitor collects statistics for the
remaining traffic classes using an UnivMon sketch [45]. To
see if/how these applications can coexist, we implement them
in P4 or use source code from the original authors, compose
them into a single P4 program using our merger (described
in §6) and compile the result using the Tofino P4 compiler.

Unfortunately, we find that enabling these applications
concurrently in a switch is infeasible for typical work-
loads, which requires the support of at least 1M concurrent
flows [28, 46, 47], as shown in Fig 1. We consider two scenar-
ios: (a) running all four applications but varying numbers of
concurrent flows per application and (b) fixing the number of
flows to 1M but adding applications incrementally. Here, we
use SRAM requirements from each application, normalized
(due to vendor NDAs) to the total amount of SRAM on a
switch, which is the bottleneck resource in our scenario. In
Fig 1a, we see that as the workload increases, it becomes in-
feasible to run all the applications. Similarly, in Fig 1b, we
see that the switch can support only a single application.2

2.2 Stateful switch applications
Before we discuss why prior work cannot tackle the above
problem, we provide a brief primer on stateful in-switch ap-
plications, where a state on the switch determines how to
process packets. A typical program (p) contains one or more
stateful objects (oi), each of which can be represented as a P4
construct [25] such as a match-action table and a register.3

Each object contains state data in the form of key-value pairs
((Koi ,Voi)) and actions. For example, a register in P4 consists

2In Fig 1b, adding the 4th app does not increase the SRAM usage much
because the sketch’s SRAM usage is independent of the number of flows.

3While our focus of this paper is on P4, other programming languages
for programmable switches such as NPL [15] provide similar constructs.

1258 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Control Plane Program

Key: SrcIP
Val: 4B int.

Pkt Counter (o2)

Key: 5-tuple
Val: Bool

Stateful FW (o1)

Key: dstIP
Val: Port #

Forward (o3)

❶

❸❷

Packet

P4 program (p)

❹

Figure 2: An abstract P4 application and runtime model. An ap-
plication consists of multiple stateful objects (white boxes) and the
control plane logic (blue arrows).

of a data array and actions that access the array. Fig 2 shows
an example stateful P4 program (p) with three objects (o1–o3).
Each object requires some amount of memory (e.g., SRAM)
for state data and compute resources (e.g., stateful ALUs
(SALUs)) for actions. The vendor-provided compiler (e.g.,
Tofino P4 compiler) allocates resources to each object using
proprietary heuristics; if it cannot find a feasible allocation,
the compilation will fail.

Once the program is successfully compiled and loaded to
a pipeline, it can process incoming packets using its stateful
objects; e.g., the firewall application in Fig 2 tracks active
connections and drops unwanted packets from the Internet
that do not belong to active connections. At runtime, the
control plane logic can access the objects in the data plane
(e.g., inserting a new entry to the stateful FW object). Note
that in the current switch architecture, inserting and deleting
entries from a match-action table can be done only via the
control plane. From the data plane, a packet only can look up
an entry from the table. Registers can be read and updated by
both the data and control plane. For example, in Fig 2, when
a packet from an internal network comes in and if a state miss
occurs at the stateful FW (1), it reports the packet to the
control plane program (2) that inserts new entries for the
packet (or flow) (3). Optionally, it sends the packet back
to the data plane (4) so that it can be processed with the
inserted entries.

2.3 Prior work and limitations
At a high level, our work is related to prior efforts in switch
program composition (e.g., [32, 53, 58, 59]), recent efforts to
tackle switch resource constraints (e.g., [30,40,54]), and prior
work in the software stateful NF literature (e.g., [31,36,37,50,
57]). While these efforts are valuable, they do not tackle the
problem our motivating scenario poses—multiple concurrent
switch applications with demanding workloads.

Language and framework for application composition.
Some prior works attempt to support multiple data plane
programs or modules in a single device [32,53,58,59]. For ex-
ample, software-based virtualization approaches such as Hy-
per4 [32] and HyperV [58] allow composing multiple P4 pro-
grams with a constrained programming model. P4Visor [59]
merges different versions of a program resource-efficiently.
However, they fail to work when the amount of resources

required by the composed program exceeds the available re-
sources in the switch.

Leveraging external resources. TEA [40] provides a vir-
tual table abstraction for a single switch application to access
remote DRAM for a large lookup table. While TEA can be
extended for an application with multiple tables, it requires
multiple remote memory accesses, affecting application’s per-
formance. Flightplan [54] takes a single application written
with custom annotations and disaggregates it to multiple de-
vices. Developers need to manually partition the application
so that each device runs only a particular portion of the appli-
cation. Lyra [30] proposes a custom language for writing a sin-
gle application split across multiple heterogeneous switches.
None of these considers multiple applications.

Server-based network functions. In the context of server-
based NFs, previous work augments servers’ resources by
leveraging remote compute and storage resources, especially
to manage NF state [31, 36, 37, 50, 57]. However, they are not
directly applicable in our setting due to the workload charac-
teristics of switch applications and hardware constraints.

3 Overview
In this section, we make a case for on-rack switch resource
augmentation and discuss the challenges in realizing it.

3.1 Case for on-rack augmentation
Given the above trends and limitations of prior work, one can
consider several candidate approaches; e.g., optimizing appli-
cations to reduce resource footprint or adding more resources
to switch ASIC. While these are valid, they have limitations;
e.g., applications, even if optimized, may have high resource
usage, especially with changing workloads, and extending
switch hardware is expensive.

We explore a practical alternative and envision an on-rack
switch resource augmentation architecture consisting of a pro-
grammable switch connected to a few other programmable
external devices on the same rack. For example, we can al-
locate 2U of rack space, where a programmable switch is
located, to install a server equipped with four 100 Gbps NPU,
DPU, or FPGA-based smart NICs [6, 18, 34] connected to the
switch. While these NICs provide a lower packet processing
rate (up to a few 100s Gbps), compared to hardware switches
(a few tens Tbps), they have more resources (e.g., a few GB
of DRAM vs. a few 10s MB of SRAM) to support demanding
workloads. This architecture provides a practical deployment
solution as it takes up limited space and does not require
changes to other parts of the network.

Deployment assumptions. In this context, we assume the
following deployment capabilities: (1) A switch and external
devices located on the same rack are programmable with the
same set of P4-16 [10] constructs (e.g., tables and registers),
and we have blackbox access to vendor P4 compilers; (2)
External devices have enough memory (e.g., a few GB) to

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1259

store all states for multiple applications;4 (3) Each application
handles its own non-overlapping subset of traffic, called a traf-
fic class, with no inter-app dependencies (i.e., a given packet
is processed by only a single application). This simplifies our
design for merging programs, but it is also a limitation of our
current design;5 (4) The number of switch pipeline stages is
not a bottleneck resource; and (5) Stateful objects that can be
updated in the data plane, which we call data plane-updatable
objects, only maintain mergeable statistical data (e.g., packet
counter) that do not impact the control flow.

3.2 ExoPlane architecture
While the vision of on-rack switch resource augmentation is
promising, to realize it in practice, we need to effectively share
resources available on multiple devices across multiple appli-
cations. Drawing an analogy from traditional computing [21],
ideally, we need an OS to provide an infinite switch resource
abstraction. That is, application developers and network oper-
ators can express their programs and requirements at a higher
level of abstraction without worrying about the complexities
of managing and multiplexing the resources on heterogeneous
devices. While some early efforts have leveraged resources
on heterogeneous devices for individual in-switch applica-
tions [30, 40, 54], they do not provide the OS-like capabilities
and abstractions for multiple concurrent applications.

A classical OS multiplexes multiple applications on the
limited CPU/memory by choosing when, and what processes,
to swap in/out. Our workload is a set of incoming packets
mapped to various in-switch applications. In this setting, state
management becomes especially critical to system perfor-
mance and resource overheads. To see why, let us consider
two seemingly natural strawman solutions:
• In an app-pinning model, an application is pinned to a

single device by placing the entire application states only
on that device, and thus a packet is entirely processed
on the device without requiring additional logic. In this
model, there is no additional processing latency due to
inter-device rerouting and resource overhead. However,
since the application can only run on that particular device,
its throughput and available resources are limited.

• Alternatively, we can consider a full-disaggregation model
where an application can run on multiple devices, and a
packet also can be processed on multiple devices. Since
application states can be placed on any device, it has more
available resources. However, depending on the availability
of the state, a packet needs to be routed between the switch
and the external device multiple times. Such frequent inter-
device routing increases packet processing latency and

4We acknowledge that not every P4-programmable device supports all the
features used by a switch application. According to our conversations with
vendors, they plan to add such missing features, so this is not a fundamental
limitation. Nonetheless, our design adapts such devices as well by considering
app-to-device compatibility.

5One possible approach for this is to apply offline preprocessing steps to
convert overlapping subsets into an equivalent non-overlapping set [48].

On-rack resource augmentation arch.

ExoPlane planner (§5)

P4 programs
Developer(s)

Network
Operator

•App-specific requirements
•State synchronization logic

•Profiling P4 programs
•Optimal resource allocation
•Merging P4 programs

Prog.
Switch

External
devices

ExoPlane runtime environment (§4)
•Workload placement
• Load balancing and fault handling

•Device information
•Cross-app requirements
•Objective functions Merged P4 program

Long-term
planning

Short-term
management

System input

Figure 3: ExoPlane Overview: Green boxes represent inputs and
yellow and blue boxes indicate key modules.

makes it unpredictable. This approach incurs high resource
overhead due to per-object inter-device processing logic to
route packets to a particular device and resume processing
at that object on the device. Furthermore, this approach
consumes significant link and device bandwidth.
Building on the above insights, we adopt a packet-pinning

model that pins a given packet to one device (i.e., the switch
or an external device) where it is processed entirely while
providing flexibility in placing an application and its flows on
any device. First, it can avoid frequent per-packet inter-device
routing with much lower complexity. Second, our observation
from real network traces shows that only a small fraction of
popular flows serve the majority of traffic for a given applica-
tion (e.g., 6% of flows takes more than ≈80% of an Internet
backbone traffic [20]). By placing these popular flows on
the switch, we can process the majority of the packets at the
switch, while the rest are processed at the external device.

ExoPlane implements the packet-pinning operating model
via two key components (Fig 3):
• The ExoPlane planner takes inputs from developers and

the network operator and allocates resources on the switch
and external devices to each application.

• The ExoPlane runtime environment places workloads
on devices, manages app states, and handles external de-
vice failures. In particular, at runtime, it tracks workload
changes (i.e., new flows arrive or flow popularity changes)
and updates the application’s objects at the switch and
external devices according to the changes.
As illustrated in Fig 3, to run applications on ExoPlane,

developers provide P4 program codes and app-specific re-
quirements (e.g., affinity to the switch). Note that ExoPlane
requires application modifications only if it contains a data
plane-updatable object whose copies can exist on multiple
devices. The operator provides information on devices (e.g.,
resource types), cross-app workload (e.g., traffic distribution),
and an objective function. The ExoPlane planner profiles the

1260 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

applications to determine compatibility with each device and
estimated resource usage, and performance. It then computes
an optimal resource allocation and generates a merged P4 pro-
gram. It compiles the merged program using vendor-provided
P4 compilers (e.g., Tofino compiler) and loads the binaries to
the switch and external devices. At runtime, the ExoPlane run-
time environment executes the workload (i.e., packets) across
the switch and external devices.

3.3 Design challenges
While the packet-pinning model for concurrent applications
seems promising, managing resources and application states
correctly in practical settings present three challenges:
C-1. Correctness under new flow arrivals and popularity
changes. When the traffic workload changes, we need to
update the application’s objects at the switch. We find that
this can lead to incorrect packet processing due to the slow
control plane operations. Also, when there are multiple copies
of a data plane-updatable object across devices, those copies
can be updated simultaneously. Unfortunately, it is infeasible
to adopt shared object synchronization schemes used in server-
based systems [31, 50, 57] due to hardware constraints.
C-2. Handling multiple devices and device failures. While
one can add more external devices to extend resources or
processing capacity, we find that just adding more devices
would not be effective due to possible access load imbalance
across the external devices. Also, when an external device
fails, we need to detect and react to the failure rapidly.
C-3. Meeting objectives across applications. Given multiple
applications, we have to share resources among them properly
while considering per-app and cross-app objectives provided
by an operator and developers.

4 ExoPlane runtime environment
In this section, we discuss the design of the ExoPlane run-
time environment. For clarity, we start with a few simpli-
fying assumptions—a single instance of an external device,
steady state traffic with no workload changes, no data plane-
updatable state, no device failure, and a single application.
We relax these assumptions subsequently.

4.1 Packet-pinning operating model
Recall from §3.2 that the packet-pinning model ensures that
each packet is processed at a single device only (i.e., requires
at most a single round-trip between the switch and an ex-
ternal device). Here, we load an application binary and all
the state entries on an external device with a subset of entries
loaded along with the application on the switch. As mentioned
in §3.1, an external device has a few GB of DRAM, which
is enough to store all the state entries (requiring up to a few
hundred MB for a few million entries). If there is no entry for
an incoming packet at the switch, the packet is routed to an
external device as all the state entries needed to process the
packet will be available.

Key: SrcIP
Pkt Counter

Key: dstIP
Forward

Key: SrcIP
Pkt Counter

Key: dstIP
Forward

Flow 1
Flow 2
Flow 3

Key: 5-tuple
Stateful FW

Key: 5-tuple
Stateful FW

Switch data plane

External device data plane

Check if a flow
is popular

UKey: 5-tuple
Flow manager

Figure 4: Our runtime environment processes most traffic at the
switch and the rest at the external device. The green box is a per-app
flow manager, and UKey indicates the app’s union key.

However, naïvely implementing the packet-pinning model
has two potential problems. First, if we do not carefully
choose which entries to place on the switch, a high volume
of traffic will be routed to the external device, and it becomes
overloaded, limiting the throughput. Second, since an en-
try miss can happen for an arbitrary object, per-object inter-
device processing logic is needed to handle such cases. Such
additional logic incurs switch data plane resource overheads.

To tackle this, we propose a union-key based state manage-
ment to process a majority of traffic for an application at the
switch and the remaining at the external device (Fig 4). We
define a union key type (UK) for an application as the union
of key types of its constituent objects (UK =∪iKoi). A flow is
a set of packets with the same union key value. For example,
in the figure, an IP 5-tuple is the union key type, and packets
with the same IP 5-tuple form a flow.

Having defined the union key, we can use traffic workload
characteristics to enable the switch to serve the majority of
traffic for the application. Specifically, we build on the obser-
vation that the distribution of flow keys (including the union
key) is skewed in typical networks. For example, we measure
the distribution of IP 5-tuple which is the union key of our ex-
ample application, by analyzing packet traces collected from
an Internet backbone [20] and a university data center [22]
(Fig 15 in Appendix C illustrates the distributions). For both
cases, we see that a small fraction of the keys contribute to
the majority of the traffic; ≈6% of keys in the backbone and
≈10% of keys in the data center take more than ≈80% of
traffic. The skew persists across measurement epochs (5 mins
and 1 min for the backbone and data center, respectively). We
also confirm the skew exists for other coarse-grained keys
such as the source IP. This suggests that we can serve most of
the traffic at the switch by placing a few popular union keys
(e.g., 516 entries for 80% in the data center trace).

Based on this, we employ a per-app flow manager (the
green box in Fig 4 and denoted as oFM) at the switch, which
maintains a list of popular union keys for an application and
checks if the key of an incoming packet exists in the list when
it arrives. If the key exists (i.e., the packet is from a popu-
lar flow), the packet is processed at the switch. Otherwise, it
is routed and processed at the external device. This allows
for low overhead by avoiding per-object inter-device process-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1261

Key: SrcIP
Pkt Counter

UKey: 5-tuple
Flow manager

Key: dstIP
forward

Key: 5-tuple
Stateful FW

Switch control plane

Switch data plane

Flow 1

❶ ❷❻

❺

Entry deleted �
Packet dropped!

❹

❸

Figure 5: Incorrect state eviction: application’s state has been re-
moved while there is a packet being processed.

ing. Taken together, our packet-pinning model and data plane
design provide the following correctness property:

Invariant 1 (Packet-pinning model) For each application,
if the flow manager (oFM) has the packet’s union key
(UK(pkt)), the constituent objects (oi) must have entries
(Koi(pkt)) for the packet. Formally,

∀pkt : UK(pkt) ∈ oFM =⇒ ∀i : Koi(pkt) ∈ oi.

4.2 Handling workload changes
So far we assumed a steady state—(1) no new flows and (2) no
changes in flow popularity. Next, we discuss how we handle
new flows and popularity churn.
Handling new flows. When a packet belonging to the new
flow arrives at the switch, and if a miss occurs in the flow
manager, it routes the packet to the external device. There are
two cases for the miss: (1) the first packet of the new flow or
(2) a packet of an existing flow for which the flow state is not
at the switch. Since these two cases are indistinguishable from
the view of the flow manager, it always routes packets with
misses to the external device. When a packet of the new flow
arrives at the external device, it must first be processed by the
application’s control logic for handling new flow arrivals. In
our example, the stateful FW table reports the packet to the
control logic that inserts entries for the flow to three objects.
The control logic also asks the control logic running on the
switch to initialize the flow state at the switch data plane,
which can succeed only when there is a space on every object.
Depending on the application logic, the packet can be sent
back to the data plane and processed with the new entries. If
the flow state has been initialized both at the switch and the
external device, the switch will process subsequent packets in
the flow. Otherwise, the external device will process them.
Promoting popular flows. In practice, the popularity of flows
can change, and we need to promote and demote flow states
as needed. Suppose we know which flow keys become pop-
ular (i.e., their entries are currently not on the switch) and
unpopular (i.e., their entries are currently on the switch). We
discuss how we track this in §6.

When promoting a new popular flow (i.e., installing state
at the switch), there are two possibilities: (1) there is spare
space in the flow manager and application’s other objects
for new entries vs. (2) there is no room in the objects. For
(1), we can simply insert new entries to the objects. For (2),
however, we need to evict some unpopular flow to make room.

Key: SrcIP
Pkt Counter

PKey: 5-tuple
Flow manager

Key: dstIP
Forward

Key: 5-tuple
Stateful FW

Switch control plane

Switch data plane

Flow1

❹ ❺❷

❸❶

❻

Phase 2Phase 1

Figure 6: Correct two-phase state eviction.

Doing so correctly is challenging. Fig 5 illustrates why via a
naïve mechanism can violate Invariant 1. Suppose that flow 2
becomes popular while flow 1 becomes unpopular, and there
is no room for inserting new entries. Thus, the switch control
plane tries to replace the entries for flow 1 with the flow 2’s.
It first evicts entries for flow 1 from application objects (FW,
Counter, and Forward) as well as the flow manager (blue
arrows in Fig 5). However, in the current switch architecture,
a set of eviction operations (blue arrows) cannot be executed
atomically. Thus, there could be cases where state entries have
been removed while packets are being processed in the data
plane (5), violating Invariant 1. Even if eviction is correct,
insertion can be incorrect. That is, during the time the switch
control plane tries to insert entries for a flow, packets for the
flow arrive and are looked up the flow manager. If the entry
exists, the packet must be processed completely at the switch.
However, since entries in other objects may not be available,
the packet cannot be processed and will get dropped.

Two-phase state update. To address the issues, we adopt
a two-phase state update mechanism, inspired by classical
two-phase update or commit protocols [23, 51]. As illustrated
in Fig 6, when evicting entries for flow 1, in the first phase, the
switch control plane evicts an entry from the flow manager.
Since there can be some packets being processed in the switch
data plane, it waits for a certain period (Tf lush) to flush out the
packets. Then, in the second phase, it evicts entries from the
application’s objects. This mechanism ensures that all packets
that arrive at the switch before the entry of the flow manager
has been evicted are correctly processed in the switch. When
it evicts entries from the application’s objects, it ensures that
entries for other non-victim flows will remain. The insertion
works similarly. To insert entries for a flow, in the first phase,
the switch control plane inserts entries to the objects, and then
in the second phase, it inserts an entry to the flow manager.

4.3 Synchronizing shared stateful objects
The previous discussion considers scenarios with no cross-
flow objects that can be updated at runtime, which meant
there was no need for objects on an external device and the
switch to be synchronized. In practice, applications may have
such objects; e.g., per-SrcIP packet counter in our example
is shared across flows. Next, we extend the basic ExoPlane
protocol to handle such objects.

Consistency modes. P4 programs can have two types of
stateful objects: (1) control plane-updatable object can be
updated only from the control plane, such as a match-action

1262 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7 9 10 11 12 13 18
Switch
Data plane

External device
data plane

Time

3

0�2

2

1 2 3 4 7 8 9 10 18

Snapshot taken Commi�ed

7+

4+ 10+

13+

13

2�7

5

2

0�3

3

10

3�11

8

External device
control plane

Switch
Control plane

❶ Take a snapshot

❷ Compute

❸ Commit

Figure 7: Our state synchronization protocol synchronizes two
copies of an entry in the packet counter. The switch and external
device’s control plane maintain the history (H) of entry updates.

table and (2) data plane-updatable object can be updated from
the data plane, such as a register. Correspondingly, ExoPlane
provides two levels of consistency. Control plane-updatable
objects are rarely updated (e.g., a stateful firewall table entry
is inserted only for the first packet of each flow generated
from an internal network) and an exact value is critical for
correct behavior (e.g., allowing packets for an established
TCP connection). Thus, for this type, we provide a strong
consistency. In contrast, data plane-updatable objects can
be updated more frequently (e.g., per-SrcIP packet counter is
updated for every packet) in the data plane and typically do not
require strong consistency since they maintain approximate
or statistical information (e.g., packet counters and sketches).
Thus, for data plane-updatable objects, we provide bounded
inconsistency within a configurable time bound Tε (e.g., 1 s in
our prototype). As mentioned in §3.2, we consider bounded
inconsistency only for mergeable statistical stateful objects.

Supporting strong consistency for control plane-updatable
objects is straightforward; when the external device’s control
plane receives a request for updating (or inserting) an entry
to an object with a key (e.g., a SrcIP), it updates (or inserts)
all entries corresponding to the key existing at the external
device and the switch.

Bounded inconsistency for data plane-updatable objects
is more challenging. Consider the per-SrcIP packet counter
implemented using a P4 register array. Suppose that for a
given SrcIP, there are two copies placed on the switch and
the external device that can be updated simultaneously. To
achieve bounded inconsistency, the ExoPlane runtime needs
to periodically merge values of the copies. Traditional tech-
niques for state merging in server-based network functions
(e.g., [31,50,57]) are impractical in our context since they rely
on buffering incoming packets and pausing processing while
synchronizing copies. This is expensive and even infeasible
in the switch because packet rates are much higher, and we
cannot buffer arbitrary packets during synchronization.
Our approach for bounded inconsistency. We devise a state
synchronization protocol that achieves bounded inconsistency
without needing packet buffering. We do so by combining
the capabilities of both the switch and the external device’s

control and data plane. We use the control plane’s memory to
track the history of periodic synchronizations while executing
the merge operation in the data plane.

Let us revisit our packet-counter example from Fig 7. The
control plane of each device maintains per-entry metadata
including the current snapshot (SS) and a history (H) of an
entry value on the other side (i.e., the switch tracks the history
of the external device and vice versa). When there are mul-
tiple objects that need to be synchronized, the control plane
maintains metadata for each object. We discuss the overhead
of maintaining the metadata in §7.5. For every Tε seconds, the
switch control plane initiates synchronization by sending its
SS and the H, and the external device’s control plane replies
it with its snapshot and history; in Fig 7, the switch control
plane takes the snapshot of the packet counter (1) and sends
<SS=3, H=0> to the external device, and the external device
sends <SS=2, H=0> back. Then, each side computes the
changes that have been made on the other side (δ) after the
previous synchronization round by subtracting two history
values from the received snapshot value (2). This prevents a
potential under or double-counting issue. Lastly, the control
plane of both sides injects a special control packet containing
δ to the data plane to merge the changes to the latest state
value (3). Note that our protocol synchronizes the copies
of states correctly even when the external device fails and
recovers. This is because the switch maintains the progress
that the external device had made until the failure happened
(H) and provides this information to the recovered device to
resume the synchronization from the state when it failed.

Generally, our protocol supports mergeable key-value pair
states for most stateful objects implemented using P4 registers.
We provide a developer with an interface to specify object-
specific merge operators consisting of an addition (◦+) that
merges two values and an optional subtraction (◦−) operator
that subtracts one value from the other, which are used by our
protocol to compute δ and commit the update. For example, a
Bloom filter [24] can be expressed as (Key: an integer, Value:
{0, 1}) pairs with the binary OR as ◦+ (no subtraction operator
is needed). We provide a detailed pseudo-code in Appendix B.

4.4 Scaling to multiple devices
Thus far, we have assumed that there is a single external
device. However, in practice, a single device instance may
not provide enough processing capacity or resources. To use
multiple devices, ExoPlane shards entries in objects across the
devices based on the union key. When an entry miss occurs at
the flow manager, it routes a packet based on the union key to
a specific external device that has state for the key. However,
the skewness in the union-key space (§4.1) could result in load
imbalance across the devices (i.e., a subset of devices can be
overloaded). Fortuitously, the small fraction of popular entries
we already have at the switch is helpful for load balancing.
Prior analysis in storage systems shows that caching at least
O(N logN) popular entries where N is the number of backend

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1263

Device ()
Resource types ()

: Compa�bility of on

: Resource footprint of to serve on

: Per-packet processing latency on

App
profiler

P4 app code ()

: Frac�on of traffic assigned to each quantum

Figure 8: Example inputs for an application p.

servers (in our context, external devices), guarantees uniform
load balancing across the servers regardless of the skew [29].
Thus, by placing ≥ O(N logN) popular union keys at the
switch, we can provide the cache effect for load balancing.

4.5 Handling external device failures
Application state loss due to failures can affect the perfor-
mance or correctness of applications [41]. Specifically, we
consider the failure model where an external device (or its
hosting machine) fails or a network link between the switch
and the device fails.6 To deal with state loss due to such fail-
ures, the ExoPlane runtime environment replicates each flow
state to at least one additional external device when initiating
flow entries, and when the primary device fails, it falls back
to a replica. It does so by managing the logical to physical
external device ID mapping at the switch, where the primary
and replicas share the same logical ID. However, even if there
is a replica, if we cannot detect failures and route packets
to the replica quickly, the application performance can be
degraded (e.g., due to packet drops). To enable rapid failure
detection and reaction, we repurpose the packet generation
engine of the switch ASIC (which is typically used for diag-
nosis), similar to previous work [40]. We configure the engine
to generate a packet when ports go down. By processing the
generated packet, the runtime environment updates the exter-
nal device ID table in the data plane. Using the table, it can
route subsequent packets to the replica.

5 ExoPlane planner
Next, we tackle the issue of sharing resources across multiple
applications while meeting the performance objectives given
by developers and operators. The resulting ExoPlane plan-
ner consists of a resource allocator and an application merger.
The resource allocator finds an optimal resource allocation
using inputs from the developers and the network operator.
The application merger generates a merged P4 program based
on the optimal allocation decision. Fig 8 illustrates example
inputs for an ensemble of applications.

Inputs. Developers provide a set of P4 programs (p), each
of which consists of a set of stateful objects. For each object,
developers specify the required size (e.g., the number of en-
tries in a table or register). Optionally, they can also specify

6We do not consider the failure of the switch itself since in that case,
packets cannot be processed in our deployment model (§3.1) where the
switch is the single entry point of the architecture.

a high, medium or low affinity to the switch for each app. If
the affinity of an application is set to high (or low), the appli-
cation will run entirely at the switch (or at external devices).
The network operator provides cross-app and per-app traffic
information, which includes the fraction of all traffic served
by each application out of the entire traffic arriving at the
switch (Wp) and the cumulative traffic distribution (Dp) over
the union key space. While using a fraction of traffic served
by each key provides the most fine-grained information, we
find that it could make the search space for resource allocation
too large. Instead, we use the distribution discretized into a
larger quantum size denoted as Qp. Based on Dp, we compute
the estimated fraction of traffic served by each quantum q
(Fp,q). The operator also provides resource information (r)
for devices (i). This includes SRAM, TCAM, hash units, and
SALUs for a Tofino-based switch and compute units, SRAM,
and DRAM for NPU-based NICs.7

Profiler. Based on the inputs, our profiler generates per-app
profiles consisting of a resource footprint, per-packet process-
ing latency, and compatibility matrix for each device type.
The profiler estimates a resource footprint of r for p serving q
on i denoted as Rp,q,i,r. Since blackbox compilers determine
the resource usage using proprietary heuristics, our prepro-
cessor compiles p to determine Rp,q,i,r. For each q, it updates
the size of each object specified in the application code and
compiles it using vendor-provided compilers. Then it extracts
the resource usage from compiler outputs. If the compilation
fails due to insufficient resources, it sets the resource usage to
infinite. We use constants Capi,r to represent the total amount
of r available on i. The profiler also estimates a per-packet pro-
cessing latency of p on i, Lp,i. Specifically, it instruments the
switch to record two timestamps on a custom packet header
field when a packet enters and leaves the rack. Then it injects
PktSizep-sized packets to the rack and estimates the latency
based on the timestamps in returned packets.

Finally, some vendor-provided P4 compilers for external
devices may not support certain features or P4 constructs8

used by applications. Because of this, if an application uses
a feature that is not supported by an external device, it can-
not run the application. To consider the compatibility of the
application on devices, our profiler generates a compatibility
matrix (Cp,i) that indicates whether p can be run on device
i based on a set of features supported by i and a set of fea-
tures used by p. The first set can be typically obtained from
vendor’s compiler manual. For the second set, the profiler
analyzes the application code to extract used features.

Resource Allocation. Given these inputs, we can formulate
the problem of finding an optimal resource allocation satisfy-
ing per-app and cross-app requirements. In our formulation,
we assume that the resource usage of multiple applications can
be estimated by accumulating the resource usage of each app.

7The operator can easily extend this to other resource types.
8e.g., Packet recirculation and P4 registers.

1264 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We use binary decision variables dp,q,i to indicate whether q
for p is assigned to i. There are four constraints imposed:

∀p,q : ∑
i

dp,q,i = 1 (1)

∀p,q, i : dp,q,i ≤Cp,i (2)
∀i,r : ∑

p
∑
q

dp,q,i ×Rp,q,i,r ≤Capi,r (3)

∀p : latp = ∑
q

∑
i

dp,q,i ×Fp,q ×Lp,i (4)

First, q must be assigned to a unique i (Eq. 1). Second,
q can be assigned to i if and only if p is compatible with i
(Eq. 2). Third, the amount of r consumed by q on i must be
less than or equal to the total amount of r on i (Eq. 3). Last,
the expected latency of p is the sum of per-packet processing
latency of p on i weighted by Fp,q (Eq. 4).

The network operator provides an objective to share re-
sources across multiple application fairly. One possible fair-
ness metric would be minimizing the weighted sum of the
expected processing latency of each application:

Minimize∑
p

Wp × latp (5)

Other commonly used fairness metrics such as maximizing
the minimum expected throughput can be used as well. By
solving the ILP, the ExoPlane resource allocator finds an op-
timal assignment of q to i for p, and the size of each object
and flow manager for p accordingly, which are used as input
for the application merger, as we describe next.

Application Merger. Given a set of P4 programs and the
optimal resource allocation decision, our application merger
combines the programs into a single P4 program, following
our deployment model for multiple applications, described
in §3.2. Our merger supports programs written in P4-16 [10]
(Fig 16 in Appendix C illustrates how the merger works). First,
for each app, the merger renames the main control block [10]
to avoid naming conflicts between applications. Second, it
specifies the size of each object (e.g., number of entries in a
table) based on the decision made by our resource allocator.
Third, it inserts an flow manager. Finally, in the merged P4
code, it instantiates an instance of each application and inserts
execution logic. The merged P4 code is compiled using the
vendor-provided compiler and loaded on the switch and ex-
ternal devices. Sometimes, the compilation process fails due
to its proprietary heuristics for resource allocation. If so, we
repeat the process with a tighter resource constraint.

In summary, ExoPlane planner allocates resources across
applications based on inputs from developers and the operator
and produces a merged P4 program. This process needs to be
re-run when a set of applications or workloads changes, which
we do not expect to happen frequently (e.g., once every hour).
While this module is not on the critical path, performance
results are available in Appendix D.

6 Implementation

Data plane. The data plane components of the runtime en-
vironment implemented in P4-16 consists of: (1) the flow
manager implemented using a match-action table and (2) the
global logical-to-physical external device ID mapping imple-
mented using a register array (on the switch).

Tracking flow popularity. We implement a flow popularity
tracker on external devices using the count-min sketch [27]
that tracks the frequently accessed flow keys. When it detects
a new popular key, it reports the key to the external device’s
control plane that has a list of flow keys and corresponding
entries, and they are reported to the switch control plane. We
enable the aging supported by the switch ASIC for the flow
manager. If a certain key has not been accessed for a timeout
period (Tidle), a callback function registered at the switch
control plane is triggered, and it evicts the entry corresponding
to the idle key. In our prototype, we set Tidle to 2 s.

Control plane. We implement the control plane of the runtime
environment in Python and C++. The main capability is to
initialize new flow entries and promote new popular flows’
entries on the switch. On the switch side, we use Barefoot
Runtime APIs to access the stateful object in the switch data
plane. On the NIC side, we use Netronome Thrift APIs [12] to
interact with the NIC data plane. The switch and the external
device control planes are communicated via an out-of-band
TCP session over the 1 Gbps management network.

Resource allocator. We implement the resource allocator in
C++ based on the Gurobi C++ API [13] to encode and solve
our resource allocation ILP.

Application profiler and merger. We extend the open-source
P4 compiler [17] to analyze input P4 programs. Using its
frontend, we extract information from each program including
the entry size of each object. We implement the application
merger in C++, which takes an IR generated by the compiler
frontend, and produces a merged P4 program.

Supporting other hardware platforms. While our prototype
uses a Tofino-based programmable switch and Netronome
smart NICs, ExoPlane can be extended to other platforms.
For example, ExoPlane can be applied to other types of
programmable switches (e.g., Nvidia Spectrum-2 [16]) and
FPGA or ASIC-based smart NICs (e.g., Xilinx and Intel
FPGA NICs [1, 6] as external devices.

7 Evaluation
We evaluate ExoPlane on a testbed consisting of a pro-
grammable switch and servers equipped with a Netronome
smart NIC using various workloads. Our key findings are:
• In steady-state, ExoPlane provides predictable per-packet

latency (e.g., 273—384 ns at the switch) and scalable
throughput with more external devices while the app-
pinning model achieves a limited throughput (§7.1).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1265

Applications States

Per-VM NAT Per-flow address mapping for each VM.

Per-VM Stateful FW +
Packet counter

Active TCP connection list.

Per-VM SYN proxy Per-flow sequence number translation table.

NetCache [35] Key-value store cache.

Table 2: Switch programs written in P4 used in the evaluation in
addition to ones introduced in Table 1.

• Even under dynamic workloads, ExoPlane can process
packets with the correct state and sustain high throughput
with multiple devices (§7.2).

• In case of an external device failure, ExoPlane can recover
an end-to-end TCP throughput within 200 ms (§7.4).

• ExoPlane provides the above benefits with small control
plane (e.g., a few tens MB) and switch ASIC resource
overheads (e.g., less than 4.5% of ASIC resources) (§7.5).

Testbed setup. We build an on-rack resource augmentation
architecture consisting of Wedge100BF-32X Tofino-based
programmable switches [9] and four servers equipped with
Netronome Agilio 40 Gbps smart NICs [7]. We use four addi-
tional servers with 100 Gbps regular NICs to generate traffic
workloads. All servers are equipped with an Intel Xeon Silver
4110 CPU and 128 GB DRAM, running Ubuntu 18.04. We
repeat each experiment 100 times unless otherwise noted.

Traffic workloads. We use packet traces from a real data
center [2], the Internet backbone [20], and synthetic ones. The
packet sizes vary (64–1500 B) in the real trace. We generate
traces with the flow key distribution in terms of the number
of packets per flow that follows a Zipf distribution with the
skewness parameters (α=0.9, 0.95, 0.99). We use a keyspace
of 1M randomly generated IP 5-tuples when creating packet
traces. We generate packet traces with different packet sizes
and skewness parameters. We replay the traces using DPDK-
pktgen [3] or run iperf [5] for TCP workloads.

Deployment scenarios. We use two scenarios with multiple
P4 applications: (1) at the data center gateway, four appli-
cations in Table 1 and (2) at the leaf of the network, four
applications from Table 2. Given packet traces, we synthe-
size inputs for the ExoPlane planner (e.g., per-app affinity
and a flow key distribution). For example, we set the affinity
level for the UnivMon [45] and NetCache [35] to high so that
workloads for these are always processed at the switch.

7.1 Performance in steady state
First, we evaluate the per-packet processing latency and
throughput of applications running on ExoPlane in steady
state (i.e., no new flows, no changes in flow popularity, and no
device failures). Here, we pre-populate popular flow entries
at the switch and assume that the traffic is equally distributed
across the applications (i.e., Wp = 0.25 for all applications).

2 4 6

Latency (µs)

0.0

0.5

1.0

C
D

F VPN gateway
NAT
ACL
UnivMon

(a) Data center gateway.

0 2 4 6

Latency (µs)

0.0

0.5

1.0

C
D

F NAT
Stateful FW
SYN-Proxy
NetCache

(b) Data center leaf.

Figure 9: Per-packet processing latency distribution of applications
concurrently running on ExoPlane in steady state.

VPN NAT ACL
UnivMon

0

100

T
p

u
t

(G
b

p
s)

(a) Data center gateway.

NAT

Stateful FW

SYN-Proxy

NetCache

0

100

T
p

u
t

(G
b

p
s)

(b) Data center leaf.

Figure 10: Throughput of each application running on ExoPlane in
steady-state with a single external device. Applications are running
concurrently.

Per-packet processing latency. We define per-packet pro-
cessing latency as the time difference between when a packet
first arrives at the switch from a sender and when it is sent
to a receiver after processing. We instrument the P4 program
running on the switch to record two timestamps (48-bits each)
to our custom packet header fields of each packet so that
the receiver can compute the processing latency for a packet.
From the sender, we replay the backbone packet traces, each
of which contains more than 6M flows.

Fig 9 shows the CDF of the per-packet latency distribution
for each application. For the applications that are assigned to
the high affinity (UnivMon and NetCache), every packet is
processed at the switch in 273–384 ns, depending on packet
sizes. For other applications, the distributions vary depending
on packet sizes and how much traffic is processed at the switch
and the external device. The higher the affinity level assigned
to an application, the more traffic is processed at the switch.
For example, in the gateway scenario (Fig 9a), at the switch,
the ACL processes ≈70% of its traffic whereas the NAT pro-
cesses ≈75% of its traffic. When packets are forwarded to the
external device, their processing latency becomes 5.1–6.1 µs,
depending on the application (the top-right corner in Fig 9).
The external device takes 3.2–4.1 µs to process each packet,
while several overheads constitute the overall processing la-
tency, including the switching latency and the propagation and
transmission latency. While there is a latency gap between
two cases (processing at the switch vs. external device), on
each device, per-packet processing latency is predictable.

Application throughput. To measure the throughput, we re-
play the synthetic trace that consists of 1500 B packets at line
rate (98.6 Gbps in our testbed). We use four sender nodes,
each of which generates traffic for each of the four applica-
tions. We start with a single external device to demonstrate the
impact of the number of external devices on the throughput.

1266 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 4

Number of external devices

0

200

400

T
p

u
t

(G
b

p
s)

100% 50% 40% 30%

Figure 11: Scalable throughput with multiple devices with varying
fractions of traffic offloaded to external devices.

Ensemble of apps App-pinning ExoPlane

VPN 98.6 Gbps 98.6 Gbps
VPN+NAT 137.1 Gbps 197.2 Gbps
VPN+NAT+ACL 174.6 Gbps 295.6 Gbps
VPN+NAT+ACL+UnivMon 271.3 Gbps 394.1 Gbps

Table 3: Aggregate throughput of four applications running on the
app-pinning model and ExoPlane with four external devices.

Fig 10 shows the throughput of each application. The ap-
plications that run entirely on the switch (UnivMon and Net-
Cache) process traffic at line rate without dropping any pack-
ets. However, we observe that the others cannot process their
traffic at line rate. This is because the aggregate amount of
traffic across the applications, which needs to be processed at
the external device (≈81 Gbps in the gateway case) exceeds
the processing capacity of the single device (≈39 Gbps).
Scaling throughput with multiple devices. By adding more
devices, ExoPlane can support higher throughput. To demon-
strate this, we measure the aggregate throughput of the four
applications in the gateway scenario (max. traffic rate in our
testbed is ≈394 Gbps) while varying the fraction of traffic
offloaded to an external device(s)9 and the number of external
devices. Fig 11 shows the results. In the case of 30, 40, 50%
of the traffic being offloaded to external devices, we see the
throughput effectively increases with more devices. In con-
trast, when 100% of traffic is offloaded, adding more devices
is not effective due to load imbalance. This result shows the
load balancing effect of serving popular flows at the switch,
described in §4.4.
Comparison with the app-pinning model. We evaluate the
benefit of ExoPlane over the app-pinning model (described
in §3.2) while running four applications from Table 1. In this
model, we place an application along with its entire state at
the switch if there is room. Otherwise, we place it on one of
the external devices, which has the largest remaining capacity.
Table 3 compares the aggregate throughput when running
an ensemble of applications. While ExoPlane provides the
maximum throughput for each ensemble, the app-pinning
model achieves up to 69.3% lower throughput. This is because
while ExoPlane allows an application to effectively utilize
available resources across different devices, the app-pinning
model fixes an application to a device.

9In this experiment, we control the fraction of traffic offloaded to external
devices by manually assigning the affinity of each application. UnivMon is
still pinned to the switch.

0 10 20 30 40 50 60

Time (sec)

0

100

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

VPN gateway

NAT

ACL

UnivMon

(a) With a single external device.

0 10 20 30 40 50 60

Time (sec)

0

100

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

VPN gateway

NAT

ACL

UnivMon

(b) With 4 external devices.

Figure 12: Throughput changes due to workload changes.

7.2 Performance under dynamic workload

Per-packet processing latency. As mentioned in §4.2, work-
load changes happen due to new flows arriving or changes in
flow popularity. Handling new flows in ExoPlane can increase
processing latency because the first packet of a new flow can
be processed only after initiating the necessary state for both
the flow manager and application objects. In contrast, packets
in the flow that becomes popular can be processed either at
the switch or an external device with the same latency shown
in §7.1. Thus, for each app, we measure the processing latency
of the first packet of each flow. We observe that the median
latency for the first packet of a new flow is 32 ms, which is an
order of magnitude higher than that of an external device in a
steady state. There are two factors here. First, the Netronome
Thrift API takes a few tens of ms to insert new entries to
objects, which is not an ExoPlane-specific overhead. Second,
since ExoPlane replicates entries for new flows to one another
external device, it incurs additional latency when handling
new flows. Note that as described in §4.2, ExoPlane tries to
initiate state for new flows both at the switch (if there is room)
and at the external device, so even for short-lived flows, the
subsequent packets can be processed at the switch with lower
latency. However, some short-lived flows can be entirely pro-
cessed at the external device, which can incur higher latency
if there is no room at the switch during its lifetime.

Application throughput. The changes in flow popularity can
impact the throughput. To measure the throughput changes,
we use the same setup as the previous measurement in steady
state, but for every 10 s, we alter the most popular top 10 flows
for the VPN gateway of the gateway scenario. Fig 12 shows
the throughput changes over time. Again, we first use a single
external device. As shown in Fig 12a, when the popularity
changes, there is a sharp drop in the throughput of the VPN
gateway. Also, the throughput of other applications slightly
decreases as well. This is because until the state entries for
the new set of popular flows are installed at the switch (i.e.,
a transient period), a high volume of traffic for the flows is
routed to the external device, exceeding its processing capac-
ity. On the other hand, as shown in Fig 12b, with four external
devices, there is no such performance drop because there is
enough processing capacity at the external devices to handle
the traffic during the transient period. Although we assume
that the traffic pattern can change at an hour or day-timescale,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1267

0 5 10 15 20 25 30 35 40

Synchronization interval

0

1

2

D
iff

.
in

va
lu

es
(%

)

30% offload 40% offload 50% offload

Figure 13: Difference in shared object values on the switch and
external devices; the trace ends at epoch 32.

0 10 20 30 40 50 60

Time (sec)

0

50

100

T
p

u
t

(G
b

p
s)

Ext. device-1
failed

No failure Failover w/o ExoPlane Failover w/ ExoPlane

Figure 14: TCP throughput during failover and recovery.

if ExoPlane cannot detect such changes, it could suffer from
severe performance degradation due to outdated resource al-
location. Rapidly detecting the changes and reconfiguring the
resource allocation accordingly is our future work.

7.3 Shared stateful object synchronization
Next, we evaluate the effectiveness of our state synchroniza-
tion protocol (§4.3) using the per-SrcIP packet counter in the
stateful FW. The metric of interest is the difference between
the shared counter entries maintained by each device at each
synchronization interval (Tε=1 s). We measure this by record-
ing the values at each device right after executing the merge
operation in the data plane while injecting 1500 B packets for
60 s at 98.6 Gbps. We vary the fraction of traffic offloaded to
external devices. In our setting, there are 1000 entries shared
between the switch and at least one of the external devices,
and we get the median of the differences. Fig 13 shows the
result with three different fractions of offloaded traffic. When
the switch and external devices process the same amount of
traffic (i.e., 50% offload), there is almost no difference. When
there is a gap between the amounts of traffic (i.e., 30% or 40%
offload), there are differences because incoming packets keep
updating the counter at each device during the synchroniza-
tion, affecting the measured values. However, we see that the
variance of the difference is small across the synchronization
intervals regardless of the gap, showing that our mechanism
synchronizes the values. We also confirm that after the packet
transmission is done, copies at each device are synchronized
with the same value as the total number of packets.

7.4 Failover
In Fig 14, we use a NAT as an example and run iperf to
measure TCP throughput changes. There are four TCP con-
nections, and we configure two of them to be processed at
the switch while the remaining is processed at an external de-
vice. There are two external devices enabled, and we compare
changes in TCP throughput when (1) there is no failure and (2)

one of the external devices fails with and without ExoPlane.
We emulate the failure by disabling a port connected to the
external device. At around 20 s, when the external device-1
goes down, our failover mechanism generates a control packet
that modifies the logical to physical device ID mapping in the
switch data plane without involving the control plane. Then,
subsequent packets are routed to the replica device. We see
that the TCP throughput is recovered to its original rate within
a 200 ms whereas, without ExoPlane, it cannot be recovered.

7.5 Runtime resource overheads
Control plane resource overhead. The control plane com-
ponent of ExoPlane runtime environment maintains metadata
for application states, including a mapping between union
keys and devices and a history of each shared object entry
on other devices. Each of them consumes the control plane
memory. In our scenarios, the union keys-to-device mapping
consumes 12.5 MB per application and the history metadata
consumes 1.5 MB per shared object. Our state synchroniza-
tion protocol consumes management network bandwidth as it
periodically exchanges information between devices, which
contains a snapshot and history of each entry. In our setting,
the bandwidth consumption is 24.4 Mbps per shared object,
which increases in proportion to the number of devices, the
sync interval, and the number of entries.
Switch ASIC resource usage. The data plane component of
ExoPlane runtime environment consumes some switch ASIC
resources. Since we implement it using an exact-match table
with the aging feature and a register array, it consumes SRAM,
SALUs, hash bits, MAP RAM, and match crossbar,10 whose
usage increases proportionally to the number of popular flows
maintained (except for SALUs). In our setting where 10240
popular flow entries are managed, it consumes 4.4% of the
SRAM, 2.1% of SALUs, 3.5% of the hash bits, 3.8% of the
MAP RAM, and 3.6% of the match crossbar, leaving ample
resources for application logics.

8 Conclusions
Limited on-chip resources today block the deployment of con-
current stateful apps on programmable switches, limiting the
adoption of in-network computing. In this paper, we argue that
on-rack switch resource augmentation can be a pragmatic and
incrementally expandable solution to this dilemma. To realize
this vision, we present ExoPlane, which provides OS-like ab-
stractions for the new architecture by addressing challenges
in managing application states and resources across multiple
devices. Our evaluation shows that ExoPlane provides low
latency, scalable throughput, and fast failover, and achieves
these with a small resource footprint and few/no modifica-
tions to applications. Thus, ExoPlane can be a practical basis
for enabling in-network computing for future applications,
workloads, and emerging data plane hardware.

10MAP RAMs are used for the aging feature and match crossbars are used
for implementing the ‘matching’ part of match-action tables.

1268 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments
We would like to thank the anonymous reviewers and our
shepherd, Michio Honda, for their insightful comments and
constructive feedback. This work was supported in part by
the CONIX Research Center, one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program spon-
sored by DARPA, by the NSF award 1700521, and by Intel
Corporation and by VMWare under the Crossroads 3D FPGA
Research Center.

References
[1] Netcope P4. https://www.intel.com/content/

www/us/en/programmable/solutions/partners/
partner-profile/netcope-technologies--a-s-
/ip/netcope-p4.html.

[2] Data Set for IMC 2010 Data Center Measurement. http:
//pages.cs.wisc.edu/~tbenson/IMC10_Data.html,
2010.

[3] pktgen-dpdk: Traffic generator powered by DPDK.
https://git.dpdk.org/apps/pktgen-dpdk/, 2011.

[4] Advanced network telemetry. https:
//www.barefootnetworks.com/use-cases/ad-
telemetry/, 2018.

[5] iperf3. http://software.es.net/iperf/, 2018.

[6] P4-SDNet User Guide. https://www.xilinx.com/
support/documentation/sw_manuals/
xilinx2017_4/ug1252-p4-sdnet.pdf, 2018.

[7] Agilio CX SmartNICs - Netronome. https://
www.netronome.com/products/agilio-cx/, 2019.

[8] Cisco Visual Networking Index. https://
www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-
vni/white-paper-c11-738429.html, 2019.

[9] EdgeCore Wedge 100BF-32X. https:
//www.edge-core.com/productsInfo.php?cls=
1&cls2=5&cls3=181&id=335, 2019.

[10] P416 Language Specification. https://p4.org/p4-
spec/docs/P4-16-v1.2.0.html, 2019.

[11] Alveo U25 SmartNIC Accelerator Card.
https://www.xilinx.com/products/boards-
and-kits/alveo/u25.html, 2020.

[12] Apache Thrift. https://thrift.apache.org/, 2020.

[13] Gurobi - C++ API Overview. https:
//www.gurobi.com/documentation/9.1/refman/
cpp_api_overview.html, 2020.

[14] Intel FPGA Programmable Acceleration Card
N3000. https://www.intel.com/content/www/us/
en/programmable/products/boards_and_kits/
dev-kits/altera/intel-fpga-pac-n3000/
overview.html, 2020.

[15] NPL Specifications. https://nplang.org/npl/
specifications/, 2020.

[16] Nvidia mellanox spectrum-2. https://
www.mellanox.com/files/doc-2020/pb-spectrum-
2.pdf, 2020.

[17] p4c: a reference P4 compiler. https://github.com/
p4lang/p4c, 2020.

[18] Pensando DSC-25 Distributed Services Card.
https://pensando.io/wp-content/uploads/
2020/03/Pensando-DSC-25-Product-Brief.pdf,
2020.

[19] The Software Switch Pipeline. https:
//doc.dpdk.org/guides/prog_guide/
packet_framework.html#the-software-switch-
swx-pipeline, 2020.

[20] The CAIDA UCSD Anonymized Internet
Traces. https://www.caida.org/data/passive/
passive_dataset.xml, 2021.

[21] Thomas Anderson and Michael Dahlin. Operating Sys-
tems: Principles and Practice, volume 1. Recursive
books, 2014.

[22] Theophilus Benson, Aditya Akella, and David A. Maltz.
Network traffic characteristics of data centers in the wild.
In ACM IMC, 2010.

[23] Philip A. Bernstein, Vassos Hadzilacos, and Nathan
Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[24] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
July 1970.

[25] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming protocol-independent
packet processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, July 2014.

[26] Cisco. Cisco Global Cloud Index: Forecast and Method-
ology, 2016–2021 White Paper, 2018.

[27] Graham Cormode and Marios Hadjieleftheriou. Finding
frequent items in data streams. Proceedings of the VLDB
Endowment, 1(2), 2008.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1269

https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/netcope-technologies--a-s-/ip/netcope-p4.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/netcope-technologies--a-s-/ip/netcope-p4.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/netcope-technologies--a-s-/ip/netcope-p4.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/netcope-technologies--a-s-/ip/netcope-p4.html
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
https://git.dpdk.org/apps/pktgen-dpdk/
https://www.barefootnetworks.com/use-cases/ad-telemetry/
https://www.barefootnetworks.com/use-cases/ad-telemetry/
https://www.barefootnetworks.com/use-cases/ad-telemetry/
http://software.es.net/iperf/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1252-p4-sdnet.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1252-p4-sdnet.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1252-p4-sdnet.pdf
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://p4.org/p4-spec/docs/P4-16-v1.2.0.html
https://p4.org/p4-spec/docs/P4-16-v1.2.0.html
https://www.xilinx.com/products/boards-and-kits/alveo/u25.html
https://www.xilinx.com/products/boards-and-kits/alveo/u25.html
https://thrift.apache.org/
https://www.gurobi.com/documentation/9.1/refman/cpp_api_overview.html
https://www.gurobi.com/documentation/9.1/refman/cpp_api_overview.html
https://www.gurobi.com/documentation/9.1/refman/cpp_api_overview.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/intel-fpga-pac-n3000/overview.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/intel-fpga-pac-n3000/overview.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/intel-fpga-pac-n3000/overview.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/intel-fpga-pac-n3000/overview.html
https://nplang.org/npl/specifications/
https://nplang.org/npl/specifications/
https://www.mellanox.com/files/doc-2020/pb-spectrum-2.pdf
https://www.mellanox.com/files/doc-2020/pb-spectrum-2.pdf
https://www.mellanox.com/files/doc-2020/pb-spectrum-2.pdf
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-25-Product-Brief.pdf
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-25-Product-Brief.pdf
https://doc.dpdk.org/guides/prog_guide/packet_framework.html#the-software-switch-swx-pipeline
https://doc.dpdk.org/guides/prog_guide/packet_framework.html#the-software-switch-swx-pipeline
https://doc.dpdk.org/guides/prog_guide/packet_framework.html#the-software-switch-swx-pipeline
https://doc.dpdk.org/guides/prog_guide/packet_framework.html#the-software-switch-swx-pipeline
https://www.caida.org/data/passive/passive_dataset.xml
https://www.caida.org/data/passive/passive_dataset.xml

[28] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan
Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,
Enrique Cauich Zermeno, Erik Rubow, James Alexan-
der Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin
DeCabooter, Marc de Kruijf, Nan Hua, Nathan Lewis,
Nikhil Kasinadhuni, Riccardo Crepaldi, Srinivas Krish-
nan, Subbaiah Venkata, Yossi Richter, Uday Naik, and
Amin Vahdat. Andromeda: Performance, isolation, and
velocity at scale in cloud network virtualization. In
USENIX NSDI, 2018.

[29] Bin Fan, Hyeontaek Lim, David G. Andersen, and
Michael Kaminsky. Small cache, big effect: Provable
load balancing for randomly partitioned cluster services.
In ACM SOCC, 2011.

[30] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao,
Yu Zhou, Bingchuan Tian, Chen Sun, Dennis Cai, Ming
Zhang, and Minlan Yu. Lyra: A cross-platform language
and compiler for data plane programming on heteroge-
neous asics. In ACM SIGCOMM, 2020.

[31] Aaron Gember-Jacobson, Raajay Viswanathan,
Chaithan Prakash, Robert Grandl, Junaid Khalid,
Sourav Das, and Aditya Akella. Opennf: Enabling
innovation in network function control. In ACM
SIGCOMM, 2014.

[32] David Hancock and Jacobus Van der Merwe. Hyper4:
Using p4 to virtualize the programmable data plane. In
ACM CoNEXT, 2016.

[33] Frederik Hauser, Marco Häberle, Daniel Merling, Stef-
fen Lindner, Vladimir Gurevich, Florian Zeiger, Rein-
hard Frank, and Michael Menth. A survey on data plane
programming with p4: Fundamentals, advances, and ap-
plied research, 2021.

[34] Stephen Ibanez, Gordon Brebner, Nick McKeown, and
Noa Zilberman. The p4-> netfpga workflow for line-rate
packet processing. In ACM/SIGDA FPGA, 2019.

[35] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In ACM SOSP, 2017.

[36] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck
Le. Stateless network functions: Breaking the tight
coupling of state and processing. In USENIX NSDI,
2017.

[37] Georgios P Katsikas, Tom Barbette, Dejan Kostic, Re-
becca Steinert, and Gerald Q Maguire Jr. Metron: Nfv
service chains at the true speed of the underlying hard-
ware. In USENIX NSDI, 2018.

[38] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh
Sivaraman, and Jennifer Rexford. Hula: Scalable load
balancing using programmable data planes. In ACM
SOSR, 2016.

[39] Elie F. Kfoury, Jorge Crichigno, and Elias Bou-Harb.
An exhaustive survey on p4 programmable data plane
switches: Taxonomy, applications, challenges, and fu-
ture trends. IEEE Access, 9:87094–87155, 2021.

[40] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon
Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Se-
shan. Tea: Enabling state-intensive network functions
on programmable switches. In ACM SIGCOMM, 2020.

[41] Daehyeok Kim, Jacob Nelson, Dan R. K. Ports, Vyas
Sekar, and Srinivasan Seshan. Redplane: Enabling fault-
tolerant stateful in-switch applications. In ACM SIG-
COMM, 2021.

[42] Daehyeok Kim, Yibo Zhu, Changhoon Kim, Jeongkeun
Lee, and Srinivasan Seshan. Generic external memory
for switch data planes. In ACM HotNets, 2018.

[43] Jialin Li, Ellis Michael, and Dan RK Ports. Eris:
Coordination-free consistent transactions using in-
network concurrency control. In ACM SOSP, 2017.

[44] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and
Dan RK Ports. Pegasus: Tolerating skewed workloads
in distributed storage with in-network coherence direc-
tories. In USENIX OSDI, 2020.

[45] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
univmon. In ACM SIGCOMM, 2016.

[46] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-4
load balancing fast and cheap using switching asics. In
ACM SIGCOMM, 2017.

[47] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang
Xu, Yisong Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan
Lu, Enge Song, Jiao Zhang, Tao Huang, and Shunmin
Zhu. Sailfish: Accelerating cloud-scale multi-tenant
multi-service gateways with programmable switches. In
ACM SIGCOMM, 2021.

[48] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-
Myung Kang, Aditya Akella, Sujata Banerjee, Charles
Clark, Yadi Ma, Puneet Sharma, and Ying Zhang. Pga:
Using graphs to express and automatically reconcile
network policies. ACM SIGCOMM Computer Commu-
nication Review, 45(4):29–42, 2015.

1270 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[49] Kun Qian, Sai Ma, Mao Miao, Jianyuan Lu, Tong Zhang,
Peilong Wang, Chenghao Sun, and Fengyuan Ren. Flex-
gate: High-performance heterogeneous gateway in data
centers. In APNET, 2019.

[50] Shriram Rajagopalan, Dan Williams, Hani Jamjoom,
and Andrew Warfield. Split/merge: System support for
elastic execution in virtual middleboxes. In USENIX
NSDI, 2013.

[51] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole
Schlesinger, and David Walker. Abstractions for net-
work update. 42(4):323–334, 2012.

[52] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with
in-network aggregation. In USENIX NSDI, 2021.

[53] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Do-
enges, and Nate Foster. Composing dataplane programs
with µp4. In ACM SIGCOMM, 2020.

[54] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pe-
disich, Zhaoyang Han, Nishanth Shyamkumar, Shivani
Burad, André DeHon, and Boon Thau Loo. Flight-
plan: Dataplane disaggregation and placement for p4
programs. In USENIX NSDI, 2021.

[55] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and
Minlan Yu. Cheetah: Accelerating database queries
with switch pruning. In ACM SIGMOD, 2020.

[56] William Tu, Fabian Ruffy, and Mihai Budiu. Linux
network programming with p4. In Linux Plumb. Conf.

[57] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon,
Sylvia Ratnasamy, and Scott Shenker. Elastic scaling of
stateful network functions. In USENIX NSDI, 2018.

[58] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and
Jianping Wu. Hyperv: A high performance hypervisor
for virtualization of the programmable data plane. In
IEEE ICCCN, 2017.

[59] Peng Zheng, Theophilus Benson, and Chengchen Hu.
P4visor: Lightweight virtualization and composition
primitives for building and testing modular programs.
In ACM CoNEXT, 2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1271

A Skewness of traffic traces

0 20 40 60 80 100

Fraction of IP 5-tuples (%)

0

50

100

S
er

ve
d

tr
a

ffi
c

(%
)

Epoch 1

Epoch 2

Epoch 3

Epoch 4

Epoch 5

Epoch 6

(a) Internet backbone.

0 20 40 60 80 100

Fraction of IP 5-tuples (%)

0

50

100

S
er

ve
d

tr
a

ffi
c

(%
)

Epoch 1

Epoch 2

Epoch 3

Epoch 4

Epoch 5

Epoch 6

(b) University data center.

Figure 15: Skewness in flow key (IP 5-tuple): For both Internet
backbone and data center case, a few popular keys serve the most of
the traffic. This is consistent across measurement epochs.

We measure the distribution of IP 5-tuple as the union
key by analyzing packet traces collected from an Internet
backbone [20] and a university data center [22]. Fig 15 shows
the union key distributions of the two data sets.

B State synchronization algorithm
Algorithm 1: State synchronization – Switch

1 Sswitch : The current state of the value on the switch
2 Ext: a set of external device IDs
3 SSswitch : The latest snapshot of the value on the switch
4 Hext [1 . . .N] : The latest information received from each external

device
5 Upon the snapshot timer expires:
6 foreach exti ∈ Ext do

/* Send an initiate message to exti */
7 send (Snapswitch, Iswitch[exti]);

/* Receive a response from exti */
8 (Snapexti , Iexti) = recv ();
9 foreach exti ∈ Ext do

/* Adjust snapshot values and merge them */
10 δ = Snapexti ◦− (Iswitch[exti]◦+ Iexti);

/* Update the information for exti */
11 Iswitch[exti] = Snapexti ◦− Iexti

/* Merge (◦+) the adjusted value with the current
state in the data plane */

12 Sswitch = Sswitch ◦+ δ

Algorithm 2: State synchronization – External device
1 SSext : The latest snapshot of the value on the external device
2 Sext : The current state of the value on the external device
3 Iext : The latest information received from the switch
4 Upon receiving a message from the switch (Snapswitch, Iswitch):
/* Send a response to the switch */

5 send (Snapext , Iext);
/* Adjust snapshot values and merge them */

6 δ = Snapswitch ◦− (Iext ◦+ Iswitch);
/* Update the history for the switch */

7 Iext = Snapswitch ◦− Iswitch;
/* Merge the adjusted value with the current state */

8 Sext = Sext ◦+ δ

In §4.3, we describe our state synchronization protocol
to synchronize entries in a data-plane updatable object. Al-
gorithm 1 and Algorithm 2 describe the detailed algorithm
running on the switch and external devices, respectively.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

control App1_Ingress(...)
{

// objects
table A {

keys = {...}
actions = {...}
size = 1024;

...
// ExoPlane flow manager
table FlowManager {

keys = {// Union key}
actions = {...}
size = 10240;

}
// App1's control flow
apply {

...
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// individual app sources
#include <App1.p4>

...

control Merged_Ingress(...)
{

// instantiate apps
App1_Ingress() app1_ig;
...
apply {

// execute App1’s logic
app1_ig.apply();
...

}
}

Step 1: Renaming the main control block (line 1)
Step 2: Alloca�ng the size of each object (line 6)
Step 3: Inser�ng the ExoPlane flow manager (line 9)

Step 4: Ini�a�ng app instances (line 2, 7)
Step 5: Inser�ng app execu�on logic (line 11)

{App1,…AppN}.p4

Merged.p4

Merging

Figure 16: Merging multiple P4 programs into a single program.

1 2 3 4 5 6 7 8 9 10

Number of applications

0

250

500

750

E
la

p
se

d
ti

m
e

(m
s)

(a) Different number of apps.

103 104 105 106 107

Number of flow entries

101

102

103

E
la

p
se

d
ti

m
e

(m
s)

(b) Different number of flow entries.

Figure 17: Elapsed time for the resource allocator.

C Details of Application Merger
Fig 16 illustrates how our application merger works for a set
of P4 applications as described in §5.

D Performance of ExoPlane Planner
We evaluate the performance of the ExoPlane planner. In this
experiment, we measure the elapsed time for finding optimal
resource allocations and generating a merged P4 program on a
server in our testbed. For the two sets of apps and the hardware
configuration used in our evaluations, our resource allocation
takes 54.5 ms and merging the program takes 642 ms, which
is reasonable since the orchestrator needs to run this process
on the hours or days timescale. To further understand the
impact of different parameter values including the number
of apps and traffic workload sizes, we synthesize inputs for
the resource allocator and measure the elapsed time. First,
we fix the number of external devices to 16 (to support a
large number of apps) and the number of union key-based
flow entries to 1M for each app. Then, we vary the number of
flow entries while fixing the number of apps to four and the
number of devices same as the above. As illustrated in Fig 17a,
the resource allocation time grows linearly up to 712 ms as
the number of app increases. Also, as shown in Fig 17b, as
the number of flow entries increases, the elapsed time also
increases up to 4.1 second when each app needs to handle
10M flow entries. This experiment illustrates the ExoPlane
orchestrator takes a longer time as we add more apps and
increases the workload size, which can be up to a few seconds,
it is still within the reasonable timescale under our deployment
model (§3.1).

1272 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Sketchovsky: Enabling Ensembles of Sketches on Programmable Switches

Hun Namkung⋆, Zaoxing Liu†, Daehyeok Kim§, Vyas Sekar⋆, Peter Steenkiste⋆
⋆Carnegie Mellon University, †Boston University, §Microsoft Research

Abstract
Network operators need to run diverse measurement tasks
on programmable switches to support management decisions
(e.g., traffic engineering or anomaly detection). While prior
work has shown the viability of running a single sketch in-
stance, they largely ignore the problem of running an ensem-
ble of sketch instances for a collection of measurement tasks.
As such, existing efforts fall short of efficiently supporting a
general ensemble of sketch instances. In this work, we present
the design and implementation of Sketchovsky, a novel cross-
sketch optimization and composition framework. We identify
five new cross-sketch optimization building blocks to reduce
critical switch hardware resources. We design efficient heuris-
tics to select and apply these building blocks for arbitrary
ensembles. To simplify developer effort, Sketchovsky auto-
matically generates the composed code to be input to the hard-
ware compiler. Our evaluation shows that Sketchovsky makes
ensembles with up to 18 sketch instances become feasible
and can reduce up to 45% of the critical hardware resources.

1 Introduction
Network operators need to concurrently run diverse measure-
ment tasks for network management tasks such as traffic en-
gineering, anomaly detection, load balancing, and resource
provisioning [6, 10, 24, 35, 46]. A flow-level measurement
task computes a desired statistic (e.g., heavy flow size or the
distinct number of flows) based on the definition of a flowkey
(e.g., srcIP or 5-tuple), a flow size (e.g., packet counts or
bytes), and a measurement epoch (e.g., 1 minute).

Given resource constraints, sketching algorithms or
sketches appear as a promising avenue to support measure-
ment tasks on data collected from programmable switches
(e.g., [4, 5, 7, 17, 21, 32, 40, 45, 49]). To support one mea-
surement task, a sketch instance on a programmable switch
is instantiated based on a sketching algorithm with configu-
ration on parameters (e.g., flowkey or resource allocation).
In practice, supporting the collection of measurement and
management tasks will require simultaneously running an
ensemble of sketch instances on the programmable switches.

Sketchovsky

(§5) Strategy
Finder

(§6) Auto-code
Composition

inst1.p4inst1.p4inst1.p4

An Ensemble of
Sketch Instances

(by using code
templates)

opt.p4
An Optimized
Sketch Code

IN OUT

Apply opts
X to insts Y

Strategy
(§4) Optimization
Building Blocks

Opts is optimizations and insts is instances

Figure 1: Sketchovsky Overview.

However, existing sketch-based telemetry efforts largely
focus on running a single sketch instance on programmable
switches and they cannot effectively support an ensemble of
sketch instances. Naively extending a single sketch instance
to support an ensemble of measurement tasks will require
at least a linear increase in hardware resources (e.g., coun-
ters, hash units, pipeline stages), which is intractable as more
measurement tasks are needed. While there have been some
recent efforts on improving per-sketch efficiency (e.g., [4]),
supporting P4 code composition [22, 23, 30, 42, 51], elasti-
cally trading of resource vs. accuracy (e.g., [3, 36]), and on
improving the generality of sketches (e.g., [9, 15, 32, 49]), we
find that these fundamentally fall short of efficiently support-
ing a general ensemble of sketch instances without sacrificing
accuracy.

Given the limitations of current methods for running sketch
ensembles, we present Sketchovsky (Sketch + Tchaikovsky),
a composition framework that takes the input of sketch codes
for the ensemble and outputs an optimized sketch code by
leveraging cross-sketch optimizations (Fig. 1). Sketchovsky
is complementary to the earlier work on implementing single-
sketch algorithm more efficiently, developing more general-
purpose sketches, and research that explicitly trades off ac-
curacy reduction for resource reduction (§2). Indeed, using
Sketchovsky can amplify their benefits by running expressive
sketches (e.g., [32]) or extending per-sketch optimizations
(e.g., [4]).

The design of Sketchovsky makes three key contributions:

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1273

1 packetStream
2 .map(p => (p.sIP, p.pktlen))
3 .reduce(keys=(sIP,), f=sum)
4 .filter((sIP, count) => count > Th)

Query 1: Heavy hitters detection of srcIP written in Sonata [25].

1 packetStream
2 .map(p => (p.sIP, p.dIP, p.sPort, p.dPort, p.Proto))
3 .distinct()

Query 2: Distinct number of 5-tuple flows written in Sonata [25].

Optimization building blocks (§4): We observe that sketch-
ing algorithms have three common workflow steps: hash com-
putations, counter updates, and heavy flowkey storage. We
identify and formalize five novel cross-sketch optimization
building blocks to reuse key hardware resources across sketch
instances in each step. For hash computations, we show how
and when (1) hash results can be reused across sketch in-
stances or (2) can be reconstructed by cheap XOR operations.
In the counter updates step, we discuss how (3) counter ar-
rays can be reused or (4) can be co-located to reduce memory
accesses. In heavy flowkey storage, we discuss (5) a novel
mechanism to reuse the heavy flowkey storage by using the
union of all flowkeys for sketch instances in the ensemble.
Each optimization guarantees no accuracy loss.
Strategy finder (§5): Given an arbitrary sketch ensemble,
there are many possible ways to use and combine the above
building blocks. Naively solving this problem is intractable
due to the challenges in modeling resource usage, identifying
conflicts for combining optimizations, and the combinatorially
large search space (e.g., it takes more than a day to solve).
We identify practical relaxations to the problem and a greedy
heuristic to make the problem tractable to solve. We show that
our approach can quickly identify (e.g., in less than 1 second)
an effective strategy that yields significant benefits.
Auto-code composition (§6): To simplify developer and op-
erator effort, we design a simple-yet-effective switch-code
generation process that realizes the selected strategy obtained
above. We provide code templates of sketching algorithms
to create sketch codes for an ensemble of sketch instances
(Fig. 1) to enable this automatic code composition.1

We demonstrate the utility and benefits of Sketchovsky over
a wide range of settings and a library of sketching algorithms
that measure various statistics of interest [11, 14, 17, 19, 20,
21, 27, 28, 29, 32, 44]. Given this basic library, we built an
ensemble generator that can create diverse ensembles using a
wide range of parameters. We then used the generator to gen-
erate tens of thousands of ensembles that we used to measure
the resource reduction benefits of Sketchovsky. We measure
accuracy results by running four representative ensembles on
the Tofino switch processing various inter-ISP packet traces
[2]. Compared to the baseline of SketchLib, Sketchovsky re-
duces the use of hash units by 7∼40%, SALUs by 9∼45%,

1Sketchovsky is publicly available at https://github.com/Sketchovsky.

Hash
Computations

+1𝑐!

+1𝑐"

+1𝑐#

W=5

R=3

packet Heavy Flowkey
Storage

flowkey

3

5

2

Counter Updates

1 2 3 4 5

if (flowsize) > threshold:
store (flowkey)

Figure 2: Sketching algorithms have three common workflow steps;
hash computations, counter updates, and heavy flowkey storage.

and SRAM by 0∼7% for the ensembles that have the same
flowkey for all sketch instances. Even for the ensembles with
randomly picked sketching algorithms and parameters, re-
source reduction is 3∼21% for the hash units, 4∼26% for
SALUs, and 0∼0.4% for SRAM. For the accuracy experiment,
we report no accuracy loss for any sketch instances.

2 Background and Related Work
We begin with background on sketches and their hardware
footprints. Then we motivate the need for running an ensem-
ble in practice. We end by explaining why state-of-the-art
solutions fall short of effectively supporting an ensemble.

2.1 Sketches and Programmable Switches
Sketches or sketching algorithms on programmable switches
are promising to support diverse measurement tasks due to re-
source efficiency and high accuracy. Sketching algorithms are
randomized approximation algorithms designed to measure
different statistics with a theoretical guarantee of high accu-
racy and sub-linear memory space in relation to the number of
flows. Thus, sketching algorithms fit well for programmable
switches with tight resource constraints. There are sketching
algorithms to support diverse statistics for measurement tasks.
For example, count-min sketch (CM) [17] can identify heavy
hitters, and it can be configured with flowkey definition of
srcIP to run Query. 1. HyperLogLog (HLL) [21] can estimate
the distinct number of flows, and it can answer Query. 2 with
flowkey definition of 5-tuple. There are other sketching algo-
rithms, such as K-ary sketch (KARY) [27] for heavy change
detection or UnivMon (UM) [32] for multiple statistics.

Sketching algorithms follow three common steps. We ex-
plain these steps with a canonical sketching algorithm count-
min sketch [17] (Fig. 2). First, sketching algorithms perform
hash computations. As each packet arrives, the count-min
sketch extracts a flowkey (e.g., 5-tuple) from the packet header.
On this key, the count-min sketch computes independent hash
functions ci. Second, using these hash results, sketching algo-
rithms perform counter updates. They typically maintain 2D
counter arrays, R independent counter arrays with the size of
W , thus R ×W counters in total. The hash result of ci selects
a specific column for counter update per row. The count-min
sketch is a single-level sketching algorithm meaning that it
maintains 2D counter arrays. There is a notion of a multi-level
sketching algorithm, which uses multiple levels of 2D counter

1274 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/Sketchovsky

arrays. Third, sketching algorithms need to maintain heavy
flowkey storage. Sketching algorithms use threshold values to
compare against flow size estimates to detect and store heavy
flowkeys. While these steps run on the data plane, the control
plane periodically reads and resets counter arrays and heavy
flowkey storage to compute desired metrics [37].

While the ideas of Sketchovsky can be applied to other pro-
grammable switch architectures (as stated in §9), we showcase
the effectiveness and benefits of Sketchovsky using Intel’s
Tofino switch [1]. Tofino is a commercially available pro-
grammable switch built on the RMT architecture [13] and the
P4 language [12]. Its pipeline stage architecture is equipped
with equal resources per stage, and running sketching algo-
rithms on programmable switches requires the use of four key
hardware resources. Hash units execute hash functions and
there are a certain number of hash units per pipeline stage.
The hash results of hash units can be used to select a specific
column for counter updates or other purposes (§A.1). Each
pipeline stage has a fixed amount of SRAM that can be used
to maintain the state. SRAM is used by counter arrays and
heavy flowkey storage. Stateful ALU (SALU) is the essen-
tial hardware resource that allows one read and one write
operation to a register array in SRAM. A counter array for a
sketch instance is mapped to a register array. Thus, a sketch
instance using R counter arrays requires R SALUs. Storing
heavy flowkey also requires SALUs. More pipeline stages are
needed for more usage of the above three hardware resources.
In addition, the notion of dependencies among workflow steps
(e.g., counter updates must be executed earlier than heavy
flowkey storage) can contribute to even more pipeline stage
usage due to the imbalanced resource allocation.

2.2 Need for Ensemble of Sketch Instances

Network operators need to concurrently run diverse flow-
level measurement tasks on programmable switches be-
cause the more information operators can get about the net-
work, the more they can make the right management deci-
sions [15, 25, 34, 38, 47, 48, 49, 52]. As concrete examples
of measurement tasks, we show two network queries writ-
ten by Sonata [25], a state-of-the-art query language on pro-
grammable switches. Query. 1 can detect heavy hitters based
on the sum of packet length in bytes aggregated on flowkey of
srcIP. Query. 2 measures the distinct number of 5-tuple flows.
Network operators want to concurrently run these measure-
ment tasks as many as possible.

Each such measurement task would entail creating a sketch
instance based on a base sketching algorithm (SA) with four
configurable parameters (Table 1): (1) Flowkey is any com-
bination of packet header fields (e.g., srcIP or 5-tuple); (2)
Flowsize defines whether the sketch instance keeps track of
packet counts or packet bytes; (3) Epoch is the measurement
time interval; and (4) Resource Parameters configure the
memory size (e.g., W and R of 2D counter arrays). The net-

SI Base
SA

Configurable Parameters
Flowkey Flowsize Epoch Res. Param.

s1 CM (srcIP) counts 10s (3, 1024)
s2 CM (dstIP) bytes 10s (5, 2048)
s3 KARY (srcIP, dstIP) counts 10s (4, 4096)
s4 HLL (srcIP, srcPort) - 5min (1, 2048)
s5 UM (5-tuple) counts 5min (3, 2048, 16)

Table 1: An example of an ensemble of sketch instances. For re-
source parameters, (R, W) for single-level and (R, W , level) for multi-
level sketching algorithms.

Solution General Resource Accuracy

P4 Composition [22, 23, 30, 42, 51] � X �
Per-sketch optimizations [4] � X �
Expressive sketches [9, 15, 32, 49] X � �
Dynamic resource allocation [3, 36, 50] � � X
Sketchovsky (Our system) � � �

Table 2: Existing efforts cannot support a general ensemble of mea-
surement tasks with low resource footprint and high accuracy.

work operator should choose resource parameters carefully
due to a trade-off between resource use and accuracy.

For instance, given Query. 1 above, we can use a count-min
sketch instance on the srcIP as flowkey and for Query. 2 we
may use HyperLogLog on the 5-tuple. More generally, given
the collection of measurement tasks with different config-
urable parameters (flowkey, flowsize, epoch) and statistics, we
will need to concurrently run an ensemble of sketch instances
in practice. For our work, we assume that the ensemble of
sketch instances is given as input; the problem of finding
the best ensemble of sketch instances given a collection of
measurement tasks is outside the scope of this paper (§9).

2.3 Prior Work and Limitations
We discuss some existing efforts in sketch-based telemetry
on programmable switches and why they are insufficient to
tackle the ensemble of sketch instances problem (Table 2).

Composing P4 programs. Many P4 code composition
works have been recently published for resource optimiza-
tions [22, 23, 30, 42, 51]. However, none of them can optimize
the sketch ensemble because they did not consider stateful
processing, which is at the core functionality of sketching al-
gorithms (e.g., counter update step). P4visor [51], Lyra [22],
and Cetus [30] focus on optimizations for match-action tables,
but they did not consider optimizations for stateful process-
ing, including MicroP4 [42]. Thus, they cannot be used to
optimize an ensemble of sketch instances.

Chipmunk [23] seems to be a promising candidate for pro-
viding cross-sketch optimizations at first glance because it
compiles a program written by Domino language into opti-
mized P4 code with stateful processing optimizations. How-
ever, Chipmunk can not compile a full single sketch imple-
mentation due to its limited scope. It only supports the update
part of the stateful value but does not include the addressing
part (e.g., computing hash functions to address the column

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1275

1 2 3 4 5 6 7

Number of Sketch Instances in Ensemble

0

50

100

150

R
es

ou
rc

e
U

se
(%

) SketchLib

Pipeline Stages

SALUs

Hash Units

SRAM

1 2 3 4 5 6 7
0

50

100

150
P4All

1 2 3 4 5 6 7

2

4

6

8

E
ns

en
bl

e
E

rr
or

(%
) Accuracy Result

SketchLib

P4All

Figure 3: Existing efforts cannot efficiently run the ensemble.

index of counter arrays), which is critical for sketch imple-
mentations.
Per-sketch optimizations [4] can be used to implement the
sketch ensemble. However, this approach cannot achieve low
resource footprints due to linearly increasing resource con-
sumption as we run multiple sketch instances.

More expressive sketches. To make improvements, recent
advances in sketching theory empower a single sketch in-
stance to support multiple measurement tasks [9, 15, 32, 49].
However, their coverage of the measurement tasks is still
far from general (e.g., none of them can support the entropy
estimation tasks for two different flowkey definitions).

Dynamic resource allocation. Earlier work has reduced re-
source use for the ensemble of sketch instances [3, 36, 50].
SCREAM [36] dynamically reduces resource parameters of
sketch instances to meet specified minimum accuracy when
there are variations in traffic. P4All [3] can be used to re-
duce the resource parameters of some sketch instances in the
ensemble by identifying lower-prioritized sketch instances.
FlyMon [50] enables dynamic parameter configuration at run-
time (e.g., flowkeys and resource parameters). It essentially
offers a time-sharing capability to run a sketch ensemble
by switching out active sketch instances. However, all these
techniques reduce resource use at the expense of accuracy.
In contrast, our work proposes optimizations that reduce re-
sources while maintaining accuracy for all sketch instances
in the ensemble.

Quantitative results for existing efforts. We quantitatively
show why existing efforts are insufficient. Fig. 3 shows the
resource footprint and accuracy results for two approaches,
per-sketch optimization (SketchLib) and dynamic resource
allocation (P4All). To create the ensembles, we only use the
count-min sketch with (R,W) = (5,8K), flowkey of 4-tuple,
different measurement epochs, and different flowsize defini-
tions. We use CAIDA traces [2]. For the P4All experiment,
we fix the width of counter arrays and reduce the number of
rows if necessary to fit the maximum number of SALUs on
the Tofino switch. We treat all sketch instances equally in the
objective function.

The results in Fig. 3 show that SketchLib cannot support
more than four sketch instances. While P4All can support
more than four sketch instances by reducing hardware re-

sources, this also reduces the accuracy. In summary, we find
that existing techniques cannot achieve both low resource
footprint and high accuracy.

3 Sketchovsky Overview
Given that prior work is insufficient, we explore a comple-
mentary approach to identify and exploit cross-sketch opti-
mizations to run an ensemble of sketch instances S = {si}

N
i=1.

To this end, we present Sketchovsky (Fig. 1), a novel cross-
sketch optimization and composition framework. Sketchovsky
identifies five cross-sketch optimization building blocks so
that resource consumption increases sub-linearly in the num-
ber of sketch instances with guarantees of no accuracy loss.
Sketchovsky uses efficient heuristics to find an effective strat-
egy to combine these building blocks for a given ensemble
and implements a module to automatically generates an opti-
mized switch code.

Optimization building blocks (§4). We find that key hard-
ware resources used in each workflow step of sketching al-
gorithms can be reused across multiple sketch instances. We
identify five optimization building blocks to reduce resource
footprint while maintaining accuracy. OHash1 and OHash2 opti-
mize the first step of hash computations; OCtr1 and OCtr2 opti-
mize the second step of counter updates, and OKey optimizes
the third step of heavy flowkey storage. Note that optimiza-
tions can be generalized to other hardware (§9). Each O j has
applicable conditions to determine whether O j can be applied
to a subset of sketch instances S ⊂ S. Applicable conditions
are expressed by configurable parameters introduced in (§2.2)
(e.g., all si ∈ S have the same flowkey) and sketch features.
The notion of sketch features captures the differences among
different sketching algorithms in algorithm designs or data
structures (e.g., counter array type, counter update type, or
whether maintaining heavy flowkeys or not).

Strategy finder (§5). Among many valid strategies for apply-
ing five optimization building blocks to different subsets of
sketch instances in the ensemble, it is challenging to quickly
find the most effective strategy due to the intractably large
search space. To solve this problem, we formulate an optimiza-
tion problem by defining the objective function to minimize
hardware resources. Next, we propose an idea of problem
decomposition. We show that one large problem can be de-
composed into small sub-problems, and separate solutions
for sub-problems together produce the overall solution. To
detect the validity of a strategy, the strategy finder takes in-
puts of sketch features (e.g., base sketching algorithm) and
configurable parameters (e.g., flowkey and flowsize) for S as
in Table 1. Optimization building blocks can be applied to a
subset S ⊂ S only if S satisfies the applicable conditions.

Auto-code composition (§6). Manually translating a strategy
into an optimized code is challenging because the strategy
contains information about the complicated interplay among
multiple optimization building blocks and a set of sketch

1276 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Workflow Step Optimizations Reduction Overhead

Hash HASHREUSE (OHash1) Hash unit -
Computations HASHXOR (OHash2) Hash unit Pipe Stages

Counter SALUREUSE (OCtr1) SALU,SRAM -
Updates SALUMERGE (OCtr2) SALU SRAM

Heavy Flowkey
Storage HFSREUSE (OKey) SALU

Pipe Stages
CP Comp

Table 3: Relationships among workflow steps, optimizations and
resource reductions. CP Comp means Control Plane Computation,
and Pipe Stages means Pipeline Stages.

Conditions OHash1 OHash2 OCtr1 OCtr2 OKey

Sketch Features
C1. Same counter array type � �
C2. Same counter update type �
C3. Track heavy flowkey �

Configurable Parameters
C4. Same flowkey definition � * � �
C5. Same flowsize definition �
C6. Same measurement epoch �

Table 4: Applicable conditions for five optimization building blocks.

instances. We build an auto-code composition that automati-
cally translates a given strategy into optimized sketch code.
This relieves the burden of manual work of network operators.
Given the output of the strategy finder and a set of sketch P4
codes for S , we generate a unified and optimized P4 program.

4 Optimization Building Blocks

Given S = {si}
N
i=1, we identify five cross-sketch optimiza-

tion building blocks (two for hash, two for counters, and one
for flowkey storage) that can apply to a given set of sketch
instances S = {si}

n
i=1 ⊂ S. Table 3 summarizes relationships

among workflow steps, optimizations and resource reductions.
For each optimization, we explain the key idea, the conditions
under which it applies, and its implications for resource use
and accuracy. Table 4 summarizes applicable conditions to
validate whether each optimization can be applied to S ⊂ S.

4.1 Hash Computations
To optimize the workflow step of hash computations (§2.1),
we have two optimizations HASHREUSE (OHash1) and
HASHXOR (OHash2). Hash unit refers to the hardware re-
source on programmable switches to execute hash functions.
Hash result is the outcome hash value of the hash unit.

HASHREUSE (OHash1) Reusing hash results. If a set of
sketch instances use the same definition of flowkey (e.g.,
srcIP), we can reuse hash results to reduce the usage of hash
units. We explain this optimization using an example in Fig. 4.
Assume we have a set of sketch instances S = {si}

n
i=1 with

a required set of independent hash results E = {ei}
n
i=1 and

flowkey definition F = { fi}
n
i=1, which means that a sketch

instance si needs ei number of hash results based on flowkey
fi. Without optimization, ∑i ei hash units are used. However,

is reusing
hash results

𝑺 𝑭 𝑬

𝑠! 𝐴 3

𝑠" 𝐴 2

𝑠# 𝐴 1

ℎ!! 𝐴 ℎ!" 𝐴 ℎ!# 𝐴

ℎ"! 𝐴 ℎ"" 𝐴

ℎ#! 𝐴

∑ 𝑒$ = 6$ hash units

ℎ!! 𝐴 ℎ!" 𝐴 ℎ!# 𝐴

max%(e%) = 3 hash units

Figure 4: HASHREUSE (OHash1) reduces hash units by reusing hash
results. A small box with hseed(f lowkey) indicates one hash unit
allocation.

𝑺 𝑭 𝑬

𝑠! 𝐴 1

𝑠" 𝐵 2

𝑠# 𝐴, 𝐵 3 ℎ!" 𝐴, 𝐵 ℎ!# 𝐴, 𝐵 ℎ!! 𝐴, 𝐵

ℎ#" 𝐵 ℎ## 𝐵

ℎ"" 𝐴 ∑ 𝑒$ = 6$ hash units 4 hash units

ℎ!! 𝐴, 𝐵

ℎ#" 𝐵 ℎ## 𝐵

ℎ"" 𝐴

ℎ"" 𝐴 ⊕ ℎ## 𝐵ℎ"" 𝐴 ⊕ ℎ#" 𝐵

Figure 5: HASHXOR (OHash2) reduces hash units by using XOR.

we can reuse hash results, and we can reduce the allocation
of hash units to maxi(ei) on the hardware as in Fig. 4.
Applicability: Regardless of any sketching algorithms, we can
apply this optimization as long as S uses the same flowkeys.
We denote this as (C4) in Table 4.
Implication: Allocation of maxi(ei) hash units is sufficient to
preserve the accuracy of S = {si}

n
i=1. The accuracy of sketch

instances is closely related to hash independence among hash
results. To implement hash independence in practice, ran-
domly picked hash seeds are used; hseed1(A) and hseed2(A)
are independent if seed1 ≠ seed2. For a single sketch instance,
hash independence among hash results is required. A key
insight here is that hash independence is not required across
sketch instances. Thus we can reuse maxi(ei) hash results
across sketch instances in a way that all hash results within
any single sketch instance si are independent (e.g., in Fig. 4).
HASHXOR (OHash2) Less hashing, same performance
with XOR-based reconstruction. We can reduce hash units
even for a set of sketch instances with different flowkeys
by leveraging XOR operations. We explain this optimiza-
tion using an example in Fig. 5 where S = {s1,s2,s3} and
F = {{A},{B},{A,B}} and E = {1,2,3}. A and B are differ-
ent packet headers, such as A = srcIP and B = dstIP. We can
reduce allocation of hash units by reconstructing independent
hash results for s3 as follows because {A,B} = {A} ∪ {B}.

h31(A,B) = h11(A)⊕h21(B) (1)
h32(A,B) = h11(A)⊕h22(B) (2)

Note that XOR-based reconstructed hash results h31(A,B)
and h32(A,B) are independent because h21(B) and h22(B)
are independent. For arbitrary e1 and e2, we can reconstruct
e1×e2 independent hash results for s3.
Applicability: This optimization HASHXOR (OHash2) can be
applied if S and F meet the following condition.

For S ∈ S, ∣S∣ = 3 and f1∪ f2 = f3 (3)

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1277

This optimization can be applied as long as a set of sketch
instances satisfies (3). Thus, we mark (*) at (C4) in Table 4
for OHash2.

Implications: This idea of XOR-based hash reconstruction
is proven pairwise independent and has already been used in
other contexts [26, 43]. Thus, accuracy will not be compro-
mised, and our evaluation result confirms this. As a minor
side effect, more pipeline stages might be needed by adding
XOR operations in the sketch workflow. However, we will
see in the evaluation that the impact of this overhead is small.

4.2 Counter Update
To optimize the second workflow step of counter updates, we
have SALUREUSE (OCtr1) and SALUMERGE (OCtr2).

SALUREUSE (OCtr1) Reusing counter arrays (rows) across
sketch instances. If all sketch instances in S meet certain
applicable conditions, we can reuse counter arrays to reduce
both SALUs and SRAM. We first see how this optimization
works by looking at an example in Fig. 6, and we will describe
applicable conditions later. Suppose S = {s1,s2,s3} satisfies
applicable conditions of OCtr1 and C = {(ri,wi)}

n
i=1 represent

that si has ri number of counter arrays with width wi. Then,
instead of updating three different sets of counter arrays for
three sketch instances in the data plane, we can update only
one set of counter arrays. Then, in the control plane, one set of
counter arrays can be used to compute statistics for all three
sketch instances. The way we compute the row and width of
counter arrays for reuse is represented by W:

W = {w∗j }
maxi(ri)
j=1 where w∗j =max

i
{wi∣ri ≥ j} (4)

W represents width w∗j per j-th counter array for reuse. Note
that W can have different widths across counter arrays, and
it does not affect the functionality of sketching algorithms.
We can see that W has maxi(ri) rows. Thus, we can reduce
SALUs from ∑i ri to maxi(ri). Moreover, SRAM usage is
reduced from∑i riwi to∑ j w∗j and we show∑i riwi−∑ j w∗j ≥
0 in §B.1. While the discussion focused on single-level sketch
instances, the same idea also applies to multi-level sketch
instances.

Implication: If we compare resource parameters (ri,wi) of
any sketch instance si to counter arrays for reusing W, W has
the same or larger width. As a result, all sketch instances are
guaranteed to achieve the same or improved accuracy.

Applicability: Applicable conditions for this optimization
use two sketch features. The first sketch feature is counter
array type. Sketching algorithms have different types of
counter arrays; the single-level (SL) type has 2D counter
arrays, and the multi-level (ML) type has multiple levels of 2D
counter arrays. The second sketch feature is counter update
type. Sketching algorithms have different ways of updating
counters. It can be bitmaps (BITMAP) or integer counters that
only add values (COUNTER). Refer §A.1 for a full list of five

+1

+1

+1

+1

+1

+1

+1

+1

+1 +1

+1

+1

+1

𝑤!

𝑤"
𝑤"

𝑤#

Counter Arrays
for 𝑠!

𝑟!

𝑤! 𝑤#

𝑟#

𝑤"
𝑟"

Counter Arrays
for 𝑠"

Counter Arrays
for 𝑠#

𝑾 = Counter Arrays
for 𝑠!, 𝑠", 𝑠#

(9 SALU, 25 SRAM) (4 SALU, 13 SRAM)

𝑟!

Figure 6: SALUREUSE (OCtr1) reuses counter arrays.

+1SALU
+1SALU

+1SALU
+1SALU

+1

+1SALU
+1

+1SALU

is SRAM overhead

Counter Arrays for 𝑠!

Counter Arrays for 𝑠"

(4 SALU, 12 SRAM) (2 SALU, 16 SRAM)
𝑤!

𝑤"

𝑤!
Counter Arrays for 𝑠!

Counter Arrays for 𝑠"

𝑤!

Figure 7: SALUMERGE (OCtr2) reduces SALUs by making SALUs
update two counter arrays simultaneously.

counter update types. S ⊂ S must satisfy five conditions to
apply this optimization (Table 4): the same counter array type,
the same counter update type, the same flowkey, the same
flowsize, and the same epoch (C1, C2, C4, C5, C6).

SALUMERGE (OCtr2). Combining two counter updates
into one SALU allocation. Leveraging the full capability of
the underlying hardware resources can help resource reduc-
tion of S. We observe that SALU can update two registers
addressed in the same index and we can leverage this feature
to update two counter arrays simultaneously. As a result, we
can reduce SALUs by up to 2x. We explain this optimization
by using an example in Fig. 7. We have two sketch instances
with two counter arrays each, and we originally needed four
SALUs. Then, we can make SALUs update two counter ar-
rays simultaneously and reduce SALUs from 4 to 2.

We find two rules in the Tofino switch for a SALU to update
two counter arrays. (R1) derives applicable conditions, and
(R2) incurs SRAM overhead.
● (R1) Column indexes for counter updates are the same
● (R2) Two counter arrays have the same width

Applicability: (R1) derives two applicable conditions (C1,
C4). If sketch instances use the same counter array type (C1)
(e.g., sketch instances are either all single-level or all multi-
level) and use the same definition of flowkey (C4), we can
apply this optimization. Because flowkeys are the same, we
can leverage HASHREUSE (OHash1), and SALU can update
two counter arrays using the reused hash result for the column
index. If flowkeys are different, then column indexes for the
counter update can not be the same, which will violate (R1).
Note that we should not let SALU update two counter arrays
within a sketch instance because updating the same column
index will lose hash independence and degrade accuracy.

Implication: This optimization can incur the additional
SRAM overhead due to (R2). Suppose we have two sketch

1278 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

instances {s1,s2} with two counter arrays each as in Fig. 7
with width of {w1,w2} s.t. w1 > w2. Suppose we can apply
the optimization to {s1,s2}. Then, we should pick the longer
width w1 for counter arrays to preserve the accuracy of both
{s1,s2}. As a result, the accuracy will be maintained (e.g.,
for s1) or improved (e.g., for s2). However, this will incur an
SRAM overhead of w2−w1 for s2, as marked in Fig. 7. De-
spite the SRAM overhead, we argue that this optimization is
still effective and practical for three reasons. First, increased
SRAM is not wasted but will improve accuracy. Second, the
overall SRAM overhead is bounded by 2x (2 max(w1,w2)

w1+w2
≤ 2).

Third, SRAM is not the imminent bottleneck as we will see
in the evaluation.

4.3 Heavy Flowkey Storage

To optimize the third workflow step of heavy flowkey storage,
we have one optimization HFSREUSE (OKey).

HFSREUSE (OKey). Reusing heavy flowkey storage across
sketch instances. A large portion of sketching algorithms
store heavy flowkeys in the switch data plane [9, 14, 16, 17,
27, 32, 41]. We can reduce the usage of SALUs (the hardware
used for memory accesses) by reusing heavy flowkey storage
across sketch instances. If multiple sketch instances have the
same definition of flowkey (e.g., srcIP), we can store heavy
flowkey in one heavy flowkey storage to save SALUs. We
can generalize this idea to sketch instances with different
definitions of flowkey using the notion of union-key. Suppose
we have two sketch instances S = {s1,s2} with two different
flowkey definitions F ={{srcIP}, {dstIP}}. Then, instead of
maintaining two heavy flowkey storage, we use one flowkey
storage using union-key of {srcIP, dstIP} where union-key
can be computed by (UK = ∪i fi). Then, for a given packet,
if either {srcIP} is identified as a heavy flowkey for s1 or
{dstIP} is identified as a heavy flowkey for s2. We store {srcIP,
dstIP} of the given packet in the heavy flowkey storage.

We can do a further optimization to reduce memory us-
age of heavy flowkey storage. Suppose S = {s1,s2} and
F ={{srcIP}, {dstIP}}. For a given packet, if {srcIP} is iden-
tified as a heavy flowkey whereas {dstIP} is not, we store
{srcIP, 0} so that the control plane knows this flowkey is only
for s1. To generalize this idea to multiple sketch instances, we
can compute a conditional union-key UKC = ∪ j f jwhere (flow
size estimate) j > threshold j and set 0 to (UK −UKC) when
we store heavy flowkey into the storage.

Applicability: We can apply this optimization to a set of
sketch instances S if all sketch instances in S tracks heavy
flowkeys (C3) as in Table 4. For different measurement
epochs, we can compute the greatest common denominator
(GCD) among all epochs, and the control plane can retrieve
heavy flowkeys every time period of GCD. For example, if
there are sketch instances with 10s, 20s, and 30s measure-
ment epochs, the control plane retrieves heavy flowkeys for

every 10s, and we can reconstruct heavy flowkeys for sketch
instances of 20s and 30s.

Implication: By storing fine-grained heavy flowkeys by
union-key, the control plane can retrieve heavy flowkeys for
individual sketch instances by aggregation without missing
any heavy flowkeys. This optimization incurs small addi-
tional computations on the switch control plane. However,
this overhead does not affect the overall performance because
this control plane computation is not on the critical path to
provide measurement results. While the switch data plane
updates the counter arrays, the switch control plane can in-
dependently execute heavy flowkey aggregation on the CPU.
Another small overhead of the pipeline stage can occur, but
we will see in the evaluation that the impact is small.

5 Strategy Finder
In the previous section, we proposed five optimizations
{O j} j∈{Hash1, Hash2, Ctr1, Ctr2, Key} and their applicable condi-
tions to a subset of sketch instances S = {si}

n
i=1 ⊂ S. In this

section, we aim to develop a strategy finder that partitions
S into the best applicable subsets so that five optimization
building blocks can produce the maximum benefit for any
given ensemble S .

5.1 Problem Formulation
We formulate an optimization problem to find the optimal
strategy. We consider partitions of S because each opti-
mization O j is applied to disjoint subsets of S. Suppose
PS = {Pk∣Pk is kth partition of the set S} is a set containing all
partitions of the set S where Pk = {Sl ⊂S∣⊍l Sl =S}. The goal
is to find the optimal strategy X∗, which minimizes hardware
resources while satisfying the applicable conditions:

min
X

HwResource(X) (5)

s.t.
∣PS ∣
∑
k=1

x jk = 1,∀ j ∈ {Hash1, Hash2, Ctr1, Ctr2, Key} (6)

Valid(X) = 1 (7)

The decision variable is X = {X j} j∈{Hash1, Hash2, Ctr1, Ctr2, Key}.
X j selects a partition Pk ∈ PS for O j so that O j is applied
to all subsets ∈ Pk. To express this, we define X j = {x jk∣x jk ∈

{0,1}}k∈{1,...,∣PS ∣} and x jk = 1 if Pk is selected. Note that (6)
makes X j pick only one partition Pk for O j. About con-
straint (7), we use Valid(X) ∈ {0,1} to denote whether strat-
egy X is valid or not. X is valid if all subsets ∈ Pk satisfy
the applicable conditions of O j for ∀ j. It is assumed that
applicable conditions are met for the subset S ⊂ S containing
a single sketch instance s.t. ∣S∣ = 1. For objective function (5),
we aim to find a strategy X∗ that minimizes hardware resource
among all valid strategies X . To model this objective function
HwResource(X), we use the linear combination of four key

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1279

resource usage:

LinearComb(X ,R) =∑
r∈R

ar ⋅ resourcer(X) (8)

R = {SALU, HashUnit, SRAM, PipelineStage} (9)

Network operators can use (8) and customize the objective
function by choosing different coefficient sets {ar}r∈R for
their preference. For example, suppose network operators
desire to reduce SRAM more than other resources to run
the ensemble with memory-intensive applications, they can
increase the weight for aSRAM in (8).

5.2 Challenges
We face three challenges in formulating and solving the opti-
mization problem.

C-1. Large search space. We have a large search space for
enumeration because the number of possible partition ∣PS ∣
increases exponentially as the number of sketch instances
∣S∣ increases [8]. Even after we consider constraint (6), the
decision variable X has ∣PS ∣5 combinations because X selects
five partitions among PS . This large search space makes find-
ing the optimal solution X∗ become intractable. In practice,
operators often need to reconfigure sketch ensembles, and
waiting for the optimization to complete may end up being
on the critical path [50].

C-2. Modeling the valid function. It is hard to define
Valid(X) due to the dependencies among optimizations.
Specifically, there exist dependencies between Ow1 and Ow2
for w ∈ {Hash, Ctr} because they are applied to the same work-
flow steps. Thus, it is unclear whether a sketch instance si can
be benefited from Ow1 and Ow2 at the same time. Further, if
they can, then it is also unclear how to figure out the relation-
ship between Xw1 and Xw2 to detect the validity of X to define
Valid(X).

C-3. Modeling the objective function. We find that comput-
ing LinearComb(X ,R) takes a long time because accurately
measuring pipeline stage usage requires the compilation of
an optimized P4 code by applying strategy X . The execution
time for resourcepipeline_stage(X) takes several minutes. This
delay will significantly impede the search process, and finding
a solution X∗ can become even more intractable.

5.3 Our Approach
Next, we reformulate the problem and show that finding the
optimal strategies for each O j will create the overall solution
X∗. This reduces search space significantly and makes the
problem tractable.

Excluding pipeline stage from the objective function. To
handle (C-3), we make a pragmatic choice of excluding
the pipeline stage from the objective function. We use
LinearComb(X ,R′) as objective function where R′ = {SALU,
HashUnit, SRAM}. resourcer(X) for r ∈ R′ can be quickly

computed because X contains information about the num-
ber of reused or XOR-reconstructed hash units, reused or
co-located counter arrays, and reused heavy flowkey storage.
The impact of this decision cannot be measured because the
optimal objective function is unknown and difficult to define.
However, we can still identify effective solutions that can
yield significant benefits in practice because there is a corre-
lation between the resource reduction on R′ and the pipeline
stage reduction (§8).
Search space decomposition across workflow steps. To
overcome the challenge of large search space (C-1), we can
decompose the optimization problem into three sub-problems,
and solution X∗ can be achieved by solving sub-problems
separately. Specifically, we decompose the decision variable
X into three groups corresponding to three workflow steps:

XHash = {XHash1,XHash2},XCtr = {XCtr1,XCtr2},XKEY = {XKey}

Then, we can also decompose the valid function and the ob-
jective function as follows:

X = ∪w∈{Hash, Ctr, KEY}Xw (10)

Valid(X) = ∏
w∈{Hash, Ctr, KEY}

Valid(Xw) (11)

HwResource(X) = ∑
w∈{Hash, Ctr, KEY}

HwResource(Xw) (12)

This problem decomposition is possible for two reasons.
First, although there are dependencies in terms of applica-
bility within Xw, there are no dependencies across Xw be-
cause optimizations are independently applied to different
workflow steps. Thus, Valid(X) can be achieved by mul-
tiplication of decomposed Valid(Xw) as in (11). Second,
HwResource(X) can be achieved by summation of decom-
posed HwResource(Xw) as in (12). Without the idea of ex-
cluding pipeline stage usage, this linearity property (12) does
not hold because measuring pipeline stage usage must con-
sider the overall table dependency graph (TDG) among work-
flow steps (Xw). As a result, a solution X∗ can be achieved
by X∗ = {X∗Hash,X

∗
Ctr,X

∗
KEY} where X∗w is a solution of each

sub-problem for w ∈ {Hash, Ctr, KEY} as follows:

min
Xw

HwResource(Xw) s.t. Valid(Xw) = 1 (13)

Two-step enumeration for XHash and XCtr. Although we can
decompose Valid(X) into three Valid(Xw) as in (11), it is still
unclear how to realize Valid(Xw) for w ∈ {Hash, Ctr} because
there exist dependencies between Ow1 and Ow2. We can solve
this problem using an enumeration technique that efficiently
explores the search space. Suppose the enumeration does not
miss out on valid Xw (s.t. Valid(Xw) = 1) while efficiently
skips invalid Xw. In that case, it will help to solve not only
the challenge (C-2) of modeling an valid function but also the
challenge (C-1) by reducing search space. To achieve this, we
develop a two-step enumeration technique as in Alg. 1.

1280 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 TwoStepEnumeration
1: procedure TWOSTEPENUMERATION(S,w)
2: PS = {Pk ∣Pk is kth partition of the set S}
3: min← INT MAX
4: for Xw1 s.t. selected Pw1 ∈ PS is valid do
5: for Xw2 s.t. Pw1 ≤ Pw2 ∈ PS do
6: Xw ←{Xw1,Xw2}

7: Pw12 = NESTEDPARTITION(Pw1,Pw2)
8: if Pw12 is valid then
9: if min >HwResource(Xw) then

10: min←HwResource(Xw)

11: X∗w ← Xw

12: return X∗w

We explain this algorithm by both cases of w ∈ {Hash, Ctr}.
Let’s first see an example for w=Hash, HASHREUSE (OHash1)
and HASHXOR (OHash2). Suppose we have five sketch in-
stances S = {si}

5
i=1 with flowkey definition F ={{srcIP},

{srcIP}, {dstIP}, {srcIP, dstIP}, {srcPort}}. Then the algo-
rithm enumerates all valid Pw1 at line 4 in Alg. 1. Pw1 =

{{s1,s2},{s3},{s4},{s5}} can be picked because {s1,s2}

have the same flowkey so that we can reuse hash results to
reduce hash units. Next, given picked Pw1, it enumerates Pw2
s.t. Pw1 ≤ Pw2

2 to create nested partition Pw12 using Pw1 and
Pw2. If Pw2 = {{s1,s2,s3,s4},{s5}} is picked, then the nested
partition is Pw12 = {{{s1,s2},{s3},{s4}},{{s5}}}. To see the
validity of Pw12, check whether all subsets in Pw12 satisfy ap-
plicable conditions of OHash2 at line 8. Picked Pw12 is valid
because subset S = {{s1,s2},{s3},{s4}} ∈Pw12 satisfies appli-
cable conditions of ∣S∣ = 3 and {srcIP} ∪ {dstIP} = {srcIP,
dstIP} as in (3) at §4.1. Note that {s1,s2} is handled as if it is
a single sketch instance with a flowkey of {srcIP}.

Interestingly, the same algorithm works for w = Ctr,
SALUREUSE (OCtr1) and SALUMERGE (OCtr2). First, the
algorithm enumerates Pw1 where all subsets in Pw1 satisfy ap-
plicable conditions (C1, C2, C4, C5, C6) of OCtr1. For picked
Pw1, OCtr1 is applied to all subsets ∈ Pw1, meaning that each
subset has one set of counter arrays for reuse W as discussed
as in (3) at §4.2. Then each subset can be handled as if it is a
single sketch instance with counter arrays configured with W.
Next, we can detect the validity of nested partition Pw12 using
the applicable conditions (C1, C4) of OCtr2 at line 8 in Alg. 1.

HFSREUSE (OKey) does not need this two-step enumer-
ation. The solution for OKey is one subset S containing all
sketch instances that track heavy flowkey because this will
minimize the hardware resource usage.

Search space decomposition within workflow steps. Al-
though two-step enumeration reduces search space by picking
Pw1 first and then Pw2 such that Pw1 ≤ Pw2, this enumeration
technique still takes a long time to finish (e.g., more than a
day). To this end, we come up with an idea to decompose

2If every element of partition Pw1 is a subset of some element of partition
Pw2, then Pw1 ≤ Pw2. In other words, Pw1 is finer and Pw2 is coarser.

Auto-code composition (§6)

Strategy
Finder (§5)

Code Rewriter
opt.p4

inst1.p4inst1.p4inst1.p4

𝑋∗

An Optimized
Sketch Code

Code
Template

Lib
SketchLib

Lib for Opt

Concatenator

A merged
P4 code

An Ensemble

Figure 8: Overview of auto-code composition.

01: /* 1. hash computation step */
02: s#_h = HashUnit(seed1, FLOWKEY);
03: s#_value = TCAM_LPM(s#_h);
04: /* 2. counter update step */
05: CounterUpdate(seed2, FLOWKEY, WIDTH,
06: SL, PCSA, s1_value);
07: /* 3. heavy flowkey storage step – no code */

Figure 9: Code template example for PCSA.

Xw1 and Xw2 by using a greedy heuristic algorithm. Instead
of running a nested loop (lines 4-5 in Alg. 1) for finding Pw1
and Pw2, we can first find the optimal P∗w1 given S and then
finds P∗w2 based on already fixed P∗w1. This greedy heuristic
algorithm decomposes the search space of {Xw1,Xw2} into
separate {Xw1} and {Xw2}.

The insight behind this greedy heuristic algorithm comes
from the applicability-benefit trade-off between Ow1 and Ow2.
Ow1 is more difficult to apply but has a high resource reduc-
tion benefit. Ow2 is easier to apply but has a low resource
benefit. Thus, it makes sense that the algorithm first applies
Ow1 as much as possible, then next applies Ow2. We can not
prove whether this greedy heuristic algorithm can find the
same or close solution compared to the two-step enumeration.
However, we empirically show that the overhead of objective
function increase is small (e.g., less than 2%) while solving
time of the greedy heuristic algorithm is more than three
orders of magnitude faster (§D.3).

6 Auto-Code Composition
Using solution X∗ from the strategy finder, we need two steps
to generate an optimized P4 code for S as in Fig. 8.

6.1 Sketch P4 Codes and Concatenation
The first step requires network operators to provide N sketch
P4 codes that should match with sketch features and config-
urable parameters for the ensemble S = {si}

N
i=1 (e.g., Table 1).

Code template library. Writing N sketch P4 codes from
scratch is a cumbersome task for network operators. An ef-
fective way is to provide code templates of the sketching
algorithm with which P4 code for a sketch instance can be
created. We build code templates for sketching algorithms
so that network operators can configure the template with
tunable parameters. Fig. 9 shows a code template example of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1281

one sketching algorithm PCSA [20]. Network operators can
fill out placeholders using configurable parameters.

SketchLib. To further simplify the code template, we con-
sider using a common library to write codes for sketch in-
stances, such as SketchLib [4]. The idea of using API calls
makes code templates simple and concise. We extend Sketch-
Lib to enable the flexible configuration of various sketch
features and configurable parameters. For example, API call
CounterUpdate() in Fig. 9 at line 5 gets any definition of
flowkey and any counter update type (e.g., PCSA type is used
in this example). A full list of extended API calls of SketchLib
is in §C.1.

Code concatenation. Finally, the concatenator in Fig. 8 gets
the input of N sketch P4 codes created from code templates
and concatenates N sketch P4 codes into one merged P4 code.

6.2 Code Rewriting
The second step is code rewriting to translate the selected
strategy X∗ into optimized code. Code rewriter in Fig. 8 gets
three inputs; a merged P4 code from the first step, strategy X∗

from the strategy finder, and Library for Optimization (Lib for
Opt) that is used to apply SALUMERGE (OCtr2). Using X∗ =
{X∗Hash,X

∗
Ctr,X

∗
KEY}, the code rewriter sequentially translates

X∗w to each workflow step in a merged P4 code by rewriting
short lines of code. Leveraging the code templates makes the
code rewriting process a lot easier. First, a merged sketch
P4 code is structured in a way that the code rewriter can
easily parse and apply optimizations. Second, the amount of
code rewrite is minimized because sketch code templates are
concise by using API calls in SketchLib and Lib for Opt.

7 Implementation

Auto-code composition. We use two examples, OHash1 and
OHash2 to illustrate how we auto-generate an optimized code.
Fig. 10 is the code snippet without optimization and we call it
before code. Fig. 11 is the code snippet after applying X∗Hash
and we call it after code. We have S = {si}

4
i=1, F ={{srcIP},

{srcIP}, {dstIP}, {srcIP, dstIP}}. The before code allocates
hash units to generate hash results for each flowkey (lines 3,
7, 10, 13 in Fig. 10). To emulate different logical hash seeds
for independence, we configure the hash units with different
CRC polynomials in practice. Then, we apply optimizations
using a given solution X∗Hash = {{{s1,s2},{s3},{s4}}}, which
means the code should reuse {srcIP} for {s1,s2} and use XOR
operation to create a hash result for {srcIP, dstIP} = {srcIP}
⊕ {dstIP}. If we look at line 4 in Fig. 11, the hash result of
s2 reuses the hash result of s1. Line 6 in Fig. 11 shows XOR-
based hash result reconstruction. As a result, the usage of the
hash unit is reduced from 4 to 2.

Applying SALUMERGE (OCtr2) requires new codes for
implementing two counter arrays to share one SALU that
the before code does not have. Thus, we build a new library
(Lib for Opt) shown in Fig. 8 to implement OCtr2 and the

01: // code for s1
02: /* 1. hash computation step */
03: s1_h = HashUnit(seed1, srcIP);
04: ... /* 2. counter update step */
05: ... /* 3. heavy flowkey storage step */
06: // code for s2
07: s2_h = HashUnit(seed2, srcIP);
08: ...
09: // code for s3
10: s3_h = HashUnit(seed3, dstIP);
11: ...
12: // code for s4
13: s4_h = HashUnit(seed4, srcIP, dstIP);
14: ...

Figure 10: [Before] HASHREUSE (OHash1) and HASHXOR
(OHash2).

01: // code for s1, s2, s3
02: /* 1. hash computation step */
03: s1_h = HashUnit(seed1, srcIP);
04: s2_h = s1_h;
05: s3_h = HashUnit(seed3, dstIP);
06: s4_h = s1_h ^ s3_h;
07: ...

Figure 11: [After] HASHREUSE (OHash1) to {s1,s2} and
HASHXOR (OHash2) to {{s1,s2},s3,s4}.

code rewriter can use this library for applying OCtr2. The
definition of the API call for Lib for Opt is in §C.1. For
other optimizations {O j} j∈{Hash1, Hash2, Ctr1, Key}, we do not
need new API calls because a simple rewrite is enough for
implementing reusing resources (OHash1, OHash2, OCtr1) or
XOR operation (OHash2) (e.g., at line 6 in Fig. 11). As a result,
the code rewriter can translate all five optimizations into an
optimized code. We show examples of before and after code
snippets for OHash1, OCtr1, OKey in §C.2.

Strategy finder. One minor issue here is that while imple-
menting SALUMERGE (OCtr2) on the Tofino switch, we face
a known problem of sketch inaccuracy caused by the counter
read and reset delays [37]. To address this, we add one more
applicable condition of the same epoch (C6) to OCtr2.

8 Evaluation

Our extensive set of experiments shows that Sketchovsky
can achieve both a low resource footprint and high accuracy
simultaneously.

8.1 Experimental Setup

Testbed. We evaluate Sketchovsky on a local testbed with an
Edgecore Wedge 100BF Tofino-based programmable switch
and a server equipped with dual Intel Xeon Silver 4110 CPUs,
128GB RAM, and a 100Gbps Mellanox CX-4 NIC connected
to the switch. We use the P4-16 version with the Tofino SDE
version of 9.5.1.

1282 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Sketching algorithms. We use eleven sketch algorithms
that measure six different statistics.3 Although Bloom filter
(BF) is not a sketching algorithm, we include BF because it
also follows the workflow steps of sketching algorithms, and
Sketchovsky can optimize it.
Four ensemble types. We use four types of ensembles that
network operators would practically consider using. In ensem-
bles of (Type 1. Same Sketch), (Type 2. Same Flowkey), and
(Type 3. Same Epoch), all sketch instances in the ensemble
use the same sketching algorithm, flowkey, and epoch, respec-
tively. For (Type 4. Random), sketch instances in an ensemble
are picked randomly.
Ensemble Generator. To create four types of ensembles,
we build an ensemble generator that takes two inputs; (1) the
ensemble type and (2) the number of sketch instances for
the ensemble. Using these two inputs, the ensemble generator
randomly picks sketching algorithms and assigns configurable
parameters from a large pool of candidates. A full list of
candidates for parameters is in §D.1. The ensemble generator
does not allow any two sketch instances in an ensemble to
have the same statistic, flowkey, flowsize, and epoch.
Metrics. We use three metrics for accuracy: (1) Relative
Error (RE): ∣True−Estimate∣

True , where True is the ground truth value
and Estimate is the estimated value. We use this metric for
sketching algorithms for cardinality and entropy. (2) Average
Relative Error (ARE): 1

k ∑
k
i=1
∣ fi− f̂i∣

fi
, where k means the top k

heavy flows. fi is the actual flow size for flow i, and f̂i is the
estimated flow size from the sketch instances. This metric is
used to evaluate the accuracy of the heavy hitter and heavy
change detection. We use k=50. (3) Weighted Mean Relative
Difference (WMRD) is used for MRAC [28].

For resource reduction, we use two metrics: (1) Resource
Usage (RU): Used

Available , where Used is the amount of resource
used for the ensemble and Available is the total amount of
available resource on the switch; and (2) Resource Reduction
(RR): RU (before) - RU (after)

RU (before) , where RU (before) is the amount of
used resource before applying optimizations of Sketchovsky
and RU (after) is the amount of used resource after optimiza-
tion.

8.2 Accuracy
We show that Sketchovsky does not degrade accuracy and
sometimes improves accuracy. For this experiment, we picked
four ensembles from each ensemble type. A full list of base
sketch algorithms and configurable parameters for picked en-
sembles is in §D.2. Given each ensemble as input, we generate

3Linear counting (LC) [44], HyperLogLog (HLL) [21], PCSA [20], multi-
resolution bitmap (MRB) [19] measure cardinality. Count-sketch (CS) [14],
count-min sketch (CM) [17] can detect heavy hitters, and K-ary sketch
(KARY) [27] can detect heavy change. Entropy sketch (ENT) [29] mea-
sures entropy, MRAC [28] measures flow size distribution (FSD). UnivMon
(UM) [32] can measure general statistics. Bloom filter (BF) [11] can do the
membership test. A full list of sketching algorithms that we used for our
experiments with sketch features is in §D.1.

LC(1) HLL(4) PCSA(3) MRB(4)
0
1
2
3
4

R
E

(%
)

Cardinalitybefore
after

MRAC(4)
0.2

0.4

0.6

0.8

W
M

R
D

Flow Size Dist

CS(2)
0

1

2

3

A
R

E
(%

)

CM(7)
0

2

4

6

HeavyHitter, HeavyChange

KARY(1)
0

5

10

15

ENT(6)
0

10
20
30
40

R
E

(%
)

Entropy

UM(2)
0
4
8

12
16

Figure 12: Overall accuracy evaluation.

sketch P4 codes for the Tofino switch both before and after
we use Sketchovsky for optimization. All five optimizations
are enabled. We then run sketch P4 codes for (four picked
ensembles) × (before and after optimizations) on the Tofino
switch and compare the accuracy of the sketch instances. We
use five traffic workloads of inter-ISP packet traces collected
on different dates.4 For each traffic workload, we send ten 60s
packet traces from a directly connected server to the Tofino
switch using tcpreplay at full speed.

Fig. 12 shows the overall accuracy results. We grouped
sketch instances into four different statistics based on the
sketching algorithm used. The X-axis in Fig. 12 shows the
number of sketch instances with the same sketching algorithm
(e.g., HLL(4) means there are four sketch instances using the
sketching algorithm of HLL). The Y-axis shows the quartiles
of errors for sketch instances. We see that none of the sketch
instances lose accuracy after optimization. In fact, we ob-
serve some accuracy improvements. Thanks to OCtr1, counter
arrays of KARY are increased from 1 to 3, and the error is
reduced. In addition, we do not miss any heavy flowkeys both
before and after optimization. Because BF does not produce
measurement results, the accuracy result for two BF sketch
instances is not shown.

8.3 Resource Reduction

Sketchovsky makes infeasible ensembles feasible. We show
the resource reduction benefits of using Sketchovsky. For this
experiment, we generate a total of 400 ensembles of sketch
instances; (four ensemble types) × (10 different numbers of
sketch instances from 2, 4, ..., 20) × (10 different ensembles).
Then, we run Sketchovsky to produce 400 sketch P4 codes
both before and after optimization.5 Next, we compile the
codes using the Tofino compiler to check the feasibility. To
make the experiment more realistic, we append codes for L2
switching, L3 routing, and access control list (ACL) to all of
the before and after optimization codes. L2 and ACL consume
55% of on-switch SRAM in total, and L3 uses 63% of TCAM.

4We use five CAIDA backbone traces captured in 3/20/14 Sanjose,
6/19/14 Sanjose, 1/21/16 Chicago, 5/17/18 NYC, and 8/16/18 NYC [2]

5We use count-min sketches to create ensembles for (Ensemble Type 1)
because it is one of the most popular and widely-used sketching algorithms.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1283

4 8 12 16 20
Number of Sketch Instances

0
2
4
6
8

10

N
um

b
er

of
F

ea
si

bl
e

E
ns

em
bl

es

Ensemble Type 1. Same Sketch Algo

after
before

4 8 12 16 20
Number of Sketch Instances

0
2
4
6
8

10

N
um

b
er

of
F

ea
si

bl
e

E
ns

em
bl

es

Ensemble Type 2. Same Flowkey

after
before

4 8 12 16 20
Number of Sketch Instances

0
2
4
6
8

10

N
um

b
er

of
F

ea
si

bl
e

E
ns

em
bl

es

Ensemble Type 3. Same Epoch

after
before

4 8 12 16 20
Number of Sketch Instances

0
2
4
6
8

10

N
um

b
er

of
F

ea
si

bl
e

E
ns

em
bl

es

Ensemble Type 4. Random

after
before

Figure 13: Feasibility comparison of ensembles before vs after.

T1 Same Sketch T2 Same Flowkey T3 Same Epoch T4 Random
0

50

100

150

200

R
U

(%
)

Before Hash Unit

After Hash Unit

Before SALU

After SALU

Before SRAM

After SRAM

Figure 14: Resource usage comparison before vs after for the num-
ber of sketch instances = 12.

The X-axis in Fig. 13 is the number of sketch instances
in the ensemble. The Y-axis is the number of feasible en-
sembles among ten ensembles per different number of sketch
instances. The result shows that 42 ensembles that were pre-
viously infeasible become feasible with Sketchovsky. For
example, if we look at "Ensemble Type 1" and "6 sketch in-
stances", only 3 out of 10 ensembles were feasible before
optimization. However, all ten ensembles become feasible
after optimization. Note that the pipeline stage overhead of
OHash2 and OKey does not negatively impact feasibility after
applying them.

Resource usage before and after optimization. Fig. 14
shows the use of individual resources before and after opti-
mization. Using the ensemble generator, we generated 1200
ensembles; (four ensemble types) × (300 different ensembles).
Each ensemble has 12 sketch instances. Because some en-
sembles are not feasible on the Tofino switch because of the
limited number of stages, we calculated resource use using
the strategy finder so we are not limited by, and do not show,
pipeline stages. We cross-checked the resource use between
the strategy finder and the Tofino compiler for feasible ensem-
bles. Each bar in Fig. 14 shows the median value, and the error
line shows the 10% and 90% percentile among 300 ensem-
bles. The red-dotted line shows the total available resources
on the switch, so values above the red line represent infeasible
ensembles. Fig. 14 visually shows how previously infeasible
ensembles become feasible. SRAM usage of heavy flowkey
storage before and after optimization is similar because heavy
flowkeys overlap across sketch instances.

4 8 12 16 20 24
Num of Sketch Insts

0
10
20
30
40
50

R
R

(%
)

Hash Unit

4 8 12 16 20 24
Num of Sketch Insts

0
10
20
30
40
50

R
R

(%
)

SALU

4 8 12 16 20 24
Num of Sketch Insts

0
10
20
30
40

R
R

(%
)

SRAM
T1

T2

T3

T4

Figure 15: Resource reduction result.

Resources Total OHash1 OHash2 OCtr1 OCtr2 OKey

Type 1 Hash Unit 21.3 3.1 0.1 18.1
Same SALU 25.7 - 0.8 24.9
Sketch SRAM -0.02 - -0.02

Type 2 Hash Unit 27.6 10.4 - 17.2
Same SALU 33.1 3.8 5.9 23.4

Flowkey SRAM 1.8 2.3 -0.5

Type 3 Hash Unit 18.9 5.5 0.04 13.4
Same SALU 24.7 2.2 3.7 18.8
Epoch SRAM 0.9 1.3 -0.4

Type 4 Hash Unit 15.5 1.9 0.04 13.6
Random SALU 20.4 0.5 1.0 18.9

SRAM 0.2 0.3 -0.1

Table 5: Breakdown of resource reduction by each optimization for
the number of sketch instances = 12.

Sensitivity analysis on the number of sketch instances. We
show a more detailed view of resource reduction by looking
at ensembles with different numbers of sketch instances. We
generate (four ensemble types) × (12 different numbers of
sketch instances from 2, 4, ..., 24) × (300 different ensembles).
The X-axis of Fig. 15 is the number of sketch instances, and
the Y-axis is the average reduction for the three resource
types of 300 ensembles between before and after optimization.
We can see that hash unit reduction is up to 40%, SALU
reduction is up to 45%, and SRAM reduction is up to 7%.
As the ensemble has more sketch instances, we have more
opportunities to apply optimizations, and resource reduction
benefits increase. SRAM reduction is more limited, but we
do observe SRAM reduction for type 2 due to OCtr1 because
reusing counter arrays can reduce SRAM.

Fig. 15 also shows that the resource reduction depends on
the ensemble type. Ensemble type 2 has sketch instances with
the same flowkey, which makes many optimizations easier to
apply. Thus, ensemble type 2 has the highest resource reduc-
tion. On the other hand, type 4 has random sketch instances,
so optimizations are the least likely to be applied, resulting in
the smallest resource reduction. However, even for random
ensemble type, the reduction of the hash unit is up to 20% and
SALU is up to 26% because Sketchovsky offers five multiple
building blocks for optimization.
Breakdown on individual optimizations. We zoom into
ensembles with 12 sketch instances and show the break-
down of resource reduction in Table 5. HFSREUSE (OKey)
shows consistently high resource reduction for all four en-
semble types (18% to 25% SALU reduction). Note that OKey
can also reduce hash units. This is because of the specific

1284 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

hardware architecture of Tofino; one hash unit must be al-
located for one SALU (now we call this HashUnit-SALU
coupling). HASHREUSE (OHash1) is the next impactful op-
timization. For type 2, OHash1 reduces hash units by up to
10.4%. SALUREUSE (OCtr1) reduces both SALU and SRAM
and SALUMERGE (OCtr2) reduces SALUs but increases small
SRAM overhead (negative values such as -0.5%). Finally,
HASHXOR (OHash2) has the least impact on Tofino because
of HashUnit-SALU coupling. Note that the application of
OCtr1 and OCtr2 enables OHash1 automatically. Thus the im-
pact of OCtr1 and OCtr2 is bigger than shown in Table 5.

9 Discussion

Measurement-sketch mapping. We currently assume the
ensemble of sketch instances is given as input. An interesting
direction for future work is to automatically generate the
most efficient ensemble of sketch instances for a given set of
measurement tasks. We posit that explicitly considering the
characteristic of input workload and the resource-accuracy
trade-off in an ensemble setting using Sketchovsky could be
an interesting direction for future work [33, 47].

Generalizing to other hardware. While our prototype uses
Tofino due to its open-source development API, we posit
that our research contributions, such as optimization building
blocks, strategy finder, and auto-code composition framework,
can be adapted to other programmable switches and platforms
as they have similar resource bottlenecks [31, 40].

Generalizing to other sketching algorithms. Today, some
sketching algorithms are still infeasible in the data plane
due to their complex data structures [39, 40]. We envision
Sketchovsky to be useful for implementing other feasible
sketching algorithms on programmable switches than the
eleven sketching algorithms we demonstrated in §8. In this
section, we elaborate on the applicability of Sketchovsky’s
main components, including optimization building blocks,
strategy finder, and auto-code composition framework, to
other sketches.

First, the optimization building blocks proposed in
Sketchovsky are based on common compute and memory
operations in sketching algorithms (e.g., hash computations,
arithmetic counter updates, heavy flowkey storage). Since
all sketching algorithms perform hash computations, OHash1
and OHash2 are generally applicable to current and future
sketching algorithms. For counter updates, some sketch-
ing algorithms may have complicated counter update op-
erations (e.g., threshold-based counter updates in ElasticS-
ketch [45]). Sketchovsky cannot directly support these compli-
cated counter updates and requires a case study to determine
whether resource savings are possible. It is also possible that
these complicated counter operations are fundamentally ex-
cluded from further optimizations. For heavy flowkey storage,
the sketching algorithms that require storing heavy flowkeys
[9, 16, 41] can benefit from OKey. In summary, the individual

optimizations introduced in Sketchovsky are broadly applica-
ble to sketching algorithms.

Second, the strategy finder is a general optimizer to maxi-
mize resource saving. As long as the specifications of sketch-
ing algorithms such as counter array type and counter update
type are given as input, the strategy finder will output an
optimized strategy. For example, a user may define single-
level (SL) or multi-level (ML) as the counter array type and
COUNTER or SIGNCOUNTER as the counter update type.
When optimizing counting bloom filters [11] as part of an en-
semble, the user can define the same counter array and counter
update types as the count-min sketch [17], and exclude the
heavy flowkey storage part.

Finally, the auto-code composition framework can accom-
modate new sketching algorithms as long as their sketch
templates are properly defined based on the specification of
Sketchovsky. A sketch template follows three main steps, i.e.,
hash computation, counter updates, and flowkey storage. For
the auto-code composition framework to work, the user needs
to ensure that if several sketches share a common operation
(e.g., signed counter update), the code provided for implement-
ing the operation must be the same across the sketch templates.
For example, implementing a counting bloom filter should
reuse codes from a count-min sketch for the hash computation
and counter update operations. In summary, Sketchovsky can
be generalized to other sketching algorithms.

10 Conclusions
In this paper, we tackle an often ignored problem of run-
ning an ensemble of sketch instances to support a given port-
folio of measurement tasks. To the best of our knowledge,
Sketchovsky is the first end-to-end system that explores cross-
sketch optimizations in practice. We showed that our novel
cross-sketch optimization building blocks and efficient strat-
egy finder make previously infeasible ensembles of sketch
instances feasible on modern hardware.

Acknowledgment
We would like to thank the anonymous NSDI reviewers and
our shepherd Anja Feldmann for their helpful comments. This
work was supported in part by the CONIX Research Center,
one of six centers in JUMP, a Semiconductor Research Cor-
poration (SRC) program sponsored by DARPA, and by NSF
awards 1565343, 1700521, 2106946, 2107086, and 2132639.
Liu was also supported by the Red Hat Collaboratory at
Boston University.

References
[1] Barefoot Tofino Switch. https://barefootnetworks.com/

products/brief-tofino/.

[2] CAIDA Anonymized Internet Traces. https://www.caida.org/
data/passive/passive_dataset.xml.

[3] Modular switch programming under resource constraints. In 19th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22) (Renton, WA, Apr. 2022), USENIX Association.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1285

https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://www.caida.org/data/passive/passive_dataset.xml
https://www.caida.org/data/passive/passive_dataset.xml

[4] SketchLib: Enabling efficient sketch-based monitoring on pro-
grammable switches. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22) (Renton, WA, Apr.
2022), USENIX Association.

[5] AGARWAL, A., LIU, Z., AND SESHAN, S. {HeteroSketch}: Coordinat-
ing network-wide monitoring in heterogeneous and dynamic networks.
In 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22) (2022), pp. 719–741.

[6] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,
VAIDYANATHAN, R., CHU, K., FINGERHUT, A., LAM, V. T.,
MATUS, F., PAN, R., YADAV, N., ET AL. Conga: Distributed
congestion-aware load balancing for datacenters. In Proceedings of the
2014 ACM Conference on SIGCOMM (2014), pp. 503–514.

[7] BASAT, R. B., CHEN, X., EINZIGER, G., AND ROTTENSTREICH,
O. Designing heavy-hitter detection algorithms for programmable
switches. IEEE/ACM Transactions on Networking 28, 3 (2020), 1172–
1185.

[8] BELL, E. T. Exponential polynomials. Annals of Mathematics (1934),
258–277.

[9] BEN BASAT, R., EINZIGER, G., FRIEDMAN, R., LUIZELLI, M. C.,
AND WAISBARD, E. Constant time updates in hierarchical heavy
hitters. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (2017), pp. 127–140.

[10] BENSON, T., ANAND, A., AKELLA, A., AND ZHANG, M. Microte:
Fine grained traffic engineering for data centers. In Proceedings of
the Seventh COnference on emerging Networking EXperiments and
Technologies (2011), pp. 1–12.

[11] BONOMI, F., MITZENMACHER, M., PANIGRAHY, R., SINGH, S., AND
VARGHESE, G. An improved construction for counting bloom filters.
In European Symposium on Algorithms (2006), Springer, pp. 684–695.

[12] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT, A.,
VARGHESE, G., AND WALKER, D. P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun. Rev.
(2014).

[13] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKEOWN,
N., IZZARD, M., MUJICA, F., AND HOROWITZ, M. Forwarding meta-
morphosis: Fast programmable match-action processing in hardware
for sdn. ACM SIGCOMM Computer Communication Review 43, 4
(2013), 99–110.

[14] CHARIKAR, M., CHEN, K., AND FARACH-COLTON, M. Finding fre-
quent items in data streams. In International Colloquium on Automata,
Languages, and Programming (2002), Springer, pp. 693–703.

[15] CHEN, X., LANDAU-FEIBISH, S., BRAVERMAN, M., AND REXFORD,
J. Beaucoup: Answering many network traffic queries, one memory
update at a time. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication
(2020), pp. 226–239.

[16] CORMODE, G., KORN, F., MUTHUKRISHNAN, S., AND SRIVASTAVA,
D. Finding hierarchical heavy hitters in data streams. In Proceedings
2003 VLDB Conference (2003), Elsevier, pp. 464–475.

[17] CORMODE, G., AND MUTHUKRISHNAN, S. An improved data stream
summary: the count-min sketch and its applications. Journal of Algo-
rithms 55, 1 (2005), 58–75.

[18] DURAND, M., AND FLAJOLET, P. Loglog counting of large cardi-
nalities. In European Symposium on Algorithms (2003), Springer,
pp. 605–617.

[19] ESTAN, C., VARGHESE, G., AND FISK, M. Bitmap algorithms for
counting active flows on high speed links. In Proceedings of the 3rd
ACM SIGCOMM conference on Internet measurement (2003), pp. 153–
166.

[20] FLAJOLET, P., AND MARTIN, G. N. Probabilistic counting algorithms
for data base applications. Journal of computer and system sciences
31, 2 (1985), 182–209.

[21] FLAJOLET, P., RIC FUSY, GANDOUET, O., AND ET AL. Hyperloglog:
The analysis of a near-optimal cardinality estimation algorithm. In
AOFA (2007).

[22] GAO, J., ZHAI, E., LIU, H. H., MIAO, R., ZHOU, Y., TIAN, B., SUN,
C., CAI, D., ZHANG, M., AND YU, M. Lyra: A cross-platform lan-
guage and compiler for data plane programming on heterogeneous
asics. In Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer communication (2020),
pp. 435–450.

[23] GAO, X., KIM, T., WONG, M. D., RAGHUNATHAN, D., VARMA,
A. K., KANNAN, P. G., SIVARAMAN, A., NARAYANA, S., AND
GUPTA, A. Switch code generation using program synthesis. In Pro-
ceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architec-
tures, and protocols for computer communication (2020), pp. 44–61.

[24] GARCIA-TEODORO, P., DIAZ-VERDEJO, J., MACIÁ-FERNÁNDEZ,
G., AND VÁZQUEZ, E. Anomaly-based network intrusion detection:
Techniques, systems and challenges. computers & security 28, 1-2
(2009), 18–28.

[25] GUPTA, A., HARRISON, R., CANINI, M., FEAMSTER, N., REXFORD,
J., AND WILLINGER, W. Sonata: Query-driven streaming network
telemetry. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (2018), pp. 357–371.

[26] KIRSCH, A., AND MITZENMACHER, M. Less hashing, same perfor-
mance: building a better bloom filter. In European Symposium on
Algorithms (2006), Springer, pp. 456–467.

[27] KRISHNAMURTHY, B., SEN, S., ZHANG, Y., AND CHEN, Y. Sketch-
based change detection: methods, evaluation, and applications. In
Proceedings of the 3rd ACM SIGCOMM conference on Internet mea-
surement (2003), pp. 234–247.

[28] KUMAR, A., SUNG, M., XU, J., AND WANG, J. Data streaming
algorithms for efficient and accurate estimation of flow size distribution.
ACM SIGMETRICS Performance Evaluation Review 32, 1 (2004), 177–
188.

[29] LALL, A., SEKAR, V., OGIHARA, M., XU, J., AND ZHANG, H. Data
streaming algorithms for estimating entropy of network traffic. ACM
SIGMETRICS Performance Evaluation Review 34, 1 (2006), 145–156.

[30] LI, Y., GAO, J., ZHAI, E., LIU, M., LIU, K., AND LIU, H. H. Cetus:
Releasing p4 programmers from the chore of trial and error compil-
ing. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22) (2022), pp. 371–385.

[31] LIU, Z., BEN-BASAT, R., EINZIGER, G., KASSNER, Y., BRAVER-
MAN, V., FRIEDMAN, R., AND SEKAR, V. Nitrosketch: Robust and
general sketch-based monitoring in software switches. In Proceedings
of the ACM Special Interest Group on Data Communication. 2019,
pp. 334–350.

1286 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[32] LIU, Z., MANOUSIS, A., VORSANGER, G., SEKAR, V., AND BRAVER-
MAN, V. One sketch to rule them all: Rethinking network flow mon-
itoring with univmon. In Proceedings of the 2016 ACM SIGCOMM
Conference (2016), pp. 101–114.

[33] LIU, Z., NAMKUNG, H., AGARWAL, A., MANOUSIS, A.,
STEENKISTE, P., SESHAN, S., AND SEKAR, V. Sketchy with
a chance of adoption: Can sketch-based telemetry be ready for prime
time? In 2021 IEEE 7th International Conference on Network
Softwarization (NetSoft) (2021), IEEE, pp. 9–16.

[34] LIU, Z., NAMKUNG, H., NIKOLAIDIS, G., LEE, J., KIM, C., JIN,
X., BRAVERMAN, V., YU, M., AND SEKAR, V. Jaqen: A {High-
Performance}{Switch-Native} approach for detecting and mitigating
volumetric {DDoS} attacks with programmable switches. In 30th
USENIX Security Symposium (USENIX Security 21) (2021), pp. 3829–
3846.

[35] MIAO, R., ZENG, H., KIM, C., LEE, J., AND YU, M. Silkroad: Mak-
ing stateful layer-4 load balancing fast and cheap using switching asics.
In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (2017), pp. 15–28.

[36] MOSHREF, M., YU, M., GOVINDAN, R., AND VAHDAT, A. Scream:
Sketch resource allocation for software-defined measurement. In Pro-
ceedings of the 11th ACM Conference on Emerging Networking Exper-
iments and Technologies (2015), pp. 1–13.

[37] NAMKUNG, H., KIM, D., LIU, Z., SEKAR, V., AND STEENKISTE, P.
Telemetry retrieval inaccuracy in programmable switches: Analysis and
recommendations. In Proceedings of the Symposium on SDN Research
(2021).

[38] NARAYANA, S., SIVARAMAN, A., NATHAN, V., GOYAL, P., ARUN,
V., ALIZADEH, M., JEYAKUMAR, V., AND KIM, C. Language-
directed hardware design for network performance monitoring. In
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (2017), pp. 85–98.

[39] SCHWELLER, R., GUPTA, A., PARSONS, E., AND CHEN, Y. Re-
versible sketches for efficient and accurate change detection over net-
work data streams. In Proceedings of the 4th ACM SIGCOMM confer-
ence on Internet measurement (2004), pp. 207–212.

[40] SIVARAMAN, V., NARAYANA, S., ROTTENSTREICH, O., MUTHUKR-
ISHNAN, S., AND REXFORD, J. Heavy-hitter detection entirely in the
data plane. In Proceedings of the Symposium on SDN Research (2017),
pp. 164–176.

[41] SONG, C. H., KANNAN, P. G., LOW, B. K. H., AND CHAN, M. C.
Fcm-sketch: generic network measurements with data plane support.
In Proceedings of the 16th International Conference on emerging Net-
working EXperiments and Technologies (2020), pp. 78–92.

[42] SONI, H., RIFAI, M., KUMAR, P., DOENGES, R., AND FOSTER, N.
Composing dataplane programs with µp4. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and protocols for
computer communication (2020), pp. 329–343.

[43] THORUP, M., AND ZHANG, Y. Tabulation-based 5-independent hash-
ing with applications to linear probing and second moment estimation.
SIAM Journal on Computing 41, 2 (2012), 293–331.

[44] WHANG, K.-Y., VANDER-ZANDEN, B. T., AND TAYLOR, H. M. A
linear-time probabilistic counting algorithm for database applications.
ACM Transactions on Database Systems (TODS) 15, 2 (1990), 208–
229.

[45] YANG, T., JIANG, J., LIU, P., HUANG, Q., GONG, J., ZHOU, Y.,
MIAO, R., LI, X., AND UHLIG, S. Elastic sketch: Adaptive and fast
network-wide measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication (2018),
pp. 561–575.

[46] YU, D., ZHU, Y., ARZANI, B., FONSECA, R., ZHANG, T., DENG, K.,
AND YUAN, L. dshark: a general, easy to program and scalable frame-
work for analyzing in-network packet traces. In 16th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI}
19) (2019), pp. 207–220.

[47] YU, M. Network telemetry: towards a top-down approach. ACM
SIGCOMM Computer Communication Review 49, 1 (2019), 11–17.

[48] ZHANG, M., LI, G., WANG, S., LIU, C., CHEN, A., HU, H., GU, G.,
LI, Q., XU, M., AND WU, J. Poseidon: Mitigating volumetric ddos
attacks with programmable switches. In Proceedings of NDSS (2020).

[49] ZHANG, Y., LIU, Z., WANG, R., YANG, T., LI, J., MIAO, R., LIU,
P., ZHANG, R., AND JIANG, J. Cocosketch: high-performance sketch-
based measurement over arbitrary partial key query. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference (2021), pp. 207–222.

[50] ZHENG, H., TIAN, C., YANG, T., LIN, H., LIU, C., ZHANG, Z., DOU,
W., AND CHEN, G. Flymon: enabling on-the-fly task reconfiguration
for network measurement. In Proceedings of the ACM SIGCOMM
2022 Conference (2022), pp. 486–502.

[51] ZHENG, P., BENSON, T., AND HU, C. P4visor: Lightweight virtual-
ization and composition primitives for building and testing modular
programs. In Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies (2018), pp. 98–
111.

[52] ZHOU, Y., ZHANG, D., GAO, K., SUN, C., CAO, J., WANG, Y., XU,
M., AND WU, J. Newton: intent-driven network traffic monitoring.
In Proceedings of the 16th International Conference on emerging Net-
working EXperiments and Technologies (2020), pp. 295–308.

A Supplement to Background
A.1 Counter Update Type
We introduce five counter update types as in Alg. 2.
1. BITMAP is just a bitmap.
2. COUNTER receives index and size for the counter update,

then increase the counter depending on packet counts or
packet bytes.

3. SIGNCOUNTER receives one additional input of 1-bit
hash result. Depending on this hash value, it will either
increase or decrease the counter. The 1-bit hash value is
computed by using flowkey.

4. HLL type can be used for loglog-variant sketches [18,
21]. It receives index and value as inputs and updates the
counter if it is less than the value. Value can be computed
by a function ρ(hash) where hash ∈ {0,1}32,ρ(hash) is
the position of the leftmost 1-bit (e.g., ρ(0001 . . .) = 4) and
hash is computed using flowkey [21]. This ρ function can
be implemented efficiently by using TCAM in the switch
data plane [4].

5. PCSA receives index and bitmask as inputs. Then it
uses the bit-OR operation to update the counter using the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1287

bitmask. Bitmask value can be computed by shift operation
(1 << ρ(hash)).

Algorithm 2 Five Counter Update Types

1: function BITMAP(index)
2: A[index] = 1
3: function COUNTER(index, size)
4: A[index] = A[index] + size
5: function SIGNCOUNTER(hash, index, size)
6: if hash == 0 then
7: A[index] = A[index] + size
8: else if hash == 1 then
9: A[index] = A[index] - size

10: function HLL(index, value)
11: if A[index] < value then
12: A[index] = value
13: function PCSA(index, bitmask)
14: A[index] = A[index] | bitmask

B Supplement to Optimizations
B.1 SRAM reduction of SALUREUSE (OCtr1)
SALUREUSE (OCtr1) reduces not only SALUs but also SRAM.
Suppose S = {si}

n
i=1 is a set of sketch instances and C =

{(ri,wi)}
n
i=1 represent that si has ri number of counter ar-

rays with width wi. W represents row and width of counter
arrays for reuse after applying OCtr1.

W = {w∗j }
maxi(ri)
j=1 where w∗j =max

i
{wi∣ri ≥ j} (14)

Then, SRAM usage changes from ∑n
i=1 riwi to ∑maxi(ri)

j=1 w∗j .
OCtr1 will always maintain or reduce SRAM usage be-
cause ∑n

i=1 riwi − ∑
maxi(ri)
j=1 w∗j ≥ 0. Suppose comp(x,y) ∈

{0,1} where x,y ∈ N. If x ≤ y → comp(x,y) = 1, otherwise
→ comp(x,y) = 0.

n

∑
i=1

riwi−

maxi(ri)
∑
j=1

w∗j =
maxi(ri)
∑
j=1
((

n

∑
i=1

wi ⋅comp(ri, j))−w∗j)

(
n

∑
i=1

wi ⋅comp(ri, j))−w∗j ≥ 0 for 1 ≤ j ≤maxi(ri) due to (14)

Thus,
n

∑
i=1

riwi−

maxi(ri)
∑
j=1

w∗j ≥ 0

C Supplement to Auto-code Composition
C.1 SketchLib and Lib for Optimization
SketchLib. We extended API calls from SketchLib as in Ta-
ble 6 for the easier code-rewrite process.
● TCAM_LPM (hash_result) uses TCAM for the longest

prefix match to compute the leftmost position of 1-bit in the

01: /* 1. hash computation step – no code */
02: /* 2. counter update step */
03: s#_est1 = CounterUpdate(seed1, FLOWKEY, WIDTH,
04: SL, Counter, FLOWSIZE);
05: s#_est2 = CounterUpdate(seed2, FLOWKEY, WIDTH,
06: SL, Counter, FLOWSIZE);
07: s#_est3 = CounterUpdate(seed3, FLOWKEY, WIDTH,
08: SL, Counter, FLOWSIZE);
09: s#_th = AboveThreshold(s#_est1, s#_est2, s#_est3,
10: THRESHOLD);
11: /* 3. counter update step */
12: if (s#_th) { HFS(FLOWKEY); }

Figure 16: Code template example for count-min sketch.

hash result, which is used in many sketching algorithms.
This API call is the same as tcam_optimization() in
SketchLib.
● CounterUpdate (seed, flowkey, width, CA_type,
CU_type, ...) does one counter update for configured
flowkey, counter array type (CA_type) of whether
single-level (SL) or multi-level (ML), counter update
type (CU_type), width of counter array (width). seed is
used for the hash unit to generate column index for the
counter update. Depending on the different CU_type, it
takes more parameters (e.g., packet length for COUNTER
type or value out of TCAM_LPM for HLL/PCSA type). We
extended consolidate_update() in SketchLib to build
this API call.
● AboveThreshold (LIST(estimate), threshold)

gets the threshold and a list of flow size estimates
(these are return values after each counter update). This
API call returns whether the overall flow size estimate
is above the threshold or not6. This logic was part
of heavy_flowkey_storage() in SketchLib and we
separate the API call for the code rewrite process.
● HFS (flowkey) stores heavy flowkey. This API extends
heavy_flowkey_threshold() in SketchLib by support-
ing any definition of flowkey.
You can see how these API calls are used in Fig. 16,

which is a code template example for count-min sketch.
Network operators can put {srcIP, dstIP} to FLOWKEY,
hdr.ipv4.total_len to FLOWSIZE, and 1024 to WIDTH. For
different numbers of counter arrays (e.g., 3 counter arrays),
network operators should write multiple lines of code for
counter updates (e.g., lines 3-8 in Fig. 16).
Lib for Opt. Lib for Opt is used to implement SALUMERGE
(OCtr2) as in Table 6.
● CounterUpdate_2 (seed, flowkey, width,
CA_type, CU_type1, CU_type2, ...) This API
looks similar to CounterUpdate() but the difference
is that this API does two counter updates by using one
SALU. Thus, parameters include two counter update types
6For count-min sketch, overall flow size estimate is min of List (estimate).

For count-sketch, overall flow size estimate is median of List (estimate).

1288 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Two Libs API Name API Parameters Explanation

SketchLib

TCAM_LPM() hash_result Same as tcam_optimization() in SketchLib
CounterUpdate() seed, flowkey, width, CA_type, CU_type, ... Extends consolidate_update() in SketchLib
AboveThreshold() LIST(estimate), threshold Extends heavy_flowkey_storage() in SketchLib
HFS() flowkey Extends heavy_flowkey_storage() in SketchLib

Lib for Opt CounterUpdate_2()
seed, flowkey, width, CA_type, CU_type1,
CU_type2, ...

New API for SALUMERGE (OCtr2)

Table 6: API calls in extended SketchLib and Lib for optimization.

01: // code for s1
02: ... /* 1. hash computation step */
03: /* 2. counter update step */
04: s1_est1 = CounterUpdate(seed1, srcIP, 2K, SL,
05: Counter, pktlen);
06: s1_est2 = CounterUpdate(seed2, srcIP, 2K, SL,
07: Counter, pktlen);
08: s1_est3 = CounterUpdate(seed3, srcIP, 2K, SL,
09: Counter, pktlen);
10: s1_th = AboveThreshold(s1_est1, s1_est2, s1_est3,
11: 100);
12: ... /* 3. heavy flowkey storage step */
13:
14: // code for s2
15: ... /* 1. hash computation step */
16: /* 2. counter update step */
17: s2_est1 = CounterUpdate(seed4, srcIP, 4K, SL,
18: Counter, pktlen);
19: s2_est2 = CounterUpdate(seed5, srcIP, 4K, SL,
20: Counter, pktlen);
21: s2_th = AboveThreshold(s2_est1, s2_est2, 100);
22: ... /* 3. heavy flowkey storage step */
23:
24: // code for s3
25: ... /* 1. hash computation step */
26: /* 2. counter update step */
27: CounterUpdate(seed6, srcIP, 4K, SL, Counter,
28: pktlen);
29: ... /* 3. heavy flowkey storage step */

Figure 17: [Before] SALUREUSE (OCtr1).
CU_type1 and CU_type2. There are one flowkey, one
width, and one counter array type because they should be
the same due to applicable conditions of OCtr2.

C.2 Before and After Code Snippets for OCtr1,
OCtr2, and OKey

Code rewrite for counter update. Code rewriter
uses {X∗Ctr1,X

∗
Ctr2} to apply SALUREUSE (OCtr1) and

SALUMERGE (OCtr2) to counter update step. Although
OCtr1 and OCtr2 can be applied simultaneously, we explain
code rewrite logic separately for better readability. Code
rewrite for OCtr1 to S requires code changes with lines using
CounterUpdate() in the extended SketchLib. Code rewrite
for OCtr2 uses a new API call, CounterUpdate_2().

We first look at how to apply OCtr1 using X∗Ctr1 by look-
ing at the before (Fig. 17) and after (Fig. 18) code snippets.
Three sketch instances {s1,s2,s3} in Fig. 17 are count-min
sketch, K-ary sketch, and entropy sketch respectively and
they have different resource parameters C = {(ri,wi)}

3
i=1 =

01: // optimized code for s1, s2, s3
02: ... /* 1. hash computation step */
03: /* 2. counter update step */
04: s_est1 = CounterUpdate(seed1, srcIP, 8K, SL,
05: Counter, pktlen);
06: s_est2 = CounterUpdate(seed2, srcIP, 4K, SL,
07: Counter, pktlen);
08: s_est3 = CounterUpdate(seed3, srcIP, 2K, SL,
09: Counter, pktlen);
10: s1_th = AboveThreshold(s_est1, s_est2, s_est3,
11: 100);
12: s2_th = AboveThreshold(s_est1, s_est2, s_est3,
13: 200);
14: ... /* 3. counter update step */

Figure 18: [After] SALUREUSE (OCtr1) to {s1,s2,s3}.

{(3,2K),(2,4K),(1,8K)}. {s1,s2} tracks heavy flowkey and
they check whether flow size estimate is above threshold at
line 10 and 21 in Fig. 17. X∗Ctr1 specifies that code rewriter
should apply OCtr1 to {s1,s2,s3}, meaning that they satisfy
applicable conditions for OCtr1. Then, the code rewriter com-
putes row and width of counter arrays for reuse W as dis-
cussed as in (3), §4.2. As a result, W = {8K,4K,2K} is com-
puted in this example and the code rewriter applies this as in
lines 4-9 in code snippet Fig. 18.

Next, we look at how the code rewriter applies OCtr2 by
using X∗Ctr2. Fig. 19 is the before code snippet and Fig. 20
is the after code snippet. {s1,s2,s3} in Fig. 19 are count-
min sketch, entropy sketch, and PCSA sketch respectively
and C = {(3,2K),(2,4K),(1,8K)}. We cannot apply OCtr1
to {s1,s2,s3} for this example because flowsize definitions
are different between s1 and s2 (s1 tracks packet bytes if
we look at lines 5, 7, 9 in Fig. 19 whereas s2 tracks packet
counts at lines 17-18 in Fig. 19). Counter update types are also
different between {s1,s2} and {s3}. {s1,s2} uses COUNTER
type whereas {s3} uses PCSA type.

Instead of OCtr1, we can apply OCtr2 and X∗Ctr2 specifies
that the code rewriter can apply OCtr2 to {s1,s2,s3}. Using
the information in X∗Ctr2, the code rewriter knows that the first
two counter arrays of s1 can share SALUs with s2, and the last
counter array of s1 can share a SALU with s3. We use the new
API call CounterUpdate_2() to apply this optimization at
lines 4-9 in Fig. 20. For the first two counter arrays (lines 4-7),
both counter update types are COUNTER type. Thus, the API
call takes two additional parameters of flowsize definitions
of packet bytes and packet counts. For the third counter array
(lines 8-9), counter update types are COUNTER and PCSA.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1289

01: // code for s1
02: ... /* 1. hash computation step */
03: /* 2. counter update step */
04: s1_est1 = CounterUpdate(seed1, srcIP, 2K, SL,
05: Counter, pktlen);
06: s1_est2 = CounterUpdate(seed2, srcIP, 2K, SL,
07: Counter, pktlen);
08: s1_est3 = CounterUpdate(seed3, srcIP, 2K, SL,
09: Counter, pktlen);
10: s1_th = AboveThreshold(s1_est1, s1_est2, s1_est3,
11: 100);
12: ... /* 3. heavy flowkey storage step */
13:
14: // code for s2
15: ... /* 1. hash computation step */
16: /* 2. counter update step */
17: CounterUpdate(seed4, srcIP, 4K, SL, Counter, 1);
18: CounterUpdate(seed5, srcIP, 4K, SL, Counter, 1);
19: ... /* 3. heavy flowkey storage step */
20:
21: // code for s3
22: ... /* 1. hash computation step */
23: /* 2. counter update step */
24: CounterUpdate(seed6, srcIP, 8K, SL, PCSA,
25: s3_value);
26: ... /* 3. heavy flowkey storage step */

Figure 19: [Before] SALUMERGE (OCtr2).

01: // optimized code for s1, s2, s3
02: ... /* 1. hash computation step */
03: /* 2. counter update step */
04: s_est1 = CounterUpdate_2(seed1, srcIP, 8K, SL,
05: Counter, Counter, pktlen, 1);
06: s_est2 = CounterUpdate_2(seed2, srcIP, 4K, SL,
07: Counter, Counter, pktlen, 1);
08: s_est3 = CounterUpdate(seed3, srcIP, 2K, SL,
09: Counter, PCSA, pktlen, s3_value);
10: s1_th = AboveThreshold(s_est1, s_est2, s_est3,
11: 100);
12: ... /* 3. counter update step */

Figure 20: [After] SALUMERGE (OCtr2) to {s1,s2,s3}.

Thus, two additional parameters are flowsize definition of
packet bytes and an output value of TCAM_LPM written as
s3_value at line 9 in Fig. 20.

Code rewrite for heavy flowkey storage. Code rewriter
uses X∗Key to apply HFSREUSE (OKey) to the heavy flowkey
storage step. Fig. 21 is the before code snippet and Fig. 22
is the after code snippet. We have four sketch instances
{s1,s2,s3,s4} with different flowkeys F = {{srcIP}, {srcIP,
dstIP}, {srcIP, srcPort}, {srcIP, dstIP, srcPort, dstPort}} and
all sketch instances track heavy flowkey. OKey uses union
key UK = ∪i fi for the heavy flowkey storage for reuse. In
this example, UK ={srcIP, dstIP, srcPort, dstPort} is written
at line 14 in Fig. 22. Recall that we have further optimiza-
tion using conditional union-key UKC = ∪ j f jwhere (flow size
estimate) j > threshold j and set 0 to (UK −UKC). This opti-
mization is written in the code at lines 6-11 in Fig. 22. For

01: // code for s1
02: ... /* 1. hash computation step */
03: ... /* 2. counter update step */
04: /* 3. heavy flowkey storage step */
05: if (s1_th) { HFS(srcIP); }
06:
07: // code for s2
08: ...
09: /* 3. heavy flowkey storage step */
10: if (s2_th) { HFS(srcIP, dstIP); }
11:
12: // code for s3
13: ...
14: /* 3. heavy flowkey storage step */
15: if (s3_th) { HFS(srcIP, srcPort); }
16:
17: // code for s4
18: ...
19: /* 3. heavy flowkey storage step */
20: if (s4_th) { HFS(srcIP, dstIP, srcPort, dstPort); }

Figure 21: [Before] HFSREUSE (OKey).

01: // code for s1, s2, s3, s4
02: ... /* 1. hash computation step */
03: ... /* 2. counter update step */
04: /* 3. heavy flowkey storage step */
05: hf_srcIP = hf_dstIP = hf_srcPort = hf_dstPort = 0
06: if (s1_th || s2_th || s3_th || s4_th) {
07: hf_srcIP = srcIP;
08: }
09: if (s2_th || s4_th) { hf_dstIP = dstIP; }
10: if (s3_th) { hf_srcPort = srcPort; }
11: if (s4_th) {hf_dstPort = dstPort; }
12:
13: if (s1_th || s2_th || s3_th || s4_th) {
14: HFS(hf_srcIP, hf_dstIP, hf_srcPort, hf_dstPort);
15: }

Figure 22: [After] HFSREUSE (OKey) to {s1,s2,s3,s4}.

each packet header field (e.g., dstIP), it detects which sketch
instances have this header field (e.g., s2 and s4 because f2 and
f4 have dstIP). Then if any of those sketch instances is above
the threshold (at line 9), those header fields are included in
UKC. If not, this header field is set to zero (at line 5). As a
result, we can reduce 4 heavy flowkey storages to 1 heavy
flowkey storage.

D Supplement to Evaluation

D.1 Eleven Sketch Algorithms for Evaluation
We use eleven sketching algorithms for our evaluation as
in Table 7. They have different sketch features. Counter array
type can be single-level (SL) or multi-level (ML). We also
show a pool of candidate configurable parameters per each
sketching algorithm in Table 7. For entropy sketch, counter
update type SIGNCOUNTER guarantees theoretically better
accuracy due to F2 estimation. However, we found that the
COUNTER type produces better accuracy in practice. Thus, we
use this COUNTER type for entropy sketch in our evaluation.

1290 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Sketch Algorithms Sketch Features Configurable Parameters Candidates

Statistic Name
Counter
Array

Counter
Update

Heavy
Flowkey Flowkey Flowsize Epoch Row Width Level

Membership BF [11] SL BITMAP N

{(srcIP),
(dstIP),

(srcIP, dstIP),
(srcIP, srcPort),
(dstIP, dstPort),

(4-tuple),
(5-tuple)}

{counts}

{10s,
20s,
30s,
40s}

{1}

{128K, 256K,
512K} -

Cardinality

LC [44] SL BITMAP N
MRB [19] ML BITMAP N {16K, 32K} {8, 16}
PCSA [20] SL PCSA N

{4K, 8K,
16K} -

HLL [21] SL HLL N

HH/HC
CS [14] SL SIGNCOUNTER Y {counts,

bytes}
{1, 2,
3, 4,
5}

CM [17] SL COUNTER Y
KARY [27] SL COUNTER Y

Entropy ENT [29] SL COUNTER N
{counts}General UM [32] ML SIGNCOUNTER Y {3,4,5} {2K} {16}

FSD MRAC [28] ML COUNTER N {1} {8, 16}

Table 7: Eleven sketch algorithms with sketch features and possible configurable parameters. (4-tuple) = (srcIP, dstIP, srcPort, dstPort). (5-tuple)
= (srcIP, dstIP, srcPort, dstPort, proto).

D.2 Four Ensembles for Accuracy Evaluation
Table 8 - Table 11 shows four picked ensembles for four en-
semble types. All five optimizations are found in four picked
ensembles.
Ensemble Type 1.
● HASHREUSE (OHash1): none
● HASHXOR (OHash2): none
● SALUREUSE (OCtr1): none
● SALUMERGE (OCtr2): none
● HFSREUSE (OKey): {s1,s2,s3,s4,s5,s6}

Ensemble Type 2.
● HASHREUSE (OHash1): {s3,s4,s6,s10}

● HASHXOR (OHash2): none
● SALUREUSE (OCtr1): {s8,s9}

● SALUMERGE (OCtr2): {{s1},{s2}}, {s7,{s8,s9}}

● HFSREUSE (OKey): {s2,s8,s9}

Ensemble Type 3.
● HASHREUSE (OHash1): {s3,s4}

● HASHXOR (OHash2): none
● SALUREUSE (OCtr1): {s8,s9}

● SALUMERGE (OCtr2): {{s3},{s4}}, {{s6},{s7}}

● HFSREUSE (OKey): {s4,s5}

Ensemble Type 4.
● HASHREUSE (OHash1): none
● HASHXOR (OHash2): {{s1},{s2},{s3}},{{s4},{s5},{s9}}

● SALUREUSE (OCtr1): none
● SALUMERGE (OCtr2): {{s7},{s8}}

● HFSREUSE (OKey): none

SI Base
SA (*)

Configurable Parameters
Flowkey Flowsize Epoch Resource

s1 CM (srcIP) counts 40s (1, 16K)
s2 CM (srcIP) bytes 10s (5, 4K)
s3 CM (srcIP, dstIP) bytes 30s (2, 16K)
s4 CM (srcIP, srcPort) bytes 30s (5, 8K)
s5 CM (dstIP, dstPort) bytes 20s (2, 4K)
s6 CM (5-tuple) counts 40s (5, 8K)

Table 8: Ensemble Type 1. Same Sketch Algorithm

SI Base
SA

Configurable Parameters
Flowkey(*) Flowsize Epoch Resource

s1 ENT (dstIP, dstPort) counts 10s (3, 16K)
s2 CS (dstIP, dstPort) counts 10s (3, 16K)
s3 MRB (dstIP, dstPort) - 20s (1, 16K, 8)
s4 MRAC (dstIP, dstPort) counts 20s (1, 2K, 8)
s5 BF (dstIP, dstPort) - 30s (3, 128K)
s6 MRB (dstIP, dstPort) - 30s (1, 16K, 16)
s7 ENT (dstIP, dstPort) counts 30s (4, 4K)
s8 CM (dstIP, dstPort) bytes 30s (3, 4K)
s9 KARY (dstIP, dstPort) bytes 30s (1, 4K)
s10 MRAC (dstIP, dstPort) counts 40s (1, 2K, 8)

Table 9: Ensemble Type 2. Same Flowkey

SI Base
SA

Configurable Parameters
Flowkey Flowsize Epoch(*) Resource

s1 HLL (srcIP) - 30s (1, 16K)
s2 HLL (dstIP) - 30s (1, 4K)
s3 MRAC (srcIP, dstIP) counts 30s (1, 2K, 8)
s4 UM (srcIP, dstIP) counts 30s (3, 2K, 16)
s5 UM (srcIP, srcPort) counts 30s (4, 2K, 16)
s6 PCSA (dstIP, dstPort) - 30s (1, 8K)
s7 ENT (dstIP, dstPort) counts 30s (2, 16K)
s8 BF (4-tuple) - 30s (3, 128K)
s9 LC (4-tuple) - 30s (1, 128K)
s10 ENT (5-tuple) counts 30s (5, 4K)

Table 10: Ensemble Type 3. Same Epoch

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1291

SI Base
SA

Configurable Parameters
Flowkey Flowsize Epoch Resource

s1 MRAC (srcIP) counts 20s (1, 2K, 16)
s2 MRB (dstIP) - 30s (1, 16K, 8)
s3 MRB (srcIP, dstIP) - 20s (1, 32K, 8)
s4 HLL (srcIP, srcPort) - 10s (1, 4K)
s5 PCSA (dstIP, dstPort) - 20s (1, 16K)
s6 ENT (dstIP, dstPort) counts 30s (3, 8K)
s7 ENT (4-tuple) counts 30s (5, 4K)
s8 CS (4-tuple) counts 30s (3, 8K)
s9 PCSA (4-tuple) - 40s (1, 16K)
s10 HLL (5-tuple) - 30s (1, 8K)

Table 11: Ensemble Type 4. Random

4 8 12 16 20 24

10−1
101
103

S
ol

vi
ng

T
im

e
(s

)

(TSE) T1
(TSE) T2
(TSE) T3
(TSE) T4

(GHA) T1
(GHA) T2
(GHA) T3
(GHA) T4

(a) Solving Time

4 8 12 16 20 24
0

1

2

3

4

5

O
bj

ec
ti

ve
F

un
ct

io
n

In
cr

ea
se

(%
) T1 Same Sketch

T2 Same Flowkey

T3 Same Epoch

T4 Random

(b) Performance on Reduction

Figure 23: Two-step enumeration (TSE) vs greedy heuristic algo-
rithm (GHA).

D.3 Experiment for Greedy Heuristic Algo-
rithm

In the strategy finder section (§5), we propose the greedy
heuristic algorithm to tackle the problem of large search space.
Here we show that the performance loss of the greedy heuris-
tic algorithm is small while solving time is three orders of
magnitude faster.

Metric. We introduce two metrics for this experiment.

● Solving Time: time to find the solution.

● Objective Function Increase: HwResource(XG)
HwResource(XT)

where XT is a
found solution using the two-step enumeration and XG is
from the greedy heuristic algorithm.

We can see in Fig. 23a that the greedy heuristic algorithm
is three orders of magnitude faster than two-step enumera-
tion. However, the objective function increase is less than 2%
(Fig. 23b). For solving time, we measure time for 300 ensem-
bles per data point in Fig. 23a and show the worst solving
time. Data points that take more than 24 hours are not shown.

1292 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RingLeader: Efficiently Offloading Intra-Server Orchestration to NICs

Jiaxin Lin
UT Austin

Adney Cardoza
UT Austin

Tarannum Khan
UT Austin

Yeonju Ro
UT Austin

Brent E. Stephens
University of Utah

Hassan Wassel
Google

Aditya Akella
UT Austin

Abstract
Careful orchestration of requests at a datacenter server is
crucial to meet tight tail latency requirements and ensure
high throughput and optimal CPU utilization. Orchestration
is multi-pronged and involves load balancing and schedul-
ing requests belonging to different services across CPU re-
sources, and adapting CPU allocation to request bursts. Cen-
tralized intra-server orchestration offers ideal load balancing
performance, scheduling precision, and burst-tolerant CPU
re-allocation. However, existing software-only approaches
fail to achieve ideal orchestration because they have limited
scalability and waste CPU resources. We argue for a new ap-
proach that offloads intra-server orchestration entirely to the
NIC. We present RingLeader, a new programmable NIC with
novel hardware units for software-informed request load bal-
ancing and programmable scheduling and a new light-weight
OS-NIC interface that enables close NIC-CPU coordination
and supports NIC-assisted CPU scheduling. Detailed experi-
ments with a 100 Gbps FPGA-based prototype show that we
obtain better scalability, efficiency, latency, and throughput
than state-of- the-art software-only orchestrators including
Shinjuku and Caladan.

1 Introduction

Modern cloud services generate thousands of RPCs in re-
sponse to a single external request [35]. The services often
need to provide microsecond-scale tail latencies for these
RPCs to meet service level objectives (SLOs) [4]. What makes
this challenging is that each server in a distributed system run-
ning multiple services receives many RPC requests of varying
importance, and intra-server orchestration, which is neces-
sary to provide low tail latencies and high CPU efficiency,
itself incurs substantial latency and wastes CPU cycles.

Intra-server orchestration entails three aspects (Figure 1a):
request scheduling, load balancing, and core assignment [6,
13, 14, 19, 24, 31, 33]. These tasks play an indispensable role
in maintaining microsecond-scale tail latency, achieving high

Load
Balancing

Sche LB Alloc

Realloc

Scheduling

(a) Intra-server orchestration

Load
Balancing

HW Sche

Realloc
Hint

HW LB Load
M

onitor

Scheduling

(b) Ringleader
Figure 1: Intra-server orchestration: today vs. Ringleader.

CPU efficiency and high throughput, and enforcing appropri-
ate request prioritization. Request scheduling and load balanc-
ing determine, within and across services, in what order re-
quests are processed and by which worker core [6, 14, 19, 33].
Load balancing reduces tail latencies by reducing worker
queue lengths and improves CPU efficiency as fewer cores in
the system are left idle when they could instead be processing
requests. When requests or services have different SLOs or
priorities, scheduling can eliminate head-of-line (HoL) block-
ing and guarantee tail latencies for critical workloads. Core
re-allocation decides how cores process requests belonging to
different services [13,24,31]. Fast re-allocation maintains low
tail latency and improves CPU efficiency and throughput, as it
can repurpose cores that are not needed by a latency-sensitive
service toward batch services during periods of low load.

Coordinating orchestration tasks is a vision shared by other
recent systems that have either on-loaded orchestration onto
dedicated CPU cores [6, 14, 16, 19, 31, 33] or offloaded some
aspects to SmartNICs [15]. Unfortunately, both sets of ap-
proaches have key limitations (Sections 2 and 8). On-loading
has high latencies, poor scalability, and wastes CPU cycles.
Using a dedicated centralized orchestrator core does not scale
with increasing network line rates and worker core counts.
Offloading orchestration to SmartNICs using on-NIC CPU
cores has similar issues: the wimpy on-NIC cores have high
latency overheads and scalability limitations.

We argue that effective orchestration requires a fundamen-
tally different division of labor than onloading or SmartNIC-
based approaches: Given recent advances in programmable

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1293

network hardware, we start with an approach that offloads
as many of the different aspects of orchestration as possible
onto NIC hardware while systematically onloading onto host
cores minimal functionality for precise scheduling and high
performance. As NICs already process all incoming packets,
offloading orchestration tasks can reduce request processing
latency and save CPU cycles. We realize this division-of-
labor in RingLeader, a system for offloading and executing
intra-server orchestration on 100+Gbps NICs (Figure 1b).

In RingLeader, software running on CPUs uses a new OS-
NIC interface to provide the NIC with per-core updates on
request completions and relative priorities across arriving
requests. Custom-built load balancing and scheduling units
on the NIC interface with each other and leverage software-
provided information to schedule precisely and enqueue re-
quests within/across services at cores. By tracking NIC-local
queues of requests waiting to be scheduled, the RingLeader
NIC detects load changes and provides fine-grained realloca-
tion hints to host cores via the same OS-NIC interface.

Several challenges arise in making this division-of-labor
effective (Sec. 2.3): (1) carefully distributing packet buffering
across the NIC and CPU cores to avoid core idling while
tightly controlling request dispatch from the NIC to CPU
cores; (2) coordinating request dispatching among per-core
buffers and the on-NIC load balancing and scheduling en-
gines to meet various load targets and scheduling policies; (3)
developing hardware support to combine load balancing and
scheduling decisions at line-rate; and (4) developing an effi-
cient OS-NIC interface to enable low overhead coordination
between the NIC and host cores. We make several innovations
(Secs. 4 and 5) to overcome these challenges:

1. We leverage shallow per-core request priority queues
alongside limited on-NIC buffering to overcome the chal-
lenges caused by PCIe latency and ensure requests dis-
patched by the NIC are processed quickly and with suit-
able prioritization.

2. We develop a novel load balancing algorithm, Join-
Bounded-Shortest-Ranked-Queue (JBSRQ), which ac-
counts for multi-service isolation/priorities and ensures
good load balance across the per-core buffers. We build
a new first-eligible-out (FEO) line-rate request scheduler
that coordinates with the request load balancer.

3. We develop new NIC hardware that uses a reduction tree
to calculate which core should process the current highest
priority request at the line rate.

4. We introduce an OS-NIC interface with low CPU over-
heads and avoid generating extra PCIe messages. This
provides an API for services to benefit from on-NIC or-
chestration, and achieves ∼ 50M messages-per-second
for OS-NIC communication.

5. We develop simple NIC-assisted algorithms that support
burst-sensitive core re-allocation across high/low priority
requests by leveraging re-allocation hints provided by a

NIC
(1) RX Packet Arrives

Orchestrator Core

App

(2) Spin Polling
NIC Queue

core 1 core 2 core 3

(3) Dispatch

(a) Load Balancing

NIC(1) RX Packet Arrives

Orchestrator Core

App

(3) Schedule
Different Type

of Requests

core 1 core 2 core 3

(4) Dispatch

(2)
Classify

Reqs

(b) Scheduling

NIC(1) RX Packet Arrives

Orchestrator Core

App 2

(2) Poll Worker
Core Status and

NIC Queue Length

core 1 core 2 core 3

App 1
(3) Reallocate Cores

(c) Core Allocation
Figure 2: Illustrations of existing intra-server orchestration.

new on-NIC load monitoring module.
We present a full evaluation of RingLeader’s feasibility

and effectiveness. From experiments performed on a 100
Gbps FPGA-based prototype, we find RingLeader is high-
performance, scalable and CPU-efficient, and RingLeader
provides better latency and throughput than existing state-of-
the-art intra-server orchestrators, including Shinjuku [19] and
Caladan [13]. For example, in an experiment with 30 worker
hyperthreads, RingLeader was able to service 3× as many
requests within a P99 SLO of 45µs as Shinjuku and RSS.
We compare RingLeader’s core allocation with Caladan run-
ning both a latency-sensitive service and a batch service, and
RingLeader achieves up to 50% less latency for the latency-
sensitive service and 1.3× throughput for the batch service.

2 Background and Motivation

Online cloud services such as search, distributed model serv-
ing pipelines, and key-value caches are deployed today across
thousands of physical machines. User requests to these ser-
vices are composed of sequences of RPCs. Each RPC is pro-
cessed using a two-layer scheduling framework: first, RPCs
are assigned to servers, and then RPCs are dispatched to a
service instance running on one of the server cores [43]. The
latter, i.e., intra-server orchestration, which consists of load
balancing requests and scheduling (ordering) them across ser-
vice instances, and reallocating cores across services based
on demand, play a crucial role in the ultimate performance
experienced by requests.

2.1 Intra-server Orchestration Today
State-of-the-art (SOTA) intra-server orchestration relies on
a centralized software-based approach running in user-
space [6, 10, 13, 19, 31, 33]. This approach addresses the un-
predictable/high tail latency issues of conventional in-kernel
approaches [4, 14, 18]. It also addresses both the load imbal-
ance, poor tail latencies, and poor request scheduling issues
of decentralized randomized RSS (receive-side steering) ap-
proaches such as IX and ZygOS [6,33] and the imbalance and

1294 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

P9
9

Ta
il

La
te

nc
y

(μ
s)

Load (%)

c-ideal
d-ideal(2,8)

(a) 16 Worker Cores

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

P9
9

Ta
il

La
te

nc
y

(μ
s)

Load (%)

c-ideal
d-ideal(12,8)

(b) 96 Worker Cores
Figure 3: Simulation results comparing centralized and de-
centralized scheduling. C-ideal uses the ideal centralized
scheduling policy. D-ideal(X,Y) uses X decentralized orches-
trator cores to schedule Y worker cores per orchestrator core.

imprecision that results from the asynchrony of reactively pro-
gramming aRFS (accelerated Receive Flow Steering) rules.

Figure 2 shows how existing orchestration mechanisms
work: (1) Request Load Balancing (Figure 2a): For each
service, one orchestrator core is dedicated to: 1) polling a cen-
tralized receive queue and 2) dispatching packets to worker
cores according to their load. Packets are delivered from the
NIC to the orchestrator core in a centralized, First Come First
Serve manner. (2) Request Scheduling (Figure 2b): The or-
chestrator core identifies different request types and schedules
competing requests, e.g., by suitably prioritizing them. Re-
quest scheduling reduces HoL blocking and ensures RPCs
with higher priority receive service first. (3) CPU Allocation
(Figure 2c): When there are multiple services running on
the host, the orchestrator core detects when services would
benefit from more cores, and reallocates cores to ensure low
latency and high CPU utilization under fast-changing load.

Multiple dedicated busy-polling orchestration cores may
be needed to support demanding service workloads running
across many cores, or when multiple services run on a server.
Limitations: A core that is used as an orchestrator incurs
overhead and is unable to perform service-specific process-
ing; this is problematic because the CPU is the key bottleneck
in today’s network-intensive workloads. Further, a single or-
chestrator core’s maximum throughput determines scalability
w.r.t request processing rates. Shinjuku’s "dispatcher" that per-
forms request scheduling and load balancing only achieves
5M RPS (Requests-Per-Second) with a single core [15, 19].
With µs-scale requests, one orchestrator core can saturate ∼ 5
worker cores. However, servers today may be equipped with
100s of cores and serve 100+Gbps demand.

The overheads of performing reallocations over a large pool
of worker cores are not negligible either, limiting realloca-
tion speed and precision. For example, with 16 worker cores
(hyperthreads), Shenango’s core allocator can only support
packet rates of up to 6.5 Mpps, and this can only saturate a
10 Gbps NIC with 128B packets [31].

To achieve higher throughput, multiple orchestrator cores
could be used. Each orchestrator core handles a set of worker
cores, and the server relies on NIC RSS (Receive-Side Scal-
ing) to spread requests across orchestrator cores. However,

because orchestrator cores operate independently, it is not pos-
sible to simultaneously enforce request scheduling policies
and ensure even load and high core utilization.1

We built a discrete-event simulator to quantify the impact
of using multiple orchestrator cores on a given service. For
simplicity, we focus here on comparing the load balancing
performance between an ideal centralized approach (c-ideal),
and an ideal decentralized approach (that ignores the costs of
using many orchestrator cores). We generate requests with
service times following an exponential distribution with a
mean of 1µs (Exp(1)).

Figure 3 shows the results for 16-core and 96-core systems.
The saturation point of the d-ideal is much earlier than the
c-ideal, especially when the worker core count is high. This is
because the processing time for each request is unpredictable,
and using RSS to partition requests between orchestrator cores
leads to severe load imbalance. This imbalance causes CPU
underutilization, unnecessary queuing, and increased latency.

Recent work improves on RSS by enabling work-stealing
between cores to avoid load imbalance [24]. However, work-
stealing incurs CPU overheads; it is hard to enforce request
weights or priorities under work-stealing; and, as recent work
has shown, centralized orchestration still significantly outper-
forms work-stealing (Fig. 3 in [24]).

2.2 A Case for NIC-Offloaded Orchestration

Using the NIC to perform orchestration has the potential
to solve the key limitations associated with software-based
approaches. Because all incoming requests necessarily pass
through the NIC, the NIC could be an ideal location to per-
form request scheduling and load balancing; the NIC can
buffer incoming requests and, in theory, make centralized
scheduling and load balancing decisions without added la-
tency. In contrast with software-only approaches that must
sacrifice performance and efficiency to operate at scale, high-
performance on-NIC accelerators can be designed to operate
at the hyperscale required by today’s line rates and core counts.
Additionally, offloading orchestration tasks onto NIC hard-
ware can further improve host CPU efficiency by freeing up
host cores, removing inter-thread communication overheads,
and improving the accuracy of scheduling and load balancing
decisions. The NIC is also a good vantage point for fine-
grained network load profiling and queuing delay monitoring,
so the NIC can assist with CPU scheduling by providing hints
regarding incipient load arriving over the network.

We further argue that once a decision has been made to of-
fload load balancing to the NIC, it is necessary to also offload
scheduling and load monitoring. To achieve the c-ideal line in
Figure 3, it is necessary to perform centralized buffering and

1aRFS allows the orchestrator cores to program flow steering rules on
the NIC [8], this cannot prevent load imbalance at short time scales because
rules must be installed reactively and is imprecise because rules are installed
asynchronously.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1295

load balancing. However, once requests are buffered on the
NIC, it is not possible to prevent a high priority request from
being blocked inside the on-NIC buffer, and centralized on-
NIC buffering hides information about buffered requests from
a CPU-based scheduler, precluding informed scheduling.

2.3 On-NIC Orchestration Challenges

Achieveing on-NIC orchestration is challenging:
C1: To Buffer at cores or not: On-NIC orchestration requires
tight coordination between the NIC and the host. A NIC-only
approach where: (1) all incoming packets are buffered on
the NIC, (2) the NIC computes which core and in what or-
der to process incoming requests, and (3) cores pull "ready"
requests from the NIC to process can, in theory, yield good
load balance and adhere to scheduling policies perfectly, but
can experience poor throughput and fallow cores due to PCIe
latency. To improve throughput and utilization, we need to
unload some amount of buffering onto the cores by allowing
the NIC to send new packet descriptors to a core that is not
yet finished processing its current request. But it is unclear
how deep these per-core buffers should be and what queueing
discipline they should implement. Deep FIFO buffers can im-
prove utilization but impose HoL blocking with high-priority
requests stuck behind low priority ones at a core.
C2: Coordination across cores, load balancing, and
scheduling: Per-core buffering also needs to be coordinated
with the load balancing and scheduling algorithms running
at the NIC. For example, a NIC-based load balancer agnostic
of the priorities of requests enqueued at per-core buffers -
e.g., "enqueueing a request at the shortest queue" - can easily
lead to HoL blocking. Likewise, a NIC-based scheduler that
simply dequeues highest priority requests buffered at the NIC
and tries to enqueue them at per-core buffers may inadver-
tently stall both high and low-priority requests and lead to
non-work-conserving behavior when the buffers at the cores
serving high-priority requests are all full (Section 4).
C3: Lack of existing hardware: Existing hardware architec-
tures are insufficient for precise on-NIC load balancing and
scheduling. For example, modern hardware priority queues,
notably PIFO [39], can only be used to provide programmable
packet scheduling; we cannot support both programmable
scheduling and load balancing with just the PIFO abstraction.
C4: Host and NIC Communication Overheads: To effi-
ciently offload request load balancing to the NIC, the CPU
needs to provide load feedback to the NIC at a fine granularity
(e.g., per-packet). Furthermore, with 100+ Gbps NICs, PCIe
throughput can become the performance bottleneck even in
combination with optimized software stacks [29]. Thus, it
is necessary to ensure that the CPU and PCIe overheads of
CPU-NIC communication are low.

Overall, for effective orchestration, we need new NIC archi-
tectures for offloading load balancing and scheduling, coupled
with new algorithms, and new OS-NIC interfaces.

3 RingLeader Overview

RingLeader is a new NIC architecture and OS-NIC interface
that enables efficient and precise orchestration. In RingLeader,
scheduling and load balancing are performed in tandem by an
efficient and precise novel hardware offload on the NIC, and
core allocation is performed by a host datapath OS with infor-
mation from a new OS-NIC interface. We aim our discussion
at servers equipped with a single NIC; we discuss multi-NIC
support in Sections 9 and 12.2.

3.1 System Assumptions

In RingLeader, we assume that an application runs multiple
services, where each service processes a specific type of re-
quest (e.g., latency-sensitive reads vs. throughput sensitive
scans). A service can be replicated using multiple instances
running across cores to handle load (e.g., deploying many
read-oriented instances to serve heavy read traffic). We as-
sume that distinct services can share a core; but our system
also applies to cases where services need to be isolated across
cores.

In RingLeader, the host uses a Demikernel-like single ad-
dress space datapath OS [42]. The datapath OS achieves 1)
fast multiplexing between OS tasks (e.g., buffer management,
I/O processing, core allocation, coroutine scheduling) and
application-specific work, and 2) fast context switching be-
tween different services’ computations. We have chosen to
use a datapath OS to manage host services instead of a kernel-
based OS, as the traditional kernel-based OS abstractions
(such as threads or processes) impose high overhead in multi-
plexing and context switching [42]. Figure 4 shows the sys-
tem running multiple services. Each service launches multiple
coroutines2 on multiple cores; the coroutines are scheduled
and managed by the datapath OS. We assume that each service
is designed to run well on multiple cores.

The datapath OS uses cooperative scheduling: a long-
running coroutine will yield voluntarily after a few microsec-
onds of running. The datapath OS schedules the highest prior-
ity runnable coroutine once a running coroutine yields. The
policy for yielding and scheduling depends on cross-service
priorities.

The RingLeader NIC buffers received packets. This is
reasonable because commercial NICs have a large amount
of memory (tens of MBs of SRAM and 4–16 GBs of
DRAM) [2, 7, 25–27]. If additional buffer capacity is needed,
host DRAM can be used to buffer packet data with the
RingLeader NIC only buffering packet descriptors.

RingLeader is designed to operate regardless of whether
the transport layer is implemented in the NIC or on the CPU.
On-NIC transport enables RingLeader to easily load balance

2As defined in Demikernel, coroutines are light-weight user-level threads
that encapsulate the OS or application computation.

1296 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and schedule at the RPC granularity, while on-CPU transport
necessitates load balancing at the flow or flowlet granularity.

3.2 Key Ideas and Design Overview

RingLeader can schedule and load balance requests from
different services in a given application; to this end, inter-
service policies can be specified in RingLeader. We discuss
how RingLeader can support policies across applications
in Section 9. Furthermore, each service provides input to
the RingLeader NIC to assist with scaling up/down the per-
service allocated cores.
Ideas: RingLeader approximates an ideal centralized orches-
tration approach using the following ideas that address the
challenges in Sec.2.3: (1) We employ shallow priority queues
on each core (Sec. 4.2). The per-core coroutine scheduler pri-
oritizes dequeuing certain requests from these queues to avoid
HoL blocking inside the buffer. (2) The NIC uses a new Join-
Bounded-Shortest-Ranked-Queue (JBSRQ) load balancing
algorithm that utilizes the per-core priority queue behavior to
inform load balancing decisions (Sec. 4.2). In addition, we
develop a new priority-based on-NIC request scheduler called
first-eligible-out (FEO) and a simple interface between the
scheduler and the load balancer (Sec. 4.3); this helps coordi-
nate the scheduler’s dequeue actions with the load balancer by
exposing available room at per-core buffers to the scheduler.
(3) We present a novel NIC hardware architecture that uses
a reduction tree to combine scheduling and load balancing
decisions at line rate (Sec. 5). (4) We use memory-mapped
IO and inlining metadata in packet descriptors to develop an
efficient OS-NIC communication interface (Sec. 4.1).
Example: Figure 4 illustrates how RingLeader operates when
network packets are received. For simplicity, we only focus on
load balancing and scheduling. Here, two services are running
on a host. When a request packet enters RingLeader, it is
processed by a programmable match+action (RMT) pipeline,
which parses the packet’s L3-L7 packet headers as necessary
to identify the service that the packet belongs to and compute
appropriate ranks. Then the packet is enqueued into the per-
service packet buffer queue waiting to be scheduled.

The on-NIC request scheduler uses the FEO queue to sched-
ule different services’ requests according to a programmable
policy. FEO schedules the highest priority service for which
there is available room at a core where the service can run
(this "eligibility" is provided via a mask). The on-NIC load
balancer then steers this highest priority service’s request to
an eligible core that has the lowest rank (akin to queuing time)
as computed by JBSRQ.

On each host core, the coroutine scheduler launches the
runnable coroutine corresponding to the highest priority re-
quest. After the request finishes processing, the datapath OS
provides load feedback to the NIC through the TX packet’s
descriptor or a separate MMIO register write.

We conclude the overview with a few more details.

on-NIC Request
Scheduler

PCIe

Coroutines
Scheduler

Coroutines
Scheduler

Coroutines
SchedulerDatapath

OS

on-NIC Request
Load Balancer

on-NIC Request
Buffer

Service 1’s Coroutine: Service 2’s Coroutine:

RMT Pipeline

Eligibility mask

Load
Feedback

Host

NIC

Core 1 Core 2 … Core N

Core
Allocator

Core
Reallocation

Events

Scale up/down
Hints

Lo
ad

 M
on

ito
r

Per-core
Buffer

Figure 4: RingLeader Design.

Policies: RingLeader’s load balancer, scheduler, and core
allocator cooperate from top to bottom to enforce a given
inter-service policy. Scheduling policies in RingLeader are ex-
pressed as a hierarchy of functions that compute the rank, rate,
and/or transmission time for a packet [38–40]. Having a hier-
archy of functions enables policies where multiple services
can be grouped together, e.g., two latency-sensitive services
can be given equal priority over another service but different
weights when competing with each other.
Core assignment: An on-NIC load monitor tracks the queu-
ing condition for each service/request type. Each service
can configure its trigger condition; when the scale-up/down
threshold is met, the NIC sends a scaling hint to the least
loaded core which runs this service/request type. The core
allocator runs inside the datapath OS in a distributed fashion,
e.g., it can run on any core depending on which core receives
the NIC hint.

4 RingLeader Design

We now discuss the design of the individual components
of RingLeader. In Sec 4.1, we introduce the interface and
mechanism that the NIC uses to communicate with the OS.
In Sec 4.2, we introduce RingLeader’s on-NIC request load
balancer and our JBSRQ algorithm. In Sec 4.3, we describe
the design of our FEO request scheduler and the non-blocking
interface between the request scheduler and the load balancer.
In Sec 4.4, we describe our NIC-assisted CPU re-allocation.

4.1 OS-NIC Interface
The OS-NIC interface in RingLeader (Table 1) is designed to
minimize both HoL blocking latency and the CPU overheads
of communicating orchestration metadata. We focus on the
mechanisms here and outline the metadata exchanged over
the interface at relevant places in later subsections.
CPU-to-NIC metadata: The datapath OS communicates
with the NIC by writing to the NIC control registers via
memory-mapped IO (MMIO) and via metadata in descriptors.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1297

OS-to-NIC Interface Description
RegisterService(s_id: X, ip: I, port: P, prio: O) Register a new service X with the NIC.
EnableService(s_id: X, core_id : Y) Notify the NIC that core Y is running service X.
DisableService(s_id: X, core_id : Y) Notify the NIC that core Y is no longer running service X.
LoadFeedback(s_id: X, core_id : Y, count: C) Notify the NIC that service X finishes C packets on core Y.
EnableLoadMonitor(s_id: X, trigger: T) Enable load monitor for service X, with trigger condition T.
RearmLoadMonitor(s_id: X) Notify the NIC that the host is ready to receive the next load hint for service X.

NIC-to-OS Interface Description
LoadHint(s_id: X, hint: H) Notify the host that service X’s load has triggered the scale-up/down condition.

Table 1: RingLeader OS-NIC Interface

Each core accesses a different set of cache-aligned NIC regis-
ters to increase MMIO write performance. Our microbench-
marks in Section 7.4 show the throughput for OS-to-NIC
communication is roughly 50M messages per second.
NIC-to-CPU metadata: The NIC communicates with the OS
through packet descriptors. The NIC-generated reallocation
hint is inlined into the packet descriptor and sent to the per-
core NIC queue. 3 The datapath OS polls the NIC queue and
parses the NIC hint. To avoid HoL blocking, the NIC limits
the number of outstanding unACKed hints per core.

Our interface allows the NIC to monitor and control the
length of each per-core queue despite the inherent asynchrony
caused by PCIe latency. This design also overcomes PCIe
throughput limitations by avoiding generating new PCIe mes-
sages in the common case.

4.2 On-NIC Load Balancing with JBSRQ
RingLeader performs hardware-based request load balancing
for each service using a Join-Bounded-Shortest-Rank-Queue
(JBSRQ) algorithm to decide when and where to send a
packet. JBSRQ is an extension of the Join-Bounded-Shortest-
Queue (JBSQ) algorithm [21] that considers inter-service
inference and priorities.

As defined in R2P2 [21], JBSQ(n) approximates an ideal,
work-conserving single queue policy using a combination of
an on-NIC centralized queue and short, bounded queues at
each worker. Each worker queue has a maximum depth of n
messages. JBSQ(1) is equivalent to a single-centralized-queue
model, whereas JBSQ(∞) is equivalent to JSQ.
Per-core shallow priority queues: JBSRQ approximates
centralized pull-based load balancing (which achieves ideal
load distribution) using a combination of an on-NIC buffer
and shallow bounded-size (e.g., 4 requests) per-core queues.

When multiple services with different priorities co-exist in
the same core, the per-core buffers (no matter how small) can
cause undesirable HoL blocking. To avoid this HoL blocking,
we implement the per-core buffers as software priority queues;
a core’s coroutine scheduler uses the priority queue to enforce
lightweight prioritized scheduling. The enqueue overhead of
this priority queue is minimal given that the queue depth is
≤ 4, and priority calculation overhead is eliminated by the
fact that the NIC scheduler computes priorities (Section 4.3)

3If there is no active packet descriptor being sent from the NIC to the
host, RingLeader will generate a new packet descriptor (for scaling down).

and simply carried along with packet descriptors. Further,
the currently running lower priority request will yield to the
highest priority request, which further reduces HoL blocking.
JBSRQ: Before describing our approach, we outline the
sub-optimality of the classical join-bounded-shortest-queue
(JBSQ) approach.

The main issue is that JBSQ does not consider the behavior
of the host’s priority queue.

Figures 5 (a), (b) show this limitation for two types of JBSQ
algorithms: global-JBSQ and per-service-JBSQ. In global-
JBSQ, which is used in RackSched [43], the NIC tracks per-
core NIC queue lengths and always steers new requests to the
core with smallest queue length. In per-service-JBSQ, which
is used in nanoPU [17], the NIC tracks per-service queue
length on each core and implements a JBSQ per service.

Given two services running on core 1 and core 2 where
service A’s priority is higher than service B, the example in
Figure 5 (a) shows how global-JBSQ prevents new arriving
high priority requests from preempting the on-host low prior-
ity requests. Since core 1’s queue length is larger than core
2, global-JBSQ would dispatch the newly arrived service A’s
request to core 2. However, the optimal decision is to steer
the request to core 1 as A’s request would be served before
B’s request; the low priority request’s queue length has little
impact on the high priority request’s completion time.

Similarly, Figure 5 (b) shows that per-service-JBSQ leads
to sub-optimal performance for low priority requests.

To overcome JBSQ’s limitations, we introduce JBSRQ. For
simplicity, we assume each service has a single request type
and that we are given priorities across services. In JBSRQ,
the NIC tracks same-core services’ queue lengths and service
priorities. Then, for each service’s request, the NIC selects
the core that has the minimal rank, where rank is calculated
as follows for a request for service A:

R[A].c = ∑
Px≥PA

Q[x].c+λ∗ ∑
Px<PA

Q[x].c

Here, R[A].c represents service A’s rank on core c. PA repre-
sents service A’s priority, Q[x].c represents service x’s queue
length on core c. λ is a constant factor between 0 and 1.

The underlying idea in JBSRQ is: when dispatching one ser-
vice A’s packet, the load balancer should consider the amount
of the queue on a core that is contributed by requests of at
least the same priority as A (because A’s request cannot be
scheduled ahead of such requests); the first term captures this.
The rank calculation ignores the queue length contribution
from all lower-priority requests. The factor λ and the sum-

1298 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Load Balancer
(Global JBSQ(4))

core 2core 1

Load Balancer
(JBSRQ(4))

core 2core 1

λ = 0.2
Rank[A].1 = 1 + 2*0.2 = 1.4
Rank[A].2 = 2*1 = 2

Load Balancer
(JBSRQ(4))

core 2core 1

λ = 0.2
Rank[A].1 = 1*0.2 = 0.2
Rank[A].2 = 0

(a) (c) (d)

Load Balancer
(JBSRQ(4))

core 2core 1

λ = 0.2
Rank[B].1 = 3*1 = 3
Rank[B].2 = 2*1 = 2

(e)

Load Balancer
(Per-service JBSQ(4))

(b)

core 2core 1

Service A’s Request (High priority):
Service B’s Request (Low priority):

Figure 5: Comparison between JBSQ and JBSRQ. In (b): Since core 1’s low priority request queue length is smaller than core’2,
per-service-JBSQ would dispatch the new arrived service B’s request to core 1. However, the optimal decision is to steer the request to
core 2. This is because a high-priority request’s queue length would impact the low-priority request’s completion time.

FEO

SRAM
(Cache)

Queue
Manager

Per-Service
Scheduling and Queuing

DRAM
(Storage)

On-NIC Storage

Store
Request

Load
Balancer

1 1 0
Eligibility Mask

Eval eligibility

Read
Request

Enqueue
Queue Desc

Dequeue
Queue Desc

Scheduler

Figure 6: On-NIC Request Scheduler

mation in the second term captures the cost of waiting for
a lower-priority request to yield before the higher-priority
request is scheduled.

We now exemplify the benefit of using the JBSRQ policy.
Figure 5 (c) shows that, when dispatching A’s request, we
could mostly ignore B’s queue length. The calculated core
1’s rank is smaller than core 2. Thus the newly arriving A’s
request is steered to core 1. Figure 5 (d) shows that, at low
load, B’s queue length can influence the load balancing pol-
icy for A’s request; this is because we have added a small
constant factor for the low priority request’s queue length,
which allows B to obtain fair service at low load. In this ex-
ample, selecting idle core 2 is the optimal decision. This is
because the overhead of scheduling or preempting B’s request
is non-negligible; thus choosing core 1 leads to a sub-optimal
decision. Figure 5 (e) shows that when dispatching B’s re-
quest, we should consider A’s queue length, as a high priority
request will always be served before a low priority request.

4.3 Non-blocking On-NIC Request Scheduler

We develop an FEO (First-Eligible-Out) priority scheduler
that provides programmable per-cycle scheduling while sup-
porting a non-blocking interface with the load balancer.

To understand why FEO is needed, consider PIFO [39],
which assumes that, at any given time, all elements are el-
igible for scheduling. PIFO always schedules the smallest
ranked element in the entire list of enqueued requests. How-
ever, given that we use shallow per-core buffers, we require
that, for a given service, if a request’s rank at all worker cores
exceeds the queue-length bound, the load balancer must hold

the request to avoid it getting dropped at a core. In this situa-
tion, the scheduler would block the rest of the lower-priority
requests, which the load balancer could have dispatched to
other potentially-idle cores.

FEO extends PIFO to avoid this problem by interfacing
with the load balancer. As Figure 6 shows, when dequeuing
elements, we first filter the set of elements eligible for dis-
patch and then schedule the smallest ranked element from
that set. To enable this, the load balancer provides a bitmask
that records the dispatching eligibility of each service.

The main difference between PIFO and FEO is the dequeue
operation, which proceeds in two steps. First, we evaluate
each element’s eligibility in parallel by looking up its bit in
the bitmask. Second, FEO uses priority encoding to select
the front-most element whose eligibility is true, pops out the
selected entry, and shifts the array. This design achieves a fast
and parallel evaluation of elements upon dequeue. Addition-
ally, FEO also provides buffer isolation by ensuring that the
lowest priority request is dropped when buffers overflow.

4.4 NIC-assisted CPU Assignment

In RingLeader, each service could enable its own on-NIC load
monitor through the interface defined in Table 1. RingLeader’s
load monitor supports rich triggers based on services’ per-
formance goals (e.g., latency or throughput) or scheduling
policies. By default, scale-up trigger uses the congestion de-
tection policy in Caladan [13]: if any service’s request is
found to be present in the on-NIC queue for two consecutive
intervals, the NIC generates a scale-up hint. The scale-down
policy is more conservative: within a time interval, if the
maximum on-NIC queue length for a service never exceeds a
threshold, the NIC generates a scale-down hint.

When a threshold is reached for a service, the load monitor
generates a scale-up/down hint, inlines into the packet de-
scriptor, and sends it to the buffer of the service’s least-loaded
core; it then disarms hint generation for this service. If no
active packets are sent from the NIC to the cores, RingLeader
will generate a new packet descriptor (to aid scale down).

The datapath OS polls the per-core queue and receives NIC
hints. Then, the OS calls the core allocation function to decide

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1299

whether/where to scale up/down this service.
Assignment strategies: In an ideal system with a perfect
load balancing policy and no multiplexing overhead, the best
core allocation policy would be complete-share: similar to
Shinjuku [19], all services run on all the cores, and a service
is immediately granted CPU when its request is dispatched.
This policy can tolerate bursts well and ensure good CPU effi-
ciency. In practice, though, multiplexing overheads (including
preemption and yielding) are non-negligible. For example,
even with state-of-the-art low-overhead interrupt mechanisms,
multiplexing tasks in a core could incur at least 24% over-
head [15,19]. Therefore, frequent switching between services
waste considerable CPU resources under complete-share.

Thus, RingLeader supports two additional core assignment
strategies to balance the trade-off between burst tolerance and
wasted CPU. In the no-sharing dedicated model (similar to
Shenango [31], Caladan [13]), each service has its own dedi-
cated core set. The core allocator reallocates cores between
services at fine-granularity (e.g., 5 µs per reallocation). A ded-
icated core improves cache locality and avoids multiplexing
overhead. But such a system will have worse burst tolerance
since even a 5 µs reallocation interval cannot react to transient
micro bursts [24].

In the allow-sharing hybrid model, each service has some
dedicated cores, as well as cores shared with other services.
The dedicated core is used to handle the long-term constant
load, and the shared core is used when a burst of requests
arrives. This balances multiplexing overhead and burst toler-
ance.

After the datapath OS successfully scales up/down a ser-
vice, it calls the rearm function (Table 1) to rearm the load
monitor for the service. Before being rearmed, the load moni-
tor will not generate further hints for the service; this ensures
only one in-flight hint per service and reduces the synchro-
nization overhead inside the host’s core allocator (e.g., only
one core will receive the hint for a service at a time).

5 Hardware Design

We describe the hardware design of RingLeader’s pro-
grammable load balancer and provide details on how it in-
terfaces with FEO and with software priority queues. We
end with an example to show how requests flow through the
RingLeader hardware. We provide benchmarks in Sec. 7.5.

5.1 Load Balancer Hardware
The load balancer unit uses two fundamental building blocks:
Per-core rank register array: JBSRQ needs to sum up the
queue lengths of all services/request types on a core at or
above a certain priority (Sec 4.2). Instead of spending cy-
cles scanning and summing up different queue lengths, we
maintain a pre-calculated rank register array for each priority
level in the on-NIC SRAM. This register array stores each

priority level’s current rank on each core. When a request
arrives, RingLeader directly reads out its rank according to
the priority. The rank register array is updated asynchronously
either when a request is dispatched or when load feedback is
sent back from the worker core.
Reduction-tree-based “choose min”: We use a hierarchical
tree-based circuit for computing the “choose min” operation
in JBSRQ to select a core. Although PIFOs are typically used
for “choose min” operations in scheduling, using the same
design in our load balancer is not feasible. This is because
ranks are frequently updated as requests are dispatched and
completed, and it is not possible to update the ranks of en-
tries in a PIFO. Using a new reduction-tree-based design in
RingLeader overcomes this limitation and allows for ranks to
be updated frequently and in parallel.

Because the “choose min” operation can also be costly
when the core count is high, RingLeader uses a hierarchical
tree-based circuit to compute this minimum value. This circuit
lends itself to pipelining, and it can calculate a minimal ranked
core at every cycle. In RingLeader, we found that with 64
cores, a 3 staged reduction tree pipeline can fit on a middle-
end FPGA without any utilization or timing issues.

5.2 End-to-End Example
We now present a simple example that puts the hardware
components of RingLeader all together. We have two active
services running on a host with two cores; the services are
prioritized as shown in the top right; all requests in service are
the same priority. Figure 7 (A) shows each service’s priority,
as well as how five existing requests are queued on the host.
We assume the λ in JBSRQ is 0.2, and the depth of each
per-core queue is 3; the scheduling policy is a strict priority.

Our example is shown via the numbered steps in Figure 7:
To start with, in the PIFO unit, both services’ eligibility bit in
the mask is true. Then, (1) PIFO schedules service 1’s queue
descriptor, with the highest priority (see top right). (2) The
request scheduler reads service 1’s request F from the request
buffer. (3) Request F is sent to the load balancer, which then
looks up the priority register and directly reads ranks from the
register array. Priority 2’s rank on core 1 is 0.4 and on core
2, rank is 1.4. (4) The load balancer checks the core bitmask.
If a given service is not running on a core, the rank for this
core is set to infinite. However, in this example, both cores
run service 1, so the rank is not reset or modified.

(5) Per-core ranks are then sent to the hierarchical reduction
tree to identify the destination core with the minimal rank,
core 1. Then, request F is dispatched to core 1. (6) We update
core 1’s priority registers according to the JBSRQ algorithm
(Sec 4.2). As shown in Figure 7’s (B) table and looking at
core 1 queue occupancy before enqueueing F at the top right,
we add one to the ranks of both priority 1 and priority 2, and
we add λ to priority 3’s rank. 4

4F belonged to a service with priority 2; after enqueueing it, priority 1’s

1300 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

…

Reduction Tree

Rank
Register Arrays

11

11

Per-Service
Core Bit Mask

Filtering

Dispatched
Add Rank

Dst core: 1
prio: 2

Load Feedback
Sub Rank

B
A D

C

Core 1 Core 2

Service 1 (prio = 2 (High Prio)):
Service 2 (prio = 1 (Low Prio)):

Core id: 2
prio: 2

Rank: 1.4

Core id: 1
prio: 2

Rank: 0.4

1 3

2 1.4

3 0.6

1 2

2 0.4

3 0.4

1 2

2 0.4

3 0.4

1 3

2 1.4

3 0.6

1 1

2 0.2

3 0.2

PIFO

1 1
s1s2

Request Buffer

Schedule

Service: s1
Priority: 2

F

Read
Request

Co
re

 1 1 2

2 0.4

3 0.4

1 3

2 1.4

3 1.4

RANK

C
o

re
 2

prio

RANKprio
1 1

1->0 0

Core 1 Core 2

Service Per-Core
Eligibility Table

s1

s2

Update
Mask
s2 -> 0

Request Scheduler

Request Load Balancer

s1

s2

After Dispatch Request F

After F’s feedback After A’s feedback

(B) How Core1’s Rank Array Changes

(A) Host’s Queuing Condition

rankprio rankprio

rankprio rankprio rankprio

EService Eligibility
Mask

Figure 7: End-to-End Example in RingLeader NIC

(7) After the update, priority 1’s rank on core 1 reaches the
rank boundary (which is 3). We then update the per-core eli-
gibility table - where we log which service on which core has
reached the rank bound, meaning that buffers are exhausted
at the core and requests from the service can no longer be
scheduled on the core. Given service 2 is mapped to priority
1 on core 1, we change service 2’s eligibility on core 1 into 0.
(8) Since service 2 is now ineligible to be dispatched on all
the cores (core 2’s queue was already full – see top right), in
the request scheduler, we set service 2’s eligibility bit into 0.
Therefore, PIFO will no longer schedule service 2’s request.
(9) Finally, Figure 7’s (B) table further shows how the rank
array is updated when receiving feedback from core 1 after
processing requests F and A. 5

6 Implementation

Our implementation consists of an FPGA prototype for the
RingLeader NIC, a user space NIC driver, and a library oper-
ating system built over Demikernel.
FPGA-based Prototype: The FPGA prototype is imple-
mented in 4K lines of Verilog code, and uses the DMA Engine,
Ethernet MAC and PHY provided in Corundum [12] run at a
250 MHz frequency with a data width of 512 bits.
RMT pipeline: We implemented a single-stage RMT pipeline
in our FPGA prototype. The datapath OS preinstalls the ap-
propriate rules in the pipeline through the NIC-OS interface.
On-chip Request Buffer: The request buffer is implemented
using high-speed BRAM, which supports concurrent reads
and writes at 128 Gbps. The size of the on-chip BRAM buffer
is set to 800 KB. This buffer size can be increased by utilizing
on-NIC DRAM in the future.
FEO scheduler and reduction tree: In our implementation,
the FEO block runs at a 125 MHz frequency with a queue
size of 64. The reduction tree supports 64 worker cores with
a three-stage pipeline in the dispatcher. In the rank register
array, each core has 8 physical priorities.

rank will see all 3 entries in the queue; priority 2’s rank will see priority 2
requests (1) + λ (=0.2) times priority 1 requests (2); priority 3’s rank will see
priority 3 requests (0) + λ (=0.2) times priority 1 and priority 2 requests (3).

5F’s feedback comes before A because of the software priority scheduler.

User space NIC driver: The user space poll mode driver for
the RingLeader NIC is implemented in 1.5K lines of C code
and provides DPDK-like kernel-bypass access to the NIC for
standard NIC functions, in addition to providing all of the
functions in Table 1.
The Datapath OS: We integrated RingLeader with Demik-
ernel’s catnip libOS using 800 lines of Rust. We made the
following modifications to Demikernel: (1) We extended the
catnip libOS to add support for RingLeader’s user space driver.
(2) We added multi-core support to Demikernel, which previ-
ously only ran on a single core. (3) We extended Demikernel’s
coroutine scheduler to enforce prioritized scheduling between
different services’ coroutines. (4) RPC requests yield to the
coroutine after a fixed amount of work instead of always run-
ning to completion (Section 3).

7 Evaluation

Our evaluation answers the following questions:
(1) Does RingLeader achieve high performance for load
balancing and request scheduling? How does RingLeader’s
tail latency and scalability compare to the state-of-the-art
software-only approaches across different workloads and ser-
vice time distributions? (Sections 7.2 and 7.3)
(2) How much do the individual components of RingLeader
contribute to overall improvements? (Section 7.4)
(3) How do our NIC-assisted core assignment’s resulting CPU
efficiency and burst tolerance compare to the state-of-the-art
software-only approaches? (Section 7.5)
(4) What is the scalability and hardware resource usage of the
RingLeader NIC? (Sections 7.6)

7.1 Methodology
Testbed: We evaluate our system on a server with two Intel
Xeon Gold 6326 16-core (32-thread) CPUs and 128 GB of
RAM. This server runs Ubuntu LTS 20.0.4 with the 5.4.0
Linux kernel. In addition, the server has a 100G Alveo U280
Data Center Accelerator Card [1] atop which we implemented
our 100G FPGA prototype. The server also has a Mellanox
ConnectX-5 Ex 100 Gb NIC, which we use to run the Caladan

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1301

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9

P9
9

Ta
il

La
te

nc
y

(μ
s)

Offered Load (MRPS)

RingLeader RSS
Shinjuku Shinjuku-nopre

(a) 30 workers

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

P9
9

Ta
il

La
te

nc
y

(μ
s)

Offered Load (MRPS)

RingLeader RSS
Shinjuku Shinjuku-nopre

(b) 24 workers

0

20

40

60

80

100

0 1 2 3 4 5

P9
9

Ta
il

La
te

nc
y

(μ
s)

Offered Load (MRPS)

RingLeader RSS
Shinjuku Shinjuku-nopre

(c) 16 workers
Figure 8: Load balancing performance under Exp(3) workload.

baseline (described below). We use another client machine
with a Mellanox ConnectX-5 Ex 100Gb NIC to generate load
using DPDK. The client has the same CPU and OS version
as the server. Our experiments (Ringleader and baseline ex-
periments) don’t consider NUMA and direct all interrupts,
memory allocations, and threads to the NIC-local socket.
RingLeader configuration: Software priority queue depth is
set to 4, and λ (Sec. 4.2) is set to 0.2. (We study sensitivity
to λ in the appendix (12.1), and find λ = 0.2 to be a good
setting). The yielding interval is set to 5µs.
Baselines: We compare RingLeader to three baselines:
Shinjuku [19]: Shinjuku uses centralized preemptive schedul-
ing to achieve high-performance request load balancing and
scheduling. Shinjuku only supports Intel 10G NICs and Linux
kernel version 4.4.x, and it can only run on Intel cores be-
cause its fast preemption mechanism requires VT-x support.
We use two Cloudlab [34] c6420 nodes (one client and one
server, connected through a ToR switch) to run Shinjuku with
kernel v4.4.0; each node is equipped with two 16-core (32-
hyperthread) Intel Xeon Gold 6142 CPUs, and an Intel X710
10 Gigabit NIC. By default, Shinjuku uses two hyperthreads
for orchestration – one for the network and another for the
load balancer – collocated on the same physical core. The
preemption interval is set to 5µs. To ensure a fair comparison,
we always assign one more physical core (two hyperthreads)
to Shinjuku than RingLeader for running orchestration tasks.
Caladan [13]: Caladan reallocates cores between applications
at a fine granularity to increase CPU efficiency under chang-
ing workloads. We run Caladan on the same server and the
same OS and kernel version as Ringleader.

Caladan runs its IOKernel on a single dedicated core. There-
fore, like Shinjuku, we always assign one more physical core
to Caladan than RingLeader.
RSS: We also study a decentralized RSS-based system. In this
baseline, worker hyperthreads are managed by the Demikernel
datapath OS, and each worker polls its own large receiving
NIC queue. Here, we use a bare metal 100G U280 FPGA
NIC [1] that performs standard NIC functions.
Workloads: We employ both synthetic workloads and
RocksDB.
Synthetic Workloads: (Table 2) Our synthetic workload is a
server application where requests perform dummy work that

Workloads Description

Exp(3) Single request type, service times follows
exp distribution with mean 3µs.

Bimodal 95% requests are high priority, take 5µs.
(95-5,5-100) 5% requests are low priority, take 100µs.

High Bimodal 99% requests are high priority, take 3µs.
(99-3,1-100) 1% requests are low priority, take 100µs.

Table 2: Synthetic Workloads

we can control to emulate any target distribution of service
times. This allows us to run microbenchmarks that systemati-
cally study how RingLeader and different baselines perform
under different performance limits.
RocksDB Workloads: We also performed experiments with
RocksDB, a popular and widely deployed in-memory key-
value store developed by Facebook [11]. We use RocksDB
queries that are either GET/PUT requests or range SCANs.

To generate both the synthetic and RocksDB workloads,
we developed an open-loop load generator similar to Shin-
juku [19] that generates requests over user space UDP. It uses
12 threads to generate requests following a Poisson arrival
process and specific service-time distributions and another 12
user space threads to receive server replies. Request latency
is measured through timestamps carried inside packets. We
ensure that the network speed and the load generator are not
bottlenecks in any experiment by checking for packet drops.

7.2 Load Balancing Performance

First, we evaluate the RingLeader load balancing unit using
an Exp(3) workload that, for simplicity, only has a single
type of request (with service times following an exponential
distribution with a mean of 3µs). We compare RingLeader
against three baselines: Shinjuku, Shinjuku-nopre, and RSS.
In Shinjuku-nopre, we use Shinjuku without preemption.

Figure 8 shows the load balancing results when the server
runs 30, 24, and 16 workers. Each worker is a hyperthread,
and all workers run on the NIC-local socket. Across all
levels of load, RingLeader provides the lowest tail latency.
Also, RingLeader has the highest saturating throughput for
all worker counts. This shows that RingLeader has the best
scalability and load balancing precision. In contrast, the ded-
icated orchestrator core Shinjuku uses for networking and

1302 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

load balancing becomes a performance bottleneck when the
offered load is > 4.8 MRPS (Million-Request-Per-Second)
and preemption is disabled and when the offered load is > 4
MRPS and preemption is enabled. Figure 8 also shows that
RingLeader consistently outperforms RSS, which distributes
load unevenly across cores, hurting tail latency.

7.3 Scheduling Performance
Synthetic Workload: We now study RingLeader’s ability to
achieve high-performance scheduling across services/request
types. We use the High Bimodal workload (Table 2) with two
types of requests for one service: high priority requests that
follow Exp(3) and low priority requests that follow Exp(100).
We turn off core assignment in these experiments, so the two
types of requests run on all worker hyperthreads.

Figure 9 shows the results from this experiment. For all
worker counts, RingLeader consistently outperforms Shin-
juku. This is because Shinjuku’s orchestrator cores become
bottlenecked when the load is larger than 3.5 MRPS. In con-
trast, RingLeader has better scalability and lower latency.

Also, in RingLeader, high priority requests can still main-
tain low tail latency even when the low priority requests’ load
is saturated (e.g., at load > 3.5 in Fig 9a). This is because
the on-NIC scheduler provides buffer isolation (Sec. 4.3) and
ensures each request type is dropped separately.
RocksDB Workload: Next, we evaluate RingLeader’s
scheduling performance under the RocksDB workload. We
use two request types: GET requests for a single key-value
pair that execute within 5µs; SCAN requests that scan 200
key-value pairs and require 60µs. We also vary the yielding
interval for SCAN across 40 items-per-yield (Y40), 20 items-
per-yield (Y20), and 10 items-per-yield (Y10). Figure 10
shows that RingLeader’s prioritized scheduler allows GET
requests to avoid long queuing times due to SCAN requests.
Aggressive yielding improves tail latency performance for
short requests and adds a constant overhead to scan requests.
RingLeader-assisted core re-allocation is a way to get around
the constant yielding overhead.

7.4 Benefits of RingLeader Components
We now study how the individual components in
RingLeader’s load balancing and scheduling function-
ality contribute to overall performance; core assignment
is turned off here (we study it later in Sec. 7.5). Figure 13
(in appendix) presents a comparison of RingLeader and
reduced versions of RingLeader that remove/replace a single
component . We use the bimodal workload shown in Table 2.
FEO: Here, we turn off our scheduler eligibility bitmask
(Section 4.3), causing it to be degenerate to vanilla PIFO
(Blocking_PIFO). Figure 13 shows that PIFO’s performance
is much worse than RingLeader when the load increases for
high priority requests. This is because, in our two-request-type

setting, low priority requests prevent high priority requests
from entering the load balancer at high load.
Global-JBSQ: Next, we evaluate global-JBSQ(4), a load
balancing algorithm similar to RackSched [43] where the NIC
tracks per-core queue lengths and always steers new requests
to the core with the smallest queue length. The queue length
bound for each core is set to 4. Figure 13 shows that, even
with preemption and the software priority queue enabled, the
high priority request’s tail latency is much worse than JBSRQ
when the offered load is > 2.24 MRPS. Because global-JBSQ
does not consider the behavior of the software priority queue,
a burst of long requests can occupy all per-core NIC queues,
and new arriving high priority requests cannot be dispatched.
Per-service-JBSQ: We evaluate per-service-JBSQ(4), a load
balancing policy that is similar to nanoPU [17] where the NIC
implements JBSQ(4) per service. On each worker, the queue
length limit for a service is 4. Figure 13b shows that low
priority requests have worse performance than RingLeader
because, when dispatching a low priority request, the NIC
ignores the influence of high priority requests on the queuing
delay of low priority ones.
No Software Priority Queue: Figure 13a shows what hap-
pens when we disable per-core software priority queues (and
cooperative yielding). High priority requests suffer a lot be-
cause a burst of low-priority requests can enqueue at currently
idle cores and unduly delay later-arriving sensitive requests.

7.5 NIC-Assisted Core Assignment

We evaluate RingLeader’s ability to detect load changes and
aid in fast core reallocation. We experiment with two types of
services running on the host. One serves high-priority latency-
sensitive RocksDB GET requests. The other runs a best-effort
analytics workload that continuously scans a range of the
RocksDB database and performs data comparisons over the
scanned results. We increase RocksDB GET’s load gradually
and measure offered load averaged over 10s intervals.

We compared RingLeader’s core reallocation performance
with Caladan. In this experiment, Caladan and Ringleader
have 16 worker hyperthreads, and the core assignment de-
cision interval is 8µs. Furthermore, in this experiment,
Ringleader uses the same CPU assignment strategy as Cal-
adan, which is the no-sharing dedicated model.

We evaluate the analytics service’s throughput and the GET
request’s tail latency. Figure 11 shows that RingLeader keeps
the tail latencies of the GET request low while also allowing
for spare CPU cycles to be shared with the best-effort analyt-
ics service. Furthermore, RingLeader yields both better GET
requests tail latency and higher analytics workload through-
put than Caladan because load-imbalance and work-stealing
in Caladan increase latency and CPU load. For example, in
Figure 11b, Caladan’s latency goes up at load 1.44 Mpps
since work-stealing happens most frequently at this point.
In contrast, RingLeader consistently achieves near-optimal

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1303

0

400

800

1200

0

40

80

120

160

0 1 2 3 4 5 6 7 8 9

Lo
w

Pr
io

 R
eq

ue
st

 P
99

 T
ai

l
La

te
nc

y
(μ

s)

H
ig

hP
rio

Re
qu

es
t P

99
 T

ai
l

La
te

nc
y

(μ
s)

Total Offered Load (MRPS)

Ringleader-HighPrio Shinjuku-HighPrio
Ringleader-LowPrio Shinjuku-LowPrio

(a) 30 workers

0

400

800

1200

0

40

80

120

160

0 1 2 3 4 5 6 7 8

Lo
w

Pr
io

 R
eq

ue
st

 P
99

 T
ai

l
La

te
nc

y
(μ

s)

H
ig

hP
rio

Re
qu

es
t P

99
 T

ai
l

La
te

nc
y

(μ
s)

Total Offered Load (MRPS)

Ringleader-HighPrio Shinjuku-HighPrio
Ringleader-LowPrio Shinjuku-LowPrio

(b) 24 workers

0

400

800

1200

0

40

80

120

160

0 1 2 3 4 5

Lo
w

Pr
io

 R
eq

ue
st

 P
99

 T
ai

l
La

te
nc

y
(μ

s)

H
ig

hP
rio

Re
qu

es
t P

99
 T

ai
l

La
te

nc
y

(μ
s)

Total Offered Load (MRPS)

Ringleader-HighPrio Shinjuku-HighPrio
Ringleader-LowPrio Shinjuku-LowPrio

(c) 16 workers
Figure 9: Load balancing and scheduling performance under High Bimodal workload.

0

60

120

180

0

40

80

120

0 1 2 3 4 5 6 7 Sc
an

 R
eq

's
 P

99
 T

ai
l L

at
en

cy

(μ
s)

G
et

Re
q'

s P
99

 T
ai

l L
at

en
cy

(μ

s)

Total Offered Load (MRPS)

Get-Y(10) Get-Y(20) Get-Y(40)
Scan-Y(10) Scan-Y(20) Scan-Y(40)

Figure 10: RocksDB performance.

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8

An
al

yt
ic

s T
hr

ou
gh

pu
t

(K
RP

S)

LC Task Offered Load (Mpps)

Caladan

Ringleader

(a) Analytics throughput.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

LC
 ta

sk
 L

at
en

cy
 (u

s)

LC Task Offered Load (Mpps)

Caladan

Ringleader

(b) GET’s P99 tail latency.
Figure 11: Comparison with Caladan.

centralized scheduling and low overhead core assignment.
Next, we use the on-off traffic pattern to compare the perfor-

mance of two CPU allocation policies: allow-sharing hybrid
and no-sharing dedicated (Section 4.4). During the on state,
the traffic source generates GET requests; during the off state,
the traffic source stops sending. The switching time between
the on/off states is 0.8 ms. Under this pattern, core realloca-
tion happens several times every 0.8 ms. Figure 12 shows
that the allow-sharing policy has better analytics throughput
as it allows the two services to coexist in the same core, ac-
commodates small timescale bursts of arrivals, and minimizes
CPU waste. However, the no-sharing has better tail latency for
GET requests because using dedicated cores improves cache
locality and avoids multiplexing overheads; nevertheless, the
allow-sharing tail latency stays relatively low and flat for the
most part. Given this information, an admin can configure
RingLeader to pick a core assignment policy based on the
relative importance of low tail latency for sensitive services
versus not starving batch services.

7.6 Scalability and Resource Usage
We now study RingLeader’s performance upper bound and
it’s hardware resource usage.

0

100

200

300

400

0 1 2 3 4 5 6 7 8

An
al

yt
ic

s T
hr

ou
pu

t
(K

O
PS

)

Get()'s Offered Load During On State
(MPRS)

Allow-sharing
No-sharing

(a) Analytics throughput.

0

40

80

120

160

0 1 2 3 4 5 6 7 8G
et

()
's

P9
9

La
te

nc
y

(μ
s)

Get()'s Offered Load During On State
(MPRS)

Allow-sharing
No-sharing

(b) GET’s P99 tail latency.
Figure 12: Core reallocation under different policies.

Module Setting LUTs(%) BRAM(%)

Load Balancer (16 priorities * 64 cores) 2.82 0.10
(16 priorities * 128 cores) 2.86 0.10
(32 priorities * 64 cores) 6.07 0.00

Scheduler FEO = 16 0.24 0.01
FEO = 64 1.00 0.01

Packet Buffer 800 KB 0.16 6.54

Table 3: FPGA resource usage for different components.

OS-NIC interface: Figure 16a shows the throughput for
the OS-to-NIC interface. The communication throughput be-
tween a single worker hyperthread and the NIC is 6M register
writes per second, and with 8 workers, the throughput can
reach 50M. The result shows that RingLeader can achieve
low-overhead, fast OS-to-NIC communication.

System Throughput and Latency Overhead: Figure 16b
shows that RingLeader can achieve line-rate load balancing
and scheduling. In this experiment, the host uses 8 worker
hyperthreads, every request finishes immediately, and the rank
bound is set to 16. The result shows that RingLeader achieves
100G with MTU-sized packets and 50Mpps for 64B packets.

We measure RingLeader’s latency overhead by adding hard-
ware timestamps. We find that a request can be scheduled and
dispatched within 150 ns. The end-to-end host ping-pong
latency is 6µs, which is close to commercial NICs.

Hardware Resource Usage: Our U280 FPGA has 1300k
LUTs in total. Table 3 shows different components’ resource
usage under different settings. The load balancer and sched-
uler occupy most of RingLeader’s on-chip logic. When the
load balancer is configured with 16 priorities and 64 worker
counts, it consumes around 2.82% of the logic area. With
32 priorities, it consumes 6.07%. Furthermore, when FEO
uses 16 entries, it consumes 0.24% of the logic area, and
when the size is 64, it consumes 1.00%. Overall, we find that
RingLeader can easily fit on an FPGA.

1304 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

8 Related Work

Software approaches: RingLeader addresses the key scalabil-
ity and performance limitations of other orchestration systems
like IX [6], ZygOS [33], Shenango [31], and Shinjuku [19].
ghOSt [16] and Syrup [20] use userspace CPU scheduling
policies; they are complementary with RingLeader.
Hardware approaches: Shinjuku-on-SmartNIC [15] pro-
vides centralized preemptive request scheduling on an ARM-
based SmartNIC, but scheduling requests on wimpy on-NIC
cores has limited processing speed and introduces tens of
microseconds of latency [22].

PIEO [38] extends PIFO to support efficient extraction for
time-based scheduling algorithms, but it cannot simultane-
ously support scheduling and load balancing. This is because
it only supports packet extraction as a function of time and
hence cannot be used to support an eligibility mask.

Recent related works, such as nanoPU [17], Rach-
Sched [43], Shinjuku-Offload [15], and R2P2 [21], use JBSQ
to offload load balancing in systems with communication
latency. However, as demonstrated in Section 7.4, JBSQ is
suboptimal when requests have different priorities. Our new
JBSRQ algorithm can improve performance under multi-
priority scenarios. Related works, such as RackSched, RPC-
Valet [9], and nanoPU, offloads request scheduling. However,
RackSched and RPCValet do not use centralized scheduling,
which can cause high-priority requests to suffer more from
HoL blocking. In the case of nanoPU, request scheduling re-
quires changes to the CPU architecture by using the hardware
thread scheduler. In contrast, RingLeader achieves centralized
scheduling with no need for changes to the CPU architecture.

Elastic RSS [36] uses a NIC to perform both load balancing
and core allocation. However, it buffers packets at CPU cores
and not on the NIC, leading to load-imbalance, and it does
not schedule packets, leading to HoL blocking.
Transports: Improvements in transport protocols are com-
plementary to RingLeader. Both new transport protocols like
MTP [41] and EQDS [30] and projects that offload transport
protocols to SmartNICs [3, 28, 32, 37] can enable message-
level load balancing and scheduling in an orchestration sys-
tem, so RingLeader would benefit from their adoption.

9 Discussion

Multi-NIC support: Although our design as presented so
far assumes a single NIC per server, there are a few different
ways RingLeader can be configured to support multiple NICs
in a single server: 1) a master/slave configuration (described
below), 2) hard-partitioning workers (Section 12.2), or 3) a
cooperative configuration (Section 12.2). In a master-slave
configuration, each NIC will transfer data to main memory
independently but not perform dispatching. Instead, each slave
NIC sends descriptors about pending requests to the master
NIC, which is solely responsible for orchestration.

Multiplexing Mechanism: RingLeader uses cooperative
scheduling, requiring developers to insert yield statements
for low priority services. However, RingLeader is also com-
patible with other multiplexing mechanisms, such as: 1) op-
timized APIC interrupts [15], and 2) compiler interrupts [5].
Optimized APIC interrupts are a low priority service that can
set a timer that will deliver a low-overhead interrupt once
the time slice expires. Compiler interrupts use compile-time
instrumentation to allow programs to call an interrupt handler
at a regular intervals with little performance impact.
Multi-process Support: RingLeader inherits a key assump-
tion in Demikernel today [42], namely that the data path OS
and services run in a single process. However, similar to
recent work like Snap [23], we can extend RingLeader to sup-
port multiple processes by using Demikernel as a standalone
process that multiplexes I/O across client processes through
shared memory regions. Such an extension would naturally
enable RingLeader to support policies across applications (as
opposed to policies across services in an application).
Applicability to a general kernel: Fine-grained multiplexing
between services on the same core is too expensive for µs-
scale applications in a traditional kernel. This is why many
previous works [13, 19, 31, 42] and RingLeader use highly
specialized data path OSes. However, our system can also be
applied to existing Linux kernels. With a general kernel, users
may want to avoid processor sharing by isolating services
across cores, and our load balancer and CPU allocator still
work effectively.

10 Conclusions

Existing intra-server orchestration approaches have limited
scalability, poor precision, and high overheads. We address
these problems by introducing RingLeader, a new system
that efficiently offloads orchestration in their entirety to a
programmable NIC while minimally onloading limited func-
tions to host cores. RingLeader introduces a novel OS/NIC
interface, a new load balancing algorithm and scheduler, and
a hardware element that combines the decisions of the two.
Our experiments with a prototype on a 100 Gbps FPGA NIC
show that RingLeader offers good tail latency, high through-
put, good CPU utilization, and effective core reallocation.

11 Acknowledgements:

We thank our shepherd, Mina Tahmasbi Arashloo, and the
anonymous NSDI reviewers for their feedback that sig-
nificantly improved the paper. We thank CloudLab [34]
and Christopher Rossbach for providing equipment used to
test and evaluate RingLeader. This research was supported
by NSF awards CNS-2214015, CNS-2202649, and CNS-
2207317. Jiaxin Lin is supported by a Meta PhD Research
Fellowship.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1305

References

[1] Xilinx alveo u280. https://www.xilinx.com/products/
boards-and-kits/alveo/u280.html.

[2] Alpha Data. ADM-PCIE-9V3 - High-Performance Net-
work Accelerator. https://www.alpha-data.com/pdfs/
adm-pcie-9v3.pdf.

[3] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker,
and D. Wentzlaff. Enabling programmable transport proto-
cols in high-speed nics. In 17th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 20),
pages 93–109, 2020.

[4] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan. At-
tack of the killer microseconds. Communications of the ACM,
60(4):48–54, 2017.

[5] N. Basu, C. Montanari, and J. Eriksson. Frequent background
polling on a shared thread, using light-weight compiler inter-
rupts. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implemen-
tation, pages 1249–1263, 2021.

[6] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis,
and E. Bugnion. {IX}: A protected dataplane operating sys-
tem for high throughput and low latency. In 11th {USENIX}
Symposium on Operating Systems Design and Implementation
({OSDI} 14), pages 49–65, 2014.

[7] Broadcom. Stingray SmartNIC Adapters and
IC. https://www.broadcom.com/products/
ethernet-connectivity/smartnic.

[8] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and R. Agar-
wal. Understanding host network stack overheads. In Pro-
ceedings of the ACM SIGCOMM Conference, SIGCOMM.
Association for Computing Machinery, 2021.

[9] A. Daglis, M. Sutherland, and B. Falsafi. Rpcvalet: Ni-driven
tail-aware balancing of µs-scale rpcs. In Proceedings of the
Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 35–48, 2019.

[10] H. M. Demoulin, J. Fried, I. Pedisich, M. Kogias, B. T. Loo,
L. T. X. Phan, and I. Zhang. When idling is ideal: Optimizing
tail-latency for heavy-tailed datacenter workloads with persé-
phone. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, pages 621–637, 2021.

[11] Facebook. RocksDB. http://rocksdb.org/.

[12] A. Forencich, A. C. Snoeren, G. Porter, and G. Papen. Corun-
dum: An open-source 100-gbps nic. In 2020 IEEE 28th An-
nual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 38–46. IEEE, 2020.

[13] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay. Caladan: Miti-
gating interference at microsecond timescales. In 14th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 281–297, 2020.

[14] H. Golestani, A. Mirhosseini, and T. F. Wenisch. Software data
planes: You can’t always spin to win. In Proceedings of the
ACM Symposium on Cloud Computing, pages 337–350, 2019.

[15] J. T. Humphries, K. Kaffes, D. Mazières, and C. Kozyrakis.
Mind the gap: A case for informed request scheduling at the
nic. In Proceedings of the 18th ACM Workshop on Hot Topics
in Networks, pages 60–68, 2019.

[16] J. T. Humphries, N. Natu, A. Chaugule, O. Weisse, B. Rhoden,
J. Don, L. Rizzo, O. Rombakh, P. Turner, and C. Kozyrakis.
GhOSt: Fast and flexible user-space delegation of linux
scheduling. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, SOSP. Association for
Computing Machinery, 2021.

[17] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz,
N. McKeown, and C. Kim. The nanopu: Redesigning the cpu-
network interface to minimize rpc tail latency. arXiv preprint
arXiv:2010.12114, 2020.

[18] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park. mtcp: a highly scalable user-level {TCP} stack
for multicore systems. In 11th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 14),
pages 489–502, 2014.

[19] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Maz-
ières, and C. Kozyrakis. Shinjuku: Preemptive scheduling
for µsecond-scale tail latency. In 16th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI}
19), pages 345–360, 2019.

[20] K. Kaffes, J. T. Humphries, D. Mazières, and C. Kozyrakis.
Syrup: User-defined scheduling across the stack. In Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, SOSP. Association for Computing Machinery,
2021.

[21] M. Kogias, G. Prekas, A. Ghosn, J. Fietz, and E. Bugnion.
{R2P2}: Making {RPCs} first-class datacenter citizens. In
2019 USENIX Annual Technical Conference (USENIX ATC
19), pages 863–880, 2019.

[22] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and
K. Gupta. Offloading distributed applications onto smartnics
using ipipe. In Proceedings of the ACM Special Interest Group
on Data Communication, pages 318–333, 2019.

[23] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,
C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans, S. Grib-
ble, et al. Snap: a microkernel approach to host networking.
In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 399–413, 2019.

[24] S. McClure, A. Ousterhout, S. Shenker, and S. Ratnasamy.
Efficient scheduling policies for Microsecond-Scale tasks. In
19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI). USENIX Association, 2022.

[25] Mellanox Technologies. Innova - 2 Flex Programmable
Network Adapter. http://www.mellanox.com/
related-docs/prod_adapter_cards/PB_Innova-2_
Flex.pdf.

[26] Mellanox Technologies. Mellanox BlueField Smart-
NIC. http://www.mellanox.com/related-docs/prod_
adapter_cards/PB_BlueField_Smart_NIC.pdf.

[27] Mellanox Technologies. NVIDIA Mellanox BlueField-
2 DPU. https://www.mellanox.com/products/
bluefield2-overview.

1306 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.alpha-data.com/pdfs/adm-pcie-9v3.pdf
https://www.alpha-data.com/pdfs/adm-pcie-9v3.pdf
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
http://rocksdb.org/
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://www.mellanox.com/products/bluefield2-overview
https://www.mellanox.com/products/bluefield2-overview

[28] Y. Moon, S. Lee, M. A. Jamshed, and K. Park. AccelTCP:
Accelerating network applications with stateful TCP offloading.
In USENIX Symposium on Networked Systems Design and
Implementation (NSDI). USENIX Association, 2020.

[29] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-
Buedo, and A. W. Moore. Understanding pcie performance for
end host networking. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication,
pages 327–341, 2018.

[30] V. Olteanu, H. Eran, D. Dumitrescu, A. Popa, C. Baciu, M. Sil-
berstein, G. Nikolaidis, M. Handley, and C. Raiciu. An edge-
queued datagram service for all datacenter traffic. In USENIX
Symposium on Networked Systems Design and Implementation
(NSDI). USENIX Association, 2022.

[31] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrish-
nan. Shenango: Achieving high {CPU} efficiency for latency-
sensitive datacenter workloads. In 16th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI}
19), pages 361–378, 2019.

[32] A. Pourhabibi, M. Sutherland, A. Daglis, and B. Falsafi. Cere-
bros: Evading the RPC tax in datacenters. In Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO. Association for Computing Machinery, 2021.

[33] G. Prekas, M. Kogias, and E. Bugnion. Zygos: Achieving
low tail latency for microsecond-scale networked tasks. In
Proceedings of the 26th Symposium on Operating Systems
Principles, pages 325–341, 2017.

[34] R. Ricci, E. Eide, and The CloudLab Team. Introducing Cloud-
Lab: Scientific infrastructure for advancing cloud architectures
and applications. USENIX ;login:, 2014.

[35] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside
the social network’s (datacenter) network. In Proceedings of
the Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM. Association for Computing Ma-
chinery, 2015.

[36] A. Rucker, M. Shahbaz, T. Swamy, and K. Olukotun. Elastic
rss: Co-scheduling packets and cores using programmable
nics. In Proceedings of the 3rd Asia-Pacific Workshop on
Networking 2019, pages 71–77, 2019.

[37] R. Shashidhara, T. Stamler, A. Kaufmann, and S. Peter. Flex-
TOE: Flexible TCP offload with Fine-Grained parallelism. In
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI). USENIX Association, 2022.

[38] V. Shrivastav. Fast, scalable, and programmable packet sched-
uler in hardware. In Proceedings of the ACM Special Interest
Group on Data Communication, pages 367–379, 2019.

[39] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T.
Chuang, A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and
N. McKeown. Programmable packet scheduling at line rate. In
Proceedings of the 2016 ACM SIGCOMM Conference, pages
44–57, 2016.

[40] B. Stephens, A. Akella, and M. Swift. Loom: Flexible and effi-
cient {NIC} packet scheduling. In 16th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI}
19), pages 33–46, 2019.

[41] B. E. Stephens, D. Grassi, H. Almasi, T. Ji, B. Vamanan, and
A. Akella. Tcp is harmful to in-network computing: Design-
ing a message transport protocol (MTP). In Proceedings of
the 19th ACM Workshop on Hot Topics in Networks, HotNets.
Association for Computing Machinery, 2021.

[42] I. Zhang, A. Raybuck, P. Patel, K. Olynyk, J. Nelson, O. S. N.
Leija, A. Martinez, J. Liu, A. K. Simpson, S. Jayakar, P. H.
Penna, M. Demoulin, P. Choudhury, and A. Badam. The
Demikernel datapath OS architecture for microsecond-scale
datacenter systems. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP. Associa-
tion for Computing Machinery, 2021.

[43] H. Zhu, K. Kaffes, Z. Chen, Z. Liu, C. Kozyrakis, I. Stoica, and
X. Jin. Racksched: A microsecond-scale scheduler for rack-
scale computers. In 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20), pages 1225–
1240, 2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1307

20

70

120

0 1 2 3 4 5

H
ig

h
Pr

io
rit

y
Re

qu
es

t
P9

9
Ta

il
La

te
nc

y
(μ

s)

Total Offered Load (MRPS)

RingLeader Global_JBSQ
Per_service_JBSQ Blocking_PIFO
No_soft_prio

(a) High Prio’s P99 tail latency

400

600

800

1000

0 0.5 1 1.5 2 2.5

Lo
w

 P
rio

rit
y

Re
qu

es
t

P9
9

Ta
il

La
te

nc
y

(μ
s)

Total Offered Load (MRPS)

RingLeader Global_JBSQ
Per_service_JBSQ Blocking_PIFO
No_soft_prio

(b) Low Prio’s P99 tail latency
Figure 13: Comparison of RingLeader and reduced versions.

20

40

60

80

100

0 1 2 3 4 5

H
ig

h
Pr

io
ri

ty
 R

eq
ue

st

P9
9

Ta
il

La
te

nc
y

(μ
s)

Total Offered Load (MRPS)

λ=0 λ=0.2 λ=1

(a) High Priority Request’s P99
tail latency

400

500

600

700

800

900

1000

0 0.5 1 1.5 2 2.5

Lo
w

 P
rio

rit
y

Re
qu

es
t

P9
9

Ta
il

La
te

nc
y

(μ
s)

Total Offered Load (MRPS)

λ=0 λ=0.2 λ=1

(b) Low Priority Request’s P99
tail latency

Figure 14: JBSRQ’s performance under different λ.

20

40

60

80

100

0 1 2 3 4 5

H
ig

h
Pr

io
rit

y
Re

qu
es

t
P9

9
Ta

il
La

te
nc

y
(μ

s)

Total Offered Load (MRPS)

λ=0.2 λ = 0.4 λ=0.6

(a) High Priority Request’s P99
tail latency

400

500

600

700

800

900

1000

0 0.5 1 1.5 2 2.5

Lo
w

 P
rio

rit
y

Re
qu

es
t

P9
9

Ta
il

La
te

nc
y

(μ
s)

Total Offered Load (MRPS)

λ=0.2 λ = 0.4 λ=0.6

(b) Low Priority Request’s P99
tail latency

Figure 15: JBSRQ’s performance under different λ (0< λ <1).

12 Appendix

12.1 JBSRQ Policy parameters

We evaluate how the constant factor λ in JBSRQ influences
system throughput and tail latencies under the Bimodal work-
load. Figure 14 shows that, for both high priority and low
priority requests, a constant λ between 0 and 1 brings sig-
nificant performance gain over λ = 0 or λ = 1. When λ = 0,
the rank calculation does not consider preemption overheads.
Under low load (load < 2.24), λ = 0 leads to unnecessary pre-
emption, increasing tail latency for both high priority and low
priority requests. When λ = 1, JBSRQ equals global-JBSQ.
This prevents new arriving high priority requests from pre-
empting the on-host low priority requests when load > 2.24,
increasing tail latencies for high priority requests. An inter-
mediate λ is necessary to achieve good performance under
both high and low load. Figures 15 shows how different λs
between 0 and 1 influence JBSRQ’s performance. There is
not much difference between λ = 0.2 and λ = 0.4. When λ

0
10
20
30
40
50
60

1 2 4 8 16 32M
M

IO
 R

eg
is

te
r W

rit
e

Th
ro

ug
hp

ut
 (M

ps
)

Core Count

(a) MMIO throughput.

0

20

40

60

80

100

64 128 256 512 1024 1500

Th
ro

ug
hp

ut
 (G

bp
s)

Request Size (B)

(b) RingLeader throughput.
Figure 16: Scalability of RingLeader

grows to 0.6, performance drops because of the same issue
with λ = 1.

12.2 Supporting Multiple NICs
While our design aimed at servers equipped with a single
NIC, we believe that it can be extended to support multi-NIC
settings as well. We discuss a few options below.
Hard-partitioning workers: The simplest approach is to
partition workers across NICs. Here, for example, each NIC
orchestrates its local NUMA node. This allows each NIC to
perform ideal centralized scheduling independently. However,
this requires all network traffic for a service to be sent to a
specific NIC.
Cooperative multi-NIC orchestration: In this scenario, each
worker can receive packets from multiple NICs. The control
message in Table 1 is replicated across all NICs to achieve
cooperative orchestration. When a request finishes, the worker
sends load feedback to all NICs, so that every NIC knows up-
to-date worker queue lengths. Also, when a NIC dispatches
a request to a worker, the NIC notifies other NICs of this
action. Replicating control messages is the primary trade-off
introduced by this approach. However, this is unlikely to be a
bottleneck given that control messages are small and MMIO
throughput (16a) over PCIe is high.

1308 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

STARRYNET: Empowering Researchers to Evaluate Futuristic Integrated Space and
Terrestrial Networks

Zeqi Lai†‡, Hewu Li†‡∗, Yangtao Deng†, Qian Wu†‡, Jun Liu†‡, Yuanjie Li†‡, Jihao Li†, Lixin Liu†

Weisen Liu†, Jianping Wu†‡

†Tsinghua University, ‡Zhongguancun Laboratory

Abstract
Futuristic integrated space and terrestrial networks (ISTN) not
only hold new opportunities for pervasive, low-latency Inter-
net services, but also face new challenges caused by satellite
dynamics on a global scale. It should be useful for researchers
to run various experiments to systematically explore new prob-
lems in ISTNs. However, existing experimentation methods
either attain realism but lack flexibility (e.g., live satellites),
or achieve flexibility but lack realism (e.g., ISTN simulators).

This paper presents STARRYNET, a novel experimenta-
tion framework that enables researchers to conveniently build
credible and flexible experimental network environments
(ENE) mimicking satellite dynamics and network behaviors
of large-scale ISTNs. STARRYNET simultaneously achieves
constellation-consistency, networked system realism and flex-
ibility, by adopting a real-data-driven, lightweight-emulation-
aided approach to build a digital twin of physical ISTNs in
the terrestrial virtual environment. Driven by public and real
constellation-relevant information, we show STARRYNET’s
acceptable fidelity and demonstrate its flexibility to support
various ISTN experiments, such as evaluating different inter-
networking mechanisms for space-ground integration, and
assessing the network resilience of futuristic ISTNs.

1 Introduction

Thanks to the resurgence in the space industry [41, 46, 48],
big competitors such as SpaceX and Amazon are actively
planning and deploying hundreds or even thousands of broad-
band satellites in low earth orbits (LEO). Such emerging
mega-constellations (e.g., Starlink [34], Kuiper [9]) can be
integrated into existing terrestrial Internet, i.e., constructing
an integrated space and terrestrial network (ISTN) to: (1)
provide pervasive last-mile network access; (2) enable low-
latency and high-bandwidth Internet transit [40, 52, 56]; and
(3) facilitate efficient acquisition and delivery for big data
from space (e.g., earth observation images) [44, 74, 77, 78].

∗Hewu Li is the corresponding author.

While holding great promise, several unique characteristics
of LEO satellites (e.g., high LEO dynamics) impose new chal-
lenges at various layers of the ISTN networking stack, and
open a door to many new research problems, such as: (1) how
should LEO satellites and ground facilities be interconnected
to provide low-latency and continuous network services? (2)
how should satellite routers be integrated into existing terres-
trial Internet routing? and (3) are current constellation and
protocol designs resilient enough to satellite failures in com-
plex and harsh space environments? With many unexplored
problems facing the “NewSpace” industry, it is thus foreseen
that in the near future, there will be a surge of new ideas on the
system and networking research relevant to ISTNs. But, how
can researchers build an experimental network environment
(ENE) to test, evaluate and understand their new thoughts?

Typically, existing approaches for creating an ENE can
be classified into three categories: (1) live networks or plat-
forms [7, 20, 34, 75, 81], which allow experiments in real
deployments; (2) network simulation [60, 61, 76], which uses
discrete events to model and replicate the behavior of a real
network; and (3) network emulation [6, 55, 68, 69], which
can test real applications/protocols in a virtual network. How-
ever, as will be illustrated in §3, all existing approaches have
their limitations in creating a desired ENE for ISTNs: (1) the
feasibility and flexibility of live satellite networks are techni-
cally and economically limited for normal researchers; (2) the
abstraction level of simulation might be too high to capture
low-level system effects, hiding practical issues such as the
resource competition under heavy workload, energy drain or
software errors; (3) existing emulators fail to characterize the
high dynamicity of LEO satellites and thus are insufficient to
build an experimental environment with acceptable fidelity.

The key challenge of building an expected ENE for ISTN
research is: it is difficult to simultaneously achieve realism and
flexibility in the experimental environment. First, terrestrial
devices inherently lack the ability to reasonably mimic the
high dynamics, system and network behaviors of realistic
satellites. Second, mega-constellations typically consist of
thousands of satellites. Thus the network scale required by an

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1309

ENE for mega-constellations might be far more than the extent
supported by existing ENE methods (e.g., [54, 55, 69]). Third,
as a large number of satellites simultaneously move at a high
velocity, continuously mimicking such frequent variations at
scale could involve significant system overhead on the ENE.

This paper presents STARRYNET, an integrated experimen-
tation framework that empowers researchers to conveniently
build ENEs with acceptable realism, flexibility and cost (e.g.,
requiring only a few number of local/cloud machines) to sat-
isfy various experimental requirements of ISTNs. The de-
sign of STARRYNET is inspired by a key insight obtained
from the satellite Internet ecosystem: many organizations
or communities in this ecosystem have released and shared
their constellation-relevant data, including regulatory informa-
tion [2,73], satellite trajectories [16,38], ground station distri-
bution [26,39] and measurements from user terminals [32,33],
etc. Therefore, the key idea behind STARRYNET is to build
an experimental digital twin, i.e., a virtual presentation of a
physical ISTN, in terrestrial environments by: (1) leveraging
terrestrial machines to virtualize a large number of lightweight
virtual nodes to emulate satellites in mega-constellations; and
(2) exploiting a crowdsourcing approach to collect, combine
and use realistic constellation information to drive the emula-
tion of spatial and temporal characteristics of ISTNs.

To achieve acceptable realism, STARRYNET employs a
constellation synchronizer based on realistic constellation-
relevant information to make the virtual ENE as consistent as
possible to a real ISTN, such as: (1) constellation consistency:
the ENE is built with the same scale of a physical mega-
constellation, where each node emulates a satellite, a ground
station or a terrestrial host. The spatial and temporal char-
acteristics, such as time-varying satellite locations and inter-
visibility, are also configured and updated in each node based
on our data-driven model-based analysis; (2) system and net-
working stack consistency: the ENE can support the run of
unmodified applications as in real deployments; and (3) capa-
bility consistency: network and computation capabilities in
the ENE are configured based on real hardware specifications.
Further, to flexibly support various ISTN experiments and
mimic large-scale and highly-dynamic mega-constellations,
STARRYNET adopts a constellation orchestrator that judi-
ciously schedules and manages system resources on multiple
machines to collaboratively construct ENE on demand.

We evaluate the ability of STARRYNET based on real con-
stellation information in two steps. First, we show the accept-
able fidelity of STARRYNET by comparing the experiment re-
sults obtained by STARRYNET with live satellite networks and
other state-of-the-art ISTN simulators. Second, facing futuris-
tic ISTN scenarios, we demonstrate STARRYNET’s flexibility
by conducting three case studies to: (1) explore the trade-
space of various space-ground inter-networking mechanisms;
(2) evaluate the resilience of routing protocols in various con-
stellation designs; and (3) perform hardware-in-the-loop tests
to measure system effects under various workloads.

Summarily, this paper makes the following key contribu-
tions: (1) we design STARRYNET, a data-driven, emulation-
aided ISTN experimentation framework (§4); (2) we imple-
ment STARRYNET with a collection of open APIs for creat-
ing and manipulating user-defined ENEs (§5); (3) we eval-
uate and analyze STARRYNET’s experimentation overhead
and fidelity (§6), and show STARRYNET’s flexibility (§7)
by conducting various case studies driven by realistic con-
stellation information. STARRYNET is now available at:
https://github.com/SpaceNetLab/StarryNet.

2 Preliminaries
Integrated space and terrestrial networks (ISTN). Recent
satellite operators/organizations are actively developing their
mega-constellations [4,8,9,25,34,36], with hundreds to thou-
sands of low earth orbit (LEO) satellites working together as a
system. These satellites can be equipped with high-speed inter-
satellite links (ISLs), and construct an LEO satellite network
(LSN). An LSN can further be integrated into existing terres-
trial Internet via globally distributed ground stations [3,26,39]
and very-small-aperture terminals (VSAT) [31], construct-
ing an integrated space and terrestrial network (ISTN) that
promises to provide pervasive, low-latency, broadband Inter-
net services [40, 52, 56, 57] for terrestrial users globally.
Unique characteristics of ISTNs, as well as the new chal-
lenges. Two critical characteristics differentiate LSNs from
existing terrestrial networks, and involve new challenges on
the integration of satellites and terrestrial Internet. First, LEO
satellites are moving at a high-speed with the respect to the
earth surface. An LEO satellite might be visible for a cer-
tain ground vantage point only within a few minutes in one
pass. Such high dynamics could inevitably result in technical
challenges (e.g., frequent connectivity disruptions and routing
re-convergence) at the networking stack of ISTNs. Second,
while evolved, resources (e.g., bandwidth, CPU, energy) are
still limited and costly in space, as compared with terrestrial
network systems. Resource-intensive technologies might not
be doable for resource-constrained satellites to sustain good
network performance (e.g., applying sophisticated network
coding techniques for packet recovery in remote space).
Call for new research for futuristic ISTNs. The above char-
acteristics and challenges accordingly raise a series of unex-
plored research problems in ISTNs, such as: (1) topology:
how should LEO satellites and ground facilities be intercon-
nected under the high space-ground dynamicity? (2) rout-
ing: how should we integrate hundreds or thousands of LEO
satellites into Internet routing and tackle the potential per-
formance degradation due to intermittent connectivity? (3)
system effect: how much energy would a new functionality
consume in space under various workloads? It is foresee-
able that in the near future, in parallel with the evolution of
real mega-constellations, there would be a surge of new re-
search focusing on emerging satellite network systems. But,
how should researchers test, assess and understand their new

1310 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/SpaceNetLab/StarryNet

Category / Tools (i) Constellation
Consistency

(ii) System and Networking
Stack Realism

(iii) Flexible and
Scalable Environment

(iv) Low-cost and
Easy-to-use

Live LSNs
or platforms

Live Starlink ([34]) ✓ ✓ ✗ ✗

PlanetLab ([20]) ✗ ✓ ✗ limited
Emulab ([7]) ✗ ✓ ✗ limited

Simulators
and orbit
analysis tools

STK ([35]) ✓ ✗ ✓ limited
GMAT ([11]) ✓ ✗ ✓ ✓

SNS3 ([76]) for GEO only ✗ ✓ ✓

Hypatia ([60]) ✓ ✗ ✓ ✓

StarPerf ([61]) ✓ ✗ ✓ ✓

Emulators
and variations

MiniNet ([55, 68]) ✗ ✓ ✓ ✓

DieCast ([54]) ✗ ✓ limited at scale ✓

Etalon ([69]) ✗ ✓ limited at scale ✓

STARRYNET (this paper) ✓ ✓ ✓ ✓

Table 1: Comparison of popular network experimentation platforms across different ENE requirements for ISTNs.

thoughts? The community requires a technically and econom-
ically feasible approach to construct Experimental Network
Environments (ENE) and advance futuristic ISTN research.

3 How Can Researchers Evaluate Their New
Thoughts for ISTNs?

3.1 ENE Requirements
Ideally, an ENE built for ISTN research is expected to simul-
taneously accomplish acceptable realism and flexibility. We
summarize four baseline requirements as follows.
• (1) Constellation-consistency. The ENE is expected to be

spatially and temporally consistent to the characteristics of
real mega-constellations. For example, the ENE is desired
to mimic a large number of network nodes at the same
scale of a real mega-constellation, and can characterize the
high dynamicity of LEO satellites, as well as its impact on
network conditions (e.g., connectivity, delay variations).

• (2) System-level and networking stack realism. The ENE
is expected to run user-defined system codes and network
functionalities like in a real system and networking stack.

• (3) Flexible and scalable environment. Emerging mega-
constellations are evolving rapidly. As most state-of-the-art
constellations are still not in their final stage, the ENE is
expected to flexibly support various network topologies at
different scales to meet diverse research requirements.

• (4) Open, low-cost and easy-to-use interface. Finally, it
is expected that the ENE could be open to the community,
and can provide low-cost and easy-to-use programmable
interfaces for researchers to carry out various experiments.

3.2 Why Existing ENEs are Insufficient?
Existing approaches for building an ENE can be classified
into three categories, differing in their realism, flexibility and
cost: (1)live LSNs/platforms, (2)simulators, and (3)emulators.
Live LSNs or platforms. A straightforward approach for
ISTN experimentation is to construct an ENE based on live
LSNs, e.g., recently SpaceX’s Starlink has started its initial

services in certain regions. Although this approach guaran-
tees good realism, directly manipulating and inspecting a
live LSN might be technically and economically difficult for
a common research group. Current live LSNs are also lim-
ited in their flexibility when they face diverse, exploratory
research requirements. Realistic mega-constellations are still
under-constructed and evolving rapidly, and their regulatory
information in practice cannot be flexibly modified for what-if
analysis. Further, the network community has many public
experimentation platforms [7, 20] that can be shared among
researchers. However, these platforms are originally designed
for tests in terrestrial networks, not for ISTNs, and thus cannot
characterize the unique network behaviors under large-scale
LEO dynamics.
Simulators and orbit analysis tools for ISTNs. Numerical
or discrete-event-based simulation presents another extreme
as compared with live LSNs and platforms. STK [35] and
GMAT [11] are representative orbit analysis tools that can
perform complex analysis of spacecrafts as well as ground
stations. However, both STK and GMAT mainly focus on
orbit and spacecraft analysis and have limited support for net-
work simulation. More recently, SNS3 [76], Hypatia [60] and
StarPerf [61] are emerging simulators for ISTNs. SNS3 is an
extension to the ns-3 platform, and it models a full satellite
network with a geostationary (GEO) satellite and bent-pipe
payload. Hypatia is a framework for simulating and visual-
izing the network behavior of emerging mega-constellations.
Similarly, StarPerf is a simulator that enables users to charac-
terize, estimate and understand the achievable network perfor-
mance under a variety of constellation options. Although the
above simulators can flexibly simulate various satellite char-
acteristics as well as the impact of high dynamics on network
behaviors, a fundamental limitation of those simulators is that
they can not support the run of system codes/functionalities
and interactive network traffic as in real deployments. The
abstraction-level of simulators might be too high to capture
system-level effects, and could hide other practical issues (e.g.,
software overhead under heavy workloads) in real systems.
Network emulators, and their variations. Emulation is a
hybrid approach that integrates real applications, protocols

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1311

and operating systems in a synthetic network environment.
Similar to live networks, emulators can load and run real
codes with interactive network traffic. Similar to simulators,
emulators can support controllable and diverse topologies and
their virtual hardware requires fewer resources as compared
with live networks. The community has many prior efforts
focusing on emulated environments, e.g., VM- or container-
based emulation [6, 45, 54, 55, 68–70, 72, 79–81, 84, 85].

However, existing emulators suffer from two limitations
when they are applied for generating ENEs for ISTN research.
First, they are not constellation-consistent, since existing em-
ulators inherently lack the ability of mimicking planet-wide
LEO dynamics and time-varying network behaviors in ISTNs.
Second, the network scale for mega-constellations could be
significantly larger than that in prior experimentation. For
example, authors in [54] use 10 physical machines (25 VMs
on each) to support a networked cluster with 250 nodes.
Etalon [69] is a container-based emulator and its local testbed
uses four servers to emulate 48 hosts in a data center network.
Different from prior scenarios, ISTN experiments require a
much larger network environment: only the first shell of Star-
link Phase-I includes about 1584 LEO satellites. Since both
VMs and containers can involve software overhead on the
physical host machine, it is difficult for existing emulators
(e.g., [54, 55, 68]) to support such large-scale and dynamic
emulations for mega-constellations.
Our motivation. Table 1 summarizes the landscape of ex-
isting experimentation approaches that can be used to build
ENEs. Collectively, we find that none of existing approaches
can simultaneously satisfy the four expected features. Lim-
itations of existing approaches thus motivate us to seek for
a constellation-consistent, credible, flexible, and low-cost
methodology to advance the test and evaluation of new re-
search for futuristic ISTNs. We present such a framework,
namely STARRYNET, aiming at empowering researchers to
build ENEs accomplishing the four goals as described in §3.1.

4 STARRYNET Design
4.1 System Overview

Key idea. The design of STARRYNET is inspired by an im-
portant insight obtained from the satellite Internet ecosys-
tem: many organizations (e.g., regulators and satellite op-
erators) and end users have shared a collection of public
data for the community, including constellation regulatory
information [2, 73], orbital data observed from realistic satel-
lites [16, 38], ground station distributions [3, 26, 39], and
performance results measured from terrestrial user termi-
nals [32, 33], etc. Based on this important fact, STARRYNET
creates ISTN experimental environments on demand by ju-
diciously combining: (1) crowd-sourced real data trace; (2)
model-based orbit and network analysis; and (3) large-scale
network system emulation, to construct a real-data-driven dig-
ital twin, i.e., a virtual presentation synchronized to a real

Real-World Facilities

GStationsSatellites Terminals

Abstraction
(APIs, §4.5)

Env-APIs

Sat-APIs

Constellation Orchestrator (§4.4)

Physical Machines
(Worker Cluster)

Efficient
State

Updater

Resource
Manager

Multi-host
Resource
Allocation

Constellation Observer (§4.2)
Satellite Database
Ground Station Database
User Terminal Database

Researcher

User-Defined
Functionalities

Constellation
Configurations

setup

result

inter-
active
traffic

experiment
config feedback

community-driven data collection

Experimental Network
Environment for ISTN

Constellation
Model

Constellation Synchronizer (§4.3)
GS

Model
Network
Model

Computation Model

Figure 1: STARRYNET system architecture.

physical ISTN in terrestrial environments. In particular, the
key idea behind our STARRYNET design can be summarized
as follows: (1) leveraging a crowd-sourcing approach to col-
lect, combine and explore realistic constellation-relevant in-
formation to calculate the spatial and temporal characteristics
consistent to real mega-constellations; then (2) driven by such
realistic information, exploiting a large number of networked
virtual nodes and links to flexibly emulate a customized exper-
imental environment, which characterizes system-level effects
and network behaviors consistent to a real ISTN.
System architecture. Figure 1 depicts STARRYNET’s archi-
tecture, including four core components as described below.

• A Constellation Observer (§4.2) that leverages a crowd-
sourcing approach to collect public constellation informa-
tion, network performance, ground station distributions etc.,
from the satellite ecosystem. It maintains several databases
to support, guide and drive the construction of ISTN exper-
imental environments for various research requirements.

• A Constellation Synchronizer (§4.3) which exploits a col-
lection of hybrid models to calculate the spatial and tempo-
ral characteristics of a specific mega-constellation, based
on collected data as well as user-defined configurations.
Specifically, such characteristics include constellation scale,
visibility, connectivity, time-varying propagation delay, etc.,
which are further used to configure the network emulation.

• A Constellation Orchestrator (§4.4) for automating the
management, coordination and allocation for resources used
to build the experimental environment upon multiple physi-
cal machines. The orchestrator can also interact with real-
world facilities (e.g., real satellite hardware) to support
network experiments with interactive Internet traffic.

• A Unified Abstraction (§4.5) offering flexible and easy-
to-use APIs for researchers to create and manipulate the
configurations of the ISTN experimental environment.

1312 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.2 Constellation Observer
The constellation observer is designed as a collector for
constellation-relevant information, and it maintains three
databases related to satellite, ground station and user ter-
minal information respectively. Specifically, the observer
searches and collects the latest: (1) regulatory information
(e.g., from [2, 10, 73]) which describes frequency and orbital
coordination of mega-constellations; (2) operating satellites
information (e.g., from [16, 38, 71]); (3) ground station distri-
butions (e.g., from [3,26,39]); (4) Internet user statistics (e.g.,
from [59]) which can be used to generate the distribution
of terrestrial users; and (5) network measurements from end
users (e.g., from [32, 33]). The constellation observer classi-
fies the above information, and saves them in the databases,
which then can be used to drive other components and build
ENEs to flexibly support various research experiments.

4.3 Constellation Synchronizer
STARRYNET’s synchronizer leverages a collection of models
to calculate various constellation characteristics and network
behaviors, and accordingly generate a virtual network pre-
sentation synchronized to a real ISTN. At runtime, values
in these models are assigned primarily based on real ISTN
information collected by the constellation observer. In ad-
dition, to improve the flexibility, STARRYNET also allows
researchers to manually configure model values based on his
or her customized experimental requirements.

4.3.1 Hybrid models
Constellation model. STARRYNET’s synchronizer charac-
terizes a satellite system in both constellation-granularity
and orbit-granularity descriptions. First, STARRYNET uses
the Walker notation [82] to describe a constellation: N/P/p,
where N is the number of satellites per plane, P is the number
of planes, and p is the number of distinct phases of planes to
control spacing offsets in planes. Second, the orbit-granularity
description enables a fine-grain notation for orbits in a certain
constellation via specifying several primary orbital elements,
including: (1) inclination, which is the angle between an orbit
and the Equator as satellites move; (2) altitude, which is the
height above sea level and determines the orbital velocity; (3)
phase offset [56], which is a factor between [0,1], describing
the relative position between two satellites in adjacent orbits.
Ground station model. STARRYNET leverages the follow-
ing parameters to describe a ground station: (1) geographic
location; (2) the number of available antennas for ground
communication; (3) the elevation angle, which determines the
light-of-insight (LoS) of the ground station and can affect the
available duration of space-ground communication.
Network model. The inter-satellite or ground-satellite net-
work connectivity is mainly affected by following factors:
(1) the visibility between two communication ends; (2) the
amount of available ISLs or antennas in satellites or ground
stations; and (3) the connectivity policy, which decides how

to establish a connection between two communication ends.
STARRYNET enables two prefabs of connectivity policies for
inter-satellite connection: (1) +Grid [58], where each satellite
connects to two adjacent satellites in the same orbit and to
two in adjacent orbits; (2) Motif [40], which is a repetitive
pattern where each satellite connects to multiple visible satel-
lites and each satellite’s local view is the same as that of any
other. For ground-satellite connectivity, STARRYNET offers
multiple optional schemes that control a ground station to
connect to a visible satellite, e.g., selecting the one with the
shortest distance or the longest remaining visible time. Since
the delay is typically determined by the network topology and
speed of the light, STARRYNET calculates the propagation
delay of each link based on the physical distance between
two ends. As network capacity might be too speculative in
practice, link capacity is set by user-specific configurations.
Computation model. The computation capability of satellites
varies greatly in different real-world deployments. Generally,
conventional space-grade processors have limited capabil-
ity [53,65] as compared with that used in terrestrial computer
systems. For example, the operating frequency of spaceborne
processors (e.g., BAE-RAD series [21,22]) ranges from 110 to
466MHz per core. Recently, satellite operators and researchers
start to use commercial off-the-shelf (COTS) processors in
space stations [14] or in LEO small satellites [23, 44] to re-
duce the manufacturing cost. To support various experimental
requirements, STARRYNET allows researchers to manually
configure the CPU capability of each satellite node through
approximating the frequency and number of available cores
of each emulated node, by scaling download CPU frequency
and enforcing a maximum time quota for each node.

4.3.2 Constellation consistency

Spatial consistency. Based on constellation-wide informa-
tion, STARRYNET first determines the amount of required
containers. Each container runs realistic system environments
and networking stack to emulate a satellite in the constella-
tion, a ground station or a terrestrial user terminal. Second,
using orbit-granularity information, STARRYNET calculates
the latitude, longitude and height (i.e., LLH information) of
each satellite at any given time slot. Finally, exploiting the
above LLH information and minimum elevation angles, STAR-
RYNET calculates the visibility between arbitrary two satel-
lites, or between satellites and ground facilities.
Temporal consistency. Since emerging LEO satellites are
inherently moving at a high velocity, the locations, inter-
visibility, and network conditions (e.g., connectivity and prop-
agation delay between two nodes) of an ISTN are changing
over time. To achieve realism, these states should be tempo-
rally consistent to real scenarios. STARRYNET splits time into
slots, calculates LLH information in each slot, and follows the
hybrid models to determine time-varying network conditions
in different slots. Such dynamic states will further be used for
driving the dynamic emulation operated by the orchestrator.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1313

4.4 Constellation Orchestrator
The orchestrator is designed for four goals. First, the orches-
trator exploits container-based emulation to construct an emu-
lated ISTN environment upon one or many physical machines
(depending on the constellation size). Second, the orches-
trator configures the computation and network capability of
each emulated node, according to users’ configurations and
the spatial and temporal results calculated by the constella-
tion synchronizer. For example, a space-ground connectivity
should be dynamically updated based on the time-varying
visibility between its two ends. Third, the orchestrator can
connect the emulated ISTN to real-world network facilities
(if any, e.g., real satellite prototypes or terminals) and support
interactive Internet traffic. Finally, at runtime the orchestrator
leverages a measurement agent to monitor and report the run-
time resource usage (e.g., CPU/memory/bandwidth usage) to
the user as a feedback of the experiment for further analysis.

4.4.1 Multi-machine support for constellation emulation
Since each emulated satellite consumes computation, network
and storage resources in practice, it is challenging to sup-
port the emulation of large-scale constellations on a single
machine, especially when additional user-defined payloads
(e.g., a new satellite routing protocol) need to be loaded for
experimentation. STARRYNET addresses this limitation by
integrating resources on multiple machines to support large-
scale, time-varying constellation emulations. When deployed
on multiple machines, STARRYNET’s orchestrator divides
these machines into two parts. First, one machine, selected
as the resource manager, manages, schedules and allocates
resources upon all machines to jointly create and maintain the
ENE. Second, other machines, working as worker clusters,
receive and follow commands from the resource manager. For
each node in the ISTN (e.g., a satellite or ground station), the
orchestrator creates a container to emulate it, and creates a
virtual bridge connecting two nodes to emulate a link.
Topology creation on multiple machines. One big challenge
made by extending an emulated mega-constellation to mul-
tiple machines is to ensure that the emulated constellation
is topologically consistent to the real constellation. Figure 2
shows an example of emulating an LEO satellite constella-
tion including two adjacent orbits on two physical machines.
Specifically, Figure 2a plots two Starlink inclined orbits, each
of them having 22 satellites evenly spaced with available
ISLs. Assume that we use two machines for this emulation,
and each machine creates 22 containers to emulate 22 satel-
lites. In a real constellation, each satellite connects its two
neighbors in the same orbit, and to another satellite in the
adjacent orbit. Ideally, an emulated topology for the constel-
lation in Figure 2a can be easily created if each machine has
more than 22 physical network interfaces. However, in prac-
tice the number of available interfaces of a machine is likely
to be limited. As shown in Figure 2b, if we directly bridge the
emulated network interface of each satellite to the physical

interface, due to the lack of traffic isolation, emulated satel-
lites in two machines will establish an “all-to-all” topology
which is inconsistent to the grid-like topology in Figure 2a .

STARRYNET addresses this inconsistency on multiple ma-
chines by creating multiple VLANs to emulate independent
ISLs, interconnect satellites in two machines and isolate inter-
satellite traffic as that in a real constellation. As plotted in
Figure 2c, we build a VLAN for each ISL crossing different
machines (e.g., vlink A1-B1 interconnects emulated satellite
A1 and B1), and thus STARRYNET obtains the correct virtual
network topology consistent to the real constellation topology
as illustrated in Figure 2a upon multiple machines.
Topology update on multiple machines. Due to the high
dynamics of ISTN, the network topology fluctuates over time.
If a connectivity change occurs on a single machine, i.e., all
affected nodes are located on the same machine, STARRYNET
deletes the old virtual link, and creates a new link connect-
ing corresponding nodes. Otherwise, if a connectivity change
involves nodes on multiple machines, STARRYNET exploits
a VLAN-based approach to limit the link update operation
to a single machine. Figure 3 plots an example of the emu-
lation of space-ground handovers upon multiple machines.
Assume there are three satellites, two ground stations in two
sequential time slots. In the first slot, satellite S2/S3 connects
to ground station GS1/GS2 respectively. As satellites move,
the space-ground connectivity changes, and S1/S2 connects
to GS1/GS2 respectively in the second slot. STARRYNET
emulates the ground-satellite links (GSLs) by two VLAN-
based virtual links, and performs the correct handover by
properly adjusting the connectivity change between S1/S2/S3
and vlink-GS1/GS2, in different slots on machine A.

4.4.2 Efficient time synchronization and state update
Another challenge made by multi-machine extension is the
time synchronization and link update overhead. Specifically,
to achieve temporal consistency, STARRYNET’s constellation
synchronizer assigns a sequence of update events to the or-
chestrator to inform each emulated satellite when an update
(e.g., a location/connectivity change) should happen. To trig-
ger such events, a baseline approach is to let the centralized
manager send commands to all emulated satellites in every
slot, and trigger corresponding update events. However, such
a real-time approach has limited scalability as the amount
of emulated satellites increases, since each event requires to
update the state of a certain virtual interface/container, and
continuously and simultaneously performing a large number
of updates can overload the manager, result in delayed update,
and invalidate the temporal consistency of the emulation.

To reduce the state update overhead caused by mimick-
ing temporal dynamics in mega-constellations, STARRYNET
leverages a prediction-based multi-thread event memorization
approach. We define the synodic period as the amount of time
that it takes for the constellation to reappear at the same pro-
jection upon the earth surface. In the emulated environment,

1314 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1

Orbit direction

Orbit direction

(a) Two orbits with ISLs.
67

S‐A1

Machine A

S‐A2

S‐A3

S‐B1

Machine B

S‐B2

S‐B3

……

plink‐A

plink‐B

elink‐A1

elink‐A2

elink‐A3

elink‐B1

elink‐B2

elink‐B3

(b) Emulated topology without traffic isolation.
68

S-A1

Machine A

S-A2

S-A3

S-B1

Machine B

S-B2

S-B3

……

elink-A2

elink-A3

elink-B1

elink-B2

elink-B3

plink-A

plink-B

vlink-A1

vlink-A2

vlink-A3

vlink-B1

vlink-B2

vlink-B3
Emulated ISLs

elink-A1

(c) Emulated topology with emulated ISLs for traffic isolation.

Figure 2: Multi-machine extension to support consistent topology emulation of satellite networks. Machine A and B interconnect
by their physical interfaces plink-A/B (plink: physical link, elink: emulated link, vlink: virtual network link created by VLAN).

69

orbit direction

S1 S2 S3

Time
Slot 1

orbit direction

S0 S1 S2

Time
Slot 2

GS1 GS2

GS1 GS2
GS1 GS2

elink‐GS1

S1 S2 S3

vlink‐GS1 vlink‐GS2

elink‐GS2

elink‐S1
(slot 2) elink‐S2

(slot 2)

elink‐S3
(slot 1)elink‐S2

(slot 1)

M
achine A

M
achine B

Emulated GSLs

vlan

vlan

Figure 3: Emulated ground satellite links (GSLs) and space-
ground handover in two time slots on multiple machines.

at the beginning of each synodic period, the orchestrator pre-
generates an event list for each satellite that includes all its
update events during the current synodic period. At runtime,
each emulated satellite adopts an independent event update
thread to read the local event list in each slot, and triggers
the corresponding event scheduled in the current slot. Time
clocks upon all machines are synchronized by the NTP [17].

4.5 Open APIs for ISTN Experiments
Environment APIs. STARRYNET provides the environment
APIs for a researcher to load trace from the database, and cre-
ate/control/run an ENE upon one or multiple machines with
user-defined ISTN configurations. Once constellation and GS
information are completely loaded, these configurations are
delivered to the synchronizer to calculate spatial and temporal
characteristics, which are further used by the orchestrator to
construct the ENE. The environment APIs also allow users
to configure the interval of discrete time slot to adjust the
dynamicity. Note that the ENE not only maintains the run-
time of emulated constellations, but also needs to run the test
workload deployed by the researcher. We design a resource
threshold ∆ to control the percentage of CPU/memory used by
the framework. In other words, at least (100%-∆) of the total
CPU/memory should be left for the researcher’s test cases.
Self-node APIs. STARRYNET’s self-node APIs are designed
to be called by the researcher’s programs on each emulated
satellite. These APIs expose underlying satellite-related in-
formation to user programs. Specifically, in each emulated
satellite, user program can obtain the index of current satel-
lite/orbit, sunlight state, time-varying geo-location informa-

tion, current satellite velocity and the index of adjacent reach-
able satellites, etc. Such satellite-specific information can be
used for developing new on-board capabilities in ISTNs.

5 Implementation and Usage
We highlight the salient aspects of STARRYNET’s implemen-
tation and usage in this section.
Framework implementation. STARRYNET’s observer is
implemented as a combination of a crawler based on
Scrapy [27], together with a MySQL-based data store.
We implement STARRYNET’s synchronizor based on
SkyField [29], an astronomy library that supports the calcu-
lation of high precision research-grade positions for satellites.
STARRYNET’s orchestrator is implemented upon Docker [6]
and it spans the emulated constellation across multiple ma-
chines. We use OpenvSwitch [19] to emulate and configure
links, and use tc [67] to dynamically set artificial network
conditions according to the numeric results calculated by
STARRYNET’s synchronizer. Specifically, we optimized the
link management module in tc to satisfy the requirement of
light-weight state update. To accomplish flexibility, STAR-
RYNET’s abstraction is implemented as a combination of a
lib-STARRYNET library and a collection of shell commands.
Collectively, the core components of STARRYNET are imple-
mented in about 6500 lines of Python codes and scripts.
Framework usage. We illustrate the usage of STARRYNET
with a concrete example as plotted in Figure 4: a researcher
wants to evaluate a novel geo-location-based routing mecha-
nism based on [63], under the Starlink constellation. In par-
ticular, this experiment can be conducted with STARRYNET
in three steps. First, leveraging STARRYNET’s APIs, the re-
searcher writes a user-defined experimental program (Fig-
ure 4a) for test. In this example, we show a geo-routing policy
similar to [63], which runs on each satellite, and forwards
received packets to the adjacent satellite that is the geograph-
ically closest to the destination. Second, the researcher pre-
pares a set of manifest files describing the constellation con-
figurations, e.g., orbital information and ground station dis-
tribution (Figure 4b). Finally, the researcher runs a batch of
shell commands exposed by STARRYNET to load manifest
files (e.g., starlink.json and gs.json), create experimental en-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1315

geo_routing.py

from lib_starrynet import *;

def geocast_next_hop(dst_addr):

 # Obtain adjacent satellites info

 n_sats = sn_get_sat_neighbors()

 # Find the sat closest to dst

 for sat in n_sats:

 if dis(sat, dst_addr)

 < dis(next_sat, dst_addr):

 next_sat = sat

 return next_sat

(a) User-defined experimental program.

"starlink":[#starlink.json

 { "name": "Starlink-S-I",

 "altitude": "550km",

 "inclination": "53.0",

 "plane_count": "72",

 "satellites_per": "22" }]

"ground-station":[#gs.json

{ "name": "Chicago",

 "latitude": "41.850",

 "longitude": "-87.650",

 "altitude": "0.144km"},...]

(b) Constellation configurations.

#(1)initialize sn and monitor an interface of the manager machine

@manager:/$ sn manager init --m-addr=192.168.0.1

#(2)connect each worker machine to the manager to join the framework

@workers:/$ sn worker join --m-addr=192.168.0.1

#(3)load manifest files and create the ENE named ”sl_cons”

@manager:/$ sn create --name sl_cons -c 'starlink.json' -gs 'gs.json'

#(4)manually set uplink/downlink capacity to 20Mbps/200Mbps

@manager:/$ sn network --name sl_cons –-gsl-up=20 –-gsl-down=200

#(5)start the ENE, and run it for 3600 seconds

@manager:/$ sn start sl_cons --duration=3600 –-delta=0.5

#(6)run user-specific program in all satellites in the first orbit

@manager:/$ sn cmd sl_cons.orbit[0] python /home/geo_routing.py

(c) Load configurations to initialize the ENE and run experiment.

Figure 4: A getting-started example of STARRYNET (sn).

vironment (e.g., “sl_con”) on multiple machines, configure
network parameters (e.g., uplink/downlink capacity), and run
the user-specific program on emulated satellites (Figure 4c).

6 Framework Evaluation
In this section, we evaluate STARRYNET by exploring two
important aspects related to the framework. Q(i): Can STAR-
RYNET flexibly scale to various experimental requirements,
with acceptable system and configuration overhead? Q(ii):
How faithful are the results obtained by STARRYNET, as com-
pared with other state-of-the-art simulators, and live network
performance? Our framework evaluations are conducted on a
typical enterprise cluster, including eight DELL R740 servers
connected to a LAN. Each server is equipped with two Intel
Xeon 5222 Processors (4-core, 3.8GHz for each processor),
8*32G DDR4 RAM, and Ubuntu20.04-LTS.

6.1 Ability to Satisfy Various Experimental Re-
quirements for ISTNs

Elastic scaling to various constellation configurations. In
reality, satellite operators incrementally deploy their satellite
mega-constellations, which consist of multiple shells. As de-
picted in Table 2, STARRYNET is able to flexibly create a user-
defined experiment environment for different shells, or multi-
shell combinations of representative mega-constellations to
satisfy various research requirements. The emulated constel-
lation size can scale from about 300 (e.g., the T1 shell of
Telesat) to 4408 (e.g., the full-scale Starlink Phase I with five
shells) following different users’ configurations.
Environment setup overhead. STARRYNET’s APIs have
concealed complex underlying processing for trajectory cal-

culation and resource orchestration for the emulation. Thus
a researcher can easily establish each ENE listed in Table 2,
by writing about a dozen lines of code based on constellation
prefabs (e.g., like Figure 4b) predefined in STARRYNET’s
database. The creation time of a certain ENE upon STAR-
RYNET tightly depends on the experiment scale, and the hard-
ware capability of these machines used for experiments. Con-
cretely, as shown in Table 2, the total creation time, including
both node and link creations, increases as the constellation
size scales up, and ranges from several minutes (for small size
ENE) to tens of minutes (for large size ENE) in our current
STARRYNET implementation.
System overhead. Table 2 also plots the average CPU and
memory overhead consumed on each machine by running var-
ious ENEs. We make several observations. First, as expected,
when the constellation size increases, STARRYNET requires
more worker machines, consuming more CPU/memory re-
sources to emulate ISTN nodes, links, and their constellation-
wide dynamics. Second, if STARRYNET updates satellite dy-
namics more frequently (i.e., with shorter update intervals),
it consumes more resources to accomplish fine-granularity
updates. Note that in this experiment we limit the CPU us-
age below ∆ = 50% in each machine. This is because in an
ENE, the runtime overhead of the underlying STARRYNET
should not use up all CPU/memory resources. It is reason-
able to leave sufficient resources for the tested workloads and
functionalities running upon the ENE.

6.2 Fidelity Analysis
Next we analyze the fidelity of STARRYNET by comparing
the experiment results obtained by STARRYNET with live
satellite networks and other state-of-the-art simulators.
Network performance under a live Starlink topology. We
leverage STARRYNET to establish an ENE following the net-
work topology of a recent live Starlink test conducted in
Europe in 2021 [33]. Specifically, this real-world Starlink
topology involves several key components as illustrated in
Figure 5: (1) a user terminal together with a Starlink satellite
dish located at the campus Klagenfurt Primoschgasse; (2) a
SpaceX’s ground station located in Frankfurt, Germany; (3)
a Point of Presence (PoP) connecting the ground station to
terrestrial Internet; and (4) a Web server deployed in Vienna.
This experiment publicly reports the ping and iperf results
measured between user terminal and the Web server, over
the ISTN integrating Starlink satellites and terrestrial Inter-
net. We use STARRYNET, Hypatia [60] and StarPerf [61] to
generate network performance under the same topology con-
figuration. The latter two are state-of-the-art ISTN simulators.
Figure 6 plots the comparison for the latency results. First, we
find that existing simulators underestimate the latency, since
their latency estimations are based on a high-level abstrac-
tion without considering system effects like packet processing
overhead. Second, STARRYNET achieves acceptable fidelity,
as it attains similar latency performance in each case (i.e., aver-

1316 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Height (km) Constellation Size
 (number of satellites)

Minimum #
of Required

Workers
Starlink S1 (72*22, 53°) 550 1584 5.9 4.6 10.5 7.2% 7.0% 6.3% 3.9% 3.5% 3.4% 2
Starlink S2 (72*22, 53.2°) 540 1584 5.9 4.6 10.5 7.2% 7.0% 6.3% 3.9% 3.5% 3.4% 2
Starlink S3 (36*20, 70°) 570 720 3.0 2.1 4.9 1.2% 1.1% 1.0% 2.7% 2.6% 2.6% 1
Starlink S4 (6*58, 97.6°) 560 348 1.9 1.3 3.2 1.0% 1.0% 1.0% 2.7% 2.6% 2.4% 1
Starlink S5 (4*43, 97.6°) 560 172 1.6 1.2 3.2 1.0% 1.0% 1.0% 2.3% 2.3% 2.3% 1
Starlink Full (4408 satellites) hybrid 4408 13.3 7.9 21.2 39.6% 37.0% 34.3% 10.4% 9.1% 8.9% 7
Kuiper K1 (34*34, 51.9°) 630 1156 4.4 3.8 8.2 2.6% 2.4% 2.3% 3.8% 3.5% 3.2% 2
Kuiper K2 (36*36, 42°) 610 1296 4.7 4.2 8.9 3.9% 3.6% 3.2% 4.0% 3.6% 3.5% 2
Kuiper K3 (28*28, 33°) 590 784 3.2 2.4 5.6 1.3% 1.2% 1.2% 2.7% 2.6% 2.6% 2
Kuiper Full (3236 satellites) hybrid 3236 5.7 4.8 10.5 24.6% 23.9% 23.2% 6.3% 6.2% 6.2% 6
Telesat T1 (27*13, 98.98°) 1015 351 1.9 1.3 3.2 1.0% 1.0% 1.0% 2.6% 2.5% 2.4% 1
Telesat T2 (40*33, 50.88°) 1325 1320 4.8 4.2 9.0 3.9% 3.7% 3.3% 4.0% 3.6% 3.5% 2
Telesat Full (1671 satellites) hybrid 1671 3.1 2.4 5.5 7.2% 7.0% 6.4% 4.2% 3.7% 3.6% 3

Avg. CPU (%)
Interval = 1/2/3 (s)

Avg. Memory (%)
Interval = 1/2/3 (s)

Creation Time (min)
Nodes/Links/Total

Metrics

Constellation

Table 2: Ability to support mega-constellation emulation with various experimental configurations and system overheads.

107

Satellite
Dish

User
Terminal

Starlink LEO
Satellite

Starlink
Ground
Station

Cloud
Web

Server

PoP

Figure 5: A live Starlink topology.

15
25
35
45
55
65
75

Average 50th 70th 90th

RT
T

(m
s)

Live Starlink StarryNet
StarPerf Hypatia

underestimated

Figure 6: Latency comparison.

0

40

80

120

160

200

Uplink Downlink

Th
ro
ug
hp

ut
(M

bp
s)

Live Starlink
Network

StarryNet

Figure 7: Throughput comparison.

0

4000

8000

12000

Raspberry
 Pi 4B

Jetson
 TX2

C
o

re
M

ar
k

sc
o

re Real Hardware

StarryNet

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

C
D

F

RTT(ms)

StarPerf

Hypatia

StarryNet

Figure 8: Latency comparison
in an ISL-enabled topology.

0

4000

8000

12000

Raspberry
 Pi 4B

Jetson
 TX2

C
o

re
M

ar
k

sc
o

re

Real Hardware

StarryNet

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

C
D

F

RTT(ms)

StarPerf

Hypatia

StarryNet

Figure 9: Flexible computa-
tion capability.

age/50th/70th/90th percentile) as compared with the real mea-
sured data from live Starlink. This is because STARRYNET
jointly combines model calculation, data-driven calibration
and real networking stack to create the ENE.

Bandwidth is a metric that can be affected by many op-
erational factors. Therefore, in a research experiment STAR-
RYNET allows the researcher to manually configure the link
capacity on demand. For example, we follow the realistic
Starlink trace in [33] to set the uplink/downlink capacity, and
run iPerf to measure the TCP throughput in each direction.
Since Hypatia and StarPerf can not load real network traffic
by iPerf, we compare the throughput results of live Starlink
and STARRYNET. Specifically, evaluation results in Figure 7
demonstrate that STARRYNET can be tuned to accurately
emulate the bandwidth of a live ISTN.
Network performance under an ISL-enabled topology.
As of the date of this paper submission, most real mega-

constellations like Starlink and Kuiper are still in their early
stage and under heavy construction. Although Starlink has
started to deploy laser ISLs on its LEO satellites, those ISLs
are still under internal test, and it is difficult to directly com-
pare the network performance estimated by STARRYNET
with a real ISL-enabled satellite network. To analyze the fi-
delity of STARRYNET when ISLs are activated, we compare
the performance results obtained by STARRYNET with other
ISTN simulators. Figure 8 plots the CDF of latency between
a collection of real ground-station pairs [26] with the same
constellation configuration based on the ISL-enabled Starlink
network. The latency results of STARRYNET are measured by
ping test in the emulated ENE, while the results of other sim-
ulators are generated by numeric or event-driven calculation.
As shown in Figure 8 the latency obtained by STARRYNET is
slightly higher than other simulators, because STARRYNET
incorporates realistic system-level overhead (e.g., packet pro-
cessing) which could be neglected in simulators.

On-demand computation capability. Researchers may need
to conduct their experiments on different satellite hardware
with various computation capabilities. For example, authors
in [53] studied the application performance achieved by two
space-grade processors RAD-5545 [21] and HPSC [13]. Re-
cent works like [23, 44] explored new satellite functionalities
running upon commercial low-power processor such as Rasp-
berry Pi [24] and Jetson TX2 [18]. STARRYNET is able to
flexibly adjusting the computation capability on each emu-
lated satellite to satisfy various experimental requirements. To
validate the computational flexibility, we use CoreMark [5],

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1317

a well-known processor benchmark to measure the perfor-
mance of the real hardware and its facsimile created by STAR-
RYNET. As plotted in Figure 9, CoreMark score is a metric
that quantifies the computation capability. Higher scores indi-
cate stronger computing capability. For various computation
requirements, STARRYNET can mimic similar processor ca-
pability based on concrete experimental requirement.

7 Evaluating Futuristic ISTN Research with
STARRYNET: Case Studies

Next we conduct several case studies to show how STAR-
RYNET can be used to advance futuristic ISTN research.

7.1 Exploring the Design Space of Integrating
LEO Satellites and Terrestrial Facilities

To realize the promise of low-latency and pervasive accessibil-
ity of ISTN, the first step should be interconnecting LEO satel-
lites and terrestrial facilities (e.g., ground stations and user
terminals). While many existing studies have proposed differ-
ent space-ground topology designs, it still lacks a systemati-
cally analysis and comparison on these integration paradigms,
in terms of their network performance and corresponding
cost. We leverage STARRYNET to explore how different de-
sign choices of space-ground integration (as illustrated in
Figure 10) could affect the performance and cost of an ISTN.
(1) Satellite relays for last-mile accessibility (SRLA). Satel-
lites and ground facilities can be integrated based on the clas-
sic “bent-pipe” architecture to provide last-mile network ac-
cessibility as illustrated in Figure 10a, which is the status-quo
of many today’s satellite constellations like OneWeb. Data
from the ground are first transmitted to the satellite, which
then sends it right back down again like a bent pipe. The only
processing performed by satellites is to retransmit the signals.
(2) Satellite relays for ground station networks (SRGS).
Figure 10b depicts another “bent-pipe”-based integration
paradigm originally introduced in [57], where geo-distributed
ground stations work as routers to construct a network. Each
satellite switches packets between two ground stations con-
nected to the satellite. Packets from the sender are routed to
the receiver by paths built upon satellites and ground stations.
(3) Ground station gateway for satellite networks (GSSN).
Figure 10c shows an ISL-based internetworking approach pro-
posed by [52]. ISL-enabled satellites can build space routes
for long-haul communication, without the need of a large
number of ground station relays, as well as user-side satellite
dishes. Satellites and ground stations build a Layer-3 network.
During an end-to-end transmission, packets from the sender
are first routed to a ground station via terrestrial Internet, then
to the receiver side ground station over ISL-enabled satellites,
and finally to the receiver over the terrestrial Internet.
(4) Directly accessed satellite networks (DASN). Figure 10d
plots a paradigm where users’ satellite dishes directly con-
nect to ISL-enabled satellite networks, and two users can

establish long-haul communication without the assistance of
geo-distributed ground stations [51, 56]. Satellites work not
only as routers, but also as access points/gateways allocating
addresses for different terrestrial users.
Experiment setup. We leverage STARRYNET to build an
ENE for each paradigm, analyze their cost, and evaluate
their network performance. Specifically, we establish an ENE
based on Starlink’s first constellation shell and its ground sta-
tion distribution. We randomly pick geo-distributed user-pairs
and establish communication sessions between these pairs
over the satellite network. On each emulated satellite, we
load BIRD [37] routing software and run OSPF as the routing
protocol to achieve the shortest path for data transmission.
Observations. Table 3 summarizes the average end-to-end
latency and the latency breakdown of different space-ground
topology designs. We observe an obvious latency reduction
accomplished by laser ISLs, and DASN obtains the lowest
end-to-end latency on average. Since ground stations typi-
cally can not be deployed upon oceans (70% earth surface),
SRGS suffers from the highest latency as compared with other
schemes due to the insufficient deployment of ground stations.

As satellites move, two main factors affect the end-to-end
network reachability. First, users in certain regions may lose
available satellite access due to the LEO dynamics. For ex-
ample, users in high latitude areas may suffer from intermit-
tent satellite access. Second, frequent connectivity changes
can trigger routing re-convergence. As plotted in Table 3,
SRGS suffers from the lowest reachability due to the com-
bination of LEO dynamics and limited coverage of insuffi-
cient ground stations. GSSN obtains low reachability because
frequent satellite-ground handovers result in continuous re-
convergence, during which routes are fluctuating and unstable.

For SRLA, SRGS and GSSN, the IP address of user’s satel-
lite dish is allocated by the fixed user-side ground station, and
the addresses of senders or receivers do not change during the
communication. However, for DASN, each satellite works not
only as a router, but also as an access point/a gateway which
allocates IP addresses for terrestrial dishes connect to it. Due
to the LEO dynamics, terrestrial dishes have to frequently
change access satellite as well as their subnet. Consequently,
addresses are frequently updated, which may further disrupt
high layer transport connections and application sessions.

The above four topologies have different deployment and
operating costs in addition to LEO satellites. SRLA and SRGS
require a large number of available ground stations near users
to guarantee continuous satellite coverage. For SRGS, it also
requires sufficient geo-distributed ground stations to ensure
stable and low-latency routes over satellites and ground sta-
tions. GSSN and DASN require the extra deployment of ISLs.
Users in SRLA, SRGS and DASN have to purchase a dedi-
cated dish to access satellites. In GSSN, users connect to the
ground station gateway via terrestrial networks, and do not
need to install additional satellite dishes.
Implications. As summarized in Table 3, there is no clear win-

1318 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Earth surface

Terrestrial
Internet

User User

LEO Satellites

GSGS

Sender Receiver

no ISL
support

Terrestrial
Internet

packets

(a) SRLA: satellite relays for last-mile accessibility.

Sender Receiver

no ISL
support

packets

Earth surfaceUser User
GSGS

(b) SRGS: satellite relays for ground station networks.

Earth surface
User User

GSGS

inter-satellite links

satellite‐ground routing protocols

Sender Receiver
packets

ISLs

Te
rr
es
tr
ia

l I
nt
er
ne

t

Te
rr
es
tr
ia

l I
nt
er
ne

t

(c) GSSN: ground station access for satellite networks.

Earth surfaceUser User

inter-satellite links
satellite‐ground routing protocols

Sender Receiver

ISLs

packets

(d) DASN: satellite networks directly accessed by terrestrial users.

Figure 10: The design-space for various space-ground integration methodologies.

Inter-Satellite Space-Ground Ground Toal GS Terminal ISLs
SRLA 0 76.25 107 183.25 97.00% ✗ ✓ ✓ ✗
SRGS 0 313.39 0 313.39 51.00% ✗ ✓ ✓ ✗
GSSN 48.46 38.45 20 106.91 57.40% ✗ ✓ ✗ ✓
DASN 48.46 37.65 0 86.11 97.50% ✓ ✗ ✓ ✓

Operating CostAverage end-to-end latency and its breakdown (ms)
Design Reachability Frequent Address Update

Table 3: Comparison for different space-ground integration methodologies.

ner for all four integration methodologies. “Bent-pipe”-based
approaches achieve simplicity without ISL requirements, but
they fail to fully unleash the low-latency potential of ISTNs.
Approaches relying on ISLs can form near-optimal spaces
routes to attain wide-area low-latency communication, but
they involve extra ISL cost, and suffer from higher route
instability and connection disruptions, due to the route re-
convergence and address update caused by LEO dynamics.
All integration approaches have their limitations, and satellite
operators are suggested to choose a proper topology based on
their specific performance requirements and cost budgets.

7.2 Evaluating ISTN Resilience

Satellites are operated in complex outer space environments.
Small satellites deployed in emerging mega-constellations
typically have a short lifetime (e.g., 3-5 years [30]) due to
their low manufacturing cost. Many space factors or events,
such as space debris [15], geomagnetic storms [12], and single
event upset [28], etc., can cause immediate satellite failures.
For example, in February 8, 2022, about 40 Starlink satellites
are doomed by a geomagnetic storm [1]. Therefore, given
the harsh and error-prone space environment, it should be
important for satellite operators and researchers to evaluate
and analyze how resilient an ISTN is, and what kind of sys-
tem/network factors affect the resilience.
Experiment setup. We thus conduct an experiment with
STARRYNET to evaluate the network resilience with different
routing configurations. Specifically, we mimic the impact of a
space failure (e.g., due to a geomagnetic storm) which makes
a fraction of satellites in the constellation inactive and can not
forward network traffic. We load BIRD [37] in our ENE and

run OSPF as the routing protocol in this experiment.

Observations. Figure 11 plots the routing recovery time for
a set of representative city-pairs under various failure ratios.
An on-path satellite failure can cause a network disruption,
and the routing recovery time increases as the constellation
size and failure rate increase. Figure 12 plots the compari-
son for the end-to-end latency before the constellation failure
and after the routing re-convergence. We observe that the la-
tency increases slightly under low failure rate, and the latency
dramatically increases when the failure rate reaches 30%.

Implications. We summarize three key implications from
this experiment. First, we find the mesh-like network based
on a large number of satellites can maintain low latency in
case of low failure rate. This is because the mesh-like satellite
network has high path diversity, offering backup routes for
communication pairs in case of network failures. Second, the
inherent high dynamicity of LEO satellites is a double-edge
sword for the service restoration in an ISTN. On one hand,
for terrestrial users whose access satellite above them fails,
the dynamicity helps because faulty satellites will soon move
out of their line-of-sight. On the other hand, the dynamicity
hurts, as it spreads the failure globally, and could affect the
network accessibility of other users. Finally, while improv-
ing redundancy in physical connectivity and applying robust
mechanisms in protocol design are two critical directions to
improve the ISTN resilience, it is challenging to attain a “win-
win” integration of them in practical systems. Increasing the
satellite density indeed improves the resilience of satellite
accessibility in case of sudden failures, but it also involves
much more nodes and links in the network, and thus imposes
new challenges and requirements on the protocol scalability
and recovery efficiency under various failure scenarios.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1319

0

60

120

180

240

London - Los
Angeles

Cape Town -
New York

Hong Kong -
Rio

Sydney -
Frankfurt

Re
co

ve
ry

tim
e

(s
) Kuiper (34 * 34 satellites)

Starlink (72 * 22 satellites)

(a) Route recovery time under 10% failure ratio.

0

60

120

180

240

London - Los
Angeles

Cape Town -
New York

Hong Kong -
Rio

Sydney -
Frankfurt

Re
co

ve
ry

tim
e

(s
) Kuiper (34 * 34 satellites)

Starlink (72 * 22 satellites)

(b) Route recovery time under 20% failure ratio.

0

60

120

180

240

London - Los
Angeles

Cape Town -
New York

Hong Kong -
Rio

Sydney -
Frankfurt

Re
co

ve
ry

tim
e

(s
) Kuiper (34 * 34 satellites)

Starlink (72 * 22 satellites)

(c) Route recovery time under 30% failure ratio.

Figure 11: Route recovery time under different constellation-wide failures.

0
50

100
150
200
250
300

London - Los
Angeles

Cape Town -
New York

Hong Kong -
Rio

Sydney -
Frankfurt

La
te

nc
y

(m
s) Starlink, before failure Starlink, after recovery

Kuiper, before failure Kuiper, after recovery

(a) Increased latency under 10% failure ratio.

0
50

100
150
200
250
300

London - Los
Angeles

Cape Town -
New York

Hong Kong -
Rio

Sydney -
Frankfurt

La
te

nc
y

(m
s) Starlink, before failure Starlink, after recovery

Kuiper, before failure Kuiper, after recovery

(b) Increased latency under 20% failure ratio.

0
50

100
150
200
250
300

London - Los
Angeles

Cape Town -
New York

Hong Kong -
Rio

Sydney -
Frankfurt

La
te

nc
y

(m
s) Starlink, before failure Starlink, after recovery

Kuiper, before failure Kuiper, after recovery

(c) Increased latency under 30% failure ratio.

Figure 12: Increased latency after route reconvergence under various constellation-wide network failures.

②StarryNet Virtual
Satellites (R740 servers)

① 3U CubeSat

Low-Power
Processor

Power Monitor

p
o

w
e
r

m
e
a
su

re
m

e
n

t

Interactive
ISTN

Traffic

… …

1583 emulated nodes + 1 real prototype

Figure 13: Hardware-in-the-loop testing with STARRYNET.

7.3 Hardware-in-the-loop Testing

In real satellite deployments, it is very important to accurately
estimate how much energy a new system or network func-
tion will consume before the launch. STARRYNET enables
researchers to conduct hardware-in-the-loop testing to ac-
curately evaluate the low-level system effects under various
workloads. As a case study to demonstrate STARRYNET’s
ability, we connect a 3U CubeSat prototype, equipped with a
low-power processor [23,24] running real routing protocols to
the virtual satellite network emulated by STARRYNET, as il-
lustrated in Figure 13. Collectively, the 3U CubeSat prototype
together with the emulation creates a virtual constellation
network with 1584 Starlink satellites. We follow the satel-
lite traffic model proposed in [51] to inject traffic and use
a power monitor to measure the satellite prototype. Table 4
summarizes the power consumption in different states (e.g.,
calculating route convergence and forwarding traffic in vari-
ous data rates). Our hardware-in-the-loop test demonstrates

100 250 500 750 1000
Power consumption (W) 2.83 3.22 4.6 4.99 5.36 5.45 5.46

Data transmission rate (Mbps)
State Idle

Routing
convergence

Table 4: Power consumption under various ISTN workloads.

STARRYNET’s ability to create a hybrid ENE and evaluate
real system effects for user-defined functionalities.

8 Limitation and Future Work

Experimental scope and limitations. Our STARRYNET
framework mainly targets at various network-level experi-
ments for ISTNs, e.g., evaluating a new routing/transport-
layer protocol, or assessing the network performance of a new
topology design in a highly-dynamic, resource constrained
virtual ISTN environment. The scale of the experiment sup-
ported by STARRYNET is closely related to the underlying
resources provided by physical machines. In its present form,
the key limitation of STARRYNET can be summarized as
follows. First, STARRYNET is essentially a data-driven frame-
work combining constellation-relevant modeling and network
emulation. Thus its fidelity tightly depends on the availability
and accuracy of the public information shared by the satellite
ecosystem. For example, in practice, public TLE data may
provide inaccurate orbit information, which can have errors
up to 12 km, and such errors can affect the calculation of
network performance (e.g., inter-satellite visibility and prop-
agation delay). Second, some parameters are hard to obtain
from a practical satellite system today, because most mega-
constellations are still in their early stage with limited access.
For example, it is difficult to obtain the real ISL-enabled Star-
link performance right now, since Starlink’s laser ISLs are
still under internal test. Thus, STARRYNET allows researchers

1320 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

to manually configure the ISL parameters (e.g., link capacity)
and customize their experiments based on various experimen-
tal requirements. Third, our framework is primarily based on
virtualization-based network-level emulation, and thus it has
limited ability to emulate physical layer (PHY) characteristics
that can be observed in a live network experiment, e.g., spec-
trum adaptation and multiplexing [42], or the time consumed
by a real satellite dish to detect PHY connectivity changes.
Future work. Satellite Internet mega-constellations are still
evolving rapidly. New constellation designs are constantly
being proposed, and existing constellation schemes are con-
stantly being updated. In our future work, we will follow the
evolution and deployment of realistic satellite Internet con-
stellations. In particular, we will track the latest constellation
information to update STARRYNET’s open database, calibrate
the constellation models and further improve the fidelity of
the STARRYNET framework. Moreover, based on these impli-
cations obtained from our case studies in §7, we will explore
new network techniques tailored for ISTNs, e.g., practical and
resilient satellite routing protocols in the future. Our latest
research progress on STARRYNET will be updated on the
website: https://github.com/SpaceNetLab/StarryNet.

9 Related Work
Section 3.2 has discussed most existing efforts relevant to the
method of building ENEs. In this section we briefly introduce
other ISTN works related to our study in this paper.

The network community has many recent efforts studying
on the topology design [40, 58], routing [47, 52, 56, 57, 83],
transport-layer congestion control [60,64], new satellite appli-
cations [62] and security issues [51] for emerging ISTNs. For
instance, Motif [40] is a recent topology design for LSNs, in
which each satellite is dynamically connected to other visible
satellites to achieve low latency under various traffic configu-
rations. Works in [40,56,57] suggest the use of pre-calculated
shortest-path-based routing and traffic engineering schemes
for ISTNs. On one hand, these pioneering studies indeed
outline the promising network potential of futuristic ISTNs.
On the other hand, the above new thoughts are evaluated by
simulations with a high-level abstraction. STARRYNET can
stimulate new research and advance existing ISTN works by
evaluating them in a more realistic ENE to obtain practical
insights for further optimizations.

The rapid evolution of ISTNs also attracted the attention
of the system community. Specifically, orbital edge comput-
ing (OEC) [43, 44, 66] is a new computation architecture
which leverages computational satellites to pre-process earth
observation (EO) data, and save the data download overhead.
Studies in [49, 50] explored the feasibility of applying deep
neural networks to process on-board satellite data. Since
STARRYNET creates real system runtime and networking
stack in an experimental ISTN environment, it can also help
to evaluate system-level effects of these new algorithms, im-
plementations and programming models designed for ISTNs.

10 Conclusion

To advance futuristic research on ISTNs, this paper presents
STARRYNET, an experimentation framework that empow-
ers researchers to conventionally and flexibly build ENEs
for ISTN research. STARRYNET simultaneously achieves
constellation-consistency, network realism, and flexibility, by
integrating real constellation-relevant information, orbit anal-
ysis and large-scale emulations to construct ENEs. By com-
paring STARRYNET’s results with live network performance
and conducting diverse case studies, we demonstrate STAR-
RYNET’s fidelity and flexibility for various ISTN experiments.
We are confident that the open-source STARRYNET can help
the network and system community to flexibly conduct vari-
ous ISTN evaluations with more credible results.

Acknowledgments

We thank our shepherd Behnaz Arzani and all anonymous
NSDI reviewers for their feedback which greatly improved the
paper. This work was partially supported by the National Nat-
ural Science Foundation of China (NSFC No. 62132004) and
Tsinghua University-China Mobile Communications Group
Co., Ltd. Joint Institute.

References

[1] 40 Starlink satellites doomed by geomagnetic storm.
https://earthsky.org/space/40-starlink-
satellites-doomed-by-geomagnetic-storm/.

[2] Application of Kuiper Systems LLC for Author-
ity to Launch and Operate a Non-Geostationary
Satellite Orbit System in Ka-band Frequen-
cies. https://licensing.fcc.gov/myibfs/
download.do?attachment_key=1773885.

[3] Azure Orbital: Satellite ground station and schedul-
ing service connected to Azure for fast downlink-
ing of data. https://azure.microsoft.com/en-us/
services/orbital/.

[4] China’s megaconstellation project estab-
lishes satellite cluster in chongqing. https:
//spacenews.com/chinas-megaconstellation-
project-establishes-satellite-cluster-in-
chongqing/.

[5] Coremark: a benchmark designed specifically to test
the functionality of a processor core. https://
www.eembc.org/coremark/.

[6] Docker: Empowering app development for developers.
https://www.docker.com/.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1321

https://github.com/SpaceNetLab/StarryNet
https://earthsky.org/space/40-starlink-satellites-doomed-by-geomagnetic-storm/
https://earthsky.org/space/40-starlink-satellites-doomed-by-geomagnetic-storm/
https://licensing.fcc.gov/myibfs/download.do?attachment_key=1773885
https://licensing.fcc.gov/myibfs/download.do?attachment_key=1773885
https://azure.microsoft.com/en-us/services/orbital/
https://azure.microsoft.com/en-us/services/orbital/
https://spacenews.com/chinas-megaconstellation-project-establishes-satellite-cluster-in-chongqing/
https://spacenews.com/chinas-megaconstellation-project-establishes-satellite-cluster-in-chongqing/
https://spacenews.com/chinas-megaconstellation-project-establishes-satellite-cluster-in-chongqing/
https://spacenews.com/chinas-megaconstellation-project-establishes-satellite-cluster-in-chongqing/
https://www.eembc.org/coremark/
https://www.eembc.org/coremark/
https://www.docker.com/

[7] Emulab: a time- and space-shared platform for research,
education, and development in distributed systems and
networks. https://www.emulab.net/.

[8] FCC authorizes boeing broadband satellite constellation.
https://www.fcc.gov/document/fcc-authorizes-
boeing-broadband-satellite-constellation.

[9] FCC Authorizes Kuiper Satellite Constellation.
https://docs.fcc.gov/public/attachments/FCC-
20-102A1.pdf.

[10] FCC International Bureau Filings. https://
fcc.report/IBFS/.

[11] General mission analysis tool. https:
//gmat.atlassian.net/wiki/spaces/GW/
overview?mode=global.

[12] Geomagnetic storm. https://en.wikipedia.org/
wiki/Geomagnetic_storm.

[13] High performance spaceflight computing (HPSC).
https://www.nasa.gov/directorates/spacetech/
game_changing_development/projects/HPSC/.

[14] HPE spaceborne computer. https://www.hpe.com/
us/en/compute/hpc/supercomputing/
spaceborne.html.

[15] Kessler syndrome. https://en.wikipedia.org/
wiki/Kessler_syndrome.

[16] Norad two-line element sets current data. https://
www.celestrak.com/NORAD/elements/.

[17] NTP: The Network Time Protocol. http://
www.ntp.org/.

[18] Nvidia Jetson TX2 Module. https://
developer.nvidia.com/embedded/jetson-tx2.

[19] Open vswitch manual. http://
www.openvswitch.org/support/dist-docs/ovs-
vsctl.8.txt.

[20] PLANETLAB: an open platform for developing, de-
ploying and accessing planetary-scale services. https:
//planetlab.cs.princeton.edu/.

[21] RAD5545 SpaceVPX single-board computer.
Multi-core single-board computer. https:
//www.baesystems.com/en-media/uploadFile/
20210404061759/1434594567983.pdf.

[22] RAD750 family of radiation-hardened products. https:
//www.baesystems.com/en-media/uploadFile/
20210404044504/1434555689265.pdf.

[23] Raspberry pi in space! https://
www.raspberrypi.com/news/raspberry-pi-in-
space/.

[24] Raspberrypi fundation. https://
www.raspberrypi.org/.

[25] Roscosmos for space flights, cosmonautics programs,
and aerospace research. http://en.roscosmos.ru/.

[26] SatNOGS – Open Source global network of satellite
ground stations. https://network.satnogs.org/.

[27] Scrapy. https://scrapy.org/.

[28] Single-event upset. https://en.wikipedia.org/
wiki/Single-event_upset.

[29] Skyfield. https://rhodesmill.org/skyfield/.

[30] SpaceX is Giving the Internet Lift With Star-
link. https://subspace.com/resources/spacex-
is-giving-the-internet-lift-with-starlink.

[31] SpaceX’s Starlink user terminal. https:
//arstechnica.com/information-technology/
2020/12/teardown-of-dishy-mcflatface-the-
spacex-starlink-user-terminal/.

[32] Speed check: Starlink performance. https:
//www.speedcheck.org/starlink-performance-
2021/.

[33] Starlink analysis at the carinthia univer-
sity of applied sciences (CUAS). https:
//forschung.fh-kaernten.at/roadmap-5g/files/
2021/07/Starlink-Analysis.pdf.

[34] Starlink: high-speed, low latency broadband Internet.
https://www.starlink.com/.

[35] Systems Tool Kit (STK). https://www.agi.com/
products/stk.

[36] Telesat. https://www.telesat.com/.

[37] The BIRD Internet Routing Daemon. https://
bird.network.cz/.

[38] UCS satellite database. https://www.ucsusa.org/
resources/satellite-database.

[39] Amazon. AWS Ground Station. https://
aws.amazon.com/ground-station/.

[40] D. Bhattacherjee and A. Singla. Network topology de-
sign at 27,000 km/hour. In Proceedings of the 15th
International Conference on Emerging Networking Ex-
periments And Technologies (CoNEXT), pages 341–354.
ACM, 2019.

1322 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.emulab.net/
https://www.fcc.gov/document/fcc-authorizes-boeing-broadband-satellite-constellation
https://www.fcc.gov/document/fcc-authorizes-boeing-broadband-satellite-constellation
https://docs.fcc.gov/public/attachments/FCC-20-102A1.pdf
https://docs.fcc.gov/public/attachments/FCC-20-102A1.pdf
https://fcc.report/IBFS/
https://fcc.report/IBFS/
https://gmat.atlassian.net/wiki/spaces/GW/overview?mode=global
https://gmat.atlassian.net/wiki/spaces/GW/overview?mode=global
https://gmat.atlassian.net/wiki/spaces/GW/overview?mode=global
https://en.wikipedia.org/wiki/Geomagnetic_storm
https://en.wikipedia.org/wiki/Geomagnetic_storm
https://www.nasa.gov/directorates/spacetech/game_changing_development/projects/HPSC/
https://www.nasa.gov/directorates/spacetech/game_changing_development/projects/HPSC/
https://www.hpe.com/us/en/compute/hpc/supercomputing/spaceborne.html
https://www.hpe.com/us/en/compute/hpc/supercomputing/spaceborne.html
https://www.hpe.com/us/en/compute/hpc/supercomputing/spaceborne.html
https://en.wikipedia.org/wiki/Kessler_syndrome
https://en.wikipedia.org/wiki/Kessler_syndrome
https://www.celestrak.com/NORAD/elements/
https://www.celestrak.com/NORAD/elements/
http://www.ntp.org/
http://www.ntp.org/
https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-tx2
http://www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt
http://www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt
http://www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt
https://planetlab.cs.princeton.edu/
https://planetlab.cs.princeton.edu/
https://www.baesystems.com/en-media/uploadFile/20210404061759/1434594567983.pdf
https://www.baesystems.com/en-media/uploadFile/20210404061759/1434594567983.pdf
https://www.baesystems.com/en-media/uploadFile/20210404061759/1434594567983.pdf
https://www.baesystems.com/en-media/uploadFile/20210404044504/1434555689265.pdf
https://www.baesystems.com/en-media/uploadFile/20210404044504/1434555689265.pdf
https://www.baesystems.com/en-media/uploadFile/20210404044504/1434555689265.pdf
https://www.raspberrypi.com/news/raspberry-pi-in-space/
https://www.raspberrypi.com/news/raspberry-pi-in-space/
https://www.raspberrypi.com/news/raspberry-pi-in-space/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
http://en.roscosmos.ru/
https://network.satnogs.org/
https://scrapy.org/
https://en.wikipedia.org/wiki/Single-event_upset
https://en.wikipedia.org/wiki/Single-event_upset
https://rhodesmill.org/skyfield/
https://subspace.com/resources/spacex-is-giving-the-internet-lift-with-starlink
https://subspace.com/resources/spacex-is-giving-the-internet-lift-with-starlink
https://arstechnica.com/information-technology/2020/12/teardown-of-dishy-mcflatface-the-spacex-starlink-user-terminal/
https://arstechnica.com/information-technology/2020/12/teardown-of-dishy-mcflatface-the-spacex-starlink-user-terminal/
https://arstechnica.com/information-technology/2020/12/teardown-of-dishy-mcflatface-the-spacex-starlink-user-terminal/
https://arstechnica.com/information-technology/2020/12/teardown-of-dishy-mcflatface-the-spacex-starlink-user-terminal/
https://www.speedcheck.org/starlink-performance-2021/
https://www.speedcheck.org/starlink-performance-2021/
https://www.speedcheck.org/starlink-performance-2021/
https://forschung.fh-kaernten.at/roadmap-5g/files/2021/07/Starlink-Analysis.pdf
https://forschung.fh-kaernten.at/roadmap-5g/files/2021/07/Starlink-Analysis.pdf
https://forschung.fh-kaernten.at/roadmap-5g/files/2021/07/Starlink-Analysis.pdf
https://www.starlink.com/
https://www.agi.com/products/stk
https://www.agi.com/products/stk
https://www.telesat.com/
https://bird.network.cz/
https://bird.network.cz/
https://www.ucsusa.org/resources/satellite-database
https://www.ucsusa.org/resources/satellite-database
https://aws.amazon.com/ground-station/
https://aws.amazon.com/ground-station/

[41] K. C. Castonguay. Additive manufacture of propulsion
systems in low earth orbit. Technical report, Air Com-
mand and Staff College, Air University Maxwell AFB
United States, 2018.

[42] R. Chen and W. Gao. TransFi: emulating custom wire-
less physical layer from commodity wifi. In Proceedings
of the 20th Annual International Conference on Mobile
Systems, Applications and Services (MOBISYS), 2022.

[43] B. Denby and B. Lucia. Orbital edge computing: Ma-
chine inference in space. IEEE Computer Architecture
Letters, 18(1):59–62, 2019.

[44] B. Denby and B. Lucia. Orbital edge computing:
Nanosatellite constellations as a new class of computer
system. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS),
page 939–954. ACM, 2020.

[45] G. Di Lena, A. Tomassilli, D. Saucez, F. Giroire,
T. Turletti, and C. Lac. Distrinet: a mininet implementa-
tion for the cloud. ACM SIGCOMM Computer Commu-
nication Review, 51(1):2–9, 2021.

[46] L. Dreyer. Latest developments on SpaceX’s Falcon 1
and Falcon 9 launch vehicles and Dragon spacecraft. In
Aerospace conference. IEEE, 2009.

[47] E. Ekici, I. F. Akyildiz, and M. D. Bender. Datagram
routing algorithm for leo satellite networks. In Proceed-
ings of International Conference on Computer Commu-
nications (INFOCOM), volume 2, pages 500–508 vol.2.
IEEE, 2000.

[48] W. Frick and C. Niederstrasser. Small launch vehicles -
A 2018 state of the industry survey.

[49] G. Giuffrida, L. Diana, F. de Gioia, G. Benelli, G. Meoni,
M. Donati, and L. Fanucci. Cloudscout: a deep neural
network for on-board cloud detection on hyperspectral
images. Remote Sensing, 12(14):2205, 2020.

[50] G. Giuffrida, L. Fanucci, G. Meoni, M. Batič, L. Buckley,
A. Dunne, C. van Dijk, M. Esposito, J. Hefele, N. Ver-
cruyssen, G. Furano, M. Pastena, and J. Aschbacher. The
sat-1 mission: The first on-board deep neural network
demonstrator for satellite earth observation. IEEE Trans-
actions on Geoscience and Remote Sensing, 60:1–14,
2022.

[51] G. Giuliari, T. Ciussani, A. Perrig, and A. Singla. Icarus:
Attacking low earth orbit satellite networks. In USENIX
Annual Technical Conference (ATC), pages 317–331.
USENIX, 2021.

[52] G. Giuliari, T. Klenze, M. Legner, D. Basin, A. Perrig,
and A. Singla. Internet backbones in space. ACM SIG-
COMM Computer Communication. Review., 50(1):25–
37, Mar. 2020.

[53] E. W. Gretok, E. T. Kain, and A. D. George. Compar-
ative benchmarking analysis of next-generation space
processors. In Aerospace Conference. IEEE, 2019.

[54] D. Gupta, K. V. Vishwanath, M. McNett, A. Vahdat,
K. Yocum, A. Snoeren, and G. M. Voelker. Diecast:
Testing distributed systems with an accurate scale
model. ACM Transactions on Computer Systems
(TOCS), 29(2):1–48, 2011.

[55] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible network experiments using
container-based emulation. In Conference on emerging
Networking Experiments and Technologies (CoNEXT).
ACM, 2012.

[56] M. Handley. Delay is not an option: Low latency routing
in space. In Proceedings of the 17th ACM Workshop on
Hot Topics in Networks (HotNets), page 85–91, 2018.

[57] M. Handley. Using ground relays for low-latency wide-
area routing in megaconstellations. In Proceedings of
the 18th ACM Workshop on Hot Topics in Networks
(HotNets), page 125–132. ACM, 2019.

[58] Y. Hauri, D. Bhattacherjee, M. Grossmann, and
A. Singla. "Internet from Space" without Inter-Satellite
Links. In Proceedings of the 19th ACM Workshop on
Hot Topics in Networks (HotNets), page 205–211. ACM,
2020.

[59] Internet World Stats. World internet us-
age and population statistics. https:
//www.internetworldstats.com/stats.htm, 2021.

[60] S. Kassing, D. Bhattacherjee, A. B. Águas, J. E. Saethre,
and A. Singla. Exploring the "Internet from Space" with
Hypatia. In Proceedings of the Internet Measurement
Conference (IMC), page 214–229. ACM, 2020.

[61] Z. Lai, H. Li, and J. Li. StarPerf: Characterizing Net-
work Performance for Emerging Mega-Constellations.
In 28th International Conference on Network Protocols
(ICNP). IEEE, 2020.

[62] Z. Lai, W. Liu, Q. Wu, H. Li, J. Xu, and J. Wu. Spac-
eRTC: Unleashing the Low-latency Potential of Mega-
constellations for Real-Time Communications. In Pro-
ceedings of International Conference on Computer Com-
munications (INFOCOM), pages 1339–1348. IEEE,
2022.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1323

https://www.internetworldstats.com/stats.htm
https://www.internetworldstats.com/stats.htm

[63] Z. Lai, Q. Wu, H. Li, M. Lv, and J. Wu. OrbitCast:
Exploiting Mega-Constellations for Low-Latency Earth
Observation. In 29th International Conference on Net-
work Protocols (ICNP). IEEE, 2021.

[64] X. Li, F. Tang, J. Liu, L. T. Yang, L. Fu, and L. Chen.
AUTO: Adaptive congestion control based on multi-
objective reinforcement learning for the satellite-ground
integrated network. In USENIX Annual Technical Con-
ference (ATC), pages 611–624. USENIX Association,
2021.

[65] T. M. Lovelly. Comparative Analysis of Space-Grade
Processors. PhD thesis, University of Florida, 2017.

[66] B. Lucia, B. Denby, Z. Manchester, H. Desai, E. Ruppel,
and A. Colin. Computational nanosatellite constella-
tions: Opportunities and challenges. GetMobile: Mobile
Computing and Communications, 25(1):16–23, 2021.

[67] man7.org. tc(8) — Linux manual page. https://
man7.org/linux/man-pages/man8/tc.8.html.

[68] MININET. An Instant Virtual Network on your Laptop
(or other PC). http://mininet.org/.

[69] M. K. Mukerjee, C. Canel, W. Wang, D. Kim, S. Seshan,
and A. C. Snoeren. Adapting TCP for reconfigurable
datacenter networks. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).
USENIX Association, 2020.

[70] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Win-
stein, J. Mickens, and H. Balakrishnan. Mahimahi: Ac-
curate record-and-replay for HTTP. In USENIX An-
nual Technical Conference (ATC). USENIX Associa-
tion, 2015.

[71] W. M. Organization. Observing systems capability anal-
ysis and review tool. https://space.oscar.wmo.int/
satellites.

[72] D. Pediaditakis, C. Rotsos, and A. W. Moore. Faithful
reproduction of network experiments. In Proceedings
of the tenth ACM/IEEE symposium on Architectures for
networking and communications systems (ANCS), pages
41–52, 2014.

[73] S. Services. Petition of Starlink Services, LLC
for Designation as an Eligible Telecommunications
Carrier. https://www.mass.gov/doc/dtc-21-1-
starlink-final-order/download, 2021.

[74] V. Singh, A. Prabhakara, D. Zhang, O. Yağan, and S. Ku-
mar. A community-driven approach to democratize
access to satellite ground stations. In Proceedings of
the 27th Annual International Conference on Mobile
Computing and Networking (MOBICOM). ACM, 2021.

[75] A. Singla. SatNetLab: a call to arms for the next global
internet testbed. ACM SIGCOMM Computer Communi-
cation Review, 51(2):28–30, 2021.

[76] SNS3. Satellite network simulator 3. https://
www.sns3.org/content/home.php.

[77] D. Vasisht and R. Chandra. A Distributed and Hybrid
Ground Station Network for Low Earth Orbit Satellites.
In Proceedings of the 19th Workshop on Hot Topics in
Networks (HotNets), page 190–196. ACM, 2020.

[78] D. Vasisht, J. Shenoy, and R. Chandra. L2D2: low la-
tency distributed downlink for LEO satellites. In Pro-
ceedings of the ACM SIGCOMM Conference, pages
151–164. ACM, 2021.

[79] E. Weingärtner, F. Schmidt, H. Vom Lehn, T. Heer, and
K. Wehrle. SliceTime: A Platform for Scalable and
Accurate Network Emulation. In 8th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI). USENIX Association, 2011.

[80] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. H.
Zahraee, and H. Karl. Maxinet: Distributed emulation
of software-defined networks. In IFIP Networking Con-
ference, 2014.

[81] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed sys-
tems and networks. ACM SIGOPS Operating Systems
Review, 36(SI):255–270, 2002.

[82] L. Wood. Satellite Constellation Design for Network
Interconnection Using Non-Geo Satellites., 2002.
https://openresearch.surrey.ac.uk/esploro/
outputs/bookChapter/Appendix-A-Satellite-
Constellation-Design-for/99513302802346.

[83] Y. Wu, Z. Yang, and Q. Zhang. A Novel DTN Routing
Algorithm in the GEO-Relaying Satellite Network. In
The 11th International Conference on Mobile Ad-hoc
and Sensor Networks (MSN), pages 264–269, 2015.

[84] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby,
P. Levis, and K. Winstein. Pantheon: the training ground
for Internet congestion-control research. In USENIX An-
nual Technical Conference (ATC). USENIX Association,
2018.

[85] Y. Zheng and D. M. Nicol. A virtual time system for
openvz-based network emulations. In Workshop on Prin-
ciples of Advanced and Distributed Simulation. IEEE,
2011.

1324 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
http://mininet.org/
https://space.oscar.wmo.int/satellites
https://space.oscar.wmo.int/satellites
https://www.mass.gov/doc/dtc-21-1-starlink-final-order/download
https://www.mass.gov/doc/dtc-21-1-starlink-final-order/download
https://www.sns3.org/content/home.php
https://www.sns3.org/content/home.php
https://openresearch.surrey.ac.uk/esploro/outputs/bookChapter/Appendix-A-Satellite-Constellation-Design-for/99513302802346
https://openresearch.surrey.ac.uk/esploro/outputs/bookChapter/Appendix-A-Satellite-Constellation-Design-for/99513302802346
https://openresearch.surrey.ac.uk/esploro/outputs/bookChapter/Appendix-A-Satellite-Constellation-Design-for/99513302802346

POLYCORN: Data-driven Cross-layer Multipath Networking for
High-speed Railway through Composable Schedulerlets

Yunzhe NiP, Feng QianM, Taide LiuP, Yihua ChengP, Zhiyao MaP, Jing WangP

Zhongfeng WangG, Gang HuangPH, Xuanzhe LiuPH, Chenren XuPZHB∗
PPeking University MUniversity of Minnesota – Twin Cities GChina Railway Gecent Technology Co., Ltd

ZZhongguancun Laboratory HKey Laboratory of High Confidence Software Technologies, Ministry of Education (PKU)

Abstract – Modern high-speed railway (HSR) systems
offer a speed of more than 250 km/h, making on-board Inter-
net access through track-side cellular base stations extremely
challenging. We conduct extensive measurements on commer-
cial HSR trains, and collect a massive 1.79 TB GPS-labeled
TCP-LTE dataset covering a total travel distance of 28,800 km.
Leveraging the new insights from the measurement, we de-
sign, implement, and evaluate POLYCORN, a first-of-its-kind
networking system that can significantly boost Internet perfor-
mance for HSR passengers. The core design of POLYCORN
consists of a suite of composable multipath schedulerlets that
intelligently determine what, when, and how to schedule user
traffic over multiple highly fluctuating cellular links between
HSR and track-side base stations. POLYCORN is specially
designed for HSR environments through a cross-layer and
data-driven proactive approach. We deploy POLYCORN on
the operational LTE gateway of the popular Beijing-Shanghai
HSR route at 300 km/h. Real-world experiments demonstrate
that POLYCORN outperforms the state-of-the-art multipath
schedulers by up to 242% in goodput, and reduces the delivery
time by 45% for instant messaging applications.

1 Introduction
High-speed railway (HSR) systems, which offer a speed of
250+ km/h, revolutionize inter-city travel. Internet services on
HSR are typically provided by track-side cellular base stations
and an on-board proxy relaying data between WiFi APs and
the cellular infrastructure [1–7]. However, the ultra-fast speed
of HSR poses unprecedented challenges in bringing seamless
Internet service to passengers because of the intermittent link
connectivity characteristic – handover happens every less than
10 seconds [8] and the handover failure may cause a “blackout”
period of up to 10 seconds [9], as reported by previous studies.

It is known that MPTCP [10] (or multipath transport in
general) can leverage path diversity (with each path asso-
ciated with a cellular carrier or mobile network operator)
to improve link/connection robustness, as demonstrated in
low mobility scenarios [11–14]. However, applying multipath
transport to HSR networking is very challenging. Under such
extreme mobility, the network performance fluctuates sub-
second level [15], leading to 1636x higher variance in RTT

∗B: chenren@pku.edu.cn

than in static or low mobility scenarios [16] – this is a sharp
contrast to the common assumption that a relatively stable net-
work condition may last for several RTTs, which is leveraged
by the state-of-the-art MPTCP schedulers [17,18] for making
scheduling decisions. Indeed, as to be demonstrated in §6.2,
the inaccurate link quality estimation and scheduling deci-
sion informed by inaccurate throughput and RTT observations
often lead to poor performance under extreme mobility.

In this paper, we argue that in contrast to the state-of-art
multipath schedulers that rely on instantaneous performance
measurement for making reactive scheduling decisions, we
should carefully mine the networking features specific to the
extreme mobility scenario, identify the main events leading
to predictable failures, and design proactive scheduling strate-
gies accordingly. For this purpose, we conduct real-world
measurements on the popular Beijing-Shanghai route in China
traveling at an average speed of 300 km/h. Over 24 trips span-
ning three weeks, we collected 1.79 TB data covering a total
travel distance of 28,800 km. Our study differs from all prior
HSR networking measurement studies [8, 15, 19, 20]: through
collaborating with the on-board HSR ISP, we obtain precise
location (from the GPS receiver mounted on the carriage
roof) for every collected network performance sample. This
allows us to statistically correlate the train’s physical location
with various network performance events, enabling many key
analyses and henceforth the design of our system.

Leveraging our unique dataset, we identify three key as-
pects that guides our system design. First, handover failures,
which incur several seconds of link disconnection, can be rea-
sonably predicted from the train’s moving trajectory. Second,
the multipath heterogeneity (the relative performance rank-
ing across paths, i.e., carriers) is highly dynamic, oftentimes
changing on a per-RTT basis. Third, transport-layer packet
retransmission is much more common than typical cellular
links. We find that on HSR, 1.8% of the TCP packets experi-
ence retransmission timeout (RTO) – among them, 24% are
retransmitted more than once.

Inspired by the above findings, we develop POLYCORN,
a practical networking system that significantly boosts the
Internet performance for HSR passengers. It is to our best
knowledge the first full-fledged system that specifically opti-
mizes for Internet services on extreme mobility ground trans-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1325

portation. Leveraging multipath heterogeneity, POLYCORN
distributes passengers’ traffic over multiple cellular carriers
for bandwidth aggregation, reduced delay, and improved reli-
ability. In its core, POLYCORN is equipped with a novel multi-
path scheduler called HSRSCH, which judiciously determines
transmitting which data over which path(s) in real time despite
the highly dynamic network conditions. HSRSCH is tailored
to HSR environments through a proactive and cross-layer ap-
proach. Its design consists of four optimizations that could
be either individually or jointly applied to existing “baseline”
schedulers such as the minRTT shipped with MPTCP.

• Handover-failure-aware Path Rejection (§4.3) has an in-
tuitive idea: once an imminent handover failure event is pre-
dicted, HSRSCH temporarily disables the corresponding path
so packets will not be scheduled over it to avoid the black-
out period (and inter-subflow out-of-order delay). To realize
this idea, we apply robust and lightweight machine learning
to predict handover failures. We use two features carefully
derived from our measurements: location and cell ID, which
lead to an overall prediction accuracy of 80.6%.

• Tail-aware Path Rejection (§4.4) determines whether to
use path(s) when their link conditions deteriorate. Its basic
idea is to avoid scheduling tail packets, which belong to the
end of a flow (i.e., upon an end-of-flow indicator) on slow
path(s). Since HSR traffic is dominated by short-lived flows
(e.g., web browsing, instant messaging, mini videos), this opti-
mization can significantly accelerate short flows’ completion
time. We instantiate the idea by modeling the queuing and
transmission process of tail packets to guide path selection.

• Extended Reinjection (§4.5) detects vulnerable packets
when losses occur, and retransmit them early over other paths
in a batched manner. The idea stems from the bursty na-
ture of wireless losses and consequent excessive RTO events,
which we find to be even more prominent on HSR: one sin-
gle packet loss will introduce more subsequent ones. Our
approach differs from MPTCP’s default packet-by-packet
reinjection mechanism that is far too conservative for HSR.
We carefully determine the reinjection aggressiveness based
on real data to avoid putting too much burden on other paths.

• Opportunistic Redundant Traffic Injection (§4.6) proac-
tively leverages idle path(s) to transmit redundant data. It not
only provides extra resiliency to link quality fluctuation, but
also enables the transport layer to continuously probe the path
for important metrics such as RTT and RTO, which are highly
dynamic when probed from HSR.

We integrate the above components through a compos-
able scheduling framework, which treats a complex multi-
path scheduler as a pipeline of modularized schedulerlets as
described above. Compared to a monolithic scheduler, our
schedulerlet-based approach decouples the multipath schedul-
ing logic, and thus significantly reduces the system complexity
and development overhead, through the unified interface of
schedulerlets designed by us. It also makes the system exten-

sible and open to future optimizations (§4.2). The scheduling
framework is then integrated with a multi-user/multi-path data
transport mechanism (also developed by us), leading to the
full-fledged POLYCORN system (§4.7).

Utilizing various system-level techniques including multi-
pipe multiplexing [21, 22] and user-level packet interception,
our implementation runs completely in the user space while
maintaining full user/server transparency and high packet
I/O performance. It is deployed as two proxy modules, one
running on the HSR train and the other running on a cloud
server, that schedule uplink and downlink traffic respectively
over multiple cellular paths. POLYCORN requires no hardware
or firmware modifications, and is orthogonal to HSR-specific
PHY/MAC layer innovations [23–26] for cellular networks.
Our implementation consists of 24K lines of code.

Through our three-year collaboration efforts with the HSR
ISP’s operational department, we managed to deploy POLY-
CORN on real HSR trains by instrumenting their onboard LTE
gateways. We evaluate POLYCORN on the popular Beijing-
Shanghai route at 300 km/h, with the key results as follows.

• On HSR, POLYCORN outperforms state-of-art multi-
path schedulers (e.g., ECF [27], STMS [18], MuSher [17],
BLEST [28] and MPTCP’ default scheduler [10]) by 43% to
242% when downloading files with different sizes.

• POLYCORN consistently outperforms MPTCP by 61.5%,
30.6%, 64.2% on the three HSR route segments (Beijing-
Jinan, 406 km; Jinan-Nanjing, 617 km; Nanjing-Shanghai,
301 km) respectively, in terms of the file download time. This
indicates that POLYCORN could boost the networking perfor-
mance under different HSR track-side environments.

• POLYCORN reduces the delivery time by 45% for an instant
messaging application in a multi-user setting, compared to
the current operational deployment of HSR Internet access.

Note that although the above results are obtained from
LTE, POLYCORN is compatible with 5G networks that are
being deployed along the HSR tracks [29]. We elaborate the
applicability of POLYCORN on 5G in §7.

The Contributions of this paper is summarized as follows.

• New insights of extreme mobility networking characteris-
tics derived from a massive, GPS-labeled TCP-LTE dataset
covering 28,800 km travel distance.

• The design of cross-layer, proactive multipath scheduling
algorithms tailored to extreme mobility networking, and their
integration through a composable scheduling pipeline.

• The development of POLYCORN, the first-of-its-kind net-
work system boosting the mobile Internet performance for all
the HSR passengers.

• Deployment and extensive evaluations of POLYCORN on
commercial HSR trains in the wild.

This work does not raise any ethical issues.

1326 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 Networking Performance Measurement
To motivate the design of POLYCORN, we conduct real-world
measurements of mobile networking performance on HSR.
Our study is unique in two aspects. First, all our measured
network performance samples have precise GPS coordinates,
as opposed to coarse-grained cell IDs used in previous studies
[8, 15]. Second, leveraging the unique GPS-labeled data, we
offer new insights such as the predictability of failed LTE
handovers on HSR.

2.1 Data Collection Methodology
A major challenge of collecting fine-grained location on HSR
is a lack of GPS signal in the carriage due to electromagnetic
shielding. To overcome it, we collaborate with the China
Railway Gecent Technology operating China’s HSR WiFi
platform. We next describe our data collection setup in detail.

Onboard LTE Gateway. It is deployed by China’s HSR
WiFi carrier in the server room on each train. This gateway
serves two purposes: in the upstream, it connects to track-side
LTE base stations for Internet access; in the downstream, it
connects to the WiFi access points (802.11ac APs) serving
passengers in each carriage through a wired local area net-
work (LAN). The gateway is equipped with multiple SIM
cards of two major cellular carriers, as well as a 2×2 MIMO
antenna mounted on top of the server room carriage. The
GPS receiver is also mounted on the carriage roof, allowing
precisely tracking the location and speed of the train. We are
permitted to access the GPS data and use two of the LTE inter-
faces exclusively (i.e., there is no other user traffic over these
interfaces during data collection). We conduct data collection
using iPerf [30], tshark [31], and Quectel LTE QLog1 to mea-
sure the available bandwidth, capture packet traces, and record
LTE control-plane messages, respectively. No prior study to
our knowledge has leveraged such a unique infrastructure for
HSR network measurement and optimization.

Measurement Server. We deploy two co-located servers (4×
Intel Xeon Skylake 6133 2.5 GHz CPU with 8 GB RAM) in
a major cloud service provider in China. Each server serves
measurement requests for one LTE carrier. The servers are
located in Shanghai that is 20 to 1,300 km away from our stud-
ied HSR route. We conduct wired experiments from several
hosts near the HSR route to the two servers, and the through-
put (RTT) are measured to be ≥50 Mbps (≤ 33 ms), which
is far above (below) the corresponding metric measured on
HSR. This indicates that the Internet is not the performance
bottleneck for the end-to-end (i.e., HSR-to-server) path.

Route and Duration. We carried out experiments on the
“Fuxing” high-speed trains between Beijing and Shanghai,
the top-two cities in China. This 1,318 km route is one of
the busiest railway routes in China, with an annual passenger
volume of 215 million. The average train speed is 300 km/h.

1A proprietary tool offered by the gateway vendor for collecting LTE log
data from their LTE modems.

Over 24 trips spanning three weeks, we collected 1.79 TB
data covering a total travel distance of 28,800 km. Our dataset
consists of the following cross-layer records: (1) The GPS lo-
cation of the train updated every second; (2) The packet traces
and downlink TCP Throughput collected by a long-lived iPerf
session running on the LTE gateway; the server uses the BBR
congestion control [32] that is known to yield a more accurate
bandwidth estimation compared to widely deployed TCP CU-
BIC [33]; (3) The LTE lower-layer information including cell
ID, signal strength (RSRP), and the LTE signaling messages
collected by Quectel LTE QLog and parsed by MobileIn-
sight [34]. We made the dataset publicly available in: https:
//soar.group/projects/hsrnet/dataset.html.

2.2 Throughput & Latency Characterization
Leveraging our large dataset, we begin with basic characteri-
zations of throughput and latency. Across the entire dataset,
the 25th, 50th, and 75th-percentile downlink TCP through-
put of Carrier A (B)2 are measured to be 2.56 (4.60), 6.48
(10.67), and 12.42 (19.73) Mbps, respectively. Regarding the
latency, the 25th, 50th, and 75th-percentile RTT of carrier
A (B) are 123 (147), 185 (191), and 315 (348) ms, respec-
tively. We observe that both throughput and latency exhibit
high temporal fluctuations. To quantify them, we compute the
ratio between the average throughput in the current time win-
dow [t0 −∆t, t0], denoted as CT , and the average throughput
in the previous window [t0 −6∆t, t0 −∆t], denoted as RT ,
where t0 is the current time. ∆t is empirically chosen as 0.2
seconds, the median RTT when HSR travels at 300 km/h.
Fig. 1a plots the distribution of the throughput ratio defined
above. As shown, in 26.4% (Carrier A) or 22.6% (Carrier B)
of the cases, CT/RT is lower than 50% or higher than 200%,
confirming the high throughput fluctuation. The latency varia-
tion is also prominent (figure not shown). This leads to fre-
quent TCP Retransmission Timeout events (RTOs), which are
experienced by 1.8% of the packets. We even observe that
the transmissions of many packets experience more than one
RTO, as shown in Fig. 1b (“0” indicates no RTO is triggered).

 0

 20

 40

 60

 80

 100

1/8 1/4 1/2 1 2 4 8

C
D

F
 (

%
)

Ratio of CT and RT

Carrier A
Carrier B

(a) Throughput.

1e+1
1e+2
1e+3
1e+4
1e+5
1e+6

0 1 2 3 4 5+

P
a

c
k
e

t
C

o
u

n
t

Timeout Events Triggered

506358

6755
1526

252
73

271

(b) RTT.

Figure 1: TCP performance temporal variation.

2.3 Predictability of Networking Performance
Since trains move along fixed rail tracks, it is anticipated
that the networking performance is predictable, similar to
what has been reported for lower-speed vehicles [35]. On
HSR, however, the predictability may be affected by the ultra-
high speed. No prior study to our knowledge has studied the
predictability of HSR networking performance.

2China Mobile and China Unicom respectively.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1327

https://soar.group/projects/hsrnet/dataset.html
https://soar.group/projects/hsrnet/dataset.html

We begin with exploring a straightforward approach of
predicting the TCP throughput using the train’s trajectory.
For each <location, direction> pair, we compute the average
throughput near the location (± 1 km) in all trips to smooth
out the temporal variation, aggregate all those samples and
calculate the ratio between the 75-th and the 25-th percentile
values. As shown in Fig. 2a, the median ratio is 3.21 and
3.24 for Carrier A and B, respectively, and it may reach up to
1003. The results indicate that, unlike low-speed transporta-
tion, throughput prediction in HSR is very challenging. The
main reason is that the extreme mobility introduces complex
stochastic channel fading, which can cause significant tempo-
ral variation in received signal strength and henceforth high
data rate fluctuation at the same location. This is exemplified
in Fig. 2b, which plots the RSRP values of Carrier A over
a 40 km route measured on three different days. As shown,
the link quality not only exhibits randomness across the three
trips but also lacks spatial locality during the same trip. We
also would to note that this unpredictable pattern is jointly
determined by the highly dynamic channel condition and its
complex interaction with TCP congestion control – a small
difference in wireless channel condition may result in a big
difference in future TCP performance. In addition, the pre-
diction result also depends on a specific congestion control
(CC) algorithm, which makes the design space for throughput
prediction even more challenging.

 0

 20

 40

 60

 80

 100

 1 10 100

C
D

F
 (

%
)

Ratio of 3rd and 1st Quantile of Thp.

Carrier A
Carrier B

(a) Variability of Throughput.

-135
-120
-105
-90
-75
-60

 32.5 32.6 32.7 32.8 32.9 33

R
S

R
P

 (
d
B

m
)

GPS (latitude)

Day 1 Day 2 Day 3

(b) Location vs. RSRP.

Figure 2: Measurement study of location-aware TCP through-
put repeatability and predictability.

Given the difficulty of throughput prediction for HSR,
POLYCORN takes a unique approach of predicting handover
failures. Due to its high speed, HSR experiences much more
frequent handovers compared to low-speed vehicles. More
importantly, in HSR, handovers are more likely to fail. A
failed handover occurs when a UE disconnects from or loses
connection to the current base station but is not yet connected
to the new base station. Failed handovers bring negative per-
formance impact, including packet losses and their incurred
retransmission timeout (RTO) that force TCP to enter a slow
start. In our dataset, the performance impact is measured to
be at least 1 second and can last as long as 10 seconds. In
contrast, a successful handover usually incurs shorter than
100 ms of TCP throughput disruption.

We next explore the predictability of failed handovers given
their importance. Our dataset records 32,231 and 45,656 han-

3The ratio could be even higher with finer-grained location granularity
due to the bursty TCP performance on HSR.

Scenario Carrier A Carrier B

Distance to EHP < 200m 75.4% 83.7%

Distance to EHP ≥ 200m 65.9% 71.8%

RSRP ≥ -95dBm 89.2% 83.8%

RSRP < -95dBm 52.9% 67.7%

Table 1: Handover success rate.

dovers for Carrier A and B, respectively. Among them, the
fraction of failed handovers is 6.22% and 5.47%, respectively,
significantly higher than those experienced by low-speed ve-
hicles. We observe that 47.33% (40.35%) of the source cells
(from which the handover initiates) of Carrier A (Carrier B)
experiences at least one handover failure in our three-week
measurement. Fig. 3a plots the handover failure rate, defined
as the ratio of failed handovers, across the cells4 experienced
at least one handover failure. As shown, for both carriers, more
than 30% of the cells have a failure rate between 20% and
80%, indicating that it is infeasible to predict failed handovers
only using cell ID. Nevertheless, we identify two noticeable
features that can facilitate prediction of handover failures.
First, the RSRP and failure rate are found to be negatively
correlated, for handover messages are more likely to be lost
under lower SNR. Second, a handover that is triggered late
(compared to historically recorded handovers at the same lo-
cation) is more likely to fail: due to HSR’s high speed, there is
simply not enough time for a late handover to complete. This
is confirmed by the statistics shown in Tab. 1, which plots the
successful rates across all handovers under four scenarios. (1)
Handovers starting within 200 m of the Earliest Handover Po-
sitions (EHP) of their source cells. (2) Handovers starting at
least 200 m beyond EHP; (3) Handovers with ≥-95dB RSRP
when they start; (4) Handovers with <-95dB RSRP when
they start. Here the EHP of a cell s is defined as the earliest
geographic location (w.r.t. the train’s moving direction) of all
the handovers with a source cell s when they start. As shown
in Tab. 1, handovers that start early or have high RSRP values
have higher chances of success compared to late or low-RSRP
handovers, respectively. We also plot some individual han-
dovers versus signal strength and location in Fig. 3b where a
dot (star) represents a successful (failed) handover, and the
colors correspond to different cells.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

Handover Failure Rate (%)

Carrier A
Carrier B

(a) Failure rate.

-100

-90

-80

-70

-60

1 2 3 4

R
S

R
P

 (
d

B
m

)

Relative Latitude (0.02 Degree)

Successful Handover
Failed Handover

(b) Pattern snapshot.

Figure 3: Handover pattern study.

4Unless explicitly mentioned, cell means <cell, direction> pair.

1328 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2.4 Multipath Heterogeneity
Recall that the on-board LTE gateway (§2.1) is equipped
with SIM cards of two carriers. We next explore whether the
performance of the two carriers are correlated or not. Specif-
ically, we compute the throughput and RTT ratios between
the two carriers in a synchronous manner. We find that 39.2%
(16.9%) of the computed throughput (RTT) ratios are lower
than 0.5, and 37.0% (23.2%) of the throughput (RTT) ratios
are higher than 2.0, as plotted in Fig. 4a. This suggests that
the two carriers’ performance is indeed heterogeneous when
accessed from HSR, and the two carriers can performance-
wise complement each other. We further quantify at what time
granularity one carrier can consistently outperform the other.
Specifically, we define the RTT Leading Time as the longest
consecutive period during which one carrier always has a
lower RTT than the other. As shown in Fig. 4b, the median
RTT leading time for Carrier A and B are 457 ms and 632 ms
respectively. This indicates that the multipath heterogeneity
on HSR is highly dynamic, changing every 2 to 4 RTTs (see
also Fig. 4c), attributed to HSR’s extreme mobility.

 0
 20
 40
 60
 80

 100

1/8 1/4 1/2 1 2 4 8

C
D

F
 (

%
)

Ratio

Throughput RTT

(a) Throughput/RTT ratio.

 0
 20
 40
 60
 80

 100

 0 1 2 3 4 5

C
D

F
 (

%
)

RTT Leading Time (s)

Carrier A Carrier B

(b) RTT leading time.

-1
 0
 1
 2
 3
 4
 5

 0 20 40 60 80 100

R
T

T
 R

a
ti
o

Time (sec)

Carrier A / Carrier B

(c) Snapshot of RTT ratio time series.
Figure 4: Measurement study of path diversity.

2.5 Implications on System Design
We summarize key findings of our measurements and their
implications on system design.
• As the mobile networking performance is highly fluctuating
on HSR, one needs to continuously probe the cellular link to
get fresher link quality estimations and use it strategically;
• One may tackle the link dynamics by proactive reinjection,
as the RTO-based retransmission is often inefficient (§2.2);
• One could leverage the predictability of handover failures
to take early actions before losing the connectivity (§2.3);
• One can further leverage the path heterogeneity to mitigate
the volatility on individual paths. The path selection requires
judicious decisions based on traffic patterns, real-time link
quality monitoring, and handover failure prediction (§2.4).

3 Handover Failure Prediction
In this section, we present how to leverage the available yet
reliable information to predict handover failures, which is cru-

cial to improving networking performance in our frequently
disconnected networking environment.

Handover Success/Failure Determination Methodology.
Our measurement in §2.3 provides evidence that HSR han-
dover failures, which disrupt TCP performance for several
seconds, are potentially predictable – they are more likely to
fail if happened at a latter location in the overlap zone (for
handover) and/or if RSRP is lower. Herein, we formulate han-
dover success/failure determination task as a classification
problem, and adopt SVM, a lightweight supervised machine
learning algorithm fed with location (i.e., longitude, latitude)
and RSRP values when UE disconnects from the source cell
as features and handover result as labels. We log all these
relevant information into a database called LinkDB deployed
on both mobile relay and remote proxy (see Fig. 7) and train
the SVM with linear kernel function and L2 loss function
for each source cell. By using location, the percentage of the
linearly separable (successful and failed) handovers is 72.8%
and 71.4% for carrier A and B respectively; by using RSRP,
this number is reported as 73.5% and 67.1%. When jointly
use location and RSRP, this number raises up to 92.6% and
89.2%. This data shows that for most cells, the handover result
could be accurately inferred from the location and/or RSRP
when the handover starts. Another implication is that if a fresh
handover event is close to the historical handover failure data
in the feature space, it is very likely to fail.

Handover Failure Prediction in POLYCORN. Although the
aforementioned offline analysis shows promising results in de-
termining whether the handover is successful or failed based
on location and RSRP data, it is not straightforward to turn it
into a practical online handover failure predictor. The main
challenge is that the handover failure has to be predicted in
advance so as to be useful for guiding interface scheduling, es-
pecially for downlink traffic. In other words, the time advance
needs to take into account the tens or hundreds of millisec-
onds of delay for mobile relay to deliver the handover failure
precaution signal to the remote proxy. In our data analysis,
we also find that the LTE chipset can delay the RSRP log
reporting to userspace for up to 200 ms. This fact together
with RSRP’s highly fluctuating nature (Fig. 2b) makes RSRP
an error-prone feature for SVM to use for online handover
failure prediction. Therefore, POLYCORN has to rely on lo-
cation information only since it is truly predictable given the
reliable train speed. In practice, the mobile relay sends its
associated cell ID, train’s speed and location, and current time
to the remote proxy. On the remote proxy, LinkDB provides
information about all historical handovers from this cell and
calculates the predicted location of handover failure ˆLHOF ,
defined as the average location of all handover failures. Then,
LinkDB predicts ˆtHOF , the time that train passes ˆLHOF . If
the current moment is approaching ˆtHOF (to be elaborated
in §4.3), POLYCORN predicts that the handover in this cell
would fail because it is too late to initiate it even from now.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1329

TimeNotification of
Current Cell

Notification of
Next Cell

𝑡"# − 𝑡% 𝑡"# − 𝑡& 𝑡"#

Value of 𝑡"#' Wrong LL Correct J

Case #2: Do NOT throttle the path:
Handover ended at most shortly after 𝑡"#' .

Case #1: Bandwidth wasted:
Path is in good status after 𝑡"#' .

Successful Handover

TimeNotification of
Current Cell

Notification of
Next Cell

𝑡"# − 𝑡% 𝑡"# − 𝑡& 𝑡"#

Value of 𝑡"#' Early L Correct J Late LLL

Case #3: Bandwidth wasted:
Path is usable after 𝑡"#' .

Case #5: High delay:
Data packets or their ACKs would be lost.

Case #4: Correctly throttled:
Queue drained, NO packet loss

Handover Failure

Figure 5: Types of Handover Prediction Results.

 0

 20

 40

 60

 80

 100

-1 -0.5 0 0.5 1 1.5 2 2.5 3

C
D

F
 (

%
)

∆ Value (s).

Failure
Successful

Figure 6: Handover Prediction Validation.

Prediction Validation. We consider the case where we throt-
tle the path from ˆtHOF to the time when the UE connects to
the next cell. The point is, if the handover failed, we should
throttle the path right before the handover to drain the queue
on it. Otherwise, we should only throttle the path for a very
short period, or optimally do not throttle it. As illustrated in
Fig. 5, let tHO be the groundtruth value of handover time,
t1 < t2 where t1 and t2 are two non-negative numbers, and
hence there are five combinations of ∆ = tHO − ˆtHOF and
handover results. We set t1 to 0 seconds where ˆtHOF exactly
matches tHO, and set t2 to 2.5 seconds, beyond which the
side effect brought by early prediction overweighs its benefit.
Fig. 6 plots the distribution of ∆, where ˆtHOF is predicted us-
ing leave-one-trip-out cross-validation over the entire dataset.
For handover failure, 80.6%, 1.3%, and 18.1% of the pre-
diction results are correct, late, and early, respectively. For
successful handovers, the correct rate is 78.2%. Here we note
that POLYCORN seeks for a conservative approach towards
handovers prediction and path throttling decision – it priori-
tizes avoiding the penalty of a handover failure misprediction
and considers it acceptable to waste available bandwidth in
the cases that successful handover predicted as failure (Case 1)
or successfully predicting the handover failure but in a earlier
moment (Case 3) – in both cases the networking performance
already starts to degrade when approaching the handover
point anyway. As to be shown in §6.2, such coarse-grained
results is adequate for our system given the high speed and
the GPS system errors.

4 System Design of POLYCORN

We now present the design of POLYCORN, a software solu-
tion for high-performance Internet access for ultra-high-speed
transportation. The design goals of POLYCORN include the
following: (1) Be resilient to extreme mobility environment.

Figure 7: POLYCORN Architecture Overview.

POLYCORN should survive highly fluctuating network perfor-
mance and inaccurate link quality estimations. (2) Faster flow
completion. As opposed to bandwidth-intensive such as bulk
data transfer [8], networked applications used by passengers,
such as instant messaging and web browsing, typically have
short or small sessions. It is therefore important to reduce the
flow completion time. (3) Effectively use multiple cellular
carriers. The multipath heterogeneity revealed in §2.4 should
be leveraged for robust traffic delivery. (4) Be practical for
real-world deployment. POLYCORN should be easy to deploy
and ideally, be transparent to client and server applications
and require no infrastructure modifications.

4.1 Overall Architecture
The high-level architecture of POLYCORN is illustrated in
Fig. 7. As shown, POLYCORN leverages the dual-proxy ar-
chitecture [22]. One proxy deployed at the on-board mobile
relay (i.e., cellular gateway) multiplexes passengers’ uplink
traffic over the paths of multiple cellular carriers; another
proxy deployed at a cloud server performs the reverse op-
eration of demultiplexing the traffic and delivering them to
the destination servers. Each in-cloud proxy is paired with
one on-board mobile relay, and more pairs can be flexibly set
up for scaling up the service for larger HSR network. Down-
link traffic is handled in a symmetric way: the cloud-side
and on-board proxy perform multiplexing and demultiplex-
ing, transparently. The two proxies are essential for providing
transparent transport-layer multipath to off-the-shelf hosts.

The dual proxies offer a centralized place for multipath
scheduling, i.e., deciding which traffic should be transmitted
over which path(s). One path is one subflow that exclusively
uses one network interface (i.e., SIM card). The scheduler for
uplink and downlink traffic resides on the on-board LTE gate-
way and the in-cloud proxy, respectively. Multipath schedul-
ing is one of the most critical components of a multipath
transport system, in particular for HSR networking where the
paths’ performance is individually fluctuating and collectively
heterogeneous. We are unaware of any multipath scheduler
specifically designed for extreme mobility transportation, and
POLYCORN’s design fills this gap.

4.2 Composable Multipath Scheduler
Our measurement study in §2.5 suggests that multipath trans-
port for HSR networking needs to consider multiple dimen-
sions: performance fluctuation, predictable handover failures,
and path heterogeneity, etc. To tackle such complexity, we
adopt a novel framework that treats a multipath scheduler as
a pipeline of modularized schedulerlets. Each schedulerlet
encapsulates a multipath scheduling functionality that ma-

1330 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Performance Issue Mitigation Strategy Schedulerlet

Disruption due to handover failure Filter paths facing imminent handover failures based on prediction §4.3

Suboptimal scheduling due to path heterogeneity Filter paths that lengthen TCP flow completion due to tail packets §4.4

Single packet experiencing multiple RTOs Proactively reinject packet clusters facing excessive retransmissions §4.5

Stale performance metrics on idle paths Opportunistically deliver redundant data over unselected paths §4.6

Table 2: Logic flow from performance issues to designs.

nipulates three sets of paths: a selected set S containing the
currently selected path(s) for data transmission, a candidate
set C containing the candidate paths that can be selected, and
an unavailable set U containing the unavailable paths that
by default cannot be selected. The purpose of having U is to
restrict path selection to only a subset of all paths. Initially,
all the paths belong to C. Depending on which set(s) to ma-
nipulate, we classify the schedulers into different categories:
(1) a candidate filter that moves path(s) from C to U; (2) a
selection filter that moves paths from S to C; and (3) a soft se-
lector that moves path(s) from C to S; (4) a hard selector that
moves path(s) from C or U back to S. The purpose of having
a hard selector is to provide a mechanism that can “revive”
any path. This is useful when paths’ conditions are highly
dynamic; it also ensures the completeness of the framework.

The schedulerlets are then strategically arranged to form
the overall scheduling pipeline. Compared to a monolithic
scheduler, our schedulerlet-based approach decouples the mul-
tipath scheduling logic, and thus significantly reduces the
system complexity and development overhead, through the
unified interface of schedulerlets (modifying S, C, and/or U).
Note that we do not claim that our design can achieve any
optimality, since the “local” optimalities achieved by individ-
ual schedulerlets do not necessarily translate into a “global”
optimality. Nevertheless, from a practical perspective, formu-
lating a global optimization problem and solving it through a
monolithic scheduler is extremely challenging due to the large
solution space, real-time requirement, and volatile network dy-
namics. Therefore, we believe our “decouple-then-integrate”
design achieves a right balance among practicality, simplicity,
and performance, as to be thoroughly evaluated in §6.

We now consider how to instantiate the above generic
framework into the concrete design of HSRSCH, the mul-
tipath transport scheduler for POLYCORN. The high-level de-
sign principle is to identify scenarios where vanilla MPTCP
performs poorly, based on our extensive field studies, and
improve them through judiciously designed schedulerlets.
Specifically, Tab. 2 lists our identified performance issues,
mitigation strategies, and the corresponding schedulerlets of
HSRSCH, which will be detailed in the rest of §4. Here we de-
scribe the high-level scheduling pipeline. As shown in Fig. 8,
the pipeline begins with a candidate filter schedulerlet that
removes “bad” paths facing an imminent handover failure
(§4.3), followed by a soft selector that performs initial, rough
path selection. We find that the default minRTT scheduler

Packet Buffer

Candidate Filter (Handover-failure-aware Path Rejection)

Produce packet to send

Selection Filter (Tail-aware Path Rejection)

Hard Selector (Opportunistic Redundant Traffic Injection)

Soft Selector (minRTT)

Discard non-available path(s) from input

Select best path(s)

Discard non-preferable path(s) from output

Send
Add more path(s) to output

Discard path(s) predicted to disconnect

Discard high-delay path(s) for tail traffic

Add idle path(s) (if exist)

If all paths filtered

If no path
selected

Reinjection Handler (Extended Reinjection)

Reinject packets Reinject all packets upon
repeated timeouts

Users

Inject
new packets

Figure 8: Composable scheduler in POLYCORN.

used by MPTCP can be properly leveraged as a soft selec-
tor, because favoring a low-latency path (when congestion
window permits) is also desirable in HSR networking. Subse-
quently, we employ a selection filter to further remove certain
selected paths, shortening the flow completion time (§4.4).
Next, we apply a hard selector to make use of the remaining
paths (in C and U) – we use them for delivering redundant
data and probing the bandwidth (§4.6). Finally, due to the
high network condition volatility, performance degradation
or even outage may still appear on a selected path despite
the above schedulerlets. To tackle this, we also introduce a
reinjection handler that dynamically redistributes scheduled
packets to other paths. This mechanism tolerates other sched-
ulerlets’ errors and further improves the overall robustness
(§4.5). Note that HSRSCH is designed to be scalable, i.e.,
they could work with any number of available paths.

The aforementioned taxonomy of schedulerlets based on
which sets (S, C, U) they manipulate also helps decide the
order of the schedulerlets. For example, the candidate filter is
invoked first since it does not depend on other schedulerlets;
the selection filter needs to examine the output of the soft
selector so the former comes after the latter in the pipeline.
The hard selector tries to make use of any unselected paths; it
is therefore situated at the end of the pipeline.

4.3 Handover-failure-aware Path Rejection
Recall from §2.3 that handover failures incur considerable per-
formance impact. Our first optimization has an intuitive idea:
predict imminent handover failures using LinkDB (§3), and
apply a schedulerlet (candidate filter) to disable the path(s)
facing handover failure(s). The rationale is that, sending traffic
over a path experiencing a blackout of several seconds caused
by a failed handover will significantly lengthen the flow com-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1331

pletion time. Therefore, it should be avoided at all costs. In our
design, for downlink traffic scheduling5, the gateway continu-
ously sends the collected features (GPS reading and cell ID)
to the in-cloud proxy where LinkDB runs. Those features are
sent with top priority using a redundant scheduler to ensure
that the proxy would receive the features in time. The proxy
then predicts tHOF , the interval between the current time and
the next expected handover (§3). If tHOF is predicted to be
less than a threshold L, the proxy-side scheduler disables the
path. The path will be re-enabled when the connectivity to the
new cell is established. The threshold L incurs a tradeoff be-
tween bandwidth waste (occurs when disabling the path early)
and performance degradation (occurs when disabling the path
late). We configure L as: L=RTT + EGP S

VHSR
. The first term

is the estimated RTT between the in-cloud proxy and the LTE
gateway. RTT is the lower bound of L because at least one
round trip is needed for any in-flight data to be delivered with
confirmation; if we send any data after t+ tHOF −RTT (t is
the current time), then we run into risks where the data/ACK
delivery is affected by a failed handover. The second term
EGP S
VHSR

accounts for the GPS localization inaccuracy, where
EGP S and VHSR are the maximum GPS error (in meter) and
the train’s current speed (in m/s) respectively. Due to poten-
tially erroneous GPS reading, the train’s actual location may
be ahead of the reported GPS location. Therefore, we need
the second term for an additional safety margin. We conser-
vatively set EGP S to 20 m, and VHSR is estimated from the
recent GPS trajectory. We would also like to mention that in
the corner case when all paths are predicted to experience
handover failure soon, all of them would be disabled – this
would effectively block all pending traffic until the mobile
relay notifies the remote proxy of a new cell.

4.4 Tail-aware Path Rejection
The HSR networking performance is not only affected by
handover failures, but also by the highly fluctuating channel
quality due to HSR’s high speed. When a path’s quality de-
teriorates, HSRSCH needs to make a key decision: should
the path be temporarily disabled? Here the tradeoff is band-
width utilization vs. latency: skipping the path misses the
opportunity of utilizing its (albeit low) bandwidth, while us-
ing the path can possibly lengthen the flow completion time
compared to sending the data over a faster path.

To balance the above tradeoff, since our goal is to accelerate
short flows dominating the traffic pattern on HSR, HSRSCH
detects scenarios where a flow is about to end, and employs a
schedulerlet (selection filter) that rejects sending tail packets
over low-performance paths. Here tail packets reside at the
end of a flow, whereas non-tail packets are at the beginning
or in the middle of a flow. The rationale is that, sending a
tail packet over a low-performance path is very likely to de-
lay the flow completion. In contrast, transmitting a non-tail

5For brevity, we only describe downlink traffic scheduling. Uplink traffic
scheduling is performed at the on-board gateway in a similar manner.

packet over a poor-quality path usually only incurs packet
out-of-order with a negligible or small impact on the flow
completion time, provided that (1) all the paths are fully uti-
lized (i.e., there is no idle period), and (2) the receiver has
a large enough buffer to accommodate out-of-order packets
(which we can ensure as we have control over both multiplex-
ing proxies). To transparently identify tail packets without
the knowledge of flow size, HSRSCH keeps monitoring TCP
FIN or RST packets. Once a TCP FIN or RST is observed,
HSRSCH marks all the packets in the send buffer and all
future outgoing packets of the same flow as tail packets. We
leave more sophisticated tail packet identification methods
(e.g., based on application semantics) as future work.

To cope with highly fluctuating network conditions,
HSRSCH employs a new way of deciding whether flow f has
low performance over path i. Specifically, HSRSCH compares
two scenarios. In the first scenario, we schedule some packets
of f on path i. The packet delivery time and henceforth the
flow completion time of f is at least:

T−i,f = owdi + bufi

bwi

where owdi, bufi, and bwi are the estimated one-way delay,
the send buffer occupancy level, and the estimated bandwidth
of path i, respectively. T−i,f estimates the time taken to drain
the FIFO send buffer of path i prior to sending any new packet
belonging to f . It is therefore a lower bound of f ’s completion
time if any of its packets are scheduled on path i. In the second
scenario, we do not use path i at all to schedule f . In this
scenario, the optimal flow completion time of f is at most:

T+
i,f = min

j 6=i

{(
owdj +

bufj + remainf

bwj

)
(1 +ηj)

}
where remainf denotes the remaining bytes of f yet to be
sent, ηj is a relaxation parameter empirically defined as the
ratio between path j’s RTT variance and RTT, and j iterates
over all the paths except path i. T+

i,f quantifies the time of
transmitting all the remaining bytes of f over the best path
(except i), considering the paths’ bandwidth and current send
buffer occupancy levels. It is a loose upper bound of the
optimal (single-path) completion time of f , which can in fact
be further reduced (albeit difficult to quantify) by distributing
f over multipath. If T−i,f > T+

i,f , it implies that there exists a
better scheduling strategy of not using path i compared to any
strategy of using path i; we thus determine that path i is too
slow to schedule tail packets of f . See example in §A.

4.5 Extended Reinjection
Multipath transport needs to simultaneously manage multi-
ple paths. To handle individual paths’ failure, MPTCP has a
built-in reinjection mechanism (also known as Opportunis-
tic Retransmission [36]): upon RTO events, the oldest unac-
knowledged packet on the same path will be retransmitted
(reinjected) over another path as determined by performing

1332 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the scheduling again. We find that such a reinjection policy
is too conservative since it handles reinjection on the basis
of individual packets. In contrast, in HSR networks, packet
delivery failures often occur in a bursty manner: if a packet
experiences an RTO, the probability that the subsequent pack-
ets are delayed or lost becomes much higher. Bursty losses
are common in wireless networks in general. Nevertheless,
on HSR, the bursty pattern of packet losses is much more
prominent as the UE is frequently disconnected from base
stations due to failed handovers or low signal strength.

Inspired by the above observation, we design an Extended
Reinjection mechanism for HSRSCH, whose basic idea is to
detect scenarios where packets are undergoing multiple RTOs,
and reinject packets in a proactive and batched manner to
match the bursty packet loss pattern for HSR cellular access.
Specifically, in our approach, when any packet experiences
the k-th RTO, HSRSCH reinjects all the unacknowledged
(i.e., in-flight) packets on the same path to other path(s). In-
stead of executing the reinjection(s) immediately by invok-
ing the scheduling algorithm multiple times (similar to what
MPTCP does when executing each single reinjection opera-
tion), HSRSCH performs lazy reinjection: the to-be-reinjected
packets are thrown back to their origin connection-level send
buffers, and the actual reinjection will take place later when
these packets are (re)scheduled according to their connection-
and user-level priorities (at that time that destination path will
also be determined6). The purpose of lazy reinjection is to
maintain priority and fairness, i.e., the reinjected packets are
regarded as newly arrived so they do not bear an unfairly high
priority over the reinjected path. This is particularly impor-
tant when many packets belonging to the same connection
are reinjected. Also note that for each reinjection, the receiver
will receive at least two identical copies: the original packet
and at least one reinjected packet; only the first arrived copy
will be consumed by the receiver.

In the above algorithm, the parameter k incurs a trade-
off: a large k provides fewer reinjection opportunities, poten-
tially worsening the performance on the current path where
losses occur, whereas a small k makes reinjection more ag-
gressive, adding more traffic burden on other paths. We take a
data-driven approach to select the appropriate k value: in our
dataset, setting k to 1, 2, and 3 incurs 47%, 15%, and 0.3%
more redundant traffic, respectively. We therefore set k = 3 in
our evaluation (§6.2).

4.6 Opportunistic Redundant Traffic Injection
The soft selector along with both filters intend to find the best
path for each packet, leaving the remaining unselected path(s)
idle. This will cause two major issues: (1) the available band-
width on idle paths, despite their high latency, is wasted; (2)
no performance measurement can be carried out on idle paths
without traffic, and previous measurement quickly becomes

6We use a bitmap field to ensure that the same packet is not reinjected to
its previously scheduled path.

stale due to the high path dynamics. To address both issues,
we design a schedulerlet (hard selector) that opportunistically
schedules redundant data over idle paths. This not only allows
passive measurement to be conducted, but also provides extra
resiliency to channel quality fluctuation, leading to further re-
duced flow completion time, i.e., when one path experiences
unexpected performance degradation, the receiver can still
receive extra copies of the data delivered over other path(s).
In HSRSCH, the idleness of a path is determined when no
traffic has been scheduled over it for either α seconds, or β
bytes worth of data, whatever occurs first. Once a path be-
comes idle, HSRSCH duplicates the next τ scheduled packets
and transmits their duplicated copies over the idle path. If
multiple idle paths are available, the duplicate copies will be
transmitted over all the idle paths. We empirically set α =
1 second, β = 8 KB, and τ = 16, which were found to well
balance the tradeoff between the performance and bandwidth
overhead based on our on-board controlled experiments.

Besides fostering reliability under performance degrada-
tion, injecting traffic over an idle path brings another benefit:
it allows the transport layer to keep the path performance
statistics up-to-date. As shown in Fig. 1a, on HSR, a cellular
link’s quality changes almost every RTT. If no packet is sent
over an idle path, TCP’s built-in probing mechanism, which
is piggybacked with user traffic, will be paused, and TCP will
thus lose track of important metrics such as RTT and RTO.
Our proactive injection design addresses this issue.

4.7 Putting Everything Together
We integrate the above four schedulerlets into the composable
framework introduced in §4.2. We next describe the detailed
scheduling logic on both in-cloud proxy (for downlink traffic)
and on-board LTE gateway (for uplink traffic).

Recall that POLYCORN is a multi-user system. In each
scheduling round, HSRSCH begins with selecting a user to
serve, and then picking a flow belong to the selected user. Our
current implementation uses the standard proportional fair
(PF) scheduling [37] for user selection, and round-robin for
flow selection. More sophisticated scheduling algorithms can
be plugged into our framework. Once the to-be-served flow
is determined, HSRSCH schedules the flow’s next packet,
which is the untransmitted packet (including to-be-reinjected
packets) with the smallest sequence number, as described in
Fig. 8. Note that the reinjection handler runs in parallel with
the scheduling thread that invokes the candidate/selection
filters and soft/hard selectors.

5 Implementation
This section details the implementation of POLYCORN. Our
high-level design goals consist of the following. First, POLY-
CORN should be practical. The required changes on clients’
mobile devices should be minimized, or ideally none. Also,
POLYCORN should be able to deploy on the HSR LTE gate-
way and keep its running components unmodified. Second,
the data transport scheme should be able to schedule traffic

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1333

Restart
Polycorn

Before
Each Test

On-board
LTE Gateway

Test Ctrl.

App
Client

Polycorn
Mobile
Relay

(MPTCP)
App

Client

(MPTCP)
App

Server

Polycorn
Remote
Proxy

Cellular
Network

Public
Cloud

App
Server

Start Clients
Simultaneously

= Network
Namespace

Note:

Carrier A

Carrier B

(a) POLYCORN vs. MPTCP.

Polycorn
Remote
Proxy

App
Server

On-board
LTE Gateway

Test
Ctrl.

App
Client

Polycorn
Mobile
Relay

Polycorn
Remote
Proxy

Cellular
Network

Public
Cloud

App
Server

Restart
Polycorn

Before
Each Test

Start
Clients

Simulta-
neously

Carrier A

Carrier B
Polycorn
Mobile
Relay

App
Client

(b) POLYCORN microbenchmark.

On-board
LTE Gateway

Test Ctrl.

App
Client

Polycorn
Mobile
Relay

(TCP) App
Client A

(TCP) App
Server A

Polycorn
Remote
Proxy

Cellular
Network

Public
Cloud

App
Server

Restart
Polycorn

Before
Each Test

Start Clients
Simultaneously

Carrier A

Carrier B
(TCP) App

Client B
(TCP) App
Server B

(c) POLYCORN vs. TCP.
Figure 9: Experimental setup for different comparative evaluation.

with awareness of multiple users and connections.

Working with Unmodified Users and LTE Gateway.
Based on TM3 [21] and MPFlex [22] frameworks, POLY-
CORN uses TCP splitting to achieve transparency towards
both clients and servers. A brief summary of TCP splitting
is: when communicating with servers, POLYCORN acts as
a forward proxy; when communicating with clients, POLY-
CORN acts as a reverse proxy. To avoid kernel modification
which is not allowed by the LTE gateway vendor, we use
raw socket instead of netfilter-based [38] kernel modules
(which is used by MPFlex and TM3) or high-performance
packet I/O frameworks like DPDK [39] to capture user traffic.
After capturing user traffic, we drop all user packets using
iptables [40] to prevent the kernel from forwarding them. In
this way, we implement POLYCORN completely in userspace.
As for the well-known performance issue of raw sockets, our
experiments show that raw sockets could operate at 300 Mbps
on the LTE gateway, which is significantly higher than the
peak aggregated throughput of the LTE interfaces. Moreover,
POLYCORN works in a separated network namespace (netns)
to avoid conflicts with runtime kernel configuration used by
other programs and mitigate potential security issues. For in-
stance, POLYCORN disables reverse-path filtering in its own
netns to forward packets generated by POLYCORN with any
source IP. Our design allows sensitive system configurations
to be preserved in the original netns, thus isolate the security
risk from normal runtime programs.

Multiuser Multipath Traffic Multiplexing. Similar to TM3

and MPFlex, POLYCORN multiplexes user traffic onto off-
the-shelf sockets to implement multipath data transfer. POLY-
CORN uses TCP sockets as its subflows. Although QUIC is
better than TCP in terms of Head-of-Line blocking mitiga-
tion, especially in multiuser settings, we choose the “fallback”
TCP sockets primarily because we encountered extensive rate
limitation cases when launching QUIC flows in our measure-
ments. This observation agrees with the findings in [41] to
reveal that UDP traffic will most likely be treated as malicious
flow by cellular carriers when sending in large volume, which
situation might not disappear soon in most developing and
under-developed countries. Therefore, we believe our choice
is better for long-term real-world deployment. As for mul-
tiuser traffic scheduling, POLYCORN maintains a separated
send/reinject buffer and a metadata set including user source

IP, amount of sent traffic, etc, for each flow. With those meta-
data, in operation POLYCORN first determines which user/flow
to serve, then checks the flow’s send buffer to choose a packet
to send. Finally, POLYCORN runs HSRSCH to choose inter-
faces to send the packet, as described in §4.2.

6 Evaluation
6.1 Experimental Setup
We carried out the experiments on Beijing-Shanghai HSR
route, the one carrying most HSR passengers in the country.

Deployment on Operational System. We deployed POLY-
CORN mobile relay and server proxy on the high-speed train
LTE gateways and public cloud servers respectively, with the
same hardware configuration described in §2.1. More specifi-
cally, the mobile relay runs CentOS 7.3 with MPTCP kernel
0.94 (Linux 4.14) – we adhere to CentOS for POLYCORN de-
ployment on the LTE gateway because it runs other mission-
critical train-ground communication services developed by
the operators and third-party IT service providers.

Fairness in Comparative Study. We made the following
efforts to improve fairness in evaluating POLYCORN:

• MPTCP Baseline is configured in decoupled rather than de-
fault coupled congestion control mode (used in [15]) because
the relay-proxy suite acting as an end-user traffic aggregation
and delegation point should harness more wireless bandwidth
from multiple cellular carriers instead of treating itself as a
single user or session – it makes the baseline stronger and
comparative evaluation fairer.

• Pairwise study. We carried all the experiments in the side-
by-side concurrent test setting for 50 times with different
software configuration tailored for fairness in different sce-
nario, including comparing POLYCORN with MPTCP variants
(Fig. 9a) and its own variants for microbenchmark (Fig. 9b)
in single session bulk data download (§6.2), and comparing
POLYCORN with SPTCP (Fig. 9c) and MPTCP (Fig. 9a) in
multi-user instance messaging settings (§6.3). Specifically,
we managed to obtain exclusive access to four SIM cards with
two for each carrier respectively from the HSR WiFi service
division, pair each transport software solution (e.g., SPTCP,
MPTCP and POLYCORN) with two cards from different carri-
ers, and perform all the experiments on the operational HSR
with a speed of 300+ km/h. Note that the scheduler and sys-
tem design of POLYCORN can easily scale to more than two

1334 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1/8

1/4

1/2

 1

 2

 4

 8

256KB 1MB 4MB

G
o
o
d
p
u
t
R

a
ti
o
 o

v
e
r

M
P

T
C

P
s

File Size

minRTT
MuSher

ECF
BLEST

STMS

(a) Comparing with state-of-art MPTCPs.

1/4

1/2

 1

 2

 4

256KB 1MB 4MB

G
o
o
d
p
u
t
R

a
ti
o
 o

v
e
r

m
in

R
T

T

File Size

BJ-JN
JN-NJ

NJ-SH

(b) On different route segments.

1/2

 1

 2

256KB 1MB 4MBG
o
o
d
p
u
t
R

a
ti
o
 o

v
e
r

V
a
n
ill

a

File Size

HPR
TPR

ORI
ER

Polycorn

(c) Microbenchmark.
Figure 10: Bulk data downloading time comparative evaluation.

interfaces in LTE, 5G, etc. We choose to perform evaluations
with two cards primarily because that is the maximum number
we can obtain permission to access presently.

6.2 Bulk Data Download Performance
We first evaluate the performance of POLYCORN in compari-
son to the state-of-the-art MPTCP solutions and its own vari-
ants for microbenchmark from a single session perspective.
We use fixed-size flows of 256 KB, 1 MB, 4 MB to examine
POLYCORN’s performance in a pairwise manner. Specifically,
we choose to use average goodput ratio of test object to its op-
ponent as the primary metric instead of showing their absolute
value. This is because the cellular link quality and the asso-
ciated mobile networking performance differs significantly
from one trackside location to another – the large variance for
a single performance profile prevents comparative quantita-
tive illustration and analysis between the two solution in the
same testing environment.

Comparison with MPTCP Schedulers. We examine the ef-
ficacy of POLYCORN by showing its goodput ratio relative
to the state-of-the-art MPTCP schedulers in Fig. 10a. We
make three key observations: First, POLYCORN wins in al-
most all the cases, demonstrating that the four data-driven
scheduler designs collectively and successfully improve the
networking performance under different corner cases unique
to HSR that are not well handled by all the state-of-the-art
MPTCP scheduling strategies. Second, minRTT (as the de-
fault MPTCP scheduler) performs similarly compared with
BLEST [28] (1 MB and 4 MB), ECF [27], and STMS [18], and
outperforms MuSher [17]. This indicates that the strategies
assuming predictable path heterogeneity are not advantageous
over the simplest (and generic) one when encountering the
highly dynamic networking environment. Specifically, POLY-
CORN outperforms minRTT by 1.45x, 1.28x, and 1.26x for
256 KB, 1 MB, and 4 MB respectively with overall 1.31x.
In general, all the state-of-the-art schedulers trust and exclu-
sively rely on their estimations of network condition to make
interface scheduling decisions accordingly, while the fluctuat-
ing network nature on HSR makes the estimations error-prone
and degrade the accuracy of the scheduling decisions. This is
also why MuSher performs worse than others in our case: it
assigns traffic to interfaces according to the quickly varying
ratio of throughput on each interface and failed to catch up
with the changes; others who rely more on RTT performed

better simply because RTT is relatively less variable. POLY-
CORN chooses to employ coarse-grained but more reliable
event information and achieves better performance. Third,
POLYCORN performs worse than BLEST in the shortest flow.
Unlike POLYCORN that tries to improve bandwidth utilization
(i.e., Tail-aware Path Rejection), BLEST does not schedule
packets on the path that would potentially cause head-of-line
blocking, and hence achieves zero tail delay. This benefit
comes at the cost of reduced bandwidth utilization, and will
not continue to stay in a long flow.
Different HSR Route. We also examine the robustness of
POLYCORN in different segments on the Beijing-Shanghai
HSR route with different cellular coverage and terrain pat-
terns of different channel characteristics [42]. As shown
in Fig. 10b, POLYCORN consistently outperforms minRTT
– the performance gain of POLYCORN on Beijing-Jinan
(plain/rural), Jinan-Nanjing (hills/rural), Nanjing-Shanghai
routes (urban/plain) are 19.4%, 25.2%, 44.9%, respectively.
Microbenchmark. We further study the performance gain
of HSRSCH and our four individual scheduler designs over
POLYCORN Vanilla (i.e., POLYCORN with minRTT sched-
uler). We plot the goodput ratio of the aforementioned five
multipath transmission schemes and POLYCORN Vanilla in
Fig. 10c. The four proposals all positively improve POLY-
CORN’s performance by 7.0%, 18.8%, 4.2%, and 2.9% on
average for the three different file sizes, and they cumula-
tively contribute to 16% goodput gain.
• Handover-failure-aware Path Rejection is designed to mask
the impact of packet loss during the disconnected period and
the consequent RTO to the TCP (e.g., slow start) by receiving
or predicting handover from explicit signals from LTE real-
time analytic and/or our LinkDB information and take action
accordingly. Specifically, by sending redundant cross-flow
copies during the period any interface encountering discon-
nectivity, as shown in Fig. 11a, POLYCORN can recover from
the disconnection much faster, i.e., achieve 1.2x and 1.5x as
mean and median values within 2 seconds after handover
failure, which typically lasts a few seconds or longer.
• Tail-aware Path Rejection is used to avoid the out-of-order
delay caused by the slow paths by refusing to inject data on
the interface that may increase the flow completion time. As
shown in Fig. 11b, the tail delay was reduced by 5.6% on
average and 15.6% in 95 percentile compared to POLYCORN

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1335

 50

 60

 70

 80

 90

 100

 100 1000 10000

C
D

F
 (

%
)

Goodput After Handover in 2s (Kbps)

PV
PV+HPR

(a) HPR.

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30

C
D

F
 (

%
)

Tail Delay (s)

PV
PV+TPR

(b) TPR.

 90

 92

 94

 96

 98

 100

 0 0.5 1 1.5 2 2.5 3

C
D

F
 (

%
)

Out-of-order Delay (s)

PV
PV+ER

(c) ER.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

Utilization Rate (%)

PV Path A
PV Path B

PV+ORI Path A
PV+ORI Path B

(d) ORI.

Figure 11: POLYCORN microbenchmark comparative evaluation.
(PV: Polycorn Vanilla; HPR: Handover-failure-aware Path Rejection; TPR: Tail-aware Path Rejection;

ER: Extended Reinjection; ORI: Opportunistic Redundant Traffic Injection.)

Vanilla. This mechanism is useful especially for those tail
delay greater than 10 seconds, which is due to the high packet
loss rate and prolonged retransmission time of the interfaces
with abnormal high RTT.

• Extended Reinjection mainly focuses on reducing extremely
high retransmission time and leads to a significant reduction
of out-of-order delay, which is shown in Fig. 11c. It reduces
out-of-order delay by 23% among all the out-of-order packets,
and 4% out-of-order delay among all the packets.

• Opportunistic Redundant Traffic Injection aims to proac-
tively update the performance metrics of interfaces that have
been idle for a while due to higher measured RTT. This helps
HSRSCH more quickly discover recovered paths and improve
path utilization. As shown in Fig. 11d, POLYCORN Vanilla
simply ignores the path with much higher RTT. By employ-
ing opportunistic probing mechanism, the utilization rate of
the path appears to be worse is increased by more than 60%,
which allows better bandwidth utilization from all the paths.

Remarks. We note that POLYCORN exhibits non-trivial vari-
ation in its performance, and sometimes it falls behind the
counterpart solutions. There are two major reasons: 1) It is
difficult to exactly repeat tests on HSR: minor difference in
test location results large difference in network condition –
given the fluctuating network delay, the remote proxy (i.e.,
sender) cannot accurately learn about the location of the train;
2) POLYCORN works with inaccurate handover failure predic-
tions and TCP performance metrics. Our schedulerlets could
tolerant minor errors in the context data, e.g., comparative
operators tolerates minor error in RTT. However, there exist
cases where other solution has the proper information to make
right scheduling decisions while POLYCORN does not.

6.3 Multi-user Instant Messaging Performance
We next evaluate POLYCORN in a multi-user setting, and
choose instant messaging, the most popular application of
HSR passengers as a representative use case for a case study.
To best emulate the application behavior, we establish a long-
lived TCP connection (adopted by many instant messaging
application including WeChat, the most popular one in China)
between POLYCORN mobile relay and server proxy for each
user. We let each user sends 100 messages concurrently with
pre-generated intervals following the exponential distribution.
Each messaging event includes a 100-byte uplink message

and an immediate 4-byte downlink one. Note that POLYCORN
adopts a symmetric scheduler design for both downlink and
uplink, which makes our data-driven interface scheduling
work with uplink without extra effort. We perform concur-
rent pairwise experiments for POLYCORN vs. SPTCP and
POLYCORN vs. MPTCP-minRTT respectively – SPTCP with
round-robin scheduling cross different SIM card is the current
operational solution used by the HSR WiFi systems due to its
simplicity and interface-level fairness.

 0
 0.05
 0.1

 0.15
 0.2

10 20 30

A
v
e
ra

g
e

D
e
liv

e
ry

 T
im

e
 (

s
)

Num of Users

Polycorn
SPTCP

MPTCP

(a) Performance.

 0
 0.1
 0.2
 0.3
 0.4
 0.5

10 20 30

C
o
e
ff
ic

ie
n
t
o
f
V

a
ri
a
ti
o
n

o
f
D

e
liv

e
ry

 T
im

e

Num of Users

Polycorn
SPTCP

MPTCP

(b) User fairness.

Figure 12: Multi-user instant messaging evaluation.

Experimental Results. Benefiting from the multi-stage data-
driven scheduler design, POLYCORN outperforms SPTCP and
MPTCP in both performance and user fairness. As shown
in Fig. 12a, POLYCORN consistently improves aggregated
instant messaging performance when the number of users
ranges from 10 to 30. On average, POLYCORN reduces de-
livery time by 45% and 16% in comparison to SPTCP and
MPTCP respectively, and tail delay, e.g., 90 percentile, by
34% and 14%. In terms of user fairness, we use the coefficient
of variation to quantify the variance of message delivery time
regardless of the mean value across tests on different route
segments with diverse networking conditions. As we can see
in Fig. 12b, POLYCORN reduces the coefficient of variation by
86% and 49% on average when compared with SPTCP and
MPTCP respectively, which significantly improves fairness
across different on-board users.

7 Discussion
POLYCORN for 5G. Our evaluation does not cover 5G be-
cause the 5G CPE (Customer Premise Equipment) is not
available on our HSR WiFi system yet. However, we believe
POLYCORN’s techniques remain applicable to 5G. For ex-
ample, a recent measurement reveals that on 5G HSR, the
handover failure rate is comparable to LTE [20], and multi-
ple studies suggest that 5G suffers from higher bandwidth
fluctuation and packet losses compared to 4G [20, 26].

1336 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Fairness. We discuss two fairness issues here. First, the fair-
ness among POLYCORN users is ensured by POLYCORN’s
multi-user scheduling algorithm (we use proportional fair
scheduling, see §4.7). Second, the fairness between POLY-
CORN users and non-POLYCORN users (who use their own
cellular data plan) is typically guaranteed by the LTE base
station. Also, POLYCORN uses unmodified TCP congestion
control for each multiplexed long-lived TCP connection es-
tablished for each sim card. This further minimizes the risk
of POLYCORN being overly aggressive.

Other Mobile Applications. We have evaluated POLYCORN
on bulk download (with different sizes) and instant messaging
(with different number of users). Other applications popu-
lar on HSR include web browsing and short videos. Short
video traffic may resemble bulk download that POLYCORN
can effectively handle, whereas web browsing further involves
client-side processing overhead, which may reduce the effec-
tiveness of POLYCORN that only optimizes content delivery.

Scalability. The POLYCORN architecture natively supports
adding more wireless interfaces (e.g., SIM cards) and pairs
of onboard mobile relay & in-network server proxy to meet
the scalability requirement. We leave larger-scale evaluations
of POLYCORN as our future work.

Head-of-Line (HoL) Blocking Issue in TCP Reuse. POLY-
CORN uses one multipath connection formed with TCP sub-
flows to transmit all user traffic. The use of TCP will in-
evitably introduces the HoL blocking at both intra-connection
and inter-user level due to due to its byte-level ordering guar-
antee, which is an overkill in POLYCORN’s multi-user multi-
plexing context. We envision that this problem will be solved
by (MP)QUIC with its support of out-of-order delivery and
cross-path acknowledgment [43, 44].

8 Related Work

Mobile Networking Performance Improvement. A
plethora of research efforts have been devoted to improve
network performance (under high mobility) through devel-
oping robust handover schemes [26], simplifying cellular
control plane [45, 46], and fixing base station-side policy
configuration bugs [47, 48]. Unlike POLYCORN, all the
above approaches require modifications to the cellular
infrastructure. There are also studies at upper layers, e.g.,
designing customized single-path transport protocol [49]
and optimizing congestion control algorithms [50–54].
POLYCORN instead proposes a holistic multipath solution
with new optimization dimensions.

Performance-enhancement Proxy (PEP). In vehicular sys-
tems, PEPs are often deployed on mobile relays, to lever-
age carrier diversity and UDP encapsulation for bandwidth
aggregation and mitigating link failure, e.g., through strip-
ing [11,55], opportunistic erasure coding [12], and flow splic-
ing [13]. Specifically, the work [35, 55] present the idea of
location-aware link characteristics (e.g., throughput and avail-

ability) prediction and packet scheduling. PEPs can also be
deployed in fixed locations in the Internet [56–58]. POLY-
CORN synthesizes all the ideas above and presents four multi-
path scheduling strategies dedicated to addressing the unique
networking challenges in extreme mobility.

Multipath Transport Architecture. Transmitting data over
multiple paths can be realized at different layers, e.g., WNIC
driver [59, 60], in-kernel transport layer [36, 61], light ker-
nel modification [21, 22], and UDP encapsulation [62–64].
Differing from the above, POLYCORN is an entire userspace
solution reusing Linux TCP for the benefits of OS/middlebox
compatibility, application transparency, and good runtime per-
formance, with multipath, multi-user multiplexing support.

Scheduling over Heterogeneous Paths. Several generic
multipath transport schedulers have been proposed to mitigate
the head-of-line blocking and out-of-order delay incurred by
imbalanced subflows, such as opportunistic declining [28] and
migrating [27], intra-chunk opposite scheduling [65], out-of-
order transmission [18], and reactive bandwidth probing [17].
None of them considers HSR-specific aspects, and many of
them [27, 28, 65] only work for two paths. Horde [66] and
miDRR [67] allows user/app to specify their QoS requirement
and perform packet scheduling accordingly. RAVEN [14]
achieves low latency by extensively leveraging redundant
transmission over multiple paths. HSRSCH brings new opti-
mization dimensions integrated through a composable sched-
ulerlet pipeline, and strikes a balance where overall through-
put is not harmed by large amount of redundant traffic and
latency of short flows are preserved.

9 Conclusion
The popularity of HSR systems brings the requirement of
high-performance data networking under extreme mobility
more tangible than ever. In this work, we have addressed
the challenge of bringing seamless Internet service to pas-
sengers on HSR by synthesizing multipath transmission and
data-driven scheduling techniques into a practical and read-
ily deployable system design. Extensive experimental results
have demonstrated the effectiveness of our system design ded-
icated to extreme-mobility. We believe that our upper layer
optimization solution can seamlessly cooperate with the on-
going 5G/NextG(-Unlicensed) evolution.

Acknowledgment
We are grateful to the reviewers for their constructive cri-
tique, and our shepherd Keith Winstein in particular, for his
valuable comments, all of which have helped us greatly im-
prove this paper. We also thank Dina Katabi, Songwu Lu,
Kun Tan and Yong Cui for their thoughtful input based on an
early version of the work. This work was supported by Na-
tional Key Research and Development Plan, China (Grant No.
2020YFB1710900), National Natural Science Foundation of
China (Grant No. 62022005 and 62172008) and Microsoft
Research Asia. Chenren Xu is the corresponding author.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1337

References
[1] China launches upgraded high-speed trains, with wi-

fi. https://gbtimes.com/china-launches-upgra
ded-high-speed-trains-wi-fi.

[2] Jr to launch free wi-fi on bullet trains from
may. https://mainichi.jp/english/articles/2
0180303/p2a/00m/0na/009000c.

[3] South korea’s brand-new olymic bullet train will make
americans jealous. https://mic.com/articles/1
87809/south-koreas-brand-new-olympic-bulle
t-train-will-make-americans-jealous.

[4] Spain’s high speed trains introduce high speed wifi. ht
tps://www.thelocal.es/20161104/spains-hig
h-speed-trains-introduce-high-speed-wifi.

[5] Eurostar - on-board entertainment server launched.
https://nomad-digital.com/customer-story/e
urostar-on-board-entertainment-server-lau
nched.

[6] Enjoy the standard experience. https:
//www.thalys.com/nl/en/info-services/en
joy-the-standard-experience.

[7] Deutsche bahn launches ‘wifi @ db’ wlan network.
https://www.globalrailwayreview.com/news/1
09948/deutsche-bahn-launches-wifi-db-wla
n-network.

[8] Jing Wang, Yufan Zheng, Yunzhe Ni, Chenren Xu, Feng
Qian, Wangyang Li, Wantong Jiang, Yihua Cheng, Zhuo
Cheng, Yuanjie Li, Xie Xiufeng, Yi Sun, and Zhongfeng
Wang. An active-passive measurement study of tcp
performance over lte on high-speed rails. In ACM Mo-
biCom, 2019.

[9] Chenren Xu, Jing Wang, Zhiyao Ma, Yihua Cheng, Yun-
zhe Ni, Wangyang Li, Feng Qian, and Yuanjie Li. A
first look at disconnection-centric tcp performance on
high-speed railways. IEEE Journal on Selected Areas
in Communications, 38(12), 2020.

[10] Multipath tcp - linux kernel implementation. https:
//multipath-tcp.org.

[11] Pablo Rodriguez, Rajiv Chakravorty, Julian Chesterfield,
Ian Pratt, and Suman Banerjee. Mar: A commuter router
infrastructure for the mobile internet. In ACM MobiSys,
2004.

[12] Ratul Mahajan Jitendra Padhye Sharad Agarwal and
Brian Zill. High performance vehicular connectivity
with opportunistic erasure coding. In USENIX ATC,
2012.

[13] Joshua Hare, Lance Hartung, and Suman Banerjee.
Transparent flow migration through splicing for multi-
homed vehicular internet gateways. In IEEE VNC, 2013.

[14] HyunJong Lee, Jason Flinn, and Basavaraj Tonshal.
Raven: Improving interactive latency for the connected
car. In ACM MobiCom, 2018.

[15] Li Li, Ke Xu, Tong Li, Kai Zheng, Chunyi Peng, Dan
Wang, Xiangxiang Wang, Meng Shen, and Rashid Mi-
jumbi. A measurement study on multi-path tcp with
multiple cellular carriers on high speed rails. In ACM
SIGCOMM, 2018.

[16] Qingyang Xiao, Ke Xu, Dan Wang, Li Li, and Yifeng
Zhong. Tcp performance over mobile networks in high-
speed mobility scenarios. In IEEE ICNP, 2014.

[17] Swetank Kumar Saha, Shivang Aggarwal, Rohan Pathak,
Dimitrios Koutsonikolas, and Joerg Widmer. Musher:
An agile multipath-tcp scheduler for dual-band 802.11
ad/ac wireless lans. In ACM MobiCom, 2019.

[18] Hang Shi, Yong Cui, Xin Wang, Yuming Hu, Minglong
Dai, Fanzhao Wang, and Kai Zheng. Stms: Improving
mptcp throughput under heterogeneous networks. In
USENIX ATC, 2018.

[19] Li Li, Ke Xu, Dan Wang, Chunyi Peng, Kai Zheng,
Rashid Mijumbi, and Qingyang Xiao. A longitudinal
measurement study of tcp performance and behavior
in 3g/4g networks over high speed rails. IEEE/ACM
Transactions on Networking, 25(4), 2017.

[20] Yueyang Pan, Ruihan Li, and Chenren Xu. The first 5g-
lte comparative study in extreme mobility. Proceedings
of the ACM on Measurement and Analysis of Computing
Systems, 6(1), 2022.

[21] Feng Qian, Vijay Gopalakrishnan, Emir Halepovic, Sub-
habrata Sen, and Oliver Spatscheck. Tm 3: flexible
transport-layer multi-pipe multiplexing middlebox with-
out head-of-line blocking. In ACM CoNEXT, 2015.

[22] Ashkan Nikravesh, Yihua Guo, Feng Qian, Z Morley
Mao, and Subhabrata Sen. An in-depth understanding
of multipath tcp on mobile devices: measurement and
system design. In ACM MobiCom, 2016.

[23] Fumihiro Hasegawa, Akinori Taira, Gosan Noh, Bing
Hui, Hiroshi Nishimoto, Akihiro Okazaki, Atsushi Oka-
mura, Junhwan Lee, and Ilgyu Kim. High-speed train
communications standardization in 3gpp 5g nr. IEEE
Communications Standards Magazine, 2(1), 2018.

[24] Bo Ai, Andreas F Molisch, Markus Rupp, and Zhang-
Dui Zhong. 5g key technologies for smart railways.
Proceedings of the IEEE, 108(6), 2020.

1338 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://gbtimes.com/china-launches-upgraded-high-speed-trains-wi-fi
https://gbtimes.com/china-launches-upgraded-high-speed-trains-wi-fi
https://mainichi.jp/english/articles/20180303/p2a/00m/0na/009000c
https://mainichi.jp/english/articles/20180303/p2a/00m/0na/009000c
https://mic.com/articles/187809/south-koreas-brand-new-olympic-bullet-train-will-make-americans-jealous
https://mic.com/articles/187809/south-koreas-brand-new-olympic-bullet-train-will-make-americans-jealous
https://mic.com/articles/187809/south-koreas-brand-new-olympic-bullet-train-will-make-americans-jealous
https://www.thelocal.es/20161104/spains-high-speed-trains-introduce-high-speed-wifi
https://www.thelocal.es/20161104/spains-high-speed-trains-introduce-high-speed-wifi
https://www.thelocal.es/20161104/spains-high-speed-trains-introduce-high-speed-wifi
https://nomad-digital.com/customer-story/eurostar-on-board-entertainment-server-launched
https://nomad-digital.com/customer-story/eurostar-on-board-entertainment-server-launched
https://nomad-digital.com/customer-story/eurostar-on-board-entertainment-server-launched
https://www.thalys.com/nl/en/info-services/enjoy-the-standard-experience
https://www.thalys.com/nl/en/info-services/enjoy-the-standard-experience
https://www.thalys.com/nl/en/info-services/enjoy-the-standard-experience
https://www.globalrailwayreview.com/news/109948/deutsche-bahn-launches-wifi-db-wlan-network
https://www.globalrailwayreview.com/news/109948/deutsche-bahn-launches-wifi-db-wlan-network
https://www.globalrailwayreview.com/news/109948/deutsche-bahn-launches-wifi-db-wlan-network
https://multipath-tcp.org
https://multipath-tcp.org

[25] Study on international mobile telecommunications (imt)
parameters for 6.425 - 7.025 ghz, 7.025 - 7.125 ghz and
10.0 - 10.5 ghz. https://www.3gpp.org/DynaRepor
t/38921.htm.

[26] Yuanjie Li, Qianru Li, Zhehui Zhang, Ghufran Baig,
Lili Qiu, and Songwu Lu. Beyond 5g: Reliable extreme
mobility management. In ACM SIGCOMM, 2020.

[27] Yeon-sup Lim, Erich M Nahum, Don Towsley, and
Richard J Gibbens. Ecf: An mptcp path scheduler to
manage heterogeneous paths. In ACM CoNEXT, 2017.

[28] Simone Ferlin, Özgü Alay, Olivier Mehani, and Roksana
Boreli. Blest: Blocking estimation-based mptcp sched-
uler for heterogeneous networks. In IFIP Networking,
2016.

[29] China’s high-speed rail links winter olympics cities.
http://english.cctv.com/2019/12/30/ARTIITvo
MUF29MZmtX5y4t9m191230.shtml.

[30] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and
Kevin Gibbs. Iperf: The tcp/udp bandwidth measure-
ment tool. http://dast.nlanr.net/Projects.

[31] Gerald Combs. Tshark-the wireshark network analyser.
http://www.wireshark.org.

[32] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, So-
heil Hassas Yeganeh, et al. Bbr: congestion-based con-
gestion control. Communications of the ACM, 60(2),
2017.

[33] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a
new tcp-friendly high-speed tcp variant. ACM SIGOPS
Operating Systems Review, 42(5), 2008.

[34] Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Hao-
tian Deng, and Tao Wang. Mobileinsight: Extracting and
analyzing cellular network information on smartphones.
In ACM MobiCom, 2016.

[35] Jun Yao, Salil S Kanhere, and Mahbub Hassan. Improv-
ing qos in high-speed mobility using bandwidth maps.
IEEE Transactions on Mobile Computing, 11(4), 2011.

[36] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan
Ford, Michio Honda, Fabien Duchene, Olivier Bonaven-
ture, and Mark Handley. How hard can it be? design-
ing and implementing a deployable multipath tcp. In
USENIX NSDI, 2012.

[37] Raymond Kwan, Cyril Leung, and Jie Zhang. Propor-
tional fair multiuser scheduling in lte. IEEE Signal
Processing Letters, 16(6), 2009.

[38] The netfilter.org project. https://www.netfilter.or
g/.

[39] Linux Foundation. Data plane development kit (DPDK),
2015.

[40] The netfilter.org "iptables" project. https://www.ne
tfilter.org/projects/iptables/index.html.

[41] Korian Edeline, Mirja Kühlewind, Brian Trammell, and
Benoit Donnet. copycat: Testing differential treatment
of new transport protocols in the wild. In ACM ANRW,
2017.

[42] Cheng-Xiang Wang, Ammar Ghazal, Bo Ai, Yu Liu,
and Pingzhi Fan. Channel measurements and models
for high-speed train communication systems: A survey.
IEEE communications surveys & tutorials, 18(2), 2015.

[43] J Iyengar and M Thomson. Rfc 9000 quic: A udp-
based multiplexed and secure transport. Omtermet Em-
gomeeromg Task Force, 2021.

[44] https://datatracker.ietf.org/doc/draft-iet
f-quic-multipath/.

[45] Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas
Sekar, Sylvia Ratnasamy, and Scott Shenker. A high
performance packet core for next generation cellular
networks. In ACM SIGCOMM, 2017.

[46] Yuanjie Li, Zengwen Yuan, and Chunyi Peng. A control-
plane perspective on reducing data access latency in lte
networks. In ACM MobiCom, 2017.

[47] Yuanjie Li, Haotian Deng, Jiayao Li, Chunyi Peng, and
Songwu Lu. Instability in distributed mobility manage-
ment: Revisiting configuration management in 3g/4g
mobile networks. In ACM SIGMETRICS, 2016.

[48] Zengwen Yuan, Qianru Li, Yuanjie Li, Songwu Lu,
Chunyi Peng, and George Varghese. Resolving pol-
icy conflicts in multi-carrier cellular access. In ACM
MobiCom, 2018.

[49] Hongke Zhang, Wei Quan, Jiayang Song, Zhongbai
Jiang, and Shui Yu. Link state prediction-based reliable
transmission for high-speed railway networks. IEEE
Transactions on Vehicular Technology, 65(12), 2016.

[50] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshmi-
narayanan Subramanian, and Carmelita Görg. Adaptive
congestion control for unpredictable cellular networks.
In ACM SIGCOMM, 2015.

[51] Wai Kay Leong, Zixiao Wang, and Ben Leong. Tcp
congestion control beyond bandwidth-delay product for
mobile cellular networks. In ACM CoNEXT, 2017.

[52] Shinik Park, Jinsung Lee, Junseon Kim, Jihoon Lee,
Sangtae Ha, and Kyunghan Lee. Exll: An extremely low-
latency congestion control for mobile cellular networks.
In ACM CoNEXT, 2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1339

https://www.3gpp.org/DynaReport/38921.htm
https://www.3gpp.org/DynaReport/38921.htm
http://english.cctv.com/2019/12/30/ARTIITvoMUF29MZmtX5y4t9m191230.shtml
http://english.cctv.com/2019/12/30/ARTIITvoMUF29MZmtX5y4t9m191230.shtml
http://dast. nlanr. net/Projects
http://www. wireshark. org
https://www.netfilter.org/
https://www.netfilter.org/
https://www.netfilter.org/projects/iptables/index.html
https://www.netfilter.org/projects/iptables/index.html
https://datatracker.ietf.org/doc/draft-ietf-quic-multipath/
https://datatracker.ietf.org/doc/draft-ietf-quic-multipath/

[53] Ke Liu, Zhongbin Zha, Wenkai Wan, Vaneet Aggarwal,
Binzhang Fu, and Mingyu Chen. Optimizing tcp loss
recovery performance over mobile data networks. IEEE
Transactions on Mobile Computing, 19(6), 2019.

[54] Soheil Abbasloo, Yang Xu, and H Jonathan Chao. C2tcp:
A flexible cellular tcp to meet stringent delay require-
ments. IEEE Journal on Selected Areas in Communica-
tions, 37(4), 2019.

[55] Joshua Hare, Lance Hartung, and Suman Banerjee. Be-
yond deployments and testbeds: experiences with public
usage on vehicular wifi hotspots. In ACM MobiSys,
2012.

[56] Rajiv Chakravorty, Sachin Katti, Ian Pratt, and Jon
Crowcroft. Using tcp flow-aggregation to enhance data
experience of cellular wireless users. IEEE Journal on
Selected Areas in Communications, 23(6), 2005.

[57] Kyu-Han Kim and Kang G Shin. Prism: Improving
the performance of inverse-multiplexed tcp in wireless
networks. IEEE Transactions on Mobile Computing,
6(12), 2007.

[58] Jiasi Chen, Rajesh Mahindra, Mohammad Amir Kho-
jastepour, Sampath Rangarajan, and Mung Chiang. A
scheduling framework for adaptive video delivery over
cellular networks. In ACM MobiCom, 2013.

[59] Srikanth Kandula, Kate Ching-Ju Lin, Tural Badirkhanli,
and Dina Katabi. Fatvap: Aggregating ap backhaul
capacity to maximize throughput. In USENIX NSDI,
2008.

[60] Anthony J Nicholson, Scott Wolchok, and Brian D No-
ble. Juggler: Virtual networks for fun and profit. IEEE
Transactions on Mobile Computing, 9(1), 2010.

[61] Alexander Frömmgen, Amr Rizk, Tobias Erbshäußer,
Max Weller, Boris Koldehofe, Alejandro Buchmann, and
Ralf Steinmetz. A programming model for application-
defined multipath tcp scheduling. In ACM Middleware,
2017.

[62] Luiz Magalhaes and Robin Kravets. Transport level
mechanisms for bandwidth aggregation on mobile hosts.
In IEEE ICNP, 2001.

[63] Cheng-Lin Tsao and Raghupathy Sivakumar. On effec-
tively exploiting multiple wireless interfaces in mobile
hosts. In ACM CoNEXT, 2009.

[64] Quentin De Coninck and Olivier Bonaventure. Multi-
path quic: Design and evaluation. In ACM CoNEXT,
2017.

[65] Yihua Ethan Guo, Ashkan Nikravesh, Z Morley Mao,
Feng Qian, and Subhabrata Sen. Accelerating multipath
transport through balanced subflow completion. In ACM
MobiCom, 2017.

[66] Asfandyar Qureshi and John Guttag. Horde: separat-
ing network striping policy from mechanism. In ACM
MobiSys, 2005.

[67] Kok-Kiong Yap, Te-Yuan Huang, Yiannis Yiakoumis,
Sandeep Chinchali, Nick McKeown, and Sachin Katti.
Scheduling packets over multiple interfaces while re-
specting user preferences. In ACM CoNext, 2013.

A Example for Tail-aware Path Rejection
Fig. 13 exemplifies how tail-aware path rejection works on
HSR. In this example, the traffic consists of a flow whose FIN
packet was received by POLYCORN (so all the subsequent
packets are tail packets). There are two paths A and B, whose
estimated RTT and send buffer occupancy levels are plotted
in the top and bottom subfigure, respectively. Path A has a
low RTT and its send buffer is almost full, whereas Path B has
a high RTT and its buffer occupancy level is low. MPTCP’s
default minRTT scheduler frequently schedules tail packets
to Path B because Path A is busy (congestion window being
full). However, our algorithm usually rejects Path B because
the flow completion time will reduce if we wait for Path A to
become available and send tail packets over A. This results in
a large number of path rejection instances.

 0

 1000

 2000

 3000

S
R

T
T

 (
m

s
)

Path A Path B Rejection

0%

25%

50%

75%

100%

 17.6 17.8 18 18.2 18.4 18.6 18.8 19

B
u

ff
e

r
O

c
c
u

p
a

n
c
y

Time (s)

Figure 13: Reject Trace.

1340 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Augmenting Augmented Reality with Non-Line-of-Sight Perception
Tara Boroushaki 1, Maisy Lam 1, Laura Dodds 1, Aline Eid 1,2, Fadel Adib 1

1 Massachusetts Institute of Technology, 2 University of Michigan
tarab@mit.edu, mllam@mit.edu, ldodds@mit.edu, alineeid@umich.edu, fadel@mit.edu

Abstract – We present the design, implementation, and
evaluation of X-AR, an augmented reality (AR) system
with non-line-of-sight perception. X-AR augments AR
headsets with RF sensing to enable users to see things
that are otherwise invisible to the human eye or to state-
of-the-art AR systems. Our design introduces three main
innovations: the first is an AR-conformal antenna that
tightly matches the shape of the AR headset visor while
providing excellent radiation and bandwidth capabilities
for RF sensing. The second is an RF-visual synthetic
aperture localization algorithm that leverages natural hu-
man mobility to localize RF-tagged objects in line-of-
sight and non-line-of-sight settings. Finally, the third
is an RF-visual verification primitive that fuses RF and
vision to deliver actionable tasks to end users such as
picking verification. We built an end-to-end prototype of
our design by integrating it into a Microsoft Hololens 2
AR headset and evaluated it in line-of-sight and non-
line-of-sight environments. Our results demonstrate that
X-AR achieves decimeter-level RF localization (median
of 9.8 cm) of fully-occluded items and can perform RF-
visual picking verification with over 95% accuracy (F-
Score) when extracting RFID-tagged items. These re-
sults show that X-AR is successful in extending AR
systems to non-line-of-sight perception, with important
implications to manufacturing, warehousing, and smart
home applications. Demo video: y2u.be/bdUN21ft7G0

1 Introduction
The past few years have witnessed an increasing interest
in augmented reality (AR) systems. Major tech compa-
nies - including Microsoft, Meta, Apple, and Google -
have invested billions of dollars in developing AR tech-
nologies [7, 25, 52, 51]. A significant driver for these
investments is the role that AR systems are expected to
play in boosting efficiency across Industry 4.0 sectors in-
cluding manufacturing, warehousing, logistics, and re-
tail. For example, in e-commerce warehouses, AR head-
sets can boost labor efficiency by guiding workers in
picking, sorting, and packing orders and returns [26].
Similarly, in manufacturing settings, AR headsets can
guide employees by visualizing assembly tasks, auto-
matically labeling tools in the environment, and helping
users find parts they need [28]. More generally, AR head-
sets are expected to make workers more efficient by an-
notating their environments, visualizing their next tasks,
and guiding them in executing these tasks [27, 30].

To realize their full potential, AR headsets need to de-
liver the above capabilities in real-world industrial en-

Figure 1: X-AR. X-AR fuses RF measurements with visual informa-
tion and leverages natural human motion to localize RFID tagged items
in the environment. The system uses a custom-designed, conformal,
light-weight antenna mounted on an augmented reality headset and dis-
plays information to the user.

vironments, which are typically dense and highly clut-
tered. For example, a typical warehouse or dark store is
dense with packages, and a standard manufacturing plant
is dense with materials and compartments. In these en-
vironments, the majority of items are occluded due to
being inside a box, under a pile, or behind other pack-
ages. Such occlusions make it difficult for existing head-
sets to perceive these items, which in turn prevents them
from identifying and locating the items or guiding work-
ers towards them. This limitation stems from the fact that
today’s AR headsets perceive their environment through
cameras or other vision-based sensing systems which are
inherently limited to line-of-sight (LOS) [6, 38]. Such
line-of-sight restriction hinders AR systems from boost-
ing worker efficiency where it is most needed, namely in
cluttered and dense industrial environments.

In this paper, we ask the following question: Can we
design and build an augmented reality system that can
sense fully-occluded objects and expand the perception
of humans beyond the line of sight? With this capability,
augmented reality would go beyond any natural human
ability and truly augment the way we interact with the
world, enabling significant advances in warehouse lo-
gistics, manufacturing, retail, and more. For example,
AR headsets with non-line-of-sight (NLOS) perception
could identify and localize specific items (e.g., customer
orders, tools, materials) even when they are fully oc-
cluded, helping workers avoid a lengthy search process.
Additionally, such AR headsets could be used to auto-
mate inventory control of items in warehouses or retail
stores without needing to see all objects, and can alert

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1341

https://www.youtube.com/watch?v=bdUN21ft7G0

workers to misplaced items hidden behind occlusions.
To realize this vision, our approach is to leverage

Radio Frequency (RF) signals, which, unlike visible
light, can traverse everyday occlusions such as cardboard
boxes, plastic containers, wooden dividers, and cloth-
ing fabric. Indeed, recent advances in RF sensing have
demonstrated the potential to use RF signals to sense and
accurately localize items in non-line-of-sight and highly
cluttered environments [17, 40, 39]. Among existing RF
sensing technologies, we are particularly interested in
leveraging UHF RFID (Radio Frequency IDentification)
tags due to their widespread adoption in supply chain
industries (for example, over 93% of US retailers have
adopted UHF RFIDs [5]). Our vision is to bring RFID
sensing and localization to AR headsets to provide them
with non-line-of-sight perception and augment human
visual abilities for applications in warehouse automation,
e-commerce fulfillment, and manufacturing.

We would like to build a system that realizes the above
vision while satisfying the following requirements:
1. AR-compatibility: The system must seamlessly inte-
grate with an AR headset without impacting the perfor-
mance of its existing sensors and displays (i.e., without
obstructing the headset cameras or the user field of view).
2. Seamless Mobility: The system must operate cor-
rectly with natural human mobility. Specifically, it must
be able to accurately localize RFIDs (in LOS and NLOS
settings) without requiring the user to perform unnatural
movement patterns, which may hinder their productivity.
3. Actionability: The system should provide users with
actionable tasks (e.g., guide the user where to search) and
inform users of task success (e.g., verify to a warehouse
picker whether or not they picked the right order).
4. User-friendliness: The system needs to be compact
and lightweight, so that the user can easily wear the AR
headset and move around to complete their tasks.

Satisfying the above requirements is challenging and
cannot be realized by simply integrating a state-of-the-
art RFID localization system with an AR headset. In
particular, the majority of accurate RFID localization so-
lutions require multiple antennas that are separated by
meter-scale distances [39, 40], making them too bulky to
mount onto an AR headset. Solutions that don’t require
such antenna arrays typically rely on robot-mounted an-
tennas that need to be moved on predefined trajecto-
ries [58, 17, 15], making them incompatible with natural
human mobility. In addition to these challenges, deliver-
ing AR-actionable tasks goes beyond simple RF localiza-
tion and requires new mechanisms to fuse RF and vision
perception under natural mobility and display the output
on the headset.

In this paper, we present X-AR, an augmented reality
headset with a built-in RF sensing system. A user wear-
ing X-AR can freely walk in their environment (e.g., a

warehouse or manufacturing plant), and the headset au-
tomatically identifies and localizes items in the environ-
ment, even when they are not the in line-of-sight. Using
this information, X-AR guides the worker towards items
of interest (tools, packages, etc.) and verifies whether
or not they have picked up the correct item. Our system
introduces multiple innovations that together allow it to
satisfy the above requirements:
1. AR-Conformal Wideband Antenna: X-AR intro-
duces the design of an ultra-lightweight and wideband
antenna that is conformal to the headset (described
in §3). Our unique antenna design matches the shape of
the AR glasses visor, as depicted in Fig. 1, and does not
block the user’s view or any sensors. The antenna also
achieves the radiation, bandwidth (BW), and gain prop-
erties required to perform accurate RFID localization.
2. RF-Visual Synthetic Aperture Radar: X-AR does
not make restrictive assumptions about the user’s mo-
tion pattern when localizing the RFID tags in the envi-
ronment, and opportunistically leverages natural human
mobility. To do this, X-AR first uses the visual informa-
tion from the AR headset camera to self-localize in the
environment. It then uses the RFID measurements col-
lected during the user’s motion to create a synthetic aper-
ture radar (SAR) and localize RFID tagged items with
high accuracy. In addition, X-AR introduces a number
of techniques to handle localization artifacts and con-
straints that arise from natural human motions such as
natural head tilts and RFID backscatter radiation proper-
ties. We describe this localization method in detail in §4
and show how the system guides the user to the item’s
location and displays it on the AR headset.
3. RF-Visual Verification: The final component of
X-AR’s design is a mechanism that verifies when the
user has picked up their desired RFID-tagged item. Such
verification is important to avoid costly errors such as
picking and shipping the wrong order to a customer in
e-commerce warehouses. One might assume that such a
capability can be simply realized by localizing the RFID-
tagged target item to within a user’s hand once they’ve
picked it up (i.e., using the same localization mecha-
nism described up). In practice, doing so is challeng-
ing because, unlike the above scenario where the user’s
walking emulates a synthetic aperture, a user picking an
item stays in a relatively fixed location. To address this
challenge, X-AR leverages the RFID tag’s mobility in-
stead. Specifically, it performs a reverse SAR to localize
the headset with respect to the picked item’s trajectory.
In §5, we describe this technique in detail and show how
X-AR fuses the AR-headset’s hand-tracking capability
with reverse SAR to perform the verification with high
accuracy.

We implemented an end-to-end prototype of X-AR.
We mounted a custom-designed conformal antenna on

1342 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Microsoft Hololens 2 headset [9]. The antenna is con-
nected to bladeRF software defined radios [47] that com-
municate with the AR headset through an edge server.
Our algorithms are written in the C driver and operate in
real-time, and we program the Hololens through Unity
to display item locations and labels, guide the user to the
target items, and show the verification results.

We evaluated X-AR’s performance over 230 experi-
mental trials. Our evaluation demonstrated that:
1. X-AR’s conformal antenna achieves all desired speci-
fications in terms of weight (<1g), size (conformal), BW
(200 MHz), and gain (around 0 dB).
2. X-AR accurately localizes RFID tagged objects in
line of sight and non line of sight scenarios with a me-
dian accuracy of 9.8 cm. Even the 90th percentile accu-
racy remains within a foot and a half (45 cm). In contrast,
a standard SAR-based baseline has more than double the
error, achieving a median accuracy of 24.8 cm and a 90th

percentile accuracy of 99.1 cm.
3. X-AR tracks the movement of the RFID tag and the
user’s hand to automatically verify what object has been
picked up with over 95% accuracy (F-Score). Even if the
user picks up a box with the RFID-tagged item inside it
(rather than picking up the item itself), the F-Score re-
mains over 91%.
Contributions: X-AR is the first augmented reality
headset that can sense through occlusions and perceive
fully occluded objects. This system introduces three key
innovations: 1) A custom-designed, conformal, wide-
band, and light-weight antenna that can be integrated
with a commercial AR headset, enabling RFID local-
ization without obstructing the user’s or cameras’ view,
2) An RFID localization system that opportunistically
leverages natural user motion to create a non uniform
RF-Visual synthetic aperture radar and to localize and vi-
sualize the RFID tagged objects in 3D, 3) A verification
mechanism that performs reverse RF-Visual localization
to verify whether the user has picked the target item, in
line-of-sight, non-line-of-sight, or occluded settings.

Although X-AR enables non-line-of-sight perception
for augmented reality headsets, our current implemen-
tation still has a few limitations. First, X-AR is cur-
rently designed to operate on a single headset, and still
has no mechanisms to extend to multiple coordinated
headsets. Second, the range of the RF measurements are
limited to 3m; however, future antenna design iterations
can achieve an even longer range. Finally, X-AR only
demonstrates two actionable tasks: guiding the user to-
ward a target item, and verifying the target item is in the
user’s hand. As research evolves, it would be interesting
to extend this system to other tasks. Despite these lim-
itations, X-AR marks an important step in bringing RF
sensing to AR and opens the door to future works bridg-
ing these fields.

2 System Overview
X-AR is a next-generation augmented reality system ca-
pable of perceiving objects in both LOS and NLOS con-
ditions. The system can identify, locate, and label RFID-
tagged items in the environment. It leverages an RF sens-
ing module to read passive, off-the-shelf UHF RFID tags
attached to items of interest. By combining this informa-
tion with visual data from the AR headset’s camera sen-
sors, it locates RFID-tagged items with high accuracy.

X-AR is designed to be used in practical environ-
ments, such as warehouses, manufacturing plants, and
retail stores. It opportunistically leverages human motion
(i.e., as the user walks around and picks up items) in or-
der to localize tagged items in the environment, guide the
user towards them, and verify when the user has picked
them up. For simplicity, the remainder of this paper dis-
cusses the system in a single tag scenario. sHowever,
X-AR can easily extend to multiple RFID tags in the en-
vironment. Using the EPC Gen 2 protocol, X-AR can
read each RFID tag separately, and perform the same lo-
calization and verification algorithms for each tag.

3 AR-Conformal Antenna
X-AR introduces a conformal antenna that can be
mounted on the headset to identify, locate, and verify
UHF RFID tags, without interfering with the headset’s
operation or constraining the user. Here, we describe our
AR-conformal antenna design, its requirements, chal-
lenges, and the path describing its evolution from a con-
ventional antenna structure to one satisfying all the de-
sired needs. To perform RFID localization from the
headset in the field of view of the user, the antenna needs
to satisfy the following requirements:
• Wideband operation around 900 MHz: The antenna
needs to maintain a matched operation and a good gain
over a BW of at least 200 MHz to match the bandwidth
requirements of state-of-the-art RFID localization sys-
tems [39, 40].
• Conformal and unobstructive: The antenna must be
designed on a flexible substrate to easily conform to the
Hololens’ visor without obstructing a user’s field of view
or the cameras mounted on the front of the headset.
• Lightweight and small form-factor: The antenna
must maintain an ultra-light weight (< 1g) and be simple
and easy to mount on the AR’s visor.

Existing solutions in state-of-the-art wideband
RFID localization systems do not satisfy these proper-
ties [16, 17, 40, 39, 14]. In particular, they rely on rigid,
relatively-large, and often bulky antennas. For example,
the majority of these systems leverage large patch
antennas that are 26 cm × 26 cm × 3.3 cm and weigh
approximately 1.04 kg, while others rely on log-periodic
antennas that measure 15 cm× 13 cm× 0.01 cm. These
solutions are too bulky and would obstruct the field of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1343

(a) Single loop antenna. (b) AR-conformal Antenna (c) Measured Gain vs Frequency.

Figure 2: Conformal Antenna Design. (a) Fabricated single-loop antenna mounted on the headset (dimensions 122×51mm). (b) Fabricated
conformal antenna (dimensions 165×64mm). (c) These plots show the measured gains of the single loop (blue) and AR conformal (red) antennas
vs frequency while mounted on the headset and worn by the user. The horizontal green line is used to highlight the 3-dB bandwidth.

view of the AR headset, thus are ill-suited for our use
case. While some RFID localization systems utilize
compact and lightweight antennas [58, 57, 59], these
antennas have a narrow band of operation, which makes
them unsuitable for our use case.1

Below, we describe our investigation in designing the
AR-conformal antenna to satisfy the above requirements.

3.1 Investigating a Single Loop Design
We first investigated whether we could achieve the above
properties using a single loop antenna design. Our choice
of a single loop was motivated by the fact that a loop can
wrap around the outline of the visor, delivering a small
form factor not obstructing the field of view. Also, the
loop is a simple antenna that does not require a ground
plane, making it easy to mount on an AR headset.

Fig. 2a shows the picture of our initial design of a
loop antenna, fabricated on a 100 µm thin polyimide sub-
strate, and mounted on the Hololens. Notice how our
antenna (almost) follows the perimeter of the visor, thus
not obstructing its view. In order to identify the appro-
priate dimensions corresponding to an operation around
900 MHz, we performed our antenna simulations in An-
sys High Frequency Simulation Software (HFSS). In de-
signing these antennas, we leveraged polyimide films
because of their good electromagnetic properties, their
common use for applications requiring flexible electron-
ics, and their wide availability at low-cost. This antenna
also weighs less than 1g, thus it satisfies our requirements
of a small form factor while maintaining a light weight.

To investigate the bandwidth requirement, we
mounted the antenna on the headset, worn by the user,
and measured its gain over the frequency of interest. This
was done by illuminating it with a transmitter antenna of
a known gain and using a vector network analyzer (VNA)
to extract the S parameters of the loop antenna (specifi-
cally the S21 parameter).

Fig. 2c plots the gain of the loop with respect to fre-
quency, showing 3 dB BW of approximately 100 MHz
around 780 MHz. This shows the loop antenna design

1As mentioned in §1, past systems that leverage these antennas re-
quire either bulky arrays or a robot to move the antenna on a pre-defined
trajectory, neither of which are suitable for an AR localization system.

would not allow us to achieve the desired 200 MHz of
BW. It should be noted the loop antenna delivers a res-
onant frequency of 900 MHz and a gain of 3.8 dB when
tested in air. However, its gain degraded by 3 dB and fre-
quency detuned by 120 MHz when placed on the headset
visor and worn by the user. This behavior is often ob-
served with wearable antennas [32, 41], where the fre-
quency of operation and antenna radiation properties de-
grade when mounted on a new material. Thus, while the
loop antenna is conformal, unobstructive, lightweight,
and small, it did not satisfy the BW requirements.

3.2 Wideband AR-Conformal Antenna
Motivated by a desire to increase the bandwidth of
the single-loop conformal antenna, we investigated how
strategies such as tapering (i.e., gradually changing the
width of the loop) and slotting (i.e., adding slotted gaps
in the loop) can help us achieve the desired bandwidth.
Through an iterative design and simulation processing
(whereby the simulation was performed using Ansys
HFSS), we reached the design shown in Fig. 2b. Notice
how we carefully chose the dimensions of the antenna to
perfectly match the shape of the visor, without blocking
any of the cameras. We also added tapers to the outline
of the antenna and integrated slots on the top and bottom
lines around the nose to achieve a wideband operation.

Similar to the loop antenna, we conducted gain mea-
surements to assess the 3-dB bandwidth of our conformal
antenna while mounted on the headset and worn by the
user. The red plot in Fig. 2c shows the gain of our new
antenna as a function of frequency. Notice how the 3 dB
bandwidth of the gain is now 200 MHz - from 775 MHz
to 975 MHz. This shows that the antenna achieves the
desired gain pattern in the frequency range of interest.
Note that the negative gain realized by these wearable
antennas is normal with ultra-thin substrates due to close
proximity with lossy material such as the headset and
human tissues [48, 19]. In principle, it is possible to fur-
ther optimize the gain of the antenna, however, the neg-
ative gain could be easily overcome by transmitting at a
higher power, thus maintaining a constant effective ra-
diation pattern (typically referred to as EIRP). It should
be also noted that the detuned frequency observed with

1344 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the measured loop due to placement on headset was ac-
counted for in the HFSS simulations for the new antenna,
by simulating the structure on plexiglass that mimics the
headset’s visor, and thus resulted in the proper resonant
frequency during measurements. Finally, we also simu-
lated the radiation pattern of the conformal AR antenna
on the headset as well as measured its gains across fre-
quencies and elevation angles (see appendix).

It should be noted that while this antenna was designed
to match this headset, the design could be adapted for
different visor shapes, depending on the location of the
cameras and other components that cannot be blocked.

4 RF-Visual Synthetic Aperture Radar
In the previous section, we described the custom, con-
formal, and lightweight antenna that X-AR uses to sense
RFID tags in the environment. In this section, we de-
scribe how X-AR uses these RFID measurements, along
with visual information from the AR headset’s camera to
locate RFID tags with high accuracy through RF-Visual
Synthetic Aperture Radar (SAR). For ease of exposition,
we discuss localizing a single tag, but the same approach
generalizes to any number of tags in the environment.

4.1 Background on SAR
X-AR’s localization builds on a technique called Syn-
thetic Aperture Radar (SAR). At a high level, SAR lever-
ages the same localization principle as antenna arrays,
where measurements from multiple antenna locations are
combined to localize a wireless device in 2D or 3D space.
SAR differs from standard antenna arrays in that it moves
a single antenna, collecting measurements from different
physical locations to emulate an antenna array. Formally,
we can estimate the power P received from every point
in space using the following equation:

P(x,y,z) =

∣∣∣∣∣
∣∣∣∣∣ 1
M

1
N

M

∑
j=1

N

∑
i=1

hi, je
4πdi(x,y,z)

λ j

∣∣∣∣∣
∣∣∣∣∣ (1)

where M is the number of frequencies used, hi, j is the
channel measurement of the ith location with the jth fre-
quency, di is the distance from (x,y,z) to the ith location,
and λ j is the wavelength of jth frequency.

To localize the tag, we find the (x,y,z) location with
the highest power. Formally, the location of the tag, ptag:

ptag = argmax(x,y,z)(P(x,y,z)) (2)

For more details on SAR please refer to the Appendix.

4.2 AR-Based SAR
Since it is infeasible to mount an antenna array on an
AR headset, X-AR builds on SAR-based RFID local-
ization. Specifically, X-AR opportunistically leverages
natural human motion to collect wideband measurements
from different locations and uses them to construct a syn-
thetic aperture radar to localize RFID tagged items.

However, bringing SAR to an AR headset faces a num-
ber of challenges. Unlike prior systems that leverage
SAR (e.g., robots or airplanes), X-AR cannot rely on a
constant velocity or predictable trajectory. For example,
humans naturally accelerate and decelerate and move
slightly side-to-side as they walk, making it difficult to
predict the exact antenna location. Moreover, recall that
X-AR aims to opportunistically leverage human motion
as opposed to controlling the user’s trajectory, making it
even more challenging to control the antenna’s location.

Self-Tracking. To address these challenges and local-
ize the antenna over time, X-AR leverages the AR head-
set’s built-in self-tracking capability. Existing AR head-
sets can self localize by extracting feature points from
their cameras’ visual data and performing visual-inertial
odometry (VIO). They then track these points over time
to build a map of the environment and derive their 6D
pose (i.e., location and rotation) within this map [38, 42].

To leverage this built-in localization, X-AR requires
an additional transformation. Specifically, the headset
tracks its location as the center of the user’s head, but
the antenna is mounted on the front of the visor. This
transform is essential since SAR relies on small changes
in the RFID channel and therefore requires precise loca-
tions. This transform can be formulated as [55]:

WPA = WRH × HPA + WPH (3)
WRA = WRH

where WPA and WRA are the position (x,y,z) and quater-
nion rotation of the antenna in the world frame W ;
WPH , WRH are the position and quaternion rotation of
the Hololens in the world frame. The x,y,z translation
from the Hololens H to the antenna A is defined as HPA.
The position and rotation of the Hololens are obtained
from the vision-based AR self-tracking. We empirically
measure the translation from the Hololens’s center to an-
tenna (HPA) since this translation is fixed and results
from mounting the antenna on the headset.

After applying the transformation, X-AR uses them as
the antenna array locations. This allows it to then exploit
wideband measurements as per Eq. 1 to opportunistically
apply SAR along the user’s trajectory.
RFID Localization. Fig. 3 shows an example of X-AR’s
RFID localization (shown in 2D for simplicity). Fig. 3a
shows an overhead view of a user walking through the
environment. RFID measurements are taken during the
user’s trajectory, resulting in the measurement locations
shown by the red stars. These measurements are then
used to compute the power at each point in the workspace
using Eq. 1 to estimate the tag’s location. Fig. 3b shows
this power as a heatmap with yellow indicating areas of
higher power and blue indicating areas of lower power.
The tag’s location (red dot) overlaps with the area of
highest power, showing that the localization was success-
ful. While the above description focused on 2D localiza-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1345

(a) 2D SAR (b) 2D SAR result (c) User view of AR display
Figure 3: AR-Based SAR. (a) As the user moves naturally, X-AR collects RF measurements. (b) Using RF-Visual SAR, X-AR creates a heatmap
of the RFID tag’s possible location. The target RFID location overlaps with the area of highest power (yellow), indicating a successful localization.
(c) The user’s view from the Hololens application. The sphere shows the estimated tag location and the arrow points to it.

tion, the same method extends to 3D as per Eq. 2, en-
abling X-AR to localize items in 3D space.
Holographic Visualization. Once the item has been lo-
calized, X-AR leverages holographic visualization to dis-
play its location to the user and guide them towards it.
To do this, X-AR leverages the transforms described in
Eq.3 to compute the tag’s location in the world frame.
Fig. 3c shows an example from the user’s perspective as
displayed on the AR headset. In this example, X-AR
places a spherical hologram around the estimated loca-
tion, and a floating arrow appears in order to guide the
user towards the localized tag for object retrieval. The ar-
row is programmed to float slightly above the user’s eye
level at a fixed distance in front of them. For every frame
update, the application queries the location and rotation
of the user in the world space. It then computes their di-
rectionality to update the pointing vector of the arrow to
properly guide the user towards the target object.

4.3 Practical Considerations
Standard wideband SAR systems typically design their
antennas to have uniform gain across the entire fre-
quency band. However, off-the-shelf UHF RFID tags are
not designed to be wideband and therefore have signifi-
cant variability in their antenna gain across frequency.
In general, measurements with frequencies further from
the tag’s resonant frequency (typically 900MHz) will be
weaker and therefore more susceptible to noise. These
weak measurements can introduce significant error in
the location estimate. To overcome this, we introduce a
weighted SAR formulation that biases the estimation to-
wards confident measurements to improve the accuracy.

To do this, X-AR starts by quantifying its confidence
in each of its measurements using the signal-to-noise ra-
tio (SNR). For any wideband measurement with an av-
erage SNR below a certain threshold, X-AR is unlikely
to be able to accurately estimate the RFID channel and
it therefore removes the measurement from the SAR for-
mulation entirely. The remaining measurements all con-
tain useful information, however, as described above,
certain frequencies in each wideband measurement may
have weaker responses due to the tag’s frequency depen-
dent response. To prioritize frequencies with stronger
responses, X-AR applies an SNR-based weighting func-

tion to each frequency in a measurement.
This is formalized in the following equation:

P(x,y,z) =

∣∣∣∣∣∣
∣∣∣∣∣∣

M

∑
j=1

N

∑
i=1

wi, jhi, je
4πdi
λ j SNRi > τ

0 SNRi < τ

∣∣∣∣∣∣
∣∣∣∣∣∣ (4)

wi, j =
SNRi, j

maxk∈[1,M](SNRi,k)
(5)

where wi, j is the weight for the ith location and jth fre-
quency, and τ is the SNR threshold for removing poor
measurements. SNRi, j is the SNR of the ith location with
the jth frequency, and SNRi is the average SNR across all
frequencies for the ith location. 2

A few additional points are worth noting:
• In practice, the self-localization frame rate is different
from that of the RFID channel measurements. To over-
come this, X-AR linearly interpolates between Hololens
self-tracked locations to find the corresponding location
of the mounted antenna for any given measurement.
• X-AR continues to collect measurements until it has
become confident in the tag’s location. To determine its
confidence, it finds all (x,y,z) locations whose power is
within 0.75dB of the peak power.3 It then computes a
bounding box around these locations. When this bound-
ing box’s size falls below a threshold, X-AR declares the
localization complete and visualizes the location.
5 RF-Visual Verification
So far, we explained how X-AR opportunistically lever-
ages human motion to localize RFID-tagged target items
and visualize them on the AR headset for retrieval. In
principle, this visualization should be sufficient to indi-
cate to the user to pick up the item within the holographic
sphere shown in Fig. 3c. In practice, however, the user
may still pick up an incorrect item. For example, mul-
tiple items may lie within the glowing sphere.4 Even if
the user knows what they’re looking for (e.g., red shirt),
there might be several items that are visually similar to
each other or in similar packaging in the region. More
generally, the picked item may be incorrect because the

2When computing wi, j in our implementation, we offset all of the
SNR values and clip them at 0 to avoid negative weights.

3In practice, other thresholds are possible, but a looser threshold
would reduce the confidence and hence the localization accuracy.

4The size of the sphere is determined by the confidence interval
from RFID localization accuracy which is around 10-20 cm.

1346 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

picker is prone to human error.
To ensure that the user has picked up the correct item,

X-AR incorporates a mechanism for picking verification.
We describe RF-Visual Verification, which enables an ac-
curate and seamless verification of grasped items.

5.1 RF-Visual R-SAR
At the most basic level, the goal of X-AR’s RF-Visual
verification primitive is to verify whether the correct item
is in the user’s hand after they have picked up an object.
Said differently, it aims to localize the RFID-tagged tar-
get item to within the user’s palm. At first blush, one
might assume that such a capability is trivial given that
X-AR already has a mechanism to localize RFIDs, as de-
scribed in the previous section on RF-Visual SAR. How-
ever, the two localization problems are fundamentally
different. Unlike the earlier scenario where the user’s
walking emulates synthetic aperture, a user picking an
item is in a relatively fixed location. Hence, one cannot
leverage the user’s movements to localize the item.

To localize the item despite the user’s stationary po-
sition, X-AR leverages the RFID tag’s mobility instead.
Fig. 4a shows a sample scenario, demonstrating how the
tag itself traces an antenna array. X-AR leverages this
emulated array in order to localize the AR-headset (more
specifically, the antenna on the headset) with respect to
the array. This formulation is the reverse of the SAR de-
scribed in §4, where the RFID tag was stationary, and
the AR conformal antenna on the headset was moving
with the user. Notably, in §4, we could leverage the AR
headset’s self-tracking capability to track the antenna lo-
cations. Here, we still need a mechanism to track the
RFID locations in order to properly apply the antenna ar-
ray equations.5 To track the RFID’s location as it moves,
our idea is to leverage the hand-tracking capability of
the AR headset. Specifically, AR headsets like the Mi-
crosoft Hololens 2 can detect and track multiple feature
points on a user’s hand, including their palm [8]. Thus,
if the user picks up the correct RFID-tagged item, then
the RFID traces a similar trajectory to the user’s palm as
shown in Fig. 4a.

X-AR leverages the above observation and applies the
antenna array equations on the hand’s trajectory in or-
der to localize the headset. If the headset’s estimated
location using this method coincides with the headset’s
visual-inertial odometry-based location, that indicates
that the target RFID tagged item was accurately retrieved
and is indeed in the user’s hand. On the other hand, if
the headset localization fails, the failure indicates that the
target RFID tag is not in the user’s hand. Below, we for-
malize the above intuition by describing scenarios where
the user picks the correct item and compare it to a sce-
nario where the user picks an incorrect item.

5In principle, one could use ISAR [11]. It is less desirable than SAR
because the former suffers from a larger direction location ambiguity.

(a) Scenario where the User Picks the Correct Item.
Fig. 4a shows an example where the target item is in the
user’s hand. Here, the palm location (Ppalm) and the tag
location (Ptag) are similar. As the user’s hand moves,
Ppalm and Ptag change similarly together. As a result, the
target tag’s location can be accurately approximated with
the palm location over time for applying SAR and esti-
mating the AR conformal antenna’s location according
to the following equation:

P(x,y,z) = ||
M

∑
j=1

Nv

∑
i=1

hi je
4πd(ti)

λ j || (6)

d(ti) = |(x,y,z)−Ppalm(ti)| (7)

(xh,yh,zh) = max
x,y,z

P(x,y,z) (8)

where Nv is the number of measurements, ti is the time
of ith measurement, d(ti) represents the distance at time
ti from the (x,y,z) position to the user’s palm location,
Ppalm(ti). X-AR obtains Ppalm(ti) through vision based
hand tracking. The SAR estimated headset location,
(xh,yh,zh), is the position that emanated the maximum
power. Remember that when the user has the target item
in their hand, Ppalm(ti) is similar to the target RFID loca-
tion at time ti.

Fig. 4c shows the result of applying SAR to localize
the headset in the form of a 2D heatmap from a side view.
For simplicity, the result of antenna array projections
is sliced in the plane that coincides with the real-world
plane containing the user’s body and the RFID-tagged
item. In this heatmap, yellow indicates higher probabil-
ity of the headset location, while navy blue indicates low
probability. As the figure shows, the location of highest
power (the pink dot) is very close to the actual location
of the headset antenna (the white star), indicating that the
headset has been accurately localized.

(b) Scenario where the User Picks an Incorrect Item.
Next, consider a scenario where the user picks up an in-
correct item, as shown in Fig. 4b. Here, the user’s palm
location (Ppalm) changes as the user’s hand moves, but
the target RFID tag location (Ptag) does not change. In
this case, when X-AR uses the user’s palm location to
estimate the tag location for the SAR, it will fail to accu-
rately locate the AR conformal antenna location.

Figure 4d shows the result of applying SAR in this
scenario. Notice how the heatmap displays multiple high
probability regions that are far from the actual headset lo-
cation. In this case, the highest probability location (de-
picted by the pink dot) which corresponds to the SAR-
based estimate of AR conformal antenna’s location is
far from the actual location of the headset antenna (de-
picted by the white star). Thus, the SAR based headset
localization fails because of large error. Since the head-
set knows its actual location (using the self-tracking via
visual-inertial odometry as described in §4), it can deter-
mine that the reverse localization has failed, and use this
information to determine that the target RFID tag is not

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1347

(a) Target is in hand (b) Target is not in hand (c) In-hand heatmap (d) Not in-hand heatmap (e) Without compensation

Figure 4: RF-Visual In-Hand Verification.(a) The RFID trajectory (blue dashed line) is similar to the palm trajectory (red dashed line) when it
is in-hand. (b) The RFID’s location (blue rectangle) differs significantly from palms trajectory(red line) when not in-hand. (c) When the tag is in
hand, RF-Visual R-SAR accurately estimates the headset location (pink dot) relative to the actual headset location (white star). (d) The R-SAR
estimation of the headset location (pink dot) is not accurate when the tag is not in hand. (e) Without compensating for natural head movement,
RF-Visual R-SAR cannot locate the headset accurately even when the target RFID is in the user’s hand.

in the user’s hand.
The criteria for declaring that the target tag is in the

user’s hand is that the headset localization error should
be within an acceptable range and can be formulated as
follows: ||(xh,yh,zh)− (xG,yG,zG)||< τ (9)

where (xG,yG,zG) is the headset’s location based on built-
in odometry, and τ is threshold for localization error.6

5.2 Compensating for Natural Tilts
Our above description assumes that the user’s head is
perfectly still as they are picking an item. In practice, a
user’s head naturally tilts during picking, and its impor-
tant to compensate for these tilts in the reverse SAR lo-
calization.7As a result of head movement throughout the
retrieval process, the distance of user’s palm to headset’s
initial location can be different from the actual distance
from the user’s palm to the headset’s antenna location.

In Fig. 4a, we had shown the result of SAR after com-
pensation. For comparison, Fig. 4e shows the result of
applying SAR without compensating for the user’s natu-
ral head movements. Multiple high probability regions
are visible in the heatmap showing that if the natural
head movements are not accounted for, the SAR esti-
mated head location may have a large error and the item
in the user’s hand may be incorrectly classified.

To address this issue, X-AR tracks these natural head
movements through the visual-inertial odometry and
compensates for them in the RF-Visual SAR formula-
tion. Specifically, X-AR translates the palm position
from current headset coordinate to the initial headset co-
ordinate. This can be formulated by replacing d(ti) in
Eq. 6 with d̂(ti) as follows:

d̂(ti) = |(x,y,z)− (Ppalm(ti)− [Phead(0)−Phead(ti)])|
6In our implementation, τ is 0.3m. Note that the length of the AR-

conformal antenna is 0.165m. We experimented with different τ’s and
found this achieves a good balance between precision and recall.

7Note that these tilts remain too subtle to perform SAR on the head
movement itself, but are sufficiently large to make reverse SAR inac-
curate if they are not accounted for.

where Phead(ti) is the visual-inertial odometry-based
head location at time ti. In this new formulation, d̂(ti)
represents the compensated distance from head’s ini-
tial position to the palm location at time ti. The head-
set’s estimated initial location, Phead(0) , is the same as
(xG,yG,zG) in Eq. 9. X-AR uses the same criteria as Eq.9
for the headset’s initial location to determine if the tar-
get item is accurately retrieved by the user. In the system
evaluation, we demonstrate how much this compensation
is critical for RF-Visual Verification. We also note:
• X-AR can also use the camera visual data to determine
if and when the user grasps an item by tracking her hands
and fingers. It can use this information to trigger the RF-
Visual verification module.
• The retrieval process often includes grasping and re-
moving items to declutter the surroundings of the target
item before the user actually grasp the target item. As a
result, X-AR uses the latest received Nv RFID measure-
ments8 at each point of time for the RF-Visual verifica-
tion. When the latest Nv satisfy the Eq.9’s criteria, X-AR
notifies the user that the target item is in her hand by
showing text stating that target item is retrieved.

6 Implementation & Evaluation
Physical Setup: We implemented X-AR on a Microsoft
Hololens 2. We mounted our custom conformal antenna
on the front visor of the AR headset and connected it
to two Nuand BladeRF 2.0 Micrsoftware radios [47].
Our device was tested using standard off-the-shelf UHF
RFID tags [4](3-5 cent each). We tagged common items
such as office supplies or clothes and placed them in
boxes of different arrangements.
RFID Reader: To obtain wideband RFID channel mea-
surements for localization, we implemented the EPC
Gen 2 protocol [31] on a wideband RFID reader design
similar to [17]. In order to transmit and receive signals
from a single antenna, we introduced a CS-0.900 circu-
lator to the reader. To cancel self-interference and extend

8In our implementation, Nv is 35.

1348 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the range, we implemented over-the-wire nulling through
the BladeRF’s MIMO capability[47] and a ZAPD-2-21-
3W-S+ 2-Way Pass DC Splitter. We connected the reader
to a Raspberry Pi to collect and process RFID measure-
ments from the software defined radios.
Software: We implemented the processing described in
§4 and §5 on an edge server running Ubuntu 20.04 on
an Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz. The
code is developed in Python and C++ and uses ROS [50]
to enable multicore processing. We developed our own
application for the Hololens to stream device transforms
and tracked hand locations to the edge server via TCP
protocol and present the designed UI to the user. The
application was developed in C# in Unity3D [56] and
Visual Studio IDE [43]. On the Rasberry Pi, we im-
plemented code in Python to stream the processed RFID
channel estimates to the edge server.
Evaluation Environment: We evaluated X-AR in
multipath-rich indoor settings that mimic warehouses,
retail stockrooms, and dark stores, which are cluttered
with boxes. Fig. 3c shows a sample evaluation environ-
ment. Across experimental trials, we changed the ar-
rangement of stacked boxes, moving them near metal
shelving and/or wooden bench tops. Since our evalu-
ation setups were created in a lab, they were also sur-
rounded by furniture including chairs, desks, and com-
puters. These environments also had typical wireless in-
terference from various technologies, as well as multi-
path interference from building occupants who walked
around the environment while going about their daily
activities. Across our experimental trials, a user wears
the X-AR headset and walks around to find and pick
up an RFID-tagged target item. To evaluate localiza-
tion with various human trajectories, we asked users to
walk in several different patterns. These patterns in-
cluded walking towards the target object, in a diagonal
path approaching the target, and in 2D “L” or “V” shaped
trajectories with respect to the target. We tested objects
of different sizes/shapes across both LOS and NLOS set-
tings. In LOS, the tagged object was not occluded from
the AR headset’s field of view. For NLOS settings, the
RFID-tagged target was hidden inside a box or behind
clutter. Across trials, we varied the target RFID-tagged
object’s location to cover various potential scenarios.
Baselines. We implemented 2 state-of-the-art baselines:
SAR baseline: Our first baseline is SAR-based localiza-
tion algorithm (similar to [58, 65]). In this baseline, we
used the AR-based VIO similar to X-AR to obtain an-
tenna locations. However, we limited the localization
to only frequencies within the UHF ISM band (around
22 MHz), and did not implement X-AR’s weighting op-
timizations as described in §4.3.
Time-of-Flight baseline: Our second baseline imple-
ments state-of-the-art time-of-flight(ToF) estimation us-

10−4 10−3 10−2 10−1

Localization Error (m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

X
Y
Z

(a) Line-of-sight (LOS)

10−3 10−2 10−1 100

Localization Error (m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

X
Y
Z

(b) Non-line-of-sight (NLOS)

Figure 5: 3D Localization Accuracy. CDF plots of X-AR’s RF-visual
SAR localization accuracy in the x/y/z dimensions for LOS and NLOS.

ing wideband RFID measurements (similar to [40, 17]).
For this baseline, we selected 6 measurements from the
user’s trajectory (similar to [17], spaced evenly in time),
computed the ToF-based distance estimates (using the al-
gorithm from [40]), then performed robust trilateration to
compute the final 3D location (as in [17]).

For fairness of comparison, in both baselines, we ap-
plied the same initial SNR filter as X-AR to remove low-
confidence measurements.
Ground Truth: To measure the localization accuracy
of our system, we used the AR headset’s built-in spatial
awareness to determine the origin of the coordinate sys-
tem in each trial. In each experimental trial, we aligned
the tag’s location with the Hololens’s origin. This was
done by manually moving the RFID tag to the origin (dis-
played as a hologram by the AR advice) so that it aligns
with the Hololens origin at the beginning of each trial.
Subsequently, the localization accuracy was computed as
the difference between X-AR’s RFID tag estimated loca-
tion and the Hololens’ origin. This was repeated for each
experimental trial.

7 Results
We ran 234 trials to evaluate the performance of X-AR.

7.1 3D Localization Accuracy
We first evaluated the accuracy of our system in local-
izing target RFID-tagged items in the environment. We
define the localization error to be the euclidean distance
between the system’s estimated location and the ground-
truth location. We ran 54 experimental trials to measure
the performance of RFID localization. In each trial, the
user walked in a different motion pattern and X-AR au-
tomatically localized the target item via RF-visual SAR
as described in §4.

Fig. 5 plots the CDF of the localization error across the
experimental trials in both line-of-sight and non-line-of-
sight scenarios. We plot the localization error along the
x(orange), y(pink), and z(purple) dimensions. We note:

• In LOS settings, the median errors are 2.1 cm, 2.1 cm,
and 8.4 cm along the x, y, and z dimensions, respectively.
In NLOS settings, the median errors are 1.9 cm, 6 cm,
and 7.7 cm along the x, y, and z dimensions, respec-
tively. These results demonstrate that X-AR can achieve

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1349

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Localization Error (m)

0.00

0.25

0.50

0.75

1.00
C

D
F X-AR

SAR Baseline

ToF Baseline

Figure 6: Comparison to Baseline Localization Accuracy. CDF plots
of L2-norm error for X-AR(orange), SAR(pink), and ToF(purple).

centimeter-level localization accuracy in each dimension
while opportunistically leveraging human motion that is
not known a priori or directed in a particular way.
• The median L2 norm of localization error for the LOS
and NLOS scenario are 9.6 cm and 10.6 cm. Therefore,
there is no significant difference between localization er-
ror for NLOS and LOS, showing that X-AR’s is able to
augment the AR device with perception capabilities for
both LOS and NLOS conditions.
• The localization accuracy along the x-axis is generally
better than along y and z (especially in the NLOS sce-
nario). This is because in our experimental setup, the ob-
ject is located on a shelf against a wall. The user walks
toward the shelf but not past it, meaning the RFID mea-
surements are only on one side of the RFID in the y di-
rection. On the other hand, the user walks parallel to the
shelf and measurements are taken on both sides of the
RFID along the x-axis leading to a better accuracy in the
x direction than in the y direction. Note that the aperture
in z direction (vertical direction) is very small since the
user’s head does not move vertically.
Baseline Comparison: We compare the performance of
our system to the two baselines described in §6. We used
the same experimental trials for X-AR and the baselines.

Fig. 6 plots the CDF of the total localization error for
X-AR (orange), SAR Baseline (pink), and Time-of-Flight
Baseline (purple). For simplicity, we show the L2-norm
distance error (rather than the error along each of the
x/y/z dimensions). We make the following remarks:

• For X-AR, the median and 90th percentile localization
errors are 9.8 cm and 45 cm, respectively. These results
are in-line with those reported above (as L2-norm in 3D).
• For SAR Baseline, the median and 90th percentile lo-
calization errors are 24.8 cm and 99.1 cm, respectively.
This shows that by leveraging our system’s custom wide-
band antenna and wideband RF-visual SAR techniques,
X-AR can achieve over 2× performance improvement in
both the median, and 90th percentile over a system that
is limited to the UHF ISM band, thus demonstrating the
value of our customized wideband conformal antenna de-
sign and RF-visual SAR localization scheme.
• The Time-of-Flight baseline has a median and 90th per-
centile localization errors of 34.9 cm and 78.8 cm. This
shows that X-AR has an improvement of over 3× in the
median and almost 2× in the 90th percentile. We note

that the baseline’s performance is worse than that re-
ported in prior work [40, 17]. This is because that prior
work had control over the aperture of measurements
(i.e., through physical antenna placement or controlling
robotic motion). In contrast, when applying these tech-
niques to an AR system with natural human motion, the
aperture cannot be optimized and the resulting accuracy
is poor. This demonstrates the benefit of our AR-based
SAR techniques when utilizing natural human motion.

Impact of Walking Pattern: Next, we investigated
the impact of different walking patterns on X-AR’s
localization accuracy. Recall that we asked users to
walk in different patterns: vertically toward the tag’s
plane, diagonally toward the tag, as well as L-shaped
and V-shaped trajectories. To understand the impact of
different motion patterns on localization accuracy, we
measured the 10th, median and 90th percentile for each
of these patterns and reported them in Table 1.We note:

Vertical Diagonal L-shape V-shape

10th percentile 5.7 cm 3.8 cm 7.9 cm 6.3 cm
50th percentile 10.8 cm 12.5 cm 9.8 cm 8.4 cm
90th percentile 47.7 cm 51.0 cm 14.9 cm 13.3 cm

Table 1: Trajectory Impact. Location error for different trajectories.

• All walking patterns have a similar median localization
error, between 8.4 to 12.5 cm. This shows that X-AR
works well in different motion patterns and is generally
robust to different trajectories. It also suggests that X-AR
does not need to constrain the user to a pre-defined 2D
trajectory to achieve good localization performance.
• Interestingly, we noticed that 90th percentile accuracy
is markedly different across these motion patterns. In
particular, while the L-shaped and V-shaped patterns
have a 90th percentile around 15 cm, this error increases
to around 50 cm for linear motion patterns (diagonal &
vertical). This is likely due to the differences in spatial
diversity and aperture variability across these motion pat-
terns. In particular, L-shaped and-V-shaped trajectories
involve independent mobility in two dimensions, while
the diagonal and vertical trajectories involve mostly lin-
ear motion patterns, giving less overall aperture.

Impact of Aperture. We investigated the impact of
the trajectory’s aperture size on localization accuracy
through a micro-benchmark evaluation. To do this, rather
than providing the RF-visual SAR algorithm with the en-
tire trajectory for localization, we trimmed the trajectory
of each trial to a certain maximum aperture. For exam-
ple, to evaluate an aperture of 0.6 m, we only provided
the first 0.6 m of the user’s trajectory to the localization
algorithm.9 We repeated the same process for apertures
of different lengths, and computed the localization accu-
racy for each of them across all the experimental trials.

9The aperture of a trajectory is defined by the diagonal of the bound-
ing box encompassing the measurements in that trajectory.

1350 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Aperture (m)

0.0

0.5

1.0

1.5

Lo
ca

liz
a
ti

o
n
 E

rr
o
r

(m
)

90th Percentile

50th Percentile

10th Percentile

Figure 7: Impact of Aperture. Localization error vs the aperture of the
user’s trajectory. The plots show the 10th, 50th, and 90th percentiles.

Fig. 7 plots the L2-norm localization error as a func-
tion of the aperture. The plot shows the 10th (orange),
50th (pink), and 90th (purple) percentile errors across all
experimental trials. We make the following remarks:
• When limiting the aperture to 0.1 m, the 50th and 90th

percentile errors are 0.5 m and 1.5 m respectively. As the
aperture increases to 0.8 m, these errors drop to 0.11 m
and 0.96 m. This shows that for small apertures, X-AR’s
performance greatly improves as the user walks further.
• After the aperture reaches 0.8 m, the median errors be-
come relatively constant. For example, expanding the
aperture to 1.2 m only decreases the median error by
2 cm. This shows that increasing aperture after 0.8 m
does not improve the median localization accuracy.
• The 90th percentile continues to improve as the aper-
ture is increased from 0.8 m to 1.2 m, dropping by 0.43m.
This shows that larger apertures improve reliability.
• X-AR visualizes the RFID tag on the AR device
once the user’s walking trajectory allows for adequate
RF measurement aperture, such that X-AR is confident
about the RFID tag’s location, as described in §4.3. As a
result, the time it takes X-AR to find the requested item
is dependent on the user’s walking speed and trajectory.
Impact of SNR-based Weighting Function. We inves-
tigated how weighting measurements based on the re-
ceived SNR impacts the localization accuracy of X-AR.
We processed the experiments with SNR-based weight-
ing (Eq.4) and with uniform weighting (Eq.1) and cal-
culated the L2 norm of RFID localization error. Our
results showed that the SNR-based weighting improves
the robustness of the system, specifically in the 90th per-
centile localization accuracy. While the uniform weight-
ing and SNR-based weighting have a similar median er-
rors (around 10 cm), the 90th percentile in our SNR-
based weighting approach is 45 cm, while the uniform
weighting approach has 71 cm error.

7.2 In-Hand Verification
Next, we evaluated X-AR’s ability to successfully deter-
mine if the correct RFID tagged object was retrieved by
the user. We conducted 180 trials in total. In each trial,
the user grasped a tagged or non-tagged item and moved
their hand in a pick and place motion. In each trial, X-AR
predicted whether the RFID tag was in the user’s hand or
not, (i.e., the correct item being picked or not). We de-
fine a successful trial as one in which X-AR correctly

Precision Recall F-score

Extracting RFID-tagged 98% 100% 98.9%
item (LOS)

(without compensation) 98% 98% 98%

Picking boxed RFID-tagged 100% 85.1% 91.9%
item (NLOS)

(without compensation) 100% 74.3% 85%

Large Object (LOS+NLOS) 100% 87.5% 93%

Small Object (LOS+NLOS) 98% 93% 95.4%

Table 2: In-hand Verification Accuracy. The table reports the results
for in-hand verification across different evaluation scenarios. The re-
sults are reported as percentages for precision, recall, and F-measure.

determines whether or not the tag was in the user’s hand.
Table 2 reports the results for X-AR’s in-hand verifi-

cation algorithm. Here, Precision indicates the number
of trials where the target item was correctly classified in-
hand divided by the overall number of trials that systems
classified the target item as in-hand. Recall indicates the
number of trials where target item was correctly classi-
fied in-hand divided by the overall number of trials where
the target RFID tagged item was actually in the user’s
hand. We make the following remarks:
• X-AR achieves a 98% precision rate, and 100% recall
rate. These values demonstrate that when the user re-
trieves an item, X-AR can reliably and correctly predict
whether the target item has been picked up.
• The system has 98% precision rate, which indicates
2% of the trials when the system registered it as a poten-
tial retrieval, the user has picked up an incorrect item
(e.g., non-tagged item, or potentially an item that is
tagged with a different RFID). We suspect the reason for
some trials being mistakenly registered as positive arises
from multipath. Specifically, even though the user did
not pick up the target RFID-tagged item in these trials,
the wireless signal reflecting off the user’s hand during
motion creates an array of the multipath reflections. Such
multipath arrays may have inadvertently allowed localiz-
ing the headset, resulting in false positives.
Picking Boxed RFID-tagged items (NLOS): We also
evaluated whether X-AR can accurately verify when a
user picks up an RFID-tagged item that remains inside
a box during the picking process. While such scenarios
are less likely in practice (e.g., in warehousing or retail),
they may arise and serve to test the limit of our system in
performing RF-visual verification of RFIDs in NLOS.

The results for this experiment are shown in the third
row in Table 2. The results show that even though the re-
call rate drops, X-AR remains largely successful in per-
forming the verification, achieving a precision and recall
rate of 100% and 85.1%. This change in performance
can be attributed to the fact that when target tags are not
in line-of-sight (and are inside a box) their distance to
the user’s palm is markedly higher. This offset between
the tag location and visually extracted palm location im-
pacts the reverse SAR calculation. In the future, this may

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1351

0.0 0.1 0.2 0.3
Localization Error (m)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 8: CDF of Reverse SAR. CDF plots of the headset’s localiza-
tion accuracy by applying R-SAR on the trajectory of the target item.

be compensated for by estimating the potential location
of the RFID inside the box and/or investigating different
features from the AR headset’s built-in hand-tracking.
Impact of Motion Compensation: Recall from §5 that
X-AR’s RF-visual verification primitive compensates for
head tilts in the reverse SAR localization process. To in-
vestigate the impact of such compensation, we processed
the same experimental trials as above (for both LOS and
NLOS scenarios) without performing motion compensa-
tion and reported the results in Table 2. The table shows
that the recall rate drops for both LOS (from 100% to
98%) and NLOS scenarios (from 85.1% to 74.3%). This
demonstrates that by accounting for head tilts, X-AR’s
accuracy in prediction markedly improves.
Impact of Target Object Size: Next, we investigated the
impact of target object size on the verification accuracy.
Specifically, we divided our experimental trials between
objects of smaller and larger sizes. The object size was
determined by their longest dimension, using 10 cm as a
divider between objects that we referred to as small and
large - i.e, objects with largest dimension < 10 cm clas-
sified as small, and those with a dimension >10 cm clas-
sified as large. In practice, choosing a different threshold
does not make a significant difference, as the primary
goal of this experiment was to micro-benchmark the im-
pact of object size on verification accuracy.

The last two rows of Table 2 show the results com-
paring the accuracy for different object sizes, covering
both LOS and NLOS scenarios. The table shows that
smaller items have higher recall rate (93%) than larger
items (87.5%). This can be attributed to the fact that for
larger items, there is a larger offset between the tag lo-
cation and palm location. Specifically, recall from §5
that X-AR approximates an RFID’s location as the user’s
palm location (extracted from the AR-headset’s hand-
tracking module). As a result, the smaller the object
is, the more accurate this approximation is, leading to
higher accuracy for smaller objects. In the future, it
would be interesting to explore mechanisms that adapt
the threshold to the object size, or alternatively leverage
the RFID location inside the box and apply a transfor-
mation to the user’s palm to compensate for these differ-
ences and achieve higher accuracy for larger objects.
Reverse SAR Localization Accuracy. Our final result
looks into the reverse SAR localization accuracy. Re-

call from §5 that X-AR’s verification component relies
on the ability to correctly localize the headset (specif-
ically the AR-conformal antenna) by applying SAR on
the mobile tag. To investigate this primitive, we evalu-
ated the method’s ability to correctly locate the position
of the user’s head. Here, we defined the ground truth of
the location of the user’s head to be the visual-inertial
odometry-based location and estimated the error by cal-
culating the euclidean distance between the ground truth
and X-AR’s predicted location. We computed the local-
ization error for all scenarios where the user picks up an
RFID tagged item.10 Here, we included experimental tri-
als from LOS scenarios described above.

The CDF of the localization error is plotted in Fig. 8.
The figure shows that the method allows localizing the
headset using SAR with a median accuracy of 11 cm
and a 90th percentile accuracy of 19.6 cm. These results
show that even with simple pick and place movements,
X-AR can accurately locate a user’s head using reverse
SAR techniques, while compensating for head move-
ments. This high localization accuracy is why the system
can accurately verify picking RFID-tagged items.

8 Related Work
RFID Localization. RFID localization is a well-studied
problem in the networking community with researchers
exploring various techniques including received signal
strength (RSS) [20, 46], angle of arrival (AOA) [13, 36,
71], and wide-band sensing [40, 16, 39]. The closest to
X-AR is past work that leverages motion for RFID lo-
calization, which falls in two main categories. The first
places an antenna on robots that move along predefined
trajectories and leverage these trajectories to localize the
tags [57, 29, 45, 53, 17, 16, 44, 70, 14]. Our system
does not require users to move along specific (unnatu-
ral/robotic) trajectories, yet can still localize accurately
by leveraging natural movement. The second category
tracks RFIDs that are already in motion, e.g., for gesture
recognition [59, 65, 21, 66]. Our work differs from these
in that it can also localize stationary tags by using an AR
mounted antenna. Thus, our work is the first to bring
fine-grained RFID localization to AR headsets, address-
ing challenges that span antenna design, natural human
mobility, and various localization artifacts.
Augmented Reality. Augmented Reality (AR) refers
to systems that overlay a virtual world on top of the
physical world to enable new experiences and interac-
tions [12, 35]. Most prior work that leverages RF in
AR systems does not involve headsets altogether and
simply visualizes tagged items on a screen or a smart-
phone [49, 37, 62, 63]. This includes past work that

10Note that the error for non-tagged items is much higher since the
formulation does not hold. Empirically, the median localization error
for those scenarios is over a meter.

1352 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

deploys an RFID localization infrastructure in the envi-
ronment and uses it to localize tags and visualize their
locations on a screen [49, 37]. It also includes robotic
systems mounted with RFID readers and cameras to scan
the environment and send the result for visualization on
a screen[62, 63]. X-AR builds on this area and brings
RFID localization to AR headsets, addressing the associ-
ated challenges in antenna design, human mobility, and
headset-based localization. X-AR is also related to past
work that involves users wearing RFID readers on their
hands or in their backpacks to detect objects in the envi-
ronment [69, 54] or self-localize [64, 37]. X-AR differs
from these systems in directly integrating the localiza-
tion and sensor fusion into the headset itself, resulting in
a more natural and seamless AR experience.
Conformal Antennas. Antenna design is a mature
field that targets satisfying multiple requirements such
as compactness, robustness to flexing, radiation pattern,
and weight. The closest to our work are Bluetooth head-
set antennas desired to radiate outwards while close to
a human head, and designed to be mounted around the
ear or on glasses handles [23, 22, 34, 33]. These past
designs differ from our work in their bandwidth require-
ments, desired radiation pattern, and form factor. Other
wearable antennas were designed for safety helmets [24]
or smart glasses [60], but were either too bulky and ob-
structive or lacking the wideband operation desired for
wideband RFID localization. Loop antennas are simple,
and do not require a ground plane, but are inherently nar-
rowband. Past techniques such as tapering and slots help
improve their bandwidth, but none of the existing wide-
band loop antenna designs can simultaneously operate
at the desired frequency range while matching the di-
mensions of the visor [68, 61, 67]. Our proposed design
takes advantage of wideband antenna techniques to de-
liver a broadband, compact, and conformal loop antenna
that perfectly fits on the headset’s visor without covering
the cameras or blocking the user’s view.

9 Discussion and Limitations
Antenna Placement: In principle, one could design al-
ternate versions of our X-AR system by placing the an-
tenna on top of the headset, on the user’s shoulder, or
even in the user’s hand. However, these alternative ap-
proaches are suboptimal in most scenarios compared to
X-AR’s design. For example, in warehouses, pickers are
more efficient when they can use both hands (rather than
carring an antenna with one hand all the time). Similarly,
mounting large and heavy antennas on their shoulders or
heads would create undesirable additional weight which
may impact their balance. That said, it is possible that
such alternate implementations may be useful in certain
use-cases and can be explored as the research evolves.
Transmission Power: X-AR’s transmit power is lower

than that of existing wrist-worn RFID readers [10]
since bladeRF software-defined radios transmit less than
8dBm. This is also lower than the power transmitted
by Apple AirMax headphones, which use Bluetooth 5.0
technology and have a maximum transmission power
of 20 dBm [1, 2]. In production systems, X-AR could
leverage a deployed RFID reader infrastructure to power
RFID tags in the environment, and an X-AR headset for
wideband measurements for localization, UI, etc.
RFID reliability: Our implementation of X-AR inherits
the typical limitations of RF/RFID signals. For example,
it cannot detect or localize items inside closed metallic
boxes. However, it can still read RFIDs on metal or liq-
uid bottles if proper tags are used. Moreover, due to its
wideband sensing capabilities, it can work in multipath-
rich environments, including those with metal shelving,
as demonstrated in our evaluation.
Form factor: As X-AR moves closer to commercial de-
ployments, we envision that the entire RF sensing hard-
ware can be integrated into the headset. In particular,
while our proof-of-concept prototype was implemented
using software radios and a Raspberry Pi, future ver-
sions may be designed in form factors similar to existing
RFID reader chips (e.g., Lepton3 [18] that are around
1”x1”x0.1”), thus small enough to fit into AR headsets.
Range: The operation range of X-AR is approximately
3-4 meters which is similar to mobile (portable) hand-
held RFID readers on the market [3]. While this range
is lower than stationary readers (which can reach around
10 m), that is primarily because stationary ones typically
transmit much higher power. In contrast, handheld read-
ers usually transmit lower power to conserve their battery
life, and we envision the same would be desired for fu-
ture readers integrated in headsets like X-AR.

10 Conclusion
The past few years have witnessed remarkable advances
in augmented reality and its metaverse applications. Mo-
tivated by these advances, this paper brings a new sens-
ing modality to AR systems through networked RF sens-
ing, giving them the ability to perceive what used to be
invisible to the human eye and to existing AR headsets.
In doing so, the paper opens the door to more exciting ca-
pabilites and applications at the intersection of RF sens-
ing and AR systems. As the research evolves it would
be interesting to explore how various networked wireless
sensing modalities and sensor fusion techniques - span-
ning RFID, WiFi, mmWave, and THz - can further aug-
ment augmented reality and open new possibilities in vi-
sualization and interaction.
Acknowledgments We thank the anonymous reviewers, our shepherd
Dr. Behnaz Arzani, and the Signal Kinetics group for their help and
feedback. We also thank Yuechen Wang for her help with UI design and
implementation. This research is sponsored by NSF (Awards #1844280
and #2044711), the Sloan Research Fellowship, and MIT Media Lab.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1353

References

[1] Apple air max pro specifications. https://www.

apple.com/airpods-max/specs. Apple Inc. .

[2] BLUETOOTH SPECIFICATION Version
5.0. https://www.bluetooth.org/en-us/

specification/adopted-specifications.
Vol 6, Part A, Page 2536.

[3] RFD40 UHF RFID STANDARD SLED .
https://www.zebra.com/us/en/products/

spec-sheets/rfid/rfid-handhelds/rfd40.

htmll. Zebra Technologies.

[4] ALN-9640 Squiggle Inlay, 2014. Alien Technology
Inc.

[5] A New Era for RFID in Retail. https:

//www.accenture.com/_acnmedia/PDF-155/

Accenture-RFID-In-Retail.pdf, 2021.
Accenture.

[6] About HoloLens 2. Microsoft,
2022. https://docs.microsoft.com/en-
us/hololens/hololens2-hardware.

[7] From Apple to Google, big tech is building
VR and AR headsets. The Economist, 2022.
https://www.economist.com/business/2022/04/09/from-
apple-to-google-big-tech-is-building-vr-and-ar-
headsets.

[8] Hand tracking. Microsoft, 2022.
https://docs.microsoft.com/en-us/windows/mixed-
reality/mrtk-unity/mrtk2/features/input/hand-
tracking?view=mrtkunity-2022-05.

[9] HoloLens 2. Microsoft, 2022.
https://www.microsoft.com/en-us/hololense.

[10] 1153 Bluetooth Wearable UHF RFID Reader,
Technology Solutions Ltd. Microsoft, 2023.
www.tsl.com/products/1153-bluetooth-wearable-
uhf-rfid-reader/.

[11] Fadel Adib and Dina Katabi. See through walls
with Wi-Fi! In ACM SIGCOMM, 2013.

[12] Ronald T. Azuma. A Survey of Augmented Reality.
Presence: Teleoperators and Virtual Environments,
6(4):355–385, 08 1997.

[13] Salah Azzouzi, Markus Cremer, Uwe Dettmar,
Rainer Kronberger, and Thomas Knie. New mea-
surement results for the localization of uhf rfid
transponders using an angle of arrival (aoa) ap-
proach. In 2011 IEEE International Conference on
RFID, pages 91–97, 2011.

[14] Tara Boroushaki, Laura Dodds, Nazish Naeem, and
Fadel Adib. Fusebot: Rf-visual mechanical search.
Robotics: Science and Systems 2022, 2022.

[15] Tara Boroushaki, Laura Dodds, Nazish Naeem, and
Fadel Adib. Fusebot: Mechanical search of rigid
and deformable objects via multi-modal percep-
tion. 2023.

[16] Tara Boroushaki, Junshan Leng, Ian Clester, Al-
berto Rodriguez, and Fadel Adib. Robotic grasp-
ing of fully-occluded objects using rf perception.
In 2021 International Conference on Robotics and
Automation (ICRA). IEEE, 2021.

[17] Tara Boroushaki, Isaac Perper, Mergen Nachin, Al-
berto Rodriguez, and Fadel Adib. Rfusion: Robotic
grasping via rf-visual sensing and learning. In Pro-
ceedings of the 19th ACM Conference on Embed-
ded Networked Sensor Systems, pages 192–205,
2021.

[18] CAEN RFID. https://www.caenrfid.com/en/
products/r3100-lepton3/, 2023.

[19] A Cai, TSP See, and Zhi Ning Chen. Study of hu-
man head effects on uwb antenna. In IWAT 2005.
IEEE International Workshop on Antenna Technol-
ogy: Small Antennas and Novel Metamaterials,
2005., pages 310–313. IEEE, 2005.

[20] Kirti Chawla, Christopher McFarland, Gabriel
Robins, and Connor Shope. Real-time rfid local-
ization using rss. In 2013 International Conference
on Localization and GNSS (ICL-GNSS), pages 1–6.
IEEE, 2013.

[21] Kang Cheng, Ning Ye, Reza Malekian, and
Ruchuan Wang. In-air gesture interaction: Real
time hand posture recognition using passive rfid
tags. IEEE Access, 7:94460–94472, 2019.

[22] Aykut Cihangir, Chinthana J Panagamuwa, Will G
Whittow, Gilles Jacquemod, Frédéric Gianesello,
Romain Pilard, and Cyril Luxey. Dual-band 4g eye-
wear antenna and sar implications. IEEE Trans-
actions on Antennas and Propagation, 65(4):2085–
2089, 2017.

[23] Aykut Cihangir, Will G Whittow, Chinthana J
Panagamuwa, Fabien Ferrero, Gilles Jacquemod,
Frédéric Gianesello, and Cyril Luxey. Feasibility
study of 4g cellular antennas for eyewear communi-
cating devices. IEEE Antennas and Wireless Prop-
agation Letters, 12:1704–1707, 2013.

1354 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.apple.com/airpods-max/specs
https://www.apple.com/airpods-max/specs
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.zebra.com/us/en/products/spec-sheets/rfid/rfid-handhelds/rfd40.htmll
https://www.zebra.com/us/en/products/spec-sheets/rfid/rfid-handhelds/rfd40.htmll
https://www.zebra.com/us/en/products/spec-sheets/rfid/rfid-handhelds/rfd40.htmll
https://www.accenture.com/_acnmedia/PDF-155/Accenture-RFID-In-Retail.pdf
https://www.accenture.com/_acnmedia/PDF-155/Accenture-RFID-In-Retail.pdf
https://www.accenture.com/_acnmedia/PDF-155/Accenture-RFID-In-Retail.pdf
https://www.caenrfid.com/en/products/r3100-lepton3/
https://www.caenrfid.com/en/products/r3100-lepton3/

[24] Estefania Crespo-Bardera, Aaron Garrido Martin,
Alfonso Fernandez-Duran, and Matilde Sanchez-
Fernandez. Design and analysis of conformal an-
tenna for future public safety communications: En-
abling future public safety communication infras-
tructure. IEEE Antennas and Propagation Maga-
zine, 62(4):94–102, 2020.

[25] Elizabeth Culliford and Nivedita Balu.
Facebook invests billions in metaverse ef-
forts as ad business slows. Reuters, 2021.
https://www.reuters.com/technology/facebook-
revenue-misses-estimates-apples-privacy-rules-
bite-2021-10-25/.

[26] Till Dengel. Disruption Denied: How
Next-Generation Logistics Create A Re-
silient Supply Chain. Forbes, 2022.
www.forbes.com/sites/sap/2022/06/01/disruption-
denied-how-next-generation-logistics-creates-a-
resilient-supply-chain/?sh=7152e93744b9.

[27] Heidi Fillmore and Tony Storr. AR and
VR in the workplacel. Forbes, 2020.
https://www.ibm.com/thought-leadership/institute-
business-value/report/ar-vr-workplace.

[28] Susan Galer. Virtual Reality Emerges As
Powerful Employee Training Tool. Forbes, 2022.
https://www.forbes.com/sites/sap/2022/05/24/virtual-
reality-emerges-as-powerful-employee-training-
tool/?sh=895d9166969b.

[29] Matthias Gareis, Christian Carlowitz, and Martin
Vossiek. A mimo uhf-rfid sar 3d locating system for
autonomous inventory robots. In 2020 IEEE MTT-S
International Conference on Microwaves for Intel-
ligent Mobility (ICMIM), pages 1–4, 2020.

[30] Lana Gates. How Augmented Reality Can
Improve Employee Performance. Insight,
2018. www.insight.com/en US/content-and-
resources/2018/08062018 -how-augmented-reality
-can-improve- employee- performance.html.

[31] GS1 EPC global Inc., 2015.

[32] Peter S Hall and Yang Hao. Antennas and prop-
agation for body-centric wireless communications.
Artech house, 2012.

[33] W Haydar, Sally AlSayah, and R Sarkis. De-
sign and analysis of conformal antennas for smart
glasses. In 12th European Conference on Antennas
and Propagation (EuCAP 2018), pages 1–5. IET,
2018.

[34] Henrik Jidhage and Anders Stjernman. Hooked
loop antenna concept for bluetooth headset appli-
cations. In IEEE Antennas and Propagation Soci-
ety Symposium, 2004., volume 4, pages 3521–3524.
IEEE, 2004.

[35] Gregory Kipper and Joseph Rampolla. Augmented
reality: An emerging technologies guide to AR. El-
sevier, 2012.

[36] Rainer Kronberger, Thomas Knie, Roberto
Leonardi, Uwe Dettmar, Markus Cremer, and
Salah Azzouzi. Uhf rfid localization system based
on a phased array antenna. 2011 IEEE Interna-
tional Symposium on Antennas and Propagation
(APSURSI), pages 525–528, 2011.

[37] Sebastian Kunkel, Robert Bieber, Ming-Shih
Huang, and Martin Vossiek. A concept for
infrastructure independent localization and aug-
mented reality visualization of rfid tags. In 2009
IEEE MTT-S International Microwave Workshop
on Wireless Sensing, Local Positioning, and RFID,
pages 1–4, 2009.

[38] Yang Liu, Haiwei Dong, Longyu Zhang, and Ab-
dulmotaleb El Saddik. Technical evaluation of
hololens for multimedia: A first look. IEEE Multi-
Media, 25(4):8–18, 2018.

[39] Zhihong Luo, Qiping Zhang, Yunfei Ma, Manish
Singh, and Fadel Adib. 3d backscatter localization
for fine-grained robotics. In 16th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI 19), pages 765–782, 2019.

[40] Yunfei Ma, Nicholas Selby, and Fadel Adib. Mind-
ing the billions: Ultra-wideband localization for de-
ployed rfid tags. In Proceedings of the 23rd annual
international conference on mobile computing and
networking (MobiCom), pages 248–260, 2017.

[41] Sarmad Nozad Mahmood, Asnor Juraiza Ishak,
Tale Saeidi, Hussein Alsariera, Sameer Alani,
Alyani Ismail, and Azura Che Soh. Recent ad-
vances in wearable antenna technologies: a review.
progress in Electromagnetics Research B, 89:1–27,
2020.

[42] Microsoft. https://docs.microsoft.com/

en-us/windows/mixed-reality/develop/

unity/camera-in-unity, 2022. Camera setup
in Unity.

[43] Microsoft Visual Studio. visualstudio.

microsoft.com, 2022.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1355

https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/camera-in-unity
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/camera-in-unity
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/camera-in-unity
visualstudio.microsoft.com
visualstudio.microsoft.com

[44] Robert Miesen, Fabian Kirsch, and Martin Vossiek.
Uhf rfid localization based on synthetic apertures.
IEEE Transactions on Automation Science and En-
gineering, 10(3):807–815, 2013.

[45] A. Motroni, P. Nepa, P. Tripicchio, and M. Un-
etti. A multi-antenna sar-based method for uhf rfid
tag localization via ugv. In 2018 IEEE Interna-
tional Conference on RFID Technology Application
(RFID-TA), pages 1–6, 2018.

[46] Lionel M. Ni, Yunhao Liu, Yiu Cho Lau, and Ab-
hishek P. Patil. Landmarc: Indoor location sensing
using active rfid. Wireless Networks, 10:701–710,
2003.

[47] Nuand, BladeRF 2.0 Micro. https://www.

nuand.com/bladerf-2-0-micro/, 2021.

[48] Vanja Plicanic, Buon Kiong Lau, Anders Derneryd,
and Zhinong Ying. Actual diversity performance of
a multiband diversity antenna with hand and head
effects. IEEE Transactions on Antennas and Prop-
agation, 57(5):1547–1556, 2009.

[49] Zulqarnain Rashid, Enric Peig, and Rafael Pous.
Bringing online shopping experience to offline re-
tail through augmented reality and rfid. In 2015 5th
International Conference on the Internet of Things
(IOT), pages 45–51, 2015.

[50] Robotic Operating System. www.ros.org, 2020.
Noetic.

[51] Anshel Sag. Why Microsoft Won The $22 Bil-
lion Army Hololens 2 AR Deal. Forbes, 2021.
https://www.forbes.com/sites/moorinsights/2021/04/06/why-
microsoft-won-the-22-billion-army-hololens-2-ar-
deal/.

[52] Anshel Sag. Apple teases metaverse
AR plans, stock jumps. Reuters, 2022.
https://www.reuters.com/technology/apple-teases-
metaverse-ar-plans-stock-jumps-2022-01-28/.

[53] Longfei Shangguan and Kyle Jamieson. The de-
sign and implementation of a mobile rfid tag sorting
robot. In Proceedings of the 14th annual interna-
tional conference on mobile systems, applications,
and services (MobiSys), pages 31–42, 2016.

[54] TeamViewer. https://www.teamviewer.com/

en-us/frontline/xpick/, 2022.

[55] Russ Tedrake. Robotic Manipulation. 2021.

[56] Unity Technologies. unity.com, 2022.

[57] Jue Wang, Fadel Adib, Ross Knepper, Dina Katabi,
and Daniela Rus. Rf-compass: Robot object manip-
ulation using rfids. In Proceedings of the 19th an-
nual international conference on Mobile computing
& networking (MobiCom), pages 3–14, 2013.

[58] Jue Wang and Dina Katabi. Dude, where’s my
card? rfid positioning that works with multipath
and non-line of sight. In Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM, pages
51–62, 2013.

[59] Jue Wang, Deepak Vasisht, and Dina Katabi. Rf-
idraw: virtual touch screen in the air using rf sig-
nals. In ACM SIGCOMM, 2015.

[60] Yan-Yan Wang, Yong-Ling Ban, and Yanhui Liu.
Sub-6ghz 4g/5g conformal glasses antennas. IEEE
Access, 7:182027–182036, 2019.

[61] Kunpeng Wei, Zhijun Zhang, and Zhenghe Feng.
Design of a wideband horizontally polarized om-
nidirectional printed loop antenna. IEEE Antennas
and Wireless Propagation Letters, 11:49–52, 2012.

[62] Lei Xie, Jianqiang Sun, Qingliang Cai, Chuyu
Wang, Jie Wu, and Sanglu Lu. Tell me what i see:
Recognize rfid tagged objects in augmented reality
systems. In Proceedings of the 2016 ACM Inter-
national Joint Conference on Pervasive and Ubiq-
uitous Computing, UbiComp ’16, page 916–927,
New York, NY, USA, 2016. Association for Com-
puting Machinery.

[63] Lei Xie, Chuyu Wang, Yanling Bu, Jianqiang Sun,
Qingliang Cai, Jie Wu, and Sanglu Lu. Taggedar:
An rfid-based approach for recognition of multiple
tagged objects in augmented reality systems. IEEE
Transactions on Mobile Computing, 18(5):1188–
1202, 2019.

[64] Akihiro Yamashita, Kei Sato, Syunta Sato, and Kat-
sushi Matsubayashi. Pedestrian navigation system
for visually impaired people using hololens and
rfid. In 2017 Conference on Technologies and Ap-
plications of Artificial Intelligence (TAAI), pages
130–135, 2017.

[65] Lei Yang, Yekui Chen, Xiang-Yang Li, Chaowei
Xiao, Mo Li, and Yunhao Liu. Tagoram: Real-time
tracking of mobile rfid tags to high precision us-
ing cots devices. In Proceedings of the 20th annual
international conference on Mobile computing and
networking, pages 237–248. ACM, 2014.

[66] Lei Yang, Yekui Chen, Xiang-Yang Li, Chaowei
Xiao, Mo Li, and Yunhao Liu. Tagoram: Real-time

1356 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.nuand.com/bladerf-2-0-micro/
https://www.nuand.com/bladerf-2-0-micro/
www.ros.org
https://www.teamviewer.com/en-us/frontline/xpick/
https://www.teamviewer.com/en-us/frontline/xpick/
unity.com

tracking of mobile rfid tags to high precision us-
ing cots devices. In Proceedings of the 20th annual
international conference on Mobile computing and
networking, pages 237–248, 2014.

[67] KY Yazdanboost and Ryuji Kohno. Ultra wideband
l-loop antenna. In 2005 IEEE International Con-
ference on Ultra-Wideband, pages 201–205. IEEE,
2005.

[68] Junho Yeo and Jong-Ig Lee. Miniaturized wide-
band loop antenna using a multiple half-circular-
ring-based loop structure and horizontal slits for
terrestrial dtv and uhd tv applications. Sensors,
21(9):2916, 2021.

[69] J. Zhang, S.K. Ong, and A.Y.C. Nee. Rfid-assisted
assembly guidance system in an augmented reality
environment. International Journal of Production
Research, 49(13):3919–3938, 2011.

[70] Run Zhao, Dong Wang, Qian Zhang, Haonan Chen,
and Huatao Xu. Pec: Synthetic aperture rfid local-
ization with aperture position error compensation.
In 2019 16th Annual IEEE International Confer-
ence on Sensing, Communication, and Networking
(SECON), pages 1–9, 2019.

[71] Jun Zhou, Hongjian Zhang, and Lingfei Mo. Two-
dimension localization of passive rfid tags using
aoa estimation. 2011 IEEE International Instru-
mentation and Measurement Technology Confer-
ence, pages 1–5, 2011.

Appendix

Simulated and Measured Antenna Perfor-
mance

Fig. 9 shows the simulated radiation pattern of the an-
tenna mounted in this figure on the Hololens for visu-
alization, demonstrating that the pattern is almost omni-
directional (with a directivity of 4 dB), allowing the RF
sensing module to localize items in the surrounding 3D
environment. The fabricated conformal antenna was then
placed on the headset and worn by the user to measure
the gain across frequencies and elevation angles. The
user was tilting their head up and down to mimic a sce-
nario where they are looking for an item in the environ-
ment. The measured gains demonstrate the ability of the
antenna to operate efficiently across a wide range of fre-
quencies and elevation angles.

Figure 9: Conformal antenna 3D radiation pattern. Simulated radi-
ation pattern of AR-conformal antenna visualized on the AR headset.

Figure 10: Conformal antenna measured gains. Measured gains
across different elevations of AR-conformal antenna when mounted on
the headset and worn by the user. The user was tilting their head up and
down to cover the elevation plane.

Background on SAR

Performing RFID localization using SAR involves 3
steps:

1. The first step is to compute the RFID’s channel at
each measurement location. As an RFID reader queries
different tags in the environment, it can compute the
wireless channel h for each of these tags by leverag-
ing the received signal s(t) and the tag’s known packet
preamble p(t) using the following equation [40]:

h = ∑
t

s(t)p∗(t) (10)

where p∗(t) is the conjugate of p(t).

2. Given the wireless channel from different antenna lo-
cations, the second step is to estimate the power arriving
from each (x,y,z) location within the workspace. This
can be done with the following equations:

P(x,y,z) =

∣∣∣∣∣
∣∣∣∣∣ 1
N

N

∑
i=1

hie
4πdi(x,y,z)

λ

∣∣∣∣∣
∣∣∣∣∣ (11)

di(x,y,z) =
√
(x− xi)2 +(y− yi)2 +(z− zi)2 (12)

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1357

where P(x,y,z) is the estimated received power, N is
the number of measurements taken, hi is the ith channel
estimate, and λ is the wavelength of the used signal.11

(xi,yi,zi) is the location of the ith measurement, and di is
the distance from (xi,yi,zi) to (x,y,z).

3. The third step is to localize the tag by assigning its
location to the (x,y,z) location with the highest power.
Formally, the location of the tag, ptag, is:

ptag = argmax(x,y,z)(P(x,y,z)) (13)

Finally, past work has shown that including frequency
diversity (i.e., wideband measurements) in addition to
SAR’s spatial diversity can improve the localization ac-
curacy. To do this, wideband SAR takes measurement
across a wide range of distinct frequencies and coher-
ently combines the measurements for each frequency and
each location. Formally:

P(x,y,z) =

∣∣∣∣∣
∣∣∣∣∣ 1
M

1
N

M

∑
j=1

N

∑
i=1

hi, je
4πdi(x,y,z)

λ j

∣∣∣∣∣
∣∣∣∣∣ (14)

where M is the number of frequencies used, hi, j is the
channel measurement of the ith location with the jth fre-
quency, and λ j is the wavelength of jth frequency.

Impact of Headset Self-Tracking Error

As mentioned before, X-AR uses the headset’s built-
in self-tracking to enable AR-based SAR and localize
RFID tags in the environment. One important question
is whether the accuracy of the Microsoft Hololens’ self-
tracking is sufficient to support SAR and accurate RFID
localization, especially over a random human walking
trajectory. Prior reports have evaluated the accuracy of
Hololens self-tracking [38] showing an average error of
0.56 cm.

To investigate the impact of self-tracking error, we
simulated X-AR’s SAR-based RFID localization and
added an average of 0.56cm self-tracking error into our
simulation. We compared this to a simulation of SAR
with an ideal self-tracking system (i.e., 0 cm self tracking
error). Fig. 11 plots a CDF of the L2 norm of the simu-
lated localization error for a headset with ideal tracking
(orange) and for a headset with simulated self-tracking
error (purple). We make the following remarks:

• When simulating the Hololens with self-tracking error,
X-AR is able to achieve a median of 8.1 cm. This high
accuracy demonstrates that the self-tracking accuracy of
the Hololens is sufficient for SAR-based localization.
• The simulated localization accuracy is close to the em-
pirical evaluation (9.8 cm in §7.1).

11Note that the exponent contains an extra multiple of 2, since the
signal travels 2di from the antenna to the tag and back to the antenna.

• When simulating an ideal headset (with no tracking
error), the median localization error is 2.7 cm. This
implies that as the AR headset self-tracking technology
evolves, the performance of X-AR in localizing RFID
tagged target items will further improve (albeit, it’s not
clear whether 2.7cm would yield meaningful UI/UX im-
provements for our use-cases on top of the 8.1cm accu-
racy).

Figure 11: Impact of Headset Self-Tracking Error. CDF of simu-
lated L2 norm of RFID localization error for a headset with an ideal
self tracking module (orange) and for a headset with simulated self-
tracking error (purple)

1358 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acoustic Sensing and Communication Using Metasurface

Yongzhao Zhang+, Yezhou Wang+, Lanqing Yang+, Mei Wang†

Yi-Chao Chen+∗, Lili Qiu†∗, Yihong Liu♮, Guangtao Xue+, Jiadi Yu+
+Shanghai Jiao Tong University, †UT Austin, ∗Microsoft Research Asia, ♮University of Glasgow

Abstract
Acoustic sensing is increasingly popular owing to widely

available devices that support them. Yet the sensing resolution
and range are still limited due to limited bandwidth and sharp
decay in the signal at inaudible frequencies. Inspired by recent
development in acoustic metasurfaces, in this paper, we first
perform an in-depth study of acoustic metasurface (AMS)
and compare it with the phased array speaker. Our results
show that AMS is attractive as it achieves a significant SNR
increase while maintaining a compact size. A major limitation
of existing AMS is its static configuration. Since our target
may be at any possible location, it is important to support
scanning in different directions. We develop a novel acoustic
system that leverages a metasurface and a small number of
speakers. We jointly optimize the configuration of metasur-
face and transmission signals from the speakers to achieve
low-cost dynamic steering. Using a prototype implementation
and extensive evaluation, we demonstrate its effectiveness
in improving SNR, acoustic sensing accuracy, and acoustic
communication reliability over a wide range of scenarios.

1 Introduction

Motivation: Acoustic sensing and communication are be-
coming increasingly popular due to widely available devices
that support it, including smartphones, smart speakers, and
many IoT devices. Many interesting sensing systems have
been proposed using acoustic signals (e.g., [15, 25, 35–39,
42, 51, 57, 65]). For example, [35, 36, 42, 51, 57, 65] develop
smartphone based approaches that transmit inaudible acous-
tic signals to track a target’s distance, position, and move-
ment. [38, 52] enables more accurate sensing by exploiting
a microphone array on a smart speaker. [11] develops acous-
tic communication systems as an NFC alternative, [9] de-
signs an underwater messaging system using acoustic signals

Yongzhao Zhang, Yezhou Wang, Lanqing Yang, Yihong Liu did this
work as interns at Microsoft Research Asia and Yi-Chao Chen did this work
as a visiting researcher at Microsoft Research Asia.

since acoustic signals attenuate slower than RF signals. Re-
fer to [5, 12] for more comprehensive surveys on the under-
water acoustic communication systems. Despite significant
advances in acoustic sensing, there is a fundamental limit
on its sensing range and resolution as shown in the Cramer-
Rao bound, which indicates the sensing resolution is limited
by SNR and the number of transmitters and receivers. Simi-
larly, acoustic communication also faces similar challenges
according to the Shannon capacity.

In order to further improve the performance, one could
increase the number of transceivers. However, increasing the
number of transceivers increases the cost, size, and energy
consumption. In addition, existing sound cards cannot support
more than 8 channels. All of these factors significantly limit
their applicability in a real-world deployment.

Another option is to adopt an acoustic lens (or acoustic
metasurface, AMS). Like optical lenses, acoustic lenses can
steer the direction of acoustic wave propagation and focus in
a certain region. However, an acoustic metasurface is usually
bulky due to the large wavelength of acoustic waves. Recently
there emerged some metasurface quantization designs (e.g.,
[40, 41]). They comprise many sub-wavelength cells, where
each cell can act like a mini-antenna and modify the phase
and/or intensity of the incident wave so that collectively the
AMS can manipulate the wave in an interesting way (e.g.,
steer the outgoing wave towards a certain direction).

Our approach: Inspired by the potential benefit of AMS,
we first compare a passive AMS with beamforming using mul-
tiple speakers. We find beamforming using 3 and 6 speakers
increases SNR by 4.7dB and 7.9dB, respectively. In compar-
ison, an acoustic metasurface of size 16× 16 cells under 1
speaker increases SNR by 15.5dB. The results suggest AMS
is attractive since it can significantly increase the SNR using
a compact design without consuming power. To achieve a
similar SNR increase, we need 36 speakers spanning 30cm,
which is bulky and challenging to deploy.

While passive AMS is attractive, the existing AMS can sup-
port only static configuration (e.g., always beamform towards

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1359

B
ea

m
 0

Beam 2Beam 1

1 2 … N

… Speaker array

Metasurface
… j

Figure 1: Dynamic beam steering with speaker array and
acoustic metasurface (AMS).

a fixed angle). Since the target can be at any location, dy-
namic beam steering is necessary. One option is through the
mechanical movement of the AMS, which not only increases
the cost but also limits the speed of adaptation. In this paper,
we propose combining beamforming using a small number of
speakers with AMS, as shown in Figure 1, to achieve the best
of both worlds: the use of AMS allows us to keep the number
of speakers low while still achieving sharp beam, large SNR
gain, and high resolution; the use of beamforming even using
very few speakers can enable dynamic steering without move-
ment. A small number of speakers with a passive AMS can
achieve similar beamforming resolution as a large number of
speakers. For example, our evaluation shows using an AMS
with 16x16 cells and a 6-speaker phased array is comparable
to a 9x16=144 phased array in terms of beam width.

To this end, we develop a novel algorithm to jointly opti-
mize the AMS configuration and beamforming weights for
the phase array. Specifically, the joint AMS and beamform-
ing design can be formulated as an optimization problem
whose objective is to maximize the signal strength along each
of the desired angles (e.g., sampled from a range of angles)
and minimize the performance variance across these angles
and energy in the side lobes. We use the gradient projection
method to solve the optimization problem. In addition, we
augment our optimization framework to further optimize the
speakers’ placement and improve the performance.

Based on our designed algorithm, we implement an acous-
tic system that comprises a 3D-printed AMS, 6 speakers, and
a microphone. We apply our algorithm to steer the outgoing
beam in real time. We evaluate our design using (i) SNR of the
received signal, (ii) sensing performance (i.e., distance estima-
tion using Frequency Modulated continuous Waves (FMCW)
and angle estimation using the MUltiple SIgnal Classification
(MUSIC) algorithm), and (iii) the communication error.

Our contributions can be summarized as follow:

• Using extensive evaluation and analysis, we shed light
on the benefits of phased array versus AMS.

• We jointly optimize AMS and phased array configura-
tions to enable dynamic beam steering and high SNR.

• We further improve the performance by optimizing the
speaker placement.

• We develop an acoustic system based on our joint de-
sign of AMS and beamforming and apply it to acoustic
sensing and communication. Our evaluation shows our
system yields a significant improvement in SNR, dis-
tance estimation, angle estimation, and communication
reliability. In particular, leveraging AMS and phased
array allows us to dynamically steer the beam to the de-
sired direction and boost SNR by 18.4dB over a single
speaker without AMS. The improved SNR in turn in-
creases the acoustic sensing and communication ranges.
Our approach increases the sensing range from 1.5m in a
single speaker without AMS to 4m using 6-speaker with
AMS; similarly, it increases the communication range
from 0.8m to 3.9m.

Paper outline: We review existing work in Section 2, and
introduce acoustic metasurface in Section 3. We describe
our algorithm to jointly optimize AMS and speaker array
system in Section 4. We present our simulation and testbed
experiment results in Section 5. We discuss the limitation and
future work in Section 6. We conclude in Section 7.

2 Related Work

Our work is closely related to wireless sensing, acoustic com-
munication, acoustic metasurface, and phased array.

Wireless sensing: Wireless sensing has become increas-
ingly popular due to many important applications. Many
algorithms and systems have been developed recently us-
ing acoustic [15, 25, 30, 35, 42, 45, 51, 57, 64, 65, 67], WiFi
(e.g., [21, 47, 50]), mmWave (e.g., [20, 58, 61]), and RFID
signals (e.g., [17, 34, 53–55]).

Among them, acoustic sensing is appealing due to its high
accuracy and widely available commodity devices that sup-
port it. They use time of flight (e.g., BeepBeep [45]), Doppler
shift (e.g., AAMouse [64]), FMCW (e.g., [35,42]), phase (e.g.,
[57]), correlation (e.g., [43]), channel impulse response (e.g.,
Strata [65]), and Angle of Arrival (AoA) (e.g., [38, 49, 56])
for sensing. Some works also leverage machine learning for
acoustic sensing (e.g., by applying neural networks to either
post-processed signals or raw signals) and show ML based
sensing is promising.

There are also significant works on sensing using RF sig-
nals. Some leverage similar algorithms as in acoustic sensing,
while others explore new features and algorithms. For exam-
ple, [33] use Channel State Information (CSI). Tagyro [59]
tracks rotation using an array of passive RFID tags and two
orthogonal RFID reader antennas. [46] further exploits po-
larization to track rotation and translation movement. [22]
pushes the tracking accuracy to sub-centimeter level using a
large phased array and large bandwidth.

1360 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acoustic Communication: Sound has been a popular way
of communicating information. Interestingly, we can also en-
code and transmit digital data over the acoustic channel. At
a high level, it is essentially the same as RF communication
but uses a different frequency. A number of interesting sys-
tems have been developed for acoustic digital communication
(e.g., [11, 23, 66]) as an alternative to Near Field Commu-
nication (NFC) owing to the wide availability of speakers
and microphones that support acoustic communication. Many
of them leverage OFDM due to its robustness to multipath
fading. Therefore, we also adopt the OFDM based acoustic
communication in our work.

Acoustic metasurface: Ultimately, the accuracy of acous-
tic sensing depends on the SNR and numbers of speakers
and microphones. Acoustic metasurface can boost SNR us-
ing a passive 2D structure, which can help improve sensing
performance. A metasurface has many unit cells, and each
cell can be potentially treated as a mini sound source. In
this way, AMS effectively increases the number of speak-
ers, thereby improving sensing resolution. By controlling the
phase and/or amplitude of acoustic wave propagation through
each unit cell, AMS can manipulate the wave fields. Many
designs of acoustic metasurface have been proposed in the lit-
erature [6, 32]. Coiling-up space structure [27–29, 40, 41, 60]
achieves phase manipulation by forcing acoustic waves to
propagate along a coiled path. Helmholtz-resonator-like struc-
ture [13, 26] produces a tunable phase velocity and a high
transmission efficiency with multiple Helmholtz resonators.
Membrane-type structure [14, 19, 44, 62, 63] eliminates reflec-
tion with carefully designed membrane resonators. The above
designs are not reconfigurable. There are active acoustic meta-
surfaces [10, 18, 24], as well. They use mechanical structure
or emerging materials that can be deformed under the control
of a magnetic field or electric current. However, these designs
are expensive and bulky to implement.

Our work is inspired by [40, 41]. [40] develops a power-
ful methodology that assembles many sub-wavelength pre-
manufactured 3D units into an acoustic metasurface. Each
unit encodes a specific phase offset. By re-arranging these
units, one can produce many different metasurfaces. Since
acoustic sensing/communication usually use inaudible sounds
with much smaller wavelength to avoid disturbance, the
coiling-up metasurface is more compact than Helmholtz-
resonator and membrane-type structure. [41] discusses sev-
eral applications of these metasurfaces, including generating
acoustic collimator, acoustic magnifying glasses, and acous-
tic telescopes. Our work goes beyond [40, 41] by enabling
dynamic steering through combining multiple speakers with
AMS and applying it to acoustic sensing and digital commu-
nication.

[16] proposes using 3D-printed metamaterial to cover the
microphone and embed the direction-based signature. During
the calibration stage, recordings from all possible angles are

collected. During the online usage, the current recording is
compared with all recordings collected in the calibration to
find the best match, which is used for AoA estimation. [7]
develops an acoustic sensing system that uses 3D printed
smart surface to embed direction information into the sig-
nals for generating a depth map. Our work is related to the
above work but goes beyond them by (i) eliminating labor-
intensive calibration and (ii) directly increasing SNR and
sensing resolution, which can benefit any sensing or commu-
nication approaches instead of tailing to one specific sensing
scheme. Therefore our design is more general and support
more applications. Moreover, our optimization framework
for configuring AMS and a speaker array is flexible and can
support a range of important what-if analyses. Our adoption
of a regular shaped AMS also makes it easier to analyze and
optimize its impact on the overall system performance.

Phased array: Multiple transmitters and/or multiple re-
ceivers can be used to strengthen the received signals. At
the transmitter end, beamforming can be used to generate
transmissions that arrive in phase at the receiver so that the
multipath signals are added up constructively. At the receiver
end, the receiver can compensate for the phase difference
of the received signals across different antennas to ensure
constructive combining. As mentioned earlier, in order to
achieve a comparable gain of AMS, a large phased array is
necessary, which increases the size, cost, computation, and
power. This motivates our design of AMS based sensing and
communication system.

3 Acoustic Metasurface

In this section, We provide background on acoustic metasur-
face and its properties.

3.1 Background of Acoustic Metasurface
The ability to shape acoustic fields has diverse applications,
such as high-quality sound production, particle manipulation,
non-invasive therapies, and increasing sensing and communi-
cation range and resolution. One way to shape the acoustic
fields is to use phased arrays by controlling the phase and
amplitude of the transmission signals emitted from each of the
speakers. The cost, power consumption, and size of a phased
array rapidly increase with the number of speakers.

A few recent research papers show that acoustic metasur-
faces could be a promising solution. An acoustic metasur-
face is a 2D structure that consists of many sub-wavelength
cells [40, 41]. By carefully designing each of its cells, we
can manipulate acoustic waves in an interesting way. Each
unit cell can be viewed as a mini sound source. To perform
beamforming in a certain direction, we can ensure the paths
going through different cells in the metasurface add up con-
structively in the desired direction. This can be achieved by

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1361

Rigid Slab Propagation Path

𝑑1

𝑑2

In
p

u
t

W
a

v
e

O
u

tp
u

t
W

a
v
e

Figure 2: The structure of a unit cell is mainly determined by
the parameters d1 and d2. Different lengths of the propagation
paths induce different phase delay at the output.

Incident Wave

Focal Point

Outgoing Beam

Metasurface

Figure 3: A metasurface consists of multiple unit cells and
beamforms towards a focal point by properly configuring the
unit cells.

letting each unit cell compensate for the phase difference. For
example, without special design, in the desired direction, the
path going through cell 1 differs from cell 2 by φ1,2. To ensure
the signals from these two paths add up constructively, we
can design the unit cell 1 and cell 2 to compensate phase
difference φ1,2. One way to achieve this is to impose different
geometric structure so that the path going through cell 2 is
φ1,2
2π

λ longer than cell 1.
Figure 2 shows an example structure of unit cells used

in [40]. Assume the sound waves pass through the unit cell
from the left. The curved propagation path will increase the
time it takes to penetrate the unit cell, which essentially in-
troduces a phase shift to the outgoing wave. The structures
of different unit cells are determined by two dominant param-
eters: d1 and d2 [40], which result in different propagation
path lengths and hence different phase delay. One way to de-
termine d1 and d2 is through enumeration in a simulator (e.g.,
COMSOL [2], which is a widely used finite-element-based
multiphysics simulator).

We arrange the unit cells in a straight line to form a 1D
metasurface, or in a rectangle to form a 2D metasurface. By
introducing an appropriate phase shift at each cell, we can
achieve beamforming. Figure 3 shows an example. To make
it easy to assemble/re-assemble a metasurface, [40] quantizes
the types of unit cells into 16 choices, which covers the phase
shift from 0 to 2π. So for each unit cell, we can choose one

Metasurface

Zoom-in

-50 0 50

X (cm)

-100

-50

0

50

100

Y
 (

c
m

)

0

1

2

3

4

5

6

7

S
o
u
n
d
 P

re
s
s
u
re

 (
k
P

a
)

(a) Sound field

-10 0 10

X (cm)

50

60

70

Y
 (

c
m

)

(b) 100mm

-10 0 10

X (cm)

50

60

70

Y
 (

c
m

)

(c) 200mm

Figure 4: (a) Sound field simulated in COMSOL with a 16×1
metasurface when we transmit 20kHz sound at the focal point
(100mm). Part of the energy is concentrated in a specific
direction. (b) and (c) show the sound field in the zoom-in area
when the speaker is placed at 100mm and 200mm, respectively.
When the speaker is at the focal point, the signal coming out
of the metasurface is a parallel wave.

whose phase shift is the closest to our desired shift.

3.2 Properties of Acoustic Metasurface
High transmission efficiency: As shown in Figure 2, the
unit cells have intricate maze-like internal structures, with
four parallel bars positioned orthogonal to the direction of
incoming sound waves. Interestingly, the transmission effi-
ciency is high and reaches 98% on average across all unit
cells [40]. This is due to the following two major reasons: i)
The sub-wavelength cells produce diffraction and cause the
energy of sound to bypass the parallel bars instead of being re-
flected back; and ii) The bars inside each unit cell are curved
instead of sharp angles to reduce acoustic impedance and
maintain high transmission efficiency. Overall, the acoustic
metasurface has negligible power loss, so we do not consider
the power loss when developing AMS.

Focusing behavior: Figure 3 shows that an incident plane
wave is focused at a focal point after passing through the
metasurface. Due to the reciprocity principle [8], when a
point source is placed at the focal point, the signal coming
out of the AMS should be a plane wave towards the direction
orthogonal to the metasurface. Figure 4(a) and 4(b) show
an example scenario, where the source is placed at 100mm,
which is the focal point. We observe the outgoing wave is
nearly parallel in one direction. Second, when the source is
not at a focal point, the wave is no longer parallel, as shown
in Figure 4(c), and the energy of the signal will be dispersed
to nearby directions, making signal strength attenuates faster.
Since we want to concentrate the energy in one direction
and make the sound wave propagate in a longer range, plane
waves are preferred.

1362 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

-90 -45 0 45 90

Angle (°)

-30

-20

-10

0
N

o
rm

a
liz

e
d
 P

o
w

e
r

(d
B

) m=2

m=4

m=6

m=8

m=12

m=16

half power

Figure 5: Beam patterns under a varying number of speakers
m. The received sound is normalized by dividing it by the
maximum power and then converted to decibels.

Adaptation: Once a metasurface is printed, the mapping
from the incoming wave to the outgoing wave is fixed. Since
the target can be in any direction, it is important to change
the direction of the outgoing wave. Given the fixed metasur-
face, one way to change the direction of the outgoing wave
is to move the AMS either through translation movement
or through rotation. While movement is feasible, mechani-
cal movement is slow, consumes significant power, causes
wear and tear, and may even require operator intervention.
Therefore, in this paper we seek a software-based approach
to realize fast dynamic adaptation.

4 Phased Array with Metasurface

The passive acoustic metasurface is a fixed 2D structure. Once
designed, it converts from the incident wave to the outgoing
wave in a fixed manner. For practical use, it is desirable to
dynamically adjust the direction of the wave coming out of
the metasurface. We can achieve this using either mechanical
movement or beamforming using a phased array. We take the
latter approach due to its software control and eliminating the
need of movement. An important question is how to config-
ure the metasurface and phased array to realize our desired
beamforming. Below we first introduce phased array and then
describe how to use phased array with metasurface to achieve
dynamic control at a low cost.

4.1 Phased Array

Phased arrays use beamforming to combine signals from
multiple speakers constructively. Beamforming can be applied
to either senders or receivers or both. There are a number
of beamforming algorithms. They vary in the optimization
objectives: some maximize the signal, while others minimize
interference.

In analog beamforming, beamforming is performed on ana-
log signals at the transmitter before sending to the air or at
the receiver before the analog to digital conversion. In digital
beamforming, beamforming is performed on digital signals
at the transmitter before digital to analog conversion or at the
receiver after analog to digital conversion.

The beamforming capability depends significantly on the
number of speakers and their separation. As Figure 5 shows,
the beam width in the desired direction is relatively large and
the sidelobes are significant when the number of speakers
is within 8. The half power beam width (HPBW) at 0◦ (i.e.,
perpendicular to the speaker array) can be approximated as
follows [48]: θ0.5 ≈ 0.886λ

md where λ is the wave length, m is the
number of speakers, and d represents the speaker separation,
which is usually recommended to be λ

2 . For example, the
HPBW will be 59.6◦, 25.5◦, 16.9◦, and 6.3◦ when the number
of speakers is 2, 4, 6, and 16, respectively. The beam width
for a general angle can be derived as follows: θ0.5s =

θ0.5
cosθs

where θs is the steering angle and θ0.5s is the HPBW of the
steered beam. This indicates that the scanning range should
not be too large and usually we let θs ≤ 60◦. These results
show that the acoustic beamforming resolution using a small
phased array is limited.

4.2 Phased Array Coupled with Metasurface
Passive AMS is not reconfigurable on-the-fly once it is assem-
bled. To provide dynamic adaptation while achieving high
resolution and long range, we propose using a small number
of speakers along with an acoustic metasurface. We optimize
the speakers’ beamforming so that the outgoing wave from
the AMS is towards our desired angle.

More specifically, phased array can control the direction
of the output signal, which serves as the incoming signal
towards the AMS. By optimizing the transmission signals, we
can potentially generate any shaped waves coming out of the
AMS. The use of multiple speakers allows us to achieve fast
dynamic control without movement. In order to fully realize
this capability, we should carefully design the AMS to cover a
wide range of angles and control the transmission signals from
multiple speakers in order to dynamically generate the desired
signal coming out of the AMS. Below we first formulate the
problem and then present our solution.

4.2.1 Problem Formulation

As shown in Figure 1, there are M speakers. Let wi denote the
codeword for the i-th speaker, where wi is a complex number
whose magnitude and phase are the scaling factor and phase
shift for the i-th transmission signal, respectively. There are
N unit cells in AMS. The acoustic signal received by the j-
th AMS cell from the i-th speaker Si, j can be computed as
follow, where ti is the i-th speaker’s transmission signal and
Hi j denotes the channel between the i-th speaker and j-th cell.

Si, j = Hi jwiti (1)

Since the relative position between the AMS cell j and trans-
mitter i is pre-determined, we can derive Hi, j = F(di, j) =

a(di, j)e− j2π f
di, j

c , where c is speed of acoustic signal, di, j is

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1363

the distance from the i-th transmitter to j-th cell, a(di, j) is the
amount of signal attenuation at the distance di, j, and F(·) is
a function that models how the channel attenuates with the
distance di, j.

We can take the placement of the phased array into account,
denoted as x, and re-write the above relationship in a matrix
form as follows:

Sin = H(x)w (2)

We omit the transmission signal ti before beamforming here-
after because it is the same at each speaker.

Each cell in AMS modifies the incident signal (e.g., by
adding a path delay and/or changing the amplitude). Such a
modification can be captured using a matrix, denoted as G,
and the design of G will be covered in Sec 4.2.3. Then the
signal coming out of the AMS becomes

Sout = GH(x)w (3)

Finally, let Rd denote the signal in a given steering direction
d from the AMS. Rd can be derived as follow, where Kd
denotes the steering vector corresponding to the direction d
between the AMS and target.

Rd = KdGH(x)w (4)

Our goal is to design the AMS and codeword of the speaker
array to maximize the signal strength along each angle of
interest. For example, if we want to support a scanning an-
gle from −60◦ to 60◦, for each angle within the range, we
want to maximize the signal strength. Note that the AMS has
a fixed configuration across all angles, while the codeword
can change for each beamforming angle as in typical beam-
forming scenarios. Therefore, the signal of interest R can be
derived as follow:

R = KGH(x)W (5)

where R is a matrix of size d × d (each row represents the
received signal from a given direction d and each column rep-
resents the steering direction), K is a d ×N matrix specifying
the steering vector from the N unit-cell AMS, G is an N ×N
matrix and its diagonal elements specify how the N-cell AMS
translates the incident signal into outgoing signal, H(x) is an
N ×M matrix specifying the channel from M transmitters
to N-cell AMS, and W is M × d codebook for M speakers
corresponding to d directions.

The channel H and steering vector K are fixed and can
be derived analytically. Given H and K, we want to find the
optimal static AMS configuration G and codebook W to per-
form beamforming across a wide range of angles. Since we
optimize the power of the beams in each direction, we use the
power P of the received signal R hereafter, which is denoted
by P = |R|2.

The structure of our received signals P can be visualized in
Figure 6, where we aim to have high signal strength along the

St
ee

rin
g

an
gl

es

Measured angles

Main beam Side lobes

Received Signals (Power)
Figure 6: The structure of the received signal at various angles.

diagonal elements, which indicates our signal is beamformed
towards the desired steering angle.

Our objective function comprises the following 3 terms:
Sum Power: Due to the use of a static metasurface design
and the need to accommodate a wide range of angles, our goal
is to maximize the sum of power across all d directions. This
can be derived as follow:

Lpower = tr(P) (6)

where tr(·) is the trace of a matrix (i.e., the sum of the diago-
nal elements in the trace). This is shown in Figure 6.
Minimum Variance Criterion: Solely maximizing the total
power may introduce some dead zones for certain directions.
To avoid that problem, we add the variance of P’s diagonal as
the penalty term Lvar to ensure all directions are covered:

Lvar = var(diag(P)). (7)

For generality, we introduce a weight matrix Q, which can put
different weights on different angles. As a result, we have:

Lvar = var(diag(PQ)) (8)

where Q = diag(q1,q2, . . . ,ql) is a set of weights to control.
If we have prior knowledge about the target’s (approximate)
location, we can increase the entries in Q that correspond to
the locations close to the target.
Minimum Sidelobe: Suppressing the side lobes is critical
for sensing and communication. In the signal processing lit-
erature, extensive works have been done to control sidelobe
level (SLL). Sidelobe nullification and minimization are two
common methods. Some methods require prior knowledge
about the sidelobe’s direction, while other methods minimize
the maximum sidelobe. We experiment different ways of sup-
pressing sidelobes and find minimizing the average SLL (i.e.,
minimize the sum of absolute values of all non-diagonal peaks
in P) is most effective in our context.

We observe that the non-diagonal peaks shown in Figure 6
are considered as sidelobes and can degrade the overall per-
formance. Therefore, we propose to minimize the sum of
non-diagonal peaks as follows:

Lsidelobe = ∑non-diagonal peaks (9)

1364 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Steering

Angle

Minimize the

non-diagonal peaks

Maximize the

diagonal element

(°)

N
or

m
al

iz
ed

 A
m

pl
itu

de

Figure 7: Beam pattern when steered to a specific angle dur-
ing optimization. Minimizing the non-diagonal peaks helps
reduce the side lobes and increase the directivity.

To derive Lsidelobe, we identify peaks in the P matrix (e.g.,
using findpeaks() function) and then sum up the peaks that
are in non-diagonal entries of the matrix. It not only reduces
the sidelobes, but also improves the quality of the main lobe.
As shown in Figure 7, if the highest peak is a non-diagonal
element, we also minimize it to revise the direction.

Putting together, we have the following optimization model:
min

W,Θ,x
−Lpower +µLvar + γLsidelobe

s.t.

{
|Gii|= 1, (i = 1,2, . . . ,N)

|Wi j| ≤ 1 (i = 1,2, . . . ,M, j = 1,2, . . . ,d).

where µ and γ are parameters controlling the importance of
the variance and sidelobe terms, respectively. We have two
constraints on the magnitude of the metasurface parameters
G and codebook W . Both G and W should be no more than 1.

The constraints on the magnitude of metasurface G are
called constant modulus constraints (CMC). It is well-
known that problems involving CMC are nonconvex and
NP-hard [31]. |Gii| = 1 refers to the points on the surface
of an N dimensional hypercube, which indicates each meta-
surface cell does not change the magnitude of the incoming
signal. These are non-convex constraints. |Wi j| ≤ 1 are con-
straints on the magnitude of the phased array. The set contains
the entire hypercube and includes the interior. Thus, it is a
convex set. Therefore, for the phased array codebook, we re-
strict the amplitude to be within 1 instead of exactly equal to
1 to make the problem easier to solve.

4.2.2 Optimization

Our problem is a non-linear constrained optimization problem.
Due to the presence of the constraints, we cannot directly
apply the gradient descent scheme. Therefore, we use the
gradient projection method, which ensures the solution after
each gradient descent update still falls within the feasible
set Ω. Specifically, if the k+1-th update (i.e., x(k+1) = x(k)+
αkd(k)) makes the solution fall outside the feasible region,
where αk is the learning rate and d(k) is the gradient, we
project it to a point inside the feasible set Ω as follows:

x(k+1) = Π[x(k)+αkd(k)] (10)

8
ce

lls

8 cells

left-right symmetry

up-down
sym

m
etry

Figure 8: The symmetry property of a 16×16 metasurface.

where Π is projection operator, and Π[x] is called the pro-
jection of x in Ω. To do that, we normalize the amplitude of
Gii after each update and normalize Wi j if it is larger than
1. As a result, we use Adam optimizer in Pytorch for opti-
mization. Adam is an extended version of stochastic gradient
descent that adapts the learning rate for each parameter. We
modify the output from the Adam during each iteration using
Equation 10 to ensure constraints are satisfied.

4.2.3 Additional Design Details

In this section, we describe how to get the input required for
optimization.

Symmetry Property of AMS As mentioned earlier, the
diagonal of variable G should represent the phase delay for
metasurface cells. Our metasurface is a 2D structure. We
observe that the configuration of the AMS should be left-right
symmetric and up-down symmetric, as shown in Figure 8,
since the scanning performance should be the same in left and
right in the azimuth direction and the beam pattern should
also be the same in top and bottom in the elevation direction.
By utilizing the left-right and up-down symmetry property,
we can reduce the search dimension for G by 75%.

Codebook Since the range of the steering angle is from
−60◦ to 60◦, the codebook is also symmetric between the
positive angles and negative angles. Therefore, we can opti-
mize half of the codebook (i.e., corresponding to the steering
angle in (−60◦,0)) and copy them to generate the codebook
for (0,60◦).

Channel From Phased Array to Metasurface The chan-
nel H(x) can be determined based on the speakers and meta-
surface cells’ positions. Let x = {x1,x2, . . . ,xM} denote the
speakers’ locations, and g = {g1,g2, . . . ,gN} denote the meta-
surface cells’ locations. We can derive the channel as follows:

H(x) =


F(∥x1 −g1∥) . . . F(∥xM −g1∥)
F(∥x1 −g2∥) . . . F(∥xM −g2∥)

...
. . .

...
F(∥x1 −gN∥) . . . F(∥xM −gN∥)

 (11)

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1365

Y-axis

X-axis𝒙𝟏 𝒙𝟐 𝒙𝟑

𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒

𝒅

𝑯(𝒙)

Figure 9: Derive channel matrix H with varying speaker dis-
tributions x. Consider 3 speakers and 4 metasurface cells as
an example. We can derive the distance between each speaker
and metasurface cell to get the channel H between the phased
array and metasurface.

where ∥ · ∥ denotes the distance between two points (i.e., a
speaker and a metasurface cell) and F() denotes the function
that maps the distance to the wireless channel, including the
amplitude and phase. Figure 9 shows an example.

We can either (i) take a given phased array setup (e.g., uni-
formly distributed linear array) as the input or (ii) optimize
the phased array setup. In the latter case, we treat xi as the
optimization variables along with the other variables. Note
that we do not impose any constraints on x because we al-
ready consider the symmetry property of metasurface G and
codebook W . Equation 11 assumes a single line-of-sight path
between the phased array and metasurface, which is realistic
since the metasurface is close to the phased array and there is
no blockage.

4.2.4 System Design

In this section, we provide further details of our system de-
sign, including the AMS design, codebook design, and array
placement.

We sample angles from −60◦ to 60◦ with 1◦ apart. There-
fore, for a 6-speaker system, the codebook W is a 121× 6
matrix, which contains 121 independent codewords for 121
directions and 6 speakers. Figure 10 shows the amplitude and
phase of the optimized codebook, where the first speaker is
set as the reference and is aligned to be zero phase. Since our
goal is to maximize the sum power of diagonal elements, the
amplitude of each element in the codebook is 1 to achieve the
maximum transmission power, while the phase is manipulated
to generate our desired sound field at the metasurface.

Next, we reconstruct the phase distribution of the metasur-
face by utilizing the diagonal elements of G and the symme-
try property. The results are given in Figure 11(a). This is
different from that of [40] due to the presence of a phased
array. As mentioned in Sec. 3, the phase shift of each AMS
cell is quantized to 16 levels for flexible design and assem-
bly/disassembly. Then the final AMS can be assembled by
choosing the unit cells with the closest phase shift, as shown
in Figure 11(b), where the color reflects the unit cell index
and a higher index indicates a larger phase shift.

We can either (i) place speakers in the phased array uni-
formly or arbitrarily and feed the placement to our optimiza-
tion algorithm or (ii) let our algorithm optimize the placement

1 2 3 4 5 6

Speaker Index

-60

-30

0

30

60

S
te

e
ri
n

g
 A

n
g

le
 (
°
)

0.85

0.9

0.95

1

(a) Magnitude of codebook.

1 2 3 4 5 6

Speaker Index

-60

-30

0

30

60

S
te

e
ri
n

g
 A

n
g

le
 (
°
)

-3

-2

-1

0

1

2

3

(b) Phase of codebook.

Figure 10: The optimized codebook design, where the first
speaker is set as the reference. The magnitudes of the code-
book are all close to 1, but some are slightly less than 1 since
their constraints are ≤ 1.

0 2 4 6 8 10 12 14

AMS Index (X-axis)

0

2

4

6

8

10

12

14

A
M

S
 I

n
d

e
x
 (

Y
-a

x
is

)

-15

-10

-5

0

(a) Phase distribution.

11

13

3

10

15

2

14

5

4

12

3

8

13

1

4

13

0

10

1

6

11

0

4

8

13

6

14

4

10

15

3

7

13

5

13

4

9

14

2

4

11

2

10

1

8

14

2

5

10

2

10

1

8

13

1

4

10

2

9

0

7

13

1

4

0 2 4 6 8 10 12 14

AMS index (X-axis)

0

2

4

6

8

10

12

14

A
M

S
 i
n

d
e

x
 (

Y
-a

x
is

)

0

5

10

15

(b) Cell index.

Figure 11: Phase distribution and cell indices of the optimized
16× 16 metasurface design, where the cell index is the in-
dex to one of the 16 quantized phase shifts. The numbers in
the upper left corner denote the cell indices for the top left
metasurface and we omit the other parts for brevity due to the
left-right symmetry and top-bottom symmetry.

along with other configuration parameters. In evaluation, we
compare uniform placement and optimized placement.

5 Performance Evaluation

In this section, we first present our evaluation methodology
and then describe performance results.

5.1 Evaluation Methodology
We use the experiment setup shown in Figure 12 for our eval-
uation. The system can be divided into three parts: speakers,
microphones, and an acoustic metasurface (also referred to as
an acoustic lens or AMS). We use uniform placement as the
default configuration. In this case, we have 6 identical minia-
ture speakers (16Ω, 0.25W) as the transmitter. Each speaker
is connected with an operational amplifier THS4001 [4] to
amplify the voltage and a power amplifier LM386 [3] to am-
plify the current. The distance between the centers of adja-
cent speakers is 8.6mm, which is a half wavelength of 20kHz
sound. We used 4 microphones to form a microphone array
as a receiver. The distances between the 4 microphones were
3.06cm, 2.04cm, and 3.06cm to reduce ambiguity and obtain
better performance [38]. All speakers and microphones are

1366 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Single
Speaker Lens

Uniform Phase
Array Lens

Nonuniform
Phase Array Lens

(b) LESN design for difference scenarios

Bela

Kinect 3

Amplifiers

Mics

(a) Experiment setup

(d) Front View

(c) Inside View

Mics

Speakers

Figure 12: System setup.

connected to the same Bela board [1] for signal synchroniza-
tion. We also optimize speaker placement using the approach
described in Section 4.2.

We construct an acoustic lens according to our optimiza-
tion in Section 4.2.2. Our lens consists of 256 (16×16) unit
cells, spanning over 15cm × 15cm. Since the unit cells are
quantized into 16 choices, we 3D print 16 different types of
unit cells and assemble them to an acoustic lens according to
the evaluation scenario. For example, we assemble an acous-
tic lens for a 1-speaker setup, a different acoustic lens for
6 speakers with uniform separation, and another one for 6
speakers with non-uniform separation, as we jointly design
the metasurface with the speaker array. To ensure most signals
coming out of the speakers go through the acoustic lens, we
place our lens 2cm away from the speaker array. For a single
speaker, we follow the setup in [41] where the lens is placed
10cm away from the speaker array.

We evaluate our approach in terms of (i) SNR, (ii) sensing
accuracy, and (iii) communication performance. For acoustic
sensing, we use Kinect V3 to get the ground truth distance
and angle of arrival (AoA). We let the speakers transmit the
following FMCW signal: tx(t) = cos(2π fmint + πBt2

T), where
fmin = 16kHz, B = 4kHz, and T = 0.1s. We quantify the sens-
ing accuracy using distance error and angle of arrival error.

1D MUSIC is a widely used AoA estimation algorithm. It
computes the auto-correlation matrix R of the received signals
x as R= xHx, where x is a 1×N vector and xH is the conjugate
transpose of x, and then performs eigenvalue decomposition
on R. Let RN represent the noise space matrix, which is the
space spanned by the N −M smallest eigenvectors, where M
is the number of signals. The peak in the pseudo spectrum
p(θ) = 1

a(θ)H RN RH
N a(θ)

corresponds to the AoA.

For acoustic communication, we encode the data using
OFDM. Each OFDM frame contains 180 BPSK symbols,
which are striped onto 12 subcarriers spanning over 18kHz-
20kHz. We use CDMA as FEC code to improve resilience

and the code rate is 50%. We quantify the communication
performance using bit error rate (BER) and frame error rate
(FER). While there are other coding schemes for acoustic
communication, the benefit of our approach (i.e., acoustic
lens with a speaker array) is likely similar across different
acoustic coding schemes.

Unless otherwise specified, all results are from testbed
experiments: we use a 6-speaker array with an equal separa-
tion of 9.4mm between the two adjacent speakers and 16×16
acoustic lens; in device-free acoustic sensing experiments,
the microphone array is 3cm above the acoustic lens to track
the distance and AoA of a person’s hand so that the signal
from the speaker to the target goes through the metasurface
and the signal reflected from the target and received by the
microphone array does not go through the metasurface; in
acoustic communication experiments, the receiver is at 1.5m
away from the speaker array. We also evaluate the impact of
various parameters by varying their values.

5.2 SNR Comparison

We first compare various schemes in terms of SNR.

5.2.1 Beam Pattern

We place a receiver at 1.5m away, 0° from the speaker(s) and
measure the sound field intensity. Figure 13(a)(c)(e) com-
pare the beam patterns of six schemes in COMSOL simula-
tion [2], and Figure 13(b)(d)(f) compare them in testbed. The
six schemes include: (i) a single speaker without lens (w/o
PA + w/o lens), (ii) a single speaker with a lens (w/o PA + w/
lens), (iii) a phased array without lens (w/ PA + w/o lens),
(iv) a phased array with a lens (w/ PA + w/ lens), (v) an
optimized phased array without lens (w/ opt-PA + w/o lens),
and (vi) an optimized phased array with a lens (w/ opt-PA +
w/ lens). Our goal is to focus the transmission signal in any
desired direction. As we can see, (vi) yields the highest peak
in the desired angle, which is 1.2, 2.9, 10.5, 10.5, and 18.4dB
higher than (iv), (ii), (v), (iii), and (i), respectively. Optimized
array placement yields 1.2dB gain over uniform placement.
Leveraging acoustic lens yields 15.5dB gain when applied to
a single lens, but its angle cannot be adapted and is always
fixed at 0°. Combining a phased array having a uniform sep-
aration with an acoustic lens allows us to focus the beam in
the desired direction while achieving 17.2dB gain over a sin-
gle speaker without lens and 9.3dB gain over a phased array
without lens.

We further evaluate the signal strength and vary the steering
angle, as shown in Figure 14. The improvement of (vi) over
(iv) shows the benefit of the optimized array placement, and
the improvement of (vi) over the other schemes shows the
benefit of combining lens and phased array in the optimized
placement. These results show that (vi) yields a high SNR
gain across a wide angle from −60° to 60°.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1367

(i) w/o PA+w/o lens (ii) w/o PA+w/ lens

(iii) w/ PA+w/o lens (iv) w/ PA+w/ lens

(v) w/ opt-PA+w/o lens (vi) w/ opt-PA+w/ lens

-90 -60 -30 0 30 60 90

Azimuth Angle (°)

0

0.5

1

N
o
rm

a
liz

e
d
 A

m
p
lit

u
d
e

(a) Simulation: 0°.

-90 -60 -30 0 30 60 90

Azimuth Angle (°)

0

0.5

1

N
o
rm

a
liz

e
d
 A

m
p
lit

u
d
e

(b) Testbed: 0°.

-90 -60 -30 0 30 60 90

Azimuth Angle (°)

0

0.5

1

N
o
rm

a
liz

e
d
 A

m
p
lit

u
d
e

(c) Simulation: −30°.

-90 -60 -30 0 30 60 90

Azimuth Angle (°)

0

0.5

1

N
o
rm

a
liz

e
d
 A

m
p
lit

u
d
e

(d) Testbed: −30°.

-90 -60 -30 0 30 60 90

Azimuth Angle (°)

0

0.5

1

N
o
rm

a
liz

e
d
 A

m
p
lit

u
d
e

(e) Simulation: −60°.

-90 -60 -30 0 30 60 90

Azimuth Angle (°)

0

0.5

1

N
o
rm

a
liz

e
d
 A

m
p
lit

u
d
e

(f) Testbed: −60°.

Figure 13: The amplitude of the acoustic signal at various
angles of steering. The amplitude is normalized by dividing
it by the maximum amplitude of the signal received at 0°.
(a)(c)(e) show the results from the simulation using COMSOL
and (b)(d)(f) show the results from the testbed.

5.2.2 Beam Width

The 2D structure of our lens design allows us to focus beams
in both the azimuth and elevation directions. To show the
impact of the beam width in both directions, we measure the
sound field in a far field plane, which is parallel to the surface
of the lens. Figure 15 plots the sound field of three different
beams steered to 30°, 60°, and 90°, respectively. As we can
see, the linear phased array can only focus beams in the az-
imuth direction. In comparison, the acoustic lens can focus
beams in both the azimuth and elevation directions. Accord-
ing to COMSOL simulation shown in Figure 16, the acoustic
lens with a 6-speaker phased array generates a comparable
beam pattern to a 16×1 array in the elevation direction and a
comparable beam pattern to a 9×1 array in the azimuth di-
rection. Therefore, the acoustic lens with a 6-speaker phased
array is comparable to a 9×16 = 144 phased array in terms
of beam width. This is a significant reduction in cost, size,
energy, and computation. Moreover, we also find that equip-
ping a 6-speaker phased array with acoustic lenses of sizes

-60 -40 -20 0

Azimuth Angle (°)

0

0.5

1

N
o

rm
a

liz
e

d
 A

m
p

lit
u

d
e

(i) w/o PA+w/o lens

(ii) w/o PA+w/ lens

(iii) w/ PA+w/o lens

(iv) w/ PA+w/ lens

(v) w/ opt-PA+w/o lens

(vi) w/ opt-PA+w/ lens

Figure 14: Power gain while steering at various angles. The
amplitude is normalized by dividing it by the maximum am-
plitude of scheme (vi). The testbed uses a 16×16 acoustic
lens and 6 speakers to form a phased array.

Azimuth

E
le

v
a

ti
o

n

0.2

0.4

0.6

0.8

1

(a) 90°, w/ lens.

Azimuth

E
le

v
a

ti
o

n

0.2

0.4

0.6

0.8

1

(b) 60°, w/ lens.

Azimuth

E
le

v
a

ti
o

n

0.2

0.4

0.6

0.8

1

(c) 30°, w/ lens.

Azimuth

E
le

v
a

ti
o

n

0.2

0.4

0.6

0.8

1

(d) 90°, w/o lens.

Azimuth

E
le

v
a

ti
o

n

0.2

0.4

0.6

0.8

1

(e) 60°, w/o lens.

Azimuth

E
le

v
a

ti
o

n

0.2

0.4

0.6

0.8

1

(f) 30°, w/o lens.

Figure 15: In the COMSOL simulation, comparing the sound
signal strength using a phased array (6 speakers) with and
without the acoustic lens in the azimuth direction.

32×32, 48×48, and 64×64 yield similar beam patterns to
16×28, 20×40, and 30×48 phased arrays, respectively.

5.2.3 Frequency Response

Our acoustic metasurfaces are designed for 20kHz sound, but
we use 16-20kHz and 18-20kHz for acoustic sensing and com-
munication, respectively. To understand how the lens works
at a different frequency, we test the frequency response of
the lens. We first calibrate the speaker(s) and microphone(s)
and use compensation to generate close to a flat frequency
response in the received signal. We then transmit a sine wave
with a frequency varying from 10kHz to 22kHz and record
the received sound at 1m and 0° from the speaker. We test
all lens configurations, including a single-speaker lens, uni-
form phased-array lens, and non-uniform phased-array lens.
Fig. 17 shows the frequency response. As expected, the peak
of the lens frequency response is 20kHz. It drops rapidly after
20kHz. Fortunately, the frequency response remains stable
in 14kHz-20kHz, which means that we can use this band for
sensing and communication.

1368 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

-90 -60 -30 0 30 60 90

Elevation Angle (°)

-30

-20

-10

0

N
o
rm

a
liz

e
d
 P

o
w

e
r

(d
B

)

AMS 16x1 Array half power

(a) Elevation Dimension.

-90 -60 -30 0 30 60 90

Azimuth Angle (°)

-30

-20

-10

0

N
o
rm

a
liz

e
d
 P

o
w

e
r

(d
B

)

AMS 9x1 Array half power

(b) Azimuth Dimension.

Figure 16: Using a 16× 16 acoustic lens with a 6-speaker
phased array is comparable to a 9×16 phased array in terms
of beam width in the elevation and azimuth direction accord-
ing to COMSOL simulation.

10 12 14 16 18 20 22

Frequncy (kHz)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 A

m
p

lit
u

d
e

Figure 17: The frequency response of the acoustic lens.

5.2.4 Impact of Lens Size and Phased Array Size

Figure 18(a) plots the received power of (vi) in the desired
direction using different lens sizes. We only plot −60° to 0°
as the result from 0° to 60° is symmetric. We make several
observations. First, as we would expect, increasing the lens
sizes improves the normalized power (i.e., the received power
is normalized by dividing by the power of 32×32 lens at 0°
and 1.5m away). In particular, the normalized power increases
from 0.29 using 8×8 lens to 0.42 using 12×12 lens, to 0.62
using 16× 16 lens, to 0.76 using 24× 24 lens, and to 0.83
using 32×32 lens at −60°. Second, comparing the simulation
(solid curves) with the testbed results (dotted curves), we
observe high consistency, which validates the fidelity of our
simulation.

Figure 18(b) further plots the normalized power (i.e., the
received power is normalized by dividing by the power of
m = 16 phased array at 0° and 1.5m away) of (iv) as we vary
the number of speakers. As expected, increasing the number
of speakers from 2 to 4, 6, 8, and 16 increases the normalized
power to 1.3x, 1.6x, 1.8x and 2.1x, respectively.

5.3 Distance Estimation Performance

Next we evaluate the impact of our approach on distance
estimation accuracy. As described in Section 5.1, we evaluate
the benefit of acoustic lens and phased array on the well-
known distance estimation techniques: FMCW.

Figure 19(a) plots the errorbar of the distance estimation
error, where the center, lower bound, and upper bound of the
errorbar correspond to median, 25%, 75% of the distance
error, respectively. (vi) performs the best and out-performs

-60 -50 -40 -30 -20 -10 0

Azimuth Angle (°)

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 A

m
p
lit

u
d
e

8 8

12 12

16 16

24 24

32 32

8 8 testbed

12 12 testbed

16 16 testbed

(a) Lens size.

-60 -50 -40 -30 -20 -10 0

Azimuth Angle (°)

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 A

m
p
lit

u
d
e

2spk

4spk

6spk

8spk

10spk

12spk

14spk

16spk

2spk testbed

4spk testbed

6spk testbed

(b) Phased array size.

Figure 18: The impact of lens size and phased array size on
the received power of (iv). Dotted curves represent results
from the testbed experiments while solid curves represent
results from COMSOL simulation.

(a) Distance estimation error. (b) SNR v.s. distance error.

Figure 19: The distance estimation performance using acous-
tic lens.

(i), (ii), (iii), (iv), and (v) by 93%, 25%, 76%, 12%, and 72%,
respectively. To better understand where the improvement
comes from, we plot the distance estimation error of each
FMCW chirp and its corresponding SNR in Figure 19(b).
We can see that, as expected, the FMCW chirp with a higher
SNR leads to a lower error. The optimized phased array with
acoustic lens has the highest SNR, so it yields the lowest
distance estimation error.

5.3.1 Impact of Measurement Distance

We evaluate the impact of distance on the distance estimation
error as shown in Figure 20. As we can see in Figure 20(a),
(vi) performs the best and out-performs (i), (ii), (iii), (iv),
and (v) by 94%, 45%, 79%, 18%, and 81%, respectively. (vi)
increases the operation distance from 0.5m in (i) to 3.5m.
Note that 3.5m operation distance is very good considering
the total power of our 6 speakers is only 0.1W . In comparison,
[38] achieves 4.5m operation distance using a 2.5W speaker.

5.3.2 Impact of Measurement Angle

Next we further show the impact of measurement angle on
the distance estimation performance. From Figure 20(b)-(e),
we can see that (vi) still performs the best in all directions and
out-performs (i), (ii), (iii), (iv), and (v) by 93%, 99%, 77%,
21%, and 76%, respectively. However, when we increase the
measurement angle from 0° to 15°, 30°, 45°, and 60°, the
distance error of (vi) also increases from 1.28cm to 1.30cm,
1.32cm, 1.86cm, and 2.47cm, respectively.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1369

(i) w/o PA+w/o lens (ii) w/o PA+w/ lens (iii) w/ PA+w/o lens

(iv) w/ PA+w/ lens (v) w/ opt-PA+w/o lens (vi) w/ opt-PA+w/ lens

100 200 300 400 500

Distance (cm)

0

10

20

30

D
is

ta
n

c
e

 E
rr

o
r

(c
m

)

(a) Target 0°

100 200 300 400 500

Distance (cm)

0

10

20

30

D
is

ta
n
c
e
 E

rr
o
r

(c
m

)

(b) Target 15°

100 200 300 400 500

Distance (cm)

0

10

20

30

D
is

ta
n
c
e
 E

rr
o
r

(c
m

)

(c) Target 30°

100 200 300 400 500

Distance (cm)

0

10

20

30

D
is

ta
n
c
e
 E

rr
o
r

(c
m

)

(d) Target 45°

100 200 300 400 500

Distance (cm)

0

10

20

30

D
is

ta
n
c
e
 E

rr
o
r

(c
m

)

(e) Target 60°

Figure 20: The impact of distance on the distance estimation
error while steering in various directions.

100 200 300 400 500

Distance (cm)

0

5

10

15

20

D
is

ta
n

c
e

 E
rr

o
r

(c
m

)

4x4

8x8

12x12

16x16

(a) Lens size.

100 200 300 400 500

Distance (cm)

0

5

10

15

20

D
is

ta
n
c
e
 E

rr
o
r

(c
m

)

2spk

4spk

6spk

(b) Phased array size.

Figure 21: The impact of lens size and phased array size on
the distance estimation error of (iv).

5.3.3 Impact of Lens Size and Phased Array Size

We evaluate the impact of lens size on distance estimation
performance. We experiment with 4×4, 8×8, 12×12 and
16×16 lenses in our testbed. As shown in Figure 21(a), in-
creasing the lens size improves the distance estimation errors.
A 16 × 16 lens reduces the error over a 4 × 4, 8 × 8, and
12×12 lens by 73%, 62%, and 36%, respectively.

We also evaluate the impact of phased array size. As shown
in Figure 21(b), increasing the array size improves the dis-
tance estimation due to the enhanced SNR. For example, a
6-speaker phased array with AMS reduces the distance esti-
mation error over 1-, 2-, and 4-speaker phased array by 95%,
91%, and 80%, respectively.

5.4 AoA Estimation Performance
In this section, we compare the AoA estimation using 1D
MUSIC as introduced in Section 5.1.

5.4.1 Impact of Measurement Distance

Figure 22(a) plots the AoA error versus the measurement
distance. In all schemes, the distance estimation errors in-
crease with an increasing distance. (vi) performs the best and
reduces the AoA error of (i), (ii), (iii), (iv), and (v) by 92%,
44%, 76%, 16%, and 77%, respectively. The result shows that

(i) w/o PA+w/o lens (ii) w/o PA+w/ lens (iii) w/ PA+w/o lens

(iv) w/ PA+w/ lens (v) w/ opt-PA+w/o lens (vi) w/ opt-PA+w/ lens

100 200 300 400 500

Distance (cm)

0

5

10

15

20

A
o

A
 E

rr
o

rs
 (
°
)

(a) Target 0°

100 200 300 400 500

Distance (cm)

0

5

10

15

20

A
o
A

 E
rr

o
rs

 (
°
)

(b) Target 15°

100 200 300 400 500

Distance (cm)

0

5

10

15

20

A
o
A

 E
rr

o
rs

 (
°
)

(c) Target 30°

100 200 300 400 500

Distance (cm)

0

5

10

15

20

A
o
A

 E
rr

o
rs

 (
°
)

(d) Target 45°

100 200 300 400 500

Distance (cm)

0

5

10

15

20

A
o
A

 E
rr

o
rs

 (
°
)

(e) Target 60°

Figure 22: The impact of distance on AoA estimation error
while steering in various directions.

100 200 300 400 500

Distance (cm)

0

5

10

15

20

A
o

A
 E

rr
o

r
(°

)

4x4

8x8

12x12

16x16

(a) Lens size.

100 200 300 400 500

Distance (cm)

0

5

10

15

20

A
o

A
 E

rr
o

r
(°

)

2spk

4spk

6spk

(b) Phased array size.

Figure 23: The impact of lens size and phased array size on
the AoA estimation error of (iv).

our approach effectively improves AoA sensing accuracy by
increasing the SNR.

5.4.2 Impact of Measurement Angle

We further show the impact of measurement angle on AoA
estimation. Figure 22(b)-(e) plots AoA estimation error for
other directions. When the distance is small, the AoA esti-
mation error remains low across all measurement angles of
interest; when the distance is large, the AoA error increases
more rapidly with the increasing angle. This is expected be-
cause when SNR is sufficiently high, the measurement angle
has less impact; but when SNR is low, the measurement angle
matters. (vi) out-performs (i), (ii), (iii), (iv), and (v) by 90%,
96%, 81%, 26%, and 82%, respectively.

5.4.3 Impact of Lens Size and Phased Array Size

As shown in Figure 23(a), increasing the lens size effectively
reduces the AoA estimation error. For example, increasing
the lens size from 4×4 to 8×8 improves AoA estimation by
32%, increasing from 8×8 to 12×12 improves by 53%, and
increasing from 12×12 to 16×16 further improves by 46%.

Figure 23(b) further plots the AoA estimation as we vary
the array size. Increasing the array size improves SNR and
reduces the AoA estimation error. Using a 6-speaker phased
array reduces the AoA error by 96%, 74%, and 52% over

1370 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

-60 -30 0 30 60

AoA (°)

100

300

500

D
is

ta
n
c
e
 (

c
m

)

0

0.1

0.2

0.3

0.4

0.5

B
E

R

(a) BER: (i) w/o PA w/o lens.

-60 -30 0 30 60

AoA (°)

100

300

500

D
is

ta
n
c
e
 (

c
m

)

0

0.2

0.4

0.6

0.8

1

F
E

R

(b) FER: (i) w/o PA w/o lens.

-60 -30 0 30 60

AoA (°)

100

300

500

D
is

ta
n

c
e

 (
c
m

)

0

0.1

0.2

0.3

0.4

0.5
B

E
R

(c) BER: (ii) w/o PA w/ lens.

-60 -30 0 30 60

AoA (°)

100

300

500

D
is

ta
n

c
e

 (
c
m

)

0

0.2

0.4

0.6

0.8

1

F
E

R

(d) FER: (ii) w/o PA w/ lens.

-60 -30 0 30 60

AoA (°)

100

300

500

D
is

ta
n

c
e

 (
c
m

)

0

0.1

0.2

0.3

0.4

0.5

B
E

R

(e) BER: (iii) w/ PA w/o lens.

-60 -30 0 30 60

AoA (°)

100

300

500

D
is

ta
n

c
e

 (
c
m

)

0

0.2

0.4

0.6

0.8

1

F
E

R

(f) FER: (iii) w/ PA w/o lens.

-60 -30 0 30 60

AoA (°)

100

300

500

D
is

ta
n

c
e

 (
c
m

)

0

0.1

0.2

0.3

0.4

0.5

B
E

R

(g) BER: (iv) w/ PA w/ lens.

-60 -30 0 30 60

AoA (°)

100

300

500

D
is

ta
n

c
e

 (
c
m

)

0

0.2

0.4

0.6

0.8

1

F
E

R

(h) FER: (iv) w/ PA w/ lens.

-60 -30 0 30 60

AoA (°)

100

300

500

D
is

ta
n

c
e

 (
c
m

)

0

0.1

0.2

0.3

0.4

0.5

B
E

R

(i) BER: (v) w/ opt-PA w/o lens.

-60 -30 0 30 60

AoA (°)

100

300

500

D
is

ta
n

c
e

 (
c
m

)

0

0.2

0.4

0.6

0.8

1

F
E

R

(j) FER: (v) w/ opt-PA w/o lens.

-60 -30 0 30 60

AoA (°)

100

300

500

D
is

ta
n

c
e

 (
c
m

)

0

0.1

0.2

0.3

0.4

0.5

B
E

R

(k) BER: (vi) w/ opt-PA w/ lens.

-60 -30 0 30 60

AoA (°)

100

300

500

D
is

ta
n

c
e

 (
c
m

)

0

0.2

0.4

0.6

0.8

1

F
E

R

(l) FER: (vi) w/ opt-PA w/ lens.

Figure 24: The impact of distance and AoA on the communi-
cation performance.

using 1-, 2-, and 4-speaker phased array, respectively.

5.5 Acoustic Communication Performance

Finally, we evaluate the impact of our approach on acoustic
communication performance.

5.5.1 Impact of Distance

We put the speakers at a fixed location and gradually increase
the distance between the microphone and the speakers. We
tested the above six scenarios for communication. Figure 24
shows the bit error rate (BER) and frame error rate (FER)
across different AoAs at different distances. We can see that
both BER and FER increase with the distance. Due to the
use of fixed modulation and FEC, the FER rapidly increases
after the distance goes beyond a certain point. If we define
the communication range as the range corresponding to 50%
FER, we observe that (vi) has 3.9m communication range as
shown in Figure 24(l). In comparison, (i), (ii), (iii), (iv), and
(v) have communication ranges of 0.8m, 3.0m, 1.5m, 3.5m,
and 1.5m, respectively.

5.5.2 Impact of AoA

Figure 24 also shows the impact of AoA on BER and FER
in our testbed. (vi) achieves low error rates within 60° and
2.8m. This is good coverage considering the total power of
our 6 speakers is only 20mW . In comparison, for the same
60° coverage, the other schemes’ range is much smaller.

6 Discussion

Acoustic metasurfaces can effectively boost the signal qual-
ity, and improve sensing and communication performance.
Compared with a large phased array, our approach of using
a small phased array and metasurface is more compact, cost
effective, and energy efficient. To fully realize the potential of
AMS, several challenges remain to be addressed in the future:
(i) further reducing the AMS size so that it can be applied
to more applications (e.g., mobile devices), (ii) supporting a
wider band, and (iii) further simplifying fabrication process.
Figure 17 shows that our AMS can support 16-20KHz within
20% amplitude loss. This is sufficient for our purpose but may
need further improvement if a wider band is required.

7 Conclusion

In this paper, we develop a novel acoustic system that uses
AMS and multiple speakers together to achieve dynamic steer-
ing and high SNR. The increase in SNR can be translated
into higher accuracy in distance and AoA estimation and
larger communication range in acoustic communication. En-
couraged by the promising results, we plan to explore more
applications that can benefit from our design.

Acknowledgments

We are grateful for Yasaman Ghasempour’s insightful feed-
back and anonymous reviewers’ helpful comments.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1371

References

[1] Bela: create beautiful interaction with sensors and sound.
https://bela.io/, 2022.

[2] COMSOL: simulate real-world designs, devices, and
processes with multiphysics software from comsol.
https://www.ti.com/product/LM386, 2023.2.

[3] LM386: 700-mw, mono, 5- to 18-v, analog input class-
ab audio amplifier. https://www.ti.com/product/
LM386, 2023.2.

[4] THS4001: 270-mhz voltage-feedback amplifier. https:
//www.ti.com/product/THS4001, 2023.2.

[5] I. F. Akyildiz, D. Pompili, and T. Melodia. State-of-the-
art in protocol research for underwater acoustic sensor
networks. In Proc. of WUWNet, 2006.

[6] Badreddine Assouar, Bin Liang, Ying Wu, Yong Li, Jian-
Chun Cheng, and Yun Jing. Acoustic metasurfaces.
Nature Reviews Materials, 3(12):460–472, 2018.

[7] Yang Bai, Nakul Garg, and Nirupam Roy. Spidr: Ultra-
low-power acoustic spatial sensing for micro-robot navi-
gation. In Proceedings of the 20th Annual International
Conference on Mobile Systems, Applications and Ser-
vices, pages 99–113, 2022.

[8] Rainer Bauböck. Migration and citizenship. Journal of
Ethnic and Migration Studies, 18(1):27–48, 1991.

[9] Tuochao Chen, Justin Chan, and Shyam Gollakota. Un-
derwater messaging using mobile devices. In Proc. of
ACM SIGCOMM, 2022.

[10] Xing Chen, Peng Liu, Zewei Hou, and Yongmao Pei.
Magnetic-control multifunctional acoustic metasurface
for reflected wave manipulation at deep subwavelength
scale. Scientific reports, 7(1):1–9, 2017.

[11] Krishna Chintalapudi, Venkat Padmanabhan, and Ra-
marathnam Venkatesan. Dhwani: Secure peer-to-peer
acoustic nfc. In Proc. of ACM SIGCOMM, 2013.

[12] Mandar Chitre, Shiraz Shahabudeen, and Milica Sto-
janovic. Underwater acoustic communications and net-
working: Recent advances and future challenges. Ma-
rine Technology Society Journal.

[13] Nicholas Fang, Dongjuan Xi, Jianyi Xu, Muralidhar
Ambati, Werayut Srituravanich, Cheng Sun, and Xiang
Zhang. Ultrasonic metamaterials with negative modulus.
Nature materials, 5(6):452–456, 2006.

[14] Romain Fleury and Andrea Alù. Extraordinary sound
transmission through density-near-zero ultranarrow
channels. Physical review letters, 111(5):055501, 2013.

[15] Zhihui Gao, Ang Li, Dong Li, Jialin Liu, Jie Xiong,
Yu Wang, Bing Li, and Yiran Chen. Mom: Micro-
phone based 3d orientation measurement. In Proc. of
ACM/IEEE IPSN, 2022.

[16] Nakul Garg, Yang Bai, and Nirupam Roy. Owlet: en-
abling spatial information in ubiquitous acoustic devices.
In Proc. of ACM MobiSys, 2021.

[17] Unsoo Ha, Junshan Leng, Alaa Khaddaj, and Fadel Adib.
Food and liquid sensing in practical environments us-
ing rfids. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
1083–1100, 2020.

[18] Fu-Li Hsiao, Ting-Kuo Li, Pin-Chieh Chen, Su-Chao
Wang, Ke-Wei Lin, Wei-Ling Lin, Ying-Pin Tsai, Wen-
Kai Lin, and Bor-Shyh Lin. Phase resonance and sensing
application of an acoustic metamaterial based on a com-
posite both-sides-open disk resonator arrays. Sensors
and Actuators A: Physical, 339:113524, 2022.

[19] Yun Jing, Jun Xu, and Nicholas X Fang. Numeri-
cal study of a near-zero-index acoustic metamaterial.
Physics Letters A, 376(45):2834–2837, 2012.

[20] Hao Kong, Xiangyu Xu, Jiadi Yu, Qilin Chen, Chen-
guang Ma, Yingying Chen, Yi-Chao Chen, and Linghe
Kong. m3̂track: mmwave-based multi-user 3d posture
tracking. In Proc. of ACM MobiSys, 2022.

[21] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and
Sachin Katti. Spotfi: Decimeter level localization using
WiFi. In ACM SIGCOMM Computer Communication
Review, volume 45(4), pages 269–282. ACM, 2015.

[22] Manikanta Kotaru and Sachin Katti. Position tracking
for virtual reality using commodity wifi. In Proceedings
of the 10th on Wireless of the Students, by the Students,
and for the Students Workshop, S3 ’18, pages 15–17,
New York, NY, USA, 2018. ACM.

[23] Hyewon Lee, Tae Hyun Kim, Jun Won Choi, and
Sunghyun Choi. Chirp signal-based aerial acoustic com-
munication for smart devices. In 2015 IEEE Confer-
ence on Computer Communications (INFOCOM), pages
2407–2415. IEEE, 2015.

[24] Kyung Hoon Lee, Kunhao Yu, An Xin, Zhangzhengrong
Feng, Qiming Wang, et al. Sharkskin-inspired mag-
netoactive reconfigurable acoustic metamaterials. Re-
search, 2020, 2020.

[25] Dong Li, Jialin Liu, Sunghoon Ivan Lee, and Jie
Xiong. Lasense: Pushing the limits of fine-grained
activity sensing using acoustic signals. In Proc. of
IMWUT/UbiComp, 2022.

1372 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://bela.io/
https://www.ti.com/product/LM386
https://www.ti.com/product/LM386
https://www.ti.com/product/LM386
https://www.ti.com/product/THS4001
https://www.ti.com/product/THS4001

[26] Jensen Li and Che Ting Chan. Double-negative acoustic
metamaterial. Physical Review E, 70(5):055602, 2004.

[27] Yong Li, Xue Jiang, Rui-qi Li, Bin Liang, Xin-ye Zou,
Lei-lei Yin, and Jian-chun Cheng. Experimental real-
ization of full control of reflected waves with subwave-
length acoustic metasurfaces. Physical Review Applied,
2(6):064002, 2014.

[28] Yong Li, Bin Liang, Zhong-ming Gu, Xin-ye Zou, and
Jian-chun Cheng. Reflected wavefront manipulation
based on ultrathin planar acoustic metasurfaces. Scien-
tific reports, 3(1):1–6, 2013.

[29] Zixian Liang and Jensen Li. Extreme acoustic meta-
material by coiling up space. Physical review letters,
108(11):114301, 2012.

[30] Qiongzheng Lin, Zhenlin An, and Lei Yang. Rebooting
ultrasonic positioning systems for ultrasound-incapable
smart devices. In The 25th Annual International Con-
ference on Mobile Computing and Networking, pages
1–16, 2019.

[31] Yuan Liu, Bo Jiu, and Hongwei Liu. Admm-based
transmit beampattern synthesis for antenna arrays un-
der a constant modulus constraint. Signal Processing,
171:107529, 2020.

[32] Guancong Ma and Ping Sheng. Acoustic metamateri-
als: From local resonances to broad horizons. Science
advances, 2(2):e1501595, 2016.

[33] YONGSEN MA, GANG ZHOU, and SHUANGQUAN
WANG. Wifi sensing with channel state information: A
survey. ACM Comput. Survey, June 2019.

[34] Yunfei Ma, Nicholas Selby, and Fadel Adib. Minding
the billions: Ultra-wideband localization for deployed
rfids. In Proc. of ACM MobiCom, 2017.

[35] Wenguang Mao, Jian He, and Lili Qiu. CAT: high-
precision acoustic motion tracking. In Proc. of ACM
MobiCom, 2016.

[36] Wenguang Mao, Wei Sun, Mei Wang, and Lili Qiu.
Deeprange: Ranging via deep learning. In Proc. of
UbiComp, 2021.

[37] Wenguang Mao, Mei Wang, and Lili Qiu. Aim: Acoustic
imaging on a mobile. In Proceedings of the 16th Annual
International Conference on Mobile Systems, Applica-
tions, and Services, pages 468–481. ACM, 2018.

[38] Wenguang Mao, Mei Wang, Wei Sun, Lili Qiu, Swadhin
Pradhan, and Yi-Chao Chen. Rnn-based room scale
hand motion tracking. In The 25th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, pages 1–16, 2019.

[39] Wenguang Mao, Zaiwei Zhang, Lili Qiu, Jian He,
Yuchen Cui, and Sangki Yun. Indoor follow me drone.
In Proceedings of the 15th Annual International Con-
ference on Mobile Systems, Applications, and Services,
pages 345–358. ACM, 2017.

[40] Gianluca Memoli, Mihai Caleap, Michihiro Asakawa,
Deepak R. Sahoo, Bruce W. Drinkwater, and Sriram
Subramanian. Metamaterial bricks and quantization of
meta-surfaces. Nature Communication, 2017.

[41] Gianluca Memoli, Letizia Chisari, Jonathan P. Eccles,
Mihai Caleap, Bruce W. Drinkwater, and Sriram Sub-
ramanian. Vari-sound: A varifocal lens for sound. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, CHI ’19, page 1–14,
New York, NY, USA, 2019. Association for Computing
Machinery.

[42] Rajalakshmi Nandakumar, Shyam Gollakota, and
Nathaniel Watson. Contactless sleep apnea detection on
smartphones. In Proc. of ACM MobiSys, 2015.

[43] Rajalakshmi Nandakumar, Vikram Iyer, Desney Tan,
and Shyamnath Gollakota. FingerIO: Using active sonar
for fine-grained finger tracking. In Proc. of ACM CHI,
pages 1515–1525, 2016.

[44] Jong Jin Park, KJB Lee, Oliver B Wright, Myoung Ki
Jung, and Sam H Lee. Giant acoustic concentration by
extraordinary transmission in zero-mass metamaterials.
Physical review letters, 110(24):244302, 2013.

[45] Chunyi Peng, Guobin Shen, Yongguang Zhang, Yanlin
Li, and Kun Tan. BeepBeep: a high accuracy acoustic
ranging system using COTS mobile devices. In Proc. of
ACM SenSys, 2007.

[46] Swadhin Pradhan, Shuozhe Li, and Lili Qiu. Rotation
sensing using passive rfid tags. In Proc. of MobiHoc,
2021.

[47] Qifan Pu, Sidhant Gupta, Shyam Gollakota, and Shwe-
tak Patel. Whole-home gesture recognition using wire-
less signals. In Proc. of ACM MobiCom, 2013.

[48] Saeed Ur Rahman, Qunsheng CAO, Muhammad Man-
soor Ahmed, and Hisham Khalil. Analysis of linear
antenna array for minimum side lobe level, half power
beamwidth, and nulls control using pso. Journal of
Microwaves, Optoelectronics and Electromagnetic Ap-
plications, 16:577–591, 2017.

[49] Sheng Shen, Daguan Chen, Yu-Lin Wei, Zhijian Yang,
and Romit Roy Choudhury. Voice localization using
nearby wall reflections. In Proc. of ACM MobiCom,
2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1373

[50] Deepak Vasisht, Swarun Kumar, and Dina Katabi.
Decimeter-level localization with a single wifi access
point. In 13th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 16), pages 165–
178, 2016.

[51] Anran Wang and Shyamnath Gollakota. Millisonic:
Pushing the limits of acoustic motion tracking. In Pro-
ceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, pages 1–11, 2019.

[52] Anran Wang, Jacob E Sunshine, and Shyamnath Gol-
lakota. Contactless infant monitoring using white noise.
In The 25th Annual International Conference on Mobile
Computing and Networking, pages 1–16, 2019.

[53] Ju Wang, Jie Xiong, Xiaojiang Chen, Hongbo Jiang, Ra-
jesh Krishna Balan, and Dingyi Fang. Tagscan: Simul-
taneous target imaging and material identification with
commodity rfid devices. In Proc. of ACM MobiCom,
pages 288–300. ACM, 2017.

[54] Jue Wang, Fadel Adib, Ross Knepper, Dina Katabi, and
Daniela Rus. RF-compass: robot object manipulation
using RFIDs. In Proc. of the 19th annual international
conference on Mobile computing and networking, pages
3–14, 2013.

[55] Jue Wang and Dina Katabi. Dude, where’s my card?
RFID positioning that works with multipath and non-
line of sight. In Proc. of the ACM SIGCOMM, pages
51–62, 2013.

[56] Mei Wang, Wei Sun, and Lili Qiu. Mavl: Multiresolution
analysis of voice localization. In Proc. of NSDI, 2021.

[57] Wei Wang, Alex X Liu, and Ke Sun. Device-free ges-
ture tracking using acoustic signals. In Proceedings of
the 22nd Annual International Conference on Mobile
Computing and Networking, pages 82–94. ACM, 2016.

[58] Teng Wei and Xinyu Zhang. mTrack: high precision
passive tracking using millimeter wave radios. In Proc.
of ACM MobiCom, 2015.

[59] Teng Wei and Xinyu Zhang. Gyro in the air: Track-
ing 3d orientation of batteryless internet-of-things. In
Proceedings of MobiCom, MobiCom ’16, pages 55–68,
New York, NY, USA, 2016. ACM.

[60] Yangbo Xie, Wenqi Wang, Huanyang Chen, Adam Kon-
neker, Bogdan-Ioan Popa, and Steven A Cummer. Wave-
front modulation and subwavelength diffractive acous-
tics with an acoustic metasurface. Nature communica-
tions, 5(1):5553, 2014.

[61] Hongfei Xue, Yan Ju, Chenglin Miao, Yijiang Wang,
Shiyang Wang, Aidong Zhang, and Lu Su. mmmesh:

towards 3d real-time dynamic human mesh construction
using millimeter-wave. In Proc. of MobiSys, 2021.

[62] Min Yang, Guancong Ma, Ying Wu, Zhiyu Yang, and
Ping Sheng. Homogenization scheme for acoustic meta-
materials. Physical Review B, 89(6):064309, 2014.

[63] Min Yang, Guancong Ma, Zhiyu Yang, and Ping Sheng.
Coupled membranes with doubly negative mass den-
sity and bulk modulus. Physical review letters,
110(13):134301, 2013.

[64] Sangki Yun, Yi chao Chen, and Lili Qiu. Turning a
mobile device into a mouse in the air. In Proc. of ACM
MobiSys, May 2015.

[65] Sangki Yun, Yi-Chao Chen, Huihuang Zheng, Lili Qiu,
and Wenguang Mao. Strata: Fine-grained acoustic-
based device-free tracking. In Proceedings of the 15th
Annual International Conference on Mobile Systems,
Applications, and Services, pages 15–28. ACM, 2017.

[66] Bingsheng Zhang, Qin Zhan, Si Chen, Muyuan Li, Kui
Ren, Cong Wang, and Di Ma. Enabling keyless secure
acoustic communication for smartphones. IEEE internet
of things journal, 1(1):33–45, 2014.

[67] Zengbin Zhang, David Chu, Xiaomeng Chen, and
Thomas Moscibroda. Swordfight: Enabling a new class
of phone-to-phone action games on commodity phones.
In Proc. of ACM MobiSys, 2012.

1374 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Skyplane: Optimizing Transfer Cost and Throughput Using Cloud-Aware Overlays

Paras Jain, Sam Kumar, Sarah Wooders, Shishir G. Patil, Joseph E. Gonzalez, and Ion Stoica
University of California, Berkeley

Abstract
Cloud applications are increasingly distributing data across
multiple regions and cloud providers. Unfortunately, wide-
area bulk data transfers are often slow, bottlenecking appli-
cations. We demonstrate that it is possible to significantly
improve inter-region cloud bulk transfer throughput by adapt-
ing network overlays to the cloud setting—that is, by routing
data through indirect paths at the application layer. However,
directly applying network overlays in this setting can result
in unacceptable increases in cloud egress prices. We present
Skyplane, a system for bulk data transfer between cloud object
stores that uses cloud-aware network overlays to optimally
navigate the trade-off between price and performance. Sky-
plane’s planner uses mixed-integer linear programming to
determine the optimal overlay path and resource allocation
for data transfer, subject to user-provided constraints on price
or performance. Skyplane outperforms public cloud transfer
services by up to 4.6× for transfers within one cloud and by
up to 5.0× across clouds.

1 Introduction

Increasingly, cloud applications transfer data across datacen-
ter boundaries, both across multiple regions within a cloud
provider (multi-region) and across multiple cloud providers
(multi-cloud). This is in part due to privacy regulations, the
availability of specialized hardware, and the desire to prevent
vendor lock-in. In a recent survey [26], more than 86% of 727
respondents had adopted a multi-cloud strategy across diverse
workloads. Thus, support for fast, cross-cloud bulk transfers
is increasingly important.

Applications transfer data between datacenters for batch
processing (e.g. ETL [9], Geo-Distributed Analytics [54]),
and production serving (e.g. search indices [34]). Extensive
prior work optimizes the throughput of bulk data transfers
between datacenters within application-defined minimum per-
formance constraints [34, 36, 38, 64]. All major clouds offer
services for bulk transfers such as AWS DataSync [5], Azure
AzCopy [22], and GCP Storage Transfer Service [31].

From the perspective of a cloud customer, transfer through-
put and cost (price) are the two important metrics of transfers
in the cloud. Thus we ask how can we optimize network cost
and throughput for cloud bulk transfers? We study this ques-
tion in the context of designing and implementing Skyplane,
an open-source cloud object transfer system.

A seemingly natural approach is to optimize the routing
protocols in cloud providers internal networks to support
higher-throughput data transfers. Unfortunately, this is not
feasible for two reasons. First, rearchitecting the IP layer rout-
ing protocol to optimize for high-throughput bulk transfer
could be negatively impact other applications that are sensi-
tive to network latency. Second, cloud providers lack a strong
incentive to optimize data transfer to other clouds. Indeed,
AWS DataSync [5], AzCopy [22], GCP Storage Transfer [31],
AWS Snowball [62], and Azure Data Box Disk [12], all sup-
port data transfer into, but not out of, their respective clouds.
Improvements to cross-cloud peering must be achieved with
the cooperation of both the source and destination providers.

Skyplane’s key observation is that we can instead identify
overlay paths—paths that send data via intermediate regions—
that are faster than the direct path. The throughput of the
direct path from Azure’s Central Canada region to GCP’s
asia-northeast1 region is 6.2 Gbps. Instead, Skyplane can
route the transfer via an intermediate stop at Azure’s US
West 2 with a throughput of 12.4 Gbps for a 2.0× speedup
(Fig. 1). Crucially, this can be implemented on top of the
cloud providers’ services without their explicit buy-in.

We are not the first to propose the use of overlay networks
on the public Internet [8]. However, these techniques ignore
two key considerations of public clouds: price and elasticity.

First, the highest-bandwidth overlay path may have an un-
acceptably high price. Cloud providers charge for data egress
separately for each hop along the overlay path. To reduce
the cost of the overlay, it is essential to transfer data along
cheap paths to trade off price and performance. For example,
in Fig. 1, one can achieve 13.9 Gbps by instead using Azure’s
East Japan region as the relay, but the cost would be 1.9×
that of transferring data directly. In contrast, using Azure’s

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1375

Skyplane
Planner

Desired
throughput

Number of VMs

Number of connections

Overlay paths

Data
Plane

Direct: 6.17 Gb/s for $0.0875/GB

Indirect via Azure East Japan: 13.87 Gb/s for $0.170/GB

Indirect via Azure West US 2:
12.38 Gb/s for $0.1075/GB

Desired
price

Figure 1: Cloud-aware overlays: Skyplane optimally trans-
fers across cloud regions and providers subject to the user’s
cost and throughput requirements. Skyplane finds the visual-
ized overlay path from Azure’s Central Canada region to
GCP’s asia-northeast1, which is 2.0× faster but just 1.2×
higher in price than the direct path.

West US 2 region has only a 1.2× cost overhead with simi-
lar performance. Thus, Skyplane operates in a richer problem
space than traditional application-level routing—one where
cloud instance and cloud egress fees are significant.

Second, whereas the bandwidth between two nodes in a
traditional network overlay [8] is considered “fixed,” in Sky-
plane’s setting it depends on elasticity—the ability to allocate
more resources at each cloud region. For example, one can
increase the capacity of any overlay path by simply allocating
more VM instances in each cloud region. There are a limited
number of physical machines at each cloud region, which
cloud providers pass on to users in the form of instance limits.
An overlay enables improved throughput beyond this limit.
Thus, Skyplane operates in a richer solution space than tradi-
tional application-level routing—one where we must choose
the number of VMs to use as relays due to cloud elasticity.

Skyplane addresses both price and elasticity, empowering
users to navigate the trade-off between price and performance
while leveraging the elasticity of cloud resources. Users can
ask Skyplane to maximize bandwidth subject to a cost ceiling,
or minimize cost subject to a bandwidth floor.

At the heart of Skyplane is a planner that computes a data
transfer plan, subject to the user’s constraints, that specifies the
overlay path to use and amount of cloud resources to allocate
along that path. Price and elasticity make it challenging to
compute the plan. Our insight is that, with some care, planning
can be formulated as linear constraints. Thus, Skyplane’s
planner can discover the optimal plan by solving a mixed-
integer linear program (MILP), or closely approximate the
optimal plan by solving a relaxed linear program (LP). Both
can be accomplished using a fast, off-the-shelf solver.

Our Skyplane prototype1outperforms AWS DataSync by
up to 4.6× and GCP Storage Transfer by up to 5.0×. Skyplane
also outperforms academic baselines such as RON by 34%
while reducing cost by 62%.

1https://github.com/skyplane-project/skyplane

2 Background

Network overlays In the early 2000s, network overlays
emerged as a technique for application-level routing with-
out the participation of underlying network providers. These
network overlays can be designed to improve performance
or reliability. Notable network overlays include Chord [60],
Resilient Overlay Networks (RON) [8], Bullet [41], Baidu
BDS [65] and Akamai’s backbone [52, 58].

Although ISPs may have broad visibility into their net-
works, the metrics that ISPs use to select routes may not align
with user preferences. Wide-area networks today do not allow
specification of alternative routing preferences while network
overlays provide applications a mechanism to control routing
decisions. For example, Akamai uses a network overlay to
reduce the latency of CDN misses while RON routes around
network outages via an unaffected intermediate host.

RON is implemented by periodically measuring network
performance via probes embedded in a fixed set of routers.
When path outages occur, RON selects an intermediate relay
router to circumvent the outage. This intermediate router
is selected to have low packet loss or latency to/from the
client and server. Optionally, RON can use a model of TCP
Reno’s throughput [53] to select intermediate routers. RON
will generally select only a single intermediate node.

Wide-area networking in the cloud From the perspective
of cloud customers, the cloud is elastic—additional resources
can be allocated on demand. For example, an overloaded
cloud application can leverage the cloud’s elasticity by allo-
cating additional VM instances. However, the physical reality
of the cloud is that there are only finite resources at each
region. Therefore, cloud providers impose service limits on
their customers for resources such as VMs.

Each VM’s network bandwidth is throttled according to its
instance type. For example, an AWS m5.8xlarge instance
can use at most 10 Gbps of network bandwidth, and an Azure
Standard_D32_v5 instance can use at most 16 Gbps of net-
work bandwidth. Furthermore, only some of the available
bandwidth can be used for egress traffic to another cloud
provider. The policies differ by cloud provider. AWS limits
VM egress bandwidth to the larger of 5 Gbps or 50% of to-
tal bandwidth [4], GCP limits VM egress bandwidth to any
public IP address to 7 Gbps [30], and Microsoft Azure has
no egress limit beyond the total bandwidth limit for a VM.
Of course, the actual achievable TCP network bandwidth is
subject to congestion control which may be less than the limit.

Cloud egress pricing Cloud providers charge egress prices
for network traffic leaving a cloud region. Importantly, egress
prices are assessed based on the volume of data transferred,
not the rate at which it is transferred. Transferring a file at
10 Mbps or at 10 Gbps will result in the same egress charge.
Egress charges introduce asymmetry in billing—there is no
corresponding ingress charge for transfers into a cloud.

1376 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/skyplane-project/skyplane

For intra-cloud transfers (i.e., transfers between two regions
or zones in the same cloud), transfers between geographi-
cally distant endpoints are priced more than transfers between
nearby endpoints. In contrast, inter-cloud transfers (i.e., trans-
fers between two cloud providers) are billed at the same rate
regardless of the transfer’s geographic distance. For example,
the egress price from a single Azure region is billed at the
same rate for any destination outside of Azure, including any
region in AWS or GCP [6, 29, 51].

Egress prices typically dominate the cost of a bulk transfers.
For example, if a VM sends data at a rate of 1 Gbps for an
hour on AWS with an Internet egress price of $0.09/GB, the
total egress charge will total $40.50, which far exceeds the
VM price of $1.50 (for m5.8xlarge) [6].

Cloud object storage AWS, Azure, and GCP provide object
storage APIs that allow customers to save data attached to a
string key. Data is stored immutably and therefore any updates
require writing a new version. Unlike POSIX file systems,
object stores do not provide atomic metadata operations (e.g.,
rename). Consistency models vary across providers. Cloud
object stores store copies of a blob on multiple machines to
improve availability and durability. Large objects support con-
current writes via sharding. Read throughput of a single shard
may be limited by the provider (e.g. 60 MB/s for Azure [13]).

3 Overview of Skyplane

Skyplane allows applications to efficiently transfer large ob-
jects from an object store in one region to an object store in
another cloud region or provider. To use Skyplane, the user
installs the Skyplane client locally and configures it with ac-
cess to cloud provider-supplied credentials. Then, the user
submits a job, together with a constraint on price or band-
width. The job specifies which objects to transfer, the source
cloud provider and region, and the destination cloud provider
and region. The constraint can have one of two forms: it can
ask Skyplane to optimize either bandwidth subject to a price
ceiling, or price subject to a bandwidth floor.

Skyplane itself comprises a planner (Fig. 1, bottom) and a
data plane (Fig. 2). Given the user’s job and constraint, the
planner produces an optimal data transfer plan to complete the
job subject to the constraint. The planner relies on a profile
of the network throughput between different cloud regions.
The data plane is responsible for executing the data transfer
plan: allocating cloud resources (e.g., VMs), transferring data
between them, and interacting with object stores.

3.1 Overlay formulation in Skyplane’s planner
Suppose the user needs to transfer an object from a source
cloud region, A, to a destination cloud region, B. A naïve ob-
ject transfer system might spawn VMs in regions A and B,
and transfer data via a TCP connection between the two VMs.

VMs in Src.
Region

VMs in
Dest.
Region

VMs in Relay
Region B

VMs in Relay
Region A

Cloud #1 (e.g., AWS) Cloud #2 (e.g., Azure)

Skyplane
Client

Object
Store

Object
Store

Data
Transfer
Plan

Figure 2: Skyplane splits an example data transfer over three
paths: the direct path, and two indirect paths. Dashed lines
indicate control orchestration (e.g., for spawning VMs) and
solid lines depict the flow of object data.

Skyplane improves performance compared to this baseline by
applying principles from overlay networks [8]. For example,
Skyplane may identify a third cloud region, C, and transfer
data from A to B via C. This is accomplished at the appli-
cation layer; Skyplane will spawn a VM in region C, set up
TCP connections from A to C and from C to B. We refer to
intermediate regions like C as relay regions.

The baseline approach (A → B) routes data along the “di-
rect path,” since it uses the default path provided by the Inter-
net. However, Skyplane (A →C → B) routes data along the an
“indirect path,” that may not be on the Internet-provided de-
fault path. An indirect path may use multiple relays although
a single relay is usually sufficient.

A key difference between Skyplane and classical over-
lay networks is that Skyplane takes price into account when
choosing the overlay path to use for a job. Concretely, Sky-
plane’s planner uses a price grid and a throughput grid to
determine which indirect path to use. The price grid specifies
the price of transferring data between each pair of cloud re-
gions, in each direction. We computed the price grid based
on information on the cloud providers’ websites and from
querying the cloud APIs. The throughput grid is collected by
measuring the network, as we explain in the next subsection.

Note that throughput grid measurements are made using
TCP connections, subject to TCP congestion control. Thus,
the throughput grid measures the bandwidth available to a
single user for transferring data, accounting for cross-traffic
from other users’ flows. We assume a high degree of statistical
multiplexing in wide-area network traffic—in other words,
that the bandwidth consumed by a single user’s bulk transfer
is negligible compared to the total available inter-region band-
width. This allows a Skyplane user to compute a data transfer
plan without regard to other users’ bulk transfers using Sky-
plane or other bulk transfer tools—all cross traffic from other
users is assumed to be accounted for in the throughput grid.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1377

Figure 3: Intra-cloud vs. inter-cloud links: Inter-cloud links are consistently slower than intra-cloud links for network routes
from Azure and GCP. Service limits are shown with a dashed line; GCP throttles inter-cloud egress to 7 Gbps while AWS
throttles all egress traffic to 5 Gbps.

Th
ro
ug
hp
ut
(G
bp
s)

5.0

4.0

3.0

2.0

Time
2hr 4hr 6hr 8hr 10hr 12hr 14hr 16hr 18hr

AWS us-west-2

Th
ro
ug
hp
ut
(G
bp
s)

6.0

4.0

2.0

Time
2hr 4hr 6hr 8hr 10hr 12hr 14hr 16hr 18hr

GCP us-east1-b

Figure 4: Stability of egress flows over 18 hour period: Continuous probes of cloud networks over one day reveal that routes
from AWS have stable throughput over time. Paths between GCP regions are noisy but have a consistent mean.

As we show in the next subsection, the bandwidth of inter-
region TCP connections is relatively stable in the short term,
validating our assumption of high statistical multiplexing.

3.2 Profiling cloud networks
The planner relies on a profile of the network throughput
between pairs of cloud regions. We collected a throughput
grid by measuring the TCP goodput between each region pair
using iperf3. In total, computing this profile cost approxi-
mately $4000 in egress charges.

Fig. 3 displays the relationship between network latency
and throughput for profiling routes originating from GCP
and Azure for our measured throughput grid. For GCP, we
leverage internal IPs which improve intra-cloud bandwidth.
For both GCP and Azure, intra-cloud routes had lower tail
RTTs than inter-cloud routes. We observe that in both GCP
and Azure, inter-cloud links are slower than intra-cloud links.
As Azure has no service limit for egress bandwidth, we see
the fastest intra-cloud links achieve up to the NIC capacity
of 16 Gbps. However, both GCP and AWS encounter egress
throttling at 7 Gbps and 5 Gbps respectively.

A natural question is how frequently the throughput grid
must be re-measured. Fig. 4 visualizes achieved throughput
from AWS us-west-2 and GCP us-east1-b taken every 30
minutes over an 18 hour timespan. Throughput is very stable

over time for both inter-cloud and intra-cloud routes from
AWS us-west-2. Routes from GCP us-east1-b to AWS
destinations is similarly very stable but intra-cloud routes
to GCP destinations are less stable. Regardless, the overall
rank order of regions by throughput remains mostly consistent
over medium-term timescales. Thus, it should be sufficient to
profile networks relatively infrequently (i.e. every few days).
In practice, this information could be collected by third-party
service, or measured via active probing along live transfers.

3.3 Skyplane’s data plane
Skyplane’s data plane executes data transfers using the plan
computed by Skyplane’s planner. Ephemeral VMs for a sin-
gle transfer, called “gateways,” are provisioned in the source
region, destination region, and overlay regions for a transfer
plan. Each source gateway reads a small shard of data from
the object store and transfers data via intermediate gateways
to the destination where the shard is written.

Skyplane reads data from an object store in the source
cloud region and writes data to an object store in the destina-
tion cloud region. We focus on the object stores provided as a
service by AWS S3, Azure Blob Storage, and Google Storage.
Unlike a traditional overlay network, there is no central Sky-
plane service that allocates resources to each user from a pool
of “Skyplane resources.” Instead, Skyplane can be understood

1378 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

as a local service run by each user that is invoked when an
application needs to transfer data. Skyplane directly allocates
cloud resources on the user’s behalf when processing a job,
and manages those resources to transfer the user’s data across
cloud regions. This allows Skyplane to allocate and manage
each user’s resources according to their cost and performance
objectives, independently from the cloud providers’ existing
data transfer services, while relying on clouds to offer a large
pool of resources and manage isolation between users.

4 Principles of Skyplane’s planner

Skyplane’s planner2 is responsible for developing a plan for
transferring data across the wide area to complete an object
transfer job submitted by a user or their application (Fig. 5).
This plan describes the overlay path and the amount of cloud
resources to allocate along that path to facilitate the transfer.

Skyplane’s planner supports two modes:
Cost minimizing: The planner will minimize cost subject to
an application-specified throughput constraint.
Throughput maximizing: The planner will maximize
throughput subject to an application-specified cost constraint.

As we will describe in §5, Skyplane finds the optimal plan
by formulating it as an Mixed-Integer Linear Program (MILP)
and using a fast but exponential-time solver. This section de-
scribes the degrees of freedom available to the optimizer to
navigate the price-performance trade-off for the user’s speci-
fied constraint. Our goal is to describe what aspects of the plan
are at the planner’s disposal, justify why it is reasonable to
vary those aspects of the plan, and describe certain techniques
available to the planner to manage the price-performance
trade-off. Note that the planner is not directly programmed to
use these techniques; they are merely patterns that it discovers
in the course of finding the optimal MILP solution.

4.1 Achieving low instance and egress costs
That bandwidth costs dominate the cost of data transfer (§2)
is both a challenge and an opportunity for Skyplane. It is
an opportunity because it allows Skyplane to be competitive
with the price of using data transfer tools provided directly
by the cloud providers (e.g. AWS DataSync, AzCopy, GCP
Cloud Transfer Service), as those tools incur bandwidth costs
but not instance costs. It is a challenge for Skyplane because
it implies that, used naïvely, indirect paths are much more
expensive than direct paths. This is because egress bandwidth
is charged for each hop along the path. For example, for a path
A →C → B, the bandwidth cost must be paid for both A →C
and C → B, which could be double the cost of transferring
over the direct path. As a result, it is crucial for Skyplane’s
optimizer carefully manage egress transfer costs.

2Explore Skyplane’s planner at https://optimizer.skyplane.org

Job
src/dst

regions, etc. Data
Transfer
Plan

Price Grid Throughput
Grid

User Constraint
e.g., throughput >= x

Skyplane
Planner

Figure 5: Skyplane’s planner considers throughput and cost
constraints from the user along with per-cloud price informa-
tion and an inter-region throughput profile grid to determine
the optimal data transfer plan.

4.1.1 Choosing the relay region

One way for Skyplane to manage the additional cost associ-
ated with indirect paths is to carefully choose the relay region
C to minimize this cost. For example, suppose that a user
needs to transfer an object from AWS us-west-2 (region
A) to Azure UK South (region B). The direct path A → B
would require the user to pay $0.09 per GB, the cost of band-
width leaving AWS’ network. If the relay region C is chosen
in us-central-1 or us-east-1, then the overall bandwidth
price will only increase slightly; while the C → B transfer
still incurs $0.09 per GB, as data is leaving AWS’ network,
the A → C bandwidth only costs $0.02 per GB, as it is an
intra-continental transfer within the cloud provider’s network.
Skyplane’s planner can use the throughput and price grids to
identify relay regions that improve the performance of the
transfer while minimizing additional bandwidth costs.

4.1.2 Combining multiple paths

Another way to manage the cost of indirect paths is to split the
data transfer over multiple paths, in order to make fine-grained
trade-offs between price and performance. For example, sup-
pose that Skyplane identifies a high-bandwidth indirect path,
but that the path is more expensive than the user’s price ceil-
ing. Skyplane can still benefit partially from that indirect
path by sending part of the data over that path, at higher cost,
and the remaining data over the direct path A → B, at lower
cost. Thus, Skyplane may average the price and performance
of multiple paths, when doing so allows Skyplane to more
optimally satisfy the user’s constraints.

4.2 Parallel TCP for high bandwidth

Skyplane uses parallel TCP connections—that is, bundles of
TCP connections—to achieve high goodput over a chosen
path. This is a well-known technique for achieving good per-
formance, particularly for wide-area transfers [1, 59]. Our
Skyplane implementation uses up to 64 outgoing connections
for each VM instance, as we empirically measured that using

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1379

https://optimizer.skyplane.org

additional connections typically resulted in diminishing ben-
efits in aggregate goodput. When collecting measurements
for the throughput grid, we make sure to use 64 parallel con-
nections to measure the achievable TCP goodput for each
ordered pair of regions.

It is known that using multiple TCP streams in parallel may
cause an application to obtain more than its “fair share” of
bandwidth [25, §A.1], particularly in contexts where networks
are running at nearly 100% utilization [36]. Our view is that,
despite this, it is acceptable to use multiple TCP connections
in parallel in the context of Skyplane. There are three reasons
for this. First, it is common for applications to use parallel
TCP, including for workloads like bulk data transfer [1, 44].
It is important for Skyplane to appropriately compete with
such applications for limited bandwidth. Second, the user
pays the cloud provider for bandwidth, both in the form of the
bandwidth price (total amount transferred) and the instance
price (rate at which data can be transferred), and it is natural
for users to be able to make use of the bandwidth that they
pay for. Third, cloud providers control the datacenter network,
and can shape traffic in the presence of congestion to ensure
that each customer gets a fair share of bandwidth.

4.3 Multiple VMs for high bandwidth
For a given overlay path, Skyplane must allocate sufficient
resources along the path to achieve high bandwidth. However,
the achievable outgoing bandwidth from a VM instance is
limited, as described in §2.

Therefore, Skyplane may allocate multiple VM instances
at certain regions along the path, to increase aggregate data
transfer rate of the VMs at each region. Although simply us-
ing larger VMs may seem like a viable alternative, it is less
effective than using multiple instances due to per-instance
bandwidth limits. Skyplane uses a fixed VM size, and its plan-
ner chooses how many instances to allocate in each region,
under the assumption that TCP goodput scales linearly with
the number of allocated VM sizes.

It may seem that Skyplane can achieve an arbitrarily high
bandwidth by spawning many instances in each region. Un-
fortunately, this simple strategy does not work because cloud
resources are not perfectly elastic. The finite capacity for VMs
in a datacenter is passed down to cloud customers in the form
of service limits, which limit the number of VM instances,
and therefore the amount of network bandwidth, that users
can allocate in each region. While users can request limit
increases, these are ultimately subject to resource availability.
To model this, Skyplane’s planner takes into account a limit
on the number of instances that a user can allocate per region.

5 Finding optimal transfer plans

Skyplane’s planner searches for cost-efficient high-throughput
transfer plans that jointly specify the overlay path, TCP con-

Variables
F ∈ R|V |×|V |

+ Throughput grid
N ∈ Z|V |

+ VMs per region
M ∈ Z|V |×|V |

+ TCP conn. per region
Constraint: goal throughput

TPUT GOAL ∈ R|V |×|V |
+ User’s desired throughput

Constants: provider limit
LIMITlink ∈ R|V |×|V |

+ Throughput grid limit
LIMITconn ∈ Z|V |×|V |

+ TCP connection limit
LIMITingress ∈ Z|V |

+ VM limit
LIMITegress ∈ Z|V |

+ Egress bandwidth limit
Constants: provider cost

COSTegress ∈ R|V |
+ Egress cost ($/Gbit)

COSTVM ∈ R|V |
+ VM cost ($/s)

Table 1: Symbol table for Skyplane’s ILP formulation.

nections between regions and VMs to provision per region.
At the core of Skyplane’s planner is an optimizer that finds

the optimal plan using off-the-shelf Linear Programming (LP)
solvers. We formalize the constraints of our problem as Mixed
Integer LP (MILP) which can quickly be solved in under 5
seconds with an open-source solver. The problem can be
further relaxed into a continuous LP which is solvable in
worst-case polynomial time via interior point methods [39].

Independently optimizing for each variable then combining
partial solutions would not guarantee a globally optimal solu-
tion. It is therefore important that Skyplane’s planner models
all variables in an integrated search space to obtain provably
optimal data transfer plans.

5.1 Cost minimizing overlay paths

Flow networks can naturally represent overlay networking
topologies like those used by Akamai [58]. We start with a
min-cost flow problem. The following primal LP finds the
optimal flow matrix F ∈R|V |×|V |

+ for a network topology graph
G = (V,E) where nodes represent regions and edges are links:

arg min
F

⟨C,F⟩

subject to ∑(c,v)∈E Fc,v ≥ TPUT GOAL

∑(u,v)∈E Fu,v = ∑v,w Fv,w ∀v ∈V −{s, t}

0 ≤ F ≤ LIMITlink

(1)

where s and t are the source and destination regions,
LIMITlink ∈ R|V |×|V |

+ is the maximum capacity for each link
and C ∈ R|V |×|V |

+ is the cost per unit of bandwidth between
regions. We use the same notation for matrix and vector inner
products: ⟨C,F⟩= ∑u,v Cu,vFu,v.

1380 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5.1.1 Objective: Minimize cost from egress and VMs

Min-cost flows do not accurately reflect the cost of transfers
in the cloud. The total cost of a transfer in Skyplane includes
egress cost and VM cost. Note that this objective is not linear;
we present a linear reformulation in Sec. 5.1.1. We present
the full objective is in the in Equation 4a.

Modeling egress cost Unlike physical networks, virtual
networks in the cloud will charge the same amount if 1GB
of data is sent at 1 Mbps or 10 Gbps. Transfers are priced
according to egress volume ($ per GB, COSTegress) rather than
bandwidth ($ per Gbps). We can update the cost function to
instead model the transfer cost by first computing how much
the overlay path costs to run per unit time and then scale that
by the runtime for a transfer. We denote the total volume of
the transfer as VOLUME. Total egress cost is then:

⟨F,COSTegress⟩︸ ︷︷ ︸
Egress cost per s

∗VOLUME÷∑v∈V Fs,v︸ ︷︷ ︸
Transfer time

(2)

Modeling VM cost Multiple VMs can increase aggregate
bandwidth as discussed in Sec. 4.3. To optimally trade-off
parallel VMs with the overlay, we introduce a new decision
variable N ∈ Z|V |

+ that models the number of instances use
to transfer data per region. VM count per region may vary
due to asymmetric egress and ingress limits. To accurately
consider transfer costs from VMs, we add the the following
instance cost expression to Equation 2 where COSTVM is a
vector containing the cost per second per VM in each region:

⟨N,COSTVM⟩︸ ︷︷ ︸
VM cost per s

∗VOLUME÷∑v∈V Fs,v︸ ︷︷ ︸
Transfer time

(3)

Linear reformulation of the objective As written, the ob-
jective in Equation 4a is not linear due to a product of vari-
ables between F and N. By reformulating the problem to in-
stead consider finding a plan that provides exactly TPUT GOAL
(instead at least), the runtime for the transfer can be reduced
to a constant VOLUME÷ TPUT GOAL.

5.1.2 Constraints: Cloud provider service limits

Resources are not infinite at cloud regions; providers limit the
number of VMs that a user may provision and in some cases,
providers may throttle the performance of ingress and egress.

Per VM ingress and egress limits AWS and GCP each
throttle egress from their clouds via SDN policies. For AWS,
instances with 32 cores or less are limited to 5 Gbps. For
GCP, individual flows are limited to 3 Gbps and total egress is
service limited to 7 Gbps. Ingress is bottlenecked by VM NIC
bandwidth. We constrain the maximum ingress bandwidth
per VM to LIMITingress via Constraint 4f and the maximum
egress bandwidth per VM to LIMITegress via Constraint 4g.

Constraining TCP connections Using parallel TCP con-
nections is a well known approach to improve WAN perfor-
mance as discussed in Section 4.2. Yet, bandwidth does not
scale linearly with connections (Figure 9a). We introduce a
decision variable M ∈ Z|V |×|V |

+ representing the number of
connections between a pair of regions (not per VM pair).
Constraint 4b ensures M is constrained by N and LIMITconn

(typically 64 per VM). We then limit the total incoming and
outgoing connections with Constraints 4i and 4h.

Per-region VM limits We introduce the variable N ∈ Z|V |
+

to denote the number of VMs per region. N must be under the
global instance cap in Constraint 4j. The optimizer linearly
scales the maximum number of egress TCP connections per
region by the number of VMs provisioned in each region.

5.1.3 Continuous relaxation of MILP

To improve solve times, N and M are relaxed into real valued
variables N ∈ R|V |

+ and M ∈ R|V |×|V |
+ . Rounding variables

down performs comparably to randomized rounding with
solutions ≤ 1% from optimal. The relaxed problem has worst
case polynomial time complexity [39].

5.1.4 Full formulation of the cost optimal solver

All variables and constants are listed in Table 1. The full
formulation of Skyplane’s optimizer is:

arg min
F, N
M

VOLUME

TPUT GOAL

(
⟨F,COSTegress⟩ + ⟨N,COSTVM⟩

)
(4a)

subject to

F ≤(LIMITlink ⊙M)÷LIMITconn (4b)

∑v∈V Fs,v ≥ TPUT GOAL (4c)

∑u∈V Fu,t ≥ TPUT GOAL (4d)

∑u∈V Fu,v = ∑u∈V Fv,u ∀v ∈V −{s, t} (4e)

∑u∈V Fu,v ≤ LIMITingress
v ∗Nv ∀v ∈V (4f)

∑v∈V Fu,v ≤ LIMITegress
u ∗Nu ∀u ∈V (4g)

∑v∈V Mu,v ≤ LIMITconn ∗Nv ∀u ∈V (4h)

∑u∈V Mu,v ≤ LIMITconn ∗Nu ∀v ∈V (4i)

Nv ≤ LIMITV M ∀v ∈V (4j)

5.2 Throughput maximizing overlay paths
Directly solving for a throughput maximizing path under a
cost ceiling is non-trivial as we cannot use the linear reformu-
lation of the cost objective. We can approximate a solution by
solving for the minimum cost transfer plan at a range of many
throughput goals. The result of this procedure is a Pareto

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1381

frontier curve (as shown in Fig. 9c). A throughput maximiz-
ing solution can be extracted from this curve. The quality of
approximate solution will depend on how many samples are
used. A single AWS c5.9xlarge instance can evaluate 100
samples in under 20 seconds.

6 Implementation of Skyplane

We implemented Skyplane in Python 3. Skyplane’s planner
uses the proprietary Gurobi library to solve MILP instances
(used in our evaluation), but the Coin-OR library can be used
instead to avoid this dependency. Our implementation cur-
rently supports the three major cloud providers: Amazon Web
Services, Microsoft Azure, and Google Cloud Platform.

We use m5.8xlarge instances on AWS, as smaller VM
sizes were subject to burstable networking performance,
which we wished to avoid [4, 7]. For consistency, we
used Standard_D32_v5 instances on Microsoft Azure and
n2-standard-32 instances on Google Cloud.

A user initiates a transfer from their application with the
Skyplane client. The client provisions VMs in each region
according to the transfer plan and runs the Skyplane gateway
program on each VM. The gateway is responsible for actu-
ally reading from source object stores, relaying data through
overlay regions and writing to destination object stores.

While transfer time is dominated by network throughput,
the time to spawn gateway VMs contributes to the transfer
latency. To minimize unnecessary bloat in VM images, we
use compact OSes such as Bottlerocket [3] and package de-
pendencies via Docker.

Skyplane assumes that objects are broken up into small
chunks of approximately equal size. Applications can often do
this without significant burden; for example, machine learning
applications store data as TFRecords, which are easy to split
into small chunks. This allows Skyplane to read and write
data quickly from and to cloud object stores, by issuing many
read/write operations in parallel to different chunks.

To mitigate the impact of straggler connections, Skyplane
dynamically partitions data across TCP connections as they
become ready to accept more data. This is in contrast to tools
like GridFTP [1], which assign data blocks to connections
in a round-robin fashion. The downside is that, for plans
that use multiple overlay paths, the amount of data sent on
each path may deviate from the targets computed at planning
time, which could cause the actual cost of transferring data to
deviate from the cost predicted by Skyplane’s planner.

To avoid overflowing buffers at relay regions, Skyplane
uses hop-by-hop flow control to stop reading data from incom-
ing TCP connections when a VM’s queue of chunks reaches
capacity. Bufferbloat-type problems [28] are not a concern
for Skyplane, with regard to queued chunks, as we pipeline
transfers to optimize for throughput instead of latency.

7 Evaluation

To evaluate Skyplane, we investigate transfer time and price.
We will sometimes use transfer throughput as a proxy for
transfer time. In our price calculations, we include both in-
stance cost and egress cost.

7.1 Experimental setup

We evaluate Skyplane with 20 AWS regions, 24 Azure regions
and 27 GCP regions. For all experiments, we use public IP
addresses attached to the VMs for transferring data. In some
cases, one can achieve better performance for intra-cloud
overlay hops by using private IP addresses assigned to each
VM. For GCP this yields higher performance; for AWS and
Azure it may yield higher performance, but requires peering
virtual networks which incurs additional fees.

Furthermore, Azure and GCP allow one to select network
tiers to control whether data is transferred via the cloud
provider’s network or via the public Internet. The Skyplane
prototype utilizes external IPs over standard network tiers.
That said, Skyplane is not incompatible with optimizations
like VPC peering or hot-potato routing tiers to reduce cost
and improve performance which we leave to future work. We
use the CUBIC congestion control protocol in experiments.

7.2 How much faster is Skyplane than existing
data transfer solutions?

Existing cloud providers offer data transfer tools such as AWS
DataSync, GCP Storage Transfer, and Azure AzCopy for low-
cost transfers of bulk data into their respective clouds. These
tools do not disclose what mechanisms they use to transfer
data—for example, the number of VMs and TCP connections
(if any) used for a transfer, or the QoS (if any) associated with
the network traffic. When evaluating Skyplane, we restrict
Skyplane to use at most 8 VMs in each region. This is con-
servative; for example, on equalizing $/GB for some routes,
Skyplane could provision up to 262 VMs per region within
DataSync’s service fee. Moreover, while these services only
support data transfer into their respective clouds, Skyplane
supports data transfer between every region pair.

We consider transferring the training and validation set
for ImageNet [23]. We specifically use the TFRecords as
generated by Google as part of the Cloud TPU benchmark
example [23]. We evaluate flows between regions within a sin-
gle cloud (intra-provider) and between clouds (inter-provider).
We expected that data transfer within each cloud provider (e.g.,
between AWS’s us-east-1 and AWS’s us-west-1) to per-
form well as they have full visibility into their networks and
can utilize private interfaces with higher performance than
over public API. For example, Azure Blob Storage throttles
per-object reads for third-party VMs [50]. Our experiments

1382 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 100 200 300
Transfer Time (s)

AWS ap-southeast-2
to AWS eu-west-3

AWS ap-northeast-2
to AWS us-west-2

AWS us-east-1
to AWS us-west-2

AWS eu-north-1
to AWS us-west-2

240s
52s

176s
60s

143s
53s

110s
62s

AWS DataSync Skyplane

(a) AWS DataSync comparison

0 100 200 300
Transfer Time (s)

AWS ap-northeast-2
to GCP us-central1

AWS us-east-1
to GCP us-west4

Azure koreacentral
to GCP na-northeast2

GCP europe-north1
to GCP us-west4

308s
61s

284s
55s

217s
63s

105s
57s

GCP Data Transfer Skyplane

(b) GCP Storage Transfer comparison

0 20 40 60
Transfer Time (s)

GCP sa-east1
to Azure koreacentral

Azure eastus
to Azure koreacentral

AWS sa-east-1
to Azure koreacentral

AWS us-east-1
to Azure westus

55s
30s

40s
38s

40s
30s

29s
19s

Azure AzCopy Skyplane

(c) Azure AzCopy comparison

Figure 6: Comparison to cloud transfer systems: The thatch pattern in each bar represents the storage I/O overhead.

did observe this behavior. However, Skyplane benefits from
parallelizing the transfers.

We compare against AWS DataSync, GCP Storage Trans-
fer and Azure AzCopy in Fig. 6. We evaluated Skyplane
with a cost budget cap that is lower than the service fee for
cloud transfer services in all our experiments. For each source-
destination pair, we additionally measured the time to transfer
procedurally-generated data using Skyplane; this allows us
to break out the overhead of reading and writing to cloud
storage as a “thatched” region in each bar. Skyplane signifi-
cantly outperforms AWS DataSync and GCP Cloud Transfer
in all configurations. In certain cases, Azure AzCopy performs
about as well as Skyplane. We chose the koreacentral re-
gion because we expected the greatest improvements from
the overlay in that region; however, storage overheads (the
“thatched” regions of the bars), not networking overheads,
dominated the runtime. It is possible that AzCopy avoids the
Azure Blob Storage I/O overhead that dominates Skyplane’s
transfer time by leveraging Azure’s Copy Blob From URL
API call to download data directly into the servers running
Azure Blob Storage [11].

7.3 How much faster are the overlay paths?
The planner optimally explores the trade-off between im-
proved throughput and cost for cloud data transfers. We ex-
plore solving for the optimal transfer path between all pairs
of clouds regions between all cloud providers. We evaluated
22 AWS regions, 23 unrestricted Azure regions and 27 GCP
regions which leads to 5,184 possible replication routes. It
would be too expensive to transfer a large amount of data
along each path in order to measure the empirical achieved
throughput; therefore we use the planner to generate a plan
and compare the resulting plan with the direct path, both in
terms of expected throughput and cost. We compute predicted
costs for transferring a 50 GB dataset between each possible

source and destination. We report the speedup relative to Sky-
plane with a direct connection between each set of instances.
Notice that the baseline is itself an ablation of Skyplane and
it generally outperforms existing cloud transfer services to
begin with (see §7.2).

The results are shown in Fig. 7. For each pair of source
and destination clouds, we show distribution of predicted
throughputs across region pairs, both with Skyplane’s planner
restricted to the direct path and allowing Skyplane’s plan-
ner to use overlay paths. The results show that Skyplane’s
overlay routing meaningfully improves achievable throughput
between cloud regions. Note that transfers out of AWS cannot
exceed 5 Gbps and transfers leaving GCP cannot exceed 7
Gbps due to these cloud providers’ caps on egress bandwidth.

7.4 Where are transfer bottlenecks?

To understand how the overlay improves throughput, we char-
acterize the fraction of transfers that are bottlenecked at each
location. In Fig. 8, we visualize the percentage of transfers
from §7.3 that were bottlecked at a VM in the source region,
the network link leaving the source region, a VMs in optional
overlay regions, a network links leaving an overlay region,
and a VM in the destination region. We consider a particular
location to be a bottleneck if utilization is over 99%. Multiple
locations may simultaneously be a bottleneck for one transfer.

For Skyplane with overlay routing disabled, the network
link from the source to the destination region is the most
common bottleneck for transfers. In a small set of cases, the
source VM is a bottleneck for the transfer. Generally, the
direct path is not fast enough to saturate the maximum egress
bandwidth limit for a VM. The overlay shifts source link
bottlenecks by reducing the number of transfers bottlenecked
by the source link by 32%. The bottleneck shifts to the source
VM or in some cases a network link leaving an overlay region.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1383

0 1 2 3 4 5
Throughput per VM (Gbps)

0

2

D
en

si
ty

AWS to AWS

0 1 2 3 4 5
Throughput per VM (Gbps)

0

2

4

D
en

si
ty

AWS to Azure
Skyplane without overlay Skyplane

0 1 2 3 4 5
Throughput per VM (Gbps)

0

2

4

D
en

si
ty

AWS to GCP

0 2 4 6 8
Throughput per VM (Gbps)

0.0

0.2

D
en

si
ty

Azure to AWS

0 2 4 6 8 10 12
Throughput per VM (Gbps)

0

1

D
en

si
ty

Azure to Azure

0 2 4 6 8 10 12
Throughput per VM (Gbps)

0.0

0.1

0.2

D
en

si
ty

Azure to GCP

0 2 4 6
Throughput per VM (Gbps)

0.0

0.5

D
en

si
ty

GCP to AWS

0 2 4 6
Throughput per VM (Gbps)

0

1

D
en

si
ty

GCP to Azure

0 2 4 6
Throughput per VM (Gbps)

0

1

D
en

si
ty

GCP to GCP

Figure 7: Ablation of predicted overlays: Overlay routes improve throughput per VM instance. We visualize the distribution of
predicted throughput by the planner with all optimizations enabled (Skyplane) and with all optimizations except for overlay
routing (Skyplane without overlay). The AWS and GCP egress limits are displayed with a dashed line.

Figure 8: Transfers bottlenecked at each location: For trans-
fers in Fig. 7, we visualize what percentage of transfers were
bottlenecked at various locations. Enabling the overlay shifts
bottlenecks from the network to the VM.

7.5 Skyplane microbenchmarks

Impact of parallel TCP connections Fig. 9a shows the im-
pact of varying the number of parallel TCP connections used
to transfer data between VMs. For this experiment, the source
VM was located in AWS ap-northeast-1 and the destina-
tion VM was located in AWS eu-central-1. Skyplane trans-
fers 32 GB of synthetic, procedurally-generated data in these
experiments to avoid incurring object store I/O overheads
and thereby isolate network performance. The black dashed
line shows the expected throughput, assuming that bandwidth
scales linearly with the number of parallel TCP connections
up to AWS’ 5 Gbps egress cap. The blue line shows Sky-
plane’s achieved throughput, and the green line uses Sky-
plane’s achieved throughput using the BBR congestion con-

trol algorithm (used only this experiment). For this experi-
ment, the source VM was located in AWS ap-northeast-1
and the destination VM was located in AWS eu-central-1.
Skyplane’s achieved throughput plateaus below the 5 Gbps
egress cap, and 64 connections is enough to come close.

Impact of parallel VMs Fig. 9b shows the impact of us-
ing multiple VMs in each region to achieve higher aggre-
gate throughput. The black dashed line shows the expected
throughput, assuming that bandwidth scales linearly with the
number of VMs. Although Skyplane’s performance is signifi-
cantly less than the expected throughput for a large number
of gateways, the graph shows that using parallel VMs is an
effective way for Skyplane to scale its aggregate bandwidth.
Additionally, using parallel VMs is a particularly valuable
tool in the context of inter-cloud transfers, as Skyplane can
use multiple VMs in one cloud provider to circumvent the
egress limit. For example, for an overlay hop from an AWS
region to an Azure region, one may allocate many instances
in AWS but few in Azure, to account for AWS’ egress cap.

Trade-off between cost and throughput Fig. 9c shows
the impact on overlay path throughput as the price bud-
get is varied. We adjusted the cost budget afforded to
the planner (x-axis), and plot the throughput predicted by
the planner for the output plan (y-axis). We show three
routes where the overlay benefits are considerable (Azure
westus to AWS eu-west-1), good (GCP asia-east1-a to
AWS sa-east-1) and minimal (AWS af-south-1 to AWS

1384 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20 40 60 80 100 120
Number of connections

0

1

2

3

4

5

Th
ro
u
g
h
p
u
t
(G

b
p
s)

Skyplane (BBR)
Skyplane (CUBIC, default)
Expected throughput

(a) TCP connections versus throughput

0 4 8 12 16 20 24
Number of gateways

0

20

40

60

80

Th
ro
u
g
h
p
u
t
(G

b
p
s)

Skyplane
Expected throughput

(b) Number of gateway VMs versus throughput (c) Predicted planner throughput versus cost

Figure 9: Skyplane ablations: We evaluate the impact of parallel TCP connections, parallel gateway VMs and overlay cost.

Figure 10: Scaling VMs versus overlay: In situations where
the direct path is slow, the overlay is faster than simply scaling
the number of VMs used alone.

ap-southeast-2). As the cost budget increases, Skyplane
uses increasingly complex overlay topologies, adding new
overlay paths as the instance limit (1 VM, in this case) is
saturated in each region. Each elbow in the plot (e.g. 1.2× for
the Azure to AWS route) represents a point where Skyplane
adds a new overlay route via a faster but more costly region.
At some point, the planner cannot increase throughput further
as the overlay network is saturated.

Is it better to use VMs to form overlay paths or parallelize
the direct path? Given a limited number of VMs (§4.3),
a natural question is whether it is better to use those VMs
to form overlay paths or to parallelize the direct path. In
Fig. 10, we evaluate Skyplane with and without the overlay
enabled for various numbers of VMs in the context of an
inter-continental transfer and an intra-continental transfer. For
the inter-continental transfer, using the VMs with overlays
enabled provides a 2.08× geomean speedup compared to
using those VMs to parallelize the direct path. However, for
the intra-continental transfer, there is little benefit to using
VMs in overlay paths (1.03× geomean speedup).

Table 2: Comparison with academic baselines: Skyplane
outperforms RON’s path selection heuristic implemented in
Skyplane [8].

Method Time Throughput Cost

GCT GridFTP [1, 10] (1 VM) 133s 1.03 Gbps $1.40
Skyplane (1 VM, direct) 73s 1.71 Gbps $1.40

Skyplane w/ RON routes (4 VMs) [8] 21s 6.02 Gbps $2.27
Skyplane (cost optimized, 4 VMs) 32s 3.88 Gbps $1.56
Skyplane (throughput optimized, 4 VMs) 16s 8.07 Gbps $1.59

7.6 Comparison against academic baselines

In Table 2, we compare Skyplane with RON [8] and the
community-maintained fork [10] of GridFTP [1] for a 16 GB
data transfer from Azure East US to AWS ap-northeast-1.
To isolate network throughput from I/O overheads, we bench-
mark the transfers without object stores (VM to VM only).

We use the open-source GCT fork of GridFTP [10]. Al-
though GCT GridFTP theoretically supports striped transfers
across multiple machines, we were unable to find a supported
non-commercial implementation. To make a fair comparison,
we run both GCT GridFTP and Skyplane with a single VM
per region. Skyplane is 1.6× faster than GCT GridFTP.

We implement RON’s path selection heuristic in Skyplane
to compare overlays between RON and Skyplane. Our results
show that Skyplane has better cost and throughput than RON.
Skyplane with routes from RON’s path selection heuristic
achieves 3.5× higher throughput than Skyplane with a single
VM but at 62% cost overhead. Skyplane’s planner instead
finds overlay paths with up to 4.7× higher throughput than
the direct path within a 14% cost overhead.

8 Related Work

Skyplane builds on the overlay network literature [8, 16, 58].
As discussed in §1, Skyplane adapts classical overlays to the
cloud setting, accounting for the price of network bandwidth

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1385

and leveraging the elasticity of cloud resources. CRONets [16]
briefly discusses cost, but focuses on comparing cloud-based
options to private leased lines. Unlike Skyplane, it does not
discuss how to manage the cost of cloud resources. Lai et
al. [46] find relay regions improve throughput in AWS when
utilizing a single TCP connection but find the 2 Gbps instance
NIC limit from their chosen instance class limits the benefit
of overlay paths. CloudCast [56] examines the use of trian-
gle overlays in the cloud to reduce network latency while
Skyplane examines throughput.

Several existing efforts [27, 49, 55] aim to optimize bulk
data transfers by reducing the amount of data transferred.
Such techniques are complementary to Skyplane; one can
first apply these techniques to reduce the amount of data to
transfer, and then apply Skyplane’s techniques to transfer that
reduced data efficiently. Unlike Skyplane, these works do not
use cost when selecting the network path to use for a transfer.

Another line of research aims to improve bulk data transfers
by improving resource management. GridFTP [1] is a tool for
wide-area transfers that techniques such as using multiple ma-
chines and TCP connections. GridFTP sends all data over the
direct path and does not utilize overlays. Khanna et al. [40]
explore application of network overlays to GridFTP but do
not consider elasticity and egress price in the cloud. Other
solutions, like PSockets [59], also use parallel TCP connec-
tions for high bandwidth. Pied Piper [14] also explored how
cloud resource elasticity could be used to improve cloud data
transfers, but utilize a different mechanism than Skyplane.

There have been decades of improvements and optimiza-
tions at the transport layer to make TCP perform better in
large-BDP settings within TCP itself [2, 15, 17, 33], while
others concern operating system support for TCP [20, 24, 48].
Improvements to TCP are complementary to Skyplane. Cod-
edBulk [61] uses network coding to complete bulk-transfer
multicast jobs quickly [61]. Another set of research [18,63,64]
investigates how to schedule urgent and non-urgent bulk trans-
fers to meet a transfer’s deadline. None of these techniques
consider the cost of transferring data in the cloud.

Traffic engineering (TE) systems, like Google’s B4 [35,36]
and BwE [43] and Microsoft’s SWAN [34], Cascara [57], and
BlastShield [42], are used internally by cloud providers to
navigate the cost-performance trade-off in their wide-area
networks. The precise nature of the trade-off differs from
Skyplane in two ways. First, TE systems consider costs in
terms of the bandwidth provisioned (e.g., the cost of installing
long-distance cables [36], or the 95th percentile bandwidth for
peering links [57]). In contrast, Skyplane considers cost from
the perspective of a cloud customer, where the cost depends on
the volume and not bandwidth of data transferred. Second, TE
systems like Cascara [57] assume a static topology and aim
to reallocate bandwidth to save cost, with a global view of a
single provider’s network. Skyplane optimizes a single user’s
transfer, with the ability to use overlay regions in multiple
cloud providers’ networks.

Skyplane has similarities to Content Delivery Networks
(CDNs) [58], most notably in that both make use of overlay
networks. However, Skyplane’s focus is different from CDNs.
CDNs focus on caching objects near users, in order to provide
low network latency. In contrast, Skyplane focuses on transfer-
ring large amounts of data quickly, with a focus on achieving
high bandwidth rather than low network latency such as in
workloads like ML training and database replication. CDNs
are more suitable for workloads where popular objects need
to be replicated to many regions so that geo-distributed users
can access them with low network latency.

One application of bulk transfers is VM migration [19, 32,
37, 45] that balance VM downtime and bandwidth consumed
when transferring VMs. Supercloud [37] uses a network of
vSwitches in an overlay that maintains TCP connections upon
migration, not to provide high bandwidth at low cost.

Some existing research efforts and commercial products
focus on bulk transfer jobs that are not time-critical. For ex-
ample, Laoutaris et al. [47] propose techniques to reduce the
cost of transferring data for delay tolerant applications.

Cloud providers provide services for bulk transfer, such as
AWS Snowball [62], Azure Data Box [12], and GCP Transfer
Appliance [21], that have users ship their data via physical
drives via the postal service. For sufficiently large transfers,
these services may allow data to be transferred into the cloud
datacenter more quickly than using the Internet.

9 Conclusion

This paper explores how to efficiently transfer data between
cloud regions using cloud-aware overlay networks. Our key
observation is that principles from overlay networks can be
applied to the cloud setting to identify high-quality network
paths that lead to fast transfer times. However, adapting prin-
ciples from overlay networks to the cloud setting requires
consideration of cloud resource pricing, most notably the
egress fees associated with network bandwidth. Skyplane
manages the trade-off between performance and cost when
performing bulk data transfer. It works by accepting a user- or
application-provided constraint on performance and solving
a mixed integer linear program (MILP) to obtain the optimal
data transfer plan. Skyplane can reduce the time to transfer
data by up to 5.0× at minimal additional cost.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Rachee
Singh, for their helpful feedback. We also thank Asim Biswal,
Jason Ding, Daniel Kang, Vincent Liu, Xuting Liu, and Anton
Zabreyko. This work is supported by NSF CISE Expeditions
Award CCF-1730628, NSF GRFP Award DGE-1752814, and
gifts from Amazon, Astronomer, Google, IBM, Intel, Lace-
work, Microsoft, Nexla, Samsung SDS, and VMWare.

1386 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] William Allcock, John Bresnahn, Rajkumar Kettimuthu,
Michael Link, Catalin Dumitrescu, Ioan Raicu, and Ian
Foster. The Globus striped GridFTP framework and
server. In Supercomputing, 2005.

[2] M. Allman, D. Glover, and L. Sanchez. Enhancing TCP
over satellite channels using standard mechanisms. RFC
2488, 1999.

[3] Amazon Web Services. Amazon Bottlerocket OS.
https://aws.amazon.com/bottlerocket, 2022.

[4] Amazon Web Services. Amazon EC2 in-
stance network bandwidth. https://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/
ec2-instance-network-bandwidth.html, 2022.

[5] Amazon Web Services. Aws DataSync: online data
transfer and migration. https://aws.amazon.com/
datasync, 2022.

[6] Amazon Web Services. EC2 on-demand instance
pricing. https://aws.amazon.com/ec2/pricing/
on-demand/, 2022.

[7] Amazon Web Services. General purpose instances.
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/general-purpose-instances.html#
general-purpose-network-performance, 2022.

[8] David Andersen, Hari Balakrishnan, Frans Kaashoek,
and Robert Morris. Resilient overlay networks. In SOSP.
ACM, 2001.

[9] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei
Zaharia. Lakehouse: A new generation of open plat-
forms that unify data warehousing and advanced analyt-
ics. In CIDR, 2021.

[10] GCT authors. Grid community toolkit. https://
github.com/gridcf/gct, 2022.

[11] Microsoft Azure. Copy blob from URL.
https://docs.microsoft.com/en-us/rest/
api/storageservices/copy-blob-from-url,
2022.

[12] Microsoft Azure. Microsoft Azure Data Box.
https://azure.microsoft.com/en-us/products/
databox/, 2022.

[13] Microsoft Azure. Scalability and perfor-
mance targets for blob storage. https:
//learn.microsoft.com/en-us/azure/storage/
blobs/scalability-targets, 2022.

[14] Aran Bergman, Israel Cidon, Isaac Keslassy, Noga Rot-
man, Michael Schapira, Alex Markuze, and Eyal Zohar.
Pied Piper: Rethinking Internet data delivery. In CoRR,
2018.

[15] D. Borman, B. Braden, and V. Jacobson. TCP extensions
for high performance. RFC 7323, 2014.

[16] Chris X. Cai, Franck Le, Xin Sun, Geoffrey G. Xie,
Hani Jamjoom, and Roy H. Campbell. CRONets: Cloud-
routed overlay networks. In ICDCS. IEEE, 2016.

[17] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
congestion-based congestion control. In CACM, 2017.

[18] Bin Bin Chen and Pascale Vicat-Blane Primet. Schedul-
ing deadline-constrained bulk data transfers to minimize
network congestion. In CCGrid. IEEE, 2007.

[19] Christopher Clark, Keir Fraser, Steven Hand, Ja-
cob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt,
and Andrew Warfield. Live migration of virtual ma-
chines. In NSDI, 2005.

[20] David D. Clark. The structuring of systems using up-
calls. In SOSP, 1985.

[21] Google Cloud Platform. Google Cloud trans-
fer appliance. https://cloud.google.com/
transfer-appliance/docs/4.0/overview, 2022.

[22] AzCopy contributors. Azure storage AzCopy. https://
github.com/Azure/azure-storage-azcopy, 2022.

[23] TensorFlow contributors. Training ResNet on
Cloud TPU. https://cloud.google.com/tpu/
docs/tutorials/resnet, 02 2022.

[24] Peter Druschel and Larry L. Peterson. Fbufs: A high-
bandwidth cross-domain transfer facility. In SOSP,
1993.

[25] Sally Floyd and Kevin Fall. Promoting the use of end-
to-end congestion control in the Internet. Trans. Net-
working, 1999.

[26] Forrester/Virtustream. A clear multicloud strategy de-
livers business value.

[27] Sebastian Frischbier, Alessandro Margara, Tobias
Freudenreich, Patrick Eugster, David Eyers, and Peter
Pietzuch. McCAT: Multi-cloud cost-aware transport. In
EuroSys Poster Track, 2014.

[28] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark
buffers in the Internet. CACM, 2012.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1387

https://aws.amazon.com/bottlerocket
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://aws.amazon.com/datasync
https://aws.amazon.com/datasync
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html#general-purpose-network-performance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html#general-purpose-network-performance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose-instances.html#general-purpose-network-performance
https://github.com/gridcf/gct
https://github.com/gridcf/gct
https://docs.microsoft.com/en-us/rest/api/storageservices/copy-blob-from-url
https://docs.microsoft.com/en-us/rest/api/storageservices/copy-blob-from-url
https://azure.microsoft.com/en-us/products/databox/
https://azure.microsoft.com/en-us/products/databox/
https://learn.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://learn.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://learn.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://cloud.google.com/transfer-appliance/docs/4.0/overview
https://cloud.google.com/transfer-appliance/docs/4.0/overview
https://github.com/Azure/azure-storage-azcopy
https://github.com/Azure/azure-storage-azcopy
https://cloud.google.com/tpu/docs/tutorials/resnet
https://cloud.google.com/tpu/docs/tutorials/resnet

[29] Google Cloud. All networking pricing | Virtual Private
Cloud | Google Cloud. https://cloud.google.com/
vpc/network-pricing, 2022.

[30] Google Cloud. Network bandwidth | Compute Engine
Documentation | Google Cloud. https://cloud.
google.com/compute/docs/network-bandwidth,
2022.

[31] Google Cloud Platform. Storage trans-
fer service. https://cloud.google.com/
storage-transfer-service, 2022.

[32] Kiryong Ha, Yoshihisa Abe, Thomas Eiszler, Zhuo Chen,
Wenlu Hu, Brandon Amos, Rohit Upadhyaya, Padman-
abhan Pillai, and Mahadev Satyanarayanan. You can
teach elephants to dance: Agile VM handoff for edge
computing. In SEC, 2017.

[33] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A
new TCP-friendly high-speed TCP variant. In SIGOPS,
2008.

[34] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nandury, and Roger Watten-
hofer. Achieving high utilization with software-driven
WAN. In SIGCOMM, 2013.

[35] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-
Fares, Min Zhu, Richard Alimi, Kondapa Naidu B.,
Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu
Liang, Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat
Ray, Malveeka Tewari, Matt Tierney, Monika Zahn,
Jonathan Zolla, Joon Ong, and Amin Vahdat. B4 and
after: Managing hierarchy, partitioning, and asymmetry
for availability and scale in Google’s software-defined
WAN. In SIGCOMM, 2018.

[36] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Us Hölzle, Stephen Stuart, and Amin Vahdat. B4: Expe-
rience with a globally-deployed Software Defined WAN.
In SIGCOMM, 2013.

[37] Qin Jia, Zhiming Shen, Weijia Song, Robbert van Re-
nesse, and Hakim Weatherspoon. Supercloud: Opportu-
nities and challenges. In SIGOPS, 2015.

[38] Srikanth Kandula, Ishai Menache, Roy Schwartz, and
Spandana Raj Babbula. Calendaring for wide area net-
works. In SIGCOMM. ACM, 2014.

[39] N. Karmarkar. A new polynomial-time algorithm for
linear programming. In STOC, 1984.

[40] Gaurav Khanna, Umit Catalyurek, Tahsin Kurc, Rajku-
mar Kettimuthu, P. Sadayappan, Ian Foster, and Joel

Saltz. Using overlays for efficient data transfer over
shared wide-area networks. In Supercomputing, 2008.

[41] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, and
Amin Vahdat. Bullet: High bandwidth data dissemina-
tion using an overlay mesh. SOSP, 2003.

[42] Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner,
and Himanshu Raj. Decentralized cloud wide-area net-
work traffic engineering with BlastShield. In NSDI.
USENIX, 2022.

[43] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghu-
raman, Nikhil Kasinadhuni, Enrique Cauich Zermeno,
C. Stephen Gunn, Jing Ai, Björn Carlin, Mihai
Amarandei-Stavila, Mathieu Robin, Aspi Siganporia,
Stephen Stuart, and Amin Vahdat. BwE: Flexible, hi-
erarchical bandwidth allocation for WAN distributed
computing. In SIGCOMM, 2015.

[44] James F. Kurose and Keith W. Ross. Computer Net-
working: A Top-Down Approach, chapter 3, page 308.
International 6th edition, 2013.

[45] H. Andrés Lagar-Cavilla, Joseph A. Whitney, Roy
Bryant, Philip Patchin, Michael Brudno, Eyal de Lara,
Stephen M. Rumble, M. Satyanarayanan, and Adin Scan-
nell. Snowflock: Virtual machine cloning as a first-class
cloud primitive. ACM Trans. Comput. Syst., 29(1), feb
2011.

[46] Fan Lai, Mosharaf Chowdhury, and Harsha Madhyastha.
To relay or not to relay for Inter-Cloud transfers? In
HotCloud, 2018.

[47] Nikolaos Laoutaris, Georgios Smaragdakis, Pablo Ro-
driguez, and Ravi Sundaram. Delay tolerant bulk data
transfers on the Internet. In SIGMETRICS, 2009.

[48] Chris Maeda and Brian N. Bershad. Protocol service
decomposition for high-performance networking. In
SOSP, 1993.

[49] Miguel Matos, António Sousa, José Pereira, and Rui
Oliveira. CLON: Overlay network for clouds. In
WDDM, 2009.

[50] Microsoft Azure. Scalability and perfor-
mance targets for blob storage. https:
//docs.microsoft.com/en-us/azure/storage/
blobs/scalability-targets, 2021.

[51] Microsoft Azure. Pricing - bandwidth | Microsoft
Azure. https://azure.microsoft.com/en-us/
pricing/details/bandwidth/, 2022.

[52] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun.
The Akamai network: A platform for high-performance
Internet applications. SIGOPS, 2010.

1388 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://cloud.google.com/vpc/network-pricing
https://cloud.google.com/vpc/network-pricing
https://cloud.google.com/compute/docs/network-bandwidth
https://cloud.google.com/compute/docs/network-bandwidth
https://cloud.google.com/storage-transfer-service
https://cloud.google.com/storage-transfer-service
https://docs.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://docs.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://docs.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/

[53] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim
Kurose. Modeling tcp throughput: A simple model and
its empirical validation. In Proceedings of the ACM SIG-
COMM ’98 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communi-
cation, SIGCOMM ’98, page 303–314, New York, NY,
USA, 1998. Association for Computing Machinery.

[54] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik,
Srikanth Kandula, Aditya Akella, Paramvir Bahl, and
Ion Stoica. Low latency geo-distributed data analytics.
In SIGCOMM, 2015.

[55] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S.
Pai, and Michael J. Freedman. Aggregation and degra-
dation in JetStream: Streaming analytics in the wide
area. In NSDI, 2014.

[56] Noga H. Rotman, Yaniv Ben-Itzhak, Aran Bergman, Is-
rael Cidon, Igor Golikov, Alex Markuze, and Eyal Zohar.
CloudCast: Characterizing public clouds connectivity.
CoRR, 2022.

[57] Rachee Singh, Sharad Agarwal, Matt Calder, and
Paramvir Bahl. Cost-effective cloud edge traffic en-
gineering with CASCARA. In NSDI, 2021.

[58] Ramesh K. Sitaraman, Mangesh Kasbekar, Woody
Lichtenstein, and Manish Jain. Overlay networks:
An Akamai perspective. Advanced Content Delivery,
Streaming, and Cloud Services, 2014.

[59] H. Sivakumar, S. Bailey, and R. L. Grossman. PSock-
ets: The case for application-level network striping for
data intensive applications using high speed wide area
networks. In Supercomputing. ACM/IEEE, 2000.

[60] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for Internet applications. In
SIGCOMM, 2001.

[61] Shih-Hao Tseng, Saksham Agarwal, Rachit Agarwal,
Hitesh Ballani, and Ao Tang. CodedBulk: Inter-
datacenter bulk transfers using networkcoding. In NSDI,
2021.

[62] Amazon Web Services. AWS Snowball. https://aws.
amazon.com/snowball, 2022.

[63] Yu Wu, Zhizhong Zhang, Chuan Wu, Chuanxiong Guo,
Zongpeng Li, and Francis C. M. Lau. Orchestrating
bulk data transfers across geo-distributed datacenters.
Trans. Cloud Computing.

[64] Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, Chen
Tian, Hao Wang, Haibing Guan, and Ming Zhang. Guar-
anteeing deadlines for inter-datacenter transfers. In Eu-
roSys, 2015.

[65] Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Mar-
tin J. Reed, Haiyang Wang, Guang Yao, Miao Zhang,
and Kai Chen. BDS: A centralized near-optimal overlay
network for inter-datacenter data replication. In EuroSys,
2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1389

https://aws.amazon.com/snowball
https://aws.amazon.com/snowball

Electrode: Accelerating Distributed Protocols with eBPF

Yang Zhou∗

Harvard University
Zezhou Wang∗

Peking University
Sowmya Dharanipragada

Cornell University
Minlan Yu

Harvard University

Abstract
Implementing distributed protocols under a standard Linux
kernel networking stack enjoys the benefits of load-aware
CPU scaling, high compatibility, and robust security and iso-
lation. However, it suffers from low performance because of
excessive user-kernel crossings and kernel networking stack
traversing. We present Electrode with a set of eBPF-based
performance optimizations designed for distributed protocols.
These optimizations get executed in the kernel before the
networking stack but achieve similar functionalities as were
implemented in user space (e.g., message broadcasting, col-
lecting quorum of acknowledgments), thus avoiding the over-
heads incurred by user-kernel crossings and kernel network-
ing stack traversing. We show that when applied to a classic
Multi-Paxos state machine replication protocol, Electrode im-
proves its throughput by up to 128.4% and latency by up to
41.7%.

1 Introduction
Distributed protocols such as Paxos [37] for state machine
replication are important building blocks for highly-available
distributed applications. For example, Google’s Chubby [6]
uses a variant of classic Paxos [37] and Multi-Paxos [36] to
implement a highly-available lock service, powering their
business-critical GFS [16] and Bigdata [7] applications.
Google’s globally-distributed database Spanner [8] and Mi-
crosoft’s data center management tool Autopilot [22] also run
Paxos protocols to maintain their high availability.

Existing high-performance implementation of distributed
protocols tends to be radical and not readily-deployable.
DPDK-based kernel-bypass approaches [27, 79] allow direct
access to the underlying NIC hardware, but require appli-
cation developers to build their own networking stack and
maintain compatibility with the evolving kernel networking
stack [75]. DPDK also dedicates CPU cores to busily poll
the network interface for I/O competition, sacrificing CPU
resources and wasting energy during low I/O loads. This
is especially a problem for embedded devices [51, 60, 70]
where CPU resources are rare. Other approaches co-design
specialized distributed systems with niche network hardware
including RDMA [11, 28, 76], FPGA [23], SmartNICs [66],
and programmable switches [25]. These advanced hardware
devices are not widely available in today’s cloud environ-
ments, and systems built on top of them tend to be difficult to
design, implement, and deploy [27].

∗Equal contribution

Instead, we would prefer the widely-deployed and well-
maintained standard kernel networking stack that also pro-
vides load-aware CPU scaling and strong security and iso-
lation among different applications [5, 59]. However, imple-
menting distributed protocols under the standard kernel net-
working stack often gives poor performance. The root causes
are the high packet processing overhead in the kernel network-
ing stack and heavy communications in distributed protocols.
Our measurement shows that over half of CPU time is spent
on the kernel networking stack in a typical Paxos deploy-
ment (§2); such overhead is mainly caused by user-kernel
crossings (and associated context switches) and traversing
the kernel networking stack. Moreover, when using a clas-
sic leader-based Multi-Paxos protocol [43, 54] to implement
state machine replication, e.g., with five replicas, processing
a single request would require the leader node to send/receive
fourteen messages in total (see Figure 1a), suffering from the
kernel stack overhead fourteen times1.

In this paper, we focus on accelerating Paxos protocols in-
side data centers by offloading protocol operations to the ker-
nel via eBPF (i.e., extended Berkeley Packet Filter) [46, 49].
eBPF allows safely executing customized yet constrained
functions inside the kernel at various locations. Similar to ker-
nel bypass, the offloaded operations get executed immediately
after the NIC driver receives the packet, without user-kernel
crossing and kernel networking stack traversing. Unlike ker-
nel bypass, eBPF is an OS-native mechanism such that eBPF-
offloaded operations do not sacrifice security and isolation
properties while amenable to load-aware CPU scaling without
busy-polling.

The key challenge is, given the constrained programming
model of eBPF, which parts of Paxos protocols to offload that
can greatly reduce kernel stack overhead while being imple-
mentable and efficient in eBPF. Note that the eBPF subsystem
requires every offloaded function to be statically verified to
guarantee kernel security, which only allows limited instruc-
tions, bounded loops, static memory allocation, etc.

Our insight is that common operations of Paxos protocols,
e.g., message broadcasting and waiting on quorums, incur
large kernel stack overhead, but are naturally offloadable by
existing eBPF programming capacity. For example, Paxos pro-
tocols require a leader node to broadcast preparation messages
to follower nodes; if implemented using multiple sendto()
syscalls conventionally, it would incur multiple user-kernel

1Linux io_uring [1] can reduce user-kernel crossings, but cannot reduce
kernel stack traversing (see §8 for details).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1391

Client

Leader

Follower 1

Execution

Request

Commit

AcknowledgmentPreparation

Follower 2

Response

Follower 3

Follower 4

(a) The Multi-Paxos/Viewstamped Replication protocol.

eBPF

eBPF

Request AcknowledgmentPreparation Response

Execution

① ①②
③

Commit

eBPF

eBPF

Client

Follower 1

Follower 2

Follower 3

Follower 4

Leader
eBPF

(b) Electrode-accelerated Multi-Paxos/Viewstamped Replication.

Figure 1: Normal case execution of the leader-based Multi-Paxos/Viewstamped Replication protocol vs. Electrode-accelerated one with 5
replicas. Electrode offloads 1⃝: message broadcasting (§4.1), 2⃝: fast acknowledging (§4.2), and 3⃝: wait-on-quorums (§4.3) to eBPF to reduce
the kernel networking stack overhead.

crossings and kernel networking stack traversing. Instead,
eBPF has a bpf_clone_redirect() [45] function that en-
ables us to clone an in-kernel packet buffer multiple times and
send them to different destinations; this eBPF-based message
broadcasting only needs one user-kernel crossing and one
kernel networking stack traversing. Besides broadcasting, we
also utilize eBPF to reduce unnecessary wake-ups of user-
space applications when waiting on quorums, and optimize
how follower nodes handle preparation messages by early
acknowledging before entering the kernel networking stack.
The final result of these three eBPF-based optimizations is
Electrode2 (Figure 1b). When applying Electrode to a classic
leader-based Multi-Paxos protocol, it achieves up to 128.4%
higher throughput and 41.7% lower latency. This translates
into up to 112.9% higher throughput and 19.3% lower latency
for a Paxos-based transactional replicated key-value store.

Electrode has some limitations: it currently targets pro-
tocols implemented in UDP and relies on application-level
retransmission to handle packet loss. This works well for
Paxos protocols whose requests are usually small enough to
fit into a single packet, and data center environments where
packet loss is rare [28, 61].

2 Background

2.1 Consensus Protocols
Distributed protocols that coordinate and synchronize among
a collection of nodes have become an indispensable part of
the modern data center application stack. Storage systems in
data centers replicate data for fault tolerance and availability.
For instance, Berkeley-DB [55] uses a consensus protocol to
replicate its logs over a set of distributed replicas. Transac-
tional storage systems like H-Store [71] and Spanner commit
their updates to multiple replicas in order to be more failure
resilient. At the heart of most replication-based systems is a
consensus protocol [36,37,43,54] that ensures that operations
execute in a consistent manner across all replicas.

2Electrode is a Pokémon that has a high speed score.

Here, we consider a set of nodes either functioning as
clients or replicas. Clients are the users of a particular
application-level service hosted by a collection of replicas. It
should also be noted here that clients could often just be other
servers within the same data center. Clients submit requests
to one or more replicas, which triggers a round of agreement
to occur. Paxos is a common protocol that is used to obtain
an agreement in the presence of node and network failures.

Since applications often need to reach agreements on many
client requests, servers use agreement protocols like Paxos to
implement a state machine-based abstraction that requires all
the replicas to process the exact same set of client requests
in the same order. This log-based state machine abstraction
is often optimized by the use of a leader. In a leader-based
protocol, all the instances of agreement on client requests are
mediated through the leader and the leader also dictates the
order of the log.

In Figure 1a, we have an example of VR (Viewstamped
Replication), a leader-based Multi-Paxos protocol that uses
Paxos for running agreements on individual requests. The
leader here is responsible for ordering all client requests by
assigning sequence numbers to them, and the followers (non-
leader nodes) are responsible for responding to the leader
and applying all the updates in the order in which they’re
sequenced by the leader.

The leader is also responsible for initiating agreement by
sending out a preparation message to all the other replicas.
The leader then waits for a quorum of acknowledgments from
all the other replicas before broadcasting a commit message
to all the replicas. A successful iteration of this two-round
protocol ensures that all non-failed replicas have the client’s
request. And the sequence number assigned by the leader
determines the order in which all the replicas process this
client’s request. This pattern of broadcasting and waiting on
quorums is common in many distributed protocols [38,39,80].

To gain more insights into the performance of the Multi-
Paxos/VR protocol under the standard Linux kernel net-
working stack, we measure the CPU time breakdown of
the leader node, shown in Table 1. There is 44.7% +

1392 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Function Name Description % CPU
__libc_sendto() User function to send packets. 44.7

|– sock_sendmsg() Kernel function to send packets. 32.2
| |– __alloc_skb() Allocate sk_buff for packets. 4.5
| |– dev_queue_xmit() Transmit sk_buff. 6.8
| |– bookkeeping For sock, IP, and UDP layers. 20.9
|– user-kernel crossing Interrupt, mode switching, etc. 12.5

__libc_recvfrom() User function to recv packets. 11.8
|– sock_recvmsg() Kernel function to recv packets. 5.7
|– user-kernel crossing Interrupt, mode switching, etc. 6.1

Table 1: CPU time breakdown for the leader node when running the
Multi-Paxos/Viewstamped Replication protocol with 5 replicas. See
§7 for measurement setup.

11.8% = 56.5% of time spent on the __libc_sendto()
and __libc_recvfrom() functions, while 20.9%+12.5%+
6.1% = 39.5% of time spent on user-kernel crossing and ker-
nel networking stack bookkeeping. These numbers concrete
our previous motivations that implementing distributed proto-
cols under kernel networking stack incurs significant overhead
on user-kernel crossings and kernel stack traversing (while
eBPF can potentially save them).

2.2 eBPF and Hooks
BPF (i.e., Berkeley Packet Filter) [49] enables user-space
applications to customize packet filtering in the kernel. A
BPF program, written in some predicates on packet fields,
is triggered by the kernel event that a packet arrives at a
NIC driver. Once triggered, the BPF program will run inside
a kernel virtual machine with limited registers and scratch
memory, and a reduced instruction set [49]. For example, the
well-known tcpdump [20] command-line packet analyzer is
based on BPF.
eBPF extends the BPF by increasing the number of regis-
ters and adding stack memory. The increased number of reg-
isters and stack memory enable the eBPF program to ex-
ecute more complex operations—the developers can use a
C-like language to express customized operations. This C-like
code is compiled into an eBPF bytecode by the Clang/LLVM
toolchain and runs inside the kernel virtual machine via just-
in-time compilation.

eBPF also introduces various powerful in-kernel data struc-
tures called eBPF maps, which, paired with various helper
functions, are used to store and maintain states across multiple
triggering of eBPF programs. Example eBPF maps include
array, per-CPU arrays, queues, stacks, and hashMaps [46].
These maps are also used to communicate among different
eBPF programs and between eBPF programs and user-space
processes. Each eBPF map can be identified by a map_path
through the file system, e.g., /sys/fs/bpf/<map_name>,
and user-space processes can access a map based on its path.

The kernel events that can trigger eBPF programs are called
eBPF hooks. There are many hooks existing in Linux kernels

Network Interface Card (NIC)

eXpress Data Path (XDP)

Traffic Control (TC)

Netfilter

UDP/TCP Stack

Socket Layer

RX TX

NIC Driver

Figure 2: Linux kernel networking stacks and eBPF XDP/TC hooks.

and various device drivers, such as hooks in NIC drivers
right after it receives a packet. User-space applications can
attach eBPF programs to these eBPF hooks to customize the
handling of corresponding kernel events.
Constrained programming model: An eBPF program needs
to go through strict verification by an in-kernel eBPF verifier
before attaching to an eBPF hook and running inside the ker-
nel. The verification process does a static sanity check to make
sure the eBPF program does not have out-of-bounds memory
access (i.e., safety) and will always terminate (i.e., liveness).
The verifier basically enumerates all possible cases of every
conditional branch and loop to make sure every execution
path meets the safety and liveness requirements. Because the
verification tends to be time-consuming, each eBPF program
can only contain up to 1 million instructions. For a larger
eBPF program, the developer needs to split it into multiple
smaller eBPF programs and uses tail calls to let one eBPF
program call another one in a continuation manner.

Because of the strict verification process, dynamical mem-
ory allocation is not supported in eBPF programs; instead,
eBPF programs can only rely on eBPF maps with capacity
specified statically to maintain in-kernel states.

Due to these limitations, eBPF is commonly used in kernel
tracing, profiling, and monitoring [3,63] and L2-L4 low-level
packet processing such as load balancing [14].
XDP (eXpress Data Path) [21, 64] technique implements an
in-kernel eBPF hook that enables attached eBPF programs
to process RX packets directly out of the NIC driver (Figure
2). Such processing gets triggered before any sk_buff [31]
allocation or entering software socket queues, thus bypassing
any higher-level networking stacks (e.g., UDP, TCP, Socket).
XDP-based packet processing normally achieves comparable
throughput and latency as DPDK-based kernel-bypass packet
processing [21].
TC (Traffic Control) [47] is another important layer/hook
which locates right after the XDP (Figure 2). In the TC layer,
the sk_buff data structure has already been allocated by the
kernel networking stack, thus the performance of TC-based
packet processing will be slightly worse than XDP. However,
the TC hook allows attached eBPF programs to process both
RX and TX packets and manipulate the packet sk_buff. For

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1393

example, one can clone the sk_buff for a TX packet and
thus implements packet broadcasting in the TC layer.

3 Electrode Overview
Electrode is a framework for offloading Paxos protocols under
kernel networking stack to in-kernel eBPF programs to reduce
user-kernel crossings and kernel networking stack traversing.
Electrode has two goals in designing its eBPF offloads: 1)
largely reducing kernel stack overhead to improve perfor-
mance, and 2) carefully partitioning user- and kernel-space
functionalities to keep offloads implementable and efficient
inside the eBPF subsystem.

To achieve the first goal, Electrode carefully extracts
generic and performance-critical fast-path operations from
Paxos protocols to offload to the eBPF. As shown in Fig-
ure 1b, Electrode offloads message broadcasting (§4.1), fast
acknowledging (§4.2), and wait-on-quorums (§4.3). These
operations, if purely implemented in the user space, would
involve many user-kernel crossings and kernel stack travers-
ing, causing significant kernel stack overhead as shown in
§2. Once implemented in the eBPF, message broadcasting
allows the leader node to efficiently send preparation and
commit messages to multiple follower nodes, by cloning and
sending packets in the kernel; fast acknowledging enables
follower nodes to buffer preparation messages in the kernel,
and quickly respond to the leader node without involving user-
space processes; wait-on-quorums lets the leader node eBPF
program wait for a quorum number of acknowledgments from
follower nodes, and only notify user-space processes once.
Moreover, to simplify how user-space applications use these
eBPF-based accelerations, Electrode further designs a set of
user-space APIs (Table 2). Each API corresponds to one oper-
ation that Electrode offloads to the eBPF, and is used to invoke
the offloaded function or retrieve eBPF processing results.

To achieve the second goal, Electrode keeps complicated
slow-path operations of Paxos protocols in the user space.
Specifically, Electrode leaves the procedures of failure re-
covery and handling message loss/reordering (i.e., gap agree-
ment) to user-space applications, using similar mechanisms as
VR [43] and NOPaxos [40]. These procedures involve access-
ing dynamic ranges of memory, which is hard to implement
in eBPF under the static verification (see §8 for details).

Overall, Electrode has the following workflow: first, user-
space applications attach eBPF programs to various hook lo-
cations corresponding to a network interface; then, user-space
applications use Electrode APIs to invoke eBPF-offloaded
functions or retrieve eBPF processing results; finally, the
eBPF programs intercept and process target packets in the ker-
nel without going through the networking stack or user-space
applications (i.e., Paxos protocols in our case). Electrode tar-
gets accelerating the handling of messages that can fit into
one ethernet packet (i.e., up to 9KB for jumbo frames). This
is well-suited for locks, barriers, and configuration parame-
ters [25, 78] that Paxos protocols commonly maintain. Non-

target packets still go through the stack and reach user-space
applications, without impacting applications’ other operations
or protocol semantics.

Finally, we note that Electrode does not aim to offload
every operation of Paxos protocols to the eBPF, because of
eBPF’s constrained programming model vs. the diverse set
of operations that Paxos protocols and related services could
have. For example, currently, Electrode does not offload client-
facing request/response handling. There are two reasons: 1)
Paxos clients normally serialize/deserialize their requests us-
ing widely-used libraries such as protocol buffers [19]; how-
ever, parsing or constructing protocol buffers is difficult in
eBPF, because it involves complex pointer arithmetics and
conditional branches which cannot easily pass the eBPF ver-
ifier. 2) client-facing requests/responses are normally em-
bedded into application-level services like the Chubby lock
service [6], but it is hard and inefficient to implement them
in eBPF because of the strict eBPF verifier and the lack of
dynamic memory allocation. We discuss more on Electrode’s
offloading decisions in §8.

4 Electrode Designs

4.1 Message Broadcasting in TC
In Paxos protocols, one-to-all message broadcasting is widely
used. For example, 1) the leader node sends preparation mes-
sages to all follower nodes, and 2) (after receiving enough
acknowledgments from followers) the leader node sends com-
mit messages to all follower nodes.

To implement the above message broadcasting, the most
common way is sending the same message multiple times in
the user space to different destinations. However, the overhead
(i.e., user-kernel crossing and kernel networking stack travers-
ing) of this implementation on the leader node increases lin-
early as the number of followers increases, while the overhead
on each follower node remains constant. Thus, the leader node
essentially becomes the system bottleneck, e.g., Table 1 has
shown that 44.7% of CPU time is spent on sending messages
on the leader node.

An alternative implementation is to use IP multicast [42,
68,77]. However, IP multicast normally requires support from
the underlying network switches (e.g., storing a large num-
ber of multicast group-table entries for the whole network
topology) [68, 77] or considerable modifications of the Linux
networking stack [42].
Electrode approach: Electrode provides a flexible host-based
broadcasting solution by utilizing eBPF on the TC hook. Here,
we require the eBPF program that implements broadcasting
operations to attach to the TC hook, because only the TC
hook can intercept and process outgoing packets (§2.2). Af-
ter attaching the eBPF program, user-space applications can
call the elec_broadcast() function shown in Table 2 with
specified sock_fd, message, and a list of destination IPs to
broadcast the message to these destinations through the socket.

1394 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Function Name Arguments Output Description
elec_broadcast sock_fd, message, {dst_ips} status Broadcasts <message> to all destinations through <sock_fd>

elec_poll_message map_path messages Polls buffered messages from an eBPF-maintained in-kernel ring buffer identified
by <map_path>

elec_check_quorum received_message bool Checks if <received_message> (acknowledgment) indicates quorum reaching

Table 2: Electrode user-space APIs.

Wait for quorum Execution

Execution

Execution

Request

Res
po

ns
e

Com
m

it

logic

kernel -> user
RX net. stack

user -> kernel
TX net. stack logic

Preparation

Client

Leader

Follower 1

Follower 2
AC

K

(a) Without fast acknowledging.

Com
m

it

logic

logic

AC
K

Client

Leader

Request
Preparation

Wait for quorum Execution

Execution

Execution

Res
po

ns
e

eBPF

eBPF

Follower 1

Follower 2

(b) With fast acknowledging in eBPF.

Figure 3: Fast acknowledging in eBPF reduces Paxos request latency. This example follows Figure 1, but omits followers 3 and 4 for brevity.

Under the hood, the eBPF program makes clones of the mes-
sage packet using the bpf_clone_redirect() [45] helper
function, modifies the destination addresses of cloned pack-
ets accordingly, and sends these packets out. The benefit of
cloning packets and broadcasting in the kernel compared with
sending the same message multiple times in the user space
is that we only need to cross the user-kernel boundary and
traverse the UDP and socket layer once.
Handling message loss: Electrode relies on application-level
timeout and retransmission to handle message loss, similar
to modern RPC-based applications [13, 69]. Specifically, if
the leader node does not receive a response after a certain
time of sending a request, it will resend the request; once
a request experiences several timeouts, the leader node will
mark the destination node as dead and start Paxos failure
recovery. An alternative approach to handling message loss
is doing retransmission in the kernel, which could save user-
kernel context switching overheads, but such savings become
marginal as packet loss happens rarely in data centers [28,61];
it would also involve complex message buffer management
in kernel/eBPF, hurting performance.

4.2 Fast Acknowledging in XDP
As shown in Figure 3a, a significant portion of Paxos request
latency comes from the round-trip delay between the leader
node and follower nodes. Note that the ACK messages in
this figure mean Paxos protocol acknowledgments, not TCP
acknowledgments. For Paxos protocols under the kernel net-
working stack, this round-trip delay includes not only phys-
ical propagation and transmission delay, but also the delay
caused by the kernel networking stack (i.e., user-kernel cross-
ing and networking stack traversing). As the fabric latency
of nowadays data center network reaches a few tens of mi-
croseconds [48] or sub-ten microseconds [18, 27], the latency
of the kernel networking stack, which is also around sub-ten
microseconds [59], becomes non-negligible.

Electrode approach to reducing the Paxos request latency
is to optimize the preparation handling in follower nodes
by directly buffering the preparation messages into an in-
kernel log and early acknowledging to the leader node. At
the same time, user-space applications asynchronously poll
and consume the buffered messages from the log, using the
elec_poll_message() function shown in Table 2. Under
the hood, the function calls a corresponding eBPF syscall to
poll messages in batches, amortizing kernel crossing overhead.
This asynchrony does not break the correctness of Paxos pro-
tocols because as long as a preparation message gets buffered
into the log, it will be eventually processed by the user-space
Paxos protocols, and the message processing order has been
specified by the sequence number assigned by the leader node.
Figure 3b shows that this approach removes two user-kernel
crossings and networking stack traversing from the critical
path of the Paxos request.

Note that not every preparation message can be handled
using fast acknowledging; in some non-critical path cases
(e.g., message loss/reordering, and node failure) where the
eBPF program cannot handle because of its constrained pro-
gramming model, our eBPF program can detect them and
directly forward preparation messages to user-space Paxos
protocols (detailed in §6).
In-kernel log implementation: The in-kernel log temporally
stores incoming early-acknowledged preparation messages,
which are polled and consumed by user-space applications
concurrently. To implement this in-kernel log, we use a special
eBPF map named BPF_MAP_TYPE_RINGBUF [30] (introduced
from Linux kernel 5.8). This map implements an efficient
multi-producer single-consumer (MPSC) ring buffer using
shared memory and a lightweight spinlock, where we can
have multiple writers in eBPF and one reader in user space.
Based on our measurement, the time of pushing a preparation
message into the ring buffer is roughly equal to memcpying
this message, in cases without any lock contention. Note

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1395

that the in-kernel ring buffer also has a fixed size, because
eBPF does not support dynamic memory allocation; in case it
becomes full, the eBPF program can detect them and directly
forward preparation messages to user-space applications.

4.3 Wait-on-Quorums in TC + XDP
Another common operation in Paxos protocols is the leader
node waiting for a quorum number of acknowledgments
(ACKs) from follower nodes (i.e., wait-on-quorums). Assume
there are 2 f +1 replicas including one leader node and 2 f fol-
lower nodes. In most Paxos protocols, once the leader collects
f ACKs from different follower nodes, the Paxos request is
considered committed.

Conventionally, wait-on-quorums is implemented by the
user-space applications that receive all ACKs and count to-
wards the quorum number. However, each acknowledgment
handling incurs the overhead of the user-kernel crossing and
traversing the kernel networking layer. The total overhead of
handling all ACKs is linear to the number of follower replicas
(i.e., 2 f). Moreover, among these 2 f ACKs, only the first f
ones are required to commit a Paxos request.
Electrode approach: Electrode moves the leader-side wait-
on-quorums operations to the eBPF, requiring only one user-
kernel crossing and one networking stack traversing. Elec-
trode maintains an array of bitsets (and other metadata) in
eBPF, each of which indicates whether a Paxos request has
reached the quorum. Electrode only forwards ACK messages
that indicate reaching the quorum to the user-space appli-
cations, while dropping others. Electrode maps each Paxos
request to a specific bitset by using the unique increasing
sequence number assigned by the leader node (§2). Note that
we use the bitset instead of a counter to check if the quorum
gets reached; this is because a timed-out preparation request
could cause duplicate ACK messages from follower nodes,
and we want to avoid double counting.

Electrode maintains the bitset setting and clearing (i.e., ze-
roing out) operations through two eBPF programs hooked
at TC and XDP layers, respectively. The TC-hooked eBPF
program intercepts each outgoing preparation message and
clears the indexed bitset, while the XDP-hooked eBPF pro-
gram intercepts each incoming ACK message from follower
nodes and sets the bit corresponding to the follower node’s
index in replicas.

As shown in Listing 1, the tc_ebpf function/program in-
tercepts each outgoing preparation message and clears a spe-
cific bitset indexed by the sequence number in each message.
Line 6 checks if it is the first time to intercept a preparation
message corresponding to this Paxos request, by comparing
the seq stored along this bitset and the seq extracted from
the message; if so, it updates the stored seq in the array and
clears the bitset that may have been used by previous Paxos
requests (line 17-18).

The xdp_ebpf program intercepts each incoming ACK
message, updates the indexed bitset, drops most of the ACK

1 # Processing outgoing preparation message
2 # pkt: the packet of the message
3 # seq: unique increasing sequence number (from pkt)
4 def tc_ebpf(pkt, seq):
5 idx = seq % array_length
6 if array[idx].seq != seq
7 array[idx].seq = seq
8 array[idx].bitset.clear()
9 forward(pkt) # to follower node

10
11 # Processing incoming ACK message
12 # pkt : the packet of the message
13 # seq : unique increasing sequence number (from pkt)
14 # node_i: follower node index (from pkt)
15 def xdp_ebpf(pkt, seq, node_i):
16 idx = seq % array_length
17 if array[idx].seq == seq
18 array[idx].bitset.set(node_i)
19 if array[idx].bitset.count() == f
20 pkt.mark_quorum_reach(true)
21 forward(pkt) # to user-space application
22 else: drop(pkt)
23 else: # bitset overwritten by tc_ebpf
24 pkt.mark_quorum_reach(false)
25 forward(pkt)

Listing 1: Maintaining the fixed-length bitset array to achieve wait-
on-quorums in eBPF. Each bitset operation is also protected by a
spinlock; we omit it here for simplicity.

packets, and only forwards packets to user-space applications
that indicate reaching quorum or array overflow (explained
in the next paragraph). Lines 17-18 check if this bitset cor-
responds to the seq in the ACK message, and set the proper
bitset bit if so. Line 19 further checks if this ACK message
reaches the quorum: if so, lines 20-21 will mark the packet as
quorum-reaching and forward it to user-space applications;
otherwise, line 22 just drops the packet. Once the user-space
applications receive a quorum-reaching packet—checked by
calling the elec_check_quorum() function shown in Ta-
ble 2, it can directly consider this Paxos request as committed.
Handling array overflow: In some cases, a bitset might be
overwritten by the tc_ebpf because of the fixed size of the
bitset array. xdp_ebpf detects such array overflow in lines
17&23; once detected, lines 24-25 will mark the packet as
not-quorum-reaching and forward it to user-space applica-
tions. Once the user-space applications receive a not-quorum-
reaching packet, it resends the preparation messages to all
follower nodes and waits for ACKs again. In practice, the
leader node could limit the number of in-flight preparations
while provisioning a large bitset array, such that the array
overflow does not normally happen.
RSS: Electrode supports RSS (Receive-Side Scaling) which
distributes incoming packets to different NIC queues and
CPU cores. Specifically, Electrode has two receive-side op-
timizations: fast acknowledging and wait-on-quorums. For
fast acknowledging, the eBPF programs in the follower node
could maintain separate in-kernel ring buffers on different
cores to avoid synchronization overhead during log append-

1396 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

User-Space Applications

Kernel Networking Stack

NIC Driver

handle_ACK
handle_

preparation

drop

write_buffer

fast_ACK

Non-critical
path cases

poll

ring
buffer

push
bitset
array

clear set

tc_broadcast_
and_quorum

Message broadcasting Wait-on-quorums Fast acknowledging

xdp_
dispatcher

E
le

ct
ro

de

quorum
reaching

Non-
ACK/prep

Figure 4: eBPF program structure of Electrode. The thickness of
solid lines indicates traffic volume (the thicker, the higher).

ing, and use spinlocks to synchronize accesses to small shared
in-kernel states (e.g., ebpf_seq in §6); the user-space applica-
tions asynchronously pull messages from all ring buffers, and
process messages following the order specified by their em-
bedded sequence numbers. For wait-on-quorums, the eBPF
programs in the leader node could use atomic instructions
to count how many ACKs it has received and check if the
quorum is reached.

5 Electrode Implementation
Electrode is prototyped with six eBPF programs written in
a restricted C language, and we utilize the Clang/LLVM
toolchain for compiling source code to eBPF bytecode. These
eBPF programs consist of 500 lines of C code in total. Ap-
plication developers can also customize their own eBPF pro-
grams based on needs, e.g., only processing packets with a
specific source port like [25]. Our prototype does not imple-
ment the RSS handling yet.

Figure 4 shows the structure of the six eBPF programs.
One program can transfer its control flow to the next program
via the eBPF tail call. We break the implementation into these
six programs because of 1) avoiding breaking the instruction
limits in the eBPF verifier (§2.2), and 2) modularity. In the
following, we describe each program in detail.
• tc_broadcast_and_quorum: This program intercepts

outgoing preparation messages. It implements the message
broadcasting mechanism (§4.1) and the tc_ebpf function
in Listing 1 for wait-on-quorums (§4.3). For broadcasting,
we generate multiple clones of the preparation packets us-
ing the bpf_clone_redirect() [45] helper function.

• xdp_dispatcher: This program checks the types of in-
coming messages and calls corresponding message han-
dlers. It only intercepts the ACK (only received on the
leader node) and preparation (only received on follower
nodes) messages, and calls the corresponding handle_ACK
and handle_preparation programs. It directly forwards

other types of messages to user-space applications.
• handle_ACK: This program implements the xdp_ebpf

function in Listing 1 for wait-on-quorums (§4.3). In com-
mon cases, it drops most ACK messages, and only forwards
the quorum-reaching ACK messages to user-space applica-
tions.

• handle_preparation: This program implements vari-
ous checks to detect non-critical path cases where it should
forward messages to user-space applications (§4.2). In nor-
mal cases (mostly), it will call write_buffer to begin
fast_ACK.

• write_buffer: This program stores message/packet data
into an in-kernel log for user-space applications to poll
and consume. As mentioned earlier, We use the eBPF ring
buffer [30] to implement the log data structure. This pro-
gram then calls the fast_ACK program.

• fast_ACK: This program reuses and modifies the received
packet buffer to create an ACK packet and sent it out. This
requires swapping the src-dst IP addresses and filling the
corresponding fields of the ACK message.

6 Apply Electrode to Multi-Paxos
Optimizing throughput: We apply the eBPF-based message
broadcasting (§4.1) and wait-on-quorums (§4.3) mechanisms
to the leader node in the Multi-Paxos protocol. This implies
two throughput optimizations: 1) when the leader node sends
out preparation messages to follower nodes, it relies on eBPF
to broadcast these messages instead of sending them one
by one; and 2) when the leader node is waiting for a quo-
rum number of ACK messages from follower nodes, it only
needs to process the quorum-reaching ACK message while
the other ACK messages are pruned/dropped by the eBPF
program. These two optimizations largely reduce the number
of user-kernel crossings and kernel networking stack travers-
ing, thus alleviating the CPU bottleneck on the leader node
and improving system throughput.
Optimizing latency: We apply the eBPF-based fast acknowl-
edging mechanism (§4.2) to each follower node in the Multi-
Paxos protocol. In normal cases (e.g., without packet loss/re-
ordering, and all nodes are alive), the preparation messages
from the leader node are quickly buffered and acknowledged
by the eBPF program in the follower nodes, bypassing both
the kernel networking stack and the user-space Multi-Paxos
protocol. This reduces the commit latency of each Multi-
Paxos request by twice the time of user-kernel crossing and
kernel networking stack traversing.
Detecting non-critical path cases in fast acknowledging:
As mentioned in §4.2, there are some non-critical path cases
in fast acknowledging where the eBPF program must detect
them and forward the incoming packets to the user-space
Paxos protocols. To understand why non-critical path cases
happen and how to detect them, we first elaborate on the
Multi-Paxos/VR protocol shown in §2, following the litera-
ture [43]. In the Multi-Paxos protocol, the leader node assigns

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1397

each Multi-Paxos request a unique and strictly increasing se-
quence number, seq. Each replica including both the leader
node and follower nodes maintains locally a view number, a
status, and its last observed seq; each message sent by a
replica will piggyback these three variables. The view num-
ber indicates which (leader) election epoch this replica is in;
the status indicates if this replica is during a leader election
(status_viewchange), recovering (status_recovering),
or normal state (status_normal). This protocol requires a
follower node to only process a preparation message if the
node is in the normal state, and the message has a matched
view and strictly increasing seq; otherwise, the follower node
needs to drop the message, or execute a complex view-change
or state-transfer procedure [43,54]. Therefore, the non-critical
path cases for Multi-Paxos are:
1. the follower is during a leader election or recovering,
2. the follower receives a message with an unmatched view

that is either (a) stale or (b) newer,
3. the follower receives a message with a non-strictly-

increasing seq caused by message (a) loss/reordering or
(b) duplication.

These cases only happen when replicas fail or join, or mes-
sages get lost/reordered, which is less common in data cen-
ters [27, 61].

To detect these non-critical path cases in eBPF, we maintain
an ebpf_status, an ebpf_view, and an ebpf_seq variable
in the eBPF program using the eBPF map. In particular, these
three variables can be updated by the user-space Multi-Paxos
protocols to reflect the current protocol state. Listing 2 shows
the detection pseudocode. Line 5 detects case 1, and line 6 de-
tects case 2(a); for these two cases, the eBPF program needs
to drop the packet. Line 7 detects cases 2(b) and 3(a), and for-
wards the packet to the user space to execute the view-change
or state-transfer procedure. For case 3(b), i.e., msg_seq <
ebpf_seq + 1, the eBPF program function replies an ACK
(line 11), because it could be a re-transmitted preparation
message due to timeout.
Handling the cases 2(a)&3(a) in fast acknowledging is
tricky, because it (i.e., forwarding packets to the user space
for processing) involves the concurrency between the user-
space protocols and the kernel-space eBPF program, while
eBPF only supports map-based communication but not syn-
chronization between the user and kernel. Our approach is to
let the user-space protocols detach the eBPF program from
the hook while executing the view-change or state-transfer
procedure. Specifically, once a user-space protocol receives a
preparation message corresponding to the case 2(a) or 3(a), it
detaches the eBPF program, then it finishes the view-change
or state-transfer procedure, next it updates the ebpf_status,
ebpf_view, and ebpf_seq properly, and finally it reattaches
the eBPF program. This guarantees the cases 2(a)&3(a) are
exclusively handled by the user-space protocol, avoiding the
synchronization between the user and kernel. An alternative
approach to achieving the same effect as eBPF detach-reattach

1 # pkt : the packet of the preparation message
2 # msg_view: view piggybacked by the pkt
3 # msg_seq : unique increasing sequence number (from pkt)
4 def detect_non_crit_path_cases(pkt, msg_view, msg_seq):
5 if (ebpf_status != status_normal): drop(pkt)
6 if (msg_view < ebpf_view): drop(pkt)
7 if (msg_view > ebpf_view or msg_seq > ebpf_seq + 1):
8 forward(pkt)
9 if (msg_seq == ebpf_seq + 1):

10 append_log(++ebpf_seq, pkt)
11 reply_ack(pkt)

Listing 2: Detecting non-critical path cases during fast
acknowledging for Multi-Paxos. Assume the protocol works in a
single core, in line with prior Paxos work [40, 44, 61].

is to use an eBPF map with a branch testing before any Elec-
trode logic. The first packet in the non-critical path can update
this map atomically and let all following packets directly go
to the user-space application (i.e., closing Electrode optimiza-
tions); later, the user-space application can update this map
to reopen Electrode optimizations.

There are a few caveats: 1) After the user-space protocol
detaches the eBPF program, it needs to poll the in-kernel
ring buffer again, in case the eBPF program still appends
a few messages to the ring buffer before detaching. Note
that the eBPF map can outlive the eBPF program, as long
as the user-space process holds a reference to it, because
its lifetime is managed through reference counting [50]. 2)
While the user-space protocol is setting the ebpf_seq value
and is about to reattach the eBPF program, some preparation
packets might just pass the eBPF hook location but have not
been processed by the user-space protocol, e.g., queued in
the socket layer. In this case, the user-space protocol actu-
ally has set a smaller ebpf_seq value in the map; once the
eBPF program gets reattached, it will trigger more case 3(a)
(lines 7&8). Our solution to this problem is: after the user-
space protocol finishes the view-change or state-transfer pro-
cedure, it first sends a stop_sending_preparation mes-
sage to the leader node to stop it from sending preparation
messages, then it polls the socket to drain and process any
queued packet, next it sets the proper ebpf_seq value, finally
it sends a resume_sending_preparation message to the
leader node to resume sending preparation messages, and reat-
taches the eBPF program. These two messages should be sent
using reliable transport like TCP to handle packet loss.
Generalizability: Electrode’s eBPF-based optimizations are
generic to many more distributed protocols, which normally
consist of broadcasting and wait-on-quorums operations.
More discussions can be found in Appendix A.

7 Evaluation
This section answers the following questions:
1. How do Electrode and each optimization improve the per-

formance of the Multi-Paxos protocol (§7.1 and §7.2)?

1398 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

50

100

150

200

250
M

ed
ia

n
la

te
nc

y
(μ

s) Multi-Paxos (median)
+ Electrode (median)

0 20 40 60 80
Throughput (K req/s)

0

50

100

150

200

250

99
th

-ta
il

la
te

nc
y

(μ
s) Multi-Paxos (tail)

+ Electrode (tail)

(a) 3 replicas.

0

50

100

150

200

250

M
ed

ia
n

la
te

nc
y

(μ
s) Multi-Paxos (median)

+ Electrode (median)

0 20 40 60
Throughput (K req/s)

0

50

100

150

200

250

99
th

-ta
il

la
te

nc
y

(μ
s) Multi-Paxos (tail)

+ Electrode (tail)

(b) 5 replicas.

0

50

100

150

200

250

M
ed

ia
n

la
te

nc
y

(μ
s) Multi-Paxos (median)

+ Electrode (median)

0 20 40
Throughput (K req/s)

0

50

100

150

200

250

99
th

-ta
il

la
te

nc
y

(μ
s) Multi-Paxos (tail)

+ Electrode (tail)

(c) 7 replicas.

Figure 5: Performance comparison of the Multi-Paxos protocol vs. Electrode-accelerated one with different numbers of replicas.

2. How does Electrode improve the performance of real-
world Paxos-based applications (§7.3)?

3. How does Electrode save kernel stack overhead (§7.4)?
4. How does Electrode compare to kernel-bypassing (§7.5)?

Testbed setup: We use eight xl170 servers from Cloud-
Lab [12], each of which has a ten-core Intel E5-2640v4 CPU
at 2.4 Ghz, 64GB memory, and a Mellanox ConnectX-4 25
Gbps NIC. Each server runs an unmodified Ubuntu 20.04
OS with kernel v5.8.0. All servers are connected using a two-
level topology: five Mellanox 2410 as rack switches (each
connecting to forty xl170 servers) and one Mellanox 2700 as
the spine switch. One server is dedicated as the client server
that generates Paxos requests, and other servers run the Paxos
protocol with 3/5/7-replica configurations. By default, we con-
figure each server to use one core for interrupt processing and
another core for Paxos processing, following the performance
optimizations in [41]. We disable irqbalance to avoid out-of-
order packet deliveries as much as possible (which would hurt
Paxos performance), in line with prior Paxos work [40,44,61].
Unlike prior Paxos work [32, 40, 61], we do not use IP mul-
ticast which requires specialized support from the network
(§4.1).
Measurement methodology: The client server runs multiple
Paxos/application clients, and each client sends Paxos/appli-
cation requests in either a closed-loop or open-loop manner.
In closed-loop experiments, each client sends the next request
once it receives the response of the last request; we vary the
number of clients and measure the corresponding through-
put, and median and 99th-percentile tail latency, in line with
prior Paxos work [40,44,61]. In open-loop experiments, each
client sends requests one by one at a specific time interval,
such that the overall request rate reaches a specified value; we
use enough clients (i.e., they could saturate the Paxos servers),
specify different request rates, and measure the corresponding

CPU utilization of each replica node.
Comparisons: We use the Multi-Paxos/VR protocol imple-
mentation in the SpecPaxos [61] open-sourced code [35] as
the baseline, and optimize it using Electrode. We also run a
transactional replicated key-value store similar to the one in
SpecPaxos [61] atop the baseline Multi-Paxos protocol and
Electrode-accelerated Multi-Paxos protocol. All implementa-
tion uses the standard UDP stack and socket layer from the
Linux kernel.

7.1 Overall Results
Figure 5a, 5b, and 5c show the performance comparison of
the Multi-Paxos protocol and the Electrode-accelerated one
when using 3, 5, and 7 replicas, respectively. In each figure,
we vary the number of clients sending Multi-Paxos requests
in a closed-loop manner, and report throughput and median
and 99th-percentile tail latency. All curves eventually hit a
“hockey stick” in their median or tail latency growth when the
system reaches its maximum throughput.
Throughput: the Electrode-accelerated Multi-Paxos proto-
col achieves 34.9%, 104.8%, and 128.4% higher maximum
throughput than the original Multi-Paxos protocol under 3, 5,
and 7 replicas, respectively. The large throughput improve-
ments benefit from the eBPF-based broadcasting and wait-on-
quorums which reduce the kernel stack overhead significantly
on the leader node. With more replicas, the improvement
becomes more significant. This is because, for each Multi-
Paxos request, the leader node will send more preparation and
commit messages, and handle more ACK messages; thus the
eBPF-based broadcasting and wait-on-quorums can save more
user-kernel crossings and kernel networking stack traversing.
Latency: the Electrode-accelerated Multi-Paxos protocol
achieves 12.5%, 20.0%, and 25.6% lower median latency
than the original Multi-Paxos protocol with 2 clients (before

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1399

0 10 20 30 40 50 60
Throughput (K req/s)

0

50

100

150

200

M
ed

ia
n

La
te

nc
y

(μ
s)

Multi-Paxos
+ Message broadcasting
+ Fast acknowledging
+ Wait-on-quorums (i.e., Electrode)

Figure 6: Performance impact of different optimizations for
Electrode-accelerated Multi-Paxos protocol (with 5 replicas).

the “hockey stick”) under 3, 5, and 7 replicas, respectively;
the corresponding tail latency is 11.8%, 24.7%, and 41.7%
lower. The latency reduction mostly comes from the fast
acknowledging in the follower nodes, which, for each Multi-
Paxos request, saves the time of two user-kernel crossings,
two kernel networking stack traversing, and one wake-up of
the user-space process. With more replicas, the latency reduc-
tion becomes larger. This is because the fast acknowledging
bypasses user-space process scheduling and avoids unpre-
dictable scheduling delays [48] by the OS; for the original
Multi-Paxos, with more follower nodes, such unpredictable
scheduling delays would raise the chance of follower nodes
straggling, thus increasing commit latency. Besides, for Multi-
Paxos under 3/5 replicas and Electrode under 7 replicas, their
latency curves first decline a bit and arrive at the lowest point,
then rise and reach the “hockey stick”. This is because, un-
der lower throughput, the Linux scheduler would schedule
the Paxos process off the CPU more frequently, while under
higher throughput, the Paxos process is mostly scheduled on
the CPU.

7.2 Performance Gain Breakdown
Figure 6 shows the performance impact of different optimiza-
tions for the Electrode-accelerated Multi-Paxos protocol with
5 replicas. Similar to §7.1, we vary the number of clients send-
ing Multi-Paxos requests in a closed-loop manner, and report
the throughput and latency. eBPF-based message broadcast-
ing improves the maximum throughput of the Multi-Paxos
protocol by 31.7%; fast acknowledging further reduces the
median latency by 4.3%-12.7% (before the “hockey stick”);
finally, wait-on-quorums improves the maximum throughput
by 57.7%. Overall, we find that the two throughput optimiza-
tions (i.e., eBPF-based message broadcasting and wait-on-
quorums) have almost no impact on the median latency, while
the latency optimization (i.e., fast acknowledging) does not
nearly impact maximum throughput. This division of labor
demonstrates good modularity of each optimization design
in Electrode, and each design can be independently used to
accelerate more distributed protocols as shown in Table 4.

3 replicas
5 replicas

7 replicas
0

2500

5000

7500

10000

Th
ro

ug
hp

ut
 (t

xn
/s

) Multi-Paxos
+ Electrode

(a) Throughput.
3 replicas

5 replicas
7 replicas

0

500

1000

Tx
n

av
er

ag
e

la
te

nc
y

(μ
s) Multi-Paxos

+ Electrode

(b) Latency (one client).

Figure 7: Performance comparison of a transactional key-value store
atop the Multi-Paxos protocol vs. Electrode-accelerated one.

7.3 Application Performance
To demonstrate how Electrode can bring benefits to real-world
Paxos-based applications, we run a transactional replicated
key-value store (similar to the one in SpecPaxos [61]) atop the
Multi-Paxos protocol and Electrode-accelerated one. This key-
value store supports serializable transactions using two-phase
commit and optimistic concurrency control (OCC). Clients
use BEGIN_TXN, COMMIT_TXN, ABORT_TXN, SET, and GET op-
erations to express transactions. We use a synthetic workload
derived from the Retwis application [56]—an open-source
Twitter clone. This workload consists of four types of trans-
actions with different ratios, and each one issues different
numbers of GET and PUT operations. The workload details
can be found in Table 2 of [80]. We vary the number of clients
that execute transactions in a closed-loop manner, and mea-
sure the maximum throughput these clients can achieve and
the average latency under one client.

Figure 7a and 7b shows the maximum throughput and av-
erage latency of the key-value store atop the Multi-Paxos pro-
tocol vs. Electrode-accelerated one under different numbers
of replicas, respectively. Overall, Electrode improves the key-
value store throughput by 32.3%-112.9% and latency by 5.9%-
19.3%. The improvement becomes larger with more replicas,
due to the similar reasons described in §7.1. The latency of
the key-value store atop the original Multi-Paxos gradually in-
creases with more replicas, while Electrode-accelerated one’s
remains relatively stable, because the former is more vulnera-
ble to follower nodes straggling (§7.1).

7.4 CPU Utilization
One design goal of Electrode is to reduce the kernel network-
ing stack overhead (§3) when implementing Paxos protocols.
Thus, in this subsection, we study the impact of Electrode
on CPU utilizations, which indicates how much kernel stack
overhead gets reduced.

Figure 8a and 8b show the CPU utilization of the leader
node and follower nodes, respectively, for the Multi-Paxos
protocol and Electrode-accelerated one with different offered
throughput. The experiments are done in an open-loop man-
ner to control the offered throughput when measuring CPU
utilization. The CPU utilization covers both the core handling

1400 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20 40
Offered throughput (K req/s)

0

25

50

75

100

C
P

U
 u

til
iz

at
io

n
(%

)

Multi-Paxos
+ Electrode

(a) The leader node.

0 20 40
Offered throughput (K req/s)

0

20

40

60

C
P

U
 u

til
iz

at
io

n
(%

)

Multi-Paxos
+ Electrode

(b) Follower nodes in average.

Figure 8: CPU utilization comparison of the Multi-Paxos protocol
vs. Electrode-accelerated one (with 5 replicas).

interrupts and the core running Paxos. With higher offered
throughput, the CPU utilization gradually increases, demon-
strating the load-aware CPU scaling provided by the kernel
networking stack (§1). We note that for DPDK-based Multi-
Paxos protocol implementation, the CPU utilization would
be always 100% because DPDK busily polls the network
interface. Overall, Electrode reduces the CPU utilization by
22.7%-38.0% on the leader node and 16.0%-35.7% on the
follower nodes, benefiting from the reduced user-kernel cross-
ings and kernel stack traversing.

7.5 Comparison with Kernel-Bypassing
Electrode still handles client-facing requests/responses and
initiates message broadcasting using the Linux kernel net-
working stack (§3); thus, it will achieve lower performance
than pure kernel-bypassing approaches. This subsection com-
pares the performance of Electrode with a kernel-bypassing
baseline, aiming to reveal the performance upper bound of
kernel-based approaches and identify the possible improve-
ments for future work.

We choose Caladan [15] and use its high-performance
DPDK-based UDP stack to implement our kernel-bypassing
baseline. Similar to Caladan, our baseline dedicates one CPU
core for packet polling and another core for running the Paxos
protocol. We also configure the Caladan runtime to never idle
the Paxos core even under low request load.

Table 3 compares the latency and throughput of kernel-
based Multi-Paxos and the kernel-bypassing one. To exclude
the latency incurred by the client-side kernel stack, we tested
all three Paxos implementations with a request generator im-
plemented using Caladan. Electrode achieves 1.4-1.6x lower
latency and 2.0x higher throughput than vanilla Linux, but it
still has 2.2x higher latency and 2.4x lower throughput com-
pared to pure kernel-bypassing. The performance gap between
Electrode and kernel-bypassing exists, because there are still
substantial Paxos messages going through the kernel net-
working stack in Electrode. In particular, our profiling shows
that, on the leader node, around 59.5% CPU time is spent on
__libc_sendto() caused by frequent dev_queue_xmit()
and sk_buff clones. Although eBPF-based broadcasting re-
duces a significant number of user-kernel crossings and sock-

Lowest median/99p
latency

Maximum
throughput

Vanilla Linux 59/69 µs 32 K req/s

Electrode 38/49 µs 65 K req/s

Kernel-bypassing 17/22 µs 154 K req/s

Table 3: Performance comparison of kernel-based Multi-Paxos vs.
kernel-bypassing one (with 5 replicas).

/UDP/IP layer traversing, it cannot fundamentally optimize
how the Linux kernel manages NICs and packet buffers. Fi-
nally, we note that Electrode’s goal is to provide generic eBPF-
based accelerations for distributed protocol implementations
that stick to kernel networking stacks because of compatibility,
security, isolation, and elastic CPU scaling.

An additional evaluation regarding how the interrupt coa-
lescing feature of modern NICs impacts Electrode is in Ap-
pendix B.

8 Discussion and Future Work
Electrode’s offloading decisions: Electrode decides to leave
four components of the Multi-Paxos protocol to the user space:
1) failure recovery, 2) handling packet loss and reordering, 3)
handling client-facing requests/responses, and 4) executing
application-specific operations after reaching the consensus.
The first two components involve complex operations on the
log, e.g., scanning the log and sending inconsistent entries to
other replicas, and inserting missing log entries received from
others. These operations require accessing dynamic ranges
of log entries, which would fail the eBPF static verification.
The last two involve complex serialization/deserialization
and application-level operations (see §3). We note that it
is possible to offload these four components into eBPF by
modifying the kernel eBPF subsystem or verifier—we leave
this as future work.
How to improve the eBPF subsystem for offloading? Ver-
ifying memory accesses more smartly could make more ap-
plication operations offloadable. The current eBPF verifier
only allows accessing static ranges of memory, which hinders
many applications with complex memory accessing behaviors.
Another useful construct in eBPF would be dynamic mem-
ory allocation, which could ease the maintenance of more
advanced data structures in eBPF. To avoid memory leaks, a
possible solution could be enforcing Rust-style single-owner
memory semantics.
io_uring [1] was recently introduced into the Linux kernel
to support efficient batching of asynchronous I/Os via shared
memory between the user and kernel space, thus reducing
the overhead of frequent user-kernel crossings. Therefore,
when implementing Paxos protocols using io_uring, it can
help reduce the overhead of message broadcasting, which
accounts for 12.5% of CPU time based on Table 1. However,
each preparation and ACK message still goes through the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1401

full Linux networking stack and wakes up user-space applica-
tions, incurring significant overhead; Electrode can be used
together with io_uring to reduce such overhead. A recent
work XRP [82] shares a similar view regarding io_uring.
Electrode on shared environments: Electrode requires at-
taching eBPF programs to the network interface, which then
processes every packet accordingly. However, multiple Elec-
trode applications might share the same NIC and attach differ-
ent eBPF programs that might interfere with each other. We
can use the SR-IOV (Single Root IO Virtualization) feature
that is widely available in modern NICs [2, 9] to avoid such
interference. SR-IOV virtualizes a physical network interface
into multiple virtualized ones; the Electrode eBPF program
can be attached to only one virtualized interface, without im-
pacting others (e.g., used by non-Paxos applications). Besides
SR-IOV, Electrode can also check the port numbers of incom-
ing packets in eBPF, and only execute optimizations if the
port numbers belong to target Paxos applications.
Accelerating leader-less consensus protocols using eBPF:
Electrode targets at leader-based consensus protocols such
as Paxos [37] and its variants [36, 43, 54], because they are
the most-used ones by modern distributed applications [6,
8, 22]. Electrode’s eBPF-based optimizations could also be
applied to leader-less consensus protocols, e.g., EPaxos [52],
Mencius [4], SD-Paxos [81], etc. For example, replicas in
EPaxos could acknowledge preparation messages earlier in
an eBPF program before entering the kernel networking stack,
thus reducing latency. We leave the exploration of applying
Electrode to leader-less consensus protocols as future work.

9 Related Work
Kernel-bypass and hardware offloading: Overheads of
the monolithic kernel networking stack have spurred var-
ious attempts to design new kernel-bypassed networking
stacks like mTCP [24], eRPC [27], Demikernel [79] and
more [15, 29, 33, 48, 57, 67], which attempt to eliminate the
kernel from the I/O datapath. But all of these solutions are
not backward compatible with solutions that already use the
standard kernel networking stack, and they incur more costs
in terms of CPU cycles and energy during low I/O loads due
to busy-polling. Electrode attempts to leverage eBPF to un-
clog some of the bottlenecks in the kernel networking stack
for distributed protocols without completely having to shift
to kernel-bypassed stacks.

Similarly, network offload solutions attempt to offload I/O-
intensive operations to specialized hardware, e.g., RDMA [11,
28, 76], FPGA [23], SmartNICs [66], and programmable
switches [10, 25]. But they come with limited interfaces for
programmability and need custom hardware to be installed.
Co-designing distributed systems with networks: There
have been attempts to optimize distributed systems by co-
designing them with data center networks for improved perfor-
mance. SpecPaxos [61] attempts to leverage the natural order
of packet delivery in data centers to optimize the ordering of

messages needed for state machine replication. NoPaxos [40]
uses in-network switches to sequence packets for a similar
purpose. Eris [39] further applies in-network sequencing to
distributed transactions to avoid coordination overhead. These
are orthogonal ways to optimize distributed systems and can
be used in conjunction with Electrode.
Distributed protocols in data centers: Data centers have
a variety of distributed protocols that are deployed for fault
tolerance and data consistency. These include replication pro-
tocols like Mencius [4], EPaxos [52], chain replication [74],
SDPaxos [81], and transaction protocols like TAPIR [80] and
Meerkat [72]. Since many distributed protocols share similar
patterns of communication like broadcasting and quorum re-
sponses, Electrode can be applied to speed up these distributed
protocols as well.
eBPF applications: For a long time, eBPF was only used
for packet filtering [49], monitoring [3, 63], and load balanc-
ing [14] because of its restricted programming model. Now,
it is shown to be able to offload small yet critical operations
to improve application performance. CCP [53] mentions that
it may be possible to leverage the JIT feature of eBPF to
gather datapath’s congestion measurements for congestion
control. BMC [17] uses eBPF to implement an in-kernel
cache to accelerate UDP-based Memcached GET requests and
achieves significant throughput improvement. Syrup [26] uses
eBPF maps to share incoming request information across OS,
networking stacks, and application runtimes to enable user-
defined scheduling. SPRIGHT [65] employs fast eBPF-based
packet forwarding to accelerate sidecar proxies in serverless
computing. XRP [82] offloads storage functions (e.g., B-tree
lookups) into the kernel using eBPF to reduce kernel stor-
age stack overhead. SynCord [58] leverages eBPF to inject
workload-specific and hardware-aware kernel lock policies
specified by application developers. Electrode further demon-
strates that eBPF can be used to accelerate distributed proto-
cols under the kernel networking stack.

10 Conclusion
Electrode is a system that accelerates distributed protocols
using safe in-kernel eBPF-based packet processing before
the networking stack. Electrode retains the benefits of using
the standard Linux networking stack (e.g., good maintenance,
elastic CPU scaling, security, and isolation), while optimizing
the performance-critical operations of distributed protocols
(e.g., broadcasting, and wait-on-quorums) in a non-intrusive
manner. When applying Electrode to a classic Multi-Paxos
protocol, we achieve up to 128.4% higher throughput and
41.7% lower latency. We believe that the designs of eBPF-
based optimizations in Electrode can motivate more research
on improving networked application performance while main-
taining the standard Linux networking stack.

Electrode code is available at https://github.com/E
lectrode-NSDI23/Electrode.

1402 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/Electrode-NSDI23/Electrode
https://github.com/Electrode-NSDI23/Electrode

Acknowledgments
We thank our shepherd Adam Belay and the anonymous
reviewers for their insightful comments. We thank Cloud-
lab [12] for providing us with the development and evaluation
infrastructure. This work was supported in part by ACE, one
of the seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA. Yang
Zhou is also supported by the Google PhD Fellowship.

References

[1] Efficient IO with io_uring. https://kernel.dk/io
_uring.pdf.

[2] NVIDIA Corporation affiliates. Single Root IO Vir-
tualization (SR-IOV) for Mellanox NICs. https:
//docs.nvidia.com/networking/pages/viewp
age.action?pageId=43718746.

[3] The Cilium Authors. Cilium: eBPF-Based Networking,
Observability, Security. https://cilium.io/.

[4] Catalonia-Spain Barcelona. Mencius: Building Efficient
Replicated State Machines for WANs. In Proceedings
of USENIX OSDI, 2008.

[5] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In Proceedings of
USENIX OSDI, pages 49–65, 2014.

[6] Mike Burrows. The Chubby Lock Service for Loosely-
Coupled Distributed Systems. In Proceedings of
USENIX OSDI, pages 335–350, 2006.

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C
Hsieh, Deborah A Wallach, Mike Burrows, Tushar Chan-
dra, Andrew Fikes, and Robert E Gruber. Bigtable: A
Distributed Storage System for Structured Data. ACM
Transactions on Computer Systems (TOCS), 26(2):1–26,
2008.

[8] James C Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, Jeffrey John Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. Spanner: Google’s Globally
Distributed Database. ACM Transactions on Computer
Systems (TOCS), 31(3):1–22, 2013.

[9] Intel Corporation. Single Root IO Virtualization (SR-
IOV) for Intel NICs. https://www.intel.com/cont
ent/www/us/en/support/articles/000005722
/ethernet-products.html.

[10] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fer-
nando Pedone, and Robert Soulé. Netpaxos: Consensus
at Network Speed. In Proceedings of ACM SIGCOMM
Symposium on Software Defined Networking Research
(SOSR), pages 1–7, 2015.

[11] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No Com-
promises: Distributed Transactions with Consistency,
Availability, and Performance. In Proceedings of ACM
SOSP, pages 54–70, 2015.

[12] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, et al. The
Design and Operation of CloudLab. In Proceedings of
USENIX ATC, pages 1–14, 2019.

[13] Facebook. Facebook’s Branch of Apache Thrift, Includ-
ing a New C++ Server. https://github.com/faceb
ook/fbthrift/blob/main/thrift/doc/cpp/cp
p2.md#options.

[14] Facebook. Katran: A High-Performance Layer 4 Load
Balancer. https://github.com/facebookincubat
or/katran.

[15] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating Interference at Mi-
crosecond Timescales. In Proceedings of USENIX OSDI,
pages 281–297, 2020.

[16] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google File System. In Proceedings of ACM
SOSP, pages 29–43, 2003.

[17] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine
Blin, and Gilles Muller. BMC: Accelerating Mem-
cached using Safe In-kernel Caching and Pre-stack Pro-
cessing. In Proceedings of USENIX NSDI, pages 487–
501, 2021.

[18] Dan Gibson, Hema Hariharan, Eric Lance, Moray
McLaren, Behnam Montazeri, Arjun Singh, Stephen
Wang, Hassan MG Wassel, Zhehua Wu, Sunghwan Yoo,
et al. Aquila: A unified, low-latency fabric for datacen-
ter networks. In Proceedings of USENIX NSDI, pages
1249–1266, 2022.

[19] Google. Protocol Buffers. https://developers.g
oogle.com/protocol-buffers/.

[20] The Tcpdump Group. tcpdump. https://www.tcpd
ump.org/.

[21] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1403

https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=43718746
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=43718746
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=43718746
https://cilium.io/
https://www.intel.com/content/www/us/en/support/articles/000005722/ethernet-products.html
https://www.intel.com/content/www/us/en/support/articles/000005722/ethernet-products.html
https://www.intel.com/content/www/us/en/support/articles/000005722/ethernet-products.html
https://github.com/facebook/fbthrift/blob/main/thrift/doc/cpp/cpp2.md#options
https://github.com/facebook/fbthrift/blob/main/thrift/doc/cpp/cpp2.md#options
https://github.com/facebook/fbthrift/blob/main/thrift/doc/cpp/cpp2.md#options
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://www.tcpdump.org/
https://www.tcpdump.org/

Ahern, and David Miller. The eXpress Data Path: Fast
Programmable Packet Processing in the Operating Sys-
tem Kernel. In Proceedings of ACM CoNEXT, pages
54–66, 2018.

[22] Michael Isard. Autopilot: Automatic Data Center Man-
agement. ACM SIGOPS Operating Systems Review,
41(2):60–67, 2007.

[23] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a Box: Inexpensive Coordination
in Hardware. In Proceedings of USENIX NSDI, pages
425–438, 2016.

[24] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In Proceedings of
USENIX NSDI, pages 489–502, 2014.

[25] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. NetChain: Scale-Free Sub-RTT Coordination.
In Proceedings of USENIX NSDI, pages 35–49, 2018.

[26] Kostis Kaffes, Jack Tigar Humphries, David Mazières,
and Christos Kozyrakis. Syrup: User-Defined Schedul-
ing Across the Stack. In Proceedings of ACM SOSP,
pages 605–620, 2021.

[27] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In Proceed-
ings of USENIX NSDI, pages 1–16, 2019.

[28] Anuj Kalia, Michael Kaminsky, and David G Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
Proceedings of USENIX OSDI, pages 185–201, 2016.

[29] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP Acceleration as an OS
Service. In Proceedings of EuroSys, pages 1–16, 2019.

[30] The Linux kernel development community. BPF Ring
Buffer. https://www.kernel.org/doc/html/la
test/bpf/ringbuf.html.

[31] The Linux kernel development community. struct
sk_buff. https://docs.kernel.org/networki
ng/skbuff.html.

[32] Marios Kogias and Edouard Bugnion. Hover-
cRaft: Achieving Scalability and Fault-tolerance for
microsecond-scale Datacenter Services. In Proceedings
of EuroSys, pages 1–17, 2020.

[33] Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. R2P2: Making RPCs First-
Class Datacenter Citizens. In Proceedings of USENIX
ATC, pages 863–880, 2019.

[34] Hsiang-Tsung Kung and John T Robinson. On Opti-
mistic Methods for Concurrency Control. ACM Trans-
actions on Database Systems (TODS), 6(2):213–226,
1981.

[35] UW Systems Lab. Speculative Paxos Open Source.
https://github.com/UWSysLab/specpaxos.

[36] Leslie Lamport. Paxos Made Simple. ACM SIGACT
News (Distributed Computing Column) 32, 4 (Whole
Number 121, December 2001), pages 51–58, 2001.

[37] Leslie Lamport. The Part-Time Parliament. In Con-
currency: the Works of Leslie Lamport, pages 277–317.
2019.

[38] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Ver-
tical Paxos and Primary-Backup Replication. In Pro-
ceedings of ACM PODC, pages 312–313, 2009.

[39] Jialin Li, Ellis Michael, and Dan RK Ports. Eris:
Coordination-Free Consistent Transactions Using In-
Network Concurrency Control. In Proceedings of ACM
SOSP, pages 104–120, 2017.

[40] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana
Szekeres, and Dan RK Ports. Just Say NO to Paxos
Overhead: Replacing Consensus with Network Order-
ing. In Proceedings of USENIX OSDI, pages 467–483,
2016.

[41] Jialin Li, Naveen Kr Sharma, Dan RK Ports, and
Steven D Gribble. Tales of the Tail: Hardware, OS,
and Application-level Sources of Tail Latency. In Pro-
ceedings of ACM SoCC, pages 1–14, 2014.

[42] John C Lin and Sanjoy Paul. RMTP: A Reliable Multi-
cast Transport Protocol. In Proceedings of IEEE INFO-
COM, volume 96. Citeseer, 1996.

[43] Barbara Liskov and James Cowling. Viewstamped
Replication Revisited. 2012.

[44] Xuhao Luo, Weihai Shen, Shuai Mu, and Tianyin Xu.
DepFast: Orchestrating Code of Quorum Systems. In
Proceedings of USENIX ATC, pages 557–574, 2022.

[45] Linux Programmer’s Manual. bpf-helpers(7). https:
//man7.org/linux/man-pages/man7/bpf-helpe
rs.7.html.

[46] Linux Programmer’s Manual. bpf(2). https://man7
.org/linux/man-pages/man2/bpf.2.html.

1404 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.kernel.org/doc/html/latest/bpf/ringbuf.html
https://www.kernel.org/doc/html/latest/bpf/ringbuf.html
https://docs.kernel.org/networking/skbuff.html
https://docs.kernel.org/networking/skbuff.html
https://github.com/UWSysLab/specpaxos
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man2/bpf.2.html
https://man7.org/linux/man-pages/man2/bpf.2.html

[47] Linux Programmer’s Manual. tc-bpf(8). https://ma
n7.org/linux/man-pages/man8/tc-bpf.8.html.

[48] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C Evans, Steve Gribble,
et al. Snap: A Microkernel Approach to Host Network-
ing. In Proceedings of ACM SOSP, pages 399–413,
2019.

[49] Steven McCanne and Van Jacobson. The BSD Packet
Filter: A New Architecture for User-level Packet Cap-
ture. In USENIX winter, volume 46, 1993.

[50] Paul E McKenney. Overview of Linux-Kernel Reference
Counting. N2167, pages 07–0027, 2007.

[51] Henrique Moniz, Nuno Ferreira Neves, and Miguel Cor-
reia. Turquois: Byzantine Consensus in Wireless Ad
hoc Networks. In 2010 IEEE/IFIP International Confer-
ence on Dependable Systems & Networks (DSN), pages
537–546. IEEE, 2010.

[52] Iulian Moraru, David G Andersen, and Michael Kamin-
sky. There is More Consensus in Egalitarian Parliaments.
In Proceedings of ACM SOSP, pages 358–372, 2013.

[53] Akshay Narayan, Frank Cangialosi, Deepti Raghavan,
Prateesh Goyal, Srinivas Narayana, Radhika Mittal, Mo-
hammad Alizadeh, and Hari Balakrishnan. Restructur-
ing Endpoint Congestion Control. In Proceedings of
ACM SIGCOMM, pages 30–43, 2018.

[54] Brian M Oki and Barbara H Liskov. Viewstamped Repli-
cation: A New Primary Copy Method to Support Highly-
Available Distributed Systems. In Proceedings of ACM
PODC, pages 8–17, 1988.

[55] Michael A Olson, Keith Bostic, and Margo I Seltzer.
Berkeley DB. In Proceedings of USENIX ATC,
FREENIX Track, pages 183–191, 1999.

[56] VMware Inc. or its affiliates. Spring Data Redis -
Retwis-J. https://docs.spring.io/spring-dat
a/data-keyvalue/examples/retwisj/current/.

[57] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
High CPU Efficiency for Latency-Sensitive Datacenter
Workloads. In Proceedings of USENIX NSDI, pages
361–378, 2019.

[58] Sujin Park, Diyu Zhou, Yuchen Qian, Irina Calciu, Tae-
soo Kim, and Sanidhya Kashyap. Application-Informed
Kernel Synchronization Primitives. In Proceedings of
USENIX OSDI, pages 667–682, 2022.

[59] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug
Woos, Arvind Krishnamurthy, Thomas Anderson, and
Timothy Roscoe. Arrakis: The Operating System is the
Control Plane. ACM Transactions on Computer Systems
(TOCS), 33(4):1–30, 2015.

[60] Valentin Poirot, Beshr Al Nahas, and Olaf Landsiedel.
Paxos Made Wireless: Consensus in the Air. In EWSN,
pages 1–12, 2019.

[61] Dan RK Ports, Jialin Li, Vincent Liu, Naveen Kr Sharma,
and Arvind Krishnamurthy. Designing Distributed Sys-
tems Using Approximate Synchrony in Data Center Net-
works. In Proceedings of USENIX NSDI, pages 43–57,
2015.

[62] Ravi Prasad, Manish Jain, and Constantinos Dovrolis.
Effects of Interrupt Coalescence on Network Measure-
ments. In International Workshop on Passive and Active
Network Measurement, pages 247–256. Springer, 2004.

[63] The IO Visor Project. BPF Compiler Collection (BCC).
https://github.com/iovisor/bcc.

[64] The IO Visor Project. eXpress Data Path (XDP). https:
//www.iovisor.org/technology/xdp.

[65] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang,
and KK Ramakrishnan. SPRIGHT: Extracting the
Server From Serverless Computing! High-Performance
eBPF-Based Event-Driven, Shared-Memory Processing.
In Proceedings of ACM SIGCOMM, pages 780–794,
2022.

[66] Henry N Schuh, Weihao Liang, Ming Liu, Jacob Nel-
son, and Arvind Krishnamurthy. Xenic: SmartNIC-
Accelerated Distributed Transactions. In Proceedings
of ACM SOSP, pages 740–755, 2021.

[67] ScyllaDB. SeaStar High Performance Server-Side Ap-
plication Framework. https://github.com/scyll
adb/seastar.

[68] Muhammad Shahbaz, Lalith Suresh, Jennifer Rexford,
Nick Feamster, Ori Rottenstreich, and Mukesh Hira.
Elmo: Source Routed Multicast for Public Clouds. In
Proceedings of ACM SIGCOMM, pages 458–471. 2019.

[69] Gráinne Sheerin. gRPC and Deadlines. https://gr
pc.io/blog/deadlines/.

[70] Alberto Spina, Julie McCann, Michael Breza, and
Anandha Gopalan. Reliable Distributed Consensus for
Low-Power Multi-Hop Networks. PhD thesis, Master’s
thesis, Imperial College London, 2019.

[71] Michael Stonebraker, Samuel Madden, Daniel J. Abadi,
Stavros Harizopoulos, Nabil Hachem, and Pat Helland.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1405

https://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
https://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
https://github.com/iovisor/bcc
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp
https://github.com/scylladb/seastar
https://github.com/scylladb/seastar
https://grpc.io/blog/deadlines/
https://grpc.io/blog/deadlines/

The End of an Architectural Era: (It’s Time for a
Complete Rewrite). In Proceedings of VLDB, page
1150–1160. VLDB Endowment, 2007.

[72] Adriana Szekeres, Michael Whittaker, Jialin Li,
Naveen Kr Sharma, Arvind Krishnamurthy, Dan RK
Ports, and Irene Zhang. Meerkat: Multicore-
Scalable Replicated Transactions Following the
Zero-Coordination Principle. In Proceedings of
EuroSys, pages 1–14, 2020.

[73] Amy Tai, Igor Smolyar, Michael Wei, and Dan Tsafrir.
Optimizing Storage Performance with Calibrated Inter-
rupts. ACM Transactions on Storage (TOS), 18(1):1–32,
2022.

[74] Robbert Van Renesse and Fred B Schneider. Chain
Replication for Supporting High Throughput and Avail-
ability. In Proceedings of USENIX OSDI, volume 4,
2004.

[75] Ed. W. Eddy. RFC 9293: Transmission Control Protocol
(TCP). https://datatracker.ietf.org/doc/htm
l/rfc9293.

[76] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing RDMA-Enabled Distributed
Transactions: Hybrid is Better! In Proceedings of
USENIX OSDI, pages 233–251, 2018.

[77] IJsbrand Wijnands, E Rosen, Andrew Dolganow, Tony
Przygienda, and Sam Aldrin. RFC 8279: Multicast
Using Bit Index Explicit Replication (BIER). https:
//www.rfc-editor.org/rfc/rfc8279.

[78] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman,
Mosharaf Chowdhury, and Xin Jin. NetLock: Fast,
Centralized Lock Management Using Programmable
Switches. In Proceedings of ACM SIGCOMM, pages
126–138, 2020.

[79] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, et al. The Demikernel Datapath OS Archi-
tecture for Microsecond-Scale Datacenter Systems. In
Proceedings of ACM SOSP, pages 195–211, 2021.

[80] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan RK Ports. Build-
ing Consistent Transactions with Inconsistent Replica-
tion. ACM Transactions on Computer Systems (TOCS),
35(4):1–37, 2018.

[81] Hanyu Zhao, Quanlu Zhang, Zhi Yang, Ming Wu,
and Yafei Dai. SDPaxos: Building Efficient Semi-
Decentralized Geo-Replicated State Machines. In Pro-
ceedings of ACM SoCC, pages 68–81, 2018.

[82] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas,
Jeffrey Tao, Evan Mesterhazy, Michael Makris, Jun-
feng Yang, Amy Tai, Ryan Stutsman, et al. XRP: In-
Kernel Storage Functions with eBPF. In Proceedings of
USENIX OSDI, pages 375–393, 2022.

1406 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://datatracker.ietf.org/doc/html/rfc9293
https://datatracker.ietf.org/doc/html/rfc9293
https://www.rfc-editor.org/rfc/rfc8279
https://www.rfc-editor.org/rfc/rfc8279

Types Protocols Applying message broadcasting Applying fast acknowledging Applying wait-on-quorums

Replication

Primary-
backup

The primary broadcasts requests to
backups.

Each backup buffers messages in the kernel and quickly
responds to the primary.

The primary waits for responses
from all backups.

Chain None Each replica (except for the last one) buffers write re-
quests in the kernel and forwards them to the next replica. None

Concurrency
control

Two-phase
locking

A transaction coordinator broad-
casts LOCK and UNLOCK requests to
all shards.

Each shard maintains a lock table in the kernel and di-
rectly handles lock acquiring and releasing.

A transaction coordinator waits for
responses from all shards.

OCC None Each shard checks in the kernel if the committing trans-
action’s timestamp conflicts with all other running ones. None

Atomic com-
mitment

Two-phase
commit

A transaction coordinator broad-
casts PREPARE and COMMIT re-
quests to all shards.

Each shard buffers PREPARE messages in the kernel
and responds to the coordinator, and handles COMMIT
requests by polling the buffered messages.

A transaction coordinator waits for
responses from all shards

Table 4: Applying Electrode to more distributed protocols.

APPENDIX

A Electrode Generalizability
Table 4 summarizes how the classic replication, concurrency
control, and atomic commitment protocols can leverage Elec-
trode optimizations. For example, the primary-back replica-
tion, two-phase locking, and two-phase commit protocols fol-
low the pattern of sending requests to multiple nodes and
waiting for a quorum number of responses; thus they nat-
urally fit well with the eBPF-based message broadcasting
and wait-on-quorums. Together with the above protocols, the
chain replication [74] and opportunistic concurrency control
(OCC) [34] protocols include some critical-yet-simple oper-
ations like storing messages in memory, maintaining a lock
table, and checking timestamp conflicts; these operations are
also suitable for offloading to the eBPF following the fast
acknowledging mechanism.

B Impact of Interrupt Coalescing
During benchmarking, we noticed that the interrupt coalesc-
ing [62] (IC) feature of modern NICs has a big impact on
the measured performance. In IC, after an incoming packet
triggers an interrupt, the kernel networking stack waits until a
threshold of packets arrives or a timeout gets triggered, aim-
ing to amortize the interrupt cost. In our scenarios, we find it
significantly hurts latency and performance predictability in
our settings; similar results are also reported in [73]. Thus, in
all our experiments, we disable IC by default.

Figure 9 shows the performance impact of IC on the Multi-
Paxos protocol and Electrode-accelerated one, by varying the
number of open-loop clients. With IC, load-latency curves
become unpredictable with two “hockey stick”s. The second
“hockey stick” is because the extremely high load triggers coa-
lescing/batching much more packets in one interrupt. Overall,
IC does not nearly impact the maximum throughput for the
Multi-Paxos protocol and Electrode-accelerated one, but it
increases the latency by 57.4%-129.2% and 9.1%-246.8%
with 1-3 clients (before the first “hockey stick”). Moreover,

0 10 20 30 40 50 60
Throughput (K req/s)

0

500

1000

1500

M
ed

ia
n

la
te

nc
y

(μ
s)

Multi-Paxos IC on
Multi-Paxos IC off
+ Electrode IC on
+ Electrode IC off

Figure 9: Performance impact of interrupt coalescing (IC) on the
Multi-Paxos protocol vs. Electrode-accelerated one (with 5 replicas).

enabling IC decreases the one-client throughput by 38.3% and
10.1% for the original Multi-Paxos and Electrode-accelerated
one, respectively.
Electrode performance with IC: Electrode accelerates the
maximum throughput of the Multi-Paxos protocol by 81.4%
and latency by 32.7% with 1 client (before the first “hockey
stick”) when IC is on.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1407

Nu: Achieving Microsecond-Scale Resource Fungibility with Logical Processes

Zhenyuan Ruan Seo Jin Park Marcos K. Aguilera ‡ Adam Belay Malte Schwarzkopf †

MIT CSAIL ‡VMware Research †Brown University

Abstract. Datacenters waste significant compute and mem-
ory resources today because they lack resource fungibility: the
ability to reassign resources quickly and without disruption.
We propose logical processes, a new abstraction that splits
the classic UNIX process into units of state called proclets.
Proclets can be migrated quickly within datacenter racks, to
provide fungibility and adapt to the memory and compute re-
source needs of the moment. We prototype logical processes
in Nu, and use it to build three different applications: a social
network application, a MapReduce system, and a scalable
key-value store. We evaluate Nu with 32 servers. Our evalua-
tion shows that Nu achieves high efficiency and fungibility: it
migrates proclets in ≈100µs; under intense resource pressure,
migration causes small disruptions to tail latency—the 99.9th

percentile remains below or around 1ms—for a duration of
0.54–2.1s, or a modest disruption to throughput (<6%) for a
duration of 24–37ms, depending on the application.

1 Introduction
Compute and memory are valuable and expensive resources
in datacenters today, but they are inefficiently utilized [46, 76].
A key reason for this inefficiency is a lack of fungibility—the
ability to reassign resources quickly and without disruption
between different users and across different machines. With-
out fungibility, resources are stranded and over-provisioned
for fear of running short, even as resource consumption natu-
rally fluctuates in datacenter applications [2, 7, 18, 34, 39].

Existing systems fail to provide fungibility because cur-
rent abstractions for compute work and memory state (VMs,
containers, processes) are too coarse-grained (§2). To address
this problem, we introduce the abstraction of a logical pro-
cess. Logical processes provide fungibility, while retaining a
familiar programming model similar to traditional processes.
A logical process consists of many smaller proclets, atomic
units of state and compute that can be independently migrated
under resource pressure to achieve fungibility. Like a tradi-
tional process, a logical process has its own address space,
isolated from other processes. But unlike a traditional process,
a logical process can spread across many machines in datacen-
ter racks as a result of the migration of its proclets. Intuitively,
logical processes break down the monolithic nature of tradi-
tional processes into many proclets. A proclet consists of a
heap (state) and a set of user-level threads and their execution
contexts (stacks and register values). A runtime system that
manages the logical process responds to spikes in load by
migrating proclets quickly to a machine with spare resources.

To realize logical processes and proclets, we had to ad-
dress three challenges. First, proclet migration must be fast
and react to resource pressure before resources are exhausted.
Second, communication between proclets and migration of
proclets must impose little overhead or disruption on the ap-
plication, especially if migration itself consumes resources
when they are short. Third, the programming model of logi-
cal processes and proclets must support practical datacenter
applications.

We respond to these challenges as follows. First, we divide
process state into proclets, which are small relative to an entire
process, so they can be migrated orders of magnitude faster
than VMs or processes. Second, we optimize our software
stack to take full advantage of modern datacenter networks
(at 100–400 Gbit/s). This pushes performance far enough for
proclets to migrate in ≈100µs. We also scale proclets across
machines with minimal communication overheads by using a
single program image across machines and an optimized RPC
stack. Third, we use a global address space to provide a pro-
gramming model that is process-like and intuitive. This makes
it possible to statically check types, and enables computation
shipping by passing function pointers between proclets.

We prototyped logical processes and proclets in Nu, a sys-
tem that provides a C++ class API and a Caladan-based user-
level threading and kernel-bypass networking runtime [28].
Nu targets environments with tens of racks: hundreds of ma-
chines connected with an overprovisioned network that pro-
vides high full-bisection bandwidth (100–400 Gbit/s) and low
latency (10–20 µs). We implemented three applications us-
ing Nu. The first is a version of the DeathStarBench social
network application[29], originally implemented using mi-
croservices. The Nu version of this application is simpler,
shorter, and has an order of magnitude better performance
than the microservice version, while preserving scalability.
The second application is k-means clustering on Phoenix
MapReduce [63], which represents a compute-intensive work-
load with high parallelism. Phoenix MR originally supported
thread parallelism in a single NUMA machine, but the Nu
version scales across multiple machines while also delivering
comparable single-machine performance. The third applica-
tion is a scalable key-value store implemented in Nu as a hash
table whose buckets are distributed across multiple proclets.

We evaluate Nu in a setup of 32 servers with 100 GbE
NICs that are connected through a top-of-rack switch. Our
evaluation shows that Nu achieves high efficiency and fun-
gibility: it reacts quickly to resource pressure and migrates

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1409

(a) Cloud Today (b) Logical Processes

Proclet: granular,
rapidly migratable

Stranded
resources

Overprovisioned
resources

Figure 1: (a) Resources are wasted as they are overcommitted for
peak use (gradient) or stranded as additional tasks do not fit (gray).
(b) Proclets permit tighter packing, which fits more tasks (orange,
purple) that can be migrated away quickly under resource pressure.

proclets without disruption to the application workload. Nu
migrates proclets in≈100µs and its migration exceeds the rate
at which the Linux kernel can allocate memory (≈ 7GB/s), so
Nu handles even intense resource pressure. Under this mem-
ory pressure, the social network app adds 122µs to the 99.9th-
percentile client latency for a period of 0.86s; the key-value
store app adds 52µs for 2.1s; and k-means loses 2.9% through-
put for 37ms. Under intense compute pressure, disruption is
higher, but still short-lived: the key-value store adds 1,053µs
for 0.54s; and k-means loses 5.8% throughput for 24ms. Fi-
nally, Nu’s logical processes are efficient in the absence of
resource pressure, and match or exceed the performance of
strong baselines on one or more servers.

Nu has some limitations. First, logical processes require
developers to structure applications as proclets. This may not
be feasible for every application (§3.3), but we have shown
that it is feasible for three very different applications. Second,
Nu currently considers only two resources, memory capacity
and compute load. We expect other resources can be added
(network, caches, memory bandwidth, etc.), but that remains
future work. Third, Nu targets deployments where network
bandwidth is plentiful and latencies low.

Nu is available as open-source software [66].

2 Motivation: Resource Fungibility
Cloud computing originally promised to deliver utility com-
puting, with fine-grained, pay-per-use sharing of compute re-
sources, rather than fixed-size machines that customers must
purchase and own [4, 31]. But, almost two decades later, the
operational reality is different: although end-users can readily
rent resources, cloud providers still provision and offer these
resources in fixed-size units and over long time horizons.

We argue that a key problem in this setting is the lack of
fungibility—the ability to reassign resources quickly and with-
out disruption between different users and across different
machines. Users today submit requests for fixed allocations
(number of cores, memory, etc.) as determined by so-called
“instances” (or “slots”, “tasks”). These allocations tend to over-

estimate actual resource use, which fluctuates at sub-second
time scales. Providers bin-pack instances onto the available
servers [33, 35, 71, 76, 77]. This is inefficient because users
must size instances for peak rather than typical usage, leav-
ing substantial resources idle most of the time. Providers can
reclaim some of these wasted resources by overbooking and
scheduling best-effort instances in them [2, 44, 76, 84]. But
this practice is disruptive, as machines can get intermittently
overloaded, leading to performance degradation (e.g., high
tail latencies), which is particularly problematic for latency-
sensitive workloads [28, 44]. In response, the cluster manager
must kill some best-effort instances to free up resources. But
doing so is also disruptive because the work done by a killed
instance can be wasted and may need to be redone. Moving
the instance usually is not an option as it requires an expensive
VM or process migration that can take seconds or minutes
because the state to be moved is large, and it requires the clus-
ter manager to find a destination machine that has sufficient
resources to take over the entire (indivisible) instance.

In other words, today’s cloud is not fungible (Figure 1(a)).
Resources can only be reassigned on fairly long timescales,
larger than the timescales over which resource consumption
fluctuates. The underlying reason for this problem is that
current abstractions for compute work and memory state—
VMs, containers, and processes—are too coarse-grained.

A more efficient design would avoid disruption and reas-
sign resources quickly and at fine granularity. This would
make it easy for providers to increase utilization by densely
packing instances across machines while rebalancing and
migrating work as necessary, instead of killing instances un-
der resource pressure. In addition, this would eliminate the
burden on users to predict and specify peak per-machine re-
source usage for each instance, allowing them to instead pay
for resources as they are used.

Our approach to fungibility. To provide fungibility, we re-
visit the process, a core OS abstraction that dates back to the
1960s. Traditionally, a process is an instance of a computer
program that runs on one machine, consisting of memory and
a set of threads. Our work extends this idea across machines
to provide a similar abstraction called a logical process.

Logical processes are inspired by logical disks [59, 74].
Much like a logical disk, a logical process combines together
disparate physical resources—in this case, machines rather
than disks. A logical process automatically scales to use ad-
ditional machines when more capacity is needed, and can
recover from machine failures.

A logical process achieves fungibility through two key
ideas (Figure 1(b)). First, a logical process divides program
state into fine-grained partitions called proclets. Second, pro-
clets are migrated quickly between machines in response to
memory or compute resource pressure. Each proclet runs on
one machine at a time, and proclets communicate with each
other through efficient message passing.

Because proclets are fine-grained, migrations complete

1410 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Logical Process A Logical Process B Logical Process B …
Runtime Runtime Runtime

Machine 0

…

Machine 1

Migration

…
Proclets
(threads
+ heaps)

Figure 2: Logical processes spread across machines. Each logical
process is comprised of proclets that include a heap (shown as a
circle) and threads (shown as squiggles). Proclets rapidly migrate to
other machines in response to resource pressure.

quickly, causing minimal performance disruption. Inspired
by prior work that shows that decomposition into small units
simplifies placement [51, 57], proclets’ fine granularity makes
packing them onto machines simple and avoids complex and
time-consuming bin-packing on allocation or migration.

Alternative approaches. There are a few other approaches to
improving fungibility, but they have drawbacks. One can mi-
grate VMs [20, 78], containers [22], or processes [49], but mi-
gration is slow due to their state size. An alternative that main-
tains the process abstraction is to use distributed shared mem-
ory (DSM) to spread a normal process across machines [83].
But DSM systems experience high coherence overheads with
shared memory, leading to poor performance. PGAS [5, 17,
54] is a type of DSM that can avoid such overheads, but its
applicability is limited to parallel applications.

Another approach to fungibility is to adopt new program-
ming models to distribute the application into smaller units, as
with distributed objects [6, 13, 21, 30, 70, 82], microservices,
and serverless functions. These models depart significantly
from the familiar process abstraction, and they are built on
top of traditional, coarse-grained instances that limit their fun-
gibility. They also have high RPC messaging overheads (and
cold start delays for serverless functions [72]) that grow in
cost as their units become smaller. Alternatively, parallel pro-
gramming frameworks [8, 15, 23, 26, 50, 81] partition work
via rigid compute patterns (e.g., partition-aggregate, actors).
This constrains the programming model and requires data to
be statically placed on machines.

Finally, some techniques provide fungibility, but in limited
form. Far memory systems [32, 67, 79] can incrementally
extend the memory of a process, but they perform well only
when the remote memory is cold. Request load balancing can
make compute fungible, but it is mostly suited for stateless or
read-only services. These two techniques are complementary
to logical processes and can be combined with them.

3 The Logical Process Abstraction
A logical process exists across one or several machines and
contains a collection of proclets. Proclets are fine-grained par-
titions of program state that form units of migration. Proclets
can be individually migrated between machines to relieve
resource pressure (Figure 2).

Virtual Address

Machine 0

Machine 1

Code

Code

Read-only
Data

Read-only
Data

Proclet
0

Proclet
1

Proclet
2 …

…

Proclet
0

Proclet
0

Proclet
0

Figure 3: The address space layout of a logical process running
on two machines. Read-only code and data is mapped everywhere,
while proclets are mapped in exactly one machine at a time.

A proclet consists of a heap and a set of threads that can
access the heap concurrently via shared memory. A proclet
never shares its heap memory directly with other proclets.
Instead, each proclet has an associated root object, which
defines a remote method interface that other proclets use to
access its state. This approach allows developers to build full
programs from proclets in a natural, object-oriented way. The
root object may store references (pointers) to ordinary local
objects stored on the proclet’s heap.

The number of machines allocated to a logical process can
change over time in response to shifts in the resources avail-
able on each machine. Each machine handling logical pro-
cesses runs a separate runtime instance. The runtime provides
location-transparent communication between proclets, detects
resource pressure, migrates proclets between machines, and
cleanly handles failures.

Developing software for logical processes is similar to nor-
mal UNIX processes. Code can spawn threads, use synchro-
nization primitives to coordinate access to shared memory,
and allocate memory using standard APIs like malloc or
new. But there are two major differences. First, developers
must partition their program state into proclets. Second, in
most cases, developers must use runtime APIs instead of mak-
ing system calls or performing I/O directly. We describe the
logical process abstraction in more detail in the following.

3.1 Address Spaces and Cache Coherence

A logical process uses an identical address space layout on
each machine. This simplifies migration, as pointers remain
valid across machines without swizzling. Runtime instances
coordinate to keep their layout synchronized during initializa-
tion and whenever new proclets are created.

Figure 3 shows an example address space layout for a
logical process running on two machines. Code and shared
data segments are mapped read-only on all machines. Con-
sequently, the machines must be binary-compatible, but not
necessarily identical architectures (e.g., AMD and Intel x86
CPUs). Read-only data can store large static arrays, tables,
and other inputs that all proclets might need. Proclets’ heaps,
on the other hand, are readable and writable, only mapped on
one machine at a time, and only ever accessible by the owning
proclet. (This contrasts with distributed shared memory [3,
10, 25, 40, 52, 68, 69], which typically provides cache coher-
ence across machines.) In other words, no proclet can share

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1411

1 struct Accumulator {
2 Accumulator(int val) : val_(val) {}
3 void Add(int n) { std::scoped_lock l(mu_); val_ += n; }
4 int Get() { std::scoped_lock l(mu_); return val_; }
5 std::mutex mu_; int val_;
6 };
7

8 void mainfunc() {
9 // Creates two proclets with root class Accumulator.

10 auto p1 = make_proclet <Accumulator >(10);
11 auto p2 = make_proclet <Accumulator >(10);
12 // Invokes Get() on p1; prints 10.
13 std::cout << p1.Run(&Accumulator::Get);
14 // Invokes a closure on p1; prints 15.
15 std::cout << p1.Run(+[](Accumulator &a) { a.Add(5);

return a.Get(); });
16 // Invokes Get() asynchronously; prints 25.
17 auto f1 = p1.RunAsync(&Accumulator::Get);
18 auto f2 = p2.RunAsync(&Accumulator::Get);
19 std::cout << f1.get() + f2.get();
20 // Adds p2’s value to p1 by invoking a closure on p1.
21 p1.Run(+[](Accumulator &a, proclet<Accumulator > p) {
22 auto v = p.Run(&Accumulator::Get); a.Add(v); }, p2);
23 // Arguments statically type checked; DOESN’T COMPILE!
24 // p1.Run(&Accumulator::Add, 10, 20);
25 // Proclets are freed when mainfunc() gets out of scope
26 }

Figure 4: Code sample for logical processes. Proclets have a root
class with methods containing the app logic. Proclets can create other
proclets, run methods synchronously or asynchronously, and run
closures. Closures can take proclets as arguments to chain execution.

memory with another proclet. Instead, proclets communicate
via remote method invocation, which passes arguments by
copying if the proclets are co-located on a machine or by
network transfer if they are on different machines.

This design avoids writable shared memory across ma-
chines and aligns well with current datacenter networks,
which provide high throughput and low latency, but lack hard-
ware support for cache-coherent memory across machines.
Additionally, this design enables fault isolation, as it allows
one proclet to fail independently from others on different ma-
chines. A failure can cause a proclet’s memory to disappear at
any time, and these errors can be cleanly reported via return
codes of remote methods. This allows us to use standard dis-
tributed systems techniques (e.g., replication) to make critical
proclets fault-tolerant.

Proclet migrations occur atomically and each proclet runs
on exactly one machine at a time. Consequently, cache co-
herence is available within proclets, but not across proclets.
This design allows for a normal programming environment
inside proclets, including synchronization across threads (via
spinlocks, mutexes, etc.) when they access shared memory
within a single proclet’s heap.

3.2 Programming Model

Developers write an application as a set of proclet root
classes. As in traditional object-oriented programming, each
class defines methods and fields. Methods implement the pro-
clet’s application logic and expose the API for the proclet
to be invoked by other proclets. Fields specify state internal
to the proclet, although additional state can be allocated dy-
namically in the heap at runtime. Figure 4 shows a running

example in C++.1 Lines 1–6 define Accumulator as the root
class for a simple proclet that keeps a value val_ and exposes
two methods Add and Get to increment and retrieve the value.
Here, the methods are one-liners, but in real applications they
constitute most of the code.

When a logical process starts up, the runtime launches a
main proclet. This proclet typically creates other proclets
by calling function make_proclet with their root classes
and constructor parameters. In the example, the main proclet
invokes function mainfunc (for brevity we do not show the
main proclet, only mainfunc), which in lines 10–11 creates
two proclets with root class Accumulator.

Proclets communicate only via remote method invoca-
tions and closures. With remote method invocations, a proclet
calls the methods of the root object of another proclet, either
synchronously using function Run(), or asynchronously us-
ing function RunAsync(), which returns a future. Lines 13
and 17–18 show a synchronous and two asynchronous invoca-
tions of Get on proclets. The two asynchronous invocations
run concurrently to hide latency.

With closures, a proclet can implement function ship-
ping [36, 38, 65, 67, 79, 80], and ship a function that invokes
methods—interspersed with its own processing logic—on the
root object of another proclet. Line 15 shows a closure that
invokes Add and Get on the same proclet. This execution in-
curs a single roundtrip to the server hosting the proclet, even
though it invokes two methods. Shipping code to data in this
manner can greatly improve efficiency.

The remote runtime may execute methods and closures on
the same proclet concurrently on different threads. Hence, the
example uses a mutex mu_ to protect val_ against concurrent
execution of Add and Get.

Naming and reference counting. Proclets need to know
about each other before they can communicate. We adopt a
proclet naming scheme based on smart proclet pointers. These
pointers provide safety, convenience, and reference counting
through a interface similar to C++’s shared_ptr.

Unlike standard RPC frameworks, remote methods or clo-
sures can take proclet pointers as arguments. Thus, code can
pass handles to proclets to other proclets by passing them
as parameters, similar to delegating capabilities. This feature
permits a remote method or closure to chain together the ex-
ecution of multiple proclets while performing computation
in between. For example, line 22 shows a closure on proclet
p1 that takes proclet p2 as a parameter; the closure first calls
p2’s Get method, followed by p1’s Add method.

Proclet pointers are valid within the entire logical process,
even across machines, and the runtime frees a proclet when it
loses its last reference. In the example, proclets p1 and p2 are
freed automatically when mainfunc() goes out of scope.

We considered using global strings as proclet names, but
never needed them in building applications. A logical process

1A logical process can be implemented in other languages too.

1412 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

is tightly coupled, and we found that passing smart pointers is
more convenient than hard-coding strings. Typically, initial-
ization code creates several proclets, and passes around their
smart pointers, so the code hands over access directly.

Type checking. Because a logical process uses an identical
program image across machines, static type checking of argu-
ment types is sufficient for remote invocations. This contrasts
with standard RPC frameworks (e.g., Thrift or gRPC), which
additionally have to perform dynamic type checking, incur-
ring runtime overheads and requiring extra error handling.
Line 24 thus fails to compile because of too many arguments.

Raw pointers into a proclet’s heap are never allowed as
arguments; we made this choice to discourage incorrect code
that attempts to share memory between proclets. On the other
hand, smart pointers are supported, and passing them as argu-
ments causes the objects they own to be copied.

Unlike standard RPC frameworks, proclet invocations al-
lows remote methods and closures to take function pointers
and closures as arguments. This is possible as all machines in
the logical process map the code segment at the same address.

Network I/O outside a logical process. Logical processes
perform their I/O through abstractions provided by the run-
time, rather than POSIX syscalls and I/O abstractions. This
allows proclets to be machine-independent and migrate be-
tween machines without having to move hard-to-migrate local
kernel state (e.g., the TCP state machine). In particular, the
runtime maintains TCP network connections to clients, which
can be either other logical processes or normal processes.
These connections allow clients to communicate with specific
proclets inside a logical process—or to spread load across
groups of stateless proclets—and will forward client requests
if the destination proclet has migrated. Similar to existing
libraries for distributed request routing [1, 53], the runtime
informs client libraries about the proclet’s new location, so
that the client knows to expect the response on another net-
work connection and to send future requests there. In our
datacenter setting, client and server code are under the control
of the same entity, and custom I/O libraries (e.g., for request
routing and load balancing) are commonplace [1, 11, 73].

In rare cases, developers can pin proclets that need to use
local resources directly to a machine. Such proclets lose their
ability to migrate and reduce resource fungibility, so develop-
ers should pin proclets only if absolutely necessary.

3.3 Porting Applications to Logical Processes

In principle, any application that can partition its state into
fine-grained units can be ported to a logical process (each
unit becomes a proclet). This aligns well with existing cloud
applications that already partition their state (e.g., microser-
vices, FaaS, distributed frameworks, etc.), though sometimes
at a coarser granularity than proclets. There are two main
considerations when dividing a logical process into proclets:
the proclet granularity and its scope.

Proclet granularity. Choosing the right size for proclets is
important. If proclets are too large, resource fungibility suf-
fers. If they are too small, communication overheads increase
as remote invocations become more frequent. Developers
must choose a sweet spot that provides sufficient fungibility
without significant overheads. §6.4.2 shows empirical mea-
surements of proclet performance at different state sizes and
invocation compute intensities; in practice, proclets of a few
MiB state size work well.

Proclet scope. The next consideration is how to decide what
functionality goes into a proclet. One approach is functional
splitting, which equates a proclet to a logical functional unit
in the application (a module, a microservice, a package, etc).
Well-known software engineering practices suggest how to
choose appropriate units [47, 56]: the unit should include
functionality that is intuitively related, that can be described
simply, and that can be encapsulated through a compact and
easy-to-understand API. The latter property ensures that the
interface between proclets is also compact. Another approach
is to use sharding. Since a functional unit may be much larger
than the ideal proclet size, it may help to shard (partition) the
unit. For example, consider a large chaining hash table. Each
hash bucket of this data structure becomes a separate proclet
and stores the proclet pointer in the hash array. To operate
on a key in the hash table, the code makes the appropriate
method invocation to the corresponding proclet. This results
in a distributed key-value store, as proclets are spread across
machines, but maintains the hashtable API.

Limitations. Some applications are hard to decompose into
proclets, such as applications that manipulate large amounts
of state that is not easily divisible (e.g., video encoders, ar-
chitecture simulation, sorting, or graph processing). For these
examples, decomposition may still be possible, but it requires
new algorithmic approaches [27, 41, 45, 48, 64].

Other applications may require functionality that is tied to
physical hardware resources, such as a GPU or an FPGA. In
these cases, proclets that interact with the hardware may need
to be pinned, thus reducing the logical process’s fungibility.

3.4 Security and Threat Model

A logical process has the same isolation properties as a UNIX
process—viz., its memory is isolated from other processes,
but its threads share an address space—but applies this model
across multiple machines. Even though proclets lack shared
memory, there is no hardware memory isolation (e.g., via
the MMU) between the proclets within a logical process to
enforce this. We made this choice for performance reasons
and because it matches the isolation model of UNIX processes.
On the other hand, memory isolation is guaranteed across
different logical processes: each local logical process instance
runs in a different UNIX process and is isolated from other
logical process instances on the machine.

Address space layout randomization (ASLR) and stack ca-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1413

naries are important defenses against buffer overflow attacks.
Although ASLR might at first glance seems incompatible with
logical processes’ global address space, it works as long as the
loader maintains the same randomized address space layout
on each machine. Stack canaries also work, as proclets cannot
share stack memory and the implementation can maintain a
different secret canary value for each proclet.

Finally, logical processes trust the network to provide con-
fidentiality and integrity. This is necessary to make remote
method invocation and migration efficient by sending raw
data and pointers. Modern datacenter NICs have hardware
encryption engines that ensure these properties.

3.5 Fault Tolerance

A proclet may be replicated to tolerate failures. Replication
creates backup copies of the proclet’s heap, which the runtime
places at the same virtual address in different machines. To
keep the backup heaps in sync, the primary replica serializes
the invocation requests and forwards them to the backup repli-
cas. (This requires proclet operations to be deterministic.)
Operations on a replica are totally ordered without overlap
within each proclet—a choice that trades off some perfor-
mance for strong consistency. To reduce replication latency,
the primary overlaps execution with the backups, but the pri-
mary only returns from an invocation once the backups finish.

When the system detects the failure of the primary (e.g.,
due to an RPC time out), it atomically promotes a backup to
the primary. To keep the same replication factor, it also adds
a new backup by pausing the proclet and copies its heap from
the new primary to the new backup replica.

4 The Nu Runtime System
We built Nu, a prototype runtime that provides the logical pro-
cess abstraction and runs inside a normal Linux environment.
Nu shares some architectural and implementation building
blocks with Caladan [28]. Caladan was a good fit for Nu
because it provides a user-level threading package with over-
heads low enough to hide microsecond-scale latency. For
example, if a thread blocks waiting for a remote proclet in-
vocation to return, the runtime can quickly context switch to
another runnable thread with little overhead. Caladan uses
work-stealing to balance these threads across cores, which
reduces tail latency [62]. Caladan also provides an optimized
kernel-bypass, user-level TCP/IP networking stack to further
reduce proclet communication and migration costs.

Nu adds ≈10,000 lines of C++ code to Caladan. This in-
cludes efficient communication infrastructure, a new memory
management layer to handle multiple heaps, a well-optimized
proclet migration system, and a controller to track the location
of proclets. In the following, we describe these components.

4.1 Serialization and Communication

Nu serializes arguments to remote invocations using cereal,
an efficient, header-only library for serialization [16]. Ce-
real has a compact binary serialization format that supports

most STL types, but prohibits raw pointers and references
(shared_ptr and unique_ptr are still supported). We modi-
fied cereal so that it can serialize function and proclet point-
ers. To optimize use of cereal, Nu maintains a buffer pool
for serialized outputs and eliminates extra data copies.

Nu uses C++ templates to internally produce code at
compile time for serialization and deserialization of remote
method arguments. This contrasts with RPC frameworks like
Thrift, which require code generation and an interface descrip-
tion language. As a result, developers call remote methods
without boilerplate, and they benefit from static type checking.

We took several steps to optimize remote method invoca-
tions. First, Nu opens one TCP connection on each core for
each outgoing machine. These connections use specific 5-
tuples, so they have flow-level affinity matched with the core
they are associated with, enabling cache-aware steering [42,
60]. This design increases the number of open connections,
but Caladan easily scales to 10,000 connections, much more
than needed for our target environment. Second, Nu applies
adaptive batching to combine remote method invocation pay-
loads (requests and responses) into larger TCP transfers with-
out impacting latency [9]. We modified Caladan to use jumbo
frames to increase the benefit of this batching. Third, each
connection operates as a closed queuing system, limiting the
maximum number of requests in flight. This provides flow
control and prevents unbounded memory consumption under
overload. Finally, when the caller and callee proclets are in
the same machine, Nu substitutes the RPC with a fastpath: a
local call without any RPC overheads.

4.2 Memory Management

Nu uses a custom slab allocator to manage each proclet’s
heap. It includes a per-core object cache to increase scalability,
similar to most modern multicore memory allocators [12, 14].
C++ allows a custom definition of operator new() that Nu
uses to override memory allocations. Nu keeps track of which
proclet each thread is associated with and directs allocations to
the correct heap. In the future, we plan to explore specialized
proclet allocators too. For example, an arena allocator could
benefit short-lived proclets because it need not free objects
until the proclet terminates, reducing overheads.

4.3 Migration

Nu migrates proclets across binary-compatible machines un-
der resource pressure. Nu separates migration mechanism
from policy.

Mechanism. To migrate a proclet, the runtime first sets a
migration flag, causing method invocations to the migrating
proclet to be rejected and retried. Next, it preemptively pauses
and saves register state for all the proclet’s running threads to
ensure that the data is not mutated during migration. Then, it
moves proclet data, including heap, stack, and register state, to
the new destination. Finally, the runtime clears the migration
flag and contacts the controller to update the location of the

1414 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

proclet, ensuring pending and future method invocations are
routed to the new destination (§4.4). We co-designed Nu’s
RPC layer with migration, and it routes the results of method
invocations on migrated proclets back to the caller.

We optimized Nu’s migration datapath. To improve TCP
throughput, we use parallel connections and jumbo frames.
We found that Linux’s mmap (used for creating the proclet
space at the destination machine) was a bottleneck, so we
modified the Linux kernel to pre-zero freed pages. After this
optimization, Nu can migrate at line rate on 100GbE. When
we tried 200GbE, mmap again became a bottleneck—in this
case due to the Linux kernel’s physical frame allocation speed.
As a workaround, Nu instead uses mmap to pre-fault a small
pool of memory at the destination server. Then, on migration,
Nu performs mremap on that memory to reuse prior frame
allocations. Future Linux kernel optimizations might avoid
the need for this remapping.

The CPU overhead of migration is moderate in our current
prototype: it takes three hyperthreads to saturate 100GbE and
five hyperthreads to saturate 200GbE.

Policy. Nu provides an extensible migration policy interface
that dictates which proclets to move and where to move them
under resource pressure. Many sophisticated policies are pos-
sible, including policies that react to several types of resource
pressure (e.g., CPU load, cache pressure, memory capacity,
memory bandwidth, network bandwidth, etc.), and policies
that co-locate frequently communicating proclets to improve
locality. Currently, our prototype ignores locality and focuses
only on CPU load and memory capacity, two resources often
subject to pressure, but we plan to extend it in the future.

Because Nu’s migration is fast, we found that even the
simplest policies work well (§6). In particular, Nu needs no
sophisticated algorithms to predict future resource use, but
rather simply migrates proclets at the last moment, when re-
sources are nearly exhausted. To determine when migrations
are needed, a monitoring thread in the runtime polls resource
use. For memory, it monitors the amount of free memory and
begins migrating once it falls below a threshold (e.g., 1 GiB).
For CPU, it monitors system core utilization and begins mi-
grating when a threshold of cores are busy. A better alternative
might track the queueing delay of runnable threads, allowing
Nu to distinguish actual overload from cases where all cores
are busy but not overloaded [19]. We plan to investigate this
in the future.

Nu migrates one proclet at a time until resource pressure is
eliminated. To determine which proclet to migrate, Nu uses
this formula (where P is the set of proclets on the machine):

argmax
p∈P

(
RESOURCE_USE(p)

MIGRATION_TIME(p)

)
RESOURCE_USE() measures a proclet’s use of the resource
under pressure, and MIGRATION_TIME() models the migra-
tion time of a proclet by considering the size of its heap, as

well as the number of threads it must pause and transfer, and
the size of thread stacks. This maximizes the pressure alle-
viation rate and helps Nu optimize for response speed. Nu’s
runtime collects metrics in real time to estimate this rate.

To determine the migration destination, Nu queries a global
cluster controller, which monitors resource use across servers
and returns possible destinations (described next).

4.4 Controller

Nu has a controller that makes cluster-wide decisions, such as
proclet placement and virtual address allocation, and tracks
information, such as proclet location and resource use. Nu
assumes that the controller is highly available. Although our
prototype controller is centralized, high availability can be
achieved through primary-backup replication or simple re-
covery: the controller keeps only soft state, so it can always
restore its state by querying the servers.

Placing proclets. The controller periodically probes servers’
available resources. It uses this information to decide where
to place a proclet on creation or migration. Currently, it uses
a simple policy that spreads proclets evenly across machines.

Allocating virtual address segments. Proclets must use non-
overlapping virtual addresses. Therefore, Nu divides the vir-
tual address space into an array of segments. These segments
are large enough (4 GiB by default) to leave room for a pro-
clet’s heap to grow. The controller keeps lists of allocated and
unallocated segments. On proclet allocation, the local runtime
contacts the controller to obtain an unallocated segment.

Resolving proclet location. The controller keeps a location
map from the starting logical address of each proclet to the
IP of the machine hosting the proclet. Each local runtime
maintains a cache of the location map that contains the pro-
clets it has recently accessed. This eliminates the need for
method invocations to communicate with the controller in the
common case, moving the controller off the critical path for
the steady-state application traffic. When a proclet migrates,
the controller updates the map. This causes caches to become
stale, so a local runtime may send a method invocation to
the wrong machine. When this happens, the remote machine
returns an error. The local machine then handles the error by
invalidating its cache entry and contacting the controller to
find the new machine location.

4.5 Replication

Nu optionally provides traditional primary-backup replica-
tion for proclets. This works by forwarding proclet opera-
tions from a primary to backup replicas, akin to traditional
state machine replication (SMR). One challenge specific to
Nu is that a proclet operation can invoke sub-operations on
other proclets. The backup replicas will invoke the same sub-
operations as the primary, but side-effect causing invocations
must occur only once, and replicas must see the same results
as the primary’s operations. Nu supports a variant [58] of
RIFL [37]’s duplicate detection. Proclets assign a unique

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1415

Workload # proclets Memory Compute Intensity [time/invoc.] Proclet size
SocialNetwork 12 (microservices) + 65,536 (hashtable) 113 GiB 1–100 µs (variable) 31 KiB–8 MiB

In-memory KVS 65,536 138 GiB 1 µs (low) 2 MiB
Phoenix k-means 720 (workers) + 1,024 (hashtable) 8.4 GiB map: 4.6 ms, reduce: 677 µs 31 KiB–19 MiB

Figure 5: Characteristics of the three case study applications (KVS is an in-memory key-value store, and Phoenix is a MapReduce framework).

ID of the form 〈proclet id〉+〈epoch〉+〈sequence number〉 to
each proclet-to-proclet invocation. Primaries forward their
sub-operation invocation results to the replicas, and replicas
reuse the results (identified by the unique ID). Returning the
saved results instead of re-executing sub-operations ensures
all replicas have the same heap state. As with an unreplicated
system, if a primary crashes in the middle of an operation, its
sub-operations are re-executed if the unfinished operation is
retried.

When Nu’s controller detects a failed primary, it promotes
a backup to be the new primary and updates its location map
with the new primary. However, runtimes may have the old
primary in their caches, which could cause a “split brain” situ-
ation if the old primary continues to serve requests. A standard
epoch-based approach [43, 55] can help Nu avoid this prob-
lem: each reconfiguration increments an epoch counter and
backup proclets reject operations with outdated epochs.

4.6 Limitations

Our Nu prototype has some limitations. It requires the use
of C++, and though the runtime provides many OS services
(timers, external and internal network I/O, synchronization,
threads, memory allocation, etc.), it does not yet support all
services. Despite these limitations, we ported three very dif-
ferent applications to run on Nu.

5 Application Case Studies
We implemented three applications on Nu, which cover a
range of proclet sizes, communication patterns, and com-
pute intensities (Figure 5). All applications use a Nu-enabled
hashtable library. The hashtable partitions the key space with
a hash function and uses proclets as data shards. A root pro-
clet has a vector of proclet pointers to these shards and shares
them with client proclets to allow direct communication.
SocialNetwork (from the DeathStarBench suite [29]) is a
multi-tier, interactive web service, originally built as 12 mi-
croservices. Its overall complexity is high, with a fan-out
communication pattern and many microservices that have low
compute intensity, making it sensitive to both tail latency and
RPC overheads. We ported SocialNetwork to a logical pro-
cess, turning each microservice into a proclet. However, we
found that its compute intensity was sometimes too low and
that it lacked autoscaling support; both limit its overall scala-
bility. Therefore, we also built a version of SocialNetwork that
is better structured for a logical process: this version merges
SocialNetwork’s small, stateless microservices into a single
root class, and scales by spawning it as proclets across ma-
chines. Both versions have ≈1,000 LOC, compared to 6,843

LOC in the original, which highlights the simplifications af-
forded by logical processes. Our implementation replaces the
external stores used by microservices (Memcached and Redis)
with a backend based on our hashtable, and leverages proclet
closures to support Redis-like local operations. We also mod-
ified our external I/O subsystem to interact with unmodified
Thrift-based clients. This is possible because any root proclet
can handle any request, as root proclets are stateless.

KV Store is a key-value store composed of the Nu-enabled
hashtable library and an additional 200 LOC. It is a state-
ful application that is latency-sensitive and uses significant
memory, making it hard to migrate. On each machine, the
Nu runtime’s external I/O subsystem receives requests from
external clients and steers them to the right proclets. The key-
value store has low compute intensity (1µs/invocation), but
large proclet state (2 MiB/proclet).

K-means is a workload from Phoenix MapReduce [63].
Phoenix MR is a NUMA-oriented, shared-memory MapRe-
duce framework designed for single-machine operation. We
run k-means—an algorithm that requires multiple iterations—
in a Nu-based Phoenix MR port, using proclets to scale across
machines. We modified Phoenix’s task scheduler to replace
worker threads with worker proclets, ship closures to the
workers, and shuffle data between mappers and reducers via
our hashtable (changing 548 out of Phoenix’s 3,066 LOC).
K-means is compute-intensive (0.7–4.6ms/invoc.), but has
smaller proclet state (31 KiB–19 MiB/proclet). Overall, we
found it easy to modify Phoenix MR to work in a distributed
setting. Our version follows the same partition-aggregate com-
munication pattern that makes distributed MapReduce frame-
works sensitive to stragglers in k-means.

6 Evaluation
We evaluate Nu with these three applications, as well as mi-
crobenchmarks that measure the impact of specific design
decisions. Our evaluation seeks to answer four questions:

1. Can migration in Nu prevent performance disruption
during intense resource pressure? (§6.1)

2. How does porting applications to Nu impact their perfor-
mance? (§6.2)

3. How well does Nu scale with the number of servers?
(§6.3)

4. What is the effect of compute intensity, as well as that of
our key design decisions, on Nu’s performance? (§6.4)

Setup. Except §6.4.2, all other experiments run on a cluster
of 32 physical servers in CloudLab [24]. The servers are
c6525-100g instances (24-core AMD 7402P at 2.80GHz,

1416 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of Machines Controller Proclet servers Clients
SocialNetwork 1 26 5

KV Store 1 15 16
K-means 1 30 1

Figure 6: Allocation of machines for each application.

128 GB RAM, Mellanox ConnectX-5 NIC), connected by
a 100 GbE network. We run §6.4.2 on c6525-100g servers,
c6525-25g servers (i.e., the variant with 25GbE NICs), and
our local servers with a 200 GbE network.

Servers run Ubuntu Linux 20.04 with kernel v5.10 patched
to pre-zero free pages (§4.3). We disable ASLR, as Nu does
not support it yet.

6.1 Application Performance under Resource Pressure

Nu’s proclet-centric design enables fine-grained, rapid migra-
tion. The key goal of this design is to achieve high applica-
tion performance even under resource pressure. To evaluate
this, we expose Nu and our applications (§5) to compute
and memory resource pressure and measure the application
performance as proclets migrate to other machines. We skip
SocialNetwork for compute pressure, as this application can
handle it with a standard front-end load balancer. We run
experiments using 32 machines, one of which serves as the
controller (§4.4). The remaining machines are either proclet
servers or clients, and we partition them appropriately for the
application (Figure 6). To evaluate Nu’s ability to manage
disruptions under demanding load conditions, we generate
enough client load to use ≈70% of CPU capacity across all
proclet servers. Then, we induce resource pressure on one
proclet server, causing it to migrate its proclets to the other
servers.

In these experiments, memory pressure comes from an
antagonist process that allocates memory as fast as Linux’s
virtual memory subsystem permits (≈ 7 GB/s measured in
our machine with 4K pages). Once the memory usage of the
machine goes above the threshold, Nu starts to migrate pro-
clets to free memory. A good result would show Nu migrating
proclets sufficiently quickly to keep up with the allocation
rate of the antagonist, without disrupting application perfor-
mance. To assess the benefit of rapid migration, we compare
Nu against a baseline that emulates MigrOS [61], a recent
RDMA-based live migration system. To emulate MigrOS, we
throttle Nu’s migration speed to 600 MB/s on average with a
200 ms initial delay. Since migration speed is slower than the
antagonist’s memory allocation, the machine starts swapping.
We swap to a fast device: Linux brd, a block device backed
by RAM. (The common alternative—killing processes—is
even more disruptive, wastes work, and yields no meaningful
baseline.)

Figure 7a shows the 99.9th percentile latency of client re-
quests in the SocialNetwork application. At t=3.9s, the an-
tagonist starts allocating memory, and once Nu’s runtime
detects that the free memory size goes below 1 GiB (a con-

figurable threshold) at 4.9s, it starts migrating proclets to
another machine. During the migration, client-perceived la-
tency increases by less than 19%. At t=5.7s, all proclets have
migrated and latency recovers. Figure 7b shows the same ex-
periment with the baseline (Nu emulating MigrOS’s migration
speed). Since it migrates memory slower than the antagonist
requests, memory runs out at t=5s and Linux starts swapping.
Thus, the 99.9th latency increases from 639µs to 206ms. The
antagonist finishes at t=10s, and latency eventually recovers
as memory use drops. Figure 8 summarizes the results for the
same experiment on KVS and k-means, which show a similar
trend (graphs in §A.1).

Compute pressure is harder to handle well than memory
pressure as the CPU use can spike instantly. Figure 9 shows
that Nu experiences a higher performance impact when faced
with an antagonist that suddenly uses half the available CPU
cores. However, disruption is still short-lived as Nu resolves
pressure rapidly through fast migration. By contrast, the per-
formance impact on the baseline lasts ≈15× longer.

These results show that Nu frees resources quickly under
pressure, migrating proclets faster than Linux can allocate
memory. Consequently, the pressuring workload (here, the
antagonist) neither runs out of resources nor slows down,
and the applications experience only modest tail latency in-
creases. This means that Nu-based applications can use spare
resources without risk: Nu can always migrate proclets if
other workloads need the resources.

6.2 Comparison with Existing Implementations

Nu seeks to provide logical processes that match or exceed
the performance of current architectures even in the absence
of resource pressure. Although Nu allows distributed opera-
tion, local proclet invocations would ideally match the per-
formance of computing on a single machine. We therefore
compare the performance of Nu-based applications to base-
line implementations without logical processes on a single
machine. We measure tail latency under varying load for long-
running services (SocialNetwork and KVS), and throughput
for k-means. A good result would show Nu matching the
baseline on NUMA-optimized, compute-intensive applica-
tions (e.g., Phoenix k-means), and it would outperform the
baseline on RPC-based applications because Nu’s fastpath
avoids RPC overheads.

Figure 10 shows the results. Nu matches or exceeds the
baseline’s performance in all cases. For SocialNetwork (Fig-
ure 10a), Nu serves about 850k requests/second with sub-
millisecond 99.9th percentile latency. The baseline implemen-
tation, which runs microservices in Docker containers and
uses Thrift RPCs, scales to only 8,000 operations/second, with
a 9–60 ms 99.9th-ile latency (very left of the graph). Nu outper-
forms the baseline because its fastpath avoids the overheads
of loopback RPCs (serialization and network syscalls) with a
single machine. For KV Store, Nu outperforms memcached
on Linux by 15×, serving 12M operations/second to mem-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1417

(a) Nu (fast migration). (b) Baseline (slow migration).

Figure 7: SocialNetwork runs alongside a memory antagonist that starts at 3.9s. When the memory usage reaches the high watermark, Nu
starts migrating proclets rapidly (the gray window). By matching the allocation speed of the antagonist, Nu keeps the memory usage flat and
resolves the pressure in 0.86s. SocialNetwork’s 99.9th-ile latency is unaffected. By contrast, the baseline fails to migrate fast enough and starts
swapping, which leads to 206ms latency (322×). After the antagonist finishes, the memory usage and the latency gradually return to normal.

Workload
[Disruption Effect]

Baseline
(Slow migration)

Nu
(Fast migration)

Duration Effect Duration Effect
SocialNetwork
99.9th Lat. [µs]

9.14s
206ms
(322×)

0.86s
761µs
(1.2×)

KV Store
99.9th Lat. [µs]

60.94s
1.64s

(>10,000×)
2.10s

85µs
(2.6×)

K-Means
Tput. [# iters/s]

0.73s
3.25

(-33%)
37ms

4.71
(-2.9%)

Figure 8: Under memory pressure, proclet migration with Nu sees
shorter disruption and better performance during disruption than
migration at state-of-the-art process live-migration speed (baseline).

Workload
[Disruption Effect]

Baseline
(Slow migration)

Nu
(Fast migration)

Duration Effect Duration Effect
KV Store

99.9th Lat. [µs]
7.96s

874µs
(26.5×)

0.54s
1086µs
(32.9×)

K-Means
Tput. [# iters/s]

0.65s
2.41

(-50.3%)
24ms

4.57
(-5.8%)

Figure 9: Under compute pressure, Nu sees short disruption and
acceptable performance during proclet migration.

cached’s 800k at sub-millisecond latency (Figure 10b). Cru-
cially, Nu performs as well as the same KV Store running on
Caladan [28], which also uses kernel-bypass networking and
a user-level threading runtime. Finally, Nu matches Phoenix
MR’s performance (Figure 10c). Phoenix MR is designed for
scalability on a single NUMA machine, and exploits shared
memory for performance, so it is a strong baseline. The k-
means workload requires sharing the intermediate clustering
result across all workers. In a shared-memory setting, this
shared state can be a global variable (as in the baseline), but
in a distributed framework would involve per-worker copies.
Since Nu supports migration, it must be prepared to oper-

ate distributedly and keep per-worker (per-proclet) copies,
which amplifies the application’s cache footprint on a single
machine. We therefore compare two Nu setups: per-worker
copies (label Nu) and global state (NuG), and add a modified
baseline with per-worker states (BaselineP). NuG measures
the overhead of Nu’s infrastructure with pinned (unmigrat-
able) proclets. The overall results show that Nu’s proclet
invocations on a single machine are fast enough to match the
performance of single-machine baselines.

6.3 Scalability

Next, we consider how Nu scales as the proclets of a logical
process are spread across many machines. For each of our
three applications, we run an experiment where the runtime as-
signs its proclets round-robin across servers. We consider two
versions of the SocialNetwork application: the one from §6.2,
which we wrote with logical processes and proclet decompo-
sition in mind; and a second version that mirrors the exact
microservice decomposition in DeathStarBench. We measure
throughput for equal-sized input, i.e., a strong-scaling setup.
Because Nu’s local proclet invocation is faster than remote in-
vocation, the single-machine setup has a substantial efficiency
advantage, which makes linear scalability difficult to achieve.
An ideal result would therefore show scalability close to linear
as the number of machines increases.

We show the results in Figure 11. Nu scales well in all
three applications, and achieves nearly linear scalability for
KV Store and k-means. The SocialNetwork application is
the most challenging to scale (Figure 11a). A direct port
from the original microservice architecture to Nu (where each
microservice becomes one proclet) results in many proclets
with methods that have low compute intensity. When invoked
remotely, calls to these methods can be costly, while the ad-
ditional resources of a remote machine speed up the more
compute-intensive invocations. On balance, Nu’s throughput

1418 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) SocialNetwork (b) KV Store (c) K-means

Figure 10: Nu-based applications match or outperform baselines on a single machine. For SocialNetwork, Nu’s fastpath helps it outperform the
expensive RPCs in the baseline; in KV Store, Nu matches Caladan’s [28] performance; and for k-means, Nu matches the baseline depending on
how state is represented: as a global shared array (typical in a NUMA setting) or as per-worker arrays (as in distributed settings).

(a) SocialNetwork (b) KV Store (c) K-means

Figure 11: Nu scales well as the number of machines increases. The Nu-native SocialNetwork application, which merges the baseline’s
stateless microservices, scales better than the direct port of the baseline because its proclets better amortize the cost of remote invocations.
K-means scales sub-linearly as the overhead of broadcasting each iteration’s intermediate results increases with the number of machines.

still increases with the number of machines—from 786k to
1.37M ops/sec—but less so than when the application is de-
composed into proclets that have sufficient compute intensity
(786k to 8.44M ops/second). However, both Nu-based imple-
mentations perform one to two orders of magnitude better
than the DeathStarBench baseline (45k ops/sec). The KVS
implementation on Nu scales very well (Figure 11b) as it re-
lies on client-side request steering (in response to hints from
Nu’s runtime) to direct clients’ requests to the right machine,
which then makes a local proclet invocation. K-means (Figure
11c) has high compute intensity, which makes scaling easy.

We conclude from these results that Nu’s logical processes
scale well when proclets are distributed across machines if
a proclet’s methods have sufficient compute intensity. §6.4.1
evaluates the impact of compute intensity on Nu’s efficiency.

6.4 Design Drill-Down

6.4.1 Impact of Compute Intensity

We now examine the efficiency of Nu’s mechanism for proclet
method invocation (§3.2). Intuitively, the more compute an
invocation does, the easier it is to amortize the overheads of
the invocation (serialization, networking, and threading); yet,
the lower these overheads are, the better Nu’s performance
becomes. Our experiment is a sensitivity analysis in which we
vary the compute duration in a proclet’s method between 0.1

and 50µs, and we measure the aggregate invocation through-
put. We use sufficient threads to maximize throughput, saturat-
ing the machine that runs the proclet. We consider two cases
for Nu: two proclets in the same machine (local), and proclets
in different machines (remote). We compare the performance
of Nu against three common mechanisms to invoke a task: (i)
a function call in a Linux process; (ii) an RPC using Thrift, a
popular open-source RPC framework [75]; and (iii) an RPC
using a modified Thrift that uses Caladan [28] to reduce TCP
and threading overheads. We measure throughput in a closed-
loop setting. A good result would show performance of Nu
close to local function calls for local invocations, and at least
as good as Thrift for remote invocations.

The results in Figure 12 show that when the invocation
is local, Nu’s performance tracks closely that of Linux func-
tion calls. This happens because of Nu’s fastpath for local
invocations. When invocation is on a remote proclet, com-
pute intensity (invocation duration) matters. For short invoca-
tions (0.1µs), Nu is ≈13× worse than local function calls, but
2.4× better than Caladan-based Thrift (and 29.4× better than
Thrift on Linux). As the invocation becomes more compute-
intensive, these gaps close: for a 10µs task, Nu’s remote in-
vocation achieves 85% of local function call throughput. We
conclude that locality matters for remote proclet invocations
with low compute intensity, but that Nu delivers near-single-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1419

Figure 12: Efficiency (y-axis) of Nu invocations as a function of
compute intensity (invocation duration), normalized to Linux func-
tion call throughput. Nu’s local proclet invocation matches the per-
formance of a function call, and Nu outperforms Linux Thrift by
2.4–29.4× for remote invocations when compute intensity is low.

machine performance for tasks with compute intensity as low
as 10µs.

6.4.2 Migration Time and Bandwidth

We now measure the time it takes to migrate a proclet in Nu.
The experiment migrates proclets of varying sizes to another
machine and measures the migration time. We vary the test
proclet’s memory size by adjusting its heap size, from 64 KiB
to 16 MiB. The proclet has a single thread with a small stack
(64 bytes). A good migration latency would be ≈100µs for
modest-sized proclets—orders of magnitude faster than tra-
ditional resource balancing mechanisms. For larger proclets,
we expect the latency to approach network transfer time.

Heap Size Migration Time [µs]
25 GbE 100 GbE 200 GbE

64 KiB 21 21 9
1 MiB 343 111 61
2 MiB 683 216 108

16 MiB 5,452 1,512 771

Figure 13: Nu migrates proclets with different heap sizes (64 KiB–
16 MiB) faster with increasing network speeds (25/100/200GbE).

Figure 13 shows the results. With 100 GbE (i.e., the net-
work setting used for all other experiments), Nu migrates
small proclets (up to 1 MiB) in under 125µs. This corresponds
to a bandwidth of 3–9 GB/s. For larger proclets (2 MiB–16
MiB), the latency varies from 200µs to 1,500µs, which corre-
sponds to a bandwidth of≈11 GB/s, close to the 100 GbE line
rate. The results of 25 GbE and 200 GbE show similar trends.
Proclet migration benefits from higher network bandwidth;
for example, with 200 GbE, Nu only takes ≈100µs to mi-
grate a 2 MiB proclet. We conclude that Nu migrates proclets
quickly and that its migration uses the network efficiently.

6.4.3 Controller Performance

To understand whether Nu’s controller can become a perfor-
mance bottleneck, we benchmark it as a standalone compo-
nent to measure its capacity. Depending on the type of control
message, the controller achieves 0.79-0.96 million msg/s. This
is two to three orders of magnitude higher than the real load

demand (542–21,450 msg/s) we measured in the end-to-end
experiments (§6.1). This makes sense as Nu’s runtime caches
the proclet location resolution result, thereby moving the con-
troller off the critical path of steady-state application traffic.
The controller is only involved in the control plane of initial
proclet location resolution and migration.

6.4.4 Proclet Replication

Nu allows replicating proclets for fault-tolerant operation.
Replication imposes overhead because it forwards all invoca-
tions of a proclet to a backup in a different machine (§3.5).
We measure the invocation throughput of calling 8,192 re-
mote replicated proclets, as we vary the compute intensity as
in §6.4.1. These invocations do not have sub-operations. The
baseline is the same setup without replication. A good result
would show a modest loss of throughput with replication.

Compute Intensity [µs]
Throughput [MOPS] 0.1 1 10 20 30

with replication 13.18 10.56 2.52 1.52 1.12
without replication 21.04 14.86 3.56 1.97 1.37

Figure 14: Replicated proclets achieve 63–82% of unreplicated
throughput, depending on compute intensity.

Figure 14 shows the results. Throughput drops by 37% with
a 0.1µs compute intensity, but this drop gradually shrinks to
18% as compute intensity grows to 30µs. Replication adds
≈1.2µs to each operation to invoke the backup proclet, an
overhead that gets amortized at larger compute intensities.
This result shows that fault-tolerance for critical proclets is
feasible and need not come at severe performance cost.

7 Conclusion
We presented logical processes, a new abstraction that decom-
poses an application into proclets, which are small units of
state and compute. Logical processes and proclets solve a key
hindrance to increasing datacenter resource utilization: the
lack of microsecond-granularity fungibility in resource use.

We found that logical processes and our Nu prototype im-
prove fungibility by making applications granular and mi-
grating proclets quickly under resource pressure. For three
applications, Nu matches the performance of strong baselines,
scales well, and migrates their proclets within hundreds of mi-
croseconds with little disruption to application performance.

Nu is available as open-source software [66].

Acknowledgements
We thank our shepherd Dejan Kostić, the anonymous review-
ers, Irene Zhang, Akshay Narayan, and members of the MIT
PDOS group for their helpful feedback. We appreciate Cloud-
lab [24] for providing the experiment platform. This work
was funded in part by a Facebook Research Award, a Google
Faculty Award, the DARPA FastNICs program under contract
#HR0011-20-C-0089, the NSF under award CNS-2104398,
and VMware.

1420 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson,

Colin Meek, Vishesh Khemani, Stefan Fulger, Pan
Gu, Lakshminath Bhuvanagiri, Jason Hunter, Roberto
Peon, Larry Kai, Alexander Shraer, Arif Merchant, and
Kfir Lev-Ari. “Slicer: Auto-Sharding for Datacenter
Applications”. In: Symposium on Operating Systems
Design and Implementation (OSDI). 2016.

[2] Pradeep Ambati, Iñigo Goiri, Felipe Vieira Frujeri,
Alper Gun, Ke Wang, Brian Dolan, Brian Corell,
Sekhar Pasupuleti, Thomas Moscibroda, Sameh El-
nikety, Marcus Fontoura, and Ricardo Bianchini. “Pro-
viding SLOs for Resource-Harvesting VMs in Cloud
Platforms”. In: Symposium on Operating Systems De-
sign and Implementation (OSDI). 2020.

[3] Cristiana Amza, Alan L Cox, Sandhya Dwarkadas,
Pete Keleher, Honghui Lu, Ramakrishnan Rajamony,
Weimin Yu, and Willy Zwaenepoel. “Treadmarks:
Shared memory computing on networks of worksta-
tions”. In: IEEE Transactions on Computers (TC) 29.2
(1996).

[4] Michael Armbrust, Armando Fox, Rean Griffith, An-
thony D. Joseph, Randy Katz, Andy Konwinski, Gunho
Lee, David Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. “A View of Cloud Computing”. In:
Communications of the ACM (CACM) 53.4 (2010).

[5] John Bachan, Scott B. Baden, Steven Hofmeyr, Math-
ias Jacquelin, Amir Kamil, Dan Bonachea, Paul H.
Hargrove, and Hadia Ahmed. “UPC++: A High-
Performance Communication Framework for Asyn-
chronous Computation”. In: IEEE International Par-
allel and Distributed Processing Symposium (IPDPS).
2019.

[6] Henri E. Bal, M. Frans Kaashoek, and Andrew S.
Tanenbaum. “Orca: a language for parallel program-
ming of distributed systems”. In: IEEE Transactions
on Software Engineering (TSE) 18.3 (1992).

[7] Luiz André Barroso, Urs Hölzle, and Parthasarathy
Ranganathan. The Datacenter as a Computer: Design-
ing Warehouse-Scale Machines, Third Edition. Syn-
thesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2018.

[8] Michael Bauer, Sean Treichler, Elliott Slaughter, and
Alex Aiken. “Legion: Expressing locality and inde-
pendence with logical regions”. In: Proceedings of the
International Conference on High Performance Com-
puting, Networking, Storage and Analysis (SC). 2012.

[9] Adam Belay, George Prekas, Mia Primorac, Ana
Klimovic, Samuel Grossman, Christos Kozyrakis, and
Edouard Bugnion. “The IX Operating System: Com-
bining Low Latency, High Throughput, and Efficiency
in a Protected Dataplane”. In: ACM Transactions on
Computer Systems (TOCS) 34.4 (2017).

[10] J. K. Bennett, J. B. Carter, and W. Zwaenepoel.
“Munin: Distributed Shared Memory Based on Type-
specific Memory Coherence”. In: ACM Symposium
on Principles and Practice of Parallel Programming
(PPoPP). 1990.

[11] Benjamin Berg, Daniel S. Berger, Sara McAllister,
Isaac Grosof, Sathya Gunasekar, Jimmy Lu, Michael
Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-
Balter, and Gregory R. Ganger. “The CacheLib
Caching Engine: Design and Experiences at Scale”.
In: Symposium on Operating Systems Design and Im-
plementation (OSDI). 2020.

[12] Emery D. Berger, Kathryn S. McKinley, Robert D.
Blumofe, and Paul R. Wilson. “Hoard: A Scalable
Memory Allocator for Multithreaded Applications”.
In: International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS). 2000.

[13] Andrew P. Black, Norman C. Hutchinson, Eric Jul, and
Henry M. Levy. “The development of the Emerald pro-
gramming language”. In: ACM SIGPLAN conference
on History of programming languages. 2007.

[14] Jeff Bonwick and Jonathan Adams. “Magazines and
Vmem: Extending the Slab Allocator to Many CPUs
and Arbitrary Resources”. In: USENIX Annual Techni-
cal Conference (ATC). 2001.

[15] Sergey Bykov, Alan Geller, Gabriel Kliot, James R.
Larus, Ravi Pandya, and Jorgen Thelin. “Orleans:
cloud computing for everyone”. In: ACM Symposium
on Cloud Computing (SoCC). 2011.

[16] cereal: A C++11 library for serialization. 2021. URL:
https://github.com/USCiLab/cereal (visited on
09/20/2022).

[17] Philippe Charles, Christian Grothoff, Vijay Saraswat,
Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,
Christoph von Praun, and Vivek Sarkar. “X10: An
Object-Oriented Approach to Non-Uniform Cluster
Computing”. In: Proceedings of the Annual ACM
SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOP-
SLA). 2005.

[18] Yue Cheng, Zheng Chai, and Ali Anwar. “Character-
izing Co-Located Datacenter Workloads: An Alibaba
Case Study”. In: Proceedings of the Asia-Pacific Work-
shop on Systems (APSys). 2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1421

https://github.com/USCiLab/cereal

[19] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park,
Mohammad Alizadeh, and Adam Belay. “Overload
Control for µs-scale RPCs with Breakwater”. In: Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI). 2020.

[20] Christopher Clark, Keir Fraser, Steven Hand, Jacob
Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt,
and Andrew Warfield. “Live Migration of Virtual Ma-
chines”. In: Symposium on Networked Systems Design
and Implementation (NSDI). 2005.

[21] Common Object Request Broker Archictecture
(CORBA). URL: https : / / www . omg . org / spec /
CORBA (visited on 09/20/2022).

[22] Checkpoint/Restore In Userspace (CRIU). URL:
https://www.criu.org (visited on 09/20/2022).

[23] Jeffrey Dean and Sanjay Ghemawat. “MapReduce:
Simplified Data Processing on Large Clusters”. In:
Symposium on Operating Systems Design and Imple-
mentation (OSDI). 2004.

[24] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb,
Aditya Akella, Kuangching Wang, Glenn Ricart, Larry
Landweber, Chip Elliott, Michael Zink, Emmanuel
Cecchet, Snigdhaswin Kar, and Prabodh Mishra. “The
Design and Operation of CloudLab”. In: USENIX An-
nual Technical Conference (ATC). 2019.

[25] Michael J. Feeley, William E. Morgan, Frédéric H.
Pighin, Anna R. Karlin, Henry M. Levy, and Chan-
dramohan A. Thekkath. “Implementing Global Mem-
ory Management in a Workstation Cluster”. In: ACM
Symposium on Operating Systems Principles (SOSP).
1995.

[26] Message P Forum. MPI: A Message-Passing Interface
Standard. Technical report. University of Tennessee,
1994.

[27] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter,
and Keith Winstein. “Encoding, Fast and Slow: Low-
Latency Video Processing using Thousands of Tiny
Threads”. In: Symposium on Networked Systems De-
sign and Implementation (NSDI). 2017.

[28] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. “Caladan: Mitigating Interference at Mi-
crosecond Timescales”. In: Symposium on Operating
Systems Design and Implementation (OSDI). 2020.

[29] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. “An Open-Source Bench-
mark Suite for Microservices and Their Hardware-
Software Implications for Cloud & Edge Systems”.
In: International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS). 2019.

[30] Jonathan Goldstein, Ahmed S. Abdelhamid, Mike
Barnett, Sebastian Burckhardt, Badrish Chan-
dramouli, Darren Gehring, Niel Lebeck, Christopher
Meiklejohn, Umar Farooq Minhas, Ryan Newton,
Rahee Peshawaria, Tal Zaccai, and Irene Zhang.
“A.M.B.R.O.S.I.A: Providing Performant Virtual Re-
siliency for Distributed Applications”. In: Proceedings
of the VLDB Endowment (PVLDB) 13.5 (2020).

[31] Martin Greenberger. Management and the Computer
of the Future. Wiley, 1962.

[32] Juncheng Gu, Youngmoon Lee, Yiwen Zhang,
Mosharaf Chowdhury, and Kang G. Shin. “Effi-
cient Memory Disaggregation with Infiniswap”.
In: Symposium on Networked Systems Design and
Implementation (NSDI). 2017.

[33] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. “Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center”. In:
Symposium on Networked Systems Design and Imple-
mentation (NSDI). 2011.

[34] Calin Iorgulescu, Reza Azimi, Youngjin Kwon,
Sameh Elnikety, Manoj Syamala, Vivek R. Narasayya,
Herodotos Herodotou, Paulo Tomita, Alex Chen, Jack
Zhang, and Junhua Wang. “PerfIso: Performance Iso-
lation for Commercial Latency-Sensitive Services”. In:
USENIX Annual Technical Conference (ATC). 2018.

[35] Kubernetes. URL: https://kubernetes.io (visited
on 09/20/2022).

[36] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. “Splinter:
Bare-Metal Extensions for Multi-Tenant Low-Latency
Storage”. In: Symposium on Operating Systems Design
and Implementation (OSDI). 2018.

[37] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Mat-
sushita, and John Ousterhout. “Implementing lineariz-
ability at large scale and low latency”. In: ACM Sympo-
sium on Operating Systems Principles (SOSP). 2015.

1422 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.omg.org/spec/CORBA
https://www.omg.org/spec/CORBA
https://www.criu.org
https://kubernetes.io

[38] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. “KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC”.
In: ACM Symposium on Operating Systems Principles
(SOSP). 2017.

[39] Huaicheng Li, Daniel S. Berger, Stanko Novakovic,
Lisa Hsu, Dan Ernst, Pantea Zardoshti, Monish Shah,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and
Ricardo Bianchini. First-generation Memory Disag-
gregation for Cloud Platforms. 2022.

[40] Kai Li and Paul Hudak. “Memory Coherence in Shared
Virtual Memory Systems”. In: ACM Transactions on
Computer Systems (TOCS) 7.4 (1989).

[41] Yilong Li, Seo Jin Park, and John Ousterhout. “Mil-
liSort and MilliQuery: Large-Scale Data-Intensive
Computing in Milliseconds”. In: Symposium on Net-
worked Systems Design and Implementation (NSDI).
2021.

[42] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. “MICA: A Holistic Approach to
Fast In-Memory Key-Value Storage”. In: Symposium
on Networked Systems Design and Implementation
(NSDI). 2014.

[43] Barbara Liskov and James Cowling. Viewstamped
Replication Revisited. Technical report. Massachusetts
Institute of Technology, 2012.

[44] David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan, and Christos Kozyrakis.
“Heracles: Improving resource efficiency at scale”. In:
International Symposium on Computer Architecture
(ISCA). 2015.

[45] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny
Bickson, Carlos Guestrin, and Joseph Hellerstein.
“GraphLab: A New Framework for Parallel Machine
Learning”. In: Proceedings of the Conference on Un-
certainty in Artificial Intelligence (UAI). 2010.

[46] Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong
Xu, and Tongxin Bai. “Imbalance in the cloud: An
analysis on Alibaba cluster trace”. In: Proceedings of
the 2017 IEEE International Conference on Big Data
(Big Data). IEEE. 2017.

[47] Robert C. Martin. Clean Code: A Handbook of Agile
Software Craftsmanship. Pearson, 2008.

[48] Jason E. Miller, Harshad Kasture, George Kurian,
Charles Gruenwald, Nathan Beckmann, Christopher
Celio, Jonathan Eastep, and Anant Agarwal. “Graphite:
A distributed parallel simulator for multicores”. In:
IEEE Symposium on High Performance Computer Ar-
chitecture (HPCA). 2010.

[49] Dejan S. Milojicic, Fred Douglis, Yves Paindaveine,
Richard Wheeler, and Songnian Zhou. “Process migra-
tion”. In: ACM Computing Surveys 32.3 (2000).

[50] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. “Ray: A Distributed Framework for
Emerging AI Applications”. In: Symposium on Op-
erating Systems Design and Implementation (OSDI).
2018.

[51] Deepak Narayanan, Fiodar Kazhamiaka, Firas
Abuzaid, Peter Kraft, Akshay Agrawal, Srikanth
Kandula, Stephen Boyd, and Matei Zaharia. “Solving
Large-Scale Granular Resource Allocation Problems
Efficiently with POP”. In: ACM Symposium on
Operating Systems Principles (SOSP). 2021.

[52] Jacob Nelson, Brandon Holt, Brandon Myers, Preston
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin.
“Latency-tolerant Software Distributed Shared Mem-
ory”. In: USENIX Annual Technical Conference (ATC).
2015.

[53] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McEl-
roy, Mike Paleczny, Daniel Peek, Paul Saab, David
Stafford, Tony Tung, and Venkateshwaran Venkatara-
mani. “Scaling Memcache at Facebook”. In: Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI). 2013.

[54] Robert W. Numrich and John Reid. “Co-Array For-
tran for Parallel Programming”. In: SIGPLAN Fortran
Forum 17.2 (1998).

[55] Diego Ongaro and John Ousterhout. “In Search of an
Understandable Consensus Algorithm”. In: USENIX
Annual Technical Conference (ATC). 2014.

[56] John Ousterhout. A Philosophy of Software Design.
Yaknyam Press, 2018.

[57] Kay Ousterhout, Patrick Wendell, Matei Zaharia,
and Ion Stoica. “Sparrow: Distributed, Low Latency
Scheduling”. In: ACM Symposium on Operating Sys-
tems Principles (SOSP). 2013.

[58] Seo Jin Park. “Achieving both low latency and strong
consistency in large-scale systems”. PhD thesis. Stan-
ford University, 2019.

[59] David A. Patterson, Garth A. Gibson, and Randy H.
Katz. “A Case for Redundant Arrays of Inexpensive
Disks (RAID)”. In: International Conference on Man-
agement of Data (SIGMOD). 1988.

[60] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich,
and Robert Tappan Morris. “Improving network con-
nection locality on multicore systems”. In: European
Conference on Computer Systems (EuroSys). 2012.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1423

[61] Maksym Planeta, Jan Bierbaum, Leo Sahaya Daphne
Antony, Torsten Hoefler, and Hermann Härtig. “Mi-
grOS: Transparent Live-Migration Support for Con-
tainerised RDMA Applications”. In: USENIX Annual
Technical Conference (ATC). 2021.

[62] George Prekas, Marios Kogias, and Edouard Bugnion.
“ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks”. In: ACM Symposium on Op-
erating Systems Principles (SOSP). 2017.

[63] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa,
Gary Bradski, and Christos Kozyrakis. “Evaluating
MapReduce for Multi-core and Multiprocessor Sys-
tems”. In: IEEE Symposium on High Performance
Computer Architecture (HPCA). 2007.

[64] Alexander Rasmussen, George Porter, Michael Con-
ley, Harsha V. Madhyastha, Radhika Niranjan Mysore,
Alexander Pucher, and Amin Vahdat. “TritonSort:
A Balanced Large-Scale Sorting System”. In: ACM
Transactions on Computer Systems (TOCS) 31.1
(2013).

[65] Zhenyuan Ruan, Tong He, and Jason Cong. “INSIDER:
Designing In-Storage Computing System for Emerg-
ing High-Performance Drive”. In: USENIX Annual
Technical Conference (ATC). 2019.

[66] Zhenyuan Ruan, Seo Jin Park, Adam Belay, Marcos
K. Aguilera, and Malte Schwarzkopf. Nu: Logical
Processes for Resource Fungibility. URL: https://
github.com/Nu-NSDI23/Nu (visited on 09/20/2022).

[67] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguil-
era, and Adam Belay. “AIFM: High-Performance,
Application-Integrated Far Memory”. In: Symposium
on Operating Systems Design and Implementation
(OSDI). 2020.

[68] Daniel J. Scales, Kourosh Gharachorloo, and Chan-
dramohan A. Thekkath. “Shasta: A Low Overhead,
Software-only Approach for Supporting Fine-grain
Shared Memory”. In: International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS). 1996.

[69] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck,
Steven K. Reinhardt, James R. Larus, and David A.
Wood. “Fine-grain Access Control for Distributed
Shared Memory”. In: International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS). 1994.

[70] Malte Schwarzkopf. “Operating system support for
warehouse-scale computing”. PhD thesis. University
of Cambridge Computer Laboratory, 2016.

[71] Malte Schwarzkopf, Andy Konwinski, Michael Abd-
El-Malek, and John Wilkes. “Omega: Flexible, Scal-
able Schedulers for Large Compute Clusters”. In: Eu-
ropean Conference on Computer Systems (EuroSys).
2013.

[72] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri,
Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo
Laureano, Colby Tresness, Mark Russinovich, and Ri-
cardo Bianchini. “Serverless in the Wild: Characteriz-
ing and Optimizing the Serverless Workload at a Large
Cloud Provider”. In: USENIX Annual Technical Con-
ference (ATC). 2020.

[73] Xiao Shi, Scott Pruett, Kevin Doherty, Jinyu Han,
Dmitri Petrov, Jim Carrig, John Hugg, and Nathan
Bronson. “FlightTracker: Consistency across Read-
Optimized Online Stores at Facebook”. In: Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI). 2020.

[74] David Teigland and Heinz Mauelshagen. “Volume
Managers in Linux”. In: USENIX Annual Technical
Conference (ATC). 2001.

[75] Apache Thrift. URL: https://thrift.apache.org
(visited on 09/20/2022).

[76] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E.
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. “Borg: The next Generation”.
In: European Conference on Computer Systems (Eu-
roSys). 2020.

[77] Alexey Tumanov, Timothy Zhu, Jun Woo Park,
Michael A. Kozuch, Mor Harchol-Balter, and Gregory
R. Ganger. “TetriSched: Global Rescheduling with
Adaptive Plan-Ahead in Dynamic Heterogeneous Clus-
ters”. In: European Conference on Computer Systems
(EuroSys). 2016.

[78] VMware VirtualCenter User’s Manual. 2003. URL:
https://www.vmware.com/pdf/VirtualCenter_
Users_Manual.pdf (visited on 09/20/2022).

[79] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li,
Zhenyuan Ruan, Khanh Nguyen, Michael D. Bond,
Ravi Netravali, Miryung Kim, and Guoqing Harry Xu.
“Semeru: A Memory-Disaggregated Managed Run-
time”. In: Symposium on Operating Systems Design
and Implementation (OSDI). 2020.

[80] Jie You, Jingfeng Wu, Xin Jin, and Mosharaf Chowd-
hury. “Ship Compute or Ship Data? Why Not Both?”
In: Symposium on Networked Systems Design and Im-
plementation (NSDI). 2021.

1424 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/Nu-NSDI23/Nu
https://github.com/Nu-NSDI23/Nu
https://thrift.apache.org
https://www.vmware.com/pdf/VirtualCenter_Users_Manual.pdf
https://www.vmware.com/pdf/VirtualCenter_Users_Manual.pdf

[81] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauly, Michael J.
Franklin, Scott Shenker, and Ion Stoica. “Resilient Dis-
tributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing”. In: Symposium on Net-
worked Systems Design and Implementation (NSDI).
2012.

[82] Irene Zhang, Adriana Szekeres, Dana Van Aken, Isaac
Ackerman, Steven D. Gribble, Arvind Krishnamurthy,
and Henry M. Levy. “Customizable and Extensible
Deployment for Mobile/Cloud Applications”. In: Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI). 2014.

[83] Jin Zhang, Zhuocheng Ding, Yubin Chen, Xingguo
Jia, Boshi Yu, Zhengwei Qi, and Haibing Guan. “Gi-
antVM: A Type-II Hypervisor Implementing Many-
to-One Virtualization”. In: Proceedings of the ACM
SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments (VEE). 2020.

[84] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jna-
gal, Vrigo Gokhale, and John Wilkes. “CPI2: CPU
Performance Isolation for Shared Compute Clusters”.
In: European Conference on Computer Systems (Eu-
roSys). 2013.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1425

A Appendix
In this appendix, we include the end-to-end performance re-
sults under resource pressure that were not included in §6.1
due to the space constraint.

A.1 Application Performance Under Memory Pressure

Figure 15 presents the 99.9th tail latency of KV store under
memory pressure. The results are similar to the SocialNetwork
results (Figure 7). Figure 16 shows the K-Means performance
under memory pressure using the throughput metrics as it is
a batch application. Nu achieves 97% throughput during mi-
gration, whereas the baseline only achieves 67% throughput.
Here we do not show the memory utilization as K-Means has
a tiny per-machine memory footprint. The baseline has lower
performance mainly because of the long task pausing time
caused by slow migration.

A.2 Application Performance Under Compute Pressure

In the next experiment, we evaluate Nu’s performance un-
der compute pressure. Compute pressure is harder to handle
well than memory pressure, since Nu’s solution to resource
pressure—proclet migration—itself consumes compute re-
sources. The antagonist process in this experiment is a syn-

thetic CPU-spinning workload that occupies half the CPU
cores on the machine, reducing the compute resources avail-
able both to the application and to Nu’s proclet migrations. In
addition, the CPU load of the antagonist can spike instantly;
this is different from the memory load which only increases
gradually. Therefore, we would expect a higher impact on
application performance than when Nu migrates proclets un-
der memory pressure. A good result for Nu would show that
the application still achieves acceptable performance, even if
degraded for some (ideally short) time.

Figure 17a shows Nu’s results. At t=4.9s, the compute
pressure starts on one machine, taking away half of the ap-
plication cores, and Nu immediately starts migrating proclets
to reduce load on the machine. 99.9th latency increases from
33 µs to 1086 µs. This latency spike makes sense as the ma-
chine’s compute resources are degraded by 50% and Nu needs
additional compute to migrate proclets. The latency gradually
decreases as proclets migrate and the other machine starts
serving client requests, and soon recovers back to 33 µs as the
migration ends at t=5.44s. In contrast, for the baseline, the
latency disruption lasts 7.96s, which is 15X of the Nu’s 0.54s
duration. Figure 18 shows the result of K-means. Nu takes
24ms to resolve the pressure and achieves 94.2% throughput

(a) Nu (fast migration). (b) Baseline (slow migration).

Figure 15: For KV store under memory pressure, Nu is able to maintain 99.9th tail latency under 85µs as it migrates proclets faster than the
memory allocation speed of the antagonist. In contrast, the baseline suffers from poor tail latency (≈ 2×106µs) since it cannot keep up with the
allocation speed and has to swap memory.

(a) Nu (fast migration). (b) Baseline (slow migration).

Figure 16: For K-means under memory pressure, Nu maintains stable throughput during migration, whereas the baseline only achieves 67%
throughput. We do not show the memory utilization here as K-means has a tiny per-machine memory footprint.

1426 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Nu (fast migration). (b) Baseline (slow migration).

Figure 17: Under compute pressure, the KV store server becomes overloaded and the client-perceived 99.9th tail latency spikes from 33 µs to
≈1 ms. Nu only takes 0.54 s to fully recover the performance, while the baseline requires 7.96 s (≈15X).

(a) Nu (fast migration). (b) Baseline (slow migration).

Figure 18: For K-means under compute pressure, Nu takes 24ms to resolve the pressure and achieves 94.4% throughput during migration. In
contrast, the baseline takes 0.65s and only achieves 49.7% throughput.

during migration. In contrast, the baseline takes 0.65s and
only achieves 49.7% throughput.

These results demonstrate that Nu’s logical processes react
quickly to CPU pressure. Some performance degradation is
unavoidable, but the impact is short-lived: after a sub-second
delay, proclet migrations relieve the resource pressure.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1427

Enabling High Quality Real-Time Communications with Adaptive Frame-Rate
Zili Meng1,2, Tingfeng Wang1,2,3, Yixin Shen1, Bo Wang1,4, Mingwei Xu1,4,

Rui Han2, Honghao Liu2, Venkat Arun5, Hongxin Hu6, Xue Wei2
1Tsinghua University, 2Tencent Inc., 3Beijing University of Posts and Telecommunications,

4Zhongguancun Laboratory, 5Massachusetts Institute of Technology, 6University at Buffalo, SUNY

Abstract
Emerging high-quality real-time communication (RTC) appli-
cations stream ultra-high-definition (UHD) videos with a high
frame rate (HFR). They use edge computing, which enables high
bandwidth and low latency streaming. Our measurements, from
the cloud gaming platform of one of the largest gaming compa-
nies, show that, in this setting, the queue at the client-side decoder
is often the cause of high latency that hurts the user’s experience.
We, therefore, propose an Adaptive Frame Rate (AFR) controller
that helps achieve ultra-low latency by adaptively coordinating
the frame rate with fluctuating network conditions and decoder
capacity. AFR’s design addresses two key challenges: (1) queue
measurements do not provide timely feedback for the control
loop; and (2) multiple factors control the decoder queue, and
different actions must be taken depending on why the queue
accumulates. Both trace-driven simulations and large-scale de-
ployments in the wild demonstrate that AFR can reduce the tail
queuing delay by up to 7.4× and the stuttering events measured
by end-to-end delay by 34% on average. AFR has been deployed
in production in our cloud gaming service for over one year.

1 Introduction
Emerging network technologies like 5G have gotten both
academia and industry excited about high-quality real-time
communication (RTC) applications with ultra-high definition
(UHD), high frame rate (HFR), and reduced delays. Examples
include cloud gaming [41, 82], virtual reality [37, 88, 63] and 4K
video conferencing [40, 49]. Some high-quality RTC services
have already been deployed in production (e.g., cloud gaming
from Google [3], Microsoft [1], Nvidia [5]). For example, the
market share of cloud gaming reached one billion dollars in
2020, with an expected growth rate of 30% [19].

To achieve a satisfactory user experience, those applications
need to stream with high resolution, high frame rate, and a low
delay (§2). For example, cloud gaming services deliver content
with a resolution of ≥1080p [3] and frame-rate of 60fps [61],
while requiring a tail end-to-end delay of less than 100ms [43].
Streaming like this significantly improves users’ experience and
enables new applications.

This paper argues that, in addition to modulating bitrate
to match network capacity, a high-quality RTC system must
regulate the queuing at the decoder queue. For traditional
standard quality RTC, the time required to decode a frame is
much shorter than the interarrival time of frames. Thus, the
decoder queue is not a bottleneck and a traditional RTC service
only needs to adjust the bitrate to match the network bandwidth.
However, in high-quality RTC, the high frame rate reduces the

decoder
queue decodernetwork

Low
resolution
Departure
rate: high

Traditional
RTC

decoder
queue

decodernetwork

High
frame-rate

Arrival rate:
high

Low
resolution
Departure
rate: low

High-quality
RTC

When network condition or
decoder capability fluctuates …

Still empty

Overloaded

Low
frame-rate

Arrival rate:
low

Figure 1: Comparison of the decoder queue between traditional
and high-quality RTC applications. Due to the high frame rate and
resolution, when network condition or decoder capability fluctuates,
high-quality RTC applications may overload decoder queues, leading
to high delay at the tail.

time between the arrival of frames at the client, while the high
resolution increases the decoding delay for each frame. At the
decoder queue, the frame arrival rate frequently exceeds the
departure rate, leading to a long queue, as shown in Figure 1.
The video delivery is required to not only adapt the bit-rate to the
network bandwidth but also coordinate with the decoder queue
capacity. From measurements of our production cloud gaming
service, Tencent Start [4], we find that video delivery without
coordinating the queue capacity could introduce a non-negligible
queuing delay at the client-side decoder queue. Moreover, such a
queuing delay accounts for a large proportion of delayed frames
in satisfying the much tighter delay requirement of high-quality
RTC, especially when the network delay has been reduced with
recent infrastructure developments (e.g., edge computing [57]).
According to our measurements, among all frames with a total
round-trip delay of >100ms, 57% of them have been delayed
at the decoder queue for >50ms (§3.1). Our survey finds that the
future demands of UHD and HFR video will further exacerbate
the problem, even with the evolution of decoding hardware (§3.1).
Therefore, for high-quality RTC, to reduce the end-to-end delay,
it is essential to reduce the queuing delay at the decoder.

Not all interventions are effective at regulating the queuing at
the decoder queue (§3.2). For instance, decoding delay is not af-
fected much by bitrate. It is affected by resolution, but adjusting
the resolution requires the client to request a new key frame. This
consumes bandwidth and incurs several extra frame intervals of
delay. Discarding a frame at the client also requires a new key
frame, which incurs the same cost. Hence, we introduce an adap-
tive frame-rate (AFR) controller, which controls the frame rate
at the encoder. Reducing frame rate gives the decoder more time
to process frames. Hence, it is effective at reducing the queue
length. Further, edge streaming services offer short RTTs, which
means the control loop to adjust the encoder’s frame rate is short.

Note, there have been previous efforts to adapt the frame-rate

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1429

(e.g., CU-SeeMe [38] decades ago). However, the development
of decoding hardware had made it redundant in the recent decade,
and traditional RTC in the recent decade is mostly bottlenecked
in the network. In this paper, we show how high-quality RTC,
with UHD resolution, HFR, and stringent delay requirements,
has changed this. We further improve upon these proposals in
two ways. First, existing control mechanisms are based on delay
or queue length [60, 34, 77], which are slow to react since they
need to wait for the queue to build up. AFR instead relies on
the arrival and service processes in addition to the queue length
to adjust the frame rate. Second, not all increases in decode
queuing delay need to reduce the frame rate. For instance, when
queuing delay increases due to a transient burst of arriving
packets. Hence, AFR uses two control loops that adjust the
frame rate at different time scales.

We implement the AFR controller on both simulators and
the production of the cloud gaming service from Tencent
Start [4]. Trace-driven simulations and deployments in the wild
demonstrate that AFR could effectively reduce the tail queuing
delay by up to 7.4×, and consequently reduce the ratio of frame
stutters measured by total delay by up to 2.2× (§6.1 and §6.5)
with negligible overhead. AFR has been deployed on Tencent
Start since February 2021, serving millions of sessions. We will
release the collected traces and the simulation code.

We make the following contributions:
• We carry out a month-long measurement campaign to

motivate the significance of controlling queuing delay at
the decoder queue, and identify the unique challenges from
high-quality RTC with stringent delay requirements (§3).

• We design a hierarchical frame-rate controller, AFR, to
control the decoder queue towards an ultra-short delay under
different scenarios for high-quality RTC (§4).

• We evaluate AFR with both trace-driven simulations and
large-scale deployments in production in the wild (§5). Our
evaluation shows that both queuing delay and total end-to-end
delay could be significantly improved (§6). AFR has been
used in deployment for over one year.

2 Background: High-Quality RTC
High-quality RTC applications are attracting attention from the
industry and academia. A series of high-quality RTC products
have been released recently, including cloud gaming [3, 1, 5],
virtual reality (VR) [12, 11, 6], and 4K videoconferencing [8].
For example, by generating high-quality content and streaming
to the user via Internet, users can enjoy better video quality with
low-cost devices. Specifically, the high-quality RTC has the fol-
lowing features standing out from traditional RTC applications:
• High frame-rate. Traditional RTC usually delivers content

with a low frame rate (LFR) of 24fps [9]. However,
high-quality RTC requires a frame rate of up to 60fps, some
of which even require a frame-rate of 240fps [73].

• High resolution. Most existing RTC applications are delivered
at SD resolutions by default (e.g., 360p for Google Meet [7]).
In contrast, high-quality RTC applications require a resolution

Video
Encoder

Network
Sender

Network
Receiver

Video
Decoder

Video Flow
(
𝟏

𝟐 𝒏𝒆𝒕)

𝒒𝒖𝒆𝒖𝒆

Network

Stream
Server

User
Client

𝒄𝒂𝒑𝒕𝒖𝒓𝒆

𝒆𝒏𝒄𝒐𝒅𝒆

𝒅𝒆𝒄𝒐𝒅𝒆

Actions
(
𝟏

𝟐 𝒏𝒆𝒕)
𝒂𝒑𝒑

𝒅𝒊𝒔𝒑𝒍𝒂𝒚

𝒑𝒆𝒓𝒊𝒑𝒉

Figure 2: A general delivery pipeline of RTC services. We highlight
the major contributing components in the tail end-to-end delay of
high-quality RTC according to our measurements in red.

of 1080p to 4K or higher [62].
• Stringent delay requirement. Furthermore, high-quality RTC

applications also have stringent latency requirements. For
example, videoconferencing requires a round-trip interaction
delay of 150ms [9] and gaming for 100ms [43].

Existing delivery pipeline. To better understand the bottleneck
of high-quality RTC, we present the key components of the
existing RTC delivery pipeline in Figure 2. First, the video
encoder captures the contents generated from video sources
(e.g., gaming applications [23, 57]) and encodes them into video
frames. Then, encoded frames are sent over the network from
the streaming server to user clients. After that, on the client
side, upon receiving new frames from the network, the decoder
will decode those frames. Finally, decoded video frames will
be displayed on users’ displays.

Optimization goal: low tail delay. With the intelligence
from each community, the delay of each component has been
intensively optimized in recent research efforts. To reduce
the network delay, existing providers either deploy stream
servers at the edge [57, 74], introduce low-latency congestion
controllers [16, 25], or suggest users use wired connections. For
example, recent measurements unveil that cloud gaming services
could deliver the RTC streams with an average round-trip
network delay of 20ms [57, 26]. Similarly, streaming encoders
are optimized for low latency to satisfy the stringent delay
requirements in high-quality RTC services [58, 69, 34].

Meanwhile, optimizing the tail performance is also critical for
user’s experience for high-quality RTC [56]. The increase in tail
delay will result in frame stuttering or freezing, degrading the
user’s experience. Quality of experience assessment frameworks
in video streaming usually individually calculate the stuttering
time as a penalty to the user’s experience [33, 80]. Considering
the high frame rate of high-quality RTC, further tails of 99th
or 99.9th percentiles need to be focused on. For example, at
the frame rate of 60fps, even the 99.9th percentile delay could
happen every 16 seconds. Especially for applications such as
cloud gaming, such a delay might lead to the loss of the game
(e.g., stalls when the gamer is discovered by the opponent in a
shooting game) [67, 43]. Therefore, it is essential to control
the tail delay and reduce frame stutters for high-quality RTC.

3 Motivations and Challenges
In this section, we first explain the formulation of drastic queuing
delay in high-quality RTC (§3.1). We then present our thinking
over the design choice of adjusting frame rate (§3.2). We

1430 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

' 0 8 ' 1 0 ' 1 2 ' 1 4 ' 1 6 ' 1 8 ' 2 0 ' 2 20 %2 %4 %6 %8 %1 0 %1 2 %1 4 %

Fra
ctio

n o
f U

se
rs

Y e a r o f R e l e a s e

G P UC P U

(a) Release date distribution

0 . 2 k 0 . 4 k 0 . 8 k 1 . 6 k 3 . 2 k 6 . 4 k 1 2 . 8 k 2 5 . 6 k
0 %
5 %

1 0 %
1 5 %
2 0 %
2 5 %

N v i d i a G T X 1 6 6 0 T i (2 0 1 9)

I n t e l U H D 7 7 0 (2 0 2 1)

Fra
ctio

n o
f U

se
rs

G F X B e n c h S c o r e (G P U)

I n t e l I r i s X e M A X (2 0 2 0)

0 . 2 k 0 . 4 k 0 . 6 k 0 . 8 k 1 . 0 k 1 . 2 k 1 . 4 k 1 . 6 k
G e e k B e n c h S c o r e (C P U)

(b) Benchmark score distribution

Figure 3: Release year and benchmark score distribution of user de-
vices in production. We use the single-core score in GeekBench [15]
for the CPU benchmark and Aztec Ruins Normal Tier score in
GFXBench [13] for the GPU benchmark.

5 0 %2 5 %
7 5 %

5 0 m s 1 0 0 m s 1 5 0 m s 2 0 0 m s4 0 m s
8 0 m s

1 2 0 m s
1 6 0 m s
2 0 0 m s

U n d e r t h e c o n d i t i o n o f T i s l a r g e r t h a n . . .

Th
e p

rob
ab

ility
 of

N i

s la
rge

r th
an

 ...

(a) Network delay.

5 0 %

2 5 %

5 0 m s 1 0 0 m s 1 5 0 m s 2 0 0 m s1 0 m s
2 0 m s
3 0 m s
4 0 m s
5 0 m s
6 0 m s

U n d e r t h e c o n d i t i o n o f T i s l a r g e r t h a n . . .

Th
e p

rob
ab

ility
 of

Q

is l
arg

er
tha

n .
..

0 %
2 5 %
5 0 %
7 5 %
1 0 0 %

(b) Queuing delay.

Figure 4: While network delay should usually be blamed when the
total delay is above 200ms, queuing delay plays a dominant role
among all frames with a total delay of more than 100ms. The color
indicates the conditional probability P(X>Xth|T >Tth) for X∈{N,Q}.
Stars denote Xth=50ms, Tth=100ms.

further analyze the unique challenges of effectively achieving
an ultra-short queue (§3.3).

3.1 Motivation: Drastic Queuing Delay
Observation: decoder queuing delay is a critical contributor
to the total delay at the tail. We profile the delay of each frame
at each stage in the delivery pipeline in Figure 2. We measure
the Tencent Start cloud gaming service for a month in 2021,
containing tens of thousands of users, with thousands of different
CPU and GPU models. We present release dates and benchmark
scores of CPU and GPU in Figure 3 and list top models in
Appendix B.1. Unless other specified, all measurements in this
paper are analyzed from this dataset.

According to our measurements, among all components in
the pipeline, the network, queuing (at the decoder queue), and
decoding delay are >10ms at the 99th percentile. We highlight
them in red in Figure 2. The tail of the application and encoding
delay is light since they are processed on commercial servers,
which are stable compared to networks and heterogeneous clients.
Therefore, we focus on the network, queuing, and decoding
delay in the following discussion. We leave the measurement
results to Appendix B.2.

We investigate how these three components contribute to
the increase of total delay at the tail. For each frame, we
denote N, Q, D, and T as the network, queuing, decoding,
and total end-to-end delay. We then calculate the conditional
probability of P(X >Xth|T >Tth) for each X ∈{Q,D,C} from
our measurements, where Xth and Tth are thresholds for statistics.
A high conditional probability suggests that the component is
more likely the cause of T >Tth. We calculate the conditional
probability with different thresholds, and present the results for

Figure 5: Illustration of the 99th percentile of the utilization ρ of the
decoder queue. For high-quality RTC applications (in the top-right
corner), the decoder queue is heavily loaded at the tail (shaded red),
resulting in an increase of queuing delay at the tail.

network delay and queuing delay in Figure 4.
As we can see, when analyzing the root causes of frames

with T>200ms for traditional RTC services, network delay has
a high probability (shaded red) to be blamed. However, when
analyzing the frames with T>100ms, queuing delay dominates
the increase of total delay. Our measurements show that among
all frames with an end-to-end total delay of more than 100ms,
queuing delay increase happens more frequently than all other
component delays: 57% of them have a queuing delay of more
than 50ms (stars in Figure 4). Considering the stringent delay
requirement of ∼100ms for high-quality RTC, the increase in
queuing delay plays a dominant role.

Root cause: The UHD resolution and HFR jointly contribute
to the increase in queuing delay. Compared to LFR streaming,
HFR increases the arrival rate of the decoder queue by reducing
the interarrival time between frames. Also, UHD decreases
the departure rate compared to SD streaming by increasing the
decoding delay of each frame.

Specifically, we illustrate how the frame rate and resolution
could affect the load of the decoder queue by presenting the
99%ile queue utilization in Figure 5. We scale the distribution of
interarrival time and decoding delay from our measurements to
other frame rates and resolutions. As we can see, for traditional
RTC services (the down-left corner), due to their low frame
rates and resolutions, the decoder queue still has a utilization of
ρ ≪ 1 at the tail. However, for high-quality RTC applications
(the up-right corner), the decoder queue would be heavily loaded,
leading to a drastic queuing delay.

The issue is the inconsistency of the decoder’s performance on
average and at tail. In fact, many of the hardware decoders that
we measured claim to support UHD and HFR videos (e.g., Nvidia
GTX series in Table 4). However, according to our measurement,
supporting UHD and HFR does not really mean consistently
supporting. For example, the decoding delay can fluctuate due to
numerous reasons including overheating at the client [64], CPU
scheduling (§5.1), and the prediction errors [48], all of which are
difficult to control for an application. From our measurement
with devices in production, the decoding delay is 18ms at the
99th percentile even with hardware acceleration (Appendix B.2).
Note that at the frame rate of 60fps, the interarrival time between
frames is 16.7ms, resulting in a heavily loaded decoder queue at
the tail.

We further analyze the necessity and sufficiency between the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1431

0 5 1 0 1 5 2 00
2 0
4 0
6 0
8 0

1 0 0
Q u e u e l e n g t h b e g i n s t o i n c r e a s e

Tim
e (

ms
)

F r a m e I D

L e f t y - a x i s :
 Q u e u i n g D e l a y
 D e c o d i n g D e l a y
 I n t e r a r r i v a l T i m e

R i g h t y - a x i s :
 Q u e u e L e n g t h

D e c o d i n g d e l a y b e g i n s t o i n c r e a s e

0
1
2
3
4
5

Qu
eu

e L
en

gth

Figure 6: A trace for the accumulation of decoder queue. Note that this
is an illustrative example – the distribution of all traces can be found
in Appendix B.4.

' 6 ' 9 ' 1 2 ' 1 5 ' 1 8 ' 2 1

6 0
9 01 2 0

1 8 02 4 0
3 6 0

' 6 ' 9 ' 1 2 ' 1 5 ' 1 8 ' 2 1
3 6 0 p
7 2 0 p

1 0 8 0 p
2 1 6 0 p
4 3 2 0 p

y = 2 6 9 * 2 0 . 2 0 x Fra
me

 ra
te (

fps
)

Y e a r

M o n i t o r D e l l H P L e n o v o S a m s u n g A c e rA p p Y o u T u b e T w i t c h C O D O v e r w a t c h F 1
y = 1 6 . 5 * 2 0 . 2 0 x

Res
olu

tion

Y e a r
(a) The maximum supported resolution and frame
rate for the top 5 monitor vendors, two streaming
platforms (YouTube and Twitch) and three games
(Call-of-duty, Overwatch, and F1) [10].

' 6 ' 9 ' 1 2 ' 1 5 ' 1 8 ' 2 15 01 0 02 0 0
5 0 01 0 0 02 0 0 0

5 0 0 0 y = 1 6 . 3 * 2 0 . 4 4 x

y = 2 . 1 3 * 2 0 . 6 0 x

H a r d w a r eH a r d w a r e (r e g .)D e m a n d (e s t .)

Spe
ed

(Mp
x/s

)

Y e a r
(b) Decoding speed of
existing hardware and
required decoding speed
from demands.

Figure 7: Decoding hardware cannot keep pace with the rapid increase
of demands of videos with high resolution and frame rate. Note that
the required decoding speed from demands is the frame rate times the
square of resolution times the aspect ratio.

increase of other components and total delay in Appendix B.3
and figure out that the minor fluctuation of decoding delay leads
to the increase of queueing delay. From the queuing theory, when
the queue is heavily loaded, the queuing delay will drastically
increase [32]. This is because while the decoding delay is con-
tinuously fluctuating, the queuing delay is accumulating all the
fluctuations of precedent frames. Especially in heavy traffic, a
minor fluctuation of the decoding delay could result in a magni-
tude increase in queuing delay. We refer the readers to [32] for
more theoretical analysis. Illustratively, we present a trace from
our production service in Figure 6. In the trace, the interarrival
time is 16ms, and the decoding delay is 18ms, while the queuing
delay is 54ms on average. The continual increase of the decoding
delay, although not much by magnitude (18ms) and not long
by duration (20 frames, approximately 0.3s), leads to a drastic
queuing delay. If such a trace happens with a probability of
1%, we will have a 99th percentile decoding delay of 18ms, and
a 99th percentile queuing delay of 55ms. In this case, the tail
queuing delay is much higher than the decoding delay, which
also contributes to more than half of the end-to-end stutters as
analyzed in §3.1.

Trend: hardware decoders cannot keep pace with the
increasing demands of UHD and HFR video. User demands
for video have increased sharply, as shown in Figure 7(a). For
example, the highest supported resolution and frame rate of
YouTube have increased from 360p@30fps (7Mpx/s) in 2005
to 8K@60fps in 2015 (2Gpx/s), doubling every 14 months
on average. Emerging services at 16K [85, 62] or 240fps [73]
further indicate the future demands of UHD and HFR streaming.

However, the decoding speed of the hardware is not increasing
as fast. We summarize the decoding speed of state-of-the-art

video decoders from recent academic papers [53, 30, 90, 91, 89,
85]. As shown in Figure 7(b), the decoding speed of the state-
of-the-art decoding hardware doubles only approximately every
27 months (blue dotted line). Meanwhile, we also calculate the
required decoding speed from the existing demands of videos
by multiplying the estimated resolution and frame rate from
Figure 7(a) and plot the estimation in red in Figure 7(b). The re-
quired decoding speed from demands, doubling every 20 months,
(red dashed line) increases much faster than the development of
decoding hardware (blue dotted line), indicating the continuous
incapability of decoding hardware for UHD and HFR videos.

In addition to the state-of-the-art hardware, there are still
a considerable number of low-end and mid-end devices in
our users. User devices, even in the same generation, could
also be very heterogeneous. For example, in Figure 3, notice
that the performance of Intel Iris Xe is 2× better than Intel
UHD 770 even though the latter is more recent. Thus, there
is heterogeneity in user devices even in the same generation.
Moreover, new video codecs (e.g., H.265), although with a
higher compression ratio, even slow down the decoding speed
by up to 60% [24, 55, 21]. In this case, the mismatch between
the decoder and UHD and HFR videos will further exacerbate,
making the queuing delay at the tail a lasting issue.

3.2 Choice: Controlling Proper Parameters

We motivate the need to adjust the frame rate. For an encoder,
there are three parameters that could be independently set,
including the frame rate, bit rate, and resolution. The encoder
will automatically optimize other parameters (e.g., quantization
parameters) based on current contents to achieve the target frame
rate, bit rate, and resolution. We refer readers to [17] for more
details on video codec.

We first analyze how these parameters could affect the delay
of different components. When the bit-rate increases, the network
delay will increase due to the congestion. When the resolution
increases, since the decoder needs to decode frames with larger
pixels, it needs a longer time to decode. The queuing delay
depends on the enqueue rate (i.e., frame-rate) and the dequeue
rate (i.e., decoding delay). In contrast, for example, if the bit-rate
decreases, yet the resolution is kept the same, the decoding
delay for each frame will hardly decrease due to the hardware
design of the codec, which we further measure in Appendix B.4.
Thus, relying on the total delay (e.g., Salsify [34]) would lead
to ambiguity in taking effective actions to reduce the delay.

Therefore, we need to individually control respective
parameters to reduce different delays. In response, we adjust
the frame rate to control the queuing delay for high-quality
RTC. When the fluctuations of the decoder and network result
in an increase of queuing delay, it is essential to adjust the
encoding parameters to reduce the queuing delay. In this case,
after collecting measurements from the client and network, the
encoder at the server could accordingly adjust the frame rate
for the following frames. We could dynamically specify certain
timestamps where new frames are encoded.

1432 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 1 0 1 50
2 0
4 0
6 0
8 0

1 0 0

Tim
e (

ms
)

F r a m e I D
0
1
2
3
4
5

Qu
eu

e L
en

gth

(a) Stalled decoder services.

0 5 1 0 1 5
0

2 0
4 0
6 0
8 0

Tim
e (

ms
)

F r a m e I D
0
1
2
3
4

Qu
eu

e L
en

gth

(b) Bursty network arrivals.

Figure 8: Two traces of transient fluctuations of the decoder queue
from online traces. Legends are the same as Figure 6.

We further discuss several potential solutions and concerns of
adapting frame rates in Appendix A. In summary, adjusting the
resolution or dropping frames is impractical due to the significant
overhead of bandwidth. Statically choosing the frame rate based
on the client model is also insufficient due to the fluctuation of
decoding delay in the runtime. Moreover, since applications have
limited control over users’ systems, it is also impractical to control
the user’s system (e.g., pinning the application to a CPU core) for
a large-scale production-level service [14]. In terms of frame-rate
adaption, note that there are previous efforts in the adaption of
frame-rate (e.g., CU-SeeMe [38] decades ago). However, as we
discussed in §3.1, with the increase in resolution and frame-rate,
and the stringent delay requirements, we need to reemphasize the
significance of adapting frame rate now. We also show that it is
timely enough to control the frame rate over the Internet.
3.3 Challenges
Achieving an ultra-short queue. To achieve an ultra-short queu-
ing delay for the decoder queue, it is challenging to pick the
appropriate indicator to inform the controller when it needs to
take action. Existing signals (queue length [60] or queuing de-
lay [77, 34]) fail to achieve an ultra-short queuing delay. Since
the accumulation of the decoder queue is the consequence of the
fluctuation of the arrival or departure process, both the queue
length and queuing delay can only be observed when the queue
has already been built up. For the example in Figure 6, while
the decoding delay starts to increase at the 3rd frame, a non-zero
queue length can only be observed by the 9th frame. We also eval-
uate baselines based on queue length and queuing delay in §5.2.

In response, we want to capture the earliest signal to perceive
the potential queuing delay. Therefore, instead of measuring
the queuing delay, we want to estimate the potential increase
of queuing delay predictively. For example, inspired by recent
advances in congestion control [36, 50], a straightforward way
is to measure the dequeue rate of the decoder queue to estimate
the potential increase of the queuing delay.

However, in terms of tails, the arrival process is also
fluctuating, which could also lead to an increase in queuing
delays. For example, the network delay might increase by ten
times at the 99th percentile than the median [25]. In response,
to precisely avoid queue accumulation, we extend the designs
of [36, 50]: AFR comprehensively measures the arrival and
departure process and controls the queuing delay based on
queuing theory. We introduce the design in §4.2, and evaluate
the necessity of measuring the arrival process in §5.2.

Handling various events. Furthermore, the reason behind

Algorithm 1: Hierarchical AFR control.

Input: Enqueue process {An}, dequeue process
{Sn}, queue states Q. (An denotes the interarrival times,
and Sn denotes the decoding delays of frames {n}.)

Output: Target frame rate f .
1 f0= StationaryController({An},{Sn})
2 α= TransientController(Q)
3 f =α f1

the formulation of the decoder queue in high-quality RTC is
complex. As we introduced in §3.1, the stationary degradation
of decoding capacity could lead to the accumulation of the
decoder queue, e.g., the traces in Figure 6. Besides, the decoder
queue could also be accumulated due to transient contingencies.
For example, from our experiences in production, the decoder
might contingently experience a sudden decoding lag of ∼100
milliseconds (e.g., the 3rd frame in Figure 8(a)). The sudden
interference in wireless channels might also lead to the bursty
arrival of several frames (e.g., the 4th to 8th frames in Figure 8(b)).
In both cases, the decoder queue will be accumulated. Since
these transient fluctuations happen suddenly, it is challenging for
the controller to react by measuring enqueue and dequeue rates.

Thus, AFR differentiates the causes of queue accumulation
and reacts respectively to fluctuations at different time scales.
We design a stationary controller to avoid queue accumulation
in heavy traffic (§4.2), and a transient controller to reduce the
queuing delay in contingencies (§4.3).

4 Design – Adaptive Frame-Rate (AFR)
We first analyze the overall workflow of AFR in §4.1, and then
present the two controllers of AFR (§4.2, §4.3).

4.1 Workflow Overview
The workflow of AFR is presented in Algorithm 1. Specifically,
the stationary controller (§4.2) maintains the queue around an
ultra-short target based on dynamics of enqueue and dequeue
processes. By measuring the statistics of both processes, AFR
calculates the expectation of the queuing delay based on queuing
theory. The frame rate can therefore be optimized towards a given
queuing delay target (line 1). The transient controller observes the
queue states Q (queue length and queuing delay) and calculates
the discounting factor α ⩽ 1 (line 2) to further decrease the
frame rate when the queue formulates. The final frame-rate is
the stationary frame-rate f0 discounted by α (line 3). In this case,
AFR can react to various scenarios of queue accumulation.

4.2 Stationary Controller
As introduced above, we measure the arrival and service
processes and control the expected queuing delay of the queue.
Specifically, we use the Kingman formula as an approximation of
the expectation of queuing delay. Kingman formula is a widely
adopted approximation formula of queuing delay [45] for G/G/1
queues. Compared to other approximation methods, in this paper,
we adopt the Kingman formula to estimate the queuing delay
since its estimation is from both arrival and departure processes

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1433

without relying on queue states, which could provide the earliest
signal for the potential queuing delay. According to the Kingman
formula, the expectation of queuing delay τqueue follows:

E
(
τqueue

)
≈
(

ρ

1−ρ

)(
c2

a+c2
s

2

)
µs (1)

where
ca=σa/µa, cs=σs/µs, ρ=µa/µs (2)

(µa, σa) and (µs, σs) are the mean and standard deviation of the
arrival and service processes:

µa=E{An},σa=
√

var(An),µs=E{Sn},σs=
√

var(Sn) (3)

From Eq. 1, the queuing delay is related to the following factors:
• Queue utilization ρ. The queuing delay will increase when

the queue is overloaded (ρ→1). The current frame rate and
decoding delay determine the queue utilization.

• Arrival and service fluctuations ca and cs. When the arrival
or the service processes fluctuate, the queuing delay will also
increase.

• Service time µs. Finally, the queuing delay scales with the
average decoding delay.

Therefore, we control the expected queuing delay by controlling
the right-hand side (RHS) of Eq. 1. We set E{τqueue} to a
pre-defined queuing delay target W0. Consequently, the target
frame-rate f0 could be calculated as:

f0=ρ/µs=1
/(

µs ·
(

1+ µs
W0

· c2
a+c2

s
2

))
(4)

Discussion: Approximation method. The AFR mechanism
supports any approximation formula by design. There are other
research efforts to control the queue. For example, recent efforts
in congestion control [36, 50] directly set the target utilization
(e.g., setting ρ = 0.95) and calculate the enqueue rate. In this
paper, we adopt Kingman formula to capture both the arrival
and departure processes, as discussed in §3.3. We also evaluate
the performance of other baselines in §6.1.

Measurements of queuing dynamics. According to Eq. 4, we
need to measure the mean and variance of the arrival and service
processes. Similar to the RTT measurements in TCP [44], we
adopt the exponentially weighted moving average (EWMA) and
exponentially weighted moving variance (EWMV) to estimate
the µs,σs,µa,σa in Eq. 1 and 2.

µ̂n=ξµxn+
(
1−ξµ

)
µ̂n−1

σ̂n=
√

ξσ (xn−µ̂n)
2+(1−ξσ)σ̂2

n−1

(5)

where xn denotes interarrival time An or service time Sn. µ̂n and
σ̂n are the EWMA and EWMV. ξµ and ξσ are the discounting
factors for the measurement of mean and standard deviation,
trading off between precision and sensitivity.

However, due to bursty arrival or stalled services (§4.1),
both the arrival and service processes could have significantly
deviated value. For example, the 3rd frame in Figure 8(a)
has a decoding time of 82ms while other frames are below

previous next0

𝑟 = 𝜏଴ − 𝐴𝑣𝑔 𝜏ିଵ଴:ିଵ𝐴𝑣𝑔 𝜏ଵ:ଵ଴ − 𝜏଴
(a) Illustration

- 2 0 0 - 1 5 0 - 1 0 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0
- 1 . 0
- 0 . 8
- 0 . 6
- 0 . 4
- 0 . 2
0 . 0

Re
fle

ctio
n R

ati
o

D e c o d i n g t i m e d i f f e r e n c e (m s)

o u t l i e r t h r e s h o l d

(b) Measurements in production

Figure 9: Reflection in outlier removal. Figure 9(b) presents the
frequency of frames with r∈ [1

C ,C]. Measurement details in §5.2.

4ms. Such outliers will significantly deviate the estimation of
stationary statistics for a long period. In fact, as we discussed
in §4.1, these contingent events are designed to be handled
by the transient controller. Therefore, we need to filter those
outliers out to precisely estimate the stationary status of arrival
and service processes. Due to the highly skewed distribution of
decoding delay, existing outlier removal mechanisms based on
standard deviation (e.g., the three-σ rule [65, 68]) suffer from
differentiating stationary state transitions from outliers.

To capture the transitions of the status of decoders while elim-
inating the influence of the contingent outliers, we introduce an
outlier removal mechanism based on priori knowledge from mea-
surements in production. The key intuition is that decoding delay
differences (Sn − Sn−1) are related to the probability of being
outliers. For example, an increase of 20ms on decoding delay
is probably the transition between stationary states (Figure 6).
However, a sudden increase of 80ms on decoding delay is likely
to indicate that decoding delay is an outlier, which is usually the
scenario of contingent stalls in Figure 8(a). This is because com-
mercial decoders are usually able to decode frames at the frame
rate of 24fps on average. According to our measurements, when
the decoding delay difference is above 50ms, the possibility of be-
ing an outlier for that frame is 95%. Thus, we remove frames with
a decoding delay difference of >50ms in the stationary controller,
and leave the control of those frames to the transient controller.

We further characterize our observation based on measure-
ments in production. As shown in Figure 9(a), we quantify
the outlier with reflection ratio r, which illustrates the recovery
of decoding delay before and after the potential outlier. The
numerator is the difference between the current decoding delay
(τ0) and the average decoding delay of the previous 10 frames
(τ−10:−1), and the denominator is the difference between τ0 and
future decoding delay. For outliers of contingent stalled service
(e.g., the 3rd frame in Figure 8(a)), their reflection ratios would
approach -1. This is because previous frames and subsequent
frames have similar decoding delays, while the outlier has a
much higher decoding delay (τ0≫τ−10:−1≈τ1:10).

We then plot the relationship between the difference of de-
coding delay (τ0−τ−1) and the average reflection ratio (r) of all
frames with the same difference from our measurements in Fig-
ure 9(b). When the decoding time difference is larger than 50ms
(marked with a red arrow), the average reflection ratio is less than
-0.95, indicating that most frames in this scenario are outliers.
Therefore, the stationary controller in AFR does not calculate the

1434 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

K1

K2-1

K1+1

…

K2

dequeue

enqueue

(a) Queue. (b) Bursty network arrival. (c) Stalled decoder service.

Figure 10: Differences between bursty network arrivals and stalled
decoder services. The y-axis is the accumulated enqueue/dequeue
frames. For example, the enqueue curve in Figure 10(b) increases
from 1 to 2 at 1ms, indicating that frame #2 enqueues at 1ms.

frames with a decoding delay difference larger than 50ms.

Convergence time analysis. To help operators to better under-
stand the behavior of the stationary controller, we investigate the
convergence of the stationary controller during state transitions
of the service process. We want to answer the following question:
During the transition from stationary state (µ1,σ1) to (µ2,σ2),
how long will the stationary controller take to converge to the
new frame-rate and drain the potential accumulation of the queue
due to the transition?

We outline the main conclusion here and leave the detailed
analysis in Appendix E. When the control loop (round-trip delay)
of AFR is τ frames, the convergence time T0 is bounded w.r.t.
τ and W0, and is acceptable for most scenarios. For example,
when the average control loop of AFR is the interarrival time
of one frame (τ=1), and W0=2ms, the stationary controller
could converge to the new stationary state within 2 frames. We
illustrate the convergence time of the stationary controllers with
more settings in Appendix E.

4.3 Transient Controller
The transient controller is designed to handle the contingent
queue accumulations (§4.1). Therefore, we need to first
understand how we should react to these queue contingencies.

Understanding queue contingencies. As shown in Figure 8(a)
and 8(b), both stalled decoder services and bursty network arrivals
will cause a sudden increase in queue length. We illustrate the
enqueue and dequeue events of two contingencies in Figure 10.
In Figure 10(b), 5 frames arrive at the client together within 4ms,
resulting in a queue length of 4 when the 5th frame arrives and
observes, as illustrated with the LQ (blue arrow). In Figure 10(c),
the decoder takes 80ms to decode the 0th frame, when queued
frames cannot be dequeued to the decoder. Therefore, upon the
arrival of the 5th frame, it also observes a queue length of 4.

However, the bursty network arrivals and stalled decoder
services should be handled separately. In the scenario of
bursty network arrivals, the bottleneck of total delay is still
in the network due to its long network delay. As long as the
decoder is functional, even if multiple frames arrive at the queue
simultaneously, they could be processed efficiently (Figure 8(b)).
In this case, the queue will be drained in a short time, and we
do not need to reduce the frame rate. In contrast, the stalled
decoder service will drastically increase the queuing delay of
subsequent frames and needs adaption (Figure 8(a)). Thus, we

upper
reservoir

lower
reservoir

ଵ ଶ

௠௜௡

1

Queuing delay (ms)

𝛼

(a) α-τQ mapping.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 00
4
8

1 2
1 6
2 0 b u r s t y a r r i v a l s

Q u e u i n g d e l a y (m s)

Qu
eu

e l
en

gth

1 0 - 8

1 0 - 6

1 0 - 4

1 0 - 2

1 0 0F r e q .Q 1 = 1 4 m s

(b) LQ-τQ frequencies.

Figure 11: Illustrations and measurements of the transient controller. A
series of linearly distributed dark blue clusters in Figure 11(b) indicate
that LQ and τQ are linearly correlated.

need to differentiate between the two scenarios.
Since both scenarios result in an increase in queue length,

they cannot be effectively differentiated with queue length only.
Our insight is that we can differentiate them with the sojourn
time of the first frame in the queue. As shown in Figure 10(a),
at the arrival of frame K2, the sojourn time τQ of the first frame
K1 and queue length LQ observed by K2 are:

τQ=t(K2)
enq −t(K1)

enq , LQ=K2−K1 (6)

where t(i)enq is the enqueue timestamp of frame #i, and frame #K1
is the frame at the head of the queue. For bursty network arrivals,
since frames arrive at the decoder queue simultaneously, when
the last frame of the burst arrives, the first frame has only been
queued for a short time. For example, τQ in Figure 10(b) is 4ms
(marked red). In contrast, for stalled decoder service, the head
frame has been blocked for a long time, leading to a high τQ of
66ms in Figure 10(c). Therefore, we use τQ to adjust the frame
rate in the transient controller.

Feedback control. For the transient controller, the design space
is to find out a mapping between the discounting factor α and
the queuing delay τQ. Since the transient controller is designed
to reduce the frame rate based on the results of the stationary
controller, the possible range of α satisfies:

fmin/ fmax=αmin⩽α⩽1 (7)

where fmin and fmax are the lower and upper bounds for frame
rate required by the application. Since longer τQ indicates a
more severe load of the queue, the discounting factor should
decrease with the increase of τQ. Besides, the α-τQ mapping
should also have the following properties:

First, avoid overreactions. As we discussed above, for
bursty network arrivals, τQ will also slightly increase due to the
volumetric arrived frames. However, since such a transient queue
accumulation will be cleared quickly as long as the decoder is
functional (Figure 10(b)), we should not decrease the frame rate.
Therefore, we need to introduce an upper reservoir (as shown
in Figure 11(a)) to avoid overreactions. In the upper reservoir,
when a non-zero but small τQ is observed (0 ⩽ τQ ⩽ Q1), the
transient controller will not decrease the frame rate. The reservoir
threshold Q1 should be set based on measurements. We measure
the observed LQ and τQ from frames and present the results in
Figure 11(b). Peaks near the left axis (marked by red dashed

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1435

arrows) represent frames with a long LQ yet with a short τQ,
which are due to the bursty network arrivals. Therefore, we set
Q1 to filter out those bursty arrival-related peaks (e.g., Q1=14ms
in our deployment, the red line in Figure 11(b)).

Second, respond timely. Due to the stringent delay require-
ments of high-quality RTC applications, a long queuing delay
will drastically degrade the users’ experiences. Therefore, we
need to control the slope of the mapping in Figure 11(a) to
effectively reduce the queuing delay. Since α is lower bounded,
we could control the slope of the mapping by introducing a
lower reservoir, as shown in Figure 11(a). We set Q2 as the
maximum tolerable queuing delay:

Q2=max(Q1,Deadline−τnetwork−τdecode) (8)

where τnetwork is the round-trip network delay, and τdecode is the
decoding delay µs. Deadline is the requirement for the total
delay of the application. Based on users’ experiences in the
human-machine interaction and our operational experiences, we
set Deadline to 100ms in our deployments [43].

5 Implementation
We implement the AFR with a frame-level trace-driven simulator,
and deploy the AFR onto a production high-quality RTC service
in the wild. In this section, we present the design of our simulator
(§5.1), introduce the simulation setup (§5.2) and the deployment
setup (§5.3).
5.1 Simulator Design
To faithfully compare and replay the traces for different queue
control algorithms, we design a simple simulation environment
that models the dynamics of RTC. The simulator maintains the
decoder queue and replays the traces collected from online ser-
vices, where the traces contain the decoding delay, network delay,
original queuing delay, and also the arrival timestamp for each
frame. Specifically, frames arrive at the decoder queue according
to timestamps in traces, wait in the decoder queue for dequeuing,
and are decoded according to decoding delays in traces. To
avoid frequently sending frame-rate adjustment requests to the
servers, frame rates are quantized at the level of 5fps, which
is also followed by our online deployment. We implement the
potential interference from CPU time-slicing: since the fetching
of frames to decoders depends on the CPU, there are possible
cases where fetching the frame from the queue to the decoder
needs waiting to be scheduled by the CPU by up to several
milliseconds [20]. Therefore, we further profile such a delay
in the traces and introduce the scheduling waiting time in our
simulator. We also implement the response time of the encoder
between the new frame-rate actions and new frames generated
with the updated frame rate, according to our measurements in
§6.4. Please refer to Appendix C for implementation details.
5.2 Simulation Setup
Traces. We measure the frame-level statistics of our cloud
gaming service (introduced in §3.1) on two types of clients
(Windows and MacOS) and access networks (Ethernet and
WiFi). We profile each step of received frames in one of our

Category Session Frame Playtime
(1) Windows+Ethernet 29.7k 6.35 B 34.2k hours
(2) Windows+WiFi 6.4k 1.12 B 6.2k hours
(3) MacOS+Ethernet 0.4k 40.9 M 0.2k hours
(4) MacOS+WiFi 2.1k 216 M 1.1k hours

Total 38.1k 7.73 B 41.7k hours

Table 1: Distribution of our traces on the client type.

production clusters for 24 days in December 2020. This results
in a dataset with 7.73 billion frames and 41.7k hours of playtime
(Table 1), which is the largest frame-level dataset for interactive
streaming to the best of our knowledge.

Parameter settings. There are several parameters in AFR
to be determined. Except for the parameters related to the
transient controller (§4.3), we set W0 in the stationary controller
to 2ms and the discounting factors in EWMA ξarrv=0.033 and
ξserv=0.25. We discuss the sensitivity of those settings and their
influence on the performance in §6.3.

Metrics. In the evaluation, we mostly measure the delays (includ-
ing the queueing delay and the end-to-end total delay). As we
discussed in §2, the delay in interactive streaming is orthogonal
to other video quality metrics (e.g., PSNR [2] or SSIM [76]).
The delay, which represents interactivity, is the main optimiza-
tion goal in this paper. We demonstrate that AFR has negligible
degradation on the video quality in §6.4.

Baselines. To evaluate the performance of AFR, we implement
existing frame control mechanisms as follows:
• DropTail is the frame control mechanism in WebRTC [60].

When frames overflow the queue, the client will first clear
the queue, then request a new key frame, and finally drop
all frames until the next key frame arrives. We set the queue
capacity to 16 frames.

• QLen-S observes the current queue length, skips frames
from the content generator before the encoder if the queue
length is ⩾1, and resumes if the queue length is <1.

• QWait-S. We migrate the frame control mechanisms from
existing academic efforts in our simulator [34, 77], and
replace the signal from total delay to queuing delay to better
reduce the queuing delay. Since these baselines are not
designed for stringent delay requirements of 100ms, we also
finetune their parameters with our traces. QWait-S skips
frames before the encoder if the queuing delay is ⩾32ms, and
resumes if the queuing delay is <4ms.

Besides, to evaluate the effectiveness of different components
in AFR, we also different variants of AFR:
• AFR-QLen. We demonstrate the insufficiency of controlling

the frame rate with queue states with a feedback algorithm
based on current queue length: it observes the current queue
length at the arrival of each frame, and maps the queue length
of{0, 1+} to frame-rate{60, 24}fps.

• AFR-QWait. A feedback algorithm maps current queuing
delay of{(0, 4), (4, 8), (8, 12), (12, ∞)}ms to frame-rate of
{60, 48, 36, 24}fps. The parameters have also been finetuned
with our traces.

1436 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• AFR-TX. To demonstrate the effectiveness of measuring
both the arrival and service process, we further implement
a dequeue rate-based algorithm. AFR-TX measures the
dequeue rate and sets the target frame-rate with ρ = 0.8,
where ρ has been tuned with our traces. The dequeue rate
is the reciprocal of decoding delay.

• AFR-Kingman. Moreover, we individually evaluate the sta-
tionary controller of AFR to further illustrate the effectiveness
of the transient controller.

• AFR. Finally, we put all optimizations in this paper (both the
stationary and transient controller) together.

We present how we tune the parameters, and evaluate the
trade-offs between frame rate and queuing delay in §6.3.

5.3 Deployment setup
We finally deploy AFR onto our cloud gaming service. The
gaming service X employs the H.264 codec to increase
the coverage of hardware decoding and adaption towards
heterogeneous clients1, and customizes the codec performance
for the optimization of gaming. Tencent Start currently
supports 13 production-level games, including action-adventure,
first-person shooter, and real-time strategy games. To optimize
the network delay, the service is accelerated with multi-access
edge computing similar to [74, 57, 86]: Users are split into tens
of operation regions with a geographical diameter of hundreds
of kilometers. Cloud gaming servers are deployed on clusters in
each operation region, resulting in an average round-trip network
delay of 15ms (Appendix B.2).

The frame-rate adaption algorithms are implemented on the
client side. The AFR controller continuously measures the statis-
tics of the decoder queue, and sends requests to edge servers to ad-
just the frame rate when necessary. The edge server then forwards
the frame-rate adjustment requests to both the video encoder and
the gaming application. New frames will be generated following
the new inter-frame interval. We evaluate the response timeliness
and overhead of video encoder and gaming application in §6.4.

6 Evaluation
We evaluate the AFR controller in the following aspects:
• Delay improvements. We present the performance improve-

ments: The ratio of frames with long queuing delay and
total delay of AFR has been improved by 2.1×-26× and
13%-2.2× against existing baselines (§6.1).

• Frame-rate maintenance. We then demonstrate that AFR
introduces negligible impacts on the metrics related to
frame-rate (§6.2).

• Parameter sensitivity. Our evaluation shows that parameters
in AFR have a wide range of settings to gain performance
improvements against finetuned baselines (§6.3).

• Microbenchmarking. We further demonstrate that the
timeliness, overhead, and image quality of frame-rate
adjustments are satisfactory for online deployment (§6.4).

1Hardware decoding has a shorter decoding delay than software decoding
and supports higher frame rates. H.264 has a higher coverage of hardware
decoding support compared to other advanced codecs [54].

(1) (2) (3) (4)
0

10
20
30
40
50 (b)

Q
-9

9%
 (m

s)

DropTail QLen-S QWait-S AFR-QLen
AFR-QWait AFR-TX AFR-Kingman AFR

(a)

(1) (2) (3) (4)

P(
Q

 >
 5

0m
s)

Figure 12: Simulation results of queuing delay (the 99%ile and the
ratio of frames with >50ms queuing delay).

(1) (2) (3) (4)
0

50

100

150

200

To
ta

l-9
9%

 (m
s)

(1) (2) (3) (4)

P
(T

ot
al

 >
 1

00
m

s)(a) (b)

Figure 13: Simulation results of total delay (the 99%ile and the ratio
of frames with >100ms total delay).

(1) (2) (3) (4)0 %
4 %
8 %

1 2 %
1 6 %
2 0 %
2 4 %

Ra
tio

 of
 se

ssi
on

s
1 . 9 x

(a) Sessions with stutter ratio >5%.
(1) (2) (3) (4)0 %

4 %
8 %

1 2 %

Ra
tio

 of
 se

ssi
on

s

2 . 2 x

(b) Sessions with stutter ratio >10%.

Figure 14: Ratio of sessions with different stuttered frames.

• Deployment in the wild. Finally, we report the A/B test
results and the deployment progress of AFR on our cloud
gaming service online (§6.5).

6.1 Delay Improvements

We compare the queuing delay and the total delay of each frame
with AFR and baseline algorithms in four sets of traces (Table 1).
We measure the queuing delay in two dimensions: we present
the 99th percentile queuing delay and the ratio of frames with a
queuing delay >50ms in Figure 12. We first analyze the results
of AFR against three existing mechanisms (DropTail, QLen-S,
and QWait-S). AFR could reduce the 99%ile queuing delay by
1.9× to 7.4×, and the ratio of severely queued frames by 2.1×
to 26× on different sets of traces against three baselines. In
this case, the 99%ile queuing delay could be squeezed to 6.9ms.
This indicates that AFR could effectively achieve an ultra-short
queuing delay. AFR also demonstrates satisfactory performance
improvements on the total end-to-end delay, which is directly
related to users’ experiences. AFR improves the 99%ile total
delay by 27% to 36%, and the ratio of severely delayed frames
(total delay >100ms) by 1.6× to 2.2× in all traces. We also
measure the session stutter ratio, i.e. the ratio of frames with
a total delay of >100ms in a session, for each session. We
then measure the ratio of sessions with a session stutter ratio of
>5% and >10%, which indicates how many users suffer from
unsatisfactory experiences and present the results in Figure 14.
For the major population of our service (Cat. (1), Table 1), AFR
reduces the stuttered sessions by 17% and 21% compared to
the best of the three baselines. For other categories, the ratio of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1437

(1) (2) (3) (4)
8

1 2
1 6
2 0
2 4
2 8
3 2

Int
era

rriv
al

(m
s) 2 5 % ~ 7 5 %

1 0 % ~ 9 0 %
M e d i a n L i n e
D r o p T a i l Q L e n - S
Q W a i t - S A F R - Q L e n
A F R - Q w a i t A F R - T X
A F R - K i n g m a n A F R

(a) Interarrival time between frames.

(1) (2) (3) (4)0
4
8

1 2
1 6
2 0

Sm
oo

thn
es

s (
ms

)

(b) Smoothness.
(1) (2) (3) (4)

1 0 1
1 0 2
1 0 3
1 0 4

Ad
jus

tm
en

t
int

erv
al

(fra
me

)
(c) Adjustment interval.

Figure 15: Frame-rate maintenance. Better viewed in color.

stutter sessions has also been reduced by 5% to 37%. AFR could
significantly improve experiences for high-quality RTC.

We further understand the performance improvements with
the comparisons among different variants of AFR. Compared
to DropTail, baselines based on queue states (AFR-QLen,
AFR-QWait) could effectively reduce the queuing delay,
indicating the necessity of actively controlling the queuing delay
(§3.1). Compared to QLen-S and QWait-S, controlling the
frame rate achieves better performance than skipping frames
from the encoder. This is because skipping frames would
drastically degrade the tail frame rate, for which the parameters
of baselines are tuned (§6.3). AFR-TX could further reduce the
queuing delay than the queue state-based baselines, indicating
that observing the service process could know the potential
degradation in advance and effectively take actions, validating
our analysis in §3.3. AFR-Kingman further improves the
performance by 10% against AFR-TX, demonstrating that the
fluctuating arrival of the high-quality RTC could also affect the
estimation of the decoder queue. AFR finally reduces the tail
queuing delay by 2-4% against AFR-Kingman, indicating the
necessity of the transient controller to handle contingencies.

Besides, we also find that AFR has larger performance
improvements when the network is better. The performance
improvements on two sets of Ethernet traces (55% and 37%
for Cat. (1) and (3)) are larger than the on WiFi traces (35%
and 27% for Cat. (2) and Cat. (4)). Considering the ongoing
deployment of next-generation access networks with better
network conditions (e.g., 5G and WiFi 6), the necessity of
controlling the decoder queue would be more significant.

6.2 Frame-rate Maintenance
Besides, we also measure the effect of AFR on the frame rate. We
first measure the interarrival time between frames at the arrival
of each frame on the client. For example, a frame rate of 60fps
should result in an interarrival time of around 16.7ms. We tune
the parameters of each algorithm to keep the 99th percentile of
their interarrival time at the same level (details in §6.3). Therefore,
for 10-90th percentiles, as shown in Figure 15(a), most algorithms
except for DropTail are comparable. Compared to the existing
deployed mechanism DropTail, AFR even improves the tail
user-perceived frame rate due to its better management of frame

Figure 16: The trade-off between the tail interarrival time and queuing
delay. We tune the parameters for baselines and AFR to illustrate the
capability of each algorithm in the trade-off.

drops. AFR slightly decreases the median frame rate by 3%-9%,
which brings the negligible quality of experience (QoE) degra-
dation to users considering the improvements on delay [71, 81].

We further measure the smoothness of frame-rate, which
might also have potential effects on users’ experiences [33]. We
measure the differences of interarrival time as an indicator of the
smoothness of frame rate and present the results in Figure 15(b).
Except for DropTail, all baselines and AFR have similar
interarrival differences and are better than DropTail. This is
mainly because that frame drops in DropTail will introduce
a sudden increase of interarrival differences. Moreover, we
also measure the frame adjustment interval and present the
distributions in Figure 15(c). The median adjustment interval of
AFR is hundreds to thousands of frames, which is much longer
than the response time of frame-rate adjustment (§6.4).

6.3 Parameter Sensitivity
We then evaluate the sensitivity of parameters in AFR and
other baselines. We tune parameters of all baselines in §5.2:
thresholds for skipping frames for QLen-S and QWait-S,
mappings for AFR-QLen and AFR-QWait, ρ for AFR-TX,
and W0 for AFR-Kingman and AFR. We present the ratio of
frames with queuing delay >50ms (P(Q>50ms)) and the 99th
percentile of interarrival time on Cat. (1) traces in Figure 16.
The down-left corner indicates the algorithm has a satisfactory
trade-off between the queuing delay and the frame rate.

As we can see, AFR outperforms all other baselines in a
wide range of settings, achieving a better trade-off between
the queuing delay and frame rate. QLen-based algorithms are
challenged in achieving ultra-short queuing delay: with the
extremest parameters (skipping/decreasing frame-rate as long
as queue length is non-zero), QLen-S and AFR-QLen could
only achieve a P(Q>50ms) of 2.2‰ and 1.7‰, much higher
than other baselines. This follows our analysis in §3.3 that queue
length is too coarse-grained as a signal to control the queue with
an ultra-short target. Meanwhile, skip-based algorithms could
achieve lower queuing delay compared to frame-rate-based
algorithms, yet with higher interarrival time. The parameters of
all algorithms are tuned according to Figure 16 by aligning the
99th percentile interarrival time.

We also evaluate how different percentiles of queuing delay
and total delay are affected by the setting of W0 in Appendix D.3.
The performance of AFR reacts sensitively to the setting of
W0, indicating that operators could effectively balance the total
delay and frame rate by adjusting W0. We further evaluate

1438 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

- 3 0 - 2 0 - 1 0 0 1 0 2 0 3 00
3
6
9

1 2

Re
sp

on
se

 fra
me

F r a m e - r a t e d i f f e r e n c e (f p s)

9 0 % i l e
7 0 % i l e
5 0 % i l e

(a) Adjustment timeliness.

6 0 5 5 5 0 4 5 4 0 3 5 3 0 2 5
1 5
2 0
2 5
3 0
3 5
4 0

F r a m e - r a t e (f p s)

Int
era

rriv
al

tim
e (

ms
)

2 5 % ~ 7 5 %
1 0 % ~ 9 0 %
T a r g e t

(b) Frame-rate stability.

Figure 17: Effectiveness of frame-rate adjustment.

0 5 1 0 1 5 2 00 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

CD
F

C P U U t i l i z a t i o n (%)

S t a b l e
S w i t c h

(a) CPU utilization.

0 5 . 2 5 . 4 5 . 6 5 . 8 6 . 00 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %
CD

F

P r i v a t e B y t e s (G B)

S t a b l e
S w i t c h

(b) Memory utilization.

Figure 18: Frame-rate adjustment overhead.

the sensitivity of the discounting factors ξ of the EWMA and
EWMV in the transient controller (§4.3) in Appendix D.3,
demonstrating how operators should set these parameters to
balance between the precision and sensitivity.

6.4 Microbenchmarking
We also benchmark AFR in a testbed of our cloud gaming service.

Effectiveness of frame-rate adjustment. We first measure the
responsiveness and precision of frame-rate adjustment at the
video encoder. We enumerate all frame-rate switching within{25,
30, ···, 60}fps, and measure how many frames the encoder needs
to take to steadily output video streams at the new frame rate.
The response time measured by the unit of frame (i.e. response
frame) is presented in Figure 17(a). For each group of settings,
we repeat the experiments 100 times to eliminate the randomness.
When decreasing the frame rate, the 90%ile response frames is
less than 3 frames, indicating the encoder and gaming application
could decrease the frame-rate timely. This could effectively
alleviate the overload of the decoder queue. When significantly
increasing the frame rate, the frame rate might be slightly delayed
to change. This is because the frame rate at the client side follows
the bucket effect. Either encoder or the gaming application
decreases the frame rate will lead to a decrease of the final frame
rate, while the increase of frame rate needs an increase from both
components. Even so, the tail response frame is <10 frames,
which is much less than the adjustment interval (Figure 15(c)).

We then measure the fluctuation of the frame rate of the output
of the streaming encoder. We set the frame rate to several levels
as above, and measure the interarrival time between each frame.
For each frame rate, we measure the interarrival time for 30,000
frames and present the distribution in Figure 17(b). The interar-
rival time between frames largely falls around the target frame
rate. Therefore, unlike the fluctuating bit-rates in video stream-
ing [42], frame-rate could be precisely controlled by the encoder.

Frame-rate adjustment overhead. We further measure the
potential processing overhead of frame-rate adjustment at the
edge server. To magnify the overhead, we change the frame rate

5 1 0 1 5 2 0 2 5 3 0
2 8
3 2
3 6
4 0
4 4

5 1 0 1 5 2 0 2 5 3 0
0 . 8 8
0 . 9 2
0 . 9 6
1 . 0 0

5 1 0 1 5 2 0 2 5 3 05 0
6 0
7 0
8 0
9 0

1 0 0

PS
NR

 (d
B)

B i t r a t e (M b p s)

S w i t c h (R) S t a b l e (R) S w i t c h (S) S t a b l e (S)

SS
IM

B i t r a t e (M b p s)

VM
AF

B i t r a t e (M b p s)
Figure 19: The image quality differences of AFR and the original
video tested in a running scene (R) and stable scene (S). The error bar
represents the standard deviation.

from 60fps to 30fps and back to 60fps every 6 frames, which
is much shorter than the usual adjustment interval. We then
measure the CPU and memory utilization of the cloud gaming
application and encoder by sampling the CPU processing time
and application private bytes with the typeperf [66] every 1
second. We measure for 30 minutes to eliminate the randomness.
We compare the scenario with a stable frame-rate of 60fps
(stable) and a frequently switching frame-rate (switch) in
Figure 18. For CPU utilization, both scenarios have a similar
distribution from 0% to 20%. switch is a little better than
stable since producing a lower frame rate takes fewer CPU
resources for the gaming application. As for memory utilization,
the major memory consumption is from the gaming application.
Frame-rate switching slightly increases the utilization of private
bytes since frequently resetting the encoder requires allocation
of memory. Nonetheless, the increase of memory utilization is
less than 1.8% even at the 99%ile, which is negligible and could
be even lower in the case of normal frame-rate adjustments.

Image quality degradation. We also investigate the potential
image quality degradation caused by AFR. We record two raw
videos from games, one in a running scene (R) and another in
a standing scene (S). For each video, we switch the frame rate
every 100 frames 15 times and measure the video quality for the
following 400 frames. We investigate three video quality metrics,
peak-signal-to-noise-ratio (PSNR) [2], structural similarity
index (SSIM) [76], and video multimethod assessment fusion
(VMAF) [51], and present the results in Figure 19. stable

and switch denote the scenarios where the frame-rate remains
unchanged or frequently switched. Results demonstrate that
frequently switching the frame rate will not affect the video
quality: the video quality of two videos on three metrics are
comparable in all cases.

6.5 Deployment in the Wild
Finally, we evaluate the performance of AFR by deploying it
onto Windows clients of our cloud gaming service, Tencent Start,
in one of its production clusters. Before the deployment of AFR,
our cloud gaming service follows the frame control strategy
in WebRTC (i.e., DropTail). To make a clean and controlled
comparison, we only present the results from online A/B tests
in our production clusters, when all other implementations and
settings are kept the same. The A/B test is conducted from
January 8, 2021, to January 14, 2021, resulting in 5369 Ethernet
sessions and 1467 WiFi sessions. The parameter settings of AFR
remain the same as the simulation (§5.2). We randomly enable

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1439

Cat. (1) Q99 Q>50ms T99 T>100ms Session
DropTail 54ms 1.11% 101ms 1.03% 7.30%

AFR 22ms 0.51% 80ms 0.68% 5.82%
Cat. (2) Q99 Q>50ms T99 T>100ms Session
DropTail 64ms 1.83% 174ms 3.00% 24.00%

AFR 37ms 0.54% 160ms 2.11% 21.17%

Table 2: Performance of deployment in the wild. Metrics are the
99%ile of queuing delay (Q99), the ratio of frames with Q>50ms,
the 99%ile of total delay (T99), and the ratio of the stuttered frame
(T>100ms). Session is the ratio of sessions with stutter ratio >5%.
Cat. (1) and (2) are Ethernet and WiFi on Windows clients.

(or disable) AFR with a probability of 50% for each session, and
present the results in Table 2. Similar to the simulation results, the
ratio of stuttered frames measured by total delay (P(T>100ms))
in both categories has been improved by 34% and 30%, which
significantly improves users’ experiences in interactive streaming.
The stuttered sessions (with the same metric as Figure 14(a))
have also been reduced by 17% on average, indicating these
users could be alleviated from stuttering streaming experiences.
Therefore, the online deployment also demonstrates significant
benefits of AFR for high-quality RTC users. AFR has already
been deployed onto all production clusters of Tencent Start for
over one year, serving thousands of users each day.

7 Discussions
In this section, we discuss the potential limitations of AFR.
Application scenarios. In this paper, we mainly evaluate the per-
formance of AFR on traces or production clusters of our cloud
gaming service. However, as we introduce in §1 and §2, the over-
load of decoder queue generally exists in many high-quality RTC
scenarios, such as VR streaming or 4K live streaming, as long as
they stream high frame-rate and high bit-rate video onto commer-
cial clients. We evaluate AFR with cloud gaming due to access
to the real-world traces and production services X. We leave the
deployment of AFR over other scenarios as our future work.
Coexistence of multiple control loops. There are other control
loops that work simultaneously in the RTC system. For example,
the underlying congestion controller will also control the bit-rate
of the video based on network conditions [25]. The video codec
will also adjust the quantization parameter based on the scenes
to encode [17]. As we discussed in §3.2, these parameters
are affected by different causes (network congestion, decoder
degradation, scene variation), which are orthogonal to each other.
Therefore, the adaption of the frame rate is orthogonal to the
other controllers in the RTC system. In §6.5, we evaluate the per-
formance of AFR with all these controllers in our real production
in the wild. We leave the coordination of different controllers on
the joint optimization over the user’s experience for the future.

8 Related Work
There has been little prior work on the decoder queue for
high-quality RTC. We survey the following three aspects.
Frame controls in RTC. As we discussed, besides the Drop-

Tail mechanism in WebRTC, there are a series of research
efforts in the active control of RTC frames. For example, some

work [38, 77, 34] maintains a certain number of in-flight frames
based on total delay [77] or frame-level acknowledgement mech-
anisms [34]. AFR differentiates from them in two aspects. First,
the end-to-end control introduces ambiguity in taking effective ac-
tions, as discussed in §3.2. AFR takes effective actions to reduce
the queuing delay. Second, existing control strategies are based
on queue lengths or queuing delay. In contrast, measuring the
arrival and service processes in AFR could help high-quality RTC
to achieve lower queuing delays. Furthermore, researchers also
proposed to co-design the codec and network [35, 34, 79, 75] or
even redesign new decoding ASICs [90]. These cannot be acceler-
ated with commercial hardware and are hard to deploy in practice.
Adaptive Bit-rate Control. There have already been a series
of research efforts on the optimization of low-latency streaming.
Different congestion control [78, 83, 25] or rate adaption
algorithms [87, 84] have been proposed to enable the low-latency
transport for real-time communications. However, as we
discussed above, changing the bit rate without changing the
frame rate will not alleviate the load of the decoder queue. Since
bit-rate and frame-rate are independent in video streaming,
bit-rate adaption is orthogonal to frame-rate adaption and could
be integrated with AFR to control the network delay and queuing
delay together.
Cloud gaming. As a recently emerging application, cloud gam-
ing also attracts the attention of researchers. Researches include
the optimization of the renderer [23, 52, 27] and streaming
codec [72], which are independent of the optimization at the trans-
port level. There are also investigations on the user experience
of cloud gaming [81, 71, 28], which could be integrated with our
work by better customizing the optimization goal. Recent efforts
also try to investigate the performance of production-level cloud
gaming services from the client side [26], which are limited in
scale and completeness. To the best of our knowledge, we are
also the first piece of work to investigate the performance of
production-level cloud gaming services from the server side,
with the scale of tens of thousands of hours of playtime.

9 Conclusion
In this paper, we propose AFR to reduce the queuing delay of the
decoder queue for high-quality RTC by dynamically adjusting the
frame rate. AFR introduces a stationary controller and a transient
controller to respectively mitigate the stationary heavy traffic and
contingent arrivals and services. We further evaluate the perfor-
mance of AFR with trace-driven simulations and deployments
in the production clusters. Experiments demonstrate that AFR
could significantly reduce the stuttering ratio and tail total delay.

This work does not raise any ethical issues.
Acknowledgements. We sincerely thank our shepherd Ky-
oungSoo Park, anonymous reviewers, and labmates in the
Routing Group from Tsinghua University for their valuable
feedback. This work is sponsored by the National Natural
Science Foundation of China (No. 62002196, 61832013, and
62221003) and the Tsinghua-Tencent Collaborative Grant. Bo
Wang and Mingwei Xu are the corresponding authors.

1440 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Cloud gaming (beta) with xbox game pass — xbox.

https://www.xbox.com/en-US/xbox-game-pass/

cloud-gaming, 2020.

[2] Peak signal-to-noise ratio - wikipedia. https://en.wik

ipedia.org/wiki/Peak_signal-to-noise_ratio,
2020.

[3] Stadia - one place for all the ways we play.
https://stadia.google.com/, 2020.

[4] Start - tencent cloud gaming. https://start.qq.com/,
2020.

[5] Your games. your devices. play anywhere — nvidia geforce
now. https://www.nvidia.com/en-us/geforce-n

ow/, 2020.

[6] Facebook 360 video. https://facebook360.fb.com/,
2021.

[7] Google meet and default video resolution - google meet
community. https://support.google.com/meet/

thread/58039897/google-meet-and-default-vid

eo-resolution, 2021.

[8] Huawei video conferencing platform — huawei enterprise.
https://e.huawei.com/en/solutions/enterpri

se-collaboration/videoconferencing-platform,
2021.

[9] Meeting and phone statistics – zoom help center.
https://support.zoom.us/hc/en-us/articles

/202920719-Meeting-and-phone-statistics,
2021.

[10] Trtx 2080 ti vs rtx 3080 ti game performance benchmarks
(i7-8700k vs core i9-10900k) - gpucheck united states /
usa. https://www.gpucheck.com/compare/nvidi

a-geforce-rtx-2080-ti-vs-nvidia-geforce-rtx

-3080-ti/, 2021.

[11] Vr-interactive – we are interactive. https:

//vr-interactive.at/, 2021.

[12] Youtube vr - home - youtube vr. https:

//vr.youtube.com/, 2021.

[13] Gfxbench - unified graphics benchmark based on
dxbenchmark (directx) and glbenchmark (opengl es).
https://gfxbench.com/result.jsp, 2022.

[14] multithreading - pin processor cpu isolation on windows
- stack overflow. https://stackoverflow.com/ques

tions/15324586/pin-processor-cpu-isolation

-on-windows, 2022.

[15] Processor benchmarks - geekbench browser. https://

browser.geekbench.com/processor-benchmarks/,
2022.

[16] Venkat Arun and Hari Balakrishnan. Copa: Practical
delay-based congestion control for the internet. In Proc.
USENIX NSDI, 2018.

[17] Salahuddin Azad, Wei Song, and Dian Tjondronegoro.
Bitrate modeling of scalable videos using quantization
parameter, frame rate and spatial resolution. In Proc. IEEE
ICASSP, pages 2334–2337, 2010.

[18] Richard Bellman and Robert Kalaba. On adaptive control
processes. IRE Transactions on Automatic Control,
4(2):1–9, 1959.

[19] Ankita Bhutani and Preeti Wadhwani. Cloud gaming
market share forecast 2025 — industry size report.
https://www.gminsights.com/industry-analysi

s/cloud-gaming-market, 2020.

[20] Karl Bridge and Michael Satran. Multitasking - win32 apps
— microsoft docs. https://docs.microsoft.com/e

n-us/windows/win32/procthread/multitasking,
2018.

[21] James Bruce, Marta Mrak, and Rajitha Weer-
akkody. Testing av1 and vvc - bbc r&d.
https://www.bbc.co.uk/rd/blog/2019-05-a

v1-codec-streaming-processing-hevc-vvc, 2019.

[22] Alan Bryman and Duncan Cramer. Quantitative data
analysis with IBM SPSS 17, 18 & 19: A guide for social
scientists. Routledge, 2012.

[23] James Bulman and Peter Garraghan. A cloud gaming
framework for dynamic graphical rendering towards
achieving distributed game engines. In Proc. USENIX
HotCloud, 2020.

[24] Ronald S. Bultje. The world’s fastest vp9 decoder: ffvp9.
https://blogs.gnome.org/rbultje/2014/02/22/

the-worlds-fastest-vp9-decoder-ffvp9/, 2014.

[25] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Save-
rio Mascolo. Congestion control for web real-time commu-
nication. IEEE/ACM Transactions on Networking, 2017.

[26] Marc Carrascosa and Boris Bellalta. Cloud-gaming:
Analysis of google stadia traffic. arXiv:2009.09786, 2020.

[27] Hao Chen, Xu Zhang, Yiling Xu, Ju Ren, Jingtao Fan,
Zhan Ma, and Wenjun Zhang. T-gaming: A cost-efficient
cloud gaming system at scale. IEEE Transactions on
Parallel and Distributed Systems, 2019.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1441

https://www.xbox.com/en-US/xbox-game-pass/cloud-gaming
https://www.xbox.com/en-US/xbox-game-pass/cloud-gaming
https://www.xbox.com/en-US/xbox-game-pass/cloud-gaming
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://stadia.google.com/
https://stadia.google.com/
https://start.qq.com/
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/geforce-now/
https://facebook360.fb.com/
https://support.google.com/meet/thread/58039897/google-meet-and-default-video-resolution
https://support.google.com/meet/thread/58039897/google-meet-and-default-video-resolution
https://support.google.com/meet/thread/58039897/google-meet-and-default-video-resolution
https://e.huawei.com/en/solutions/enterprise-collaboration/videoconferencing-platform
https://e.huawei.com/en/solutions/enterprise-collaboration/videoconferencing-platform
https://support.zoom.us/hc/en-us/articles/202920719-Meeting-and-phone-statistics
https://support.zoom.us/hc/en-us/articles/202920719-Meeting-and-phone-statistics
https://support.zoom.us/hc/en-us/articles/202920719-Meeting-and-phone-statistics
https://www.gpucheck.com/compare/nvidia-geforce-rtx-2080-ti-vs-nvidia-geforce-rtx-3080-ti/
https://www.gpucheck.com/compare/nvidia-geforce-rtx-2080-ti-vs-nvidia-geforce-rtx-3080-ti/
https://www.gpucheck.com/compare/nvidia-geforce-rtx-2080-ti-vs-nvidia-geforce-rtx-3080-ti/
https://vr-interactive.at/
https://vr-interactive.at/
https://vr.youtube.com/
https://vr.youtube.com/
https://gfxbench.com/result.jsp
https://gfxbench.com/result.jsp
https://stackoverflow.com/questions/15324586/pin-processor-cpu-isolation-on-windows
https://stackoverflow.com/questions/15324586/pin-processor-cpu-isolation-on-windows
https://stackoverflow.com/questions/15324586/pin-processor-cpu-isolation-on-windows
https://browser.geekbench.com/processor-benchmarks/
https://browser.geekbench.com/processor-benchmarks/
https://www.gminsights.com/industry-analysis/cloud-gaming-market
https://www.gminsights.com/industry-analysis/cloud-gaming-market
https://www.gminsights.com/industry-analysis/cloud-gaming-market
https://docs.microsoft.com/en-us/windows/win32/procthread/multitasking
https://docs.microsoft.com/en-us/windows/win32/procthread/multitasking
https://www.bbc.co.uk/rd/blog/2019-05-av1-codec-streaming-processing-hevc-vvc
https://www.bbc.co.uk/rd/blog/2019-05-av1-codec-streaming-processing-hevc-vvc
https://www.bbc.co.uk/rd/blog/2019-05-av1-codec-streaming-processing-hevc-vvc
https://blogs.gnome.org/rbultje/2014/02/22/the-worlds-fastest-vp9-decoder-ffvp9/
https://blogs.gnome.org/rbultje/2014/02/22/the-worlds-fastest-vp9-decoder-ffvp9/

[28] Kuan-Ta Chen, Yu-Chun Chang, Hwai-Jung Hsu, De-Yu
Chen, Chun-Ying Huang, and Cheng-Hsin Hsu. On
the quality of service of cloud gaming systems. IEEE
Transactions on Multimedia, 2013.

[29] Yushin Cho, William A Pearlman, and Amir Said. Low
complexity resolution progressive image coding algorithm:
progres (progressive resolution decompression). In Proc.
IEEE ICIP, 2005.

[30] Tzu-Der Chuang, Pei-Kuei Tsung, Pin-Chih Lin, Lo-Mei
Chang, Tsung-Chuan Ma, Yi-Hau Chen, and Liang-Gee
Chen. A 59.5 mw scalable/multi-view video decoder chip
for quad/3d full hdtv and video streaming applications. In
Proc. IEEE ISSCC, pages 330–331, 2010.

[31] Harald Cramér. Mathematical methods of statistics, 1946.
Department of Mathematical SU, 1946.

[32] Robert G. Gallager Dimitri P. Bertsekas. Section 3.3: The
m/m/1 queuing system. In Data Networks (2nd Edition),
1992.

[33] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica,
Dilip Joseph, Aditya Ganjam, Jibin Zhan, and Hui
Zhang. Understanding the impact of video quality on user
engagement. In Proc. ACM SIGCOMM, 2011.

[34] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu,
Riad S Wahby, and Keith Winstein. Salsify: Low-latency
network video through tighter integration between a video
codec and a transport protocol. In Proc. USENIX NSDI,
2018.

[35] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-latency
video processing using thousands of tiny threads. In Proc.
USENIX NSDI, 2017.

[36] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Moham-
mad Alizadeh, and Hari Balakrishnan. Abc: A simple
explicit congestion controller for wireless networks. In
Proc. USENIX NSDI, 2020.

[37] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming
Guo, and Junchen Jiang. Pano: Optimizing 360 video
streaming with a better understanding of quality perception.
In Proc. ACM SIGCOMM. 2019.

[38] Jefferson Han and Brian Smith. Cu-seeme vr immersive
desktop teleconferencing. In Proc. ACM Multimedia, pages
199–207, 1997.

[39] Refael Hassin and Moshe Haviv. To queue or not to queue:
Equilibrium behavior in queueing systems, volume 59.
Springer Science & Business Media, 2003.

[40] Petr Holub, Jiř́ı Matela, Martin Pulec, and Martin Šrom.
Ultragrid: low-latency high-quality video transmissions on
commodity hardware. In Proc. ACM Multimedia, 2012.

[41] Chun-Ying Huang, Cheng-Hsin Hsu, Yu-Chun Chang, and
Kuan-Ta Chen. Gaminganywhere: an open cloud gaming
system. In Proc. ACM MMSys, 2013.

[42] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew
Trunnell, and Mark Watson. A buffer-based approach to
rate adaptation: Evidence from a large video streaming
service. In Proc. ACM SIGCOMM, 2014.

[43] Zenja Ivkovic, Ian Stavness, Carl Gutwin, and Steven
Sutcliffe. Quantifying and mitigating the negative effects
of local latencies on aiming in 3d shooter games. In Proc.
ACM CHI, pages 135–144, 2015.

[44] Van Jacobson. Congestion avoidance and control. In Proc.
ACM SIGCOMM, 1988.

[45] JFC Kingman and MF Atiyah. The single server queue
in heavy traffic. Oper. Manage., Critical Perspect. Bus.
Manage, 2003.

[46] Marwan Krunz and Herman Hughes. A traffic for mpeg-
coded vbr streams. In Proc. ACM SIGMETRICS, 1995.

[47] Ana Kuzmanic and Vlasta Zanchi. Hand shape classi-
fication using dtw and lcss as similarity measures for
vision-based gesture recognition system. In EUROCON
2007-The International Conference on” Computer as a
Tool”, pages 264–269. IEEE, 2007.

[48] Yun Gu Lee and Byung Cheol Song. An intra-frame rate
control algorithm for ultralow delay h. 264/advanced video
coding (avc). IEEE Transactions on Circuits and Systems
for Video Technology, pages 747–752, 2009.

[49] Tong Li, Kai Zheng, Ke Xu, Rahul Arvind Jadhav,
Tao Xiong, Keith Winstein, and Kun Tan. Tack:
Improving wireless transport performance by taming
acknowledgments. In Proc. ACM SIGCOMM, 2020.

[50] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang,
Fei Feng, Lingbo Tang, Zheng Cao, Ming Zhang, Frank
Kelly, Mohammad Alizadeh, et al. Hpcc: High precision
congestion control. In Proc. ACM SIGCOMM, 2019.

[51] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moor-
thy, and Megha Manohara. Toward a practical perceptual
video quality metric — netflix techblog. https://netf

lixtechblog.com/toward-a-practical-percept

ual-video-quality-metric-653f208b9652, 2016.

[52] Xiaofei Liao, Li Lin, Guang Tan, Hai Jin, Xiaobin Yang,
Wei Zhang, and Bo Li. Liverender: A cloud gaming system
based on compressed graphics streaming. IEEE/ACM
Transactions on Networking, 2016.

1442 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652

[53] CC Lin, JI Guo, HC Chang, YC Yang, JW Chen, MC Tsai,
and JS Wang. A 160kgate 4.5 kb skram h. 264 video
decoder for hdtv applications. In Proc. IEEE ISSCC, pages
1596–1605, 2006.

[54] Candice Liu. Hardware decoding vs software
decoding in 4k h264/h265 video. https:

//www.macxdvd.com/mac-video-converter-pro/h

ardware-decoding-4k-ultra-hd-video.htm, 2020.

[55] Andrea Lottarini, Alex Ramirez, Joel Coburn, Martha A
Kim, Parthasarathy Ranganathan, Daniel Stodolsky, and
Mark Wachsler. vbench: Benchmarking video transcoding
in the cloud. In Proc. ASPLOS, pages 797–809, 2018.

[56] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine
Sherry, Hongqiang Harry Liu, and Mingwei Xu. Achieving
Consistent Low Latency for Wireless Real Time Commu-
nications with the Shortest Control Loop. In Proc. ACM
SIGCOMM, 2022.

[57] China Mobile and ZTE. Powered by sa: 5g mec-based
cloud game innovation practice. GSMA 5G Case Studies (
https://www.gsma.com/futurenetworks/wp-conte

nt/uploads/2020/03/Powered-by-SA-5G-MEC-Bas

ed-Cloud-Game-Innovation-Practice-.pdf), 2020.

[58] Omar Mossad, Khaled Diab, Ihab Amer, and Mohamed
Hefeeda. Deepgame: Efficient video encoding for cloud
gaming. In Proc. ACM Multimedia, 2021.

[59] Vit Niennattrakul and Chotirat Ann Ratanamahatana. On
clustering multimedia time series data using k-means and
dynamic time warping. In 2007 International Conference
on Multimedia and Ubiquitous Engineering (MUE’07),
pages 733–738. IEEE, 2007.

[60] Ilya Nikolaevskiy. Refactor framebuffer to store decoded
frames history separately (i82be0eb3) · gerrit code review.
https://webrtc-review.googlesource.com/c/s

rc/+/116686, 2019.

[61] OPG609. List of 60fps games playable on ps5.
https://www.reddit.com/r/PS5/comments/kiuh2t

/list_of_60fps_games_playable_on_ps5/, 2020.

[62] Adrian Pennington. So you say you’re plan-
ning a 16k live stream... - nab amplify.
https://amplify.nabshow.com/articles/so-you

-say-youre-planning-a-16k-live-stream/, 2022.

[63] Stefano Petrangeli, Viswanathan Swaminathan, Moham-
mad Hosseini, and Filip De Turck. An http/2-based
adaptive streaming framework for 360 virtual reality videos.
In Proc. ACM Multimedia, 2017.

[64] Alok Prakash, Hussam Amrouch, Muhammad Shafique,
Tulika Mitra, and Jörg Henkel. Improving mobile gaming

performance through cooperative cpu-gpu thermal man-
agement. In Proc. ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6, 2016.

[65] Friedrich Pukelsheim. The three sigma rule. The American
Statistician, 1994.

[66] Elizabeth Ross, John Parente, Mike Jacobs, David Kuehn,
John Baldwin, Corey Plett, Brock Mammen, and Liza
Poggemeyer. typeperf — microsoft docs. https:

//docs.microsoft.com/en-us/windows-server/ad

ministration/windows-commands/typeperf, 2017.

[67] Saeed Shafiee Sabet, Steven Schmidt, Saman Zadtootaghaj,
Babak Naderi, Carsten Griwodz, and Sebastian Möller.
A latency compensation technique based on game
characteristics to mitigate the influence of delay on cloud
gaming quality of experience. In Proceedings of the 11th
ACM Multimedia Systems Conference, pages 15–25, 2020.

[68] Matt Sargent, Jerry Chu, Dr. Vern Paxson, and Mark
Allman. Computing TCP’s Retransmission Timer. IETF
RFC 6298.

[69] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.
Overview of the scalable video coding extension of the
h. 264/avc standard. IEEE Transactions on circuits and
systems for video technology, 2007.

[70] Arun Kumar Sharma. Text book of correlations and
regression. Discovery Publishing House, 2005.

[71] Ivan Slivar, Lea Skorin-Kapov, and Mirko Suznjevic.
Cloud gaming qoe models for deriving video encoding
adaptation strategies. In Proc. ACM MMSys, 2016.

[72] Ivan Slivar, Mirko Suznjevic, and Lea Skorin-Kapov. The
impact of video encoding parameters and game type on qoe
for cloud gaming: A case study using the steam platform.
In Proc. IEEE International Conference on Quality of
Multimedia Experience (QoMEX), 2015.

[73] James Stringer. Pushing it to the limit – parsec at 240
frames per second with approximately 4-8 milliseconds of
... — parsec. https://parsec.app/blog/parsec-g

ame-streaming-total-latency-at-240-frames-p

er-second-c0818cc0daa5, 2022.

[74] Zhaowei Tan, Yuanjie Li, Qianru Li, Zhehui Zhang, Zhehan
Li, and Songwu Lu. Supporting mobile vr in lte networks:
How close are we? Proc. ACM SIGMETRICS, 2018.

[75] Tingfeng Wang, Zili Meng, Mingwei Xu, Rui Han, and
Honghao Liu. Enabling high frame-rate uhd real-time
communication with frame-skipping. In Proc. ACM
Workshop on Hot Topics in Video Analytics and Intelligent
Edges, 2021.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1443

https://www.macxdvd.com/mac-video-converter-pro/hardware-decoding-4k-ultra-hd-video.htm
https://www.macxdvd.com/mac-video-converter-pro/hardware-decoding-4k-ultra-hd-video.htm
https://www.macxdvd.com/mac-video-converter-pro/hardware-decoding-4k-ultra-hd-video.htm
https://www.gsma.com/futurenetworks/wp-content/uploads/2020/03/Powered-by-SA-5G-MEC-Based-Cloud-Game-Innovation-Practice-.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2020/03/Powered-by-SA-5G-MEC-Based-Cloud-Game-Innovation-Practice-.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2020/03/Powered-by-SA-5G-MEC-Based-Cloud-Game-Innovation-Practice-.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2020/03/Powered-by-SA-5G-MEC-Based-Cloud-Game-Innovation-Practice-.pdf
https://webrtc-review.googlesource.com/c/src/+/116686
https://webrtc-review.googlesource.com/c/src/+/116686
https://www.reddit.com/r/PS5/comments/kiuh2t/list_of_60fps_games_playable_on_ps5/
https://www.reddit.com/r/PS5/comments/kiuh2t/list_of_60fps_games_playable_on_ps5/
https://www.reddit.com/r/PS5/comments/kiuh2t/list_of_60fps_games_playable_on_ps5/
https://amplify.nabshow.com/articles/so-you-say-youre-planning-a-16k-live-stream/
https://amplify.nabshow.com/articles/so-you-say-youre-planning-a-16k-live-stream/
https://amplify.nabshow.com/articles/so-you-say-youre-planning-a-16k-live-stream/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/typeperf
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/typeperf
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/typeperf
https://parsec.app/blog/parsec-game-streaming-total-latency-at-240-frames-per-second-c0818cc0daa5
https://parsec.app/blog/parsec-game-streaming-total-latency-at-240-frames-per-second-c0818cc0daa5
https://parsec.app/blog/parsec-game-streaming-total-latency-at-240-frames-per-second-c0818cc0daa5

[76] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibility
to structural similarity. IEEE Transactions on Image
Processing, 2004.

[77] Keith Winstein and Hari Balakrishnan. Mosh: An
interactive remote shell for mobile clients. In Proc.
USENIX ATC, 2012.

[78] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan.
Stochastic forecasts achieve high throughput and low delay
over cellular networks. In Proc. USENIX NSDI, 2013.

[79] Jiyan Wu, Chau Yuen, Ngai-Man Cheung, Junliang Chen,
and Chang Wen Chen. Enabling adaptive high-frame-rate
video streaming in mobile cloud gaming applications.
IEEE Transactions on Circuits and Systems for Video
Technology, 2015.

[80] Gang Yi, Dan Yang, Abdelhak Bentaleb, Weihua Li, Yi Li,
Kai Zheng, Jiangchuan Liu, Wei Tsang Ooi, and Yong Cui.
The acm multimedia 2019 live video streaming grand chal-
lenge. In Proc. ACM Multimedia, pages 2622–2626, 2019.

[81] Saman Zadtootaghaj, Steven Schmidt, and Sebastian
Möller. Modeling gaming qoe: Towards the impact
of frame rate and bit rate on cloud gaming. In Proc.
IEEE International Conference on Quality of Multimedia
Experience (QoMEX), 2018.

[82] Saman Zadtootaghaj, Steven Schmidt, Saeed Shafiee
Sabet, Sebastian Möller, and Carsten Griwodz. Quality
estimation models for gaming video streaming services
using perceptual video quality dimensions. In Proc. ACM
Multimedia Systems Conference (MMSys), 2020.

[83] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan
Subramanian, and Carmelita Görg. Adaptive congestion
control for unpredictable cellular networks. In Proc. ACM
SIGCOMM, 2015.

[84] Huanhuan Zhang, Anfu Zhou, Jiamin Lu, Ruoxuan Ma,
Yuhan Hu, Cong Li, Xinyu Zhang, Huadong Ma, and Xiao-
jiang Chen. Onrl: improving mobile video telephony via on-
line reinforcement learning. In Proc. ACM MobiCom, 2020.

[85] Wenxiao Zhang, Feng Qian, Bo Han, and Pan Hui. Deep-
vista: 16k panoramic cinema on your mobile device. In Pro-
ceedings of the Web Conference, pages 2232–2244, 2021.

[86] Xu Zhang, Hao Chen, Yangchao Zhao, Zhan Ma, Yiling
Xu, Haojun Huang, Hao Yin, and Dapeng Oliver Wu.
Improving cloud gaming experience through mobile edge
computing. IEEE Wireless Communications, 2019.

[87] Anfu Zhou, Huanhuan Zhang, Guangyuan Su, Leilei Wu,
Ruoxuan Ma, Zhen Meng, Xinyu Zhang, Xiufeng Xie,
Huadong Ma, and Xiaojiang Chen. Learning to coordinate

video codec with transport protocol for mobile video
telephony. In Proc. ACM MobiCom, 2019.

[88] Chao Zhou, Mengbai Xiao, and Yao Liu. Clustile: Toward
minimizing bandwidth in 360-degree video streaming. In
Proc. IEEE INFOCOM, 2018.

[89] Dajiang Zhou, Shihao Wang, Heming Sun, Jianbin Zhou,
Jiayi Zhu, Yijin Zhao, Jinjia Zhou, Shuping Zhang, Shinji
Kimura, Takeshi Yoshimura, et al. An 8k h. 265/hevc video
decoder chip with a new system pipeline design. IEEE
Journal of Solid-State Circuits, 52(1):113–126, 2017.

[90] Dajiang Zhou, Jinjia Zhou, Xun He, Jiayi Zhu, Ji Kong,
Peilin Liu, and Satoshi Goto. A 530 mpixels/s 4096x2160@
60fps h. 264/avc high profile video decoder chip. IEEE
Journal of Solid-State Circuits, 46(4):777–788, 2011.

[91] Dajiang Zhou, Jinjia Zhou, Jiayi Zhu, Peilin Liu, and
Satoshi Goto. A 2gpixel/s h. 264/avc hp/mvc video decoder
chip for super hi-vision and 3dtv/ftv applications. In Proc.
IEEE International Solid-State Circuits Conference, pages
224–226, 2012.

Appendices
A Potential Solutions and Concerns
In this section, we discuss why other potential solutions are
insufficient to address the problem in this paper, and discuss
other concerns of adapting the frame rate during runtime.

A.1 Potential Solutions
Discarding frames or adjusting resolutions. For most widely
adopted codecs, dropping one frame or changing the resolution
will make the following frames fail to recover the raw pixels of
the block because they are differentially encoded by the motion
vector to the previous one2. This is to utilize the redundant
information between frames to reduce the bitrate of the stream.
Since key frames do not rely on previous frames, they are usually
much larger than other predictive frames (sometimes 10×) [46].
Therefore, given the same bottleneck bandwidth, sending a frame
with 10× larger size will take approximately 10× time (tens to
hundreds of milliseconds), which drastically increases the delay
for the users. Moreover, frequently requesting key frames will
degrade the goodput of the streaming and potentially increase
the congestion in the network. Therefore, directly dropping
delayed frames at the client or frequently changing the resolution
will introduce stalls for the subsequent frames and degrade the
users’ experiences of high-quality RTC.

Adjusting the bit-rate. Without changing the resolution and
frame rate, adjusting the bit rate has a very limited effect in reduc-
ing the decoding delay. Generally speaking, resolution, bit rate,
and frame rate could be independently set. The display resolution
describes the number of distinct pixels in each dimension that

2Recent advances on scalable video coding could partially break the
inter-frame dependency, yet degrades video quality with the same bit-rate [69].

1444 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

can be displayed, and the frame rate represents the number of
pictures within one second of video. And the bit rate represents
the amount of data used for storing the coded bit-stream. So the
higher resolution we set, the more pixels a single picture will have,
which could mean a higher definition of the video. And setting
a higher frame rate means there will be more pictures per video
second to make the video smoother. If we set a higher target bit-
rate while keeping other parameters unchanged, the encoder can
use more data to represent the pictures to achieve lower possible
image distortion with a lower quantization parameter [17].

In this case, with the unchanged frame rate and resolution,
the decoding procedure is also unaffected. For example, in
H.264/AVC, a sequence of macroblocks can be composed
of a slice, a picture, therefore, is a collection of one or more
slices. Slices are completely independent of each other, and
the macroblocks inside a video frame can be reconstructed
in parallel. The video decoding has been parallelized using
slice-level or block-level parallelism. The resolution will affect
how many pixels there are in one frame, and the frame rate
determines the tolerable decoding delay for each frame. The
parallelized decoder is not significantly affected by the precision
of each pixel. We further measure the decoding performance
with different bitrates in production in Appendix B.4.

Preset the frame rate and resolution based on client types. An
alternative to AFR is that the application checks whether the hard-
ware could reliably decode the video at a certain resolution and
frame rate at initialization. This, however, would lead to underuti-
lization on the client side. The decoding capability of hardware
is fluctuating over time due to various reasons. For example, we
measure the distribution of decoding delay of each user session
in Appendix B.5. One-fourth of users will have at least 1‰ time
of a long decoding delay of >18ms, which could result in severe
queuing delay, as we illustrated in Figure 6. In this case, if we set
the resolution and frame rate based on this tail metric, users will
have a much lower resolution and frame rate during most of the
time. Therefore, we need to control the frame rate in the runtime
to dynamically adapt to the network and decoder dynamics.

Allocating the application with dedicated resources. Another
seemingly feasible solution is to bind the application to a certain
CPU core or GPU core to avoid the potential fluctuations caused
by scheduling. However, we do not have such privileged control
on client devices. As a user space application, the controllability
over the user’s system is limited. Even if an expert user pins the
application to a certain core, for commercial systems such as Win-
dows, pinning does not indicate isolating the core for that applica-
tion only [14]. The system can only ensure the pinned application
to run on that core, but could also schedule other processes if still
available. Moreover, since our application is not CPU-intensive
most of the time, there would usually be idle resources on the
same core where the user binds the application to. Therefore,
there could still be the same issue of latency increases at tail.

CPU Release date Score Portion
Intel® CoreTM i5-4590 Q2 2014 868 1.66%

Intel® CoreTM i5-7200U Q4 2016 481 1.61%
Intel® CoreTM i5-9400F Q1 2019 1058 1.56%
Intel® CoreTM i5-4460 Q2 2014 801 1.41%

Intel® CoreTM i5-5200U Q4 2014 573 1.38%

Table 3: Top 5 CPU models of clients in our cloud gaming service.
GPU Release date Score Portion

Intel® UHD Graphics 630 Q3 2017 888 4.54%
Intel® HD Graphics 4600 Q2 2013 474 3.42%

Nvidia GeForce GTX 1050Ti Q4 2016 5059 3.19%
Intel® HD Graphics 630 Q3 2016 825 2.77%
Nvidia GeForce GT730 Q2 2014 863 2.48%

Table 4: Top 5 GPU models of clients in our cloud gaming service.

A.2 Practical Concerns
Since the frame-rate needs to be adjusted at the server, a
straightforward concern is whether the frame-rate adaption over
the Internet is timely for the stringent delay requirement of
high-quality RTC. The measurements in production have two
following findings. On one hand, the round-trip network delay is
short enough to enable timely feedback: the average round-trip
network delay is around 20ms of our cloud gaming service
(Appendix B.2). Measurements over other high-quality RTC
services (e.g., Google Stadia) have similar results of less than
20ms [26, 57]. On the other hand, the degradation of decoding
delay usually lasts for a long time, with a median duration
of more than 100 milliseconds (Appendix B.5). Moreover,
we also demonstrate that the increase in decoding delay and
network delay is hardly correlated (Appendix B.6). Therefore,
for high-quality RTC, when the decoder fluctuates, it is timely
enough to control the frame rate over the Internet.

B Measurement over Dataset
In this section, we supplement the observations in the main text
with measurements in production. The measurement settings
follow the details in §5.2.

B.1 User Characteristics
In addition to the distribution in §3.1, we present the top-5
models, with their release dates, benchmark scores, and portion
in our users, of CPU and GPU in Table 3 and 4.

B.2 Delay Distributions
Compared to traditional RTC scenarios, the delay distribution
for high-quality RTC has some unique features according to our
measurements. We present the Cumulative distribution function
(CDF) of component delays and the total delay to explore the
delay patterns.

First, due to the edge deployments, the network delay in our
cloud gaming service is quite small. According to Figure 20,
the average round-trip network delay is approximately around
20ms. Even in this case, similar to traditional RTC services, the
network delay is accounted for a large part of the total delay, the
network delay line closely follows the total delay at the median
for all four categories in Figure 20.

However, the tail delay of others component delays like

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1445

0 5 0 1 0 0 1 5 0 2 0 0
0 %

5 0 %

9 0 %

9 9 %1 0 0 %
CD

F

D e l a y (m s)

T o t a l
N e t w o r k
Q u e u i n g
D e c o d i n g

(a) Cat. (1): Windows+Ethernet.

0 5 0 1 0 0 1 5 0 2 0 0
D e l a y (m s)

T o t a l
N e t w o r k
Q u e u i n g
D e c o d i n g

(b) Cat. (2): Windows+WiFi.

0 5 0 1 0 0 1 5 0 2 0 0
0 %

5 0 %

9 0 %

9 9 %1 0 0 %

CD
F

D e l a y (m s)

T o t a l
N e t w o r k
Q u e u i n g
D e c o d i n g

(c) Cat. (3): MacOS+Ethernet.

0 5 0 1 0 0 1 5 0 2 0 0
D e l a y (m s)

T o t a l
N e t w o r k
Q u e u i n g
D e c o d i n g

(d) Cat. (4): MacOS+WiFi.

Figure 20: Raw measurements of delays from production.

decoding delay and queuing delay are noticeable under cloud
gaming scenarios. For the decoding delay, we can notice that the
decoding delay for 1080p frames is 18ms at the 99th percentile.
Note that the decoder of all sessions evaluated in this paper
has been hardware-accelerated. Therefore, as analyzed in §3.1,
the queuing delay is becoming noticeable at the tail. Referring
to Figure 20, the 99th percentile of queuing delay can reach
50ms under categories (2) and (4), which could degrade users’
experience for high-quality RTC services. We further present
the root cause analysis below in Appendix B.3.

B.3 Root Cause Analysis
The total delay is mainly contributed by the network delay,
decoding delay, and queuing delay §3. Therefore, we want to
investigate how these three components contribute to the increase
in total delay at the tail. For each frame, we denote T as total
delay and C as component delay, where the component delay
could be the network, decoding, or queuing delay.

To analyze the necessity and sufficiency of the component
delay increasing to the total delay at the tail, we then calculate
two conditional probabilities between the event of T longer than
a certain threshold Tth, and the event of C longer than a certain
threshold Cth:
• P(C>Cth|T >Tth). We want to account for how component

delay increasing contributes to total delay under different
delayed degrees Tth, and this conditional probability is subject
to quantify it. If this conditional probability is close to one,
there will be great confidence to blame the component delay
for contributing Cth delay to the total delay to reaching Tth.

• P(T > Tth|C >Cth). As the sum of component delays, the
total delay should increase when one of the component delays
increases. This conditional probability is subject to illustrate
this assumption and indicates the probability of total delay
reaching the Tth under different component delay increasing
degree Cth.
We calculate the conditional probabilities for three components

for different Cth and Tth, and have the following observations.

5 0 %
7 5 %

2 5 %

2 4 8 1 61 6

8

4

2

T t h / E (T)

N th
 / E

(N
)

(a) P(N>Nth|T >Tth).

5 0 %
7 5 %

2 5 %

2 4 8 1 61 6

8

4

2

T t h / E (T)

N th
 / E

(N
)

0 %
2 5 %
5 0 %
7 5 %
1 0 0 %

(b) P(T >Tth|N>Nth).

5 0 %

2 5 %
2 4 8 1 66 4

3 2
1 6
8
4
2

T t h / E (T)

Q th
 / E

(Q
)

(c) P(Q>Qth|T >Tth).

5 0 %
2 5 %

7 5 %

2 4 8 1 66 4
3 2
1 6
8
4
2

T t h / E (T)

Q th
 / E

(Q
)

0 %
2 5 %
5 0 %
7 5 %
1 0 0 %

(d) P(T >Tth|Q>Qth).

5 0 % 2 5 %

2 4 8 1 63 2
1 6
8
4
2

T t h / E (T)
D th

 / E
(D

)
(e) P(D>Dth|T >Tth).

2 5 %5 0 %7 5 %

2 4 8 1 63 2
1 6
8
4
2

T t h / E (T)

D th
 / E

(D
)

0 %
2 5 %
5 0 %
7 5 %
1 0 0 %

(f) P(T >Tth|D>Dth).

Figure 21: The heatmap of conditional probabilities for wired
connections. The horizontal and vertical axes have been normalized
by their average values. The star point’s value is recorded in table 5
The down-left corner is 100% since the total delay should always be
larger than the component delay.

Network Queuing Decoding
P(C>Cth|T >Tth) 44.7% 56.6% 4.0%
P(T >Tth|C>Cth) 29.8% 69.5% 84.2%

Table 5: Conditional probabilities with Tth = 100ms and Cth = 50ms
for wired connections, which accounts for 82% of total users of our
cloud gaming service.

Total delay increasing is a reflection of components delay
increases. As the sum of the different types of components
delay, It’s obvious that no matter what kind of component delay
is increasing, the total delay will also increase.

So to find out the sufficiency of total delay increasing, we
calculate the conditional probability of P(T > Tth|C >Cth) in
right-side of Figure 21. We can notice that for all the component
delays, their delay increasing can also mean a higher probability
of total delay increasing (75%ile line in the figure is shifting to
the right with the component delay increasing). The down-left
corner is 100%, because as the sum of all types of component
delay, the total delay must be larger than any component delay.

Queuing delay is responsible for delay increases of >100ms.
To figure out the necessity of total delay increasing, we calculate
the conditional probability of P(C > Cth|T > Tth) in left-side
of Figure 21. Our major finding is that with the different
order of severity of total delay increasing (2-16× of E(T),
the root cause of it is also changing. As we can see, when
Tth is larger than 8E(T), network delay has a high probability

1446 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 0 1 0 0 1 5 0 2 0 01 0 0
8 0
6 0
4 0
2 0
0

F r a m e S i z e (K B)

De
co

din
g D

ela
y (

ms
)

1 0 - 6
1 0 - 5
1 0 - 4
1 0 - 3
1 0 - 2
1 0 - 1
1 0 0F r e q .

(a) Frequency heatmap.

(b) Decoding delay CDF.

- 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4
0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %
CD

F

P e a r s o n ' s r

C a t . (1)
C a t . (2)
C a t . (3)
C a t . (4)

(c) Correlation coefficient CDF.

Figure 22: The correlation between the frame size and decoding delay
for hardware decoders.

(shaded red) to be blamed. However, when Tth is from 3E(T)
to 8E(T), queuing delay dominates the most increased events.
It illustrates that the queuing delay is responsible for the increase
of total delay by around 100ms. Specifically, we present the
conditional probabilities for three components with Tth=100ms
and Cth = 50ms for wired connections in Table 5. As we can
see, queuing delay has both high P(C|T) and P(T |C). Indicating
that the total delay has a great possibility of reaching 100ms
when queuing delay increases to 50ms. And for those video
frames that total delay truly getting the 100ms, there will be
great confidence to blame the queuing delay for contributing to
the majority of delay increasing. So the queuing delay will be
the root cause of the increase of total delay to 100ms.

B.4 Decoding Performance
In this section, we explain the reasons behind the ineffectiveness
of controlling the service process for eliminating queuing time
by adjusting the bit rate. The decoding time of decoders mainly
depends on the resolution of the streaming. However, due to
the dependency between frames, changing the resolution during
the streaming will make the subsequent frames undecodeable
and needs to request a new key frame for most codecs [29].
Yet, since the frame size of key frames is usually several times
ofthose of other frames [46], frequently requesting key frames
will impose additional overhead on the network and degrade the
users’ experiences.

Another straightforward solution is to try to accelerate the
service process by reducing the bit rate while maintaining the
same resolution. With the same resolution and frame-rate options,
reducing the bit rate means lesser video data per video frame can
carry. We are to investigate whether sending video frames with
smaller data sizes is helpful for decoding acceleration. However,
according to our measurements on the H.264 decoder, merely
changing the bit rate does not significantly reduce the decoding
time.

1 1 0 1 0 0
0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

CD
F

D u r a t i o n (f r a m e)
(a) Decoder degradation dura-
tion.

1 0 - 6 1 0 - 4 1 0 - 2 1 0 00 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

CD
F

R a t i o o f f r a m e s i n a s e s s i o n

> 6 m s
> 1 2 m s
> 1 8 m s
> 2 4 m s
> 3 0 m s

(b) Frames with long decoding delay

Figure 23: Decoder degradation when filtered with different thresholds
for decoding delay.

We measure the relationship between the frame size and decod-
ing time of the dataset described in §5.2. We first present the heat
map in Figure 22(a). With the variation of frame size, the distri-
bution of decoding time does not significantly change, where the
decoding time of most frame sizes intensively falls around several
milliseconds, as shown in the red area at the top of the heat map.
To eliminate the frame size variation under the same target bit
rate, we split the frame size into different intervals and present the
cumulative distribution function (CDF) in Figure 22(b). As the
frame size become larger, the [128KB, ∞) the line does not locate
in the rightest area (higher decoding delay). And other frame size
interval’s CDF lines stay together, indicating that the lowering
frame size does not help for the decoding time acceleration.

Moreover, we split the dataset into four different categories
(Table 1), to demonstrate that reducing frame size will not help de-
code acceleration under various platforms. We leverage the Pear-
son correlation coefficient to illustrate the independence, which
value of zero can indicate that there is no association between the
two variables [70]. Figure 22(c) shows that most of the Pearson’s
r value is located around zero, indicating the poor association
between frame size and decoding delay. Therefore, controlling
the service process of encoding bit-rate cannot effectively reduce
the decoding time and alleviate the load of the decoder queue.

B.5 Decoder Degradation
Because the queue overhead will be introduced by the mismatch
of the rate of two sides of the queue [39], if the decoding speed
is not capable of processing the incoming default 60fps, it will
be necessary for AFR to change to a lower target frame rate.
However, since the client and server are located distant, the
frame-rate adjustment request to the server side will need a
control loop to take effect on the client side with the updated
frame rate. So if the AFR control loop is shorter than the decoder
degradation duration, the decoder will be capable of processing a
higher incoming frame rate before the AFR requests take effect.

We measure the duration of the decoder degradation level over
the traces introduced in §5.2. As we can see in Figure 23(a), for
frames with a decoding time of more than 12ms, 50% of them
last for more than 10 frames. Under 60fps streaming, considering
the average of RTT is close to one frame interval of 16.7ms,
and the 90%ile encoder response delay is less than three frames
interval §6.4. In this case, lowering the frame rate will be helpful
for alleviating the decoder queue even under the control loop
delay of AFR. Therefore, AFR is capable of timely adjusting
the frame rate to adapt to the decoder degradation. Moreover, the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1447

(1) (2) (3) (4)- 0 . 1
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4

Pe
ars

on
's r

Co
rre

lat
ed

(1) (2) (3) (4)0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

No
rm

aliz
ed

 DT
W 2 5 % ~ 7 5 %

1 0 % ~ 9 0 %
M e d i a n L i n e
N e t w o r k - D e c o d e
N e t w o r k - Q u e u e
Q u e u e - D e c o d eCo

rre
lat

ed
Figure 24: Pearson’s r (left, higher is more correlated) and normalized
DTW distance (right, lower is more correlated) between delay
components.

1 6 3 2 6 4 1 2 8 2 5 6
6 4
3 2
1 6
8
4

t n e t w o r k t h r e s h o l d (m s)

t de
co

de
 th

res
ho

ld
(m

s)

(a) Network-Decode
(Max: 0.12).

4 8 1 6 3 2 6 4
6 4
3 2
1 6
8
4

t q u e u e t h r e s h o l d (m s)

t de
co

de
 th

res
ho

ld
(m

s)

0 . 00 . 10 . 20 . 30 . 40 . 5
F r e q u e n c y

(b) Queue-Decode (Max:
0.39).

1 6 3 2 6 4 1 2 8 2 5 6
6 4
3 2
1 6
8
4

t n e t w o r k t h r e s h o l d (m s)

t qu
eu

e th
res

ho
ld

(m
s)

(c) Network-Queue (Max:
0.32).

Figure 25: Cramer’s V between different delay components.

AFR can significantly help alleviate the queue overhead under
those frames with a long period of decoder degradation and
sustain queuing time for waiting for overhead queue elimination.

We further measure the ratio of frames with different decoding
delays and present the results in Figure 23(b). Half of the user
sessions suffer from a decoding delay of >12ms for at least 1‰
frames. This also indicates that the degradation of decoding
delay is a general issue among all clients.

B.6 Component Correlation Analysis
The streaming pipeline will be affected by many components,
like the networking, decoding, and queuing delays can both
cause total delay increases to degenerate the user’s experi-
ence Appendix B.3. In this paper, we propose AFR to reduce
the tail queuing delay by matching the arrival rate of the decoder
queue to the service rate (decoding speed). When decoding delay
increases to disable decode frames timely, the AFR will send a
frame-rate adjustment request from the client to the server. How-
ever, the request and subsequent frames need to be transported
through the network. Therefore, a straightforward question is:
does the increase of decoding delay affect the network delay to
put an extra effect on the AFR control loop? We will figure out
this by measuring the independence of those component delays.

We quantify the independence of different component delays
with Pearson’s r value [70], dynamic time warping (DTW) [18],
and Cramer’s v value [31]. In short, all these metrics demonstrate
the poor association between networking and decoding delay,
inclining that we could decouple the network and decoder issues
and independently control them.

Regarding the Pearson correlation coefficient, the value of
zero can indicate that there is no correlation between the two
variables [70]. Figure 24 illustrates that for all four categories
in Table 1, the Pearson’s r value of networking and decoding
are close to zero, indicating a poor correlation between them.

Moreover, the different component delays might be correlated
with each other across frames. For example, the decoding delay

𝑅 𝑛
𝑅 𝑛 + 𝑘

Timeline of traces Timeline in simulator

𝑅 𝑛 + 𝑘 + 1

𝑆 𝑛 = 𝑅 𝑛
𝑆 𝑛 + 𝑘 = 𝑅 𝑛 + 𝑘

𝑆 𝑛 + 𝑘 + 1= 1 − 𝛽 ⋅ 𝑅 𝑛 + 𝑘 + 𝛽+ 𝛽 ⋅ 𝑅(𝑛 + 𝑘 + 𝛽 + 1)
𝑆 𝑛 + 𝑘 + 2= 1 − 2𝛽 ⋅ 𝑅 𝑛 + 𝑘 + 2𝛽+ 2𝛽 ⋅ 𝑅(𝑛 + 𝑘 + 2𝛽 + 1)

𝑅 𝑛 + 𝑘 + 2
𝑅 𝑛 + 𝑘 + 3

Decide to adjust
frame-rate

Control loop
(1RTT)

Adjustment
in effect

……

Slowdown 𝛽 by
interpolation

Figure 26: Illustration of frame-rate adjustment in our simulator.

could affect the subsequent queuing delay by its incapacity
to decode video frames timely. To measure the correlation
across frames, we leverage DTW to calculate the optimal match
between two-time series [18]. The DTW algorithm is widely
used in many scenarios like sign language recognition and time
series clustering [47, 59]. The optimal match calculation under
DTW is denoted by the match with minimal cost, where the
cost is computed as the sum of absolute differences, for each
matched pair of indices, between their values. Therefore, a larger
DTW distance can be considered the mismatch between two
series to a further extent. According to Figure 24, the normalized
DTW distance of network delay to decoding delay under all four
categories is large, showing the lack of correlation between them.

The strength of the relationship can also be assessed by
Cramer’s V value, which is a metric based on the χ2-test but
normalized for different data sizes. It indicates how strongly two
categorical variables are associated [31]. A Cramer’s V value of
⩽0.1 can be interpreted as hardly correlated [22]. According to
our measurement in Figure 25, we can notice that all the Cramer’s
V values of networking and decoding delay are ⩽0.2, illustrating
the weak association between networking and decoding state.
Therefore, according to our measurements before, we can see
the independence between networking and decoding delay.

C Simulator Implementation
In this section, we introduce the implementation of our simulator.
Specifically, traces are recorded in the following format:

R(n)=
[
ts(n),τ(n)net ,τ

(n)
queue,τ

(n)
decode

]
(9)

where ts(n) is the arrival timestamp of the n-th frame, τnet , τqueue,
and τdecode are the round-trip network delay, queuing delay, and
decoding delay of that frame. The simulator reads the traces
frame-by-frame at specific timestamps and measures the current
frame rate based on the interarrival time as §4.2. The simulator
then dequeues the head frame in the decoder queue when the
decoder is available, where the decoding time of each frame is
also read from the trace.

When the adaptive frame-rate decides to set the frame-rate

1448 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(1) (2) (3) (4)0 . 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0

Q-
av

g (
ms

)
D r o p T a i l Q L e n - S Q W a i t - S A F R - Q L e n
A F R - Q W a i t A F R - T X A F R - K i n g m a n A F R

(1) (2) (3) (4)0
1 0
2 0
3 0
4 0

To
tal

-av
g (

ms
)

Figure 27: Average queuing delay (left) and total delay (right).

0 % 1 0 % 2 0 % 3 0 % 4 0 %
0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

CD
F

F r a m e c o s t

C a t . (1)
C a t . (2)
C a t . (3)
C a t . (4)

(a) All sessions.

0 % 1 0 % 2 0 % 3 0 % 4 0 % 5 0 %
0 %

2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %
CD

F

F r a m e c o s t
(b) Stuttered sessions.

Figure 28: The number of wasted frames when skipping frames instead
of adjusting the frame rate for AFR.

to fset , the simulator first reads the current control loop by the
round-trip network delay of the current frame τ

(n)
net . The simulator

then calculates the earliest frame n+k that the new frame-rate
fset will take in effect:

k=argmin
k

(
ts(n+k)−ts(n)⩾τ

(n)
net

)
(10)

After that, based on the measurement of the current frame-rate
fcur, the simulator calculates the slowdown factor β = fcur/ fset ,
and reads the traces with a slowdowned speed. For example,
as shown in Figure 26, When there are frames R(n+k+1) to
R(n+k+3) in the original trace, the simulator reads the traces
with indices R(n+ k+ β),R(n+ k+ 2β),··· . When β is not
integer, the simulator interpolates the traces with its neighbor
frames (S(n+k+1) and S(n+k+2)).

D Supplementary Experiments
D.1 Average Delay
We further measure the average queuing delay and total delay for
four traces and present the results in Figure 27. As we can see, the
reduction of tail delay of AFR does not sacrifice the average delay
on all traces. In contrast, the average delay has also been slightly
improved against baselines, due to the improvements at the tail.

D.2 Frame Costs of AFR with Skipping
Besides, as we discussed in §6.4, skipping frames without
changing the frame rate from the content generator (e.g., gaming
application) would waste the rendering resources of the server.
For example, for high-quality RTC, rendering at 60fps would
take approximately one time more GPU resources than rendering
at 30fps. Therefore, we measure how many frames have been
wasted (i.e., frame cost) if we merely skip the frames to approxi-
mate the target frame rate without adapting the content generator.

We present the results of all traces in Figure 28. For all traces,
adjusting the frame rate could save 3% to 12% frame costs in
all traces, saving considerable operating expenses for the service

Interarrival time Queuing delay
 (50%ile, left axis) (99%ile, right axis)

Interarrival time Total delay
 (90%ile, left axis) (99%ile, right axis)

0 . 2 5 1 4 1 6
1 6 . 8
1 7 . 2
1 7 . 6
1 8 . 0

50
%i

le
int

era
rriv

al
(m

s)

W 0 (m s)90
%i

le
int

era
rriv

al
(m

s)

2 2
2 4
2 6
2 8

(a) Cat. (1): Windows+Ethernet.

0 . 2 5 1 4 1 6

99
%i

le
tot

al
(m

s)

99
%i

le
qu

eu
ing

 (m
s)

W 0 (m s)

3
6
9
1 2

6 0
7 2
8 4
9 6

(b) Cat. (3): MacOS+Ethernet.

0 . 2 5 1 4 1 61 7
1 8
1 9
2 0
2 1
2 2

50
%i

le
int

era
rriv

al
(m

s)

W 0 (m s)90
%i

le
int

era
rriv

al
(m

s)

2 4
2 6
2 8
3 0
3 2
3 4

(c) Cat. (2): Windows+WiFi.

0 . 2 5 1 4 1 6

99
%i

le
tot

al
(m

s)

99
%i

le
qu

eu
ing

 (m
s)

W 0 (m s)
8
1 2
1 6
2 0
2 4
2 8

1 3 2
1 4 3
1 5 4
1 6 5
1 7 6
1 8 7

(d) Cat. (4): MacOS+WiFi.

Figure 29: Sensitivity analysis on W0 on different traces.

Figure 30: Performance of AFR with different settings of ξarrv and
ξserv. Y-axes have been magnified compared to Figure 29.

provider since GPU is one of the highest expenses. For stuttered
sessions (following the definition in §6.2), the saved frame cost
would be even higher.
D.3 Parameter Sensitivity
Long-term control target (W0)We present the simulation results
on the sensitivity of W0 (in the stationary controller) on different
traces in Figure 29. As we discussed in §5.2, a lower W0 results
in a more aggressive queue control yet leads to the degradation
of frame rate. We vary W0 from 0.25ms to 16ms and measure the
interarrival time, queuing delay, and total delay. By adjusting W0,
operators could effectively balance the total delay and frame rate.
Therefore, operators could adjust W0 according to the preferences
on total delay and frame rate for different users and games.

EWMA discounting factors (ξarrv and ξserv). We also vary
the EWMA discounting factors (ξarrv for the arrival process and
ξserv for the service process). Higher ξ indicates that the EWMA
focuses on the recent values more to capture changes, while
a lower value indicates more attention to the historical trends.
As shown in Figure 30, the performance metrics (including the
queuing delay, total delay, and frame rate) are relatively robust to
these two parameters. By varying ξarrv and ξserv across several
magnitudes, most metrics change marginally. For example,
the 99%ile of queuing delay changes by 4× when varying
W0 (Figure 29) while only changes by less than 15% when
varying ξarrv by three magnitudes (Figure 30). We also observe
trends in varying ξarrv and ξserv. Lower ξarrv values will slightly

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1449

Figure 31: The system begins to control the queue after control-loop
delay τ and stabilize the queue at T0.

improve the performance of AFR, implying that the long-term
behavior of arrival service is more critical. Higher ξserv also
slightly improves the performance, indicating focusing on recent
decoding time is helpful. This is because we have already filtered
out outlier decoding time. Paying more attention to recent
decoding time could make the AFR quickly adjust the frame rate.

E Convergence Analysis
Finally, we provide a detailed analysis of the convergence
time during the state transitions of the stationary controller.
As introduced in §4.2, let the expectation of queuing delay
E(τqueue)=W0, according to Eq. 1, we have:

µa=
µs

ρ
=

(
1+

c2
a+c2

s
2W0

µs

)
µs (11)

Then we can discuss the convergence time of the system. The
convergence time here refers to the time at which the stationary
controller converges to a stationary state when the service
process changes, and the potential accumulated queue during
the transition is drained up.

Specifically, without loss of generality, we discuss a simplified
case shown in Figure 31: Both the arrival and service process
have an average value of zero for t<0, and the service process
changes from zero to one at t=0. The arrival rate will gradually
respond to the change after a control loop of τ. We want to find
the convergence time T0 where

∫ T0

0
µadt>

∫ T0

0
µsdt (12)

In this case, the queue accumulated during the response to the
arrival rate will be cleared. We further illustrate the convergence
in Figure 31. By substituting Eq. 11, we have:

∫ T0

τ

(
µs+

c2
a+c2

s
2W0

µ
2
s

)
dt>

∫ T0

0
1dt (13)

From the measurement of EWMA in Eq. 5, we have

µ̂s=1−(1−ξµ)
t−τ (t>τ) (14)

Therefore, let γ=1−ξµ to simplify the expression, we need to
find the minimum T0 such that:

∫ T0−τ

0

((
1−γ

t)+ c2
a+c2

s
2W0

(1−γ
t)2

)
dt>T0 (15)

Figure 32: Contour plot of the convergence region of T0 with different
parameters.

By solving the integral in Eq. 15, finally we have

W0<
c2

a+c2
s

2
(γT0−τ−1)(γT0−τ−3)+2(T0−τ)lnγ

2(γT0−τ−1)+2τlnγ
(16)

For example, when set c2
a + c2

s = 2, we vary the other
parameters in Eq. 16 and present the minimum T0 in Figure 32.
In the most general settings of AFR (τ=1 since the average RTT
is around 15ms, ξµ = 0.25 as introduced in §5.2, W0 = 2ms),
the stationary controller can converge to the new stationary state
within 2 frames. In other settings of the AFR parameters, the
stationary controller could also converge and drain the queue
within tens of frames, which is much less than the frame-rate
adjustment interval of hundreds of frames as evaluated in §6.2.

1450 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

LemonNFV: Consolidating Heterogeneous Network Functions at Line Speed

Hao Li1, Yihan Dang1, Guangda Sun1,2, Guyue Liu3, Danfeng Shan1, Peng Zhang1

1Xi’an Jiaotong University 2National University of Singapore 3New York University Shanghai

Abstract
NFV has entered into a new era that heterogeneous frame-

works coexist. NFs built upon those frameworks are thus not

interoperable, obstructing operators from getting the best of

breed. Traditional interoperation solutions either incur large

overhead, e.g., virtualizing NFs into containers, or require

huge code modification, e.g., rewriting NFs with specific ab-

stractions. We present LemonNFV, a novel NFV framework

that can consolidate heterogeneous NFs without code modifi-

cation. LemonNFV loads NFs into a single process down to

the binary level, schedules them using an intercepted I/O, and

isolates them with the help of a restricted memory allocator.

Experiments show that LemonNFV can consolidate 5 com-

plex NFs without modifying the native code while achieving

comparable performance to the ideal and state-of-the-art pure

consolidation approaches with only 0.7–4.3% overhead.

1 Introduction

The past decade has witnessed the flourish of Network Func-

tion Virtualization (NFV) research, with the goal of replacing

hardware middleboxes with software network functions (NFs)

running on commodity servers. Prior research efforts have led

to a plethora of NFV frameworks focusing on various aspects,

including performance optimization [30, 33, 35, 49], program-

ming models [34, 41], resource management [51, 60], and

more recently security [43, 52, 54]. Since there are no conven-

tional and widely-adopted interfaces, these NFV frameworks

are unsurprisingly implemented in heterogeneous ways, with

different libraries (e.g., DPDK [5], netmap [57]), languages

(e.g., C, C++, Rust), and abstractions (e.g., Click element [37],

BESS module [30]).

NFs built upon these heterogeneous NFV frameworks are

not interoperable, which exposes two hard choices for users

in actual deployment. The first choice is asking operators

to learn, deploy, and maintain multiple frameworks to serve

different purposes. The second choice is picking one frame-

work and asking the developers to add extra functionalities

by reinventing the wheel. The former choice dramatically

increases the cost of operation, and the latter choice requires

substantial engineering effort and is error-prone. This reality

raises a timely and important question: can heterogeneous
NFs interoperate without modifying the code?

To answer this question, the first natural candidate solution

is using virtualization. Under this model, each NF runs in

a virtual machine or a container on one core, and packets

are steered across cores to chain multiple NFs. While this

approach hides the heterogeneity of NFs under standardized

virtualization interfaces, it incurs prohibitive performance

overhead when chaining multiple NFs [33, 49]. The overhead

stems from three main sources: virtualized components, cache

misses, and context switches (details in §2.1). Despite the

efforts of various lightweight virtualization techniques [39,

56,68], these overheads cannot be fully eliminated. As a result,

this virtualization approach fundamentally cannot achieve the

line speed, one of the key requirements of NFV deployment.

The second candidate solution is using consolidation. This

model implements NFs as software modules and runs them

in the same process. NFs are chained through function calls

and scheduled in a run-to-completion (RTC) mode, i.e., once

a packet is received by an NF, the NF continues processing it

until finishes. By eliminating cache miss and context switch

overheads, this approach ensures the line-rate processing and

has been adopted by existing high-performance NFV frame-

works such as Metron [35] and BESS [30]. While consolida-

tion works well for NFs under the same framework, it seems

unlikely to be applied to heterogeneous NFs without modi-

fying the code due to three key challenges across loading,

scheduling, and memory management.

• How to launch heterogeneous NFs in one process?
Launching NFs written with different frameworks and

languages into the same process could result in vari-

ous conflicts (e.g., dependencies, functions, variables).

A potential solution that manually modifying the code

to resolve each conflict could be tedious.

• How to chain multiple NFs with separate control flows
within a process? Each NF has its own control flow

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1451

which often includes an infinite loop of packet process-

ing. Chaining these separate control flows requires lo-

cating new entry points and correctly schedule them to

process packets.

• How to isolate memory of multiple NFs within a process?
NFs running in the same process share the same stack

and heap, without memory isolation. This brings security

concerns when chaining multiple NFs from different and

possibly untrusted vendors. A previous solution that

rewrites NFs with safe programming languages would

incur large porting efforts.

In this work, we propose LemonNFV, an NFV framework

that enables consolidating heterogeneous NFs without modi-

fying the code. To address the above challenges, LemonNFV

provides three abstractions for NFs: the compiled binary, the

scheduling entry points, and the memory allocation interfaces.

The key point of these abstractions is that they (1) are es-

sential and sufficient for making NFs interoperable, and (2)

can be easily adopted to NFs without much coding efforts by

capturing the natural homogeneity that already exists in all

NF implementations. By transforming NFs into such LEast
Modified network functiONs (LEMONs), LemonNFV then

implements a set of utilities upon those abstractions that load,

execute and manage NFs inside a process. Concretely, we

make the following contributions in designing LemonNFV.

Loading via LEMON Binary (§4.1 and §4.4). We view each

NF as a software module and leverage the standard binary

format to load them. The binary hides the complexity of NFs

written in different languages and/or with conflicting names.

To further enable dynamic chaining and NF migration, we

build a LEMON loader to specify memory layout and resolve

dependency conflicts, both of which are not supported by

existing loaders (e.g., ld.so).

Chaining via Schedulable I/O (§4.2). We observe that packet

I/O could be an ideal scheduling point where an NF’s pro-

cessing logic starts and ends. Based on this observation, we

provide unified I/O interfaces as entry points for inter-NF

scheduling. These interfaces can replace existing NFs’ I/O

interfaces, which are usually built on top of several common

packet I/O libraries, such as DPDK, libpcap and netmap. To

chain multiple NFs inside one process, we provide a scheduler
to correctly switch between different NF control flows.

Isolation via Restricted Memory Interfaces (§4.3). We use

a restricted allocator to set explicit NF boundaries by creat-

ing private stack and heap for each NF, which can replace the

native memory allocation interfaces like malloc and its vari-

ants. To isolate different NFs in the process, we implement an

isolator that leverages hardware-aided technique (Intel PKU)

to realize efficient intra-process memory isolation 1.

We evaluate LemonNFV with real NFs and traffic (§6). The

1Currently, our isolation model focuses on memory isolation only and

does not support control flow integrity, state sharing and packet isolation as

in related works [31, 52, 66]. See §4.3 and §7 for details.

results show that LemonNFV can (1) consolidate 5 complex

NFs without code modification – even they are implemented

with different frameworks and/or languages; (2) realize com-

parable performance to the ideal and state-of-the-art consoli-

dation approaches with only 0.7–4.3% overhead of isolation.

Ethics: This work does not raise any ethical issues.

2 Motivation

In this section we explain why neither virtualization (§2.1)

nor existing consolidation techniques (§2.2) can address the

need of heterogeneous NF interoperation.

2.1 Virtualization is Slow

Figure 1a shows the three types of performance overhead

incurred by virtualization approaches. (V1) Heavyweight com-
ponents: Packets may need to go through all levels of vir-

tualization components: host OS, VM hypervisor, guest OS

and software switch. Each of the components brings a non-

negligible overhead since they may run protocol stacks and

perform queueing. (V2) Cache misses: If the NF instances

are deployed on separate cores, passing packets across cores

will be inevitable, in which case accessing each packet will

become LLC or DRAM bounded. Moreover, passing packets

across cores is often achieved by software switches, requiring

frequent enqueuing and dequeuing when the NFs send and re-

ceive packets. (V3) Context switches: Scheduling will happen

if there are multiple NF instances pinned to a single physical

core, which would result in extra switching overhead.

Researchers have been leveraging the emerging lightweight

virtualization techniques to improve the performance of virtu-

alization NFV systems. By reducing full-fledged VMs into

more lightweight environments, such as containers [21,61,63,

68], unikernels [39,46,69], and even processes [40,42,56,76],

the virtualization overhead, i.e., V1, is greatly reduced or elim-

inated, yet still preserving V2 and V3.

In fact, running NFs as separate instances makes it impossi-

ble to reduce V2 and V3 at the same time. Pinning instances to

dedicated cores (e.g., OpenNetVM [76], NFP [64]) eliminates

the overhead of context switches (-V3), but forces packets

to be delivered over shared memory and results in L1/L2

cache misses (+V2). On the other hand, compacting instances

on a single core (e.g., Quadrant [68], EdgeOS [56]) would

reduce the cache misses on packets (-V2), while frequent

context switches can lead to much more system calls and

TLB misses (+V3). Therefore, we reach a conclusion that

virtualization-based NFV frameworks can hardly meet line-

rate (i.e., 100/400Gbps) processing requirements because of

its inherent overhead.

1452 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Host OS

Hypervisor
Software Switch

Shared Memory Queue

VM VM VM
NF1 NF2 NF3

Cache
packets

Cache
packets

Core 0 Core 1

Hardware NIC

context switch

heavyweight
components

miss hit miss

(a) A virtualization approach that runs NFs as separate in-

stances. Red arrows indicate the major source of overhead,

and grey boxes are components that can be optimized out.

Process

NF2NF1 NF3
DPDK libpcap netmap

Core 0

Shared Heap

Hardware NIC

infinite loop

name conflicts

illegal access

(b) A consolidation approach that executes NFs in a single

process. Black arrows are the ideal workflow while the red

ones signify the obstacles when the NFs are heterogeneous.

Figure 1: The virtualization approach is slow, while the consolidation cannot handle the conflicts between heterogeneous NFs.

2.2 Consolidating Heterogeneous NFs is Hard

Consolidation, on the other hand, avoids all the extra overhead

from the virtualization approaches by eliminating the bound-

aries between NFs [17, 30, 35, 52, 61]. Under this model, the

SFC is deployed in one process, i.e., no V1, and NF instances

are executed in an RTC manner i.e., no V2 and V3, as shown

in Figure 1b. However, it introduces even more challenges

when trying to consolidate heterogeneous NFs.

Challenge 1: NFs cannot be loaded. NFs are independently

developed with different frameworks and abstractions. As

such, when putting them together in the same process, they

may conflict with each other in terms of dependencies, func-

tions and variables. For example, two NFs may define global

data structures with the same name, while simply linking their

source code would raise a multi-definition error. Things get

more complex if NFs are written in different languages.

Naive solution: A naive solution for loading NFs into a

single process includes three time-consuming tasks. First, op-

erators have to check all symbols exposed by NFs to locate the

conflicts. Second, they should manually resolve the conflict-

ing symbols, which however is not always a feasible task, con-

sidering the conflicts that may happen between closed-source

libraries. Third, they need to reconstruct other code with the

resolved name, which usually requires deep understanding

of the whole NF codebase. Despite the above tedious efforts,

manual resolution can never work for the cross-language NFs

or dynamic SFC updating without halt.

Challenge 2: NFs cannot be scheduled. The workflow of

each NF is driven by an infinite loop of receiving and sending

packets, i.e., processing packets after receiving them, and

receiving more after sending the processed ones. As a result,

an NF will take up a core forever once it starts running, and the

downstream NFs in the same process will never be scheduled.

Naive solution: To break the infinite loop inside each NF,

one could extract the packet processing logic of each NF, and

combine them together to form a synthesized SFC [17, 35,

36]. However, the packet processing logic is closely coupled

with NF-specific packet and state abstractions, and combining

them results in a large amount of code modification. For

example, Snort [10] leverages its unique Data AcQuisition

Library (DAQ) to receive packets and fill the metadata like

timestamp, protocol annotation, etc. Such packet abstraction

is incompatible with the packet abstraction under Click [37].

As a result, composing a synthesized SFC of Snort→Click

requires to transform the packets as well as all metadata from

the DAQ abstraction into the Click abstraction, and vise versa

for Click→Snort.

Challenge 3: NFs may affect each other. Being in the same

process, all NFs share the same stack and heap. In this way,

operators are not able to restrict any memory operations of al-

location, read and write, and thus lose the control over illegal

accesses, i.e., each NF can (unintentionally) modify others’

data and make their states inconsistent. For example in Fig-

ure 1b, NF1 (yellow) can silently modify the data (red arrow)

allocated by NF2 (green).

Naive solution: Consolidation frameworks often choose

to trust the NFs under the same process since they come

from the same vendor. However, trust cannot be granted when

it comes to heterogeneous NFs across vendors. Using safe

language, e.g., Rust in NetBricks [52], to rewrite the NFs is

a feasible option, but it’s not practical given the large body

of existing NFs and limited popularity of the safe language.

Formal verification on NFs [72, 74, 75] on the other hand

requires verification expertise and sometimes also forces NFs

to use certain APIs [73].

3 LemonNFV Overview

The heterogeneous NF consolidation is challenging because

NFs in the same process share the namespace, the control

flow, and the memory. In this section, we introduce the key

abstractions for breaking such sharing, and explain why they

can be easily adopted without code modification (§3.1). We

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1453

Unmodified NF

rcv_pkt snd_pkt

v_rcv_pkt v_snd_pkt

malloc free

c_malloc c_free

shared lib

Schedulable I/O

Restricted Allocator

ELF format

LEMON Binary

read packets
from memory

jump to the
next LEMON

allocate/free memory
from private heap

Figure 2: A LEMON with unified abstractions of binary, I/O

and memory interfaces. Grey boxes are the common points

existed in NFs, and the blue boxes modify/leverage their se-

mantics for providing the unified behaviors (red annotations).

then overview the workflow of LemonNFV that implements

a set of utilities upon those abstractions, including the loader,

scheduler, isolator and the migration manager, to load, execute

and manage LEMONs within the same process (§3.2). We

finally discuss the ongoing challenges of LemonNFV (§3.3),

which will be addressed in the next section.

3.1 Unified LEMON Abstractions
A LEMON carries an unmodified NF with its own namespace,

control flow and memory, each of which could conflict with

other LEMONs inside the process. The key challenge here

is to decide the proper level to resolve the conflicts. Typical

solutions either choose the lowest level for avoiding the code

modification, i.e., packaging NFs into OS-level containers, or

operate at the highest level for ideal performance, i.e., rewrit-

ing NFs’ source code, neither of which can fully address our

goal.

Instead, LemonNFV aims to resolve such conflicts with

three middle-level abstractions: a binary that isolates the

namespaces of each NF, a set of I/O interfaces that decou-

ple the packet processing logic from infinite loop, and a set

of memory interfaces that restrict the memory operations.

These abstractions are high-level enough for resolving the

underlying conflicts, while also low-level enough to hide the

heterogeneity. In fact, there exists natural homogeneity in

all NFs’ implementation, and by leveraging it, LemonNFV

can equip any NF with the proposed abstractions by a simple

interception, i.e., without code modification.

LEMON binary: wrapping the namespace. Simply putting

all NFs’ code together usually does not compile, because the

independent-developed NFs might define variables, functions

and dependencies with the same name but different seman-

tics, which would cause name conflicts. Instead of manually

wrapping an NF into an isolated namespace, e.g., packing it

to a C++ class with private members, we observe that the

compiled binary naturally separates the namespaces of each

software module, and the conflicts can be resolved through

the symbol resolution process when loading the binary.

Natural homogeneity: ELF is the standard format for ex-

ecutables and shared libraries under Linux, which reveals a

chance for LemonNFV to package each NF as a software mod-

ule without modifying its native code but through a simple

recompilation (right part in Figure 2).

Schedulable I/O: creating entry points. The packet process-

ing logic of NFs are usually implemented as an infinite loop,

which is not schedulable. Nevertheless, we observe that the

I/O behaviors reveal the natural boundaries between NFs. To

this end, we design a new set of I/O in substitution for the

original, which creates explicit entry points of each NF for

scheduling: for the packet receiving function, it could read

packets from a shared memory region instead of the physical

NIC; for packet sending, it could jump out of the infinite loop

after pushing the packets back to specific queues on shared

memory, according to the output port of the NF.

Natural homogeneity: NFs are built on a handful of I/O

libraries like DPDK and libpcap, which means we can im-

plement the schedulable I/O by only intercepting limited func-

tions of these libraries (lower part in Figure 2).

Restricted allocator: separating memory domains. To re-

alize the isolation requirement, one should create isolated

memory regions for each of the NFs, even with the same pro-

cess. While not all NFs have the compilation support from

safe languages like Rust, the feasible solution is to create sep-

arate (instead of interleaved) memory domains for each NF,

and protect those domains with bound guard [67] or privilege

management [14, 53].

Natural homogeneity: All NFs rely on the native allocator,

which only provides limited functions like malloc, realloc
and free. That is, LemonNFV can override the native allo-

cator with the restricted allocator, which enforces that the

dynamic memory allocation in a LEMON takes place in its

own heap (upper part in Figure 2).

3.2 LemonNFV Workflow
Having the above unified LEMON abstractions, LemonNFV

implements several key components to build, execute and

manage LEMONs. As shown in Figure 3, an SFC is a pro-

cess (dashed rectangle) that runs two types of threads: hy-

pervisor (red) and worker (gray). The hypervisor consists of

two components: the LEMON loader that loads LEMONs

and intercepts the original allocator and I/O functions, and

the migration manager that migrates the LEMON to another

worker, SFC, or server. The worker implements the tram-

polines, which process the packets from the hardware NIC,

schedule a chain of LEMONs with virtualized I/O while en-

suring their isolation. There is also a LemonNFV controller,

relaying the user commands like LEMON loading to the hy-

pervisors, which can be deployed on a remote server.

1454 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Hypervisor

LEMON1 LEMON2 LEMON3

Trampolines

Hardware NIC

LemonNFV Controller

LEMON Loader (§4.1) Migration Manager (§4.4)

LEMON Scheduler (§4.2) LEMON Isolator (§4.3)

1 Load and initialize

2 3 4 5 3

1 Receive packet 6 Send packet

2
N

ot
ify

tra
m

po
lin

es

Figure 3: LemonNFV workflow, where a dashed rectangle

represents a process (SFC) with two threads: a hypervisor

(red) and a worker (grey). �–� illustrate how a packet being

processed; and �–� are for runtime SFC changing.

Loading a LEMON. Each LEMON carries an unmodified

NF, as well as its dependent libraries and configuration files.

To this end, the NF developers are required to recompile the

NFs into shared libraries, which only needs a few lines of

modification in the make rules (See §6.2). This task can also

be done by the operators if the target NF is open-source. Then,

the operator should fetch all dependencies of the LEMON,

pass their paths to the loader, and specify the total amount

of memory needed. With these information, the LEMON

loader would allocate the memory, load the code and variable

segments, resolve the potential conflicts, and grant the corre-

sponding privileges. The user can then consolidate an SFC

by providing the path and interconnection of each LEMON

in an interactive terminal.

Chaining and isolating LEMONs. Inside each worker,

LemonNFV executes a chain of LEMONs in the RTC way.

When receiving a (batch of) packet(s) from NIC (�), the

LEMON scheduler in the trampolines will pass the packet to

the first LEMON of the SFC, by calling its schedulable packet-

receiving function (�). After the processing in LEMON1, the

schedulable packet-sending function would transfer the con-

trol flow back to the trampolines (�), which would trigger the

next LEMON, i.e., LEMON2 (�). When it reaches the end of

the chain (), the trampolines send the packet(s) back to NIC

(�). All of �–� are done within a single thread, thus will

not produce any inter-core communication or thread context

switch. When an SFC wants to scale out its performance,

LemonNFV can duplicate the worker into more cores, and

dispatch the flows using hardware NIC.

The trampolines also ensure the LEMON isolation through

above chaining process. Specifically, the LEMON isolator

would adjust the memory access privileges of each LEMON,

e.g., when executing LEMON2, the memory domains of

LEMON1 and LEMON3 should be protected.

Managing LEMONs in runtime. Consider a simple man-

agement task that attaching LEMON3 to the end of current

SFC. The hypervisor would first load and initialize LEMON3

(�) using the LEMON loader. After that, it will notify the

trampolines with the new LEMON, i.e., the packet receiving

function of LEMON3 (
). Finally, the trampolines will exe-

cute LEMON3 next time a packet leaves LEMON2 (�). Note

that the hypervisor is in an individual thread, which means �
can be done asynchronously without halting SFC.
 is also

lightweight, as the hypervisor only needs to notify the tram-

polines with the new entry point, which is a rare operation

and would only halt the SFC for a negligible moment.

3.3 Ongoing Challenges

While making the LEMON interoperation a possible vision,

LemonNFV is still faced with several practical challenges.

Isolated LEMON namespace. LEMON binary wraps the

namespaces of each NF, but the name conflicts between multi-

ple binaries still needs to be resolved. This is the responsibility

of the LEMON loader, while the OS-default loader cannot

suffice, because it tends to reuse the dependencies for all

LEMONs.

Correct LEMON scheduling. Having the schedulable I/O,

the LEMON scheduler in the trampolines needs to further

address the following concerns for correctly scheduling the

LEMONs. (1) how to efficiently switch LEMONs; (2) how

to properly execute the logic other than the packet process-

ing, e.g., initialization; and (3) how to correctly handle the

complex I/O behaviors like asynchronous Rx and Tx.

Efficient memory isolation. The restricted memory allocator

guarantees the separate memory domains for each LEMON.

However, it is still unclear how the LEMON isolator restricts

the memory accesses to the legal areas. The key challenge

here is to isolate those memory domains without compromis-

ing too much performance.

Flexible LEMON migration. NF migration is a critical re-

quirement in NFV systems. Even with the help of the LEMON

loader, it is still unclear for the migration manager to migrate

the LEMONs to other workers, SFCs or even servers. The key

challenge here is that the LEMON loader can only handle a

LEMON as a whole, while the inner data structures (i.e., NF

states) of a LEMON might need to be partially migrated to

another core or re-accessed in a different process for intra- or

inter-server load balancing.

4 Detailed Design of LemonNFV

In this section, we discuss in details how LEMONs are

loaded (§4.1), scheduled (§4.2), isolated (4.3) and mi-

grated (§4.4) using the unified abstractions of LEMON.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1455

4.1 Loading the LEMONs

Given an ELF binary, the loader is responsible to allocate the

memory for the executable, copy the segments to the corre-

sponding memory regions, resolve the external symbols, and

finally call the constructors. While Linux has offered a mature

toolchain for loading the ELF file at runtime, i.e., dl-family

functions, they are ill-suited for serving as the LEMON loader.

In the following, we explain the specific requirements when

loading a LEMON, and present our solution for the LEMON

loader.

Dependency isolation. The OS loader, i.e., ld.so with

dlopen, attempts to reuse the libraries that have been al-

ready loaded for saving the memory and improving instruc-

tion cache affinity. However, this would cause dirty access of

common libraries if multiple LEMONs depend on them.

In LemonNFV, the LEMON loader views each NF and its

dependencies as a sandbox, and will load the dependencies

no matter whether other LEMONs have already loaded them.

For example, each LEMON will load its own libc, such that

they will not share the global variables like optarg. so that

Targeted symbol resolution. While loading, lots of functions

in LEMONs should be intercepted to the customized versions,

e.g., the DPDK I/O to the schedulable I/O, the native malloc
to the restricted malloc. The common solution to this task

is LD_PRELOAD, which instructs the loader to first lookup the

preload libraries when resolving every symbol of the exe-

cutable. However, LD_PRELOAD redirects all symbols with

the same name, while LEMONs and trampolines should use

different versions. For example, trampolines call rx_burst
to receive packets from NIC, which should not be resolved to

the schedulable version as in LEMONs. Besides, LEMONs

may depend on different versions of the libraries, and the

intercepted functions with the same name also need vary to

those semantics.

LemonNFV implements a symbol resolution mechanism

tailored for loading LEMONs, which allows the trampolines

and each LEMON to specify their own preload libraries, en-

abling different semantics for symbols of the same name.

Consistent loading address. The Linux loader cannot man-

ually specify the loading address. Instead, the recent Linux

kernels enable the random address loading, e.g., ASLR [1],

mostly due to the security reason. Such random loading would

disable the ability of reloading a LEMON, because all pointers

in the reloaded LEMON would become invalid. This feature

is critical for fault recovery and LEMON migration.

To this end, the LemonNFV process reserves the same

virtual address space, which is partitioned into fixed-size slots.

the LEMON loader would load each LEMON to its unique
slot, and allocate the fixed address regions for the private

stack, heap and dependencies. As a result, all the pointers

(expect packet pointers) in a LEMON snapshot would remain

valid even being reloaded or migrated to another process.

1. While True:
2. Receive packets
3. Switch stack to M

4. Send packets
5. EndWhile

Trampolines (T)
1. Initialization
2. While True:
3. Call rx_burst()
4. Process the packet
5. Call tx_burst()
6. Fill the packets
7. Switch stack to T
8. Return
9. EndWhile

LEMON (M)

Loop back to Line 2

Loop back to Line 3

(a) Scheduling between the trampolines and the LEMON.

1. Load LEMON
2. Save the stack
3. If not init:
4. Execute LEMON

5. init← true
6. EndIf
7. Notify trampolines

Hypervisor (H)
1. Initialization
2. While True:
3. Call rx_burst()
4. If not init:
5. Switch stack to H
6. Fill the packets
7. Return
8. Process the packet
9. Call tx_burst()
10. EndWhile

LEMON (M)

(b) Initialization with the hypervisor.

Figure 4: Scheduling LEMONs with the schedulable I/O and

private stacks. Solid arrows indicate the executing paths, and

dashed lines are the function/stack transitions. The blue paths

are executed by the working thread, and the red ones are from

the hypervisor thread. Shadowed texts are the pseudocode of

tx_burst and rx_burst.

4.2 Scheduling the LEMONs
A typical NF implementation consists of four stages: (1) the

NF initializes its own data structures and hardware; then it

starts an infinite loop which (2) receives packets using a func-

tion like rx_burst(pkts); (3) processes the packets; and (4)

sends the packets out using a function like tx_burst(pkts).
The LEMON I/O interfaces unify the way for LEMONs to

fetch and send packets, i.e., stage 2 and stage 4. Specifically,

the LemonNFV trampolines are responsible to communicate

with the hardware NIC. And the “NIC” in the LEMON is

actually a memory region that stores the packets. As a result,

rx_burst should fill pkts (the pointers of packets) with the

packets from the trampolines; and tx_burst should fill pkts
back to trampolines for the downstream LEMONs.

Having those basic I/O operations, how to schedule the

LEMONs such that the packets can flow through them as if

they were chained together will be our focus here.

Scheduling LEMONs with schedulable I/O. Each NF has

its own control flow, from main function to the infinite loop of

packet processing. The LEMON scheduler needs to cooperate

with those control flows to properly jump into and out from

the LEMON execution.

To this end, LemonNFV creates private stack for each

LEMON, making its control flow separated from the trampo-

lines and one another. Specifically, LemonNFV allocates a

dedicated memory region for each LEMON as its stack, and

1456 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the trampolines maintain the corresponding stack pointers

(i.e., SP and BP registers). In this way, the LEMON schedul-

ing can be simply implemented as saving the current states

of registers (stack pointers and other callee-saved registers)

and restoring the previously saved ones of the target LEMON.

This process operates purely in the user space, thus incurs

much less overhead than the context switch between processes

or threads, which would trap into kernel and flush TLBs. We

implement the above stack switch logic in the packet sending

functions, because each time the NF is sending the current

batch of packets out of the NIC, the control flow should move

to the next NF in the SFC.

We use Figure 4a to illustrate how the scheduling works.

Assume the SFC has only one LEMON, which has processed

a batch of packets and is sending them out, i.e., calling (the

schedulable) tx_burst in Line 5 of M. After filling the pack-

ets, the execution stack is saved and switched to the tram-

polines (from Line 7 of M to Line 3 of T). The trampolines

then send the packets to the NIC (Line 4 of T). In the next

loop it receives a new batch of packets (Line 2 of T) and

schedules the LEMON again (Line 3 of T), which will jump

back to Line 7 of M. The LEMON will continue to receive

and process the packets from the trampolines, i.e., Line 8–9,

3–4 of M, until it is scheduled out, i.e., tx_burst is called

again. Any additional logic besides Line 4 (e.g., profiling after

sending packets) will also be executed at this moment.

Handling the logic other than packet processing. The hyper-

visor needs to take care of the LEMON initialization, which,

like the packet processing logic, has no explicit boundary in

the NF’s code. To this end, we view the initialization as the

logics from the first line of main function to the very first
time the rx_burst is called, which means all preparations

for packet processing have been done. We use Figure 4b to

depict such process. The hypervisor thread (red path) loads

the LEMON, saves its stack and executes the LEMON (Line

1–4 of H). After LEMON is initialized (Line 1 of M), it will

eventually call (the virtualized) rx_burst (Line 3 of M). For

the very first time it is called (i.e., init==0), the LEMON

should switch back to hypervisor’s logic, and the hypervisor

will notify the trampolines that the initialization is done. The

trampolines will execute the LEMON from the saved stack

(Line 6 of M) next time it is scheduled.

Except for the initialization, NFs may also include logic

for event logging and runtime configuration. These routines

are usually conducted in individual threads. See Appendix A

for scheduling a LEMON with such threads.

Complex I/O behaviors. The above scheduling assumes the

NFs call the packet I/O in a synchronized way, i.e., receiving

(Rx) and sending (Tx) once per batch, while NFs can also

invoke less Rx and more Tx (e.g., multicast), or more Rx and

less Tx (e.g., packet buffering). The current scheduling is

based on Tx, thus can still handle the former case, and we

extend the virtualized Rx I/O to deal with the latter. To be

specific, we add a flag in virtualized Rx function to check

whether it is called for the first time in this batch. If not, the

Tx function is not called, which means this LEMON buffers

or drops all packets, and blocks the downstream LEMONs.

In such case, the trampolines should continue to receive the

next batch instead of scheduling the next LEMON, ensuring

correctness of NFs that buffer packets (e.g., Reframer [28]).

4.3 Isolating the LEMONs

LemonNFV provides each LEMON with a separate memory

domain via the custom allocators, so that the legal region a

LEMON can access is bounded. However, achieving this is

far from sufficient to isolate each LEMON from each other,

because the illegal accesses are only defined but not prevented.

We now discuss how LemonNFV checks illegal memory ac-

cesses efficiently. In the following, we first present the threat

model of LEMON isolation, then introduce two software fault
isolation (SFI) techniques to sandbox the memory accesses.

After making our design choice, we present how LemonNFV

realizes the LEMON isolation in runtime.

Threat model. LemonNFV isolates the SFCs from different

tenants with processes. For each process, LemonNFV allo-

cates two virtual functions (VFs), i.e., NICs virtualized by

SR-IOV [15], which provide almost the same performance

compared to the physical NIC. Given such strict isolation be-

tween SFCs, we only need to take care the isolation between

LEMONs along the SFC, i.e., the intra-process isolation.

We assume each NF has its own packet processing logic,

which are expected to be independent of the others. That is,

even in the same process/thread, the data and states of NFs are

strictly independent. This assumption disables most commu-

nications between NFs, and thus is weaker than NetBricks’s

threat model that supports state sharing [52]. However, we

argue that this assumption is actually aligned with the case

when chaining physical middleboxes, where the internal states

are unavailable to external NFs, and packets are the only in-

formation that can be exchanged between NFs.

We assume the trampolines and hypervisor are written with

care, while NFs are written in a negligent way that they might

illegally modify the data, e.g., overwrite the state in other NFs

or hypervisor. Such bad operations can happen in either NF

itself, e.g., *(bad_addr)=1, or the libraries it depends, e.g.,
memset(good_addr,0,bad_size).

Two design options. The above threat model falls into the

SFI area, where the most classical implementation is to check

the bound of each memory write [38,67,71], e.g., *p=1 would

be modified into if(p>L&&p<H) *p=1 to ensure p is always

within its own memory region (L,H). Its performance is de-

termined by (1) the number of the legal regions, since each

instrumentation must check all these regions, and (2) the num-

ber of memory access statements, which equals to the number

of instrumentation.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1457

Recent studies advocate to leverage hardware-aided tech-

niques to realize SFI [31,45,66]. To be specific, they partition

the memory into domains, and a certain software module can

only access its legal domains. When switching to another

software module, this method has to change the legality of

the domains. As such, its runtime overhead is mainly deter-

mined by the number of domains. Another defect of domain

switching is that it restricts the number of domains due to the

limitation of hardware.

Our design decision. Bounds checking would incur unaccept-

able runtime overhead for realizing LEMON isolation for the

following reasons. First, the legal regions of a LEMON, e.g.,
code, stack and heap, are separate, making each instrumenta-

tion quite costly. Second, the number of memory access state-

ments could be large for NFs like encryption, which further

lowers the performance. To make the performance penalty

clear, we implement an extra compiling pass in LLVM that

injects bound checking before every memory write at the IR

level. We then prototype three typical NFs including NAT,

firewall and IDS, and by chaining them into an SFC, we find

that the isolated SFC is in average 24% slower than the orig-

inal one. Such penalty is usually unacceptable for realizing

the wire-speed processing.

On the contrary, we find domain switching is quite suitable

for LEMON isolation. Recall the threat model that LEMONs

do not share states between each other. That is, each LEMON

can be packaged into a disjoint domain, such that the number

of domain switching is actually the length of SFC, which is

fixed and stable no matter how complex a LEMON is. For the

limitation on number of domains, it should still be sufficient

for LEMON isolation, since the length of SFC is usually small,

i.e., less than 10 for most real-world cases [4]. As a result,

the domain switching approach is preferred to realize SFI

between LEMONs.

Among the others like VMFUNC that require code modifi-

cation [38, 45], PKU has been viewed as the fastest domain

switching approach and requires little modification on exist-

ing code [31, 66]. PKU uses the spare four bits in each page

table entry to partition memory into 16 domains, and specifies

the access restrictions for each domain by a pkey. In doing so,

the protection can be naturally guaranteed when accessing the

page table, and thus incurs zero extra cost in runtime. More

importantly, the operation of domain-switching, i.e., writing

the permissions to pkeys, purely works in userspace and only

incurs negligible overhead, i.e., less than 100 cycles.

Isolating LEMONs with PKU. Inside the process, Lemon-

NFV specifies one pkey for each LEMON. In runtime, when

a LEMON is scheduled by the trampolines, LemonNFV en-

ables its pkey to grant the access rights to its own domain, i.e.,
its own stack, heap and data segments, and disables the ac-

cess to any other domain. Since the switching happens when

scheduling LEMONs, the switch logic is embedded into the

schedulable I/O for each LEMON.

Consider a simple example with two LEMONs, M1 and

M2. The trampolines’ domain occupies pkey0, and each

LEMON (as well as its stack, heap and dependencies), is

allocated with one pkey, i.e., pkey1 and pkey2, respectively.

The packet domain is always readable/writable to trampo-

lines and LEMONs, and thus does not need a specific pkey to

protect. At runtime, when trampolines are receiving or send-

ing packets, all three pkeys are enabled, because trampolines

have the full visibility to all domains. Before going into M1,

trampolines would disable pkey0 and pkey2. After M1’s pro-

cessing, the schedulable I/O in M1 would enable pkey2 for

M2’s processing. After the processing of the last LEMON,

i.e., M2, its schedulable I/O will disable pkey2 and enable

pkey0 to jump back to trampolines. Note that to reduce the

domain switching, M1 would directly jump to M2 instead

of jumping back to the trampolines. In general, LemonNFV

would switch N +1 times for an SFC with N NFs.

4.4 Migrating the LEMONs
NF migration is essential when operators seek a balanced load

and/or efficient resource utilization. Existing works realize

this feature on top of a fully supervised infrastructure, e.g.,
OS-level virtualization [12, 44], or through specific migra-

tion interfaces, e.g., OpenNF [27]. Without above prerequi-

sites, LemonNFV leverages the standard LEMON binary to

empower users to migrate the LEMONs to other cores and

machines in an efficient way 2.

Intra-process LEMON migration. In consolidation ap-

proach, it is important that packets should be evenly dis-

patched to the workers, otherwise the CPU resources are

wasted [35]. Due to the dynamics in network (e.g., traffic

burst) and resources (e.g., adding a core), such balance is hard

to achieve if statically binding packet classes (i.e., a set of

flows) to cores. Instead, the NFV framework needs to migrate

the packet classes and the corresponding NF states to a new

core, to balance the working load.

LemonNFV addresses this challenge by relieving the close

binding between cores and LEMONs, making the consistent

migration possible for any state structures used in LEMONs.

To be specific, LemonNFV creates a pool of LEMONs, each

of which is dedicated for a packet class. Given the simple fact

that both executable code and states are within the LEMON,

“migrating the state of packet class P to core C” becomes

“letting core C execute the LEMON corresponding to P”.

Figure 5 shows a simple migration scenario, where the op-

erator allocates two cores (C1 and C2) to handle three packet

classes (P1–P3). In this case, LemonNFV will create three

LEMONs (M1–M3) dedicated for P1–P3, and ensure that cores

will always handle the packet classes with their correspond-

ing LEMONs. Assume we want to migrate P2 to C2. The

2The proposed migration schemes are for common load balancing scenar-

ios, while specific migration cases, e.g., migrating an arbitrary flow, balancing

a non-splittable flow, are not supported. See §7 for a discussion.

1458 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NIC

C1

C2

P2

P1

P3

M1

M3

M2

1 New rule: P2→C2

2 P2 is handled by C2

3 C1 no longer sees P2

4 C2 processes P2 with M2

Figure 5: Intra-server LEMON migration. C1 and C2 are cores,

P1–P3 are three packet classes, and M1–M3 are three identical

LEMONs dedicated for P1–P3.

hypervisor first issues a new rule to the NIC (or modifies the

global RSS table [16]), which directs the NIC to tag and send

P2 to the queue binding to C2 (�). At this point, all packets

belonging to P2 will be handled by C2 (�), and C1 cannot see

P2’s packets immediately (�). When C2 receives the packets

of P2, it can safely process them with M2 (�). Since the states

of P2 are always within M2, there is no need to synchronize

or copy states between cores. However, since each core has

a receive queue, there is a minor risk that C1 still holds a

few packets of P2 after the migration. For this case, we could

create a receive queue for each packet class, and let different

cores to handle the queue while migration, which would cost

little performance [16].

�–� are natural consequences of �, meaning that the over-

head of migration is essentially the time of rule installation,

which only amounts to sub-milliseconds.

Inter-process LEMON migration. Besides the intra-server

load balancing, the network-wide load balancing calls for

migrating LEMONs across different LemonNFV servers (pro-

cesses) in runtime. This is done by (1) allocating identical

addresses for LEMONs across processes and (2) migrating

the snapshots (memory dump) of LEMONs iteratively.

For the first, the LEMON loader has ensured the address

consistency across different processes. One concern here

is that can a single process provide enough address space,

if considering different types of NFs and per-packet-class

pool of LEMONs. In fact, modern 64-bit system can eas-

ily reserve 96TB of virtual memory (e.g., 0x100000000000

- 0x700000000000) to support 32768 LEMON instances

(6GB memory each), i.e., 128 types of NFs with 256 packet

classes, which are sufficient given limited number of popular

NFs. Note that this restriction is for the unique LEMONs in

network-wide servers, and the length of SFC in a single server

is still bounded by the physical memory and PKU limitation.

Secondly, LemonNFV needs to realize a packet-lossless

migration. In runtime migration, the snapshot is taken after

the LEMON loosing references over a batch of packets, and is

transmitted to its destination. The LEMON loader then loads

it into the corresponding slot and modifies the SFC. Since

all states are within the LEMON, the migration will not lose

any state. However, the cross-machine transmission might be

time-consuming due to the large snapshot, resulting in packet

losses to the LEMON.

To this end, LemonNFV iteratively copies the snapshot [12].

Specifically, in phase -1, LemonNFV pre-copies the whole

snapshot to the target, and uses dirty page tracking [8] to

locate that a portion of memory d becomes dirty through this

phase. Then in phase 0, LemonNFV only transmits the dirty

bytes, and locates the new dirty memory d. When d is getting

smaller, the transmission time also decreases, which further

reduces d in the next phase. Iteratively, the dirty memory

transmission can finish within a negligible time, which is the

right timing to route the packets to the new machine. See

Appendix B for a detailed implementation.

5 Implementation

We implement a prototype of LemonNFV with 5K lines of

C code, including the unified abstractions, i.e., the schedula-

ble I/O and the restricted allocator, and the system compo-

nents, i.e., the LEMON loader, the LEMON scheduler and

the LEMON isolator with PKU. We highlight several key

implementations and enhancements in our prototype.

Schedulable I/O. The prototype implements a schedulable

version for all I/O functions used by NFs in §6, which includes

28 libpcap [7] and 41 DPDK [5] functions. The user can

easily intercept I/O interfaces not included in the prototype

by adding functions to the preload libraries when involving

new NFs.

Restricted allocator. As mentioned in §3.2, each LEMON

should notify its memory budget to LemonNFV. This is to

avoid the runtime fault like memory leak: if the customized

memory allocator detects that a LEMON exceeds its memory

limitation, LemonNFV can unload it before it drains all host

memory. Besides, this also enables a simple but effective

optimization, i.e., memory pre-allocation, which can largely

improve the memory performance in runtime for memory-

intensive NFs. To be specific, when a LEMON requires a

certain portion of memory, the customized memory allocator

pre-allocates all memory in the heap, so that it does not need

to make expensive syscalls like mmap in runtime.

Fault isolation. §4.3 mainly considers the memory isola-

tion, while the fault isolation is also critical for consolidation

approaches. Since all NFs are in the same process, a run-

time fault, e.g., divided by zero, of a single NF would fail

the whole chain. This task is addressable with the help of

the trampolines in LemonNFV. First, LemonNFV registers a

set of signal handlers for dealing with the runtime fault like

SIGABRT, SIGSEGV and SIGILL. Then, once those signals are

captured, the trampoline can decide how to prevent the faulty

LEMONs from impacting others. In the prototype we simply

remove the faulty one and pass the packets to downstream

LEMONs. Other policies like restoring a LEMON to its near-

est checkpoint can also be implemented based on the above

fault capture scheme.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1459

6 Evaluation

In this section, we evaluate the practicality, performance and

overhead of LemonNFV with real and synthesized NFs. We

are particularly interested in the following questions.

1) Can LemonNFV consolidate heterogeneous NFs to ob-

tain high performance without much coding effort? Ex-

periments show that LemonNFV can consolidate real

NFs from different frameworks as the virtualization ap-

proach, i.e., without modifying native code, and achieve

a high-performance SFC as the consolidation approach,

i.e., incurring minor overhead between NFs (§6.2).

2) Can LemonNFV outperform state-of-the-art NFV sys-

tems? Experiments show that LemonNFV is 1.9–2.4×
faster than a state-of-the-art virtualization approach, and

incurs only 0.7–4.3% overhead compared to a state-of-

the-art consolidation approach (§6.3).

6.1 Experimental Setup

Testbed. Our testbed is an x86 machine (24×Intel Xeon 3Ghz,

256GB memory) equipped with a Mellanox CX-6 DX NIC

(2-port 100Gbps). Hyperthreading and frequency boosting are

disabled in all CPUs, and the host OS is Ubuntu 20.04 with

Linux kernel 5.11. We use DPDK 21.05 as the packet I/O for

LemonNFV with 32 as the batch size, and enable S-RSS in

multi-core experiments.

We prepare two traces for testing: ISP trace from a large

service provider that contains majorly TCP flows (8.6M pack-

ets, 3.9M active flows, 652 bytes in average) and ENT trace

captured from an enterprise network which mostly consists of

GTP (UDP) packets (11.2M packets, 462 bytes in average).

Another server with the same NIC replays the traces to

the testbed at line rate, serving as the packet generator. The

testbed is configured to forward all traffic back to the genera-

tor, no matter whether NFs drop them or not. We run each ex-

periment under 100Gbps traffic and record the average value

of 20 seconds. Each experiment is then repeated 10 times and

the average result is reported.

Real NFs. We consider NFs built upon the fast userspace

I/O (DPDK) and kernel I/O (libpcap). We involve three

DPDK NFs: an IDS based on Rubik [41] that matches the

reassembled payload with snort-like rules; a NAT based on

FastClick [17] that is composed of many inherent elements

like traffic classifier and ARP querier; and an ACL based

on NetBricks [52]. We further involve two libpcap NFs: a

connection tracker (CT) based on mOS [34] that tracks the

status of TCP connections; and a DPI tool based on nDPI [9]

that can identify 170+ L7 applications.

Synthesized NFs. We further choose several synthesized NFs

which are feasible to be ported, such that we can fairly com-

pare them under different frameworks. We use NFD [32] to

produce four stateful NFs: network address port translator,

heavy hitter detector, super spreader detector, and UDP flood

Table 1: The real NFs and the efforts for interoperation.

NF Framework Lang. I/O CN CF CH

IDS Rubik [41] C DPDK 337 31K 2

NAT FastClick [17] C++ DPDK 94 331K 2

ACL NetBricks [52] Rust DPDK 401 58K 8

CT mOS [34] C libpcap 325 139K 4

DPI nDPI [9] C libpcap 4498 121K 2

CN: the LOC of the NF logic, CF: the LOC of the framework
CH: the LOC modified by LemonNFV for interoperation

mitigation. We further extract four NFs from OpenNetVM’s

repository [76], including payload scanning, stateless fire-

wall, AES encryption and decryption, which are stateless but

computing-intensive.

6.2 Comparing with the Ideals

When interoperating, i.e., chaining, isolating and managing,

heterogeneous NFs, we have two ultimate goals: without code

modification and performance penalty. To this end, we use

the real NFs to compare LemonNFV with two ideals, i.e., a

virtualization approach that does not modify a single line of

code, and a pure consolidation approach that does not incur

any performance penalty.

Efforts of interoperating NFs. As shown in Table 1, the real

NFs are heterogeneous in many ways including the language,

I/O, etc. We assume the virtualization approach emulates a

full running environment, e.g., with VM or Docker, and thus

does not need to modify the real NFs for chaining them. On

the other hand, the consolidation approach needs to extract or

wrap the NF logic for interoperation.

Intuitively, it would only cost limited coding efforts, since

the high-level NF logic is relatively simple and neat, as shown

in CN in the table. However, the factual task would cost much

more than that number. For example, to implement an NAT in

FastClick only needs to write 94 LOC for a Click script, while

to interoperate this NF with CT in mOS, one has to dig into

the detailed implementation in FastClick and mOS, to ensure

they have the same packet abstractions, are not conflicting

in variable/function names, and do not incur dirty writes on

global data structures, etc. Things get more complex when

porting NFs with different languages, e.g., rewriting a Rust NF

into a C/C++ one. Generally, the effort of code reading and

writing for consolidating heterogeneous NFs would approach

to the numbers shown in CF.

LemonNFV does not modify a single line of native code

(e.g., C/C++, Rust) for consolidating these NFs. The only

effort we made is to modify the compilation configurations

of the NFs, e.g., adding -fPIC and -shared in Makefile, to

compile the NF as a shared library instead of an executable,

which amounts to a handful of LOC. We also feed the com-

mand line arguments, i.e., argv, to each LEMON with a con-

figuration file, which also contains minor LOC. CH in Table 1

shows the total number of modified LOC.

1460 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 2: Performance comparison over real NFs.

Per-Packet Latency (us) Throughput (Gbps)
Ideal Docker LemonNFV Ideal Docker LemonNFV

ISP 0.66 240 (+362×) 0.68 (+3.8%) 22.9 11.6 (-49%) 22.0 (-3.8%)

ENT 0.59 224 (+223×) 0.60 (+2.8%) 18.3 12.7 (-31%) 17.7 (-3.2%)

Performance comparison. We chain the real NFs to conduct

a sequential SFC: IDS→NAT→ACL. We do not involve the

two libpcap NFs here because the slow packet I/O would

significantly enlarge the performance gap between virtual-

ization and other approaches. As a reference, CT and DPI

with LemonNFV are 5.6× and 3× faster than their libpcap
versions respectively. We consider two performance metrics:

the processing time of each packet, i.e., the elapsed time after

it entering the first NF and before it leaving the last NF, and

the end-to-end throughput.

For virtualization approach, we use Docker containers to

carry the NFs. Each container is equipped with one CPU

core and two virtual NICs, and the SR-IOV [15] technique

ensures the line-rate packet forwarding between Dockers with-

out CPU interventions. Due to the large codebase of real NFs,

we do not implement a pure consolidation approach. Instead,

we estimate its performance as follows: for the per-packet

latency, we simply accumulate the processing time of each

single NF; for the throughput, we set up a basic DPDK I/O,

and delay each packet for the accumulated processing latency.

This should present the performance upper bound of con-

solidation since interference between NFs (e.g., cache and

memory contention) is removed.

Table 2 shows the performance comparison. It can be seen

that the Docker approach adds more than 200× latency com-

pared to the Ideal approach. Since those NFs are with high-

speed I/O, the major overhead comes from the packet pool in

the virtual NIC and DPDK, i.e., V2 mentioned in §2.1. On the

other hand, LemonNFV eliminates such overhead and only

incurs 2.8%–3.8% overhead, largely resulting from the PKU

switch between NFs.

Since Docker uses three separate cores, we also scale Ideal

and LemonNFV with three cores for throughput comparison.

The results show that Docker is in average 40% slower than

Ideal, while the overhead of LemonNFV is just 3.5%. The per-

formance gap between Docker and LemonNFV is narrowed

compared to the per-packet latency because the end-to-end

measurement includes the I/O latency between the testbed

and the packet generator (∼100us). Such gap would again

enlarge with longer SFC.

Loading and migration. Under LemonNFV, loading a

LEMON is essentially loading a shared library, which is fast

and predictable. We measure the loading time of all 5 real NFs,

and report that the max/average loading time is 28ms/7ms.

Note that LEMONs are loaded by the hypervisor in an asyn-

chronous way, so the factual overhead for the SFC can be

neglected. As a comparison, booting a container usually takes

hundreds of milliseconds [47].

(a) Throughput (b) Latency

Figure 6: Performance comparison with different SFCs and

traces using 4 cores. LemonNFV-M indicates LemonNFV

with memory pre-allocation enabled.

We also verify that our inter-process migration can be fin-

ished rapidly. We setup two processes on a single server, each

of which carries a naive packet forwarding LEMON. The

source process then loads IDS in Table 1, runs it for some

time, and migrates it to the destination process. Results show

that iterative migration copies over 400 dirty pages within

1.2s, and efficiently reduces the total downtime to only 6.9ms.

6.3 Comparing with Existing NFV Systems

We compare LemonNFV with state-of-the-art NFV frame-

works. For obtaining higher performance, these frameworks

often require developing NFs using specific interfaces. To this

end, we port the synthensized NFs to these frameworks and

compose two SFCs: Stateful that chains the four stateful NFs

from NFD, and Stateless that chains the four OpenNetVM

NFs. Performance is the focus of this comparison.

Comparing with NFVnice. We port the synthesized NFs into

NFVnice [40], a state-of-the-art virtualization-based approach

that deploys NFs inside processes and enables back-pressure

between them to minimize wasted work. NFVnice sets a large

packet queue (215) between each NF for higher throughput

and less packet loss, which would in turn increase the latency.

To this end, we measure the throughput with the default set-

ting, and measure the latency by reducing the queue size to

32 (default batch size). This could represent the ideal perfor-

mance a virtualization approach can achieve.

Figure 6 shows the comparison of NFVnice and Lemon-

NFV. LemonNFV is at least 88% faster than NFVnice with

55% less latency. Note that besides the four worker cores,

NFVnice employs two extra cores dedicated for packet I/O,

which, however, has been heavily hindered by the context

switches and cache misses when traversing SFCs.

Comparing with FastClick. FastClick [17] is an enhanced

version of Click [37] with high-speed I/O, optimized com-

pilation stages, and many useful elements. FastClick is the

basis of many state-of-the-art consolidation approaches like

Metron [35], RSS++ [16], PacketMill [25] and Reframer [28].

In FastClick, each NF is a C++ object, and chaining NFs is

just calling a function of the object. This implementation elim-

inates all extra overhead between NFs, indicating the ideal

performance of a consolidation approach.

Figure 6 shows that LemonNFV is only 1.5% slower than

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1461

Figure 7: Throughput comparison with NetBricks.

FastClick for Stateful. This demonstrates the end-to-end over-

head employed by LemonNFV, including the stack switch,

the pkey set, etc. The overhead increases to 4.2% for Stateless,

because this SFC is more lightweight, making the cost from

LemonNFV more significant.

After enabling the pre-allocation, LemonNFV-M even out-

performs FastClick by 9.2% in Stateful. This is because NFs

in Stateful are memory-access-intensive, such that the pre-

allocation would improve the performance significantly. For

the similar reason, Stateless performs almost the same with

and without this feature.

Comparing with NetBricks. The closest work to ours is

NetBricks [52], which also runs SFC in a single thread and

provides isolation among NFs. To compare the runtime over-

head when hosting NFs, we implement a simple ACL NF

using C in LemonNFV and Rust in NetBricks. This NF does

not use any complex algorithms and data structures, e.g., hash

table, from the standard library, to minimize the performance

difference from the language. We chain this NF for several

times to measure the scalability, and further involve the pure

consolidation, i.e., chaining the C NF by function call, as the

ideal approach.

Figure 7 shows that LemonNFV is on average 2.6% slower

than Ideal, while NetBricks incurs 11.9% overhead. With a

longer chain, the overhead of LemonNFV is stable (always

∼2.5%), but NetBricks incurs larger overhead (from 8.9% to

18.1%). This is because the overhead of NetBricks mainly

comes from the NF logic itself, i.e., checking array bounds

with Rust (reportedly a 14% overhead for an LPM [52]), while

the overhead of LemonNFV is irrelevant to the NF logic. As

a result, though the increasing chain length also increases the

number of domain switching, such overhead is still negligible

compared to the workload of NF itself. Considering that the

example NF is largely simplified, the factual gap between

LemonNFV and NetBricks would be much significant in real

cases.

Overhead analysis. We quantify the overhead employed by

LemonNFV to better understand the performance illustrated

above. For each LEMON switching, LemonNFV incurs the

following overhead: (O1) switching the memory domain by

writing the pkey registers, (O2) switching the private heap,

and (O3) switching the private stack to the target domain.

For O1, each domain switching invokes one write to the

pkey register, which averages to 82 cycles in both SFCs. O2 is

stable and minor (i.e., 9 cycles), because heap switching only

changes the base pointer of the heap. For O3, stack switching

needs to save the current context and restore the target. We

measure such overhead for each NF switching in Stateful and

Stateless and the result averages to only 31 cycles. Note that

above overhead is for a whole batch, meaning that the per-

packet overhead with default batch size (32) is only∼4 cycles

for each switching.

As a comparison, virtualization frameworks would be im-

peded by context switching, cache misses and TLB flushes.

To the best of our knowledge, Quadrant [68] has the least

overhead by pinning the NF instances on the chain to a single

core, which results in a per-packet overhead of ∼110 cycles.

In Stateless with 4 NFs, it will cost 530 more cycles than

LemonNFV ((110−4)×5 switching). As the per-packet la-

tency of Stateless is ∼4000 cycles in LemonNFV, Quadrant

is thus ∼13% slower in terms of the isolation overhead.

7 Related Work and Limitations

We discuss efforts that relate to or inspire LemonNFV.

NF development. FastClick [17] and BESS [30] can flexibly

wire their elements/modules up to the SFC (in an off-line

manner). However, those modules must be programmed with

specified interfaces, e.g., being inherited from certain base

classes. To reduce the overhead between NFs, NetBricks [52]

proposes to use a new language, Rust, with a set of domain-

specific abstractions for building NFs. However, it is costly

to re-implement all existing NFs using such new language.

NFD [32] can generate NF code from a high-level behavior

model. While this facilitates the porting task, NFD does not

make heterogeneous NFs interoperable, and operators are

still bound to a specific interface. Nethuns [18] advocates a

socket-independent programming abstraction for NFs, trying

to unifiying the packet I/O, but in turn proposing a new I/O.

Moreover, with LemonNFV, one can directly launch a

NF with out-dated I/O, e.g., official NetBricks with DPDK

17.08 [11], or develop a new NF with the simple packet I/O,

e.g., libpcap, and get the newest and fast I/O for free.

NF optimizations. OpenBox [19] and SNF [36] optimize

the SFC by eliminating the redundancy logics in NFs.

Metron [35] goes a step forward by offloading part of the

merged logic to programmable switches. PacketMill [25] and

Morpheus [50] compiles optimal data structures and control

flows for NFs. These optimizations require inner logics of

NFs, and thus cannot be borrowed by LemonNFV that views

each NF as an opaque box. We see it as an inherent trade-off

between the reusability and deep optimizations.

NF execution models. Virtualization approaches are eager

to improve the performance [22, 33, 40, 51, 76]. Exploiting

the parallelism of NFs is viewed to be a promising direc-

tion [64, 77]. However, according to its own results, the paral-

lel approach (NFP [64]) is 16.5% faster than the non-parallel

one (OpenNetVM [76]), but 26% slower than the RTC ap-

proach (BESS [30]). The factual gap should be larger be-

1462 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cause BESS has reached the wire-speed in that results. Quad-

rant [68] packages NFs into containers and schedules them

in a single core to avoid the cache misses, which, however,

would cause the thread context switch.

FastClick [17], BESS [30], OpenBox [19] and Metron [35]

are pure consolidation approaches, which achieve high per-

formance without isolation. NetBricks [52] is the first con-

solidation approach that considers the isolation. By reimple-

menting NFs with a safe language (Rust), NetBricks ensures

each instruction cannot access the data beyond its legal scope.

However, such operation in Rust is too strict, lowering ∼20%

throughput compared to native consolidation approaches [52].

Intra-process isolation. Hodor [31], ERIM [66], EPK [29]

and CubicleOS [59] leverage Intel PKU to isolate software

modules inside the process. LemonNFV is inspired by them

and is the first for using PKU to isolate NFs in SFC. However,

NFs can change pkey privileges themselves and thus break

the control flow integrity or subvert the hypervisor. We see

this as the nature of PKU and can leverage methods discussed

in existing works to harden PKU-based isolation [20].

Besides memory and fault isolation, previous work has also

proposed and enforced packet isolation, which prevents NFs

from accessing packets that don’t belong to them. Specifically,

an NF may tamper packets outside its batch since the packet

pool is shared by all NFs, contradicting the isolation among

them. To solve this, NetBricks [52] leverages safe language to

disable pointer arithmetic, and Quadrant [68] copies packets

to cast packets on memory private to each NF. Similarly,

LemonNFV can either limit permission on the exact batch

using pkeys, or simply copy packets to address this problem.

NF migration. NFV frameworks need to migrate NFs and

their states to balance the load across the cores or machines.

Previous literatures achieve this feature by adding migra-

tion APIs [27, 55], copying states with identical state struc-

tures [35], or using centralized state tables [16], all of which

require significant code modification to NFs. LemonNFV ad-

dresses this need by migrating the LEMON that packages the

NF logic and code together. However, each LEMON corre-

sponds to a certain packet class, which means LemonNFV

cannot migrate a specific flow [27], or balance the load for a

single large (i.e., non-splittable) flow [16].

Limitations. The design of LEMON and LemonNFV does

not meet every possible situation in deployment. (1) NFs

that do not run as a standalone process (e.g., NFs based on

eBPF [3] or partially offloaded to hardware [35]) are not sup-

ported due to their fundamental deviation from a LEMON’s

execution model. (2) LemonNFV enables fast inter-server

migration by disabling ASLR, which might be exploited by

buffer overflow. Nevertheless, the operator can still migrate

the whole LemonNFV process with ASLR enabled by lever-

aging checkpoint/restore methods (e.g., CRIU [2]), when con-

solidating untrusted NFs.

LemonNFV requires recompiling NFs from the source

code, which is not always available for off-the-shelf NFs.

However, we believe it does not compromise much practical-

ity of LemonNFV because the recompilation (1) still uses the

standard compiler (e.g., gcc), not raising concerns of security

and inconsistency, and (2) only recompiles the main program,

meaning that the original dependencies can be reused. These

facts help the NF vendors to re-publish their NFs as LEMONs

with a simple recompilation, and the users can directly plug

them into LemonNFV.

We emphasize that LemonNFV does not aim to address

all challenges in NFV. Instead, it tries to shed the light for

the NFV world by enabling the ability of heterogeneous NF

interoperation. On such basis, approaches like centralized

state management [70], NF fault recovery [62], load balanc-

ing [16, 58], VNF placement and orchestration [24, 26], etc,

could be complementary to LemonNFV.

8 Conclusion

We presented LemonNFV, a novel NFV framework that con-

solidates the heterogeneous NFs without code modification.

We demonstrated the practicality of LemonNFV with 5 real

NFs, and evaluated LemonNFV by comparing with state-of-

the-arts. The results showed that LemonNFV outperforms the

state-of-the-art virtualization approach by 1.9–2.4×, while

only sacrifices 0.7–4.3% performance for isolation compared

to the ideal consolidation framework.

Acknowledgements. We would like to thank the anonymous

NSDI reviewers and our shepherd Dejan Kostic for their valu-

able feedback. Peng Zhang is the corresponding author. This

work is partially supported by the National Key Research

and Development Program of China (No. 2022YFB2901403)

and the National Natural Science Foundation of China (No.

62172323 and No. 62272382).

References

[1] Address space layout randomization. https:
//en.wikipedia.org/wiki/Address_space_
layout_randomization.

[2] Checkpoint/restore in userspace. https://criu.org/.

[3] eBPF - Introduction, Tutorials & Community Resources.

https://ebpf.io/.

[4] Service Function Chaining Use Cases In Data Cen-

ters. https://datatracker.ietf.org/doc/html/
draft-ietf-sfc-dc-use-cases-06, 2017.

[5] DPDK. http://www.dpdk.org/, 2018.

[6] Libnids. http://libnids.sourceforge.net/, 2018.

[7] libpcap. http://www.tcpdump.org/, 2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1463

[8] mm: Ability to monitor task memory changes (v3).

https://lwn.net/Articles/546966/, 2018.

[9] nDPI. https://bit.ly/3ITdis5, 2018.

[10] Snort. https://www.snort.org/, 2018.

[11] NetSys/NetBricks. https://github.com/NetSys/
NetBricks, 2019.

[12] The vMotion Process Under the Hood.

https://blogs.vmware.com/vsphere/2019/
07/the-vmotion-process-under-the-hood.html,
2019.

[13] Passive Real-time Asset Detection System. https://
github.com/gamelinux/prads, 2020.

[14] Memory Protection Keys - The Linux Kernel doc-

umentation. https://www.kernel.org/doc/html/
latest/core-api/protection-keys.html, 2021.

[15] Single Root IO Virtualization (SR-IOV) - Mellanox.

https://docs.mellanox.com/pages/viewpage.
action?pageId=47033949, 2021.

[16] Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire,

and Dejan Kostić. RSS++: Load and State-Aware Re-

ceive Side Scaling. In ACM CoNEXT, 2019.

[17] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast

Userspace Packet Processing. In ACM/IEEE ANCS,

2015.

[18] Nicola Bonelli, Fabio Del Vigna, Alessandra Fais,

Giuseppe Lettieri, and Gregorio Procissi. Programming

socket-independent network functions with nethuns.

SIGCOMM Comput. Commun. Rev., 52(2):35–48, 2022.

[19] Anat Bremler-Barr, Yotam Harchol, and David Hay.

OpenBox: A Software-Defined Framework for Develop-

ing, Deploying, and Managing Network Functions. In

ACM SIGCOMM, 2016.

[20] R. Joseph Connor, Tyler McDaniel, Jared M. Smith, and

Max Schuchard. Pku pitfalls: Attacks on pku-based

memory isolation systems. In USENIX Security, 2020.

[21] R. Cziva and D. P. Pezaros. Container Network Func-

tions: Bringing NFV to the Network Edge. IEEE Com-
munications Magazine, 55(6):24–31, 2017.

[22] Mihai Dobrescu, Norbert Egi, Katerina Argyraki,

Byung-Gon Chun, Kevin Fall, Gianluca Iannaccone,

Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.

RouteBricks: Exploiting Parallelism to Scale Software

Routers. In ACM SOSP, 2009.

[23] Mohamed Esam Elsaid, Hazem M Abbas, and Christoph

Meinel. Virtual machines pre-copy live migration cost

modeling and prediction: a survey. Distributed and
Parallel Databases, pages 1–34, 2021.

[24] Mehmet Ersue. Etsi nfv management and orchestration -

an overview. https://www.ietf.org/proceedings/
88/slides/slides-88-opsawg-6.pdf, 2013.

[25] Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q.

Maguire Jr., and Dejan Kostić. PacketMill: Toward per-

Core 100-Gbps Networking. In ACM ASPLOS, 2021.

[26] Aaron Gember, Anand Krishnamurthy, Saul St.

John, Robert Grandl, Xiaoyang Gao, Ashok Anand,

Theophilus Benson, Aditya Akella, and Vyas Sekar.

Stratos: A network-aware orchestration layer for middle-

boxes in the cloud. Technical Report arXiv:1305.0209,
2013, 2013.

[27] Aaron Gember-Jacobson, Raajay Viswanathan,

Chaithan Prakash, Robert Grandl, Junaid Khalid,

Sourav Das, and Aditya Akella. OpenNF: Enabling

Innovation in Network Function Control. In ACM
SIGCOMM, 2014.

[28] Hamid Ghasemirahni, Tom Barbette, Georgios P. Kat-

sikas, Alireza Farshin, Amir Roozbeh, Massimo Girondi,

Marco Chiesa, Gerald Q. Maguire Jr., and Dejan Kostić.

Packet order matters! improving application perfor-

mance by deliberately delaying packets. In USENIX
NSDI, 2022.

[29] Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo

Chen. EPK: Scalable and efficient memory protection

keys. In USENIX ATC, 2022.

[30] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar,

Dongsu Han, and Sylvia Ratnasamy. SoftNIC: A Soft-

ware NIC to Augment Hardware. Technical Report

UCB/EECS-2015-155, EECS Department, University

of California, Berkeley, 2015.

[31] Mohammad Hedayati, Spyridoula Gravani, Ethan John-

son, John Criswell, Michael L. Scott, Kai Shen, and

Mike Marty. Hodor: Intra-Process Isolation for High-

Throughput Data Plane Libraries. In USENIX ATC,

2019.

[32] Hongyi Huang, Wenfei Wu, Yongchao He, Bangwen

Deng, Ying Zhang, Yongqiang Xiong, Guo Chen, Yong

Cui, and Peng Cheng. NFD: Using Behavior Models to

Develop Cross-Platform Network Functions. In IEEE
INFOCOM, 2021.

[33] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood.

NetVM: High Performance and Flexible Networking Us-

ing Virtualization on Commodity Platforms. In USENIX
NSDI, 2014.

1464 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[34] Muhammad Asim Jamshed, YoungGyoun Moon,

Donghwi Kim, Dongsu Han, and KyoungSoo Park.

mOS: A Reusable Networking Stack for Flow Moni-

toring Middleboxes. In USENIX NSDI, 2017.

[35] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Re-

becca Steinert, and Gerald Q. Maguire Jr. Metron: NFV

Service Chains at the True Speed of the Underlying

Hardware. In USENIX NSDI, 2018.

[36] Georgios P. Katsikas, Marcel Enguehard, Maciej Kuź-

niar, Gerald Q. Maguire Jr, and Dejan Kostić. SNF: syn-

thesizing high performance NFV service chains. PeerJ
Computer Science, 2:e98, 2016.

[37] Eddie Kohler, Robert Morris, Benjie Chen, John Jan-

notti, and M. Frans Kaashoek. The Click Modular

Router. ACM Transactions on Computer Systems,

18(3):263–297, 2000.

[38] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida,

and Elias Athanasopoulos. No Need to Hide: Protect-

ing Safe Regions on Commodity Hardware. In ACM
EuroSys, 2017.

[39] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre,

Sharan Santhanam, Alexander Jung, Gaulthier Gain,

Cyril Soldani, Costin Lupu, Ştefan Teodorescu, Costi

Răducanu, Cristian Banu, Laurent Mathy, Răzvan Dea-

conescu, Costin Raiciu, and Felipe Huici. Unikraft: Fast,

specialized unikernels the easy way. In ACM EuroSys,

2021.

[40] Sameer G. Kulkarni, Wei Zhang, Jinho Hwang, Shri-

ram Rajagopalan, K. K. Ramakrishnan, Timothy Wood,

Mayutan Arumaithurai, and Xiaoming Fu. NFVnice:

Dynamic Backpressure and Scheduling for NFV Service

Chains. In ACM SIGCOMM, 2017.

[41] Hao Li, Changhao Wu, Guangda Sun, Peng Zhang, Dan-

feng Shan, Tian Pan, and Chengchen Hu. Programming

Network Stack for Middleboxes with Rubik. In USENIX
NSDI, 2021.

[42] Guyue Liu, Yuxin Ren, Mykola Yurchenko, K.K Ra-

makrishnan, and Timothy Wood. Microboxes: High

Performance NFV with Customizable, Asynchronous

TCP Stacks and Dynamic Subscriptions. In ACM SIG-
COMM, 2018.

[43] Guyue Liu, Hugo Sadok, Anne Kohlbrenner, Bryan

Parno, Vyas Sekar, and Justine Sherry. Don’t yank my

chain: Auditable NF service chaining. In USENIX NSDI,
2021.

[44] Haikun Liu, Cheng-Zhong Xu, Hai Jin, Jiayu Gong, and

Xiaofei Liao. Performance and energy modeling for live

migration of virtual machines. In ACM HPDC, 2011.

[45] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and

Yubin Xia. Thwarting Memory Disclosure with Efficient

Hypervisor-Enforced Intra-Domain Isolation. In ACM
CCS, 2015.

[46] Anil Madhavapeddy, Thomas Leonard, Magnus

Skjegstad, Thomas Gazagnaire, David Sheets, Dave

Scott, Richard Mortier, Amir Chaudhry, Balraj Singh,

Jon Ludlam, Jon Crowcroft, and Ian Leslie. Jitsu:

Just-In-Time summoning of unikernels. In USENIX
NSDI, 2015.

[47] Filipe Manco, Costin Lupu, Florian Schmidt, Jose

Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,

Costin Raiciu, and Felipe Huici. My VM is Lighter (and

Safer) than Your Container. In ACM SOSP, 2017.

[48] Antonis Manousis, Rahul Anand Sharma, Vyas Sekar,

and Justine Sherry. Contention-aware performance pre-

diction for virtualized network functions. In ACM SIG-
COMM, 2020.

[49] Joao Martins, Mohamed Ahmed, Costin Raiciu,

Vladimir Olteanu, Michio Honda, Roberto Bifulco, and

Felipe Huici. ClickOS and the art of network function

virtualization. In USENIX NSDI, 2014.

[50] Sebastiano Miano, Alireza Sanaee, Fulvio Risso, Gá-

bor Rétvári, and Gianni Antichi. Domain Specific Run

Time Optimization for Software Data Planes. In ACM
ASPLOS, 2022.

[51] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang,

Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott

Shenker. E2: A Framework for NFV Applications. In

ACM SOSP, 2015.

[52] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,

Sylvia Ratnasamy, and Scott Shenker. NetBricks: Tak-

ing the V out of NFV. In USENIX OSDI, 2016.

[53] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon,

and Taesoo Kim. libmpk: Software Abstraction for Intel

Memory Protection Keys (Intel MPK). In USENIX ATC,

2019.

[54] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and

Sylvia Ratnasamy. SafeBricks: Shielding network func-

tions in the cloud. In USNIEX NSDI, 2018.

[55] Shriram Rajagopalan, Dan Williams, Hani Jamjoom,

and Andrew Warfield. Split/Merge: System Support for

Elastic Execution in Virtual Middleboxes. In USENIX
NSDI, 2013.

[56] Yuxin Ren, Guyue Liu, Vlad Nitu, Wenyuan Shao, Riley

Kennedy, Gabriel Parmer, Timothy Wood, and Alain

Tchana. Fine-Grained isolation for scalable, dynamic,

multi-tenant edge clouds. In USENIX ATC, 2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1465

[57] Luigi Rizzo. netmap: A Novel Framework for Fast

Packet I/O. In USENIX ATC, 2012.

[58] Alexander Rucker, Muhammad Shahbaz, Tushar Swamy,

and Kunle Olukotun. Elastic RSS: Co-Scheduling Pack-

ets and Cores Using Programmable NICs. In ACM
APNet, 2019.

[59] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch.

CubicleOS: A Library OS with Software Componenti-

sation for Practical Isolation. In ACM ASPLOS, 2021.

[60] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K.

Reiter, and Guangyu Shi. Design and Implementation

of a Consolidated Middlebox Architecture. In USENIX
NSDI, 2012.

[61] Junxian Shen, Heng Yu, Zhilong Zheng, Chen Sun,

Mingwei Xu, and Jilong Wang. Serpens: A high-

performance serverless platform for nfv. In IEEE/ACM
IWQoS, 2020.

[62] Justine Sherry, Peter Xiang Gao, Soumya Basu, Auro-

jit Panda, Arvind Krishnamurthy, Christian Maciocco,

Maziar Manesh, João Martins, Sylvia Ratnasamy, Luigi

Rizzo, and Scott Shenker. Rollback-recovery for mid-

dleboxes. In ACM SIGCOMM, 2015.

[63] Arjun Singhvi, Junaid Khalid, Aditya Akella, and Sujata

Banerjee. Snf: Serverless network functions. In ACM
SoCC, 2020.

[64] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and

Hongxin Hu. NFP: Enabling Network Function Par-

allelism in NFV. In ACM SIGCOMM, 2017.

[65] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin

Walls, Katerina Argyraki, Sylvia Ratnasamy, and Scott

Shenker. ResQ: Enabling SLOs in Network Function

Virtualization. In USENIX NSDI, 2018.

[66] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.

Duarte, Michael Sammler, Peter Druschel, and Deepak

Garg. ERIM: Secure, Efficient in-Process Isolation with

Protection Keys (MPK). In USENIX Security, 2019.

[67] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and

Susan L. Graham. Efficient Software-Based Fault Isola-

tion. In ACM SOSP, 1993.

[68] Jianfeng Wang, Tamás Lévai, Zhuojin Li, Marcos A. M.

Vieira, Ramesh Govindan, and Barath Raghavan. Quad-

rant: A cloud-deployable nf virtualization platform. In

ACM SoCC, 2022.

[69] Dan Williams, Ricardo Koller, Martin Lucina, and

Nikhil Prakash. Unikernels as Processes. In ACM SoCC,

2018.

[70] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon,

Sylvia Ratnasamy, and Scott Shenker. Elastic Scaling

of Stateful Network Functions. In USENIX NSDI, 2018.

[71] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley

Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,

Neha Narula, and Nicholas Fullagar. Native client: A

sandbox for portable, untrusted x86 native code. In

IEEE Symposium on Security and Privacy, 2009.

[72] Farnaz Yousefi, Anubhavnidhi Abhashkumar, Kausik

Subramanian, Kartik Hans, Soudeh Ghorbani, and

Aditya Akella. Liveness verification of stateful network

functions. In USENIX NSDI, 2020.

[73] Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Mat-

teo Rizzo, Luis Pedrosa, Katerina Argyraki, and George

Candea. Verifying software network functions with no

verification expertise. In ACM SOSP, 2019.

[74] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Kate-

rina Argyraki, and George Candea. A formally verified

nat. In ACM SIGCOMM, 2017.

[75] Kaiyuan Zhang, Danyang Zhuo, Aditya Akella, Arvind

Krishnamurthy, and Xi Wang. Automated verification

of customizable middlebox properties with gravel. In

USENIX NSDI, 2020.

[76] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah,

Phillip Lopreiato, Gregoire Todeschi, K.K. Ramakrish-

nan, and Timothy Wood. OpenNetVM: A Platform for

High Performance Network Service Chains. In ACM
HotMiddlebox, 2016.

[77] Yang Zhang, Bilal Anwer, Vijay Gopalakrishnan,

Bo Han, Joshua Reich, Aman Shaikh, and Zhi-Li Zhang.

ParaBox: Exploiting Parallelism for Virtual Network

Functions in Service Chaining. In ACM SOSR, 2017.

[78] Peng Zheng, Arvind Narayanan, and Zhi-Li Zhang. A

closer look at NFV execution models. In ACM APNet,
2019.

Appendix A Multi-Threaded LEMON
Scheduling

For a single-threaded LEMON, the hypervisor would initial-

ize it, and the working thread will continue executing it, as

shown in Figure 4b. However, a LEMON could create its

own threads, which, except for the packet processing threads,

could include threads for event logging or user input com-

munication. In the following, we present how LemonNFV

cooperates with the multi-threaded LEMONs.

Taking Figure 8 as an example, a LemonNFV process has a

hypervisor thread (Th, red path), and an RTC working thread

1466 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1. Load LEMON
2. Save the stack
3. If not init:
4. init← true
5. Execute LEMON

6. EndIf
7. Notify trampolines

Hypervisor (H)
1. Initialization
2. Create thread
3. Print logs, etc.

LEMON (M)
1. Initialization
2. While True:
3. Call eth_rx_burst()
4. Process the packet
5. Call eth_tx_burst()
6. EndWhile

LEMON (P)

Loop back to Line 3

Figure 8: Cooperating with multi-threaded LEMONs. The

red path is the (original) hypervisor thread, and the orange

path is the newly created packet processing thread. After the

LEMON is initialized, the red thread becomes its main thread,

and the orange thread becomes the hypervisor thread.

(Tr, blue path). Assume a new LEMON M1 is being loaded

into the SFC, which creates a new thread for packet processing

(Tp, orange path), and manages that thread in its main thread

(Tm). The hypervisor would first execute the main function

in Th, that is, Tm = Th (Line 5 in H). After creating Tp in Th
(Line 2 in M), the execution in Tp would eventually call the

virtualized I/O for the very first time, i.e., the initialization part

(Line 3 in P). Then the execution would be switched into the

hypervisor stack (Line 6 in H). Note that since Tp is executing

the hypervisor logic, this thread now actually plays the role

of hypervisor thread. Next, Tp (the new hypervisor thread)

would notify Tr that a LEMON is ready to be attached into

the SFC (Line 7 in H), and Tr will switch the stack into the

packet processing logics of this LEMON next time received

the packets (Line 4 in P).

In sum, after loading a LEMON, Th becomes the manage-

ment thread of the new LEMON, Tp becomes the new hyper-

visor thread, and Tr is still the RTC working thread. Note that

the LEMON can also use Tm as the packet processing thread,

and create a new thread for management. In this case, Tm (Th)

will still be the hypervisor thread. The key here is that there

is only one packet processing thread for each LEMON, so the

virtualized I/O calls in that thread would eventually guide the

hypervisor and trampolines to properly handle it.

Appendix B Dirty Pages Tracking in Inter-
Process Migration

In the case of VM, the hypervisor can migrate the running VM

to another host without halting it, namely live migration. The

key is to capture the dirty pages by changing the accessing

rights of the page table entries. For example, Xen implements

a shadow page table to the original VM page table [44]. When

the hypervisor decides to track memory modifications, the

internal page table of the VM is transparently set to read only.

That is, memory writes will not trigger a fault, but propagate

to the shadow page table, recording the dirty pages during

pre-copy stage in the hypervisor. vMotion in VMWare takes

a similar approach [12].

Although each LEMON does not have a shadow or an iso-

lated page table, its memory region has explicit boundary.

(a) Lightweight (b) Heavy

Figure 9: Performance comparison of differently-loaded NFs

between their LemonNFV and vanilla DPDK version.

As a result, it is possible to adopt the above method by di-

rectly changing the accessing rights of the page table inside a

LEMON. To be specific, when migrating a LEMON, Lemon-

NFV first blocks the LEMON and changes the permission

of the LEMON’s memory to read only. Then, all the mem-

ory writes to the LEMON will trigger a SIGSEGV signal. A

pre-registered signal handler would capture this signal, record

the address to be written (which pollutes the page), and grant

write permission to the corresponding page. Upon completion

of the pre-copy stage (i.e., phase -1 in §4.4), the LEMON is

set to read only again, waiting for the next iteration.

Experiments on libnids [6], prads [13] and nDPI [9] with

real traffic show that after a few iterations, the number of

the modified pages eventually converge to 13, 7 and 4, re-

spectively (4KB for each page), which are far lower than the

stopping condition of iteration in Xen (<50 pages) and vMo-

tion (<16MB) [23], meaning that the factual migration would

only halt the LEMON for a neglected moment.

Appendix C Microbenchmark

In this section we present some additional microbenchmarks

of LemonNFV.

As in §6.3, the overhead of LemonNFV is irrelevant to the

NF logic, contrast to array bound checking. It’s then worth

discussing how this overhead would impact the performance,

under various workload and SFC length.

We prepare a light NF (∼200 cycles per packet) and a heavy

NF (∼2300 cycles per packet), packing them as LEMON as

well as porting them to DPDK. Under LemonNFV, variable

number of identical LEMONs are chained together, while

the DPDK version repetitively invokes the packet processing

function until chain length is met. Since the vanilla DPDK

version does not introduce additional overhead, it is referred

to as ‘Ideal’ later as a baseline.

Figure 9 presents the end-to-end throughput under variable

chain length and NF workload. We have the following ob-

servations and analysis for the results. First, the performance

gap between LemonNFV and Ideal is large when the NF is

lightweight (17.1% on average across all chain length), but

becomes much less significant when the NF is heavy (4.3%

on average). This corresponds to our analysis in §6.3 that

the overhead of LEMON switching is irrelevant from NF

logic. Since real-world NFs are generally more complex and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1467

time-consuming, LemonNFV would be more preferable than

isolation methods based on array bound checking.

Second, given the fixed switching overhead, the perfor-

mance gap should be stable when the chain length increases.

This is also verified in Figure 9 when the chain length is under

7. However, the slowdown of LemonNFV grows when the

chain length continues to increase. For example, the average

slowdown of lightweight NF rises from 16.0% to 20.2% when

the SFC is longer than 8. We believe that this is mainly due to

cache contention of NFs co-locating on the same core [48,65].

Compared with virtualization based systems that often run

NFs on separated cores, RTC scheduling will be more likely

to drain cache and cause performance degradation [78]. We

consider it as a feature of RTC and leave better profiling and

optimizing cache performance as our future work.

1468 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Disaggregating Stateful Network Functions

Deepak Bansal, Gerald DeGrace, Rishabh Tewari, Michal Zygmunt, James Grantham, Silvano Gai‡,
Mario Baldi‡, Krishna Doddapaneni‡, Arun Selvarajan‡, Arunkumar Arumugam‡, Balakrishnan Raman‡,

Avijit Gupta, Sachin Jain, Deven Jagasia, Evan Langlais, Pranjal Srivastava, Rishiraj Hazarika,
Neeraj Motwani, Soumya Tiwari, Stewart Grant, Ranveer Chandra, Srikanth Kandula

Microsoft and AMD Pensando‡

Abstract– For security, isolation, metering and other pur-
poses, public clouds today implement complex network func-
tions at every server. Today’s implementations, in software
or on FPGAs and ASICs that are attached to each host, are
becoming increasingly complex, costly and bottlenecks to
scalability. We present a different design that disaggregates
network function processing off the host and into shared re-
source pools by making novel use of appliances which tightly
integrate general-purpose ARM cores with high-speed stateful
match processing ASICs. When work is skewed across VMs,
such disaggregation can offer better reliability and perfor-
mance over the state-of-art at a lower per-server cost. We de-
scribe our solutions to the consequent challenges and present
results from a production deployment at a large public cloud.

1 Introduction

All major cloud providers implement stateful network func-
tions at their servers. These network functions are essential for
network virtualization (e.g., private address spaces [75, 88]),
enhanced security (e.g., stateful firewalls [14, 15]), load bal-
ancing [56, 87], QoS [62, 68, 92] and cost metering [5, 9, 20].

The key challenges in implementing stateful network func-
tions in a virtualized context are three-fold:

• First, the state that must be maintained and accessed
at line-rate can be per flow (for stateful firewalls) or
per endpoint (to virtualize IP addresses) and can ex-
ceed 100MB for many virtual machines. Programmable
switches [24, 25] have small SRAMs and are hence
appropriate only in niche cases such as to only sup-
port a small subset of all flows [83, 85] or in bare-
metal settings where the cloud provider has no ac-
cess to the servers [41]. The most widely-used NF im-
plementations today combine software in host virtual
switches [52, 57, 88] with FPGAs or smart NICs that are
directly attached to the servers [6, 58].

• Next, attaching FPGAs and smart NICs to each server
is wasteful because these cards must be provisioned to

… … …

Datacenter Core
(e.g., CLOS)

… …

VM1 VMnvSwitch

NIC FPGA

…

Shared Stateful
NF Processing Pool

Figure 1: Today, stateful network functions are implemented on-host in vir-
tual switches, NICs and FPGAs shown with a dark background. We propose
to disaggregate stateful NFs, i.e., also process them in shared resource pools
located elsewhere in the datacenter.

meet the peak anticipated usage at each server but the
actual usage is far below the peak most of the time, and
on most servers. Moreover, VMs that use networking
features which are only supported by the latest FPGA
or smartNIC cannot be deployed on older hardware; in
turn, this can lead to a sizable waste of non-networking
resources.

• Finally, the tail performance is limited today. For exam-
ple, in the three largest public clouds, we will show that
the number of new connections per second a VM can
support is well below the NIC capacity and is likely bot-
tlenecked on stateful NFs that are applied on each new
connection. Customers who deploy middleboxes in VMs
(such as the Palo Alto VM-series firewall [33]) to secure
access to their other VMs are forced to deploy many
more middleboxes to offset the performance limitations
in the provider’s NF processing [35].

We propose to disaggregate the processing of stateful net-
work functions into shared off-host resources pools as shown
in Figure 1. Similar to how a customer can pick the CPU or
memory for a VM, customers can also now pick a floating
network interface (fNIC) which explicitly specifies NF re-
quirements (e.g., # new flows per second, # concurrent flows)
as well as the network capacity in Gbps. When deploying a
VM, we allocate resources for the fNIC either on-host (that
is, on the vswitch and the FPGA), or at an off-host shared
resource pool or some combination at both locations.

We call out a few advantages from such a disaggregation

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1469

Stateful NF State at each VM Computation
Private address
spaces [2, 10, 22]

A dictionary that maps customer’s private addresses to the provider’s physical addresses;
one entry per remote endpoint that the VM speaks with.

Lookups, adds and deletes into the
mapping dictionary

Stateful ACLs [32,
36]

Per ongoing flow that has passed the ACLs, a hashmap containing the flow’s five tuple
and the reverse five tuple

Lookups, adds and deletes into the
per-flow hash table

Billing [5, 9, 20] Total bytes, sliced by windows and per billable communicating entity such as a datacenter
or a cloud service; also, bursts and peak rates

Multiple counters and sketches

Stateful NATs, load
balancers

Per ongoing flow, the new flow to masquerade as. Lookups, adds and deletes into the
rewrite dictionary

Table 1: Some example stateful network functions that are implemented at cloud VMs and the associated state and computation. For more details, see [52,57,88].

of stateful NFs. First, we will show that for most of the time
most of the VMs require much fewer NF processing capacity
than the peak. We can thus reduce cost and power usage by
equipping servers with less capable FPGAs or smart NICs and
handling all of the spillover load at the shared resource pools.
Next, we can deploy VMs which require novel NF processing
on any server in the datacenter, including on older hardware,
as opposed to restricting to just servers that have the latest
FPGAs or smart NICs. As noted above, doing so reduces the
fragmentation of non-networking resources. Third, we show
how to increase the tail performance for VMs well beyond
what is achievable from using the single FPGA or smartNIC
that is attached to the host; for example, the number of new
connections-per-second a VM can accept may only be limited
by its NIC capacity. Doing so reduces cost and eases the
deployment of middlebox VMs.

There has been much work on resource disaggregation.
Disaggregating stateful NFs is similar in some ways to prior
works that disaggregate resources such as memory, storage or
GPU [45, 63, 74, 91] but there are a few key differences. One
challenge is with regards to implementing a high-performance
shared NF resource pool. The pool must simultaneously sup-
port large state and high-speed packet processing (e.g., 100s
of GBs of states at multi Tbps packet processing rates). Doing
so requires coherent access over a large memory at a high-
speed. Programmable switches [24, 25] can process at multi
Tbps but only have about 1GB of SRAM per switch. We
have implemented an appliance which can be thought of as a
bag-of-NICs wherein each NIC contains match-processing-
unit ASICs that are programmable in P4 as well as a large
coherently-accessible memory. Each appliance has 12 NIC
cards, each card has a power draw of 75W, 16GBs usable for
NF state and can process duplex packets at 100Gbps.

Another novel challenge from disaggregating stateful net-
work functions is that fault tolerance shifts from a fate-sharing
mode to a single point of failure. That is, when an FPGA or
a smart NIC fails, only the VMs on the corresponding host
fail but when an appliance (in the shared NF resource pool)
fails the impact is felt by any VM whose fNIC happens to be
allocated on that appliance. Naïvely replicating the state of
network functions is hard because both primary-backup style
replication [44, 51] and Paxos-like protocols [46, 48, 50, 81]
queue requests while the state is being replicated. In the case

of stateful NFs, requests can be any packet that changes state
and so holding requests at speeds of hundreds of Gbps will
require a very large packet buffer. We show how to replicate
state in-line by ping-ponging packets between the replicas
(pairs of programmable NICs) effectively buffering the state-
changing requests on the network wires.

To the best of our knowledge, we are not aware of any prior
work that disaggregates stateful NFs such as connection track-
ing firewalls or uses programmable bag-of-NICs appliances
or supports in-line state replication. Some works offload spe-
cific stateful NFs to top-of-the-rack switches [41, 83, 85, 95]
but do not support a rich class of NFs and the memory limit
on Tofinos restricts them to only speedup a small subset of
flows. Andromeda [52] deploys dedicated software middle-
boxes to process NFs but does not support stateful NFs citing
concerns such as “state loss during upgrade or failure” and
“transferring state when offloading”. We discuss other related
work in §7. To sum up, our key contributions are:

• We build a case to disaggregate stateful NFs by studying
the functions and telemetry at a large cloud provider (§2).

• We present Sirius which disaggregates a rich class
of stateful network functions onto pools of P4 pro-
grammable NIC cards. We show how to replicate state
inline between pairs of nearby cards such that individual
card failure does not adversely impact ongoing connec-
tions (§3.2). We discuss multiple disaggregation design-
points including those that split or migrate the load of
a VM across different NF processors (§3.3) and show a
programmable NIC implementation that achieves better
performance-over-cost than state-of-the-art (§4).

• We report results from a production deployment which,
in part, show that when VMs offload onto Sirius, their
stateful NF processing capacity improves by about 10×.

2 Background and Motivation

2.1 Stateful Network Functions
Table 1 lists some stateful network functions that are sup-
ported by public cloud providers. As the table notes, some
NFs must maintain per-flow state whereas others keep state at
coarser granularity. Counters and sketches are used to measure
network usage for billing and diagnostics [73]. Customers

1470 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

can also configure (add to) the stateful NFs on their VMs.
As exemplars, we discuss two kinds of stateful NFs that are
widely used in production but less well known academically.

First, virtual network peering [8, 12, 23] allows VMs in dif-
ferent virtual networks to communicate. Doing so requires
all VMs in participating vnets to know how to map a virtual
address belonging to any vnet into the corresponding physi-
cal address. This mapping must be kept up-to-date whenever
VMs are deployed or migrated. Today’s vnet peering imple-
mentations cache the map in a stateful layer at VMs [8,12,23].

Next, private links [7, 11, 29] let VMs communicate with
PaaS services that have public IPs on a more direct path. For
example, when a VM in AWS reads from an EBS volume
which has a public IP, naïvely, such traffic must go via the
cloud egress gateway similar to traffic to any public IP and
then turn back towards the cloud store. Private links are more
efficient and secure by having such traffic go directly to the
cloud storage; a stateful layer at each VM encapsulates the
outgoing traffic based on the VMs vnet id and the private IP
address of the PaaS service and, in the reverse direction, a
stateful layer at the PaaS service remembers which virtual
and physical addresses a flow comes from when decapsulat-
ing (so-called stateful decap) and uses that state to encapsulate
packets so that they go back to the appropriate VM.

To sum, associated with each VM in the public cloud,
providers implement numerous stateful network functions.
Among the NFs considered in this paper, the connection-
tracking firewalls, NATs and load balancers are the most
intensive – they all require per-connection state. The total
state to maintain per VM is often large since there can be
hundreds of distinct rules to apply: one per private link, state-
ful ACL or vnet peer. NF actions on new connections are
often implemented in software due to complexity and ease-of-
programmability [52, 57, 88] whereas the per-packet actions
are implemented in FPGAs or ASICs [6, 58].

2.2 NF workload at a public cloud

We characterize the usage of network functions at Azure. For
each VM and each minute, we obtain the number of newly
established flows, the number of active flows and the byte and
packet counts. Our results here summarize metrics from a
three month period. A typical minute has reports from O(108)
VMs and O(107) nodes. Our key findings are as follows.

Skew in load for NFs: Figure 2a shows that the load for
network functions is skewed; we measure load in terms of the
number of newly arriving flows which must be verified to be
policy compliant, the number of concurrently active flows for
which state has to be maintained and the number of packets
being exchanged. We see that the median load is multiple
orders of magnitude smaller than the peak load. The inset
zooms in on values further on the tail.

When the load is skewed, provisioning every host for the

 10

 20

 50

 100

 1 10 102 103 104 105 106 107 108

C
h
o
p
p
e
d
 C

D
F

 (
lo

g
 s

ca
le

)

Value (log scale)

#New flows
#Conc. Flows

#Packets

 99

 99.9
 99.999

103 104 105 106 107 108 109

(a) Cumulative distribution function (CDF) of the NF Load at VMs; axes are in
log scale and points on the CDF are unique (VM, minute) tuples.

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

1

 16 17 18 19 20 21 22 23
Fr

a
ct

io
n

 (
lo

g
 s

ca
le

)
log2 (#New Flows at (VM, Minute))

Fract. Racks
Fract. Nodes

Fract. Containers

(b) VMs that have high NF load are spread among many nodes and racks.

Figure 2: Characterizing the workload for stateful NFs at a large public
cloud; data collected across over 108 VMs in a three month period.

Metric Containers Nodes Racks
σ / µ 14.23 5.00 0.67
99th / µ 13.54 10.49 2.52

Table 2: Coefficient-of-variation (=stdev σ/ avg. µ) of the number of newly
arriving flows per minute at each VM compared to the same metric when
rolled up into the nodes or racks that contain the VMs.

peak (e.g., by adding FPGAs or smart NICs), can be costly
and most of the NF processing capability remains unused. We
aim to provision hosts for the average load and handle the
excess load using a disaggregated, logically shared, pool.

Containers with high NF load are spread throughout
the network: Figure 2b zooms in on VMs and timewin-
dows (minutes) which report high NF load; the x axes is a
logarithmic bin, that is x = 18 denotes that the numbers of
new flows in a (VM, minute) was in the range of [217.5,218.5).
The bottom-most line on the figure reports the fractions of dis-
tinct containers which exhibit high NF load. If the high-load
containers were concentrated into a few nodes and racks, then
the fraction of nodes and racks which show high load will be
no larger than the fraction of containers. However, the figure
shows that highly-loaded containers are spread across many
more nodes and racks. The case for other NF load metrics is
similar. About 10% of the racks have at least one container
which reported over 50000 new connections in a minute.

Variation in NF load: At the granularity of individual VMs,
we observe sizable temporal variations in NF load of up to

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1471

one order of magnitude larger than the median (see Figure 15).
However, the variability appears uncorrelated spatially. That
is, the sum of the load of all the VMs in a server or a rack has
smaller coefficient-of-variation (see Table 2). Shared pools of
NF processing capability thus can be provisioned with smaller
peak to average ratios and will be more cost-efficient.

2.3 Characterizing NF Performance

To measure the state-of-art stateful NF performance of pub-
lic clouds today, we deploy pairs of VMs of different sizes,
add a stateful ACL to the client VM and initiate TCP con-
nections in an open loop to the other server VM. We pro-
gressively increase the connection initiation rate and mea-
sure the maximum rate that was achieved and the connec-
tion establishment latency. Our tool is multi-threaded and
asynchronous. We appropriately change various configura-
tion variables and achieve better results than listed in public
datasheets [13, 17–19, 34]. Figure 3a shows the maximum
number of new connections per second (CPS) achieved by
VMs of different sizes on the three largest public clouds today.
All VMs are identically configured Ubuntu Linux instances.
The variation is over experiment runs likely due to perfor-
mance interference on the VMs or on the network path; we
repeat each point at least ten times. The figure shows that
increasing the VM size tends to increase the CPS perhaps
because the per-VM networking limits improve [3, 21, 28].
However, the highest CPS across all public clouds and experi-
mented VMs is 0.3M. Figure 3b shows the latency between
sending a SYN and receiving a SYN-ACK. In the latency plot,
we only use trials where most of the connections succeed to
avoid latency cliffs. The figures show that processing the state-
ful NFs which are deployed in public clouds today represents
a sizable bottleneck– there is a sizable latency when establish-
ing new connections and VMs are limited in the number of
new connections per second that they can sustain.

3 Disaggregating NF processing in Sirius

Sirius offers a new API to offload network function processing
into pools of appliances that contain custom programmable
cards. Each VM or container can specify a floating NIC (fNIC)
with requirements on the following dimensions that relate to
processing network functions:

• The number of new flows per second (CPS)
• The maximal number of concurrent flows
• Network capacity
• Feature, capability selection and ruleset size

Values for some of these dimensions are already in cloud
provider and NVA vendor datasheets [3,13,17–19,21,28,34];
Sirius also allows off-the-shelf fNIC sizes that users can pick
from (e.g., a small fNIC) to help with configuration.

10-3

10-2

10-1

 1

 2 4 6 8 10 12 14 16

#
N

e
w

 C
o
n
n
s.

 (
x
1

0
6
/s

)

#vCPUs

Cloud1 Cloud2 Cloud3

(a) Maximum Connections Per Second achieved.

10-5

10-4

10-3

10-2

10-1

1

 2 4 6 8 10 12 14 16

S
Y
N

 R
T
T
 (

s)

#vCPUs

Cloud3 Cloud1 Cloud2

(b) Latency between sending a SYN and getting a SYN-ACK.

Figure 3: Benchmarking connection establishment rate and latency at dif-
ferent VM sizes on three public clouds. The lines connect the average value,
whiskers go from 1st to 99th and boxes go from 25th to 75th percentiles.

We extend our cloud VM allocator [65, 93] to provision
fNICs using either resources on the smartNICs that are at-
tached to servers or one or more Sirius appliances. Disag-
gregation lets VMs be placed on servers that may not lo-
cally satisfy fNIC requirements. Allocating fNICs to cards
is an instance of the multi-dimensional bin packing prob-
lem [61, 86]. A better packing will map more fNICs onto
fewer cards. We considered different heuristics and found that
heuristic choice improves efficiency only when the fraction of
large fNICs (whose resource needs are a substantial fraction
of the card capacity) is high. In the rest of this section, we
discuss the disaggregated datapath, inline state replication and
methods to split or move an fNIC’s load between multiple
cards. Our design is modular and can work with different
implementations of the shared processing pool; in §4, we dis-
cuss our P4 programmable cards which in our tests can serve
over 3M new connections per second and 16M concurrent
connections while processing a rich set of stateful NFs.

3.1 Connectivity and availability
The NF processing pool in Sirius is a collection of appliances.
In our prototype, an appliance is a pair of 3U servers with six
programmable cards each in PCIe slots. Each card has two
100Gbps QSFP+ connectors and 32GB DRAM.

Reliability, efficiency and flexibility were our key consider-
ations when deciding how to connect Sirius appliances within
a datacenter. Adding an appliance to each rack may lead to
under-utilization (and fragmentation) since not every rack
may have enough demand for NF processing. We also aim for

1472 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: Connectivity diagram. Please read the figures left to right with each subsequent figure fleshing out the portion that is highlighted in the preceding
figure. A Sirius appliance can be thought off as a pair of servers labeled S1 and S2 respectively that are connected as shown. Sirius assigns offloaded floating
NICs of VMs to the programmable cards in the servers. We deploy more appliances to keep up with the total NF load.

a high level of reliability since NF processing is crucial for
security and reachability in public clouds, e.g., for ACLs and
private address spaces. Our goal is to ensure that the failure
of any one server, card, link or switch must not degrade NF
processing capability by a substantial amount. We also aim
to independently scale out the NF processing capability as
demand increases, e.g., by adding more appliances. Finally,
we want VM placement to not be constrained by the availabil-
ity or lack thereof of NF processing capability; that is, VMs
located anywhere in a datacenter should be able to, when
needed, use NF processing from the Sirius pool.

We choose to connect Sirius appliances as shown in Fig-
ure 4. Our minimum deployment unit is one appliance beneath
two top-of-rack (ToR) equivalent switches that connect to the
rest of the datacenter network similarly to other ToR switches.
Such connectivity also ensures that any VM in any of the
racks connected underneath the same CLOS will have equiva-
lent access to Sirius’s appliances thus realizing a large shared
NF processing pool. In our experience with Sirius, the pri-
mary bottleneck is the NF processing capability and the state
on the cards. That is, the number of new flows arriving per
second which must be validated and the number of concur-
rent connections for whom state must be maintained (e.g., in
a stateful load balancer). Our measurements show that the
added latency incurred by traffic passing through an appliance
is small relatively because traffic between randomly placed
VMs in the public cloud almost always bounces off a switch
in the CLOS tier; in particular, the increase is negligible for
north-south traffic (which enters or leaves the datacenter). Fi-
nally, the connectivity diagram in Figure 4 preserves access to
the NF processing capability under the following conditions.

1. At most one of the two green switches in front of a Sirius
server fails.

2. At most one of the two links that connect a given card to
the switches fails.

3. At most half of the links that connect the green switches
to the red Tier-1 switches fail.

4. At most half of the red switches fail.

The last two conditions above ensure that other racks in the
CLOS will have at least one valid path to the green switches.
By preserving access to the bottleneck resource, NF process-
ing remains unimpeded and Sirius will still be able to support
high rates of new flows per second and concurrent flows.

2. change state & forward
Primary Secondary

1. First and last packets of conn.

3. change state & pong
4. onward

Figure 5: In-line replication of connection state in Sirius by ping-pong’ing
packets that change state to both the primary and secondary cards.

3.2 In-line Connection State Replication
To avoid individual card failures from affecting ongoing
connections, we duplicate connection state across two pro-
grammable cards. A key novel aspect here is that we do so
without buffering packets. Due to the very high packet rates
that these cards handle, holding packets in the primary card
until state is established on the secondary card, as is done
typically to replicate state [46, 48, 50, 81], will require very
large buffers. We discuss a method that replicates state with-
out any additional buffering by ping-pong’ing the packets
of each connection that change state. As shown in Figure 5,
for example, SYNs of a TCP connection which will establish
state on the primary card are also forwarded to the secondary
card. The secondary card also establishes state for this con-
nection in its local memory and forwards the packet back to
the primary. The primary card then transmits the packet to
the destination in the usual way. Both cards independently
delete the state of connections which remain idle beyond an
age out threshold. Besides avoiding additional buffering, such
inline state replication requires only a small code change to
send and process ping-pong messages since the code to check
rules and update state can be reused.

Each card pair (primary and secondary) exchanges heart-
beats and fails over independently. That is, if the primary
misses several heartbeats, the secondary card will receive
all of the traffic on fNICs that were assigned to the pair. To
achieve such failover, both cards announce BGP routes for
the fNICs’ virtual IPs; the primary card announces a shorter
AS path than the secondary.1 At a slower timescale, a differ-
ent software controller provisions new replicas (e.g., pairs
a newly promoted primary with a new secondary card) and
schedules bulk state replication (which we describe below).

1We discuss corner cases in failover in §A.1.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1473

The controller also reduces allocatable appliance capacity if
necessary based on the number of cards that are operational.
Two control loops at different timescales are commonly used
to react to faults [67, 80]; to our knowledge, we are not aware
of its use in replicating the state of network functions.

We observe that most of the connection state turns over
quickly. For example, a usage stream that has 4M new con-
nections per second and 32M concurrent connections has the
average connection lasting 8s. Thus, waiting a bit will allow
us to move much less state, which belongs to the long-lived
connections, with the trade-off being a small increase in the
period for which state is present on only one card.

The goal of our bulk synchronization is to replicate check-
pointed state from one card to another quickly. There are mul-
tiple ways to implement checkpoints; we append an epoch
value to each record in the state and atomically increment the
value of the current epoch to take a checkpoint since then all
records with a smaller epoch value will belong to the check-
point.2 To copy a checkpoint between paired cards, the ARM
cores on the cards move state in batches over a reliable trans-
port. We tradeoff the overhead of copying checkpoints with
an increase in the period wherein only one copy of the state
exists in the following additional ways: we prioritize moving
the state of long-lived connections since other connections
may close before needing to be moved and we pace the copy
messages so that resource contention (on the memory bus and
network) does not adversely affect normal activity.

To sum, replicating connection state between a pair of cards
has the following costs and benefits. On the costs, storing each
record at two cards halves the total available state that a Sirius
applicance can maintain. The NF capacity, say in terms of
connections per second that can be handled by an appliance,
also halves for the same reason. The connection setup latency
increases due to the ping-pong. Also, bulk synchronization,
when triggered, uses memory and network bandwidth. On
the benefits, the failure of a single card only impacts ongoing
connections for the period before traffic failovers onto the
secondary card. In-flight connections, that is, connections
whose state is not yet present on both cards may only have
to retransmit some SYNs (and FINs). To see why, observe
that at any of the four steps for a new connection in Figure 5,
the failure of either cards at best requires a retransmission.3

Finally, planned card failures can be handled without any
impact as so: (X1) promote the secondary and pick a third
card to be the new secondary, (X2) take a checkpoint and (X3)
initiate bulk synchronization. Upon completion of the bulk
synchronization, the old primary card can be taken offline.4

2We use a small circular counter to track epoch values.
3We use a poison bit on the record written to the primary card which will

be deleted only after the packet pongs back from the secondary to handle
failures that may happen after step 2 in Figure 5.

4As a proof sketch, note that any new connection that reaches the new
primary (old secondary) after X1 will reach the new secondary via the ping-
pong method. Furthermore, all state at the time of the checkpoint, X2, will
have been reliably copied to the new secondary.

3.3 Dividing NF load appropriately
So far, we have shown that the state for NFs can be maintained
in a disaggregated resource pool with high availability. Here,
we discuss different design points which divide the NF load
between smart NICs that are directly attached to servers and
one or more cards in the disaggregated Sirius pool.

3.3.1 Pin fNIC locally or to one card pair

Here, the load of each fNIC is assigned either to the on-server
smart NIC or to a pair of cards as discussed in §3.2.

To realize pinning to a card pair, the outgoing packets of
an fNIC are encapped in an NVGRE tunnel and sent to the
chosen primary card in the Sirius pool which applies NFs on
the packets and forwards them on to the destination. Traffic
in the reverse direction takes an analogous path, first reaching
the appliance/card which applies NFs and then forwarded to
the VM if appropriate. We implement the encap and decap
logic at the smart NICs on the servers.

3.3.2 Disaggregation Cost/ Benefit Analysis

The above design point already leads to substantial cost sav-
ings from disaggregation because one appliance can handle
the NF load of over 24000 VMs on average. We compute
this number as follows. In §6, we will show that each card
used by Sirius can process over 16M new connections per sec-
ond (CPS) with an extensive set of NFs. There are 12 cards per
appliance. We assume that each VM has an average CPS load
of 4K which is 400× the current median load per Figure 2a
and we halve the NF capacity to replicate state as discussed
in §3.2. Hence, the cost for the additional switches, cables and
the appliance in Figure 4 amortize well. Moreover, regard-
ing peak load and temporal variations, note that these 24000
VMs may be distributed over hundreds of racks and, as we
saw in Table 2, the total load over many rack has much lower
variability. Thus, Sirius can meet SLOs with much smaller
surplus capacity in its disaggregated pools.

3.3.3 Split the load of an fNIC across multiple cards

With the previous design point, the maximum size of an fNIC
is limited by the capacity of one card in the Sirius pool. More-
over, as we will show, packing VMs into appliances is less
efficient when the size of the balls (i.e., the fNIC size of a
VM) becomes close to the size of the bins (i.e., NF capacity
in one card). Sirius appliances can also be implemented using
diverse hardware and different NFs may be better suited to
different hardware. To this end, we aim to split the load of an
fNIC across multiple cards or appliances. That is, different
portions of the traffic entering or leaving one VM can receive
their NF processing at different cards.

Consider splitting the load using a hash function–
hash(local IP, remote IP) mod n, in the encapper, to pick

1474 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 6: When spilling over NF load, as discussed in §3.3.4, we hash packets
into bins and assign the bins to either local (L) or remote (R) NF processing.
The figure shows two assignments new and old where the proportion of
load that is processed locally is 50% and 75% respectively. When bins are
re-assigned, the figure shows how we reduce the state that must be moved by
using both bin assignments for a short duration.

from among n different cards. Such a symmetric hash ensures
that the traffic of a flow in both directions will be processed
at the same location which is required by some NFs (e.g.,
NATs [55]). While this requirement can be met in other ways,
symmetric hashing requires no additional state at the encap-
per and decappers and we use hash functions that are easily
implementable in NICs. Next, some NFs require groups of
flows to be analyzed at one location. For example, a usage
meter or a DDoS detector may want to count all bytes from a
VM that leave the datacenter. Our experience is that most such
NFs have mergeable actions [39], for example, to compute
the total byte count, we can add up the partial sums from dif-
ferent processors. Many sketches (such as hyperloglog [54],
count-min [49]) are mergeable with small reduction in accu-
racy [39, 40]. Finally, when an fNICs traffic is split across
multiple NF processors, the ruleset corresponding to the fNIC
must be installed at all of the corresponding processors; in
practice, doing so adds overhead but is tenable because the
total state at the NF processors is dominated by the per-flow
state, counters and sketches rather than ruleset size; similarly
processing the ruleset dominates the computation at the NF
processor over the one-off installation of the ruleset.

3.3.4 Use Sirius as a load spillover

Thus far, all our load allocations have been static. That is, the
whole or a portion of an fNICs traffic was allocated statically
to the server’s smart NIC or to a Sirius pool. An alternative is
to move NF load that cannot be processed locally dynamically
into a Sirius pool. For example, we may start processing all
of the NF load locally on the server’s smart NIC and when
the total load nears smart NIC capacity, shed the excess load
into the Sirius pool. Doing so will allow cloud providers to
offer burstable SLOs on NF processing.5 One Sirius appliance
can scale to even more VMs compared to the pinned design-
point above because only the excess the load of fNICs will be
steered to the appliance.

Naïvely supporting such dynamism would require moving
the state of NFs. For example, if a portion of the traffic that
was to be processed on the smart NIC must now spill over

5Burstable allocations are already available for CPU and memory. They
allow short-duration bursts or price differently the average and peak usage.

into a Sirius pool then the corresponding state of all NFs must
move. Intuitively, doing so is complex and our key contribu-
tion is to do so efficiently and correctly. First, our design aims
to reduce the amount of state that must move to the extent
possible. We hash packet headers, partition the resulting hash
value into a fixed number of buckets (say 32), and assign dif-
ferent buckets to be processed for NFs at different locations.
To move load, we change the bucket assignments; that is, to
move 25% of the load from the smart NIC to a Sirius pool, we
would reassign a quarter of the buckets that were being pro-
cessed at the former location to the latter. Instead of moving
all of the NF state that corresponds to a moving bucket we
move lazily as shown in Figure 6. Effectively, newly created
state (e.g., state for new connections) immediately reflects the
current bucket assignment but for the previously established
state, we delay movement by a short period (τ). Connections
with duration below τ will not move and we observe that
long-lived connections comprise a small fraction of all con-
nections. The trade-off here is that we can rebalance load less
frequently (once per τ). Our second idea is that many kinds
of state can be re-created at the new NF processing location
by just processing packets. For example, stateful ACLs insert
the five tuples into a dictionary. The necessary information to
create such state – the five tuple – is present in every packet
of a flow and so, instead of moving state, we mark and steer
packets to their new NF processing location. For state that
cannot be recreated in this way, we craft new packets that
include the packet header of the original flow and the state
and transmit these packet to the new NF processing location.
When the new location acknowledges creating the requisite
state, the previous processing location deletes its state and
load steering will exclusively use the new bucket assignment.

4 Efficient and high-rate NF processing

Thus far, we have discussed how to disaggregate the process-
ing of stateful network functions in public clouds by using
cards that (1) support inline replication of state (§3.2), (2)
support various disaggregation design points including load
splits and state movement (§3.3), and (3) implement a rich set
of network functions (Table 1 and §2.1). Any implementation
that satisfies these requirements can be used in this design
including, for example, software-only or switch-only imple-
mentations. Here, we discuss our implementation which uses
a specific kind of programmable NIC and compares favorably
on functionality, performance and cost.

To process stateful network functions efficiently and at a
high rate, we use the P4 programmable card shown in Figure 7
which has two 100 (or 200)GbE QSPF+ connectors, multiple
pipelines that are programmable in P4, coherent shared mem-
ory, ARM cores for the more complex data plane processing
and specialized logic for encryption and compression.

Relative to FPGA-based smart NICs [58], conjoining
match-process-units (MPUs) that are programmable in P4

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1475

(a) Architecture diagram of our programmable ASIC.
(b) Card functional diagram (above) and an actual pic-
ture (below).

Figure 7: Hardware used to enable efficient and high-rate NF processing.

Metric Sirius Other Packet Processors
DSC-200 Tofino Tofino2

Bandwidth (Tbps) 0.4 6.5 12.8
Memory 32GB 0.48GB 0.8GB
Match Action
Pipelines

5 4 4

Stages/ pipeline 4 12 20
Packet Buffer up to mem. 22MB 64MB
Integrated general-
purpose cores

16 0 0

Table 3: Salient differences between packet processing hard-
ware; Sirius uses the DSC-200 card [4] to support stateful
network functions at a high scale and performance.

Yes

L3.SrcAddr
L3.DstAddr
L3.Proto
L4.SrcPort
L4.DstPort

RewriteID
TunnelID
#Packets
#Bytes

Flow Table

1. Set TunnelID, RewriteID in metadata
2.#Packets += 1
3.#Bytes += M.PktSize

RewriteID

Rewrite Table
Flags
SrcMAC,
DstMAC
SrcIP, DstIP
SrcPort, DstPort
VNI

Rewrite
fields based
on Flags

Hit?

Inform ARM about missing flows and re-inject.

No

P
ac

ke
t

St
re

am

P
ac

ke
t

St
re

am

Figure 8: Stateful Load Balancer with NAT as implemented by Sirius.

with general purpose ARM cores gives us better programma-
bility and performance at a lower power cost. Intuitively,
power usage decreases because unlike FPGAs which expose
general gate-level programmability, our card only exposes
programmability in P4 that is needed to process protocols and
stateful NFs efficiently. We use the ARM cores to handle pro-
grams that may be challenging to implement in P4 [72] such
as reliably exchanging state migration messages (see §3.2).

Packets flow through one or more ingress and egress P4
pipelines and go through ARM cores only if needed. Each
pipeline operates at 400Gbps (over 50M packets per second)
thus ensuring line rate on both interfaces. We parse a packet
once and populate a packet header vector (PHV) which is used
by later stages. Each pipeline has local SRAM and TCAM
to store high bandwidth tables and can also access the shared
DRAM through a coherent shared memory which hides mem-
ory latency. A table engine at the beginning of each stage
protects against stalls by processing multiple PHVs, issuing
high latency reads in advance (e.g., to the DRAM), and mov-
ing to an MPU the next PHV for which all data is available.
Each stage has multiple match-process-units (MPUs) which
never stall and have dedicated write paths to the stage data
buffer wherein writes are merged at a bit level to allow mul-

tiple MPUs to update different fields of a PHV. The MPUs
implement a novel domain-specific instruction set architecture
with an emphasis on bit field manipulations and fast header up-
dates. We also use wide instructions (e.g., 64bit wide) which
lets us use richer encoding and fewer instructions.

Coupling ARM cores and MPUs: Our card connects the P4
pipelines via a high speed network-on-chip (NOC) to a full
system-on-chip (SOC) subsystem with multicore ARM A-72
CPUs. P4 programming determines which portions of packet
data, headers, or metadata should be delivered to the DRAM
and ARM on a per-application, per-packet basis. To support
chained operations which may combine a P4 control operation
with non-P4 operations, such as encryption or data integrity
checksum verification, we attach a chaining buffer directly to
the NOC to support high-bandwidth multi-hop chaining.

Illustrative Example: Using the case of a stateful load-
balancer, we call out key aspects of how our hardware imple-
mentation improves upon the state of the art. Figure 8 shows
a functional view of our stateful load balancer implementa-
tion. The relevant state (table shown with light background) is
stored in DDR memory on the card. The logic boxes (shown
in dark background) are implemented in the MPU pipelines
and the exception path (for a new flow which does not have a

1476 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

hit in the flow table) is handled by ARM cores. When load
balancers are implemented without per-flow state (e.g., using
a stateless hash function), any change to the pool of targets
will disrupt ongoing flows; for example, a failure in one of
the targets will cause the hash function to change from mod-n
to mod-n−1 and all flows whose targets change will be dis-
rupted [83]. Recognizing this issue, several large enterprises
deploy stateful load balancers which remember per flow the
target that the flow was assigned to [56,83,85,87]. Prior work
that proposes to accelerate stateful load balancers is limited by
on-switch memory, for example, Sailfish [85] uses the Tofino
chipset to support a few thousand stateful connections per
switch, while the other flows are processed in software and re-
ceive no benefits. In our tests, one card can support over 16M
concurrent connections and 3M new connections per second.
We note a few aspects that help us achieve such performance:

• Although the flow table (in grey on the left in Figure 8)
has one entry per ongoing connection, the rewrite table
uses indirection and can be significantly smaller in size.

• Our table datastructures allow for more expressive
rewrites including changes to the MAC addresses. Thus,
we can use a single rewrite table for multiple NFs beyond
load balancing (e.g., NVGRE encap [30]).

• We allow partitioning the MPU programs (shown in dark
in Figure 8) among multiple pipelines so as to leverage
data proximity.

• We divide the table ownership between ARM cores and
MPUs to avoid coordinating multiple writers.

• When a new flow arrives for load balance, an ARM core
installs entries in the flow and rewrite tables and reinjects
the first packet of that flow into the MPU pipelines.

Comparing with recent works [42, 47, 79, 94], two of the
P4 pipelines in the DSC (the Ingress and Egress pipelines
at the bottom of Figure 7a) resemble reconfigurable match
tables (RMT) [42] except that the DSC also has pipeline-local
SRAM and not just stage-local SRAM. However, unlike RMT,
all of the DSC pipelines can access shared DRAM through co-
herent caches. The DMA pipelines ({Tx-, Rx-, Sx-}DMA in Fig-
ure 7a) are novel and are triggered by timers and doorbells
from a programmable scheduler. PANIC [79] addresses chain-
ing offloads and is similar to the DSC which also uses spe-
cialized offloads (for crypto, compression and others, see Of-
floads in Figure 7a). However, while the DSC chains offloads,
offloads are not central to the use of DSC in Sirius. Flex-
Core [94] discusses runtime re-programmability of switches;
they add and remove P4 functions on an SN3000 [31] switch
with minimal disruption to ongoing activity. We do not dis-
cuss re-programmability of the DSC cards in this paper.
dRMT [47] pools all of the per-stage memory into shared
memory that is accessible to any stage and uses a run-to-
completion model wherein a packet is fully handled at one
processor (and not in a sequence of match-action stages as in
RMT). Our card offers larger shared DRAM instead. While it

is unclear how dRMT’s scheduler, which calculates a static
schedule at compile time to guarantee deterministic through-
put and latency, generalizes to the case of stateful NFs, the
DSC supports stateful NFs more simply by dividing the work
between P4 pipelines and ARM cores.

5 Implementation

We have implemented several stateful network functions (in-
cluding those in Table 1) on the programmable NIC shown
in Figure 7 from AMD Pensando. We have also added new
code to the smartNICs attached to the hosts in Azure to steer
traffic to and from the disaggregated Sirius pool. The result-
ing system, alongside software controllers to provision and
monitor the fNICs, is in public preview at Azure [1] .

6 Evaluation

First, in a lab setting using full line-rate traffic generators,
we show results for how the programmable NICs used in
Sirius handle stateful network functions. We also evaluate key
failure scenarios. Next, we report results from Azure wherein
fNICs of virtual machines and network virtual appliances are
offloaded to Sirius.

6.1 Methodology
Figure 9 shows our three experimental setups. On the left,
in a lab, we use a traffic generator that sends and receives
packets at hundreds of Gbps. We also mimic failures of the
ToR switches, links, and cards to evaluate our state replication.

The other two setups use Sirius’s production deployment in
Azure. Figure 9b measures the performance between virtual
machines (VMs) and Figure 9c measures the performance of
network virtual appliances (NVAs) [13,18,33] when deployed
on VMs. Here, we compare the default method that the public
cloud uses to process stateful NFs versus offloading those
NFs onto Sirius. In Figure 9b, we offload the floating NICs of
both the VMs onto Sirius. In Figure 9c, we offload the floating
NICs of the middlebox VM onto Sirius.

Stateful NFs: For the setup in Figure 9a, each card enforces
a large prioritized set of stateful ACLs. As shown in Table 4,
each ACL rule is a conjunction of predicates on sets or ranges
of source and destination addresses, ports and protocol. Rules
apply in priority order and may either accept or deny a con-
nection. Some rules are specific to individual VMs whereas
others apply to all VMs in a vnet or subscription. Recall
from §2.1 that stateful firewalls maintain per-flow state of all
ongoing connections so as to admit traffic in the reverse di-
rection. As discussed in §3.3, the cards also encap and decap
the packets to intercede on traffic transparently. For the VM-
to-VM setup in Figure 9b, VMs in the public cloud already
run many stateful NFs by default, for example, to virtualize

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1477

(a) Testbed (b) VM to VM: Default vs. offloading to Sirius (c) NVAs with fNICs offloaded to Sirius

Figure 9: Evaluation setups. On the left is a testbed where we use iXIA breakingpoint [27] to generate traffic of up to 100Gbps. The other two figures depict our
experiment setups in Azure. We deploy VMs of different sizes and compare the performance when the Azure-specific stateful NFs are offloaded onto Sirius. On
the right we measure the performance of network virtual appliances (such as the Palo Alto VM-series firewall) when using floating NICs that offload onto Sirius.

Granularity of #Rules Total #Conjuncts (prefixes or ranges)
ACL set Src IP Dest. IP Src port Dest port
fNIC level 202 5102 5102 1021 1021
Subnet level 26 1168 1168 141 141
Subscription 8 394 394 57 57

Table 4: The ACLs for a stateful firewall deployed on the cards in Figure 9a;
note: some ACLs are unique per floating NIC whereas others are common
across all fNICs in a subnet or an entire subscription.

Resource type Resource Capacity
#Cores 2 4 8 16 32 64
Mem. (GB) 8 16 32 64 128 256
NIC Capacity (Gbps) 1 2 4 8 16 30

Table 5: The capacity of various resources for the SKUs used in Figure 9.

their network [2, 10, 22] or to estimate traffic bills [5, 9, 20].
In addition, we insert 1000 prioritized stateful ACLs on the
client VM; these ACLs are similar to those in the testbed
experiment. For the middlebox experiment in Figure 9c, we
configure each middlebox with the reference load specified
by the middlebox vendor.

VMs: We evaluate popularly-used Linux Ubuntu SKUs at
various public clouds as shown in Table 5. We choose VMs
with varying numbers of cores, from 2 to 64 vcpus; the other
resources vary roughly proportionally as shown.

Traffic: In Figure 9a, we generate UDP and TCP flows of
different sizes at different rates in an open loop using a syn-
thetic traffic generator [27]. This appliance must be physically
connected to switches and so, in the public cloud experiments,
we use VM-based traffic generators. The Linux network stack
cannot generate small TCP connections at high rates, e.g.,
fewer than 50K zero-byte flows per core [82]. We use the
TREX tool instead which, using DPDK, can generate TCP-
like connections at much higher rates [37].

6.2 Processing Stateful NFs in Sirius

To sum, the experiment here will show that when supporting
a rich set of stateful ACLs (Table 4) the programmable NIC
used by Sirius can support up to 3M new TCP connections
per second (Figure 10b) and over 50M UDP packets-per-
second (Figure 10a). The latency to ping-pong state messages
between a card pair is less than 40µs (Figure 10c).

In more detail, Figure 10 shows the thruput and latency
when the two cards in Figure 9a are set up as a state replicating
pair; that is, all state changes for SYNs and FINs are ping-

ponged between the cards as discussed in §3.2. Each datapoint
is a several minute experiment and the errorbars show the
range of measured values.

Since some stateful NFs are evaluated on every packet, we
first measure the maximum number of packets per second
(PPS) that our card can support by having the traffic generator
send the smallest possible UDP packets at the highest possible
rate.6 Figure 10a shows that our card supports over 50M
packets per second.7 Typical packets are larger, e.g., many
are MTU-sized, and so our card can process complex stateful
NFs at line-rate with a fair amount of headroom.

The end-to-end latency through the card for 64B and 1500B
packets is 2.36µs and 3.14µs respectively.

We also vary the number of concurrent flows which in-
creases the state on the card and can make NF processing
more challenging. Figure 10a shows only a modest decrease
in PPS up to 64M concurrent flows; state for these many flows
uses up most of the 32GB of DRAM on each card.

Finally, Figure 10a shows results for low power states of our
card wherein we decrease the frequency of the MPU pipelines
from their baseline value of 1.5GHz. Observe that we achieve
33% lower power draw with only a 25% drop in PPS. Thus,
dynamic power cycling appears viable.

Next, when new connections arrive (or old connections
finish) the state maintained in a stateful NF processor must
change. To measure the maximum number of new connections
per second (CPS) that one card pair can support, we have the
traffic generator issue TCP connections in an open-loop with
no payload.8 Figure 10b shows the packet drop probability (y
axes is in log scale) near our desired operating point of 3M
CPS. Lower values to the right are better. Since SYN and FIN
packets ping-pong between the cards, each card effectively
processes twice as many state changes. The remaining packets
of the connection, however, only go through the primary card.
Also, recall from §4 that only the ARM cores change state and
SYNs are reinjected into the MPUs after the ARM cores apply
the ruleset. Figure 10b shows that while the 68W power state
has very little effect on CPS, the lowest power state (52W)
reduces the CPS to about 2.5M. We are not yet sure why and

6Each packet is 118B due to VxLAN tunneling with an interframe gap
of 12B and the ethernet preamble of 8B [38]. Thus, on a 100Gbps link, the
generator issues roughly 90M packets/s.

7Per previous calculation, this amounts to 60Gbps.
86 packets per connection: SYN, SYN-ACK, ACK, FIN, FIN-ACK, ACK

1478 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

C
a
rd

 T
h
ru

p
u
t

(x
 1

0
6
 P

kt
s.

/S
)

Load: #Concurrent Flows (x 106, 64 pkts/flow)

75W
68W
52W

(a) The packets-per-second through our card when maintain-
ing different numbers of concurrent flows.

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4

Pa
ck

e
t

D
ro

p
 P

ro
b

a
b
ili

ty

Open-loop load: #New TCP Conns. (x 106 Per Sec)

75W
68W
52W

(b) The fraction of packets dropped when our card is subject
to open loop load, a line for each power state.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.5 1 1.5 2 2.5 3

La
te

n
cy

 (
µ

s)

#New TCP Conns. (x 106 Per Sec)

From SYN to SYNACK
To ping-pong b/w cards

(c) Latency from sending a SYN to receiving a SYNACK
and to ping-pong the SYN between cards.

Figure 10: Card measurements in the lab setup shown in Figure 9a: when applying per connection the thousands of stateful ACLs shown in Table 4, the figures
show the thruput in PPS, packet drop probability and latency at different card power levels.

are looking into this issue.

For the CPS test above, Figure 10c measures the latency be-
tween sending a TCP SYN and receiving a SYN-ACK and the
latency portion that is attributed to ping-pong between cards.
The latency is flat at lower CPS load but grows super-linearly
at higher demands likely due to queuing at the ARM cores
or at reinjection. We note that RPCs can achieve a smaller
latency [70, 84] by reusing connections and the latency here
is better than that measured at the three clouds in Figure 3b.

6.3 Stateful NFs under faults
For the setup in Figure 9a, we have the traffic generator issue
small TCP flows open-loop at the rate of 3M per second. The
flows are spread over 16 floating NICs evenly allocated to the
two Sirius cards. We examine the impact of three changes:

(a) planned switchover from Card1 to Card2,
(b) links between ToR1 and both cards go down and
(c) Card1 goes down.

For each scenario, we conduct three different experiments
each lasting 60s and report average values. Each experiment
comprises roughly 180M TCP connections and 1.08B packets.
Table 6 shows that none of the flows broke as in there were
no RSTs or connection time-outs in all three scenarios.

During planned switchover of load, as discussed in §3.2,
Card2 advertises itself as the new destination for all of the
floating NICs that were mapped to Card1. During the ensuing
route reconvergence, the ToR switches drop 0.00316% of
the packets and there are no drops at either of the cards. A
naïve switchover would cause RSTs on half of the ongoing
connections (all conns with state on Card1).

In scenario (b), where ToR1’s links to both cards are down,
the net available network capacity in/out of the cards halves
but the CPS remains unaffected because, as noted in §3.1,
Sirius retains large network capacity to the cards even when
half of the connecting links fail. Table 6 shows that recovery
here is slower and there are more drops because more routes
must reconverge. The cards also see transient drops while
their paths move over to ToR2.

Change #Flow % of pkts dropped Recovery
breaks All At Cards Latency

(a) Planned switchover 0 0.00316% 0 1.89ms
(b) ToR1’s links to
both cards are down

0 0.00929% 0.0000227% 5.75ms

(c) Card1’s links to
both ToRs are down

0 0.00835% 0.0000201% 5.01ms

Table 6: Testing state replication under different fault scenarios in Figure 9a
with 3M new TCP flows/s. Note, recovery in milliseconds and the extremely
small fraction of packets that were dropped most of which are due to route
reconvergence at the ToR switches. The drops at the Sirius cards are all
packets that cannot be transmitted because the link to the next hop is down.

Scenario (c) mimics the failure of Card1. Here, the ToRs
detect Card1 as being down and route all fNIC traffic on the
backup BGP route to Card2. Contemporaneously, Card2 rec-
ognizes the failing peer, promotes itself to be the primary, and
notifies the Sirius controller asking for a new secondary card.
If card state was not replicated, half of all ongoing connec-
tions will receive RSTs in this scenario. Table 6 shows that no
connections break. Instead, only a few packets are dropped
most of which are at the ToRs. A few flows retransmit SYNs
and FINs9 which may have been lost without completing the
pingpong in Figure 5 but none of the connections timeout.

6.4 VM-to-VM: Offloading fNICs to Sirius

Figure 11 shows the maximum connections per second
achieved between pairs of VMs for the scenario in Figure 9b.
Recall from §6.1 that we use TREX, a DPDK based generator
on the VMs to create small TCP connections as many and
as quickly as possible. These VMs have the default stateful
NFs from public cloud and we add roughly 1000 randomly
generated stateful ACLs (see §6.1). The figure shows that
most of the VM SKUs, when onboarded on to Sirius, are only
limited by the NIC capacity. That is, our tool makes as many
connections as possible given the capacity limit of the NIC.10

The figure shows that with Sirius, one VM pair can achieve

90.0062% and 0.0126% of the TCP flows respectively
106 packets per TCP connection each of which is 118 bytes after VxLan

encapsulation which translates to 176.5K CPS per Gbps of NIC capacity.
NIC capacities of the VMs are as shown in Table 5.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1479

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

24 8 16 32 64

Card CPS tested value

NIC
 C

ap
ac

ity
 li

m
it

#
N

e
w

 H
T
T
P
 r

e
q
u
e
st

s
(x

 1
0

6
/s

)

#vCPUs in the VM SKU

Expected CPS
Sirius
AWS

Figure 11: When the floating NIC of a VM is mapped onto the Sirius pool,
showing the maximum CPS achieved between pairs of VMs.

over 1.5M connections per second. This value is below the
maximum value per card – 3M CPS from Figure 10b– due to
inefficiencies we believe in the code that steers fNIC traffic
in the Azure smartNIC [58]. The figure also shows the CPS
achieved using c5n series instances at EC2 using the same
tool, the same configuration and the same guest OS. The lower
CPS could be because EC2 employs different stateful NFs at
each VM, uses a different NF processing system [6], applies
explicit rate limits or some combination of all of the above.
Comparing also with Figure 3a, we show that using Sirius
a VM can achieve roughly 5× to 10× higher CPS. Further,
recall from §3.3 that Sirius can split the load of a VM between
multiple cards and so even higher CPS may be achievable.

6.5 Measuring the Sirius datapath in Azure
To compare the datapath offered by the Sirius fNICs with
the default datapath in Azure, we randomly and repeatedly
deploy VMs and measure the latency and thruput on the two
datapaths. Each VM in this experiment is equipped with three
virtual NICs, one of which is used as the management inter-
face and the other two are configured to use Sirius or AccelNet
(the default in Azure) [58] respectively. The results shown are
over millions of packets and tens of unique VM pairs.

Figure 12a shows that the thruput achieved is nearly identi-
cal; with a small number of TCP flows, iPerf [26] can reach
the NIC capacity on both of the datapaths.11

Figure 12b shows the latency for three kinds of applications.
On the left are applications such as ping, tcping and hping3
which use the traditional in-kernel network stack. Such apps
do not see any change in their RTT when using Sirius. Notice
that with Sirius the datapath between a VM pair traverses up
to two programmable NICs corresponding to the VMs’ float-
ing NICs. However, any increase in the physical length of the
network path appears to be masked by the latency added by
the guest kernel network stacks. In the middle of Figure 12b
is the latency for the custom tool that we used in §2.3 which

11As noted in Table 5, the NIC capacity limits for the 16 and 64 core VMs
that we used here are 8Gbps and 30Gbps respectively.

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

T
h
ru

p
u
t

(G
b

p
s)

Number of // TCP Connections with iPerf

Sirius 64c
16c

AccelNet 64c
16c

(a) Thruput achieved by iPerf with different numbers of TCP flows. The candle-
sticks show quartiles (bars) and the min and max values (whiskers) over many
pairs of VMs and minutes.

 10

102

103

104

105

Ping Syn-SynAck
 (TCP raw)

UDP bounce
 (DPDK)

La
te

n
cy

 (
µ

s)

Sirius AccelNet

(b) RTT using ping, TCP connections on raw sockets and a DPDK app that
bounces UDP packets. In the candlesticks, the bars correspond to quartiles and the
whiskers are the 10th and 90th percentiles. The triangle, square and circle above
each bar show the 99th, 99.9th, and 99.99th percentile values respectively.

Figure 12: Comparing the datapath of AccelNet [58] with the disaggregated
path through Sirius in Azure.

establishes TCP connections on raw sockets. As the figure
shows, for such apps Sirius offers a better RTT than AccelNet
because although Sirius may have a longer physical path, Ac-
celNet takes much longer to process the stateful NFs for each
new TCP connection. A third set of applications, on the right
in Figure 12b, achieve very small latency by bypassing both
the kernel network stacks (using an optimized DPDK app that
we built) as well as the cloud’s stateful NFs (by using UDP
packets). As the figure shows, the typical latency for such
apps is 15µs and 50µs respectively on the AccelNet [58] and
Sirius datapaths. Note also the values on the tail. We conclude
that any additional latency due to Sirius will only be visible
to a small subset of applications and that for the vast majority
of TCP-like traffic Sirius represents a clear improvement.

6.6 Offloading fNICs of middlebox NVAs

For the experiment setup shown in Figure 9c, Figure 13 shows
the CPS achieved by traffic through different middlebox VMs.
We generate results for Sirius using 32 core VMs as clients
and servers of the traffic and offload the floating NIC of
the middlebox VM onto Sirius. For all of the public clouds,
we pick the best possible CPS numbers from datasheets re-
leased by the middlebox vendors [13, 17–19, 34]. The figure
shows that using Sirius substantially improves the achievable
throughput because the stateful network functions that cloud
providers apply by default on the middlebox VM are often

1480 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.1

 0.2

 0.3

 4 6 8 10 12 14 16

C
P
S
 (

x
 1

0
6
/s

)

#vCPUs

Palo Alto VM-Series Firewall

Cisco ASA Appliance

Sirius Cloud1 Cloud2 Cloud3

 0

 0.1

 0.2

 0.3

 4 6 8 10 12 14 16

Figure 13: The CPS (# new connections per second) at which traffic can
be sent through three different middlebox network virtual appliances on
different public clouds and when onboarded onto Sirius.

the limiting factor to middlebox performance.

7 Related Work

The key focus of Sirius is to disaggregate stateful network
functions onto pools of programmable NICs which tightly
integrate P4-programmable MPUs and general purpose ARM
cores with a large coherent memory system. With Sirius, we
show how to replicate connection state inline so that indi-
vidual card failure does not adversely impact ongoing con-
nections (§3.2), discuss multiple design-points which split or
migrate the load of a VM across different NF processors (§3.3)
and offer an implementation that achieves better performance-
over-cost than state-of-the-art (§4).

We are unaware of any prior characterization of the NF
load at a large public cloud (§2.2). However, the case for dis-
aggregation based on NF load being skewed across VMs and
decorrelated (that is, having smaller variance when consid-
ered in aggregates such as at rack-level) is similar to the cases
made to disaggregate other resources [59,66,74,78,89,91,96].

The state-of-the-art in processing stateful network func-
tions is either in vswitch software or on programmable FP-
GAs that are directly connected to the host [6, 57, 58]. An-
dromeda [52] processes NFs at dedicated software middle-
boxes but explicitly states that they do not support stateful
functions listing concerns such as ‘state loss during upgrade
or failure’, ‘transferring state when offloading’ and ‘ensuring
that flows are ‘sticky’ to the hoverboard that has the correct
state’ [52]. We address some of these challenges in §3 and to
the best of our knowledge are the first to disaggregate the rich
class of stateful NFs listed in Table 1 and §2.1.

Offloading stateful network functions is non-trivial since
a large amount of memory to maintain state must be accessi-
ble at high speeds. SRAMs support switch linerates but are
expensive and so we use a bag of NICs architecture with
memory coherence. Some prior works offload specific state-
ful NFs into programmable hardware [41, 83, 85]; however,
they use switches and can only offload only a small subset

of all flows, e.g., top-k by rate [41, 83, 85]. To compensate,
TEA [73] pairs Tofinos with memory on remote servers and
uses RPCs to access the remote state. When state is remote,
it is challenging to achieve high performance and reliability.
Also, Tofinos lack integrated general-purpose cores which
forces TEA to build, in P4, a new RPC and a new reliable
transport. With Sirius, each card has much larger memory. We
replicate state between NICs on nearby servers in one pool
and our general-purpose ARM cores simplify the logic. We
believe that pairing cards which have tightly-integrated MPUs
and ARM cores facilitates richer forms of disaggregation.

Another alternative is to use custom FPGAs with large
memory (e.g., Xilinx and Altera). We are unaware of any
works that match the performance and power draw of our
cards using FPGAs. We believe that (1) P4 programmable
MPUs are fundamentally more efficient than FPGAs [43, 76,
77], and (2) carefully dividing work between MPUs and ARM
cores is key for high performance.

We discuss other related work in §C.

8 Conclusion

Stateful network functions are a key cog in today’s public
cloud architectures. We disaggregate their processing into
a shared pool. Doing so avoids paying for smart-NICs at
each server that are provisioned to support peak load, reduces
constraints in VM placement and increases performance on
the tail. Moreover, we attach this shared pool to the data-
center network at the layer off which most packets bounce
off in the CLOS and so the latency and bandwidth overhead
from packets taking a detour to the shared pool is small. We
show a novel and simple solution that replicates connection
state between pairs of cards without buffering packets while
replicating state. We use NICs that have large memory, P4-
programmable match-action pipelines and integrated general-
purpose ARM cores. Our results from deployment at Azure
show that network usage at VMs can reach NIC capacity
even when complex stateful NFs are executed on each new
connection and every packet.

Acknowledgements: We heartily appreciate the efforts of
several team members whose work was crucial for the Sirius
project including Aditya Baskar, Vivek Bhanu, Prachi Pravin
Bhavsar, Weixi Chen, Nikita Dabir, Manasi Deval, Sumit
Dhoble, Steve Espinosa, Osman Ertugay, Daniel Firestone,
Shashank Gupta, Arun Jeedigunta, Sarat Kamisetti, Sam Kim,
Guohan Lu, Ilias Marinos, Omar Mbarki, Kaixiang Miao,
Kevin Pacella, Tommaso Pimpo, Vikas Prabhakar, Pirabhu
Raman, Rohit Kumar Sharma, Yusef Skinner, Gabriel Silva,
Prince Sunny, Hayden Udelson, Lihua Yuan, Zhenhua Yao,
Xinyan Zan, Yuanyuan Zhou and Qi Zhang. We also thank
the anonymous reviewers and our shepherd Aurojit Panda for
feedback on the paper.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1481

References

[1] Accelerated Connections and NVAs (Preview). https:
//bit.ly/424BkuF.

[2] Amazon EC2 instance IP addressing. https://go.
aws/3qRcooQ.

[3] Amazon EC2 instance Network Bandwidth. https:
//go.aws/3mKS1ef.

[4] AMD DSC-200 Datasheet. https://bit.ly/
3BrC0in.

[5] AWS: Data Transfer Costs for Common Architectures.
https://go.aws/3cg5J3O.

[6] AWS Nitro System. https://aws.amazon.com/ec2/
nitro/.

[7] AWS PrivateLink. https://go.aws/3KG9xIs.

[8] AWS: VPC Peering. https://go.aws/3QcZxHI.

[9] Azure: Bandwidth Pricing. https://bit.ly/
3Cou81Z.

[10] Azure: Private IP Addresses. https://bit.ly/
3BqoSJ7.

[11] Azure PrivateLink. https://bit.ly/3CRXjKV.

[12] Azure: Virtual Network Peering. https://bit.ly/
2AT5czqG.

[13] Cisco Adaptive Security Virtual Appliance (ASAv) Data
Sheet. https://bit.ly/3UldTJq.

[14] Connection tracking: State and examples. https://
bit.ly/3wrNdfP.

[15] Conntrack Tales – One thousand and one flows. https:
//bit.ly/3dL3eHf.

[16] Floodlight Controller. http://goo.gl/kzmC7.

[17] FortiGate-VM on Amazon Web Services. https://
bit.ly/3Bp5qwb.

[18] FortiGate-VM on Google Cloud. https://bit.ly/
3Sfz6CD.

[19] FortiGate-VM on Microsoft Azure. https://bit.ly/
3BoXN93.

[20] Google Cloud: Bandwidth Pricing. https://bit.ly/
3Cw83i9.

[21] Google cloud engine: Network bandwidth. https://
bit.ly/3ywTVld.

[22] Google Cloud Platform: VPC Network Overview.
https://bit.ly/3LpH4XP.

[23] Google Cloud: VPC Network Peering. https://bit.
ly/3RsxiWG.

[24] Intel Tofino. https://intel.ly/3wxWT8w.

[25] Intel Tofino 2. https://intel.ly/3QTeD6F.

[26] iPerf. http://dast.nlanr.net/Projects/Iperf.

[27] IXIA BreakingPoint. https://bit.ly/3DqfOqd.

[28] Linux and Windows networking performance enhance-
ments | Accelerated Networking. https://bit.ly/
3kh7x05.

[29] New Private Service Connect simplifies secure access
to services. https://bit.ly/3RyLMnN.

[30] NVGRE: Network Virtualization Using Generic Rout-
ing Encapsulation. https://www.rfc-editor.org/
rfc/rfc7637.

[31] NVIDIA Spectrum SN3000 Open Ethernet Switches.
https://bit.ly/3JLG9C1.

[32] OpenVSwitch: Conntrack Tutorial. https://bit.ly/
3LsYtPd.

[33] Palo Alto Networks VM-Series Firewall. https://
docs.paloaltonetworks.com/vm-series.

[34] Palo Alto Networks VM-Series Firewall Performance
Datasheet. https://bit.ly/3f7vrJa.

[35] Palo alto networks vm-series performance & capacity.
https://bit.ly/3BE8W7t.

[36] RedHat: IPTables and Connection Tracking. https:
//red.ht/3DAgucH.

[37] TREX: Realistic Traffic Generator. https://
trex-tgn.cisco.com/.

[38] IEEE Standard for Ethernet. IEEE Std 802.3-2018 (Re-
vision of IEEE Std 802.3-2015), 2018.

[39] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang,
Jeff M Phillips, Zhewei Wei, and Ke Yi. Mergeable
Summaries. TODS, 2013.

[40] Sameer Agarwal, Srikanth Kandula, Nicolas Bruno,
Ming-Chuan Wu, Ion Stoica, and Jingren Zhou. Re-
optimizing data-parallel computing. In NSDI, 2012.

[41] Manikandan Arumugam et al. Bluebird: High-
performance SDN for Bare-metal Cloud Services. In
NSDI, 2022.

1482 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://bit.ly/424BkuF
https://bit.ly/424BkuF
https://go.aws/3qRcooQ
https://go.aws/3qRcooQ
https://go.aws/3mKS1ef
https://go.aws/3mKS1ef
https://bit.ly/3BrC0in
https://bit.ly/3BrC0in
https://go.aws/3cg5J3O
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/
https://go.aws/3KG9xIs
https://go.aws/3QcZxHI
https://bit.ly/3Cou81Z
https://bit.ly/3Cou81Z
https://bit.ly/3BqoSJ7
https://bit.ly/3BqoSJ7
https://bit.ly/3CRXjKV
https://bit.ly/2AT5czqG
https://bit.ly/2AT5czqG
https://bit.ly/3UldTJq
https://bit.ly/3wrNdfP
https://bit.ly/3wrNdfP
https://bit.ly/3dL3eHf
https://bit.ly/3dL3eHf
http://goo.gl/kzmC7
https://bit.ly/3Bp5qwb
https://bit.ly/3Bp5qwb
https://bit.ly/3Sfz6CD
https://bit.ly/3Sfz6CD
https://bit.ly/3BoXN93
https://bit.ly/3BoXN93
https://bit.ly/3Cw83i9
https://bit.ly/3Cw83i9
https://bit.ly/3ywTVld
https://bit.ly/3ywTVld
https://bit.ly/3LpH4XP
https://bit.ly/3RsxiWG
https://bit.ly/3RsxiWG
https://intel.ly/3wxWT8w
https://intel.ly/3QTeD6F
http://dast.nlanr.net/Projects/Iperf
https://bit.ly/3DqfOqd
https://bit.ly/3kh7x05
https://bit.ly/3kh7x05
https://bit.ly/3RyLMnN
https://www.rfc-editor.org/rfc/rfc7637
https://www.rfc-editor.org/rfc/rfc7637
https://bit.ly/3JLG9C1
https://bit.ly/3LsYtPd
https://bit.ly/3LsYtPd
https://docs.paloaltonetworks.com/vm-series
https://docs.paloaltonetworks.com/vm-series
https://bit.ly/3f7vrJa
https://bit.ly/3BE8W7t
https://red.ht/3DAgucH
https://red.ht/3DAgucH
https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/

[42] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding Metamorphosis: Fast
Programmable Match-Action Processing in Hardware
for SDN. In SIGCOMM, 2013.

[43] Andrew Boutros, Sadegh Yazdanshenas, and Vaughn
Betz. You cannot improve what you do not measure:
Fpga vs. asic efficiency gaps for convolutional neural
network inference. ACM Trans. Reconfigurable Technol.
Syst., 2018.

[44] Navin Budhiraja, Keith Marzullo, Fred B Schneider, and
Sam Toueg. Primary-backup protocols: Lower bounds
and optimal implementations. In Dependable Comput-
ing for Critical Applications 3. Springer, 1993.

[45] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-
tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shash-
wat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev
Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew
Edwards, Vaman Bedekar, Shane Mainali, Rafay Ab-
basi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad
Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand,
Anitha Adusumilli, Marvin McNett, Sriram Sankaran,
Kavitha Manivannan, and Leonidas Rigas. Windows
azure storage: A highly available cloud storage service
with strong consistency. In SOSP, 2011.

[46] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance and proactive recovery. ACM Transac-
tions on Computer Systems (TOCS), 2002.

[47] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivara-
man, Shay Vargaftik, Alon Berger, Gal Mendelson, Mo-
hammad Alizadeh, Shang-Tse Chuang, Isaac Keslass,
Ariel Orda, and Tom Edsall. dRMT: Disaggregated
Programmable Switching. In SIGCOMM, 2017.

[48] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang
Wang, Lorenzo Alvisi, Mike Dahlin, and Taylor Riche.
Upright cluster services. In SOSP, 2009.

[49] G Cormode and S Muthukrishnan. An improved data
stream summary: the count-min sketch and its applica-
tions. J. Algorithms, 2005.

[50] Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and
Junfeng Yang. Paxos made transparent. In SOSP, 2015.

[51] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike
Feeley, Norm Hutchinson, and Andrew Warfield. Re-
mus: High availability via asynchronous virtual machine
replication. In NSDI, 2008.

[52] Michael Dalton et al. Andromeda: Performance, Isola-
tion, and Velocity at Scale in Cloud Network Virtualiza-
tion. In NSDI, 2018.

[53] Tobias Distler. Byzantine fault-tolerant state-machine
replication from a systems perspective. ACM Comput.
Surv., 2021.

[54] Marianne Durand and Philippe Flajolet. Loglog Count-
ing of Large Cardinalities. In ESA, 2003.

[55] K. Egevang and P. Francis. The IP Network Address
Translator (NAT). In RFC 1631, 1994.

[56] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable software
network load balancer. In NSDI, 2016.

[57] Daniel Firestone. VFP: A Virtual Switch Platform for
Host SDN in the Public Cloud. In NSDI, 2017.

[58] Daniel Firestone et al. Azure Accelerated Networking:
SmartNICs in the Public Cloud. In NSDI, 2018.

[59] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao
Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for
resource disaggregation. In OSDI, 2016.

[60] Aaron Gember-Jacobson, Raajay Viswanathan,
Chaithan Prakash, Robert Grandl, Junaid Khalid,
Sourav Das, and Aditya Akella. Opennf: Enabling
innovation in network function control. In SIGCOMM,
2014.

[61] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. Multi-
resource packing for cluster schedulers. In SIGCOMM,
2014.

[62] Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C.
Snoeren. Smartnic performance isolation with fairnic:
Programmable networking for the cloud. In SIGCOMM,
2020.

[63] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient memory disag-
gregation with infiniswap. In NSDI, 2017.

[64] Rachid Guerraoui and André Schiper. Fault-tolerance
by replication in distributed systems. In International
conference on reliable software technologies. Springer,
1996.

[65] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan,
Esaias E Greeff, David Dion, Star Dorminey, Shailesh
Joshi, Yang Chen, Mark Russinovich, and Thomas
Moscibroda. Protean: VM allocation service at scale. In
OSDI, 2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1483

[66] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Rat-
nasamy, Guangyu Shi, and Scott Shenker. Network
support for resource disaggregation in next-generation
datacenters. In HotNets, 2013.

[67] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, and Min Zhu. B4: Experi-
ence with a globally-deployed software defined WAN.
In SIGCOMM, 2013.

[68] Vimalkumar Jeyakumar, Mohammad Alizadeh, David
Mazières, Balaji Prabhakar, Albert Greenberg, and
Changhoon Kim. EyeQ: Practical network performance
isolation at the edge. In NSDI, 2013.

[69] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck
Le. Stateless network functions: Breaking the tight
coupling of state and processing. In NSDI, 2017.

[70] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be general and fast. In NSDI,
2019.

[71] Junaid Khalid and Aditya Akella. Correctness and per-
formance for stateful chained network functions. In
NSDI, 2019.

[72] Daehyeok Kim, Jacob Nelson, Dan R. K. Ports, Vyas
Sekar, and Srinivasan Seshan. RedPlane: Enabling Fault-
Tolerant Stateful In-Switch Applications. In SIGCOMM,
2021.

[73] Daehyeok Kim, Yibo Zhu, Zaoxing Liu, Changhoon
Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Seshan.
TEA: Enabling State-Intensive Network Functions on
Programmable Switches. In SIGCOMM, 2020.

[74] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu
John, and Sanjeev Kumar. Flash storage disaggregation.
In EuroSys, 2016.

[75] Teemu Koponen, Keith Amidon, Peter Balland, Martin
Casado, Anupam Chanda, Bryan Fulton, Igor Ganichev,
Jesse Gross, Paul Ingram, Ethan Jackson, Andrew Lam-
beth, Romain Lenglet, Shih-Hao Li, Amar Padmanab-
han, Justin Pettit, Ben Pfaff, Rajiv Ramanathan, Scott
Shenker, Alan Shieh, Jeremy Stribling, Pankaj Thakkar,
Dan Wendlandt, Alexander Yip, and Ronghua Zhang.
Network virtualization in multi-tenant datacenters. In
NSDI, 2014.

[76] Ian Kuon and Jonathan Rose. Measuring the gap be-
tween fpgas and asics. In Proceedings of the 2006
ACM/SIGDA 14th International Symposium on Field
Programmable Gate Arrays, 2006.

[77] Ian Kuon and Jonathan Rose. Quantifying and exploring
the gap between FPGAs and ASICs. Springer Science
& Business Media, 2010.

[78] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaib-
hav Gogte, Sriram Govindan, Dan R. K. Ports, Irene
Zhang, Ricardo Bianchini, Haryadi S. Gunawi, and
Anirudh Badam. LeapIO: Efficient and Portable Vir-
tual NVMe Storage on ARM SoCs. In ASPLOS, 2020.

[79] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh
Sivaraman, and Aditya Akella. Panic: A high-
performance programmable nic for multi-tenant net-
works. In OSDI, 2020.

[80] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, and David Gelernter. Traffic engineering
with forward fault correction. In SIGCOMM, 2014.

[81] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien
Quéma, and Marko Vukolić. {XFT}: Practical fault
tolerance beyond crashes. In OSDI, 2016.

[82] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Mike Dalton,
Nandita Dukkipati, William C. Evans, Steve Gribble,
Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl
Mauer, Emily Musick, Lena Olson, Mike Ryan, Erik
Rubow, Kevin Springborn, Paul Turner, Valas Valancius,
Xi Wang, and Amin Vahdat. Snap: a microkernel ap-
proach to host networking. In SOSP, 2019.

[83] Rui Miao et al. SilkRoad: Making Stateful Layer-4 Load
Balancing Fast and Cheap Using Switching ASICs. In
SIGCOMM, 2017.

[84] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achiev-
ing high cpu efficiency for latency-sensitive datacenter
workloads. In NSDI, 2019.

[85] Tian Pan et al. Sailfish: Accelerating Cloud-Scale Multi-
Tenant Multi-Service Gateways with Programmable
Switches. In SIGCOMM, 2021.

[86] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi
Wieder. Heuristics for vector bin packing. In ESA, 2011.

[87] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A. Maltz, Randy Kern,
Hemant Kumar, Marios Zikos, Hongyu Wu, Changhoon
Kim, and Naveen Karri. Ananta: Cloud scale load bal-
ancing. In SIGCOMM, 2013.

[88] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jack-
son, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and
Martin Casado. The design and implementation of open
vSwitch. In NSDI, 2015.

1484 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[89] Pramod Subba Rao and George Porter. Is memory dis-
aggregation feasible? A case study with Spark SQL. In
ANCS, 2016.

[90] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius,
Vinh The Lam, Carlo Contavalli, and Amin Vahdat.
Carousel: Scalable traffic shaping at end hosts. In SIG-
COMM, 2017.

[91] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A disseminated, distributed OS for
hardware resource disaggregation. In OSDI, 2018.

[92] David Shue, Michael J. Freedman, and Anees Shaikh.
Performance isolation and fairness for Multi-Tenant
cloud storage. In OSDI, 2012.

[93] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In Eu-
roSys, 2015.

[94] Jiarong Xing, Kuo-Feng Hsu, Matty Kadosh, Alan Lo,
Yonatan Piasetzky, Arvind Krishnamurthy, and Ang
Chen. Runtime programmable switches. In NSDI, 2022.

[95] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong
Wang, Luyang Li, Wenchen Han, Nan Chen, Lebing
Wan, Lichao Liu, Zhipeng Ding, Xiongfei Geng, Tao
Feng, Feng Ning, Kai Chen, and Chuanxiong Guo. Tiara:
A scalable and efficient hardware acceleration architec-
ture for stateful layer-4 load balancing. In NSDI, 2022.

[96] Yingqiang Zhang, Chaoyi Ruan, Cheng Li, Xinjun Yang,
Wei Cao, Feifei Li, Bo Wang, Jing Fang, Yuhui Wang,
Jingze Huo, and Chao Bi. Towards cost-effective and
elastic cloud database deployment via memory disag-
gregation. Proc. VLDB Endow., 2021.

A Discussion

A.1 Complications in failover
It is possible for the ToR switches (shown in green in Fig-
ure 4), which probe the cards for liveness, to reach different
liveness estimates for a card pair. That is, one of the switches
can conclude a card is down while the other switch concludes
otherwise. Similarly, even though we use multiple heartbeats
and there are multiple network paths between a card pair, it is
possible that so many consecutive heartbeats are lost allowing
one of the cards in a card pair to conclude that the peer is
down even though the peer is alive. A split-brain happens
when different parts of the network assume that different cards
(in a card pair) are responsible for an fNIC. Recall that the
primary card announces a BGP route with a smaller AS path
which helps resolve some of these complications. In addition,

we notify all card role changes to a logically centralized Sirius
controller which helps to ensure that split-brain cases, were
they to happen, do not persist for very long.

A.2 fNIC abstraction guarantees

We statically partition each card’s capacity, on the dimensions
listed in §3, among the fNICs that are mapped to a card. The
capacity values that we use for apportioning (e.g., the last row
of Table 7) are slightly smaller than the maximum values that
we see in experiments using iXIA traffic generators and a rich
variety of network functions in subsection 6.2 and so we do
not anticipate performance interference issues at the card.

A.3 Encryption, Traffic QoS

Some aspects such as end-to-end encryption and traffic pri-
oritization can require on-host support. With Sirius, we are
exploring how to divide such functions between the disaggre-
gated pool and the smart NIC that is directly attached to the
host. For example, the disaggregated pool can perform the
more stateful processing such as exchanging keys or determin-
ing which queue to assign a flow to so as to meet its priority
class or bandwidth limit while the on-host FPGA performs
tasks that require less state such as marking or rate limiting
queues [90].

B Additional Results

B.1 Packing floating NICs into Sirius cards

Table 7 shows the sizes of the floating NICs that Sirius offers
and the card capacity. A Sirius appliance has 12 cards. We
evaluate several vector bin packing heuristics [61, 86] to pack
fNICs onto Sirius cards. Our results in Figure 14 show that:

• The optimal choice of a packing heuristic, in terms of
packing efficiency, depends on the size distribution of
the fNICs and whether or not we split load of an fNIC
across multiple cards.

• In some cases, such as when small fNICs dominate the
workload, any heuristic can achieve the average capacity
bound12 which assumes that there are no card boundaries
and that all resources are in one large pool.

• Splitting the load of an fNIC across cards substantially
improves efficiency but also increases state that must
be maintained on cards since rulesets belonging to split
fNICs must now be deployed on multiple cards. The per
flow and per endpoint state substantially dominates the
ruleset size however. Nevertheless, we aim to split only
fNICs that have large resource needs.

12bound = minresourcer
total capacity on r
avg. FNI load on r

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1485

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120 140 160 180 200

Avg. Capacity Bound

#
C

a
n
n
o
t

P
la

ce

#Floating NICs (FNIs)

FirstFit
Tetris

RandomFit

Fit + MaxAvgAvail
Fit + MinMinAvail
Fit + MaxMinAvail

(a) Packing efficiency when the fNICs listed in Table 7
arrive as per the production distribution from §2.2.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

Avg. Capacity Bound

#
C

a
n
n
o
t

P
la

ce

#Floating NICs (FNIs)

FirstFit
Tetris

RandomFit

Fit + MaxAvgAvail
Fit + MinMinAvail
Fit + MaxMinAvail

(b) Comparing the packing efficiency when the fNICs
listed in Table 7 arrive with an equal probability.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

Avg. Capacity BoundAvg. Capacity Bound

#
C

a
n
n
o
t

P
la

ce

#Floating NICs (FNIs)

FirstFit
Tetris

RandomFit

Fit + MaxAvgAvail
Fit + MinMinAvail
Fit + MaxMinAvail

(c) The case of Figure 14b except with the load from
each fNIC split evenly across two cards.

Figure 14: Comparing different vector bin packing strategies when mapping floating NICs (granularity of resource allocation for network functions supported by
Sirius as listed in Table 7) to a Sirius appliance with 12 cards.

Term Resource Sizing
#New Flows (Mil-
lions Per Sec.)

Concurrent
Flows (M)

Throughput
(Gbps)

FNI_XXS 0.05 1 5.0
FNI_XS 0.10 1 10.0
FNI_S 0.25 2 12.5
FNI_M 1.00 2 12.5
FNI_L 2.00 4 12.5

FNI_XL 3.00 16 50.0

Sirius card 3.00 16 200.0

Table 7: The resource sizes, along multiple dimensions, that Sirius associates
with different kinds of floating NICs. Cloud customers can choose which
floating NIC to associate with their VM.

B.2 Variation in the load for NFs at Azure
We analyze load variability across all containers in Azure
using the same dataset described in §2.2.

Figure 15a shows the temporal variation in the cumulative
NF load. The figure shows many short-lived spikes, some
of which are larger than 4×; note y axes is in log-scale. We
also see some innate variability in the steady-state load across
these nodes.

Figure 15b is a 2D matrix where each entry represents
the number of containers that have the corresponding (x, y)
value. The x axes is the average numbers of new flows in each
minute. The y axes is the coefficient of variation in the same
metric (=stdev./ avg.). Both axes are in log-scale. As well, the
number of containers which is shown as a heat plot on the
right is also in log scale. The figure shows that most of the
containers have between 10 to 1000 new flows per minute
and the coefficient of variation is typically between 0.1 and 1.
While the variability is high for many containers, containers
with more average load appear to only have slightly higher
variability and there are no unexpected patterns.

C Additional Related Work

State replication for fault tolerance has received much atten-
tion; see [53, 64] for a review. Our method in §3.2 is different
from the primary-backup style replication [44, 51] wherein
the primary processes requests, forwards state changes to the
backup and emits responses after receiving an acknowledge-

103

104

105

-600 -500 -400 -300 -200 -100

#
N

e
w

 F
lo

w
s

Time (mins)

102

103

104

-600 -500 -400 -300 -200 -100#
C

o
n
c.

 F
lo

w
s

(a) Temporal changes in NF load; showing the total load at three randomly
chosen nodes; note: y axes is in log scale.

10-3 10-2 10-1 1 101 102 103 104 105 106

Avg. # New Flows Per Min.

10-3

10-2

10-1

1

101

S
td

e
v.

/
A
v
g
.

 #
 N

e
w

 F
lo

w
s

Pe
r

M
in

.

(b) Clustering containers based on their average NF load and the coefficient of
variability (=stdev/ avg) of their NF load.

Figure 15: Additional characterization results from the dataset in §2.2.

ment from the backup. Our method is also different from
Paxos-like protocols [46, 48, 50, 81] where replicas first agree
on an order in which to process requests and then process
the requests. The key difference is that both alternatives hold
requests while replication is underway. In the case of stateful
NFs, requests are packets that change state and so holding re-
quests at speeds of hundreds of Gbps will require a very large
packet buffer. To our knowledge, we are unaware of any prior
work that ping-pong’s packets between replicas which effec-
tively holds the requests on the network wire. Redplane [72]
replicates the state between programmable switches and a
server-based remote state store but must cope in P4 with route
changes that happen between the switches and the server-
based store. Our method is simpler and more performant.

1486 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

For the case of moving state on-the-fly between multiple
NF processors, OpenNF [60] is perhaps the first to describe
in detail the multiple issues that arise. Their solution how-
ever buffers all the packets that arrive while the state is being
moved at an SDN controller (e.g., Floodlight [16]) which
becomes a scaling bottleneck. OpenNF [60] reports results
for O(100) flows (e.g., “a loss-free move involving state for
500 flows takes only 215ms”) whereas each fNIC in Sirius
can have many millions of ongoing flows. Similar to Red-
Plane [72], StatelessNF [69] and [71] store relevant NF state
in an external state store (e.g., in a RAMCloud [69]). As
noted above, relative to Sirius (which stores state in a nearby
secondary card), we believe that storing state in an external
state store has higher intrinsic overheads.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1487

Following the Data, Not the Function:
Rethinking Function Orchestration in Serverless Computing

Minchen Yu† Tingjia Cao‡* Wei Wang† Ruichuan Chen§

†Hong Kong University of Science and Technology
‡University of Wisconsin-Madison §Nokia Bell Labs

Abstract
Serverless applications are typically composed of function

workflows in which multiple short-lived functions are trig-
gered to exchange data in response to events or state changes.
Current serverless platforms coordinate and trigger functions
by following high-level invocation dependencies but are obliv-
ious to the underlying data exchanges between functions. This
design is neither efficient nor easy to use in orchestrating com-
plex workflows – developers often have to manage complex
function interactions by themselves, with customized imple-
mentation and unsatisfactory performance.

In this paper, we argue that function orchestration should
follow a data-centric approach. In our design, the platform
provides a data bucket abstraction to hold the intermediate
data generated by functions. Developers can use a rich set of
data trigger primitives to control when and how the output of
each function should be passed to the next functions in a work-
flow. By making data consumption explicit and allowing it to
trigger functions and drive the workflow, complex function in-
teractions can be easily and efficiently supported. We present
Pheromone – a scalable, low-latency serverless platform fol-
lowing this data-centric design. Compared to well-established
commercial and open-source platforms, Pheromone cuts the
latencies of function interactions and data exchanges by or-
ders of magnitude, scales to large workflows, and enables easy
implementation of complex applications.

1 Introduction

Serverless computing, with its Function-as-a-Service incarna-
tion, is becoming increasingly popular in the cloud. It allows
developers to write highly scalable, event-driven applications
as a set of short-running functions. Developers simply spec-
ify the events that trigger the activation of these functions,
and let the serverless platform handle resource provisioning,
autoscaling, logging, fault-tolerance, etc. Serverless comput-
ing is also economically appealing as it has zero idling cost:
developers are only charged when their functions are running.

Many applications have recently been migrated to the sever-
less cloud [28,35,39,43,48,59,68,75,78]. These applications
typically consist of multiple interactive functions with diverse

*This work was partially done while the author was at HKUST.

function-invocation and data-exchange patterns. For example,
a serverless-based batch analytics application may trigger hun-
dreds of parallel functions for all-to-all data communication
in a shuffle phase [49, 59, 79]; a stream processing applica-
tion may repeatedly trigger certain functions to process dy-
namic data received in a recent time window. Ideally, a server-
less platform should provide an expressive and easy-to-use
function orchestration to support various function-invocation
and data-exchange patterns. The orchestration should also be
made efficient, enabling low-latency invocation and fast data
exchange between functions.

However, function orchestration in current serverless plat-
forms is neither efficient nor easy to use. It typically models
a serverless application as a workflow that connects functions
according to their invocation dependency [4, 11, 21, 24, 34,
51, 53, 66]. It specifies the order of function invocations but
is oblivious to when and how data are exchanged between
functions. Without such knowledge, the serverless platform
assumes that the output of a function is entirely and immedi-
ately consumed by the next function(s), which is not the case
in many applications such as the aforementioned “shuffle” op-
eration in batch analytics and the processing of dynamically
accumulated data in stream analytics. To work around these
limitations, developers have to manage complex function in-
teractions and data exchanges by themselves, using various
approaches such as a message broker or a shared storage, ei-
ther synchronously or asynchronously [6, 10, 24, 31, 49, 66].
As no single approach is found optimal in all scenarios, devel-
opers may need to write complex logic to dynamically select
the most efficient approach at runtime (see §2.2). Current
serverless platforms also incur function interaction latencies
of tens of milliseconds, which may be unacceptable to latency-
sensitive applications [46], particularly since this overhead
accumulates as the function chain builds up.

In this paper, we argue that function orchestration should
follow the flow of data rather than the function-level invo-
cation dependency, thus a data-centric approach. Our key
idea is to make data consumption explicit, and let it trigger
functions and drive the workflow. In our design, the server-
less platform exposes a data bucket abstraction that holds the
intermediate output of functions in a logical object store. The
data bucket provides a rich set of data trigger primitives that
developers can use to specify when and how the intermediate

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1489

data are passed to the intended function(s) and trigger their
execution. With such a fine control of data flow, developers
can express sophisticated function invocations and data ex-
changes, simply by configuring data triggers through a unified
interface. Knowing how intermediate data will be consumed
also enables the serverless platform to schedule the intended
downstream functions close to the input, thus ensuring fast
data exchange and low-latency function invocation.

Following this design approach, we develop Pheromone1,
a scalable serverless platform with low-latency data-centric
function orchestration. Pheromone proposes three key de-
signs to deliver high performance. First, it uses a two-tier
distributed scheduling hierarchy to locally execute a function
workflow whenever possible. Each worker node runs a lo-
cal scheduler, which keeps track of the execution status of a
workflow via its data buckets and schedules next functions of
the workflow onto local function executors. In case that all
local executors are busy, the scheduler forwards the request
to a global coordinator which then routes it to another worker
node with available resources. Second, Pheromone trades the
durability of intermediate data, which are typically short-lived
and immutable, for fast data exchange. Functions exchange
data within a node through a zero-copy shared-memory object
store; they can also pass data to a remote function through di-
rect data transfer. Third, Pheromone uses sharded global coor-
dinators, each handling a disjoint set of workflows. With such
a shared-nothing design, local schedulers only synchronize
workflows’ execution status with the corresponding global
coordinators, which themselves require no synchronization,
thus ensuring high scalability for distributed scheduling.

We evaluate Pheromone against well-established commer-
cial and open-source serverless platforms, including AWS
Lambda with Step Functions, Azure Durable Functions,
Cloudburst [66], and KNIX [24]. Evaluation results show
that Pheromone improves the function invocation latency by
up to 10× and 450× over Cloudburst (best open-source base-
line) and AWS Step Functions (best commercial baseline),
respectively. Pheromone scales well to large workflows and in-
curs only millisecond-scale orchestration overhead when run-
ning 1k chained functions and 4k parallel functions, whereas
the overhead is at least a few seconds in other platforms.
Pheromone has negligible data-exchange overhead (e.g., tens
of µs), thanks to its zero-copy data exchange. It can also
handle failed functions through efficient re-execution. Case
studies of two serverless applications, i.e., Yahoo! stream
processing [40] and MapReduce sort, further demonstrate
that Pheromone can easily express complex function interac-
tion patterns (rich expressiveness), require no specific imple-
mentation to handle data exchange between functions (high
usability), and efficiently support both latency-sensitive and
data-intensive applications (wide applicability).

1Pheromone is a chemical signal produced and released into the environ-
ment by an animal that triggers a social response of others of its species. We
use it as a metaphor for our data-centric function orchestration approach.

2 Background and Motivation

We first introduce serverless computing and discuss the limita-
tions of function orchestration in current serverless platforms.

2.1 Serverless Computing
Serverless computing, with its popular incarnation being
Function-as-a-Service (FaaS), has recently emerged as a pop-
ular cloud computing paradigm that supports highly-scalable,
event-driven applications [8, 18, 22]. Serverless computing
allows developers to write short-lived, stateless functions that
can be triggered by events. The interactions between functions
are simply specified as workflows, and the serverless platform
manages resource provisioning, function orchestration, au-
toscaling, logging, and fault tolerance for these workflows.
This paradigm appeals to many developers as it allows them
to concentrate on the application logic without having to man-
age server resources [47, 63] – hence the name serverless
computing. In addition to the high scalability and operational
simplicity, serverless computing adopts a “pay-as-you-go”
billing model: developers are billed only when their functions
are invoked, and the function run-time is metered at a fine
granularity, e.g., 1 ms in major serverless platforms [8,18]. Al-
together, these benefits have increasingly driven a large num-
ber of traditional “serverful” applications to be migrated to the
serverless platforms, including batch analytics [39,48,59,79],
video processing [35, 43], stream processing [28], machine
learning [75, 78], microservices [46], etc.

2.2 Limitations of Current Platforms
Current serverless platforms take a function-oriented ap-
proach to orchestrating and activating the functions of a server-
less workflow: each function is treated as a single and stan-
dalone unit, and the interactions of functions are separately
expressed within a workflow. This workflow connects indi-
vidual functions according to their invocation dependencies,
such that each function can be triggered upon the completion
of one or multiple upstream functions. For example, many
platforms model a serverless workflow as a directed acyclic
graph (DAG) [4, 11, 21, 24, 34, 51, 53, 66], in which the nodes
represent functions and the edges indicate the invocation de-
pendencies between functions. The DAG can be specified
using general programming languages [4, 21], or domain-
specific languages such as Amazon States Language [11, 24].
However, this approach has several limitations with regard to
expressiveness, usability, and applicability.
Limited expressiveness. Although the current function-
oriented orchestration supports the workflows of simple in-
vocation patterns, it becomes inconvenient or incapable of
expressing more sophisticated function interactions, as sum-
marized in Table 1. This is because the current function or-
chestration assumes that data flow in the same way as how

1490 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

f
f
f

Stage-1

f
f
f

Stage-2

f f

Function invocation flow
Data flow

Shuffle Batched data processing

Figure 1: The shuffle operation (left) in data analytics and the
batched data processing in a stream (right).

functions are invoked in a workflow, and that a function passes
its entire output to others by directly invoking them for im-
mediate processing. These assumptions do not hold for many
applications, hence developers resort to create workarounds.

For example, the “shuffle” operation in a data analytics
job involves a fine-grained, all-to-all data exchange between
the functions of two stages (e.g., “map” and “reduce” stages).
As shown in Fig. 1 (left), the output data of a function in
stage-1 are shuffled and selectively redistributed to multiple
functions in stage-2 based on the output keys. However, the
way to invoke functions is not the same as how the output data
flow: only after stage-1 completes can the workflow invoke
all the stage-2 functions in parallel. In current serverless plat-
forms, developers must manually implement such a complex
data shuffle invocation via external storage [49, 59], which is
neither flexible nor efficient.

Another example is a batched stream analytics job which
periodically invokes a function to process the data contin-
uously received during a time window [40, 73], as shown
in Fig. 1 (right). A serverless workflow cannot effectively
express this invocation pattern as the function is not imme-
diately triggered when the data arrive, and thus developers
have to rely on other cloud services (e.g., AWS Kinesis [7])
to batch the data for periodic function invocations [28–30].
Note that, even with the latest stateful workflow (e.g., Azure
Durable Functions [17]), an addressable function needs to
keep running to receive data. As we will show in §6.5, deploy-
ing a long-running function not only incurs extra resource
provisioning cost but results in an unsatisfactory performance.

Limited usability. Current serverless platforms provide var-
ious options for data exchange between functions. Functions
can exchange data either synchronously or asynchronously via
a message broker or a shared storage [6,10,24,31,49,66]. They
can also process data from various sources, such as nested
function calls, message queues, or other cloud services [23].

The lack of a single best approach to exchange data be-
tween functions significantly complicates the development
and deployment of serverless applications, as developers must
find their own ways to efficiently pass data across func-
tions [53] which can be dynamic and non-trivial; thus, re-
ducing the usability of serverless platforms. To illustrate this
problem, we compare four data-passing approaches in AWS
Lambda: a) calling a function directly (Lambda), b) using
AWS Step Functions (ASF) to execute a two-function work-

Data size
1GB1MB 100MB

256KB

100B 10KB 100KB 10MB

La
te

nc
y

(m
s)

6MB 512MB

1KB

Figure 2: The interaction latency of two AWS Lambda func-
tions under various data sizes using four approaches.

flow2, c) allowing functions to access an in-memory Redis
store for fast data exchange (ASF+Redis), and d) configuring
AWS S3 to invoke a function upon data creation (S3) [32].
Fig. 2 compares the latencies of these four approaches under
various data volumes. Lambda is efficient for transferring
small data; ASF+Redis is efficient for transferring large data;
the maximum data volume supported by each approach varies
considerably, and only the S3 approach can support virtually
unlimited (but slow) data exchange. Thus, there is no single
approach that prevails across all scenarios, and developers
must carefully profile the data patterns of their applications
and the serverless platforms to optimize the performance of
data exchange between interacting functions.

To make matters worse, the data volume exchanged be-
tween functions depends on the workload, which may be
irregular or unpredictable. Thus, there may be no best fixed
approach to exchanging data between interacting functions,
and developers have to write complex logic to select the best
approach at runtime. Developers also need to consider the in-
teraction cost. Previous work has highlighted the tricky trade-
off between I/O performance and cost when using different
storage to share intermediate data [49, 59], which further ex-
acerbates the usability issue. Altogether, these common prac-
tices bring a truly non-serverless experience to developers as
they still have to deal with server and platform characteristics.
Limited applicability. Existing serverless applications are
typically not latency-sensitive. This is because current server-
less platforms usually have a function interaction delay of
multiple or tens of milliseconds (§6.2), and such delays ac-
cumulate as more functions are chained together in an appli-
cation workflow. For example, in AWS Step Functions, each
function interaction causes a delay of more than 20 ms, and
the total platform-incurred delay for a 6-function chain is
over 100 ms, which may not be acceptable in many latency-
sensitive applications [46]. In addition, as current serverless
platforms cannot efficiently support the sharing of varying-
sized data between functions (as described earlier), they are
ill-suited for data-intensive applications [8, 24, 43, 46, 59, 66].
Altogether, the above characteristics substantially limit the
applicability of current serverless platforms.

2We use the ASF Express Workflows in our experiments as it delivers
higher performance than the ASF Standard Workflows [14].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1491

3 Data-Centric Function Orchestration

In this section, we address the aforementioned limitations of
the function orchestration practice in current serverless plat-
forms, with a novel data-centric approach. We will describe
how this approach can be applied to develop a new serverless
platform later in §4.

3.1 Key Insight

As discussed in §2.2, the current function orchestration prac-
tice only specifies the high-level invocation dependencies
between functions, and thus has little fine-grained control
over how these functions exchange data. In particular, the
current practice assumes the tight coupling between function
flows and data flows. Therefore, when a function returns its
result, the workflow has no knowledge about how the result
should be consumed (e.g., in full or part, directly or condi-
tionally, immediately or later). To address these limitations,
an effective serverless platform must allow fine-grained data
exchange between the functions of a workflow, while simulta-
neously providing a unified and efficient approach for function
invocation and data exchange.

Following this insight, we propose a new data-centric ap-
proach to function orchestration. We note that intermediate
data (i.e., results returned by functions) are typically short-
lived and immutable [49, 67]: after they are generated, they
wait to be consumed and then become obsolete.3 We therefore
make data consumption explicit and enable it to trigger the
target functions. Developers can thus specify when and how
intermediate data should be passed to the target functions and
trigger their activation, which can then drive the execution of
an entire workflow. As intermediate data are not updated once
they are generated [49, 67], using them to trigger functions
results in no consistency issues.

The data-centric function orchestration addresses the limi-
tations of the current practice via three key advances. First,
it breaks the tight coupling between function flows and data
flows, as data do not have to follow the exact order of function
invocations. It also enables a flexible and fine-grained control
over data consumption, and therefore can express a rich set of
workflow patterns (i.e., rich expressiveness). Second, the data-
centric function orchestration provides a unified programming
interface for both function invocations and data exchange, ob-
viating the need for developers to implement complex logic
via a big mix of external services to optimize data exchange
(i.e., high usability). Third, knowing when and how the in-
termediate data will be consumed provides opportunities for
the serverless platform scheduler to optimize the locality of
functions and relevant data, and thus latency-sensitive and
data-intensive applications can be supported efficiently (i.e.,
wide applicability).

3For data that need durability, they can be persisted to a durable storage.

source functions data bucket

send object(s) trigger function(s)
f f…

target functions

…f f

Figure 3: An overview of triggering functions in data-centric
orchestration. Source functions send intermediate data to the
associated bucket, which can be configured to automatically
trigger target functions.

3.2 Data Bucket and Trigger Primitives

Data bucket. To facilitate the data-centric function orches-
tration, we design a data bucket abstraction and a list of trig-
ger primitives. Fig. 3 gives an overview of how functions are
triggered. A serverless application creates one or multiple
data buckets that hold the intermediate data. Developers can
configure each bucket with triggers that specify when and how
the data should invoke the target functions and be consumed
by them. When executing a workflow, the source functions di-
rectly send their results to the specified buckets. Each bucket
checks if the configured triggering condition is satisfied (e.g.,
the required data are complete and ready to be consumed).
If so, the bucket triggers the target functions automatically
and passes the required data to them. This process takes place
across all buckets, which collectively drive the execution of
an entire workflow.

We design various trigger primitives for buckets to specify
how functions are triggered. The interaction patterns between
functions can be broadly classified into three categories:

Direct trigger primitive (i.e., Immediate) allows one or
more functions to directly consume data in the associated
buckets. This primitive has no specified condition, and trig-
gers the target functions immediately once the data are ready
to be consumed. This primitive can easily support sequential
execution or invoke multiple functions in parallel (fan-out).

Conditional trigger primitives trigger the target function(s)
when the developer-specified conditions are met.

• ByBatchSize: It triggers the function(s) when the as-
sociated bucket has accumulated a certain number of
data objects. It can be used to enable the batched stream
processing [29, 30] in a way similar to Spark Streaming.

• ByTime: It sets up a timer and triggers the function(s)
when the timer expires. All the accumulated data objects
are then passed to the function(s) as input. It can be used
to implement routine tasks [40, 73].

• ByName: It triggers the function(s) when the bucket re-
ceives a data object of a specified name. It can be used
to enable conditional invocations by choice [12].

• BySet: It triggers functions when a specified set of data
objects are all complete and ready to be consumed. It
can be used to enable the assembling invocation (fan-in).

• Redundant: It specifies n objects to be stored in a bucket
and triggers the function(s) when any k of them are

1492 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Expressiveness comparison between the function-
oriented workflow primitives in AWS Step Functions (ASF)
and the data-centric trigger primitives in Pheromone.

Invocation Patterns ASF Pheromone

Sequential Execution Task Immediate
Conditional Invocation Choice ByName
Assembling Invocation Parallel BySet
Dynamic Parallel Map DynamicJoin

Batched Data Processing - ByBatchSize
ByTime

k-out-of-n - Redundant
MapReduce - DynamicGroup

Function invocations Send objects

f f f
every second

f

f

f

f

f

f

MapReduce
Mappers Reducers

1
2
3

Preprocess Query
event info

Aggregate

Advertisement event stream

Figure 4: Usage examples of two primitives: DynamicGroup
for data shuffling in MapReduce (left), and ByTime for peri-
odic data aggregation in the event stream processing (right).

available and ready to be consumed. It can be used to
execute redundant requests and perform late binding for
straggler mitigation and improved reliability [50, 60, 69].

Dynamic trigger primitives, unlike the previous two cate-
gories with statically-configured triggers, allow data exchange
patterns to be configured at runtime.

• DynamicJoin: It triggers the assembling functions when
a set of data objects are ready, which can be dynamically
configured at runtime. It enables the dynamic parallel
execution like ‘Map’ in AWS Step Functions [13].

• DynamicGroup: It allows a bucket to divide its data ob-
jects into multiple groups, each of which can be con-
sumed by a set of functions. The data grouping is dynam-
ically performed based on the objects’ metadata (e.g.,
the name of an object). Once a group of data objects are
ready, they trigger the associated set of functions.

Dynamic trigger primitives are critical to implement some
widely-used computing frameworks, e.g., MapReduce (which
is hard to support in current serverless platforms as it requires
triggering parallel functions at every stage and optimizing the
fine-grained, all-to-all data exchange between them [48, 49,
59], see §2.2). Here, our DynamicGroup primitive provides
an easy solution to these issues. As shown in Fig. 4 (left),
when a map function sends intermediate data objects to the
associated bucket, it also specifies to which data group each
object belongs (i.e., by specifying their associated keys). Once
the map functions are all completed, the bucket triggers the
reduce functions, each consuming a group of objects.

We have developed a new serverless platform, Pheromone,
which implements the aforementioned data bucket abstrac-

struct BucketKey {
string bucket_; // bucket name
string key_; // key name
string session_; // unique session id per request

};

abstract class Trigger {
// Check whether to trigger functions for a new object.
vector <TriggerAction > action_for_new_object(

BucketKey bucket_key);

// Notify the information of a source function.
void notify_source_func(string function_name ,

string session , vector <string > function_args);

// Check whether to re-execute source functions.
vector <TriggerAction > action_for_rerun(string session);

};

Figure 5: Three main methods of the trigger interface.

tion and trigger primitives. The design of Pheromone will be
detailed in §4. Table 1 lists all the supported trigger primi-
tives in current Pheromone platform. Compared to AWS Step
Functions (ASF), Pheromone supports more sophisticated in-
vocation patterns and provides richer expressiveness for com-
plex workflows. We note that Azure Durable Functions [15]
can also achieve rich expressiveness for complex workflows
(§6.1). Yet, it fails to achieve the other two desired properties,
i.e., high usability and wide applicability (§6.5).
Abstract interface. Pheromone’s trigger primitives are not
only limited to those listed in Table 1. Specifically, we pro-
vide an abstract interface for developers to implement cus-
tomized trigger primitives for their applications, if needed.
Fig. 5 shows the three main methods of the trigger interface.
The first method, action_for_new_object, is provided to
specify how the trigger’s associated target functions should be
invoked. This method can be called when a new data object
arrives: it checks the current data status and returns a list of
functions to invoke, if any. The method can also be called
periodically in a configurable time period through periodi-
cal checking (e.g., ByTime primitive). The other two methods,
notify_source_func and action_for_rerun, are provided
to implement the fault handling logic which re-executes the
trigger’s associated source functions in case of failures. In
particular, through notify_source_func, a trigger can ob-
tain the information of a source function once the function
starts, including the function name, session, and arguments;
Pheromone also performs the periodic re-execution checks
by calling action_for_rerun, which returns a list of time-
out functions, such that Pheromone can then re-execute them.
The detailed fault tolerance mechanism will be described in
§4.4. We give an example of implementing a customized
ByBatchSize trigger primitive via the abstract interface in
our technical report [74].

3.3 Programming Interface
Our Pheromone serverless platform currently accepts func-
tions written in C++, with capabilities to support more lan-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1493

Table 2: The APIs of user library which developers use to operate on intermediate data objects and drive the workflow execution.

Class API Description

EpheObject
void* get_value() Get a pointer to the value of an object.
void set_value(value, size) Set the value of an object.

UserLibrary

EpheObject* create_object(bucket, key) Create an object by specifying its bucket and key name.
EpheObject* create_object(function) Create an object by specifying its target function.
EpheObject* create_object() Create an object.
void send_object(object, output=false) Send an object to its bucket, and set the output flag if it needs to persist.
EpheObject* get_object(bucket, key) Get an object by specifying its bucket and key name.

int handle(UserLibraryInterface* library ,\
int arg_size , char** arg_values);

Figure 6: Function interface.

1 app_name = 'event -stream -processing '
2 bucket_name = 'by_time_bucket '
3 trigger_name = 'by_time_trigger '
4 prim_meta = {'function ':'aggregate ', 'time_window ':1000}
5 re_exec_rules = ([('query_event_info ', EVERY_OBJ)], 100)
6 client.create_bucket(app_name , bucket_name)
7 client.add_trigger(app_name , bucket_name , trigger_name , \
8 BY_TIME , prim_meta , hints=re_exec_rules)

Figure 7: Configuring a bucket trigger to periodically invoke
a function in a stream processing workflow.

guages (see §7). Pheromone also provides a Python client
through which developers can program function interactions.

Function interface. Following the common practice, devel-
opers implement their functions through the handle() inter-
face (see Fig. 6), which is similar to the C++ main function
except that it takes a user library as the first argument. The
user library provides a set of APIs (see Table 2) that allow
developers to operate on intermediate data objects. These
APIs enable developers to create intermediate data objects
(EpheObject), set their values, and send them to the buckets.
A data object can also be persisted to a durable storage by set-
ting the output flag when calling send_object(). When a
bucket receives objects and decides to trigger next function(s),
it automatically packages relevant objects as the function ar-
guments (see Fig. 6). A function can also access other objects
via the get_object() API.

Bucket trigger configuration. Developers specify how the
intermediate data should trigger functions in a workflow via
our Python client. The client creates buckets and configures
triggers on the buckets using the primitives described in §3.2.
Functions can then interact with the buckets by creating, send-
ing and getting objects using the APIs listed in Table 2.

As an example, we refer to a stream processing work-
flow [40] as shown in Fig. 4 (right). This workflow first fil-
ters the incoming advertisement events (i.e., preprocess)
and checks which campaign each event belongs to (i.e.,
query_event_info). It then stores the returned results into a
bucket and periodically invokes a function (i.e., aggregate)
to count the events per campaign every second. Fig. 7 gives a
code snippet of configuring a bucket trigger that periodically
invokes the aggregate function, where a ByTime trigger is

Scheduler

Shared Memory Object Store

Executor … Executor

Coordinator

Worker Node

Scheduler

Shared Memory Object Store

Executor …

Coordinator

…

Worker Node

Durable Key-Value Store

Executor

…
Pheromone Runtime

Figure 8: An architecture overview of Pheromone.

created with the primitive metadata that specifies both the tar-
get function and the triggering time window (line 4). Develop-
ers can optionally specify a re-execution rule in case of func-
tion failures, e.g., by re-executing the query_event_info
function if the bucket has not received query_event_info’s
output in 100 ms (line 5). We will describe the fault toler-
ance and re-execution in §4.4. A full script of deploying this
workflow is given in our technical report [74].

To summarize, our data bucket abstraction, trigger primi-
tives, and programming interface facilitate the data-centric
function orchestration, and enable developers to conveniently
implement their application workflows and express various
types of data patterns and function invocations. In addition,
the unified programming interface also obviates the need to
make an ad-hoc selection from many APIs provided by vari-
ous external services, such as a message broker, in-memory
database, and persistent storage.

4 Pheromone System Design

This section presents the design of Pheromone, a new server-
less platform that supports data-centric function orchestration.

4.1 Architecture Overview
Pheromone runs on a cluster of machines. Fig. 8 shows an
architecture overview. Each worker node follows instructions
from a local scheduler, and runs multiple executors that load
and execute the user function code as needed. A worker node
also maintains a shared-memory object store that holds the
intermediate data generated by functions. The object store pro-

1494 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CoordinatorScheduler

Idle executorBusy executorFunction invocation

Intra-Node Scheduling Inter-Node Scheduling

Sync. data status

Figure 9: Intra-node (left) and inter-node (right) scheduling.

vides a data bucket interface through which functions can ef-
ficiently exchange data within a node and with other nodes. It
also synchronizes data that must persist with a remote durable
key-value store, such as Anna [71]. When new data are put
into the object store, the local scheduler checks the associated
bucket triggers. If the triggering conditions are satisfied, the
local scheduler invokes the target function(s) either locally, or
remotely with the help of a global coordinator that runs on a
separate machine and performs cross-node coordination with
a global view of bucket statuses.

4.2 Scalable Distributed Scheduling

We design a two-tier, distributed scheduling scheme to ex-
ploit data locality and ensure high scalability, enabled by the
data-centric approach. Specifically, a workflow request first
arrives at a global coordinator, which routes the request to
a local scheduler on a worker node. The local scheduler in-
vokes subsequent functions to locally execute the workflow
whenever possible, thus reducing the invocation latency and
incurring no network overhead.
Intra-node scheduling. In Pheromone, a local scheduler
uses bucket triggers to invoke functions as locally as possi-
ble. The scheduler starts the first function of a workflow and
tracks its execution status via its bucket. The downstream
functions are triggered immediately on the same node when
their expected data objects are put into the associated buckets
and ready to be consumed. As no cross-node communication
is involved, it reduces the function invocation latency and
enables efficient consumption of data objects in a local work-
flow execution. Fig 9 (left) shows how the local scheduler
interacts with executors when running a workflow locally. The
executors synchronize the data status (e.g., the readiness of
local objects in buckets) with the local scheduler, which then
checks the associated bucket triggers and invokes downstream
functions if the triggering conditions are met. The low-latency
message exchange between the scheduler and executors is
enabled via an on-node shared-memory object store.

A local scheduler makes scheduling decisions based on
the status of executors. The scheduler only routes function
requests to idle executors that have no running tasks, avoiding
concurrent invocations and resource contention in each execu-
tor (similar to the concurrency model in AWS Lambda [9]).
When the executor receives a request for the first time, it loads
the function code from the local object store and persists it
in memory for reuse in subsequent invocations. In case of

multiple idle executors, the scheduler prioritizes those with
function code already loaded to enable a warm start.4

Delayed request forwarding from overloaded nodes. If
the requests received by a local scheduler exceed the capacity
of local executors, the scheduler forwards them to a global
coordinator, which routes them to other worker nodes with suf-
ficient resources. Instead of forwarding the exceeding requests
immediately, the scheduler waits for a configurable short time
period: if any local executors become available during this pe-
riod, the requested functions start and the requests are served
locally. The rationale is that it typically takes little time for
executors to become available as most serverless functions
are short-lived [64], plus Pheromone has microsecond-scale
invocation overhead (§6.2). Such a delayed scheduling has
proven effective for improving data locality [77].
Inter-node scheduling. A global coordinator not only for-
wards requests from overloaded nodes to non-overloaded
nodes, but also drives the execution of a large workflow which
needs to run across multiple worker nodes that collectively
host many functions of the workflow. This cannot be orches-
trated by individual local schedulers without a global view.

As Fig. 9 (right) shows, a coordinator gathers the associated
bucket statuses of the functions of a large workflow from mul-
tiple worker nodes, and triggers the next functions as needed.
Each node immediately synchronizes local bucket status with
the coordinator upon any change, such that the coordinator
maintains an up-to-date global view. When the coordinator
decides to trigger functions, it also updates this message to
relevant workers, which reset local bucket status accordingly.
This ensures a function invocation is neither missed nor du-
plicated. Note that, some bucket triggers (e.g., ByTime) can
only be performed at the coordinator with its global view;
here, worker nodes only update their local statuses to the
coordinator without checking trigger conditions.

The data-centric orchestration improves data locality in
the inter-node scheduling. The coordinator makes scheduling
decisions using the node-level knowledge reported by local
schedulers, including cached functions, the number of idle
executors, and the number of objects relevant to the workflow.
It then schedules a request to a worker node with sufficient
warm executors and the most relevant data objects.
Scaling distributed scheduling with sharded coordina-
tors. Pheromone employs a shared-nothing model to sig-
nificantly reduce synchronization between local schedulers
and global coordinators, thus attaining high scalability. Specif-
ically, it partitions the workflow orchestration tasks across
sharded coordinators, each of which manages a disjoint set
of workflows. When executing a workflow, the responsible
coordinator sends the relevant bucket triggers to a selected set
of worker nodes and routes the invocation requests to them.
A worker node may run functions of multiple workflows. For

4Many techniques have been proposed to deal with cold starts of execu-
tors [33, 37, 41, 44, 57, 64, 70], which can be applied directly in Pheromone.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1495

each workflow, its data and trigger status are synchronized
with the responsible coordinator only. This design substan-
tially reduces communication and synchronization overheads,
and can be achieved by running a standard cluster manage-
ment service (e.g., ZooKeeper [5, 45]) that deals with coor-
dinator failures and allows a client to locate the coordinator
of a specific workflow. The client can then interact with this
coordinator to configure data triggers and send requests. This
process is automatically done by the provided client library
and is transparent to developers.

4.3 Bucket Management and Data Sharing

We next describe how Pheromone manages data objects in
buckets, and enables fast data sharing between functions.
Bucket management. Pheromone uses an on-node shared-
memory object store to maintain data objects, such that func-
tions can directly access them via pointers (i.e., EpheObject
in Table 2). A data object is marked ready when the source
function puts it into a bucket via send_object(). The bucket
can be distributed across its responsible coordinator and a
number of worker nodes, where each worker node tracks local
data status while the coordinator holds a global view (§4.2).
Bucket status synchronization is only needed between the
responsible coordinator and workers, as local statuses at dif-
ferent workers track their local objects only and are disjoint.

Pheromone garbage-collects the intermediate objects of a
workflow execution after the associated invocation request
has been fully served along the workflow. In case a workflow
is executed across multiple worker nodes, the responsible co-
ordinator notifies the local scheduler on each node to remove
the associated objects from its object store.

When a worker node’s local object store runs out of mem-
ory, a remote key-value store is used to hold the newly gener-
ated data objects at the expense of an increased data access
delay.5 Later, when more memory space is made available
(e.g., via garbage collection), the node remaps the associated
buckets to the local object store. In case a data object is lost
due to system failures, Pheromone automatically re-executes
the source function(s) to get it recovered (details in §4.4).
Fast data sharing. Pheromone further adopts optimizations
to fully reap the benefits of data locality enabled by its data-
centric design. As intermediate data are typically short-lived
and immutable [49, 67], we trade their durability for fast data
sharing and low resource footprint. With an on-node shared-
memory object store, Pheromone enables zero-copy data shar-
ing between local functions by passing only the pointers of
data objects to the target functions. This avoids the significant
data copying and serialization overheads, and substantially
reduces the latency of accessing local data objects.

To efficiently pass data to remote functions, Pheromone

5Our current implementation does not support spilling in-memory objects
to disk, which we leave for future work.

also enables the direct transfer of data objects between nodes.
A function packages the metadata (e.g., locator) of a data
object into a function request being sent to a remote node.
The target function on the remote node uses such metadata
to directly retrieve the required data object. Compared with
using a remote storage for cross-node data sharing, our di-
rect data transfer avoids unnecessary data copying, and thus
leads to reduced network and storage overheads. While the
remote-storage approach can ensure better data durability and
consistency [24, 65, 66], there is no such need for intermedi-
ate data objects. Only when data are specified to persist will
Pheromone synchronize data objects with a durable key-value
store (see send_object() in Table 2).

Note that, Pheromone’s data-centric design can expose de-
tails of intermediate data (e.g., the size of each data object),
therefore we can further optimize cross-node data sharing. For
large data objects, they are sent as raw byte arrays to avoid
serialization-related overheads, thus significantly improving
the performance of transferring large objects (see Fig. 13
in §6.2). For small data objects, Pheromone implements a
shortcut to transfer them between nodes: it piggybacks small
objects on the function invocation requests forwarded during
the inter-node scheduling (see §4.2). This shortcut saves one
round trip as the target function does not need to additionally
retrieve data objects from the source function. In addition,
Pheromone runs an I/O thread pool on each worker node to
improve cross-node data sharing performance.

4.4 Fault Tolerance

Pheromone sustains various types of system component
failures. In case an executor fails or a data object is lost,
Pheromone restarts the failed function to reproduce the lost
data and resume the interrupted workflow. This is enabled by
using the data bucket to re-execute its source function(s) if
the expected output has not been received in a configurable
timeout. This fault handling approach is a natural fit for data-
centric function orchestration and brings two benefits. First,
it can simplify the scheduling logic as data buckets can au-
tonomously track the runtime status of each function and issue
re-execution requests whenever necessary, without needing
schedulers to handle function failures. Second, it allows devel-
opers to customize function re-execution rules when configur-
ing data buckets, e.g., timeout. Fig. 7 gives an example of spec-
ifying re-execution rules (line 5). Fig. 5 shows the interface
to implement the logic of function re-execution for a bucket
trigger (notify_source_func and action_for_rerun).

Pheromone also checkpoints the scheduler state (e.g., the
workflow status) to the local object store, so that it can quickly
recover from a scheduler failure on a worker node. In case
that an entire worker node crashes, Pheromone re-executes
the failed workflows on other worker nodes. Pheromone can
also handle failed coordinators with a standard cluster man-
agement service, such as ZooKeeper, as explained in §4.2.

1496 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Local Remote

La
te

nc
y

(m
s)

Two-function chain # of functions in parallel invocations # of functions in assembling invocation

Pheromone Cloudburst KNIX ASF(External/Internal) DF

2 4 8 16 2 4 8 16

Figure 10: Latencies of invoking no-op functions under three interaction patterns: function chain, parallel and assembling
invocations. Each bar is broken into two parts which measure the latencies of external (darker) and internal (lighter) invocations,
respectively. The overall latency value is given at the top of the bar, and the internal invocation latency is given at the bottom.

5 Implementation

We have implemented Pheromone atop Cloudburst [66], a
lightweight, performant serverless platform. We heavily re-
architected Cloudburst and implemented Pheromone’s key
components (Fig. 8) in 5k lines of C++ code. These com-
ponents were packaged into Docker [19] images for ease
of deployment. Pheromone’s client was implemented in 400
lines of Python code. Like Cloudburst, Pheromone runs in a
Kubernetes [25] cluster for convenient container management,
and uses Anna [71, 72], an autoscaling key-value store, as the
durable key-value storage. On each worker node, we mount
a shared in-memory volume between containers for fast data
exchange and message passing. The executor loads function
code as dynamically linked libraries, which is pre-compiled
by developers and uploaded to Pheromone. The entire code-
base of Pheromone is open-sourced at [26].

6 Evaluation

In this section, we evaluate Pheromone via a cluster deploy-
ment in AWS EC2. Our evaluation answers three questions:

• How does Pheromone improve function interactions
(§6.2) and ensure high scalability (§6.3)?

• Can Pheromone effectively handle failures (§6.4)?
• Can developers easily implement real-world applications

with Pheromone and deliver high performance (§6.5)?

6.1 Experimental Setup
Cluster settings. We deploy Pheromone in an EC2 cluster.
The coordinators run on the c5.xlarge instances, each with 4
vCPUs and 8 GB memory. Each worker node is a c5.4xlarge
instance with 16 vCPUs and 32 GB memory. The number
of executors on a worker node is configurable and we tune
it based on the requirements of our experiments. We deploy
up to 8 coordinators and 51 worker nodes, and run clients on
separate instances in the same us-east-1a EC2 zone.
Baselines. We compare Pheromone with four baselines.

1) Cloudburst: As an open-source platform providing fast
state sharing, Cloudburst [66] adopts early binding in schedul-
ing: it schedules all functions of a workflow before serving
a request, and enables direct communications between func-
tions. It also uses function-collocated caches. As Pheromone’s
cluster setting is similar to Cloudburst’s, we deploy the two
platforms using the same cluster configuration and resources.

2) KNIX: As an evolution of SAND [34], KNIX [24] im-
proves the function interaction performance by executing
functions of a workflow as processes in the same container.
Message passing and data sharing can be done either via a
local message bus or via a remote persistent storage.

3) AWS Step Functions (ASF): We use ASF Express Work-
flows [14] to orchestrate function instances as it achieves
faster function interactions than the ASF Standard Work-
flows [14]. As ASF has a size limit of transferring interme-
diate data (see Fig. 2), we use Redis [6], a fast in-memory
storage service, to share large data objects between functions.

4) Azure Durable Functions (DF): Compared with ASF, DF
provides a more flexible support for function interactions. It
allows developers to express workflows in program code and
offers the Entity Functions [17] that can manage workflow
states following the actor model [36, 54]. We include DF
to study whether this expressive orchestration approach can
achieve satisfactory performance.

Here, Cloudburst, KNIX and ASF focus more on optimiz-
ing function interactions of a workflow, while DF provides
rich expressiveness. Note that, for the two commercial plat-
forms, i.e., ASF and DF, we cannot control their orchestration
runtime. To make a fair comparison, we configure their re-
spective Lambda and Azure functions such that the number
of function instances matches that of executors in Pheromone.
The resource allocations of each function instance and execu-
tor are also maintained the same. In our experiments, func-
tions are all warmed up to avoid cold starts in all platforms.

6.2 Function Interaction
Function invocation under various patterns. We first eval-
uate the overhead of invoking no-op functions without any

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1497

Pheromone (local)
Cloudburst (local)

KNIX
ASF

Pheromone (remote)
Cloudburst (remote)

Data size
10B 1MB 100MB1KB

La
te

nc
y

(m
s)

Figure 11: Latencies of a two-function chain invocation under
various data sizes.

payload. We consider three common invocation patterns: se-
quential execution (e.g., a two-function chain), parallel invo-
cation (fan-out), and assembling invocation (fan-in). We vary
the number of involved functions for parallel and assembling
invocations to control the degree of parallelism. Fig. 10 shows
the latencies of invoking no-op functions under these three
patterns. Each latency bar is further broken down into the
overheads of external and internal invocations. The former
measures the latency between the arrival of a request and the
complete start of the workflow, and the latter measures the
latency of internally triggering the downstream function(s)
following the designated pattern. In Pheromone, the external
invocation latency is mostly due to the overhead of request
routing which takes about 200 µs [20]. Note that, functions
can be invoked locally or remotely in Pheromone and Cloud-
burst, thus we measure them respectively in Fig. 10. In our
experiments, we report the average latency over 10 runs.

Fig. 10 (left) compares the invocation latencies of a two-
function chain measured on five platforms. Pheromone sub-
stantially outperforms the others. In particular, Pheromone’s
shared memory-based message passing (§4.3) only incurs an
overhead of less than 20 µs, reducing the local invocation
latency to 40 µs, which is 10× faster than Cloudburst. The
latency improvements become significantly more salient com-
pared with other platforms (e.g., 140× over KNIX, 450× over
ASF). When invoking a remote function, both Pheromone and
Cloudburst require network transfer, leading to a similar inter-
nal invocation latency. Yet, Cloudburst incurs higher overhead
than Pheromone for external invocations as it needs to sched-
ule the entire workflow’s functions before serving a request
(early binding), thus resulting in worse overall performance.

Fig. 10 (center) and (right) show the invocation latencies un-
der parallel and assembling invocations, respectively. We also
evaluate the cross-node function invocations in Pheromone
and Cloudburst by configuring 12 executors on each worker,
thus forcing remote invocations when running 16 functions.
Pheromone constantly achieves the best performance and in-
curs only sub-millisecond latencies in all cases, even for cross-
node function invocations. In contrast, Cloudburst’s early-
binding design incurs a much longer latency for function
invocations as the number of functions increases. Both KNIX
and ASF incur high invocation overheads in the parallel and
assembling scenarios. DF yields the worst performance, and

Pheromone Cloudburst KNIX ASF

Data size
1KB 100KB 10MB

La
te

nc
y

(m
s) Parallel Assembling

1KB 100KB 10MB

Figure 12: Latencies of parallel (left) and assembling (right)
invocations under various data sizes, using 8 functions.

we exclude it from the experiments hereafter.

Data transfer. We next evaluate the interaction overhead
when transferring data between functions. Fig. 11 shows the
invocation latencies of a two-function chain with various
data sizes in Pheromone, Cloudburst, KNIX, and ASF. We
evaluate both local and remote data transfer for Pheromone
and Cloudburst. For KNIX and ASF where the data transfer
can be done via either a workflow or a shared storage (i.e.,
Riak and Redis), we report the best of the two choices.

For local data transfer, Pheromone enables zero-copy data
sharing, leading to extremely low overheads regardless of the
data size, e.g., 0.1 ms for 100 MB data. In comparison, Cloud-
burst needs the data copying and serialization, causing much
longer latencies especially for large data objects. For remote
data transfer, both Pheromone and Cloudburst support direct
data sharing across worker nodes. Pheromone employs an
optimized implementation without (de)serialization, making
it more efficient than Cloudburst. Collectively, compared with
Pheromone, the serialization overhead in Cloudburst domi-
nants the latencies of both local and remote invocations under
large data exchanges, which diminishes the performance ben-
efits of data locality: saving the cost of transferring 100 MB
data across network only reduces the latency from 844 ms to
648 ms. Fig. 11 also shows that KNIX and ASF incur much
longer latencies. While KNIX outperforms ASF when data
objects are small, ASF becomes more efficient for passing
large data because it is configured in our experiments to use
the fast Redis in-memory storage for large data transfer.

We further evaluate the overhead of data transfer under
parallel and assembling invocations. For parallel invocation,
we measure the latency of a function invoking parallel down-
stream functions and passing data to all of them; for assem-
bling invocation, we measure the latency between the trans-
fer of the first object and the reception of all objects in the
assembling function. Fig. 12 shows the latencies of these
two invocation patterns under various data sizes. Similarly,
Pheromone constantly achieves faster data transfer compared
with all other platforms for both invocation patterns.

Improvement breakdown. To illustrate how each of our
individual designs contributes to the performance improve-
ment, we break down Pheromone’s function invocation per-
formance and depict the results in Fig. 13. Specifically, for
local invocation, “Baseline” uses a central coordinator to in-

1498 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Latency (ms)

Direct

transfer

Piggyback

& w/o Ser.

Baseline

Two-tier

scheduling

Shared

memory

Local (10B)

0.05

0.1

0.37

0.06

5.8

14.2

0.34

0.7

1.6

2.1

5.7

15

+

Baseline

+

+

+

Local (1MB)

Remote (1MB)Remote (10B)

Figure 13: Improvement breakdown for local (top) and remote
(bottom) invocations. Each case includes transferring 10 B
(left) and 1 MB (right) of data in function invocations.

Pheromone Cloudburst KNIX ASF

Tim
eout

Figure 14: Latencies of function chains of different lengths.

voke downstream functions (i.e., no local schedulers), which
is today’s common practice [11]; “Two-tier scheduling” uses
our local schedulers for fast invocations on the same worker
node (§4.2), where intermediate data objects are cached in the
scheduler’s memory and get copied to next functions; “Shared
memory” further optimizes the performance via zero-copy
data sharing (§4.3). Fig. 13 (top) shows that applying two-tier
scheduling can reduce network round trips and achieve up to
3.7× latency improvement over “Baseline”. Applying shared
memory avoids data copy and serialization, further speeding
up the data exchange especially for large objects (e.g., 1 MB)
by two orders of magnitude.

For remote invocation, “Baseline” uses a durable key-value
store (i.e., Anna [71]) to exchange intermediate data among
cross-node functions; “Direct transfer” reduces the commu-
nication overhead by allowing direct data passing between
nodes (§4.3), where raw data objects on a node are serialized
into a protobuf [27] message and then sent to downstream
functions; “Piggyback & w/o Ser.” further optimizes the data
exchange by piggybacking small objects on forwarded func-
tion requests and eliminating serialization (§4.3). As shown
in Fig. 13 (bottom), direct data transfer avoids interactions
with the remote storage and improves the performance by up
to 2.6× compared with baseline. The piggyback without seri-
alization further speeds up the remote invocations with small
(10 B) and large (1 MB) objects by 2× and 2.7×, respectively.

6.3 Scalability
We next evaluate the scalability of Pheromone with regard to
internal function invocations and external user requests.

Time (ms)
1 20 39

La
te

nc
y

(s
)

Number of parallel functions

Figure 15: End-to-end latencies with various numbers of par-
allel functions (left), and the distribution of function start
times when executing 4k functions in Pheromone (right).

Number of functions

Pheromone

Th
ro

ug
hp

ut
 (K

/s
)

Cloudburst

KNIX

ASF

Figure 16: Request throughput when serving requests to no-op
functions under various numbers of functions or executors.

Long function chain. We start with a long function chain
that sequentially invokes a large number of functions [76].
Here, each function simply increments its input value by 1
and sends the updated value to the next function, and the final
result is the total number of functions. As shown in Fig. 14,
we change the number of chained functions, and Pheromone
achieves the best performance at any scale. Moreover, Cloud-
burst suffers from poor scalability due to its early-binding
scheduling, causing significantly longer latencies when the
number of chained functions increases; KNIX cannot host
too many function processes in a single container, making
it ill-suited for long function chains; ASF incurs the longest
latencies due to its high overhead of function interactions.
Parallel functions. Fig. 15 (left) evaluates the end-to-end
latencies of invoking various numbers of parallel functions,
where each function sleeps 1 second. We run 80 function ex-
ecutors per node in Pheromone and Cloudburst. Pheromone
only incurs a negligible latency in large-scale parallel execu-
tions, while ASF and Cloudburst incur much higher latencies,
e.g., seconds or tens of seconds. KNIX suffers from severe
resource contention when running all workflow functions in
the same container, and fails to support highly parallel func-
tion executions. To further illustrate Pheromone’s behavior in
parallel invocations, Fig. 15 (right) shows the distribution of
function start times, where Pheromone can quickly launch all
4k functions within 40 ms.
User request throughput. Fig. 16 shows the user request
throughput when serving requests to no-op functions using
various numbers of executors. We configure 20 executors on
each node in Pheromone and Cloudburst. We observe that
Cloudburst’s schedulers can easily become the bottleneck
under a high request rate, making it difficult to fully utilize the
executor’s resources; KNIX suffers from a similar problem
that limits its scalability. While ASF has no such an issue, it

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1499

La
te

nc
y

(m
s)

No failure

462

Function re-exec. Workflow re-exec.

608

1204

Figure 17: Median and 99th tail latencies of a four-function
workflow with no failure, function- and workflow-level re-
executions. The numbers indicate the tail latencies.

leads to low throughput due to its high invocation overhead
(Fig. 10). Compared with these platforms, Pheromone ensures
better scalability with the highest throughput.

6.4 Fault Tolerance
We evaluate Pheromone’s fault tolerance mechanism (§4.4).
We execute a workflow that chains four sleep functions (each
sleeps 100 ms), and each running function is configured
to crash at a probability of 1%. Fig. 17 shows the median
and 99th tail latencies of the workflow over 100 runs using
Pheromone’s function- and workflow-level re-executions after
a configurable timeout. In particular, the timeout is configured
as twice of the normal execution, i.e., 200 ms for each indi-
vidual function and 800 ms for the workflow. We also include
the normal scenario where no failure occurs. Compared with
the common practice of workflow re-execution, Pheromone’s
data-centric mechanism allows finer-grained, function-level
fault handling, which cuts the tail latency of the workflow
from 1204 ms to 608 ms, thus significantly reducing the re-
execution overhead.

6.5 Case Studies
We evaluate two representative applications atop Pheromone:
Yahoo’s streaming benchmark for advertisement events [40],
and a data-intensive MapReduce sort.
Advertisement event stream processing. This application
filters incoming advertisement events (e.g., click or purchase),
checks which campaign each event belongs to, stores them
into storage, and periodically counts the events per campaign
every second. As shown in Fig. 1 (right) and discussed in §2.2,
the key to enabling this application in serverless platforms
is to periodically invoke a function to process the events
accumulated during the past one second.

In Pheromone, this is straightforward by using the ByTime
primitive (§3.3 and Fig. 7). This application can also be imple-
mented easily in DF by using an addressable Entity function
for aggregation [16]. However, it is non-trivial in ASF and
we have to resort to a “serverful” workaround: one workflow
does the regular “filter-check-store” for each event and sends
the event ID to an external, serverful coordinator; a separate
workflow is set up to get triggered every second by the accu-
mulated event IDs sent from the external coordinator, so that

DF ASF Pheromone

Number of objects

De
la

y
(m

s)

Figure 18: Delays of accessing the accumulated data objects
in the advertisement event stream processing. Lower delays
and more objects are better.

it can access and count the associated events per campaign.
Fig. 18 compares the performance on Pheromone, ASF, and

DF. We measure the delays of accessing accumulated data
objects (i.e., advertisement events), where the lower delays
and more objects are better. For DF, data are not accessed in
batches, and thus we measure the queuing delay between the
reset request being issued and the Entity function receiving
it. We use up to 40 functions in all these platforms. DF re-
sults in a significant overhead with high and unstable queuing
delays, as its Entity function can easily become a bottleneck.
Among the three platforms, Pheromone performs the best: it
can access substantially more accumulated data objects in a
much smaller delay. In summary, Pheromone not only simpli-
fies the design and deployment for such a stream processing
application, but also delivers high performance.
MapReduce sort. We next evaluate how Pheromone’s data-
centric orchestration can easily facilitate MapReduce sort, a
typical data-intensive application. We have built a MapRe-
duce framework atop Pheromone, called Pheromone-MR. Us-
ing the DynamicGroup primitive, Pheromone-MR can be im-
plemented in only 500 lines of code, and developers can pro-
gram standard mapper and reducer [2] without operating on
intermediate data (§3.2). We compare Pheromone-MR with
PyWren [48], a specialized serverless analytics system built
atop AWS Lambda. Compared with Pheromone-MR, PyWren
is implemented in about 6k lines of code and supports the
map operator only, making it complicated to deploy a MapRe-
duce application: developers need to explicitly transfer the
intermediate data via a shared storage (e.g, Redis) to simu-
late the reducer, and carefully configure the storage cluster
for improved data exchange. Even with these optimizations,
PyWren still suffers from limited performance (and usability).

We evaluate the performance of Pheromone-MR and Py-
Wren with MapReduce sort over 10 GB data, where 10 GB
intermediate objects are generated in the shuffle phase. We
allocate each Pheromone executor and each Lambda instance
the same resource, e.g., 1 vCPU. We also configure a Redis
cluster for PyWren to enable fast data exchange. We measure
the end-to-end latencies on Pheromone-MR and PyWren using
various numbers of functions, and break down the results into
the function interaction latency and the latency for compute
and I/O. The former measures the latency between the com-
pletion of mappers and the start of reducers. For PyWren,

1500 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 Pheromone-MR (Compute & I/O)
5.8
6.8

0.59
0.466.6

4.6 9.8
3.3

Pheromone-MR (Interaction)

PyWren (Compute & I/O)

PyWren (Invocation)

PyWren (Interm. Data I/O)

Figure 19: Latencies of sorting 10 GB data using various num-
bers of functions on PyWren and Pheromone-MR. The latency
is broken down into: the interaction latency (for PyWren, the
invocation and intermediate data I/O), and the latency for
compute and I/O. The numbers indicate the former.

the interaction latency consists of two parts: 1) the invoca-
tion latency of triggering all reducers after mappers return,
and 2) the I/O latency of sharing intermediate data via Re-
dis. As shown in Fig. 19, running more functions in PyWren
improves the I/O of sharing intermediate data, but results
in a longer latency in parallel invocations. Compared with
PyWren, Pheromone-MR has a significantly lower interaction
latency (e.g., less than 1s), thus improving the end-to-end
performance by up to 1.6×.

We note that, the limitations of AWS Lambada make Py-
Wren less efficient. First, because Lambda does not support
large-scale map by default [13], it needs to implement this
operation but in an inefficient way which incurs high invo-
cation overheads. Second, Lambda has a limited support for
data sharing, forcing developers to explore an external alter-
native that incurs high overheads even though using a fast
storage (i.e., Redis). Unlike AWS Lambda, Pheromone sup-
ports rich patterns of function executions while enabling fast
data sharing, such that developers can easily build a MapRe-
duce framework and achieve high performance.

7 Discussion and Related Work

Isolation in Pheromone. Pheromone provides the container-
level isolation between function invocations, while functions
running on the same worker node share in-memory data ob-
jects (§4.3). Commercial container-based serverless platforms
often do not co-locate functions from different users to en-
hance security [1]. In this setting, functions on the same
worker node can be trusted; hence, it is safe to trade strict iso-
lation for improved I/O performance. We notice that current
serverless platforms have made various trade-offs between
performance and isolation. For example, AWS Lambda runs
functions in MicroVMs for strong isolation [33]; KNIX iso-
lates a workflow’s functions using processes in the same
container for better performance [34]; recent work proposes
lightweight isolation for privacy-preserving serverless appli-
cations [52]. Pheromone can explore these different trade-offs,
which we leave for future work.
Supported languages. Pheromone currently supports func-
tions written in C++, but it can be straightforward to sup-

port other programming languages. Specifically, Pheromone’s
executor exposes data trigger APIs (Tabel 2) and interacts
with other system components, and can serve as a proxy
for functions written in different languages. That being said,
Pheromone’s optimization on fast data exchange via shared
memory may not apply to all language runtimes – only
those allowing the direct consumption of byte arrays without
(de)serialization, e.g., Python ctype, can benefit from zero-
copy data sharing. The other Pheromone designs are still
effective regardless of language runtimes.
Data exchange in serverless platforms. Data exchange is
a common pain point in today’s serverless platforms. One gen-
eral approach is to leverage shared storage to enable and opti-
mize data exchange among functions [38,42,43,49,56,58,59].
One other approach is to exploit data locality to improve
performance, e.g., by placing workflow functions on a sin-
gle machine [46, 51, 53, 65–67]. Moreover, OFC [55] and
Faa$T [61] provide the autoscaling cache for individual ap-
plications. Shredder [80] and Zion [62] push the function
code into storage. Wukong [39] enhances the locality of
DAG-based parallel workloads at the application level. Lamb-
data [67] makes the intent of a function’s input and output
explicit for improved locality; however, it does not provide a
unified programming interface for expressive and simplified
function interactions, and its performance is heavily bound to
Apache OpenWhisk [3, 51].

8 Conclusion

This paper revisits the function orchestration in serverless
computing, and advocates a new design paradigm that a server-
less platform needs to: 1) break the tight coupling between
function flows and data flows, 2) allow fine-grained data ex-
change between functions of a workflow, and 3) provide a uni-
fied and efficient approach for both function invocations and
data exchange. With this data-centric paradigm, we have de-
signed and developed Pheromone, a new serverless platform
which achieves all the desired properties, namely, rich expres-
siveness, high usability, and wide applicability. Pheromone is
open-sourced, and outperforms current commercial and open-
source serverless platforms by orders of magnitude in terms
of the latencies of function invocation and data exchange.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Yiying
Zhang, for their insightful comments that helped shape the
final version of this work. We also thank Yuheng Zhao for
his help in experiments, and Chenggang Wu for his valuable
feedback at the early stage of this work. This work was sup-
ported in part by RGC GRF Grants 16202121 and 16210822.
Minchen Yu was supported in part by the Huawei PhD Fel-
lowship Scheme.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1501

References

[1] Alibaba Cloud Function Compute. https://www.
alibabacloud.com/product/function-compute.

[2] Apache Hadoop. https://hadoop.apache.org.

[3] Apache OpenWhisk. http://openwhisk.apache.
org/.

[4] Apache OpenWhisk Composer. https://github.com/
apache/openwhisk-composer/.

[5] Apache ZooKeeper. https://zookeeper.apache.
org/.

[6] AWS ElastiCache. https://aws.amazon.com/
elasticache/.

[7] AWS Kinesis. https://aws.amazon.com/kinesis/.

[8] AWS Lambda. https://aws.amazon.com/lambda/.

[9] AWS Lambda execution model. https://docs.
aws.amazon.com/lambda/latest/dg/runtimes-
context.html.

[10] AWS S3. https://aws.amazon.com/s3/.

[11] AWS Step Functions. https://aws.amazon.com/
step-functions/.

[12] AWS Step Functions - Choice. https://docs.aws.
amazon.com/step-functions/latest/dg/amazon-
states-language-choice-state.html.

[13] AWS Step Functions - Map. https://docs.aws.
amazon.com/step-functions/latest/dg/amazon-
states-language-map-state.html.

[14] AWS Step Functions Standard vs. Express Workflows.
https://docs.aws.amazon.com/step-functions/
latest/dg/concepts-standard-vs-express.html.

[15] Azure Durable Functions. https://docs.microsoft.
com/en-us/azure/azure-functions/durable/.

[16] Azure Durable Functions aggregator pat-
tern. https://docs.microsoft.com/en-
us/azure/azure-functions/durable/durable-
functions-overview#aggregator.

[17] Azure Entity Functions. https://docs.microsoft.
com/en-us/azure/azure-functions/durable/
durable-functions-entities/.

[18] Azure Functions. https://azure.microsoft.com/
en-us/services/functions/.

[19] Docker. https://www.docker.com.

[20] Firecracker network performance num-
bers. https://github.com/firecracker-
microvm/firecracker/blob/main/docs/network-
performance.md.

[21] Google Cloud Composer. https://cloud.google.
com/composer.

[22] Google Cloud Functions. https://cloud.google.
com/functions.

[23] Invoking AWS Lambda functions. https://docs.
aws.amazon.com/lambda/latest/dg/lambda-
invocation.html.

[24] KNIX Serverless. https://github.com/knix-
microfunctions/knix/.

[25] Kubernetes: Production-grade container orchestration.
http://kubernetes.io.

[26] Pheromone codebase. https://github.com/MincYu/
pheromone.

[27] Protocol Buffers - Google’s data interchange format.
https://github.com/protocolbuffers/protobuf.

[28] Serverless applications scenarios. https://docs.
aws.amazon.com/wellarchitected/latest/
serverless-applications-lens/scenarios.html.

[29] Serverless reference architecture: Real-time stream
processing. https://github.com/aws-samples/
lambda-refarch-streamprocessing/.

[30] Serverless stream-based processing for real-time
insights. https://aws.amazon.com/blogs/
architecture/serverless-stream-based-
processing-for-real-time-insights/.

[31] Use Amazon S3 ARNs instead of passing large payloads.
https://docs.aws.amazon.com/step-functions/
latest/dg/avoid-exec-failures.html.

[32] Using AWS Lambda with Amazon S3. https:
//docs.aws.amazon.com/lambda/latest/dg/with-
s3.html.

[33] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtualiza-
tion for serverless applications. In Proc. USENIX NSDI,
2020.

[34] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. SAND: Towards high-
performance serverless computing. In Proc. USENIX
ATC, 2018.

1502 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.alibabacloud.com/product/function-compute
https://www.alibabacloud.com/product/function-compute
https://hadoop.apache.org
http://openwhisk.apache.org/
http://openwhisk.apache.org/
https://github.com/apache/openwhisk-composer/
https://github.com/apache/openwhisk-composer/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html
https://aws.amazon.com/s3/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-choice-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-choice-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-choice-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-map-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-map-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-map-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html
https://docs.microsoft.com/en-us/azure/azure-functions/durable/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview#aggregator
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview#aggregator
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview#aggregator
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-entities/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.docker.com
https://github.com/firecracker-microvm/firecracker/blob/main/docs/network-performance.md
https://github.com/firecracker-microvm/firecracker/blob/main/docs/network-performance.md
https://github.com/firecracker-microvm/firecracker/blob/main/docs/network-performance.md
https://cloud.google.com/composer
https://cloud.google.com/composer
https://cloud.google.com/functions
https://cloud.google.com/functions
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://github.com/knix-microfunctions/knix/
https://github.com/knix-microfunctions/knix/
http://kubernetes.io
https://github.com/MincYu/pheromone
https://github.com/MincYu/pheromone
https://github.com/protocolbuffers/protobuf
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/scenarios.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/scenarios.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/scenarios.html
https://github.com/aws-samples/lambda-refarch-streamprocessing/
https://github.com/aws-samples/lambda-refarch-streamprocessing/
https://aws.amazon.com/blogs/architecture/serverless-stream-based-processing-for-real-time-insights/
https://aws.amazon.com/blogs/architecture/serverless-stream-based-processing-for-real-time-insights/
https://aws.amazon.com/blogs/architecture/serverless-stream-based-processing-for-real-time-insights/
https://docs.aws.amazon.com/step-functions/latest/dg/avoid-exec-failures.html
https://docs.aws.amazon.com/step-functions/latest/dg/avoid-exec-failures.html
https://docs.aws.amazon.com/lambda/latest/dg/with-s3.html
https://docs.aws.amazon.com/lambda/latest/dg/with-s3.html
https://docs.aws.amazon.com/lambda/latest/dg/with-s3.html

[35] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and
George Porter. Sprocket: A serverless video processing
framework. In Proc. ACM SoCC, 2018.

[36] Sergey Bykov, Alan Geller, Gabriel Kliot, James R.
Larus, Ravi Pandya, and Jorgen Thelin. Orleans: cloud
computing for everyone. In Proc. ACM SoCC, 2011.

[37] James Cadden, Thomas Unger, Yara Awad, Han Dong,
Orran Krieger, and Jonathan Appavoo. SEUSS: skip
redundant paths to make serverless fast. In Proc. ACM
EuroSys, 2020.

[38] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew
Zhang, and Randy Katz. Cirrus: A serverless framework
for end-to-end ML workflows. In Proc. ACM SoCC,
2019.

[39] Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali An-
war, Panruo Wu, and Yue Cheng. Wukong: a scalable
and locality-enhanced framework for serverless parallel
computing. In Proc. ACM SoCC, 2021.

[40] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves,
M. Holderbaugh, Z. Liu, K. Nusbaum, K. Patil, B. J.
Peng, and P. Poulosky. Benchmarking streaming com-
putation engines: Storm, flink and spark streaming. In
Proc. IEEE IPDPSW, 2016.

[41] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu
Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen. Cat-
alyzer: Sub-millisecond startup for serverless computing
with initialization-less booting. In Proc. ACM ASPLOS,
2020.

[42] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,
and Keith Winstein. From laptop to lambda: Outsourc-
ing everyday jobs to thousands of transient functional
containers. In Proc. USENIX ATC, 2019.

[43] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-latency
video processing using thousands of tiny threads. In
Proc. USENIX NSDI, 2017.

[44] Alexander Fuerst and Prateek Sharma. FaasCache: keep-
ing serverless computing alive with greedy-dual caching.
In Proc. ACM ASPLOS, 2021.

[45] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In Proc. USENIX ATC, 2010.

[46] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient
and scalable serverless computing for latency-sensitive,
interactive microservices. In Proc. ACM ASPLOS, 2021.

[47] Eric Jonas, Anurag Khandelwal, Karl Krauth, Johann
Schleier-Smith, Qifan Pu, Neeraja Yadwadkar, Ion Sto-
ica, Vikram Sreekanti, Vaishaal Shankar, Joseph E Gon-
zalez, David A Patterson, Chia-Che Tsai, Joao Carreira,
and Raluca Ada Popa. Cloud programming simpli-
fied: A Berkeley view on serverless computing. arXiv
preprint arXiv:1902.03383, 2019.

[48] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Sto-
ica, and Benjamin Recht. Occupy the cloud: Distributed
computing for the 99%. In Proc. ACM SoCC, 2017.

[49] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In
Proc. USENIX OSDI, 2018.

[50] Jack Kosaian, K. V. Rashmi, and Shivaram Venkatara-
man. Parity models: erasure-coded resilience for predic-
tion serving systems. In Proc. ACM SOSP, 2019.

[51] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and
Arkaprava Basu. Faastlane: Accelerating function-as-a-
service workflows. In Proc. USENIX ATC, 2021.

[52] Mingyu Li, Yubin Xia, and Haibo Chen. Confidential
serverless made efficient with plug-in enclaves. In Proc.
ACM/IEEE ISCA, 2021.

[53] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, and
Ana Klimovic. SONIC: Application-aware data passing
for chained serverless applications. In Proc. USENIX
ATC, 2021.

[54] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I Jordan,
and Ion Stoica. Ray: A distributed framework for emerg-
ing AI applications. In Proc. USENIX OSDI, 2018.

[55] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang,
Lucien Ngale, Stéphane Pouget, Josiane Kouam, Renaud
Lachaize, Jinho Hwang, Tim Wood, Daniel Hagimont,
Noël De Palma, Bernabé Batchakui, and Alain Tchana.
OFC: an opportunistic caching system for FaaS plat-
forms. In Proc. ACM EuroSys, 2021.

[56] Ingo Müller, Renato Marroquín, and Gustavo Alonso.
Lambada: Interactive data analytics on cold data using
serverless cloud infrastructure. In Proc. ACM SIGMOD,
2020.

[57] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck,
Tyler Harter, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. SOCK: Rapid task provisioning with
serverless-optimized containers. In Proc. USENIX ATC,
2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1503

[58] Matthew Perron, Raul Castro Fernandez, David DeWitt,
and Samuel Madden. Starling: A scalable query engine
on cloud functions. In Proc. ACM SIGMOD, 2020.

[59] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuf-
fling, fast and slow: Scalable analytics on serverless
infrastructure. In Proc. USENIX NSDI, 2019.

[60] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion
Stoica, and Kannan Ramchandran. EC-cache: Load-
balanced, low-latency cluster caching with online era-
sure coding. In Proc. USENIX OSDI, 2016.

[61] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri,
Pragna Gopa, Paul Batum, Neeraja J. Yadwadkar, Ro-
drigo Fonseca, Christos Kozyrakis, and Ricardo Bian-
chini. Faa$t: A transparent auto-scaling cache for server-
less applications. In Proc. ACM SoCC, 2021.

[62] Josep Sampé, Marc Sánchez-Artigas, Pedro García-
López, and Gerard París. Data-driven serverless func-
tions for object storage. In Proc. ACM/IFIP/USENIX
Middleware, 2017.

[63] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khan-
delwal, Joao Carreira, Neeraja J Yadwadkar, Raluca Ada
Popa, Joseph E Gonzalez, Ion Stoica, and David A Pat-
terson. What serverless computing is and should be-
come: The next phase of cloud computing. Commun.
ACM, 64(5):76–84, 2021.

[64] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud
provider. In Proc. USENIX ATC, 2020.

[65] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight
isolation for efficient stateful serverless computing. In
Proc. USENIX ATC, 2020.

[66] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin,
Johann Schleier-Smith, Joseph E. Gonzalez, Joseph M.
Hellerstein, and Alexey Tumanov. Cloudburst: stateful
functions-as-a-service. In Proc. VLDB Endow., 2020.

[67] Yang Tang and Junfeng Yang. Lambdata: Optimizing
serverless computing by making data intents explicit. In
Proc. IEEE CLOUD, 2020.

[68] Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tian-
long Wu, and Haoran Yang. Owl: Performance-aware
scheduling for resource-efficient function-as-a-service
cloud. In Proc. ACM SoCC, 2022.

[69] Ashish Vulimiri, Oliver Michel, P. Brighten Godfrey,
and Scott Shenker. More is less: reducing latency via
redundancy. In Proc. ACM HotNet, 2012.

[70] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang,
Haoran Yang, Huiba Li, Rui Du, and Yue Cheng. FaaS-
Net: Scalable and fast provisioning of custom serverless
container runtimes at alibaba cloud function compute.
In Proc. USENIX ATC, 2021.

[71] Chenggang Wu, Jose Faleiro, Yihan Lin, and Joseph
Hellerstein. Anna: A KVS for any scale. In Proc. IEEE
ICDE, 2018.

[72] Chenggang Wu, Vikram Sreekanti, and Joseph M.
Hellerstein. Autoscaling tiered cloud storage in anna.
In Proc. VLDB Endow., 2019.

[73] Le Xu, Shivaram Venkataraman, Indranil Gupta, Luo
Mai, and Rahul Potharaju. Move fast and meet deadlines:
Fine-grained real-time stream processing with cameo.
In Proc. USENIX NSDI, 2021.

[74] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan
Chen. Following the data, not the function: Rethinking
function orchestration in serverless computing. arXiv
preprint arXiv:2109.13492, 2021.

[75] Minchen Yu, Zhifeng Jiang, Hok Chun Ng, Wei Wang,
Ruichuan Chen, and Bo Li. Gillis: Serving large neural
networks in serverless functions with automatic model
partitioning. In Proc. IEEE ICDCS, 2021.

[76] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu
Zang, Ziqian Lu, Pingchao Yang, Chenggang Qin, and
Haibo Chen. Characterizing serverless platforms with
serverlessbench. In Proc. ACM SoCC, 2020.

[77] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In Proc. ACM Eu-
roSys, 2010.

[78] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. MArk: Exploiting cloud services for cost-effective,
SLO-aware machine learning inference serving. In Proc.
USENIX ATC, 2019.

[79] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jin-
grong Chen, and Ion Stoica. Caerus: NIMBLE task
scheduling for serverless analytics. In Proc. USENIX
NSDI, 2021.

[80] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman.
Narrowing the gap between serverless and its state with
storage functions. In Proc. ACM SoCC, 2019.

1504 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Doing More with Less:
Orchestrating Serverless Applications without an Orchestrator

David H. Liu
Princeton University

Amit Levy
Princeton University

Shadi Noghabi
Microsoft Research

Sebastian Burckhardt
Microsoft Research

Abstract
Standalone orchestrators simplify the development of server-
less applications by providing higher-level programming inter-
faces, coordinating function interactions and ensuring exactly-
once execution. However, they limit application flexibility and
are expensive to use. We show that these specialized orches-
tration services are unnecessary. Instead, application-level
orchestration, deployed as a library, can support the same
programming interfaces, complex interactions and execution
guarantees, utilizing only basic serverless components that
are already universally supported and billed at a fine-grained
per-use basis. Furthermore, application-level orchestration af-
fords applications more flexibility and reduces costs for both
providers and users.

To demonstrate this, we present Unum, an application-level
serverless orchestration system. Unum introduces an inter-
mediate representation that partitions higher-level application
definitions at compile-time and provides orchestration as a
runtime library that executes in-situ with user-defined FaaS
functions. On unmodified serverless infrastructures, Unum
functions coordinate and ensure correctness in a decentralized
manner by leveraging strongly consistent data stores.

Compared with AWS Step Functions, a state-of-the-art stan-
dalone orchestrator, our evaluation shows that Unum performs
well, costs significantly less and grants applications greater
flexibility to employ application-specific patterns and opti-
mizations. For a representative set of applications, Unum runs
as much as 2x faster and costs 9x cheaper.

1 Introduction

Serverless computing offers a simple but powerful abstraction
with two essential components: a stateless compute engine
(Functions as a Service, or FaaS) and a scalable, multi-tenant
data store [27]. Developers build applications using stateless,
event-driven “functions” which persist states in shared data
stores. This abstraction allows users to leverage scalable data
center resources with fine-grained per-invocation billing and
frees them from server administration.

While serverless platforms originally targeted simple appli-
cations with one or a few functions, this paradigm has increas-
ingly proven useful for more complex applications composed
of many functions with rich and often stateful interaction
patterns [19, 20, 25, 26, 40]. Unfortunately, building such ap-
plications using the basic FaaS is challenging. Event-driven
execution makes depending on the results of multiple previous
functions and therefore fan-in patterns difficult. At-least-once
execution guarantee that is typical for FaaS functions compli-
cates end-to-end application correctness as non-deterministic
functions may pass inconsistent results downstream. Finally,
the lack of higher-level programming interfaces for expressing
inter-function patterns hinders application development.

Standalone orchestrators are recently introduced into the
serverless infrastructure to support such complex applications
(§2.1). Cloud providers commonly offer serverless orchestra-
tors as a service [3, 6, 22, 23], though users may build custom
orchestrators and deploy them in separate VMs or containers
alongside their functions [19, 20, 38]. These orchestration ser-
vices provide higher-level programming interfaces, support
complex interactions and ensure exactly-once execution.

Though often internally distributed, standalone orchestra-
tors operate as logically centralized controllers. Developers
provide a description of an execution graph—nodes in the
graph represent FaaS functions and edges represent invoca-
tions of a function with the output of one or more functions—
and the orchestrator drives the execution of this graph by
invoking functions, receiving function results and storing ap-
plication states (e.g., outstanding invocations and function
results) centrally.

Centralization simplifies supporting stateful interactions—
e.g., an orchestrator can run fan-in patterns by simply waiting
for all branches to complete before invoking an aggregation
function. Similarly, an orchestrator can ensure that applica-
tions appear to execute exactly-once by choosing a single
result from multiple executions for each function invocation.

However, standalone orchestrators have important draw-
backs for both serverless providers and serverless users. As an
additional service that is critical to application performance

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1505

and correctness, a standalone orchestrator is expensive to host
and use. User-deployed orchestrators risk under-utilization
and do not benefit from serverless’ per-use billing. Provider-
hosted orchestrators are multi-tenant and can thus multiplex
over many users to improve resource utilization and amortize
the cost. However, they still incur the costs of hardware re-
sources and on-call engineering teams. These costs may be
affordable for large platforms but can be a significant burden
for smaller providers.

Furthermore, standalone orchestrators preclude users from
making application-specific trade-offs and optimizations.
While the interface and implementation of an orchestrator
might efficiently support the needs of many applications, it
cannot meet all applications’ needs, resulting in a compromise
familiar from operating systems [9,13], networks [17,39], and
storage systems [21, 28].

For example, applications that need orchestration patterns
not supported by the provider-hosted orchestrator have to
either compromise performance by using less-efficient pat-
terns or first repeat the hard work of building, deploying and
managing their own custom orchestrator. A video processing
application that encodes video chunks and aggregates results
of adjacent branches in parallel has to compromise perfor-
mance if the orchestrator only supports aggregating results of
all branches.

Similarly, applications that consist entirely of deterministic
functions, such as an image resize application for creating
thumbnails or an IoT data processing pipeline for aggregat-
ing sensor readings, can tolerate duplicate executions without
weakening correctness. However, with a standalone orches-
trator that always persists states to ensure exactly-once exe-
cution, this application would incur the overheads of strong
guarantees regardless.

In this paper, we show that additional standalone orchestra-
tors for serverless applications are unnecessary. Furthermore,
we argue that application-level orchestration is better for both
serverless providers and developers. It is better for developers
as it affords applications more flexibility to implement custom
patterns as needed and apply application-specific optimiza-
tions. It is better for providers as it obviates the need to host
an additional complex service and frees up resources such that
providers can focus on fewer, core services in their serverless
infrastructure. Moreover, application-level orchestration built
on top of existing storage and FaaS services in the serverless
infrastructure can benefit automatically from improvements
to cost and performance to these services.

To support these arguments, we present Unum, an
application-level serverless orchestration system. Unum pro-
vides orchestration as a library that runs in-situ with user-
defined FaaS functions, rather than as a standalone ser-
vice. The library relies on a minimal set of existing server-
less APIs—function invocation and a few basic data store
operations—that are common across cloud platforms. Unum
introduces an intermediate representation (IR) language to

express execution graphs using only node-local information
and supports front-end compilers that transform higher-level
application definitions into the IR.

A key challenge in Unum is to support complex stateful
orchestration patterns and strong execution guarantees in a de-
centralized manner. Our insight is that, scalable and strongly
consistent data stores, already an essential building block of
serverless applications, address the hardest challenge of or-
chestration: coordination. Using such data stores, we show
that an application-level library running in-situ with user func-
tions can orchestrate complex execution graphs efficiently
with strong execution guarantees.

At a high level, Unum relies on the FaaS scheduler to run
each function invocation at least once and consistent data
store operations to coordinate interactions and de-duplicate
extra executions of the same invocation. Unum uses check-
points to commit to exactly one result for a function invo-
cation and ensures workflow correctness despite duplicate
executions of non-deterministic functions. Unum fan-ins use
objects in a consistent data store as coordination points for ag-
gregating branches. Both require generating globally unique
names for nodes and edges in the execution graph locally
(using only information available at each node) as well as
cleaning up intermediate data store objects in a timely man-
ner.

Our implementation of Unum (§4) includes a compiler for
AWS Step Functions’ description language, enabling Unum
to run arbitrary Step Function workflows. We show that Step
Function workflows compiled to Unum execute with the same
execution guarantees as running natively using the Step Func-
tions orchestrator.

Moreover, while performance and cost are difficult to
compare objectively with existing black-box production
orchestrators—both are influenced by deployment and pricing
decisions that may not reflect the underlying efficiency or cost
of the system—Unum performs well in practice (§5). We find
that a representative set of applications run faster and cost
significantly less with Unum than Step Functions (Table 2).
We also demonstrate that Unum’s IR allows applications to
run faster by using application-specific optimizations and
supporting a richer set of interaction patterns.

2 Background & Motivation

The basic serverless abstraction is simple and quite powerful.
Developers build “functions”, typically written in a high-level
language and packaged as OS containers or virtual machines,
which run short computations in response to a platform event.
Events include storage events (e.g., the creation of an object)
or HTTP requests. The platform can scale resources for each
function to respond to instantaneous bursts in events and
developers are absolved from capacity planning and resource
management tasks.

1506 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

This simple abstraction can be used to compose many sim-
ple applications with one or a few functions. For example,
developers can chain functions for data pipelines using trig-
gers. In trigger-based composition [10] each function in a
chain invokes the next asynchronously or writes to a data
store configured to invoke the next function in response to
storage events. Alternatively, developers might use a “driver-
function” [40] to drive more intricate control-flow logic. A
driver function acts as a centralized controller that invokes
other functions, waits for their outputs, and invokes subse-
quent functions with their outputs.

Such ad-hoc approaches work “out-of-the-box”, that is,
they require no additional platform provided infrastructure.
However neither is well suited to complex applications with
10s or 100s of functions [20, 35]. Trigger-based composition
can only support chaining of individual functions or fan-out
from one function to multiple, but cannot, for example, fan-in
from multiple functions to one. Moreover, trigger-based com-
position scatters control-flow logic across each function or
in configured storage events, making development unwieldy
when application complexity grows.

On the other hand, driver functions concentrate control flow
in a single function and support arbitrary composition. How-
ever, most serverless platforms impose modest runtime limits
on individual functions, and thus driver functions restrict the
total runtime of applications. Furthermore, driver functions
suffer “double billing” since they are billed for the entire call-
graph execution despite spending most time idly waiting for
callees to return.

Finally, both ad-hoc approaches require developers to han-
dle function crashes, retries and duplicate invocations grace-
fully [1,7,8,14]. Application typically want to ensure “exactly
once” semantics [10, 11, 24, 25, 40] for an entire call-graph,
but failures and multiple invocations of individual functions
can subvert this goal without careful consideration.

2.1 Standalone Orchestrators

A common solution to address the needs of complex server-
less applications is to introduce a workflow orchestrator that
provides a high-level programming interface with support for
a rich set of patterns (e.g., branching, chaining, fan-out and
fan-in) [3, 6, 19, 20, 22, 23, 38]. Many cloud providers offer
serverless orchestrators as a service [3, 6, 22, 23] or users can
build custom orchestrators [19, 20, 38] and deploy them in
VMs alongside their functions.

Similar to driver functions, orchestrators operate as logi-
cally centralized controllers. They drive a workflow by in-
voking its functions and hosting application states such as
function outputs and outstanding invocations.

However, different from driver-functions, orchestrators are
standalone services. Orchestrators are not limited by function
timeouts and can be arbitrarily long-running [4]. Moreover,
as standalone services, orchestrators are often internally dis-

tributed and employ techniques such as replication and shard-
ing to provide strong execution guarantees, fault-tolerance
and scalability. For example, orchestrators can ensure that
workflows appear to execute exactly-once by choosing one
result for each function invocation, even if FaaS engines only
guarantee at-least once execution. Orchestrators can also per-
sist or replicate states during execution so that in face of
orchestrator failures, applications do not lose executions or
retry from the beginning.

While orchestrators are able to address the needs of com-
plex serverless applications, introducing a new standalone
service has significant drawbacks. Building performant, scal-
able and fault-tolerant multi-tenant systems is hard and or-
chestrators introduce yet-another potential performance and
scalability bottleneck. Indeed, we find that, in practice, produc-
tion systems limit end-to-end performance for highly-parallel
applications (§ 5).

Moreover, hosting such services is expensive. Deploying a
custom orchestrator per user risks under-utilization as it can-
not multiplex over many users and users pay even when the
orchestrator is not actively in use, breaking the fine-grained
billing benefit of serverless. Provider-hosted orchestrators are
multi-tenant and can amortize this cost. But they still incur
engineering expenses as they require teams on-call. Indeed,
we find that provider-hosted orchestrators cost developers
significantly and dominate the total cost of running applica-
tions(§ 5).

Lastly, provider-hosted orchestrators preclude users from
making application-specific optimizations. Each provider typ-
ically offers just a single orchestrator service option. While
the interface and implementation of the orchestrator might
efficiently support many applications, it cannot meet all ap-
plications’ needs, resulting in a compromise familiar from
operating systems [9, 13], networks [17, 39], and storage sys-
tems [21, 28]. Indeed, we find that provider-hosted orchestra-
tors force applications to compromise performance by using
less-efficient patterns (§ 5).

3 Design

Unum is an application-level orchestration system that sup-
ports complex serverless applications without a standalone
orchestrator. It does so by decentralizing orchestration logic
in a library that runs in-situ with user-defined FaaS functions
and leverages a scalable consistent data store for coordination
and execution correctness. By removing standalone orches-
trators, Unum improves application flexibility and reduces
costs. Importantly, Unum does this while retaining the ex-
pressiveness and execution guarantees (§3.3) of standalone
orchestrators.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1507

High-Level Workflow Definition Unum Compiler

User function Unum Ingress and Egress
 Serverless function

A
B

C

D
E

Unum IR

A
A

B
B

C
C

D
D

E
E

Unum IR

A

A

B

B

C

C

D

D E

E

Unum Functions

(a) Serverless workflows form directed graphs. Unum partitions the graph into an intermediate representation
where each function is embedded with an Unum configuration that encodes how to transition to its immediate
downstream nodes. Developers package user function, Unum config and Unum’s runtime library (a pair of ingress
and egress components) together to create “unumized” functions.

Application Definition Standalone Orchestrator

(b) A typical standalone orchestrator operates as a logically central-
ized controller that drives the execution of applications by invoking
functions, receiving function results and storing application states

Serverless
Functions

A

A

B

B

C

C

D

D E

E

Serverless

Data Store

(c) At runtime, Unum orchestration logic is decentralized and runs
in-situ with the user functions on an unmodified serverless platform.
For coordination and checkpointing, Unum relies exclusively on a
standard data store of choice, such as DynamoDB or Cosmos DB.

Figure 1: Unum’s Decentralized Orchestration. Unum partitions orchestration logic at compile time and a Unum runtime runs
in-situ with user functions to perform only the orchestration logic local to its node.

3.1 Architecture

Figure 1a depicts how developers run serverless workflows
using Unum. Developers write individual functions and de-
scribe the workflow using a high-level workflow language,
such as Step Functions’ expression language. An Unum front-
end compiler uses these to extract portable Unum IR for each
node in the graph and “attaches” it to the function (e.g. by
placing a file containing the IR alongside the function code).
A platform-specific Unum linker “links” each function with a
platform-specific Unum runtime library. 1 Developers deploy
each linked function along with its IR to the FaaS platform.

Each Unum workflow begins with an “entry” function. In-
voking this function (e.g. using an HTTP or storage trigger)
starts a workflow. Moreover, admission control rules for the
workflow, such as access control and rate limiting, are imple-
mented by setting appropriate rules on this entry function. For
example, a workflow can be invoked by a particular principal

1Since functions are typically written in dynamic languages, the Unum li-
brary source code is placed alongside the function and dynamically imported,
rather than statically linking an object file

if the entry function is exposed to that principal.
The runtime library is composed of an ingress and egress

component that run before and after the user-defined function
and unwrap and wrap the results of the function in Unum
execution state, respectively (Figure 2). The ingress compo-
nent coalesces input data from each incoming edge (e.g. in
a fan-in), resolves input data if passed by name rather than
by value, and passes the input value to the function. The
egress component uses the function’s result to invoke the next
function(s), enforces execution semantics using checkpoints,
performs coordination with sibling branches in fan-in, and
deletes intermediate states no longer needed for the workflow,
executing the workflow in-situ with the functions, in lieu of a
centralized orchestrator (Figure 1c).

3.2 Unum Intermediate Representation

Similar to many standalone orchestrators, Unum applica-
tions are modeled as directed execution graphs where nodes
represent user-defined FaaS functions and edges represent
function invocations (incoming edges) with the output of one

1508 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Invoke(Fn)
Queue a single invocation
of a function.

Map(Fn)
Queue one function invoca-
tion for each element in the
current function’s result.

FanIn(Set, Size, Fn)
Queue a fan-in to a function
using the provided coordi-
nation set object and size.

Pop

Pops the top frame
of the execution state
stack (passed via Unum
requests).

Next
Increments the current ex-
ecution state frame’s itera-
tion counter.

CreateSet(Name)
Creates a coordination set
object in the data store with
the provided name.

Table 1: Unum intermediate representation instructions.

or more other functions (outgoing edges).
An Unum graph may include fan-outs, where a node’s out-

put is used to invoke several functions or split up and “mapped”
multiple times on the same function. Each such branch may
be taken conditionally, based on the output value or dynamic
states of the graph. Execution graphs may also contain fan-
ins, where the outputs of multiple nodes are used to invoke a
single aggregate function. Cycles are also supported and each
iteration through a cycle is a different invocation of the target
function.

The Unum intermediate representation (IR) is designed to
encode directed execution graphs in a way that both allows
decentralization of orchestration and is low-level enough to
support application-specific patterns.

Each function’s IR includes the function’s name and a
sequence of instructions (Table 1). Instructions direct the
runtime to invoke functions and operate on Unum metadata
passed between functions (Figure 2).

The egress component, which receives the function’s user-
code output, executes the IR and uses it to determine which
next steps to take. An invocation can be protected by a
conditional—a boolean expression that operates on the in-
vocation request and the current function’s output. Unum’s
IR provides three kinds of invocations:

• Invoke simply invokes the named function using the
current functions output.

• Map treats the current function’s output as iterable data
(e.g. a list) and invokes the named function once for each
item in the output.

• FanIn invokes the named function using the current
function’s output along with the outputs of all other func-

struct InvocationRequest {
data: Vec<DatastoreObjectName>,
workflowId: String,
fanOut: Stack<FanOut>,

}

struct RequestData {
reference: DatastoreObjectName,
value: Option<Value>

}

struct FanOut {
index: usize,
size: usize,
iteration: usize,

}

Figure 2: An Unum request wraps function outputs with meta-
data that allows function invocations to be named uniquely
and assists in coordinating fan-ins. Unum IR instructions can
reference and modify this metadata.

tions fanning into the same node. Fan-in requires coor-
dination among multiple functions and is described in
detail in §3.4.

When multiple invocations occur, either using multiple
instructions or a single Map invocation, each of the invoca-
tions adds a fan-out frame to the invocation request’s fan-out
stack. This allows different invocations of the same function
to be differentiated for naming (§3.6) and to coordinate fan-in
(§3.4).

The IR also includes instructions for manipulating the
Unum request data and an instruction that creates a new co-
ordination set, typically for use in later nodes to coordinate
fan-in (§3.4) or garbage collection (§3.5).

This IR is sufficient to represent basic patterns, as well as
more complex fan-in patterns (described in §3.4).

Chain & Fan-out. Unum encodes passing the output of
a function to one (chain) or multiple (fan-out) subsequent
functions, simply, with one or more calls to the Invoke in-
structions.

Map. Applications may perform the same operation on
each component of a function’s output. For example, an ap-
plication may unpack an archive of high-resolution images in
one function and perform compression on each of the images.
Unum’s Map instruction invokes the same Fn for each element
of a function’s output.

Branching. Applications may need to invoke different
functions based on runtime conditions (e.g., the output of
a function). For instance, an application may first validate that
a user-uploaded photo is a valid JPEG. If it is, it invokes, e.g.,
one of the patterns above, otherwise it notifies the user of the
error. Unum’s invocation instructions are optionally protected
by a conditional expression that has access to the function
output and execution metadata (Figure 2).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1509

3.3 Execution Guarantees Using Checkpoints

FaaS functions only provide weak execution guarantees. Func-
tions can fail mid-execution and be retried. Even in the ab-
sence of failures, one function invocation may result in more
than one execution because most FaaS engines only ensure
at-least-once execution. This is problematic for applications
whose functions are non-deterministic because a single work-
flow invocation can produce multiple diverging outputs.

An important benefit of orchestrators is strong execution se-
mantics such that applications appear to execute exactly-once
even if individual functions in the application run multiple
times. Because standalone orchestrators are logically cen-
tralized, guaranteeing exactly-once is conceptually straight-
forward: the orchestrator can choose a single result from
executions of the same invocation and use it as input for all
downstream functions. At the end of the workflow, the result
is consistent with an execution of the workflow where each
function invocation executed exactly-once.

A key challenge for Unum is to provide the same semantics
without centralizing orchestration. Moreover, because failures
and, thus, retries are the exception, not the rule, Unum should
provide these semantics without expensive coordination—
function instances should be able to proceed without blocking
in the common, fault-free case.

Unum leverages two key insights to achieve these seman-
tics. First, it is correct for different executions of the same
function invocation to return different results as long as Unum
ensures downstream functions are always invoked with ex-
actly one of those results. Second, a workflow’s output is
correct even if a function is invoked more than once, as long
as the invocations uses the same input, since additional, but
identical, invocations are indistinguishable from additional
executions.

The Unum library employs an atomic
create_if_not_exists operation in the serverless
data store to checkpoint exactly one execution of each func-
tion invocation. The egress component of the Unum library
attempts to write the result of the function to a checkpoint
object in the data store. If such a checkpoint already exists,
a concurrent or previous execution of the invocation must
have already completed and the operation will fail. To invoke
downstream functions, the egress component always uses the
value stored in the checkpoint, rather than the result of the
recently completed function. Essentially, Unum “commits”
to result of the first successful executions of invocations.

Data stores need to be strongly consistent to support
create_if_not_exists. It is important that a later attempt
to create an existing checkpoint fails and the slower execution
can read the existing checkpoint.

As a further optimization, the ingress component in the
Unum library checks for the checkpoint object before execut-
ing the user-defined function. If the object exists, it bypasses
the user-defined function and passes the checkpoint value

def ingress(self, function):
...
result = datastore_get(self.checkpoint_name):
if result:

self._egress(result)
else:

self.egress(function.handle())

def egress(self, result):
...
if not datastore_atomic_add(self.checkpoint_name, result):

result = datastore_get(self.checkpoint_name)
self._egress(result)
...

def _egress(self, result)
for f in next_functions:

faas.async_invoke(f, result)

Figure 3: Pseudo-code showing Unum’s checkpointing mech-
anism. As different executions of a function may return dif-
ferent results, Unum’s egress component checkpoints the first
successful execution using an atomic add data store opera-
tion. All subsequent executions will uses this committed value
rather than the result their own execution returned.

directly to the egress component to invoke downstream func-
tions. This is not necessary for correctness but helps reduce
computation that we know will go unused.

Note that the exactly-once guarantee does not automat-
ically extend to applications with external side effects, i.e.
functions that directly call external services. In such cases,
retries can lead to unexpected results if the effects are not
idempotent. This issue is well known, and independent of the
orchestrator architecture (centralized vs. decentralized). Thus,
we consider the question of how to control such side effects
to be orthogonal and beyond the scope of this paper. However,
Unum does not preclude applications from using libraries,
such as Beldi [40], that can solve this problem.

3.3.1 Fault Tolerance

Another source of multiple executions is retrying failed func-
tions. Retries in Unum rely on FaaS engines’ error handling
support. All popular FaaS engines provide error handling so
that applications do not just crash silently without a way to
react to failures. Common mechanisms include “automatic
retry” that re-executes the same function [7, 14, 32, 34] or
failure redirection that triggers a pre-configured error-handler
function [29, 33]. Unum can work with either mechanism.

The Unum error handler is part of Unum’s standard library
and is triggered in a separate FaaS function after an appli-
cation function crashes. The error handler simply retries the
crashed function by invoking it again. As part of the orches-
tration library, the error handler is assumed to be bug-free and
relies on the FaaS scheduler to execute at least once.

Unum’s checkpointing mechanism ensures that while faults
may occur at any point during the execution of a function’s

1510 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

user code or the Unum library, and while downstream func-
tions may be invoked multiple times by different executions
of the same invocation, a single value is always used to invoke
downstream functions.

If there is a fault after the user code completes but before
creating the checkpoint, user code result is ignored (indeed,
never seen) by other executions and another execution’s value
will be used to invoke downstream functions. If the “winning”
function crashes after creating a checkpoint, and before in-
voking some or all downstream functions, other executions
will use the checkpoint value to invoke downstream functions.
Finally, even if multiple executions invoke some or all down-
stream functions, execution guarantees are still satisfied as
these invocations will have identical inputs.

3.4 Fan-in Patterns

In fan-in patterns, the results of multiple nodes are used to
invoke a single head node. Such patterns are a particular chal-
lenge for decentralized orchestration because invoking the
target function cannot happen until all branches complete,
but there is no standalone orchestrator to wait for this con-
dition. Designating one of the tail nodes as the coordinator
would address this directly. However, there is no guarantee
that branches for a fan-in complete soon after each other, in-
curring a potentially large resource cost to do virtually no
work, and risk exceeding platform-enforced function time-
outs. Moreover, functions typically cannot communicate with
each other directly, so it is not obvious how other branches
would notify this coordinator of their completion.

Unum, instead, leverages the same insight as checkpoints—
the data store provides strong consistency that can serve as a
coordination point. Rather than designating a single branch
function as the coordinator, all branches are empowered to
invoke the fan-in function once all other branches have com-
pleted. To determine this condition, branches in a fan-in add
the name of their checkpoint object to a shared “Set” in the
data store. Any branch that reads the set with size equal to the
total number of branches invokes the target function using all
the branches’ checkpoints as input.

Importantly, functions do not wait for any other to complete.
As long as all functions complete eventually (in other words,
they run at-least once), some function will read a full set and
invoke the fan-in target function. More than one function may
observe this condition, resulting in multiple invocations, but
these invocations will be identical and are handled as spurious
executions of the same invocation (§3.3).

In order to perform this coordination, branches must know
the branching factor—the size of the set. The FanIn instruc-
tion includes this size, which is either specified explicitly, or
using a variable from the invocation request, commonly the
fan-out size.

Similar to checkpoints, the set data structure for coordina-
tion requires the data store to be strongly consistent. Updates

to a set must be immediately visible to other branches oth-
erwise the downstream fan-in function may ever be invoked.
Moreover, the data store must support data structures that can
implement a “set” abstraction.

Fan-in supports enable more patterns that commonly arise
in applications:

Aggregation. After processing data with many parallel
branches, applications commonly want to aggregate results.
For example, to build an index of a large corpus, the applica-
tion might process chunks in parallel and then aggregate the
results. Aggregation is a common pattern to join back multi-
ple parallel functions, by invoking a single “sink” function
with the outputs from a vector of functions.

Fold. fold sequentially applies the same function on the
outputs of a vector of source functions, while aggregating with
the intermediate results of running the function so far. For
example, a video encoding application might encode chunks
in parallel and then concatenate the results in order: concate-
nating chunk 1 and 2, then concatenating chunk 3 to chunk
[1–2], and so on. fold is an advanced pattern that is not sup-
ported by all existing systems (e.g., AWS Step Functions do
not support fold) but is expressible in Unum.

3.5 Garbage Collection
Both checkpointing and fan-in require storing intermediate
data (e.g., checkpoints and coordination sets) in the data store.
These intermediate data is only temporally useful and grows
with each invocation. This poses a garbage collection chal-
lenge. Deleting them too early can compromise execution
guarantees while deleting too late incurs storage costs.

Checkpoint Collection. A checkpointing node does not
know when its checkpoint is no longer necessary. If it deletes
its checkpoint immediately after invoking subsequent func-
tions, it may crash and the FaaS platform may re-execute
it, yielding a potentially inconsistent result. However, down-
stream nodes know that once they have committed to a value
by checkpointing, previous checkpoints are no longer neces-
sary to ensure their own correctness. Once a node has commit-
ted to some particular output, future invocations, even with
different inputs will produce the same output, as the node will
always use the checkpointed value.

Note that a duplicate execution that checkpoints after the
previous checkpoint is garbage collected has the same se-
mantics as a separate invocation. It may result in multiple
outputs from the workflow, though each output is still consis-
tent with an execution of the workflow where each function
was invoked exactly-once. Any GC policy, no matter how
conservative, might lead to multiple executions if the FaaS
platform could execute duplicates of a function invocation
after an arbitrarily long time in the future.

Therefore, Unum collects checkpoints by relaxing the con-
straint that nodes always output the same value. Instead, they
must only output the same value until all subsequent nodes

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1511

have committed to their own outputs. This means that, in non-
fan-out cases, once a node checkpoints its result, it can delete
the previous node’s checkpoint.

Fan-outs are more complicated because deleting the check-
point must wait until all branches have committed to an output.
Unum repurposes the same set-based technique from fan-in
to collect checkpoints in fan-out cases as well. The originat-
ing node of a fan-out creates a set for branches to coordinate
when to delete its checkpoint. Branches add themselves to the
set after checkpointing their own value. Any node that reads a
full set deletes the parent’s checkpoint as well as the set. This
guarantees that the parent’s checkpoint is deleted and ensures
that all branches have first checkpointed.

Note that it is possible for one of the branches to re-execute
after the set has been deleted. This is safe because it is the
origin of the fan-out that creates the set, so a branch’s attempt
to add itself to a, now, non-existent set will simply fail.

Fan-in Set collection. Deleting sets used for fan-in works
much like removing checkpoints—the target node of a fan-in
deletes the set once it has generated a checkpoint. However,
who creates the set?

If each branch in the fan-in creates the set if it doesn’t
already exist, a spurious execution of one of the branches
after the fan-in target removes the original set will create
a new one that is never deleted (because it never fills, and
thus the target function is never invoked again). To avoid this,
Unum places the responsibility to create the set on the node
that originates the fan-out at the same level as the target node.

3.6 Naming
Much of Unum’s functionality relies on unique naming. A
workflow invocation must be named to differentiate it from
other concurrent invocations of the workflow; functions must
be named to invoke them; different invocations of functions
must have different names to uniquely name invocation check-
points and coordination sets for fan-in.

Each workflow invocation has a unique name that is passed
through the execution graph. The name is either generated
in the ingress to the first function using, e.g., a UUID library
or, when available, is taken from the FaaS platform’s invo-
cation identifier for the first function. This enables functions
to have different names when invoked as part of a specific
workflow invocations. The function’s name is either user-
defined or determined by the FaaS platform (e.g. the ARN on
AWS Lambda) and determined at “compile-time” (i.e. when
generating Unum IR).

However, this is not sufficient as functions may be invoked
multiple times in the same workflow due to map patterns—
which invoke the same function multiple times over an iter-
able output—and cycles. Moreover, invocation names must
be determined using local information only. Once running,
each function only has access to it’s own code (including the
IR) and metadata passed in its input. Nonetheless a partic-

ular invocation must be able to determine its own name for
checkpointing as well as, if it is part of a fan-in, the name of
downstream invocations to coordinate with other branches.

As a result, Unum names function invocations using a
combination of the global function name, a vector of branch
indexes and iteration numbers (taken from the Unum request
fan-out stack) leading to the invocation, and the workflow in-
vocation name. Function names are global and the remaining
items are propagated by Unum in invocation arguments.

During a fan-out pattern (multiple scalar invocations or a
map invocation), a branch index is added to a list in the next
functions’ input. If the next function is an ancestor of the
current function (a cycle), an iteration field in the input is in-
cremented. Note that a single iteration field is sufficient even
if there are nested cycles since it is only important that dif-
ferent invocations of the same function have different names,
not that the iteration field is sequential. Thus, a monotonically
increasing iteration field is sufficient.

We note that the format of this name is not significant
and, importantly, it need not be interpretable. It must only
be deterministic and unique for its inputs. For example, a
reasonable implementation could serialize the inputs and take
a cryptographic hash over the result, guaranteeing uniqueness
(with very very high probably) while preventing names from
growing too large to use as object names.

4 Implementation

We implement a prototype Unum runtime that supports AWS
and Google Cloud. We also implement a front-end compiler
that transforms AWS Step Function definitions to Unum IR.
Currently our runtime only supports Python functions and
is itself written in 1,119 lines of code. The Step Functions
compiler is 549 lines-of-code.

Implementing the runtime primarily requires specializing
high-level functionality the IR depends on for a particular
FaaS platform and data store. The FaaS platform must support
asynchronous invocation and the data store must be strongly
consistent with support for atomic creation and set operations.

Importantly, we choose data stores and primitives that only
incur per-use costs and scale on-demand. For example, we
use DynamoDB in on-demand capacity mode, rather than
provisioned capacity mode, and avoid long-running services
such as a hosted Redis or cache. As a result, Unum incurs
fine-grained costs only when performing orchestration (e.g.,
per-millisecond Lambda runtime costs to execute the Unum
library, per-write DynamoDB costs to create checkpoints).

4.1 AWS Lambda & DynamoDB
Asynchronous invocation in Lambda is natively supported.
In particular, the Lambda Invoke API is asynchronous when
passed InvocationType=Event. In the event of a crash, we
use Lambda’s Failure Destination [29] to redirect the fault to

1512 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

an error handler function which runs just the Unum runtime.
The error handler checks if the failed function should be re-
tried (e.g., based on the Step Function definition [15]) and if
so, retries the function by explicitly invoking it again.

DynamoDB organizes data into tables, with each item in a
table named by a key. Within tables, items are unstructured
by default. Our implementation of Unum uses a single ta-
ble for each workflow. Each item in the table corresponds
to a checkpoint, or a coordination set for fan-in or garbage
collection.

DynamoDB supports atomic item creation by passing the
conditional flag attribute_not_exists to the put_item
API call. We use this for creating both checkpoint blobs and
coordination sets. DynamoDB supports set addition natively
using the Map field type. In particular, we use update expres-
sions to atomically set a named map element to true. As an
optimization, we use the ALL_NEW flag when adding to a set to
atomically get the new value after a set in a single operation.

4.2 Google Cloud Functions & Firestore

Google Cloud Functions (GCF) do not have an asynchronous
invocation API. Instead, we allocate function-specific pub-sub
queues and subscribe each function to its respective queue.
Unum then asynchronously invoke a function by publishing
the input data as an event to the function’s queue.

GCF supports automatic retry for asynchronous func-
tions [34]. In the event of a crash, the Unum runtime in the
retry execution checks if the failed function should be retried
and if so, retries the function by explicitly invoking it again.

Firestore organizes data into logical collections (which
are created and deleted implicitly) containing unstructured
items, named by a unique key. Similar to DynamoDB, we
use a separate collection for each workflow. Atomic item
creation is supported using a special create API call, which
only succeeds if the key does not already exist. Firestore
supports an Array field type which can act as a set by using
the ArrayUnion and update operation, which atomically sets
the field to the union of its existing elements and the provided
elements. The update operation always returns the new value
data.

5 Evaluation

Unum argues for eschewing standalone orchestrators and, in-
stead, building application-level orchestration on unmodified
serverless infrastructure using FaaS schedulers and consistent
data stores. In this section, we evaluate how well application-
level orchestration performs, reduces costs, and improves ap-
plication flexibility. In particular, we focus our performance
evaluation on whether decentralization comes at a reasonable
overhead compared with standalone orchestrators.

Specifically, we answer the following questions:

1. What overhead does Unum incur in end-to-end latency
and what are the sources of Unum’s overheads?

2. How much does it cost to run applications with Unum
and what are the sources of costs compared with Step
Functions?

3. How well does Unum support applications that Step
Functions cannot support well?

Though we evaluate the applications running on both AWS
and Google Cloud, we focus our discussion on our AWS
implementation with Lambda and DynamoDB, because it
runs on the same serverless infrastructure as Step Functions.

5.1 Experimental setup

We run all experiments on AWS with Lambda and Dy-
namoDB, and on Google Cloud with Cloud Functions and
Firestore. All services are in the same region (us-west-1 on
AWS and us-central-1 on Google Cloud). All functions
are configured with 128MB of memory except for ExCamera
where we use 3GB of memory to replicate the setup in the
original paper [19, 20]. DynamoDB uses the on-demand pro-
visioning option that charges per-read and per-write [12]. To
avoid performance artifacts related to cold-starts, we ensure
functions are warm by running each experiment several times
before taking measurements.

All but one application were originally written as Step
Function state machines. For Step Function experiments, we
ran them directly with the “Standard” configuration [37],
which provides similarly strong execution guarantees as
Unum [16]. For Unum experiments, we first compiled the
Step Functions definitions to Unum IR, linked the functions
with the Unum runtime library and finally executed them as
lambdas or Google Cloud functions. The notable exception is
our Unum and Step Functions implementations of ExCamera,
which differ due to a limitation in the Amazon State Lan-
guage. As a result, the more efficient Unum implementation
is written directly in Unum IR instead of compiled from the
Step Functions definition (§ 5.4).

5.2 Performance

Unum’s performance overhead results from the Unum run-
time logic run in each function as well as API calls to data
stores and FaaS engines. We characterize these overheads by
measuring the latency to execute various patterns consists
of noop functions as well as end-to-end performance of real
applications. Overall we find that Unum performs comparably
or significantly better than Step Functions in most cases ow-
ing to higher parallelism and a more expressive orchestration
language, with modest slow downs in the remaining cases due
to implementation deficiencies.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1513

0 50 100 150 200 250
Data Size (KB)

0

50

100

150

200

250

La
te

nc
y

(m
s)

Step Functions
Unum Total

PutItem
GetItem

Lambda Invoke

Figure 4: An orchestrator incurs a latency on each transi-
tion between functions. Unum’s overhead is due to storage
operations to ensure exactly-one-result semantics, Lambda
invocation API overhead to enqueue the next function to run,
and additional Unum runtime code in the function instance
itself for the orchestration logic.

5.2.1 Chaining

For the simple chaining pattern, the Unum runtime performs
a storage read to check whether a checkpoint already exists,
a storage write to checkpoint the function’s result, and an
asynchronous function invocation to initiate the next function
in the chain.

Figure 4 shows time to perform each of these operations
for different result sizes. As expected, storage operations are
slower when checkpointed results are larger, but the total
overhead from the Unum runtime operations is consistently
lower than an equivalent Step Function transition.

The Unum implementation of the IoT pipeline application
benefits from this difference, with the Unum version running
1.9x faster than the Step Functions version (Table 2).

5.2.2 Fan-out and fan-in

Fan-out requires the same number of storage operations as
chaining and similar orchestration logic, but the Unum run-
time performs an additional asynchronous invocation at the
source function for each branch. For fan-in patterns, each
source branch performs an additional storage read to deter-
mine if it is the final branch to execute, and only the final
branch performs the asynchronous invocation of the target
function.

Figure 5 shows the latency of a fan-out followed by a fan-
in at varying branching degrees for both Unum and Step
Functions. At low branching degree, Unum incurs a modest
overhead (up to 200ms) relative to Step Functions. We believe
this is mostly due to our implementation initiating each branch
invocation sequentially. However, at higher branching degrees
(as low as 20 branches), Step Functions limits the number of
outstanding fan-out branches [30] while Unum is limited only

2 4 8 16 32 64 128 256 512
Parallel Branches

103

104

105

En
d-

to
-e

nd
 L

at
en

cy
 (m

s)

Unum 50p
Unum 99p
Step Functions 50p
Step Functions 99p

Figure 5: End-to-end latency of a fan-out and fan-in pattern
with increasing branching degree. Unum is slower at lower
branching degrees but significantly outperform Step Func-
tions at moderate and high branching degree.

by Lambda’s scalability, resulting in over 4x lower latency
with 512 branches.

These differences manifest in real workloads as well. Word-
count is highly parallel (with 262 parallel mappers and 250
reducers) and performs over 2x faster on Unum than on Step
Functions (Table 2).

Although it may not be the case that standalone orchestra-
tors fundamentally have to impose limits on the number of
outstanding function invocations, this example shows that it
is at least not trivial to ameliorate the constraint. On the other
hand, as a library, Unum is free from the need to design and
implement yet-another service that supports parallel applica-
tions well, but can instead provide as much parallelism as
FaaS schedulers and data stores permit. FaaS schedulers and
data stores already support highly-parallel applications well,
and Unum’s performance will improve automatically when
these underlying services further improve.

5.3 Cost
One of the main attractions of building applications on server-
less platforms is fine-grained and often lower cost. In partic-
ular, because resources are easy to reclaim, applications are
charged only for resources used to respond to actual events.
Thus, the cost of orchestration matters as well as performance.

The source of costs for Unum and Step Functions is quite
different. Step Functions imposes a cost to developers for
each workflow transition [5], such as each branch in a fan-
out. This abstracts the underlying, likely shared, costs to run
the Step Functions servers, persist states and checkpoint data.
Conversely, Unum incurs costs directly from those services.
In particular, compute resources for executing orchestration
logic is charged per-millisecond such as Lambda runtime
cost [2] and storage for persisting states is charged per read
and write such as DynamoDB reads and writes [12].

On AWS, Unum is much cheaper than Step Functions—
AWS’s native orchestrator. For a basic transition in a chaining

1514 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Latency (seconds) Costs ($ per 1 mil. executions)
App Unum-aws Unum-gcloud Step Functions Unum-aws Unum-gcloud Step Functions
IoT Pipeline 0.12 0.81 0.23 $12.38 $6.3 $112.02
Text Processing 0.52 3.56 0.55 $60.42 $31.7 $225.29
Wordcount 408.88 484.12 898.56 $13,433.67 $11,727.3 $18,141.19
ExCamera 84.52 122.63 98.42 $62,684.29 $51,617.2 $114,633.13

Table 2: Application latency and costs comparison between Unum and Step Functions. Running applications on Unum is 1.35x
to 9x cheaper than on Step Functions. Furthermore, Unum is faster than Step Functions especially for workflows with high
degrees of parallelism.

IoT Pipeline Text Processing Wordcount ExCamera
0

20

40

60

80

100
Unum

User Code Duration
Unum Runtime Duration
Lambda Invocation
Unum Checkpoint
Unum GC
Unum Fan-in

IoT Pipeline Text Processing Wordcount ExCamera
0

20

40

60

80

100
Step Functions

User Code Duration
Lambda Invocation
State Transition

Pe
rc

en
ta

ge
 o

f T
ot

al
 C

os
t

Figure 6: Step Functions state transitions dominate the total
costs for all applications (99.5% in IoT Pipeline, 99.4% in
Text Processing, 80.0% in Wordcount, 72.2% in ExCamera).
While Unum runtime cost is also the majority, it accounts for
a smaller portion of the overall costs (95.7% in IoT Pipeline,
97.8% in Text Processing, 72.5% in Wordcount and 61.0% in
ExCamera).

pattern, Step Functions charges $27.9 per 1 million such tran-
sitions. On the other hand, Unum costs, for 1 million transi-
tions, (1) $0.42 for ∼200ms extra Lambda runtime to execute
orchestration library code, (2) $2.79 for 1 DynamoDB write
to checkpoint, (3) $0.279 for 1 DynamoDB read to check
checkpoint existence, and (4) $2.79 for 1 DynamoDB write
to garbage collect the checkpoint. In total, a basic transition
in Unum is about 4.4x cheaper than the provider-hosted or-
chestrator on the same platform ($27.9 vs $6.279).

Table 2 shows the cost to run each of the applications we
implemented in the us-west-1 region. Unum is consistently,
and up to 9x, cheaper than Step Functions for the applications
we tested.

Figure 6 shows the cost to run each application using Unum
broken down to each component: data store costs for writing
and reading checkpoints, data store costs for writing coordina-

tion sets, data store costs for deleting checkpoints and writing
coordination sets for garbage collection, Lambda invocation,
and Lambda CPU-time for both the Unum runtime and user
function. Storage costs, using DynamoDB, are the largest
portion of overall cost and costs for writing to DynamoDB is
the majority2. This includes writing checkpoints, writing to
coordination set (either for fan-in for garbage collection) and
deleting checkpoints for garbage collection.

Of course, developer-facing pricing is only a proxy for
actual costs of hardware and human resources. However, it
is clear that, in practice, Unum’s costs are reasonable and, in
fact, often lower than Step Functions. This suggests that at
least applications that currently run on Step Functions could
afford to run using Unum instead.

Furthermore, services that Unum builds on—FaaS sched-
ulers and data stores—are core multi-tenant services that
likely multiplex over a larger audience of applications than
orchestrators for greater economies of scales. These services
typically have enjoyed long periods of improvement already
to make them efficient. Unum’s design obviates the need to
host yet-another service which frees up resources such that
providers can focus on fewer core services in their serverless
infrastructure.

Moreover, Unum automatically benefits from improve-
ments to the underlying infrastructure and pricing schemes.
For example, Azure’s Cosmos DB provides similar perfor-
mance and consistency guarantees to DynamoDB but charges
5x less to perform a write operation (the dominant cost of
Unum’s data store operations).

5.4 Case Study: ExCamera
ExCamera [20] is a video-processing application designed
to take advantage of high burst-scalability on Lambda using
custom orchestration. We compare our Unum implementation
with three others: (1) the original hand-optimized ExCam-
era using the mu framework, (2) an implementation using a
generalized orchestrator (gg) by the same authors, and (3) an
optimized Step Functions implementation we wrote.

Both gg and mu employ standalone orchestrators to proxy
inter-function communications, store application states and

2Writes in DynamoDB cost about an order-of-magnitude more than reads

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1515

invoke lambdas. However, mu uses a fleet of long-running
identical lambdas where all application code is co-located
and raw video chunks are pre-loaded, whereas gg lambdas are
event-driven, task-specific and cannot leverage pre-loading.
The application logic, though, is identical for gg ExCamera
and mu ExCamera. Unum’s ExCamera replicates the appli-
cation logic from gg and mu. However, the Step Functions
ExCamera implementation must serialize the encode and re-
encode stages because Step Function’s Map pattern requires
all concurrent branches to complete before any fan-in starts
(Figure 7).

5.4.1 Performance

Using the same experimental setup as the prior work (i.e.,
encoding the first 888 chunks of the sintel-4k [31] video
using 16 chunks per batch and Lambdas configured with 3GB
of memory), Unum is 7.1% faster than gg [19] and 10.5%
slower than the original, hand-optimized ExCamera (Table 3).
The original authors attributes the slower performance of gg
ExCamera to the lack of pre-loading which is likely also the
reason for Unum’s slower performance.

But different from gg, Unum executes orchestration in a
decentralized manner while gg has a standalone coordinator
on EC2. The reduced number of network communications
likely explains why Unum is slightly faster.

Comparing with Step Functions, Unum’s design allows
the flexibility to implement ExCamera’s original application
pattern where tasks start as soon as their input data becomes
available, whereas the Step Functions implementation had to
use the less-efficient Map pattern without the flexibility to
add new orchestration patterns easily. As a result, the Unum
ExCamera enables more parallelism between branches and is
16.7% faster than Step Functions.

5.4.2 Cost

Unlike Unum, neither gg nor mu aimed to reduce the cost of
running serverless applications and neither discussed costs
in detail. Nevertheless, there are several important factors in
comparing Unum with gg and mu in relation to costs.

First, similar to Step Functions, gg and mu both rely on
standalone orchestrators. Thus, the fundamental costs differ-
ence is also similar, namely Unum’s use of storage vs gg’s and
mu’s use of VMs. mu’s orchestrator consists of a coordinator
server as well as a rendezvous server [20], while gg’s only
has a coordinator server [19]. In the mu authors’ experiments,
they used a 64-core VM (m4.16xlarge) as the rendezvous
server. Neither mu nor gg specified the instance type of its co-
ordinator server. However, the cost of the rendezvous server,
at the time of writing, is $3.20 per hour, or approximately
$2352 per month.

Furthermore, standalone orchestrators must separately con-
sider fault-tolerance in case of orchestrator failures. Most

1.raw

2.raw

3.raw

4.raw

1.raw

2.raw

3.raw

4.raw

Step Functionsvpxenc xcdec xcenc

Figure 7: Unum ExCamera replicates the application logic
from gg and mu where the re-encode stage (xcenc) of a branch
can start immediately when the previous branch completes
decoding (xcdec) and my own branch completes the initial en-
coding (vpxenc). Step Functions provides a Map pattern [30]
for parallel workloads. However, branches in Map must be
identical and Map does not support data dependencies be-
tween branches. As a result, to ensure previous branches’
xcdec have completed, all branches must first finish and fan-
in to Step Functions before starting the xcenc step, essentially
serializing the stage.

ExCamera Implementation Latency (seconds)
Original 76

Unum-aws 84
gg 90

Step Functions 98

Table 3: ExCamera performance. Unum is 7.1% faster than
gg [19] and 10.5% slower than the hand-optimized implemen-
tation.

commonly, fault-tolerance is achieved by running multiple
coordinating instances (replicas) of the service. As a result,
production deployments of mu and gg would likely cost more.

Lastly, deploying an orchestrator per application or per
user limits the ability to amortize costs through multi-tenancy.
A provider-hosted orchestrator, such as Step Functions, can
achieve larger economies of scale by serving many users
concurrently with a single deployment.

6 Related Work

Serverless Workflows. Many systems have recognized the
need to augment serverless computing with support for com-
posing functions to build larger and more complex applica-
tions. AWS Step Functions [3] defines serverless workflows as
state machines using a JSON schema. Google Workflows [23]
uses a YAML-based interface to list steps in a workflow se-
quentially and allows jumps among steps. Azure Durable
Functions [6] uses a “workflow-as-code” approach, similar
to driver functions, where the workflow logic is written in a
programming language (e.g., C#, Python).

In all of these systems, orchestration is performed by a

1516 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

standalone orchestrator. The nature and location of this
component varies: in AWS Step Functions [3] and Google
Workflows [23], it is provided by a cloud service that is sepa-
rately hosted and billed. In Azure Durable Functions [6], it
is an extension of the serverless runtime, and uses the same
billing. In contrast to all of these, Unum proposes a novel
decentralized orchestration strategy and runs entirely on
unmodified serverless infrastructure without adding any new
services or new components.

Kappa [41] addresses the lack of coordination between
function and function timeout limits when executing large
applications. Similar to Durable Functions, it also exposes a
high-level programming language interface. Cloudburst [36]
uses a specialized key-value store to enable low-latency exe-
cution of serverless functions. Users can express workflows
as static DAGs and an executor program runs the DAG by
passing data and coordinate via the key-value store. ExCam-
era [20] proposes the mu framework which uses a long-
running coordinator to command a fleet of lambdas, each
of which executes a state machines where user functions are
the states. gg [19] proposes a thunk abstraction where each
thunk executes as a deterministic lambda and expresses data
dependencies between thunks as DAGs. gg uses a standalone
coordinator to receive thunk updates and lazily launch thunks
when their inputs become available.

Similarly, the above systems rely on a standalone orches-
trator program. As the orchestrator program is not itself ex-
ecuting in a hosted environment, progress is not guaranteed
when its host crashes. Also, progress is not checkpointed
(except in Kappa), so workflows must restart from the be-
ginning in that situation. In contrast, Unum relies only on a
basic, highly available serverless platform. Thus, it guaran-
tees progress under all faults, including the orchestrator. And
Unum checkpoints each function result to minimize redundant
computations when handling faults.

Beldi [40] and Boki [25] are two recent systems that pro-
vide exactly-once execution and transactions to stateful server-
less applications. Both extend transactional features to spe-
cific application side effects supported by the system (e.g.,
DynamoDB writes). Developers use Beldi or Boki’s library
in user code when writing to a supported data store (e.g.,
DynamoDB) such that writes are executed only once. In com-
parison, Unum does not change how developers write user
code and does not extend exactly-once guarantee to side ef-
fects in user code. Instead, Unum treats user code as a black
box and ensures exactly-once semantics on a workflow-level.
However, Unum users who want to ensure exactly-once when
writing to DynamoDB can additionally use Beldi or Boki in
their user code.
Programming Interface. Most serverless workflow systems
require developers to write workflows with specialized inter-
faces. Some uses a declarative approach that defines work-
flows using JSON or YAML schemas (e.g., AWS Step Func-
tions [3], Google Workflows [23]). Others allow expressing

workflow as code (e.g., Durable Functions [6], Kappa [41],
Fn Flow [18]).

Unum does not propose a new frontend for defining work-
flow. Instead, Unum aims to support any existing frontend
that explicitly or implicitly expresses a directed graph where
nodes are functions and edges are transitions between func-
tions. Developers using Unum can choose the frontend that
they prefer.

7 Discussion & Limitations

Unsupported applications. Unum supports a superset of ap-
plications that can be expressed using Step Functions, but
there are applications that do not fit Unum’s constraints. In
particular, Unum only supports statically defined control struc-
tures. For example, Durable Functions expresses workflows
dynamically as code and allows the developer to use arbitrary
logic to determine what the next workflow step should be at
runtime. This is not currently possible with Unum.

Measurement error. Due to the opaque design, implemen-
tation and pricing of production workflow systems, such as
Step Functions, comparisons in our evaluations are limited
in their explanatory power. In particular, we use the current
price of Lambda, DynamoDB, and Step Functions as a proxy
for the cost of providing these services. Of course, prices
may be either lower or higher for a particular service than the
underlying cost.

Code Complexity. While Unum affords users more flex-
ibility, application-level orchestration increases code com-
plexity for developers. Coordination and exactly-once execu-
tion require careful design and implementation to function
correctly in a decentralized manner. Introducing application-
specific optimization also needs additional developer efforts
than using off-the-shelf patterns from provider-hosted orches-
trators.

8 Conclusion

We designed and implemented Unum, an application-level,
decentralized orchestration system that runs as a library on un-
modified serverless infrastructure without requiring additional
services. Our results show that basic serverless components—
function schedulers and consistent data stores—are sufficient
abstractions for building complex and fault-tolerant server-
less applications. Moreover, Unum affords applications more
flexibility, reduces costs and performs well compared with
standalone orchestrators with similar execution guarantees.
Acknowledgments We thank the anonymous reviewers and
our shepherd, Douglas Terry, for their insightful comments.
We thank Landon Cox for his support and feedback during
the early stage of this project. This work was funded in part
by NSF Grant 2028869.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1517

References

[1] Asynchronous invocation, AWS Lambda Developer
Guide. https://docs.aws.amazon.com/lambda/
latest/dg/invocation-async.html.

[2] AWS Lambda Pricing. https://aws.amazon.com/
lambda/pricing/.

[3] AWS Step Functions. https://aws.amazon.com/
step-functions/.

[4] AWS Step Functions Quotas. https://
docs.aws.amazon.com/step-functions/latest/
dg/limits-overview.html.

[5] AWS Step Functions Pricing. https://aws.amazon.
com/step-functions/pricing/.

[6] Azure Durable Functions. https://docs.microsoft.
com/en-us/azure/azure-functions/durable/
durable-functions-overview?tabs=csharp.

[7] Azure Functions error handling and retries, Azure
Functions Developers Guide. https://docs.
microsoft.com/en-us/azure/azure-functions/
functions-bindings-error-pages?tabs=csharp.

[8] Azure Functions reliable event processing, Azure
Functions Developers Guide. https://docs.
microsoft.com/en-us/azure/azure-functions/
functions-reliable-event-processing#how-
azure-functions-consumes-event-hubs-events.

[9] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-
tensibility safety and performance in the spin operating
system. SIGOPS Oper. Syst. Rev., 29(5):267–283, dec
1995.

[10] Sebastian Burckhardt, Badrish Chandramouli, Chris
Gillum, David Justo, Konstantinos Kallas, Connor
McMahon, Christopher S. Meiklejohn, and Xiangfeng
Zhu. Netherite: Efficient execution of serverless work-
flows. Proc. VLDB Endow., 15(8):1591–1604, apr 2022.

[11] Sebastian Burckhardt, Chris Gillum, David Justo, Kon-
stantinos Kallas, Connor McMahon, and Christopher S.
Meiklejohn. Durable functions: Semantics for stateful
serverless. Proc. ACM Program. Lang., 5(OOPSLA),
oct 2021.

[12] DynamoDB Pricing for On-Demand Capacity.
https://aws.amazon.com/dynamodb/pricing/
on-demand/.

[13] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exok-
ernel: An operating system architecture for application-
level resource management. SIGOPS Oper. Syst. Rev.,
29(5):251–266, dec 1995.

[14] Error handling and automatic retries in AWS Lambda.
https://docs.aws.amazon.com/lambda/latest/
dg/invocation-retries.html.

[15] Error handling in Step Functions, AWS Step
Functions Developer Guide. https://
docs.aws.amazon.com/step-functions/latest/
dg/concepts-error-handling.html.

[16] Execution guarantees, Standard vs. Express Workflows,
AWS Step Functions Developer Guide. https://
docs.aws.amazon.com/step-functions/latest/
dg/express-at-least-once-execution.html.

[17] Nick Feamster, Jennifer Rexford, and Ellen Zegura.
The road to sdn: An intellectual history of pro-
grammable networks. SIGCOMM Comput. Commun.
Rev., 44(2):87–98, apr 2014.

[18] Fn Flow. https://fnproject.io/.

[19] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,
and Keith Winstein. From laptop to lambda: Outsourc-
ing everyday jobs to thousands of transient functional
containers. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), pages 475–488, Renton, WA,
July 2019. USENIX Association.

[20] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, fast and slow: Low-latency
video processing using thousands of tiny threads. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 363–376, Boston,
MA, March 2017. USENIX Association.

[21] Roxana Geambasu, Amit A. Levy, Tadayoshi Kohno,
Arvind Krishnamurthy, and Henry M. Levy. Comet:
An active distributed key-value store. In Proceedings
of the 9th USENIX Conference on Operating Systems
Design and Implementation, OSDI’10, page 323–336,
USA, 2010. USENIX Association.

[22] Google Cloud Composer (GCC). https://cloud.
google.com/composer.

[23] Google Workflows. https://cloud.google.com/
workflows.

[24] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Ar-
jun Guha. Formal foundations of serverless computing.
Proc. ACM Program. Lang., 3(OOPSLA), oct 2019.

[25] Zhipeng Jia and Emmett Witchel. Boki: Stateful server-
less computing with shared logs. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems

1518 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/step-functions/latest/dg/limits-overview.html
https://docs.aws.amazon.com/step-functions/latest/dg/limits-overview.html
https://docs.aws.amazon.com/step-functions/latest/dg/limits-overview.html
https://aws.amazon.com/step-functions/pricing/
https://aws.amazon.com/step-functions/pricing/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reliable-event-processing#how-azure-functions-consumes-event-hubs-events
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reliable-event-processing#how-azure-functions-consumes-event-hubs-events
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reliable-event-processing#how-azure-functions-consumes-event-hubs-events
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reliable-event-processing#how-azure-functions-consumes-event-hubs-events
https://aws.amazon.com/dynamodb/pricing/on-demand/
https://aws.amazon.com/dynamodb/pricing/on-demand/
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-error-handling.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-error-handling.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-error-handling.html
https://docs.aws.amazon.com/step-functions/latest/dg/express-at-least-once-execution.html
https://docs.aws.amazon.com/step-functions/latest/dg/express-at-least-once-execution.html
https://docs.aws.amazon.com/step-functions/latest/dg/express-at-least-once-execution.html
https://fnproject.io/
https://cloud.google.com/composer
https://cloud.google.com/composer
https://cloud.google.com/workflows
https://cloud.google.com/workflows

Principles, SOSP ’21, page 691–707, New York, NY,
USA, 2021. Association for Computing Machinery.

[26] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Sto-
ica, and Benjamin Recht. Occupy the cloud: Distributed
computing for the 99 In Proceedings of the 2017 Sym-
posium on Cloud Computing, SoCC ’17, page 445–451,
New York, NY, USA, 2017. Association for Computing
Machinery.

[27] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,
Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, Joao Menezes Carreira, Karl Krauth, Neeraja
Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion
Stoica, and David A. Patterson. Cloud programming
simplified: A berkeley view on serverless computing.
Technical Report UCB/EECS-2019-3, EECS Depart-
ment, University of California, Berkeley, Feb 2019.

[28] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. Splinter: Bare-
Metal extensions for Multi-Tenant Low-Latency storage.
In 13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18), pages 627–643,
Carlsbad, CA, October 2018. USENIX Association.

[29] Introducing AWS Lambda Destinations.
https://aws.amazon.com/blogs/compute/
introducing-aws-lambda-destinations/.

[30] Map State, AWS Step Functions Developer Guide.
https://docs.aws.amazon.com/step-functions/
latest/dg/amazon-states-language-map-state.
html.

[31] MPI Sintel Flow Dataset. https://paperswithcode.
com/dataset/mpi-sintel.

[32] OpenFaaS Retries for functions. https://docs.
openfaas.com/openfaas-pro/retries/.

[33] OpenWhisk Actions, Error Handling. https://
github.com/ibm-cloud-docs/openwhisk/blob/
master/error-handling.md.

[34] Retrying Event-Driven Functions, Google Cloud Func-
tions. https://cloud.google.com/functions/
docs/bestpractices/retries.

[35] Arnav Sankaran, Pubali Datta, and Adam Bates. Work-
flow integration alleviates identity and access manage-
ment in serverless computing. In Annual Computer
Security Applications Conference, ACSAC ’20, page
496–509, New York, NY, USA, 2020. Association for
Computing Machinery.

[36] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin,
Johann Schleier-Smith, Joseph E. Gonzalez, Joseph M.

Hellerstein, and Alexey Tumanov. Cloudburst: State-
ful functions-as-a-service. Proc. VLDB Endow.,
13(12):2438–2452, July 2020.

[37] Standard vs. Express Workflows, AWS Step
Functions Developer Guide. https://
docs.aws.amazon.com/step-functions/latest/
dg/concepts-standard-vs-express.html.

[38] Temporal Platform. https://docs.temporal.io/.

[39] David Tennenhouse. Active networks. In USENIX 2nd
Symposium on OS Design and Implementation (OSDI
96), Seattle, WA, October 1996. USENIX Association.

[40] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Se-
bastian Angel, and Vincent Liu. Fault-tolerant and trans-
actional stateful serverless workflows. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 1187–1204. USENIX As-
sociation, November 2020.

[41] Wen Zhang, Vivian Fang, Aurojit Panda, and Scott
Shenker. Kappa: A programming framework for server-
less computing. In Proceedings of the 11th ACM Sym-
posium on Cloud Computing, SoCC ’20, page 328–343,
New York, NY, USA, 2020. Association for Computing
Machinery.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1519

https://aws.amazon.com/blogs/compute/introducing-aws-lambda-destinations/
https://aws.amazon.com/blogs/compute/introducing-aws-lambda-destinations/
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-map-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-map-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-map-state.html
https://paperswithcode.com/dataset/mpi-sintel
https://paperswithcode.com/dataset/mpi-sintel
https://docs.openfaas.com/openfaas-pro/retries/
https://docs.openfaas.com/openfaas-pro/retries/
https://github.com/ibm-cloud-docs/openwhisk/blob/master/error-handling.md
https://github.com/ibm-cloud-docs/openwhisk/blob/master/error-handling.md
https://github.com/ibm-cloud-docs/openwhisk/blob/master/error-handling.md
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/functions/docs/bestpractices/retries
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html
https://docs.temporal.io/

Enhancing Global Network Monitoring with Magnifier

Tobias Bühler∗

ETH Zürich
Romain Jacob
ETH Zürich

Ingmar Poese
BENOCS

Laurent Vanbever
ETH Zürich

Abstract
Monitoring where traffic enters and leaves a network is a

routine task for network operators. In order to scale with Tbps
of traffic, large Internet Service Providers (ISPs) mainly use
traffic sampling for such global monitoring. Sampling either
provides a sparse view or generates unreasonable overhead.
While sampling can be tailored and optimized to specific
contexts, this coverage–overhead trade-off is unavoidable.

Rather than optimizing sampling, we propose to “magnify”
the sampling coverage by complementing it with mirroring.
Magnifier enhances the global network view using a two-step
approach: based on sampling data, it first infers traffic ingress
and egress points using a heuristic, then it uses mirroring
to validate these inferences efficiently. The key idea behind
Magnifier is to use negative mirroring rules; i.e., monitor where
traffic should not go. We implement Magnifier on commercial
routers and demonstrate that it indeed enhances the global
network view with negligible traffic overhead. Finally, we
observe that monitoring based on our heuristics also allows to
detect other events, such as certain failures and DDoS attacks.

1 Introduction

Monitoring transit traffic in Internet Service Provider (ISP)
networks is difficult: most operators do not know precisely
where traffic enters or leaves their infrastructure. This inabil-
ity to correlate traffic network-wide makes it hard—if not
downright impossible—to detect network-wide problems. As
a consequence, operators occasionally learn about routing
issues in their own network only via customers calling or
opening up tickets.

Operators could use control-plane data to identify where
traffic enters and leaves an ISP network; however, that is
insufficient. Traffic towards the same destination is often load-
balanced between multiple egresses; traffic from the same
source prefix often enters via multiple ingresses; importantly,
in case of failures or attacks, traffic may not follow the control

∗The CRediT statement for this work is available in Appendix A.

plane. Data-plane measurements are thus necessary for accu-
rate flow-level information. Unfortunately, such measurements
are hard to scale with the Tbps of traffic crossing ISP networks
nowadays.1 Two common techniques to collect data-plane
measurements are packet sampling and traffic mirroring. Both
have advantages and disadvantages, making them suboptimal
for detecting traffic ingresses and egresses.

Sampling-based approaches such as NetFlow [12] or
sFlow [30] provide good coverage at the expense of precision
and correctness. Often only a few flows are sampled, and
even fewer are sampled at both the ingress and egress. We
confirmed this by analyzing a 5-minute slice of NetFlow data
(1/1024 sampling rate) extracted from all border routers of a
Tier-1 ISP in Europe. The slice contains around 40 million
flows, where a flow corresponds to packets sharing the same
source and destination subnet as well as the same source and
destination port. After discarding flows from/to the ISP-owned
prefixes, we found that over all sampled transit flows, only
22% are sampled at both their ingress and egress, while 41%
(resp. 37%) of flows are sampled only at the network ingress
(resp. egress). Hence, a traffic matrix such as shown in Fig. 1a
locates only 22% of sampled flows; we waste the information
from all other sampled flows.

Mirroring-based approaches [33,39] provide high precision
and correctness at the expense of scalability. Suppose we
would mirror all traffic at network border routers. In that case,
we could easily enhance packets sharing the same source and
destination subnet with their ingresses and egresses, but that
would double the network’s traffic. Besides packet mirroring,
techniques based on sketches [22] or in-band telemetry [25,26]
also excel at gathering precise information but can only do so
for a specific share of the traffic.

In this work, we ask ourselves whether we can combine the
benefits of sampling and mirroring to mitigate their respective
drawbacks. We answer this question positively and present

1For example, Deutsche Telekom’s IP network has a transit capacity
exceeding 30 Tbps and reports up to 10 Tbps of IP traffic on average (3500
PB/month). Source: https://globalcarrier.telekom.com/business-
areas/internet-content/ip-transit

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1521

https://credit.niso.org/
https://globalcarrier.telekom.com/business-areas/internet-content/ip-transit
https://globalcarrier.telekom.com/business-areas/internet-content/ip-transit

Magnifier, a system that enhances the global network view
obtained via sampling using a two-step approach. First, we
infer the ingress and egress of flows using a heuristic: packets
that are “close” in the IP space tend to be routed similarly.
This intuition has already been used successfully in other con-
texts, e.g., to scale heavy-hitter detection using counters [25].
Assuming this holds, we search for the largest IP subnets for
which packets appear to enter the network via the same ingress
(resp. exit via the same egress) according to the sampling data
available. We call these subnets sentinels. Fig. 1b shows the
sentinel heuristic applied to our Tier-1 NetFlow data, which
immediately magnifies the view: not only do we observe more
flows for certain ingress–egress pairs (red to green), but we also
reveal pairs which were not visible at all in the NetFlow-based
matrix (Fig. 1a).

Naturally, this heuristic is not perfect; as sampling is sparse,
we may lack important information to correctly identify ingress
or egress points, or traffic may simply be rerouted over time.
Thus, in a second step, we use mirroring to validate the
inferred ingresses and egresses. To avoid mirroring a lot of
traffic, the key idea is to install mirroring rules where we do
not expect traffic; i.e., if we infer that subnet s always enters
via router R, we install a mirroring rule for s in all ingress
routers, except R. In practice, this leads to little mirrored traffic
because sentinels are most often correct. Thanks to mirroring,
Magnifier’s ingress/egress inferences are guaranteed correct,
which is a key feature of our design and an essential difference
from other monitoring tools. Mirrored traffic reveals inference
errors or traffic shifts in sub-seconds, which allows Magnifier
to maintain a correct network view.

The main limitation of Magnifier is the number of mirroring
rules to install, which, naively, is about one mirroring rule per
sentinel on all border routers. For networks forwarding traffic
which covers most of the IP space, this vastly exceeds the
mirroring capabilities of today’s routers. We thus investigate
different strategies to cap the number of rules installed while
harnessing most of Magnifier’s benefits.
Contributions

• We design Magnifier , a network monitoring system that
combines sampling with mirroring to enhance the global
view on traffic ingresses/egresses (e.g., Fig. 1) while
providing correctness guarantees.

• We implement Magnifier [3], run it on Cisco Nexus 9300
switches, and demonstrate that Magnifier increases the
network view coverage with only limited traffic overhead
and inference errors using real traffic traces (§ 6).

• We discuss (§ 4.2) and evaluate (§ 6.2.2) different strate-
gies to scale Magnifier to large ISP networks by capping
the number of mirroring rules required to e.g., the top 1k
sentinels while maintaining most of Magnifier’s benefits.

• We observe that, even without mirroring, changes in the
number of found sentinels create an interesting signal for
other monitoring applications, such as failure detection
or DDoS protection (§ 6.4).

(a) NetFlow-based matrix. (b) Magnifier’s matrix.

Figure 1: By inferring ingress or egress points of sampled
flows, Magnifier significantly improves the network-wide
coverage (Fig. 1b) compared to using sampling only (Fig. 1a).
These inferences are guaranteed correct by (the absence of)
mirrored packets. Dots represent the number of flows observed
from an ingress router (x-axis) to an egress router (y-axis). Grey
indicates no flow, red one flow, orange up to 4 flows, and green 5 or
more flows. Data source: NetFlow samples from a large Tier-1 ISP.

2 Overview

This section introduces the problem statement (§ 2.1) and
Magnifier’s main building blocks (§ 2.2). Finally, we illustrate
Magnifier’s behavior on a simple example (§ 2.3).

2.1 Problem statement
Can we combine the benefits of sampling and mirroring to
design an easy-to-deploy system that produces accurate, com-
plete and timely ingress/egress observations in ISP networks,
where an “observation” consists of an IP subnet for which we
know the correct ingress and egress points?

Ease of deployment The system should be usable in today’s
networks with no need for new or specialized hardware.

Accuracy The system should correctly infer subnets’ ingress
and egress points.

Completeness The system should generate observations for
the largest possible portion of the IP space.

Timeliness The system should update observations in real-
time based on newly-collected information; that is, infor-
mation is processed quicker than it is collected.

2.2 Building blocks
Magnifier extends the coverage of ingress/egress observations
using a two-step approach (Fig. 2): based on sampled data, it
first infers the missing traffic ingress and egress points, then it
validates these inferences using mirroring.

Inference Magnifier cross-correlates the sampled flows to
identify IP subnets that are consistently routed via the same
ingress or egress routers. For example, suppose we observe all
sampled flows for a source prefix p enter via ingress router A.
Magnifier learns that p is an implicit tag for “ingress A”, which

1522 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Inference

Sampling
observations

Mirroring

Sentinels

Magnifier

Failure
monitoring

Attack
detection

Visualizations

Applications

API

§3

§4

Figure 2: Magnifier uses sampled data to infer sentinels that
predict IP subnets’ ingress or egress points. Magnifier then
validates sentinels at runtime using packet mirroring. This way,
we can greatly extend the coverage of traffic ingress/egress
observations usable by many applications.

enables to map any sampled flow sourced by p as entering via
A—even if observed on a different router.

In addition, Magnifier leverages the hierarchical nature of
the IP space: packets that are “close” in the IP space tend to
be routed similarly. Thus, Magnifier searches for the largest
IP subnets that share the same tags and postulates that all
the IPs in these subnets are routed via the same ingresses or
egresses. We call these largest subnets sentinels. Sentinels
significantly extend the coverage of ingress/egress observation
(compare Fig. 1). However, these sentinels may be incorrect;
sampling may have missed important information, or traffic
may simply be re-routed over time. Therefore, Magnifier uses
mirroring to validate them at runtime.

Validation The key idea behind Magnifier is to validate the
sentinel inferences using negative mirroring; i.e., to deploy
mirroring rules where we expect traffic not to go. Negative
mirroring is efficient because sentinels are often correct in
practice; therefore, we mirror only a little traffic. Fundamen-
tally, this guarantees that Magnifier’s outputs are correct; all
prefixes covered by sentinels either have correctly identified
ingress/egress or carry no traffic. Otherwise, traffic is mirrored,
which provides additional observations and allows Magnifier
to maintain and improve its accuracy over time.

Optimization The main limitation of Magnifier lies in the
number of mirroring rules that can be activated simultane-
ously on one router. By aggregating subnets together, sentinels
effectively limit the number of mirroring rules that must be
deployed, but this remains a constraint for large ISP networks.
Magnifier supports multiple rule deployment strategies to
respect a given rule budget per router while optimizing for
different properties (e.g., IP space coverage).

2.3 Illustrative example
While mirroring rules generate additional traffic, they are
essential to Magnifier, illustrated with an example (Fig. 3):
p0 to p7 are eight /24 prefixes belonging to the same /21; most
of the traffic comes from p0, with sporadic traffic from other
prefixes. Let’s assume that we only sample traffic from p0,

p0 p4 p7

Sampling only ✓ E E E E E E E

Sentinels ✓ ? ? ? p ? ? ?

Mirroring ✓ (✓)(✓)(✓) ✓ (✓)(✓)(✓)

Correct✓ Probably correct(✓) Uncertain?

Wrongp No informationE

Figure 3: Sampling provides information about the sampled
prefixes only. The sentinel inference extends the coverage, but
it is uncertain and can make wrong assumptions without any
means to detect them. With mirroring, these inferences can
be validated, leading to either correct or probable inferences.

which enters at ingress A. One can hypothesize that all p0
traffic enters via A, but nothing can be said about p1 to p7.

Since no sampled packet contradicts this hypothesis, we
infer that all eight /24 enter via A; the whole /21 is a sentinel
for ingress A. This inference is, however, uncertain for seven
/24 prefixes without any data. Some traffic from p4 enters via
another ingress, but as long as we do not sample p4 traffic, we
will not detect the wrong inference.

We now use mirroring to validate the sentinel: all routers
except A mirror packets for the /21. At first, no packet is
mirrored: this indicates either that the sentinel is indeed correct
or that there is no traffic at all on prefixes that would enter via
another ingress. Thus, for the seven prefixes without sampling
data, Magnifier concludes that the ingress is “probably A”.

Finally, ingress router B mirrors packets coming from p4.
Magnifier now learns that the /21 sentinel was incorrect. We
recompute sentinels, which leads to two /22 sentinels, one for
A and one for B. Once the corresponding mirroring rules are
installed, Magnifier confirms that p0 and p4 enter via A and
B respectively, and that p1 to p3 (p5 to p7) probably enter via
A (resp. B) as we would otherwise observe mirrored packets.

Conclusion The mirroring rules are essential to validate the
sampling-based inferences. Once active, Magnifier guarantees
that the inferences are either correct or that prefixes for which
they are wrong do not carry any traffic at all.

3 Ingress & egress identification

In this section, we define the notion of “sentinels” and present
an efficient algorithm to find them (§ 3.1). We then discuss
sentinel subnet size tradeoffs (§ 3.2) and finally show how
Magnifier uses these sentinels to match ingress and egress
observations in sparsely sampled data (§ 3.3).

3.1 Sentinel search and definition

Definition A sentinel is an IP subnet which always enters
or leaves the network via one network device. Therefore, a
sentinel identifies this device whenever a flow from/towards

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1523

Algorithm 1 Sentinel search algorithm

start← starting subnet size
end← ending subnet size
table[IP,device]← search IPs and network devices
sentinels←{}
for start ⩽ S ⩽ end do

table[IPnew]← ((IP >> (32−S))<< (32−S))
aggregated← table.groupby(IPnew)[device]
result[n]← nunique(aggregated[device])
sentinels += (result[n] == 1)
table−= sentinels

end for
return sentinels

the IP subnet is observed somewhere in the network. As an
example, if flows towards 1.2.3.0/24 only leave the network
via egress router R, we say that 1.2.3.0/24 is an egress sentinel
for R. Note that a single sentinel can cover numerous flows.

Types We can distinguish four types of sentinels depending
on which IP address we look at (source or destination) and
which traffic direction is identified by them (ingress or egress).
For example, we can speak about ingress source sentinels.
However, unlike specified differently, the remaining sections
will only focus on two types of sentinels (i) ingress source
sentinels (abbreviated as ingress sentinels); and (ii) egress des-
tination sentinels (abbreviated as egress sentinels). Currently,
Magnifier only considers IPv4 sentinels, but Magnifier can
be applied to the IPv6 address space as well.2

Search algorithm Magnifier’s sentinel search algorithm takes
flow samples as input. They contain, among others, the identi-
fier of their origin router and the packet source and destination
IP addresses. In addition, we define a start and end subnet size
over which the algorithm searches for unique subnets to reveal
sentinels. Algorithm 1 highlights the main sentinel search
steps. The for loop iterates from the start to the end subnet
size. In each iteration, we extract the corresponding subnets
from the IP addresses of the collected flow samples. All flows
belonging to the same subnet are aggregated. If one aggregate
only contains samples from the same device, Magnifier has
found a sentinel, removes the samples from further search
iterations, and eventually returns the sentinels.

3.2 Sentinel subnet sizes

Algorithm 1 returns a subnet as a sentinel as soon as it only
contains flow samples from one device. However, it is also
possible that a smaller subnet would cover all these samples.
Fig. 4 shows a simple example. The network forwards traffic
from three different /24 subnets. We collect samples from the

2Current IPv6 allocation strategies (e.g., https://www.ripe.net/
publications/docs/ripe-738#5) are favorable for Magnifier . The same
AS tends to be allocated large IP blocks that we can use as sentinels.

/24

/23

/22Sampled flows
from router X

Not-sampled flow
from router Y

Two /24 sentinels (valid)

One /23 sentinel (valid)

One /22 sentinel (invalid)

Figure 4: The sentinel amount and coverage depend on the
subnet size. The “largest” /22 sentinel is invalid, whereas one
/23 sentinel or two /24 sentinels are valid.

two green /24 subnets (ingress router X). Unfortunately, we do
not sample a packet from the orange /24 subnet (ingress router
Y). Algorithm 1 would return the corresponding /22 subnet as
an ingress sentinel. After installing corresponding mirroring
rules (§ 4.1), Magnifier will detect that this sentinel is invalid
as it contains flows from two different ingress routers (X and
Y). If we would search for smaller subnets, we could either
return one valid /23 sentinel or two valid /24 sentinels.

This simple example shows a fundamental tradeoff between
the subnet size of found sentinels, the number of sentinels, and
their validity. In general, sentinels based on smaller subnets
are more likely to be valid but require more mirroring rules to
be validated. Experimentally, we find that starting at /16 and
ending at /24 yields good performance; starting at bigger sizes
does not help as we rarely see such big prefixes in BGP, and
it is unlikely that they are unique to a single ingress/egress,
while /24 is the smallest globally routed prefix size [35]. As
a consequence, the search sizes also influence the number of
required validation mirroring rules (§ 4.1) and, therefore, the
required router resources.

3.3 Sentinel-based ingress & egress detection
Magnifier uses the found sentinels in two ways. First, for
each sentinel type, it tracks the number of sentinels found
per device in the network. § 6.4 shows that the number of
sentinels is rather stable and changes can reveal unexpected
network behavior. The second use case exploits the uniqueness
property of sentinels. Let’s assume we have found a (valid)
egress sentinel for router X . For each flow towards the sentinel’s
subnet—no matter if we observe a corresponding packet on
an ingress or another device—we instantaneously know that
it will leave the network over X . Similarly, we can identify
flow ingresses based on ingress sentinels. Magnifier uses this
information as input for its ingress/egress observations.

4 Mirroring-based validation

In this section, we explain how Magnifier uses traffic mirroring
to validate the ingress and egress sentinels produced by the
sentinel search algorithm (§ 4.1). To ensure that Magnifier
can adhere to an operator-given budget of mirroring rules, we
introduce two different rule deployment strategies and discuss
additional optimization possibilities (§ 4.2).

1524 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.ripe.net/publications/docs/ripe-738#5
https://www.ripe.net/publications/docs/ripe-738#5

4.1 Validating found sentinels with mirroring

Magnifier uses negative rules to validate the sentinels it finds.
Negative rules are placed on devices that are not expected to
see matching traffic. For instance, to validate that an ingress
sentinel belongs to ingress I, Magnifier places negative mir-
roring rules mirroring traffic for the sentinel’s source subnet at
all ingress routers except I. The negative mirroring rules will
never generate any packets if the sentinel is valid. For invalid
sentinels or sentinels which become invalid over time (e.g., a
forwarding change), the mirrored packets inform Magnifier
immediately, and we can update our inferred ingress or egress
observations. Magnifier then includes the mirrored data in the
next sentinel search to find better sentinels.

ACL-based mirroring Magnifier relies on existing features
such as ERSPAN [9] to mirror traffic from a router. Depending
on the router model and capabilities, there are different ways
to define the mirrored traffic. We can temporarily mark packets
(i.e., [39]) or directly assign a list of subnets to the mirroring
session. We use so-called Access Control Lists (ACLs) in
all these cases. An ACL is a list of subnets that matches on
the forwarded traffic and defines the mirrored traffic. Our
“mirroring rules” are entries in an ACL.

Deployment and activation of mirroring rules To deploy
its mirroring rules, Magnifier interacts with a Python script
that runs directly on the router CPU. Via its arguments, Mag-
nifier tells the script the mirroring rules to add to the ACL.
The script uses e.g., Cisco’s Python API [6] to perform the
changes. However, naively adding entries to an ACL that is
already connected with an active ERSPAN session can result
in unexpected mirroring behavior for at least two reasons:
(i) adding new entries takes some time and Magnifier cannot
predict at which point in time a new mirroring rule is active;
(ii) the Ternary Content Addressable Memory (TCAM) region
which handles the ACLs/mirroring rules is limited. Magni-
fier handles (i) by pre-deploying inactive mirroring rules and
(ii) with techniques explained in § 4.2.

To pre-deploy mirroring rules, Magnifier first adds entries to
an ACL that is not yet active, i.e., connected with an ERSPAN
session. The ACL entries do not yet take space in the TCAM.
Once the ACL contains all mirroring rules, another script
activates the entire ACL, simultaneously enabling all mirroring
rules. In practice, Magnifier always iterates between two ACLs.
One is currently actively mirroring traffic while the other
one is populated. Once the second ACL is ready, we switch
between them. Due to this deployment strategy, Magnifier is
not negatively influenced by frequently changing mirroring
rules/sentinels (see § D.4) as we always activate a new pre-
deployed ACL. Furthermore, this only affects the mirrored
traffic; Magnifier does not impact the production traffic.

Magnifier can also add a parameter to the scripts which
defines how long an ACL should be active. The script will then
automatically, i.e., without any external interaction, deactivate
the mirroring rules once the defined timeout expires.

4.2 Limiting the amount of mirroring rules
The amount of mirroring rules which a single router can support
is limited. Not only is the entire TCAM limited, other features
(e.g., traffic engineering) use the same memory space and
compete with Magnifier’s mirroring rules. For this reason,
Magnifier supports multiple deployment strategies to adhere
to an operator-given budget of mirroring rules. In the following
paragraphs, we describe two strategies, but network operators
can easily define their own sorting algorithm to control which
mirroring rules they deploy first.

Deployment based on sentinel size The first strategy max-
imizes the sentinel IP space covered by mirroring rules. As
each mirroring rule is connected to a sentinel with a specific
subnet size, Magnifier first orders all sentinels of an ingress
or egress based on their subnet size. Magnifier then iterates
through all network border routers in a round-robin fashion
and deploys mirroring rules for the sentinel with the biggest
subnet (i.e., the subnet which covers the most IP space). This
process ends if either the mirroring rule budget is reached or
every mirroring rule is deployed.

Deployment based on sentinel activity The second strategy
prioritizes the most active (amount of sampled packets) sub-
nets/sentinels. In other words, we make sure that the inferred
ingress or egress points for the most active subnets are validated
by mirroring. To this end, Magnifier iterates through all border
routers in a round-robin fashion and first deploys mirroring
rules for the sentinels that are based on the largest number of
sampled packets. Random packet sampling–by design–favors
large, active flows. Therefore Magnifier indirectly deploys
mirroring rules for the most active subnets. We evaluate both
deployment strategies in § 6.2.2 and § D.3.

Network-specific optimizations Magnifier further reduces
the amount of mirroring rules using network-specific knowl-
edge. For example, some ISP border routers only connect to
customers, and the operator knows exactly which IP addresses
belong to them. That limits the possible source addresses en-
tering the ISP over these ingresses (assuming no IP spoofing).
On these devices, Magnifier does not need to install mirroring
rules which belong to IP subnets outside of the customer’s
prefixes as we should never receive contradicting traffic.

5 Magnifier’s controller

Magnifier’s controller collects and combines the sampled and
mirrored packets, finds new sentinels, deploys and activates
the corresponding mirroring rules, and uses the newest data
to generate accurate and up-to-date ingress/egress observa-
tions. This section first explains how the different pieces work
together before introducing Magnifier’s API. § B contains
details about Magnifier’s controller placement.

Controller design Magnifier’s control flow works in iterations
that align to the system component with the longest runtime.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1525

As various tests on real hardware show, this is usually the time
it takes to deploy mirroring rules on the routers. Fig. 5 shows
the entire process. Magnifier uses the collected sampled and
mirrored data in iteration N-2 (and optionally N-3 or older
iterations) to compute sentinels and theirmirroring rules. Based
on the operator given rule budget, Magnifier sorts the sentinels
according to the deployment strategies in § 4.2. While iteration
N-1 is running, Magnifier pre-deploys the newly computed
mirroring rules on the routers. As soon as Magnifier deploys
the last rule (or once we reach the defined iteration time), it
switches to iteration N and activates the pre-deployed mirroring
rules after deactivating the old ones. Finally, Magnifier uses the
collected sampled and mirrored data and the inferred ingress
and egress points from the newest sentinels to compute accurate
and up-to-date ingress/egress observations.

Magnifier’s API Magnifier’s API supports four distinct
primitives. First, enhance_subnet(S) returns the available
ingress and/or egress data related to subnet S. Second
get_interfaces() returns the relationship between sentinels
and their interfaces. Magnifier can infer the corresponding
interfaces based on sampling data and/or the observed MAC ad-
dresses in mirrored packets. Third, get_matrix() generates
the most up-to-date ingress/egress matrix. Each cell contains
the number of observed packets and bytes (reported by sam-
pled packets) for an ingress/egress observation. In addition,
a validity bit indicates inferences that are currently validated
with mirroring rules. Finally, get_counts() outputs the num-
ber of found sentinels per device grouped by sentinel type. In
§ 6.4 we use this API call to detect network problems based
on data from a real Tier-1 ISP.

6 Evaluation

This section evaluates Magnifier in detail. After introducing
the evaluation setup (§ 6.1), we first focus on Magnifier’s
performance in simulation and on real hardware devices in our
lab (§ 6.2). Afterward, we perform a detailed comparison with
the Everflow system (§ 6.3) before we highlight that Magnifier
also works with data from a real ISP (§ 6.4).

6.1 Evaluation setups, datasets, and metrics

Setups We evaluate Magnifier in a simulation setup without
any resource constraints and a lab setup on real hardware with
its corresponding limitations. Our lab setup contains two Cisco
Nexus 9300 switches (C93108TC-FX) [10], and a larger Nexus
7009 switch (N7K-C7009) [8]: an older3 but more resourceful
model that we use for benchmark experiments.

We illustrate the lab setup in Appendix § D.1. We estab-
lish four parallel connections between the two Nexus 9300
switches, each emulating a network ingress. The first switch
receives and samples the traffic using sFlow (sampling rate

3Released in 2011 and no longer sold.

Sampling
data

Iteration N-2 N-1 N

Mirrored
packets

Rule
deployment

Sentinel
computation

Figure 5: Magnifier’s control flow works in iterations based
on the mirroring rule deployment time. Rules for sentinels
based on N-2 are deployed in N-1 and active in iteration N.

1/40964). It then forwards to the second switch, which mirrors
the traffic according to the configured rules. Magnifier’s con-
troller runs on a server and collects sampling and mirroring
data. As these switches are limited to 512 mirroring rules, we
used a fixed budget of 500 rules per emulated ingress point.5

Unless otherwise specified, Magnifier prioritizes sentinels
according to the activity ordering (§ 4.2).

Our simulation setup is an idealized version of the lab
setup. It instantaneously starts mirroring for any prefixes, has
unlimited memory space for mirroring rules, and removes rules
after their first mirrored packet. The simulator is written in
Python and publicly available [3]. Unless specified differently,
we always consider Magnifier’s iterations to be 60s long. For
the N-th sentinel computations, we take sampling and mirroring
data from iterations N-1 and N-2 (see Fig. 5).

We focus on ingress sentinels in the evaluation, i.e., source
IP prefixes unique to one ingress. However, the results also
apply to egress sentinels. For example, BGP selects the best
route for each prefix that is assigned to a single egress. Magni-
fier identifies (part of) these prefixes as egress sentinels (§ 6.4).
As a result, one major problem is how to split traffic over dif-
ferent ingress points: Magnifier’s performance depends on the
assumption that prefixes close in the IP space get routed simi-
larly. We study this dependency using three IP space to ingress
mappings: random (least favorable for Magnifier), static,
and permuted (most favorable). The random approach splits
the destination IP space into n6 equal slices and assigns one
destination IP slice to each ingress point; as a result, source
IPs are randomly assigned to one ingress, and this assignment
changes frequently. The static approach assigns each source
/24 prefix statically to one random ingress point; however,
close IP space is still distributed over different ingresses. Fi-
nally, permuted splits the source IP space into n equal slices
and permanently assigns each slice to one of the n ingresses.
Then we permute a fixed percentage of /24 source prefixes
by moving them to different ingresses. This way, we preserve
most of the existing IP structure. A permuted 0% assignment
results in a perfect mapping for Magnifier .

4The highest configurable rate on this model; we get the most samples.
5The four emulated ingresses share the budget. We use TCAM carving [7]

to increase the space for our mirroring rules to 2048 (by taking it from other
features) to enable the original budget (512) per ingress.

6Lab: 1st: 0.0.0.0/2; 2nd: 64.0.0.0/2; 3rd: 128.0.0.0/2; 4th: 192.0.0.0/2

1526 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Datasets We use two datasets: one actual packet trace based
on CAIDA data and NetFlow samples from a Tier-1 ISP.

The packet trace is based on a 2018 CAIDA trace [4] (1.5
billion packets; one hour long), adjusted to be used in both our
setups: (i) We modified the packet MAC addresses to match
the lab setup. (ii) We added random payload bytes (removed
from CAIDA traces) to match the specified packet sizes. (iii)
We moved all destination IPs from 224.0.0.0/4 to a different
/4 prefix as this prefix is reserved for IP multicast and led
to unexpected packet forwarding on the switches. Replaying
the trace at normal speed using tcpreplay [16] exhibited
anomalies (packet loss and delays). Therefore, we slowed
the replay by 10x, resulting in an average of 45k packets per
second. Our simulations also use normal and faster speeds to
emulate increasing traffic load.

The second dataset contains sampled (rate 1/1024) NetFlow
data from all border routers (more than 100) belonging to a
large Tier-1 ISP in Europe. The dataset spans over one hour
of peak time in the evening of a weekday in 2018. The IP
addresses are anonymized by replacing source and destination
IPs with the best matching prefix from the full BGP table or
the corresponding /24 prefix, whichever is more specific.

Metrics We use the following performance metrics and report
the mean over 60 iterations (30 for 2× replay speed).
Coverage Quantifies the amount of traffic for which the

ingress point is correctly identified. We consider both
per-prefix coverage—i.e., the number of /24 covered—
and per-packet coverage—i.e., the percentage of covered
packets from the input trace.

Mirrored traffic volume Quantifies the overhead in terms
of mirrored traffic, as a percentage of the total traffic.

Mirroring rule space Quantifies the number of mirroring
rules (ACL entries).

Deployment speed Quantifies how long it takes to either add
new mirroring rules or deactivate an installed rule.

6.2 Magnifier’s performance
This section details Magnifier’s performance. We first show
that Magnifier greatly enhances the prefix coverage compared
to sampling only (up to 80×) and that the ingress points are
validated with mirroring rules. This is achieved while mirroring
less than 0.3% of traffic. We then analyze methods to limit the
number of mirroring rules required. Finally, we confirm that
Magnifier runs and performs well on real hardware.

6.2.1 Coverage and mirrored traffic volume

We first use our simulation setup to evaluate Magnifier’s cov-
erage in different scenarios.

Setup We use our simulation setup and the CAIDA dataset.
We vary the trace replay speed (traffic load) and compare
the coverage achieved by Magnifier by using sampling only.
We compute sentinels, install mirroring rules at the start of

6.4 k

Sampling 3.18% 201 k

Active prefixes

Magnifier – random 4.28% 315 k

Magnifier – static 11.9% 373 k

Magnifier – permuted 20% 14.6% 519 k

Magnifier – permuted 5% 21.8%

Figure 6: Amount of covered /24 source prefixes by Magnifier
and sampled data assuming unlimited mirroring resources. 32
border routers, 1/1024 sampling rate, and real replay speed.

each iteration, and compute their coverage values at the end
unless mirrored traffic invalidated them. Only these count to
the shown coverage values (mean over all iterations).

Per-prefix results Fig. 6 shows the per-prefix coverage with
32 border routers, 1/1024 sampling rate, and real-time replay
speed. Sampling covers≈ 6.4k of the active /24 prefixes in the
trace, for which we could consider the corresponding ingress
point as identified, although without any confirmation that it
is valid for all packets belonging to the /24 prefix.

By contrast, we immediately see that Magnifier enhances
these inferences for all different prefix-to-ingress mappings
in at least two ways. First the number of covered /24 pre-
fixes increases to ≈200k (random), ≈315k (static), ≈370k
(permuted 20%) and ≈520k (permuted 5%) respectively.
Second, Magnifier covers prefixes that are currently active in
the CAIDA traces (dashed boxes). The active prefixes increase
from ≈4% (random) up to ≈20% (permuted 5%).

These observations highlight two principles of Magnifier:
(i) our sentinel heuristic greatly enhances the prefix coverage
around sampled data; and (ii) Magnifier remains a data-driven
system. It has difficulties covering active prefix space that is
not sampled using sentinels of reasonable sizes—hence the
small % of active prefix coverage (Fig. 6, stripes).

Even more important, for every sentinel validated by mirror-
ing rules, Magnifier immediately reports if an ingress inference
is no longer valid or enhances new flows (which get active
over time) with ingress information. These results are more
visible in the per-packet coverage analysis.

Per-packet results Fig. 7 shows the per-packet coverage (left)
and mirrored traffic volume (right) with 32 border routers
and a 1/1024 sampling rate for varying replay speeds and
traffic-to-ingress assignment strategies.

The left plot shows that Magnifier achieves an increasing per-
packet coverage from≈20% (random) up to≈80% (permuted
5%) which can be surprising given the lower active prefix
coverage (Fig. 6). This is explained by the nature of the CAIDA
trace, which contains a small number of heavy-hitters and a
lot of /24 source prefixes that only carry a few packets. 10%
of source /24 IP prefixes account for more than 90% of the
packets in 60s trace data (§ D.2). Hence, Magnifier often
samples and covers these prefixes with sentinels.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1527

These results nicely show the different trade-offs of our
assignment strategies. For random, the ingress of packets is
constantly moving, which makes it difficult to find valid sen-
tinels, while at permuted 5%, the assignments are static and
Magnifier can often find large sentinels which cover a lot of
packets. The “real” coverage value is somewhere in between.

To compare, Fig. 7 also contains two sampling-based in-
ferences (without Magnifier’s enhancements). The violet line
near zero represents a lower bound. We only infer the ingress
for the sampled packets. As an upper bound, we consider
all the sampled packets in the permuted 5% assignment and
naively assume that a single sampled packet immediately re-
veals the ingress point for all other packets belonging to the
same source /24 prefix. Note that we can only plot these values
because we have the full ground truth data from the CAIDA
trace. An operator would not know if these inferences are
correct. For bigger traffic loads, the upper bound is better than
Magnifier’s per-packet coverage. This is due to invalidated
sentinels: Magnifier searches for large sentinels based on sam-
pled packets, likely to come from heavy-hitter flows. Suppose
a non-sampled /24 prefix covered by that sentinel is mapped
to a different ingress and carries even only one packet. In
that case, it triggers a mirroring rule and invalidates the entire
sentinel, and Magnifier loses all its coverage.

The right plot in Fig. 7 shows a low percentage of mir-
rored traffic for all assignment strategies (between 0.3% and
0.01%). As expected, a random assignment often leads to
invalid sentinels and thus more mirrored packets.

Finally, we observe that larger traffic loads yield better per-
formance. With more traffic, Magnifier collects more samples
per iteration, computes more accurate sentinels, and achieves
better coverage and less mirrored traffic. We show additional
results in § D.3: Performance decreases with the number of
routers in the random case—as the previously discussed map-
ping strategy gets worse—but remains nearly unaffected in
the static and permuted cases (Fig. 15). Moreover, more
sampled packets (higher sampling rate) result in better input
data and thus performance improvements (Fig. 16).

0.1x 0.5x 1x 2x
0

0.2

0.4

0.6

0.8

1

traffic load

p
k
t
co
ve
ra
ge

naive inference samples only

random static

permuted 20% permuted 5%

0.1x 0.5x 1x 2x
0.01

0.1

0.2

0.3

traffic load

m
ir
ro
re
d
p
k
ts

(%
)

Sampling (not validated)

Magnifier (validated)

Figure 7: Amount of covered packets and mirrored traffic
for different assignment strategies and inferences based on
sampled packets only. 32 border routers and 1/1024 sampling rate.

Conclusion Magnifier greatly increases the per-prefix cover-
age compared to sampling (up to 80×) while validating all
ingress points with mirroring rules. Magnifier achieves this
while mirroring less than 0.3% of traffic and translates into a
per-packet coverage of up to 80%.

6.2.2 Impact of limited mirroring budget

We now show that Magnifier also performs well when limiting
the number of mirroring rules installed per router.
Setup We use the same setup as before and compare the cov-
erage achieved by Magnifier with different bounds on the
number of validated sentinels for two sentinel selection strate-
gies (§ 4.2): activity (covering most sampled packets) &
size (largest subnet sizes). The number of validated sentinels
is an upper bound for the number of mirroring rules required
per router; in the worst case, all sentinels belong to one router,
resulting in one rule per sentinel on all the other routers.
Results Fig. 8 compares Magnifier’s per-packet coverage
achieved with different numbers of validated sentinels: 500,
1k, 5k and unlimited; using the same settings as in Fig. 7. We
show results for the permuted 5% (left) and static (right)
assignment strategy, additional plots can be found in § D.3.

More validated sentinels achieve a higher coverage and
generate more mirrored traffic. The top size sentinels have
the highest chance of being invalidated by un-sampled prefixes
and generate more traffic than their activity counterparts.

The activity selection achieves much better per-packet
coverage than size, which is expected since activity prior-
itizes sentinels covering the most active prefixes. As the trace
contains many heavy-hitters (previous discussion), even as
few as 500 sentinels are enough to yield good packet coverage.
Note that for 0.1× traffic load in the top left plot, the number of
sentinels is smaller than 5000, resulting in the same coverage

0.1x 0.5x 1x 2x
0

0.2
0.4
0.6
0.8

1

p
k
t

co
ve

ra
ge

unlimited top 5k top 1k top 500

activity size

0.1x 0.5x 1x 2x
0

0.2
0.4
0.6
0.8

1

0.1x 0.5x 1x 2x

0.001

0.01

0.1

1

traffic load

m
ir

ro
re

d
p
k
ts

(%
)

0.1x 0.5x 1x 2x

0.001

0.01

0.1

1

traffic load

permuted 5% static

Figure 8: Coverage and mirrored traffic amount for different
top sentinels ordered by activity or size.

1528 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Technique Covered /24 prefixes

Sampling 6.4k

[activity] top 500 static 4.1k
[activity] top 500 permuted 5% 29.4k

[size] top 500 static 9k
[size] top 500 permuted 5% 47.3k

Table 1: Covered /24 source prefixes by Magnifier and sam-
pling only considering the top 500 sentinels (activity and
size ordering) in the static and permuted 5% assignments.

values for activity and size. We also see that the activity
coverage values remain more or less constant even if the traffic
load increases which is not the case for size.

The size selection favors sentinels centered around sparse
samples in a relatively empty prefix space; this results in a low
per-packet coverage (Fig. 8), but in a large per-prefix coverage
(Table 1). As we can see, activity really prioritizes sentinels
around a few selected prefixes resulting in fewer covered
prefixes than sampling (static assignment). However, a size
ordering can easily exceed the number of covered prefixes by
up to seven times, even if we only take the top 500.
Conclusion Magnifier’s performance is maintained when
limiting the deployed mirroring rules. The top 1k activity
sentinels are sufficient to achieve up to≈ 50% packet coverage
while mirroring less than 0.05% of traffic (static case).

6.2.3 Comparison with the lab setup

We now show that our hardware-based results match the sim-
ulation ones, validating Magnifier’s performance in practice.
Setup We use our lab setup (Nexus 9300 switches), which has
two main differences from the simulation: we only have 500
mirroring rules per router, and there are delays to install and
delete rules. We use the random assignment strategy and fill the
500 mirroring rules with the top 500 activity sentinels. For
a fair comparison with the simulation, we consider iteration
times of 60s. Magnifier needs ≈20s to install all mirroring
rules and then activate them. Afterward, we start to delete
the rules which mirror packets. We compare this with the
corresponding simulation results i.e., 4 border routers, 1/4096
sampling rate, and 0.1× replay speed.
Results Fig. 9 shows the amount of covered /24 prefixes for
sampled data only and the validated sentinels. We first notice
that the coverage for sampled packets in our simulation (297)
is slightly higher than on the switches (268). This can be
explained by the different setups. All four ingress routers run
on one Nexus 9300 (§ 6.1), which is not transparent to the
sFlow-based sampling unit. Therefore, we get random packet
sampling over all the traffic while the simulation performs
packet sampling for each ingress device independently. This
also shows in the achieved coverage values using the top
500 activity sentinels: ≈10.4k prefixes in the simulation,
≈8.7k prefixes on the hardware. We also have to consider that

297Sim Sampling

268Hw Sampling

10.4 kSim Top 500 – activity

8.7 kHw Top 500 – activity

Figure 9: Covered /24 source prefixes by Magnifier and
sampled data in simulations and on Nexus 9300 switches.
random assignment, 1/4096 sampling rate, and 0.1× replay speed.

we need additional time to deploy the mirroring rules on the
switch. Thus, a few more sentinels get invalidated compared
to the simulations; and no longer count to the coverage values.
The packet coverage values (not shown) are also comparable
between the simulation (17.0%) and the hardware (16.1%).

Finally, we evaluate the percentage of mirrored traffic. We
notice that the deactivation of active mirroring rules works
well. In the worst case (active rules mirror for the entire 60s),
Magnifier would mirror 2.3% of the overall traffic. This value
is reduced to 1.4% if we start to deactivate rules. However, we
are still above the optimal simulation results (less than 0.1%),
where we can deactivate mirroring instantaneously.

Conclusion The hardware results closely follow our simula-
tions regarding achieved coverage. However, Magnifier needs
more time to install and deactivate mirroring rules, resulting
in additional mirrored packets. To reduce the amount of mir-
rored traffic, operators can use existing hardware features to
rate-limit the mirrored traffic on the switch [11].

6.2.4 Micro-benchmarks

We now perform micro-benchmarks on the hardware switches
to assess (i) how many mirroring rules each device supports,
how long it takes to (ii) deploy them, and (iii) deactivate them.

Results–Mirroring rule space With the default configuration
of the Nexus 9300 switch, we can deploy 512 rules and up
to 2048 in the current lab setup (TCAM carving [7]). On the
Nexus 7009, we can deploy≈32k rules using one TCAM bank
and ≈128k rules if we chain all four TCAM banks together.

Results–Rule deployment time We measure how long it
takes to deploy a set of mirroring rules on our two devices.
During our tests, we realized that deploying the rules over
multiple parallel sessions between Magnifier and the switches
is beneficial. Four parallel sessions worked well for us. Table 2
shows the mean deployment times over ten measurements each.
They include the session setup and round-trip time between
Magnifier and switch. We see that the deployment time is not
strictly linear in the number of rules. We conjecture that caches
and buffers allow deploying a small number of rules quickly,
but this no longer works for larger number of rules. We also
see that the (newer) Nexus 9300 switch needs less time than
the Nexus 7009. We can deploy 2000 rules in ≈18s, which
matches our observations in § 6.2.3 (500 rules for 4 ingresses
on one device). We expect that the rule deployment time will
continue to decrease with more powerful/newer devices.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1529

Number of rules 100 500 1000 2000 5000

Nexus 9300 3.5s 5.5s 8.4s 17.8s 112s
Nexus 7009 2.6s 7.5s 21.7s 74.9s 475s

Table 2: Mirroring rule deployment times.

Note that even if we cannot activate 5k+ rules on the Nexus
9300 switch with the current TCAM carving (§ 6.1),we can still
deploy them. Overall, these results confirm Magnifier’s design
(Fig. 5) which aligns the iterations to the rule deployment time.
Especially as the sentinel computation time is negligible (≈ 1s
on the CAIDA trace.)
Results–Rule deactivation time We finally measure the rule
deactivation time on the Nexus 9300 switch. We generate 100
ping probes per second and deactivate a matching mirroring
rule as soon as we receive the first mirrored probe. The deacti-
vation time is the difference between the timestamp of the first
and last mirrored probe, including the round-trip (≈ 0.5ms)
and session setup time between switch and controller. This
setup is representative of an ISP deployment where close,
dedicated control servers could quickly deactivate rules (§ B).
We repeated the experiment ten times. The mean deactivation
time is 1.65s (min: 1.62s, max: 1.73s). In the worst case,
we would receive a burst of traffic for ≈1.7s. The amount of
mirrored packets can be further reduced by rate-limiting the
mirrored traffic directly on the switch; we expect this would
not affect Magnifier’s performance, as a single mirrored packet
is enough to invalidate a given sentinel.
Conclusion Our tests show that hardware switches can contain
thousands to tens of thousands of mirroring rules, which is
more than sufficient for Magnifier. Mirroring rules can be
deactivated quickly (≈ 1.7s), which limits the risk of bursts
of mirrored traffic. The rule deployment is the most time-
consuming operation (≈ 20s for 2k rules). As a result, we can
adjust the number of deployable mirroring rules (number of
validated sentinels) by changing Magnifier’s iteration time.

6.3 Comparison with Everflow
We compare Magnifier with Everflow [45] which is a moni-
toring tool designed for debugging datacenter networks. Like
Magnifier, Everflow randomly samples packets (using mir-
roring rules). In addition, it also mirrors all TCP SYN, FIN,
and RST packets. As far as we know, the Everflow code is not
available. Therefore, we reimplemented the relevant features
and integrated them into our simulation framework (see § C).
Setup We use our simulation setup and the CAIDA dataset, 32
border routers,a sampling rate of 1/1024 (forboth systems),and
we vary the trace replay speed. We compare the performance
of Magnifier , and Everflow on the static and permuted 5%
traffic-to-ingress mappings.
Results Fig. 10 shows the per-packet coverage and mirrored
traffic of both systems. We consider three different approaches:
(i) “Everflow sampling only”,where we rely only on Everflow’s

0.1x 0.5x 1x 2x
0

0.2
0.4
0.6
0.8

1

p
k
t

co
ve

ra
g
e

sentinel sampling only

unlimited top 1k activity

0.1x 0.5x 1x 2x
0

0.2
0.4
0.6
0.8

1

0.1x 0.5x 1x 2x
0.001

0.01

0.1

1

10

traffic load

m
ir

ro
re

d
p
k
ts

(%
)

0.1x 0.5x 1x 2x
0.001

0.01

0.1

1

10

traffic load

permuted 5% static

Everflow (not validated)

Magnifier (validated)

Figure 10: Comparison of coverage and mirrored traffic for
Magnifier and Everflow under different traffic loads.

sampled packets to compute the ingress points; (ii) “Everflow
sentinel”, where we use the sentinel idea on top of Everflow’s
sampled packets; and (iii) “Magnifier unlimited” and “top 1k
activity”, where we report Magnifier’s coverage for all and
the 1k most active sentinels.

We first look at the coverage values (top plots in Fig. 10).
Everflow’s sentinel approach shows the best—although not
validated—coverage values with up to 88% in the permuted
5% case. This is due to Everflow’s sampled TCP flag packets.
We do not reach 100% as traffic in some /24 prefixes is neither
randomly sampled nor does it contain any TCP flags. These
prefixes can invalidate found sentinels. Note again that the
ground-truth data from the CAIDA trace allows us to compute
these values. Everflow does not deploy any validation mir-
roring rules and does not know about the sentinel’s validity.
Magnifier follows closely with ≈80% (unlimited) and ≈60%
(top 1k) coverage as we only have randomly sampled pack-
ets as input. Despite that, Magnifier manages to reach good
coverage values, with validation from mirroring. Both sys-
tems’ coverage values decrease in the more difficult static
approach. For completeness, we also show Everflow’s cover-
age if we only consider the sampled packets. This results in
a poor packet coverage, although on a higher level than the
“sampling only” line in Fig. 7 given that Everflow additionally
also samples all TCP packets with SYN, FIN, and RST flags.
These coverage values are constant between both assignment
strategies as we observe the same TCP flag packets and roughly
the same random samples.

Everflow’s increased coverage has a high cost in the amount
of mirrored traffic (lower plots in Fig. 10). Everflow generates
the randomly sampled and TCP flag packets as mirrored traffic
by design. Magnifier however, only generates targeted mir-
rored packets to validate found sentinels. If a sentinel is valid, it
does not mirror any traffic. This is visible in the corresponding
fraction of mirrored traffic.

1530 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Everflow constantly mirrors ≈5% of all traffic while Mag-
nifier is more than one magnitude lower (≈0.1% of all traffic
at real-time replay speed in the static case). This value
decreases even further if we only consider the most active
sentinels. We again observe that Everflow mirrors roughly the
same amount of packets for both assignment strategies.
Conclusion Everflow yields better coverage but generates
more mirrored traffic, which is more than one order of mag-
nitude higher than Magnifier. Unlike Everflow, Magnifier
validates the inferred ingress points, informing the controller
as soon as a sentinel is no longer valid. In contrast, Everflow
might need to wait a long time before receiving a mirrored
packet indicative of an ingress point change, especially for
long-running flows that do not often have TCP flags. In terms
of mirroring rules, Everflow only needs around 20 of them [45].
Magnifier needs more mirroring rules but also uses them for
validation—something that Everflow cannot achieve.

6.4 Sentinels in Tier-1 dataset
We now validate the practicality and benefits of sentinel-based
monitoring by evaluating Magnifier on Tier-1 ISP data.

6.4.1 Existence of sentinels

Setup We divide our Tier-1 dataset into 30s slices over which
we compute sentinels and report the number of found ingress
and egress sentinels. We only have sampling data available.
Thus, we can only approximate the number of sentinels that
would be found if Magnifier was deployed with mirroring.
Results We find a median of 145k egress sentinels and a median
of 174k ingress sentinels. The lower and upper quartiles are
within 1.4k around the median values in both cases.

We observe that we find more ingress than egress sentinels.
This results from the typical forwarding behavior observed
in an ISP: traffic from each of the ISP customers, which own
specific prefixes, tends to enter via a single ingress point, which
leads to a high number of ingress sentinels. At the same time,
most ingress traffic goes to few popular destinations, which
leads to few egress sentinels. We also see that the number of
(ingress and egress) sentinels is stable over time, as shown by
the small quartile ranges.
Conclusion We confirm that we find sentinels based on real
sampling data from a Tier-1 ISP network. Furthermore, the
number of sentinels is stable over time; this suggests that large
changes in sentinel numbers can be used as a signal to detect
various network events, which we discuss next.

6.4.2 Per-device sentinel changes

Setup We divide our Tier-1 dataset into 30s slices over which
we compute sentinels using Magnifier , focus on the number of
sentinels found per border router, and search for large changes
in the number of sentinels over consecutive slices.

0 3 6 9 12 15 18
0

200

400

600

time [min]

fo
u
n
d
se
n
ti
n
el
s

ingress sentinels

egress sentinels

0 3 6 9 12 15 18
0

500
870

1420

time [min]

fo
u
n
d
se
n
ti
n
el
s

affected router

evasion router

Figure 11: A temporary router outage (gray block) decreases
the number of found sentinels (left) while we see similar
increases on a close router (right).

0 10 20 30 40
11k
12k
13k
14k

time [min]

eg
re
ss

so
u
rc
e
se
n
ti
n
el
s Normal

prefix flows

P1 70
P2 63
P3 56
P4 55
P5 49

DDoS-like
prefix flows

DDoS1 3700
DDoS2 3560

P1 72
P2 65
P4 47

Figure 12: A sudden burst of egress source sentinels (left) is
likely to result from a DDoS-like event (right).

Results Fig. 11 shows the number of sentinels found following
a single border router outage. As expected, Magnifier finds
no more sentinels for the affected router. More interestingly,
Magnifier also detects where the affected traffic was re-routed
during the outage, as shown on the right: the number of egress
sentinels of a geographically-close router increases shortly
after and closely matches the number of lost sentinels.

Fig. 12 (left) shows a router with a burst of egress source
sentinels (traffic from a given subnet exiting via a unique egress
point) while no other router shows a matching decrease. Thus,
we observe a sudden burst of packets from “new” source IPs
towards a few destinations (table, right), indicating a possible
Distributed Denial of Service (DDoS) attack. During this
event, the egress traffic volume increased by less than 8%,
which is less pronounced than the clear increase in sentinels.
Magnifier also identifies the ingress of more than 75% of the
“attack” flows via their ingress sentinels. Existing volumetric
DDoS detection systems could use this information to block
the DDoS traffic at the network ingress.
Conclusion Changes in the number of found sentinels reveal
interesting network events. Operators could analyze the col-
lected sampling data this way, even if they do not have the
resources to deploy mirroring. With mirroring, Magnifier de-
tects such changes in sub-seconds, long before similar events
are visible in sampled flow data or SNMP counters.

7 Related work

Sampling-based network monitoring Many systems use
NetFlow [12], J-Flow [27], sFlow [30] or related flow extraction
tools for network measurements. Sampling suffers from a
fundamental trade-off between coverage and accuracy. For

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1531

example, Teixeira et al. [37] use NetFlow data to detect egress
changes due to BGP hot-potato routing but are limited by
the collected ten-minute bins. In addition, Cunha et al. [13]
uncover measurement artifacts in two J-Flow implementations.

Consequently, several works aim to improve sampling by
optimizing the collection process. Estan et al. [14] propose
router software updates to dynamically adapt the NetFlow
sampling rate depending on the available traffic and memory
amount. FlowRadar [21] uses flow sets to count flow obser-
vations in multiple array cells, then combines and decodes
these counters centrally. Similarly, Flowyager [34] introduces
Flowtrees, an efficient data structure to store flow information.
These approaches are all limited by the sampling information.
A key difference of Magnifier is to further improve the network
visibility by leveraging mirrored traffic.

Mirroring-based systems Several monitoring systems use
mirroring, which provides accurate visibility over a subset of
the traffic, flows, or devices. Stroboscope [39] supports query-
based monitoring under a strict budget of mirrored traffic.
Everflow [45] provides the possibility to mirror some packets
of every flow, e.g., by mirroring packets with special TCP flags
or debug header bits. Planck [33] takes a radical approach and
mirrors all traffic over a single router port, which provides
detailed insights but can also overload the network devices.
Mirroring has also been used for troubleshooting [41], SDN
monitoring [1], on in-network analysis [38, 42].

Mirroring suffers from three problems: (i) the flows of
interest must be known in advance; (ii) it is limited by the
routers’ mirroring capacity, and (iii) it generates a potentially
high volume of traffic. Magnifier mitigates these problems by
leveraging sampling to derive the mirroring rules to deploy
and uses negative mirroring to limit the traffic overhead.

In-network monitoring There has been many recent proposals
forperforming in-network monitoring based on in-band teleme-
try (e.g., [2,18,25,26,31]) or sketches (e.g., [5,19,22,43,44]).
Both approaches boil down to implementing highly effi-
cient data structures to gather traffic statistics, e.g., packet
counts. The main limitation is that these approaches depend
on software-defined or P4-programmable hardware, which is
not commonly deployed in ISP networks nowadays. More-
over, these approaches provide precise information, but over
specific queries only; setting and collecting counters to track
ingress and egress points of an arbitrarily large number of
IP prefixes is hard to scale. Negative mirroring addresses
this: while Magnifier’s inferences are correct, there is no traf-
fic nor compute overhead—only TCAM usage. Packets that
do get mirrored provide exact information—i.e., source and
destination IP—which allows for quick and precise reactions.

Detection of ingress/egress Magnifier is designed to detect
traffic ingress/egress points, which has been previously studied:
Feldmann et al. [15] provide foundation work for detecting
different flow types in ISP networks as well as the ingress
and egress of observed flows. To achieve good results, they

need per-flow measurements on the ingress and up-to-date
forwarding tables of the routers in the network, which are both
costly to obtain. Mahajan et al. [23] use algorithms similar to
our sentinel idea to build so-called “aggregates”, a collection
of packets with a common property, to free congested links.
However, it is unclear how they extract the traffic to build the
aggregates or validate their assumptions. Peng et al. [29] run
a change point detection algorithm to detect changes in the
number of new IP addresses, which is a good metric to detect
(the ingress) of DDoS attacks. Most of these systems lack the
global ingress/egress view that Magnifier provides.
Traffic matrix estimation Soule et al. [36] compare different
techniques based on bias and variance properties. They show
that direct measurements are required to reduce bias, which is
an expensive process. Papagiannaki et al. [28] observe that
the node fanout, e.g., how traffic from an ingress is distributed
towards different egresses, is stable over time. Magnifier con-
firms and leverages this behavior: sentinels are stable over
time, which creates a valuable monitoring signal (§ 6.4). With
mirroring, Magnifier also quickly detects changes and updates
its traffic matrix estimation. OpenTM [40] uses a different
approach, based on active polling of every source-destination
pair, which is very precise but does not scale to large networks.
Malboubi et al. [24] addresses the special case of SDN net-
works, which limits the system’s applicability. Pingmesh [17]
frequently generates pings to compute latency matrices. By
contrast, Magnifier does not require active measurements and
runs on traditional routers, which makes it easy to deploy.
Monitoring frameworks Several monitoring frameworks
support rich sets of queries, e.g., [20, 32, 42]. In particular,
Flowyager [34] is similar to Magnifier as it builds primar-
ily on sampling. The downside of these frameworks is their
complexity and extensive storage and computational resource
requirements. By contrast, Magnifier focuses on performing
ingress/egress monitoring with little overhead.

8 Conclusion

Precise observations of traffic ingress and egress points are
difficult to generate in large ISP networks. In this paper, we
show how Magnifier combines the global view of sparsely-
sampled flow observations with precise, targeted information
from mirrored traffic. Magnifier enhances observed flows with
validated ingress and egress points and scales to the largest ISP
networks while only generating a small amount of mirrored
traffic. Magnifier’s outputs can also help monitor outages or
detect volumetric DDoS attacks.

Acknowledgments

We would like to thank Paul Stark and Derk-Jan Valenkamp
for their great help with the hardware-based evaluation. Many
thanks as well to Tibor Schneider for his support with TikZ.

1532 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Ran Ben Basat,Xiaoqi Chen,GilEinziger,andOri Rotten-
streich. Designing Heavy-Hitter Detection Algorithms
for Programmable Switches. IEEE/ACM Transactions on
Networking, 2020. doi:10.1109/TNET.2020.2982739.

[2] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang
Li, Gianni Antichi, Minian Yu, and Michael Mitzen-
macher. PINT: Probabilistic In-band Network Teleme-
try. SIGCOMM’20. ACM, 2020. doi:10.1145/
3387514.3405894.

[3] Tobias Bühler. Magnifier GitHub repository, 2022.
https://github.com/nsg- ethz/Magnifier Ac-
cessed: 2022-08-01.

[4] CAIDA. The CAIDA UCSD anonymized internet traces
2018. https://www.caida.org/catalog/datasets/
passive_dataset Accessed: 2022-08-01.

[5] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman,
and Jennifer Rexford. BeauCoup: Answering Many
Network Traffic Queries, One Memory Update at a
Time. SIGCOMM’20. ACM, 2020. doi:10.1145/
3387514.3405865.

[6] Cisco Systems. Cisco Python API. https :
/ / www.cisco.com / c / en / us / td / docs /
switches / datacenter / nexus3600 / sw / 93x /
programmability/guide/b-cisco-nexus-3600-
nx - os - programmability - guide - 93x / m - 3600 -
python-api-93x.pdf Accessed: 2022-08-01.

[7] Cisco Systems. Nexus 9000 TCAM Carving, 2016.
https://www.cisco.com/c/en/us/support/docs/
switches/nexus-9000-series-switches/119032-
nexus9k-tcam-00.html Accessed: 2022-08-01.

[8] Cisco Systems. Cisco Nexus 7000, 2021. https:
//www.cisco.com/c/en/us/products/collateral/
switches/nexus-7000-series-switches/Data_
Sheet_C78-437762.html Accessed: 2022-08-01.

[9] Cisco Systems. Configuring ERSPAN, 2021.
https : / / www.cisco.com / c / en / us / td / docs /
switches / datacenter / nexus7000 / sw / system -
management/guide/b_Cisco_Nexus_7000_Series_
NX - OS _ System _ Management _ Configuration _
Guide / b _ Cisco _ Nexus _ 7000 _ Series _ NX - OS _
System _ Management _ Configuration _ Guide _
chapter_010101.html Accessed: 2022-08-01.

[10] Cisco Systems. Cisco Nexus 9300-FX, 2022.
https : / / www.cisco.com / c / en / us / products /
collateral / switches / nexus - 9000 - series -
switches/datasheet-c78-742284.html Accessed:
2022-08-01.

[11] Cisco Systems. Configuring Rate Limits, 2022.
https : / / www.cisco.com / c / en / us / td / docs /
switches/datacenter/nexus3000/sw/security/
92x / b - cisco - nexus - 3000 - nx - os - security -
configuration - guide - 92x / b - cisco - nexus -
3000- nx- os- security- configuration- guide-
92x_chapter_010000.html Accessed: 2022-08-01.

[12] Benoit Claise. Cisco Systems NetFlow Services Export
Version 9. RFC 3954 (Informational), 2004. https:
//datatracker.ietf.org/doc/html/rfc3954 Ac-
cessed: 2022-08-01.

[13] Ítalo Cunha, Fernando Silveira, Ricardo Oliveira, Renata
Teixeira, and Christophe Diot. Uncovering Artifacts of
Flow Measurement Tools. In International Conference
on Passive and Active Network Measurement. Springer,
2009. doi:10.1007/978-3-642-00975-4_19.

[14] Cristian Estan, Ken Keys, David Moore, and George
Varghese. Building a Better NetFlow. ACM SIGCOMM
CCR, 2004. doi:10.1145/1030194.1015495.

[15] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick
Reingold, Jennifer Rexford, and Fred True. Deriving
Traffic Demands for Operational IP Networks: Method-
ology and Experience. ACM SIGCOMM CCR, 2000.
doi:10.1145/347059.347554.

[16] Fred Klassen. Tcpreplay - Pcap editing and replay-
ing utilities, 2020. https://tcpreplay.appneta.com/
Accessed: 2022-08-01.

[17] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin
Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis
Kurien. Pingmesh: A Large-Scale System for Data
Center Network Latency Measurement and Analy-
sis. SIGCOMM’15. ACM, 2015. doi:10.1145/
2785956.2787496.

[18] Arpit Gupta,Rob Harrison,Marco Canini,Nick Feamster,
Jennifer Rexford, and Walter Willinger. Sonata: Query-
Driven Streaming Network Telemetry. SIGCOMM’18.
ACM, 2018. doi:10.1145/3230543.3230555.

[19] Qun Huang,Xin Jin,PatrickP. C. Lee,Runhui Li,Lu Tang,
Yi-Chao Chen, and Gong Zhang. SketchVisor: Ro-
bust Network Measurement for Software Packet Pro-
cessing. SIGCOMM’17. ACM, 2017. doi:10.1145/
3098822.3098831.

[20] Kentik. Network Observability, Performance and Se-
curity, 2022. https://www.kentik.com/ Accessed:
2022-08-01.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1533

https://doi.org/10.1109/TNET.2020.2982739
https://doi.org/10.1145/3387514.3405894
https://doi.org/10.1145/3387514.3405894
https://github.com/nsg-ethz/Magnifier
https://www.caida.org/catalog/datasets/passive_dataset
https://www.caida.org/catalog/datasets/passive_dataset
https://doi.org/10.1145/3387514.3405865
https://doi.org/10.1145/3387514.3405865
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3600/sw/93x/programmability/guide/b-cisco-nexus-3600-nx-os-programmability-guide-93x/m-3600-python-api-93x.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3600/sw/93x/programmability/guide/b-cisco-nexus-3600-nx-os-programmability-guide-93x/m-3600-python-api-93x.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3600/sw/93x/programmability/guide/b-cisco-nexus-3600-nx-os-programmability-guide-93x/m-3600-python-api-93x.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3600/sw/93x/programmability/guide/b-cisco-nexus-3600-nx-os-programmability-guide-93x/m-3600-python-api-93x.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3600/sw/93x/programmability/guide/b-cisco-nexus-3600-nx-os-programmability-guide-93x/m-3600-python-api-93x.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3600/sw/93x/programmability/guide/b-cisco-nexus-3600-nx-os-programmability-guide-93x/m-3600-python-api-93x.pdf
https://www.cisco.com/c/en/us/support/docs/switches/nexus-9000-series-switches/119032-nexus9k-tcam-00.html
https://www.cisco.com/c/en/us/support/docs/switches/nexus-9000-series-switches/119032-nexus9k-tcam-00.html
https://www.cisco.com/c/en/us/support/docs/switches/nexus-9000-series-switches/119032-nexus9k-tcam-00.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/Data_Sheet_C78-437762.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/Data_Sheet_C78-437762.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/Data_Sheet_C78-437762.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/Data_Sheet_C78-437762.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus7000/sw/system-management/guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide_chapter_010101.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus7000/sw/system-management/guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide_chapter_010101.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus7000/sw/system-management/guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide_chapter_010101.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus7000/sw/system-management/guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide_chapter_010101.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus7000/sw/system-management/guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide_chapter_010101.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus7000/sw/system-management/guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide_chapter_010101.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus7000/sw/system-management/guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide_chapter_010101.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/datasheet-c78-742284.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/datasheet-c78-742284.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/datasheet-c78-742284.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/security/92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/security/92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/security/92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/security/92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/security/92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/security/92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x_chapter_010000.html
https://datatracker.ietf.org/doc/html/rfc3954
https://datatracker.ietf.org/doc/html/rfc3954
https://doi.org/10.1007/978-3-642-00975-4_19
https://doi.org/10.1145/1030194.1015495
https://doi.org/10.1145/347059.347554
https://tcpreplay.appneta.com/
https://doi.org/10.1145/2785956.2787496
https://doi.org/10.1145/2785956.2787496
https://doi.org/10.1145/3230543.3230555
https://doi.org/10.1145/3098822.3098831
https://doi.org/10.1145/3098822.3098831
https://www.kentik.com/

[21] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan
Yu. FlowRadar: A Better NetFlow for Data Centers.
In NSDI’16. USENIX Association, 2016. https://
www.usenix.org/conference/nsdi16/technical-
sessions/presentation/li- yuliang Accessed:
2022-08-01.

[22] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One Sketch to
Rule Them All: Rethinking Network Flow Monitoring
with UnivMon. SIGCOMM’16. ACM, 2016. doi:
10.1145/2934872.2934906.

[23] Ratul Mahajan, Steven M Bellovin, Sally Floyd, John
Ioannidis, Vern Paxson, and Scott Shenker. Controlling
High Bandwidth Aggregates in the Network. ACM
SIGCOMM CCR, 2002. doi:10.1145/571697.571724.

[24] Mehdi Malboubi, Shu-Ming Peng, Puneet Sharma, and
Chen-Nee Chuah. A Learning-Based Measurement
Framework for Traffic Matrix Inference in Software De-
fined Networks. Computers & Electrical Engineering,
2018. doi:10.1016/j.compeleceng.2017.11.020.

[25] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. DREAM: Dynamic Resource Allocation
for Software-Defined Measurement. SIGCOMM’14.
ACM, 2014. doi:10.1145/2619239.2626291.

[26] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
Directed Hardware Design for Network Performance
Monitoring. SIGCOMM’17. ACM, 2017. doi:
10.1145/3098822.3098829.

[27] Juniper Networks. Configure J-Flow, 2017. https:
//supportportal.juniper.net/s/article/SRX-
Getting-Started-Configure-J-Flow?language=
en_US Accessed: 2022-08-01.

[28] Konstantina Papagiannaki, Nina Taft, and Anukool
Lakhina. A Distributed Approach to Measure IP Traf-
fic Matrices. IMC’04. ACM, 2004. doi:10.1145/
1028788.1028808.

[29] Tao Peng, Christopher Leckie, and Kotagiri Ramamo-
hanarao. Proactively Detecting Distributed Denial of
Service Attacks Using Source IP Address Monitoring.
In International Conference on Research in Networking.
Springer, 2004. doi:10.1007/978-3-540-24693-0_
63.

[30] P. Phaal, S. Panchen, and N. McKee. InMon Corpo-
ration’s sFlow: A Method for Monitoring Traffic in
Switched and Routed Networks. RFC 3176 (Informa-
tional), 2001. https://datatracker.ietf.org/doc/
html/rfc3176 Accessed: 2022-08-01.

[31] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola,
Carmelo Cascone, Marco Spaziani, Valerio Bruschi, Da-
vide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, Felipe Huici, and Giuseppe Siracu-
sano. FlowBlaze: Stateful Packet Processing in
Hardware. In NSDI’19. USENIX Association, 2019.
https : / / www.usenix.org / conference / nsdi19 /
presentation/pontarelli Accessed: 2022-08-01.

[32] The Zeek Project. The Zeek Network Security Monitor,
2020. https://zeek.org/ Accessed: 2022-08-01.

[33] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner,
Wes Felter, Kanak Agarwal, John Carter, and Rodrigo
Fonseca. Planck: Millisecond-scale Monitoring and Con-
trol for Commodity Networks. SIGCOMM’14. ACM,
2014. doi:10.1145/2619239.2626310.

[34] Said Jawad Saidi, Aniss Maghsoudlou, Damien Fou-
card, Georgios Smaragdakis, Ingmar Poese, and Anja
Feldmann. Exploring Network-Wide Flow Data
With Flowyager. IEEE Transactions on Network
and Service Management, 2020. doi:10.1109/
TNSM.2020.3034278.

[35] Philip Smith, Rob Evans, and Mike Hughes. RIPE
Routing Working Group Recommendations on Route
Aggregation, 2006. https : / / www.ripe.net /
publications/docs/ripe-399 Accessed: 2022-08-
01.

[36] Augustin Soule, Anukool Lakhina, Nina Taft, Kon-
stantina Papagiannaki, Kave Salamatian, Antonio Nucci,
Mark Crovella, and Christophe Diot. Traffic Matrices:
Balancing Measurements, Inference and Modeling. In
ACM SIGMETRICS Performance Evaluation Review,
2005. doi:10.1145/1071690.1064259.

[37] Renata Teixeira, Aman Shaikh, Timothy G Griffin, and
Jennifer Rexford. Impact of Hot-Potato Routing Changes
in IP Networks. IEEE/ACM Transactions On Networking,
2008. doi:10.1109/TNET.2008.919333.

[38] Ross Teixeira, Rob Harrison, Arpit Gupta, and Jennifer
Rexford. PacketScope: Monitoring the Packet Lifecycle
Inside a Switch. SOSR’20. ACM, 2020. doi:10.1145/
3373360.3380838.

[39] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Ste-
fano Vissicchio, and Laurent Vanbever. Strobo-
scope: Declarative Network Monitoring on a Bud-
get. In NSDI’18. USENIX Association, 2018.
https : / / www.usenix.org / conference / nsdi18 /
presentation/tilmans Accessed: 2022-08-01.

1534 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/571697.571724
https://doi.org/10.1016/j.compeleceng.2017.11.020
https://doi.org/10.1145/2619239.2626291
https://doi.org/10.1145/3098822.3098829
https://doi.org/10.1145/3098822.3098829
https://supportportal.juniper.net/s/article/SRX-Getting-Started-Configure-J-Flow?language=en_US
https://supportportal.juniper.net/s/article/SRX-Getting-Started-Configure-J-Flow?language=en_US
https://supportportal.juniper.net/s/article/SRX-Getting-Started-Configure-J-Flow?language=en_US
https://supportportal.juniper.net/s/article/SRX-Getting-Started-Configure-J-Flow?language=en_US
https://doi.org/10.1145/1028788.1028808
https://doi.org/10.1145/1028788.1028808
https://doi.org/10.1007/978-3-540-24693-0_63
https://doi.org/10.1007/978-3-540-24693-0_63
https://datatracker.ietf.org/doc/html/rfc3176
https://datatracker.ietf.org/doc/html/rfc3176
https://www.usenix.org/conference/nsdi19/presentation/pontarelli
https://www.usenix.org/conference/nsdi19/presentation/pontarelli
https://zeek.org/
https://doi.org/10.1145/2619239.2626310
https://doi.org/10.1109/TNSM.2020.3034278
https://doi.org/10.1109/TNSM.2020.3034278
https://www.ripe.net/publications/docs/ripe-399
https://www.ripe.net/publications/docs/ripe-399
https://doi.org/10.1145/1071690.1064259
https://doi.org/10.1109/TNET.2008.919333
https://doi.org/10.1145/3373360.3380838
https://doi.org/10.1145/3373360.3380838
https://www.usenix.org/conference/nsdi18/presentation/tilmans
https://www.usenix.org/conference/nsdi18/presentation/tilmans

[40] Amin Tootoonchian, Monia Ghobadi, and Yashar Gan-
jali. OpenTM: Traffic Matrix Estimator for Open-
Flow Networks. In International Conference on Pas-
sive and Active Network Measurement. Springer, 2010.
doi:10.1007/978-3-642-12334-4_21.

[41] Andreas Wundsam, Dan Levin, Srini Seetharaman, and
Anja Feldmann. OFRewind: Enabling Record and Re-
play Troubleshooting for Networks. In ATC’11. USENIX
Association, 2011. https : / / www.usenix.org /
conference / usenixatc11 / ofrewind - enabling -
record-and-replay-troubleshooting-networks
Accessed: 2022-08-01.

[42] Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca, Tian-
rong Zhang, Karl Deng, and Lihua Yuan. dShark: A Gen-
eral, Easy to Program and Scalable Framework for Ana-
lyzing In-network Packet Traces. In NSDI’19. USENIX
Association, 2019. https : / / www.usenix.org /
conference/nsdi19/presentation/yu Accessed:
2022-08-01.

[43] Minlan Yu, Lavanya Jose, and Rui Miao. Software
Defined Traffic Measurement with OpenSketch. In
NSDI’13. USENIX Association, 2013. https://
www.usenix.org/conference/nsdi13/technical-
sessions/presentation/yu Accessed: 2022-08-01.

[44] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang,
Li Chen, Shiyi Liu, Naiqian Zheng, Ruixin Wang, Hanbo
Wu, Yi Wang, and Nicholas Zhang. LightGuardian:
A Full-Visibility, Lightweight, In-band Telemetry Sys-
tem Using Sketchlets. In NSDI’21. USENIX Associ-
ation, 2021. https://www.usenix.org/conference/
nsdi21/presentation/zhao Accessed: 2022-08-01.

[45] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Green-
berg, Guohan Lu, Ratul Mahajan, Dave Maltz, Li-
hua Yuan, Ming Zhang, Ben Y. Zhao, and Haitao
Zheng. Packet-Level Telemetry in Large Datacen-
ter Networks. SIGCOMM’15. ACM, 2015. doi:
10.1145/2785956.2787483.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1535

https://doi.org/10.1007/978-3-642-12334-4_21
https://www.usenix.org/conference/usenixatc11/ofrewind-enabling-record-and-replay-troubleshooting-networks
https://www.usenix.org/conference/usenixatc11/ofrewind-enabling-record-and-replay-troubleshooting-networks
https://www.usenix.org/conference/usenixatc11/ofrewind-enabling-record-and-replay-troubleshooting-networks
https://www.usenix.org/conference/nsdi19/presentation/yu
https://www.usenix.org/conference/nsdi19/presentation/yu
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu
https://www.usenix.org/conference/nsdi21/presentation/zhao
https://www.usenix.org/conference/nsdi21/presentation/zhao
https://doi.org/10.1145/2785956.2787483
https://doi.org/10.1145/2785956.2787483

A CRediT statement

This section lists the author’s contributions to this work. The
contributions are described using CRediT, the Contributor
Roles Taxonomy, an ANSI/NISO standard.

All authors agree with this declaration of contributions.

Tobias Bühler 0000-0002-8876-1546 �

Conceptualization Equal '

Data curation Lead Ç

Formal analysis Lead Ç

Investigation Lead Ç

Methodology Lead Ç

Project administration Lead Ç

Software Lead Ç

Validation Equal '

Visualization Equal '

Writing – original draft Lead Ç

Writing – review & editing Supporting ´

Romain Jacob 0000-0002-2218-5750 �

Conceptualization Supporting ´

Data curation Supporting ´

Formal analysis Supporting ´

Methodology Supporting ´

Project administration Supporting ´

Software Supporting ´

Supervision Equal '

Validation Equal '

Visualization Equal '

Writing – original draft Supporting ´

Writing – review & editing Lead Ç

Ingmar Poese

Data curation Supporting ´

Investigation Supporting ´

Resources Equal '

Supervision Supporting ´

Laurent Vanbever 0000-0003-1455-4381 �

Conceptualization Equal '

Funding acquisition Lead Ç

Investigation Supporting ´

Methodology Supporting ´

Project administration Supporting ´

Resources Equal '

Supervision Equal '

Writing – original draft Supporting ´

Writing – review & editing Supporting ´

B Magnifier’s controller placement

Magnifier needs a central controller to build its network-wide
ingress/egress view. As we heavily depend on sampled flow
observations, it makes sense to co-locate Magnifier with the
e.g., already existing, central collector of the sampling data. In
large ISP networks, with routers around the globe, we can de-
ploy additional sub-controllers that start and stop the mirroring
rules and collect mirrored packets. More precisely, the main
controller is needed to compute new sentinels and builds the
final ingress/egress observations. It delegates mirroring to the
sub-controllers which autonomously handle the deployment,
activation and deactivation of rules while reporting back any
mirroring-based observations.

C Everflow implementation

Following a few more details to our Everflow reimplemen-
tation in our simulation setup.

Everflow uses packet mirroring to produce its random packet
samples. The paper [45] explains that Everflow mirrors based
on a fixed number of bits in the IP identification header field
(IPID). As an example, selecting 10 random bits in the IPID
field will result in random packet sampling of 1 out of 210 =
1024 packets. However, this assumption is only true if the
values in the IPID fields are more-or-less uniformly distributed.
Taking our CAIDA trace as an example, we see that we have
a huge number of packets which set the IPID field to zero.
Depending on how we select the bits in the IPID field, we
might get way more or less sampled packets than expected.
For this reason, we implemented the random packet sampling
aspect of Everflow in our simulation code by taking every n-th
packet observed on a device, e.g., every 1024th packet in the
previous example.

Additional to the implemented mirroring techniques (ran-
dom packet sampling and TCP flag packets), Everflow also
supports mirroring of packets with a special debug bit. As this
was not relevant for a direct comparison with Magnifier , we
did not implement this feature in our simulation code. The
same holds for Everflow’s controller, storage and reshuffler
components.

D Additional evaluation results

This appendix section first illustrates the lab setup used to
evaluate Magnifier. We then analyze the used CAIDA trace
in more detail. Afterward, we show additional evaluation
results focused on Magnifier’s performance. We conclude
with additional plots comparing Magnifier with Everflow.

D.1 Magnifier lab setup
Fig. 13 illustates the lab setup we used to evaluate Magnifier .
We establish four parallel connections between the two Nexus

1536 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://credit.niso.org/
https://niso.org/
https://orcid.org/0000-0002-8876-1546
https://orcid.org/0000-0002-2218-5750
https://orcid.org/0000-0003-1455-4381

Nexus 9300 - 1

Nexus 9300 - 2

Server

Sampling data

Mirroring data

Magnifier Replayed CAIDA traffic

Control traffic

1 2 3 4

N 4 emulated
ingress points

Figure 13: Two Nexus 9300 switches emulate four network
ingress points. The traffic is replayed and sampled on the first
switch, then forwarded to the second, which mirrors packets.

9300 switches, each emulating a network ingress. The first
switch receives and samples the traffic using sFlow (sampling
rate 1/40967). It then forwards to the second switch, which
mirrors the traffic according to the configured rules. Magni-
fier’s controller runs on a server and collects sampling and
mirroring data. As these switches are limited to 512 mirroring
rules, we used a fixed budget of 500 rules per emulated ingress
point.8

D.2 CAIDA data analysis
Fig. 14 shows a CDF of the amount of packets observed per
source /24 in 60s of our CAIDA trace used in the evaluation.
60s represent one iteration at real-time replay speed. As we
can see we have a very small number of heavy hitters which
carry most traffic as well as a huge number of /24 prefixes
which only contain a few packets. Roughly 10% of all /24
prefixes contain more than 90% of all the packets.

A lot of the /24 prefixes with very low packet counts are
most likely DDoS attack traffic (e.g., TCP SYN packets). We
decided to keep these packets in the trace as a real ISP network
could also observe similar packet distributions in their transit
traffic.

D.3 Additional Magnifier plots
This section contains additional plots which evaluate Magnifier
in terms of packet coverage and mirrored traffic.

Fig. 15 shows the performance results if we consider an
increasing number of border routers (from 4 to 64). Forrandom
and static traffic assignment we notice that the coverage
slightly drops while we see an increased amount of mirrored
traffic. However, this is not true for the permuted assignment
strategies. random and static distribute the packets to their
ingress points based on equal slices of the destination IP space.
If we have more border routers, we also have additional slices

7The highest configurable rate on this model; we get the most samples.
8The four emulated ingresses share the budget. We use TCAM carving [7]

to increase the space for our mirroring rules to 2048 (by taking it from other
features), to enable the original budget (512) per ingress.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fraction of /24 src prefixes

fr
ac
ti
on

of
p
ac
ke
ts

Figure 14: A CDF plot of the amount of packets observed per
source /24 prefix in 60s (one iteration at real speed) in our
CAIDA trace.

4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

border routers

p
k
t
co
ve
ra
ge

naive inference samples only

random static

permuted 20% permuted 5%

4 8 16 32 64
0.01

0.1

0.2

border routers

m
ir
ro
re
d
p
k
ts

(%
)

Sampling (not validated)

Magnifier (validated)

Figure 15: Simulation results for coverage and mirrored traffic
when Magnifier runs with different amounts of border routers.
CAIDA traces replayed at real speed, sampling rate 1/1024.

and close IP space is distributed over multiple ingresses which
leads to the observed drop in coverage. This is not true for the
permuted cases, where we always permute a fixed number of
source /24 prefixes to different ingresses.

Fig. 16 considers different sampling rates. As expected, if
we have fewer samples as input Magnifier can cover fewer
packets and also produces fewer mirrored packets as it finds
fewer sentinels to begin with. We observe this behavior for all
traffic assignments.

Finally, Fig. 17 shows the missing assignment strategies
(random and permuted 20%) if we consider different amounts
of top sentinels (activity and size ordering). Following
the results in Fig. 8, the activity strategy provides better
coverage than size and a lower amount of mirrored traffic.

D.4 Stability of sentinels
Following, we evaluate how many sentinels change between
simulation iterations.
Setup We use the results from our simulations with 32 border
routers, real traffic speed and various traffic-to-ingress assign-
ments (sampling rate 1/1024). The results show mean values
over 60 iterations.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1537

256 512 1024 2048 4096
0

0.2

0.4

0.6

0.8

1

sampling rate (1/X)

p
k
t
co
ve
ra
ge

naive inference samples only

random static

permuted 20% permuted 5%

256 512 1024 2048 4096
0.01

0.1

0.2

sampling rate (1/X)

m
ir
ro
re
d
p
k
ts

(%
)

Sampling (not validated)

Magnifier (validated)

Figure 16: Simulation results for coverage and mirrored traffic
when Magnifier runs with different sampling rates. CAIDA
trace replayed at real speed, 32 border routers.

Results Table 3 shows the amount of changed sentinels for
different amounts of deployed sentinels (based on activity
and size ordering) for random, static and permuted 5%
traffic assignment. We first observe that we have to change
fewer sentinels if we base the ordering on sentinel activity.
More active sentinels are often also stable over longer periods
of time which means that we find them consistently. We see a
different behavior for the ordering based on size. Here nearly
all sentinels change between iterations. The largest sentinels
are often based on sparse samples located in empty prefix
space. That means, we might not be able to find the same big
sentinel between multiple iterations if the covered flows are
no longer visible (e.g., in the sampled data).

As expected, the number of changed sentinels also depends
on the difficulty of the traffic assignment. In the random case,
ingress assignment changes frequently even during a single
iteration. That means we often find new sentinels in the follow-
ing iteration. For permuted 5%, the assignment is much more
stable and we can always keep around 50% of all sentinels
between iterations.

sentinels random static permuted 5%

activity Top 100 84 50 35
ordering Top 500 406 292 220

Top 1000 836 610 466
Top 5000 4487 3662 2769

size Top 100 94 87 45
ordering Top 500 472 453 224

Top 1000 950 918 461
Top 5000 4817 4698 2776

Table 3: Number of changed sentinels between iterations for
different assignment and sentinel ordering strategies.

Conclusion The top sentinels often change between iterations,
however Magnifier is not really impacted by that. As we
describe in § 4.1, Magnifier works with two ACLs and switches
between them. While one is active, the other one gets populated.

0.1x 0.5x 1x 2x
0

0.2
0.4
0.6
0.8
1

p
k
t
co
ve
ra
ge

unlimited top 5k top 1k top 500

activity size

0.1x 0.5x 1x 2x
0

0.2
0.4
0.6
0.8
1

0.1x 0.5x 1x 2x

0.001

0.01

0.1

1

traffic load

m
ir
ro
re
d
p
k
ts

(%
)

0.1x 0.5x 1x 2x

0.001

0.01

0.1

1

traffic load

permuted 20% random

Figure 17: Simulation results for coverage and mirrored using
different amount of top sentinels according to a activity
and size ordering. We show the random and permuted 20%
traffic assignment strategies (compare with Fig. 8). The plots
show values for different traffic replay speeds of the CAIDA
trace with 32 border routers and sampling rate of 1/1024.

The frequent sentinel changes between iterations are therefore
not a big problem as we anyway need to build a completely
new ACL.

D.5 Additional comparison with Everflow
In this section we show additional comparison plots between
Magnifier and Everflow. Fig. 18 shows different number of
ingress routers while Fig. 19 considers varying sampling rates.
For both figures we show the results for permuted 5% and
static traffic assignments. Everflow’s packet coverage and
amount of mirrored packets show only small reactions to the
different ingress routers and/or sampling rates. Everflow’s
mirrored packets mainly contain packets due to TCP SYN,
FIN or RST flags. The randomly sampled ones contribute only
in a small amount. As a result, changes in the sampling rate
(Fig. 19) have more impact on Magnifier than on Everflow.
Magnifier’s performance is tightly related to the amount and
distribution of the randomly sampled packets.

1538 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 8 16 32 64
0

0.2
0.4
0.6
0.8
1

p
k
t
co
ve
ra
g
e

sentinel sampling only

unlimited top 1k activity

4 8 16 32 64
0

0.2
0.4
0.6
0.8
1

4 8 16 32 64
0.001

0.01

0.1

1

10

border routers

m
ir
ro
re
d
p
k
ts

(%
)

4 8 16 32 64
0.001

0.01

0.1

1

10

border routers

permuted 5% static

Everflow (not validated)

Magnifier (validated)

Figure 18: Comparison of coverage and mirrored traffic for
Magnifier and Everflow for different amounts of border routers.
We show the static and permuted 5% traffic assignment.
We replay the CAIDA trace at real speed and use a sampling
rate of 1/1024.

256 512 1024 2048 4096
0

0.2
0.4
0.6
0.8
1

p
k
t
co
ve
ra
ge

sentinel sampling only

unlimited top 1k activity

256 512 1024 2048 4096
0

0.2
0.4
0.6
0.8
1

256 512 1024 2048 4096
0.001

0.01

0.1

1

10

sampling rate (1/X)

m
ir
ro
re
d
p
k
ts

(%
)

256 512 1024 2048 4096
0.001

0.01

0.1

1

10

sampling rate (1/X)

permuted 5% static

Everflow (not validated)

Magnifier (validated)

Figure 19: Comparison of coverage and mirrored traffic for
Magnifier and Everflow for different sampling rates. We show
the static and permuted 5% traffic assignment. We replay
the CAIDA trace at real speed and distribute traffic over 32
simulated ingresses.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1539

NetPanel: Traffic Measurement of Exchange Online Service

Yu Chen†, Liqun Li⋄, Yu Kang⋄, Boyang Zheng†, Yehan Wang†, More Zhou†

Yuchao Dai†, Zhenguo Yang†, Brad Rutkowski‡, Jeff Mealiffe‡, Qingwei Lin⋄
†Microsoft 365, China, ⋄Microsoft Research, China, ‡Microsoft 365, USA

Abstract
Global cloud applications are composed of thousands of com-
ponents. These components are constantly generating large
volumes of network traffic, which is a major cost of cloud
applications. Identifying the traffic contributors is a critical
step before reducing the traffic cost. However, this is chal-
lenging because the measurement has to be component-level,
cost-effective, and under strict resource restrictions. In this
paper, we introduce NetPanel, which is a traffic measurement
platform for the Exchange Online (EXO) service of Microsoft.
NetPanel fuses three data sources, namely IPFIX, Event Trac-
ing for Windows (ETW), and application logs, to jointly mea-
sure the service traffic at the component level, where each
component is owned by a service team. NetPanel uses several
schemes to reduce the measurement overhead.

NetPanel has been in operation for more than one year. It
has been used to profile network traffic characteristics and
traffic cost composition of EXO. With the insights obtained
through NetPanel, we have saved millions of dollars in net-
work resources. The overhead of running NetPanel is rela-
tively small, which requires less than 1% CPU and disk I/O on
production servers and less than 0.01% of EXO computation
cores to process the data in our big-data platform.

1 Introduction

Cloud applications, such as Exchange Online (EXO), are com-
posed of thousands of components running on hundreds of
thousands of servers, developed and maintained by engineers
from many different teams. In EXO, one component is a mod-
ule that performs a specific function, as an entire or part of
a process. The Internet Information Services (IIS) [4] based
proxy, running on frontend (FE) servers, routes traffic for dif-
ferent components such as REST [23], EWS [5] and MAPI [6].
The traffic of each component is owned by a specific engi-
neering team. These components are sending tremendous traf-
fic across data centers, which incurs great costs. Any defect
in a single component may lead to widespread traffic flood.

Furthermore, due to the massive number of components, the
limited shared bandwidth could be easily drained by low-
priority traffic. In these cases, customers could suffer from
long latency or even connection loss [7, 9, 12, 14]. For exam-
ple, an incident caused by anomalous traffic was reported by
Azure [2] on June 14th, 2021 where some customers received
errors when performing service management operations. The
root cause was high CPU consumption and request timeouts
caused by an unexpected surge in internal traffic. The issue
was mitigated by adding rules to block internal traffic on a
subset of backend servers.

Cloud application owners have built plenty of monitors
for incidents and performance regressions [1, 3, 20]. Such
monitors are typically based on availability or latency met-
rics, which are insensitive to traffic issues. Therefore, there
is still undesired traffic caused by various reasons, such as
code bugs or misconfigurations. Over time, these hidden bugs
become extremely difficult to trace as everyone takes them
as necessary bandwidth requirements. Unnecessarily more
capacity planning budget is therefore needed in subsequent
years. The extra cost will be millions of dollars per year given
the application scale. For example, in one case, we caught
a configuration error that nearly quadrupled its peak traffic.
In another case, we found that one service was sending re-
quests globally, while these requests can actually be handled
within a location. These cases will be detailed in Section
5.2. Although there is existing work to detect anonymous
traffic bursts [29, 31, 39, 44], few have provided insights for
continuous traffic optimization. There is a body of work on
misconfiguration detection [51, 53] and safe deployment [34],
but their solutions are not specially designed for traffic-related
issues. In particular, some traffic issues can only be identified
through long-term continuous monitoring.

While it is vital to continuously monitor the traffic flow for
a cloud application, the dynamic and heterogeneous nature of
a global cloud application makes this difficult. An efficient
traffic monitoring system for cloud applications must satisfy
the following requirements:

(1) The measurement should provide component-level

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1541

results. To efficiently identify the owner of the traffic,
component-level measurement is required. A component is
typically owned by a single engineering team. Researchers
have been exploiting network measurement tools such as IP-
FIX/Netflow in the last decade [22, 37, 55] to gain insights
into the network traffic in large-scale cloud infrastructures.
These approaches operate on network routers, so they cannot
identify components at the application layer. Server network
analysis tools [8, 11, 36, 43] can observe the traffic sent by
each process. However, multiple components can share a sin-
gle process. These tools cannot distinguish the traffic emitted
by components sharing the same process.

(2) The size of daily measurement results should be
small (in GB). To draw an effective conclusion on traffic ob-
servation, engineers need to query data over a long period of
time. In addition, there are cases where successive interactive
analysis is needed, such as the case we discuss in Section
5.2.1. A user query response should be returned within a few
seconds. On the other hand, global cloud applications are con-
stantly generating a vast amount of traffic logs. For instance,
the size of IPFIX data is more than 10TB per day. Event Trac-
ing for Windows (ETW) [11] data and application logs are
in PB. Directly joining PB and TB data at a daily frequency
is impractical due to resource constraints. Directly running
queries on these log data imposes huge data processing costs
and unacceptable query latency.

(3) The collector in production environment should run
under strict resource restrictions. Cloud applications such
as EXO provides high Service Level Agreements (SLA) [13]
to the customers. Therefore, the service has strict restrictions
in terms of the resource used by any single component on the
servers to ensure a quick response to customer requests. To
collect event logs, ETW needs to run on the servers by the side
of service components. Pulling all the network metrics from
ETW regularly is prohibited in the production environment
because it will exhaust the CPU and disk I/O on the production
servers.

To address the aforementioned challenges, we design Net-
Panel, a cost-effective continuous traffic profiling tool for
EXO. NetPanel takes three data sources, including IPFIX,
ETW, and application logs. We fuse these data sources to
jointly provide component-level measurement results. We re-
duce the data size with feature translation, data splitting, and
data aggregation to keep all measurement results at several
GB per day, which will be detailed in Section 4. To reduce
the resource consumption of ETW, we only retain the data for
the top k ports obtained from IPFIX.

NetPanel has been safeguarding the network traffic of EXO
for more than 1 year. It brought us valuable insights into our
traffic and helped us save millions of dollars per year. We
introduce 4 real-world cases in Section 5.2. NetPanel runs
with negligible impact on our production servers (less than
1% increase in CPU and disk IO). The data processing cost
for our big-data platform is also minor given the scale of

Roles Abbr. Functionality
Frontend FE Connects with customers and routes customer requests
Backend BE Stores mailboxes, delivers emails, and provides site resilience
Active Directory AD Holds and queries customer metadata

Table 1: Server roles and their functionalities.

EXO (less than 0.01% of EXO cores). For a query for data
in a 60-day period, the response can be returned within 30
seconds.

Our key contributions and insights in this work are summa-
rized as follows:

• We discuss the requirements and challenges of measur-
ing the traffic for a global scale application, i.e., EXO.
We show that telemetry data should be attributed to an
organizational structure, such as a team of engineers,
to actually drive cost reduction. Moreover, daily data
size should be small enough to provide insight into how
traffic data changes over time.

• We present our novel traffic measurement design which
fuses IPFIX, ETW, and application logs to achieve
component-level measurement. We demonstrate that,
with proper data volume reduction, it is feasible to join
data sources across routers and servers. We show that
cross-validating data for integrity is feasible and crucial.

• We share our observations on traffic characteristics of
EXO in production environment. Specifically, we figure
out that heavy hitters (top ports/components) are stable
in EXO, and this feature can be used to reduce data
volume. We also demonstrate how NetPanel can help
reduce traffic costs through real-world case studies.

We believe that the experience of operating NetPanel pro-
vides valuable guidance to other cloud applications on how
to monitor and optimize their network traffic.

2 Background

This section introduces the EXO service traffic and explains
how these traffic flows are generated. Then, we share the
measurement tools available in EXO and their capabilities.

2.1 EXO Service Traffic
EXO operates in numerous datacenters around the world.
There are hundreds of thousands of servers all over the world
serving its enormous user community. The servers are cate-
gorized into three server roles: frontend routing proxy (FE),
backend mailbox (BE), and directory (AD), as summarized
in Table 1. FE servers, which sit behind load-balancers, serve
customer requests over direct connections. AD servers hold
information about users, mailboxes, and other customer meta-
data. BE servers provide storage for mailboxes and are respon-
sible for the delivery of emails to/from mailboxes. Multiple

1542 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: EXO traffic overview. When Bob sends an email to Alice, replication occurs, and Alice later reads the email replica.
During the email-reading process, 6 Internal Long-haul traffic flows and 2 Internet traffic flows are generated.

copies of mailboxes are geographically-dispersed to provide
high availability and site resilience. Each role of servers (i.e.,
FE, AD, or BE) hosts a group of services in order to provide
functionalities as designed.

EXO servers communicate with each other when serving
customers. We divide EXO traffic into two types: WAN traffic
and Metro traffic. The WAN traffic goes through routers in
WAN; and the rest, namely Metro traffic, travels within data-
centers in the same location. We are particularly interested in
the WAN traffic because it costs more than 90% of the annual
bill. There are two subtypes of WAN traffic. The first is the
traffic between EXO servers and user clients (Internet traffic)
and the other among EXO servers (Internal Long-haul traffic).
Internet traffic is responsible for around 10% of WAN traffic
and Internal Long-haul traffic takes the rest.

The Internal Long-haul traffic are assigned to different
priority tiers, Tier 0 and Tier 1, by Bandwidth Broker [52].
Tier 0 is of higher priority with higher Quality of Service
(QoS). Tier 1 traffic has a lower priority, and it is routed
through sub-optimal paths and is dropped by routers first
when congestion occurs.

2.2 How EXO Traffic Generated?
We use a typical scenario shown in Figure 1 to describe how
the traffic is generated in EXO. In this scenario, Bob uses the
Desktop client to send an email to another user Alice. Alice
then reads her email through a web client. Bob in Location F
sends the email to Alice’s mailbox in Location E. The mailbox
is replicated to Location D for high availability. These are
annotated by the gray dashed line and the blue dotted line

in Figure 1. Later, Alice reads her email from the mailbox.
There are 4 steps in this email-reading process, detailed as
follows:

Step 1: Alice uses the web client in Location A to send a
request to the closest FE server. In this example, we assume
the closest FE server resides in another Location B.

Step 2: The FE server talks to an AD server in Location
C to query which BE server knows where the active copy
of Alice’s mailbox is hosted. In this case, the BE server in
Location D is returned by the AD server.

Step 3: The FE server queries the BE server in Location D
to ask which BE server hosts Alice’s mailbox. In this example,
the BE server in Location D happens to host Alice’s mailbox,
so it responds with itself.

Step 4: The FE server in Location B forwards the request
to another FE server in Location D and that FE server in
Location D will further transfer the request to the BE server
in Location D. The mailbox’s response is returned to Alice in
the opposite direction along the paths of Step 1 and Step 4.

During the email-reading process, the traffic in Step 1 and
the traffic from FE to the web client in the mailbox’s response
is Internet traffic because the FE server is talking to an ex-
ternal client outside of Microsoft. The traffic in Steps 2 and
3, and the traffic from the FE in Location B to the FE in
Location D in Step 4 is Tier 0 traffic because the source and
destination EXO servers are in different locations. In Step 4
(the orange arrow in Figure 1), the traffic between FE servers
is Tier 0 traffic, while the traffic between FE and BE servers
in Location D is Metro traffic. We use the example shown in
Figure 1 only to explain the generation of Tier 0 traffic. Most

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1543

of the traffic would be Metro traffic when the servers involved
are in the same location.

The replication traffic, represented as the blue dotted line
in Figure 1, is Tier 1 traffic. Tier 1 traffic mostly consists
of background traffic that does not serve user activities and
therefore does not have rigorous latency requirements. Typical
cases include: (1) data replications for high availability; (2)
non-urgent mailbox migrations; (3) uploading logs.

In the example in Figure 1, Alice’s request first hits the FE
server in Location B (step 1), then is routed to the FE server
in Location D (step 4), and finally reaches the BE server in
Location D (step 4). The request is served by the REST [23]
component on the BE server. In this situation, only the ap-
plication logs of the FE servers capture this long-haul traffic
between the two FE servers (Location B ⇒ D). The com-
ponents on BE servers in Location D, such as REST [23],
MAPI [6], and EWS [5], are behind the FE proxy in the same
location. As a result, the BE servers are unaware if the re-
quest originates from another location. Sometimes, multiple
components on one BE server may even share the same pro-
cess. Therefore, server network analysis tools [8, 11, 36, 43]
are insufficient to provide component-level traffic measure-
ments. In summary, application logs are necessary to perform
component-level traffic measurements.

2.3 Traffic Measurements
There are two kinds of traffic measurement methods available
in our data centers: on-router and on-server measurements.

One of the commonly used on-router measurements is flow
monitoring [26, 35, 41]. There are two standards, i.e., Net-
flow [21] and IPFIX [15], that have been used for years. Flow
monitoring samples packets with a certain probability and
aggregate them into flows. A flow is a sequence of packets
with the same IP 5 tuples (src./dst. addresses, src./dst. ports,
and protocol). Flows are uploaded to a centralized storage.

When measurements are made on the servers, common tool-
kits include Tcpdump [8] and Event Tracing for Windows
(ETW) [11]. Tcpdump is a well-known library that provides
powerful packet analysis capabilities on Linux, while Win-
dows uses ETW to collect system network events. These tools
can monitor the traffic usage of all processes on a machine.

We annotate these measurement schemes in Figure 1. IP-
FIX collects traffic data on WAN routers. ETW collects sys-
tem network events and provides traffic statistics for processes
on servers. We further add application logs, which are gen-
erated within the services and are owned by different teams
for debugging purposes. Application logs are request-focused.
For a specific request, application logs record the timestamp,
the component that serves the request, the local server name,
the remote server name, the latency, the request and response
content size, the remote port, etc.

We summarize the measurement capabilities of the three
schemes in Table 2. TimeStamp, IP, Port, Process, and Traffic

Timestamp IP Port DSCP Process Component Traffic Size Request Size
IPFIX ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗

ETW ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗

App logs ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓

Table 2: Available Measurement Methods

Size are general definitions. TimeStamp, an IP pair (source
and destination), and a Port pair identify a unique flow. Pro-
cess is the information of processes that are sending and
receiving the traffic. We need a Differentiated Services Code
Point (DSCP) tag [18] because Bandwidth Broker uses it for
traffic QoS classification. Packets with different DSCP tags
are classified into different priority tiers. IPFIX covers IP,
port, and DSCP but cannot cover the process and component
information which are available only on servers. ETW can
further measure processes, but cannot cover the exact compo-
nent as discussed in our example in Sec. 2.2. Application logs
contain the request and response content sizes of components
but not counting the sizes of the packet headers. In addition,
application logs do not capture packet loss or retransmission.
In conclusion, we need to fuse IPFIX, ETW, and application
logs to achieve component-level measurement.

3 Motivation and Design Goals

In this section, we state our motivation to design NetPanel
and further define the goals to be met for our design along
with the challenges to be resolved.

3.1 Motivation
In the EXO service, many components are working together
to serve customers. These components send large amounts of
traffic globally, which is very expensive. The large cost has
motivated the application owner to understand the current traf-
fic, reduce the traffic cost, and ensure there is no traffic waste.
Furthermore, when a development team adds a new feature to
reduce their traffic, they also need a tool to validate the traffic
change of their component. Before NetPanel, each team only
monitors their own request amount, leading to an isolated
and incomplete view, which makes it hard to motivate traffic
optimization efforts, verify data correctness, and detect traffic-
related issues. On the other hand, without component-level
information, it is non-actionable even if anomalous traffic is
detected. With the increasing complexity of modern global-
scaled software, this requirement becomes more and more
urgent, which motivates us to build NetPanel.

3.2 Design Goals and Challenges
The design of NetPanel has to meet the following goals and
address the corresponding challenges.

Goal-1: The measurement should provide component-
level results. The overall EXO traffic should be divided into

1544 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

various components. EXO runs on hundreds of thousands of
machines of three server roles. Machines of the same server
role hold the same set of components. A component is owned
by an engineering team. As long as the component’s traffic is
identified, the engineering team can take action to optimize
its cost. NetPanel should provide the capability to establish
the mapping between the components and their traffic flow.

Recent measurement works [33,45,46,48,54] are on-router
measurements, so they cannot support measurement at com-
ponent granularity. Traffic Refinery [19] identifies the com-
ponent flows by inspecting DNS queries and manually spec-
ifying matches between components and their IP prefixes.
This does not work in EXO because it assumes that each IP
must correspond to at most one component. However, in our
case, an IP can be shared by many components at the same
time. Google uses Bandwidth Enforcer (BwE) [32] to allocate
bandwidth at task granularity. A task may contain multiple
processes, and therefore, BwE cannot be used to monitor the
bandwidth for components sharing a process. NetPanel ad-
dresses this challenge by leveraging application logs to fill in
the component property. We will describe how to jointly con-
sider the three data sources, i.e., IPFIX, ETW, and application
logs, to recover component-level traffic throughout Section 4.

Goal-2: The daily measurement result size should be
small (in GB). In EXO, IPFIX generates several TB of data
every day, while the daily application log in PB. After com-
pression, the data size will be reduced to ∼10%. However,
IPFIX data is more than 10TB per day, so the data size will
still be too large after compression. To draw an effective con-
clusion on traffic, engineers usually have to do consecutive
analysis over long time intervals and compare the results. The
system should provide quick responses to user queries and
consume few resources. From our experience, we need to
limit the result size to several GB per day, so that analysis
over a long time interval is allowed.

The data used for analysis should cover a continuous time
interval of at least several weeks to overcome the dynamic
nature of network traffic. Figure 2a shows the traffic variation
in EXO over a time interval of more than one week in North
America and Europe. The traffic volume highly aligns with
user activities, with more traffic during working hours and
much less at night and on weekends. The valley values are
nearly half of the peak values. The large fluctuation rate is
likely to override the traffic change introduced by a new fea-
ture if we make queries only over a short time interval of a few
hours. Moreover, different components can have different traf-
fic patterns. We show the traffic patterns of two components
in Figure 2b. The traffic of Component 1 fluctuates greatly,
while that of Component 2 is relatively stable.

Many approaches have been proposed to reduce the data
size. However, they cannot satisfy our requirements for dif-
ferent reasons. IBM cloud [39] is dealing with a 2.35TB log
each day, but their approach only reports anomalies without
any details on current and historical traffic usage. Analysis

(a) All geographical regions have fluctuations between day-
time and night but follow a similar weekly pattern. The valley
values could be half of the peak values.

(b) Different components have various traffic patterns.

Figure 2: Huge variations in time and components domain.

farm [47] proposes a cloud log analysis platform and ag-
gregates IP addresses to IP-groups. We achieve something
similar with feature translation (detailed in Section 4.2.1), but
this alone would only reduce the data size to hundreds of GB
per day. Anwar et.al. [16] claim to reduce the data size by
up to 80% using different sampling frequencies and storage
aggregation for different metrics. In our case, we collect only
one metric but the data size must be reduced thousands of
times. NetPanel addresses the challenge with multiple steps,
which will be introduced in Section 4.2.

Goal-3: The collector in the production environment
has to run under strict resource restrictions. The data col-
lector has to run continuously in the production environment.
There are strong resource restrictions (CPU, memory, disk
I/O, etc.) for measurement tools in order to reserve as many
resources as possible to serve user requests. The resource
consumption of the collectors has to be very small.

We abandoned pulling all network metrics from ETW in the
EXO production environments because of performance issues.
In EXO, every single component should use no more than
5% CPU. It is restricted to log no more than 32MB of data
on local disks every five minutes. Running ETW and writing
all the metrics to the local disk exceeds the limit as shown
in Section 6.1. The ETW data size for a single day is in PB.
NetPanel reduces ETW collectors’ resource consumption by
only recording the traffic data of the top k ports. This greatly
reduces the log size as well as the computation resource and
disk I/O throughput. We explain how the top k ports are

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1545

Figure 3: NetPanel Architecture Overview.

identified in Section 4.2.2.

4 System Design

Figure 3 shows the overview of our design. The data sources
include IPFIX, ETW, application logs, and management data.
There are two separate pipelines in the system. The first one
(blue arrows) is responsible for reducing the data size while
preserving important attributes. The second one (yellow ar-
rows) is used to cross-validate the data from IPFIX and ETW
to ensure data integrity.

The output of both pipelines is fed into the result database.
The result database is a light-weighted database that can re-
spond to web services as well as user queries in near real-
time. We use Azure Data Explorer (Kusto) [10] for the result
database. The result database contains tables for different
features. The schema of the tables is available in Table 3.
We use port tables in the result database to derive the top k
ports with the largest traffic volume and use them as a filter
for ETW collectors to reduce their resource consumption in
the production environment (grey arrows). We also set up a
monitoring service to help component owners detect anoma-
lies and continuous upticks in their traffic usage. A WebUI is
provided for traffic data visualization.

4.1 Data Sources
Before NetPanel, EXO deployed a background packet trace
monitor on its servers to provide network statistics such as
throughput, RTT, etc. However, without component-level in-
formation, this background tracking is not adequate to drive
owners to optimize their traffic. This experience drives us to
choose a different set of data sources for NetPanel.

NetPanel takes three measurement inputs: IPFIX, ETW,
and application logs. The data is uploaded to COSMOS [38]
on an hourly basis. COSMOS is a Hadoop-like distributed
data storage and processing platform. We convert different
types of data into a uniform format like Table 2. In addition
to the measurement data, NetPanel also takes in management

data. The management data contains the mapping between an
IP address and its location and server role. The management
data is uploaded daily because it is relatively static.

NetPanel handles the three data sources independently. IP-
FIX data size is more than 10TB per day. ETW and applica-
tion logs data sizes are several PB per day. It is too expensive
to directly join the three data sources based on shared features
(i.e., TimeStamp, Port, IP, and Process). We thus process the
raw data independently and only store aggregation results in
the result database as detailed in the next section.

4.2 Data Processing

The data processing pipeline consists of three consecutive
steps. (1) Feature translation: translate the raw information of
the traffic data into a set of features. (2) Data split: divide the
traffic data associated with source-destination port pairs into
two separate views, i.e., source-port view and destination-port
view. (3) Data aggregation: aggregate the traffic data into
various feature tables.

4.2.1 Feature Translation

In Microsoft, different services occupy different blocks of
IP ranges, so we use IP addresses1 to retrieve EXO traffic.
Then, we use management data to translate machine IPs into
locations and server roles. The server role is among AD, FE,
and BE. Location is the metropolitan area where the server
locates. This translation reduces the storage requirements
from trillions of IP pairs to millions of feature pairs.

We translate location pairs to Rate-Regions. Location pairs
are only used to get the prices of traffic flows. A longer dis-
tance implies a higher price. We thus use a new feature called
Rate-Region to replace the location pair of a flow. Azure
charges Microsoft internal services a unified price ($/Mbps)
for the flows traveling a geographical continent or an ocean,
like North America, Europe, Atlantic, etc. There are only

1The IP addresses here are all Microsoft IPs.

1546 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table Data Source Schema - Keys Schema - Value (Bytes)
Source/Destination-Port IPFIX TimeStamp, ServerRole, RateRegion, Port, DSCP TrafficSize

Process ETW TimeStamp, ServerRole, RateRegion, Port, Process TrafficSize
Component Application logs TimeStamp, ServerRole, RateRegion, Port, Process, Component RequestSize

Table 3: Columns in result tables.

Figure 4: Split the port pair view into the source-port view and
the destination-port view, separately. Port Es are ephemeral
ports. Well-known ports A, B, and C pop up in the ranking
list after the split.

about 10 Rate-Regions. Translating location pairs to Rate-
Regions reduces the data size by ∼99.1%. We note that the
feature translation does not hinder traffic debugging. One
component is deployed on all machines of the same role.
In case we detect anomalous traffic for one component in a
Rate-Region, engineers can randomly pick a server in that
Rate-Region and start the debugging from there.

4.2.2 Data Split and Aggregation

We aggregate the raw data based on the source port and
destination port, separately, ranked based on the traffic vol-
ume. This results in two views: the source-port view and the
destination-port view, which have two benefits: (1) signifi-
cantly reduces the table size, i.e., from O(# source port ×
destination port) to O(# source port + # destination port);
(2) helps pop up “well-known” ports in ranking because the
traffic of ephemeral ports will converge to relatively smaller
numbers than the traffic of “well-known” ports after aggrega-
tion. An example of port view splitting is shown in Figure 4.

Once we have identified the “well-known” ports, we take
an additional step to filter the ephemeral ports in the source-
port table and destination-port table. For every single time
slot, we aggregate all ports that contribute less than 1% of the
total traffic to one record and mark it with a special tag. Recall
that our goal is to reduce overall traffic cost, the threshold
of 1% is small enough. We will show in Section 5.1.1 that a

handful of ports dominate the traffic usage. The outputs are
streamed into Kusto on a daily basis.

We aggregate the records from different data sources to
obtain different feature tables. The schemas of these tables are
shown in Table 3. We generate the Process table from ETW
data, the Component table from application logs, and the
Source-Port table and Destination-Port table from IPFIX data.
We aggregate the TimeStamp with 5-minute intervals. Traffic-
Size is aggregated with sum operation for all the records with
the same key. For example, the tuple of <TimeStamp, Server-
Role, RateRegion, Port, DSCP> is the key for the Source-Port
table. The TrafficSize in the Source/Destination-Port table
and the Process table is the sum of network traffic while
the RequestSize of the Component table is the sum of re-
quest/response content sizes, excluding packet headers.

4.3 Data Validation
As a global-scale system, there are many factors that result
in data corruption such as broken hardware and data loss.
During the development of NetPanel, we experienced a partial
data loss of the IPFIX data due to the data collector pipeline
change. In fact, data missing issues are non-trivial to detect
due to the vast amount of data being processed. NetPanel
resolves the problem by cross-validating the results obtained
from its multiple data sources.

The key idea is to cross-validate the ETW data and IP-
FIX data because the traffic size captured with ETW should
match that with IPFIX. However, because IPFIX does packet
sampling while ETW captures all traffic, we need to recover
IPFIX data before comparing them. The recovery function
is shown in Eq. (1). We do not validate the traffic size using
application logs, because they only capture the content sizes
without the request headers.

IPFIXBytes =
(PacketSize+HeaderSize)∗PacketNumber

SamplingRate
(1)

PacketSize, PacketNumber, and SamplingRate are available
from the IPFIX data. Note that we add the ethernet header
length (i.e., HeaderSize) to PacketSize to get the actual ether-
net frame size on the wire. Based on the law of large numbers,
we believe that: Given a machine pair that continuously send
a lot of traffic to each other, an effective estimation of IPFIX
should be close to ETW data. We conducted an experiment to
validate our recovery approach. The result shown in Figure 5

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1547

Figure 5: Recovered traffic for a single pair of machines in
one day from IPFIX matches the traffic from ETW.

can confirm that the recovered IPFIX traffic size matches the
ETW measurement precisely.

We selected the top 1000 pairs of machines in EXO that
send the most traffic in a day for data validation. Machine
pairs are re-selected daily as machine pairing relationships
may change when machines become online or offline. Af-
ter selecting the machine pairs, we insert their IPFIX data
and ETW data into the validation table. Direct data compari-
son could be done with queries to the validation table. Data
validation is done on a daily basis.

4.4 Result Database
The result database contains the Source-Port table, the
Destination-Port table, the Process table, and the Component
table. These tables are used to analyze traffic for component
owners. A validation table is stored for data integrity checks.
A top k ports table is created based on the Source-Port table
and Destination-Port table. It picks the top k ports in both
tables. These top k ports will be used as filters for the ETW
collector in the future.

NetPanel uses the latest top k ports as a filter for the ETW
collector to save production resources. These top k ports are
usually obtained last day. IPFIX and Application Logs have
been deployed in our environment for a long time. These data
collectors have been optimized to guarantee no impact on
SLA. ETW collector is a newly added collector running on
production servers. As we will show in Section 6.1, directly
collecting all ETW records will result in tens of times the CPU
and disk IO usage. We must reduce ETW collector’s resource
consumption on production servers. With the observation in
Section 5.1.1 that the top 10 ports cover more than 94% of
the traffic and stay stable over weeks. We decide to use the
Top-k algorithm as a filter in the ETW collector to reduce the
data to be collected and thus reduce its resource consumption.

4.5 Component Traffic Estimation
We built a web UI to provide engineers with a convenient way
to analyze the traffic. The dashboard shows component-level

traffic like shown in Figure 2b (in Section 3). If the component
monopolizes a process, its traffic could be directly obtained
from the Process table as described in Table 3. Otherwise, we
calculate its traffic in an approximated fashion. The details
are presented in Algorithm 1.

Input: Component C
Output: Traffic size of Component C per second

1 if Process Contains C then
2 return Process[C]
3 else
4 P = Component C’s RemotePort
5 PortTraffic = Source-Port[P] + Destination-Port[P]

6 return Component[C,P]
Component[∗,P] × PortTraffic

7 end
Algorithm 1: Calculation Algorithm

If a component shares a process with other components,
we have to estimate its network traffic following Line 4 to 7.
In Line 4, we first find the port P used by component C with
the Component table. Then, in Line 5, we calculate the total
network traffic of this port P with the Source-Port table and
Destination-Port table. In Line 6, Component[*, P] is the total
request/response size of all components (* is the wildcard)
going through port P. Component[C, P] is the request/response
size of Component C going through port P. We use the ratio of
Component[C, P] and Component[*, P], and the PortTraffic of
P to estimate the TrafficSize of component C. The underlying
assumption is that different components suffer from similar
packet loss patterns (i.e., similar retry rate) and the packet
header size is proportional to the payload size.

4.6 Monitoring

Aside from the dashboard, we also create monitors on the
Source-Port table and Destination-Port table in the result
database to safeguard the overall traffic usage of EXO. We
now support two types of monitors, one to capture the static
trend and the other to capture the dynamic changepoints.

We use Mann-Kendall trend test [25] to obtain the static
trend and use LinkedIn’s Greykite [27] to capture dynamic
change points. The static trend monitor could help us find
feature roll-out that potentially generates sub-optimal traffic.
The dynamic change-points monitor could discover sudden
bursts in traffic. These sudden bursts are usually caused by
code regression or configuration errors.

5 Production Results

We used NetPanel to support traffic analysis in EXO. In this
section, we share the observed traffic characteristics and use
case studies to show the effectiveness of NetPanel.

1548 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 6: Traffic percentage taken by the top 10 ports. The
percentage stays stable during the half-month observation.

5.1 Traffic Overview

Recall that there are two tiers of traffic in Sec. 2.1. To use
Tier 1 traffic, the owner team must register a specific port. All
traffic to or from that port is labeled with a Tier 1 DSCP tag.
The registration prevents other components from using the
same port. Therefore, all Tier 1 traffic through that port is
used exclusively by a single component. In the following, we
only discuss the characteristics of Tier 0 traffic.

5.1.1 Several ports dominate the overall traffic

From the Source-Port and Destination-Port tables, we observe
that several top ports contribute to most traffic usage. Figure 6
shows the percentage of total traffic generated by the top 10
ports over half a month period. The lowest value during this
period is 94.8%. This result confirms that the Top-k ports
filter algorithm could cover at least 94% of the total traffic
for ETW collector when k = 10. Furthermore, the list of top
ports remains unchanged during our observation. This obser-
vation supports us to use the latest top k ports obtained as a
filter for the ETW collectors as described in Section 4.4. The
concentrated traffic distribution at a few top ports saves us
a lot of traffic optimization work. We can focus on a small
number of ports when we want to reduce network traffic costs.
We engage the partner teams that use these ports instead of
calling every team in EXO.

5.1.2 Several components dominate the traffic of a top
port

When multiple components share the same port (as in Fig-
ure 1 REST and EWS share the same port), there are many
contributors to the port traffic. We analyze the traffic distri-
bution for top ports. We show the traffic contribution of the
top 5 components for the top 2 ports separately in Figure 7,
labeled as A and B. For both ports, the contribution of the 6th

component is less than 5%. Investigation into lower-ranked
components does not have a significant benefit in reducing
overall traffic usage. With the help of NetPanel, engaging with
a few partner teams is usually enough to optimize the traffic
of a top port. For example, when we want to reduce the traffic

Figure 7: Component-level traffic distribution for the top 2
ports.

Figure 8: The traffic with destination port A decreased by
20% after switching from external to internal endpoint. The
vertical dotted line indicates the recover time.

for Port A, we only need to engage the owners of the top 5
components.

5.2 Case Studies
In this section, we show how we use NetPanel to refine the
WAN traffic for EXO. We present 4 cases where we leveraged
NetPanel for: (1) service traffic optimization; (2) legacy traffic
discovery; (3) anomaly traffic burst detection; and (4) WAN
feature validation. These actions save millions of dollars per
year for EXO.

5.2.1 Service Traffic Optimization

In this case, we introduce how we use NetPanel to identify
sub-optimal traffic and optimize the utilization of network
resources. NetPanel provides long-term data visualization.
This makes it easy for the application to identify its major
traffic contributor. After engaging the owning team, it is easy
to make a conclusion on whether the traffic is necessary.

During our investigation of the traffic composition of EXO,
we discovered that the Tier 0 traffic from our BE servers to
port A on FE servers is too large. Because EXO has optimized
the internal service endpoint (URL) to serve requests with the
nearest FE server, we expect that there should be little Tier
0 traffic from BE to FE. We then used the Component table
to find the main contributors. We identified that a component

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1549

Figure 9: The ratio of the traffic from Port C to the traffic
from Port D before and after the fix.

Figure 10: Traffic volume change with source port C and
source port D after the removal of legacy code. The vertical
dotted line indicates the change time.

that is used to extract plain text content from different formats
of documents in emails took up most of the traffic. Then, we
contacted the owning team and figured out that the component
was using an external service endpoint. It had no control of
where the requests were sent to and thus caused massive Tier
0 traffic worldwide. After identifying the issue, we worked
together with the owning team to change to use an internal
service endpoint so that this component could serve its re-
quests within a single location. This action saved millions
of dollars per year. The traffic change is shown in Figure 8.
The traffic with destination port A decreased by 20% after the
change. Prior to NetPanel, it relied heavily on code reviews to
prevent such cases. This manual approach was likely to lead
to omissions.

5.2.2 Legacy Traffic Discovery

There is another case where NetPanel helped discover legacy
traffic and its source code. As the system grows, the source
code becomes overwhelming. The work to remove outdated
settings and services is necessary. However, it turns out that
it is hard to discover legacies while do not break anything.
We figured out there was one component on BE machines
that was sending traffic to certificate authorities to validate
some certificates that had been retired. We started from the
continuous unexpected high traffic volume from port C in
the NetPanel Source-Port table. According to our knowledge,
EXO had finished the migration from Port C to Port D, so
there should be very little traffic from port C, but massive

Figure 11: Traffic volume change of the log uploading ser-
vice during the configuration error. The vertical dotted lines
indicate the start time and the end time, respectively.

traffic from port D. The left pie chart in Figure 9 shows the
ratio of the traffic from port C to the traffic from port D. The
traffic from port C is 42% of the traffic from port D, which is
much higher than our expectation. We used NetPanel to find
the suspicious component and its owning team. After reaching
out to the team, they investigated the issue and removed the
legacy code. After the fix, the ratio of the traffic from port C
to the traffic from port D became much smaller, where the
traffic from port C was reduced to 4.2% of the traffic from
port D, as shown in the right pie chart of Figure 9. The traffic
of both ports during the fix is shown in Figure 10. After the
removal, the traffic with source port C dropped to lower than
10% of the original traffic. That fix led to a savings of inbound
capacity in the Gbps for Microsoft.

5.2.3 Anomaly Traffic Burst Detection

This case shows how we leverage NetPanel to detect an
anomaly traffic burst caused by a configuration error. Some
configuration errors at the application level may cause abnor-
mal network behaviors. For example, a configuration error
may cause the component to keep sending requests to an end-
point and thus leads to a traffic burst. These bugs are hard to
detect unless the affected machines get so hot and break criti-
cal services [28]. In NetPanel, the change in request volume
can be detected. When anomalies are reported by NetPanel,
we could contact the component owner to debug the issue.

Figure 11 visualizes the traffic change during a configu-
ration error for one component in EXO. An engineer acci-
dentally changed a log uploading compression algorithm to
an older version. The decrease in compression rate led to an
increase in the total data volume sent to the log center and
eventually hit the throttling limit. However, the component
had a retry mechanism and kept sending data. This resulted
in nearly quadruple the traffic volume sent during peak hours.
The error was detected late after the change rolled out world-
wide and drove a dramatic increase in traffic volume. We
caught this abnormal burst and contacted the owner to dig
into their component. After rolling back the change, the ab-
normal traffic disappeared and the traffic dropped back to the
previous level. Without NetPanel, the problem could only be

1550 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 12: The volume change of Tier 0 traffic sent to reg-
istered ports after RWA devices support QoS Policy. The
vertical dotted line indicates the change time.

discovered until the availability of the affected component is
severely impacted, which would take a much longer time to
fix the error and waste much more bandwidth.

5.2.4 WAN Feature Validation

This section introduces how NetPanel triggers a feature vali-
dation on newly deployed devices. When a new type of device
starts to be deployed in the network, it may miss some func-
tionality. Regional WAN Aggregator (RWA) is a kind of core
router recently added to the Azure Network that sits on the top
of datacenters and is responsible to connect the datacenter net-
work to the backbone WAN. In this case, the newly deployed
RWA devices do not support the QoS policy. They ignore the
DSCP tag and treat all traffic with Tier 0 priority. NetPanel
helped fix the bug at an early stage and avoid purchasing tens
of millions of dollars in redundant capacity.

Bandwidth Broker routes traffic with different priorities.
Our replication service has registered ports on the Bandwidth
Broker service to lower the priority of non-urgent replications
to Tier 1. However, from NetPanel data, we found that these
ports have a significant amount of traffic classified as Tier 0.
Together with the owning team, we picked a machine pair and
captured packets on routers along the routing path. We found
that the RWA device on the path does not support the QoS
policy. Even though only 2 locations had RWA devices de-
ployed at an early stage, this fix already saved several million
dollars each year. If RWA devices were deployed worldwide,
the value of this fix would be tens of millions of dollars per
year. As shown in Figure 12, the Tier 0 traffic for those reg-
istered ports dropped to zero after the fix. NetPanel builds a
map between components and ports, which makes it easy for
component owners to monitor the priority tier of its traffic.
Once any bug is introduced on the routing plane, they could
discover and fix it quickly.

6 Evaluation

In this section, we evaluate the overhead of NetPanel in two
categories: overhead inside and outside the production en-

Figure 13: Normalized CPU and Disk IO usage on a BE
machine when only services are running, when raw ETW is
running, and when NetPanel is running.

vironment. The production environment serves customer re-
quests and thus has strong restrictions on resource consump-
tion, while the restrictions on overhead outside the production
environment are more relaxed.

6.1 Overhead in the Production Environment

Figure 13 shows our evaluation of NetPanel overhead in the
production environment. We ran the test on a single server.
The overhead of NetPanel in the production environment
is introduced by the ETW collector, which has extremely
high CPU and disk IO consumption. If we enable ETW fully
on machines, it will occupy 25× more CPU and 77× more
disk IO compared to those when ETW is disabled. When we
deploy NetPanel on production machines, less than 1% rise of
the total available CPU and disk IO are observed because of
retaining only top ports as mentioned in Section 4.4. It saves
99.1% CPU and 99.7% Disk IO compared with Raw ETW.

6.2 Overhead outside the Production Environ-
ment

The overhead outside the production environment includes
two parts: data storage and computation. These are the over-
head of processing and storing data in the big-data platform.

6.2.1 Data Storage

Table 4 shows the ratio between result data and raw data using
our approach. The result size is 0.00361% of the origin for
IPFIX, 0.00076% for ETW, and 0.00003% for application
logs. The daily result sizes of all three data sources are in GB
and are close to each other. The huge difference in the ratios
is caused by the huge difference in the size of the original
data. ETW data is much larger than IPFIX because it does
not perform data sampling and covers Metro traffic (traffic
within a location). Application log data is even larger because
a machine pair could send multiple requests in one connection.
The log data contains many extra columns for debugging.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1551

Data Size Ratio Daily Calculation
IPFIX 0.00361% 1.1 hours
ETW 0.00076% 2.5 hours

Application Logs 0.00003% 6.8 hours

Table 4: Result data size ratio (compared to the raw data) and
calculation time.

Figure 14: The CPU time for a query on a port and a query
on a process increase linearly with the days of data. It takes
27 CPU seconds to get the 60 days of traffic for a port, and
15 CPU seconds to get the 60 days of traffic for a process.

6.2.2 Computation

The computational overhead consists of two parts. The first
part is the overhead of background data processing and vali-
dation pipelines. The jobs run every day. The second part is
the overhead of user queries.

We show the computational overhead for NetPanel’s data
processing and validation pipelines in Table 4. We use less
than 0.01% of our production computation resources to pro-
cess the data. It takes 1.1 hours to process IPFIX data, 1.6
hours to process ETW data, and 6.8 hours to process appli-
cation logs every day. The validation pipeline takes around
1.5 hours. The tight resource restriction leads to a long cal-
culation time. We make this trade-off because the goal of
NetPanel is to support the reduction of traffic costs in the long
run, and therefore a delay of hours is acceptable.

It typically takes no more than 30 seconds for NePanel to
respond to a user query for the traffic of a set of specific ports
or processes over months. We show the CPU time NetPanel
needs to respond to a user query in Figure 14. The CPU time
is proportional to data size. The actual waiting time is usually
much smaller than the CPU time because multiple CPUs can
calculate the result in parallel. The overall overhead of user
queries is usually negligible.

7 Related Work

EXO runs on Azure architecture, further details of Azure
architecture are shown in [30]. Gunawi [24] provided a sum-
mary of 597 cloud outages from 2009 to 2015. Ardelean [17]
used Gmail as an example to analyze the performance of
cloud applications. They studied the dynamic nature of cloud

applications in short time intervals. There are multiple efforts
to minimize the cost of operating data centers. Cascara [42]
tried to optimize the edge cost. Yang et. al. [50] scheduled
the bulk transfer among datacenters. ROTOS [49] designed
an optical DCN architecture to improve power efficiency.

Large investments have been made in data-center monitor-
ing. There is a body of work on server monitors for Linux and
Windows [8, 11, 36, 43]. Trumpet [36] is a monitor that pro-
cesses every packet at line rate on end-hosts and tests the pres-
ence of user-specified network events. PathDump [43] designs
a server stack to retrieve metadata from arrived packets on
edge devices to help debug network issues. Monitoring data-
center networks has been a hot topic for years. Commonly
used protocols include IPFIX/Netflow and sFlow [15, 22, 37].
A detailed review [26] of the general flow monitoring tech-
nique is provided. In recent years, researchers have refined
flow monitoring for different purposes [33,40]. To monitor all
the flows without sampling, FlowRadar [33] encodes per-flow
counters at switches and leverages the computing power at
the remote collector to perform decoding. To handle the large-
scale challenge of data-centers, many have turned to query-
based solutions, including Stroboscope [46], OFRewind [48],
and PacketScope [45]. Stroboscope [46] mirrors millisecond-
long traffic slices on routers according to user queries to
monitor network forwarding behavior including traffic paths,
one-way delays, and load-balancing ratios. IBM [29] uses
HTTP logs to detect component failure and provide reports
over the last 48 hours when an anomaly is detected.

8 Conclusion

The vast amount of network traffic generated by the compo-
nents in cloud applications consumes significant resources.
It is vital to identify the composition of network traffic to
reduce the cost. Component-level measurement is needed to
drive the traffic optimization effort for systems developed
by a large number of teams. NetPanel analyzes the network
traffic for EXO at the component level and at a low cost. One
primary challenge is caused by the huge amount of measure-
ment data. We design several schemes to reduce the data size
without losing fidelity. We discuss real cases where NetPanel
is applied to save millions of dollars per year. We believe that
the insights we gained during the design and operation of
NetPanel provide valuable experience in traffic measurement
and reduction of other cloud applications.

Acknowledgements

We thank the anonymous reviewers and our shepherd Srinivas
Narayana, for their valuable comments and insightful recom-
mendations to improve the quality of the paper. We thank all
Microsoft engineers who have been closely working with us
for their great support.

1552 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Amazon cloud watcher. https://aws.amazon.com/
cloudwatch/.

[2] Azure status history. https://status.azure.com/
en-us/status/history.

[3] Google cloud monitoring. https://cloud.google.
com/monitoring/.

[4] IIS Application Pool. https://docs.microsoft.
com/en-us/previous-versions/windows/
it-pro/windows-server-2008-r2-and-2008/
cc735247(v=ws.10).

[5] Outlook EWS Reference. https://
docs.microsoft.com/en-us/exchange/
client-developer/exchange-web-services/
start-using-web-services-in-exchange.

[6] Outlook MAPI Reference. https://docs.microsoft.
com/en-us/office/client-developer/outlook/
mapi/outlook-mapi-reference.

[7] Salesforce disruption: Na2 and next day, cs1. http:
//iwgcr.org/salesforce-disruption/.

[8] TCPDUMP/LIBPCAP public repository. https://
www.tcpdump.org/.

[9] Update on today’s gmail outage. https:
//gmail.googleblog.com/2009/02/
update-on-todays-gmail-outage.html.

[10] Azure Data Explorer: a big data analytics cloud
platform optimized for interactive, adhoc queries over
structured, semi-structured and unstructured data, 2018.
https://azure.microsoft.com/mediahandler/
files/resourcefiles/azure-data-explorer/
Azure_Data_Explorer_white_paper.pdf.

[11] Event Tracing for Windows, 2018. https:
//docs.microsoft.com/en-us/windows/win32/
etw/about-event-tracing.

[12] Aws outage analysis: December 15, 2021, 2021.
https://https://www.thousandeyes.com/blog/
aws-outage-analysis-december-15-2021/.

[13] Service Level Agreements (SLA) for
Online Services, 2021. https://www.
microsoft.com/licensing/docs/view/
Service-Level-Agreements-SLA-for-Online-Services.

[14] us-central1: Google app engine standard experiencing
increased latency and pending queue aborted error re-
quest rate., 2021. https://status.cloud.google.
com/incidents/uaRinwS8pu2yyjdYbDaM.

[15] Paul Aitken, Benoît Claise, and Brian Trammell. Spec-
ification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of Flow Information. RFC
7011, September 2013.

[16] Ali Anwar, Anca Sailer, Andrzej Kochut, and Ali R.
Butt. Anatomy of cloud monitoring and metering: A
case study and open problems. In Proceedings of the 6th
Asia-Pacific Workshop on Systems, APSys ’15, New
York, NY, USA, 2015. Association for Computing Ma-
chinery.

[17] Dan Ardelean, Amer Diwan, and Chandra Erdman.
Performance analysis of cloud applications. In 15th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 405–417, Ren-
ton, WA, April 2018. USENIX Association.

[18] Fred Baker, David L. Black, Kathleen Nichols, and
Steven L. Blake. Definition of the Differentiated Ser-
vices Field (DS Field) in the IPv4 and IPv6 Headers.
RFC 2474, December 1998.

[19] Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Hyo-
joon Kim, Renata Teixeira, and Nick Feamster. Traffic
refinery: Cost-aware data representation for machine
learning on network traffic. Proc. ACM Meas. Anal.
Comput. Syst., 5(3), dec 2021.

[20] Matt Calder, Manuel Schroder, Ryan Gao, Ryan Stewart,
Jitu Padhye, Ratul Mahajan, Ganesh Ananthanarayanan,
and Ethan Katz-Bassett. Odin: Microsoft’s scalable
fault-tolerant cdn measurement system. In USENIX
NSDI, April 2018.

[21] B. Claise. Cisco Systems NetFlow Services Export
Version 9. RFC 3954, October 2004.

[22] Luca Deri, Ellie Chou, Zach Cherian, Kedar Karmarkar,
and Mike Patterson. Increasing data center network
visibility with cisco netflow-lite. In Proceedings of the
7th International Conference on Network and Services
Management, CNSM ’11, page 274–279, Laxenburg,
AUT, 2011. International Federation for Information
Processing.

[23] Roy Thomas Fielding. Architectural styles and the
design of network-based software architectures. Uni-
versity of California, Irvine, 2000.

[24] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,
Agung Laksono, Anang D. Satria, Jeffry Adityatama,
and Kurnia J. Eliazar. Why does the cloud stop com-
puting? lessons from hundreds of service outages. In
Proceedings of the Seventh ACM Symposium on Cloud
Computing, SoCC ’16, page 1–16, New York, NY, USA,
2016. Association for Computing Machinery.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1553

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://status.azure.com/en-us/status/history
https://status.azure.com/en-us/status/history
https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/cc735247(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/cc735247(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/cc735247(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/cc735247(v=ws.10)
https://docs.microsoft.com/en-us/exchange/client-developer/exchange-web-services/start-using-web-services-in-exchange
https://docs.microsoft.com/en-us/exchange/client-developer/exchange-web-services/start-using-web-services-in-exchange
https://docs.microsoft.com/en-us/exchange/client-developer/exchange-web-services/start-using-web-services-in-exchange
https://docs.microsoft.com/en-us/exchange/client-developer/exchange-web-services/start-using-web-services-in-exchange
https://docs.microsoft.com/en-us/office/client-developer/outlook/mapi/outlook-mapi-reference
https://docs.microsoft.com/en-us/office/client-developer/outlook/mapi/outlook-mapi-reference
https://docs.microsoft.com/en-us/office/client-developer/outlook/mapi/outlook-mapi-reference
http://iwgcr.org/salesforce-disruption/
http://iwgcr.org/salesforce-disruption/
https://www.tcpdump.org/
https://www.tcpdump.org/
https://gmail.googleblog.com/2009/02/update-on-todays-gmail-outage.html
https://gmail.googleblog.com/2009/02/update-on-todays-gmail-outage.html
https://gmail.googleblog.com/2009/02/update-on-todays-gmail-outage.html
https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-data-explorer/Azure_Data_Explorer_white_paper.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-data-explorer/Azure_Data_Explorer_white_paper.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-data-explorer/Azure_Data_Explorer_white_paper.pdf
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://https://www.thousandeyes.com/blog/aws-outage-analysis-december-15-2021/
https://https://www.thousandeyes.com/blog/aws-outage-analysis-december-15-2021/
https://www.microsoft.com/licensing/docs/view/Service-Level-Agreements-SLA-for-Online-Services
https://www.microsoft.com/licensing/docs/view/Service-Level-Agreements-SLA-for-Online-Services
https://www.microsoft.com/licensing/docs/view/Service-Level-Agreements-SLA-for-Online-Services
https://status.cloud.google.com/incidents/uaRinwS8pu2yyjdYbDaM
https://status.cloud.google.com/incidents/uaRinwS8pu2yyjdYbDaM

[25] Khaled H. Hamed and A. Ramachandra Rao. A mod-
ified mann-kendall trend test for autocorrelated data.
Journal of Hydrology, 204(1):182–196, 1998.

[26] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio
Drago, Ramin Sadre, Anna Sperotto, and Aiko Pras.
Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix. IEEE Communications
Surveys Tutorials, 16(4):2037–2064, 2014.

[27] Reza Hosseini, Albert Chen, Kaixu Yang, Sayan Patra,
and Rachit Arora. Greykite: a flexible, intuitive and fast
forecasting library, 2021.

[28] Ryan Huang, Chuanxiong Guo, Lidong Zhou, Jay Lorch,
Yingnong Dang, Murali Chintalapati, and Randolph Yao.
Gray failure: The achilles’ heel of cloud-scale systems.
In Proceedings of the ACM Workshop on Hot Topics in
Operating Systems (HotOS). ACM, May 2017.

[29] Mohammad S. Islam, William Pourmajidi, Lei Zhang,
John Steinbacher, Tony Erwin, and Andriy Miranskyy.
Anomaly detection in a large-scale cloud platform.
In 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), pages 150–159, 2021.

[30] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar
Agrawal, Ashish Bhargava, Paul-Andre C Bissonnette,
Shane Foster, Andrew Helwer, Mark Kasten, Ivan
Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi,
Hanukumar Pinnamraju, Adrian Power, Neha Milind
Raje, and Parag Sharma. Validating datacenters at scale.
In Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, page 200–213,
New York, NY, USA, 2019. Association for Computing
Machinery.

[31] Peter Kromkowski, Shaoran Li, Wenxi Zhao, Brendan
Abraham, Austin Osborne, and Donald E. Brown. Eval-
uating statistical models for network traffic anomaly de-
tection. In 2019 Systems and Information Engineering
Design Symposium (SIEDS), pages 1–6, 2019.

[32] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghu-
raman, Nikhil Kasinadhuni, Enrique Cauich Zermeno,
C. Stephen Gunn, Jing Ai, Björn Carlin, Mihai
Amarandei-Stavila, Mathieu Robin, Aspi Siganporia,
Stephen Stuart, and Amin Vahdat. BwE: Flexi-
ble, Hierarchical Bandwidth Allocation for WAN Dis-
tributed Computing. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, page 1–14, New York,
NY, USA, 2015. Association for Computing Machinery.

[33] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
FlowRadar: A better NetFlow for data centers. In 13th

USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 311–324, Santa
Clara, CA, March 2016. USENIX Association.

[34] Ze Li, Qian Cheng, Ken Hsieh, Yingnong Dang, Peng
Huang, Pankaj Singh, Xinsheng Yang, Qingwei Lin,
Youjiang Wu, Sebastien Levy, and Murali Chintalapati.
Gandalf: An intelligent, End-To-End analytics service
for safe deployment in Large-Scale cloud infrastructure.
In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), 2020.

[35] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
univmon. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, page 101–114, New York,
NY, USA, 2016. Association for Computing Machinery.

[36] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise trig-
gers in data centers. In Proceedings of the 2016
ACM SIGCOMM Conference, SIGCOMM ’16, page
129–143, New York, NY, USA, 2016. Association for
Computing Machinery.

[37] Sonia Panchen, Neil McKee, and Peter Phaal. InMon
Corporation’s sFlow: A Method for Monitoring Traffic
in Switched and Routed Networks. RFC 3176, Septem-
ber 2001.

[38] Hiren Patel, Alekh Jindal, and Clemens Szyperski. Big
data processing at microsoft: Hyper scale, massive com-
plexity, and minimal cost. In Symposium on Cloud
Computing, page 490. ACM, November 2019.

[39] William Pourmajidi, Andriy Miranskyy, John Stein-
bacher, Tony Erwin, and David Godwin. Dogfood-
ing: Using ibm cloud services to monitor ibm cloud
infrastructure. In Proceedings of the 29th Annual
International Conference on Computer Science and
Software Engineering, CASCON ’19, page 344–353,
USA, 2019. IBM Corp.

[40] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner,
Wes Felter, Kanak Agarwal, John Carter, and Rodrigo
Fonseca. Planck: Millisecond-scale monitoring and
control for commodity networks. In Proceedings of
the 2014 ACM Conference on SIGCOMM, SIGCOMM
’14, page 407–418, New York, NY, USA, 2014. Associ-
ation for Computing Machinery.

[41] Vyas Sekar, Michael K. Reiter, and Hui Zhang. Revis-
iting the case for a minimalist approach for network
flow monitoring. In Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement,
IMC ’10, page 328–341, New York, NY, USA, 2010.
Association for Computing Machinery.

1554 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[42] Rachee Singh, Sharad Agarwal, Matt Calder, and
Paramvir Bahl. Cost-effective cloud edge traffic en-
gineering with cascara. In 18th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 21), pages 201–216. USENIX Association, April
2021.

[43] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Simplifying datacenter network debugging with path-
dump. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation,
OSDI’16, page 233–248, USA, 2016. USENIX Associ-
ation.

[44] Praveen Tammana, Rachit Agarwal, and Myungjin
Lee. Distributed network monitoring and debugging
with SwitchPointer. In 15th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 18), pages 453–456, Renton, WA, April 2018.
USENIX Association.

[45] Ross Teixeira, Rob Harrison, Arpit Gupta, and Jennifer
Rexford. Packetscope: Monitoring the packet lifecycle
inside a switch. In Proceedings of the Symposium on
SDN Research, SOSR ’20, page 76–82, New York, NY,
USA, 2020. Association for Computing Machinery.

[46] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Ste-
fano Vissicchio, and Laurent Vanbever. Stroboscope:
Declarative network monitoring on a budget. In 15th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 467–482, Ren-
ton, WA, April 2018. USENIX Association.

[47] Jianwen Wei, Yusu Zhao, Kaida Jiang, Rui Xie, and
Yaohui Jin. Analysis farm: A cloud-based scalable ag-
gregation and query platform for network log analysis.
In 2011 International Conference on Cloud and Service
Computing, pages 354–359, 2011.

[48] Andreas Wundsam, Dan Levin, Srini Seetharaman, and
Anja Feldmann. Ofrewind: Enabling record and re-
play troubleshooting for networks. In 2011 USENIX
Annual Technical Conference (USENIX ATC 11), Port-
land, OR, June 2011. USENIX Association.

[49] Xuwei Xue, Fulong Yan, Kristif Prifti, Fu Wang, Bitao
Pan, Xiaotao Guo, Shaojuan Zhang, and Nicola Cal-
abretta. Rotos: A reconfigurable and cost-effective ar-
chitecture for high-performance optical data center net-
works. Journal of Lightwave Technology, 38(13):3485–
3494, 2020.

[50] Zhenjie Yang, Yong Cui, Xin Wang, Yadong Liu, Min-
ming Li, Shihan Xiao, and Chuming Li. Cost-efficient
scheduling of bulk transfers in inter-datacenter wans.
IEEE/ACM Transactions on Networking, 27(5):1973–
1986, 2019.

[51] Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin
Xu. Static Detection of Silent Misconfigurations
with Deep Interaction Analysis. In Proceedings of
the 36th ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’21), October 2021.

[52] Lixia Zhang, Van Jacobson, and Kathleen Nichols. A
Two-bit Differentiated Services Architecture for the In-
ternet. RFC 2638, July 1999.

[53] Yuanliang Zhang, Haochen He, Owolabi Legunsen,
Shanshan Li, Wei Dong, and Tianyin Xu. An Evolu-
tionary Study of Configuration Design and Implemen-
tation in Cloud Systems. In Proceedings of the 43rd
International Conference on Software Engineering
(ICSE’21), May 2021.

[54] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang,
Li Chen, Shiyi Liu, Naiqian Zheng, Ruixin Wang, Hanbo
Wu, Yi Wang, and Nicholas Zhang. LightGuardian:
A Full-Visibility, lightweight, in-band telemetry sys-
tem using sketchlets. In 18th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 21), pages 991–1010. USENIX Association,
April 2021.

[55] Tanja Zseby, Benoît Claise, Juergen Quittek, and Se-
bastian Zander. Requirements for IP Flow Information
Export (IPFIX). RFC 3917, October 2004.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1555

DOTE: Rethinking (Predictive) WAN Traffic Engineering

Yarin Perry1, Felipe Vieira Frujeri2, Chaim Hoch1, Srikanth Kandula2, Ishai Menache2, Michael Schapira1,
and Aviv Tamar3

1Hebrew University of Jerusalem, 2Microsoft Research, 3Technion

Abstract– We explore a new design point for traffic engi-
neering on wide-area networks (WANs): directly optimizing
traffic flow on the WAN using only historical data about
traffic demands. Doing so obviates the need to explicitly esti-
mate, or predict, future demands. Our method, which utilizes
stochastic optimization, provably converges to the global op-
timum in well-studied theoretical models. We employ deep
learning to scale to large WANs and real-world traffic. Our ex-
tensive empirical evaluation on real-world traffic and network
topologies establishes that our approach’s TE quality almost
matches that of an (infeasible) omniscient oracle, outperform-
ing previously proposed approaches, and also substantially
lowers runtimes.

1 Introduction

To meet the constant rise in traffic, service providers invest
huge effort into traffic engineering (TE)—optimizing traffic
flow across their backbone WANs [11, 22, 24, 28, 37, 39, 57],
which interconnect their datacenters with each other and
with external networks. The production state-of-the-art
involves periodically solving a (logically centralized) op-
timization problem to determine how to best split traffic
across network paths. Changes to TE configurations are
realized using software-defined control of network hard-
ware [11, 22, 24, 35, 38, 39].

A key challenge for WAN TE is uncertainty regarding
future traffic demands. The standard approach for contend-
ing with this is twofold. For time-sensitive traffic, providers
measure application-specific usage data from switches (e.g.,
using sampled netflow or ipfix counters) and attempt to pre-
dict future usage. For bandwidth-hungry, scavenger-class
traffic [22], providers deploy so called agents/shims in the OS
of hosts from which traffic originates. These agents explicitly
signal applications’ traffic demands to “brokers” that, in turn,
aggregate demands, relay them to the centralized optimizer,
and enforce the resulting rate allocations [22, 24].

Both of the above approaches for handling traffic uncer-
tainty have drawbacks. Demand predictions can naturally
be erroneous and, more importantly, there is an objective
mismatch between the loss functions to predict future traffic
demands (e.g., mean-squared-error, L1 norm error) and the
end-to-end objective of producing high-performance TE con-
figurations. For example, mean-squared-error would weight
error in any demand equally, yet errors on demands that are

more problematic to carry on a given topology will exert
a disproportionately large effect on TE quality. The other
approach – brokering and explicitly specifying demands – en-
tails nontrivial operational overheads, including changes to
end-hosts and applications. This can increase the lag experi-
enced by application requests (which is why this approach is
used in practice only for bandwidth-hungry, scavenger-class
traffic [22]).

The demand uncertainty challenge is further amplified for
customer-facing traffic (web, images, e-mails, videos, etc.),
which constitutes a large and growing share of the total traffic
traversing some providers’ backbones. For such traffic, which
originates in unmodified apps or clients, brokering in the
host OS is not applicable. Moreover (see §2.1), such traffic
exhibits high variability and is difficult to predict accurately.

We explore a new design point for WAN TE: training
a TE decision model on historical data about traffic de-
mands to directly output high-quality TE configurations. We
present the DOTE (Direct Optimization for Traffic Engineer-
ing) TE framework. DOTE applies stochastic optimization
to learn how to map recently observed traffic demands (e.g.,
empirically-derived traffic demands from the last hour) to
the next choice of TE configuration. Using DOTE, providers
need only passively monitor traffic to/from datacenters and
do not have to onboard applications onto brokers. Directly
predicting TE outcomes that optimize TE performance also
resolves the objective mismatch between demand prediction
and TE performance, yielding TE outcomes that are more ro-
bust to traffic unpredictability. We show how DOTE can scale
to handle large WANs and real-world traffic by harnessing
the expressiveness of deep learning.

We evaluate DOTE both analytically and empirically. Our
theoretical results establish that if the TE optimization objec-
tive satisfies desirable convexity/concavity properties, DOTE
provably converges to the optimum. We prove that this is in-
deed the case for standard TE optimization objectives such as
minimizing the maximum-link-utilization (MLU) [8, 14, 27],
maximizing network throughput [4, 22, 24, 37], and maximiz-
ing concurrent-flow [11, 29].

Our empirical evaluation compares DOTE, in terms of
both quality and runtimes, to TE with explicit demand esti-
mates from end-hosts, demand-prediction-based TE, demand-
oblivious TE, deep-reinforcement-learning-based TE, and
more. Evaluating data-driven TE schemes like DOTE re-
quires substantial empirical data regarding traffic conditions

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1557

for both training and performance analysis. We conduct
a large-scale empirical study using both publicly available
datasets and historical data from Microsoft’s private WAN.
These datasets span months of traffic demands at few-minutes
granularity, amounting to tens of thousands of demand snap-
shots. Our evaluation covers small (10s of nodes) and large
(100s of nodes) WANs, different types of traffic (including
inter-datacenter and customer-facing), and different TE opti-
mization objectives. To facilitate reproducibility, our code is
available at [2].

Our evaluation results show that:

• DOTE achieves TE quality almost matching that of an
infeasible oracle with perfect knowledge of future de-
mands. Across all evaluated network topologies, traffic
traces, and considered TE objectives, DOTE compares
favorably to all other evaluated TE schemes. We also
demonstrate DOTE’s robustness to changes in traffic
conditions and to network failures.

• By invoking a DNN for the online computation of TE
configurations, DOTE achieves runtimes 1-2 orders
of magnitude faster than solving a linear program (LP),
even for large WANs, matching the gains from recent
proposals for fast (approximate) LP optimizations [4,40].
Our approach thus also holds promise for expediting
decision making for TE.

We view our investigation of direct optimization for WAN
TE as a first step and discuss current limitations of our ap-
proach that we hope future research can address.
This work does not raise any ethical concerns.1

2 Motivation and Key Insights

2.1 Inter-DC vs. Customer-Facing Traffic
Enterprise WANs carry traffic between the provider’s own
datacenters (e.g., geo-replication of datasets, newly computed
search indices) as well as traffic traversing the backbone to-
wards/from customers (e.g., web traffic, videos).

To motivate our direct optimization approach, we present
analyses of traffic on Microsoft’s production WAN. Fig-
ure 1(a) plots the standard deviation in inter-datacenter traffic
demands, normalized by the mean, across 11 consecutive
weeks, for the pair of datacenters with the highest average
demand. Demands are collected at 5-minute granularity. Sim-
ilarly, Figure 1(b) plots the normalized standard deviation in
customer-facing traffic demands over 4 consecutive weeks for
the pair of nodes with the highest average demand. Observe
the substantial difference; in the inter-datacenter traffic trace,
demands are significantly less variable.

1In particular, the measured traffic demands, used in our evaluation, are
aggregate counters between pairs of datacenters at the granularity of minutes
(or coarser). They do not contain user IP addresses or packet contents.

 0

 0.2

 0.4

 0.6

 0.8

 1

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

ST
D

 /
 M

ea
n

Day of Week

(a) Inter-data-center traffic

 0

 0.2

 0.4

 0.6

 0.8

 1

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

ST
D

 /
 M

ea
n

Day of Week

(b) Customer-facing traffic

Figure 1: Variability in traffic demands for inter-datacenter
traffic and customer-facing traffic across different weeks.

High variability in customer-facing traffic demands can
accrue from different sources, e.g., (1) flash-crowds that may
cause a surge in search requests, e-mail volume, etc., (2)
congestion on the WAN’s peering links with ISP networks,
and (3) route changes and outages that cause traffic to ingress
or egress the WAN at different sites. We have observed that
customer-facing demands can exceed 100× the average value
for extended stretches of time. Thus, customer-facing traffic
is harder to accurately predict than inter-datacenter traffic.
See Figure 10(a)–Figure 10(b) in the appendix for differences
in demand-prediction accuracy between the above discussed
two traffic traces.

To summarize: for customer-facing traffic, which is a large
and growing share of overall WAN traffic, not only is direct
inference of traffic demands by the host OS infeasible, but
accurate demand prediction also appears elusive. We seek a
method that can achieve nearly optimal TE outcomes even
for the unpredictable traffic demands.

2.2 Demand Prediction vs. Direct Optimization
We illustrate key insights underlying DOTE using the example
in Figure 2(a). Each of nodes A and B wishes to send traffic
to node D, and can do so either via its direct link to D or
its 2-hop path to D through node C. All link capacities are
1. Every fixed time interval (say, 5 minutes), the TE system
must determine, for each of the two source nodes, A and B,
traffic splitting ratios specifying which fraction of its demand
is forwarded along each of its assigned two paths to D. A and
B’s traffic demands for each time interval are drawn (i.i.d) at
the beginning of each time interval from a fixed probability
distribution: with probability 1

2 node A’s demand is 5
3 and

node B’s demand is 5
6 and with probability 1

2 node B’s demand
is 5

3 and node A’s demand is 5
6 . The TE system has no a priori

knowledge of the realization of the traffic demands; splitting
ratios must be determined before actual traffic demands are
revealed.

Demand-prediction-based TE and its shortcomings. A
natural solution is training a predictor on empirical data con-
taining past demands for A and B to predict the combination of
demands closest (in expectation) to the realized combination
of demands (e.g., in terms of mean-squared-error), and then

1558 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Network topology (b) Induced splitting ratios for a
demand-predictor

(c) Optimal splitting ratios (d) Expected MLU as a function of the splitting
ratios

Figure 2: Simple WAN TE example

performing global optimization with respect to the predicted
demands. In our simple example, this leads to the predicted
demand-combination being (5

4 ,
5
4) and the induced splitting

ratios presented in Figure 2(b). Under these splitting ratios,
regardless of the realization of the demands, either link (A,D)
or link (B,D) will carry more traffic than its capacity can
accommodate. In the optimal solution shown in Figure 2(c),
however, regardless of the realized demands, no link carries
more traffic than its capacity can support.

Of course, instead of predicting a single demand-
combination, one could have predicted a probability distribu-
tion over the traffic demands and optimized splitting ratios
with respect to that. This entails two nontrivial challenges,
which are significantly amplified for large WANs and real-
world traffic: (1) We must impose a specific structure on
the probability distribution to be predicted (e.g., Gaussian,
bimodal), which might not be a good fit for actual WAN
traffic. This is particularly true when there hidden correla-
tions between demands (as in our example); (2) Optimizing
an LP with respect to a distribution over multiple demand-
combinations can be prohibitively time consuming for large
WANs.

On direct optimization of traffic splitting ratios and why
it might do better. An alternative approach, which avoids
presuppositions regarding the traffic, and also LP optimiza-
tions, is training a decision model on past realizations of A
and B’s traffic demands to directly output traffic splitting ra-
tios that are close to the global optimum. This approach can
outperform the demand-prediction-based approach in scenar-
ios where traffic is volatile and hard to predict but a certain
configuration of splitting ratios performs well on most traffic
realizations. Directly inferring the splitting ratios also obvi-
ates the need for solving an LP to optimize splitting ratios
with respect to predicted traffic. As our evaluation results in
§4 show, this significantly accelerates TE runtimes for large
WANs. In our example, after sufficient training, the model is
expected to learn the splitting ratios in Figure 2(c) (the unique

global optimum). Indeed, DOTE, which is a manifestation of
this approach, quickly converges to this global outcome.

Exploiting convexity/concavity for direct optimization of
splitting ratios via gradient descent. A key insight is that for
classical TE optimization objectives, the function mapping
splitting ratios to expected performance scores satisfies desir-
able properties, namely, convexity/concavity. This facilitates
utilizing elegant direct optimization methods, like (stochastic)
gradient descent, circumventing explicit demand prediction.

To illustrate this, we consider the classical TE objective
of minimizing maximum-link-utilization (MLU). We visual-
ize in Figure 2(d) the impact of different choices of splitting
ratios on MLU, i.e., the maximum ratio, across all network
links, between the traffic traversing a link and the link capac-
ity. x-axis values specify the fraction of A’s traffic sent on
the direct path (A,D). Since A only has two available paths,
this value also uniquely determines the fraction of A’s traffic
sent on the indirect path (A,C,D). Similarly, y-axis values
specify the fraction of B’s traffic sent on (B,D) and so also on
(B,C,D). z-axis values represent the expected MLU for dif-
ferent choices of splitting ratios for A (x-axis) and B (y-axis)
for the underlying demand distribution described above. For
instance, the scenario where A and B send all of their traffic
on (A,D) and (B,D), respectively, is captured by w(A,D) = 1
(x-axis) and w(B,D) = 1 (y-axis), and the derived expected
MLU is 5

3 (z-axis). Indeed, in this scenario, regardless of
which of the two demand combinations is realized, the traffic
injected into either link (A,D) or link (B,D) will be 5

3 x its
capacity. The unique global minimum for MLU, in which no
link capacity is exceeded, is achieved for w(A,D) = 0.6 and
w(B,D) = 0.6 (the red dot in Figure 2(d), which corresponds
to the splitting ratios in Figure 2(c)).

As seen in Figure 2(d), the expected MLU exhibits a desir-
able structure—convexity in the traffic splitting ratios. This
suggests the following procedure for converging to the op-
timum: start with arbitrary splitting ratios, and adapt the
splitting ratios in the direction of the steepest slope of the (ex-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1559

pected) MLU (i.e., the opposite direction of the gradient with
respect to the splitting ratios) until converging to the global
minimum. We show (in §3.3) that the convexity of the ex-
pected MLU extends to any network topology, any choice of
network paths (tunnels), and any underlying demand distribu-
tion, and so, this elegant optimization procedure is guaranteed
to converge to the global optimum in general.

2.3 TE as Stochastic Optimization
How to estimate the gradient of the expected MLU? Ex-
ecuting gradient descent on the expected MLU requires re-
peatedly evaluating the gradient for different traffic splitting
configurations. However, exact knowledge of the gradient
is impossible without exact knowledge of the underlying de-
mand distribution. Once again, the specific structure of the
TE setting gives rise to opportunities for effective optimiza-
tion. We show how the gradient can be closely approximated
from data samples of past realizations of the demands. Our
approach builds on the following two observations that, while
illustrated using our toy example, generalize to arbitrary net-
work topologies, tunneling schemes, and distributions over
traffic demands (see §3).

• For any realized demand-combination, the MLU gra-
dient with respect to these specific demands can be
expressed in closed form. Suppose that the realized
demands in our simple example are 5

3 for A and 5
6 for B.

The MLU as a function of A’s splitting ratios, w(A,D)

and (1 − w(A,D)), and B’s splitting ratios, w(B,D) and
(1−w(B,D)), can be expressed as:

max{5
3

w(A,D),
5
3
(1−w(A,D))+

5
6
(1−w(B,D)),

5
6

w(B,D)}

(i.e., the maximum load across the links (A,D), (C,D),
and (B,D), respectively2). This representation of the
MLU for the realized demands as a convex function
of the splitting ratios enables deriving a closed form
expression of the (sub)gradient of the MLU3, as shall be
discussed in §3.

• Averaging over the MLU gradients for past realized
demands closely approximates the gradient of the
expected MLU. Exact knowledge of the underlying
probability distribution over demands is elusive in most
real-world scenarios. Hence, the gradient of the expected
MLU for a given configuration of splitting ratios can-
not be precisely derived. However, this gradient can be
well-approximated by averaging over the gradients for

2Observe that the load on (A,C) and (B,C) is always dominated by the
load on (C,D), and so we disregard these links.

3Note that even though this function is not differentiable for all inputs due
to the maximum operator, the subgradient always exists and can be explicitly
derived.

realized demands at those splitting ratios. In our exam-
ple, deriving the expected MLU gradient for specific
traffic splitting ratios for A and B can be achieved by
sampling sufficiently many past realizations of A and B’s
demand-combinations, deriving the MLU gradient with
respect to each such realized demand combination (at
these splitting ratios), and averaging over these.

Why is reinforcement learning (RL) not a good fit? (Deep)
RL methods have been applied to many networking domains,
including routing [54]. Similarly to DOTE, RL approaches to
TE also replace explicit demand prediction with end-to-end
optimization, mapping recent traffic demands to TE configu-
rations [54]. However, while RL can be applied to essentially
any sequential decision making context, RL suffers from
higher data-sample complexity, notorious sensitivity to noisy
training, and a brittle optimization process that necessitates
painstakingly sweeping hyperparameters [21]. A key obser-
vation underlying DOTE is that WAN TE exhibits a desirable
structure that gives rise to opportunities for much simpler and
more robust optimization, rendering RL an “overkill”.

2.4 Harnessing Deep Learning
In our simple example, traffic demands were repeatedly drawn
from the same probability distribution. Real-world traffic ex-
hibits intricate temporal (hourly, diurnal, weekly), and other,
patterns. To pick up on such regularities, the TE system
could take into account the recent history of observed traffic
demands (e.g., traffic demands from the last hour). How-
ever, there are infinitely many possible recent histories of
traffic demands the TE system might observe. To address this,
DOTE trains a deep neural network (DNN) to approximate
the optimal mapping from traffic histories to TE configura-
tions, exploiting the capability of DNNs to automatically
identify complex patterns in large, high-dimensional data
(§3.4). DOTE builds on recent developments in large-scale
optimization, namely, the ADAM stochastic gradient descent
optimizer [30], to accommodate efficient training on extensive
empirical data (10s of thousands of traffic demand snapshots
in our experiments).

3 Direct Optimization for TE (DOTE)

Below, we present our model for WAN TE with uncertain
traffic demands, which extends the classical WAN TE model.
We then delve into the the DOTE stochastic optimization
framework, provide theoretical guarantees, and discuss how
DOTE can be implemented in practice.

3.1 Modeling WAN TE
Network. The network is modeled as a capacitated graph
G = (V,E,c). V and E are the vertex and edge (link) sets,

1560 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

respectively, and c : E → R+ assigns a capacity to each edge.

Tunnels. Each source vertex s communicates with each desti-
nation vertex t via a set of network paths, or “tunnels”, Pst .

Traffic demands. A demand matrix (DM) D is an |V |× |V |
matrix whose (i, j)’th entry Di, j specifies the traffic demand
between source i and destination j.

Optimization objective. To simplify exposition, we first
describe DOTE for the case of one classical TE objective:
minimizing maximum-link utilization (MLU) [9, 13, 17]. We
discuss other optimization objectives (maximum network
throughput and maximum-concurrent-flow) in §3.5.

TE configurations. We focus on how traffic should be split
across a given set of tunnels so as to achieve the optimization
objective. DOTE is compatible with any tunnel-selection
method. We discuss an extension that incorporates data-
driven tunnel selection in §5.

Given a network graph and demand matrix, a TE configura-
tion R specifies for each source vertex s and destination vertex
t how the Ds,t traffic from s to t is split across the tunnels in
Pst . Thus, a TE configuration specifies for each tunnel p ∈ Pst
a value xp, where xp is the fraction of the traffic demand from
s to t forwarded along tunnel p (and so ∑p∈Pst xp = 1).

Given a demand matrix D and TE configuration R , the total
amount of flow traversing edge e is fe = ∑s,t∈V,p∈Pst ,e∋p Ds,t ×
xp. The objective is minimizing the maximum link utilization
induced by R and D, maxe∈E

fe
c(e) , which we will refer to as

MLU and represent as L(R ,D). WAN operators seek to re-
duce the MLU to keep more headroom open for unplanned
failures and traffic spikes. Typically, operators spend to in-
crease link capacities when MLU exceeds a threshold value,
and so reducing MLU can reduce CAPEX [14, 27].

In this work, we aim to select TE configurations without
a priori knowledge of the traffic demands. To do so, we
augment the above model as follows:

WAN TE under traffic uncertainty. Time is divided into
consecutive intervals, called “epochs”, of length δt . δt is de-
termined by the network operator (e.g., at some large service
providers [22, 24], δt is a few minutes). At the beginning of
each epoch t, the TE configuration R (t) for that epoch is de-
cided based only on the history of past demand matrices and
TE configurations. We also assume that the demand matrix
is fixed within an epoch and can be approximately estimated
after the fact.4 Such periodic changes to TE configuration
reflect the current practice in private WANs [22–24].

After selecting the TE configuration R (t) for epoch t, the
demand matrix Dt is revealed. To minimize MLU, the goal for
direct optimization is to devise a TE function π(Dt−1, . . .D1)

4For e.g., by sampling ipfix (or equivalent) data at each node in the WAN,
as is done in production in SWAN [22] and B4 [24]. This data contains
source and destination nodes and volume of bytes exchanged. Alternatively,
traditional ISP backbones use network tomography on measured link usage
data (see, e.g., [46, 58]).

that, for every t > 0, maps the history of DMs from the pre-
vious t − 1 time epochs to a TE configuration R (t) for the
upcoming time epoch t so as to minimize 1

T Σt
x=1L(R (x),Dx),

where T represents the length of time in which TE configura-
tions are computed according to π.

To reason about WAN TE in the presence of traffic uncer-
tainty, we assume that the demand matrix Dt at each epoch t is
generated from some probability distribution. We also make
the following two assumptions, which are fundamental to any
data-driven approach to WAN TE. First, we assume that there
is some sufficiently large H > 0 such that the finite window
of H recent historical observations of DMs is sufficient for
informing the decision of the next TE configuration. (Our em-
pirical results in §4 suggest that H = 12 suffices for attaining
high performance on our datasets.) Formally, we model the
demand matrix Dt as generated according to an unknown
H-Markov process with transition probabilities such that
P(Dt |Dt−1, . . . ,Dt−H) = P(Dt |Dt−1, . . . ,D1). Second, we as-
sume that the probability of observing a particular sequence
of H DMs in the training data and during real-time system
execution is the same. This formally translates to the Markov
process being in a steady state. Let P(Dt−1, . . . ,Dt−H) de-
note the Markov process’ stationary distribution, which deter-
mines the probability for any specific H-long recent history
of DMs. The expected MLU for a TE configuration R at
epoch t is therefore EDt [L(R ,Dt)], where the expectation
is with respect to the (unknown) probability distributions
P(Dt−1, . . . ,Dt−H) and P(Dt |Dt−1, . . . ,Dt−H) defined above.

3.2 The DOTE TE Framework
DOTE leverages stochastic optimization to compute a TE
function πθ(Dt−1, . . . ,Dt−H), parametrized by θ, which maps
the H-long recent history of DMs to the TE configura-
tion for the next time epoch, R (t). If the TE function is
sufficiently expressive, there should exist parameters that
closely approximate the optimal TE function. As we shall
discuss in §3.4, in DOTE, πθ is realized by a deep neu-
ral network (DNN), and the parameters θ correspond to
the DNN’s link weights. We thus consider the optimiza-
tion problem of seeking parameters θ for which the follow-
ing expression is minimized: E [L(πθ(Dt−1, . . . ,Dt−H),Dt)],
where the expectation is with respect to choosing t uni-
formly at random from {1, . . . ,T}, and the probability dis-
tributions P(Dt−1, . . . ,Dt−H) and P(Dt |Dt−1, . . . ,Dt−H) de-
fined above. Observe that by the linearity of expectation
and the above equation, E [L(πθ(Dt−1, . . . ,Dt−H),Dt)] =
1
T ΣT

t=1EDt

[
L(R (t),Dt)

]
, which is precisely our optimization

objective in DOTE.
The training data for DOTE is a trace of historical

DMs, consisting of N sequences of DMs of the form{
Di

t ,D
i
t−1, . . . ,D

i
t−H

}
, where each sequence consists of H+1

DMs and captures a specific realization of a H-long history
of DMs and the subsequent realized DM. We assume that

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1561

these N observations of DM sequences are sampled i.i.d. from
t ∈ [1, . . . ,T], P(Dt−1, . . . ,Dt−H) and P(Dt |Dt−1, . . . ,Dt−H).5

DOTE executes stochastic gradient descent (SGD) [51] to
optimize the parameters θ by sequentially sampling m-sized
mini-batches of data, where each data point in the mini-batch
is drawn from the data uniformly at random. For each mini-
batch of sampled data points, the parameters θ are updated as
follows:

θ := θ−α
1
m ∑

i in batch
∇θL(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H)),

where α is a step size parameter and
∇θL(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H)) is the gradient of the

loss function with respect to θ. Our realization of stochastic
optimization in DOTE follows the ADAM [30] method,
which incorporates momentum and an adaptive step size.

A closer look at DOTE’s parameter update step. Re-
call that our objective is to reach a performant TE con-
figuration with respect to the expected loss (MLU). The
success of DOTE’s SGD is thus crucially dependent on
DOTE’s ability to well-approximate the gradient with re-
spect to the expected loss. Unfortunately, in most real-world
TE environments, exact knowledge of the underlying dis-
tribution over traffic demands is unattainable. To address
this, DOTE’s parameter update step (see above) incorporates
the expression 1

m ∑i in batch ∇θL(Di
t ,πθ(Di

t−1, . . . ,D
i
t−H)). As

discussed above, each sequence of H + 1 demand ma-
trices

{
Di

t ,D
i
t−1, . . . ,D

i
t−H

}
in the batch is assumed

to be independently drawn from the underlying sta-
tionary distribution of the Markov process. Hence,
1
m ∑i in batch ∇θL(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H)) is an unbiased es-

timate of the gradient of the expected loss, and closely ap-
proximates the gradient of the expected loss for a large enough
m. Approximating the gradient of the expected loss in this
manner is termed Sample Average Approximation (SAA) in
stochastic optimization literature [51]. Relying on unbiased
stochastic gradients for SGD guarantees convergence to a
global optimum with respect to the expected loss [49] when
the loss function is concave (as in our context, see §3.3).

We are left with the challenge of deriving
1
m ∑i in batch ∇θL(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H)). An impor-

tant technical observation is that each data point i in the batch,
L(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H)) is a composition of differentiable

computations. DOTE capitalizes on this for calculating the
gradient ∇θL(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H)) in closed form via

backpropagation. We revisit this point in §3.4.

5When the data is a long trace of historical DMs, the samples are not
necessarily independent. However, we assume that the mixing time of the
Markov process is fast enough such that correlations between the data sam-
ples are negligible. This is a common assumption in time series prediction.

3.3 Analytical Optimality Results
We prove that, for a perfectly expressive TE function, i.e.,
when the TE function can be any mapping from demand
histories to TE configurations, and in the limit of infinite
empirical data sampled from the underlying Markov process’
stationary distribution, DOTE attains optimal performance.
In practice, we relax both assumptions: in DOTE, we sample
from a large, but finite, dataset of historical demands, and use
a parametric model (specifically, a neural network) to map
from the set of possible histories to valid TE configurations.
Our theoretical result below, however, establishes that our
approach is fundamentally sound, and so high performance
in practice can be achieved by acquiring sufficient empirical
data and employing a sufficiently expressive decision model
(e.g., a deep enough neural network). Our empirical results
in §4 corroborate this.

For the sake of analysis, we assume that the set of pos-
sible history realizations, which we denote by H, is fi-
nite. Let π : H → R denote a mapping from history
to TE configuration6. We consider an idealized stochas-
tic gradient descent (SGD) algorithm that, at each iter-
ation k samples a single data point Dt ,Dt−1, . . . ,Dt−H
from the probability distributions P(Dt−1, . . . ,Dt−H) and
P(Dt |Dt−1, . . . ,Dt−H), and updates πk+1 = Pro j{πk −ηvk},
where vk ∈ ∂L(πk(Dt−1, . . . ,Dt−H),Dt) denotes the subgra-
dient of the objective function, and Pro j denotes a pro-
jection onto the simplex for each (s,d) pair. The final
output after K iterations is π̄ = 1

K ∑
K
k=1 πk. Let L̄(π) =

E [L(π(Dt−1, . . . ,Dt−H),Dt)] denote the expected MLU of
a TE function, and let π∗ ∈ argminπ L̄(π) denote the optimal
TE function. We prove the following theorem:

Theorem 1. For any ε > 0, there exists η > 0 and finite K
such that

∣∣E[
L̄(π̄)

]
− L̄(π∗)

∣∣ ≤ ε, where the expectation is
w.r.t. the sampling by the algorithm.

The proof of Thoerem 1, which crucially relies on the
convexity of the MLU objective, appears in Appendix B.

3.4 Scalability and Real-World Traffic
Direct TE optimization aims at computing a mapping from
the history of recent traffic demands to a TE configuration that
optimizes expected performance for the next demands. A key
insight is that with real-world traffic, one may expect certain
patterns in this mapping; for example, if two histories of traf-
fic conditions are very similar, their corresponding optimal
TE configurations should also be similar. However, measur-
ing and explicitly quantifying such similarities is nontrivial.
Our approach is to exploit deep neural networks, which have
demonstrated remarkable success in identifying complex pat-
terns in high dimensional data, for this task.

6Note that we dropped the subscript θ in π, as in our analysis we consider
the space of all possible TE configurations, and not a specific parametrization.

1562 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DOTE employs a DNN to realize the TE function
πθ(Dt−1, . . . ,Dt−H). Specifically, DOTE’s DNN maps an
input of H (12 in our experiments) most recent DMs into an
output vector specifying the splitting ratios across tunnels for
all source-destination pairs. In our implementation of DOTE,
we use the popular Fully Connected DNN architecture. See
Appendix E for a formal exposition of how the DNN’s output
and the realized DM are fed into the loss function to derive the
induced MLU. Importantly, the sequence of steps for mapping
the DNN output to the MLU value L(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H))

involves only differentiable computations; the loss as a func-
tion of the TE configuration is a composition of a max and a
linear function, and the neural network is differentiable by de-
sign. Hence, the gradient ∇θL(Di

t ,πθ(Di
t−1, . . . ,D

i
t−H)) can

be calculated in closed form via backpropagation. In our im-
plementation, the Pytorch [41] auto-differentiation package
is used to calculate the gradients.

3.5 On Maximum and Concurrent Flow

We next explain how DOTE extends to two other central TE
objectives: maximizing network throughput [18, 22, 24, 25]
(maximum multicommodity flow) and maximum concurrent-
flow [11, 29, 48].

TE configurations for flow maximization. TE objectives
that capture different notions of flow maximization require
that the outputs of the TE mechanism satisfy strict capacity
constraints. To address this, we revise our definition of TE
configuration R from §3.1: for each source-destination pair
s, t ∈ V , R now specifies (1) traffic splitting ratios xp over
the paths (tunnels) p ∈ Pst (as in §3.1), (2) for each path
(tunnel) p ∈ Pst , a “cap” ωp ≥ 0. ωp represents the maximum
permissible flow between s to t along the path p (enforced
via rate limiting). R must satisfy that no link capacity is
exceeded (regardless of the realized demands), i.e., that for
each link e∈E, Σs,t∈V,p∈Pst ,e∋pωp ≤ c(e). A TE configuration
R and demand matrix D induce, for each tunnel p a flow
fp(R ,D) = min{xp×Ds,t ,ωp}. The total flow between s and
t is thus fst(R ,D) = Σp∈Pst fp(R ,D).

The maximum-multicommodity-flow and maximum-
concurrent-flow objectives. In maximum-multicommodity-
flow [18, 22, 24, 25], the performance objective L(R ,D) is to
compute, for a given demand matrix D, a TE configuration
R that maximizes the expression L(R ,D) = Σs,t∈V fst(R ,D)
(the total network throughput). For a TE configuration R
and demand matrix D, let α(R ,D) denote the maximum
value α ∈ [0,1] for which at least an α-fraction of each
Ds,t is routed concurrently, i.e., such that for all s, t ∈ V ,
fst(R ,D)≥ αDs,t . The goal in maximimum-concurrent-flow
is to compute, for an input DM D, the TE configuration
R for which L(R ,D) = α(R ,D) is maximized. Relative
to maximum-multicommodity-flow above, the maximum-
concurrent-flow objective enhances fairness. Practical TE

systems [22, 24] use a sequence of optimizations wherein
they employ different objectives for different priority classes.
For example, they may use maximum-multicommodity-flow
or minimizing MLU for high priority traffic and maximum-
concurrent-flow for scavenger-class traffic.

DOTE for maximum-multicommodity-flow and maximum-
concurrent-flow. Adapting DOTE to the above two flow-
maximization objectives is accomplished along the lines de-
scribed in §3.4. In particular, a DNN is again utilized to map
the recent observations of DMs to the next TE configuration.
Recall from the above discussion that the (revised) TE config-
uration consists of both traffic splitting ratios across tunnels
and a “flow cap” for each tunnel. In our design, the DNN
outputs wp ≥ 0 for each tunnel p. The wp’s are used to de-
rive traffic splitting ratios and flow caps as follows. We set
ωp =

wp
γ

, where γ = max
(

maxe∈E
Σp:e∈pwp

c(e) ,1
)

. Observe that
this guarantees that no link capacity can be exceeded even if
each tunnel p carries its maximum permissible flow ωp (i.e.,
that Σs,t∈V,p∈Pe

st
ωp ≤ c(e)). We then set the traffic split share

on tunnel p to simply be its proportional weight: xp =
ωp

Σq∈Pst ωq
.

Since the objective is now maximizing a performance metric,
DOTE now involves stochastic gradient ascent.

Optimality via stochastic quasi-concave optimization.
In Appendix B, we prove the analogues of Theorem 1
for maximum-multicommodity-flow and for maximum-
concurrent-flow, establishing DOTE’s optimality for these two
objectives. Similarly to Theorem 1 (for MLU), this implies
that with sufficient training data and a sufficiently expressive
decision model, DOTE attains near-optimal TE configurations.
Our evaluation results for maximum-multicommodity-flow
and for maximum-concurrent-flow exemplify this (§4.3).

Our proofs for maximum-multicommodity-flow and for
maximum-concurrent-flow are considerably more subtle than
that of Theorem 1, as both objectives are not concave (the
analogue of convexity for maximization problems). Instead,
we show that the average maximum-multicommodity-flow /
maximum-concurrent-flow score of a TE configuration over
any set of DMs is quasi-concave. This result, which may be
of independent interest, allows us to leverage the analytical
arguments in [20] to show convergence of a suitable stochastic
gradient ascent algorithm to the global optimum, and bound
the number of required iterations.

3.6 Realizing DOTE
Figure 3 illustrates key differences between DOTE and prior
software-defined WAN TE schemes. One key difference is
the use of historical traffic demands and a learnt controller
instead of running an optimization solver, leading to sub-
stantial decrease in deployment overheads and runtimes. In
particular, bandwidth brokers are no longer needed to esti-
mate application demands. Furthermore, rate allocations can,
if necessary, be enforced by piggy-backing on novel traffic

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1563

Prior controllers

WANService hosts

Network
agents

Service
brokers

Traffic demands
BW allocation Network config.

Topology, usage

Rate
limiting

(a) Architecture of prior SD-WAN TE schemes [22, 24]. (b) DOTE with differences shown in red.

Figure 3: Illustration of the key differences from previous SD-WAN TE schemes.

shaping techniques that are deployed in modern cloud servers
at the OS-level as well as in NIC/FPGA offloads [1,12,43,47].

Training DOTE. Since DOTE’s decision model is trained
offline on historical data, its operational model can be periodi-
cally replaced by a model trained in the background on more
recent and up to date data, to gracefully adapt to planned
changes in WAN topology (adding capacity, planned addi-
tion/removal of nodes or links) and to temporal drifts in traffic
demand distributions. Our evaluation results (§4) indicate that
DOTE produces high performance TE configurations even
weeks after being deployed, and even if the network topology
changes during this time (e.g., due to failures). This provides
ample time for training substitute TE functions (a process that
requires less than a day on large networks for our empirical
datasets without code and hardware optimizations).

Handling network failures. Tunnelling protocols (e.g.,
MPLS) identify tunnels with failed nodes/links. A traditional
approach in TE to rerouting traffic around failed tunnels is
to let traffic sources redistribute traffic proportionally among
their remaining tunnels [22, 24, 39, 52].7 We incorporate this
simple approach into DOTE and evaluate its effectiveness in
§4), showing that it achieves high resiliency to failures. We
discuss other possible approaches in §5.

4 Evaluation

Using actual traffic demands from three different production
WANs (Abilene, GEANT, and Microsoft’s WAN), we ask the
following questions: (1) How does DOTE compare against an
omniscient oracle with perfect knowledge of future demands?
(2) How does DOTE compare with state-of-the-art prediction-
based TE [4, 22, 24, 36, 40], demand-oblivious TE [8, 32],
and RL-based TE [54]? (3) Can DOTE support different
TE objectives (e.g., MLU [8], maximum-multicommodity-
flow [4, 22, 24])? (4) How long does DOTE take to train and
to apply online at each solver activation? (5) How does DOTE
perform under network faults and drift in traffic patterns?

7Traffic split (0.6,0.3,0.1) becomes (0,0.75,0.25) if the first path goes
down.

#Nodes #Edges Length Granularity
Abilene 11 14 4.5months 5 min.
GEANT 23 37 4 months 15 min.
PWAN O(100) O(100) O(1) months minutes

PWANDC O(10) O(10) O(1) months minutes
GtsCe 149 193

SyntheticCogentco 197 243
KDL 754 895

Table 1: Datasets used to evaluate DOTE

4.1 Methodology

Datasets: Data-driven TE is best evaluated on real-world
datasets; we use the production topology and the traffic de-
mands from GEANT [53], Abilene [3], and PWAN, a pri-
vate WAN at Microsoft. Traffic traces were collected at a
few-minute granularity over several months. We also use
three topologies (GtsCe, Cogentco and KDL) from Topology
Zoo [31] with synthetic traffic (generated using the gravity
model [8, 45]). Table 4 lists the topology sizes and traffic
demands. Nodes in these WAN topologies are datacenters,
edge sites, or peering points. Traffic on PWAN includes both
traffic between datacenters and traffic to/from end users. To
better understand how DOTE performs for each traffic class,
we consider a subset–PWANDC–which only contains large
datacenters and the traffic between them. For each WAN, we
use the earlier 75% of demand matrices (DMs) for training
and the later 25% DMs as the test set.

Tunnel choices are k-shortest-paths, edge-disjoint paths, and
SMORE trees. More specifically, we use (1) Yen’s algorithm
for k-shortest-paths, with k = 8 per commodity (pair of nodes),
(2) edge-disjoint shortest-paths where, for each commodity,
we iteratively compute a shortest-path in the network and
remove all links on that path from consideration until no
more paths exist for that commodity, and (3) tunnels from
SMORE [37] generated using Yates [36].

Comparables to DOTE include: (1) Omniscient oracle,
which is an optimization with perfect knowledge of future
demands and bounds the quality of any WAN TE scheme. (2)
Demand-prediction-based TE methods [4, 22, 24, 36, 40],
which are in production today [22, 24]. We consider a rich

1564 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

WAN Online Lat. (s) Precomp. Lat. (s)
DOTE LP DOTE COPE Oblivious

Abilene 0.0005 0.02 1800 180 1
PWANDC 0.003 0.05 1200 7200 15

Geant 0.002 0.04 2400 10800 180
PWAN 0.2 1 36000 > 345600 ∼ 86400

Table 2: Comparing the online latency (to compute a TE
configuration for a demand matrix) as well as the precompu-
tation latency (to train models, to compute demand-oblivious
configurations, etc.) for various TE schemes. 8 shortest paths
are used per demand across all WANs and TE schemes.

collection of possible predictors of future demands: linear
regression, ridge regression, random forest, DNN models, and
autoregressive models (§C). (3) RL-based WAN TE [54],
which leverages a neural network of the same size as DOTE’s
(see below). (4) Demand-oblivious TE [8], which optimizes
the worst-case performance over all traffic demands. (5)
SMORE [37], which picks source-rooted trees for worst-
case demands but adapts splitting ratios over the chosen trees
based on predicted future demands. (6) COPE [55], which
enhances demand-oblivious schemes by also optimizing over
a set of predicted traffic demands.

Metrics: Our TE quality metric is the ratio between the value
obtained by the evaluated TE scheme and the performance ob-
tained by the omniscient oracle, which has perfect information
about future traffic demands. We consider three TE objec-
tives: minimize maximum link utilization (MLU) [8, 14, 27],
maximize multicommodity flow [4, 22, 24, 37] and maxi-
mize concurrent-flow [11, 29]. Note that this ratio is ≥ 1
for MLU (because lower max-link utilization is better) and
≤ 1 for the other metrics (because carrying more flow is bet-
ter). We refer to the relative gap from 1 as the optimality gap.
We also measure the runtimes (latency) of the evaluated TE
schemes on the same physical machine.8

DNN architecture: Unless otherwise specified, results for
DOTE use five fully connected NN layers with 128 neurons
each and ReLU(x) activation except for the output layer which
uses Sigmoid(x). For different TE objectives, DOTE uses a
similar architecture with small changes. We chose this archi-
tecture because it empirically outperformed other investigated
architectures.

Infrastructure and code: We ran our experiments in cloud
VMs and made use of cloud ML training systems. To enable
further research, we have released our code at [2].

Fault model: To examine TE behaviour under network faults,
we randomly bring down a certain number of links (e.g., 1
to 20 while ensuring network is not partitioned), and com-
pare the performance of DOTE (see DOTE’s failure-recovery
scheme at the end of §3.6) and alternatives with an omni-
scient oracle with perfect knowledge of both future failures
and future traffic demands.

8VM with 8 vCPUs and 256GB RAM.

4.2 Comparing DOTE with Other TE Schemes
TE quality. Figure 4 compares DOTE with the other TE
schemes described in §4.1, with the exception of SMORE
(to be discussed in §4.3). The values plotted here are the
maximum link utilization (MLU) normalized by that of the
ominiscient oracle with perfect knowledge of future demands.
The figure shows results on four different topologies. Each
candlestick shows the distribution of MLUs achieved on the
various demand matrices with the boxes ranging from 25th
to 75th percentile and the whiskers going from minimum to
maximum value. The figure also plots values achieved at
various other percentile values. We note a few findings.

• First, optimizing for predicted demands can lead to poor
TE quality (see results for GEANT and PWAN). Note
that the y axis is in log scale. A value of y = 2 indicates
that the link most utilized by the TE scheme is twice as
utilized as the most utilized link in the optimal solution
(produced by the oracle). Optimizing with respect to
predicted demands performs well only on Abilene and
PWANDC, where the traffic demands are predictable.
These results are for a linear-regression-based predictor
that outperforms all other considered predictors on our
real-world traffic datasets (see Appendix C).

• Next, we observe that the RL-based TE scheme [54] has
extremely poor TE quality even on Abilene. This could
be due to the infamous training complexity of RL.

• Third, demand-oblivious TE [8] results in somewhat
decent TE quality on GEANT but not on any of the other
WANs. This could be because optimizing worst-case
performance across all possible demands fails to take
advantage of the specific characteristics of real-world
traffic demands.

• Fourth, COPE [55], which explicitly accounts for his-
torically observed demands, significantly outperforms
demand-oblivious TE. The key issue with COPE is its
extremely high runtimes. Our analysis (see Table 2 and
discussion below) suggests that COPE’s applicability
does not extend beyond topologies with tens of nodes.

• Finally, note that DOTE achieves TE quality that is al-
most always significantly better than the alternatives’
and nearly as good as the omniscient oracle’s. The dif-
ference in TE quality is especially stark at the higher per-
centiles. Relative to the compared TE schemes, DOTE
offers MLU up to 25% better at the median and 170%
better at the 99th percentile.

Runtimes. Table 2 presents a comparison of runtimes across
TE schemes. The table presents the latency of applying each
TE scheme to a new demand matrix and, wherever appro-
priate, the required precomputation time. Demand-oblivious
schemes [8] and COPE [55] do not change the TE configura-
tion online but involve very long precomputation latency and
require very large memory. DOTE performs both precompu-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1565

 1

 10

PWANDC PWAN

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n DOTE

DM Pred
RL

Oblivious
COPE
99th

90th
Average
Median

(a) PWANDC & PWAN

 1

 10

Abilene GEANT

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n DOTE

DM Pred
RL

Oblivious
COPE
99th

90th
Average
Median

(b) Abilene & GEANT

Figure 4: TE quality when aiming to minimize the maximum link utilization with 8 shortest paths per demand. Candlesticks
depict results across hundreds of demands; the boxes are from the 25th to the 75th percentile, the whiskers range from min to
max value, dashed lines capture other percentiles of interest. DOTE achieves much lower MLU compared to the alternatives.

 0

 0.2

 0.4

 0.6

 0.8

 1

PWANDC
edge-disjoint

PWANDC
8 shortest paths

PWAN
edge-disjoint

PWAN
8 shortest paths

(n
or

m
al

iz
ed

)
To

ta
l F

lo
w

DOTE
DM Pred

99th

90th
Average
Median

(a) PWANDC & PWAN

 0

 0.2

 0.4

 0.6

 0.8

 1

Abilene
edge-disjoint

Abilene
8 shortest paths

GEANT
edge-disjoint

GEANT
8 shortest paths

(n
or

m
al

iz
ed

)
To

ta
l F

lo
w

DOTE
DM Pred

99th

90th
Average
Median

(b) Abilene & GEANT

Figure 5: TE quality when aiming to maximize total flow with two different tunnel choices.

tation on historical demands (training the DNN) and online
computation (invoking the DNN). SMORE’s online com-
putation involves solving an LP to optimize over predicted
demand matrices and so its latency is roughly as high as the
LP’s latency in the table. To compute Racke’s routing trees,
SMORE requires several hours on the larger topologies.

The table shows that DOTE’s inference time is faster than
the latency of using LPs to optimize over one (predicted)
DM. The LP’s latency is on par with results in recent stud-
ies [4, 40]. DOTE’s online computation is short because it is
effectively a few matrix multiplications.9 LP computation la-
tency increases super-linearly with the network size and prior
work notes that solver times can exceed several minutes on
networks with thousands of nodes and edges [4, 40]; DOTE’s
inference latency on large WANs, such as KDL (see Table 4),
is still within a few seconds. DOTE’s training time is less
than 12 hours for PWAN and can be accelerated using stan-
dard methods (e.g., by parallelization, SIMD and other model
training enhancements).

9Input is 12 demand matrices and output is splitting ratios or one double
per tunnel per demand. On the large PWAN network, both the input and
output are a few tens of MBs.

COPE’s precomputation latency is a few orders of mag-
nitude higher than that of the demand-oblivious TE, which
is, itself, a couple orders of magnitude higher than that of
prediction-based TE. COPE also has much higher memory
requirements (over 256GB on PWAN); in fact, on PWAN,
COPE did not finish pre-computation even after four days on
a 8-core VM with 256GB running Gurobi [19] vers. 9.1, and
hence Figure 4 includes no results for COPE on PWAN. To
understand COPE’s runtime complexity better, we ran it on
WAN topologies from Topology Zoo [31] that are larger than
GEANT and PWANDC but smaller than PWAN. On Janet-
Backbone which has 29 nodes and 45 edges, COPE ran for
1.5 hours and on SurfNet (50 nodes, 68 edges), COPE did not
finish even in 10 hours. These results suggest that COPE is
inapplicable to large WANs.10

10Per Table 1 in [55], the previously published results on COPE are on
much smaller topologies than considered here.

1566 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

PWANDC
edge-disjoint

PWANDC
8 shortest paths

PWAN
edge-disjoint

PWAN
8 shortest paths

Av
g.

 A
llo

ca
te

d
D

em
an

d
Fr

ac
tio

n

DOTE
DM Pred

99th
90th

Average
Median

(a) PWANDC & PWAN

 0

 0.2

 0.4

 0.6

 0.8

 1

Abilene
edge-disjoint

Abilene
8 shortest paths

GEANT
edge-disjoint

GEANT
8 shortest paths

Av
g.

 A
llo

ca
te

d
D

em
an

d
Fr

ac
tio

n

DOTE
DM Pred

99th
90th

Average
Median

(b) Abilene & GEANT

Figure 6: TE quality when aiming to maximize the concurrent flow for two different tunnel choices. For each demand matrix,
we compute the fraction of demand satisfied for each source and destination, and sort these values into a vector. Across many
hundreds of demand matrices, the candlesticks plot the average over all such allocation vectors. Note: allocating more flow is
better. The box in each candlestick is the 25th and 75th percentile (fractional allocation) and the whiskers go from min to max
value.

 1

 10

PWANDC PWAN

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n DOTE

DM Pred
RL

Oblivious
COPE
99th

90th
Average
Median

(a) PWANDC & PWAN

 1

 10

Abilene GEANT

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n DOTE

DM Pred
RL

Oblivious
COPE
99th

90th
Average
Median

(b) Abilene & GEANT

Figure 7: TE quality when aiming to minimize MLU with all possible edge-disjoint paths.

 1

 1.5

 2

 2.5

 3

 3.5

 4

Abilene GEANT

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n DOTE

DM Pred
RL

99th
90th

Average

Median

Figure 8: TE quality when aiming to minimize MLU with
routing trees chosen by SMORE.

4.3 Generalizing to Other TE Objectives and
Tunnel Choices

Here, we present results for two additional TE objectives –
maximizing multi-commodity-flow and maximizing concur-

rent flow– as well as two other choices for tunnels.

Note that some of the compared alternatives to DOTE,
namely, demand-oblivious TE [8] and COPE [55], do not
readily apply to these TE objectives (as both build on results
from oblivious routing theory that provide provable guaran-
tees for MLU minimization), and it is not clear how to extend
them to other objectives. Our evaluation of DOTE for these
metrics is therefore restricted to benchmarking against the
omniscient oracle and prediction-based TE.

Maximizing Total Flow: Figure 5 compares DOTE with
prediction-based TE on all four WANs for two different tun-
nel choices when the TE objective is to carry as much total
flow as possible while respecting capacity constraints. Ob-
serve that DOTE carries substantially more flow and closely
approximates the TE quality of the omniscient oracle. As
before, the gap between DOTE and prediction-based TE is
larger on WANs where demands are less predictable (i.e., all
WANs but Abilene) and at the higher percentiles. Generally,
DOTE may be able to carry 10% to 20% more flow.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1567

Maximizing Concurrent Flow: Figure 6 compares DOTE
with the omniscient oracle and prediction-based TE when the
TE objective is to maximize the minimum fraction of demand
satisfied across all demands. Observe that DOTE fully allo-
cates almost all of the demands (the upper candlesticks are
at y = 1), whereas prediction-based TE allocates a smaller
fraction of the demanded volume for many more demands.

Tunnel choice does not qualitatively change our results for
TE performance; contrast Figure 7 and Figure 8 with Figure 4.
Note that when using Racke’s routing trees (as in SMORE)
prediction-based TE coincides with SMORE.

4.4 Coping with Network Failures
Figure 9 shows how DOTE performs, in terms of MLU,
when different numbers of (randomly chosen) links fail in the
PWAN topology. As noted in §3.6, DOTE assumes that source
nodes (or tunnel heads [44]) identify tunnels that fail and re-
balance traffic proportionally among the surviving tunnels.
The figure compares DOTE with two variants of prediction-
based TE: DM Pred. which, similar to DOTE, has no a priori
knowledge of future traffic demands or the link faults, and
FA DM Pred. which is identical to DM Pred. except that it is
fault-aware, i.e., knows the links that will fail. Our quality
metric is still normalized MLU except that we now normalize
based on an omniscient oracle that has perfect knowledge of
both future traffic demands and the failures.

Our results show that DOTE outperforms both demand-
prediction-based TE (DM Pred.) and demand-prediction-
based TE with oracle access to future failures (FA DM Pred.)
for many concurrent link failures with different tunnel choices.
We interpret this result as indicating that the error in demand
predictions weights more heavily on attaining a good TE ob-
jective than the confusion induced by these link failures. Our
results on other topologies (Abilene, GEANT, and PWANDC)
and for the maximum-multicommodity-flow objective show a
similar trend (Figure 13 and Figure 14).

4.5 Robustness to Traffic Noise and Drift
Robustness to unexpected traffic changes. To assess
DOTE’s robustness to noisy traffic, we evaluate DOTE on
the GEANT, Cogentco, and GtsCe WANs [31], where each
demand in the realized DM is independently multiplied by
a factor chosen uniformly at random from [1−α,1+α] for
α ∈ {0.1,0.25,0.35}. Our results (see §D) show that under
such traffic perturbations, the distance, in terms of MLU, from
the omniscient oracle remains low across all evaluated WANs
(e.g., 2%, 2.9%, and 3.8% for α = 0.1,0.25,0.35 for GEANT
with edge-disjoint tunnels).

Robustness to natural traffic drift. We investigate to what
extent the quality of DOTE’s TE configurations deteriorates
when DOTE is not frequently retrained. We quantify the dis-
tance from the omniscient oracle, in terms of both MLU and

maximum-multicommodity-flow, of the average weekly value
achieved by DOTE on the Abilene and GEANT WANs over
4 consecutive weeks (without retraining DOTE). See Table 3
and Table 4 in the Appendix. Our results show that while the
distance from the optimum increases over time, in general,
DOTE remains close to the optimum (within a few % on aver-
age) even weeks after the model is trained. This suggests that
DOTE can provide high quality TE even if it was re-trained
once every month. DOTE’s training time (see Table 2) allows
for much more frequent retraining.

5 Limitations and Future Research

We believe that our investigation of direct optimization for
WAN TE has but scratched the surface and outline below
current limitations of our approach, as well as intriguing di-
rections for future research.

Extending DOTE to support latency-sensitive traffic. To
accommodate latency-sensitive traffic, the following strategy
(similarly to [34]) could be employed: reserve shortest paths
(tunnels) for such traffic and always schedule short/latency-
sensitive traffic flows to these paths.

More expressive neural network architectures. Our real-
ization of DOTE uses a relatively simple neural network that
does not leverage knowledge of the WAN topology. Con-
sequently, the neural network has to (implicitly) learn the
network topology during training. Directly incorporating the
WAN structure into DOTE using Graph Convolutional Net-
works [56] could potentially lead to faster training and/or
better quality solutions.

Extending DOTE to incorporate data-driven tunnel se-
lection. Our discussion of DOTE assumed an underlying
tunnel-selection scheme. DOTE can be extended to support
data-driven tunnel-selection by adding DNN output variables
specifying a probability distribution over a finite set of can-
didate tunnels (e.g., shortest-path, edge disjoint, SMORE).
At the beginning of each time epoch, the tunnels to be used
in that time epoch would be chosen according to this proba-
bility distribution. DOTE’s optimality results extend to this
setting. We defer a more thorough study of data-driven tunnel
selection (e.g., not limited to a finite set of predetermined
candidate tunnels) to future research.

Learning to contend with link failures. We described (§3.6)
an approach for dealing with link failures in the data plane.
An alternative is incorporating fault tolerance into the DNN
training process by introducing random link failures.

6 Related Work

(WAN) TE. TE has been extensively studied [5, 7, 10, 11, 14,
16, 22, 24, 26–28, 37, 39, 57, 59] in a broad variety of settings,
including legacy networks [13, 17], datacenter networks [6],

1568 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 1

 10

 100

1 2 3 5 10 20

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n

Number of Failures

DOTE
FA DM Pred

DM Pred

99th
90th

Average

Median

(a) 8SP

 1

 10

 100

1 2 3 5 10 20

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n

Number of Failures

DOTE
FA DM Pred

DM Pred

99th
90th

Average

Median

(b) edge-disjoint

Figure 9: Coping with different numbers of random link failures on PWAN; the candlesticks show the distribution over 1700
different randomly chosen failure cases.

and backbone networks [27]. SDN-controlled WAN TE has
also received extensive attention [11, 22, 24, 35, 37–39, 59].

TE via oblivious routing, COPE, and SMORE. Oblivi-
ous routing optimizes worst-case MLU across all possible
DMs [8, 9, 42]. Since oblivious routing does not exploit any
information about past traffic demands, it naturally yields sub-
optimal solutions [8, 37]. COPE [55] optimizes MLU across
a set of DMs spanned by previously observed DMs, while
retaining a worst-case performance guarantee. Since COPE
both extends oblivious routing and optimizes over ranges of
demand matrices, its optimization phase is extremely time-
consuming (§4.2). The key conceptual difference between
DOTE and such “robust TE” schemes is in the goal of the
pre-computation. Instead of emitting a single TE configura-
tion that minimizes some cost function (specifically, MLU)
over some predetermined set of DMs, DOTE’s objective is
to identify a mapping from a vector of DMs from the recent
past to the next TE configuration. DOTE thus achieves higher
flexibility by being able to emit different TE configurations on
a case-by-case basis, and is also able to pick up on temporal
patterns in traffic demands. SMORE [37] employs Racke’s
oblivious routing trees [42] to produce static tunnels that are
robust to traffic uncertainty, with traffic splitting ratios still op-
timized with respect to the (inferred/predicted) future traffic
demands. Thus, SMORE can be thought of as a instantiation
of prediction-based TE.

Online TE [14, 15, 27], wherein traffic configurations (such
as splitting ratios) adapt automatically and in short timescales
to the observed demands is an enticing design point for TE,
but is challenging to achieve. TexCP [27] requires WAN
routers to offer novel explicit feedback, while MATE [14]
relies on changes in end-to-end latency and hence takes much
longer to react and converge and is also less stable [27]. Re-
cently deployed TE schemes [22, 24] (see §2 and Figure 3)
are simpler and easier to deploy because they replace such
distributed, closed-loop, short-timescale control with central-
ized, open-loop and periodic adaptation. We view online TE
as complementary to DOTE; DOTE could be used to periodi-

cally compute a TE configuration while online TE could be
continuously used in between DOTE updates to tweak this TE
configuration in response to changes in network conditions.

Reinforcement-learning-based TE. Demand-prediction-
based and RL approaches to TE are contrasted in [54] in terms
of MLU only on a small network (12 nodes and 32 edges) for
synthetic traffic patterns and a model of hop-by-hop routing
that does not capture routing along tunnels. Our theoretical
and empirical results reveal that DOTE’s stochastic optimiza-
tion scheme outperforms both demand-prediction-based and
RL-based TE.

Some recent work on TE [4, 40] speeds up the multicom-
modity flow computations that underpin TE optimization by
effectively breaking the large LPs into smaller problems that
can be solved in parallel. However, these approaches still rely
on predicted demand matrices (unlike DOTE). DOTE offers
an alternate way to speed up TE: replacing the LP solver with
invocations of a fairly small DNN. This has the potential to
be innately more efficient.

7 Conclusion

We presented a new framework for WAN TE: data-driven
end-to-end stochastic optimization using only historical infor-
mation about traffic demands. Our theoretical and empirical
results establish that this approach closely approximates the
optimal TE configuration, significantly outperforming previ-
ously proposed TE schemes in terms of both solution quality
and runtimes.

Acknowledgements: We thank our shepherd, Mojgan
Ghasemi, and the NSDI reviewers, for their valuable feed-
back. We thank Umesh Krishnaswamy, Himanshu Raj and the
SWAN team at Microsoft for their help and feedback. Yarin
Perry and Michael Schapira were partially supported by BSF
grant 2019798 and a grant from Microsoft. Aviv Tamar is
funded by ERC grant 101041250.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1569

References

[1] Google cloud armor: Rate limiting overview. https:
//bit.ly/3TnI1mO.

[2] Github repo containing our code. 2022. https://
github.com/PredWanTE/DOTE.

[3] Abilene/Internet2. http://www.internet2.edu/.

[4] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai
Menache, Matei Zaharia, and Peter Bailis. Contracting
wide-area network topologies to solve flow problems
quickly. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 175–
200, 2021.

[5] Ian F. Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, and
Wu Chou. A roadmap for traffic engineering in sdn-
openflow networks. Comput. Netw., 71:1–30, October
2014.

[6] Mohammad Al-Fares, Sivasankar Radhakrishnan,
Barath Raghavan, Nelson Huang, and Amin Vahdat.
Hedera: Dynamic flow scheduling for data center net-
works. In NSDI, 2010.

[7] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fin-
gerhut, Vinh The Lam, Francis Matus, Rong Pan, Navin-
dra Yadav, and George Varghese. Conga: Distributed
congestion-aware load balancing for datacenters. SIG-
COMM Comput. Commun. Rev., 44(4):503–514, Au-
gust 2014.

[8] David Applegate and Edith Cohen. Making Intra-
Domain Routing Robust to Changing and Uncertain
Traffic Demands. In SIGCOMM, 2003.

[9] Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and
Harald Racke. Optimal oblivious routing in polynomial
time. In Proceedings of the Thirty-fifth Annual ACM
Symposium on Theory of Computing, STOC ’03, pages
383–388, 2003.

[10] Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. MicroTE: Fine grained traffic engineer-
ing for data centers. In Proceedings of the Seventh
COnference on emerging Networking EXperiments and
Technologies, page 8. ACM, 2011.

[11] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai
Menache, Nikolaj Bjørner, Asaf Valadarsky, and
Michael Schapira. TEAVAR: striking the right
utilization-availability balance in WAN traffic engineer-
ing. In Proceedings of the ACM Special Interest Group
on Data Communication, SIGCOMM 2019, pages 29–
43, 2019.

[12] Adrian M. Caulfield, Eric S. Chung, Andrew Put-
nam, Hari Angepat, Jeremy Fowers, Michael Haselman,
Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov,
Michael Papamichael, Lisa Woods, Sitaram Lanka,
Derek Chiou, and Doug Burger. A cloud-scale ac-
celeration architecture. In MICRO, 2016.

[13] Marco Chiesa, Gábor Rétvári, and Michael Schapira.
Lying your way to better traffic engineering. CoNEXT,
2016.

[14] A. Elwalid, C. Jin, S. Low, and I. Widjaja. Mate: Mpls
adaptive traffic engineering. In Proceedings of IEEE
INFOCOM, volume 3, pages 1300–1309 vol.3, 2001.

[15] Simon Fischer, Nils Kammenhuber, and Anja Feldmann.
Replex: Dynamic traffic engineering based on wardrop
routing policies. In Proceedings of the 2006 ACM
CoNEXT Conference, 2006.

[16] Bernard Fortz and Mikkel Thorup. Internet traffic en-
gineering by optimizing ospf weights. In INFOCOM
2000. Nineteenth annual joint conference of the IEEE
computer and communications societies. Proceedings.
IEEE, volume 2, pages 519–528. IEEE, 2000.

[17] Bernard Fortz and Mikkel Thorup. Increasing internet
capacity using local search. Computational Optimiza-
tion and Applications, 2004.

[18] Naveen Garg and Jochen Könemann. Faster and sim-
pler algorithms for multicommodity flow and other frac-
tional packing problems. SIAM Journal on Computing,
37(2):630–652, 2007.

[19] Zonghao Gu, Edward Rothberg, and Robert Bixby.
Gurobi Optimizer Reference Manual, Version 5.0.
Gurobi Optimization Inc., Houston, USA, 2012.

[20] Elad Hazan, Kfir Levy, and Shai Shalev-Shwartz. Be-
yond convexity: Stochastic quasi-convex optimization.
Advances in neural information processing systems, 28,
2015.

[21] Peter Henderson, Riashat Islam, Philip Bachman, Joelle
Pineau, Doina Precup, and David Meger. Deep rein-
forcement learning that matters. In Proceedings of the
AAAI conference on artificial intelligence, volume 32,
2018.

[22] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
wan. SIGCOMM, 2013.

[23] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-
Fares, Min Zhu, Richard Alimi, Kondapa Naidu B.,

1570 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://bit.ly/3TnI1mO
https://bit.ly/3TnI1mO
https://github.com/PredWanTE/DOTE
https://github.com/PredWanTE/DOTE
http://www.internet2.edu/

Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu
Liang, Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat
Ray, Malveeka Tewari, Matt Tierney, Monika Zahn,
Jonathan Zolla, Joon Ong, and Amin Vahdat. B4 and
after: Managing hierarchy, partitioning, and asymmetry
for availability and scale in google’s software-defined
wan. SIGCOMM ’18, pages 74–87, 2018.

[24] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. B4: Expe-
rience with a globally-deployed software defined wan.
SIGCOMM, 2013.

[25] William S. Jewell. Multi-commodity Network Solutions.
1966.

[26] Wenjie Jiang, Rui Zhang-Shen, Jennifer Rexford, and
Mung Chiang. Cooperative content distribution and
traffic engineering in an isp network. In ACM SIG-
METRICS Performance Evaluation Review, volume 37,
pages 239–250. ACM, 2009.

[27] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna
Charny. Walking the tightrope: Responsive yet stable
traffic engineering. In SIGCOMM. ACM, 2005.

[28] Srikanth Kandula, Ishai Menache, Roy Schwartz, and
Spandana Raj Babbula. Calendaring for wide area
networks. In SIGCOMM, 2014.

[29] George Karakostas. Faster Approximation Schemes
for Fractional Multicommodity Flow Problems. ACM
Trans. Algorithms, 2008.

[30] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization learning. arXiv preprint
arXiv:1412.6980, 2014.

[31] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and
M. Roughan. The internet topology zoo. IEEE Journal
on Selected Areas in Communications, 2011.

[32] M Kodialam, T V Lakshman, and S Sengupta. Traffic-
oblivious routing in the hose model. IEEE/ACM Trans-
actions on Networking, 19(3):774 – 787, 2011.

[33] Igor V Konnov. On convergence properties of a sub-
gradient method. Optimization Methods and Software,
18(1):53–62, 2003.

[34] Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner,
and Himanshu Raj. Decentralized cloud wide-area
network traffic engineering with BlastShield. Technical
Report MSR-TR-2021-31, Microsoft Research, 2021.

[35] Alok Kumar, Sushant Jain, Uday Naik, Nikhil Kasinad-
huni, Enrique Cauich Zermeno, C. Stephen Gunn, Jing
Ai, Björn Carlin, Mihai Amarandei-Stavila, Mathieu
Robin, Aspi Siganporia, Stephen Stuart, and Amin Vah-
dat. Bwe: Flexible, hierarchical bandwidth allocation
for wan distributed computing. In Sigcomm ’15, 2015.

[36] Praveen Kumar, Chris Yu, Yang Yuan, Nate Foster,
Robert Kleinberg, and Robert Soulé. Yates: Rapid
prototyping for traffic engineering systems. In Proceed-
ings of the Symposium on SDN Research, SOSR ’18,
pages 11:1–11:7, New York, NY, USA, 2018. ACM.

[37] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster,
Robert Kleinberg, Petr Lapukhov, Chiun Lin Lim, and
Robert Soulé. Semi-oblivious traffic engineering: The
road not taken. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18),
pages 157–170, Renton, WA, 2018. USENIX Associa-
tion.

[38] George Leopold. Building Express Backbone:
Facebook’s new long-haul network. http://code.
facebook.com/posts/1782709872057497/, 2017.

[39] Hongqiang Harry Liu, Srikanth Kandula, Ratul Maha-
jan, Ming Zhang, and David Gelernter. Traffic engineer-
ing with forward fault correction. In ACM SIGCOMM
2014 Conference, SIGCOMM’14, Chicago, IL, USA,
August 17-22, 2014, pages 527–538, 2014.

[40] Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid,
Peter Kraft, Akshay Agrawal, Srikanth Kandula,
Stephen Boyd, and Matei Zaharia. Solving large-scale
granular resource allocation problems efficiently with
POP. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, pages 521–537,
2021.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information pro-
cessing systems, 32:8026–8037, 2019.

[42] Harald Räcke. Minimizing congestion in general net-
works. In Proceedings of the 43rd Symposium on Foun-
dations of Computer Science, FOCS ’02, 2002.

[43] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar
Jeyakumar, Abdul Kabbani, George Porter, and Amin
Vahdat. Senic: Scalable nic for end-host rate limiting.
In NSDI, 2014.

[44] E. Rosen, A. Viswanathan, and R. Callon. Multi-
Protocol Label Switching Architecture. RFC 3031.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1571

http://code.facebook.com/posts/1782709872057497/
http://code.facebook.com/posts/1782709872057497/

[45] Matthew Roughan, Albert Greenberg, Charles
Kalmanek, Michael Rumsewicz, Jennifer Yates, and
Yin Zhang. Experience in measuring backbone
traffic variability: Models, metrics, measurements and
meaning. IMW, 2002.

[46] Matthew Roughan, Mikkel Thorup, and Yin Zhang. Per-
formance of estimated traffic matrices in traffic engi-
neering. In SIGMETRICS, 2003.

[47] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius,
Vinh The Lam, Carlo Contavalli, and Amin Vahdat.
Carousel: Scalable traffic shaping at end hosts. In
SIGCOMM, 2017.

[48] Farhad Shahrokhi and David W. Matula. The maximum
concurrent flow problem. J. ACM, 37:318–334, 1990.

[49] Shai Shalev-Shwartz and Shai Ben-David. Understand-
ing machine learning: From theory to algorithms. Cam-
bridge university press, 2014.

[50] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and
Karthik Sridharan. Stochastic convex optimization. In
COLT, volume 2, page 5, 2009.

[51] Alexander Shapiro, Darinka Dentcheva, and Andrzej
Ruszczynski. Lectures on stochastic programming:
modeling and theory. SIAM, 2021.

[52] Martin Suchara, Dahai Xu, Robert Doverspike, David
Johnson, and Jennifer Rexford. Network architecture
for joint failure recovery and traffic engineering. In Pro-
ceedings of the 2011 ACM SIGMETRICS Conference,
2011.

[53] Steve Uhlig, Bruno Quoitin, Jean Lepropre, and Simon
Balon. Providing public intradomain traffic matrices to
the research community. SIGCOMM Comput. Commun.
Rev., 36(1):83–86, jan 2006.

[54] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and
Aviv Tamar. Learning to route. In Proceedings of
the 16th ACM Workshop on Hot Topics in Networks,
HotNets-XVI, 2017.

[55] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang,
Yin Zhang, and Albert Greenberg. Cope: Traffic engi-
neering in dynamic networks. In SIGCOMM, 2006.

[56] Zonghanu Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S. Yu. A comprehen-
sive survey on graph neural networks. arXiv preprint
arXiv:1901.00596, 2019.

[57] Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, Chen
Tian, Hao Wang, Haibing Guan, and Ming Zhang.
Guaranteeing deadlines for inter-data center trans-
fers. IEEE/ACM Transactions on Networking (TON),
25(1):579–595, 2017.

[58] Yin Zhang, M. Roughan, C. Lund, and D.L. Donoho.
Estimating point-to-point and point-to-multipoint traf-
fic matrices: an information-theoretic approach.
IEEE/ACM Transactions on Networking, 13(5):947–
960, 2005.

[59] Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj,
Jonathan Leach, Yiting Xia, and Ying Zhang. AR-
ROW: restoration-aware traffic engineering. In ACM
SIGCOMM 2021 Conference, Virtual Event, USA, Au-
gust 23-27, 2021, pages 560–579, 2021.

1572 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Appendix

A Predictability of WAN TE Traffic

Figure 10(a) plots the inter-data-center traffic demand be-
tween the pair of data centers with the highest average de-
mand over the course of a week. Similarly, Figure 10(b) plots
the normalized volume of customer-facing traffic for the pair
of nodes with the highest average demand over the course of
a week. Demands are shown at 5-minute granularity and are
normalized by the peak demand. As shown in Figure 10(a),
inter-data-center traffic demands exhibit very distinct diurnal
and hourly patterns. Indeed, the figure also presents the pre-
dictions of a linear regression model trained on data from the
3 preceding weeks, which takes as input the traffic demands
observed in the previous hour (at 5-minute granularity), and
outputs the predicted traffic demand for the upcoming 5 min-
utes. In contrast, the predictions of a linear regressor for
customer-facing traffic, as shown in Figure 10(b), are quite
often far from the actual traffic demands.

B Analytical Results

B.1 Minimizing Max-Link Utilization

We next prove that, for an infinitely expressive TE function,
i.e., when each history of DMs can be independently mapped
to a TE configuration, and in the limit of infinite empirical
data sampled from the underlying Markov process’ stationary
distribution, DOTE attains optimal performance. This estab-
lishes that our approach is fundamentally sound, and so high
performance in practice can be achieved by acquiring suffi-
cient empirical data and employing a sufficiently expressive
decision model (e.g., a deep enough neural network).

For the sake of analysis, we make the following simpli-
fying assumptions. We first assume that the set of possible
history realizations, which we denote by H, is finite. Let Dmax
denote an upper bound on the maximum traffic demand be-
tween a source-destination pair, cmin denote the minimum link
capacity, and pmax denote the maximum number of tunnels
interconnecting a source-destination pair. Note that any valid
TE configuration specifies, for each source-destination pair, a
point in the pmax-dimensional simplex (specifying its splitting
ratios across at most pmax tunnels); let R denote the space of
valid TE configurations. Let π : H → R denote a mapping
from history to TE configuration. π can be represented as a
vector with |H|×n2 × (pmax −1) components.11 Since each
element in this vector is itself a vector in the pmax-dimensional
simplex, we have that ∥π∥ ≤

√
|H|n2(pmax −1) .

= B, where
∥ · ∥ is the Euclidean norm. We make the following observa-
tion.

11Note that we dropped the subscript θ in π, as in our analysis we consider
the space of all possible TE configurations, and not a specific parametrization.

Proposition 1. The loss function L(π(Dt−1, . . . ,Dt−H),Dt)
is convex in π and ρ-Lipschitz, with ρ = Dmax/cmin.

Proof. fe is, by definition, linear in the traffic splitting ratios
and so in π. Since the max is a convex function, we have
that L is convex in π. Similarly, since each component in

fe
c(e) is Dmax/cmin-Lipschitz, the maximum is also Dmax/cmin-
Lipschitz.

We now consider an idealized stochastic gra-
dient descent (SGD) algorithm where at each it-
eration k we sample Dt ,Dt−1, . . . ,Dt−H from the
probability distributions P(Dt−1, . . . ,Dt−H) and
P(Dt |Dt−1, . . . ,Dt−H), and update πk+1 = Pro j{πk −ηvk},
where vk ∈ ∂L(πk(Dt−1, . . . ,Dt−H),Dt) denotes a subgradi-
ent of the objective function12, and Pro j denotes a projection
onto the simplex for each (s,d) pair. The final output after K
iterations is π̄ = 1

K ∑
K
k=1 πk.

The next theorem, based on Theorem 14.12 in [49],
bounds the loss of this algorithm. Let L̄(π) =
E [L(π(Dt−1, . . . ,Dt−H),Dt)] denote the expected loss of a
TE function, and let π∗ ∈ argminπ L̄(π) denote the optimal
TE function.

Theorem 2. For every ε > 0, if SGD is run for K ≥ B2ρ2

ε2

iterations with η =
√

B2

ρ2K , then the output of SGD satisfies

E
[
L̄(π̄)

]
≤ L̄(π∗)+ ε,

where the expectation is w.r.t. the sampling by the algorithm.

Theorem 2 shows that without function approximation (the
TE function space spans all possible mappings from history
to TE configuration), and with infinite data (the algorithm con-
tinuously samples from the true demand distribution), SGD
converges to the optimal TE function with arbitrary precision.
In practice, we relax both assumptions. In DOTE we sample
from a large, but finite, dataset of historical demands, and use
a parametric model (specifically, a neural network) to map
from an infinite set of possible histories to valid TE configura-
tions. Our empirical results show that, with enough data and
a deep enough neural network, the approximate TE function
DOTE learns is still very close to optimal.

B.2 Maximum-Multicommodity-Flow and
Maximum- Concurrent-Flow

We begin by stating a general convergence result for quasi-
convex functions that satisfy certain assumptions. We then
proceed to show that both maximum-multicommodity-flow
and maximum-concurrent-flow indeed satisfy these assump-
tions, implying their convergence.

12The objective is not necessarily differentiable everywhere because of
the max, but the subgradient exists for every π.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1573

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

N
or

m
al

iz
ed

 T
ra

ff
ic

Day of Week

Traffic
Prediction

(a) Inter-data-center traffic

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

N
or

m
al

iz
ed

 T
ra

ff
ic

Day of Week

Traffic
Prediction

(b) Customer-facing traffic

Figure 10: Inter-data-center traffic and customer-facing traffic over the course of a week, along with the predictions of a linear
regression model for the time-series.

B.2.1 General results

We begin by providing an analysis of stochastic quasi-convex
optimization, under general assumptions. In the next sec-
tion, we will show that maximum-multicommodity-flow and
maximum- concurrent-flow are special cases of this setting.13

Our analysis builds on two studies – the analysis of stochastic
normalized subgradient of [20], which is for smooth and un-
constrained problems, and the study of [33], which considered
non-smooth quasi-convex optimization.

A quasi-convex function f (x) satisfies that its level sets,
L(f ;α) = {x| f (x)≤ α}, are convex sets for all α.

We first define a normalized subgradient in the context
of quasi-convex functions, following [33]. The normal
cone to a convex set X at point x is defined by N(X ,x) =
{q ∈ Rn|⟨q,y− x⟩ ≤ 0 ∀y ∈ X} . The set of subgradients at
a point x are given by N(L(f ; f (x)),x). The set of nor-
malized subgradients, Q(f ;x), at a point x, are given by
Q(f ;x) = S(0,1)∩N(L(f ; f (x)),x), where S(0,1) is the n-
dimensional sphere of radius 1. These are directions of ascent
– normalized vectors such that taking an infinitely small step
in their direction is guaranteed to not decrease the function.

In the following, we consider a general stochastic optimiza-
tion problem:

min
x∈X

ED∼P(D) [f (x,D)] , (1)

where f is quasi-convex in x for every D.
We will further assume the following. Let B(z,r) denote

the n-dimensional ball centered on z with radius r.

Assumption 1. Set X is convex and bounded by
B(0, B̄). The function f is bounded by B. It
is also G-Lipschitz and quasi-convex in x for every
D. Furthermore, Q(1

M ∑
M
i=1 f (x,Di);x) ̸= /0 for any x /∈

13While we present results for quasi-convexity, the extension of these
results to quasi-concave problems is immediate.

argminy
1
M ∑

M
i=1 f (y,Di), and for every D1, . . . ,DM , we have

that 1
M ∑

M
i=1 f (x,Di) is quasi-convex in x.

Note that the last requirement in Assumption 1 is not imme-
diate, as the sum of quasi-convex functions is not necessarily
quasi-convex.

The stochastic normalized subgradient method we consider
works as follows [20]. At each iteration k we sample a mini-
batch {Di}b

i=1 ∼ P(D) and define fk =
1
b ∑

b
i=1 f (x,Di). We

then update xk+1 = Pro j{xk −ηvk}, where vk ∈ Q(fk;xk) de-
notes a subgradient of the minibatch, and Pro j denotes a
projection onto the set X . The final output after K iterations
is x̄K = argminx1,...,xK

fk(xk).
The analysis in [20] bounds the error of the normalized

subgradient method, for smooth and unconstrained functions.
We next adapt it to our setting.

The next definition adapts a central definition from [20] to
our non-smooth setting.

Definition 1. (SLQC) Let x,x∗ ∈ Rn, κ,ε > 0. We say that
f is (ε,κ,x∗)-strictly-locally-quasi-convex (SLQC) in x if at
least one of the following applies. (1) f (x)− f (x∗)≤ ε. (2)
Q(f ;x) ̸= /0 and for any ∆ ∈ Q(f ;x), and every y ∈ B(x∗, ε

κ
),

it holds that ⟨∆,y− x⟩ ≤ 0.

We next show that the Lipschitz and quasi-convex proper-
ties in Assumption 1 suffice to establish SLQC.

Lemma 1. Let f satisfy Assumption 1. Fix D, and let x∗ ∈
argminx∈X f (x;D). Then f is (ε,G,x∗)-SLQC for all x ∈ X.

Proof. Assume f (x;D)− f (x∗;D) > ε. Let Z denote the
f (x;D)-level set of f (x;D). Let ∂Z be the boundary of Z. By
definition of the level set, for every z ∈ ∂Z, f (z)− f (x∗)> ε.
From the Lipschitz property then, for every z ∈ ∂Z we must
have ∥z− x∗∥ ≥ ε

G . Since Z is convex, we therefore have that
B(x∗, ε

G)⊂ Z. From Assumption 1, Q(f ;x) ̸= /0, and from the
definition of Q(f ;x), we have that for every y ∈ B(x∗, ε

G), if
∆ ∈ Q(f ;x) then ⟨∆,y− x⟩ ≤ 0.

1574 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We next show that with high probability, the subgradient
of each minibatch is a descent direction for the expected
objective in (1).

Lemma 2. Let Assumption 1 hold, and let x∗ ∈
argminx∈X ED∼P(D) [f (x,D)]. Assume that the minibatch

size satisfies b = O
(

8nB2 log(GB̄/δ)
ε2

)
. Then, with probabil-

ity at least 1− δ, we have that the minibatch average fk =
1
b ∑

b
i=1 f (x,Di) is (ε,2G,x∗)-SLQC in xk.

Proof. Let

ξ =
1
b

b

∑
i=1

f (x∗,Di)−ED∼P(D) [f (x
∗,D)] .

From Hoeffding’s inequality, we have that

P(|ξ| ≥ t)≤ 2exp
(
−2bt2

B2

)
.

Thus, if b ≥ B2 log(2/δ)
2t2 we have that with probability 1− δ,

|ξ|< t.
Let x∗k ∈ argminx∈X

1
b ∑

b
i=1 f (x,Di). Let

ξ
′ =

1
b

b

∑
i=1

f (x∗k ,Di)−ED∼P(D) [f (x
∗
k ,D)] .

Then, using a covering number argument [50], we have that
for b ≥ nB2 log(GB̄/δ)

2t2 , with probability 1−δ, |ξ′|< t. We have
that

1
b

b

∑
i=1

f (x∗k ,Di)≤
1
b

b

∑
i=1

f (x∗,Di)≤ ED∼P(D) [f (x
∗,D)]+ξ,

and

ED∼P(D) [f (x
∗,D)]−ξ

′≤ED∼P(D) [f (x
∗
k ,D)]−ξ

′≤ 1
b

b

∑
i=1

f (x∗k ,Di).

Therefore,

1
b

b

∑
i=1

f (x∗,Di)−
1
b

b

∑
i=1

f (x∗k ,Di)≤ ξ+ξ
′.

Now, similarly to the proof of Lemma 1, assume that
1
b ∑

b
i=1 f (xk,Di) − 1

b ∑
b
i=1 f (x∗k ,Di) > ε. We choose b =

O
(

8nB2 log(GB̄/δ)
ε2

)
such that with probability 1−δ, ξ+ξ′ ≤

ε/2.
We therefore have:

1
b

b

∑
i=1

f (xk,Di)−
1
b

b

∑
i=1

f (x∗,Di)> ε− (ξ+ξ
′)≥ ε

2
.

For simplicity, we denote f̄ (x) = 1
b ∑

b
i=1 f (x,Di). Note that

f̄ is quasi-convex, by Assumption 1. Let Z denote the f̄ (xk)-
level set of f̄ (x). Let ∂Z be the boundary of Z. By definition

of the level set, for every z ∈ ∂Z, f̄ (z)− f̄ (x∗)> ε/2. From
the Lipschitz property then, for every z ∈ ∂Z we must have
∥z− x∗∥ ≥ ε

2G . Since Z is convex, we therefore have that
B(x∗, ε

2G) ⊂ Z. From Assumption 1, Q(f̄ ;x) ̸= /0, and from
the definition of Q(f̄ ;x), we have that for every y ∈B(x∗, ε

2G),
if ∆ ∈ Q(f̄ ;x) then ⟨∆,y− x⟩ ≤ 0.

We are finally ready to present the converge result.

Theorem 3. Let Assumption 1 hold. Suppose we run
the stochastic normalized subgradient method for K ≥
4G2∥x1−x∗∥2

ε2 iterations, η = ε/2G, and the minibatch size sat-

isfies b = O
(

8nB2 log(KGB̄/δ)
ε2

)
. Then with probability 1−2δ,

we have that f (x̄K)− f (x∗)≤ 3ε.

Proof. This is a direct application of Theorem 5.1 of [20],
where we used Lemma 2 to guarantee that at each iteration
the minibatch is SLQC, as required in [20]. We note that by
our Definition 1, the proof in [20] holds without change to the
non-smooth setting. The projection onto the set X requires a
straightforward modification to the proof of [20], where the
first equality in their proof of Theorem 4.1 should be a ≤.
The rest of the proofs remain unchanged.

B.2.2 Results for Maximum-Multicommodity-Flow

We formally define the problem as follows.
for each tunnel T , let xT denote the flow on that tunnel,

and let xe = ∑
T :e∈T

xT , for each edge e, denote the total flow on

edge e. We define

γ = max
(

max
e

xe

Ce
,1
)
,

and normalize the flows by γ, yielding normalized flows on a
tunnel,

yT =
xT

γ
,

and correspondingly, total normalized flows from source s
to target t, ys,t = ∑

T∈Pst

yT . Let x = {xT} denote our decision

variables. Given a demand matrix D, the Max-MCF objective
is

fMMCF(x,D) = ∑
s,t

min(Ds,t ,ys,t).

We next show that fMMCF is Lipschitz.

Lemma 3. For any tunnel T and x ≥ 0, xT
γ(x) ≤Cmax.

Proof. Let e∈ T , then by the definitions of γ(x) and xe, γ(x)≥
xe
ce
≥ xT

Cmax
.

Lemma 4. fT (x) = xT
γ(x) is Lipschitz on Rn

+, and its Lipschitz

constant is at most K = 2 · Cmax
Cmin

.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1575

Proof. Assume, without loss of generality, that f (x)≥ f (y).
Case 1: γ(y) = 1

| f (x)− f (y)|
= f (x)− f (y)

=
xT

γ(x)
− yT

γ(y)

=
xT

γ(x)
− yT

≤ xT − yT

≤ |xT − yT |
≤ ∥x− y∥1

≤ 2 · Cmax

Cmin
· ∥x− y∥1,

where the first inequality is since γ(x) ≥ 1, and the third
inequality is by the definition of ∥x∥1.
Case 2: γ(y) =

ye0
Ce0

> 1, for some edge e0.

| f (x)− f (y)|
= f (x)− f (y)

=
xT

γ(x)
− yT

γ(y)

=
xT

γ(x)
− yT

γ(x)
+

yT

γ(x)
− yT

γ(y)

=
1

γ(x)
· (xT − yT)+

yT

γ(y)
· 1

γ(x)
(γ(y)− γ(x))

≤ 1
γ(x)

· (xT − yT)+
yT

γ(y)
· 1

γ(x)

(
ye0

Ce0

−
xe0

Ce0

)
≤
∣∣∣∣ 1
γ(x)

· (xT − yT)+
yT

γ(y)
· 1

γ(x)

(
ye0

Ce0

−
xe0

Ce0

)∣∣∣∣
≤ 1

γ(x)
· |xT − yT |+

yT

γ(y)
· 1

γ(x)

∣∣∣∣ ye0

Ce0

−
xe0

Ce0

∣∣∣∣
≤ |xT − yT |+

Cmax

Cmin
· |ye0 − xe0 |

≤ 2 · Cmax

Cmin
· ∥x− y∥1,

where the first inequality is since γ(y) =
ye0
Ce0

, γ(x)≥ xe0
Ce0

, yT ≥
0, and γ > 0, the third inequality is since |a+b| ≤ |a|+ |b|,
the fourth inequality is by Lemma 3 and since γ(x)≥ 1, and
the last inequality is by the definitions of ∥x∥1, xe and since
|a+b| ≤ |a|+ |b|.

Proposition 2. The function fMMCF is Lipschitz, and its Lips-
chitz constant is at most ∑s,t ∑p∈Pst 2 · Cmax

Cmin
.

Proof. By Lemma 4 and as a sum and minimum of Lipschitz
functions.

We next state two lemmas that we will use in our analysis.

Lemma 5. For any a,b ≥ 0, c,d > 0 and λ ∈ [0,1], we have
that min

(a
c ,

b
d

)
≤ λa+(1−λ)b

λc+(1−λ)d .

Proof. Let f (λ) = λa+(1−λ)b
λc+(1−λ)d . Then,

f ′(λ) =
(a−b)(λc+(1−λ)d)− (c−d)(λa+(1−λ)b)

(λc+(1−λ)d)2

=
ad −bc

(λc+(1−λ)d)2 .

Also, f (0) = b
d , f (1) = a

c , and f ′(λ) has a fixed sign for any
λ ∈ [0,1]. Therefore, f (λ)≥ min(a

c ,
b
d).

Lemma 6. Let x = {xT}, x′ = {x′T}, and λ ∈ [0,1]. Let x′′ =
{λxT + (1 − λ)x′T}, and let γ, γ′ and γ′′ be the respective
normalization constants. Then γ′′ ≤ λγ+(1−λ)γ′.

Proof. We have that

γ
′′ = max

(
max

e

x′′e
Ce

,1
)

= max
(

max
e

λxe +(1−λ)x′e
Ce

,1
)

≤ max
(

max
e

λxe

Ce
,λ

)
+max

(
max

e

(1−λ)x′e
Ce

,1−λ

)
= λmax

(
max

e

xe

Ce
,1
)
+(1−λ)max

(
max

e

x′e
Ce

,1
)

= λγ+(1−λ)γ′.

We next show that Max-MCF satisfies Assumption 1.

Proposition 3. The function fMMCF is Lipschitz and bounded.
Its maximum is obtained inside a convex set X. Furthermore,
for every D1, . . . ,DM , we have that 1

M ∑
M
i=1 f (x,Di) is quasi-

concave in x

Proof. By definition, xT ≥ 0 for all T . Let Cmax = maxe Ce,
and consider T -dimensional hypercube X = [0,Cmax]

T . By
definition, for every x ≥ 0 that is outside X , there is an x′ ∈ X
with an equivalent objective value. To see this, let γ the
normalizing constant for x, and set x′ = x/γ. Then,

x′T =
xT

max
(

maxe
xe
Ce
,1
) ≤ xT

max
(

maxe
xe

Cmax
,1
) ≤ xT

xT
Cmax

=Cmax.

But the normalizing factor for x′ is 1, so x and x′ have the
same objective value.

Clearly, fMMCF is bounded by ∑s,t ∑T :e∈T Cmax.
The function is Lipschitz by proposition 2.
Let f̄MMCF(x) = 1

M ∑
M
i=1 fMMCF(x,Di). We shall now show

that for any x,x′ ∈ X , and λ ∈ [0,1], f̄MMCF(λx+(1−λ)x′)≥

1576 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

min{ f̄MMCF(x), f̄MMCF(x′)}, proving that f̄MMCF is quasi-
concave. We denote by γ′ and y′ the respective normaliza-
tion constant and normalized flows corresponding to x′. We
also denote x′′ = λx+(1−λ)x′, and let γ′′ and y′′ denote its
corresponding normalization constant and normalized flows,
respectively.

min(
M

∑
i=1

∑
s,t

min(Di
s,t ,ys,t),

M

∑
i=1

∑
s,t

min(Di
s,t ,y

′
s,t))

=min(
M

∑
i=1

∑
s,t

min(Di
s,t , ∑

T∈Pst

xT

γ
),

M

∑
i=1

∑
s,t

min(Di
s,t , ∑

T∈Pst

x′T
γ′
))

=min(
1
γ

M

∑
i=1

∑
s,t

min(γDi
s,t , ∑

T∈Pst

xT),
1
γ′

M

∑
i=1

∑
s,t

min(γ′Di
s,t , ∑

T∈Pst

x′T))

≤
λ

M
∑

i=1
∑
s,t

min(γDi
s,t , ∑

T∈Pst

xT)+(1−λ)
M
∑

i=1
∑
s,t

min(γ′Di
s,t , ∑

T∈Pst

x′T)

λγ+(1−λ)γ′

=

M
∑

i=1
∑
s,t

min(λγDi
s,t ,λ ∑

T∈Pst

xT)+min((1−λ)γ′Di
s,t ,(1−λ) ∑

T∈Pst

x′T)

λγ+(1−λ)γ′

≤ 1
λγ+(1−λ)γ′

M

∑
i=1

∑
s,t

min
(

λγDi
s,t +(1−λ)γ′Di

s,t ,

λ ∑
T∈Pst

xT +(1−λ) ∑
T∈Pst

x′T

)

=
M

∑
i=1

∑
s,t

min
(

Di
s,t ,

1
λγ+(1−λ)γ′ ∑

T∈Pst

(λxT +(1−λ)x′T)
)

≤
M

∑
i=1

∑
s,t

min(Di
s,t , ∑

T∈Pst

x′′T
γ′′

)

=
M

∑
i=1

∑
s,t

min(Di
s,t ,y

′′
s,t),

where the first inequality is by Lemma 5, the second inequal-
ity is since min(a,b)+min(c,d)≤ min(a+c,b+d), and the
third inequality is by Lemma 6.

Lemma 7. Let x /∈ argmaxy f (y), x∗ ∈ argmaxy f (y), and let
γ, γ∗ be the respective normalization constants.
If f (x+λ(x∗−x))≥ λγ∗ f (x∗)+(1−λ)γ f (x)

λγ∗+(1−λ)γ for any λ∈ [0,1], then
Q(f ;x) ̸= /0.

Proof. The directional derivative of f along x∗− x at x:

∇x∗−x f (x) = lim
h→0+

f (x+h(x∗− x))− f (x)
h∥x∗− x∥

≥ lim
h→0+

hγ∗ f (x∗)+(1−h)γ f (x)
hγ∗+(1−h)γ − f (x)

h∥x∗− x∥

= lim
h→0+

hγ∗

hγ∗+(1−h)γ (f (x∗)− f (x))

h∥x∗− x∥

≥ lim
h→0+

γ∗

max(γ∗,γ) (f (x∗)− f (x))

∥x∗− x∥
> 0.

Therefore, since L(f ; f (x)) is convex, − x∗−x
∥x∗−x∥ ∈Q(f ;x).

Lemma 8. Let x = {xT}, x′ = {x′T}, and λ ∈ [0,1]. Let x′′ =
{λxT + (1 − λ)x′T}, and let γ, γ′ and γ′′ be the respective
normalization constants. Then,
f̄MMCF(x′′)≥ λγ f̄MMCF (x)+(1−λ)γ′ f̄MMCF (x′)

λγ+(1−λ)γ′ .

Proof.

f̄MMCF (x′′) =
M

∑
i=1

∑
s,t

min(Di
s,t , ∑

T∈Pst

x′′T
γ′′

)

≥
M

∑
i=1

∑
s,t

min
(

Di
s,t ,

1
λγ+(1−λ)γ′ ∑

T∈Pst

(λxT +(1−λ)x′T)
)

=

M
∑

i=1
∑
s,t

min
(

λγDi
s,t +(1−λ)γ′Di

s,t ,λγ ∑
T∈Pst

xT
γ
+(1−λ)γ′ ∑

T∈Pst

x′T
γ′

)
λγ+(1−λ)γ′

≥

M
∑

i=1
∑
s,t

(
min(λγDi

s,t ,λγ ∑
T∈Pst

xT
γ
)+min((1−λ)γ′Di

s,t ,(1−λ)γ′ ∑
T∈Pst

x′T
γ′)

)
λγ+(1−λ)γ′

=
λγ f̄MMCF (x)+(1−λ)γ′ f̄MMCF (x′)

λγ+(1−λ)γ′
,

where the first inequality is by Lemma 6 and the second
inequality is since min(a,b)+min(c,d)≤ min(a+ c,b+d).

Proposition 4. Q(f̄MMCF ,x) ̸= /0 for any x /∈
argmaxy f̄MMCF(y)

Proof. By Lemma 8 where x = x∗,x′ = x, and by Lemma
7.

Since Assumption 1 holds, Theorem 3 guarantees that the
stochastic normalized subgradient method will converge to
an optimal solution of the Max-MCF objective.

B.2.3 Results for Maximum-Concurrent-Flow

Given a demand matrix D, the Max-Concurrent-Flow objec-
tive is

fMCONC(x,D) = min({
ys,t

Ds,t
}s,t∈V,Ds,t>0 ∪{1}).

We assume that when Ds,t ̸= 0, there is a minimal value ε for
Ds,t , corresponding, e.g., to a single packet. We next show
that Max-Concurrent-Flow satisfies Assumption 1.

Proposition 5. The function fMCONC is Lipschitz, and its
Lipschitz constant is at most max

s,t

(
∑p∈Pst

2·Cmax
ε·Cmin

)
.

Proof. By Lemma 4 and as a sum, minimum and multiplica-
tion by a constant of Lipschitz functions.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1577

Proposition 6. The function fMCONC is Lipschitz and
bounded. Its maximum is obtained inside a convex set X. Fur-
thermore, for every D1, . . . ,DM , we have that 1

M ∑
M
i=1 f (x,Di)

is quasi-concave in x

Proof. The claims in the beginning of proposition 3 hold
for fMCONC, and therefore its maximum is obtained inside a
convex set.

Clearly, fMCONC is bounded by 1.
The function is Lipschitz by proposition 5.
Let f̄MCONC(x) = 1

M ∑
M
i=1 fMCONC(x,Di). We shall now

show that for any x,x′ ∈ X , and λ ∈ [0,1], f̄MCONC(λx+(1−
λ)x′)≥ min{ f̄MCONC(x), f̄MCONC(x′)}, proving that f̄MCONC
is quasi-concave. We denote by γ′ and y′ the respective nor-
malization constant and normalized flows corresponding to
x′. We also denote x′′ = λx+(1−λ)x′, and let γ′′ and y′′ de-
note its corresponding normalization constant and normalized
flows, respectively.

min(
M

∑
i=1

min(

{
ys,t

Di
s,t

}
∪{1}),

M

∑
i=1

min(

{
y′s,t
Di

s,t

}
∪{1}))

=min(
M

∑
i=1

min(


∑

T∈Pst

xT
γ

Di
s,t

∪{1}),
M

∑
i=1

min(


∑

T∈Pst

x′T
γ′

Di
s,t

∪{1}))

=min(
1
γ

M

∑
i=1

min(


∑

T∈Pst

xT

Di
s,t

∪{γ}), 1
γ′

M

∑
i=1

min(


∑

T∈Pst

x′T

Di
s,t

∪
{

γ
′}))

≤
λ

M
∑

i=1
min(

{
∑

T∈Pst
xT

Di
s,t

}
∪{γ})+(1−λ)

M
∑

i=1
min(

{
∑

T∈Pst
x′T

Di
s,t

}
∪{γ′})

λγ+(1−λ)γ′

=

M
∑

i=1
(min(

{
∑

T∈Pst
λxT

Di
s,t

}
∪{λγ})+min(

{
∑

T∈Pst
(1−λ)x′T

Di
s,t

}
∪{(1−λ)γ′}))

λγ+(1−λ)γ′

≤

M
∑

i=1
min(

{
∑

T∈Pst
λxT+ ∑

T∈Pst
(1−λ)x′T

Di
s,t

}
∪{λγ+(1−λ)γ′})

λγ+(1−λ)γ′

=
M

∑
i=1

min(


∑

T∈Pst

λxT+(1−λ)x′T
λγ+(1−λ)γ′

Di
s,t

∪{1})

≤
M

∑
i=1

min(


∑

T∈Pst

x′′
γ′′

Di
s,t

∪{1})

=
M

∑
i=1

min(

{
y′′s,t
Di

s,t

}
∪{1}),

where the first inequality is by Lemma 5, the second inequal-
ity is since min(a,b)+min(c,d)≤ min(a+c,b+d), and the
third inequality is by Lemma 6.

 0.1

 1

 10

 100

 1000

 10000

Abilene GEANT

(n
or

m
al

iz
ed

)
R
M

SE

Linear Regression
Ridge Regression

Random Forest
AutoRegressive

99th
90th

Average
Median

Figure 11: Accuracy of predicting demands; results from
different prediction methods.

Lemma 9. Let x = {xT}, x′ = {x′T}, and λ ∈ [0,1]. Let x′′ =
{λxT + (1 − λ)x′T}, and let γ, γ′ and γ′′ be the respective
normalization constants. Then,
f̄MCONC(x′′)≥ λγ f̄MCONC(x)+(1−λ)γ′ f̄MCONC(x′)

λγ+(1−λ)γ′ .

Proof.

f̄MCONC(x′′) =
M

∑
i=1

min(


∑

T∈Pst

x′′
γ′′

Di
s,t

∪{1})

≥
M

∑
i=1

min(


∑

T∈Pst

λxT+(1−λ)x′T
λγ+(1−λ)γ′

Di
s,t

∪{1})

=

M
∑

i=1
min(

 λγ ∑
T∈Pst

xT
γ
+(1−λ)γ′ ∑

T∈Pst

x′T
γ′

Di
s,t

∪{λγ+(1−λ)γ′})

λγ+(1−λ)γ′

≥

M
∑

i=1

(
min(

{
λγ ∑

T∈Pst

xT
γ

Di
s,t

}
∪{λγ})+min(

 (1−λ)γ′ ∑
T∈Pst

x′T
γ′

Di
s,t

∪{(1−λ)γ′})
)

λγ+(1−λ)γ′

=
λγ f̄MCONC(x)+(1−λ)γ′ f̄MCONC(x′)

λγ+(1−λ)γ′
,

where the first inequality is by Lemma 6 and the second
inequality is since min(a,b)+min(c,d)≤ min(a+ c,b+d).

Proposition 7. Q(f̄MCONC,x) ̸= /0 for any x /∈
argmaxy f̄MCONC(y)

Proof. By Lemma 9 where x = x∗,x′ = x, and by Lemma
7.

Since Assumption 1 holds, Theorem 3 guarantees that the
stochastic normalized subgradient method will converge to
an optimal solution of the Max-Concurrent-Flow objective.

1578 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 1

 10

 100

Abilene
8 shortest paths

GEANT
edge-disjoint

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n DOTE

Linear Regression
Ridge Regression

Random Forest
AutoRegressive

99th
90th

Average
Median

Figure 12: Impact of demand prediction accuracy on max-
link-utilization.

C A Closer Look at Demand Prediction

Our results in §4 considered a demand-prediction-based
scheme that utilizes linear regression. We next contrast lin-
ear regression with other prediction methods on our datasets.
Specifically, we consider the following prediction methods:
linear regression, ridge regressing, random forrest, and au-
toregressive model. With the exception of the autoregressive
model, each of these schemes predicts the next traffic demand
for each source-destination pair using only that specific pair’s
recently observed 12 most traffic demands, i.e., the predic-
tion for each pair is independent from the prediction for other
pairs (as in SWAN [22]). The autoregressive model, in con-
trast, predicts the entire next DM from the 12 most recently
observed DMs, to allow for detecting correlations between
different pairs that might be conducive for prediction.

Figure 11 plots the accuracy of the different predictors, as
quantified by the root-mean-squared-error, for the two pub-
licly available WAN datasets. The accuracy is normalized
by the average traffic demand for the dataset and presented
in log-scale. Our results for PWAN and PWANDC exhibit
similar trends. As shown in the figure, linear regression and
ridge regression achieve the best results on average on both
WANs. We also considered a DNN-based predictor with a
single hidden layer with 128 neurons and ReLU activation
functions, but its performance was strictly dominated by lin-
ear regression on the test data (results omitted). Moreover,
treating source-destination pairs individually attains better
accuracy than that provided by the autoregressive model. We
believe that this is because, on the one hand, the previous traf-
fic demands for a single pair already contain a lot of valuable
information and, on the other hand, the much larger input
and output of the autoregressive model (entire DMs vs. single
demands) makes effective learning more difficult.

Figure 12 plots the implications of choosing different
predictors for TE performance, as quantified by the max-
link-utilization, benchmarked against DOTE. Observe that
DOTE outperforms all considered flavors of demand-based-
prediction TE, and also that accuracy in demand prediction
does not always translate to better TE performance, exem-

plifying the potential objective mismatch between the two,
discussed in the Introduction.

D Robustness to Unexpected Traffic Changes

We consider the GEANT, Cogentco, and GtsCe network
topologies with edge-disjoint tunnels. For Cogentco, and
GtsCe we use the gravity model to generate demands for both
train and test. To evaluate the implications of unexpected traf-
fic changes, we add noise to the test set by multiplying each
demand independently by a factor sampled uniformly at ran-
dom from the range [1−α,1+α] for α ∈ {0.1,0.25,0.35}.

Recall that for GEANT, DOTE generates TE configurations
that are extremely close to the optimum (less than 2%). Our
results show that even under random traffic perturbations, the
distance from the omniscient oracle remains low; 2%, 2.9%,
and 3.8% for α = 0.1,0.25,0.35, respectively. For α = 0.35,
the distance from the omniscient oracle was 0.01% in the
median, 13% in the 90th percentile, and no higher than 28%
even in the 99th percentile.

For both Cogentco and GtsCe, DOTE’s trained model is
roughly 0.5% from the omniscient oracle on the test demands
are perturbed. This is because traffic is generated using the
gravity model naturally does not reflect the intricate tempo-
ral patterns and complexity of real-world traffic. Even after
perturbing the traffic in our experiments DOTE achieved near-
optimal performance. Specifically, on Cogentco, the average
distance from the omniscient oracle was 0.54%, 0.57%, and
0.6% for α = 0.1,0.25,0.35, respectively. For α = 0.35, the
distance from the omniscient oracle was 0.56% in the median,
1% in the 90th percentile, and 1.4% in the 99th percentile.
On GtsCe, the average distance from the omniscient oracle
was 0.51%, 0.56%, and 0.61% for α = 0.1,0.25,0.35 respec-
tively. For α = 0.35, the distance from the omniscient oracle
was 0.57% in the median, 1% in the 90th percentile, and 1.4%
in the 99th percentile.

Tunnels Week 1 Week 2 Week 3 Week 4
Abilene 8 SP 0.7 0.3 1.0 1.5
Abilene edge-disjoint 2.1 2.4 2.4 2.0
GEANT 8 SP 1.4 2.7 2.9 3.1
GEANT edge-disjoint 0.7 1.6 2.0 2.5

Table 3: Average weekly distance from the omniscient oracle
achieved by DOTE for MLU across 4 consecutive weeks

Tunnels Week 1 Week 2 Week 3 Week 4
Abilene 8 SP 1.6 2.1 3.9 6.2
Abilene edge-disjoint 1.1 1.4 3.1 5.5
GEANT 8 SP 4.9 4.7 5.0 4.8
GEANT edge-disjoint 6.3 6.8 6.9 6.4

Table 4: Average weekly distance from the omniscient ora-
cle achieved by DOTE for maximum-multicommodity-flow
across 4 consecutive weeks

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1579

E Stochastic Optimization Loss Function Pseu-
docode

Function 1 Stochastic Optimization Loss Function Pseu-
docode

G = (V,E,c) // capacitated directed graph that models the
WAN topology
U = {(i, j)|i ∈V, j ∈V, i ̸= j} // all pairs of nodes
T = ∪(s,t)∈U Ps,t // the set of all tunnels
A|U |×|T | // specifies, for each pair of nodes i∈U and tunnel
j ∈ T whether tunnel j interconnects the nodes in i

Ai, j =

{
1 j ∈ Pi

0 otherwise
B|T |×|E| // specifies, for each tunnel i and edge j, whether
tunnel i contains edge e

Bi, j =

{
1 j ∈ i
0 otherwise

C|E|×1 // vector representing WAN link capacities
Ci,1 = c(i)

function LOSS(DNNout put ,DMnext)
DNN|T |×1

out put // the output of the DNN

DM|U |×1
next // the (actual) next demand matrix

// × and / are element-wise operations
// 1. Compute the splitting ratios
PathsSplit |T |×1 = DNNout put × (AT (1.0/A ×

DNNout put))
// 2. Calculate the flow on each edge
FlowOnEdges|E|×1 = BT ((AT × DMnext) ×

PathsSplit)
// 3. Compute the maximum-link-utilization
MaxLoad = max(FlowOnEdges/C)
return MaxLoad

end function

F Additional Failure Results

Analogous to Figure 9, Figure 13 shows the behavior un-
der faults for the Abilene, GEANT and PWANDC topolo-
gies respectively. Figure 14 shows the results for maximum-
multicommodity-flow.

1580 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 1

 1.5

 2

 2.5

 3

edge-disjoint 8 shortest paths

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n

DOTE
FA DM Pred

DM Pred

99th
90th

Average

Median

(a) Abilene

 1

 5

 10

 15

 20

 25

 30

edge-disjoint
1 failure

edge-disjoint
2 failures

8 shortest paths
1 failure

8 shortest paths
2 failures

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n

DOTE
FA DM Pred

DM Pred

99th
90th

Average

Median

(b) GEANT

 1

 1.5

 2

 2.5

 3

edge-disjoint
1 failure

edge-disjoint
2 failures

8 shortest paths
1 failure

8 shortest paths
2 failures

(n
or

m
al

iz
ed

)
M

ax
 L

in
k

U
til

iz
at

io
n

DOTE
FA DM Pred

DM Pred

99th
90th

Average

Median

(c) PWANDC

Figure 13: Understanding the behavior of DOTE under failures on different WAN datasets. The results are qualitatively similar
to Figure 9.

 0

 0.2

 0.4

 0.6

 0.8

 1

Abilene GEANT PWANDC PWAN

(n
or

m
al

iz
ed

)
To

ta
l F

lo
w

DOTE
FA DM Pred

DM Pred

99th
90th

Average

Median

(a) 8SP

 0

 0.2

 0.4

 0.6

 0.8

 1

Abilene GEANT PWANDC PWAN

(n
or

m
al

iz
ed

)
To

ta
l F

lo
w

DOTE
FA DM Pred

DM Pred

99th
90th

Average

Median

(b) edge-disjoint

Figure 14: Coping with a random link failure when aiming to maximize the total flow for two different tunnel choices.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1581

Dashlet: Taming Swipe Uncertainty for Robust Short Video Streaming

Zhuqi Li, Yaxiong Xie, Ravi Netravali, Kyle Jamieson

Princeton University

Abstract

Short video streaming applications have recently gained sub-
stantial traction, but the non-linear video presentation they
afford swiping users fundamentally changes the problem of
maximizing user quality of experience in the face of the va-
garies of network throughput and user swipe timing. This
paper describes the design and implementation of Dashlet, a
system tailored for high quality of experience in short video
streaming applications. With the insights we glean from
an in-the-wild TikTok performance study and a user study
focused on swipe patterns, Dashlet proposes a novel out-of-
order video chunk pre-buffering mechanism that leverages a
simple, non machine learning-based model of users’ swipe
statistics to determine the pre-buffering order and bitrate. The
net result is a system that outperforms TikTok by 28-101%,
while also reducing by 30% the number of bytes wasted on
downloaded video that is never watched.

1 Introduction

Short video streaming applications like TikTok and YouTube
Shorts have rapidly risen in popularity, attracting billions of
active users per month [31, 32, 41] and consistently topping
popularity lists for mobile apps [33]. Unlike typical video
streaming, the median duration of short videos is around
14 seconds [4]. During operation, these apps generate an
ordered playlist of short videos (e.g., based on a search or
user-specific recommendations), and users watch them seri-
ally, with the ability to swipe from one to the next at any time.
To provide an immersive experience and keep users engaged,
short video streaming applications should minimize the video
rebuffering time and maximize the video bitrate, which is
modeled by quality-of-experience (QoE) [1, 3, 11, 13].

Although the aforementioned goals are consistent with
those in traditional video streaming scenarios, existing ABR
algorithms [2,16,22,36,40] are ill-suited for interactive, short
videos. The reason is that predicting user swipes is difficult,
and swipe times dictate both which video content will be
viewed and when during a session. However, existing algo-
rithms assume that the user will watch content sequentially to
completion, and will hence buffer chunks (i.e., multi-second
blocks of video) in that order. The deleterious effects, shown
in Fig. 1, are twofold: (1) many chunks may be downloaded
in the current video but never viewed if the user swipes before
their playback, wasting resources and adding delays for the
chunks that are required, and (2) users may swipe to the next
video and incur significant rebuffering because that video’s
chunks have not been downloaded yet.

1 2
1

Video download

Video play
User swipe

3

1 2 3 11 2 1

2
1 2

1

Video download

Video play
User swipe

3
Waste of

download

Video download

Video play

Video 1
Video 2

1 2 3 1

2
1 2

1
Rebuffering

User swipe

Figure 1: In short video apps, user swipes dictate the playing order
of video chunks (and thus, the optimal chunk downloading order).

The fundamental challenge is that there are far too many
possible chunk viewing sequences—the user may swipe at
any position in each short video, and expects seamless (i.e.,
no stalls) playback for both the current video, and the next
one upon a swipe. The problem thus becomes how to find (at
any time during playback) a buffering sequence of chunks
in this large search space that maximizes QoE by simultane-
ously minimizing rebuffering time and wasted bandwidth.

To understand how commercial short streaming platforms
attempt to address these challenges, we have conducted a
detailed examination of TikTok in the wild (§2). Our key
finding is that TikTok does download chunks out of order, but
follows a generic algorithm that hedges against immediate re-
buffering in the face of fast user swipes (it always pre-buffers
the first chunk for the next five videos regardless of network
conditions, user patterns, and/or video). This, however, en-
tails substantial QoE penalties and wasted data consumption,
as we will show via results from our own study of user swipe
patterns across two distinct sets of users on a college campus
and Amazon Mechanical Turk (§3). Specifically, we find
substantial heterogeneity in the swipe patterns across users,
with each warranting a different chunk downloading strategy.

A naïve solution would be to simply predict user swipes—
if accurate, this would reduce the problem to a traditional
streaming setting since chunk viewing sequences would be
known a priori. However, predicting user behavior in in-
teractive applications has consistently proven to be diffi-
cult [6, 21, 26]. Instead, we take a more fundamental ap-
proach that is rooted in an understanding of where swipe
predictions are actually helpful (and actionable).

We present Dashlet, a new video streaming algorithm for
short video applications (§4). The underlying insight behind
Dashlet is that application playback constraints predetermine
the relative priorities between many chunks that are candi-
dates for buffering. More specifically, (1) later chunks in a
video are only reachable via earlier ones, and (2) later videos
are only reachable via swipes from earlier ones. To prioritize
among the remaining chunks, e.g., the next chunk in a given
video vs. the first chunk in the next video, only coarse grained

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1583

information about swipe timings in videos is required. We
show, via our user study, that although users tend to exhibit
multimodal swipe patterns (complicating chunk prioritiza-
tion) across videos, distributions from aggregating users’
swipes per video provide a clear enough signal about which
mode to expect. This information is readily available to
current short video platforms, and our finding is spiritually
aligned with past studies that highlight similarities in user
engagement for certain video content [35, 43].

Building on this, Dashlet develops functions that charac-
terize the expected rebuffering time for each potential chunk
that could be downloaded, as a continuous function over both
the expected download and playback times. These functions
embed the aforementioned inter-chunk relationships, as well
as rough swipe likelihoods at video start and end. Using
these functions, Dashlet employs a greedy algorithm to de-
termine the set of ordered chunks that should be downloaded
in the current time horizon to minimize expected rebuffer-
ing delays for a given network estimate and across potential
viewing sequences. This buffer sequence then feeds directly
into a traditional ABR algorithm, which determine bitrates
for those chunks that maximize overall QoE. Dashlet further
improves upon existing short video systems by not prema-
turely binding bit rate decisions across entire short videos,
and not letting the network idle at any point in time.

We have implemented Dashlet in the DASH framework [8],
and compare with the TikTok mobile app with both a human
subjects study and a trace-drive study1. Across these condi-
tions, we find that Dashlet outperforms TikTok by 28-101%
in QoE values, including 8-39% improvement on video bi-
trate, 1.6-8.9× reduction on rebuffering penalty, and 30%
reduction on data wastage. Dashlet’s QoE improvement
varies with the network throughput, i.e., 543.7%, 221.4%,
and 36.6% over TikTok when the throughput is 2-4, 4-6, and
10-12 Mbps, respectively. The improvement diminishes with
throughput approaching to 20 Mbps because both Dashlet
and TikTok are getting closer to optimum. Further, Dashlet
is tolerant to errors in swipe distributions: QoE degradations
are only 10% with distribution errors of 50%. We will open
source our datasets and implementation post publication.

2 A TikTok Case Study

We examine how TikTok, a state-of-the-art short video app,
operates. We first describe its basic architecture (§2.1), be-
fore analyzing its operation and limitations (§2.2).

2.1 Short Video Streaming Primer

Unlike traditional streaming apps that divide video into
chunks of equal time duration, TikTok splits each video into
size-based chunks. For each supported bitrate, if the video

1We release the code with the following url: https://github.com/
PrincetonUniversity/Dashlet under the MIT Open Source License.

Video chunk

Chunk and

bitrate selection

Video Play

User

Swipe

Video Buffer

Video 1

Video 2

Video N

…… ……

HTTP

request

Video index

Chunk index

Bitrate

CDN

Short Video APP Video

Server

P
la

y
in

g
 o

rd
er

Ordered list of videosManifest file

Figure 2: System architecture of TikTok and other short video apps.

file is smaller than 1 MB, TikTok treats the entire video as one
chunk; else, the first chunk is the first MB, and the remaining
video becomes the second. This chunking strategy enhances
reliability, as TikTok pre-buffers first chunks (to cope with
swipe uncertainty) so chunking in terms of bytes eliminates
first-chunk size variance from variable bitrate encoding.

Upon receiving a client session request either via a
keyword search or category selection (e.g., recommended
videos), the server generates an ordered list of short videos
to serve (Fig. 2). The server then ships a manifest file to the
client which embeds the URL, as well as information about
the number of chunks (multi-second blocks of video) and
available bitrates, per video in the ordered list. The client op-
erates much like a traditional streaming player (e.g., DASH),
maintaining a playback buffer for downloaded video and em-
ploying an adaptive bitrate (ABR) algorithm to determine
what chunk to download next, when, and at what bitrate.

A key difference between traditional and short video
streaming is that the client maintains one logical buffer per
video in the server-provided manifest file, which contains
information for an ordered group of 10 videos. The client
requests a new manifest file after it downloads all the first
chunks of the videos in the current manifest. Video playback
operates sequentially within each logical buffer and across
buffers (in the specified order); user swipes and video com-
pletion trigger the playback to move to the head of the buffer
for the next video. To cope with such semantics, ABR algo-
rithms for short videos have the ability to download chunks
for any of the videos in the manifest file at any time.

TikTok provides four bitrate options for each video: 480p,
560p low, 560p high, and 720p, with bitrate adaptation occur-
ring only at video-level (and not chunk-level) granularity. We
hypothesize this is because the first 1 MB of a video encoded
at different bitrates corresponds to different time durations,
precluding seamless bitrate switches for the latter chunk, i.e.,
content would be missed or repeated. As we will discuss,
such constraints significantly limit TikTok from adapting to
variations in network capacity during user sessions.

2.2 Analysis of TikTok

To study TikTok in a controlled and systematic manner,
we perform our analysis over emulated networks using

1584 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/PrincetonUniversity/Dashlet
https://github.com/PrincetonUniversity/Dashlet

Downloaded but not

played first chunks

5

Fast

swipes
Playing a video triggers

downloading a new chunk

4

(a) Video chunk downloading and playing timeline: video index within a group-of-10 versus wall clock time. The left and right edge of the
rectangular boxes respectively represent the downloading start and completion times of a chunk, while thin horizontal lines connect first and
second chunks (if a second chunk exists), and box color indicates bitrate. The solid red line plots video playback.

Rebuffering since TikTok is busy

downloading the 2nd chunk
Fast swipes

drain the

buffer

Maintaining 5 buffered first chunks and

replenish if the playback consumes one chunk

(b) Client-side buffer occupancy as a function of time, the gap between playback and highest chunk downloaded in (a).

Figure 3: An illustrative video downloading and video playing trace of TikTok, with associated video bitrate and buffer occupancy statistics.

Mahimahi [23]. We log in to TikTok with a two-year old
account and mirror its screen to a Linux desktop with scr-
cpy [28] and use the pyautogui tool [24] to replay aggregated
user swipe traces that were collected from our user study
(described in §3). During experiments, we use the mitm-
proxy [5] to collect and decrypt TikTok’s network traffic.
From the deciphered HTTP messages and headers, we are
able to extract for each requested chunk, the video that it per-
tains to, its index in that video, the requested bitrate, and the
download start/end time. Finally, we develop a screen analy-
sis tool using pyautogui and opencv [17] to record duration
of each rebuffering event (§5.1 further details our setup).

2.2.1 Chunk Download Control

TikTok’s download control algorithm depends both on instan-
taneous network throughput and the client’s internal buffer
status: Fig. 3a illustrates its decisions (i.e., order and timing
of chunk downloads across videos, bitrates used each time)
during a representative two-minute session. We plot client-
side playback buffer occupancy in Fig. 3b, which shows
the number of videos with at least one downloaded (but un-
played) chunk. We see that TikTok spends most of its time
downloading the first chunk of videos, and downloads the
second chunk when and only when the video starts to play,
e.g., the download of the second chunk of video two and the
play-start of video two start simultaneously at t = 22 s.

Our analysis indicates that TikTok proceeds according to
three discrete states, cycling among the three in order to han-
dle one group-of-ten videos. At startup and the start of every

group-of-ten, the ramping-up state continuously downloads
first chunks to build up buffers. After accumulating five first
chunks at t = 18 seconds, TikTok starts to play the buffered
video and enters the maintaining state, where it aims to
maintain a constant five buffered first chunks. Upon play-
ing a new video (due to user swipe or reaching the end of a
video), the client fetches one first chunk from the buffer, trig-
gering TikTok to immediately initiate download of the first
chunk of the next video in the manifest, as indicated by the
additional download events corresponding to either swipes or
video changes due to end of video in the green “maintaining
state” regions of Fig. 3a. We see in Fig. 3b that as the down-
loading of each first chunk finishes, buffer levels return to
five, the high water mark buffering level TikTok has chosen.
The advantage of the maintaining state is resilience to quick
user swipes: in the second group-of-ten of Fig. 3 (t = 110),
the user swipes early in multiple consecutive videos, quickly
draining the buffer, but TikTok experiences no rebuffering
since its buffer contains the five first chunks.

Finally, after downloading all the first chunks of the 10
videos listed in the current manifest file, TikTok enters the
prebuffer-idling state, where it stops initiating any new
downloads of first chunks. Meanwhile, TikTok continues
video playback, consuming video chunks in its buffer, so
buffer occupancy decreases monotonically in this state, as
shown in Fig. 3b. Our hypothetical explanation of this idle
period is that TikTok is waiting to measure the user’s reaction
(swiping early means they might not be interested in the
content) to the videos TikTok recommends in last round

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1585

0 20 40 60 80

Video index

0

1

2

3

4

5

 N
u

m
b

e
r

o
f

b
u

ff
e
re

d
 v

id
e
o

s

(a) Net. throughput 10 Mbit/s.

0 20 40 60 80

Video index

0

1

2

3

4

5

(b) Net. throughput 3 Mbit/s.

Figure 4: The number of downloaded videos inside the buffer
when TikTok starts to download the first chunk of a new video via
networks with capacity of (a) 10 Mbit/s and (b) 3 Mbit/s.

(manifest file), so it can assess its recommendation quality
and adjust the subsequent round’s recommendation before
sending the next manifest file.

In contrast to the resilience of the maintaining state, Tik-
Tok becomes somewhat vulnerable in the prebuffer-idling
state, where TikTok drains the buffer by itself. For example,
TikTok experiences rebuffering in the middle of two video
groups in Fig. 3. At that moment, TikTok has no buffered
first chunk and at the same time spends a long time down-
loading the second chunk of the current video, leaving no
time budget for downloading the first chunk of next video.
In such a case, one user swipe results in rebuffering.

When the user starts to watch the ninth of the group-of-ten
videos listed in a manifest, TikTok exits prebuffer-idle and
begins afresh in the ramp-up state to download the videos
listed in the next manifest file. The cycle through these three
states repeats for each group-of-ten.

2.2.2 Network and Swipe Input Adaptation

We now investigate the effects of swipes, buffer occupancy,
and the network on TikTok’s bitrate and buffering choices. To
measure the impact of the network on buffering strategy, we
control network capacity to 10 and 3 Mbit/s using Mahimahi
and plot the number of buffered first chunks at the moment
TikTok initiates a download of the first chunks, in Fig. 4.
Combing Fig. 4a and 4b, we see that TikTok adopts the same
buffering strategy regardless of network capacity.

Next, we analyze the joint impact of network throughput
and buffering status on Tiktok’s bitrate decisions. We collect
instantaneous network throughput and buffer status coupled
with TikTok’s bitrate decisions, for 5,300 videos, and plot
the results in Fig. 6. In the figure, the x-axis is the network
throughput of the one-second period before the downloading
of that video, i.e., the time period within which TikTok makes
its decisions about the bitrate. The y-axis is the number of
downloaded first chunks in the buffer. The color of a tile
represents the average bitrate R of the video, which is given
by R = S/L where S is the size of the video in bits and
L is the length of the video in seconds. Some tiles are not
colored because the combination of the throughput and buffer
status is not seen during our measurement, e.g., when the
throughput is 16 Mbit/s, we always observe four downloaded

0 100 200 300
Time (s)

0

10

20

C
um

ul
at

iv
e

do
w

nl
oa

d
da

ta
 m

od
ul

o
20

 (M
B

)

TikTok V20 TikTok V26

Figure 5: Cumulative downloaded
data modulo by 20 MB for TikTok
v20.9.1 and TikTok v26.3.3 when
playing the same video sequence at
the same swipe pace.

2 4 6 8 10 12 14 16
Throughput (Mbps)re

bu
ffe

r
1

2
3

4

of
 b

uf
fe

re
d

vi
de

o

450

550

650

750

Average B
itrate (K

bps)

Figure 6: Impact of network
throughput and client video
buffer occupancy on TikTok’s
chosen video bitrate.

first chunks in the buffer. We observe that bitrate decisions
correlate positively with network throughput, but observe no
evidence for correlation with buffer status.

2.2.3 Buffering logic on different versions of TikTok

Our reverse engineering tool can only decipher complete
TikTok telemetry information up to version v20.9.1. To
investigate whether there are any updates in the buffering
algorithm between v20.9.1 and the newest TikTok version
(v26.3.3), we use scripts to watch the same videos on differ-
ent versions, under the same network throughput and swipe
pace. We record the number of bytes downloaded versus time
with tcpdump. Fig. 5 shows an example trace for the two
versions of TikTok. By correlating the downloading traces at
different throughput and swipe speed, we infer that v20.9.1
and v26.3.3 use similar or identical buffering logic. In the
rest of the paper, we only present v20.9.1 results.

2.2.4 Limitations of Current Short Video Streaming

Despite pre-buffering the beginnings of short videos, TikTok
has a fundamentally static approach to coping with swipe
uncertainty, with no evidence for adaptation across differ-
ent videos or users. This approach is often too cautious or
aggressive, manifesting in two particular ways:

Lack of swipe prediction. TikTok prioritizes the download-
ing of the first chunk, assuming that the user always swipes
frequently, and delays the downloading of the second to the
beginning of video playback. As we will show next however,
there are indeed some users who swipe early when watching
a video, but there also a significant number of users who
watch most of many videos and swipe at the end or not at
all. So, the urgency of downloading the second chunk varies
with users and videos: a fixed rule cannot handle all cases.

Premature bitrate binding. TikTok groups the first MB
of video data into the first chunk but selects the bitrate for
both chunks according to the network conditions present
during the first, prematurely binding the system into that
bitrate for both. By design, there is often a large time lag
between the downloading of the first and second chunks, as
discussed above (the median gap between first and second
chunk downloads is 25 s., with an interquartile range of 23 s.),
resulting in a potential mismatch with network conditions

1586 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.0 0.5 1.0
View percentage

0.00

0.25

0.50

0.75

1.00

C
D

F
ov

er
 a

ll
vi

de
o

vi
ew

s College Campus
Mturk

Figure 7: The distribution of av-
erage viewing percentage across
all short video views.

(b)

(d)

P
ro

b
ab

il
it

y
 m

as
s

fu
n
ct

io
n

College

MTurk

(a)

(c)

Figure 8: Distribution (across
different users) of video view-
ing percentage for four sample
videos (a)–(d).

that change in the meantime.
Network Idling. As shown in Fig. 3a, TikTok has a prebuffer
idling state. In the contrast, the buffer is not full and the
bitrate of videos still has room to improve. This also calls
for a better ABR algorithm to stream higher bitrate video by
utilizing the idle time in a better way.

To understand the mismatch between TikTok’s generic rule
and the varying user swipe patterns, in the next section, we
characterize the swipe patterns across real users and videos
via two user studies.

3 Characterizing User Swipes

To better understand the nature of user interactions (i.e.,
swipes) with short video applications, we conducted two
IRB-approved user studies. In each study, we present users
with a web-based short video streaming service that resem-
bles the interface offered by TikTok We considered 500 pop-
ular short videos gathered by crawling the videos displayed
on the TikTok landing page over time. The videos were
randomly ordered per session, and each user watches 20 min-
utes of video with the ability to swipe freely (all swipes are
recorded). Note that the number of videos watched by a
given user depends on the number of swipes they performed.

For generality, we performed two versions of this study:
1. College campus: we recruit 25 student volunteers who
collectively swipe 3,069 times during the study.
2. Amazon Mechanical Turk (“MTurk”): we recruit 258
different users. To ensure active user participation, we aug-
ment our web application to inject random interactivity tests
that ask users to swipe within 10 seconds. Users who fail
to swipe in time are entirely excluded from the study; users
who do swipe continue the experience, but we exclude the
forced swipe(s) from our final dataset. In total, we retain data
from 133 workers, which covers 15,344 swipes.

Overall swipe distributions. Fig. 7 shows the distribution of
swipe times across all video-user pairs in both studies. Users

are most likely to swipe either soon after video playback be-
gins or at the end of the video (manually or via auto-swiping
once the video completes); this is consistent with prior stud-
ies on user swipe patterns [44]. For instance, 29% and 42% of
swipes from MTurk users are within the first 20% or last 20%
of videos, respectively. Swipes between these two endpoints
occur, but far less often and with increasingly low likelihood
as users watch more videos, e.g., only 6% of swipes in the
College Campus dataset are in the 60–80% of videos.

Swipe distributions per video. Fig. 8 shows swipe prob-
abilities for four representative videos, aggregated across
users who watched each one in the two studies. Differ-
ent videos yield significantly different swipe distributions:
over 60% of swipes in videos (a) and 80% of swipes in
videos (d) come within the last few seconds (indicating low
swipe probabilities for these). Video (c) exhibits the opposite
pattern—60% of swipes in the first 20% of the video (in-
dicating high swipe probabilities)—while swipes in (b) are
more evenly distributed in time. Perhaps more importantly,
we observe substantial stability in the swipe distributions per
video across different user datasets: KL divergence values
between the MTurk and College Campus datasets are 0.2 and
0.8 for the median and 95th percentile videos, respectively.

Conclusions. Despite general similarities in swipe patterns,
users follow a few different modes of swiping (e.g., swiping
early in the chunk vs. not at all), each of which warrants a
different buffering strategy to ensure high QoE. Fortunately,
cross-user swipe data that is aggregated per video provides
a relatively stable indicator as to how likely swipes are (and
will be) in a given video, and (more coarsely) at what part
of the video they will occur. We show in §4 how Dashlet
leverages this coarse information – which is readily available
at existing short video servers – to make robust buffering
decisions that handle cross-user swipe traces.

4 Design

Dashlet leverages swipe distribution stability across videos
(§3) to get a coarse sense of the likelihood of swipes at differ-
ent video chunks. Coupling this information with constraints
on inter-chunk viewing sequences intrinsic to short video
applications, Dashlet models the expected rebuffering time

for each potential chunk as a continuous function over the ex-
pected download and playback times (§4.1), then employs a
greedy algorithm atop those functions to find a chunk buffer-
ing sequence that minimizes expected rebuffering delay over
a time horizon for a given network throughput estimate, and
across different user viewing sequences. Lastly, Dashlet
feeds that buffering sequence into a bitrate selection algo-
rithm (RobustMPC [40] in our implementation) to control
video chunk bitrate and optimize overall QoE (§4.2).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1587

Video 1

Video 2

Video 3

1st chunk 2nd chunk 3rd chunk𝑐11 𝑐12 𝑐13𝑐21𝑐31 𝑐32 𝑐33
𝑐22 𝑐23𝑝11 𝑝12 𝑝13𝑝21 𝑝22 𝑝23 𝑐11 𝑐12 𝑐21 𝑐22 𝑐31k1 = 2 k2 = 2D31 = k1 + k1 𝑡𝑝𝑐31 𝑡𝑓𝑐31

𝑐11 𝑐31

𝑐11 𝑐21
𝑐11 𝑐12 𝑐21
𝑐11 𝑐12 𝑐13 𝑐210 𝑇 2T 3𝑇 𝑷𝑫𝟐𝟏 𝟑 = 𝒑𝟏𝟑𝑷𝑫𝟐𝟏 𝟐 = 𝒑𝟏𝟐𝑷𝑫𝟐𝟏 𝟏 = 𝒑𝟏𝟏

Figure 9: Short video streaming model: the
player plays videos sequentially, switching to
the first chunk of the next video after a swipe.

𝑐𝑐11 𝑐𝑐12 𝑐𝑐13𝑐𝑐21𝑐𝑐31 𝑐𝑐32 𝑐𝑐33
𝑐𝑐22 𝑐𝑐23𝑝𝑝11 𝑝𝑝12 𝑝𝑝13𝑝𝑝21 𝑝𝑝22 𝑝𝑝23

Rebuffering

delay𝑐𝑐11 𝑐𝑐12 𝑐𝑐21 𝑐𝑐22 𝑐𝑐31k1 = 2 k2 = 2

D31 = k1 + k1 𝑡𝑡𝑝𝑝𝑐𝑐31 𝑡𝑡𝑓𝑓𝑐𝑐31

One viewing sequence from 𝑐𝑐11to 𝑐𝑐31

Play-start

𝑐𝑐11 𝑐𝑐21
𝑐𝑐11 𝑐𝑐12 𝑐𝑐21
𝑐𝑐11 𝑐𝑐12 𝑐𝑐13 𝑐𝑐21𝑇𝑇 𝑇𝑇 𝑷𝑷𝑫𝑫𝟐𝟐𝟐𝟐 𝟑𝟑 𝒑𝒑𝟐𝟐𝟑𝟑𝑷𝑷𝑫𝑫𝟐𝟐𝟐𝟐 𝟐𝟐 𝒑𝒑𝟐𝟐𝟐𝟐𝑷𝑷𝑫𝑫𝟐𝟐𝟐𝟐 𝟐𝟐 𝒑𝒑𝟐𝟐𝟐𝟐

Figure 10: Chunk rebuffering delay depends
on the order between the play start time tp and
the download finish time t f .

𝑐𝑐11 𝑐𝑐21
𝑐𝑐11 𝑐𝑐12 𝑐𝑐21
𝑐𝑐11 𝑐𝑐12 𝑐𝑐13 𝑐𝑐210 𝑇𝑇 2T 3𝑇𝑇 𝑷𝑷𝑫𝑫𝟐𝟐𝟐𝟐 𝟑𝟑 = 𝒑𝒑𝟐𝟐𝟑𝟑Swipe

Swipe

Swipe

𝑷𝑷𝑫𝑫𝟐𝟐𝟐𝟐 𝟐𝟐 = 𝒑𝒑𝟐𝟐𝟐𝟐𝑷𝑷𝑫𝑫𝟐𝟐𝟐𝟐 𝟐𝟐 = 𝒑𝒑𝟐𝟐𝟐𝟐
Figure 11: Three possible viewing se-
quences that start from chunk c11 and end
at chunk c21.

4.1 Forecasting Rebuffering Delay

Dashlet’s expected rebuffering functions aim to quantify user-
perceived delays across different chunk download times and
viewing sequences. We begin by explaining the construction
of these functions in a discrete setting where users can only
swipe at chunk boundaries; we then extend the discussion to
incorporate arbitrarily-timed user swipes.

System Model. Short video apps follow the flow shown
in Fig. 9. Each video consists of multiple chunks of chunk

time T . Within the ith video with Ni chunks, if the user does
not swipe, the video player plays its chunks ci j sequentially,
where j ∈ [0,Ni] is the chunk index. When playback reaches
the end of the video or the user swipes, the player jumps to the
first chunk of the next video. Since user swipe distributions
vary across videos (§3), we denote the probability that the
user swipes after watching chunk ci j as pi j. The list of the
chunks the user watches is a viewing sequence

Vs = [c11, . . . ,c1ki
,c21, . . . ,cK1, . . . ,cKkL

] (1)

where the user views the first ki chunks of the ith video,
assuming that the user watches L videos in total. Then the
probability distribution of ki is Pki

= {pi1, pi2, . . . , piNi
}. We

define Di j, the number of chunks that a user has watched
prior to chunk ci j:

Di j =
i−1

∑
l

kl +(j−1). (2)

By knowing the number of chunks that a user has watched
before ci j, the playback start time of ci j then will be Di j ·T .
As shown in Fig. 10, the expected rebuffering delay for some
chunk c depends on the relationship between the chunk’s
play start time tc

p and download finish time tc
f . There exists

no rebuffering if the chunk downloading finishes before the
play start time. Otherwise, rebuffering happens and the time
difference between tc

p and tc
f tells us c’s rebuffering delay:

T rebuf
c (tc

f , t
c
p) =

{

0, tc
f < tc

p

tc
f − tc

p, tc
f ≥ tc

p

(3)

The play start time of each chunk is determined by the view-
ing sequence Vs, as shown in Fig. 10. Since our goal is to

schedule c’s download to minimize rebuffering, we now for-
mulate a reward function to meet this goal, parameterized on
tc

f and averaging over all possible viewing sequences (which
are not under our control). The expected rebuffering delay of
chunk c given that chunk’s download finish time tc

f , across
all possible viewing sequences, is:

Erebuf
c (tc

f) = ∑
Vs∈Φ

Pr(Vs) ·T
rebuf

c (tc
f , t

c
p(Vs)) (4)

where probability Pr(Vs) represents how likely a specific
viewing sequence Vs will appear based on user swipe distri-
bution data, tc

p(Vs) is c’s play start time in Vs, and Φ is the set
of all possible viewing sequences.

To calculate the expected rebuffering delay for a specific
chunk, we enumerate all possible viewing sequences that
reach this chunk, as Eq. 4 shows. For each sequence, we
compute how likely this sequence will appear based on user
swipe distributions, and then determine the play start time
of that specific chunk. Based on short video chunk playback
constraints (§1, p.), we propose separate algorithms for
calculating the expected rebuffering delay of a video’s first
chunk, and remaining chunks, respectively.

First chunk of a video. The number of possible viewing se-
quences between chunk one of video one (c11) and chunk one
of video i (ci1) increases exponentially with i. On the other
hand, the number of sequences from the first chunk of the
previous to the first chunk of the current video is bounded by
the number of chunks in the former. For example (see Fig. 9),
there are three possible viewing sequences from chunk c21

to c31. We therefore enumerate the viewing sequences in a
recursive manner: deriving the viewing sequences that reach
the first chunk of the ith video based on the viewing sequence
of the first chunk of the (i−1)st video.

We start from the base case, viewing sequences from c11

to c21. Fig. 11 lists all three possible viewing sequences
that start from c11: we see that random variable D21 = k1

(cf. Eq. 2). Similarly, as shown in Fig. 10, D31 = D21 + k2

(cf. Eq. 1). The distribution of D31 is then:

PD31 [n0] =
n0−1

∑
i=1

PD21 [i] ·Pk2 [n0 − i] (5)

1588 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

𝑐𝑐11 𝑐𝑐21
𝑫𝑫𝟐𝟐𝟐𝟐 = 𝟐𝟐

𝑐𝑐31
𝑫𝑫𝟑𝟑𝟐𝟐 = 𝟐𝟐

𝑐𝑐11 𝑐𝑐31Convolution

𝒌𝒌𝟐𝟐 = 𝟐𝟐𝑫𝑫𝟐𝟐𝟐𝟐 = 𝟐𝟐𝑫𝑫𝟐𝟐𝟐𝟐 = 𝟑𝟑 𝒌𝒌𝟐𝟐 = 𝟐𝟐
𝒌𝒌𝟐𝟐 = 𝟑𝟑

𝑫𝑫𝟑𝟑𝟐𝟐 = 𝟑𝟑𝑫𝑫𝟑𝟑𝟐𝟐 = 𝟒𝟒𝑫𝑫𝟑𝟑𝟐𝟐 = 𝟓𝟓𝑫𝑫𝟑𝟑𝟐𝟐 = 𝟔𝟔
Figure 12: Convolution of the PD21 [·] and PK2 [·] provides us the
probability distribution PD31 [·].

where PD31 [n0] means the probability of there are n0 chunks
before chunk c31 is viewed. This formula by definition is
the operation of convolution between D21 and k2, as shown
in Fig. 12. Without losing generality, the number of chunks
that user watches before chunk ci1, Di1, is D(i−1)1 + ki−1.
Therefore the distribution of Di1 is:

PDi1 = PD(i−1)1
∗Pki−1 . (6)

With the knowledge of Di1’s distribution for the first chunk
of all the videos, we calculate the expected rebuffering delay
of chunk ci1, as the function of download finish time:

Erebuf
ci1

(t f) = ∑PDi j
[n] ·T rebuf

ci1
(t f ,(n+1)T) (7)

Remaining chunks in a video. There exists only one view-
ing sequence from the first to later chunks of the same video:
Fig. 13 shows that c23 will be played when and only when
the user watches the i = 2nd video continuously without swip-
ing. For non-first chunk ci j, the number of chunks that user
watched before it, Di j, is the summation of Di1 and j − 1
since the user has to watch the first j−1 chunks in video i

before starting to watch it. Then the distribution of Di j is that
of Di1, delayed by j−1 chunks. In addition, the user might
swipe to the next video before watching ci j:

PDi j
[n0] = PDi1 [n0 − (j−1)]× (1−

j−1

∑
m=1

pim). (8)

With the distribution of Di j, we follow the same procedure
to calculate expected rebuffering time for remaining chunks
in a video, according to Eq. 7.

Arbitrary user swipes. In reality, swipes do not only happen
after a chunk finishes. If the continuously-valued viewing
time for video i is κi, the PDF of κi is fκi

(t0). The play start

time of ci j, ∆i j, is a random variable, with PDF f∆i j
(t). For

the first chunk of video i, its playing start time t
ci1
f is also the

summation of the playing start time of the previous video

t
c(i−1)1

f and the time the user spends watching the previous
video κi−1. Following a similar principle, we compute f∆i1(t)
for the first chunk of a video i as

f∆i1(t) = f∆(i−1)1
(t)∗ fκi−1(t). (9)

𝑐𝑐11 𝑐𝑐21 𝑐𝑐23𝑐𝑐23
Swipe

𝑫𝑫𝟐𝟐𝟐𝟐+1
Swipe

𝒑𝒑𝟐𝟐𝟐𝟐 𝒑𝒑𝟐𝟐𝟐𝟐
𝑫𝑫𝟐𝟐𝟐𝟐 = 𝟐𝟐𝑫𝑫𝟐𝟐𝟐𝟐 = 𝟐𝟐𝑫𝑫𝟐𝟐𝟐𝟐 = 𝟑𝟑 𝑫𝑫𝟐𝟐𝟐𝟐+2

Figure 13: Starting from chunk c21, the user must watch the second
video continuously with swiping to reach chunk c23.

For subsequent chunks ci j, we also calculate the playing start
distribution based on the first chunk

f∆i j
(t) = f∆(i−1)i

(t − (j−1) ·L) ·

(

1−
∫ (j−1)·L

0
fκi
(x)

)

dx

(10)
Then the expected rebuffering function can be calculated
similarly to Eq. 7:

Ereb f
ci j

(x) =
∫ x

t=0
f∆i j

(t)×T reb f
ci j

(x, t)dt (11)

In the implementation, we approximate the continuous value
swipe distribution with a discrete distribution with the time
granularity of 0.1 seconds. The integral then can be approxi-
mated by the summation in the discrete distribution.

4.2 Determining Buffering Sequences

Given the preceding computation of expected rebuffering
delay for each chunk, Dashlet’s next task is to determine
an order of chunks to download (i.e., a buffering sequence)
that minimizes expected rebuffering delay over a lookahead
horizon. Prior schemes (e.g., MPC [40]) can then be used to
determine the bitrates for those chunks to optimize overall
QoE for the horizon. However, unlike prior schemes, the
horizon that we use is based on time (not chunks), since dif-
ferent user swipe patterns can translate into different numbers
of viewed chunks. Using a horizon sized to a fixed number of
chunks could result in optimization over very short viewing
times (negating the effects of longer-term planning). Our cur-
rent implementation uses a lookahead window of 25 seconds
based on empirical observations, which is equivalent to the
five chunks MPC uses. Chunk ordering relies primarily on
whether the user swipes near the beginning of the video or
not: e.g. if the user is highly likely to not swipe in c11, the
algorithm then needs to prioritize c12 over c21.

4.2.1 Selecting the candidate chunk set

To determine the set of chunks to consider, we enforce a
threshold on the minimum rebuffering penalty that each
chunk is expected to incur at the end of the horizon if it is not
included in the buffer sequence (Fig. 14(a)). Chunks whose
rebuffering penalty falls below the threshold are deemed as
unlikely to be viewed during the horizon (c32 in Fig. 14(a)),
and thus low priority for inclusion in the buffer sequence.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1589

Look Ahead window
Time

re
bu

ffe
r

C21 C12

Time

C31 C22

th
re

sh
ol

d

(a) Determine chunks to lookahead (b) Determine buffer order

Ex
pe

ct
ed

Figure 14: An example to illustrate Dashlet’s algorithm.

Note that buffer sequences are constructed each time a chunk
download completes, so an excluded chunk for one hori-
zon may still be downloaded shortly (via inclusion in the
next horizon’s buffer sequence). We use an empirically-
configured value of 1/µ for threshold, which is the inverse
of the rebuffering penalty weight in our target QoE function.

Using the set of chunks to consider, our final task is to
order them in a manner that minimizes expected rebuffer-
ing penalties. We assign a bitrate to each chunk, and then
use estimated network bandwidth to determine when it will
complete donwloading (assuming some start time). This
allows us to compute expected rebuffering time per chunk
(§4.1). However, to bound computational complexity (since
download decisions must be fast) we temporarily assume an
equal bitrate per chunk that is set to the maximum bitrate,
which ensures that all chunks in the list will complete down-
loading before the horizon completes. Although exclusion
of per-chunk bitrate decisions here can result in suboptimal
orderings, these effects are marginal (evidenced by Dashlet’s
closeness to the Optimal scheme in §5.2), as priorities be-
tween chunks (and potential per-chunk viewing times) are
largely dictated by viewing constraints imposed by the appli-
cation (§4.1). Thus, minor discrepancies in bitrates across
chunks are unlikely to flip the priority order among them.

4.2.2 Priority-ordering the buffer sequence

To sort our list of chunks into a buffer sequence, we follow
a greedy algorithm, whereby we partition the horizon into
chunk-sized slots. For a given slot i, we select the chunk that
will incur the largest additional rebuffering penalty if it were
to be scheduled in slot i+1 rather than i. Fig. 14(b) shows
this process for a scenario in which chunk c11 just completed
downloading: c21 is assigned to slot 1 as its rebuffering
penalty jumps the most between slots 1 and 2; c12 is next as
it has the highest penalty for not going in slot 2, and so on.
Finally, using the generated buffer sequence, Dashlet applies
MPC’s algorithm to determine the bitrate for each chunk in
the buffer sequence in a way that optimizes the entire QoE
(not just minimizing rebuffering) for the horizon according to
the forecasted network throughput, i.e., the harmonic mean

over the observed throughputs in the last 5 chunk downloads.
We describe the above algorithm with a pseudo code in §A.

4.3 Implementation

Dashlet’s implementation includes one control module and
multiple buffer modules. The control module schedules
the chunk downloading and the buffer modules reuses the
DASH.js playback management implementation to download
video chunks. §B provides more implementation details.

5 Evaluation

We evaluate Dashlet across a variety of mobile network con-
ditions, real user swipe traces, and videos. Our key findings:

• Dashlet outperforms TikTok by 28-101% in terms of
average QoE, including 8-39% improvement on video
bitrate, 1.6-8.9× reduction on rebuffering penalty, and
30% reduction on data wastage.

• Dashlet’s QoE improvement varies with the network
throughput, i.e., 543.7%, 221.4%, and 36.6% over Tik-
Tok when the throughput is 2-4, 4-6, and 10-12 Mbps,
respectively. The improvement diminishes with through-
put approaching to 20 Mbps because both Dashlet and
TikTok are getting closer to optimum.

• Dashlet tolerates errors in swipe distributions: with errors
of 50%, Dashlet makes the correct buffering decisions
96.5% of the time, yielding an QoE reductions of only
10%. compared to cases with no distribution errors.

5.1 Methodology

Baselines. We compare Dashlet with the following systems:

• TikTok. We compare with TikTok App (version v.20.9.1).

• Oracle. We also run an ‘oracle’ baseline that serves as
an upper bound for QoE. The oracle is the RobustMPC
algorithm [40] running with perfect (a priori) knowledge
of both the user swipe traces and network throughput in
each experiment. With that information, the algorithm
knows the upcoming video viewing sequence at all times,
and can thus pick the buffer sequences (and bitrates) that
directly optimize QoE for the current network conditions.

Overall setup. All video clients run on a rooted Pixel 2
phone (Android 10). The Oracle algorithm and Dashlet run
in the Google Chrome browser (v. 97.0.4692.87), and contact
a local desktop which houses the videos accessed in each
experiment (described below). In contrast, TikTok runs as an
unmodified, native Android app and contacts Akamai CDNs
to fetch video content as it normally does. We checked the
location of the CDN content server node and verified it was
local to our area. All traffic to and from the phone passes over
emulated mobile networks (which run atop WiFi connections
with average speeds of ≈300 Mbps); to compensate for the
discrepancy in video servers, we added 6 ms of round trip

1590 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

delay to traffic for Dashlet and the Oracle algorithm, which
reflects the maximum ping time we observed to the CDN
used by TikTok.
Evaluation metrics. Short videos share similar goals of tra-
ditional video streaming [22, 40]: maximizing video bitrate,
minimizing rebuffering delays, and avoiding frequent bitrate
fluctuations, so we adopt a widely used QoE metric:

QoE = Rbitrate −µ ·Prebu f f er −η ·Psmooth (12)

where Rbitrate is the average video bitrate, Prebu f f er is the
cumulative penalty for rebuffering (i.e., stalled playback),
and Psmooth is the penalty for frequent bitrate switching across
adjacent chunks. We use the same values for µ and η as prior
work [40], i.e., µ = 3000 and η = 1.

Human subjects study for QoE. We conduct a small-scale
human study, where we recruit ten participants2. We ask
them to log in their own accounts to use TikTok under em-
ulated mobile networks (the videos are recommended by
TikTok)3. We randomly choose three network traces with
average throughput of 4± 0.1, 6± 0.1, 12± 0.1 Mbps re-
spectively. We record the content, quality, order of videos
TikTok streams to each user, and swipe timestamps. For the
evaluation of Dashlet, we first download every video that
users have watched in TikTok experiments and collect per-
video user swipe distributions with Amazon Mturk. We then
stream the same videos in the same order as TikTok using
Dashlet, under the same emulated network, during which we
replay the user swipes recorded in the TikTok experiment.
Take the analogy to machine learning: the “training set” we
use for Dashlet is collected by MTurk, and the testing set is
real users’ swipe. To quantify performance, we record the
quality of every video chunk and the rebuffering event to
calculate the QoE for both TikTok and Dashlet.

Human subjects study for users’ satisfaction. We let the
same group of participants use TikTok and Dashlet for in
total 30 minutes and ask them to rate the video quality and
smoothness after they finish. Each participant used both Tik-
Tok and Dashlet for three five-minute sessions under three
different network traces. Notice that the videos played in
TikTok and Dashlet are different in the study since the users
would behave differently if shown the same video once more,
e.g., users tend to swipe fast when they are already familiar
with the content in a video. For Dashlet, the swipe distribu-
tion is pre-collected with MTurk before the study.

Trace-driven study. We run a trace-driven study to scale up
the evaluation under different user swipe speed and network
traces. We use a script to automatically swipe in TikTok

2Among the ten participants, three of them are new users, three of them
are occasional users, and four of them are daily users.

3The only action that users perform in the study is to swipe to the next
video based on their watching experiences

0 2 4 6 8 10 12 14 16 18 20
Avg. Throughput (Mbps)

0.1
0.3
0.5
0.7
0.9

C
D

F

(a) Average.

0 2 4 6
Std. Throughput (Mbps)

0.1
0.3
0.5
0.7
0.9

C
D

F

(b) Standard deviation.

Figure 15: Throughput distribution for our network dataset.

0

50

100

Q
oE

0%

0.5%

1.0%

1.5%

R
eb

uf
fe

r P
er

ce
nt

ag
e

4±0.1 6±0.1 12±0.1
Net. Throughput (Mbps)

0

50

100

B
itr

at
e

R
ew

ar
d

4±0.1 6±0.1 12±0.1
Net. Throughput (Mbps)

0.0

0.5

1.0

Sm
oo

th
ne

ss
 p

en
al

ty

(a)

(c)

(b)

(d)

TikTok Dashlet Oracle

Figure 16: End-to-end result for human subjects study. (a) QoE (b)
Rebuffer percentage. (c) Bitrate reward (d) Smoothness penalty

based on the distribution shown in Fig. 7. In order to enforce
the same playing sequence (i.e., ordered list) of videos across
the considered systems, we exploit the fact that the order in
which videos are streamed with TikTok for a given keyword
search remains unchanged on the order of many days. We use
that same order across all systems and across experiments
with different network and swipe traces. Each experiment
considers 10 minutes of viewing time to match the average
session time for TikTok users [34]. Similar to our human
subjects study, we replay the same traces recorded from
TikTok experiments to evaluate Dashlet and Oracle. The
swipe distribution used for Dashlet in replay is collected
from another batch of user study via Amazon Mturk.

Network conditions. We consider the combination of two
sets of mobile network traces: (1) the FCC LTE dataset [9]
that is widely used in prior work [22, 40], and (2) a WiFi
trace dataset that we collected in January 2022 in a shopping
mall. Fig. 15 shows the average and standard deviation of
throughput traces in the combined dataset.

5.2 End-to-End performance

Human subjects study. Fig. 16 shows the end-to-end re-
sult for human subjects study, including QoE, rebuffering

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1591

0

50

100

150
Q

oE

TikTok Dashlet Oracle

0.1%

1%

10%

R
eb

uf
fe

r p
er

ce
nt

ag
e

0-2 2-4 4-6 6-8 8-1
0
10

-12
12

-14
14

-16
16

-18
18

-20

Net. Throughput (Mbps)

0

50

100

B
itr

at
e

re
w

ar
d

0-2 2-4 4-6 6-8 8-1
0
10

-12
12

-14
14

-16
16

-18
18

-20

Net. Throughput (Mbps)

0

1

2

Sm
oo

th
ne

ss
 p

en
al

ty

(a)

(c)

(b)

(d)

Figure 17: End-to-end result for trace-driven study. (a) QoE. * is the outlier data point with average QoE at -389 due to rebuffer (b) Rebuffer
percentage (of total time). Note log ordinate axis; * denotes zero rebuffering. (c) Bitrate reward. (d) Smoothness penalty

Network throughput (Mbps) 4 ± 0.1 6 ± 0.1 12± 0.1

TikTok quality 3.1 ± 0.83 3.2 ± 0.87 4.0±0.89
Dashlet quality 3.6±0.80 3.9±0.70 4.1±0.94
TikTok stall 2.8 ± 1.08 3.0±0.77 4.2±0.99
Dashlet stall 3.5±1.02 3.9±0.94 4.3±0.90

Table 1: User survey for TikTok and Dashlet. Each participant is
asked to score 1 (worst) to 5 (best) in terms of video quality (reso-
lution) and stall (rebuffer) under three different network throughput.
The sample questionnaire is shown in §D. Table summarizes the
average and standard deviation of the score.

Network throughput (Mbps) 4 ± 0.1 6 ± 0.1 12± 0.1

QoE -363.2 -287.9 -133.5
Rebuffer percentage 28.0% 24.8% 14.3%
Bitrate reward 77.2 96.6 97.8
Smoothness Penalty 0.38 0.12 0.02

Table 2: End-to-end result for MPC.

percentage, bitrate reward and smoothness penalty. There
are two key takeaways from these results. First, Dashlet
consistently outperforms TikTok across different network
throughput. Dashlet improve the average QoE over TikTok
by 101%, 64%, 28% on 4 Mbps, 6 Mbps, 12 Mbps respec-
tively. When break down the QoE into the components,
Dashlet reduces the rebuffering by 1.6-8.9x compared with
TikTok and improve the QoE by 8% - 39% with the cost of
marginal smoothness penalty. Second, Dashlet can reach the
close-to-optimal performance starting from 6 Mbps. While
TikTok does not achieve that even at 12 Mbps.

We also run experiments on MPC [40], a state of art tra-
ditional video streaming algorithm, on the same setup men-
tioned above. As a traditional video streaming algorithm,
MPC only prebuffers chunks for the current video. Table 2

summarizes the end-to-end result. Compared with Dash-
let, MPC incurs a much higher rebuffering as it experiences
rebuffer delay every time the user swipes to a new video.,
leading a significant lower QoE compared with Dashlet.

We also perform a experiment to understand the partic-
ipants’ satisfaction of the service provided by TikTok and
Dashlet. We let the participants watch videos using Tik-
Tok and Dashlet for five minutes, after which we conduct a
user survey by asking the participant to report their satisfac-
tion scores in terms of video quality (resolution) and stall
(rebuffer) conditions for both TikTok and Dashlet. Table 1
shows the users’ satisfaction towards the video resolution and
rebuffer for both TikTok and Dashlet on the human subjects
study. From the figure, we can see that Dashlet improves the
users satisfaction on both video resolution and rebuffering.

Trace-driven study. Fig. 17 shows the result for trace-driven
study. Key results are: (1) Dashlet’s QoE improvement
varies with the network throughput, i.e., 543.7%, 221.4%,
and 36.6% over TikTok when the throughput is 2-4, 4-6,
and 10-12 Mbps, respectively. The improvement diminishes
with throughput approaching to 20 Mbps. (2) Dashlet can
reach the optimal QoE at a much lower network throughput
than TikTok, i.e. Dashlet reaches the optimal at throughput
8-10 Mbps. While TikTok is close to the optimal at the
throughput 18-20 Mbps. (3) Dashlet consistently incurs a
lower rebuffering compared with TikTok.

5.3 Ablation study

We further perform an ablation study to understand the con-
tribution of five design components (detailed in Table 3).
Idle: TikTok has a prebuffer idle state as described in §2.2.1
while Dashlet does not. Chunking: TikTok splits the video
into one or two chunks while Dashlet splits the video into

1592 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20
Net. throughput (Mbps)

-0

-3
-10
-30

-100
-300

Av
er

ag
e

Q
oE

 d
iff

er
en

ce
 b

et
w

ee
n

D
as

hl
et

(1) DID
(2) DTCK

(3) DTBO
(4) DTBS

Figure 18: The contribution to End-to-End QoE
for different design components. The y-axis in
log scale is the QoE difference between the cor-
responding ablation study systems and Dashlet. Figure 19: Ablation study for bitrate choice.

50%
40%
30%
20%D

as
hl

et

Av
g.

 v
ie

w
 %

1 2 3 4 5 6
Throughput (Mbps)

50%
40%
30%
20%Ti

kT
ok

Av

g.
 v

ie
w

 %

−100

0

100

Average Q
oE

Figure 20: Average QoE of Dashlet
and TikTok under different average
viewing percentage (based on swipe
patterns) and network throughput.

System Name Idle Chunking
Fix

bitrate
Buffer
order

Bitrate
selection

(1) Dashlet+Prebuffer idle (DID) T D D D D
(2) Dashlet+TikTok Chunking (DTCK) D T T D D
(3) Dashlet+TikTok buffer order (DTBO) D D D T D
(4) Dashlet+TikTok bitrate (DTBS) D D D D T
(5) TikTok+Dashlet bitrate (TDBS) T T T T D

Table 3: Setup for ablation study. We summarize the difference in
design components between Dashlet and TikTok and evaluate the
impact of corresponding design components. “T” and “D” denote
TikTok’s and Dashlet’s design components respectively.

various number of equal-length chunks. Notice that Tiktok’s
chunking also leads to a fix bitrate for chunks in the same
video. Buffer order: whether the system follows TikTok or
Dashlet’s buffer order. Bitrate selection. whether the system
follows TikTok or Dashlet’s bitrate selection. We implement
the TikTok’s logic for the corresponding design components
according to our TikTok analysis in §2.2. For the bitrate
selection, we use a lookup table to record the TikTok’s bi-
trate decision under different network throughput and buffer
level. Our implementation for TikTok’s bitrate choice will
then make the decision according to the look-up table.

We first investigate the performance drop when replacing
Dashlet’s design components with the corresponding Tik-
Tok’s design component. Fig. 18 shows the QoE difference
compared to Dashlet. Dashlet+Prebuffer idle (DID) curve
shows that having a prebuffer idle state will have a signifi-
cant negative impact at low throughput (e.g. 0-2 Mbps). But
when the impact diminishes as the network throughput is
above 4 Mbps. Similarly, TikTok’s chunking also has a
significant negative impact at the low network throughput.
The low network throughput forces TikTok to choose a low
video bitrate, but consequently increases the first chunk du-
ration, making TikTok more vulnerable to rebuffering when
swipe happens. TikTok’s buffering order (DTBO) selection
has significant negative impact on QoE until the throughput
reaches 14 Mbps. The bitrate selection (DTBS) have the
most significant impact on the QoE. Its impact to the QoE
dominants as the network throughput reaches 4-6 Mbps. By
digging deep in the reason, we find TikTok is very conser-

Figure 21: Data wastage and
network idle time. Boxes span
25-75th percentiles. Black lines
span min/max, and intersect at
the median for both properties.

2 5 7 10
Chunk sizes

0

1

2

N
or

m
al

iz
ed

 Q
oE

Figure 22: Dashlet’s chunk du-
ration’s impact on QoE (normal-
ized for 5-second chunk). Bars
list averages, with error bars for
one st. dev. in each direction.

vative in choosing high bitrate. We show the detail in §C.
One natural next question arises is that could we just simply
increase the request bitrate to improve the QoE. To answer
this question, we consider another ablation study case TDBS,
which includes TikTok’s design for all other components but
keeps the high bitrate choices as Dashlet. Fig. 19 shows
the comparison between TDBS and TikTok. with the higher
bitrate choices, TDBS performs worse than TikTok when the
network throughput is less than 12 Mbps. The key reason be-
hind is that TDBS has a higher rebuffer percentage compared
with TikTok. The takeaway is that TikTok’s low bitrate is a
result of adaptation to avoid rebuffering. Simply increase the
downloading bitrate could lead to a worse QoE.

5.4 Micro Benchmarks

Impact of Swipe and Network Speeds on QoE. Patterns
in network throughput and user swipes largely influence the
performance of short video streaming algorithms. To under-
stand the effect of each, we report Dashlet’s and TikTok’s
results for different network throughputs and swipe rates.
As shown in Fig. 20, the major factor that affects QoE with
Dashlet is the network throughput. Importantly, swipe speed
does not have a significant impact on Dashlet’s performance,
validating its robustness under different swipe patterns. In
contrast, both network throughput and swipe speed have a
large impact on TikTok’s QoE.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1593

0 0.25 0.5 0.75 1.0
The percentage of
error distributions

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F
ov

er
de

ci
si

on
s

Figure 23: Dashlet’s tolerance to swipe dis-
tribution errors.

0% 10%20%30%40%50%
Swipe estimation error

0.90

0.95

1.00

N
or

m
al

iz
ed

 Q
oE

Under
Over

Figure 24: Impact of swipe estimation errors
on Dashlet.

0% 10%20%30%40%50%
Network estimation error

0.8

0.9

1.0

N
or

m
al

iz
ed

 Q
oE

Under
Over

Figure 25: Impact of network estimation er-
rors on Dashlet.

Network Idle and Data Waste. To dig deeper into Dashlet’s
performance gain over TikTok, we investigate network idling
and data wastage for both systems. Fig. 21 shows our re-
sults; note that the Oracle algorithm does not incur any data
wastage since it has perfect knowledge of user swipe times.
As shown, median data wastage and idle time for Dashlet are
29.4% and 45.5%, respectively, which are 30.0% and 35.9%
lower than those with TikTok. These improvements enable
Dashlet to stream video at higher bitrates than TikTok while
keeping rebuffering delays low.

The impact of chunk size on Dashlet’s QoE. Unlike TikTok
which breaks up videos by bytes, Dashlet (by default) breaks
up videos into 5-second chunks. We evaluated the impact that
chunk sizes have on Dashlet’s performance by considering
the following chunk sizes (based on prior work [42]): {2, 5,
7, 10} seconds. Note that we did not modify chunk sizes
for TikTok as we could not alter its video servers. As shown
in Fig. 22, Dashlet’s performance decreases as chunk sizes
grow, e.g., average QoE drops by 35.4% as chunk sizes grow
from 5 to 10 seconds. The reason is that data wastage grows
with larger chunk sizes: a user swipe at 1 second into a chunk
will result in more wasted bytes with a larger chunk size.

Decision Stability with Swipe Prediction Errors Dashlet
determines buffer sequences by leveraging (coarse informa-
tion from) users’ swipe distributions for each video. Thus,
a natural question is how robust are Dashlet’s decisions to
errors in those distributions, i.e., does it make the right deci-
sions even with different degrees of errors?

Recall that there are three inputs to Dashlet’s algorithm at
any time: the swipe distribution for each considered video,
the estimated network throughput, and the client-side player’s
current buffer state. The algorithm uses this information and
returns a buffer sequence of chunks to download, with the
first chunk in the ordered list indicating the action to perform
immediately, i.e., the chunk to download now. To answer
the above question, we profiled the above inputs throughout
our experiments, and then compared the actions selected by
Dashlet with those that it would select if the input swipe
distribution involved errors. In particular, we considered 10
versions of each video’s distribution by (roughly) modeling

its original distribution as an exponential one, and then alter-
ing the corresponding λ value to change the average swipe
time by 1±{0-50%} (in 10% increments).

Fig. 23 shows our results. As shown, 83.7% of Dashlet’s
decisions are unchanged across all of the considered distri-
bution errors. The values remain relatively stable as errors
grow – e.g., 96.5% of Dashlet’s decisions are unchanged with
errors of 50% – but begin to grow after 82%. These results
illustrate that Dashlet only relies on coarse information from
swipe distributions (e.g., about whether a user is likely to
swipe early or late in the video); it is for this reason that
decisions are varied only when errors are very high (and even
the coarse information that Dashlet uses has changed).
QoE sensitivity with Swipe and Network Errors Build-
ing on the previous results, we now analyze how errors in
swipe distribution affect the QoE that Dashlet delivers. We
ran Dashlet on all videos and the network traces using same
faulty distributions from above. Fig. 24 shows the results,
breaking them down in terms of scenarios with over esti-
mation of swipe times (longer average viewing time than
the correct distribution, i.e., later swipes) and under estima-
tion (shorter average viewing time). As shown, Dashlet is
quite tolerant to such errors, delivering 87% and 91% of
its full QoE (with no errors) when the traces are over- and
under-estimating swipe times by 50%.

We perform a similar analysis to evaluate Dashlet in the
presence of network prediction errors. Specifically, we re-
place the network predictor in RobustMPC [40] with one that
reads in the actual instantaneous throughput from the current
Mahimahi trace, and multiplies that value by between 1±{0-
50%}. Overall, as per Fig. 25, we find that Dashlet’s QoE
drops to 88% and 76% of its values without network errors
when the network estimate is over- or under-estimating by
50%. These results highlight that Dashlet is more robust to
errors in swipe distributions than network forecasts.

6 Related work

Traditional adaptive video streaming Traditional video
streaming services deliver video content from the CDN to
the user with adaptive bitrate system with the objective of

1594 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

maximizing the quality of experience for users [20]. Re-
search effort has been made to improve the quality of ex-
perience from different perspectives, including streaming
algorithm [18, 19, 22, 29, 40], video codec [7, 10], network
prediction [30, 36], protocol design [14, 45], and video super
resolution [38, 39]. But all these optimization is for the same
video streaming model: the video download sequence is the
same as the video playing sequence. Dashlet also uses QoE
as the optimization goal but tackles a different problem as
in the short video streaming the video download sequence is
the same as the video playing sequence due to users’ swipes.
Streaming new form of video There are also rising in-
terest on 360 degree video [12, 26] and volumetric video
streaming [25]. These systems need to handle the uncertainty
from the users’ head position or location. Dashlet’s design
also models the uncertainty from the user swipe patterns.
But Dashlet targets on a different problem compared with
360 degree or volumetric video streaming. Some existing
works [15, 27] also try to apply reinforcement learning algo-
rithms from traditional video streaming [22] to short video
streaming. However, these works do not factor in the impact
of user swipes on buffering decisions as Dashlet does.

7 Discussion

TikTok version. Our reverse engineering tool can only de-
ciphers the HTTPS messages transmitted by TikTok with
version up to v20.9.1. As a result, we cannot conduct our
case study (§2) using the up-to-date TikTok v26.3.3, which
adopts a different encryption method as V20.9.1. We leave
the task of deciphering the HTTPS messages and thus study-
ing the streaming algorithm of the newest version of TikTok
as our future work.
Backward swipes, fast-forwarding, and pause. Our current
model only allows forward swipes, i.e., swipes to watch next
videos. The newest version of TikTok also allows backward
swipes where the user swipes to watch the previous video
and fast-forwarding, where the user speeds up the playback
of the current video: we will study these in future work. In
addition, our model does not consider the video pause. The
pausing of videos will make it easier for the system since it
gives the player more time to download videos. For Dashlet’s
design, we focus on a harder problem, which assumes no
pause in the video.
Diminished gain at higher network speeds. We observe a
diminished improvement for Dashlet over TikTok at higher
network speeds. At higher network speeds, mistakes made
by TikTok are masked by higher network throughput. As
network speed increases, TikTok can pick up the highest
bitrate but still have enough time to react to users’ wipes.
In our evaluation, we use the bitrates that TikTok’s CDN
offers, which are capped at 720P video quality. We expect
the gap between Dashlet and TikTok will widen if higher

bitrate videos are used to evaluate both systems, which we
expect will happen in the future.
Generalization of Dashlet design. The Dashlet design does
not rely on the design of TikTok but only relies on a sequence
of videos that are played in chunks. Therefore, it should be
able to generalize to other platforms like YouTube Shorts
and Instagram Reels.
Energy implication to smartphones. Dashlet could poten-
tially reduce the energy consumption for short video appli-
cations. The energy cost includes both the cost to run the
algorithm and the cost to download the video content. Dash-
let uses a simple non-machine learning algorithm, which
causes minimal extra energy overhead. For the cost to down-
load the video content, Dashlet has less energy overhead
since its waster download is much less than TikTok.
Evaluation generalizability. We have conducted a small
scale human study to compare the performance of Dashlet
and TikTok, where ten participants log into their own ac-
count to watch TikTok video on a emulated mobile network,
repeating the experiments using Dashlet. The personality of
the recruited user may lead to biased results, for example, a
patient user may tend to not swipe or swipe at the end of the
video, leaving larger time window for TikTok to download
the second chunk. A larger scale human study that involves
more diverse users is needed to eliminate this potential bias.

We conduct our evaluation under emulated mobile net-
works, but prior work [36,37] has pointed out that the emula-
tion based evaluation of network applications and congestion
control schemes may not always be indicative of real-world
performance. For example, although we compensate the av-
erage round trip delay to the CDN server in the emulated
environment, the variation in the round trip delay might po-
tentially impact the results. While we note that Dashlet does
not input network measurements into an ML model, we ac-
knowledge that large-scale evaluation in the wild may be
required to verify the full generalizability of our results.

8 Conclusion

In this paper, we design and implement Dashlet with the in-
sight provided by measurement for a commercial short video
app and a user study on general user swipe pattern. Dashlet’s
algorithm strategically determines the buffer order with the
input from a coarse-grained swipe distribution. Evaluation
result shows Dashlet significantly improves video quality and
reduces rebuffering compared with the baseline system.

9 Acknowledgement

We thank the anonymous reviewers and our shepherd, Sanjay
Rao for their insightful comments. This material is supported
in part by NSF CNS grants 2152313, 2153449, 2147909,
2140552, and 2151630, Sloan Research Fellowship, as well
as a grant from the Princeton School of Engineering and
Applied Science.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1595

References

[1] 24 Important TikTok Stats Marketers Need to Know in
2022.
https://blog.hootsuite.com/tiktok-stats/.

[2] AKHTAR, Z., NAM, Y. S., GOVINDAN, R., RAO, S.,
CHEN, J., KATZ-BASSETT, E., RIBEIRO, B., ZHAN,
J., AND ZHANG, H. Oboe: Auto-tuning video abr
algorithms to network conditions. In Proceedings of

the 2018 Conference of the ACM Special Interest

Group on Data Communication (New York, NY, USA,
2018), SIGCOMM ’18, Association for Computing
Machinery, p. 44–58.

[3] CHEN, F., LI, P., ZENG, D., AND GUO, S.
Edge-assisted short video sharing with guaranteed
quality-of-experience. IEEE Transactions on Cloud

Computing (2021), 1–1.

[4] CHEN, Z., HE, Q., MAO, Z., CHUNG, H.-M., AND

MAHARJAN, S. A study on the characteristics of
douyin short videos and implications for edge caching.
In Proceedings of the ACM Turing Celebration

Conference-China (2019), pp. 1–6.

[5] CORTESI, A., HILS, M., KRIECHBAUMER, T., AND

CONTRIBUTORS. mitmproxy: A free and open source
interactive HTTPS proxy, 2010–. [Version 8.0].

[6] DASARI, M., BHATTACHARYA, A., VARGAS, S.,
SAHU, P., BALASUBRAMANIAN, A., AND DAS, S. R.
Streaming 360-degree videos using super-resolution.
In IEEE INFOCOM 2020 - IEEE Conference on

Computer Communications (2020), IEEE Press,
p. 1977–1986.

[7] DASARI, M., KAHATAPITIYA, K., DAS, S. R.,
BALASUBRAMANIAN, A., AND SAMARAS, D. Swift:
Adaptive video streaming with layered neural codecs.
In USENIX NSDI (2022).

[8] DASH Industry Forum.
https://reference.dashif.org/dash.js/

latest/samples/index.html.

[9] Federal Communications Commission. 2016. Raw
Data - Measuring Broadband America. (2016). https:
//www.fcc.gov/reports-research/reports/.

[10] FOULADI, S., EMMONS, J., ORBAY, E., WU, C.,
WAHBY, R. S., AND WINSTEIN, K.
Salsify:{Low-Latency} network video through tighter
integration between a video codec and a transport
protocol. In USENIX NSDI (2018).

[11] GAO, X., LE CALLET, P., LI, J., LI, Z., LU, W.,
AND YANG, J. QoEVMA’20: 1st Workshop on Quality

of Experience (QoE) in Visual Multimedia
Applications. Association for Computing Machinery,
New York, NY, USA, 2020, p. 4771–4772.

[12] GUAN, Y., ZHENG, C., ZHANG, X., GUO, Z., AND

JIANG, J. Pano: Optimizing 360 video streaming with
a better understanding of quality perception. In ACM

SIGCOMM (2019).

[13] GUO, J., AND ZHANG, G. A Video-Quality Driven

Strategy in Short Video Streaming. Association for
Computing Machinery, New York, NY, USA, 2021,
p. 221–228.

[14] HAN, B., QIAN, F., JI, L., AND GOPALAKRISHNAN,
V. Mp-dash: Adaptive video streaming over
preference-aware multipath. In CoNEXT (2016).

[15] HE, J., HU, M., ZHOU, Y., AND WU, D. Liveclip:
towards intelligent mobile short-form video streaming
with deep reinforcement learning. In Proceedings of

the 30th ACM Workshop on Network and Operating

Systems Support for Digital Audio and Video (2020).

[16] HUANG, T.-Y., JOHARI, R., MCKEOWN, N.,
TRUNNELL, M., AND WATSON, M. A buffer-based
approach to rate adaptation: Evidence from a large
video streaming service. In Proceedings of the 2014

ACM Conference on SIGCOMM (New York, NY, USA,
2014), SIGCOMM ’14, Association for Computing
Machinery, p. 187–198.

[17] ITSEEZ. The OpenCV Reference Manual, 4.5.1 ed.,
2022.

[18] JIANG, J., SEKAR, V., AND ZHANG, H. Improving
fairness, efficiency, and stability in http-based adaptive
video streaming with festive. In ACM CoNEXT (2012).

[19] KIM, J., JUNG, Y., YEO, H., YE, J., AND HAN, D.
Neural-enhanced live streaming: Improving live video
ingest via online learning. In ACM SIGCOMM (2020).

[20] KRISHNAN, S. S., AND SITARAMAN, R. K. Video
stream quality impacts viewer behavior: inferring
causality using quasi-experimental designs.
IEEE/ACM Transactions on Networking (2013).

[21] LYMBEROPOULOS, D., RIVA, O., STRAUSS, K.,
MITTAL, A., AND NTOULAS, A. Pocketweb: Instant
web browsing for mobile devices. In ASPLOS 2012

(Architectural Support for Programming Languages

and Operating Systems) (March 2012), ACM.

[22] MAO, H., NETRAVALI, R., AND ALIZADEH, M.
Neural adaptive video streaming with pensieve. In
ACM SIGCOMM (2017).

[23] NETRAVALI, R., SIVARAMAN, A., DAS, S., GOYAL,
A., WINSTEIN, K., MICKENS, J., AND

BALAKRISHNAN, H. Mahimahi: Accurate
{Record-and-Replay} for {HTTP}. In USENIX ATC

(2015).

1596 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://blog.hootsuite.com/tiktok-stats/
https://reference.dashif.org/dash.js/latest/samples/index.html
https://reference.dashif.org/dash.js/latest/samples/index.html
https://www.fcc.gov/reports-research/reports/
https://www.fcc.gov/reports-research/reports/

[24] PyAutoGUI - PyPI.
https://pypi.org/project/PyAutoGUI/.

[25] QIAN, F., HAN, B., PAIR, J., AND

GOPALAKRISHNAN, V. Toward practical volumetric
video streaming on commodity smartphones. In ACM

HotMobile (2019).

[26] QIAN, F., HAN, B., XIAO, Q., AND

GOPALAKRISHNAN, V. Flare: Practical
viewport-adaptive 360-degree video streaming for
mobile devices. In ACM MobiCom (2018).

[27] RAN, D., ZHANG, Y., ZHANG, W., AND BIAN, K.
Ssr: Joint optimization of recommendation and
adaptive bitrate streaming for short-form video feed.
In IEEE MSN (2020).

[28] Genymobile/scrcpy: Display and control your Android
device.
https://github.com/Genymobile/scrcpy.

[29] SPITERI, K., URGAONKAR, R., AND SITARAMAN,
R. K. Bola: Near-optimal bitrate adaptation for online
videos. IEEE/ACM Transactions on Networking 28, 4
(2020), 1698–1711.

[30] SUN, Y., YIN, X., JIANG, J., SEKAR, V., LIN, F.,
WANG, N., LIU, T., AND SINOPOLI, B. Cs2p:
Improving video bitrate selection and adaptation with
data-driven throughput prediction. In ACM

SIGCOMM (2016).

[31] TikTok: Thanks a billion!
https://newsroom.tiktok.com/en-us/

1-billion-people-on-tiktok.

[32] TikTok Revenue and Usage Statistics (2022).
https://www.businessofapps.com/data/

tik-tok-statistics/.

[33] https://influencermarketinghub.com/tiktok-stats/.
https://influencermarketinghub.com/

tiktok-stats/.

[34] TikTok User Statistics (2022).
https://backlinko.com/tiktok-users.

[35] WANG, S. W., YANG, S., LI, H., ZHANG, X., ZHOU,
C., XU, C., QIAN, F., WANG, N., AND XU, Z.
Salientvr: Saliency-driven mobile 360-degree video
streaming with gaze information. In Proceedings of

the 28th Annual International Conference on Mobile

Computing and Networking (New York, NY, USA,
2022), MobiCom ’22, Association for Computing
Machinery.

[36] YAN, F. Y., AYERS, H., ZHU, C., FOULADI, S.,
HONG, J., ZHANG, K., LEVIS, P., AND WINSTEIN,
K. Learning in Situ: A Randomized Experiment in
Video Streaming. USENIX Association, USA, 2020,
p. 495–512.

[37] YAN, F. Y., MA, J., HILL, G. D., RAGHAVAN, D.,
WAHBY, R. S., LEVIS, P., AND WINSTEIN, K.
Pantheon: the training ground for internet
congestion-control research. In USENIX ATC (2018).

[38] YEO, H., CHONG, C. J., JUNG, Y., YE, J., AND

HAN, D. Nemo: enabling neural-enhanced video
streaming on commodity mobile devices. In ACM

MobiCom (2020).

[39] YEO, H., JUNG, Y., KIM, J., SHIN, J., AND HAN, D.
Neural adaptive content-aware internet video delivery.
In USENIX OSDI (2018).

[40] YIN, X., JINDAL, A., SEKAR, V., AND SINOPOLI, B.
A control-theoretic approach for dynamic adaptive
video streaming over http. In ACM SIGCOMM (2015).

[41] YouTube Shorts Video-Making App Now Receiving
3.5 Billion Daily Views.
https://www.latestly.com/technology/

youtube-shorts-video-making-app-now-receiving-3-5-billion-

html.

[42] ZHANG, T., REN, F., CHENG, W., LUO, X., SHU, R.,
AND LIU, X. Modeling and analyzing the influence of
chunk size variation on bitrate adaptation in dash. In
IEEE INFOCOM 2017-IEEE Conference on Computer

Communications (2017), IEEE, pp. 1–9.

[43] ZHANG, X., OU, Y., SEN, S., AND JIANG, J.
SENSEI: Aligning video streaming quality with
dynamic user sensitivity. In 18th USENIX Symposium

on Networked Systems Design and Implementation

(NSDI 21) (Apr. 2021), USENIX Association,
pp. 303–320.

[44] ZHANG, Y., LIU, Y., GUO, L., AND LEE, J. Y.
Measurement of a large-scale short-video service over
mobile and wireless networks. IEEE Transactions on

Mobile Computing (2022).

[45] ZHENG, Z., MA, Y., LIU, Y., YANG, F., LI, Z.,
ZHANG, Y., ZHANG, J., SHI, W., CHEN, W., LI, D.,
ET AL. Xlink: Qoe-driven multi-path quic transport in
large-scale video services. In ACM SIGCOMM (2021).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1597

https://pypi.org/project/PyAutoGUI/
https://github.com/Genymobile/scrcpy
https://newsroom.tiktok.com/en-us/1-billion-people-on-tiktok
https://newsroom.tiktok.com/en-us/1-billion-people-on-tiktok
https://www.businessofapps.com/data/tik-tok-statistics/
https://www.businessofapps.com/data/tik-tok-statistics/
https://influencermarketinghub.com/tiktok-stats/
https://influencermarketinghub.com/tiktok-stats/
https://backlinko.com/tiktok-users
https://www.latestly.com/technology/youtube-shorts-video-making-app-now-receiving-3-5-billion-daily-views-says-ceo-sundar-pichai-2300573.html
https://www.latestly.com/technology/youtube-shorts-video-making-app-now-receiving-3-5-billion-daily-views-says-ceo-sundar-pichai-2300573.html
https://www.latestly.com/technology/youtube-shorts-video-making-app-now-receiving-3-5-billion-daily-views-says-ceo-sundar-pichai-2300573.html

A Dashlet Pseudocode

Algorithm 1: Dashlet’s ABR algorithm

Input : 1) Buffer status r1 . . .rn

2) Video bitrate B = {b11 −b1k . . .bn1 −bnk}
3)The probability distribution of play start time for

each chunk Ĝ = ĝ11(t) . . . ĝncn
(t)

4) network throughput estimation T

5) The look-ahead time length F

6) Chunk length L

Output :The location and bitrate to buffer next

1 foreach i, j ∈ {1 . . .n} do

2 if
∫ F

0 (F − t)ĝci j
(t)dt > 1/µ and j > ri then

3 candidateList.append(ci j);

//Add the chunk to the candidate list if

there is significant penalty for not

downloading it

4 targetBitrate = F ×T / len(candidateList) / L;
5 do

6 cmin = minRebufferCost(targetBitrate, bufferOrder,

candidateList);
7 bufferOrder.append(cmin);
8 candidateList.remove(cmin);

9 while len(candidateList)> 0;
//use greedy algorithm to put chunks from

candidateList into bufferOrder

10 bitrateList = getMaxBitrate(bufferOrder, B, T);
//Enumerate all the bitrate combination for

chunks in bufferOrder to maximize the QoE

11 Return bufferOrder[0], bitrateList[0]

B Dashlet Implementation Further Detail

Dashlet makes no change to the CDN/server side so our sys-
tem can be easily deployed client side. Dashlet includes one
control module and multiple buffer modules. Each buffer
module manages the video playback of one short video, in-
cluding downloading chunks, tracking playback progress,
and reporting buffer status. We reuse the DASH.js playback
management for the buffer modules. The control module
manages scheduling across short videos, collecting estimated
throughput and buffer length from each buffer module. With
the collected data, control module runs Dashlet’s algorithm
to schedule the video buffering. Based on the algorithm’s
output, it assigns the quota to the buffer module that is as-
signed to download the next video chunk. The quota includes
the target video bitrate and the target download finish time.
Once the buffer module receives the quota, it sends an HTTP
request with target bitrate to the CDN to download s the
corresponding video chunk. A call back function is set to
report the status to control module in case the download time

(a) Dashlet (b) TikTok

Figure 26: Bitrate choice made by Dashlet and TikTok. The x-axis
is the network throughput and the y-axis is the highest available
bitrate to choose. The color is the ratio between the chosen bitrate
and the highest available bitrate. The red color means the highest
available bitrate is chosen.

Figure 27: Questionnaire for user survey.

exceeds the target download finish time. The control module
schedules the video buffering when the call back function
for target download time is triggered, the chunk download
finishes, or the user swipes. Similar to Pensieve [22], we also
use an ABR server to run Dashlet’s algorithm on the same
machine as the client. The control module communicates
with the ABR server using XMLHttpRequests locally.

C TikTok is conservative in video bitrate se-

lection.

We show every bitrate that TikTok and Dashlet has selected
in the section with Fig. 26. We can conclude from the figure
that TikTok limits its bitrate even if the network throughput is
high enough. This then leads to a significant negative impact
on the QoE.

1598 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

D Questionnaire sample.

We show the sample of the questionnaire we used in the user
survey in Figure 27.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1599

CellDAM: User-Space, Rootless Detection and Mitigation for 5G Data Plane

Zhaowei Tan, Jinghao Zhao, Boyan Ding, Songwu Lu
University of California, Los Angeles

Abstract

Despite all deployed security fences in 5G, attacks against
its data plane are still feasible. A smart attacker can fabricate
data packets or intelligently forge/drop/modify data-plane
signaling messages between the 5G infrastructure and the de-
vice to inflict damage. In this work, we propose CellDAM, a
new solution that is used at the device without any infrastruc-
ture upgrades or standard changes. CellDAM exploits the key
finding that such data-plane attacks by the adversary would
trigger unexpected data signaling operations. It thus detects
all known and even currently unreported attacks via verifying
data signaling correctness with novel state-dependent model
checking. CellDAM could work with or without firmware ac-
cess at the device using inference on low-level 5G signaling
and configurations. It mitigates the damage upon detection
by inducing frequency band switches at the device via the
existing handover procedure. The prototype and empirical
evaluation in our testbed confirm the viability of CellDAM.

1 Introduction

The current 5G and its legacy 4G cellular networks provide
anywhere, anytime Internet access for billions of users. Se-
curity is an important design goal for 5G systems. Multiple
security fences are thus deployed or enhanced [7], e.g., device
authentication, enforced data encryption and integrity check.
They aim to defend against recent attacks against the control
plane [23, 41], as well as the data plane [47, 48, 60].

The current security fences are mostly proactive protec-
tion on data packets. However, this is insufficient for 5G data
plane. Certain categories of attacks still cannot be protected.
For example, a smart attacker can selectively drop a few data-
plane signaling to incur cascading effect. Moreover, proactive
protection is sometimes of high cost, such as protecting low-
layer, cleartext, data signaling messages. Furthermore, proac-
tive protection could be turned off with certain attacks [43], or
unavailable to legacy devices in developing countries [1, 52].

In this paper, we explore a reactive solution approach called

CellDAM towards 5G security. Instead of proactively prevent-
ing attacks, CellDAM complements the existing efforts by de-
tecting whether a potential attack is underway and mitigating
its damage. In addition to identifying the above-mentioned
attacks that cannot be handled by proactive solutions, it of-
fers two more benefits. First, the solution needs no standard
change or hardware upgrade, thus being immediately deploy-
able. Second, by verifying the correct operations, a reactive
solution can find any attacks that do not follow the standard
procedure, including both known and unreported ones.

A well-known challenge for data-plane detection is the high
data throughput by 5G. It is thus considered impractical to
inspect data packets at Gbps on a mobile device without con-
suming excessive processing or energy resources. CellDAM
addresses the issue with a novel approach. We do not check
each data packet directly. Instead, we inspect the data-plane
signaling messages, which are standardized to facilitate data
delivery but incur 1-2 orders of magnitude less overhead com-
pared with monitoring all data packets. Our approach can de-
tect attacks against both signaling messages and data packets.
This is because every data delivery must exchange signaling
messages for resource grant over the licensed 5G wireless
channels. Therefore, undesired data-plane signaling opera-
tions might be triggered at the device by data-plane attacks.

We “verify what is right” when inspecting data-plane sig-
naling. We thus model signaling operations for 5G data deliv-
ery; any operation that deviates from the standardized model
is considered as a potential attack. It turns out that, a single-
protocol, static checking scheme cannot detect all attacks. We
thus devise a novel cross-layer, state-dependent model check-
ing to validate data-plane signaling operations. At each state,
we perform context-dependent validation to spot unexpected
messages. Our experiments show that we have discovered
three unreported attacks in addition to the known ones.
CellDAM is designed to work with various levels of privi-

lege. Note that it requires access to signaling messages for in-
spection. The messages can be easily obtained with firmware
access. However, for a user application, low-level 5G signal-
ing cannot be accessed without root privilege. To overcome

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1601

this limitation, CellDAM utilizes SecHub, a separate compan-
ion node placed near the device. It uses a new inference tech-
nique to capture the signaling messages of interest from/to
the protected device, but filter out all others.

Upon detection of an attack, CellDAM mitigates impact by
triggering a 5G-standard handover procedure. This switches
the device to a new cell. The attacker cannot track the device
due to the encrypted handover messages and the dense deploy-
ment of 5G cells. Meanwhile, the handover procedure only
incurs a disruption that lasts less than 100ms. With firmware
access or network assistance, CellDAM could trigger the pro-
cedure using standardized commands. If they are unavailable,
CellDAM leverages the SecHub to impact the channel mea-
surement results to trigger a handover procedure on the victim
device, but does not affect other devices.

We show that, CellDAM offers a practical solution to detect-
ing and mitigating data-plane attacks with high accuracy. We
prototype a device-side, user-level solution in C++ and Python
based on open-source srsRAN [51]. SecHub implements com-
ponents to infer the parameters, detect by verifying data-plane
signaling, and mitigate with frequency band switching; all
components do not require root privilege on the protected de-
vice. It achieves the detection accuracy of 0.989∼1.0, recall
of 0.705∼1.0, and the F1 score of 0.823∼1.0. It can detect
known and new attacks within 28ms on average. For miti-
gation, the handover can be triggered at 100% success rate
with a latency of 1.85s on average. This procedure only in-
curs an average of 72.3ms disruption on applications. SecHub
can successfully find the protected COTS devices with the
accuracy of 97.2%∼100% under various traffic types.

2 Background

2.1 5G Primer

5G Architecture 5G system has 3 major components (Fig-
ure 1): User Equipment (UE), Base stations (gNB), and 5G
Core network (5GC). The UE is a 5G user device. The gNB
powers up the 5G network and provides wireless access in
its coverage area for UE. It also forwards data to and from
5GC. 5GC includes the control plane for authentication and
mobility support, and the data plane for data packet delivery.

5G Protocol Stack The 5G protocol stack consists of mul-
tiple protocols for both control-plane and data-plane func-
tions. Non-access Stratum (NAS) and Radio Resource Con-
trol (RRC) are in charge of control-plane signaling. NAS
facilitates control-plane signaling message exchange between
the UE and 5GC. RRC carries the control messages and data-
plane parameters for setup, power management, and handover
behavior between the UE and the gNB. The data-plane en-
ables IP packet delivery. We describe 5 protocols involved
in data-plane operations: Service Data Adaption Protocol
(SDAP), Packet Data Convergence (PDCP), Radio Link Con-

Physical	Layer	(PHY）

Packet	Data	Convergence	(PDCP)

Radio	Resource	Ctrl	(RRC)
Non-access	Stratum	(NAS)

Radio	Link	Control	(RLC)
Medium	Access	Control	(MAC)

PHY

MAC

RLC

PDCP

RRC

C-Plane	protocols
D-Plane	protocols

5G	CoreUE gNB Internet

Service	Data	AdapCon	Protocol	(SDAP) SDAP	

Figure 1: Architecture of 5G and its protocols.
trol (RLC), Medium Access Control (MAC), and Physical
Layer (PHY). SDAP manages the quality of service for data
delivery. PDCP takes charge of encryption and integrity pro-
tection for control-plane and data-plane packet. RLC performs
data concatenation and reorganization to ensure reliable, in-
order data transfer. MAC controls radio access in licensed
bands, and PHY performs wireless signal processing.

Data-Plane Signaling In addition to RRC and NAS signal-
ing for the control plane operations, 5G data-plane also has
signaling between UE and gNB to facilitate packet delivery.
The data-plane signaling exhibits in multiple forms. Various
flags at the MAC layer (grant assignment DCI, scheduling
request, HARQ acknowledgements, etc.), MAC control ele-
ments [3] that convey power control, time alignment or buffer
status, and RLC control [5] for reliable transfer are all in-
stances of data-plane signaling.

2.2 Protecting Data-Plane in 5G
Mutual Authentication Mutual authentication is a critical
security measure in 5G, inherited from 4G with little change.
The UE and network perform a secure Authentication and
Key Agreement (AKA) procedure during connection for au-
thentication and session key set-up. The session key is used to
generate keystream for every packet with several parameters
such as sequence number.

Protection on Data Packets The keystream is generated
to encrypt data packets without key reuse for both control-
plane and data-plane packets [7]. The sender also updates
another keystream to generate an integrity code attached to
the message for integrity check at the receiver. While integrity
protection for control messages is enforced in 4G, it was
optional for data plane due to high overhead. The vulnerability
allows attacks that fabricate data packets [48, 49]. 5G aims to
enforce integrity protection on all data packets. Although its
usage is still optional, both 5G UE and gNB should support
integrity protection at the full speed starting from release
16 [7]. With the increasing capacity of the hardware, it is
expected such integrity protection will be mandatory.

3 A Case for Detection and Mitigation for 5G
Data-Plane Attacks

3.1 Threat Model

In this paper, we consider an adversary who seeks to incur
various damages on the target victim 5G device on its data

1602 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

plane. The attacker has the following capabilities: 1) Connect
to the same cell as the victim device, which is feasible with
fingerprinting [32] or social engineering [36]; 2) Eavesdrop
on, transmit data, or send noises on physical channels; 3) The
adversary may exploit fake base station (FBS) [48, 49] or
overshadowing attacks [60]. Although FBS is mitigated in
5G [4], it is still possible to launch certain variants of FBS,
such as relay FBS as man-in-the-middle. We do not limit the
message that can be forged by the adversary, which could be
user packets or signaling messages.

We do not consider attacks that threaten control-plane, such
as an IMSI catcher. We also do not consider an insider at-
tack, where the adversary can steal security keys stored in
SIM/networks or even compromise a 5G base station. Protect-
ing such attacks is beyond the scope of this work.

3.2 Proactive Protection is Insufficient

State-of-the-art: Per-message proactive protection The
authenticity of 5G user packets is protected by end-to-end
(such as TLS [29]) and 5G-specific integrity protection (as
introduced in §2.2). However, data-plane attacks are still pos-
sible despite the protection.

Issue 1: Not every message could be protected at low cost
Unlike end-to-end packets, the small-sized data-plane signal-
ing messages are not protected by proactive solutions [2], due
to high overhead or impracticability being in the below-PDCP
layer. Fabricating these messages can incur serious damages
as shown in recent studies [54]. An attacker only needs to
forge a few messages to incur damages consistently. One ex-
ample attack is shown in Figure 2(a). An attacker forges a
Buffer Status Report (BSR) that requests uplink grant from
the gNB. The uplink grant in a time period will be assigned in
accordance with the request. A malicious BSR could contain
a large request, wasting licensed resource and blocking uplink
delivery of any UE in the cell for hundreds of milliseconds.
The attacker is capable of repeatedly forging such messages,
which can continuously drain the resource. We note that, gNB
cannot distinguish this attack message from a legitimate one.

Issue 2: Certain attacks cannot be proactively protected
The attacker can also intelligently corrupt/drop certain mes-
sages to incur serious damages. Such attacks cannot be pro-
tected by any integrity check. One example attack is shown in
Figure 2(b). In this attack, the adversary corrupts an RLC con-
trol message NACK, which is used to request retransmission
for certain packets. When this NACK is lost, the retransmis-
sion is delayed. Due to the RLC mechanism, all subsequent
data packets will be blocked. The effect will last until the
next RLC message, which could be hundreds of milliseconds
based on common RLC configurations. Moreover, the attacker
can repeatedly send the message to cause persistent damages.
The attacker does not require fake base stations or channel
jamming. Instead, a lightweight attacker only needs to send a

UEs	in	the	cell gNBA0acker

Grant
BSR

No	UL	
Access!

(a) Fabricate data-plane signaling.

UE gNBA'acker
UL	Data

Data	w/	Higher	Seq	Num
RLC-NACKNoise

Lost

Data	w/	Higher	Seq	Num
RLC-NACK

UL	Data	Retx

Head-
of-Line
Blocking

(b) Selective corruption.

Figure 2: Example data-plane attacks that cannot be protected
with current proactive approaches.

single signaling every hundreds of milliseconds.

Issue 3: Proactive protection could be turned off Forg-
ing user data packets is still possible despite the data packet
integrity check in 5G. The usage of integrity protection is
still negotiation-based [7]. Hence, the attacker can disable in-
tegrity protection by leveraging certain vulnerabilities, such as
those from firmware [43]. Furthermore, legacy 4G devices or
5G devices on earlier versions, which are still a considerable
number [42, 52, 56], do not implement mandatory integrity
check [1]. For these devices, known attacks can incur serious
damage when end-to-end protection is not used. An attacker
can manipulate DNS requests to a malicious Web server [48].
The malicious server could then send any forged content to
the victim. Beyond Web, the attacker could forge arbitrary
encrypted data through a man-in-the-middle [49].

Insight: Reactive detection and mitigation can comple-
ment proactive protection Given all the existing threats
which cannot be protected by proactive approaches, we shall
also develop proper reactive solutions to complement the
proactive protection. They should include both detection and
mitigation. The detection methods will spot any suspicious
activities, while the mitigation will help the victim recover
from the damages. They can complement existing solutions,
while not requiring any 3GPP framework change.

4 Overview of CellDAM

In this section, we present the design goal and challenges of
designing a reactive protection.

4.1 Security Goals

Following our insights, we seek to detect and mitigate 5G data-
plane attacks without standard changes. As discussed in §3.2,
this solution approach offers an immediate remedy for certain
attacks that are not protected by current proactive approaches.
We argue that, such detection is essential on the device side.
First, it is more scalable compared to network-centric solu-
tions. Second, some attacks are only detectable on the device
side. Take the signaling attack (Issue 1) in §3.2 as an example.
In this attack, the UE will receive uplink grant that it did not
request. However, the network cannot distinguish whether
the request is malicious or legitimate. Therefore, device-side
detection is required to detect and mitigate the attacks.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1603

Meanwhile, our reactive detection and mitigation scheme
should achieve the following goals:

Verify what is right for attack detection We design and
implement approaches that verify whether the runtime, data-
plane operations follow the correct procedures stipulated by
the standards, and treat any undesired behaviors, rather than
specific attacks, as suspicious. This ensures the detection of a
category of attacks that yield improper data-plane operations.
Even if an attack has not been reported yet, it can be detected
by our approach as long as it triggers undesired behavior.
We admit that certain attacks that adhere to the standardized
approach might not be detected by our approach. Our solution
prioritizes soundness over completeness.

Detection and mitigation need to be practical We aim
to design a reactive method without hardware update or extra
privilege. It can thus benefit legacy devices.

•No infrastructure upgrade We will design our solution
on the device side. Unlike network-centric protection ap-
proaches [24, 44, 46, 57], our device-side scheme needs no
expensive infrastructure or hardware upgrades. Moreover, as
we discussed earlier, certain attacks can only be observed by
the device.

•1-2 orders of magnitude lower overhead compared to veri-
fying each data packet It is nontrivial to monitor the 5G
data plane. Data throughput in 5G is expected to reach a few
Gbps. The traffic volume of data packets is several orders of
magnitude higher than the control-plane signaling messages.
We aim to design a lightweight security solution that can work
under heavy data traffic. The overhead should be 1-2 orders of
magnitude smaller compared to monitoring the entire traffic.

Applicable to different defense models The solution
should work given different levels of privilege. We consider
three defense models in this work: (1) Defense with firmware
access; (2) A user-space application that can communicate
with the operator; and (3) A user-space application without
any privilege. All three models have their own usage sce-
narios. For (1), a device vendor implements the solution to
enhance the security of its 5G devices. For (2), we consider an
operator who tries to protect its users with additional security
requirements. However, the operator cannot directly access
the firmware. For (3), we consider a normal user who tries to
protect the device. All three models complement each other
under different scenarios to protect 5G data plane.

For the Defense model (1), the solution could be imple-
mented inside the firmware, as it has access to all cellular-
specific info and OS-level privilege. For both (2) and (3),
mobile OS only provides control-plane basic info [10], such
as connection state. The application cannot access device-side
cellular-specific info unless extra privilege (e.g., Diag port)
is granted for tools like MobileInsight [37] or QXDM [45].
However, such extra privilege (e.g., root access) exposes new
vulnerabilities [15, 21, 22, 50] and is unavailable to most de-
vices due to technical or legal concerns [34]. Our solution

UE gNBPoten+al
A/acker

CellDAM 2.Inspec)on3.Mi)ga)on

1.Rootless	
Signaling	Capture

Figure 3: Envisioned procedure of CellDAM.
aims to function despite the limitations.

State-of-the-Art: Existing reactive approaches cannot
achieve these goals To the best of our knowledge, all
previous works on 5G/4G attack detection focus on undesired
behavior on the control plane [26, 27]. This is insufficient, as
recent studies [54, 60] show that an advanced adversary can
bypass control plane and directly attack the data plane.

4.2 Solution Overview
We design CellDAM, a 5G data-plane inspection scheme with-
out root privilege, as illustrated in Figure 3. It satisfies all
design goals. CellDAM first captures all data-plane signaling
messages from/to the protected UE. It could do so in a sepa-
rated node called SecHub and bypass the requirement of in-
device extra privilege. CellDAM then inspects the lightweight
data-plane signaling messages to spot undesired behavior.
Finally, CellDAM uses SecHub and in-device operation to mit-
igate the attack damage via handover-based cell switching.

Inspecting lightweight signaling messages with state-
dependent checking (§5) We first show that, inspecting
data-plane signaling offers an effective way to detect data-
plane attacks, while it has magnitude lower overhead due
to its low volume. We further propose a cross-layer, state-
dependent model checking for attack detection. If the device
spots an incoming signaling message that is undesired in the
current state, it detects a potential attack.

Rootless signaling inference (§6) Signaling verification
requires access to the messages. For the defense model with
firmware access, such privilege is granted. To serve the ma-
jority of rootless devices, CellDAM incorporates a separate,
companion node named SecHub for the protected device. The
goal is to share a consistent view of the physical channels.
The node can continuously capture over-the-air signaling mes-
sages by inferring the device ID and traffic pattern. It needs
no extra privilege on the protected device.

Device-side reaction without infrastructure upgrade (§7)
Once a suspicious operation is detected, we activate the miti-
gation module that switches to other, potentially attack-free
5G channels. This could be done by leveraging the standard-
ized 5G handover procedure and dense cell deployment. Han-
dover incurs small disruptions in the applications, while being
resilient to attacks. CellDAM can initiate such a procedure via
two approaches. It can directly create a standard-compliant
message for handover. It can also leverage SecHub to affect
the device to trigger a handover, without affecting other user
devices.

1604 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RLC
Acked

RLC	
Pending

MAC
Pending

DCI
NDI,HARQ	

MAC
Sent

Hit	Timing
In	DCI

RLC
ACK

MAC
Accepted

DCI
¬NDI,	HARQ	

DCI
NDI,	HARQ	RLC	NACK

MAC
Pending

MAC
Received

DCI
NDI,HARQ	

RLC
Received

MAC	ACK
MAC
NACK

RLC	ACK

RLC	NACK

RLC
Acked

DFA	for	DLDFA	for	UL

Start Start
1 2

34

5

6 7

89End

End

Figure 4: DFA for tracking states with data-plane signaling.
See Appendix C for an extended version.
5 Cross-layer, State-dependent Checking on

Data Plane Signaling

We now present how CellDAM inspects the data-plane signal-
ing messages to detect undesired behavior. We follow our
guideline of “verifying what is right” to model the device-
side protocols and detect any undesired behavior. To this end,
we devise validation schemes using the standardized data-
plane delivery procedure to check each incoming/outgoing
data-plane signaling message.

The solution has two highlighted components. First, instead
of verifying data packets of large throughput, CellDAM in-
spects lightweight, yet critical data-plane signaling messages
for attack detection. Second, we present a state-dependent
model checking method to find suspicious behaviors.

5.1 Monitor and Inspect Data Plane Signaling
A straightforward solution can verify each data packet. This
can be done by applying Deep Packet Inspection (DPI) or
detecting anomalies in the wireless signal for each data packet.
However, they cannot detect all attacks, such as the attacks
that target signaling messages. Meanwhile, this will incur
huge overhead, especially given the large 5G throughput.
Why inspect data-plane signaling We show that, monitor-
ing data-plane signaling offers an effective alternative method
for detecting data-plane attacks, including attacks on both
data-plane signaling and data packets. First, delivering each
data has a standardized sequence of signaling messages due
to 5G infrastructure-controlled data access. For any type of
attack, the attacker needs to tamper with the signaling mes-
sages. Therefore, this solution approach will cover a wide
range of attacks. Second, the frequency of data-plane sig-
naling is smaller than data packets due to 5G aggregation
scheduling.
Data-plane attacks might manipulate data-plane signal-
ing in standardized data delivery For data delivery, each
device must follow a standardized approach, as 5G uses gNB
to mandate the radio resources. Therefore, we can use the
signaling messages to model the state of each packet deliv-
ery. To model and track the state, we use Deterministic Finite
Automata (DFA), a common technique for state tracking in
attack detection [19, 26]. We study 3GPP standards across all
5G-specific data-plane sublayers and manually create DFA
based on mandated, standardized data delivery procedure.
We form cross-layer DFA for each RLC data packet with its

necessary state transition at the MAC layer. We do not include
PDCP, as it does not maintain state or buffer packets.

The constructed DFA is shown in Figure 4. For uplink, data
transmission follows a scheduling-based feedback loop. The
device first sends requests (Buffer Status Reports or BSR)
to ask for resource grants until the packet is delivered by
MAC. The MAC fast retransmission is notified by a new DCI
with the same HARQ ID and NDI. The packet is considered
delivered when the RLC ACK is received. For downlink, the
data transmission follows the same procedure but without the
request-grant loop, as the gNB initiates the transmission. The
device sends the MAC feedback of ACK/NACK in PUCCH.

Inspecting data-plane signaling is lightweight Compared
with data-plane packets, inspecting data-plane signaling is
of much lower overhead. First, the size of each signaling
message is much smaller than the actual data packet. The
signaling messages (such as DCI, RLC Control) are at most
several bytes long. Some PHY messages are merely 1-bit
indicators. Second, 5G data delivery will transmit multiple IP
data packets in a single data block (aggregated and segmented
by the 5G RLC protocol). Therefore, for signaling messages
that facilitate data delivery (e.g., DCI), only one such message
is needed for the large block.

We validate the hypothesis that control traffic is signifi-
cantly lower than data traffic by comparing their traffic vol-
ume. We show results from operational traces in a commer-
cial network and in our SDR-based testbed. Our testbed runs
standard-compliant srsRAN 5G [51] and the details will be
shown in §10. Since our testbed does not support features
such as MIMO or carrier aggregation for higher throughput,
we also collect traces from commercial operators. As the
current open-source 5G decoding tools (e.g., MobileInsight
5.0 [37, 38]) have not supported 5G data plane, we collect
and analyze 4G data plane as a reference, considering that
data-plane signaling design remains largely unchanged in the
current 5G NSA [3,5]1. As shown in Figure 5, the processing
of data-plane signaling is 1∼2 orders of magnitude lower than
that of data packets.

Therefore, detecting attacks with data-plane signaling is
of much smaller overhead than monitoring the entire data-
plane packets. Prior work [20] has already shown an SDR-
based system is capable of monitoring DCI messages for all
devices in a cell. It is thus feasible for CellDAM to capture
all data-plane signaling for a single device while performing
inspections in real-time (detailed in §9). This is important
considering 5G’s high data rate.

5.2 Cross-layer, State-Dependent Checking

Stateless checking cannot detect certain attacks The
detector could perform certain checks within each protocol

1One major difference is that 5G cancels PHICH which is used for uplink
data retransmission. Therefore, we do not include it for calculation.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1605

Check State Message Validation Details
c1 All Any Message The data-plane signaling shall be in the accepted list for each state. (Appendix C)
c2 s3,s6 RLC NACK It shall not be received after RLC timer and MAC retransmission timer expire or after

receiving an RLC ACK with higher sequence number.
c3 s4,s8 RLC ACK An RLC ACK shall not be received before the packet is acknowledged in MAC.
c4 s7 MAC ACK/NACK The ACK/NACK in PUCCH should be delivered at correct timing after DCI; If not,

this is an indicator that the previous grant/data is received during DRX OFF.
c5 s1 DCI for UL Grant There should not be large “free” grant when no request is sent or no data in buffer.

Table 1: Validation checks performed by CellDAM based on state and message.

0 10 20
Throughput (Mbps)

0

10

20

Tr
af

fic
Vo

l.
(M

bp
s)

Signal
Data

(a) Under Testbed (5G)

0 20 40 60
Throughput (Mbps)

0

20

40

60
Tr

af
fic

Vo
l.

(M
bp

s)
Signal
Data

(b) Under Commercial (LTE)

Figure 5: The comparison of traffic volume per second for
data packets vs. data-plane signaling messages.

regarding whether the incoming signaling message conforms
to the standards. However, this solution will fail to spot certain
attacks against 5G data plane.

We showcase a concrete example. When an RLC signaling
message ACK is received, it is possible if MAC layer has
accepted this message. Otherwise, this message is impossible
and a potential attack is detected. Therefore, the checking
must rely on the current state across different protocols.
Cross-layer, state-dependent model checking with DFA
Therefore, we propose a state-dependent checking for 5G
data plane security. Instead of proposing a few checks stati-
cally in each protocol, we leverage the cross-layer DFAs we
built for data delivery, whose inputs for transition are data-
plane signaling messages or their derived events. If the next
captured signaling message m passes all validation checks,
the DFA moves to a new state; Otherwise, a potential attack
is detected and we initiate the mitigation procedure.

Formally, we maintain n deterministic finite state machines
M = {M1,M2, ...,Mn}. For each DFA Mi, i = 1,2, ...,n, we
denote it as a 5-tuple (Si,S0

i ,S
1
i ,Σ,Ti), where Si is a finite

set of states with S0
i ∈ Si being the initial state and S1

i ⊆ Si
being the accepted states, Σ is a finite set of input messages2,
Ti : Si ×Σ → Si is a transition function mapping the pairs of a
state and a received message to the next state.

We build validation checks V = {V1,V2, ...,Vk}. Each Vi
is associated with a DFA M j, a state S ∈ S j, and a message
m ∈ Σ j. Every time the DFA M j with state S inspects a new
message m, CellDAM runs the corresponding check(s). They
map the signaling message m to 0 (fail) or 1 (succeed) given
the current context, which is derived from past records or other
DFAs. A potential attack is identified if one of the validation
checks fails; Otherwise, M j accepts message m and updates
its state accordingly.

2To make the problem tractable, we only consider the discussed data-plane
signaling messages. We prioritize soundness over completeness.

Based on the state, we perform a few validations on each
incoming/outgoing signaling message. We show the list of val-
idations in Table 1. First, all states will have a list of accepted
messages. CellDAM checks whether the next message is in the
list. The detailed list for this check is shown in Appendix C.
For c2 to c3, we are checking whether the RLC operations are
consistent with the MAC layer for both uplink and downlink.
For example, upon receiving RLC NACK, we check whether
an early RLC ACK that has already acknowledged a packet
is received. For c4, we use the indicator of no ACK/NACK
to detect a possible forged message received in DRX OFF.
For c5, CellDAM detects abnormal grants from gNB without
any request. Note that a gNB can freely grant the device with
small grants. However, they are usually 100-200 Bytes long.
Any larger grant incurs a waste of resources. Therefore, it
could be the outcome of a forged BSR or grant signal. If all
checks pass, the DFAs are switched to the new state.

6 Access Signaling Messages for Detection

With CellDAM’s checking techniques, an end device can in-
spect signaling messages for attack detection. We now discuss
how to access them under three defense models in §4.

With direct firmware access For defense solution that
has firmware access, it could directly capture the signaling
messages. In fact, these messages are already processed by
firmware to realize the functionalities.

No direct firmware access If CellDAM is deployed on
the application layer, it cannot directly access the signaling
messages. Although messages are available in tools such
as MobileInsight [37] or QXDM [45], using these tools and
accessing the low-level messages require root, which exposes
new vulnerabilities [15, 21, 22, 50] and is unavailable to most
users [31]. Even the application is allowed to communicate
with the network (i.e., defense model 2), it cannot access the
device-side signaling for detection.

Idea: Infer signaling messages without root privilege in a
separate node To address the concern, we design and de-
ploy a separate gadget (e.g., extended hardware with wireless
capability), SecHub. The node is placed close to the protected
device within a meter; it passively receives and decodes the
data-plane signaling over the air. It can also communicate
with the user-space security manager application at the pro-
tected device. The device and SecHub connect each other,

1606 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

either with wire (a gadget that is attached to the device via
USB) or wirelessly (i.e., Bluetooth).

However, it is not trivial to infer such info in the user space
with SecHub. We address this issue in the next section.

Challenge: Unknown configurations Although 5G data-
plane signaling messages are not encrypted, SecHub must
identify which ones belong to the protected devices. Several
configurations are needed: (1) The carrier frequencies; (2)
The physical cell ID (PCI) that indicates the physical-layer
identity of the cell; (3) The Cell Radio Network Temporary
Identifier (C-RNTI) that distinguishes the target device from
other devices connected to the same cell.

Directly infer the parameters will not work Unfortu-
nately, not all these configurations could be acquired from
the protected device without root access. Android provides
APIs for applications to obtain the current band and PCI [10].
In contrast, C-RNTI can only be extracted from the victim
device with root privilege. Without C-RNTI, SecHub cannot
recognize which traffic is for the protected device. Therefore,
we need a solution that can recognize which configurations
are assigned to the protected device over the air.

Idea: Use high-layer traffic pattern that is visible to
SecHub Since the user space has no access to lower-layer
C-RNTI, we must identify the configurations with higher layer
features. We note that, data traffic pattern is visible to both
device and SecHub. Therefore, it is an ideal “channel” to
insert fingerprint and notify the identity to SecHub.

Henceforth, we generate specific traffic patterns on the tar-
get device, with SecHub being aware of the pre-agreed pattern
in advance. It can thus observe the channel and identify the
target device’s C-RNTI by analyzing low-layer signaling. Our
approach takes three concrete steps.

Step 1: Traffic Pattern Coordination First, SecHub ran-
domly generates a traffic interval and sends it to the target
device through the wired or wireless channel. This interval
is used as the fingerprint for the target device. The traffic
interval triggers a unique pattern for the data-plane signalings
for fast inference. SecHub leverages this shared traffic pattern
to recognize the target device in later analysis.

Step 2: Trace Collection Second, the device creates traffic
(e.g., small UDP packets) with the acquired interval. The
traffic generation is performed by the application and does
not require root privilege. gNB will assign grants for the
device to deliver data. At the same time, SecHub monitors
all the subcarriers in the target cell and tries to decode the
C-RNTI from all grants with all possible positions in the band.
This is necessary as grants do not always locate on the same
subcarrier in the band (for reducing inter-cell interference).
SecHub records the decoded C-RNTIs with corresponding
time slots for inference.

Step 3: C-RNTI Inference Finally, SecHub aggregates
the grants for each C-RNTI decoded from the collected trace.

SecHub first ranks the C-RNTIs by grant numbers and filters
the top 10% C-RNTIs as the candidates. The time intervals
between consecutive grants are calculated and compared with
the negotiated interval for all the candidates. The grants for the
fingerprinting traffic will show the same interval. Although
there may be background traffic from the target device, the
grants triggered by the fingerprinting traffic still show the
periodic pattern and could be filtered from the device’s grant
traces. By ranking the ratio of matched intervals with the
total interval number, the top C-RNTI will be selected as the
target’s C-RNTI. To ensure robustness, SecHub performs the
procedures twice and checks if the inferred C-RNTI values
match. If the candidates do not match, SecHub will perform
the inference again until a candidate is selected.

Combining with the frequency and PCI of the device from
OS API and the C-RNTI inferred from the collaborated traffic
fingerprinting, the SecHub could successfully camp on the
cell and capture the downlink/uplink messages. The entire
procedure does not require root access at the device.

Tracking configuration change We also note that, the C-
RNTI configuration could be updated within an encrypted
message in both static and mobility scenarios. CellDAM in-
corporates a new solution to prevent such change and enable
continuous tracking. We detail this solution in Appendix D.

7 Device-Centric Mitigation

Although 5G standard updates could fundamentally defend
against forgery attacks, they require months or even years to
be deployed in practice. To this end, we design device-centric
mitigation to provide a quick remedy for existing devices. We
leverage the existing, dense 5G cell deployment to help the
victim dodge the attacker.

7.1 “Quick Dodge” with Handover

Band switching to avoid the attacker on a specific cell
We observe that, the attacker must camp on the cell that serves
the victim device and forge messages in the current band to
launch the attack, regardless of the attack methodology (§3.2).
Therefore, the victim could quickly escape from attackers by
switching to another frequency band (i.e., a different 5G cell).

With the insight, CellDAM thus aims to switch the band
(i.e., cell) that serves the victim device to avoid the attacker.

Use handover procedure to trigger band switching In
CellDAM, we leverage the 5G handover procedure to realize
band switching. In 5G, a UE measures the signal quality
by metrics of Reference Signals Received Power (RSRP)
and Reference Signal Received Quality (RSRQ). When the
experienced signal quality of the serving cell is worse than the
thresholds configured by gNB, the UE sends reports to gNB,
which makes the handover decision and sends a handover
command to the device.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1607

Although rare, it is possible that there are no other cells
available. In such cases, CellDAM could opt to generate a
warning instead of triggering the handover.

Why is band switching via handover effective against at-
tackers? First, the attacker could not control or know
which cell the device is switching to, as the handover com-
mand is encrypted. Given that, the attacker needs to enumerate
all nearby cells and use fingerprinting on each to find whether
the device is in the cell. It takes prolonged time and effort for
an attacker. This could take minutes, before which the device
might already move to a new cell.

Application is resilient to handover Handover incurs
little overhead on applications. UE does not go through the
slow cell search or connection setup procedure. Instead, it only
has to update its PHY parameters for the new cell. Therefore,
the disruption to the applications is minimum.

How to trigger a handover? To initiate a handover pro-
cedure, the most straightforward way is by requesting the
gNB to send a handover command to the device. This is
possible if CellDAM can communicate with the operator (De-
fense model 2). On the other hand, the device can send a 5G
measurement report to the base station. It indicates that the
measurement result from another cell is better than the cur-
rent one by an offset configured by gNB (i.e., a measurement
event in 5G). This will subsequently trigger a handover proce-
dure. Defense model 1 could take this approach. However, for
Defense model 3, neither approach is available. In the next
section, we describe how it could still initiate a handover.

7.2 Trigger Handover with SecHub

When the handover-related messages cannot be directly cre-
ated, CellDAM takes a different path by affecting the measure-
ment result. If the measured RSRQ on the serving band is bad,
a legitimate report will be triggered by the device. Although
either bad RSRQ or RSRP can result in handover, we focus
on RSRQ, because RSRP is measured based on the reference
signal power and is hard to be affected by SecHub.

Solution: Precise reference signal downgrade We de-
sign adaptive signal degradation to ensure low-overhead band
switching. Instead of the entire channel, SecHub only copes
with the reference signal in 5G. The device measures the
reference signal to monitor the signal quality regardless of
PHY techniques (e.g., MIMO, carrier aggregation, dual con-
nectivity, etc). The reference signal only exists in specific
subcarriers and time slots. SecHub calculates the positions
of the reference signal based on the current physical band
according to the 5G standards [6]. By morphing the reference
signals only, SecHub downgrades the victim’s measurements
of the current frequency band without much overhead.

The solution should not affect other devices. SecHub adap-
tively controls its power upon triggering the handover. More
details on the power control are shown in Appendix B.

8 Security Analysis

8.1 Attacks Covered by CellDAM

In this section, we discuss what attacks can be detected by
CellDAM. With our design, CellDAM can detect multiple at-
tacks that target both data plane packets and signaling mes-
sage, as shown in Table 2. The details for each attack and how
CellDAM detects it are elaborated in Appendix A.

Attacks against data packets We consider three attack
actions that target data packets: injection, deletion, and ma-
nipulation. For injection, the attacker attempts to insert a new
data packet. For deletion, the attacker tries to remove a packet
from being received by the device or the network. For ma-
nipulation, the attacker seeks to change certain bits in a data
packet. Any bit in the IP packet (application, transport, or IP
headers) could be changed.

We first show that, both injection and manipulation attacks
can be detected by CellDAM. We note that, neither attack can
be directly launched over the air. Flipping data bits over the air
will fail the CRC check, while directly injecting a new packet
will fail to be decrypted due to mandatory encryption. There-
fore, the possible methodology for injection or manipulation
is the Man-in-the-Middle (MitM) approach. The adversary
intercepts the packet, flips the bits, re-encodes it, and injects
the altered packet.

This could be detected by CellDAM. as a MitM will incur
undesired signaling messages. There are two possible ways
to launch MitM. For the scheme using relay FBS (A1 in
Table 2), an attacker cannot directly learn the critical data-
plane configurations, which are transmitted over the encrypted
RRC messages [60]. Consequently, the forgery could be sent
in an impossible context, e.g., in the time slots when the
device is in its Discontinuous Reception (DRX) OFF state
(i.e., sleep mode). This behavior will be detected by CellDAM.
It applies to both uplink and downlink forgery, as the attacker
needs to send DCI to the victim device for notification of both
uplink and downlink scheduling. For the attack that corrupts
the transmission and injects retransmission (A2 in Table 2), it
needs to forge DCI and data packets. The next DCI from the
attacker could reach the device before the acknowledgment
of the forged data, thus incurring an undesired behavior.

Unlike manipulation and injection, deleting data packets
cannot be detected by CellDAM. The attacker can send noises
and corrupt the data packets. CellDAM cannot distinguish it
from a corruption caused by environmental noises. There is
no readily available scheme to defend it without changing the
5G PHY; changing PHY is beyond the scope of this work.

Attacks against data plane signaling We show that, all
the detection, manipulation, and deletion of signaling mes-
sages can be detected by CellDAM. This is relatively straight-
forward compared with data packet forgery. Since the forged
or missing signaling is not anticipated, some messages will
be received in wrong or unexpected context. Three examples

1608 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Attack Target Message New? CellDAM Undesired Behavior Check
A1 DL Data Manip-

ulation w/ Relay
FBS

Data packet Adapted
from [48, 49]

The forged packet received during
DRX OFF.

c4

A2 DL Data Forgery
w/ Retransmission

Data packet Inspired
by [54, 60]

Forged DCI for forged data received
in wrong context.

c1

A3 Packet Delivery
Blocking

RLC Control
NACK

Adapted
from [54]

The RLC Control is not received
when the timer expires.

c1, c2

A4 Prolonged Packet
Delivery

DRX Command Adapted
from [54]

Message received with pending trans-
mission; DCI during DRX OFF.

c1,c4

A5 Radio Resource
Draining

Buffer Status Re-
port

Adapted
from [54]

Grant is received when no data is
pending.

c5

A6 Break Reliable
Transfer

RLC Control
ACK

Yes RLC packet is NACKed after being
already ACKed.

c3

A7 Data Collision DCI UL Grant Yes Data sent in unauthorized resource
blocks will not be acknowledged.

c5

A8 Delayed Transfer MAC ACK Yes Sender MAC falsely regards ACK
and triggers RLC retransmission.

c1

Table 2: List of known (A1–A5) and unreported (A6–A8) data-plane attacks and how they trigger undesired messages. See
Appendix A for details of each attack.

are listed in Table 2 (A3-A5). They are adapted from those
reported in 4G or Cellular IoT and include all three types of
attack. Each attack violates a certain context in packet deliv-
ery and fails to pass all checks. For A3, the attack corrupts
an RLC NACK signaling. This incurs head-of-line blocking,
stopping the delivery for more than 100ms. The attack can be
detected by the device, as the device observes no RLC NACK
after it requests one in the uplink packet. For A4, the attacker
injects a DRX command signaling message, which forces
the device into DRX OFF even in the presence of new data.
The device thus receives a DCI during DRX OFF, detected
by its lack of ACK/NACK. For A5, the device manipulates
the amount in the BSR request to drain the wireless resource
and block access. The device will observe unsolicited grant
without pending UL data.

Unreported attacks CellDAM also detects unreported data-
plane attacks, since it verifies what is right and detects any
potential attack that breaks the delivery procedure. For each
DFA state, signaling message, and validation, we check if
a forged message that fails the validation can be from the
adversary to incur damages. Consequently, we illustrate three
unreported attacks and how CellDAM can detect them in Ta-
ble 2 (A6-A8) with details in Appendix A.

8.2 Attacks against CellDAM

We next consider an attacker who is aware of the existence of
CellDAM and tries to break it under our threat model. We
specifically focus on the security of SecHub. This is be-
cause, if the inference or mitigation is implemented within
the firmware, it is considered difficult to break it without an
insider attacker. This is beyond the scope of our threat model.

Attacker attempts to break CellDAM’s inference We
first consider an attacker who tricks SecHub and prevents

CellDAM from recognizing the traffic from the protected de-
vice. With CellDAM design, this is not possible. The traffic is
generated from the in-device application with the pre-defined
pattern. The application is also secure as it needs no root
or other privileges. Therefore, the pattern is unknown to the
attacker, who cannot insert malicious packet to break the in-
ference. In addition, CellDAM is stable by repeating inference
three times to confirm the target, avoiding a malicious attacker
to inject noises and break the inference.

Attacker compromises or breaks SecHub The attacker
can either gain access to SecHub, or break the communica-
tion between SecHub and the device. However, neither is
possible. First, SecHub is available to end users without ex-
posing any unnecessary interfaces, such as Internet access
or wireless control. A user or an application will be unable
to add/change/delete the SecHub software. SecHub is solely
used for CellDAM detection and mitigation purposes. A pass-
code is set to access its functionalities. Second, SecHub com-
municates securely with the protected device. The user installs
an application in the protected device using the certificate that
comes with the SecHub. The device thus mutually authenti-
cates with SecHub and encrypts all traffic between them. Only
nonsensitive information is exchanged over this channel.

Attacker leverages SecHub to force handover The at-
tacker could force the device to switch band by deteriorating
the signal strength sensed by SecHub. However, such an attack
is very limited in its impact. First, the device has immediate
data access after moving to a new cell. The handover disrup-
tion is short. Meanwhile, the attacker cannot control which
new cell the device moves to. For this purpose, the attacker
needs to launch a time-consuming identification procedure on
all local cells. The attacker cannot control which cell/base sta-
tion the victim switches to, either. Instead, the band switching
in 5G will prioritize the cells from the same (legitimate) base
station. Forcing the device to an illegitimate base station is
thus unlikely. Therefore, the attacker gains little from forcing

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1609

gNBSecurity
Manager

OS
Modem

UE
5G Channel

Wireless Monitor
Detector Mitigator

Signaling Msgs

Wired/Wireless
Channel

RF Controller

SecHub

Figure 6: Implementation of CellDAM. Green blocks are
CellDAM modules.

a handover with SecHub. Defending against it is out of the
scope of CellDAM.

9 Implementation
We implement CellDAM as shown in Figure 6. We implement
the defense model with the least privilege (Defence model
3). Based on our discussion, we implement SecHub to per-
form attack detection and mitigation. A security manager app
on UE facilitates SecHub for rootless signaling capture. We
next elaborate on each component. It could be adapted to the
other two defense models with little change. For detection,
our detector module could be directly used by the other two
models. For mitigation, they only require to trigger one extra
command after detection.
Wireless Monitor A wireless monitor is deployed based on
srsRAN [51] to perform the rootless signaling capture through
the RF controller with the SDR devices. We implement it
with 2,794 lines of C++ code. The monitor collaborates with
the UE to camp on the target cell, infer the UE’s C-RNTI,
and simultaneously capture real-time messages on both the
uplink and downlink channels. After the capture, it decodes
the signaling messages accordingly and passes them to the
attack detector.
Detector with state-dependent model checking We im-
plement the state-dependent model checking attack detector
with 1,252 lines of Python. The real-time traces from the
wireless monitor will be fed into the detector for undesired
behavior and potential attacks. If any consecutive signaling
messages violate the cross-layer model checking, potential
attacks will be reported by the detector. The detector will
further notify the mitigator module to trigger the mitigation.
Mitigator We deploy the mitigator with 860 lines of Python
code. After detecting any attacks, the mitigator triggers the
victim handover. With the current signal conditions acquired
from the security manager application from the victim, the
mitigator calculates the minimum transmit power to trigger
the UE handover with the SDR devices. It then notifies the
RF controller to initiate signals targeting the victim UE. This
will trigger handover to escape from the attacker’s cell.
Security Manager App On the phone side, we deploy a
security manager application with 1,264 lines of Java. The ap-
plication monitors the current band, PCI, and signal conditions
(RSRP and RSRQ) with the Android Telephony API [10] to
facilitate the rootless signaling capture. It also generates a cor-

gNB Server Server for SecHub & UE

SecHub
RF

UE RF

gNB RF

Figure 7: Testbed Setup for CellDAM.
responding UDP traffic after receiving the traffic interval from
SecHub for the collaborated traffic fingerprinting. It supports
exchanging the data with SecHub through a wired (USB) or
wireless (Bluetooth in the current implementation) connection
leveraging Android APIs [9]. It supports the X.509 certificate
to facilitate the mutual authentication and encryption between
the app and SecHub. We also implement an equivalent ap-
plication for srsUE running on user-space. The same set of
information is extracted from the srsUE by hooking the cur-
rent srsUE functions. Then the information is shared with the
SecHub with the socket API.

10 Evaluation
10.1 Evaluation Setup
Testbed Setup We construct a testbed for experimental
validation, as shown in Figure 7. The gNB and UE are built
upon srsRAN [51] 5G protocols. The physical layer encod-
ing is still kept with 4G due to current hardware limitations.
CellDAM does not rely on any 5G-specific PHY feature. The
gNB software is run on an i7-9700K PC with Ubuntu 20.04.
The UE runs on an Intel Xeon Silver 4214 server running
Ubuntu 20.04. Both use USRP B210 as their RF frontend,
with the frequency set to an unlicensed 2.4GHz ISM band.
SecHub is co-located on the same server as the UE and uses
USRP X300 as the RF frontend. The security manager appli-
cation runs on the same server as a user-space process and
shares the information extracted from srsUE with SecHub.
The mobile version of security manager application is tested
on a Pixel 4a with Snapdragon 730 running Android 12.

Attack Reproduction All attacks listed in Table 2 are
recreated within the testbed in order to evaluate CellDAM’s
ability of attack detection and mitigation. We realize attacks
on both data packets and signaling. We simplify the attacks
with partial software emulation on our testbed for controlla-
bility and reproducibility In attacks with relay FBS, we set up
both the FBS and the real gNB in the testbed. We emulate the
radio link between relay FBS and real gNB in software with
ZeroMQ [61] to avoid interference with the link between UE
and relay FBS, which uses physical link with USRP.

On the other hand, the attacks without relay FBS rely on
manipulation of the underlying data channel. We emulate
the attacker using a separate thread within the gNB and UE
program, which has access to the transmitting and receiving
signal buffer. Eavesdropping is realized with inspection of the
receiving buffer, while the forging or corruption attacks are

1610 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Attack A1 A2 A3 A4 A5 A6 A7 A8

Precision 0.989 1 0.999 1 0.996 1 0.996 0.999
Recall 0.705 0.976 1 0.989 1 1 1 1

F1 0.823 0.988 0.999 0.994 0.998 1 0.998 0.999

Table 3: Effectiveness of attack detection with CellDAM.
emulated by injecting encoded attack messages or noise to
the transmitting buffer.

Ethical Considerations This work does not raise any ethi-
cal issues. Our testbed is carefully controlled for experiments,
operating on an unlicensed 2.4GHz ISM band. The experi-
mentation is conducted within a 5MHz channel centered at
2.49GHz. We ensure no nearby device is using the frequency
band. The radio signal emitted by the testbed only reaches
a few meters, ensuring that no other device is affected or
attempts to communicate with our testbed. Meanwhile, we
are working with collaborating mobile operators about the
discovered solutions and will open source CellDAM.

10.2 Evaluation Results
Evaluation of CellDAM Attack Detection In this sub-
section, we answer the question of whether CellDAM can
detect all attacks displayed in Table 2. For this purpose,
we inject attack messages according to the attacker proce-
dure, and observe if the detector can initiate warnings as ex-
pected. We test the attack detection under two different traffic
types: A lightweight traffic with ping and a heavy traffic with
iPerf3 [30] to saturate the channel. For each attack, we repeat
1,000 times under each scenario. We evaluate the results with
three metrics: precision, recall, and F1 score. The ground truth
can be easily obtained, as whether there is an ongoing attack
is controlled by us.

Table 3 summarizes the precision, recall, and F1 score for
the CellDAM detection. As shown in the table, the detection
reaches a precision of 98.9%∼100% for different attack types.
The high precision is achieved by the correctness of the DFA
and verification, as the normal operations in legitimate 5G
delivery will follow the correct procedure. Meanwhile, the
recall is 70.5%∼100% for different attack detection. Note
that, the relatively low recall for A1 is because a heavy-traffic
scenario will extend the ON state for a device. The device
can use other FBS detection methods [8, 65] to complement
CellDAM. The recall is high for other attacks, as they will
incur undesired data-plane signaling. This results in a high
F1 score of 0.823∼0.999. The detection works well for both
light and heavy traffic. This is because CellDAM only requires
inspection on lightweight data-plane signaling messages. We
also measure the average detection latency for attack detection.
The signaling messages could be captured and fed into the
detector for real-time detection. The detection achieves an
average latency of 28ms. Therefore, CellDAM can quickly
spot potential adversaries and take action.

Evaluation of CellDAM Mitigation We evaluate the suc-
cess rate for mitigation. When SecHub detects any attack, it
will trigger the target device handover to escape from the

1 2 3 4
Latency (s)

0.0

0.5

1.0

CD
F

(a) CDF of the mitigation
latency for “quick dodge".

0.0 0.5 1.0 1.5 2.0
Distance (m)

0

5

10

15

RS
RQ

 D
ro

p
(d

B)

(b) Relationship between the dis-
tance and RSRQ drop.

Figure 8: Mitigation Performance.

attack. We enable the handover-related RRC messages and
config in gNB and let the UE monitor the handover events.
Note that our testbed does not support real handover to a dif-
ferent cell; if UE receives a handover command, we assume
a successful handover. We evaluate the ratio of successful
handover and the corresponding latency for each mitigation.
In all 40 rounds of experiments, SecHub successfully triggers
the UE handover. Figure 8a shows the CDF of the latency.
The results show that the average mitigation latency is 1.85s.
90% of them could successfully handover within 3 seconds,
and all handovers are triggered within 4 seconds.

In our design, signals from SecHub will have minimum
impact on other devices. We show this point by measuring
the perceived RSRQ drops at the UE at different distances
from the SecHub. Figure 8b shows that the RSRQ drop at 1m
and 2m are only 0.67dB and 0.06dB, respectively. With the
controlled power of SecHub, our mitigation will only trigger
handover on the close-by protected device, while not affecting
other users or devices.

Impact of CellDAM mitigation on applications We dis-
cussed in §7 that handover-based cell switching will incur
little overhead on applications. We now evaluate the disrup-
tion time on the iPerf3 application during the band switch.
We decode the logs and calculate the interval of application
packets before and after the handover. The average disrup-
tion is 72.3 ms, with a 95th percentile of 83.7ms. We further
note that, the packets during 5G handover will be kept and
delivered by the new cell afterwards. Therefore, an applica-
tion would only experience a small delay caused by CellDAM,
without triggering any data loss or TCP connection reset.

Evaluation of SecHubRootless Capture We then present
our microbenchmarks for inferring signaling messages. We
measure the ratio of correctly captured signaling in both up-
link and downlink to show the effectiveness of our rootless
signaling capture. We record the traces of PUCCH/PDCCH
(SR and DCI) and PDSCH/PUSCH (MAC CE and RLC Con-
trol) at the UE as the ground truth. We capture the traces
through the SecHub under different traffic scenarios and mo-
bility. We use ping and iPerf3 for the light and heavy traffic
scenarios, respectively. The UE and SecHub are kept static or
moving at a speed of around 5km/h for mobility. The ratio of
correctly decoded signaling is calculated by comparing the
traces captured on the SecHub and the ground truth.

Table 4 shows the success ratio for the rootless capture. For

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1611

Control Data
Traffic PUCCH PDCCH PUSCH PDSCH
Light 99.1% 100% 100% 99.7%
Heavy 98.7% 99.9% 98.1% 97.2%

Light-M 98.8% 99.9% 99.1% 98.3%
Heavy-M 98.1% 99.8% 98.0% 97.3%

Table 4: Ratio of success rootless signaling message capture
under different traffic scenarios and mobility (-M: Mobile).

the control messages, 99.1% of PUCCH and 100% of PDCCH
are successfully captured and decoded from the SecHub with
the light traffic. For the heavy traffic, the SecHub still achieves
a high success rate with 98.7% for PUCCH and 99.9% for the
PDCCH. For data messages, SecHub successfully decodes all
the PUSCH messages and 99.7% of PDSCH data under the
light traffic scenario. 98.1% of the PUSCH and 97.2% of the
PDSCH traffic is successfully captured and decoded for the
heavy traffic scenario. We observe similar numbers (97.3-
99.9%) in mobility cases (Light-M) and (Heavy-M). The
ratio is not impacted by mobility, because the UE and SecHub
experience similar channel conditions. Whether one message
is decoded on UE or not, SecHub will produce similar results.

The high success rate is possible with accurate C-RNTI
inference. We quantify the success rate with the collaborated
traffic fingerprinting. Since the inference can be done without
actively sending signals over the air, we perform the verifi-
cation on both the commercial network and our testbed. The
ground truth of C-RNTI can be acquired in gNB (by checking
logs) and in COTS UE (by using MobileInsight [37]). Every
time SecHub collects 5s of traces for the inference after the
traffic pattern coordination with the target UE. We perform
120 rounds of experiments with 60 rounds on the testbed and
60 rounds on the commercial network.

On the testbed, SecHub correctly infers the C-RNTI in all
60 rounds, achieving a 100% success rate. On the commercial
network, with the increased device number, SecHub success-
fully infers 98.3% of the C-RNTI. We further measure the
overheads caused by the background ping in the continuous
tracking. The result shows that CellDAM involves 0.14 KBps
traffic overhead, which is marginal on the target device. The
results show that CellDAM could continuously perform the
monitoring during the mobility, and protect the victim without
any root privilege.

11 Related Work

As new attacks on the 5G/4G have drawn increasing attention,
detecting potential attacks is a popular research topic in recent
years. Due to the high overhead and long cycle for network-
side detection [47], current detection methods are mainly
on the device side. PHOENIX [19] proposes a solution for
control-plane monitoring. [53] studies the device-side attack
detection for core network attacks. [16, 18, 25, 38, 63] detect
cellular attacks by analyzing on-device application traces. [8,

65] detect the existence of FBS with physical characteristics
of FBS such as power or signal signatures. No prior work
studies attack detection for data-plane protocols. CellDAM
provides the first detection scheme for attacks on data-plane
packets/signaling in 5G. Unlike other works that require root
access and expose additional risks [62], CellDAM detects the
attack without extra privilege.

Existing mitigation for attacks on 4G/5G protocols ei-
ther needs root access [33] or requires protocol changes
[48, 49, 54, 64]. To our knowledge, CellDAM is the first solu-
tion that provides rootless mitigation for data-plane attacks
without firmware/standard changes. Other mitigation meth-
ods for attacks on mobile apps [11, 13, 39] or cellular-based
services [35, 40, 55, 58] are orthogonal to our work.

Prior studies have leveraged model checking to verify the
cellular standards and discover new vulnerabilities in the pro-
tocols. [26, 28] exposed attacks in 4G LTE by adversarial
model-based testing. Previous work also formally analyzed
the 5G protocol components including the 5G-AKA proce-
dures [12, 17] and NAS/RRC signalings [27]. However, the
existing cellular protocol verification runs offline on the con-
trol plane and does not have runtime detection. CellDAM per-
forms the runtime verification to discover the potential attacks
timely. It targets the relatively more difficult problem of veri-
fying the data plane, whose traffic is heavier.

12 Conclusion

Detection of data-plane attacks at the mobile device has not
been viewed favorably to date. This is due to the excessive
processing and energy overhead associated with 5G high data
rate. In this work, we show how to use data-plane signaling
messages to devise a detection solution that yields one or two
orders of magnitude lower overhead. We leverage the fact
that data-plane attacks would exhibit certain data signaling
misbehavior. Our reactive solution may defend against certain
attacks that the current proactive schemes cannot. It can work
on normal user devices without root privilege or infrastructure
upgrade. Once CellDAM detects an attack, it further mitigates
attack damages via handover to another available channel.

In a broader scope, we believe data-plane security deserves
more attention given that activating all security measures on
lightweight control-plane messages is relatively straightfor-
ward. In contrast, data plane delivery involves complex inter-
actions across protocols and the adversary has plenty play-
ground to launch various attacks from applications, transport
layer, to IP and 5G protocols. While the end-to-end approach
and existing 5G data-plane security may secure application
data, it fails to secure the 5G infrastructure and mobile device.
To this end, this work reports our initial effort to explore a
lightweight, reactive solution to 5G data-plane security.

Acknowledgments. We would like to thank the anonymous
reviewers and our shepherd, Dr. Aaron Schulman, for their
constructive comments and feedback.

1612 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] 3GPP. TS33.501: Security architecture and procedures for 5G System-

V15.4.0, May. 2019.

[2] 3GPP. TS36.321: Evolved Universal Terrestrial Radio Access (E-
UTRA); Medium Access Control (MAC) protocol specification, Sep.
2019.

[3] 3GPP. NR; Medium Access Control (MAC) protocol specification,
Dec. 2020.

[4] 3GPP. TS33.809: Study on 5G security enhancements against False
Base Stations (FBS), Dec. 2020.

[5] 3GPP. NR; Radio Link Control (RLC) protocol specification, Jan.
2021.

[6] 3GPP. TS38.211: NR; Physical channels and modulation, Jan. 2021.

[7] 3GPP. TS33.501: Security architecture and procedures for 5G System-
V16.4.0, Mar. 2022.

[8] ALI, A., AND FISCHER, G. Enabling fake base station detection
through sample-based higher order noise statistics. In 2019 42nd In-
ternational Conference on Telecommunications and Signal Processing
(TSP) (2019), IEEE, pp. 695–700.

[9] API, A. B. https://developer.android.com/guide/topics/
connectivity/bluetooth.

[10] API, A. T. https://developer.android.com/reference/
android/telephony/package-summary.

[11] BALAPOUR, A., NIKKHAH, H. R., AND SABHERWAL, R. Mobile
application security: Role of perceived privacy as the predictor of
security perceptions. International Journal of Information Management
52 (2020), 102063.

[12] BASIN, D., DREIER, J., HIRSCHI, L., RADOMIROVIC, S., SASSE,
R., AND STETTLER, V. A formal analysis of 5g authentication. In
Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security (2018), pp. 1383–1396.

[13] BUI, D., YAO, Y., SHIN, K. G., CHOI, J.-M., AND SHIN, J. Consis-
tency analysis of data-usage purposes in mobile apps. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security (2021), pp. 2824–2843.

[14] CALCULATIONS, U. W. R. https://www.electronicdesign.
com/technologies/communications/article/21796484/
understanding-wireless-range-calculations.

[15] CASATI, L., AND VISCONTI, A. The dangers of rooting: data leakage
detection in android applications. Mobile Information Systems 2018
(2018).

[16] CHLOSTA, M., RUPPRECHT, D., HOLZ, T., AND PÖPPER, C. Lte
security disabled: misconfiguration in commercial networks. In Pro-
ceedings of the 12th conference on security and privacy in wireless and
mobile networks (2019), pp. 261–266.

[17] CREMERS, C., AND DEHNEL-WILD, M. Component-based formal
analysis of 5g-aka: Channel assumptions and session confusion.

[18] DABROWSKI, A., PIANTA, N., KLEPP, T., MULAZZANI, M., AND
WEIPPL, E. Imsi-catch me if you can: Imsi-catcher-catchers. In Pro-
ceedings of the 30th annual computer security applications Conference
(2014), pp. 246–255.

[19] ECHEVERRIA, M., AHMED, Z., WANG, B., ARIF, M. F., HUSSAIN,
S. R., AND CHOWDHURY, O. Phoenix: Device-centric cellular net-
work protocol monitoring using runtime verification. arXiv preprint
arXiv:2101.00328 (2021).

[20] FALKENBERG, R., AND WIETFELD, C. Falcon: An accurate real-time
monitor for client-based mobile network data analytics. In 2019 IEEE
Global Communications Conference (GLOBECOM) (2019), IEEE,
pp. 1–7.

[21] GASPARIS, I., QIAN, Z., SONG, C., AND KRISHNAMURTHY, S. V.
Detecting android root exploits by learning from root providers. In 26th
USENIX Security Symposium (USENIX Security 17) (2017), pp. 1129–
1144.

[22] HO, T.-H., DEAN, D., GU, X., AND ENCK, W. Prec: practical root
exploit containment for android devices. In Proceedings of the 4th
ACM conference on Data and application security and privacy (2014),
pp. 187–198.

[23] HOLTMANNS, S., RAO, S. P., AND OLIVER, I. User location tracking
attacks for lte networks using the interworking functionality. In 2016
IFIP Networking conference (IFIP Networking) and workshops (2016),
IEEE, pp. 315–322.

[24] HOLTMANNS, S., RAO, S. P., AND OLIVER, I. User location tracking
attacks for lte networks using the interworking functionality. In 2016
IFIP Networking Conference (IFIP Networking) and Workshops (2016),
pp. 315–322.

[25] HONG, B., BAE, S., AND KIM, Y. Guti reallocation demystified:
Cellular location tracking with changing temporary identifier. In NDSS
(2018).

[26] HUSSAIN, S., CHOWDHURY, O., MEHNAZ, S., AND BERTINO, E.
LTEInspector: A systematic approach for adversarial testing of 4G LTE.
In Network and Distributed Systems Security (NDSS) Symposium 2018
(2018).

[27] HUSSAIN, S. R., ECHEVERRIA, M., KARIM, I., CHOWDHURY, O.,
AND BERTINO, E. 5greasoner: A property-directed security and privacy
analysis framework for 5g cellular network protocol. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security (2019), pp. 669–684.

[28] HUSSAIN, S. R., KARIM, I., ISHTIAQ, A. A., CHOWDHURY, O., AND
BERTINO, E. Noncompliance as deviant behavior: An automated black-
box noncompliance checker for 4g lte cellular devices. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security (2021), pp. 1082–1099.

[29] IETF. The Transport Layer Security (TLS) Protocol Version 1.3,
August 2018. https://datatracker.ietf.org/doc/rfc8446/.

[30] IPERF3. https://github.com/esnet/iperf.

[31] KASPERSKY. Rooting your Android: Advantages, disadvantages, and
snags, June 2017. https://usa.kaspersky.com/blog/android-
root-faq/11581/.

[32] KOHLS, K., RUPPRECHT, D., HOLZ, T., AND PÖPPER, C. Lost traffic
encryption: fingerprinting LTE/4G traffic on layer two. In Proceedings
of the 12th Conference on Security and Privacy in Wireless and Mobile
Networks (2019), pp. 249–260.

[33] KOTULIAK, M., ERNI, S., LEU, P., ROESCHLIN, M., AND CAPKUN,
S. Ltrack: Stealthy tracking of mobile phones in lte. In 31st USENIX
Security Symposium (USENIX 2022) (2022).

[34] LAB, K. Rooting your android: Advantages, disadvantages, and
snags. https://www.kaspersky.com/blog/android-root-faq/
17135/, Jun. 2017.

[35] LI, C.-Y., TU, G.-H., PENG, C., YUAN, Z., LI, Y., LU, S., AND
WANG, X. Insecurity of voice solution volte in lte mobile networks. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), pp. 316–327.

[36] LI, M., ZHU, H., GAO, Z., CHEN, S., YU, L., HU, S., AND REN, K.
All your location are belong to us: Breaking mobile social networks
for automated user location tracking. In Proceedings of the 15th ACM
international symposium on Mobile ad hoc networking and computing
(2014), pp. 43–52.

[37] LI, Y., PENG, C., YUAN, Z., LI, J., DENG, H., AND WANG, T. Mo-
bileinsight: Extracting and analyzing cellular network information on
smartphones. In Proceedings of the 22nd Annual International Confer-
ence on Mobile Computing and Networking (2016), pp. 202–215.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1613

[38] LI, Y., PENG, C., ZHANG, Z., TAN, Z., DENG, H., ZHAO, J., LI,
Q., GUO, Y., LING, K., DING, B., ET AL. Experience: a five-year
retrospective of mobileinsight. In Proceedings of the 27th Annual
International Conference on Mobile Computing and Networking (2021),
pp. 28–41.

[39] LU, H., XING, L., XIAO, Y., ZHANG, Y., LIAO, X., WANG, X.,
AND WANG, X. Demystifying resource management risks in emerg-
ing mobile app-in-app ecosystems. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security
(2020), pp. 569–585.

[40] LU, Y.-H., LI, C.-Y., LI, Y.-Y., HSIAO, S. H.-Y., XIE, T., TU, G.-H.,
AND CHEN, W.-X. Ghost calls from operational 4g call systems: Ims
vulnerability, call dos attack, and countermeasure. In Proceedings of
the 26th Annual International Conference on Mobile Computing and
Networking (2020), pp. 1–14.

[41] MJØLSNES, S. F., AND OLIMID, R. F. Easy 4G/LTE IMSI catchers
for non-programmers. In International Conference on Mathematical
Methods, Models, and Architectures for Computer Network Security
(2017), Springer, pp. 235–246.

[42] OPENSIGNAL. USA 5G Experience Report, Jan 2022.
https://www.opensignal.com/reports/2022/01/usa/mobile-
network-experience-5g.

[43] PARK, C., BAE, S., OH, B., LEE, J., LEE, E., YUN, I., AND KIM, Y.
Doltest: In-depth downlink negative testing framework for lte devices.
In USENIX Security Symposium (2022).

[44] POSITIVE TECHNOLOGIES. Security assessment of Diameter networks,
2020.

[45] QUALCOMM. QxDM Professional - QUALCOMM eXtensible Di-
agnostic Monitor. http://www.qualcomm.com/media/documents/
tags/qxdm.

[46] RAO, S. P., KOTTE, B. T., AND HOLTMANNS, S. Privacy in lte
networks. In Proceedings of the 9th EAI International Conference on
Mobile Multimedia Communications (2016), pp. 176–183.

[47] RUPPRECHT, D., DABROWSKI, A., HOLZ, T., WEIPPL, E., AND PÖP-
PER, C. On security research towards future mobile network gen-
erations. IEEE Communications Surveys & Tutorials 20, 3 (2018),
2518–2542.

[48] RUPPRECHT, D., KOHLS, K., HOLZ, T., AND PÖPPER, C. Breaking
LTE on layer two. In 2019 IEEE Symposium on Security and Privacy
(SP) (2019), IEEE, pp. 1121–1136.

[49] RUPPRECHT, D., KOHLS, K., HOLZ, T., AND PÖPPER, C. IMP4GT:
Impersonation attacks in 4G networks. In Symposium on Network and
Distributed System Security (NDSS). ISOC (2020).

[50] SHAO, Y., LUO, X., AND QIAN, C. Rootguard: Protecting rooted
android phones. Computer 47, 6 (2014), 32–40.

[51] SRSRAN. https://www.srslte.com/.
[52] STATISTA. Where 5G Technology Has Been Deployed , July

2022. https://www.statista.com/chart/23194/5g-networks-
deployment-world-map/.

[53] TAN, Z., DING, B., ZHANG, Z., LI, Q., GUO, Y., AND LU, S. Device-
centric detection and mitigation of diameter signaling attacks against
mobile core. In 2021 IEEE Conference on Communications and Net-
work Security (CNS) (2021), IEEE, pp. 29–37.

[54] TAN, Z., DING, B., ZHAO, J., GUO, Y., AND LU, S. Data-plane sig-
naling in cellular iot: attacks and defense. In Proceedings of the 27th
Annual International Conference on Mobile Computing and Network-
ing (2021), pp. 465–477.

[55] TU, G.-H., LI, C.-Y., PENG, C., LI, Y., AND LU, S. New secu-
rity threats caused by ims-based sms service in 4g lte networks. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (2016), pp. 1118–1130.

[56] US, W. What is 5G? Facts Stats You Need to Know, April
2022. https://www.whistleout.com/CellPhones/Guides/5G-
statistics.

[57] VIRTUALISATION, N. F. An introduction, benefits, enablers, challenges
& call for action. In White Paper, SDN and OpenFlow World Congress
(2012).

[58] WANG, S., TU, G.-H., LEI, X., XIE, T., LI, C.-Y., CHOU, P.-Y.,
HSIEH, F., HU, Y., XIAO, L., AND PENG, C. Insecurity of operational
cellular iot service: new vulnerabilities, attacks, and countermeasures.
In Proceedings of the 27th Annual International Conference on Mobile
Computing and Networking (2021), pp. 437–450.

[59] XU, D., ZHOU, A., ZHANG, X., WANG, G., LIU, X., AN, C., SHI,
Y., LIU, L., AND MA, H. Understanding operational 5g: A first mea-
surement study on its coverage, performance and energy consump-
tion. In Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer communication (2020),
pp. 479–494.

[60] YANG, H., BAE, S., SON, M., KIM, H., KIM, S. M., AND KIM, Y.
Hiding in plain signal: Physical signal overshadowing attack on LTE.
In 28th USENIX Security Symposium (USENIX Security 19) (2019),
pp. 55–72.

[61] ZEROMQ. ZeroMQ: An open-source universal messaging library .
https://zeromq.org/, Jan 2022.

[62] ZHANG, H., SHE, D., AND QIAN, Z. Android root and its providers:
A double-edged sword. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security (2015), pp. 1093–
1104.

[63] ZHANG, Y., LIU, B., LU, C., LI, Z., DUAN, H., HAO, S., LIU, M.,
LIU, Y., WANG, D., AND LI, Q. Lies in the air: Characterizing fake-
base-station spam ecosystem in china. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security
(2020), pp. 521–534.

[64] ZHAO, J., DING, B., GUO, Y., TAN, Z., AND LU, S. Securesim: re-
thinking authentication and access control for sim/esim. In Proceedings
of the 27th Annual International Conference on Mobile Computing and
Networking (2021), pp. 451–464.

[65] ZHUANG, Z., JI, X., ZHANG, T., ZHANG, J., XU, W., LI, Z., AND
LIU, Y. Fbsleuth: Fake base station forensics via radio frequency
fingerprinting. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security (2018), pp. 261–272.

1614 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

UE gNBRelay	FBS
Relay	Mutual	
Authen-ca-on	

Forge	Data	
Plane	Signaling

Data
Manipulated	

Data
Data

Manipulated	
Data

(a) Relay FBS

UE gNBA'acker
DCI

UL	Data

DCI	+	DL	Data
NACK

Lost

DCI	+	DL	Data

(A)

(B) Noise

Overshadow	
w/Data-plane	
Signaling

(b) Overshadowing

Figure 9: Viable data-plane methodologies for data injec-
tion/manipulation.

A Details of Each Attack and Its Detection

In this section, we present the details of each attack shown
in Table 2, including the attack procedure that leverages the
forgery messages and the attack consequences. We also elab-
orate on how each attack incurs undesired behavior that can
be detected by CellDAM validations.

A.1 Injecting Data with FBS

Attack Procedure The attacker can use a relay fake base
station (FBS) to manipulate data packets [48]. The detailed
attack procedure is shown in Figure 9a. The attacker sets up
a fake base station (FBS). It usually runs on a different band
from the real base station, and sends strong broadcast signal to
lure the device into connection. The attack also sets up a fake
UE that connects to the real base station. It then relays the
connection setup messages without any manipulation from/to
the real base station. Afterwards, although all data packets
are encrypted, the attacker can flip the bits to change the
content of the forgery, if data-plane integrity protection is
not enforced. This is doable as the encryption is done with
simple XOR. as long as the original content is known (e.g.,
DNS server set up by the operator), the attacker can flip bits
and change the contents to target values. For instance, the
attacker can manipulate the IP header of a DNS request and
compensate the IP header checksum to pass the checks [48].
Undesired Behavior In this attack, we assume the adver-
sary cannot infer the data-plane configurations encrypted in
RRC messages. Therefore, when the attacker forwards the
data packet, some configurations might be incorrectly set and
detected on the device side. One example is DRX configura-
tion. Without the configuration, the forwarded packet might
fall in the DRX OFF period, as shown in Figure 10a. As
the DRX ON period is usually very short (e.g., 10ms), most
messages might be delivered outside of the period, violating
check c4. Although the FBS can repeat transmitting until the
victim device acknowledges to ensure delivery, this behavior
will be detected by CellDAM. Note that, 5G DRX includes the
mechanism to stay in ON period for an extended period when
a new data is received. Therefore, when the traffic is heavy,
the device might keep staying in ON state. As we claimed in
§10, the attack will be more detectable for light traffic. For
this attacker, the PHY layer detection methods mentioned in

§11 can help detect FBS that transmits abnormal signal.

A.2 Data Manipulation with Retransmission

Attack Procedure We also show that, the attacker can
serve man-in-the-middle to manipulate data packets without
FBS. The detailed attack procedure is shown in Figure 9b.
This approach can manipulate data plane packet without FBS.
We consider the victim device is directly connected to the
authentic base station. Note that, the attacker might not be
able to forge data-plane packets directly, as they are encrypted
(unlike integrity protection, which is optional). Therefore, to
forge data packets, the attacker still needs to take the bit
flipping approach as in A1. One viable way is to forge the
data as retransmission. The attacker can eavesdrop on the
channel and look for data transmission that fails on victim
device (i.e., trigger NACK), while it successfully decodes
the encrypted data (due to less noisy environment, etc.). The
attacker can then forge the DCI and manipulated data as the
retransmission.
Undesired Behavior This attack requires sending forged
DCI and data to the device. This DCI can be received in an
improper context. Each DCI includes a HARQ ID, which
indicates the process of the transmission. Each process takes
a stop-and-wait procedure. Before the last packet is acknowl-
edged, the process will not move on to transmit the next one.
Therefore, the DCI from the authentic gNB can arrive after the
DCI forged by attacker and before the forged retransmission
has been acknowledged. This causes an undesired behavior
that can be observed on the device with c1. This is shown in
Figure 10b.

We further note two things. First, this attack method can
forge uplink data packet without obvious undesired behavior
on the device side. We do not consider such attack with pure
uplink forgery in this work. However, a reasonable forgery
attack needs to manipulate both uplink and downlink data.
Second, an interested reader might ask whether the attacker
can use the legitimate DCI to send the forged data. However,
the DL DCI and the corresponding forged data are usually
sent in the same time slot in 5G. It is thus hardly possible to
infer DCI for data forgery in advance.

A.3 Packet Delivery Blocking

Attack Procedure We have introduced this attack in §3.2
as an example of corrupting data-plane signaling. We now
present this attack in more details as shown in Figure 10c.
The attacker first eavesdrops on the data channel and learns
the packet sequence number that is not delivered over the
air. It then selectively corrupts the RLC control that NACKs
the packet. Since the packet is not acknowledged, UE will
still send uplink data without retransmitting the missing one.
These new data packets are blocked in the gNB, which suffers

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1615

Detected!

UE gNBRelay	FBS
DataEnter

DRX-OFF Data

(a) Downlink data forgery with FBS.

NACK

UE gNBA'acker

Detected!

DCI	(HARQ1)	+	DataLost
Noise

DCI	(HARQ1)+
Forged	Data

DCI	(HARQ1)	+	Data

(b) Downlink data forgery with retransmission.

UE gNBA'acker
UL	Data

Data	w/	Higher	Seq	Num
RLC-NACKNoise

Lost

Data	w/	Higher	Seq	Num
RLC-NACKDetected!

(c) Packet delivery blocking.

Detected!

UE gNBA'acker

DCI

DRX	CommandEnter
DRX-OFF

(d) Prolonged packet delivery.

UE gNBA'acker

Grant
BSR

Detected!
No	Data

(e) Radio resource draining.

UE gNBA'acker
Data

DCI	for	
Retransmission

RLC	NACK

Lost

RLC	ACK
Noise

Detected!

(f) Break reliable transfer.

Detected!

UE gNBA'acker

Data
Grant

Data
Grant

RLC	NACK

Drop

Loss
Detected

(g) Data collision.

Detected!

UE gNBA'acker
Data

DCI	for	New	Data
RLC	NACK

Noise

(h) Delayed transfer.

Figure 10: Illustration of undesired behavior caused by attacks.

head-of-line blocking for more than 100ms. No new data will
be forwarded during this time period.
Undesired Behavior The attack will cause undesired be-
havior on RLC. From the perspective of the device, the uplink
RLC will receive either ACK or NACK after Treordering when
the timer expires. Even if the signaling is corrupted, which
is rare given its small size, the MAC layer should retransmit
it. Therefore, if the device finds no RLC control after timer
expires and MAC retransmissions (which has a configured
max count), CellDAM detects a potential corruption attack. We
note that all MAC retransmission could fail due to extremely
weak channel instead of an attacker. In this case, although no
attack is present, switching to a better wireless channel with
CellDAM is a reasonable facilitating option.

A.4 Prolonged Packet Delivery
We consider connected mode Discontinuous Reception
(CDRX) in this attack. In the RRC connected state, the gNB
will only deliver data during DRX ON state. A device will be
in DRX ON for a small time period in a fixed periodicity. If
any data is received during this period, the DRX ON state is
extended for a constant amount of time. gNB will configure
the ON period, DRX cycle, and the extended timer amount in
encrypted RRC messages.
Attack Procedure The detailed procedure is shown in Fig-
ure 10d. In this attack, the adversary forges a DRX command
to the device. DRX command terminates the DRX ON state
prematurely and the device enters the sleep mode. Therefore,
the device will be unable to receive all subsequent transmis-
sion in the current DRX cycle with DRX turned to OFF state.
The data delivery can be delayed for hundreds of milliseconds

given long DRX cycle. The attack is adapted from [54]. Note
that, this attack will not stop uplink data delivery, as a UL
data transmission initiated by UE can again switch the DRX
state to DRX ON.
Undesired Behavior It is not possible to receive downlink
DCI or data during DRX OFF. If such an event happens, the
previous DRX command could be forged. As CellDAM does
not have root access, it is difficult for SecHub to monitor in-
ternal DRX state in real-time or infer the state with encrypted
DRX configurations in RRC messages. However, there is
another indication for a message during DRX OFF: If the
device is in DRX OFF, it will not respond to any downlink
data with ACK or NACK in PUCCH. Therefore, SecHub can
detect such attack by checking the downlink data without any
acknowledgment, after an incoming DRX command. This
violates the validation check c4. In addition, gNB will not
send DRX command when the previous DL transmission has
not finished, which means there will be more transmission in
the DRX cycle. This violated c1.

A.5 Radio Resource Draining

Attack Procedure We have introduced this attack in §3.2
as an example of manipulating data-plane signaling. Here we
present more details. 5G/4G adopts scheduling-based data
delivery. To transmit uplink data, the device needs to send the
buffer status report (BSR) to the gNB for asking grants. An
attacker can forge a BSR to the gNB. In the forged BSR, the
attacker falsely indicates the victim device has a large amount
of data to send. The gNB subsequently assigns excessive
resource blocks to the device, wasting wireless resource and

1616 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

blocking other users’ access. The detailed procedure is shown
in Figure 10e. The attack is adapted from [54].
Undesired Behavior Although the attacker forges an up-
link message, it will incur observable undesired behavior on
the device side as well. This is because the DCI (for UL grant)
will be triggered by the forged BSR message. If the device
receives grant when there is no prior request, the grant can be
caused by a forged request by the attacker. We notice that, a
gNB can send a device “free” small grants in case the device
has something to send. However, these grants are small for
the device to sufficiently deliver BSR. Therefore, to reduce
false positive, we set a threshold (120 bytes) in the verification
check c5 to find unwanted resources.

A.6 Break Reliable Transfer

Attack Procedure The detailed procedure of the attack
is shown in Figure 10f. The attacker can corrupt the data
retransmission on MAC layer. It then forges an RLC ACK to
UE. Receiving it, the victim device RLC protocol wrongly
thinks the packet has been delivered, discarding it in the buffer.
Therefore, this packet cannot be reliably delivered in 5G. This
might further trigger TCP retransmission, which can cause
more serious damage.
Undesired Behavior From the perspective of the base
station, it will detect a packet gap in RLC protocol when
it receives a later packet from UE. Therefore, it will still
attempt to recover it by sending an RLC NACK. The NACK
timing is unknown for the attacker, thus cannot be targeted for
corruption. The device side will thus receive an RLC NACK
first and then an ACK. This behavior is undesired in 5G and
can be detected by validation check c3.

A.7 Data Collision

Attack Procedure The detailed procedure of the attack
is shown in Figure 10g. The attacker forges grant to the vic-
tim device. The device will send data using the forged grant.
However, any data using these non-authorized grants will not
be correctly accepted by the gNB. In addition, the legitimate
transmission in the same time and frequency by another user
will be corrupted by the victim’s false transmission.
Undesired Behavior The attack will trigger undesired be-
havior on the device side. Since the UL data using false grants
will not be accepted, gNB will not ACK or NACK the message
delivery and consequently trigger an RLC NACK. CellDAM
detects the undesired behavior with RLC control NACK and
lack of MAC layer feedback with validation c5.

A.8 Delayed Transfer

Attack Procedure The detailed procedure of the attack
is shown in Figure 10h. In this attack, the adversary sends

noises and corrupts the uplink data. The attacker can learn
the time and frequency of the delivery by eavesdropping on
DCI for UL grants. It consequently forges DCI for new data
(i.e., indicator for ACK) to stop the UE from retransmitting
the corrupted data. Consequently, the UE will start sending
new data on MAC. This will later trigger retransmission on
the RLC layer, which can take up to hundreds of milliseconds
compared to a MAC fast retransmission.
Undesired Behavior The forged DCI from the attacker can
be sent in a wrong context, where two consecutive DCIs are
received but the data using the first one has not been acked
yet. This can also be detected with c1.

B Deriving Minimal Power for Targeted
Switching

The solution should not affect other devices. SecHub adap-
tively controls its power upon triggering the handover. Pre-
vious 5G measurements show that -20dB RSRQ is enough
to trigger the handover in more than 98% cases [59]. SecHub
adaptively derives the minimal power so that RSRQ drops to
-20dB, thus triggering handover. The current RSRQ is derived
by:

RSRQ =
N ×RSRP

RSSI
To reduce the RSRQ to -20dB, the minimal power (Pm)

needed by SecHub follows:

N ×RSRP
RSSI +Pm

=−20dB =
1

100

Thus, the Pm could be derived by:

Pm = N ×RSRP× (100− 1
RSRQ

)

All needed information can be acquired from the victim
by the OS API (e.g., Android [10]) without root privilege.
Furthermore, the power density is inversely proportional to
the square of the distance from the antenna [14]. Assume
SecHub is located close to the device (<0.1m). The RSRQ
drop at the 1m distance is smaller than 1dB, which could be
neglected by other devices. Only the victim device perceives
a notable RSRQ drop and triggers its handover.

We admit that, even theoretically not affecting any other
device, sending weak signals might require licensing from
the operational networks or government. We envision SecHub
can acquire such permission from mobile operators, or even
manufactured by the operators themselves. If this privilege
is not available, CellDAM could fallback to using airplane
switching. Even if the cell is not changed after toggling, the
device will be reassigned a physical ID C-RNTI, which makes
it more difficult for the attacker to track the victim.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1617

C List of Accepted Messages

We elaborate on c1 by enumerating each state and the list
of accepted message for each one. The results are shown in
Table 5. If a message is in the list, we show the next state if
all other validations are passed. Otherwise, we mark an × in
the table which means an undesired behavior that fails c1. As
we mentioned, our method prioritizes soundness. Therefore,
for messages that are not explicitly considered, CellDAM will
ignore them and stay in the current state.

D Continuous Inference

We describe how SecHub could keep tracking the C-RNTI
used by the victim device.
Challenge: Dynamic configurations Upon user mobil-
ity, the configurations could be updated within an encrypted
message after the device connects to a new gNB. It is also pos-
sible that gNB updates the C-RNTI for the device upon RRC
state changes without user mobility. Tracking the up-to-date
configurations for the target device is critical.
Can we track the config change? One solution idea is to
track the configuration change once it happens and launch the
inference again. This is possible when a handover happens.
CellDAM develops an application on the target device to track
the possible configuration changes due to mobility. The ap-
plication leverages the existing API to detect the PCI/band
change due to handover. It requires no root access. The appli-
cation could track the updates with OS-level API and notify
the SecHub to start a new round of C-RNTI inference.

However, the same method cannot be used to infer the con-
fig change within the same cell. SecHub or OS APIs cannot
report the change of configurations from the base station.
Idea: Prevent config change in a cell Since change detec-
tion is hard, we approach it differently by keeping the config-
uration constant. Indeed, this is possible. CellDAM leverages
the operational C-RNTI update logic in the cellular deploy-
ment to retain the same C-RNTI when the device stays on the
same gNB. Our study on commercial devices and operators
shows that, the current gNB updates C-RNTI when the de-
vice transits from the RRC-Idle state to the RRC-Connected
state. The gNB recycles the C-RNTI from the idle devices
and reuses them for other devices. Therefore, we aim to keep
the device in RRC-Connected to avoid configuration change.
Preventing configuration change for continuous inference
We trigger a lightweight ping in the background inside the
application. Our experiments show that the ping traffic with
2s interval could keep the C-RNTI unchanged. We validate it
on 216 cells from three major US carriers. In all tests, the C-
RNTI remains unchanged for at least 30 minutes with our light
background traffic. To tolerate unexpected updates, SecHub
also triggers the C-RNTI inference (in §6) every 10 minutes
to validate that the current configuration is up-to-date.

Marginal energy consumption The ping messages incur
low traffic volume to keep the device in RRC-Connected. We
further note that, this has small impact on 5G energy saving.
This is because, the device could still go to sleep mode for
energy reservation in logical RRC-Connected state. A 5G
device saves power by entering Discontinuous Reception or
DRX OFF mode. However, given the device will quickly re-
enter DRX OFF (within 100ms) after a data transmission, the
infrequent messages (every 2s) would only incur small energy
overhead. Besides, regular user traffic will also wake up the
device, during which the extra ping does not further reduce
sleep period. In addition, the impact on the energy from the
sleep mode has a smaller impact as compared to other factors,
such as the screen brightness. We run the application for 30
minutes while normally using the device (with mixed heavy
and infrequent messages). The additional energy only incurs
0.5% extra energy on average.

E ACRONYMS

5GC 5G Core Network
AKA Authentication and Key Agreement
BSR Buffer Status Report
C-RNTI Cell Radio Network Temporary Identifier
CE Control Element
COTS Commercial Off-the-shelf
DCI Downlink Control Information
DFA Deterministic Finite Automata
DL Downlink
DRX Discontinuous Reception
DTLS Datagram Transport Layer Security
FSM Finite State Machine
gNB gNodeB, 5G Base Station
HARQ Hybrid Automatic Repeat Request
LTE Long Term Evolution
MAC Medium Access Control
NAS Non Access Stratum
NSA Non Standalone
PCI Physical Cell ID
PDCCH Physical Downlink Control Channel
PDCP Packet Data Convergence Protocol
PDSCH Physical Downlink Shared Channel
PHY Physical Layer
PUCCH Physical Uplink Control Channel
PUSCH Physical Uplink Shared Channel
RLC Radio Link Control
RRC Radio Resource Control
RSRP Reference Signals Received Power
RSRQ Reference Signal Received Quality
SN Sequence Number
SR Scheduling Request
TLS Transport Layer Security
UE User Equipment
UL Uplink

1618 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 5: List of the accepted data-plane signaling for each DFA state and their state transition. We do not include s5 and s9 in the
table, as they are accept states. × means that the message in this state is not allowed and cannot pass c1, − means that the state is
unchanged with this message. “Different” or “same” means the receiving DCI compared with the first DCI for an RLC data
packet, i.e., RLC retransmission will reset HARQ and NDI with the first DCI after.

Data-Plane Signaling Message Current State
s1 s2 s3 s4 s6 s7 s8

MAC DCI for DL grant with same HARQ, same NDI − − − − s7 × ×
MAC DCI for DL grant with same HARQ, flipped NDI − − − − × × −
MAC DCI for DL grant with different HARQ − − − − − − −
MAC DCI for UL grant with same HARQ, same NDI s2 × s2 × − − −
MAC DCI for UL grant with same HARQ, flipped NDI × × s4 × − − −
MAC DCI for UL grant with different HARQ − − − − − − −
PUCCH ACK for the previous DCI − − − − × s8 ×
PUCCH NACK for the previous DCI − − − − × s6 ×
RLC Control with ACK for this packet × × × s5 × × s9
RLC Control with NACK for this packet × s1 s1 × s6 s6 ×
DRX Command − × × × − × ×
BSR − − − − − − −
Any other messages − − − − − − −

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1619

LOCA: A Location-Oblivious Cellular Architecture
Zhihong Luo
UC Berkeley

Silvery Fu
UC Berkeley

Natacha Crooks
UC Berkeley

Shaddi Hasan
Virginia Tech

Christian Maciocco
Intel

Sylvia Ratnasamy
UC Berkeley

Scott Shenker
UC Berkeley & ICSI

Abstract
Cellular operators today know both the identity and location
of their mobile subscribers and hence can easily profile users
based on this information. Given this status quo, we aim to de-
sign a cellular architecture that protects the location privacy
of users from their cellular providers. The fundamental chal-
lenge in this is reconciling privacy with an operator’s need
to provide services based on a user’s identity (e.g., post-pay,
QoS and service classes, lawful intercept, emergency services,
forensics).

We present LOCA, a novel cellular design that, for the first
time, provides location privacy to users without compromis-
ing on identity-based services. LOCA is applicable to emerg-
ing MVNO-based cellular architectures in which a virtual
operator acts as a broker between users and infrastructure
operators. Using a combination of formal analysis, simula-
tion, prototype implementation, and wide-area experiments,
we show that LOCA provides provable privacy guarantees
and scales to realistic deployment figures.

1 Introduction
Providing users with location privacy is an important part of
the larger challenge of online privacy. Unfortunately, today’s
cellular architecture offers little location privacy: network
operators know the identity of a user and the geographic lo-
cation of the access point to which that user connects and
hence can trivially track a user’s location in time. There is
mounting concern over this situation as cellular providers
are reported to routinely share their users’ location pro-
files [28, 29, 62, 66, 105]. Moreover, 5G is likely to require
smaller cell sizes [19] thus exposing much finer-grained loca-
tion information and exacerbating the privacy problem.

Hiding a user’s location from their network operator is chal-
lenging because connecting to an access point fundamentally
reveals the user’s location. One approach to improving pri-
vacy is to hide the user’s identity from the network operator
using so-called “blindly signed tokens” [23, 78, 86]. However,
as discussed in §3, this approach comes at the cost of prevent-
ing network operators from providing identity-based services.
These are services whose correct execution depends on the
user’s identity, such as post-pay [22], QoS prioritization [1]
and lawful interception [3]. Such services are an essential part
of today’s networks and hence it is unlikely that operators
can/will abandon them in exchange for improved user privacy.
Thus, our question is whether we can enable location privacy

User BrokerOperator

User location User identity

Figure 1: LOCA’s overall architecture.

(i.e., ensuring that network operators cannot easily track or in-
fer a user’s location) without compromising on identity-based
services.

Privacy and identity-based services might seem to be fun-
damentally at odds. However, we see a way forward via mo-
bile virtual network operators (MVNOs) such as Google Fi
and Cricket [30, 49]. MVNOs are service providers that do
not own radio infrastructure but instead provide user-facing
services (sales, billing, etc.) while relying on business agree-
ments with some number of traditional mobile network op-
erators (MNOs) to provide the radio infrastructure. In this
scenario, users pay MVNOs for service and MVNOs settle
with MNOs on behalf of users. In other words, with MVNOs
in the picture we can decouple infrastructure operation from
user management and the MVNO acts as a broker between
the user and the infrastructure operator.1

As shown in Fig. 1, our insight is that the existence of a
broker between the user and operator enables us to reconcile
privacy with identity-based services by strategically hiding
different pieces of information from each party: the broker
(i.e., MVNO) knows the user’s identity but not her location,
while the operator (i.e., MNO) knows the user’s location but
not her identity. With this arrangement, the broker can still tell
the operator what identity-based services are to be applied to
the user without revealing the user’s identity, and the operator
can implement the required services without knowing the
identity of the user on whose behalf they are implemented.

However, hiding information in this manner is challenging
for four reasons. First, in order to hide the user’s identity
from the operator, we must hide not just her identity but also
her trajectory across multiple cell towers. This is because
the operator could still infer the user’s identity based on the
sequence of towers she has visited, a form of privacy loss we
refer to as trajectory leakage (§3.3).

Second, in order to hide the user’s location from the bro-
ker, we must also hide the identity of its operator from the
broker. This is because the locations of an operator’s cell

1In this paper, we use the terms MVNO and broker interchangeably; we
do the same with the terms MNO and operator.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1621

tower deployments are public knowledge and hence can re-
veal a user’s location [81]. The emergence of operators with
small footprints, such as private and enterprise 5G networks,
underscores the importance of this [13, 38, 52, 97].

The last two challenges arise because of this need to hide
the identity of the operator from the broker. Brokers will al-
ways want to ensure that only authorized operators service
their users. Since our approach hides the operator’s identity
from the broker, we now need a solution that allows the bro-
ker to verify the legitimacy of an operator without revealing
the operator’s identity. Lastly, when it comes time to settle
payments, the operator should be able to claim payment from
the broker without revealing what users it has served (since
doing so would otherwise reveal user locations).

We design a privacy-preserving protocol that addresses the
challenges above. Our contribution lies in developing new
techniques (e.g., aggregate claims) and synthesizing them
with existing ones (e.g., blind signatures, zero-knowledge
proofs) into an end-to-end Location-Oblivious Cellular Ar-
chitecture (LOCA). To our knowledge, LOCA is the first
system to enable location privacy for users while also support-
ing a provider’s operational goals such as usage-based billing,
QoS and service levels, lawful intercept, and so forth.

We evaluate the privacy and scalability of our protocol
through formal analysis, simulation, prototype implementa-
tion, and wide-area experiments. We recognize that LOCA
does introduce certain complexity and system overheads.
However, our evaluation shows that these overheads are mod-
est and within reach of what can be practically supported
today. An important part of our contribution is thus in expos-
ing the architectural complexity and performance tradeoffs
that might be necessary to achieve our privacy goals.

Our work is based on certain assumptions about user and
operator incentives. We assume that privacy concerns will
influence some users in their selection of providers which will
incentivize some operators to adopt the proposed techniques.2

In addition, a growing number of jurisdictions have enacted
policies that require providers to protect user privacy and, as
discussed in §3, our architecture makes it easier for a provider
to ensure compliance with these legal requirements. We do not
assume that this motivation will apply to all users or operators:
since our architecture can co-exist with the existing cellular
infrastructure, we envision it will be applied to (by) the subset
of users (providers) that are motivated by location privacy.

Finally, we recognize that there are many ways in which a
user’s location may be revealed through their online activities
(e.g., posting timestamped photos). We do not claim to prevent
all forms of location leakage. Our focus is only on preventing
the leakage of location information that today occurs every
time a user connects to the cellular network.

In summary, the contributions of this paper are: (1) a new
approach to preserve user location privacy while providing

2Such market dynamics are already emerging in other contexts such as
the smartphone market [10, 57, 85].

identity-based services; (2) the detailed design and implemen-
tation of a protocol (LOCA) based on this approach, and an
evaluation of its performance and scalability; and (3) a formal
analysis of the privacy provided by LOCA. Looking forward,
we view LOCA as a first step towards privacy-preserving cel-
lular infrastructure with room for improvement along multiple
dimensions. We discuss these limitations extensively in the
paper to motivate efforts on addressing these issues.

2 Background
The cellular ecosystem: MNOs and MVNOs Traditionally,
the two main participants in a cellular network are the user
with her device (called User Equipment, or UE) and the Mo-
bile Network Operator (MNO). The MNO owns and operates
cellular infrastructure and also provides user support services
such as sales, billing and customer care. The user typically
enters into a contractual agreement with one MNO which
serves as her “home” provider. The user then consumes cellu-
lar services from her home provider or visited MNOs that her
home provider has roaming agreements with.

In recent years, we’ve seen the rise of Mobile Virtual Net-
work Operators (MVNOs). MVNOs are service providers
that do not own radio infrastructure, but instead provide user-
facing services (sales, billing, etc.), often focusing on serving
specific underserved market segments [72, 91], while rely-
ing on business agreements with some number of MNOs
to provide use of their radio infrastructure. In other words,
the MVNO acts as a broker between the user and the infras-
tructure operator. In this scenario, the user contracts with
an MVNO, and the MVNO in turn contracts with MNOs.
Two well-known MVNOs in the US are Google Fi [49] and
Cricket [30]. MVNOs can be involved in cellular operations
to varying degrees, ranging from fully offloading to MNOs to
operating their own core networks.
Identity-based services: These are services whose correct
execution depends on the user’s identity. An example of
such services is lawful interception, a function that allows
law enforcement agencies to selectively wiretap individual
users [3, 4, 39]. In most countries, operators are legally re-
quired to support lawful interception. Additional examples
of identity-based services include: (i) post-pay, which relies
on identity-based accounting to charge a user based on her
service consumption; (ii) QoS prioritization, where the net-
work’s treatment of a user’s traffic depends on details of the
user’s subscription plan and past usage; (iii) deep packet in-
spection (DPI), where traffic is filtered based on the user’s
identity for purposes such as parental controls.
Location privacy in cellular networks: Location privacy, as
defined in [17], is “the ability to prevent other parties from
learning one’s current or past locations”. In the cellular con-
text, this means that neither MVNOs nor MNOs should be
able to learn a particular user’s current or past locations. The
exception is when location information must be revealed for
legal purposes like emergency services and forensics.

1622 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Approach and Design Rationale
In this section, we briefly discuss the goals and assumptions
that motivate LOCA’s approach.

3.1 System Assumptions and Threat Model
System model: LOCA assumes a broker-centric architec-
ture like today’s MVNOs. This architecture involves three
entities: (i) users, (ii) brokers, and (iii) operators. Operators
own and operate cellular infrastructure. Brokers act as inter-
mediaries between users and operators: a user subscribes to
services from her broker, and the broker represents the user to
operators, including handling settlements with each. LOCA
requires brokers to authenticate their users.3 The user need
not be aware of the specific operator her device is attached to.
Threat model: We adopt a common threat model among
privacy preserving systems that seek to prevent inadvertent
information leakage between participants [25, 34, 54, 61, 79].
We assume brokers and operators are semi-honest (i.e., honest-
but-curious) and non-colluding: they follow the protocol but
will attempt to extract user location information from the pro-
tocol execution, and that brokers and operators do not collude.
We also assume that operators may attempt to overbill bro-
kers by lying about session usages or what users they serve4.
Attacks based on out-of-protocol information or collusion are
out of scope but discussed in §5.
Incentives: One might ask why brokers and operators would
implement the changes we propose. We believe that adopting
our system is beneficial to them for both financial and legal
reasons: as users are becoming more privacy-conscious [50,
74,104], brokers that offer an opt-in location-oblivious service
will be more attractive to customers. Second, doing so may
soon become mandatory: regulations like GDPR recommend
the privacy-by-design approach, which continues to place
increasingly strong requirements on manipulating PII [16, 98,
107,108]. By implementing a design such as ours, brokers and
operators reduce their risk of inadvertently infringing privacy
regulations. We explicitly assume that these benefits will
outweigh the benefits of selling location data or implementing
ad-hoc approaches to enforcing regulations, and thus we focus
on the technical feasibility of a location-oblivious cellular
architecture that also supports operational goals like usage-
based billing and customized service levels.

3.2 Goals
Consider a user U, operator O, and broker B. We say that U’s
location privacy is violated when O and/or B know both U’s

3For MVNOs who by default offload all cellular operations, they can still
support LOCA users by deploying their own authentication servers.

4One might ask whether we need to protect against over-billing if the
operator is semi-honest. The reason we do so is because, as we’ll see, once
we have privacy, it becomes much easier for an operator to overbill since
the broker cannot tell which users were serviced by the operator and hence
cannot check the operator’s billing claims. Hence, an operator can follow the
protocol and yet overbill with impunity. To avoid this, we assume operators
may overbill and design our protocol to prevent this.

Arch Operator (O) Broker (B) ID-based SVC
Today UID, Location, Trajectory UID, OID Full
PGPP Location, Trajectory OID Partial
LOCA Location UID Full

Table 1: Comparison of today’s MVNO architecture, PGPP and
LOCA in terms of information revealed to participants and support
for identity-based services (ID-based SVC); U/OID: U/O’s identity.

identity and location. Today’s cellular protocol trivially re-
veals both U’s identity and her location. By protocol we mean
the messages – their syntax and semantics – exchanged be-
tween U, B, and O as defined by the standard. Today, protocol
messages carry U’s identity, and the identity of the tower that
U attaches to reveals U’s location. Hence simply implement-
ing the protocol allows an operator to track U’s location with
no special effort. In contrast, we are interested in modifying
the existing cellular protocol standard to protect user privacy.
3.3 Approach
In research, the state of the art is the recently proposed PGPP
protocol [86] which tries to provide location privacy by hiding
U’s identity from O and B. In PGPP, users are identified by
a “blindly signed token” [23, 78] which they obtain during
a registration phase prior to consuming service.5 I.e., a user
prepays for a certain quota of service (e.g., some number
of minutes of connectivity at a specified data rate) and in
return obtains a blindly-signed token. When connecting to
the network, the user presents this token via which the broker
can authenticate the user without learning her identity.

To our knowledge, PGPP is the first system that tries to pro-
vide location privacy for cellular users. However, as we detail
in §8, PGPP faces two drawbacks. First, PGPP does not easily
allow operators to support identity-based services, which are
widely deployed in today’s networks. Second, a user’s trajec-
tory across towers is still visible to operators and hence the
protocol is vulnerable to “trajectory-based location leakage”
in which the operator can learn the user’s identity by corre-
lating her trajectory with other out-of-band information.6 In
designing LOCA, we wished to avoid these limitations which,
as we will see, leads to an altogether different approach.

In summary, our goal in LOCA is to design a cellular pro-
tocol that protects the location privacy of users by achieving
the following properties: no party in the protocol (broker,
or operator) should simultaneously know both the identity
and the location of a user; the protocol should also not re-
veal the user’s trajectory to either broker or operator. Finally,
the protocol should support identity-based services includ-
ing post-pay and lawful intercept. In this work, we propose
LOCA, a new cellular protocol that achieves these stronger
privacy guarantees while supporting identity-based services.

We briefly comment on the scope and limitations of LOCA

5Such a token is blindly signed by the broker who can later verify the
signature without being able to link it back to the original signing request.

6For example, consider a user that regularly travels between their home
and office location: the operator could narrow down the identity of the user
by correlating this trajectory with residential information in billing records.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1623

as presented in this paper. Our goal is to safeguard users’
location privacy at the protocol layer. This raises the bar
relative to today’s protocols but isn’t sufficient to safeguard
against violations that might occur outside the protocol, at
other layers. For example: at the application layer, a user’s
identity might be revealed by inspecting their packets [14,
88], or physical-layer characteristics (e.g., signal patterns)
might be exploited to track a specific device [33, 47]. Such
attacks are possible but (to our knowledge) not exploited today.
However, if cellular protocols evolve to protect privacy, such
app/physical layer leakages could become a more important
issue. Fortunately, the research literature provides solutions
to such attacks [43, 56, 60, 103, 110, 114] that we believe
can coexist with protocol-layer solutions like LOCA. We
elaborate on this in §5.2 but leave an in-depth exploration to
future work.

There is an obvious tension between guaranteeing location
privacy and offering identity-based services: connecting to a
cellular tower fundamentally reveals a user’s location, while
customizing service to a user requires knowing the user’s
identity. Our insight is that we can extend broker-centric ar-
chitectures to create a situation in which the broker knows
the user’s identity but not their location, while the operator
knows the user’s location but not their identity; neither broker
nor operator knows the user’s trajectory.

How do we achieve this? First, to hide U’s location from B,
we hide the identity and location of the operator O from B.
Recall that U attaches to the network (and hence to B) via O’s
infrastructure and hence, if B cannot tell where O is located,
then it cannot tell where U is located either. Hiding O’s loca-
tion is not sufficient: we must also hide O’s identity from B,
as knowing O’s identity might be sufficient to narrow down
O’s location (and hence U’s location). An operator’s tower lo-
cations are public knowledge and, moreover, we’re seeing an
increasing deployment of small-scale cellular networks due
to the emergence of private and enterprise 5G networks, as
well as various forms of community networks [13, 38, 52, 97].

As we will describe in §4, we hide O’s identity from B by
having O obtain an unlinkable token from B during an offline
registration process.7 O later uses this token (denoted Ô) as its
identifier when interacting with B. By the properties of blind
signatures, B can verify that Ô is a pre-authorized operator
but cannot link Ô to O. In addition, O hides its IP address
from B by using anonymous communication solutions.

The above suffices to hide U’s location from B. The other
half of our arrangement is to hide U’s identity from O. This
is easily achieved since O does not need to know U’s identity
to service U; since B knows U’s identity, B can tell O what
services are required (rate limits, filtering rules, etc.) thus en-
abling identity-based services without revealing U’s identity.
Thus, U simply uses a temporary pseudonym (denoted Û) in
her interactions with O. Finally, by periodically changing U’s

7The use of such a token is similar to PGPP but used by O instead of U
which we will see leads to a very different set of considerations.

Ô

U

O

Û
Anonymous comm.

Ô Unlinkable token

Temporary identifierÛ

B

(4) Settlement

(1) Registration
(3) Reporting

(2) Attachment

(2) Attachment

(3) Reporting

(1) Registration

Figure 2: An overview of LOCA’s protocols.

temporary pseudonym and randomizing attachment timing,
we limit O’s ability to track a particular user’s trajectory.

As summarized in Table 1, the above approach offers U
location privacy while still supporting identity-based services.
However it gives rise to a new challenge: how does O receive
payment for its services to U? In today’s architecture, B di-
rectly settles with O based on the service that U received. We
wish to preserve this direct billing system between O and
B. Yet, our protocol intentionally hides O’s identity from B.
To address this issue, we devise a solution that allows O to
reveal its true identity only when claiming payment from B.
Our solution leverages zk-proof techniques to design a novel
aggregate claiming procedure via which (i) O claims payment
for an aggregate of the user sessions it has serviced, and (ii)
B can verify the correctness of O’s claim without revealing
the identity of the users that O serviced.

4 Design
At a high level, the process of obtaining cellular services can
be broken down into four phases or steps: (i) registration,
during which the various parties (U, B, O) enter into pairwise
contractual relationships: U signs up with B for service, and B
with O as an operator for its users; (ii) attachment involves the
protocol by which U discovers and connects to a tower in O’s
infrastructure, (iii) mobility involves the handover protocols
via which U is migrated from one tower to another as needed,
and (iv) settlement refers to the norms and processes via which
B pays O for the service that O has provided B’s users.

Of the above, attachment and mobility are defined by to-
day’s 3GPP standard while registration and settlement are
out-of-band processes. Our goal is to implement LOCA with
minimal disruptions to today’s protocols, and without involv-
ing any new entities in the registration or settlements process.

Next, we describe LOCA’s operation in these phases, an
overview of which is given in Fig. 2.We briefly summarize
how each phase is typically implemented in today’s networks
and then present the changes that LOCA introduces. Finally,
we elaborate on how identity-based services work in LOCA.

4.1 Registration

Today: In today’s networks, when U signs up with a broker
B, they exchange shared secret keys (SSKs) that will be used
for mutual authentication during the attachment process. In
5G, B also shares its public key (PKB) with U so that U can
encrypt her identity in later attachment requests.

1624 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

③ Û, Ô

Anonymous comm.

Temporary identifierÛ

① H(Ô) ⑤ ID-SVC

ID-SVC Params for ID-based service

<U, H(Ô)>

En/decryption

Ô Unlinkable token

match

Authentication

④ Û, Ô

look-up

② Û <U, H(Ô), nonce>

⇒

⇒

⇒

/⇒

Figure 3: LOCA’s attachment procedure.

LOCA: With LOCA, B and U continue to exchange PKB and
SSK. Like today, these keys will be used for mutual authenti-
cation between U and B (§4.2) and to hide U’s identity from
O. The main change LOCA introduces is in the registration
process between B and O. When B and O sign up with each
other, LOCA requires that they participate in a blind signature
protocol [23, 78] as a result of which O obtains unlinkable
tokens (denoted as Ô) that are blind-signed by B. When Ô
is later presented to B, the blinding process ensures that B
can verify the signature but cannot link Ô to O. Thus blind
tokens allow B to authenticate O without learning O’s identity.
LOCA uses a standard blind-signing protocol [23] (summa-
rized in Appendix A). In addition to blind tokens, B and O
also exchange a shared hash function H that will be used in
our attachment and settlement processes as described later.
4.2 Attachment
Today: Attachment today involves three main steps. First,
O broadcasts its identity on the radio control channel that U
listens on to discover O. Next, after discovering O, U sends
an attachment request to O who forwards the request to B for
authentication. In 5G, U uses an encrypted identifier (termed
SUCI [2]) in this attachment request. Finally, once U has
been authenticated, B responds to O authorizing service. B’s
response includes U’s permanent identifier (termed SUPI [5]).

Thus today’s attachment process reveals O’s identity to U
in the first step. In the second step, B learns O’s identity (and
hence U’s location) from both the contents of the attachment
request and the act of receiving it from O (which reveals O’s
IP address). Finally, O learns U’s identity via the authorization
response it receives from B.8 Thus today’s attachment reveals
U’s identity and location to both B and O.
LOCA: We describe LOCA’s attachment process with an
emphasis on how we prevent (i) B from learning O’s identity
and (ii) O from learning U’s identity. As mentioned in §3.3,
we achieve the former by having O interact with B as Ô (O’s
unlinkable tokens) via anonymous communication channels.
LOCA achieves (ii) by encrypting U’s identity (with PKB) and
never exposing it outside of B. As shown in Fig. 3, LOCA’s
attachment process consists of the following five steps.
(i) Operator discovery. Instead of its actual identity, O broad-
casts the hash of its token (i.e., H(Ô)) on the control channel.
(ii) User preparation. U sends an attachment request to O
(formatted as a NAS message [7]). This request includes B’s

8Prior to 5G, U’s permanent identifier (IMSI) was included in the initial
attachment request, allowing O to directly discover U’s identity. Since 5G,
U’s attachment request uses an encrypted temporary identifier over the air to
defend against IMSI catchers [93]. Nonetheless, O still learns U’s permanent
(SUPI) identifier from B’s authorization response (step 3).

identity, U’s identity (IMSI) plus a nonce, and H(Ô). The last
two – (IMSI+nonce) and H(Ô) – are encrypted by B’s public
key and serve as a temporary identifier for U which we denote
as Û . We assume that B has a large user group so that its
identity leaks little information on U’s identity. The nonce
ensures that Û is different every time U attaches to the same
O which helps prevent O from tracking U’s trajectory (§4.3).
(iii) Operator preparation. On receiving U’s attachment re-
quest, O forwards the request to B over an anonymous com-
munication channel and uses its unlinkable token Ô to identify
itself. Typical solutions for anonymous communication are
Tor [99] and VPN [80] with different performance/security
trade-offs, which we will discuss in §6.3. This anonymous
channel can be set up offline, prior to attachment, whenever
O changes token Ô. Thus B does not see O’s true identity nor
the IP address from which Ô sends the request. The latter is
necessary as several studies have shown that IP addresses can
often be geo-located with high accuracy [26].
(iv) Broker authorization. On receiving the attachment re-
quest, B first verifies the Ô token thus ensuring that the re-
quest comes from an operator that B has previously authorized
during the registration phase. Next B decrypts the request,
and authenticates U via today’s challenge-response protocol
based on the shared secret key SSK [6]. In addition, B veri-
fies that Ô is indeed the operator to which U wants to attach;
B can verify this by validating H(Ô) (using the shared hash
function established when O registered with B) and thus pre-
vents replay or hijacking attacks. Once B has authenticated
and verified the request, it looks up the parameters associated
with U’s service plan (as today): e.g., rate limits, QoS param-
eters, whether to intercept U’s traffic, and so forth. B then
crafts a response authorizing the attachment (including the
proper service parameters, security parameters that allow U
to authenticate the network, etc), signs it, and returns it to Ô.
(v) Access attachment. B’s response authorizes Ô to service
U as per the parameters from B. Beyond this point, Ô (i.e.,
O) serves U as in today’s networks. We elaborate on how
O provides identity-based services to U in §4.4. Note that
O can still perform functions like establishing radio bearers
that require binding U’s identifier to temporary identifiers like
GUTI and RNTI; O simply uses Û instead of U.
4.3 Mobility
Today: In current networks, mobility is implemented via a
handover process, where O initiates U’s migrations by direct-
ing U to switch from a tower T1 to another T2. This approach
ensures a seamless mobility experience for U because U’s IP
address remains unchanged after the migration. However, as
O initiates U’s migrations, O trivially observes U’s trajectory
across handovers, jeopardizing U’s location privacy.
LOCA: Trajectory leakages are inevitable if O fully controls
U’s mobility like today: although LOCA already hides U’s
identity from O during attachments, O can still track Û’s
trajectory and use that to infer U’s identity, making LOCA
vulnerable to trajectory analysis. To mitigate this fundamental

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1625

issue, we leverage a user-driven mobility approach proposed
in [77]. In this approach, U initiates migrations across towers
by simply detaching from T1 and then attaching to T2. U then
relies on modern transport protocols like MPTCP [82] and
QUIC [71] to maintain connections despite changing IP ad-
dresses. Prior work has shown that this user-driven approach
does not degrade service even when reattaching on a per-
tower basis [77]. LOCA adopts and extends this approach to
minimize trajectory leakages with two techniques: (i) periodic
reattachment and (ii) randomized attachment timings.

First, U will detach and reattach periodically (not at every
tower) with a new temporary identifier. Thus, O cannot triv-
ially track U across new sessions based on U’s identifiers.
The reattachment frequency is a configurable parameter that
bounds the length of U’s trajectory that is visible to O where
length might be measured in time (e.g., valuable for a mostly
stationary user), in towers, or some combination thereof.

Even with periodic reattachment, O may still attempt to
infer U’s trajectory by doing a timing analysis over her de-
tach and attach events. In particular, such analysis would be
effective in a naive implementation that uses a fixed interval
between when U detaches from T1 and subsequently attaches
to T2. To address this issue, we have U wait for a randomized
but bounded duration of time before issuing her attachment.
When possible, we can also leverage make-before-break at-
tachments9 in which U may attach to T2 before detaching
from T1 thus increasing the time window over which U can
randomize their attach/detach events which makes inference
harder. Together with periodic reattachment, this randomiza-
tion of U’s attachment times limits O’s ability to correctly
infer U’s trajectory, because U’s (re)attachments are obfus-
cated by the periodic (re)attachments from other nearby users.

We recognize that user-driven mobility introduces some
complexity as well as dependencies on newer transport stacks,
however this tradeoff is fundamentally necessary if we are to
prevent trajectory leakages, and supporting these techniques
incurs a minimal impact on the user’s performance (§6.3).
As we will detail in §5.1.3, the obfuscation effect of our ap-
proach depends on the specific configurations, i.e., reattach-
ment frequency and attachment time window; as well as the
deployment scenarios, i.e., the number of nearby users and
the length of U’s trajectory. Overall, under realistic deploy-
ment scenarios and configurations, the probability that O can
correctly infer U’s trajectory is negligible.

4.4 Identity-based Services
LOCA ensures that operators and brokers can continue to pro-
vide critical identity-based services, including allowing law
enforcement agencies to locate specific users when required.

The key reason LOCA can support identity-based services
is that brokers continue to know the identity of their users.
This enables B and O to collaborate on identity-based services.

9The support for make-before-break, so-called dual active protocol stack
(DAPS) handovers has been introduced in 5G 3GPP specifications [8,45,95].

For instance, during attachment, B can select the service level
associated with U’s plan and indicate that to O in its autho-
rization response – e.g., via the QoS Class Identifier (QCI)
parameter [109]. O then simply enforces the QCI for the dura-
tion of its session with Û without knowing U’s true identity.

To realize services such as lawful interception, law enforce-
ment agencies work with B and O. As today, O runs a lawful
interception (LI) system — e.g., installing an interception
gateway [96]. A law enforcement agency notifies B of the
user whose communication it wants to intercept. B passes on
this notification to O during the attachment process, and then
O’s LI systems report the required information to the agency.

Emergency services (e.g., 911 calls) work in a similar man-
ner. A law enforcement agency knows U’s identity and needs
to learn U’s location. The agency reaches out to B; B looks
up U’s current temporary identifier Û , and asks Ô (via their
anonymous communication channel) to reveal Û’s location
to law enforcement. Thus, the agency can collect U’s current
location without violating LOCA’s privacy guarantees (i.e., O
does not know U’s identity while B does not know O’s iden-
tity or location). The same approach can be used to recover
U’s past locations based on the records logged at B and O.

4.5 Settlements

Today: In today’s MVNO networks, B pays O based on U’s
service parameters and the resources consumed, as reported
by O to B.While differing in the details, existing settlement
processes all require that B knows which users/sessions were
serviced by O, thus potentially violating user location privacy.
LOCA: To settle O’s payments while preserving U’s location
privacy, LOCA’s settlement process contains two phases: a
reporting phase, where U and O report session usage to B;
and a claiming phase, where O claims settlement from B.
Reporting phase: In LOCA, we define a session as the user-
operator association that starts when U completes the attach-
ment process with Ô and ends when U detaches from the same.
At some point after a session ends, U and Ô independently
send traffic reports to B. Note that O continues to hide its
identity and location when sending its report to B. U reveals
its identity to B but also sends its reports over an anonymous
channel because its IP address can reveal its whereabouts.
The traffic report from U lists the sessions in which U partici-
pated; Ô does the same for its sessions. Each entry in the list
contains a session identifier (SID), usage metrics (e.g., bytes,
duration), and QoS metrics (e.g., packet loss rate). In addition,
O appends a nonce to each session in its report. These nonces
are generated from the shared hash function H known to both
O and B, and taking secret inputs that are only known to O.
We call these inputs “embedded secrets”, and as we will see,
O later uses these secrets to claim its settlement from B.

B then compares the reports from U and Ô, generates bills
for U and publishes a session table to start the claiming phase.
The table includes the usage calculated based on the reports
from Ô and U, for all sessions during the last billing cycle.

1626 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

O: operator, B: broker; 𝑭: claiming function
Procedures:
 Setup:

1. B performs (PK, VK) = VerifierSetup(𝑭)

2. B keeps verifier key VK and sends the prover
key PK to O

 Per billing cycle:
3. B publishes a session table ST
4. O generates (z, 𝝅) = VCProve(F, ST, Secrets, PK)
5. B verify the claim (z, 𝝅) with VCVerify(ST, z, 𝝅)

ZK-Proof-based Verifiable Computation:
VerifierSetup(F)

- B compiles 𝑭 into an arithmetic circuit C
- B performs zk-SNARK preprocessing on C,

generates PK and VK, and returns (PK, VK)
VCProve(F, x, w, PK)

- O computes z = 𝑭 (x, w)
- O uses zk-SNARK to generate a ZK-proof 𝝅

based on (x, z) as the primary input, w as the
witness, using PK, and returns (z, 𝝅)

VCVerify(x, z, proof, VK)
- B uses zk-SNARK to verify the proof with (x, z)

as the primary input, using VK

LOCA: Aggregate Claiming Protocol

Figure 4: A summary of the aggregate claiming protocol.

When generating statistics in the session table, B can consider
factors other than reported usages such as QoS metrics.
Claiming phase: Every billing cycle, O reveals its identity
and claims settlement from B but does so without revealing
which sessions O has serviced. To achieve this, we must
solve three problems: (i) No over-claims. How does B verify
that O is claiming only the sessions O actually serviced?
(ii) No mis-claims. How do we ensure that O can claim the
sessions but no one else? (iii) Session oblivious. How does
O claim settlement without revealing to B which sessions it
is claiming? We combine zero-knowledge proofs with the
above mentioned “embedded secrets” to address (i) and (ii);
and “aggregate” claims to address (iii).

Embedded secrets serve as the basis for O proving its ses-
sion ownership to B. However, naively having O reveal its
secrets fails the session oblivious requirement because B now
knows what users O has serviced. This leads to our aggregate
claiming protocol that fulfills all three requirements:
Aggregate claiming with ZK-proof: First, we observe that
in order to generate O’s payments, B does not need to know
individual session ownership; instead, it only needs to know
the session ownership in aggregation, i.e., the aggregate us-
ages for payments for a specific O. Based on this insight, our
aggregate claiming mechanism works as follows: the claim-
ing begins with B publishing a session table readable to all
Os. O then reveals its identity and claims its payment from B:

Intuitively, O’s claim takes the form: “I have sessions that
add up to X bytes.” Because the number of different sessions
that could add up to X is large, it is difficult for B to infer
whether an individual session is part of O’s claim or not, thus
obfuscating the session ownership. In §5.1.2, we show that the
expected number of session combinations that add up to the
same X grows exponentially w.r.t. the total number of sessions
in the table via both theoretical and empirical analysis.

Note that this naive aggregate claiming suffices if we as-

sume O will not overbill B. However, it is important to realize
that without additional mechanisms (like the zk-proof that fol-
lows), O can more easily overbill B without being detected in
LOCA than in today’s (non-privacy preserving) architecture
simply because B does not know what users O serves.

Hence, since naive aggregate claiming allows O to overbill,
we extend our solution such that O can prove its claim by
showing that O knows the embedded secrets corresponding
to its claim. For this, we leverage proof-based verifiable com-
putation [102], a cryptographic tool that uses zero-knowledge
proof to enable one party to prove to another that it has run
a computation z = f (x,w), where f is the function, x is the
public input, w is the prover’s private input and z is the out-
put, without revealing any information about w. Proof-based
verifiable computation systems have two components: (i) a
zk-SNARK backend [84] that proves and verifies satisfiabil-
ity of arithmetic circuits, and (ii) a compiler frontend that
translates program executions to arithmetic circuits. Such an
arithmetic circuit is also referred to as “a set of constraints”.

Fig. 4 describes LOCA’s aggregate claiming protocol. First,
B performs VerifierSetup, where B compiles a claiming func-
tion F into an arithmetic circuit, and uses zk-SNARK to pre-
process the circuit and generate prover key PK and verifier
key V K. This verifier setup step needs to be performed only
once, after which B keeps V K and sends PK to each partici-
pating O. The claiming function F takes two inputs: a session
table with at most N sessions as the public input, and a set
of (at most K) secrets as the private inputs. F computes the
hashes of the provided secrets, iterates all the sessions in the
session table, adds a session’s usage to the aggregate usage
if one of the precomputed hashes matches the nonce of that
session, and finally returns the aggregate usage.

Next, once per billing cycle, each O performs VCProve,
which involves two steps: (i) O executes the claiming func-
tion F with the session table and its embedded secrets, which
returns the aggregate usage z for O’s sessions. (ii) O passes to
zk-SNARK the session table, its secrets, the computed aggre-
gate z and the prover key PK, to generate a zero-knowledge
proof π, which allows O to prove to B that it has secrets for
sessions that add up to z, without leaking any information
about individual session ownership. O then sends a claim
including the aggregate usage z and proof π to B.

For each O’s claim, B performs VCVerify, where B uses
zk-SNARK to verify the proof π with the session table, the
claimed aggregate z and the verifier key V K. If the verification
passes, given the soundness property of the zk-SNARK proof
system [84], B can confidently approve O’s claim and generate
O’s payment according to the claimed aggregate usage and
other factors such as O’s reputation. The duration of a billing
cycle is configurable: longer cycles lead to larger session
tables, which in turn indicates stronger privacy protections
(§5.1.2) at the cost of more expensive operations (§6.2).
Session group: The design presented above assumes a single
session per token, which may not scale to large deployments:

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1627

O generates a proof every billing cycle, and proving with zk-
SNARK is expensive [111]. In our setup, as we will show in
§6.2, the time complexity to prove a circuit for the claiming
function F is O(K∗N), where K is the maximum number of
sessions O can claim and N the total number of sessions in
the session table. Such proving time would be prohibitively
long when there are a large number of sessions to claim.

To address this scalability challenge, we introduce the no-
tion of a session group, which includes all the sessions that
are associated with the same unlinkable token. By grouping
multiple sessions into a single session group, we can reduce
the number of entries in the session table. To support session
groups, we made the following extensions to our protocol:

• Attachment: We allow O to use a single token and the
corresponding anonymous communication channel for mul-
tiple sessions as the same session group.

• Reporting: We allow O to send a traffic report containing
all the sessions of the session group.

• Claiming: We allow B to publish a session group table
with one session group for each row. O claims session
groups the same way as it claims sessions before.

The size of the session group is tunable in LOCA and de-
termines how many sessions each token is used for. Tuning
the group size allows LOCA to explicitly trade off between
privacy and scalability: (i) a smaller session group is better
for privacy, because it minimizes indirect location leakages
(detailed in §5.3), which occur when a user of a session within
a session group has her locations leaked, in which case users
of other sessions within the group also suffer a privacy loss;
(ii) larger session groups are desirable in terms of scalabil-
ity of zk-SNARK, as it takes longer to actually generate a
session group (with users’ attachment), while proving cost
remains the same, as N is the same, so zk-SNARK proving
becomes relatively faster. Fortunately, modern zk-SNARK is
fast enough that a balance between privacy and scalability can
be achieved: as we will show in our evaluation (§6.2), LOCA
can scale to large deployments with sufficiently small session
groups and thus introduces only minimal privacy loss.

5 Privacy Analysis

Safeguarding location privacy requires fulfilling three proper-
ties: (i) O does not knows U’s identity, (ii) B does not know
U’s location, and (iii) neither B nor O knows U’s trajectories.
To our knowledge, LOCA is the first protocol to meet these
requirements. In this section, we analyze the conditions and
assumptions under which LOCA meets these requirements.
We show that LOCA achieves all three properties under the as-
sumptions of our threat model which are that participants are
semi-honest and do not collude (§5.1). We then briefly con-
sider attacks beyond our threat model and show that LOCA
offers substantial protection even when participants use out-
of-protocol information (§5.2) or collude (§5.3).

5.1 Semi-honest and Non-colluding
We first analyze LOCA’s privacy properties under our threat
model of semi-honest and non-colluding participants (§3.1).

5.1.1 Hiding U’s identity from O
LOCA hides U’s identity from O. Specifically, U’s identity is
encrypted using B’s public key. B is thus the only party that
can decrypt and observe U’s identity in plaintext. B also never
exposes U’s identity to O, even after U successfully attaches.

5.1.2 Hiding U’s location from B
LOCA hides U’s location by (i) hiding O’s identity and loca-
tion when O interacts with B on behalf of U and (ii) hiding
which users were serviced by O when O reveals its identity
to claim its settlement. Next, we show how LOCA achieves
(i) via the security properties of existing cryptographic con-
structs (i.e., anonymous communication and blind signature)
and achieves (ii) via aggregate claiming; we establish the
latter property via formal analysis and empirical simulations.

For (i), LOCA leverages anonymous communication such
that two parties can communicate without revealing their
identities to one another. Similarly, LOCA builds on a blind
signature scheme that allows a participant to authenticate
another without learning its identity. Taken together, these ex-
isting cryptographic constructs allow operators to register and
report sessions to brokers without revealing their identities.

Discussing the security of aggregate claiming requires
more care. We break this process down into two halves (i) the
security of the claiming mechanism itself, (ii) the information
leaked by revealing the aggregate value to B. The former fol-
lows directly from the security of our zero-knowledge proof
construction. We do not discuss this further. Instead, we focus
on the impact of B learning the aggregate value of the claimed
sessions. Specifically, we show that B has an exponentially
small likelihood to correctly infer what sessions/users O has
serviced based on the aggregate value.10Our core intuition
is simple. Let us assume that for N session groups with a
uniform distribution of session group usage from 1 to m, op-
erators will claim the aggregate usage of K session groups,
which sum to aggregate value S. The total number of possible
session group combinations grows exponentially as a function
of N. In contrast, the number of possible claimed values only
grows linearly (m∗N). In expectation, there will consequently
be exponentially many possible session group combinations
that could have summed to S. We formally prove that this
result holds as long as the ratio between K (the number of
session groups belonging to an operator) and the total number
of session groups N falls within a specific range. We identify
this range formally below, and show through simulation that
these bounds can be further improved and are wide enough to
support realistic deployment scenarios.
Theoretical proof: We formulate the aforementioned prob-
lem as follows. Consider arrays X and Y , one of size N −K,

10The general reasoning extends to when B analyzes multiple claims from
different operators but we don’t get into the details in this paper.

1628 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and one of size K, where each cell contains a value from 1 to
m drawn from the discrete uniform distribution. Let S be the
sum of all elements in Y . We derive a bound on the expected
number of possible subsets of elements in X that sum to S.

Theorem 5.1. Considering two independent arrays X and Y ,
consisting of N−K and K iid random variables from U{1,m},
there exists L(m),U(m) such that the expected number of sub-
sets in X, whose sums are equal to the sum of Y , is exponential
w.r.t N, if L(m)≤ K

N ≤U(m). Note that L(m),U(m) depend
on m, and 0 < L(m)≤U(m)< 1, ∀m ∈ Z>0

The proof, at a high level, works by (i) deriving the closed-
form distributions of the sum and the subset sum of an ar-
ray of discrete uniform variables similar to prior theoretical
work [20], (ii) expressing the expected number of matched
subsets with these two closed-form distributions, and finally
(iii) reducing to an exponential lower bound for the expression.
More details of the proof can be found in the appendix.

The reductions in step (iii) are highly conservative. Hence
the proven feasible range of ratio [L(m),U(m)] is narrow, and
the exponential bound is small. We confirm through simula-
tion that this bound holds analytically for a significantly wider
range and encompasses many real-world scenarios:

0.0 0.1 0.2 0.3 0.4 0.5
K/N Ratio

1.0
1.1
1.2
1.3
1.4
1.5
1.6

Ex
po

ne
nt

ia
l B

as
e

Theoretical
Empirical

Figure 5: Exponential bounds for different K/N ratios with m = 5.
Empirical simulations: In these experiments, our goal is to
understand within what range of ratio, the number of matched
subsets grows exponentially w.r.t N. For each ratio K/N, we
scale N while increasing K proportionally according to the
ratio and estimate the expected number of matched subsets
for the (K,N). More details about our simulation setup are in
Appendix B. Now that we have estimates for multiple (K,N)’s
of the ratio K/N, we fit the results with an exponential curve
of N by performing linear fittings on the logs of the estimates:

R = a∗bN → log(R) = log(b)∗N + log(a)
The slope of the fitted linear curve is thus the log of the expo-
nential base. Our fitted linear curves closely match the logs
of estimates with an adjusted R-squared value of over 0.99,
which suggests a significant exponential relation between our
estimates and N. Fig.5 shows the exponential bounds of differ-
ent K/N ratios for uniform distribution with m=5. Compared
with the theoretical results, the empirical results suggest much
larger exponential bounds over a wide range of ratios: expo-
nential base over 1.1 for ratios from 1/150 to over 1/2. We
observe similar behavior with other values of m and with other
non-uniform session group usage distributions.
5.1.3 Hiding U’s trajectory
LOCA hides U’s trajectory from O via (i) periodic reattach-
ment and (ii) randomized attachment timing. The former pre-

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
W/P ratios

1
2
3
4
5
6
7

of

 a
tta

ch
m

en
ts

 (N
)

NU = 300
NU = 100
NU = 40

Figure 6: The longest trajectories beyond which the likelihood of
correct inference is less than 1% for different NUs and W/Ps.

vents O from directly observing U’s trajectory, and the later
makes accurate timing-based trajectory inference infeasible:

With periodic reattachments, O is unaware of which attach-
ments belong to U and hence O can only infer U’s trajectory
by correlating between detachment and subsequent attach-
ment. By randomizing attachment timing, any detachment
that arises within a time window before and after (with make-
before-break handovers) an attachment is equally likely to
correlate with that attachment. We call this set of detachments
“candidate detachments”, and since all users periodically reat-
tach, there is a lower bound on the number of candidate de-
tachments. Lastly, to recover U’s trajectory, O has to select
the correct detachments for all of U’s attachments along the
trajectory, which becomes exponentially harder for longer
trajectories. Modelling all these factors, we can analyze the
difficulty of trajectory inference in LOCA: denoting time win-
dow as W , the reattachment period as P, the number of nearby
users as NU , the number of candidate detachments as ND, the
number of attachments in U’s trajectory as N, we can derive
the likelihood of O correctly inferring the trajectory Prob:

ND ≥ 1+NU ∗ W
P

, Prob ≈ (
1

ND
)N

This formulation tells us why accurate trajectory inference is
infeasible: (i) since Prob decays exponentially w.r.t N, even
with a ND of 2 (only one alternative candidate detachment),
O has a less than 1% likelihood of inferring a trajectory with
more than 6 attachments; (ii) The ratio between the time
window and re-attachment period (i.e., W

P) is configurable, and
a larger ratio increases ND and thus the inference difficulty.
Fig.6 shows the longest trajectories that O can infer with a
likelihood larger than 1% for different NUs and W

P s. For W
P

larger than 0.03, O is unable to infer long trajectories (N > 4),
even if the number of nearby users is small (NU = 40).

We’ve shown that LOCA safeguards user location privacy
at the protocol layer and under the assumptions of our threat
model. We believe this raises the bar relative to the status quo
however, as discussed earlier, LOCA would still be vulnerable
to attacks that exploit either: (i) out-of-protocol information
or (ii) information from other participants via collusion. We
will next discuss such attacks, their impact, and potential mit-
igation strategies, but leave an in-depth study to future work.
5.2 With out-of-protocol information
Next, we show that (i) as a protocol-layer solution, LOCA
does not prevent attacks based on out-of-protocol information,
(ii) the impact of these attacks on LOCA is minimal and, (iii)
mitigation strategies for these attacks can coexist with LOCA.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1629

Attacks: B and O can compromise U’s location privacy by
exploiting out-of-protocol information. Here we enumerate
some attacks that violate each of the three privacy properties:
(i) If O has access to a resident directory near its cell towers,
it can nail U down to a smaller user group. O might also
learn U’s identity by inspecting U’s data traffic. (ii) If B is
capable of network monitoring, it might learn O’s identity by
conducting a traffic analysis, where it observes traffic at each
operator and correlates that with incoming traffic it receives.
(iii) O might track U’s trajectory by profiling U’s physical-
layer characteristics, such as its signal patterns and strengths.
Impact: LOCA’s design limits the impacts of out-of-protocol
attacks on user’s location privacy: (i) Attacks that allow O to
uncover Û’s identity only incur per-hop leakages: U’s identity
remains unknown to O when she reattaches with a different
Û . (ii) Attacks that allow B to uncover Ô’s identity only incur
per-token leakages: O’s identity remains unknown to B when
O switches tokens. This means that locations of users who
are served by O with a different token from the revealed one
remain unknown to B. (iii) Lastly, inter-operator attachments
can minimize impacts of attacks that allow O to track U’s
trajectory. Firstly, instead of having her entire trajectories
leaked, U suffers only per-operator leakages. Secondly, as U
moves in and out of O, it is challenging for O to link all of
U’s trajectories within its footprint, because O is unaware of
U’s locations when U connects to other operators.
Mitigation: LOCA can coexist with countermeasures de-
signed for different out-of-protocol information. For instance,
for attacks based on traffic characteristics, end-to-end encryp-
tions of U’s traffic can help counter packet inspections by O;
and communication systems that are robust to traffic analysis
like Vuvuzela [101] could be adopted for communications
between O and B. For attacks based on physical-layer signals,
one could use defense mechanisms such as randomizing trans-
mission coefficients [89] and injecting artificial noises [56].
5.3 With collusion
In the following, we show that (i) there are forms of collusion
that lead to violations of user location privacy, and (ii) except
for direct collusion between brokers and operators that serve
the user, other forms of collusion only incur minimal leakages.
Attacks: Collusion between B and O reveals both U’s identity
and location. Note that this is the case for any MVNO-based
architecture where B knows U’s identity (for offering identity-
based services) and O knows U’s location (as it provides
connectivity). Therefore, we focus on showing what other
forms of collusion also impair user location privacy. For O,
colluding with participants other than B does not provide it
with extra information on U’s identity or trajectories. For B,
however, it can gain additional knowledge regarding U’s loca-
tion by colluding with (i) other users or (ii) other operators.
The former is due to the use of session groups. Specifically,
B knows that sessions in a session group belong to the same
O, hence that users of these sessions have visited the same
location at a similar time. Therefore, if some users who share

session groups with U reveal their locations to B, then B
knows U’s location via such collusion. We call these “indi-
rect location leakages”. The latter is due to operators sharing
the session table in the claiming phase. Specifically, B now
effectively has a “smaller” session table consisting of only
sessions from non-colluding operators, which is detrimental
to the privacy guarantee provided by aggregate claiming.
Impact & Mitigation: While brokers gain extra user location
information via collusion with other users or operators, the
actual impacts are minimal and can be further reduced with
different mitigation strategies. First, the impact of indirect
location leakages is bounded by the size of session groups,
which in turn depends on how fast the zk-SNARK backend is.
Fortunately, even with a single-core backend, aggregate claim-
ing can scale to large deployments with a session group that
lasts as little as 20 s (§6.2). One could adopt faster backends
like distributed zk-SNARK [111] to further reduce the size
of session groups and hence leakages. Secondly, since the ob-
fuscation effect of aggregate claiming is exponential w.r.t. the
size of the session table (§5.1.2), a smaller table still grants
sufficient protections. One could use a longer billing period
to ensure a large enough session table even with collusion.

6 Implementation and Evaluation
In this section, we present the implementation of our LOCA
prototype (§6.1) and investigate the two key questions regard-
ing the feasibility of LOCA: (i) can LOCA scale to realistic
deployment sizes? and (ii) how much overhead does LOCA
introduce compared to existing cellular protocols? We answer
the first question by performing a scalability analysis of the
privacy building blocks (§6.2); and the second by conducting
a performance analysis with wide-area experiments (§6.3).

6.1 Implementation
We prototyped LOCA as an extension to the CellBricks
system [21] which is itself built from open source cellu-
lar platforms (Magma [41] and srsLTE [92]). We extended
the operator and broker modules with the following: (i) the
token generation and verification procedures implemented
with rsablind [32]; (ii) the anonymous communication chan-
nel between the operator and broker implemented with Tor-
socks [51,99] and NordVPN [80] and (iii) the claiming proce-
dure implemented with Pequin [83,102] that has a single-core
libsnark [69] as the zk-SNARK backend. In total, our exten-
sion includes 478 LoC in C (for claiming), 144 LoC in Go (for
unlinkable token), and 16 LoC shell scripts (for anonymous
communication and various setup). We prototyped LOCA
with these languages as they were used in the original im-
plementations that we extended. We built a testbed with two
x86 machines: one as the user’s device and the other as the
operator’s cell and core. We connect each machine to an SDR
device (USRP B205-mini [40]) for radio connectivity. Lastly,
the broker’s service is deployed on AWS instances [15].

As an opt-in service, LOCA can be incrementally de-
ployed and adopted starting with a small number of LOCA-

1630 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

compatible users, brokers, and operators: users can have par-
tial privacy by signing up with brokers that support LOCA and
by using LOCA-based operators when available and falling
back to legacy ones otherwise. We leave an evaluation of the
privacy benefits under incremental adoption to future work.
6.2 Scaling analysis
LOCA must be able to scale to a large number of operators
serving many users. Therefore, we evaluate whether the three
privacy building blocks that we adopt can scale to large de-
ployments, on the order of today’s large MVNOs.
6.2.1 Blind signature
Blind signatures are used for generating and verifying unlink-
able tokens. We measure a blind signature generation through-
put of 522/sec and a verification throughput of 17202/sec on a
2.6GHz Intel I7-8850H CPU. These single-core throughputs
are significant: generating 50 tokens for 10 operators per sec-
ond. Moreover, brokers can easily achieve higher throughput
with more cores or machines, hence we conclude that scaling
blind signature operations will not be a problem.
6.2.2 Anonymous communication
For anonymous communication schemes in LOCA, an opera-
tor must have sufficient network capacity to send attachment
requests to brokers. We measure the average network through-
put of a Tor circuit to be 4.2 Mbps uplink and 6.1 Mbps down-
link (consistent with Tor’s reports [73]). Such throughput can
support ≈ 400 attachment requests per second. Operators can
easily scale up the throughput by establishing multiple Tor
circuits with the same token. Alternatively, operators can use
other anonymous communication schemes that have higher
network throughput, such as VPNs (§6.3).
6.2.3 Aggregate Claiming with zk-SNARK
zk-SNARK has a long setup and proving time [111]. Given
our aggregate claiming protocol is based on zk-SNARK, we
evaluate whether the protocol can scale to large deployments.
Since the generated keys are reused across billing cycles, zk-
SNARK setup is performed offline only once, which excludes
the setup time from the performance critical path. Hence we
focus on the zk-SNARK proving time, which is invoked by
each operator at every billing cycle to claim its session groups.

As noted in §4.5, LOCA allows claiming sessions in groups
with a configurable size: smaller session groups offer stronger
privacy guarantees as they minimize indirect location leak-
ages. However, due to the slow zk-SNARK proving, operators
may need to use large session groups so that they can claim
session groups faster than the rate of session group creation
and not develop a backlog of unclaimed sessions, at the cost
of some privacy loss. To evaluate the amount of such privacy
loss, we answer the following question: how small can ses-
sion groups be while allowing operators to claim them fast
enough? Specifically, we would like to obtain a lower bound
for the average duration of a session group T 11. As we will

11One can calculate the average number of sessions in a group as T∗r,
where r is the deployment-dependent rate of attachments for an operator.

show next, even a single-core zk-SNARK implementation
is fast enough to support session groups of small T , hence
aggregate claiming will not be a scalability bottleneck.

As noted, we let K represent the maximum number of ses-
sion groups an operator can claim and N represent the maxi-
mum number of session groups in the broker’s session group
table. If we denote P(K,N) as the time it takes for zk-SNARK
to prove the circuit of the claiming function parameterized by
K and N, we have the following lower bound for T :

T ≥ P(K,N)

K
To obtain the lower bound, we evaluate the proving time of
our implementation for the claiming procedure P(K,N). As
mentioned in §4.5, proof-based verifiable computation has a
compiler frontend and a zk-SNARK backend. Therefore, to
evaluate P(K,N), we need to answer two questions: (i) for
a given K and N, how many constraints will the claiming
function be compiled into? and (ii) how long will zk-SNARK
take to prove these circuits of different sizes?

To answer the first question, we compile claiming functions
with different Ks and Ns, and find the following formula that
closely matches the numbers of constraints:

of constraints = K ∗ (128∗N +35394)
Terms in this formula are tied to the logic of the claiming func-
tion. As mentioned in §4.5, the claiming function contains
two steps: (i) calculating hashes of the K provided secrets, and
(ii) iterating through the N rows in the session table, checking
whether the hash matches with one of the K precomputed
hashes and adding it to the aggregate if so. Therefore, step (i)
generates 35394∗K constraints, where 35394 is the number
of constraints for computing a single SHA256 hash, consis-
tent with prior work [65]; step (ii) contains an outer loop of N
and an inner loop of K, which gets unrolled by the compiler
into 128∗K ∗N constraints. Therefore, for a large enough N,
the number of constraints scale almost linearly with K ∗N.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Number of Constraints 1e7

0
200
400
600
800

1000
1200
1400

Pr
ov

e
Ti

m
e

(s
)

Figure 7: Proving time under varied number of constraints.

To answer the second question, we evaluate the proving
time of compiled circuits with different numbers of constraints
with a single-core libsnark backend on a 2.5GHz Intel 8259CL
CPU. As shown in Fig 7, consistent with prior work [84,
111], the proving time increases linearly with the number of
constraints: about 38 seconds per 1 million constraints.

Since we have shown that (i) the number of constraints of
the claiming circuit increases linearly w.r.t K ∗N, and (ii) the
proving time is linear w.r.t the number of constraints, we know
that the zk-SNARK proving time increases linearly w.r.t K ∗N,
i.e., P(K,N) = O(K ∗N). The constant factor c depends on
the specific compiler frontends and zk-SNARK backends. For

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1631

350
390
430
470 LOCA-Tor LOCA-Tor

LOCA-Tor

us-west-1 us-west-2 us-east-1
0

40
80

120
160

BL

BL

BL

CB
CB

CB

LOCA-VPN
LOCA-VPN

LOCA-VPN

A
vg

. L
at

en
cy

 (m
s)

Figure 8: Average attachment latency of Magma baseline (BL),
CellBricks (CB), LOCA-VPN and LOCA-Tor.

our implementations, c ≈ 128∗38 us = 4.894 ms. Therefore,

T ≥ P(K,N)

K
≈ c∗K ∗N

K
= c∗N

This means that the lower bound on the duration of the session
group grows linearly w.r.t. N. As stated earlier, we are mostly
interested in cases of large Ns (i.e., larger numbers of smaller
session groups) as these lead to stronger privacy guarantees
(§5.1.2). Fortunately, even with only the single-core libsnark
backend, the lower bound of T for large N is reasonably small.
As an example, the largest circuit that we evaluated (K=64,
N=4096) has proving time P(64,4096)=1369 s; this trans-
lates to a lower bound of T=P(64,4096)/64=21.4 s. The
asymptotic expression of T = c∗N = 4.864 ms∗4096 ≈ 20 s
matches with the measurement. The gap is due to ignoring
the 35394∗K term, which will reduce as N goes even bigger.

Therefore, with N = 4096, the smallest session group that
a single-core zk-SNARK can support has a duration of 20 s.
This means that users who attach more than 20 s apart cannot
reveal any information about each other’s location, even if one
user’s location were leaked to the broker. We do not evaluate
circuits with more than 35M constraints due to the scaling
limit of the libsnark implementation. Recent work [111] on
distributed zk-SNARK allows faster proving of much larger
circuits, the evaluation of which is left to future work.
6.3 Performance analysis
Lastly, we would like to understand the performance that
users receive with LOCA. Procedures like token generation
and aggregate claiming happen off the critical path of users
receiving services, thus do not affect user experience. Instead,
we focus on the attachment procedure, since LOCA’s attach-
ment is both more complex and more frequent than today’s
protocols. We thus measure the additional latency overhead
that LOCA adds to the attachment procedure.

We replicate the wide-area test setup from CellBricks [77]:
the user equipment and the operator’s cell and cellular core are
always located in our local testbed, and we run experiments
with the subscriber database (in the case of Magma) and the
broker hosted on AWS EC2 [9]. This matches deployment
practice where certain core network components are run in
the carrier’s datacenter. For each setup, we repeat the same
attachment request using different cellular implementations
100 times and report the average performance.

Fig.8 shows the attachment latency after removing the time
spent in lower radio layers (i.e., RRC layer and below) for
different placements of the subscriber database and broker.
We compare four schemes: (i) unmodified Magma (baseline,
denoted BL, that captures today’s cellular architecture), (ii)
CellBricks (denoted CB), LOCA’s attachment protocol with

(iii) VPN (denoted LOCA-VPN) and (iv) Tor (denoted LOCA-
Tor) as the anonymous communication channel.

We make two observations from these results. First, the
choice of anonymous communication scheme introduces a
tradeoff between trust assumptions and attachment latency:
LOCA-VPN requires trusting the VPN provider but achieves
faster attachments than LOCA-Tor. In fact, LOCA-VPN is
only 5 to 15 ms slower than CellBricks and still faster than
today’s attachment (i.e., Magma). The reason we outperform
Magma’s attachment latency is because today’s attachment
procedure requires two round trips to the cloud, while Cell-
Bricks optimized this process to a single round-trip; since we
build on CellBricks, we inherit this performance gain.

Our second observation is that even the slower LOCA-
Tor is sufficiently fast for periodic reattachments: prior work
[77] shows that attachment latencies of up to 500 ms have
a minimal impact on application performance, even when
users reattach on a per-tower basis. Hence LOCA-Tor, with a
constant 400 ms latency due to the overhead of Tor [73], can
support frequent reattachments with minimal disruptions.

7 Discussion
Viewing LOCA as a first step towards privacy-preserving cel-
lular infrastructure, we next discuss two notable areas for im-
provement and potential directions to achieving them: (i) sup-
porting beyond semi-honest and non-colluding participants,
and (ii) improving non-privacy-related aspects of LOCA.
7.1 Beyond semi-honest and non-colluding
As stated in §3.1, there are both financial and legal reasons
for brokers and operators to be semi-honest and not collude.
However, relaxing these assumptions can certainly facilitate
adoption. We next discuss directions towards such relaxation.
Semi-honest: LOCA suffers from privacy leakages in the face
of various active attacks, e.g., those based on out-of-protocol
information (§5.2), which restricts it to semi-honest partici-
pants. We see two orthogonal directions towards supporting
more aggressive participants. First, one could adopt specific
defense mechanisms for different attacks (e.g., traffic analy-
sis, device fingerprinting) that have been proposed in prior
work [43, 56, 60, 103, 110, 114]. LOCA, as a protocol-layer
solution, can coexist with these mechanisms. Second, instead
of averting attacks, one can detect these attacks and punish
the misbehaving participants. The detection mechanism can
involve multiple parties. For instance, operator over-reporting
usage can be detected by brokers cross comparing the oper-
ator’s reports with the ones from users. For the punishment
mechanism, a promising approach is to build up a reputation
system [77], where misbehaviors are factored into partici-
pant’s reputation scores. Participants with poor reputation
then receive degraded treatments: e.g., a broker can decline to
authorize an operator in the registration phase (§4.1). Such an
approach is appealing in the cellular context, where brokers
and operators need to remain operational for long enough to
see a profit, allowing their track records to be built up.

1632 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Non-colluding: As elaborated in §5.3, except for direct collu-
sion between brokers and operators that serve the user, other
forms of collusion only incur minimal leakages in LOCA. An
interesting question is then whether we could relax this re-
quirement of no broker-operator collusion. Intuitively, preserv-
ing location privacy with arbitrary collusion seems unattain-
able: if a broker colludes with all the operators, it easily knows
both the user’s identity and all of her locations. Instead, we be-
lieve it is both feasible and interesting to investigate whether
one could provide partial privacy guarantee if only a subset
of operators collude with brokers. Under such a scenario, the
coverage of non-colluding operators forms a region where
little location information is revealed. Such a region is re-
ferred to as a mix zone and widely studied for location privacy
in non-cellular contexts [17, 18, 53], and future work could
leverage the insights of these work for cellular privacy.

7.2 Beyond privacy
Another area for improvement is the design and evaluation on
non-privacy-related aspects of LOCA, such as performance
and operational support. For performance, in §6.3, we mea-
sure LOCA’s attachment latency to be less than 500 ms even
with slower anonymous communication channel (i.e., Tor),
which was evaluated in [77] to have minimal performance im-
pacts to applications like voice calls, video streaming and web
browsing. It would be interesting to evaluate on more chal-
lenging applications such as video conferencing. Moreover,
besides reducing trajectory leakages (§5.1.3), make-before-
break handovers are expected to have better performance as
well, the evaluation of which in LOCA is left to future work.

For operational support, LOCA supports tasks like identity-
based services by having brokers offload these tasks to autho-
rized but identity unknown operators (§4.4). However, there
might be tasks that require knowledge of the operator’s iden-
tity, such as recording misbehaving operators (for the afore-
mentioned reputation system) and performing on-site inspec-
tions. To support these tasks, one potential approach is to in-
volve a trusted third party when generating unlinkable tokens
(§4.1). The goal is that upon legitimate requests, this third
party can later assist in revealing the operator’s identity for a
token. One promising direction towards achieving this goal is
to extend the registration phase with cryptographic constructs
like secure multi-party computation (MPC) [35, 48, 113].

8 Related Work
Cellular: There has been extensive prior work on mitigating
privacy violations by third parties other than network oper-
ators [11, 46, 58, 63, 68, 87, 93, 94, 100]. Our work instead
focuses on protecting a user’s location privacy from the net-
work operator itself. To our knowledge, PGPP [86] is the only
prior work that systematically studies this issue. As discussed
earlier, PGPP adopts a different approach based on hiding
users’ identities from the network operator, which however
compromises the network’s ability to provide identity-based
services and does not address the issue of trajectory-related

leakages. One advantage of PGPP is higher tolerance for col-
lusions, as it hides user’s identity from both operators and
brokers. However, it also assumes semi-honest participants
who will not actively thwart its privacy mechanisms.

CellBricks [77] is a new cellular architecture that aims to
democratize cellular access by enabling users to easily lever-
age small-scale operators. LOCA borrows the idea of user-
driven mobility, although we use it for privacy reasons while
CellBricks requires it to give users the ability to dynamically
select an operator of their choice. CellBricks does not address
the issue of location privacy and hence is similar to 3GPP
protocols in this regard. In fact, we note that the importance
of hiding O’s identity from B is greater under the CellBricks
vision of larger numbers of smaller-scale operators.
General location privacy: There is extensive prior work
on location privacy in non-cellular contexts [17, 36, 67, 76,
90, 106, 112]. These reveal four general methods for protect-
ing location privacy: (i) regulatory strategies – government
rules to regulate the use of personal information; (ii) privacy
policies – trust-based agreements between individuals and
whoever is receiving their location data; (iii) anonymity – use
a pseudonym and create ambiguity by grouping with other
people. (iv) obfuscation – temporal or spatial degradation
of the location data. Regulatory strategies and privacy poli-
cies are orthogonal to computational countermeasures like
techniques adopted in LOCA. In the cellular context, neither
obfuscation nor anonymity is desirable: obfuscation is not
feasible, because a user’s location data is generated by the in-
frastructure, the temporal or spatial resolution of which is not
determined by the user; anonymity is the approach adopted
by PGPP [86] which, as discussed earlier, compromises on
identity-based services. LOCA exploits the unique role of
brokers and adopts a novel approach to preserving location
privacy while supporting identity-based services. LOCA’s ap-
proach of strategically hiding different pieces of information
from each party has been investigated for preserving privacy
in other contexts as well, such as Apple’s private relay [31].
Applications of LOCA’s privacy building blocks: Blind
signatures have been applied for e-voting [59, 64, 75]. Anony-
mous communication has been used in social networking
and web browsing [44, 55, 99]. Proof-based verifiable com-
putation has been used in outsourced computing [24, 27, 70].
LOCA synthesizes these building blocks to support cellular
procedures like attachment and aggregate claiming.

9 Conclusion
We presented LOCA, a novel cellular architecture that pro-
vides location privacy while supporting identity-based ser-
vices such as usage-based billing, QoS, and lawful intercept.

We view our work as a first step towards enabling privacy-
preserving communication infrastructure and hope that future
work will extend our design to address additional threat mod-
els and reduced overheads, as well as explore the applicability
of LOCA’s design to other access technologies.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1633

References

[1] 3GPP. Lte;telecommunication management;
performance management (pm); performance
measurements evolved universal terrestrial radio
access network (e-utran). Technical Specification (TS)
32.425, 3rd Generation Partnership Project (3GPP), 08
2016. Version 13.5.0.

[2] 3GPP. 5g; security architecture and procedures for 5g
system. Technical Specification (TS) 33.501, 3rd
Generation Partnership Project (3GPP), 10 2018.
Version 15.2.0.

[3] 3GPP. Lawful Interception (LI);Handover interface for
the lawful interception of telecommunications traffic.
https://www.etsi.org/deliver/etsi_es/201600_201699/
201671/03.02.01_50/es_201671v030201m.pdf, 2018.

[4] 3GPP. Lawful interception architecture and functions.
Technical Specification (TS) 33.107, 3rd Generation
Partnership Project (3GPP), 07 2019. Version 15.6.0.

[5] 3GPP. 5g; security architecture and procedures for 5g
system. Technical Specification (TS) 23.501, 3rd
Generation Partnership Project (3GPP), 10 2020.
Version 16.6.0.

[6] 3GPP. Lte; 3gpp system architecture evolution (sae);
security architecture. Technical Specification (TS)
33.401, 3rd Generation Partnership Project (3GPP), 03
2020. Version 15.11.0.

[7] 3GPP. Non-Access Stratum. https://www.3gpp.org/
technologies/keywords-acronyms/96-nas, 2020.

[8] 3GPP. Nr and ng-ran overall description. Technical
Specification (TS) 38.300, 3rd Generation Partnership
Project (3GPP), 07 2020. Version 16.2.0.

[9] Amazon Web Service. Aws ec2 regions.
https://docs.aws.amazon.com/AmazonRDS/latest/
UserGuide/
Concepts.RegionsAndAvailabilityZones.html, 2021.

[10] Apple. Privacy - apple.
https://www.apple.com/privacy/, 2021.

[11] Myrto Arapinis, Loretta Mancini, Eike Ritter, Mark
Ryan, Nico Golde, Kevin Redon, and Ravishankar
Borgaonkar. New privacy issues in mobile telephony:
fix and verification. In Proceedings of the 2012 ACM
conference on Computer and communications
security, pages 205–216, 2012.

[12] Richard Arratia and Louis Gordon. Tutorial on large
deviations for the binomial distribution. Bulletin of
mathematical biology, 51(1):125–131, 1989.

[13] AT&T. AT&T private cellular networks.
https://www.business.att.com/products/att-private-
cellular-networks.html, 2020.

[14] AT&T. Deep packet inspection explained.
https://cybersecurity.att.com/blogs/security-
essentials/what-is-deep-packet-inspection, 2021.

[15] AWS. Amazon ec2 instance types.
https://aws.amazon.com/ec2/instance-types/.

[16] Leda Bargiotti, Inge Gielis, Bram Verdegem, Pieter
Breyne, Francesco Pignatelli, Paul Smits, Ray
Boguslawski, et al. Guidelines for public
administrations on location privacy: European union
location framework. Technical report, Joint Research
Centre (Seville site), 2016.

[17] Alastair R Beresford and Frank Stajano. Location
privacy in pervasive computing. IEEE Pervasive
computing, 2(1):46–55, 2003.

[18] Alastair R Beresford and Frank Stajano. Mix zones:
User privacy in location-aware services. In IEEE
Annual conference on pervasive computing and
communications workshops, 2004. Proceedings of the
Second, pages 127–131. IEEE, 2004.

[19] Naga Bhushan, Junyi Li, Durga Malladi, Rob Gilmore,
Dean Brenner, Aleksandar Damnjanovic, Ravi Teja
Sukhavasi, Chirag Patel, and Stefan Geirhofer.
Network densification: the dominant theme for
wireless evolution into 5g. IEEE Communications
Magazine, 52(2):82–89, 2014.

[20] Camila CS Caiado and Pushpa N Rathie. Polynomial
coefficients and distribution of the sum of discrete
uniform variables. In Eighth Annual Conference of the
Society of Special Functions and their Applications,
Pala, India, Society for Special Functions and their
Applications, 2007.

[21] CellBricks. Cellbricks. https://cellbricks.github.io/,
2021.

[22] Mobile Internet Resource Center. Top pickfeatured
overview: postpaid consumer plans by verizon
(cellular data plans). https:
//www.rvmobileinternet.com/gear/the-verizon-plan/,
2021.

[23] David Chaum. Blind signatures for untraceable
payments. In Advances in cryptology, pages 199–203.
Springer, 1983.

[24] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan,
and Carlos Cid. Multi-client non-interactive verifiable
computation. In Theory of Cryptography Conference,
pages 499–518. Springer, 2013.

1634 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.etsi.org/deliver/etsi_es/201600_201699/201671/03.02.01_50/es_201671v030201m.pdf
https://www.etsi.org/deliver/etsi_es/201600_201699/201671/03.02.01_50/es_201671v030201m.pdf
https://www.3gpp.org/technologies/keywords-acronyms/96-nas
https://www.3gpp.org/technologies/keywords-acronyms/96-nas
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://www.apple.com/privacy/
https://www.business.att.com/products/att-private-cellular-networks.html
https://www.business.att.com/products/att-private-cellular-networks.html
https://cybersecurity.att.com/blogs/security-essentials/what-is-deep-packet-inspection
https://cybersecurity.att.com/blogs/security-essentials/what-is-deep-packet-inspection
https://aws.amazon.com/ec2/instance-types/
https://cellbricks.github.io/
https://www.rvmobileinternet.com/gear/the-verizon-plan/
https://www.rvmobileinternet.com/gear/the-verizon-plan/

[25] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In
Proceedings of IEEE 36th Annual Foundations of
Computer Science, pages 41–50. IEEE, 1995.

[26] Gene Connolly, Anatoly Sachenko, and George
Markowsky. Distributed traceroute approach to
geographically locating ip devices. In Second IEEE
International Workshop on Intelligent Data
Acquisition and Advanced Computing Systems:
Technology and Applications, 2003. Proceedings,
pages 128–131. IEEE, 2003.

[27] Craig Costello, Cédric Fournet, Jon Howell, Markulf
Kohlweiss, Benjamin Kreuter, Michael Naehrig,
Bryan Parno, and Samee Zahur. Geppetto: Versatile
verifiable computation. In 2015 IEEE Symposium on
Security and Privacy, pages 253–270. IEEE, 2015.

[28] Joseph Cox. I gave a bounty hunter $300. then he
located our phone. https://www.vice.com/en/article/
nepxbz/i-gave-a-bounty-hunter-300-dollars-located-
phone-microbilt-zumigo-tmobile, 2019.

[29] Joseph Cox. Stalkers and debt collectors impersonate
cops to trick big telecom into giving them cell phone
location data. https://www.vice.com/en/article/
panvkz/stalkers-debt-collectors-bounty-hunters-
impersonate-cops-phone-location-data, 2019.

[30] Cricket. Cricket wireless.
https://www.cricketwireless.com/, 2021.

[31] Jason Cross. icloud+ private relay faq: Everything you
need to know. https:
//www.macworld.com/article/348965/icloud-plus-
private-relay-safari-vpn-encryption-privacy.html,
2021.

[32] CryptoBallot. Rsa blind signing using a full domain
hash. https://github.com/cryptoballot/rsablind, 2021.

[33] Boris Danev, Davide Zanetti, and Srdjan Capkun. On
physical-layer identification of wireless devices. ACM
Computing Surveys (CSUR), 45(1):1–29, 2012.

[34] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada
Popa, and Ion Stoica. {DORY}: An encrypted search
system with distributed trust. In 14th {USENIX}
Symposium on Operating Systems Design and
Implementation ({OSDI} 20), pages 1101–1119,
2020.

[35] Wenliang Du and Mikhail J Atallah. Secure
multi-party computation problems and their
applications: a review and open problems. In
Proceedings of the 2001 workshop on New security
paradigms, pages 13–22, 2001.

[36] Matt Duckham and Lars Kulik. Location privacy and
location-aware computing. Dynamic & mobile GIS:
investigating change in space and time, 3:35–51,
2006.

[37] Steffen Eger. Stirling’s approximation for central
extended binomial coefficients. The American
Mathematical Monthly, 121(4):344–349, 2014.

[38] Ericsson. Evolving cellular IoT for industry
digitalization.
https://www.ericsson.com/en/internet-of-
tRFWirelessWorldhings/iot-connectivity/cellular-iot,
2020.

[39] ETSI. Lawful intercept ETSI. https:
//www.etsi.org/technologies/lawful-interception,
2020.

[40] Ettus. Usrp b205mini. https:
//www.ettus.com/all-products/usrp-b205mini-i/, 2020.

[41] Facebook. Magma. https://www.magmacore.org/,
2021.

[42] Nour-Eddine Fahssi. Some identities involving
polynomial coefficients. arXiv preprint
arXiv:1507.07968, 2015.

[43] Kassem Fawaz, Kyu-Han Kim, and Kang G Shin.
Protecting privacy of {BLE} device users. In 25th
USENIX Security Symposium (USENIX Security 16),
pages 1205–1221, 2016.

[44] Eran Gabber, Phillip B Gibbons, Yossi Matias, and
Alain Mayer. How to make personalized web
browsing simple, secure, and anonymous. In
International Conference on Financial Cryptography,
pages 17–31. Springer, 1997.

[45] Ruchi Garg. Dual active protocol stack handover (daps
ho). https://www.linkedin.com/pulse/dual-active-
protocol-stack-handover-daps-ho-ruchi-garg/, 2021.

[46] M Køien Geir et al. Privacy enhanced mutual
authentication in lte. In 2013 IEEE 9th International
Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), pages
614–621. IEEE, 2013.

[47] Hadi Givehchian, Nishant Bhaskar, Eliana Rodriguez
Herrera, Héctor Rodrigo López Soto, Christian
Dameff, Dinesh Bharadia, and Aaron Schulman.
Evaluating physical-layer ble location tracking attacks
on mobile devices. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 1690–1704. IEEE,
2022.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1635

https://www.vice.com/en/article/nepxbz/i-gave-a-bounty-hunter-300-dollars-located-phone-microbilt-zumigo-tmobile
https://www.vice.com/en/article/nepxbz/i-gave-a-bounty-hunter-300-dollars-located-phone-microbilt-zumigo-tmobile
https://www.vice.com/en/article/nepxbz/i-gave-a-bounty-hunter-300-dollars-located-phone-microbilt-zumigo-tmobile
https://www.vice.com/en/article/panvkz/stalkers-debt-collectors-bounty-hunters-impersonate-cops-phone-location-data
https://www.vice.com/en/article/panvkz/stalkers-debt-collectors-bounty-hunters-impersonate-cops-phone-location-data
https://www.vice.com/en/article/panvkz/stalkers-debt-collectors-bounty-hunters-impersonate-cops-phone-location-data
https://www.cricketwireless.com/
https://www.macworld.com/article/348965/icloud-plus-private-relay-safari-vpn-encryption-privacy.html
https://www.macworld.com/article/348965/icloud-plus-private-relay-safari-vpn-encryption-privacy.html
https://www.macworld.com/article/348965/icloud-plus-private-relay-safari-vpn-encryption-privacy.html
https://github.com/cryptoballot/rsablind
https://www.ericsson.com/en/internet-of-tRF Wireless Worldhings/iot-connectivity/cellular-iot
https://www.ericsson.com/en/internet-of-tRF Wireless Worldhings/iot-connectivity/cellular-iot
https://www.etsi.org/technologies/lawful-interception
https://www.etsi.org/technologies/lawful-interception
https://www.ettus.com/all-products/usrp-b205mini-i/
https://www.ettus.com/all-products/usrp-b205mini-i/
https://www.magmacore.org/
https://www.linkedin.com/pulse/dual-active-protocol-stack-handover-daps-ho-ruchi-garg/
https://www.linkedin.com/pulse/dual-active-protocol-stack-handover-daps-ho-ruchi-garg/

[48] Oded Goldreich. Secure multi-party computation.
Manuscript. Preliminary version, 78(110), 1998.

[49] Google. Google-Fi. https://fi.google.com/about/,
2021.

[50] Swish Goswami. The rising concern around consumer
data and privacy.
https://www.forbes.com/sites/forbestechcouncil/
2020/12/14/the-rising-concern-around-consumer-
data-and-privacy/?sh=6e6200a6487e, 2020.

[51] David Goulet. Torsocks.
https://github.com/dgoulet/torsocks, 2021.

[52] GSMA. Enabling neutral host: CCS case study.
https://www.gsma.com/futurenetworks/wp-content/
uploads/2018/09/180920-CCS_GSMA_Case_Study-
FINAL_NE-Modelling-removed.pdf, 2020.

[53] Nan Guo, Linya Ma, and Tianhan Gao. Independent
mix zone for location privacy in vehicular networks.
IEEE Access, 6:16842–16850, 2018.

[54] Trinabh Gupta, Natacha Crooks, Whitney Mulhern,
Srinath Setty, Lorenzo Alvisi, and Michael Walfish.
Scalable and private media consumption with popcorn.
In 13th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 16), pages
91–107, 2016.

[55] Nguyen Phong Hoang and Davar Pishva. Anonymous
communication and its importance in social
networking. In 16th International Conference on
Advanced Communication Technology, pages 34–39.
IEEE, 2014.

[56] Jinsong Hu, Shihao Yan, Feng Shu, Jiangzhou Wang,
Jun Li, and Yijin Zhang. Artificial-noise-aided secure
transmission with directional modulation based on
random frequency diverse arrays. IEEE Access,
5:1658–1667, 2017.

[57] Huawei. Huawei privacy.
https://consumer.huawei.com/en/privacy/, 2021.

[58] Syed Hussain, Omar Chowdhury, Shagufta Mehnaz,
and Elisa Bertino. Lteinspector: A systematic
approach for adversarial testing of 4g lte. In Network
and Distributed Systems Security (NDSS) Symposium
2018, 2018.

[59] Subariah Ibrahim, Maznah Kamat, Mazleena Salleh,
and Shah Rizan Abdul Aziz. Secure e-voting with
blind signature. In 4th National Conference of
Telecommunication Technology, 2003. NCTT 2003
Proceedings., pages 193–197. IEEE, 2003.

[60] Marc Juarez, Mohsen Imani, Mike Perry, Claudia
Diaz, and Matthew Wright. Toward an efficient
website fingerprinting defense. In European
Symposium on Research in Computer Security, pages
27–46. Springer, 2016.

[61] Seny Kamara, Payman Mohassel, and Mariana
Raykova. Outsourcing multi-party computation. IACR
Cryptol. Eprint Arch., 2011:272, 2011.

[62] Kate Kaye. The $24 billion data business that telcos
don’t want to talk about.
https://adage.com/article/datadriven-marketing/24-
billion-data-business-telcos-discuss/301058?mod=
article_inline, 2019.

[63] Mohammed Shafiul Alam Khan and Chris J Mitchell.
Trashing imsi catchers in mobile networks. In
Proceedings of the 10th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, pages
207–218, 2017.

[64] Malik Sikandar Hayat Khiyal, Aihab Khan, Saba
Bashir, Farhan Hassan Khan, and Shaista Aman.
Dynamic blind group digital signature scheme in
e-banking. International Journal of Computer and
Electrical Engineering, 3(4):514–519, 2011.

[65] Ahmed Kosba, Charalampos Papamanthou, and Elaine
Shi. xjsnark: A framework for efficient verifiable
computation. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 944–961. IEEE, 2018.

[66] KrebsOnSecurity. Tracking firm locationsmart leaked
location data for customers of all major u.s. mobile
carriers without consent in real time via its web site.
https://krebsonsecurity.com/2018/05/tracking-firm-
locationsmart-leaked-location-data-for-customers-
of-all-major-u-s-mobile-carriers-in-real-time-via-
its-web-site/, 2018.

[67] John Krumm. A survey of computational location
privacy. Personal and Ubiquitous Computing,
13(6):391–399, 2009.

[68] Denis Foo Kune, John Koelndorfer, Nicholas Hopper,
and Yongdae Kim. Location leaks on the gsm air
interface. ISOC NDSS (Feb 2012), 2012.

[69] SCIPR Lab. Libsnark.
https://github.com/scipr-lab/libsnark, 2021.

[70] Junzuo Lai, Robert H Deng, HweeHwa Pang, and Jian
Weng. Verifiable computation on outsourced
encrypted data. In European Symposium on Research
in Computer Security, pages 273–291. Springer, 2014.

1636 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://fi.google.com/about/
https://www.forbes.com/sites/forbestechcouncil/2020/12/14/the-rising-concern-around-consumer-data-and-privacy/?sh=6e6200a6487e
https://www.forbes.com/sites/forbestechcouncil/2020/12/14/the-rising-concern-around-consumer-data-and-privacy/?sh=6e6200a6487e
https://www.forbes.com/sites/forbestechcouncil/2020/12/14/the-rising-concern-around-consumer-data-and-privacy/?sh=6e6200a6487e
https://github.com/dgoulet/torsocks
https://www.gsma.com/futurenetworks/wp-content/uploads/2018/09/180920-CCS_GSMA_Case_Study-FINAL_NE-Modelling-removed.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2018/09/180920-CCS_GSMA_Case_Study-FINAL_NE-Modelling-removed.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2018/09/180920-CCS_GSMA_Case_Study-FINAL_NE-Modelling-removed.pdf
https://consumer.huawei.com/en/privacy/
https://adage.com/article/datadriven-marketing/24-billion-data-business-telcos-discuss/301058?mod=article_inline
https://adage.com/article/datadriven-marketing/24-billion-data-business-telcos-discuss/301058?mod=article_inline
https://adage.com/article/datadriven-marketing/24-billion-data-business-telcos-discuss/301058?mod=article_inline
https://krebsonsecurity.com/2018/05/tracking-firm-locationsmart-leaked-location-data-for-customers-of-all-major-u-s-mobile-carriers-in-real-time-via-its-web-site/
https://krebsonsecurity.com/2018/05/tracking-firm-locationsmart-leaked-location-data-for-customers-of-all-major-u-s-mobile-carriers-in-real-time-via-its-web-site/
https://krebsonsecurity.com/2018/05/tracking-firm-locationsmart-leaked-location-data-for-customers-of-all-major-u-s-mobile-carriers-in-real-time-via-its-web-site/
https://krebsonsecurity.com/2018/05/tracking-firm-locationsmart-leaked-location-data-for-customers-of-all-major-u-s-mobile-carriers-in-real-time-via-its-web-site/
https://github.com/scipr-lab/libsnark

[71] Adam Langley, Alistair Riddoch, Alyssa Wilk,
Antonio Vicente, Charles Krasic, Dan Zhang, Fan
Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar,
et al. The quic transport protocol: Design and
internet-scale deployment. In Proceedings of the
Conference of the ACM Special Interest Group on
Data Communication, pages 183–196, 2017.

[72] Sangwon Lee, Sylvia M Chan-Olmsted, and
Hsiao-Hui Ho. The emergence of mobile virtual
network operators (mvnos): An examination of the
business strategy in the global mvno market. The
International Journal on Media Management,
10(1):10–21, 2008.

[73] Karsten Loesing, Steven J. Murdoch, and Roger
Dingledine. A case study on measuring statistical data
in the Tor anonymity network. In Proceedings of the
Workshop on Ethics in Computer Security Research
(WECSR 2010), LNCS. Springer, January 2010.

[74] Natasha Lomas. Uh oh! european carriers are trying to
get into ‘personalized’ ad targeting.
https://techcrunch.com/2022/06/24/trustpid/, 2022.

[75] Lourdes López-García, Luis J Dominguez Perez, and
Francisco Rodríguez-Henríquez. A pairing-based
blind signature e-voting scheme. The Computer
Journal, 57(10):1460–1471, 2014.

[76] Zhaojun Lu, Gang Qu, and Zhenglin Liu. A survey on
recent advances in vehicular network security, trust,
and privacy. IEEE Transactions on Intelligent
Transportation Systems, 20(2):760–776, 2018.

[77] Zhihong Luo, Silvery Fu, Mark Theis, Shaddi Hasan,
Sylvia Ratnasamy, and Scott Shenker. Democratizing
cellular access with cellbricks. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, pages
626–640, 2021.

[78] Anna Lysyanskaya, Ronald L Rivest, Amit Sahai, and
Stefan Wolf. Pseudonym systems. In International
Workshop on Selected Areas in Cryptography, pages
184–199. Springer, 1999.

[79] Payman Mohassel and Yupeng Zhang. Secureml: A
system for scalable privacy-preserving machine
learning. In 2017 IEEE symposium on security and
privacy (SP), pages 19–38. IEEE, 2017.

[80] NordVPN. NordVPN. https://nordvpn.com, 2021.

[81] OpenCellID. The world’s largest open database of cell
towers. https://www.opencellid.org/, 2021.

[82] Christoph Paasch and Sebastien Barre. Multipath TCP.
https://www.multipath-tcp.org, 2021. Accessed:
2020-04-29.

[83] The Pepper Project. Pequin: An end-to-end toolchain
for verifiable computation, snarks, and probabilistic
proofs. https://github.com/pepper-project/pequin,
2021.

[84] Charles Rackoff and Daniel R Simon. Non-interactive
zero-knowledge proof of knowledge and chosen
ciphertext attack. In Annual International Cryptology
Conference, pages 433–444. Springer, 1991.

[85] Samsung. Samsung’s approach to privacy.
https://www.samsung.com/us/account/our-approach-
to-privacy/, 2021.

[86] Paul Schmitt and Barath Raghavan. Pretty good phone
privacy. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1737–1754, 2021.

[87] Altaf Shaik, Ravishankar Borgaonkar, N Asokan,
Valtteri Niemi, and Jean-Pierre Seifert. Practical
attacks against privacy and availability in 4g/lte
mobile communication systems. arXiv preprint
arXiv:1510.07563, 2015.

[88] Justine Sherry, Chang Lan, Raluca Ada Popa, and
Sylvia Ratnasamy. Blindbox: Deep packet inspection
over encrypted traffic. In Proceedings of the 2015
ACM conference on special interest group on data
communication, pages 213–226, 2015.

[89] Yi-Sheng Shiu, Shih Yu Chang, Hsiao-Chun Wu,
Scott C-H Huang, and Hsiao-Hwa Chen. Physical
layer security in wireless networks: A tutorial. IEEE
wireless Communications, 18(2):66–74, 2011.

[90] Reza Shokri, George Theodorakopoulos, Jean-Yves
Le Boudec, and Jean-Pierre Hubaux. Quantifying
location privacy. In 2011 IEEE symposium on security
and privacy, pages 247–262. IEEE, 2011.

[91] Pham Hai Son, Sudan Jha, Raghvendra Kumar,
Jyotir Moy Chatterjee, et al. Governing mobile virtual
network operators in developing countries. Utilities
Policy, 56:169–180, 2019.

[92] srsRAN. srsLTE: Your own mobile network.
https://www.srslte.com/, 2020.

[93] Daehyun Strobel. Imsi catcher. Chair for
Communication Security, Ruhr-Universität Bochum,
14, 2007.

[94] Keen Sung, Brian Neil Levine, and Marc Liberatore.
Location privacy without carrier cooperation. In IEEE
Workshop on Mobile Security Technologies, MOST,
page 148. Citeseer, 2014.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1637

https://techcrunch.com/2022/06/24/trustpid/
https://nordvpn.com
https://www.opencellid.org/
https://www.multipath-tcp.org
https://github.com/pepper-project/pequin
https://www.samsung.com/us/account/our-approach-to-privacy/
https://www.samsung.com/us/account/our-approach-to-privacy/
https://www.srslte.com/

[95] Techplayon. 5g nr dual active protocol stack (daps)
handover – 3gpp release 16.
https://www.techplayon.com/5g-nr-dual-active-
protocol-stack-daps-handover-3gpp-release-16/,
2020.

[96] TelcoBridges. Lawful intercept solutions.
https://www.telcobridges.com/solutions/operators/
lawful-intercept, 2021.

[97] Telecoms. Neutral host networks and how to support
them. https://telecoms.com/opinion/neutral-host-
networks-and-how-to-support-them/, 2020.

[98] Tessian. 22 biggest gdpr fines of 2019, 2020, and 2021
(so far). https:
//www.tessian.com/blog/biggest-gdpr-fines-2020/,
2021.

[99] Tor. Tor. https://www.torproject.org/, 2021.

[100] Fabian Van Den Broek, Roel Verdult, and Joeri
de Ruiter. Defeating imsi catchers. In Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, pages 340–351, 2015.

[101] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: Scalable private
messaging resistant to traffic analysis. In Proceedings
of the 25th Symposium on Operating Systems
Principles, pages 137–152, 2015.

[102] Riad S Wahby, Srinath TV Setty, Zuocheng Ren,
Andrew J Blumberg, and Michael Walfish. Efficient
ram and control flow in verifiable outsourced
computation. In NDSS, 2015.

[103] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob
Johnson, and Ian Goldberg. Effective attacks and
provable defenses for website fingerprinting. In 23rd
USENIX Security Symposium (USENIX Security 14),
pages 143–157, 2014.

[104] Lance Whitney. Data privacy is a growing concern for
more consumers.
https://www.techrepublic.com/article/data-privacy-
is-a-growing-concern-for-more-consumers/, 2021.

[105] Zack Whittaker. Us cell carriers are selling access to
your real-time phone location data.
https://www.zdnet.com/article/us-cell-carriers-
selling-access-to-real-time-location-data/, 2018.

[106] Björn Wiedersheim, Zhendong Ma, Frank Kargl, and
Panos Papadimitratos. Privacy in inter-vehicular
networks: Why simple pseudonym change is not
enough. In 2010 Seventh international conference on
wireless on-demand network systems and services
(WONS), pages 176–183. IEEE, 2010.

[107] Josephine Wolff and Nicole Atallah. Early gdpr
penalties: Analysis of implementation and fines
through may 2020. Journal of Information Policy,
11:63–103, 2021.

[108] Ben Wolford. What are the gdpr fines?
https://gdpr.eu/fines/, 2021.

[109] RF Wireless World. LTE QoS quality of service, class
identifier(QCI), QoS in LTE. https://www.rfwireless-
world.com/Tutorials/LTE-QoS.html, 2021.

[110] Charles V Wright, Scott E Coull, and Fabian Monrose.
Traffic morphing: An efficient defense against
statistical traffic analysis. In NDSS, volume 9.
Citeseer, 2009.

[111] Howard Wu, Wenting Zheng, Alessandro Chiesa,
Raluca Ada Popa, and Ion Stoica. {DIZK}: A
distributed zero knowledge proof system. In 27th
{USENIX} Security Symposium ({USENIX} Security
18), pages 675–692, 2018.

[112] Hui Zang and Jean Bolot. Anonymization of location
data does not work: A large-scale measurement study.
In Proceedings of the 17th annual international
conference on Mobile computing and networking,
pages 145–156, 2011.

[113] Chuan Zhao, Shengnan Zhao, Minghao Zhao,
Zhenxiang Chen, Chong-Zhi Gao, Hongwei Li, and
Yu-an Tan. Secure multi-party computation: theory,
practice and applications. Information Sciences,
476:357–372, 2019.

[114] Yulong Zou, Jia Zhu, Xianbin Wang, and Victor CM
Leung. Improving physical-layer security in wireless
communications using diversity techniques. IEEE
Network, 29(1):42–48, 2015.

1638 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.techplayon.com/5g-nr-dual-active-protocol-stack-daps-handover-3gpp-release-16/
https://www.techplayon.com/5g-nr-dual-active-protocol-stack-daps-handover-3gpp-release-16/
https://www.telcobridges.com/solutions/operators/lawful-intercept
https://www.telcobridges.com/solutions/operators/lawful-intercept
https://telecoms.com/opinion/neutral-host-networks-and-how-to-support-them/
https://telecoms.com/opinion/neutral-host-networks-and-how-to-support-them/
https://www.tessian.com/blog/biggest-gdpr-fines-2020/
https://www.tessian.com/blog/biggest-gdpr-fines-2020/
https://www.torproject.org/
https://www.techrepublic.com/article/data-privacy-is-a-growing-concern-for-more-consumers/
https://www.techrepublic.com/article/data-privacy-is-a-growing-concern-for-more-consumers/
https://www.zdnet.com/article/us-cell-carriers-selling-access-to-real-time-location-data/
https://www.zdnet.com/article/us-cell-carriers-selling-access-to-real-time-location-data/
https://gdpr.eu/fines/
https://www.rfwireless-world.com/Tutorials/LTE-QoS.html
https://www.rfwireless-world.com/Tutorials/LTE-QoS.html

Appendix

A Unlinkable token

 O: operator, B: broker

 Procedures:
1. B publishes PKB, O generates a nonce 𝜭
2. O sends 𝜭* = blind(𝜭, PKB) to B
3. B signs 𝜭* with PSKB and responds sig𝜭*
4. O validates (sig𝜭*, 𝜭*) with PKB

5. O obtains sig𝜭 = unblind(PKB, sig𝜭*, 𝜭*)
 To authenticate: O sends (sig𝜭, 𝜭) to B

LOCA: Unlinkable Token

Figure 9: A summary of how to generate and use unlinkable tokens.

Fig.9 summarizes how O obtains tokens. The protocol starts with B publishing its public key PKB and O generating a nonce θ

(i.e., the token). To get B blindly-sign the θ, O first blinds θ using PKB and sends the blinded token θ∗ to B, requesting B to sign
the token. O reveals its identity to B who can decide whether to accept this request. Next, B signs θ∗ using its private key PSKB
and returns the blind signature sig∗

θ
to O which O can validate using PKB.

Next, O obtains the unblinded signature of the token using PKB, sig∗
θ
, and θ∗. To authenticate itself to B, O sends θ and the

unblinded signature sigθ to B. B can then verify the token’s authenticity with sigθ as a normal digital signature. Note that B
cannot link θ to O since θ was blindly-signed and never seen by B (only the blinded θ∗ was).
B Aggregate Claiming
Simulation setup: For each ratio K/N, we scale N while increasing K proportionally according to the ratio and estimate the
expected number of matched subsets for the (K,N). For example, for the ratio K/N=1/10, we run experiments for
(K,N)=(1,10),(2,20), ...,(5,50). For each (K,N), we again make the simplification to not consider subsets that contain any of
the K session groups. By doing so, we can independently sample arrays Xs of length (N −K) and Y s of length K, count the
number of subsets in X that have the same sum as Y for each pair of (X ,Y), and report the average of all the pairs as the estimate
for (K,N), denoted as R. To ensure that the estimate is accurate, we use a large number of samples for each (K,N), up to 225 so
that the simulation can finish within a reasonable time frame.
Theoretical proof: For this proof, we make use of polynomial coefficients, also named as extended binomial coefficients, which
are natural extensions of the well-known binomial coefficient. For n,m ∈ Z>0 Polynomial coefficients

(n
k

)
m is the coefficient of

xk in the following expansion:

(1+ x+ ...+ xm)n =
k=mn

∑
k=0

(
n
k

)
m

xk

Note that
(n

k

)
m = 0 for k /∈ {0, ..,mn}. Binomial coefficient is the special case where m = 1. An equivalent definition of

(n
k

)
m is:(

n
k

)
m
= ∑

k0≥0,...,km≥0
k0+...+km=n

0·k0+...+m·km=k

(
n

k0, ...,km

)
(1)

It is known that polynomial coefficients are symmetric:
(n

k

)
m =

(n
mn−k

)
m

, and
(n

k

)
m is a non-decreasing function of k for

0 ≤ k ≤ ⌊mn
2 ⌋ and a non-increasing function for ⌈mn

2 ⌉ ≤ k ≤ mn [42].
Prior work has shown that the sum of N iid random variables from the discrete uniform distribution of {0, ...,m} (U{0,m}),
denoted as SN , has the following closed-form distribution expressed with polynomial coefficients [20]:

P(SN = y) = ∑
a0≥0,...,am≥0
a0+...+am=N

0·a0+...+m·am=y

P(a0, ...,am) (ai stands for the number of elements equal to i)

= ∑
a0≥0,...,am≥0
a0+...+am=N

0·a0+...+m·am=y

(
1

m+1
)N
(

N
a0, ...,am

)
(each element can be putted into bucket i with a likelihood of

1
m+1

)

= (
1

m+1
)N
(

N
y

)
m

(according to definition (1))

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1639

Lemma B.1. The distribution of sums of N iid random variables from U{1,m} has the following closed-form expression:
PN(y) = (1

m)
N
(N

y−N

)
m−1

Proof. The proof is similar to the proof above for sums of N iid random variables from U{0,m}, with some minor adjustment:

PN(y) = ∑
a1≥0,...,am≥0
a1+...+am=N

1·a1+...+m·am=y

(
1
m
)N
(

N
a1, ...,am

)

= ∑
a1≥0,...,am≥0
a1+...+am=N

0·a1+...+(m−1)·am=y−N

(
1
m
)N
(

N
a1, ...,am

)
(align with the format of (1))

= (
1
m
)N
(

N
y−N

)
m−1

(according to definition (1))

Lemma B.2. The distribution of subset sums of N iid random variables from U{1,m} has the following closed-form expression:
QN(y) = (1

2m)
N

∑
N
k=0

(N
k

)
mk

(N−k
y−(N−k)

)
m−1

Proof. Subset sums of U{1,m} can be equivalently treated as sums of elements Xi that has the following distribution:

P(Xi) =


1
2 , if Xi = 0
1

2m , if Xi ∈ {1, ...,m}
0, otherwise

Therefore, we can calculate the probability of a subset sum by multiplying the probability of having different numbers of zeros
with the probability of adding up to the sum with the remaining non-zero elements:

QN(y) =
N

∑
k=0

(
N
k

)
(

1
2
)k

∑
a1≥0,...,am≥0

a1+...+am=N−k
1·a1+...+m·am=y

(
1

2m
)N−k

(
N − k

a1, ...,am

)

=
N

∑
k=0

(
N
k

)
(

1
2
)k

∑
a1≥0,...,am≥0

a1+...+am=N−k
0·a1+...+(m−1)·am=y−(N−k)

(
1

2m
)N−k

(
N − k

a1, ...,am

)
(similar to Lemma B.1)

=
N

∑
k=0

(
N
k

)
(

1
2
)k(

1
2m

)N−k
(

N − k
y− (N − k)

)
m−1

(according to definition (1))

= (
1

2m
)N

N

∑
k=0

(
N
k

)
mk

(
N − k

y− (N − k)

)
m−1

Lemma B.3. Here we define a "head" function H(hN;N, p)(0 ≤ h ≤ 1) and a "tail" function T (tN;N, p)(0 ≤ t ≤ 1), where:

H(hN;N, p) =
hN

∑
k=0

(
N
k

)
pk; T (tN;N, p) =

N

∑
k=tN

(
N
k

)
pk

Then we can prove the following: if h < p
1+p , H(hN;N, p)≤ (bH)

N , with bH < (1+ p). Similarly, if t > p
1+p ,

T (tN;N, p)≤ (bT)
N , with bT < (1+ p).

Proof. Here we show the proof for the head function, the proof for the tail function is very similar. The idea is to rewrite the
head function to follow the format of a binomial distribution, so that we could use tail bounds for binomial distributions to

1640 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

provide a lower bound. Specifically:

H(hN;N, p) =
hN

∑
k=0

(
N
k

)
pk

= (1+ p)N
hN

∑
k=0

(
N
k

)
(

p
1+ p

)k(
1

1+ p
)N−k

= (1+ p)N
hN

∑
k=0

(
N
k

)
(p′)k(1− p′)N−k (with p′ =

p
1+ p

)

= (1+ p)NF(hN;N, p′)

where F(hN;N, p′) refers to the probability of having at most hN successes in a Binomial trial B(N, p′). For F(hN;N, p′), it’s
known that if hN

N = h ≤ p′, we have the following tail bounds [12]:

F(hN;N, p′)≤ exp[−N f (h, p′)] with f (h, p′) =

{
2(h− p′)2, with Hoeffding’s inequality
D(h||p′), with Chernoff bound

where D(a||p) is the relative entropy between a Bernoulli(a) (a-coin) and a Bernoulli(p) (p-coin):
D(a||p) = (a) log a

p +(1−a) log 1−a
1−p . For either of this, f (h, p′)> 0 for h < p′. Therefore, for H(hN;N, p), if h < p′ = p

1+p , we
have:

H(hN;N, p) = (1+ p)NF(hN;N, p′)

≤ (1+ p)N exp[−N f (h, p′)]

= {(1+ p)exp[− f (h, p′)]}N

= (bH)
N (with bH = (1+ p)exp[− f (h, p′)]< (1+ p))

Lemma B.4.
1

m2 +m+1
< 1− ln(m)

ln(m+1)
, ∀m ∈ Z>0

Proof. This is equivalent as showing

h(m) = (m2 +m+1)ln(m)− (m2 +m)ln(m+1)< 0, ∀m ∈ Z>0

Taking derivative, we have

h′(m) = (2m+1) ln(
m

m+1
)+1+

1
m

≤ (2m+1)(
m

m+1
−1)+1+

1
m

(with ln(x)≤ x−1)

=
−m2 +m+1

m(m+1)
< 0 (for m ≥ 2 >

1+
√

5
2

)

Therefore, because (i) h(m) monotonically decreases for m ≥ 2, and (ii) h(1),h(2)< 0, we have h(m)< 0,∀m ∈ Z>0

f [n] is said to be exponential w.r.t n iff:

∃M ∈ R>0,c ∈ R>1, lim
n→∞

f [n]
cn = M

Therefore, a sufficient condition for f [n] to be exponential is that

∃M ∈ R>0,c ∈ R>1,N0 ∈ Z, f [n]≥ M · cn, ∀n ≥ N0

With this we could prove the following lemma:

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1641

Lemma B.5. For any integer K ≥ 1, hK [n] = an −∑
K
i=1 bN

i is exponential w.r.t n, if a > 1 and a > maxi:i∈{1,..,K} bi

Proof. hK [n] can be rewritten as hK [n] = ∑
K
i=1

1
K an −bn

i . We can prove that 1
K an −bn

i are exponential for all bi’s. Specifically, we
can show that.

∀c ∈ {x ∈ R | max(bi,1)< x < a},M ∈ R>0,∃N(a,c,M) ∈ Z,
1
K

an −bn
i > Mcn, ∀n ≥ N(a,c,M)

This because 1
K an −bn

i > Mcn ⇔ 1
k (

a
c)

n > M+(bi
c)

n. By having n ≥ N(a,c,M) = ⌈log a
c
[k(M+1)]⌉, we have

1
k (

a
c)

n > M+1 > M+(bi
c)

n. Therefore, hK [n] = ∑
K
i=0

1
K an −bn

i is obviously exponential:

∀c ∈ {x ∈ R | max(max
i:i∈{1,..,K}

bi,1)< x < a},M ∈ R>0,∃N(a,c,M) ∈ Z, hK [n]> KMcn, ∀n ≥ N(a,c,M)

We are now ready to prove the main theorem, which, in the context of LOCA, states that with the usage of each session as a
uniform distribution of {1, ...,m}, a bTelco’s number of sessions as NB and the total number of sessions a broker receives from
all bTelcos as NA, if NB

NA
meets certain requirements (depending on m), the expected number of session subsets that have the same

aggregate usage as the bTelco’s NB sessions grows exponentially w.r.t the total number of sessions, NA.
Next, we prove that a lower bound of this expected number, considering subsets consisting of only the remaining NA −NB
sessions, is already exponential w.r.t NA:

Theorem B.6. Considering two independent arrays X and Y , consisting of NA −NB and NB iid random variables from U{1,m},
there exists L(m),U(m) such that the expected number of subsets X, whose sums are equal to the sum of Y , is exponential w.r.t
NA, if L(m)≤ NB

NA
≤U(m). Note that L(m),U(m) depend on m, and 0 < L(m)≤U(m)< 1, ∀m ∈ Z>0

Proof. We prove this theorem by showing a valid L(m),U(m) pair. We denote this expected number as E(m,NA,NB), and derive
its closed-form expression by using the distributions of sums and subset sums, which were computed in Lemma B.1 and Lemma
B.2. Specifically, for a random array B, the probability that its sum equals to y is PNB(y), and the expected number of subsets in A
that add to y is 2NA−NB QNA−NB(y):

E(m,NA,NB) = 2NA−NB
mNB

∑
y=NB

PNB(y)QNA−NB(y)

= 2NA−NB
mNB

∑
y=NB

(
1
m
)NB

(
NB

y−NB

)
m−1

(
1

2m
)NA−NB

NA−NB

∑
k=0

(
NA −NB

k

)
mk

(
NA −NB − k

y− (NA −NB − k)

)
m−1

(B.1, B.2)

= (
1
m
)NA

mNB

∑
y=NB

(
NB

y−NB

)
m−1

NA−NB

∑
k=0

(
NA −NB

k

)
mk

(
NA −NB − k

y− (NA −NB − k)

)
m−1

= (
1
m
)NA

NA−NB

∑
k=0

(
NA −NB

k

)
mk

mNB

∑
y=NB

(
NB

y−NB

)
m−1

(
NA −NB − k

y− (NA −NB − k)

)
m−1

By using identities of polynomial coefficients [42], we can transform the last term as:

mNB

∑
y=NB

(
NB

y−NB

)
m−1

(
NA −NB − k

y− (NA −NB − k)

)
m−1

=
mNB

∑
y=NB

(
NB

(m−1)NB − (y−NB)

)
m−1

(
NA −NB − k

y− (NA −NB − k)

)
m−1

(symmetry)

=

(
[NB]+ [NA −NB − k]

[(m−1)NB − (y−NB)]+ [y− (NA −NB − k)]

)
m−1

(Vandermonde)

=

(
NA − k

(m+1)NB −NA + k

)
m−1

Therefore, we have a closed-form expression for E(m,NA,NB):

E(m,NA,NB) = (
1
m
)NA

NA−NB

∑
k=0

(
NA −NB

k

)
mk

(
NA − k

(m+1)NB −NA + k

)
m−1

1642 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

According to the definition of polynomial coefficients:(
NA − k

(m+1)NB −NA + k

)
m−1

≥ 1 if 0 ≤ (m+1)NB −NA + k ≤ (m−1)(NA − k) ⇔ NA − (m+1)NB ≤ k ≤ NA − (1+
1
m
)NB

(2)

Therefore, we could obtain a lower bound for E:

E(m,NA,NB)≥ (
1
m
)NA

{NA−NB

∑
k=0

(
NA −NB

k

)
mk −

NA−(m+1)NB−1

∑
k=0

(
NA −NB

k

)
mk −

NA−NB

∑
k=NA−(1+ 1

m)NB+1

(
NA −NB

k

)
mk

}

= (
1
m
)NA

{
(1+m)NA−NB −H(NA − (m+1)NB −1;NA −NB,m)−T (NA − (1+

1
m
)NB +1;NA −NB,m)

}
According to Lemma B.3, we know that with

NA − (m+1)NB

NA −NB
≤ m

1+m
=⇒ NB

NA
≥ 1

m2 +m+1
(3)

NA − (1+ 1
m)NB

NA −NB
≥ m

1+m
=⇒ NB

NA
≤ m

2m+1
(4)

We have:

E(m,NA,NB)≥ (
1
m
)NA

{
(1+m)NA−NB −H(NA − (m+1)NB −1;NA −NB,m)−T (NA − (1+

1
m
)NB +1;NA −NB,m)

}
≥ (

1
m
)NA

{
(1+m)NA−NB − (bH)

NA−NB − (bT)
NA−NB

}
with bH < (1+m),bT < (1+m)

Therefore, according to Lemma B.5, we can ignore the head and tail, and E has an exponential lower bound w.r.t NA as long as
the base of (1

m)
NA(1+m)NA−NB is larger than 1. Since:

(
1
m
)NA(1+m)NA−NB =

[
(1+m)

1−NB
NA

m

]NA

to ensure base larger than 1, we need

(1+m)
1−NB

NA

m
> 1 =⇒ NB

NA
< 1− ln(m)

ln(m+1)
(5)

Combining constraints (3), (4) and (5), we show an exponential lower bound for E(m,NA,NB) with the following NB
NA

:

1
m2 +m+1

≤ NB

NA
< 1− ln(m)

ln(m+1)

As proved in Lemma B.4, such a range is always valid for any m ∈ Z>0. Therefore, we show that for

L(m) = 1
m2+m+1 ,U(m) = 1− ln(m)

ln(m+1) , E(m,NA,NB) has an exponential lower bound of
[
(1+m)

1− NB
NA

m

]NA

.

We believe one could achieve a much large exponential bounds and/or a wider range for feasible NB
NA

by carefully reexamining the
two reductions that we made:

• Only the remaining NA −NB elements are considered for subsets that have the same sum. This is to simplify the problem so
that we can treat it as a problem involving two independent arrays of length NA −NB and NB. This, however, significantly
underestimates the number of matched subsets, especially when NB

NA
is high.

• The reduction we made in (2):
(NA−k
(m−1)NB−NA+k

)
m−1

≥ 1 is obviously coarse grained.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1643

Lastly, we can prove the other side of the story: if NB
NA

is too large or too small, the expected number of subsets out of NA −NB
elements that have the same sum as the NB elements does not grow exponentially w.r.t to NA:

Theorem B.7. Considering two independent arrays X and Y , consisting of NA −NB and NB iid random variables from U{1,m},
there exists LL(m),UU(m) such that the expected number of subsets in X, whose sums are equal to the sum of Y , can not be
exponential w.r.t NA, if NB

NA
≤ LL(m) or NB

NA
≥UU(m). Note that 0 < LL(m)≤UU(m)< 1, ∀m ∈ Z>0

Proof. Firstly, we show that such a UU(m) exists. We start with the closed-form expression of E(m,NA,NB) that is derived in
the proof above.

E(m,NA,NB) = (
1
m
)NA

NA−(1+ 1
m)NB

∑
k=NA−(m+1)NB

(
NA −NB

k

)
mk

(
NA − k

(m+1)NB −NA + k

)
m−1

≤ (
1
m
)NA

NA−(1+ 1
m)NB

∑
k=0

(
NA −NB

k

)
mk

(
NA − k

(m+1)NB −NA + k

)
m−1

≤ (
1
m
)NA

NA−(1+ 1
m)NB

∑
k=0

(
NA −NB

k

)
mk

(
NA

(m+1)NB −NA + k

)
m−1

(
(

n
k

)
m
≥
(

n−∆

k

)
m
∀∆ ∈ Z≥0)

As noted above
(n

k

)
m is a non-increasing function of k for ⌈mn

2 ⌉ ≤ k ≤ mn [42], therefore, if we have

(m+1)NB −NA ≥ ⌈ (m−1)NA

2
⌉ =⇒ NB

NA
>

1
2(NA

(m+1)NB−NA+k

)
m−1

decreases as k increases from 0 to NA − (1+ 1
m)NB, thus:(

NA

(m+1)NB −NA + k

)
m−1

≤
(

NA

(m+1)NB −NA

)
m−1

(for k ∈ {0, ..,NA − (1+
1
m
)NB})

= dNA(m,NA,
NB

NA
) (with d(m,NA,

NB

NA
) =

[(
NA

(m+1)NB −NA

)
m−1

] 1
NA

) (6)

where:

d(m,NA,
NB

NA
) =

[(
NA

(m+1)NB −NA

)
m−1

] 1
NA

=

[(
NA

[(m+1)NB
NA

−1]NA

)
m−1

] 1
NA

We denote

f (m,
NB

NA
) = lim

NA→∞
d(m,NA,

NB

NA
)

There are two properties of g(m, NB
NA

) that we leverage here: (i) 1 ≤ f (m, NB
NA

)≤ m, this is because
(NA

[(m+1)NB
NA

−1]NA

)
m−1

< mNA and(NA

[(m+1)NB
NA

−1]NA

)
m−1

is a non-decreasing function w.r.t NA; (ii) f (m, NB
NA

) is a non-increasing function w.r.t NB
NA

for 1
2 < NB

NA
< m

m+1 ,

this is because d(m,NA,
NB
NA

) is a decreasing function w.r.t NB
NA

. Moreover, f (m, m
m+1) = 1 and f (m, 1

2) = m. The later is because,

as shown in [37],
(n

m
2 n

)
m
∼ (m+1)n√

2πn m(m+2)
12

as n → ∞, which indicates that limn→∞[
(n

m
2 n

)
m
]

1
n = m+1. Therefore,

f (m, 1
2) = limNA→∞[

(NA
m−1

2 NA

)
m−1

]
1

NA = m. With (6), we now have the following upper bound for E(m,NA,NB) (to simply

notation, we use d for d(m,NA,
NB
NA

)):

E(m,NA,NB)≤ (
d
m
)NA

NA−(1+ 1
m)NB

∑
k=0

(
NA −NB

k

)
mk

1644 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Similar to Lemma B.3, we can then bound the term ∑
NA−(1+ 1

m)NB
k=0

(NA−NB
k

)
mk by using tail bounds of binomial distribution.

Specifically, as mentioned in the proof of Lemma B.3:

NA−(1+ 1
m)NB

∑
k=0

(
NA −NB

k

)
mk ≤

{
(1+m)exp[−D(

NA − (1+ 1
m)NB

NA −NB
|| m

1+m
)]
}NA−NB

if
NA − (1+ 1

m)NB

NA −NB
≤ m

1+m
⇒ NB

NA
≥ m

2m+1
(7)

where D(a||p) is the relative entropy between a Bernoulli(a) (a-coin) and a Bernoulli(p) (p-coin):
D(a||p) = (a) log a

p +(1−a) log 1−a
1−p . Here we denote

g(m,
NB

NA
) = (1+m)exp[−D(

NA − (1+ 1
m)NB

NA −NB
|| m

1+m
)]

= (1+m)exp[−D(
1− (1+ 1

m)
NB
NA

1− NB
NA

|| m
1+m

))]

Note that g(m, NB
NA

) is a decreasing function of NB
NA

for NB
NA

≥ m
2m+1 . Moreover, lim NB

NA
→ m

m+1
g(m, NB

NA
)→ 0, and g(m, 1

2)> 1 for

m ≥ 2. The later is because g(m, 1
2) = (1+m)exp[−D(m−1

m || m
1+m))] is an increasing function with m, thus

g(m, 1
2)≥ g(2, 1

2) = 3exp[−D(1
2 ||

2
3))]> 1.

With (7), we now have:

E(m,NA,NB)≤ (
d
m
)NA [g(m,

NB

NA
)]NA−NB

=

{
(

d
m
)[g(m,

NB

NA
)]

1−NB
NA

}NA

Considering the limit of the base:

lim
NA→∞

[
d(m,NA,

NB
NA

)

m
][g(m,

NB

NA
)]

1−NB
NA

= [g(m,
NB

NA
)]

1−NB
NA lim

NA→∞
[
d(m,NA,

NB
NA

)

m
]

= [g(m,
NB

NA
)]

1−NB
NA [

f (m, NB
NA

)

m
]

With the properties of f (m, NB
NA

) and g(m, NB
NA

) that we mentioned, one could prove that there exists a ratio R(m) such that:

h(m,
NB

NA
) = [g(m,

NB

NA
)]

1−NB
NA [

f (m, NB
NA

)

m
]≤ 1 ∀ NB

NA
≥ R(m)

where h(m,R(m)) = 1

This means that E(m,NA,NB) is not exponential w.r.t NA for NA
NB

≥ R(m)

We could prove that there is a unique R(m) with h(m,R(m)) = 1, and m
2m+1 < R(m)< m

m+1 , with the following properties of
f (m, NB

NA
) and g(m, NB

NA
): (i) both of them are decreasing functions w.r.t NB

NA
; (ii) 1 ≤ f (m, NB

NA
)≤ m, f (m, m

m+1) = 1 and

f (m, 1
2) = m; (iii) g(m, 1

2)> 1, and lim NB
NA

→ m
m+1

g(m, NB
NA

)→ 0.

Firstly, because
f (m,

NB
NA

)

m ≤ 1, for NB
NA

such that g(m, NB
NA

)< 1 ⇒ [g(m, NB
NA

)]
1−NB

NA < 1, we have

h(m, NB
NA

) = [g(m, NB
NA

)]
1−NB

NA [
f (m,

NB
NA

)

m]< 1. Moreover, since lim NB
NA

→ m
m+1

g(m, NB
NA

)→ 0, we know that R(m)< m
m+1

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1645

Secondly, for NB
NA

such that g(m, NB
NA

)> 1, we have h(m, NB
NA

) as a decreasing function w.r.t NB
NA

. Moreover, since g(m, 1
2)> 1,

f (m, 1
2) = m, we have h(m, 1

2) = [g(m, 1
2)]

1− 1
2 [

f (m, 1
2)

m]> 1. Therefore, we know that R(m)> 1
2 .

Therefore, we have proved a valid UU(m): 1
2 <UU(m) = R(m)< m

m+1 , where R(m) is defined as:

R(m) = arg 1
2<

NB
NA

< m
m+1

h(m,
NB

NA
) = 1

where h(m,
NB

NA
) = [g(m,

NB

NA
)]

1−NB
NA [

f (m, NB
NA

)

m
]

f (m,
NB

NA
) = lim

NA→∞

[(
NA

[(m+1)NB
NA

−1]NA

)
m−1

] 1
NA

g(m,
NB

NA
) = (1+m)exp[−D(

1− (1+ 1
m)

NB
NA

1− NB
NA

|| m
1+m

)]

and E(m,NA,NB) is not exponential if NB
NA

≥UU(m).
Next, we show a valid LL(m) by using a similar approach. We use E to represent E(m,NA,NB) in the follows.

E ≤ (
1
m
)NA

NA−NB

∑
k=NA−(1+m)NB

(
NA −NB

k

)
mk

(
NA − k

(m+1)NB −NA + k

)
m−1

≤ (
1
m
)NA

NA−NB

∑
k=NA−(1+m)NB

(
NA −NB

k

)
mk

(
(m+1)NB

(m+1)NB −NA + k

)
m−1

(
(

n
k

)
m
≥
(

n−∆

k

)
m
∀∆ ∈ Z≥0)

< (
1
m
)NA m(m+1)NB

NA−NB

∑
k=NA−(1+m)NB

(
NA −NB

k

)
mk (

(
(m+1)NB

(m+1)NB −NA + k

)
m−1

< m(m+1)NB)

≤ (
1
m
)NA m(m+1)NB

{
(1+m)exp[−D(

NA − (1+m)NB

NA −NB
|| m

1+m
)]
}NA−NB (

NA − (m+1)NB

NA −NB
≥ m

1+m
⇒ NB

NA
≤ 1

m2 +m+1
)

=

{
m(m+1)NB

NA
−1{

(1+m)exp[−D(
1− (1+m)NB

NA

1− NB
NA

|| m
1+m

)]
}1−NB

NA

}NA

We could prove that for l(m, NB
NA

) = m(m+1)NB
NA

−1{
(1+m)exp[−D(

1−(1+m)
NB
NA

1−NB
NA

|| m
1+m)]

}1−NB
NA , there exists a 0 < S(m)< 1

m2+m+1 ,

which is the LL(m) that we try to prove, that l(m, NB
NA

)≤ 1 for any NB
NA

≤ S(m). This is because (i) l(m, NB
NA

) is an increasing

function of NB
NA

, and (ii) l(m, 1
m2+m+1) = m− m2

m2+m+1 (1+m)
m2+m

m2+m+1 > (1+m)
m

m2+m+1 > 1 and lim NB
NA

→0
l(m, NB

NA
) = 0 < 1.

Therefore, we have proved a valid LL(m): 0 < LL(m) = S(m)< 1
m2+m+1 , where S(m) is defined as:

S(m) = arg
0<NB

NA
< 1

m2+m+1
l(m,

NB

NA
) = 1

where l(m,
NB

NA
) = m(m+1)NB

NA
−1{

(1+m)exp[−D(
1− (1+m)NB

NA

1− NB
NA

|| m
1+m

)]
}1−NB

NA

and E(m,NA,NB) is not exponential if NB
NA

≤ LL(m).

1646 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

mmWall: A Steerable, Transflective Metamaterial Surface for NextG mmWave
Networks

Kun Woo Cho1, Mohammad H. Mazaheri3, Jeremy Gummeson2, Omid Abari3, Kyle Jamieson1

Princeton Univ.1, Univ. of Massachusetts Amherst2, UCLA3

Abstract
Mobile operators are poised to leverage millimeter wave tech-
nology as 5G evolves, but despite efforts to bolster their relia-
bility indoors and outdoors, mmWave links remain vulnerable
to blockage by walls, people, and obstacles. Further, there
is significant interest in bringing outdoor mmWave coverage
indoors, which for similar reasons remains challenging today.
This paper presents the design, hardware implementation,
and experimental evaluation of mmWall, the first electroni-
cally almost-360○ steerable metamaterial surface that oper-
ates above 24 GHz and both refracts or reflects incoming
mmWave transmissions. Our metamaterial design consists of
arrays of varactor-split ring resonator unit cells, miniaturized
for mmWave. Custom control circuitry drives each resonator,
overcoming coupling challenges that arise at scale. Leverag-
ing beam steering algorithms, we integrate mmWall into the
link layer discovery protocols of common mmWave networks.
We have fabricated a 10 cm by 20 cm mmWall prototype
consisting of a 28 by 76 unit cell array and evaluated it in
indoor, outdoor-to-indoor, and multi-beam scenarios. Indoors,
mmWall guarantees 91% of locations outage-free under 128-
QAM mmWave data rates and boosts SNR by up to 15 dB.
Outdoors, mmWall reduces the probability of complete link
failure by a ratio of up to 40% under 0–80% path blockage
and boosts SNR by up to 30 dB.

1 Introduction

Millimeter-wave (mmWave) spectrum has emerged in the
5G/6G era as a key next generation wireless network enabler,
fulfilling user demands for high spectral efficiency and low
latency wireless networks. Higher carrier frequencies offer
greater network capacity: for instance, the maximum carrier
frequency of the 4G LTE band at 2.4 GHz provides an avail-
able spectrum bandwidth of only 100 MHz, while mmWave
(above 24 GHz) can easily hold spectral bandwidths five to
ten times greater, enabling multi-Gbit/sec data rates. Hence,
mmWave spectrum enables a plethora of mobile applications

Without mmWall: With mmWall:

(a) 5G/6G outdoor-to-indoor coverage via mmWall.

(b) mmWall’s reflective mode for indoor VR/AR.

(c) mmWall’s beam splitting, for link establishment.

Figure 1: mmWall re-focuses outdoor coverage indoors to-
wards the user and potentially around obstacles, provides path
diversity indoors by reflection, and splits an incoming beam
for fast link establishment.

that are currently infeasible due to their requirements of very
high data rates, such as virtual and augmented reality (VR/-
AR), camera-based purchase tracking in smart stores, and
robotic automation in smart warehouses.

mmWave technology faces significant headwinds, however,
in at least three key scenarios:

1. 5G outdoor coverage is difficult to bring indoors, as exte-
rior building walls block mmWave signal, as do outdoor
windows’ tinted glass (Fig. 1(a)). Attenuation at 28 GHz
is ca. 40 dB versus 4 dB through indoor glass [44], as
outdoor metalized glass coatings attenuate by 25–50 dB
per layer [35]. Currently, operators are forced to offload

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1647

mmWave traffic onto lower frequencies or off their net-
works entirely (Wi-Fi) when users move indoors, incurring
handover delay and application disruptions.

2. Indoors, people, furniture, doors, and other clutter block
mmWave (Fig. 1(b)), forcing data to flow over a much
less reliable reflection path. Indeed, in an extensive indoor
measurement campaign at 28 GHz, MacCartney et al. ob-
serve a close-in best non-line of sight path loss exponent
ca. 3, with a normally-distributed additional loss with an
11 dB variance [22]. While the resulting temporary outages
are common, highly demanding applications like VR/AR
streaming cannot tolerate these glitches.

3. Third, NextG cellular providers face challenges in adopting
mmWave frequencies outdoors for primary service as well
as wireless backhaul because mmWave signals are readily
absorbed by foliage, and reflection off buildings is largely
specular, constraining the angle of reflection to be equal to
the angle of incidence. Measurements in New York City
highlight this issue: 28 GHz data shows most links greater
than 200 meters in outage [3].

This paper describes the design and implementation of
mmWall, an electronically reconfigurable surface that ad-
dresses all three foregoing use cases, also shown in Figure 1.
Like much prior work (§2), mmWall leverages metamaterials,
artificial composite materials engineered at a sub-wavelength
scale to exhibit unique electromagnetic properties that do not
exist in naturally occurring materials [17]. But mmWall is the
first practical work to our knowledge to use a specific class
of metamaterials capable of refracting incoming radiation
with (theoretically) no loss: Huygens metamaterials [9, 25].
mmWall is a reconfigurable intelligent surface that uses a
novel Huygens metasurface (HMS) metamaterial to reflect/re-
fract and precisely steer incoming mmWave beams towards
desired directions, thus enhancing path diversity for mmWave
networks. Work has shown that surfaces that can steer incom-
ing mmWave transmissions in this way have the potential to
dramatically improve spatial multiplexing [41] and spectral
efficiency [39] of networks as a whole. Hence when obstacles
like a human body or outdoor foliage blocks the line of sight
(LoS) or non line of sight (NLoS) paths, mmWall can often
provide an alternative path that is not a simple reflection or a
straight-line transmission, and hence would not otherwise ex-
ist. In the first scenario, mmWall can refract mmWave signals
from outdoors to steer them directly towards an indoor re-
ceiver, making outdoor to indoor communication possible. In
the second scenario above, mmWall reflects mmWave beams
at non-specular angles (those for which the angle of reflec-
tion is not equal to the angle of incidence). And in the third
scenario, mmWall can reflect outdoor transmissions at non-
specular angles, ameliorating outdoor blockages.

mmWall is electronically reconfigurable to either reflect
or refract incoming energy, allowing it to time-multiplex the

different roles of each of the three above use cases without hu-
man intervention, while installed in a fixed location. Also, its
multi-beam functionality (Fig. 1(c)) enables fast beam search,
and support for multiple users at the same time. mmWall
has no RF chain, and its electric components draw only a
couple-of-hundred microwatts order of power. Consequently,
it consumes much lower power compared to a conventional
AP that necessitates multiple RF chains for multi-beam oper-
ations. To our knowledge, mmWall is the first surface able to
achieve near-360○ angular coverage (§5).

This work addresses several hardware and software design
challenges that arise in the realization of such a design. Since
mmWave transmissions are “pencil-beam” in nature, they
work only when the transmitter’s beam is perfectly aligned
with the receiver’s beam. To correctly steer the beam towards
the receiver, we design a metamaterials-based surface that
can precisely control the phases of the incoming signal, focus-
ing signal power in a narrow beam. Secondly, since the size
of meta-atom scales with its operating frequency, mmWall’s
meta-atoms are much smaller than the conventional antennas
and therefore extremely sensitive to coupling. Hence, we
not only scale the surface to mmWave frequency but also
deliberately design the control lines to avoid undesirable cou-
pling. Lastly, existing systems uses their own beam searching
protocol to find the best alignment. To make mmWall com-
patible with different mmWave applications, we design an
effective beam alignment protocol that leaves the existing
systems unchanged [16].

Contributions and Results. mmWall is the first design that
can arbitrarily reflect, refract, and split the mmWave beam
in a nearly lossless manner. We analyze our meta-atom de-
signs and compare them with simulation results, allowing
our designs to scale to different frequencies for potential ap-
plications like Terahertz communication. To the best of our
knowledge, this is the first study that theoretically analyzes
and builds a working prototype of a reconfigurable Huygens
metasurface at mmWave frequency. We have designed and
implemented mmWall hardware with a novel control network
in custom PCB, and in §5, evaluate its performance through
experiments in environments matching the scenarios, we out-
line above. Our empirical results show that when both the AP
and the client are in the same room, we can provide an SNR
of 25 dB or more for all locations in a 10×8m room, using
a single mmWall surface. This SNR is sufficient to support
128-QAM in 91% of locations. Moreover, the SNR improves
to 30 and 35 dB when we place two surfaces, respectively, on
different walls. Finally, we show the effectiveness of mmWall
in bringing outdoor mmWave networks indoors. When the
AP is 6 meters away from the building, mmWall improves
the SNR by up to 30 dB, providing an SNR of 20 dB or more
in all locations in a room using a single surface placed on a
window.

1648 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 2: mmWall’s design converts an incident mmWave beam to a refracted (or reflected, not shown) beam via field
discontinuities created by current in its resonators. Inset: magnetic meta-atoms are shown in front of the electric meta-atoms.

2 Related Work

HMSs comprise a layer of co-located magnetic and electric
meta-atom, etched onto the two respective sides of a dielec-
tric substrate (Fig. 2, inset). The magnetic meta-atom is an
enclosed metallic ring with one split, while the electric meta-
atom has two splits and a metal strip in the center (Fig. 4(b)).
As the incident wave passes through the magnetic meta-atom,
the wave’s magnetic field Hi induces a rotating current (green
arrows in Fig. 4(b), upper) on the magnetic meta-atom that,
in turn, creates a magnetic response (M⃗s along the z-axis in
Fig. 2). Likewise, the electric meta-atom is excited by the
wave’s electric field E⃗i, resulting in two symmetric, oscil-
lating current loops (green arrows in Fig. 4(b), lower) that
create an electric response (J⃗s along the y-axis in Fig. 2).
These responses interact with the wave’s fields, causing an
abrupt phase shift. By varying the applied voltage to a tunable
component loaded on each meta-atom, the surface precisely
controls the responses, thereby allowing any phase shift from
0○ to 360○ with near-unity transmission and/or reflection.

Prior work in passive HMSs [8,9,29,40] has demonstrated a
“lensing” effect and negative refraction index [29] and the engi-
neering of complex beam patterns [8]. However, they lack the
capability to reconfigure and both refract and reflect the beam.
Prior work in actively-controlled HMSs [4, 7, 21, 38, 43] uses
varactors or PIN diodes to tune each element in a continuous
or binary (i.e., on-off) manner, respectively. Such devices can
shift signals’ frequency [21] and polarization [5, 38]. While
these designs have shown great promise in theoretical predic-
tion models [23] and/or at low frequencies [36], they do not
scale to higher mmWave frequencies in a straightforward way,
due to a mismatch between the required meta-atom size and
a varactor’s size, and the attenuation that commonly available
substrate would induce on an incident mmWave signal. Scal-
ing these designs also requires narrower trace widths that are
hard to fabricate and prone to breaking during diode solder-
ing. More importantly, they focus on steering one beam in a
one-sided direction, rather than steering one or more beams
in a reflective and/or transmissive direction. mmWall is the
first mmWave work to do so. Evaluation efforts in this group
of prior work stop short of realistic end-to-end experiments.

Work in actively-controlled mmWave Reconfigurable Intel-
ligent Surfaces (RISs) includes a solely reflective, PIN-diode
based surface at 2.3 and 28 GHz [7], whose evaluation at
28 GHz states a gain of 19 dBi, but which stops short of
further experimental evaluation of steerability or any further
end-to-end evaluation at 28 GHz. Tang et al. describe similar
PIN-diode, reflective surfaces at 27 and 33 GHz, model path
losses in such scenarios, and experimentally evaluate [33].
Tan et al. consider a similar design at 60 GHz [31], but neither
consider HMS-based designs such as mmWall’s, which can
shift between reflective (on both sides of the surface) and
transmissive modes instantly via electronic control. Exist-
ing reflective RISs only reflect on one side, while mmWall
performs both indoor and outdoor non-specular reflections
from a fixed location. In press releases ([a], [b], [c]) NTT
DoCoMo describe reflective, outdoor-to-indoor surfaces oper-
ating at 28 GHz. They state top line experimental results, but
do not disclose design details or details of their experimental
evaluation. Other work uses split ring resonators as antennas
for a Massive MIMO base station [28], a related but distinct
application to mmWall. This paper is an extension of the au-
thors’ previous workshop publication [6] that describes a new
control line design, documents real hardware implementation,
and presents significant new evaluation results in realistic,
diverse scenarios.

Recent work in passive non-HMS based mmWave RISs
includes proposals that reflect signals at angles of reflection
different than incidence [11,26], but cannot be tuned to target
a receiver’s location, hence wasting incident energy and result-
ing in at most 10 dB of gain, significantly below mmWall’s
achieved gain. Also, these approaches do not refract as
mmWall can, yielding reduced applicability. Recent amplify-
and-forward proposals for Wi-Fi [42] use a mesh topology,
but do not scale to mmWave frequencies, and at mmWave [1]
are limited to indoor reflection. Recent complementary ap-
proaches leverage multi-beam transmission [18, 19], sensing
and leveraging ambient reflectors [37], and use Wi-Fi as a
control plane to discover mmWave links [20, 30]. While they
align with mmWall’s goals, such approaches cannot create
paths whose reflection angles diverge from their incident an-
gles, or refract through a surface.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1649

https://www.docomo.ne.jp/english/info/media_center/pr/2019/0529_00.html
https://www.docomo.ne.jp/english/info/media_center/pr/2021/0126_00.html
https://www.businesswire.com/news/home/20181204005253/en/NTT-DOCOMO-and-Metawave-Announce-Successful-Demonstration-of-28GHz-Band-5G-Using-Worlds-First-Meta-Structure-Technology

(a) Transmission magnitude ∣T ∣ (b) Transmission phase shift∠T (c) T and Γ magnitude, phase at 24 GHz.

Figure 3: Unit cell response v. electric- and magnetic-side control voltages UE and UM—(a): magnitude and (b): phase.
(c): HFSS simulation (left) and near-field, real world VNA measurement (right)— arrows indicate control voltage pairs that
yield a 360○ phase shift of the incoming signal, with high transmission or reflection magnitude.

3 Design

We describe in turn mmWall’s hardware (§3.1), their control
mechanism (§3.2), and their link layer integration (§3.3).

3.1 Surface Hardware

mmWall’s unit cells (also known as meta-atoms) are stacked
vertically with a λ/3 separation, on each Rogers substrate
board (also known as a meta-atom rib), as shown in Fig. 2
(see §3.2.1 for a discussion of vertical and horizontal unit
cell spacing considerations for beamforming). A control unit
connected to mmWall provides a set of voltages to the ribs. In
Fig. 2, 0V is applied to both magnetic and electric meta-atoms
on the first rib, causing the meta-atoms to shift the phase by
0φ with minimal loss. For the second rib, 2V is applied to
shift the phase by 1φ. Ultimately, the beam is steered by all
N ribs collectively forming an array factor.

3.1.1 Design Goals

The two primary design goals of the unit cell are to simulta-
neously 1) achieve transmission T or reflection Γ loss levels
as close to zero as possible, and 2) effect any phase shift in
[0,2π] on the incoming signal, both at mmWave frequencies.

The unit cell consists of two meta-atoms, magnetic and elec-
tric. The magnetic (electric) meta-atom induces a magnetic
(electric) field response to the incoming signal that can res-
onate at different, tunable frequencies by varying the applied
voltage to the varactor of the magnetic- (electric-) meta-atom.

Without loss of generality, we now describe how transmis-
sion works (reflection is fully complementary to transmission,
and we refer the reader to Appendix A for a rigorous math-
ematical exposition of both). In Fig. 3(a), we observe that
increasing the voltage applied to the magnetic meta-atom UM
from 0 to 8 V (down the three leftmost subplots) shifts its
resonance frequency (lowest transmission magnitude point

of the red dotted line1) to the right (we will analyze how this
frequency shifting works in §3.1.2). Similarly, the electric
meta-atom induces an electric response and its resonant fre-
quency can be shifted by its own varactor (reading similarly
across the three topmost subplots). Together their effects are
superposed and we manipulate the collective magneto-electric
response that interferes with the incident plane wave.

The key characteristic that allows near-perfect amplitude
with full phase coverage appears when the two responses
overlap at the same frequency. Otherwise, the phase response
undergoes a sharp change of only π and its magnitude dips
to nearly zero at its resonant frequency, as we see in Fig. 3(a)
and Fig. 3(b) when the voltages applied to the magnetic and
electric meta-atom differ by 8 V. However, as the two reso-
nances start to overlap, transmission loss decreases and the
phase shift becomes 2π (on-diagonal sub-figures, Fig. 3(a)
and Fig. 3(b)). As a result, we achieve 2π phase coverage
with near-unity magnitude by increasing the voltage applied to
both the magnetic and electric meta-atoms together (Fig. 3(c),
at control voltages indicated by the black curves).

While the overlapped resonances can reach a perfect uni-
tary transmission magnitude in theory, the Huygens pattern
from our measurement shows a lower transmission magnitude
on the area where abrupt phase shifts occur due to various
reasons, including the sensitivity at mmWave frequency, fab-
rication loss, and measurement errors.

3.1.2 Design Process

We now describe challenges we overcame in scaling the reso-
nance of the mmWall unit cell to mmWave frequencies. By
definition, the meta-atom behaves as an LC circuit with reso-
nant frequency 1/(2π

√
LC), determined by the capacitance

or inductance of the meta-atoms. Hence, we must markedly
decrease the inductance and capacitance of prior microwave
designs (§2), if we can hope to achieve a mmWave reso-

1In operation we largely avoid the lowest transmission nulls.

1650 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) mmWall (b) Huygens (c) Schematic

Figure 4: mmWall, prior Huygens unit cell designs (top: mag-
netic; bottom: electric side), and equivalent circuits. Green
arrows indicate the oscillating current loops, and Vin indicates
where the input voltages connect.

nant frequency. As we will see next, the smaller the ring is,
the higher the resonant frequency becomes. However, the
state-of-the-art approach to scale the frequency of a Huygens
resonator (Fig. 4(b)) requires a loop width l1 and loop height
l2 of λ/10. At mmWave, however, the varactor packaging
itself would significantly distort the tailored electromagnetic
surface properties when a meta-atom is sized λ/10, and so
the straightforward approach fails. Moreover, the varactor is
soldered with heat, causing tighter designs to become more
fragile. Changing the rectangular cell shape to a circular one
with equal diameter reduces size while preserving varactor
placement on the diameter.

We thus instead adopt the design shown in Fig. 4(a), but this
is only tenable with a careful tradeoff of meta-atom design
parameters radius R, trace width w, and trace gap width g
(cf. Fig. 4) as we next describe.

Magnetic meta-atom. Fig. 4(a) (upper) shows the design
parameters that determine inductance Lm and capacitance Cm.
Lm (= Lloop, the inductance of the physical conductor loop),
is largely proportional to R (also Lloop ∝ t−1, w−1, and g−1).
Cm consists of three capacitance values, Cgap, Csurf, and Cvar:

Cm = (
1

Cgap+Csurf
+

1
Cvar
)

−1

(1)

Here, Cgap is the parallel-plate capacitance induced by the
gap in the ring (∝ g−1), Csurf is a capacitance induced by
the metallic surface (∝ R [34]), and Cvar is the capacitance
of the varactor, a voltage-dependent capacitor. While Lloop,
Cgap, and Csurf are fixed after fabrication, Cvar varies with
control voltage. Increasing UM decreases Cvar (see Fig. 17
in Appendix A for the precise relationship), and thus Cm
(Eq. (1)), which in turn increases the resonance frequency, as
depicted in Fig. 3.

When tuning the physical loop design parameters, we fix

0.7 0.8 0.9
Radius R (mm)

20
22
24
26
28
30

Fr
eq

. (
G

H
z)

Tol.

Tol.

0.1 0.2 0.3
Gap g (mm)

Tol.

Tol.

Simul: M 0V M 10V E 0V E 10V
Calc: M 0V M 10V E 0V E 10V mmWall parameters

Manufacturing tol.

0.2 0.3 0.4
Width w (mm)

Tol.

Figure 5: mmWall design parameter sensitivity analysis.

Cvar = 4 V for both the magnetic and electric meta-atoms
since at that voltage, the resonant frequency is at our desired
mmWave frequency and an abrupt phase change occurs. Fig. 5
shows our chosen design parameters (denoted with black cir-
cles) and its corresponding magnetic side resonant frequency
when UM = 0,10 V. Calculated (curves) and simulated (mark-
ers) data in our sensitivity analysis show that among all feature
dimensions, decreasing R, followed by increasing g has the
greatest effect on increasing resonant frequency for the mag-
netic meta-atom. We note that after fixing our meta-atom
geometry as shown in the figure, 24 GHz lies in the middle of
the resulting resonant frequency range. Also, we observe that
PCB manufacturing tolerance (±5%) does not greatly shift
the resonant frequency (we refer Appendix C for meta-atom
sensitivity analysis against fabrication tolerance).

Electric meta-atom. Fig. 4(a) (lower) shows the electric
meta-atom, in which current oscillates in two different di-
rections, while the current of the magnetic meta-atom os-
cillates in one direction only (cf. green arrows in Figs. 4(a)
and 4(b)). Hence, we analyze its inductance Le as the combi-
nation of the inductances of the half-circular loop on the left
half (Lcurve), the inductance of the other half on the right half
(Lcurve, by symmetry), and the inductance from the metallic
strip shared by two loops (Lstrip). Since the two half-loops
are arranged in parallel, with the metallic strip arranged in se-
ries, Le = (Lcurve/2)+Lstrip [11]. Since inductance generally
depends on the surface area of the copper trace, Lcurve ∝ R,
and Lstrip∝w−1, Le largely depends on both R and w, but not
g. We see the impact of w on the resonant frequency in Fig. 5:
compared to magnetic meta-atom, the resonant frequency of
the electric meta-atom increases steeply as w increases due
to Lstrip. To minimize the difference in resonant frequencies
between the electric and magnetic sides as desired, Fig. 5
guides us to design an electric meta-atom with equal w as
the magnetic meta-atom, greater R and lesser g. The elec-
tric meta-atom has two gaps and two surface capacitances,
with respective associated capacitances Cgap and Csurf, all in
parallel, and that combination in series with Cvar:

Ce = (
1

2(Cgap+Csurf)
+

1
Cvar
)

−1

(2)

Because there are many capacitances in parallel, changes in

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1651

Biasing lines—failed attempts (a)–(c):

(a) Copper line (b) Coil inductor (c) Radial stub

(d) mmWall’s meander biasing line design.

Figure 6: Biasing line designs: notable failed attempts in-
clude (a) straight microstrip, (b) coil inductor, and (c) radial
stub. (d) mmWall uses an inner meander line for magnetic,
and an outer meander line for electric meta-atoms.

Cvar lead to a wider frequency shift than analogous varactor
tuning of the magnetic side. Using more precise equation-
based analysis (available in Appendix A) that matches our
qualitative analysis, we cross-check and finalize design pa-
rameters R, g, and w for the magnetic and electric meta-atoms.
We refer Appendix A.3 for the values of the design parameters
and voltage distributions for different steering angles.

In Fig. 5, we observe that the difference in resonant fre-
quencies between 0 and 10 V for the electric meta-atom are
larger than the magnetic meta-atom. Hence, since the effect
of Cvar differs, overlapping of resonance will not always occur
when UM =UE . Rather than of simply finding the area where
UM =UE as suggested above, we instead need to search for the
voltage pair for every desired phase that also maximizes the
reflection or transmission magnitude. We do this by running
one-time optimization that searches for the voltage pair that
maximizes ∣T ∣ (or ∣Γ∣) for each phase and generates a static
lookup table that will later be used for beam steering.

3.2 Surface Control

To control the meta-atoms, we connect an off-surface control
unit via ribbon cables with on-surface biasing lines, which
altogether comprise the entire control network (Fig. 2 on p. 3).

3.2.1 Biasing lines

This design process concerns the problem of designing the on-
surface control network to interact with mmWave-frequency
meta-atoms. Directly connecting a line to the meta-atoms
changes the performance of the meta-atom, which causes
mmWave signal loss and invalidates the design process de-
scribed previously (§3.1). To mitigate such adverse effects,

we seek to design biasing lines that incorporate radio fre-
quency (RF) chokes, low pass filters that block RF signals
within a certain frequency band from propagating on direct
current (DC) signal paths. Our primary design goals are to
design a biasing network that 1) minimizes the use of extra
components, 2) avoids a large amount of copper on the panel
where the meta-atom is placed, and 3) is straightforward to
fabricate. This is challenging because mmWave meta-atoms
are sensitive to the shape and placement of the choke.

Failed attempts. Fig. 6 shows various biasing line structures
we have considered. First, we try a straight copper line design
(a). We use a narrow width resembling a very high impedance
transmission line, to try to attenuate the RF signal while
the DC biasing voltage is applied. However, to achieve the
desired impedance, a very narrow width transmission line
(0.07 mm) is required which is not possible to fabricate by
common PCB manufacturing techniques.

Second, we try the use of inductors to create a high-
impedance line (b). The impedance of an inductor is de-
termined by the RF frequency and is proportional to its induc-
tance. However, inductance of mmWave inductor components
are limited. Hence, we would need to apply at least four in-
ductors in series to achieve the desired isolation, introducing
significant surface complexity and also internal resistance that
adversely affects unit cell efficiency.

Third, a radial stub which is an open ended transmission
line is employed. The length of the stub determines the input
impedance of the line, and so thus acts as an RF “choke” that
blocks mmWave signals, while a DC biasing voltage is ap-
plied to the cell from the control network. The required length
of the stub is one-quarter wavelength, which is comparable
to the cell size. But if the stub is designed on the same panel,
the stub itself would reflect most of the wave, stealing energy
to illuminate the cell itself. To avoid this problem, one can
put the stubs on a perpendicular panel, as shown in Fig. 6(c).
This could potentially solve the wave reflection issue, but
would complicate implementation, since there would be one
perpendicular panel for each unit cell.

Proposed meander structure. To achieve our design goals,
we have formulated a meander structure (Fig. 6(d)) that acts
as an RF choke, but at the same time connects the vertically
adjacent meta-atoms. Longer and thinner traces provide more
inductance, so by bending the straight wire vertically and
horizontally, we enable the control network itself to be an
inductor that outperforms the multiple off-the-shelf inductors.
But this increases capacitance between the two meander lines
on opposing sides of the unit cell, which also invalidates our
meta-atom design process. So mmWall places the meander
line of the magnetic meta-atom in a non-overlapping configu-
ration relative to the meander line of the electric meta-atom.
To compensate the loss from the microstrip that connects
the electric meta-atom and the meander lines, we add two
off-the-shelf inductors next to the electric meta-atom.

1652 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Refractive establishment (b) Angular reciprocity (c) Beam tracking (d) Reflective establishment

Figure 7: mmWall’s refractive link establishment, angular reciprocity property, tracking, and reflective link establishment.

3.2.2 Beam steering and splitting

A conventional phased array transmitter has a net radiation
pattern multiplying the radiation pattern of a single element
by the array factor (AF), the pattern induced by the array.
Unlike prior mmWave receive-transmit relay systems which
require two phased antenna arrays (one to receive and another
to transmit a new phase-shifted signal), mmWall uses only a
single array of meta-atoms to directly shift the phase of an ex-
isting mmWave signal. For L omni antennas with d separation,
each with transmit amplitude A, AF = A∑L−1

n=0 e2π jnd(cosθ)/λ
with radio wavelength λ and steering angle θ.

mmWall applies different phase shifts to each meta-atom
rib for beam steering. Specifically, by searching over the
space of control voltages to maximize reflection or trans-
mission amplitude subject to achieving the desired phase
(Fig. 3(c)), we construct a look-up table that maps steering
phase ϕ to the chosen unit cell voltage pair (and without loss
of generality) transmission coefficient: Φ(ϕ) → ⟨UM,UE ,Γ⟩.
The difference with conventional beamforming is that element
amplitudes vary, so mmWall’s net radiation pattern becomes
∑

L−1
n=0 ΦΓ(φ)e jφ where φ = 2πnd cosθ.
To transform a single beam into multi-armed beams, we

modify the above AF to account for angles θ1 and θ2:

N−1

∑
n=0
(αΦΓ(φ1)e jφ1 +βΦΓ(φ2)e jφ2) (3)

where φk = 2πnd cosθk, and α and β are weighting terms that
that determine the power of each beam.

3.3 Link Layer Design

Recall that mmWall operates in two different modes, a lens
mode and a mirror mode.2 1) In lens mode, a mmWave sig-
nal refracts through mmWall allowing, e.g., a user inside
the building to communicate with the base station (ENodeB)
in a cellular network. This requires two beam alignments:
one between the ENodeB and mmWall, and another between
mmWall and the user. 2) In mirror mode, mmWall reflects
mmWave signals. For example, in wireless LAN settings, it
reflects the beam between the AP and user, which requires

2Reflective mode and mirror mode are equivalent.

beam alignment between the AP and mmWall, and again
between mmWall and the user.

mmWall electronically switches between the two modes
because different users may be located outdoors and indoors.
Hence, mmWall sweeps the beam in both lens and mirror
mode to align to the user during a beam search.

Our development here follows the outline of the existing 5G
New Radio (NR) beam management protocol, but adapts it
to mmWall’s unique capabilities. The current 5G NR beam
search proceeds in three steps: 1) the ENodeB sweeps its
beam, the user equipment (UE) selects a best direction, and
reports it to the ENodeB; 2) the ENodeB refines its beam (i.e.,
sweeping a narrower beam over a narrower range), the user
detects the best direction and reports it to the ENodeB; 3) the
ENodeB fixes a beam and the UE refines its receiver beam.

To establish a link from a cold start, the ENodeB sweeps
different directions such that the user can detect the best beam
for an initial link establishment (Fig. 7(a)). If the UE cannot
detect the beam or the beam strength is low, it turns mmWall
to a lens mode and signal it to simultaneously sweep the beam
received from the ENodeB, via sub-6 GHz control. At the
same time, the UE scans its receiving beam to various direc-
tions. After the search, the UE knows the combination of the
ENodeB’s transmit beam angle, mmWall’s beam refraction
angle, and its receive beam angle that maximizes the SNR of
downlink signals. Given an initial link, ENodeB and mmWall
refine the beam by simultaneously sweeping narrower beams
over narrower ranges, and lastly, the user refines its receiving
beam.3 ENodeB-mmWall alignment takes O(n) steps (for n
directions), and mmWall-UE alignment takes O(n2) steps, so
cold-start beam alignment as described above takes O(n3)

steps, but only once ever when mmWall is installed, because
both ENodeB and mmWall are stationary. As long as mmWall
remains in the same location, the one-time initial beam align-
ment is kept constant. Hence, the common case of cold-start
beam establishment between mmWall and user in fact requires
O(n2) steps (cf. Fig. 7(c)). Also, the above notably does not
require modifications to the existing 5G NR protocols.

As illustrated in Fig. 7(b) and demonstrated experimentally
in §5.4, mmWall refracts beams in one direction at the same
angle as they arrive at the surface from the other side of the

3We note that some full-duplex relays [1] require the relay node’s receive
direction aligned to the ENodeB, which is not necessary with mmWall.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1653

(a) mmWall hardware (b) Near-field testing (c) Outdoor-to-indoor scenario (d) Indoor reflective scenario

Figure 8: mmWall’s hardware implementation, transmissive (‘lens’) and indoor reflective (‘mirror’) evaluation scenarios. We
placed mmWall at the same location for both scenarios.

Figure 9: mmWall’s ribs, comprised of our proposed meta-
atom design fabricated on a Rogers printed circuit board.

surface (angular reciprocity), which obviates the need for sep-
arate downlink and uplink link establishment. If the downlink
has already been established, mmWall does not reconfigure
for the uplink. Instead, EnodeB simply switches the direction
of its receiving beam to match its transmit beam, and the
user transmits in the direction of its receiving beam. This
facilitates a quick transition between downlink and uplink.

Since the UE controls mmWall, the user can alternate be-
tween the ‘lens’ mode for outdoor-to-indoor communication
and the ‘mirror’ mode for indoor communication. For ex-
ample, when the user switches from an outdoor to an indoor
ENodeB, it signals mmWall to re-establish the beam estima-
tion process for indoor usage.

Multi-beam search. mmWall can create irregular beam
shapes such as multi-arm beams (§5.3), which allows it to
leverage state-of-the-art beam searching algorithms that ex-
ploit the sparsity of the mmWave channel to accelerate beam
search [2, 27] by orders of magnitude improvement (essential
for agile and mobile applications such as VR), now for the
first time at a surface.

Figure 10: mmWall’s FR4 holder/control board.

4 Implementation

We have fabricated and assembled a complete hardware pro-
totype of mmWall, summarized in Fig. 8. mmWall’s meta-
atoms are fabricated on a 16 by 120 mm rib made of Rogers
4003C printed circuit board (PCB) substrate, as shown in
Fig. 9. We assemble the PCB and constituent Macom MAVR-
000120-1411 varactor diodes4 and 026011C-1N7 inductors.

In total, we have fabricated 76 ribs, each consisting of
28 vertical meta-atoms. These ribs are mechanically hold
together with two perpendicular FR4 panels; one in top and
the other in bottom of the structure. The top FR4 also provides
control lines as it is shown in Fig. 10. Each rib’s control pads
are then soldered to the upper holder board, which connects
the ribs to a DAC through its microstrip traces and pin headers.
The lower holder boards are installed to position and the ribs
fixed into these boards. For holding the ribs and FR4 panels
steady, a 3D printed enclosure is fabricated that provides a
standing support, as shown in Fig. 8(a). The spacing between
the adjacent ribs are 2.6 mm, making the dimension of our
mmWall prototype 120×197.6 mm. We note that scaling up
our prototype with identical ribs and expanded FR4 holder
boards is straightforward.

Four 40-channel AD5370 16-bit DACs from Analog De-
vices allow independent control of both electric and magnetic
cells of every mmWall rib. Each DAC supplies a variable

4We have modeled this varactor based on its Simulation Program with
Integrated Circuit Emphasis (SPICE) model (see Appendix, Fig. 17).

1654 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.macom.com/products/product-detail/MAVR-000120-14110P
https://www.macom.com/products/product-detail/MAVR-000120-14110P
https://www.coilcraft.com/en-us/products/rf/ceramic-core-chip-inductors/0201-(0603)/026011c/026011c-1n7/
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-ad5370.html

0 to 10 V control voltage for each of 40 channels (i.e., one
DAC per 20 boards with one channel for UE and UM apiece).
A laptop is connected to four DACs and listens for control
signals from the UE. Once a signal is received, it sends a
command to the DACs, which then apply the voltage levels,
corresponding to a particular steering angle. Different voltage
levels are found from a pre-stored voltage-to-phase look-up
table. This control program is written in Microsoft Visual
C++, and it can be executed from EnodeB, instead of UE.
mmWall hardware, including the DACs, takes 20 µs to recon-
figure the beam. The speed of DACs is the key determinant
of the total latency, and deploying faster DAC hardware will
lower the latency.

5 Evaluation

We begin with field studies that quantify mmWall’s SNR gain
compared to the best NLoS environment path for both indoor-
to-indoor and outdoor-to-indoor links (§5.2). Moreover, we
explore the SNR gain and link failure rate under dynamic link
conditions. We then evaluate multi-armed beams created by
mmWall at various receiver locations (§5.3). We conclude
with microbenchmarks to characterize mmWall’s steering
performance, its support for wide steering angle, angular
reciprocity, operation across wide bandwidths, and the impact
of the surface size (§5.4).

5.1 Methodology

We conduct evaluations of various indoor and outdoor scenar-
ios. For indoor-to-indoor settings, we place both the receiver
(circles in Fig. 11) and transmitter (triangles in Fig. 11) in
an office measuring 10×8 m, which includes interior walls,
windows, and a server room. Between the three windows,
there are two brick walls (black rectangles in Fig. 11). For
the outdoor-to-indoor testbed, we locate the transmitter out-
side the office, approximately 6−7 m away from the window,
while the receiver is inside the office. During the experiments,
we place mmWall in front of the window inside the room,
and the loss of window is approximately −4 to −5 dB. For
each outdoor-to-indoor and indoor-to-indoor experiment, we
conduct two sets of experiments, each with a fixed transmit-
ter location and 23 receiver locations. In the first set, the
transmitter is perpendicularly facing mmWall and is 6.3 m
away (upper subfigures of Fig. 11(a) and left two subfigures
of Fig. 11(b)). The second set has the transmitter 6.8 m away
from mmWall, and its beam hits the surface at approximately
30○ to 40○ angle (lower subfigures of Fig. 11(a) and right sub-
figures of Fig. 11(b)). During the beam search, mmWall steers
the angle by the step of 0.5○. For end-to-end performance,
we report SNR with a noise floor of 80 dBm.

Near-field experiments. Given that the measured Huygens
pattern is likely to deviate from simulated results due to

manufacturing tolerances, it is crucial to conduct accurate
measurement through near-field experiments and compile a
voltage-to-phase look-up table. Specifically, we collect near-
field reflection and transmission coefficients of mmWall using
two-port Anritsu MS4647B VNA, operating from 70 kHz to
70 GHz, as shown in Fig. 8(b). The Huygens pattern mea-
sured from the VNA is shown in Appendix C. To minimize
measurement error, we perform a two port calibration be-
fore acquiring the data. For data collection, we program the
VNA using LabVIEW, which communicates with four DACs
through the socket. During the measurement, mmWall is
placed in between two waveguide horn antennas that are con-
nected to the VNA. We place two horn antennas closely to
mmWall to resemble the near-field simulation. Since the area
of mmWall is larger than the aperture of waveguide horns,
we collect the pattern on multiple locations of mmWall. In
Appendix C, we present a measured Huygens pattern at dif-
ferent locations of mmWall and demonstrate the robustness
of mmWall against fabrication variations.

Far-field experiments. A standard mmWave base station is
equipped with highly directional phased array antennas and
supports an average EIRP range of 55-60 dBm [12, 13] or
more. With a 25 dBi transmit horn antenna, the maximum
EIRP we achieved is 31 dBm, which is in accordance with
FCC rules [14]. We use the same antenna at the receiver
but apply a −10 dB correction to reflect typical UE antenna
gain. Specifically, to generate mmWave signals, we use off-
the-shelf phase-locked loop (PLL) frequency synthesizers
ADF4371 with integrated VCO and frequency quadrupler,
which quadruples 6.125 GHz VCO signals to 24.5 GHz. At
the transmitter, the PLL output power is < −13 dBm, and we
use the PLL in conjunction with a variable gain amplifier
(VGA) HMC997LC4, which amplifies signals by 18 dBm.

5.2 In-situ Performance

In this section, we evaluate the end-to-end performance of
mmWall for indoor and outdoor scenarios.

SNR improvement over the best environment path. To
evaluate the effectiveness of mmWall in improving SNR in
scenarios with blocked LoS paths, we conduct SNR mea-
surements at multiple transmitter and receiver locations (two
locations for the transmitter and 23 locations for the receiver).
For each link, the transmitter and receiver (and mmWall if
deployed) search for an NLoS path that maximizes the SNR.

Fig. 11 illustrates the measurements taken prior to and fol-
lowing the deployment of mmWall. Specifically, Fig. 11(a)
presents the SNRs obtained when the transmitter was posi-
tioned towards the window at 0○ (upper subfigure) and 30○
(lower subfigure) in an indoor testbed. The results of both
subfigures show that our indoor testbed has a rich scattering
environment, with some receiver locations achieving SNR
levels exceeding 25 dB in the absence of mmWall. However,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1655

https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-adf4371.html#eb-overview
https://www.analog.com/media/en/technical-documentation/data-sheets/hmc997g.pdf

0
2
4
6

w/o mmWall w/ mmWall

10
20
30
40

SN
R

 (d
B

)

0 2 4 6 8

0
2
4
6

0 2 4 6 8
10
20
30
40

SN
R

 (d
B

)

X Location (m)

Y
 L

oc
at

io
n

(m
)

(a) Indoor-to-indoor.
0 2 4 6 8

−6
−4
−2

0
2
4
6

Outdoor

w/o mmWall

0 2 4 6 8

Outdoor

w/ mmWall

0 2 4 6 8

Outdoor

w/o mmWall

0 2 4 6 8

Outdoor

w/ mmWall

10

20

30

40

SN
R

 (d
B

)

X Location (m)
(b) Outdoor-to-indoor.

0
2
4
6

mmWall Metal sheet

10
20
30
40

SN
R

 (d
B

)

0 2 4 6 8

0
2
4
6

0 2 4 6 8
10
20
30
40

SN
R

 (d
B

)

X Location (m)
(c) Comparing to a metal sheet

Figure 11: mmWall’s SNR improvement over the best NLoS environment path in two scenarios: (a) when both transmitter
and receiver are located indoors (upper: transmitter facing mmWall perpendicularly; lower: transmitter facing 30○ away from
mmWall) and (b) when the transmitter is located outdoors (left: transmitting perpendicularly; right: transmitting at a 30○
off-angle). We use the following notations: mmWall ☀, transmitter▲, receiver◯. indicates no signal.

receivers located at either end of the room experience SNR
levels below 20 dB. With mmWall, all receivers, including the
ones in the corner, achieve SNRs of at least 24 dB. Also, the
nodes located within mmWall’s steering angle of −45○ to 45○
has SNRs greater than 30 dB. This improvement in SNR is
particularly evident in Fig. 12. In Fig. 12 (left), we plot a CDF
of the best environment SNRs (black curves) alongside the
SNRs of mmWall links at the corresponding receiver location
(rectangles). Fig. 12 (center) shows the CDFs of maximum
SNRs between the environment and mmWall links, while
Fig. 12 (right) shows the CDFs of the SNR gains over the
environment path per receiver location. As shown in Fig. 12
(upper), mmWall ensures outage-free communication for 91%
of receiver locations at 128 QAM [24] mmWave data rates,
while only 40-50% of receivers achieve the same rate in the
absence of mmWall. Moreover, among 80% of receivers that
experience the gain from mmWall, some receive more than a
15 dB SNR boost.

In Fig. 11(b), we present the SNR improvement in outdoor-
to-indoor scenarios. Without mmWall, receivers unable to es-
tablish an NLoS link through the window experience complete
link failure. With mmWall, on the other hand, all receivers
achieve SNRs of at least 19−20 dB. Fig. 12 (lower) shows
the CDFs of outdoor-to-indoor SNR improvement. A single
mmWall guarantees 64-QAM for almost all receiver locations
and a 30 dB SNR boost for 40% of the links. Our results
demonstrate that mmWall is highly beneficial for improving
mmWave signals quality in the cases of wall blockage.

Deploying multiple mmWalls. To evaluate more than one
mmWall, we place another mmWall (downward triangles in
Fig. 12) in front of the window on the right side of the room.
Fig. 12 (upper) demonstrates the SNR gain from deploying
two mmWalls for indoor-to-indoor links. Compared to the
gain from a single mmWall, an additional mmWall provides
≤ 5 dB SNR gain for some links. As shown in Fig. 12 (lower),
there is almost no gain from adding an extra mmWall for
outdoor-to-indoor links. The results indicate that a single
mmWall is sufficient to provide good coverage (at least 128-

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

64
QAM

256
QAM

1024
QAM

64
QAM

256
QAM

1024
QAM

Env
1 mmW
2 mmWs
metal

10 20 30 40
SNR (dB)

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

10 20 30 40
Max SNR (dB)

0 10 20 30
SNR Gain (dB)

Env
1 mmW
2 mmWs

Figure 12: The SNR improvement from the use of one
or more mmWalls at various receiver locations in indoor-
to-indoor (upper) and outdoor-to-indoor (lower) scenarios.
SNRs collected from a given receiver location are plotted
on the same y-axis value (left: CDFs of the best environ-
ment SNRs in black curves alongside the SNRs of mmWall
links at the corresponding receiver location in rectangles. The
maximum SNRs between two mmWalls placed in different lo-
cations are denoted with downward triangles; center: the best
available SNRs with or without one or more mmWalls; right:
the SNR gains attained with one or more mmWalls compared
to the best environment path in various Rx locations).

QAM for reflective and 64-QAM for transmissive links) in a
10×8 m office room. In a static environment another mmWall
will not help if a mmWall path is already available.

Improving reliability for dynamic links. While a single
mmWall delivers good SNRs throughout all receiver locations,
it is still possible for blockages to occur on mmWall links.
Likewise, even if there is a robust NLoS path present, it
can still be blocked. At mmWave frequencies, the indoor
environment typically provides three to four strong paths,
including the LoS path [23]. Due to the limited number of
available paths, an increase in blockages can easily result

1656 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.0

0.5

1.0

C
D

F

64
Q

A
M

25
6Q

A
M

10
24

Q
A

M

Beta β = 0.0

64
Q

A
M

25
6Q

A
M

10
24

Q
A

M

Beta β = 0.4

64
Q

A
M

25
6Q

A
M

10
24

Q
A

M

Beta β = 0.8

10 20 30 40
SNR (dB)

0.0

0.5

1.0

C
D

F

64
Q

A
M

25
6Q

A
M

10
24

Q
A

M

Env
1 mmW
2 mmWs

10 20 30 40
SNR (dB)

64
Q

A
M

25
6Q

A
M

10
24

Q
A

M
10 20 30 40

SNR (dB)

64
Q

A
M

25
6Q

A
M

10
24

Q
A

M

Figure 13: The SNR improvement (multiple mmWalls) for
dynamic links (upper: indoor-to-indoor; lower: outdoor-to-
indoor scenarios). β is a blockage probability.

in link failure, which exacerbates when these obstructions
are in motion. One of the primary benefits of using one or
multiple mmWalls is the enhancement of link reliability. By
providing a diverse, strong alternative path, mmWall reduces
the probability of link scarcity. In Fig. 13, we demonstrate
the SNR gain across various Rx locations as a function of the
blockage probability β

5 for both environment and mmWall
links. In indoor-to-indoor scenarios, a single mmWall and two
mmWalls reduce the probability of link failure by a ratio of up
to 10% and 20% under 80% path blockage, respectively. For
the outdoor testbed, the probability of link failure decreases
by 40% for a single mmWall and 45% for two mmWalls
under 40% blockage probability. Hence, we conclude that
multiple mmWalls are beneficial when channel environments
are highly dynamic.

One may argue that deploying a simple reflective metal
sheet could help, but mmWall’s ability to steer the beam has a
significant impact on the extent of coverage. We evaluate the
SNRs of links reflected by a 60×60 cm metal sheet, along
with the SNRs of links steered by a 10×20 cm mmWall. As
shown in Fig. 11(c) (right), only 10% of the receivers achieves
SNRs above 30 dB, and the remaining 90% have SNRs below
15 dB. It is also worth noting that for a metal sheet, the SNRs
depend largely on the location of the receiver and transmitter.
In Fig. 11(c) (right), only the receivers that are placed and
perfectly aligned with the angle of specular reflection achieve
a high SNR. In Fig. 12, only 8% of the receivers achieve more
than 5 dB SNR gain from the metal sheet. On the other hand,
mmWall guarantees at least 25 dB SNRs across all areas. We
conclude that, compared to fixed-angle reflection, mmWall
links are less sensitive to the location of the transmitter, re-
ceiver, and surface, making them much more robust.

5A blockage probability is equivalent to a probability of complete link
failure for each path. Under various available paths, the blockage probability
of one path is independent from the other.

0

1
Reflective multi-beams Refractive multi-beams

0

1

−50 0 50
Theta (deg)

0

1

−50 0 50
Theta (deg)

N
or

m
al

iz
ed

 G
ai

n

(a) mmWall’s multi-armed beam pattern (upper: −45/15○
degree beam split; middle: −30/30○ split; lower: −15/45○
split). Empirical points are denoted ×, with simulation curves.

−50 0 50
Rx angle (deg)

10

20

SN
R

 (d
B

)

10 20 30
SNR (dB)

0.0

0.5

1.0

C
D

F

Detection
threshold

Ref
Tra

(b) The SNRs of aligned multi-beams (left: a fixed distance
between the transmitter and mmWall and between the receiver
and mmWall; right: various Tx and Rx locations in the office
setting.)

Figure 14: Evaluation of mmWall’s multi-armed beams.

5.3 Multi-armed Beams

We next evaluate mmWall’s capability to generate multi-
armed beams. Fig. 14(a) presents our measurements on
the multi-armed beams, along with simulation results from
HFSS. Here, mmWall splits an incident beam into two beams
at −45○/15○ and steers these multi-beams to −30○/30○ and
−15○/45○. To measure the beam pattern, we position the
transmitter and receiver three meters away from mmWall and
record the gain of mmWall as we move the receiver from a
−90○ to 90○ angle with respect to mmWall. Since we did
not measure the beam pattern in an anechoic chamber, the
received beam interfered with signals reflected off the in-
door environment. Despite the interference, we observe that
the gain peaks at the angles where mmWall splits the beam.
Furthermore, as mmWall steers its multi-armed beams, the
measured peaks change accordingly. Our results show a peak
at 0○ due to leakage that was directly fed from the transmitter
to the receiver. Reducing the distance between the transmitter
and receiver and/or increasing the size of mmWall will reduce
the peak at 0○.

We then measure SNRs as mmWall generates and steers
various multi-beams, the beams that are 15○ to 120○ apart
from each other. The distance between the transmitter and
mmWall and between the receiver and mmWall are fixed to
2 m. Fig. 14(b) (left) reveals that as the beam is split into a
wider angle, SNR drops.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1657

−50

0

50

m
m

W
al

l
St

ee
r A

ng
le

 (d
eg

) Steerability

GT
Tra
Ref 20

30

m
m

W
al

l G
ai

n
(d

B
)

Capacity
Impact of incident angles

Tx angle (Ref, Exp)
60° 30° 0°

−50

0

50

St
ee

r A
ng

le
 (d

eg
) Angular Reciprocity

GT
Exp

20

40

m
m

W
al

l G
ai

n
(d

B
) Impact of surface sizes

Ref, 0°
Ref, 45°
Capacity

0.2

0.4

0.6

0.8

Ef
fic

ie
nc

y

Bandwidth

Ref

−50 0 50
Steering Angle (deg)

20

30

m
m

W
al

l G
ai

n
(d

B
)

Capacity

Tra (Sim)
Ref (Sim)

Tra (Exp)
Ref (Exp)

−50 0 50
Rx Angle (deg)

20

30

m
m

W
al

l G
ai

n
(d

B
)

Capacity

Tx angle (Tra, Exp)
60° 30° 0°

−50 0 50
Steering Angle (deg)

20

30

m
m

W
al

l G
ai

n
(d

B
)

Exp

0.0 0.1 0.2
mmWall Size (sq m)

20

40

m
m

W
al

l G
ai

n
(d

B
)

Tra, 0°
Tra, 45°
Capacity

24.0 24.5 25.0
Freq. (GHz)

0.2

0.4

0.6

0.8

Ef
fic

ie
nc

y Tra

Figure 15: Microbenchmarks evaluating (left to right:) surface steerability, performance sensitivity of the incident wave angle,
angular reciprocity, surface size, and frequency bandwidth. Empirical points are denoted with markers, with simulation curves.

To demonstrate the feasibility of a beam search using multi-
armed beams, mmWall again splits the beam into two beams
that are 15○ to 120○ apart from each other. Then it aligns
the beam with the receivers at 23 different locations in the
room. Fig. 14(b) (right) reports the SNRs of mmWall’s multi-
beam links aligned with various receivers. The results show
that more than 90% of multi-beam links achieve SNRs above
10 dB. Considering that no signal is detected in many loca-
tions under outdoor-to-indoor settings, 10 dB SNR is enough
for the receiver to detect the beam and start the alignment.
We conclude that mmWall can generate multi-armed beams
that are sufficiently strong to accelerate beam search.

5.4 Microbenchmarks

We now evaluate mmWall’s steering performance, its support
for wide steering angle, angular reciprocity, operation across
wide bandwidths, and the impact of the surface size. The mi-
crobenchmark testbed consists of the receiver and transmitter
modules that are three meters away from mmWall. Fig. 15
presents both the actual experimental measurements (markers)
and simulated results (curves) acquired from HFSS.

Since mmWall does not have an amplifier, the effective
aperture Ae is the primary factor that determines its gain. A
well-defined relation for the effective aperture in terms of the
aperture gain G is Ae4π/λ2. We define the aperture gain as our
capacity and compare it against our measured mmWall gains
in our microbenchmarks. A rigorous analysis on mmWall
gain is available in Appendix B.

mmWall controllability. Fig. 15 (upper first) presents
mmWall’s beam alignment accuracy. We place the receiver
at 37 locations in our testbed and find the angle that provides
the maximum SNR as mmWall sweeps the beam from −80○
to 80○ angle. During the experiment, the transmitter is facing
mmWall at 0○ angle. For both reflection and transmission,
mmWall accurately steers the beam with at most 3○ difference
from the groundtruth (GT). Second, we evaluate the effect of
a steering angle on the mmWall gain in Fig. 15 (lower first).

As mmWall increases the steering angle, the gain slowly de-
creases. Furthermore, reflection provides a slightly higher
gain than transmission.

Support for wide steering angle. In this microbenchmark,
we evaluate the effect of incident beam angles on the mmWall
gain jointly with the steering angle. Here, we move the trans-
mitter to three different locations and the receiver to 37 loca-
tions. Fig. 15 (upper second) and Fig. 15 (lower second) show
the impact of incident angles for reflection and transmission,
respectively. For both scenarios, increasing the incident beam
angle does not greatly reduce the mmWall gain. An important
observation is that even with 135○ steering angle (e.g., Tx an-
gle at 60○ and Rx angle at −75○), mmWall achieves more than
22 dB gain, indicating that mmWall is capable of refracting
the beam in a very wide angle.

Angular reciprocity. Once mmWall achieves alignment
for the downlink channel, the uplink channel also becomes
aligned due to its angular reciprocity. To demonstrate this
property, we evaluate the accuracy of uplink beam alignment
and the corresponding mmWall gain when downlink align-
ment is already established. In Fig. 15 (upper third), uplink
alignment using reciprocity is very accurate and is within an
error of 3○. Also, Fig. 15 (lower third) shows that all corre-
sponding mmWall gains are above 23 dB using reciprocity.

Operation across wide bandwidths. To demonstrate
mmWall’s phase coverage across a wide bandwidth, we
present our VNA measurements from 20 to 30 GHz. In
Fig. 16, each curve indicates the phase response of voltage
levels in our lookup table that we compiled at our center fre-
quency, 24.5 GHz. Here, we emphasize three points. First,
mmWall provides a full phase coverage from −π to π over
the 200 MHz 5G mmWave link bandwidth. Second, within
200 MHz bands (highlighted in gray), the phase distributions
are mostly constant, allowing improvements over the entirety
of these bandwidths. Third, mmWall can operate in the entire
23.5 to 25.5 GHz band, as it provides a wide range of phases
there. Hence, mmWall operates over the mmWave 5G band-

1658 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Reflection Γ

(b) Transmission T

Figure 16: mmWall’s phase coverage and consistency (VNA
measurement) across different frequencies. The curves indi-
cate the voltage pairs (UM , UE) that provide −180○ to 180○
phase shift with the step of 15○ at 24.5 GHz. The phases are
unwrapped across the mmWall’s operating bandwidth.

width. More importantly, our meta-atom design goal is to
reduce transmission or reflection loss level with a full phase
coverage. To quantify both magnitude and phase coverage at
the same time, we define efficiency as ∑180

φ=−180(Te−1 jφ)/360
where T is a set of points obtained from the near-field trans-
missive (reflective) Huygens pattern that provides the maxi-
mum magnitude for−180○ to 180○ phases. Fig. 15 (rightmost)
demonstrates that for both reflection and transmission, the
efficiency is consistent and declines after 24.9 GHz. Since
targeted operational bandwidth for 5G mmWave is 200 MHz,
we conclude that mmWall operates within the 5G bandwidth.

Increasing mmWall size. Fig. 15 (fourth) shows an increase
of simulated gains as mmWall size increases from 10×10 cm
to 50×50 cm with 0○ (for reflection, it is a specular reflec-
tion) and 45○ steering angle. Also, we compare our simulated
results against the effective aperture-based capacity. mmWall
gains at both 0○ and 45○ steering angle increase with increas-
ing surface size, following the capacity trend.

6 Discussion

In this section, we discuss several limitations of mmWall and
our potential solutions.

3D beamforming. 3D beamforming technique is beneficial
in massive MIMO communications as it sophisticatedly con-
trols the beam in different directions in spatial domain. With
mmWall, meta-atoms on the same rib share the voltage level,
and therefore it is structured as a 2D linear array. To achieve

3D beamforming, we can simply separate mmWall control
lines in the vertical direction. In the future, we will vertically
partition mmWall and separately control them.

Tinted window. While mmWave waves propagate through
a glass wall with virtually no loss, the penetration loss in-
creases when the glass is metal-coated. Our window has
approximately -4 to -5 dB loss with a light tint. If our win-
dow is tinted more, SNRs will drop, and this decrease will be
equivalent to the increase of penetration loss from a different
level of a tint. There is an existing work [45] that measures re-
flection coefficients and penetration loss for common building
materials at mmWave. According to the paper, the penetra-
tion loss may increase by more than 20 dB when the window
is heavily tinted. With such windows, we can remove the
tint of the small area of the window (approx. 0.02 sq m) for
mmWall.

Indoor AP as a 5G mmWave relay. An indoor mmWave AP
can serve as a relay when the outdoor cell coverage fails to
reach indoors. To accomplish this, cellular operators require
indoor infrastructure to install an AP capable of receiving
5G signals. This AP then communicates with an internal
modem through an Ethernet cable, and the modem wirelessly
transmits the signal to the user through Wi-Fi. This deploy-
ment is not only costly and time-consuming but also hard to
implement. On the other hand, a single mmWall at a fixed
location can achieve all three use cases, including 5G outdoor-
to-indoor and outdoor-to-outdoor coverage, and indoor WiFi.

7 Conclusion

This paper presents mmWall, the first Huygens metasurface
that can reconfigures itself to relay an incoming mmWave
beam as either a non-specular “lens” or “mirror.” Our pro-
totype steers single- or multi-armed beams at non-specular
directions, arbitrarily in real-time. We conduct an extensive
evaluation in various indoor and outdoor settings, demonstrat-
ing significant SNR improvement, and describe how scaling
to even larger sizes is eminently possible.

8 Acknowledgements

This work is supported by the National Science Foundation
under grant CNS-1617161, Natural Sciences and Engineering
Research Council of Canada (NSERC), Canada Foundation
for Innovation (CFI) and Ontario Research Fund (ORF).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1659

https://www.qualcomm.com/news/releases/2021/07/qualcomm-completes-worlds-first-5g-mmwave-data-connection-support-200-mhz

References

[1] O. Abari, D. Bharadia, A. Duffield, D. Katabi. Enabling
high-quality untethered virtual reality. USENIX NSDI
Symp., 531–544, 2017.

[2] O. Abari, H. Hassanieh, M. Rodriguez, D. Katabi. Mil-
limeter wave communications: From point-to-point
links to agile network connections. ACM HotNets Work-
shop, 169–175, 2016.

[3] Y. Azar, G. N. Wong, K. Wang, R. Mayzus, J. K. Schulz,
H. Zhao, F. Gutierrez, D. Hwang, T. S. Rappaport.
28 GHz propagation measurements for outdoor cellular
communications using steerable beam antennas in New
York City. IEEE Intl. Conf. on Comms., 5143–5147,
2013.

[4] K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu,
T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, et al.
A reconfigurable active Huygens metalens. Advanced
materials, 29(17), 1606,422, 2017.

[5] L. Chen, W. Hu, K. Jamieson, X. Chen, D. Fang,
J. Gummeson. Pushing the physical limits of IoT de-
vices with programmable metasurfaces. USENIX NSDI
Symp., 2021.

[6] K. W. Cho, M. H. Mazaheri, J. Gummeson, O. Abari,
K. Jamieson. mmwall: A reconfigurable metamaterial
surface for mmwave networks. Proceedings of the 22nd
International Workshop on Mobile Computing Systems
and Applications, 119–125, 2021.

[7] L. Dai, B. Wang, M. Wang, X. Yang, J. Tan, S. Bi,
S. Xu, F. Yang, Z. Chen, M. D. Renzo, C.-B. Chae,
L. Hanzo. Reconfigurable intelligent surface-based
wireless communications: Antenna design, prototyping,
and experimental results. IEEE Access, 8, 45,913–
45,923, 2020.

[8] X. Ding, Z. Wang, G. Hu, J. Liu, K. Zhang, H. Li,
B. Ratni, S. N. Burokur, Q. Wu, J. Tan, et al. Meta-
surface holographic image projection based on mathe-
matical properties of Fourier transform. PhotoniX, 1(1),
1–12, 2020.

[9] A. Epstein, G. V. Eleftheriades. Passive lossless Huy-
gens metasurfaces for conversion of arbitrary source
field to directive radiation. IEEE Transactions on An-
tennas and Propagation, 62(11), 5680–5695, 2014.

[10] A. Epstein, G. V. Eleftheriades. Huygens’ metasurfaces
via the equivalence principle: design and applications.
JOSA B, 33(2), A31–A50, 2016.

[11] B. Esmail, H. Majid, Z. Abidin, S. Dahlan, M. Rahim,
O. Ayop, et al. New metamaterial structure with re-
configurable refractive index at 5G candidate band. J.
Optoelectron Adv M, 21(1-2), 101–107, 2019.

[12] FEDERAL COMMUNICATIONS COMMISSION. Er-
icsson ab pre-nr and nr base radio akrd901059-1.

[13] FEDERAL COMMUNICATIONS COMMISSION.
Sfg-aa100dc 5g access unit test report 1 samsung elec-
tronics.

[14] FEDERAL COMMUNICATIONS COMMISSION. Ti-
tle 47, code for federal regulations.

[15] H. Friis. A note on a simple transmission formula. Proc.
of the IRE, 34(5), 254–256, 1946.

[16] H. Hassanieh, O. Abari, M. Rodriguez, M. Abdelghany,
D. Katabi, P. Indyk. Fast millimeter wave beam align-
ment. ACM SIGCOMM Conf., 432–445, 2018.

[17] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara,
J. Booth, D. R. Smith. An overview of the theory
and applications of metasurfaces: The two-dimensional
equivalents of metamaterials. IEEE Antennas and Prop-
agation Magazine, 54(2), 10–35, 2012.

[18] I. K. Jain, R. Subbaraman, D. Bharadia. Two beams are
better than one: Towards reliable and high throughput
mmwave links. ACM SIGCOMM Conf., 488–502. New
York, NY, USA, 2021.

[19] S. Jog, J. Wang, J. Guan, T. Moon, H. Hassanieh, R. R.
Choudhury. Many-to-Many beam alignment in millime-
ter wave networks. USENIX NSDI Symp., 783–800.
Boston, MA, 2019.

[20] Z. Li, Y. Shu, G. Ananthanarayanan, L. Shangguan,
K. Jamieson, P. Bahl. Spider: A multi-hop millimeter-
wave network for live video analytics. 2021 IEEE/ACM
Symp. on Edge Computing (SEC), 178–191, 2021.

[21] M. Liu, D. A. Powell, Y. Zarate, I. V. Shadrivov. Huy-
gens’ metadevices for parametric waves. Phys. Rev. X,
8(3), 031,077, 2018.

[22] G. R. MacCartney, T. S. Rappaport, S. Sun, S. Deng.
Indoor office wideband millimeter-wave propagation
measurements and channel models at 28 and 73 GHz
for ultra-dense 5G wireless networks. IEEE Access, 3,
2388–2424, 2015.

[23] M. Nemati, B. Maham, S. R. Pokhrel, J. Choi. Model-
ing RIS empowered outdoor-to-indoor communication
in mmWave cellular networks. IEEE Transactions on
Communications, 69(11), 7837–7850, 2021.

[24] K. Nishimori, K. Kitao, T. Imai. Interference-based
decode and forward scheme using relay nodes in hetero-
geneous networks. International Journal of Antennas
and Propagation, 2012, 2012.

[25] C. Pfeiffer, A. Grbic. Metamaterial Huygens’ surfaces:
Tailoring wave fronts with reflectionless sheets. Phys.
Rev. Lett., 110, 197,401, 2013.

1660 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[26] K. Qian, L. Yao, X. Zhang, T. N. Ng. MilliMirror: 3D
printed reflecting surface for millimeter-wave coverage
expansion. ACM MobiCom Conf., 2022.

[27] M. E. Rasekh, Z. Marzi, Y. Zhu, U. Madhow, H. Zheng.
Noncoherent mmWave path tracking. ACM HotMobile
Workshop, 13–18, 2017.

[28] N. Shlezinger, G. C. Alexandropoulos, M. F. Imani,
Y. C. Eldar, D. R. Smith. Dynamic metasurface an-
tennas for 6G extreme massive MIMO communications.
IEEE Wireless Comms., 28(2), 106–113, 2021.

[29] D. R. Smith, J. B. Pendry, M. C. Wiltshire. Metamate-
rials and negative refractive index. Science, 305(5685),
788–792, 2004.

[30] S. Sur, I. Pefkianakis, X. Zhang, K.-H. Kim. WiFi-
assisted 60 GHz wireless networks. ACM MobiCom
Conf., 28–41. New York, NY, USA, 2017.

[31] X. Tan, Z. Sun, D. Koutsonikolas, J. M. Jornet. En-
abling indoor mobile millimeter-wave networks based
on smart reflect-arrays. IEEE INFOCOM Conf., 270–
278, 2018.

[32] W. Tang, M. Z. Chen, X. Chen, J. Y. Dai, Y. Han,
M. Di Renzo, Y. Zeng, S. Jin, Q. Cheng, T. J. Cui.
Wireless communications with reconfigurable intelli-
gent surface: Path loss modeling and experimental mea-
surement. IEEE Trans. on Wireless Comms., 20(1),
421–439, 2021.

[33] W. Tang, X. Chen, M. Z. Chen, J. Y. Dai, Y. Han,
M. Di Renzo, S. Jin, Q. Cheng, T. J. Cui. Path loss mod-
eling and measurements for reconfigurable intelligent
surfaces in the millimeter-wave frequency band. IEEE
Trans. on Comms. (Early Access), 2022.

[34] A. Vallecchi, E. Shamonina, C. J. Stevens. Analytical
model of the fundamental mode of 3D square split ring
resonators. J. of Applied Physics, 125(1), 014,901,
2019.

[35] E. Violette, R. Espeland, R. DeBolt, F. Schwering.
Millimeter-wave propagation at street level in an urban
environment. IEEE Trans. on Geoscience and Remote
Sensing, 26(3), 368–380, 1988.

[36] X. Wang, P.-Y. Qin, A. T. Le, H. Zhang, R. Jin, Y. J.
Guo. Beam scanning transmitarray employing reconfig-
urable dual-layer huygens element. IEEE Transactions
on Antennas and Propagation, 70(9), 7491–7500, 2022.

[37] T. Wei, A. Zhou, X. Zhang. Facilitating robust 60
GHz network deployment by sensing ambient reflectors.
USENIX NSDI Symp., 213–226, 2017.

[38] Z. Wu, Y. Ra’di, A. Grbic. Tunable metasurfaces: A
polarization rotator design. Physical Review X, 9(1),
011,036, 2019.

[39] Y. Xing, F. Vook, E. Visotsky, M. Cudak, A. Ghosh.
Raytracing-based system performance of intelligent re-
flecting surfaces at 28 GHz. IEEE Intl. Conf. on
Comms., 498–503, 2022.

[40] C. Xue, Q. Lou, Z. N. Chen. Broadband double-layered
huygens’ metasurface lens antenna for 5g millimeter-
wave systems. IEEE Transactions on Antennas and
Propagation, 68(3), 1468–1476, 2019.

[41] K. Ying, Z. Gao, S. Lyu, Y. Wu, H. Wang, M.-S. Alouini.
GMD-based hybrid beamforming for large reconfig-
urable intelligent surface assisted millimeter-wave mas-
sive MIMO. IEEE Access, 8, 19,530–19,539, 2020.

[42] R. I. Zelaya, W. Sussman, J. Gummeson, K. Jamieson,
W. Hu. LAVA: fine-grained 3D indoor wireless cov-
erage for small IoT devices. ACM SIGCOMM Conf.,
123–136, 2021.

[43] L. Zhang, X. Q. Chen, S. Liu, Q. Zhang, J. Zhao, J. Y.
Dai, G. D. Bai, X. Wan, Q. Cheng, G. Castaldi, et al.
Space-time-coding digital metasurfaces. Nature Com-
munications, 9(1), 1–11, 2018.

[44] H. Zhao, R. Mayzus, S. Sun, M. Samimi, J. K. Schulz,
Y. Azar, K. Wang, G. N. Wong, F. Gutierrez, T. S.
Rappaport. 28 GHz millimeter wave cellular communi-
cation measurements for reflection and penetration loss
in and around buildings in New York City. IEEE Intl.
Conf. on Comms., 5163–5167, 2013.

[45] H. Zhao, R. Mayzus, S. Sun, M. Samimi, J. K. Schulz,
Y. Azar, K. Wang, G. N. Wong, F. Gutierrez, T. S.
Rappaport. 28 ghz millimeter wave cellular communi-
cation measurements for reflection and penetration loss
in and around buildings in new york city. 2013 IEEE
International Conference on Communications (ICC),
5163–5167. IEEE, 2013.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1661

A Unit Cell Electromagnetic Analysis

We now present a full mathematical analysis of mmWall’s unit
cells. Since electromagnetic fields are naturally continuous
and will not change the propagation characteristics by itself,
we artificially introduce electric and magnetic surface currents
(J⃗s,M⃗s) from the electric and magnetic meta-atoms, enforcing
a field discontinuity:

J⃗s = n̂×[Ht −Hi], M⃗s = −n̂×[Et −Ei] (4)

where n̂ is a unit normal. The average tangential field applied
on the meta-atom pair induces (J⃗s,M⃗s). To induce suitable
surface currents, we need a proper surface impedance for each
meta-atom:

n̂×[Eavg] = ZeJ⃗s = Zen̂×[H2−H1]

n̂×[Havg] =YmM⃗s = −Ymn̂×[E2−E1]
(5)

where Ze is the electric surface impedance and Ym is the mag-
netic surface admittance equivalent to 1/Zm. In fact, the elec-
tric and magnetic meta-atoms are each described by a surface
impedance of LC oscillating circuit containing inductance L
and capacitance C. Mathematically, we can formulate the
surface impedance of the electric and magnetic meta-atom as

Ze = (
2π fCe−1
(2π f)2LeCe

) j, Ym = (
1−(2π f)2LmCm

2π fCm
) j (6)

where f indicates the resonant frequency. Each meta-atom be-
haves as an LC circuit when its resonant frequency f matches
the frequency of the incident wave. Mathematically, the reso-
nant frequency is equivalent to f = (2π

√
LC)−1.

Given Ze and Ym, we can formulate the transmission coeffi-
cient T and reflection coefficient Γ of a meta-atom pair:

T =
4−Ym ⋅Ze

(2+Ym ⋅η)(2+Ze/η))
, Γ =

2(Ze/η−Ym ⋅η)

(2+Ym ⋅η)(2+Ze/η)
(7)

where η is the wave impedance in free space. Hence, by
changing the surface impedance (Ze,Ym), we precisely con-
trol the phase of the coefficients, creating an arbitrary phase
shift on the incident wave [10].

The excitation of the electric and magnetic surface currents,
or, equivalently, the values of Ze and Ym is tuned by chang-
ing the capacitive or inductive loading of the meta-atoms as
shown in Eq. (6). Hence, to make HMS reconfigurable, we
load a voltage-controlled capacitor, varactor diode, on each
meta-atom. By applying voltage across each varactor, we can
arbitrary change the surface impedance, or equivalently, the
phase of the transmission or reflective coefficient.

Since the electric and magnetic meta-atoms are superim-
posed on the surface, we dissect the equivalent circuit model
for the electric and magnetic meta-atom individually.

0 2 4 6 8 10 12 14
Applied voltage (V)

0.0

0.4

0.8

1.2

Va
ra

ct
or

ca

pa
ci

ta
nc

e
(p

F)

−180 −90 0 90 180
Angle (deg)

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

ra

di
at

io
n

pa
tte

rn
 (%

)

Simul.
Fitted

Figure 17: Left: Cvar as the voltage applied to varactor
changes, modeled with SPICE simulation; Right: mmWall
element normalized beam pattern F(θ) simulated with HFSS
and fitted function.

A.1 Magnetic Meta-atom

In this section, we provide the formulas for the magnetic
meta-atom’s capacitance and inductance discussed in §3.1.2.
First, we define the inductance of a circular metallic loop
Lloop as

Lloop = µ0R(log(
8Rm

t +w
−

1
2
)) , (8)

where R is a mean radius, and µ0 is free-space permeabil-
ity. Since there is a gap on the top of a metallic loop, the
inductance of our magnetic meta-atom can be calculated as

Lm = pmLloop = (1−
g

2πR
)Lloop, (9)

where g is a length of the gap. Now, we present the calculation
of Cm. First, the gap in the metallic loop creates a parallel-
plate capacitance as follow:

Cgap = ε
wt
g
+ε(t +w+g), (10)

where w is the width of the loop, and t is the thickness of the
copper. Here, ε = ε0εe f f where ε0 is free-space permittivity,
and εe f f is effective permittivity, which can be calculated as

εe f f =
εr +1

2
+(

εr −1
2
)
⎛

⎝

1
√
(1+12t/e)

⎞

⎠
(11)

where εr is the permittivity of the substrate. Second, there is
a capacitance induced by the metallic ring itself:

Csur f =
2ε(t +w)

π
ln(

4R
g
) (12)

Lastly, the varactor diode adds the capacitance as discussed
in §3.1.2. We have modeled our varactor, of Macom MAVR-
000120-1411, based on its Simulation Program with Inte-
grated Circuit Emphasis (SPICE) model and demonstrate
our simulated Cvar values in the left subfigure of Fig. 17.
Then, we formulate Cm according to Eq. (1). Finally, we
model the circuit diagram as a series impedance where the
series impedance itself corresponds to the surface impedance
Zm = 1/Ym.

1662 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.macom.com/products/product-detail/MAVR-000120-14110P
https://www.macom.com/products/product-detail/MAVR-000120-14110P

Radius R (mm) Gap g (mm) Width w (mm)
Ele. 0.8831 0.1016 0.3048
Mag. 0.7907 0.2794 0.3048

Table 1: mmWall design parameters.

A.2 Electric Meta-atom

Now, we provide the capacitance and inductance calculation
for the electric meta-atom. First, we formulate the inductance
of a half-circle ring Lcurve as follow:

Lcurve = (peLcircle)/2 =
1
2
((1−

g
2πRm

)Lcircle) . (13)

Based on [11], we compute the the inductance of the strip as

Lstrip = µ0l/4π[2sinh−1
(l

w)+2(1
w)sinh−1

(w
l)−

2(w2+l2)1.5
3lw2 + 2

3(
l
w)

2+ 2
3(

w
l)]

(14)

where l is the length of strip, which is equivalent to 2Rm, and
w is the width of the trace. We then combine all inductance
values into Le as

Le = (Lcurve/2)+Lstrip (15)

The formulas for the gap capacitance and surface capacitance
for the electric meta-atom are the same as the magnetic meta-
atom, and we define Ce according to Eq. (2). Finally, the
surface impedance of the electric meta-atom corresponds to a
shunt impedance.

A.3 Design Parameters

We present the exact values for our design parameters, includ-
ing radius R, gap g, and width w of the magnetic and electric
meta-atom, in Table. 1. Also, the voltage levels applied to the
magnetic and electric meta-atoms for different phase shifts
are shown in Fig. 18. The y-axis indicates the voltage level,
and the x-axis is different ribs. Specifically, Fig. 18(a) demon-
strates a set of UM and UE required for −30○, −15○, 0○, 15○,
and 30○ transmissive steering. Similarly, Fig. 18(b) shows the
voltages values required for reflective steering.

B Path Loss Model

This section presents a standard path loss model calculation
largely following the development in prior similar efforts
targeting lower frequencies [32], useful for our purposes to
establish the basic feasibility of our design prior to hardware
fabrication and full-scale evaluation.

First let us assume that a transmitter directly communicates
with a receiver. According to the Friis formula [15], the power

0

10

U
M

 (V
)

Steering angles (°): -30 -15 0 15 30

0 20 40 60
Rib #

0

10

U
E

(V
)

(a) Transmission

0

10

U
M

 (V
)

Steering angles (°): -30 -15 0 15 30

0 20 40 60
Rib #

0

10

U
E

(V
)

(b) Reflection

Figure 18: Upper: a set of voltage levels applied to the mag-
netic and electric meta-atoms UM and UE for transmissive
steering; Lower: voltage levels applied for reflective steering.

intercepted by the receiving antenna with effective aperture
AeR and distance between transmitter and receiver d is:

Pi = SRAeR = (
PT

4πd2 GT)AeR (16)

where SR is the received power density, and GT is the peak
gain of the transmitting antenna. Since the effective aper-
ture AeR =

λ
2

4π
GR where GR denotes the gain of the receiving

antenna, we rewrite Eq. (16) as

Pi = (
PT

4πd2 GT)(
λ

2

4π
GR) = PT GT GR(

λ

4πd
)

2

. (17)

Now we consider a transmitter communicating with the re-
ceiver via mmWall. Given Eq. (17), we formulate the power
the nmth meta-atom captures from the transmitter as

Pi
nm = PT GT Gw(

λ

4πdi,nm
)

2

, (18)

where Gw denotes the gain of the meta-atom in the direc-
tion of the transmitter, and di,nm is the distance between the
transmitter and nmth meta-atom. Similarly, we can calculate
the power received by the receiving antenna from the nmth

meta-atom as:

PR,nm = Ps
nmGRGw(

λ

4πds,nm
)

2

, (19)

where Gw is the meta-atom gain scattered in the direction of
the receiver, ds,nm is the distance between nmth meta-atom

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1663

to the receiver, Ps
nm is the power applied by each meta-atom,

and Ps
nm = Pi

nmε. Here, ε accounts for the limited efficiency of
meta-atom and insertion losses associated with components.
To simplify the formula, we assume ε = 1. To calculate the
power from the transmitter to the receiver, we then combine
Eqs. (18) and (19):

PR,nm = PT GT GR
GwGw

d2
i,nmd2

s,nm
(

λ

4π
)

4

(20)

Here, we emphasize that in the link budget, we must calculate
the gain of mmWall twice, one for receiving and another for
transmitting. Hence, Eq. (20) has two Gw. Since mmWall
consists of a large array of meta-atoms, we can formulate the
total received power as a sum of the received powers from all
meta-atoms as

PR = ∣
N

∑
n=1

M

∑
m=1

Cnm
√

PR,nme jφnm ∣

2

, (21)

where Cn,m denotes the transmission or reflection coeffi-
cient of the nmth meta-atom, and the phase φnm = 2π(di,nm+

ds,nm)/λ. In a lens mode Cn,m = Tn,m, and in a mirror mode
Cn,m = Γn,m. We already defined Tn,m and Γn,m in eq. Eq. (7).
Finally, we write the total received power as:

PR = PT GT GR(
λ

4π
)

4

∣
N

∑
n=1

M

∑
m=1

Cnm

√
GwGw

di,nmds,nm
e jφnm ∣

2

. (22)

However, the meta-atom gain Gw is unknown. Thus, we
re-define Gw as a power radiation pattern from each meta-
atom, which is equivalent to GF(θnm). G is a gain that
depends on the physical area (i.e. the effective aperture)
of the meta-atom, and F(θnm) is the normalized power ra-
diation pattern. Based on the effective aperture formula,
G = (4π/λ2)Aenm = (4π/λ2)(xy) where x and y are vertical
and horizontal meta-atom spacing, respectively. Unlike tradi-
tional antennas with x = y = λ/2, our meta-atom has x = λ/4.8
and y = λ/3.4. Moreover, F(θnm) defines the variation of the
power radiated or received by a meta-atom:

F(θ) =
⎧⎪⎪
⎨
⎪⎪⎩

cosq(θ) θ ∈ [0,π/2]
0 θ ∈ [π/2,π]

(23)

where θ are the angle from the meta-atom to a certain trans-
mitting or receiving direction. In the right subfigure of Fig. 17,
we present a simulated mmWall element beam pattern F(θnm)

as well as the curve fitted with Eq. (23). Based on our curve
fit, q = 0.5611.

Far-field beamforming. In the far-field, we can approximate
ds,nm = ds and di,nm = di since di and ds are much greater than
the distance between different meta-atoms. However, we do
not approximate ds,nm = ds and di,nm = di for the phase φnm.

(a) Sensitivity.

(b) Bandwidth.

Figure 19: Meta-atom microbenchmark

Then, we can simplify Eq. (22) as:

PR = PT GT GR(
Aenm

4πdids
)

2
F(θi)F(θs)∣

N

∑
n=1

M

∑
m=1

Cnme jφnm ∣

2

(24)
This indicates that we can maximize the received power by
configuring each meta-atom’s ∠Cnm to −φnm. Finally, the
path loss of a correctly reconfigured mmWall as:

L−1
mmWall = (

xy
4πdids

)
2F(θi)F(θs)∣

N

∑
n=1

M

∑
m=1
∣Cnm∣∣

2

(25)

Since 0 < ∣Cnm∣ < 1 for both transmissive and reflective mode,
increasing the number of meta-atoms N and/or M reduces
the path loss. Assuming ∣Cnm∣ is close to 1, the path loss of
mmWall is proportional to 1/(NM)2. While increasing the
element spacing x and y seems to reduce the loss, it is not
always true because ∣Cnm∣ decreases when x and y increase
due to increasing coupling between adjacent meta-atoms.

C Meta-atom controllability and sensitivity

We present the Huygens pattern measured from the VNA
in Fig. 19(a). We measure the near-field Huygens pattern

1664 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

in three different areas of mmWall to evaluate its sensitivity
against fabrication variation. For all three areas, we observe
a 360-degree phase variation with high magnitude for both
transmission and reflection. Moreover, the patterns do not
vary across the different areas of the surface, signifying that
manufacturing tolerance do not greatly affect mmWall’s near-
field performance. We also demonstrate the Huygens pattern
across mmWall’s operating bandwidth in Fig. 19(b). Within
the 200 MHz bandwidth, the pattern is consistent.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1665

Building Flexible, Low-Cost Wireless Access Networks With Magma

Shaddi Hasan1, Amar Padmanabhan2, Bruce Davie3, Jennifer Rexford4, Ulas Kozat5, Hunter Gatewood5,
Shruti Sanadhya5, Nick Yurchenko5, Tariq Al-Khasib5, Oriol Batalla5, Marie Bremner5, Andrei Lee5,
Evgeniy Makeev5, Scott Moeller5, Alex Rodriguez5, Pravin Shelar5, Karthik Subraveti5, Sudarshan

Kandi5, Alejandro Xoconostle5, Praveen Kumar Ramakrishnan5, Xiaochen Tian6, and Anoop Tomar5

1Virginia Tech 2Databricks 3Systems Approach 4Princeton 5Meta 6Independent

Abstract
Billions of people remain without Internet access due to avail-
ability or affordability of service. In this paper, we present
Magma, an open and flexible system for building low-cost
wireless access networks. Magma aims to connect users
where operator economics are difficult due to issues such as
low population density or income levels, while preserving fea-
tures expected in cellular networks such as authentication and
billing policies. To achieve this, and in contrast to traditional
cellular networks, Magma adopts an approach that exten-
sively leverages Internet design patterns, terminating access
network-specific protocols at the edge and abstracting the ac-
cess network from the core architecture. This decision allows
Magma to refactor the wireless core using SDN (software-
defined networking) principles and leverage other techniques
from modern distributed systems. In doing so, Magma lowers
cost and operational complexity for network operators while
achieving resilience, scalability, and rich policy support.

1 Introduction

Good Internet connectivity has become a basic necessity for
people and enterprises all over the world. Yet, more than
one-third of the global population does not have access to
the Internet [54], and many other users do not have the high-
speed connectivity needed for many important applications.
The problem is primarily a matter of economics: commercial
network operators claim that today’s Internet has reached the
user footprint that seems commercially viable to serve [29].
To reach the next billion users, we must reduce the cost of
providing Internet access or enable actors beyond traditional,
large-scale commercial operators to build sustainable, scal-
able network infrastructure. We need effective ways to reduce
both capital and operational costs, through less expensive
equipment and software, less reliance on highly skilled net-
work administrators, and increased utilization of existing local
capabilities. At the same time, providers need ways to manage
their limited network resources effectively to enable sustain-
able network operation. Cellular networks typically achieve

these goals with per-user policies, which may include per-user
data caps, rate limits, or usage-based charging.

Unfortunately, conventional wireless solutions are not well
suited to many scenarios affecting under-served users. WiFi
access points operating on unlicensed spectrum cannot gen-
erally provide efficient coverage to large geographic regions
(e.g., sparsely populated rural areas) due to the propagation
characteristics of the radios. Plus, WiFi networks typically do
not offer fine-grained policies to manage resources. In con-
trast, cellular base stations offer wider coverage, support more
users, and connect to core networks that support more flexible
policies. However, today’s cellular access networks rely on
expensive equipment, complex protocols, and a highly skilled
workforce, limiting their ability to cost-effectively connect
the next billion. While cellular networks scale up to large user
populations, they do not scale down well. That is, a small cel-
lular deployment is typically quite expensive. Magma aims to
bridge the gap between these two classes of solution: cellular
networks with rich policies, large user populations, and long
distances, and the simpler but less scalable WiFi networks.

More fundamentally, we observe that choosing to use a
cellular radio access network (RAN) today forces a network
operator to make a series of decisions that deeply impact their
network operations that are not inherently related to their
choice of access network technology. This choice binds a net-
work operator to: (i) a specific network architecture—namely
the 3GPP-defined arrangement of interfaces for network man-
agement and on-path devices for policy enforcement, (ii) an
ecosystem of vendors that has largely evolved to meet the
needs of massive-scale telecom operators, and (iii) a particu-
lar set of radio frequencies and associated regulatory require-
ments. The Magma project aims to change all this, by creating
an open-source, carrier-grade wireless networking platform
that supports a wide range of deployment scenarios. Magma
deployments can leverage whatever radio access technology is
readily available and most appropriate for their density of sub-
scribers or deployment scenario. Magma achieves this goal
through access gateways that terminate the radio-specific pro-
tocols as close to the radios as possible. As a result, Magma

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1667

allows carriers to augment an existing cellular deployment
with WiFi hotspots in popular locations (e.g., athletic venues),
or use LTE base stations to serve homes in rural areas, using
a single core network and management platform.

Ideally, new deployments could start small and grow over
time. Magma achieves a “scale as you go” design through
horizontal scaling of software components that run on com-
modity hardware, as is common in cloud-computing environ-
ments. Magma also leverages open-source software compo-
nents (e.g., Open vSwitch, gRPC, Kubernetes, Prometheus)
commonly used in cloud settings. Magma simplifies network
management by adopting software-defined networking con-
cepts, so that a central point of control can be used to set
network policies, manage subscribers, etc. Magma adopts a
hierarchical control plane to improve scalability. Magma sup-
ports only the essential features for efficient Internet access
(e.g., authentication, accounting, and per-user policies), and
forgoes some complex features. For example, while Magma
supports both mobility (within the area served by an access
gateway) and roaming, it does not yet support seamless user
mobility between access gateways; this is because mobility
has not been a requirement for the use cases that commercial
deployments of Magma support (e.g., home broadband or
backhaul to WiFi hotspots). As other work has observed [38],
modern end-host protocols and applications can perform well
without in-network mobility support.

In this experiences paper, we present the lessons learned in
designing and deploying Magma. We discuss how the goals
of supporting heterogeneous radio and backhaul technologies
and flexible policies, all at low cost, lead to a novel software ar-
chitecture. Magma is used in real-world deployments that vary
significantly in geographic scope, number of users, technology
choices, and the business models that make them financially
sustainable. In Section 2 we motivate Magma’s central tenet
that the radio access technology should not dictate the net-
work architecture. Then, Section 3 discusses how the design
of the access gateways enables Magma to support diverse
technologies, a scalable control plane, fault tolerance, and
more. Next, Section 4 presents an experimental evaluation
that demonstrates that Magma design and implementation
achieves good performance and scalability along with a dis-
cussion of two production access networks. We have seen cost
savings in one deployment of 43% compared to traditional
approaches due to lower operational, hardware, and software
costs. Our deployment experience also illustrates how Magma
scales both up and down, with one deployment supporting
more than 800 eNodeBs (base stations) in 45 US states at the
time of writing. Section 5 presents related work. The paper
concludes in Section 6 with a discussion of ongoing work on
Magma and future challenges.

Ethics. This paper raises no ethical concerns. For the de-
ployments discussed in Section 4, we only consider opera-
tional data and did not have access to any user data or traffic.

2 The Radio Access Technology Should Not
Drive the Network Architecture

Traditionally, the choice of radio access technology dictates
a raft of other decisions about the network architecture. In
contrast, Magma starts with the premise that each radio access
technology has a role to play in reaching diverse user com-
munities and that network operators should be able to use the
radio and backhaul technologies most suited for a deployment
scenario. In short, wireless network architectures should, like
the Internet itself, abstract away the link layer.

2.1 WiFi vs. Cellular Access Networks
The two main classes of radio access technologies emerged as
extensions to existing wireline networks with different design
philosophies. WiFi extended IP networks, whereas modern
cellular data networks began as extensions to voice telephony
networks. Many of the differences between these two classes
of access networks follow directly from this early distinction.

WiFi: WiFi allows inexperienced users to run simple low-
cost local-area networks on their own. These networks use
unlicensed radio spectrum (typically at 2.4 GHz and 5 GHz)
that do not require WiFi network operators to get advance
regulatory approval. At the same time, anyone can access
the same spectrum, subject to limits on transmission power.
As a result, WiFi networks share their bands with devices in-
cluding baby monitors, cordless phones, and smart power me-
ters, so the WiFi MAC layer must assume that a WiFi access
point (AP) operates in the presence of physical-layer interfer-
ence. Combined with power restrictions that limit transmit
distance, WiFi is most suitable for dense coverage in small
areas. WiFi service is best-effort, consistent with the Inter-
net design philosophy—and realistic given the likelihood of
interference. Enterprise WiFi deployments, such as those on
college campuses and in corporate office buildings, perform
more centralized management of interference across multiple
overlapping access points. Still, the risk of interference means
that the service remains best-effort.

Cellular: Cellular access networks allow telecommunica-
tion providers to offer wireless service to their subscribers,
typically using licensed spectrum that is owned or leased by
the carrier for long periods of time at high cost. Since the ra-
dio has exclusive access to spectrum over a geographic region,
cellular waveforms are designed for wide-area coverage and
high spectral efficiency, with deployments by well-resourced
actors that can acquire land, build and connect towers, and
hire skilled staff.

Regardless of access technology, any network of significant
scale requires substantial investment in equipment, staffing,
and, in the case of cellular networks, regulatory licenses. Thus,
beyond very small networks, operators implement policies to
manage limited spectrum, ranging from access control; charg-
ing for service based on time, usage, or more sophisticated

1668 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Differences between the LTE and 5G architectures.
See Appendix for explanation of acronyms.

techniques that incorporate community values [36]; usage
caps; and throttling. The policy specification for LTE, for
example, runs to almost 300 pages [14]. A simple example
policy would be: “rate limit customer C to X Mbps until they
have sent Y GB in interval t1, then limit to Z Mbps for inter-
val t2.” Supporting flexible policies can help carriers reach
under-served users in a financially sustainable manner: even
networks operating for social reasons still incur costs and
must efficiently manage limited resources.

These capabilities are implemented by a sophisticated
packet core network that connects multiple base stations to the
Internet. In contrast to how the Internet architecture changes
incrementally, each generation of cellular network has been
an opportunity to rethink everything from authentication to
the modularity of the control and data planes.

As such, different generations of the 3GPP standards [15]
have different packet core architectures. UTMS (“3G”) differs
from LTE (“4G”), which differs from 5G, and all of the gen-
erations differ from enterprise WiFi. The differences between
LTE and 5G are illustrated in Figure 1, adapted from [46].
The different radio technologies require differences in the
base stations (eNodeB versus gNB) but note also the change
in modularity of the mobile core. WiFi would be different
again, and less standardized, with functions such as Authoriza-
tion, Authentication, and Accounting (AAA) corresponding
roughly to Mobility Management Entity (MME) and Home
Subscriber Server (HSS) components in LTE.

Today, the boundaries between cellular and WiFi are in-
creasingly blurry, with operators deploying each technology
in scenarios more classically served by the other. In recent
years, large WiFi deployments have adopted more sophisti-
cated methods for user authentication, power control, seamless
mobility, and more [23,24,60], with efforts like Eduroam [58]
and OpenRoaming [57] bringing cellular-like wide area roam-
ing to users of WiFi access networks. Similarly, some cellular
access networks now use “lightly licensed” spectrum, such
as Citizen’s Band Radio Service (CBRS) [17] that supports
dynamic allocation of radio spectrum to give radios exclusive

Figure 2: An early Magma
deployment with a small ru-
ral ISP in Peru (their first
cellular site). Components
(top to bottom) include
(a) point-to-point wireless
backhaul, (b) LTE radio
and antenna, (c) ruggedized
embedded PC serving as
Magma AGW, and (d) solar
power and battery backup
for site.

access to some portion of the spectrum (on the timescales of
tens of minutes). Enterprises are deploying private cellular
access networks for a range of use cases—such as industrial
automation, medical applications, and Internet access at hotels
and sporting events—that need better radio efficiency, authen-
tication, and performance than WiFi traditionally offers.

2.2 Lowering the Barriers

Magma aims to lower the barrier to connecting under-served
populations via wireless networks. We argue that operators
should be able to choose the appropriate access technology
for any deployment without then being locked into a core
architecture that is compatible only with that access type. A
single design that supports heterogeneous technologies amor-
tizes the substantial engineering effort for creating software
and the costs of training and supporting those who operate
the networks. Plus, the design enables a single carrier to use
multiple radio technologies (e.g., WiFi in shopping malls and
cellular elsewhere) on a single core.

Cellular access has high barriers to entry. Network opera-
tors deploying cellular access technologies must make large
capital investments (CapEx) in infrastructure: whereas a WiFi
access point can cost under US$100, even a low-cost cellular
deployment would cost at least 1-2 orders of magnitude more.
Traditionally, cellular core network equipment is designed for
large deployments with hundreds of base stations and does
not “scale down” to small initial deployments at reasonable
cost; these networks also have high operational costs (OpEx),
relying on highly skilled staff to manage the equipment. In ad-
dition, remote communities may not have affordable access to
the high-quality, low-latency backhaul (e.g., fiber) links cellu-
lar networks typically rely upon. Instead, these networks may
use satellite or wireless backhaul links with lower reliability
and performance.

In contrast, WiFi deployments can start small, but present
high barriers to scale. WiFi networks do not typically require
skilled staff to deploy. Because WiFi is an inherently best-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1669

effort access technology, these networks can leverage any
available backhaul, even ad-hoc mesh backhaul using the
same physical WiFi radios. Yet WiFi networks do not typically
offer scalable ways to implement network policy or (beyond
proprietary and vendor-specific solutions) to manage large
networks. Thus, it is difficult for a WiFi-oriented operator to
offer financially sustainable service over a wide area along
the lines of large (usually cellular) operators.

Despite the differences between WiFi and cellular, these
barriers are not fundamental. The building blocks of network
policies are common in each; what is missing is architectural
support. Software-defined networking can help address these
gaps by enabling network-wide control over a distributed
infrastructure, and adopting “scale out” techniques based on
commodity components can reduce cost. In short, adopting
and extending successful Internet and cloud approaches to
scalability and management can make it possible to create a
wireless access network that is both flexible and affordable.

3 Magma Architecture

Magma cannot overcome the shortcomings of existing solu-
tions simply by reimplementing a standard, 3GPP-compliant
mobile core. Instead, Magma terminates the radio-specific
protocols as early as possible, in access gateways (AGWs)
connected directly to the radio access network, as shown in
Figure 3. These access gateways are instrumental in handling
a variety of radio technologies in a single design. The Magma
architecture goes beyond the traditional RAN/core split of
3GPP to place additional functionality in the access gateway,
with a goal of making the packet core more scalable, includ-
ing scaling down. Notably, Magma adopts the architecture of
software-defined networking (SDN) systems, using a hierar-
chical control-plane design where a local controller in each
access gateway interacts with a centralized orchestrator. The
orchestrator is the central point of control for the system and
maintains authoritative state related to system-wide configura-
tion (config state). Runtime state, which relates to the activity
of user equipment (UEs), is localized to the AGW that serves
the appropriate base station for a given UE.

Figure 3: Simplified Magma architecture

Each AGW is a small fault domain, ensuring that the failure
or upgrade of any one component affects relatively few users.
In this way, Magma’s architecture is similar to modern cloud
systems designed to run on low-cost hardware that is prone to
failure [26]. Magma adopts other ideas from cloud architec-
tures, including the use of gRPC for communication among
components, a “desired state” model for state synchroniza-
tion, and software-based, programmable data plane. While
common in cloud computing deployments, these decisions
deviate significantly from the way typical 3GPP networks are
designed and managed.

3.1 Abstracting the Radio Access Technology

As Figure 1 illustrates, the details of the radio access tech-
nology traditionally “leak” into the core network. To counter
this, Magma identifies a core set of functions that the AGW
must implement for any radio technology (e.g., finding the
appropriate policy for a given subscriber) and provides them
in an access-technology-independent way. These functions
form the heart of an AGW, as illustrated on the right side
of Figure 4. Control protocols, which are specific to a given
radio technology, are terminated early in technology-specific
modules close to the radio. These modules, on the left of
the figure, communicate with the generic functions (e.g., sub-
scriber management, access control and management) on the
right using messages that are RAN-agnostic.

Consider the example of “attaching” a newly active UE.
The UE communicates with a nearby base station over a
temporary (unauthenticated) radio link. In traditional 4G im-
plementations, the base station forwards the request to the
Mobility Management Entity (MME), which initiates an au-
thentication protocol with the UE. The MME consults a sub-
scriber database, authenticates the UE, creates an entry in a
session table, and informs the other components of the param-
eters needed to serve the UE including: (a) assigning an IP
address to the UE and setting the appropriate QoS parameters
in the data plane; (b) instructing the base station to establish
an encrypted channel to the UE; and (c) giving the UE the
symmetric key for the encrypted channel. At the end of this
sequence of events, the UE has an active session established
with the mobile core and is able to send and receive data.

These functions are performed in the Magma AGW in a
way that abstracts the details of the radio technology, as il-
lustrated on the right-hand side of Figure 4. For example,
Magma’s subscriber database has the union of all capabilities
across the radio access types, even if some fields in a given
database row are valid only for some technologies. QoS poli-
cies, for example, are less rich in WiFi than in 4G networks,
while 4G policies are in turn less rich than those of 5G. Simi-
larly, UE authentication and session establishment are done
in a common way by generic functions that cover 4G, 5G, and
WiFi procedures. The data plane, which is implemented in
different devices across 4G, 5G, and WiFi, is implemented in

1670 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Magma LTE 5G WiFi
Access Control/Management MME AMF RADIUS AAA
Subscriber Management HSS UDM/AUSF RADIUS AAA
Session/Policy Management MME/PCRF SMF/PCF RADIUS AAA
Data Plane Configuration SGW/PGW SMF WiFi data plane
Data Plane SGW/PGW UPF WiFi data plane
Device Management per-box configuration
Telemetry and logging no equivalent defined

Table 1: Magma abstractions vs. RAN-specific versions

a common, programmable data plane for Magma.
Table 1 shows how the various components of 4G, 5G, and

WiFi are all mapped onto a common set of Magma abstrac-
tions. The key observation here is that there are a certain set of
functions that need to be performed to authenticate users, es-
tablish session state, control the data plane, and so on. Magma
does all of these in a generic way that is agnostic to the radio
technology in use, thus providing an implementation in which
the radio-specific details are abstracted from the core and
limited to protocol termination close to the radio itself.

Additionally, Magma adds some generic functions that
are not part of the 3GPP standards: device management and
telemetry. Coupled with the SDN architecture, this simplifies
the management of a large number of devices spread over a
wide geographical area. Rather than logging into a specific
device to configure it or check its statistics, Magma provides
central management and monitoring from the orchestrator,
where it can be leveraged by other systems that consume
the northbound API. We have found that considering device
management and telemetry as first-class responsibilities of
Magma significantly reduces the operational complexity and
cost of operating access networks (Section 4.3.1).

We do not claim that Magma’s decomposition of function-
ality (Figure 4) is fundamental, but our operational experience
shows that it is useful both from an engineering perspective
and for a wide range of use cases (as discussed further in Sec-
tion 4). The modularity between components allows Magma’s
internal interfaces to evolve independently of the RAN, align-
ing with an iterative development approach and in stark con-
trast to rigid 3GPP interface definitions. This has enabled the
team to perform major changes to AGW functionality, such as
adding new features (e.g., 5G support) or refactoring internal
services without exposing these changes southbound toward
the RAN or northbound toward the orchestrator API.

All communication between the RAN-specific modules on
the left of Figure 4 and the generic functions on the right
use gRPC [5], an open-source Remote Procedure Call (RPC)
framework, as does all long-distance communication (e.g.,
from the AGW to the orchestrator). Although this is a typical
approach for building modern distributed systems, it differs
substantially from the protocols defined for communication
among 3GPP components, which leak endpoint (e.g., UE and
MME) consistency requirements into a network-level proto-
col. By running over HTTP, gRPC inherits the resilience to
loss and delay of TCP/IP, which is absent from some 3GPP

Figure 4: Common functions and RAN-specific protocols in
the Magma architecture.

protocols designed for more benign, controlled environments
(e.g., leased lines). A concrete example is GTP (GPRS Tun-
neling Protocol), which is sensitive to loss and latency to the
point that it struggles to operate over lower quality or con-
gested backhaul links, such as satellite or shared microwave
links. Thus, adopting gRPC allows Magma more latitude to
implement alternative consistency models without breaking
UE state machines in a wider range of backhaul network con-
ditions. In practice, this tolerance helps mitigate poor error
handling on devices: while UEs should reconnect after expe-
riencing a 3GPP protocol-level failure, we find that UEs with
low-end baseband processors do not do so reliably. When a
UE fails to reconnect, the failure manifests as a confusing lack
of coverage to people using these devices, and the failure typi-
cally only resolves after power cycling the UE. Since Magma
terminates GTP locally in the AGW without traversing the
backhaul link, a UE never sees a dropped GTP connection
and does not have to handle the error.

While agnostic to the radio technology, Magma necessarily
makes practical choices about the order of feature develop-
ment. Many early Magma deployments used LTE, so we have
prioritized support for LTE features, with 5G support coming
later. A good example is the support of QoS policies. Simple
policies to impose rate limits and usage caps, as outlined in
Section 2.2, are supported today for both LTE and 5G. More
complex policies could be expressed, particularly in 5G, but
full support for richer policies is currently under development.

3.2 Hierarchical SDN Control Plane

Magma adopts software-defined networking (SDN) to reduce
operational complexity and minimize reliance on skilled staff.
Rather than configuring a distributed collection of devices,
providers specify network-wide policies at the orchestrator.
The orchestrator provides a central point of control and ex-
poses a northbound API for integration with other systems
(e.g., for metrics, alerting, and monitoring). However, running
the entire control plane in a central controller would impose
limits on the scalability of the system. Hence, practical SDN

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1671

systems like Network Virtualization Platform (NVP) [37] and
Open Virtual Network (OVN) [42] adopted a hierarchical
control plane, and this is the model used by Magma.

In a hierarchical control-plane design, we identify those
elements of the control plane that have network-wide scope;
these are candidates for the central controller. For example, to
add a new subscriber to the network, the long-lived informa-
tion about the subscriber is network-wide information that is
created and maintained by the central controller. Conversely,
much of the runtime state associated with a UE can be local-
ized to a single AGW. For example, upon becoming active, a
UE is associated with a single AGW. The UE’s session state
can be created and managed by the local control plane of
that AGW. Thus, much of the control plane is able to scale
out with increasing numbers of base stations and subscribers,
rather than increasing the processing in the central controller.

This division between central and local control planes
roughly corresponds to the timescale of changes to the control-
plane state. The addition of a new subscriber happens on con-
figuration timescales, and that state is managed centrally. The
creation of session state—when a UE becomes active and
attaches to an AGW—happens more frequently. This runtime
state is handled by the local controller on an AGW.

As with any SDN architecture, we must consider “head-
less” operation, i.e., the situation where a data plane node is
disconnected from the central control plane. In a traditional
SDN approach, the goal is to ensure that the data plane con-
tinues to operate without the control plane, even as updates to
the data plane may be impossible while the control plane is
disconnected. With a hierarchical control plane, many local
operations are still possible even while the central controller
is unreachable. For example, an AGW can still establish a ses-
sion for a UE that attaches to a base station, because the local
control plane has enough information (e.g., cached subscriber
profiles) to process the session establishment. Conversely,
network-wide actions like the addition of users or changes to
user policies must wait until the central control plane becomes
available again. Magma makes trade-offs for availability ver-
sus consistency as the CAP theorem [22, 28] implies. It is
generally possible for state stored in an AGW to be stale dur-
ing times of disconnection, which might, for example, allow
a UE to temporarily consume resources beyond its quota.

This design helps to achieve the scaling goals of Magma,
in allowing both a small minimum footprint (scaling down)
as well as scaling up. A minimal Magma deployment would
be a single AGW and an orchestrator. The orchestrator is
typically three virtual machine instances in a cloud, while the
AGW itself is a small (4-core) x86 commodity server. This is
dramatically less hardware than a conventional cellular packet
core. Scaling up is essentially a matter of adding more AGWs,
which increases the number of base stations and UEs, without
much increase in the load on the orchestrator. We discuss our
experiences in scaling up in Section 4.3.

The decision to place local control-plane functions on the

AGWs, while beneficial for scalability, does introduce trade-
offs. In particular, it complicates the picture for some fea-
tures that require coordination among AGWs. Notably, while
Magma supports mobility across radios served by a com-
mon AGW, seamless mobility between AGWs would require
communicating some control-plane state from one AGW to
another during hand-offs. While many use cases can be sup-
ported without this feature, we expect to add it in the future.

3.3 Fault Tolerance Via Small Fault Domains

The desire to build a low-cost solution for Magma has a signif-
icant effect on how the architecture approaches fault tolerance.
Low-cost hardware is prone to failure, and so Magma adopts
the view common to most modern cloud systems: it is ex-
pected that individual components will fail. A failure of a
component must affect as few users as possible (i.e., fault do-
mains must be small) and must not affect other components.
This approach also has a positive impact on operations such
as software upgrades, as it is possible to upgrade small com-
ponents independently without taking down the whole system.
This is in stark contrast to traditional 3GPP implementations.

The SDN-like architecture of Magma localizes state more
fully than a typical 3GPP implementation. In a standard imple-
mentation, the runtime state of a UE is spread among several
large components (e.g., the PGW, SGW, and MME in the
LTE case). In contrast, Magma localizes the runtime state of
a UE to a single AGW. This simplifies failure handling. The
runtime state stored in an AGW is checkpointed regularly and
may be copied to a backup instance of the AGW running as a
cloud service. When an AGW fails, the backup cloud instance
is brought into service, and can manage connections for the
affected set of UEs until the primary AGW is restarted. As
noted above, an AGW may continue to establish sessions to
UEs even when disconnected from the orchestrator. The state
synchronization approach described in Section 3.4 mitigates
the long-term effects of such failures.

While it is common for a traditional cellular packet core
to serve millions of subscribers, Magma distributes much of
the functionality to a large number of Access Gateways. Each
AGW is thus a fault domain that holds state for a relatively
small number of UEs served by a small number (typically less
than ten) of base stations. The failure of a single AGW would
impact the set of UEs currently served by the attached base
stations, but has no impact on the rest of the network or its
customers. This contrasts with the much larger fault domains
typical of a standard mobile core implementation.

3.4 State Synchronization

State in a mobile core needs to be communicated among
components. Generally, one component is the authoritative
owner of some piece of state, and it needs to synchronize state

1672 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

with another component. In Magma, state can take one of
three forms, for which Magma makes different guarantees.

The first is runtime state associated with a UE and its net-
work activity. Backwards compatibility with existing user
devices and RAN equipment requires Magma to implement
standards-defined state machines to support operations like
connecting to the network; modifications to runtime state can
occur due to events in the UE itself, the RAN equipment,
or Magma’s “core” network elements. Importantly, runtime
state within Magma is encapsulated within the AGW, which
as discussed in Section 3.3 is the failure domain for Magma,
and we assume a crash-recovery failure model for AGWs.1

Further, most runtime state is both ephemeral and recoverable
in the event of failure: a UE can simply reconnect.

The second is the configuration state, associated with the
configuration of a Magma network element, such as an AGW.
This is only ever written by the orchestrator and pushed asyn-
chronously to the AGW. Examples include classes of network
policy to be applied to classes of user or radio configuration to
be applied by an AGW to connected RAN equipment. AGWs
recover configuration state after a crash, and the source of
truth for configuration state is stored durably in the orchestra-
tor (Postgres); we only permit modification to configuration
state through the orchestrator. Configuration state generally
changes on human timescales (i.e., minutes or hours).

Finally, Magma also manages metrics state, telemetry from
Magma elements. This operational data, while useful, is cap-
tured on a best-effort basis.

Like many cloud-native systems, Magma adopts a “desired
state” model for runtime and configuration state. By this we
mean that to communicate a required state change (e.g., the
addition of a new session in the data plane), the desired end
state is set via an API. This contrasts with a “CRUD (Create,
Read, Update, Delete)” interface, which is common in 3GPP
specifications. Magma replaces the CRUD model with the de-
sired state model to simplify reasoning about changes across
elements of the system in the case of partial failures. This is
a common case in challenged environments, where portions
of the end-to-end system (e.g., backhaul) are far less reliable
than others (e.g., the link between the UE and the RAN). This
is best explained via a simple example.

Consider the case of establishing data-plane state in an
AGW for a set of active sessions. Suppose there are two
active sessions, X and Y. Then a third UE becomes active and
a session Z needs to be established. In the CRUD model, the
control plane would instruct the data plane “add session Z”.
The desired state model, by contrast, communicates the entire
new state: “the set of sessions is now X, Y, Z”. The CRUD
model is brittle in the face of failures. If a message is lost,
or a component is temporarily unable to receive updates, the
receiver falls out of sync with the sender. So it is possible
that the control plane believes that sessions X, Y and Z have

1We generally assume the same for individual AGW software compo-
nents; per-process state is held externally for most critical services.

been established, while the data plane only has state for X
and Y. By sending the entire desired state, we ensure that the
receiver comes back into sync with the sender once it is able
to receive messages again.

This approach is hardly a novel idea in the cloud-native
world, but it differs from typical 3GPP systems. It allows
Magma to tolerate occasional communication failures (caused
by poor quality backhaul, for example) or component outages
due to software restarts, hardware failures, etc. Limiting the
scope of 3GPP protocols to the very edge of the network gave
us the flexibility to rethink state synchronization to improve
fault tolerance (in addition to other benefits noted above).

We close by considering how Magma manages state for one
particularly salient policy: billing users based on data volume,
and the possibility of double-spending. Volume-based billing
policies are typically implemented using a third-party online
charging system (OCS) that integrates with both the network
operator’s existing business support systems (BSS) as well
as Magma. In this arrangement, billing and charging are
handled by the OCS, while Magma handles metering and
accounting. The OCS tracks a user’s account balance (e.g., in
US$) and then authorizes small quotas of data (e.g., 1MB) to
the user via Magma; when the user nears completion of their
quota, Magma requests another quota on the user’s behalf
from the OCS, which makes the decision on whether to grant
or deny the request. Whether or not a user has been allocated a
quota is configuration state from Magma’s perspective, while
the amount remaining in a user’s current quota is runtime
state. Thus, while it is possible for a malicious user to double-
spend by moving between AGWs strategically, the maximum
amount of double-spend permitted is capped as a business
decision by the quota size. Operators for whom this is a
particular concern could also adopt techniques for volume-
based accounting in a distributed context [31].

3.5 Software Data-Plane Implementation

The data plane is responsible for (i) recognizing the flows for
active sessions (traffic to and from active UEs); (ii) collecting
statistics for those flows; (iii) adding and removing tunnel
headers; and (iv) enforcing policies such as rate limits per
subscriber. Magma’s data plane is implemented using Open
vSwitch (OVS) [47]. OVS provides a programmable data
plane that is controlled by OpenFlow [39]. While OpenFlow
and OVS are convenient implementation choices, they are not
fundamental to the architecture. Other options may be used
in the future. The important points are that the data plane is
highly programmable and implemented entirely in software.

The software implementation of the data plane enables
Magma to operate on commodity hardware. While through-
put, latency, and jitter of the data plane are important for
cellular networks, we have found OVS to offer entirely ade-
quate performance. OVS performance has been well studied
and optimized for many years [47]. In Section 4 we evaluate

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1673

the performance of OVS in the Magma context. It is worth
noting that other aspects of the system such as backhaul and
RAN capacity are likely to have a larger performance impact
overall than the data plane within the access gateway.

The “data plane configuration” box in Figure 4 generates
the commands necessary to program the data plane with a
set of rules to handle the flows of current sessions. Currently,
those commands are OpenFlow commands. If OVS were
replaced with a different forwarding engine, only the “data
plane configuration” component would be affected.

3.6 Federation With Other Networks

To this point we have described standalone deployment of
Magma, but it can be deployed in one of three modes:

• Standalone: Magma supports an independent network,
with all 3GPP control and user plane traffic terminated
in the AGW.

• Local breakout roaming: Magma federates with an ex-
isting cellular network, with control-plane traffic termi-
nated externally but user-plane traffic still handled by
the AGW and routed directly to or from the Internet.

• Home roaming: Magma federates with an existing cel-
lular network, with both control and user-plane traffic
terminated in an external network.

Much as the AGW terminates access-specific protocols
from the radio network, Magma introduces additional ele-
ments to terminate access-specific protocols with an external
core network, using a component referred to as a Federation
Gateway (FeG). The FeG implements 3GPP-defined inter-
faces to support “home roaming” as well as “local breakout
roaming”. The latter is made possible in Magma by the fact
that rich policy enforcement is provided in the AGW. As an
example, an AGW can obtain the policy to apply to a UE by
querying the subscriber data base in the federated network,
then enforce that policy in the AGW. Signalling traffic be-
tween UEs and the MNO core is handled by the FeG service
in the orchestrator2. User data-plane traffic is tunneled to an
analogous component, the GTP Aggregator (GTP-A) which
in turn connects to the MNO’s existing P-GW.

Unlike the AGW, the FeG and GTP-A are centralized,
on-path devices. This serves a practical purpose: traditional
MNOs prefer a single point of interconnection between their
sensitive core network and “extension” networks [31]. This
has scaling implications as discussed in Section 4.3.2.

4 Evaluation

Magma makes a number of fundamental design choices that
differ from traditional core network software to improve flex-
ibility and scalability, while supporting rich network policies.

2This is necessary to coordinate low-level network state between the UE
and the MNO’s traditional core, such as GTP bearer identifiers.

The aim is to support practical cellular access deployments.
To evaluate Magma, we first consider system performance
in an emulated environment, and then discuss a large-scale
commercial Magma deployment.

4.1 Supporting Typical Deployments
Emulation Testbed Although evaluating Magma’s perfor-
mance in a real deployment is possible at small scale, evalu-
ating scenarios with hundreds of UEs and RAN elements is
impractical. Further, extracting data from commercial deploy-
ments is challenging due to privacy and commercial consider-
ations. Thus, we instead evaluate Magma using a commercial
emulation system, Spirent Landslide [53], which allows us
to emulate arbitrary configurations of virtual UEs and RAN
elements in a replicable fashion.

For our evaluation, we deployed the most recent stable
release of Magma, v1.6.1. We deployed the orchestrator on a
cluster of AWS EC2 instances and two AGWs in our lab. The
first AGW was a bare-metal AGW on an Intel J3160 quad-core
1.6GHz CPU with 8GB of RAM and four Intel I210 1Gbps
NICs. The second was a virtual AGW running with Intel
Xeon 6126 2.60GHz, 8GB of RAM, and 2x10G Mellanox
ConnectX-3 NICs; we assigned a variable number of vCPUs
to the virtual AGW as defined in our experiments below. Both
the bare-metal and virtual AGWs were connected directly to
the Landslide emulator as well as to the Internet via 1Gbps
and 10Gbps links, respectively. We also verified that memory
was not a bottleneck for the AGW during our experiments and
that all machines in the orchestrator deployment were running
well under capacity. Finally, the emulated SIM cards for the
emulated UEs were pre-provisioned into the orchestrator and
AGW in advance of all experiments, as is typical for network
operator deployments of Magma.

Unlike traditional core networks, Magma’s AGW is co-
located with RAN equipment (for example, at a tower site),
and the unit of scaling for Magma is the AGW itself: as op-
erators grow their network, they add both additional RAN
capacity (i.e., radio equipment) but also additional “core” ca-
pacity (i.e., AGW instances). Since the AGW is an on-path
device for all traffic associated with the cell site, the AGW
should be provisioned such that site is limited by the capacity
of the RAN as the site, rather than the AGW. This is a notable
observation that, in part, motivates Magma’s design: when
co-locating core network functionality with RAN elements,
the RAN is the bottleneck for performance on a per-site basis.

The recommended (and typical) deployment scenario has
roughly one AGW per “cell site", which in practice consists
of 1-3 eNodeBs in the case of an LTE network. A typical
eNodeB (such as those described in Table 2 or depicted in
Figure 2) can support at most 96 simultaneously active users3

and radio channels of at most 20MHz; this channel capac-
ity, in turn, corresponds to a peak aggregate throughput of

3More users may be attached but not actively transmitting data.

1674 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Th
ro

ug
hp

ut
 (M

bp
s)

C
P

U
 U

til
iz

at
io

n
(%

)

0

100

200

300

400

500

0

25

50

75

100

0 200 400 600 800

CPU % User Throughput

Figure 5: AGW CPU utilization under maximum “typical”
workload for a cell site. Aggregate throughput is limited by
radio capacity, not the AGW.

Item Unit Cost Qty Total Notes
LTE eNodeB US$4,000 3 US$12,000 Baicells Nova 223: 1W,

3.5GHz, 96 user, 2x2 MIMO.
AGW US$450 1 US$450 Same as used in experiments.
Accessories US$450 3 US$1,350 18dBi sector antenna, RF ca-

bles, connectors, grounding.
RAN CapEx (per site) US$18,760

Table 2: Cost breakdown of active RAN equipment for a
typical Magma deployment. Excludes site-specific passive
infrastructure and backhaul costs.

126Mbps [16] under ideal conditions, for a typical cell site
maximum capacity of 378Mbps. We note that the additional
cost of an AGW is modest in comparison to the cost of a
cell site, similar to the site cost breakdown observed in re-
lated work [31]. Although LTE site costs can vary widely and
are, in our experience, dominated by non-networking costs
such as land, power, and tower (also known as “passive infras-
tructure”), a representative deployment could consist of the
hardware in Table 2; AGW cost represents less than 3% of the
cost of active equipment for the site. Power costs can be espe-
cially significant in “off-grid” locations, but these are largely
driven by the power needs of the radio equipment and hence
not greatly influenced by the mobile core implementation.
Note the use of solar and battery power in Figure 2.

Magma must be able to support this type of workload. We
evaluate this by emulating the peak load of a the cell site de-
scribed above: a total of 288 UEs connect (or “attach”) to the
network for the first time at a rate of 3UE/sec, and each then
performs a short HTTP download at a rate of 1.5Mbps, for
an aggregate total offered load of 432Mbps. Figure 5 demon-
strates our results, focusing on the total CPU utilization as
well as achieved throughput of the AGW. At a high level,
the AGW accepts attach requests from all new users over the
course of approximately 1.5 minutes, after which the AGW en-
ters a steady state for the duration that UEs are making HTTP
requests. In this experiment, average sustained UE throughput
reaches the expected throughput of 432Mbps throughout the
duration of the experiment, indicating performance is limited
by the RAN, rather than Magma’s AGW, as expected.

We acknowledge that other RAN configurations can exist
(including vRAN/cRAN arrangements) where many RAN ele-

Attempted Attach Rate (UE/s)

C
on

ne
ct

 S
uc

ce
ss

 R
at

e

A
ct

ua
l A

tta
ch

 R
at

e
(U

E
/s

)

0%

25%

50%

75%

100%

0

1

2

3

4

1 2 3 4 5

Connect Success Rate Actual Attach Rate

Figure 6: Maximum supported attach rates are limited by the
AGW (specifically, the MME component). Results depict a
physical AGW.

ments are effectively “co-located” to a single point within the
operator’s network. Magma can be used effectively in these
deployments, with one (or more) AGWs allocated to support
this range of RAN equipment. However, no deployments at
scale of Magma to date have used that configuration (to our
knowledge), and Magma can be deployed on any general-
purpose compute (e.g., VM or container) alongside this RAN
infrastructure to support it. Similarly, a radio vendor could
integrate an AGW into the same physical enclosure as a tradi-
tional eNodeB for a combined RAN and AGW element.

4.2 Control and User Plane Separation
Different usage patterns of a network stress user plane or con-
trol plane elements of the network core: a common example
of the former would be human users accessing video con-
tent while the latter would be an IoT workload consisting of
large numbers of devices that only exchange occasional small
messages. This presents a major dimensioning challenge in
traditional cellular core networks and motivates efforts to sep-
arate control and data plane elements so operators can scale
them independently (statically or dynamically); this is known
as “control/user plane separation” (CUPS) in LTE and 5G.

Magma’s distributed design naturally facilitates a CUPS
architecture. By default, every AGW implements a data plane
at the network edge, and all control plane functions are imple-
mented as user-space processes at the AGW, with configura-
tion state managed by the orchestrator.

From Figure 5, we observe that the AGW operates in two
distinct and characteristic domains. At the start of our exper-
iment, while UEs are attaching to the network, the AGW’s
CPU workload is dominated by the control plane workload
associated with handling attach requests, including perform-
ing cryptographic operations necessary to authenticate users
as well as setting up per-user, per-session state in the data
plane and control plane to implement the desired policy for
each UE; in our experience, this is the most computationally-
intensive control plane procedure. After UEs attach, the CPU
workload is dominated by user plane workload associated
with forwarding UE traffic.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1675

Th
ro

ug
hp

ut
 (M

bp
s)

0

1000

2000

3000

1CPU 2CPU 3CPU 4CPU 5CPU 6CPU

Figure 7: Steady state throughput vs. CPUs allocated to user
plane. Note our traffic generator was unable to saturate the
virtual AGW’s user plane in the 5CPU case and above.

Figure 6 illustrates how our bare-metal AGW copes with
a “worst case” control plane workload, a surge of new UEs
attaching then saturating the data plane. We define the con-
nection success rate (CSR) to be the number of connection
attempts that succeed over the total number of connection
attempts made, for each five second bin during the experi-
ment. We observe that above 2UE/s, the bare-metal AGW is
unable to service all connection attempts, with the connection
success rate (CSR) falling linearly beyond this point. On a
per-AGW basis, Magma’s control-plane performance is rela-
tively limited; improving this is an active area of engineering
effort. Attach rate is a function of hardware as well: a 4 vCPU
instance of our virtual AGW supports 16 attaches per second,
which would saturate the RAN capacity of the “typical” site
described above in 18 seconds.

Lastly, we consider per-AGW allocation of resources to the
control and user plane. To do this, we statically limit the num-
ber of cores available to the user plane and evaluate steady-
state throughput and median connection success rate. These
results are shown in Figures 7 and 8; note that these experi-
ments use the VM AGW, and as such the absolute throughput
numbers are not comparable with earlier experiments. We
observe that increasing the cores available to the user plane
improves steady-state throughput at the cost of decreased
connection success rate (i.e., control-plane performance), but
allowing the kernel scheduler to allocate resources flexibly
between user plane and control plane tasks provides both high
throughput and good connection success rates. We note that
we expect raw user-plane performance to increase beyond
what is shown here; the commercial test equipment we used
was unable to generate more than 2.5Gbps aggregate load.

Taken together, these emulation results demonstrate that
Magma can handle typical workloads using low-cost commod-
ity hardware. For more intensive workloads, Magma’s control
and user plane capacity scales with additional hardware. We
finally note that these results provide an upper-bound on the
performance of a single Magma AGW; the network capacity
of a Magma network scales linearly with AGWs.

S
uc

ce
ss

 R
at

e

0%

25%

50%

75%

100%

1CPU 2CPU 3CPU 4CPU 5CPU 6CPU

Figure 8: Median connection success rate vs CPUs allocated
to user plane.

4.3 Deployment

We now turn to large commercial deployments of Magma. We
first note that Magma is an open-source project governed by
the Linux Foundation, and as such the core development team
(including the authors of this paper) do not directly operate
any production deployments; as such, we draw our examples
from partners within the project’s ecosystem.

Magma adoption. To understand how Magma is used in
practice, we interviewed two people working in product man-
agement and marketing for the Magma open-source project;
in their roles, they speak regularly with operators as well
as other commercial entities within the Magma ecosystem.
Based on our discussion, as of February 2022, twenty com-
mercial networks were operating using Magma across eight
countries in Africa, Asia, North America, and South Amer-
ica. These networks support a range of access modalities and
policies. For example, Magma has been used in networks pro-
viding backhaul for WiFi hotspots, fixed wireless broadband
to homes and businesses, “carrier” WiFi to extend a traditional
mobile operator’s service to indoor WiFi, and traditional mo-
bile broadband service. Today, Magma has approximately 100
active committers to its codebase.

Magma deployments. To demonstrate how Magma is
used, we worked with one of the largest commercial enti-
ties, FreedomFi, that provides support to operators deploying
Magma. FreedomFi provided data to characterize two signifi-
cant deployments they help operate. This data was provided
to the authors in de-identified form, and only operational data
(not user data) was used in our analysis.

4.3.1 Fixed Wireless Hotspots

One of FreedomFi’s first commercial deployments was Ac-
cessParks [1], a US-based operator that provides public WiFi
hotspot networks in large outdoor areas; their deployment lo-
cations require multiple WiFi access points (APs) to provide
consistent service. With the availability of CBRS spectrum,
AccessParks sought to use LTE to provide backhaul to their
WiFi hotspots in some of their larger deployments. End users
connect to AccessParks’s WiFi access points via traditional
WiFi mechanisms and an existing captive portal system, and

1676 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A
ct

iv
e

U
E

s

Th
ro

ug
hp

ut
 (M

bp
s)

0

50

100

150

200

250

0

250

500

750

1000

 3/8 3/10 3/12 3/14 3/16 3/18 3/20 3/22 3/24 3/26 3/28 3/30 4/1 4/3 4/5

Active UEs Throughput

Figure 9: Per-hour AccessParks usage during Mar-Apr 2022.

the UEs in the Magma network are fixed wireless modems
that connect the WiFi APs to the Internet via Magma. The
setup is illustrated in Figure 10.

AccessParks’s deployment began in December 2020 with a
ten site pilot to evaluate Magma. Today, the network consists
of fourteen sites providing backhaul to over 200 access points,
with plans to continue expanding. Figure 9 depicts active
subscribers and hourly throughput of the network.

Network policies for the AccessParks networks are very
simple: because the LTE network simply serves as backhaul,
all UEs simply have unrestricted access. Per-user policies
are implemented by AccessParks’s pre-existing captive portal
and pre-paid billing software, which is implemented using
standard techniques (i.e., RADIUS for AAA at the WiFi AP).

Operational complexity. AccessParks’s original Magma
pilot was motivated in part by their poor experiences with
the operational complexity of other commercial and open-
source cellular core software in their previous two years of
deployment. Although operational complexity is subjective,
one quantifiable way in which it manifests is in an operator’s
labor costs: simpler systems should require less staff time
and support to manage. Table 3 shows the results of this
comparison for AccessParks. For identical access network
infrastructure, AccessParks achieved a 43% reduction in per-
site deployment costs using Magma compared to traditional
architectures, largely driven by a reduction in support costs
and engineering time for site configuration and planning.4

4.3.2 Franchised MNO Extension

A second (and, to our knowledge, the largest) deployment
of Magma is an early-stage deployment to provide a fran-
chised, neutral host network.5 This network is unique in that
the physical deployment of network infrastructure is not man-

4Unfortunately, we do not have data on ongoing maintenance costs from
AccessParks; however, AccessParks’ decision to use Magma for future de-
ployments suggests it compared favorably.

5A neutral host network describes a business model in which a mobile
network is operated by an entity for the sole purpose of providing wholesale
capacity to third-party retail MNOs and MVNOs; the neutral host network
operator does not have its own users, but instead enables users of its customers
to use the neutral host network on a shared basis.

Item Traditional Magma Difference (%) Notes
RAN $7,950 $7,950 - Identical RAN and

backup power.
Core HW $1,200 $300 -$900 (-75%)
Core SW $2,000 $600 -$1,400 (-70%) Licenses/support.
Field Eng. $200 $200 - Installation.
LTE Eng. $5,000 $330 -$4,670 (-93%) Planning, core config.
Cost/Site $16,350 $9,380 -$6,970 (-43%)

Table 3: Comparison of per-site installed costs for Access-
Parks’s traditional cellular system compared to Magma. Total
cost per site decreased by 43%, driven primarily by Magma’s
reduction in operational complexity for deployment.

aged by any single network operator. Instead, “micro network
operators” (which include individuals, small ISPs, and enter-
prises) deploy LTE and 5G RAN equipment alongside Magma
AGWs that have been customized by FreedomFi to support
their proprietary traffic accounting and settlement system.

Services and Policy. The neutral host network is operated
by FreedomFi and allows customers of incumbent MNOs to
use this network for service. The core “policy” supported by
this network is tunnelling all user traffic back to the appro-
priate MNO; a user’s MNO, in turn, applies their standard
network policies for billing, charging, and throttling within
their existing core network. The FreedomFi network provides
access on a best-effort basis, with each micro network oper-
ator leveraging shared CBRS [17] spectrum in the 3.5GHz
band (as done in the previous deployment). This service re-
quires integrating the thousands of distributed AGWs with
a partner MNO’s centralized core network, leveraging the
federation capabilities described in Section 3.6.

Scale. As of this writing, this network is still in early test-
ing, so does not have significant user traffic. However, it still
provides a useful example of how the Magma control plane
scales with network size: even without users, Magma still
manages device configuration, network monitoring, and sup-
ports interconnection with partner MNO core networks.

The FreedomFi network began initial deployments in
November 2021, and as of April 2022 consists of 5370 AGWs
and 880 eNodeBs (FreedomFi reports the discrepancy be-
tween AGWs and eNodeBs is due to supply-chain issues:
while AGWs are commodity x86 PCs, cellular radios are spe-
cialized equipment with fewer vendors and the ones used
in this network only began shipping in January 2022). The
network is currently adding on average 150 new AGWs and
90 new eNodeBs per week, all of which are deployed on an
ad-hoc basis by micro-network operators; these AGWs are
deployed in 45 states across the United States.6

Supporting this network is a dedicated orchestrator run-
ning on six AWS virtual machines managed by Kubernetes
(EKS) [18]. Three instances are dedicated towards “heavy”
tasks: operation of the FeG, device configuration, and metrics
reporting; these systems are each equipped with 16 vCPUs
and 32GB RAM. Remaining orchestrator services run on a

6The network only operates in the United States for regulatory reasons.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1677

collection of smaller VMs (4 vCPU/16GB RAM). The GTP-
A runs on a single bare metal server with a 3.4GHz 8-core
Xeon E2278G CPU, 32GB RAM, and 2x10G NICs, and is
physically co-located near the facilities of a partner MNO’s
core network. In total, this costs FreedomFi approximately
$4,000 per month to operate.

We view the rapid deployment of this network as cautious
evidence for Magma’s ability to support large-scale networks
with unique business models. We hope to further investigate
the operational dynamics of this network in future work.

5 Related Work

Open-source LTE/5G core networks: Several projects
share our goal of creating an open-source LTE/5G cellular
core network [4, 9, 10, 13]; these were preceded by similar
efforts to build open 2G and 3G networks [11, 12]. With
the exception of OpenBTS [11] (a GSM-to-VOIP bridge),
each of these focuses on implementing traditional, 3GPP-
compliant, core networks.7 Aether [2, 43] is an open-source
5G-connected edge platform, which brings together 5G con-
nectivity and edge-cloud servers. Like Magma, Aether adopts
cloud design principles. However, Aether does not refactor the
network design to break the coupling of the radio access tech-
nology with the core, and Aether does not focus on low-cost
equipment to reach under-served users.

Expanding connectivity access: Many efforts have pro-
posed or described novel solutions for expanding Internet
access to under-served people [25, 30, 44, 45, 48, 55, 56]. Sim-
ilarly, small(er)-scale network operators have a rich history
providing service to especially rural communities [27], such
as community networks [3, 6, 7, 21] and small ISPs [32]. Of
this extensive literature, Magma is most closely related to
work on community cellular networks [19, 33, 51].

NextG cellular core architecture. The networking re-
search community is actively rethinking the design of next
generation networks. PEPC [50] refactors the packet core by
consolidating user state into one location, similar in spirit to
Magma’s AGW. ECHO [40] refactors an EPC to run on less-
reliable public cloud infrastructure. SCALE [20] explores an
elastically scalable cellular control plane, and KLEIN [49]
describes a similarly elastic control and data plane. Although
these works all focus on (logically) centralized core networks,
the techniques described are complementary to Magma.

Other work takes a more “clean slate” approach to reimag-
ining the cellular core. CellBricks [38] contemplates a highly
federated cellular network and moves support for mobility,
authentication, and billing into end hosts; it is implemented
as an extension to Magma. dLTE [35] makes 4G networks
more like WiFi through a decentralized design, including a
global registry for peer discovery. SoftCell [34] uses SDN

7We note that the Magma AGW’s LTE-specific portion was originally
based upon OpenAirInterface [9], as it was the most mature open-source core
available at the inception of Magma’s development.

principles to improve the scalability and flexibility of the
packet core network. Magma draws on this body of work
for inspiration while maintaining a backwards-compatible,
standards-compliant edge to facilitate production deployment.

Magma directly builds on recent work exploring core archi-
tectures for under-served communities. CCM [31] presents a
distributed cellular 2G core that enables semi-disconnected
operation over unreliable rural backhaul connections; this
work served as an early inspiration for Magma, which extends
these concepts to modern wireless access technologies. Simi-
larly, CoLTE [52] provides a lightweight core which—like an
AGW—is co-located with RAN elements, but unlike Magma
focuses on small, independent community networks.

Open radio access networks: Several recent initiatives fo-
cus on opening up the radio access network (RAN). For exam-
ple, the OpenRAN project [59] and the O-RAN alliance [8,41]
develops standards that disaggregate 3GPP RANs, with open
interfaces between the layers. These efforts are complemen-
tary to Magma, as they focus on the cellular interface—the
part of the network before reaching Magma’s access gateway.

6 Conclusion

We have presented our experiences in designing and deploy-
ing Magma, an open-source platform for building access net-
works. The most important design decision was to terminate
the RAN-specific protocols in access gateways close to the
radio. This simple design decision brings many benefits: sup-
porting diverse radio technologies, tolerating disruptions in
backhaul links, using a low-cost software data plane, and scal-
ing naturally with a hierarchical SDN control plane. Magma
also adopts modern cloud-computing design patterns (e.g.,
desired-state synchronization, tolerance to failure of individ-
ual components) and open-source software components (e.g.,
gRPC, Open vSwitch, Kubernetes, Prometheus). In line with
Magma’s goal to enable practical networks, we demonstrated
that Magma can support typical deployment scenarios and dis-
cussed two large-scale commercial networks that use Magma.
Importantly, Magma also scales down, with a small minimum
footprint that supports incremental deployment, thus filling
a gap between traditional WiFi and cellular. All software
artifacts for Magma are available on GitHub8.

Magma was designed with the primary goal of reaching
under-served communities, by supporting heterogeneous ra-
dio and backhaul technologies and reducing capital and op-
erational cost. We believe that Magma is a good fit for other
deployment scenarios, including enterprise 5G networks. Fu-
ture work on Magma can expand the set of supported features,
including seamless mobility between access gateways as well
as network virtualization. We look forward to extending the
Magma code base, and the community of contributors to the
software, so the platform can evolve to serve more users.

8https://github.com/magma/magma

1678 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/magma/magma

Acknowledgements

We thank our shepherd Ranveer Chandra and the anonymous
reviewers for their helpful feedback. We thank Boris Ren-
ski, Matthew Mosesohn, and Joey Padden for their assistance
gathering deployment data for this paper. We also thank the
Magma developer and user community for their important
contributions, as well as Meta Connectivity for supporting the
early development and deployments of Magma.

References

[1] AccessParks. https://accessparks.com/. Retrieved
7/2022.

[2] Aether. https://www.aetherproject.org/. Re-
trieved 7/2022.

[3] AlterMundi. https://altermundi.net/. Retrieved
7/2022.

[4] free5GC. https://www.free5gc.org/.

[5] gRPC. https://grpc.io/. Retrieved 7/2022.

[6] Guifi.net. https://guifi.net/. Retrieved 7/2022.

[7] NYCMesh. https://www.nycmesh.net/. Retrieved
7/2022.

[8] O-RAN Alliance. https://www.o-ran.org/.

[9] Open Air Interface. https://openairinterface.o
rg/.

[10] Open5Gs. https://open5gs.org/. Retrieved 7/2022.

[11] OpenBTS. http://openbts.org. Retrieved 7/2022.

[12] Osmocom. https://osmocom.org/projects/cellu
lar-infrastructure. Retrieved 7/2022.

[13] srsRAN. https://www.srsran.com/.

[14] Universal Mobile Telecommunications Sys-
tem (UMTS); LTE; Policy and Charging
Control (PCC); Reference points. h t t p s :
//www.etsi.org/deliver/etsi_TS/129200_12929
9/129212/15.03.00_60/ts_129212v150300p.pdf.
(3GPP TS 29.212 version 15.3.0 Release 15).

[15] 3GPP: The mobile broadband standard. https://www.
3gpp.org/.

[16] 3GPP: Evolved universal terrestrial radio access (E-
UTRA); physical layer procedures. https://port
al.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=2
427.

[17] CBRS Alliance. https://www.cbrsalliance.org.

[18] Amazon Elastic Kubernetes Service (EKS). https:
//aws.amazon.com/eks/.

[19] Abhinav Anand, Veljko Pejovic, Elizabeth M Belding,
and David L Johnson. VillageCell: Cost Effective Cellu-
lar Connectivity in Rural Areas. In International Confer-
ence on Information and Communication Technologies
and Development, pages 180–189, 2012.

[20] Arijit Banerjee, Rajesh Mahindra, Karthik Sundaresan,
Sneha Kasera, Kobus Van der Merwe, and Sampath Ran-
garajan. Scaling the LTE Control-Plane for Future Mo-
bile Access. In ACM SIGCOMM CoNEXT Conference,
pages 1–13. ACM, 2015.

[21] Luca Belli, Sarbani Banerjee Belur, Peter Bloom, An-
riette Esterhuysen, Nathalia Foditsch, Maureen Her-
nandez, Erik Huerta, Mike Jensen, Meghna Khaturia,
Michael J Oghia, et al. Community Networks: The In-
ternet by the People, for the People. FGV Direito Rio,
December 2017.

[22] Eric Brewer. CAP Twelve Years Later: How The
"Rules" Have Changed. Computer, 45(2):23–29, 2012.

[23] Jyh-Cheng Chen, Ming-Chia Jiang, and Yi-wen Liu.
Wireless LAN security and IEEE 802.11i. IEEE Wire-
less Communications, pages 27–36, February 2005.

[24] T. Charles Clancy. Secure handover in enterprise
WLANs: Capwap, Hokey, and IEEE 802.11R. IEEE
Wireless Communications, pages 80–85, October 2008.

[25] Michaelanne Dye, David Nemer, Josiah Mangiameli,
Amy S Bruckman, and Neha Kumar. El Paquete Sem-
anal: The Week’s Internet in Havana. In CHI Conference
on Human Factors in Computing Systems, pages 1–12,
2018.

[26] Armando Fox, Steven D Gribble, Yatin Chawathe,
Eric A Brewer, and Paul Gauthier. Cluster-based Scal-
able Network Services. In ACM Symposium on Operat-
ing Systems Principles, pages 78–91, 1997.

[27] Hernan Galperin and François Bar. The Microtelco
Opportunity: Evidence from Latin America. Informa-
tion Technologies and International Development, 3(2),
2006.

[28] Seth Gilbert and Nancy Lynch. Brewer’s Conjecture
and the Feasibility of Consistent, Available, Partition-
Tolerant Web Services. SIGACT News, 33(2):51–59, jun
2002.

[29] GSMA. Unlocking Rural Coverage: Enablers for com-
mercially sustainable mobile network expansion, 7 2016.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1679

https://accessparks.com/
https://www.aetherproject.org/
https://altermundi.net/
https://www.free5gc.org/
https://grpc.io/
https://guifi.net/
https://www.nycmesh.net/
https://www.o-ran.org/
https://openairinterface.org/
https://openairinterface.org/
https://open5gs.org/
http://openbts.org
https://osmocom.org/projects/cellular-infrastructure
https://osmocom.org/projects/cellular-infrastructure
https://www.srsran.com/
https://www.etsi.org/deliver/etsi_TS/129200_129299/129212/15.03.00_60/ts_129212v150300p.pdf
https://www.etsi.org/deliver/etsi_TS/129200_129299/129212/15.03.00_60/ts_129212v150300p.pdf
https://www.etsi.org/deliver/etsi_TS/129200_129299/129212/15.03.00_60/ts_129212v150300p.pdf
https://www.3gpp.org/
https://www.3gpp.org/
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427
https://www.cbrsalliance.org
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/

https://www.gsma.com/mobilefordevelopment/
resources/unlocking-rural-coverage-enabler
s-commercially-sustainable-mobile-network-
expansion/.

[30] S. Guo, M. H. Falaki, E. A. Oliver, E. A. Oliver, S. Ur
Rahman, S. Ur Rahman, A. Seth, M. A. Zaharia, and
S. Keshav. Very Low-Cost Internet Access Using
KioskNet. ACM SIGCOMM Computer Communica-
tion Review, 37(5):95–100, 2007.

[31] Shaddi Hasan, Mary Claire Barela, Matthew Johnson,
Eric Brewer, and Kurtis Heimerl. Scaling Community
Cellular Networks with CommunityCellularManager.
In USENIX Symposium on Networked Systems Design
and Implementation, pages 735–750, 2019.

[32] Shaddi Hasan, Yahel Ben-David, Max Bittman, and
Barath Raghavan. The Challenges of Scaling WISPs.
In Annual Symposium on Computing for Development,
pages 3–11, 2015.

[33] Kurtis Heimerl, Shaddi Hasan, Kashif Ali, Eric Brewer,
and Tapan Parikh. Local, Sustainable, Small-Scale Cel-
lular Networks. In International Conference on Infor-
mation and Communication Technologies and Develop-
ment, ICTD ’13, pages 2–12, Cape Town, South Africa,
2013. ACM.

[34] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer
Rexford. SoftCell: Scalable and Flexible Cellular Core
Network Architecture. In ACM SIGCOMM CoNEXT
Conference, pages 163–174. ACM, 2013.

[35] Matthew Johnson, Spencer Sevilla, Esther Jang, and Kur-
tis Heimerl. dLTE: Building a more WiFi-like Cellular
Network (Instead of the Other Way Around). In ACM
Workshop on Hot Topics in Networks, pages 8–14. ACM,
2018.

[36] Matthew William Johnson, Esther Han Beol Jang,
Frankie O’Rourke, Rachel Ye, and Kurtis Heimerl. Net-
work Capacity as Common Pool Resource: Community-
Based Congestion Management in a Community
Network. ACM Human-Computer Interaction,
5(CSCW1):1–25, 2021.

[37] Teemu Koponen, Keith Amidon, Peter Balland, Martin
Casado, Anupam Chanda, et al. Network Virtualization
in Multi-tenant Datacenters. In USENIX Symposium on
Networked Systems Design and Implementation, pages
203–216, 2014.

[38] Zhihong Luo, Silvery Fu, Mark Theis, Shaddi Hasan,
Sylvia Ratnasamy, and Scott Shenker. Democratizing
Cellular Access with CellBricks. In ACM SIGCOMM,
August 2021.

[39] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. OpenFlow: Enabling
Innovation in Campus Networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[40] Binh Nguyen, Tian Zhang, Bozidar Radunovic, Ryan
Stutsman, Thomas Karagiannis, Jakub Kocur, and Ja-
cobus Van der Merwe. ECHO: A Reliable Distributed
Cellular Core Network for Hyper-Scale Public Clouds.
In Annual International Conference on Mobile Comput-
ing and Networking, pages 163–178. ACM, 2018.

[41] O-RAN Alliance. O-RAN: Towards an Open and Smart
RAN, October 2018. White paper, https://www.o-ra
n.org/s/O-RAN-WP-FInal-181017.pdf.

[42] OVN Architecture. https://www.ovn.org/suppor
t/dist-docs/ovn-architecture.7.pdf, 2021.

[43] Guru Parulkar. Aether: An Open Source Platform for
Private 5G Connected Edge Cloud-as-a-Service, 2020.
Keynote presentation at ONF Spotlight on 5G Con-
nected Edge Cloud for Industry 4.0 Transformation,
https://www.youtube.com/watch?v=Zn7FZyiw5KM
&t=4s.

[44] Rabin Patra, Sergiu Nedevschi, Sonesh Surana, An-
mol Sheth, Lakshminarayanan Subramanian, and Eric
Brewer. WiLDNet: Design and Implementation of High
Performance WiFi Based Long Distance Networks. In
USENIX Symposium on Networked Systems Design and
Implementation, 2007.

[45] Alex (Sandy) Pentland, Richard Fletcher, and Amir Has-
son. DakNet: Rethinking Connectivity in Developing
Nations. Computer, 37(1):78–83, 2004.

[46] Larry Peterson and Oguz Sunay. 5G Mobile Networks:
A Systems Approach. Systems Approach, June 2020.
https://5g.systemsapproach.org/.

[47] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson,
Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang,
Joe Stringer, Pravin Shelar, et al. The Design and Imple-
mentation of Open vSwitch. In USENIX Symposium on
Networked Systems Design and Implementation, pages
117–130, 2015.

[48] Thomas Pötsch, Salman Yousaf, Barath Raghavan, and
Jay Chen. Zyxt: A Network Planning Tool for Rural
Wireless ISPs. In ACM SIGCAS Conference on Com-
puting and Sustainable Societies, pages 1–11, 2018.

[49] Zafar Ayyub Qazi, Phani Krishna Penumarthi, Vyas
Sekar, Vijay Gopalakrishnan, Kaustubh Joshi, and
Samir R Das. KLEIN: A Minimally Disruptive De-
sign for an Elastic Cellular Core. In ACM Symposium
on SDN Research, pages 1–12. ACM, 2016.

1680 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.gsma.com/mobilefordevelopment/resources/unlocking-rural-coverage-enablers-commercially-sustainable-mobile-network-expansion/
https://www.gsma.com/mobilefordevelopment/resources/unlocking-rural-coverage-enablers-commercially-sustainable-mobile-network-expansion/
https://www.gsma.com/mobilefordevelopment/resources/unlocking-rural-coverage-enablers-commercially-sustainable-mobile-network-expansion/
https://www.gsma.com/mobilefordevelopment/resources/unlocking-rural-coverage-enablers-commercially-sustainable-mobile-network-expansion/
https://www.o-ran.org/s/O-RAN-WP-FInal-181017.pdf
https://www.o-ran.org/s/O-RAN-WP-FInal-181017.pdf
https://www.ovn.org/support/dist-docs/ovn-architecture.7.pdf
https://www.ovn.org/support/dist-docs/ovn-architecture.7.pdf
https://www.youtube.com/watch?v=Zn7FZyiw5KM&t=4s
https://www.youtube.com/watch?v=Zn7FZyiw5KM&t=4s
https://5g.systemsapproach.org/

[50] Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas
Sekar, Sylvia Ratnasamy, and Scott Shenker. A High
Performance Packet Core for Next Generation Cellular
Networks. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages
348–361. ACM, 2017.

[51] Rhizomatica. http://rhizomatica.org/, 2013. Re-
trieved 4/2013.

[52] Spencer Sevilla, Matthew Johnson, Pat Kosakanchit,
Jenny Liang, and Kurtis Heimerl. Experiences: Design,
Implementation, and Deployment of CoLTE, a Com-
munity LTE Solution. In ACM MobiCom, pages 1–16,
2019.

[53] Spirent Landslide Core Network Testing. https://ww
w.spirent.com/products/mobile-network-test
ing.

[54] Statista. Internet usage worldwide—statistics & facts.
https://www.statista.com/topics/1145/inter
net-usage-worldwide/#dossierKeyfigures.

[55] Sonesh Surana, Rabin K Patra, Sergiu Nedevschi,
Manuel Ramos, Lakshminarayanan Subramanian, Yahel
Ben-David, and Eric A Brewer. Beyond Pilots: Keeping
Rural Wireless Networks Alive. In NSDI, volume 8,
pages 119–132, 2008.

[56] William Waites, James Sweet, Roger Baig, Peter Bune-
man, Marwan Fayed, Gordon Hughes, Michael Four-
man, and Richard Simmons. RemIX: A Distributed
Internet Exchange for Remote and Rural Networks. In
Workshop on Global Access to the Internet for All, pages
25–30, 2016.

[57] WBA. OpenRoaming. https://wballiance.com/o
penroaming/, 2021.

[58] Klaas Wierenga and Licia Florio. Eduroam: Past,
Present and Future. Computational Methods in Science
and Technology, 11(2):169–173, 2005.

[59] Mao Yang, Yong Li, Depeng Jin, Li Su, Shaowu Ma, and
Lieguang Zeng. OpenRAN: A Software-Defined RAN
Architecture via Virtualization. ACM SIGCOMM Com-
puter Communication Review, 43(4):549–550, 2013.

[60] H. Zhu, M. Li, I. Chlamtac, and B. Prabhakaran. A
Survey of Quality of Service in IEEE 802.11 Networks.
IEEE Wireless Communications, pages 6–14, August
2004.

Appendix

Figure 10: Wireless backhaul to WiFi hotspots provided by
Magma. This is the network architecture used by AccessParks
in their deployment: end users connect to WiFi access points
via standard mechanisms, and traffic is backhauled from the
hotspot via a co-located cellular modem to the LTE RAN sup-
ported by Magma. Note that nothing in this design precludes
an end user from directly connecting to the LTE network, if
appropriately configured and allowed to do so by the network
operator.

Acronym Definition
MME Mobility Management Entity
HSS Home Subscriber Server
PCRF Policy and Charging Rules Function
SGW Serving Gateway
PGW Packet Gateway
AMF Access and Mobility Function
SMF Session Management Function
PCF Policy Control Function
UDM Unified Data Management
AUSF Authentication Server Function
S1AP S1 Access Protocol
NGAP Next Generation Access Protocol
SCTP Stream Control Transmission Protocol
NAS Non-Access Stratum
RAN Radio Access Network
LTE Long Term Evolution
3GPP Third Generation Partnership Project
UE User Equipment (a phone or other cellular client)
eNodeB The “access point” for an LTE network
gNodeB The “access point” for an 5G network
AGW Access Gateway
AAA Authentication, Authorization, and Accounting
RADIUS Remote Authentication Dial-In User Service

Table 4: Acronyms used in the paper

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1681

http://rhizomatica.org/
https://www.spirent.com/products/mobile-network-testing
https://www.spirent.com/products/mobile-network-testing
https://www.spirent.com/products/mobile-network-testing
https://www.statista.com/topics/1145/internet-usage-worldwide/#dossierKeyfigures
https://www.statista.com/topics/1145/internet-usage-worldwide/#dossierKeyfigures
https://wballiance.com/openroaming/
https://wballiance.com/openroaming/

LinkLab 2.0: A Multi-tenant Programmable IoT Testbed for Experimentation with

Edge-Cloud Integration

Wei Dong², Borui Li², Haoyu Li, Hao Wu, Kaijie Gong, Wenzhao Zhang, Yi GaoB

College of Computer Science, Zhejiang University,

Alibaba-Zhejiang University Joint Institute of Frontier Technologies, China

{dongw, libr, lihy, wuh, gongkj, zhangwz}@emnets.org, gaoyi@zju.edu.cn

Abstract

In this paper, we present LinkLab 2.0, a completely pro-
grammable and controllable IoT testbed with the support
of edge devices and cloud infrastructures. To be more spe-
cific, LinkLab 2.0 leverages a tiered architecture for the pro-
grammable devices and the management system to achieve
scalability. To better support the integrated experiment among
IoT, edge and cloud, LinkLab 2.0 provides one-site pro-
gramming support and leverages the customizable offloading
with serverless functions. Moreover, LinkLab 2.0 proposes
a device-involved multi-tenancy approach to ensure respon-
siveness for concurrent requests. Furthermore, targeting 24/7
availability for experimenters, LinkLab 2.0 leverages proac-
tive and reactive anomaly detection to improve the reliability
of the testbed. Finally, we describe the supported research
experiments and the outreach usage by external users. We
also report lessons learned from the four-year operation. Lin-
kLab 2.0 has supported experiments for 2,100+ users. The
accumulated usage time across all the devices exceeds 17,300
hours.

1 Introduction

Many modern IoT systems are deeply integrated with edge
and cloud platforms. New edge computing platforms like
NVIDIA Jetson, and new computing technologies like compu-
tational offloading [41, 47] and serverless computing [27, 51]
greatly enhance the capabilities of IoT systems [9, 26, 30, 49]
and will eventually usher in an era of Internet of Everything.
For example, in an industrial machine power monitoring sce-
nario [34], hundreds or thousands of IoT devices monitor and
collect energy data at a high frequency. To reduce the band-
width usage and improve the real-time performance, edge
devices are usually required to perform data prepossessing
and analytics before forwarding the data to the cloud.

However, a major challenge is the lack of a fully pro-

grammable testbed for allowing the community to deeply

explore new cloud/edge technologies and their ªsweet spotº

²Co-primary authors

Programmable IoT Devices

Raspberry

Pi
NVIDIA

Jetson TX2

Programmable Edge DevicesLDC Client Cluster

LDC Management ClusterLDC Management Cluster Programmable Cloud InfrastructureProgrammable Cloud Infrastructure

Programmable

Infrastructure

Management

Infrastructure

Experimental

Data Path

Control

Data Path

NVIDIA

Xavier AGX

L
a
y

e
r

1
:

Io
T

L
a
y

e
r

2
:

E
d

g
e

L
a
y

e
r

3
:

C
lo

u
d

USB Serial Wireless Channel

Wired Channel

Wired

Channel

Wired Channel

Public Cloud LinkLab Built-in Cloud

Monitoring

Server

LDC

Controller

LDC Client LDC ClientLDC Client

LDC Servers

CC2650

LaunchPad
TelosB

Developer

Kit

STM32-

F103C8T6

ESP32-

DevKitC

Arduino

Mega 2560

Arduino

Uno

Virtual

Device

Monitoring

Data Path

AliOS

HaaS 100

Prototyping Devices

COTS Devices

Philips

Hue

Devices

Xiaomi

Smart Home

Devices

Tuya

Smart

Devices

Figure 1: Overview of LinkLab 2.0.

with a large number of IoT devices and highly heteroge-

neous computing platforms.

We notice that there exist multiple sensor network testbeds
such as MoteLab [67], Indriya2 [7], and FIT IoT Lab [1],
allowing the research community to experiment with various
sensornet/IoT hardware and IoT software. Unfortunately, they
do not fully address the aforementioned challenge. Specifi-
cally, these testbeds do not natively support edge/cloud inte-
gration. Most testbeds do not support the device-edge-cloud
communication path and do not allow programming on the
edge devices. Moreover, they do not have good support for
multi-tenant and high concurrent online experiments with
a growing need for teaching and research purposes in the
COVID-19 era. In this paper, we present LinkLab 2.0, a
multi-tenant IoT testbed with edge-cloud integration, aiming
to address the following systems and engineering challenges:

(1) How to support device-edge-cloud integrated experi-

ments? Towards this, LinkLab 2.0 enables one-site integrated

programmability and control for IoT, edge and cloud devices
with several front-end and back-end supports. LinkLab 2.0
also supports new computation paradigms by supporting cus-

tomizable offloading with serverless functions. Moreover, the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1683

Table 1: Functionality comparison of existing IoT testbeds.

Testbeds
Remote

Develop

Edge

Support

Cloud

Support

Virtual

Devices

Web

IDE

MoteLab [67] ✓ ✘ ✘ ✘ ✘

Indriya2 [7] ✓ ✘ ✘ ✘ ✘

FIT IoT [1] ✓ ✘ ✓
∗

✘ ✘

LinkLab 2.0 ✓ ✓ ✓ ✓ ✓

*FIT IoT Lab must work with FIT Cloud for cloud-IoT experiments

above programming support requires a separate and reliable
channel to deploy experiments onto the devices. Hence, Lin-
kLab 2.0 employs a vNIC-based bandwidth reservation mech-

anism on edge and cloud devices to guarantee the timeliness
for controlling the devices (§3.2).

(2) How to ensure dynamic and dedicated usage with

a high level of concurrency and multi-tenancy? The
Kubernetes-based architecture makes LinkLab 2.0 adaptive to
highly fluctuating usages (§3.1). Furthermore, considering the
concurrent programming requests in the online education sce-
nario, LinkLab 2.0 leverages a device-involved multi-tenancy

technique to divide a proportion of services and devices as
a tenant for dedicated usage. LinkLab 2.0 also provides a
nimble configuration interface for administrators to manage
the tenants (§3.3).

(3) How to ensure a high level of reliability, especially for

the IoT devices? In accordance with the complicated poten-
tial root causes of IoT devices, LinkLab 2.0 uses a proactive

and reactive problem detection approach to detect whether
the devices are broken and locate the error as soon as pos-
sible. For the whole testbed, LinkLab 2.0 detects anomalies
by automatically analyzing the multi-model logs during the
operation of the testbed (§3.4).

Figure 1 shows the overall architecture of LinkLab 2.0. Lin-
kLab 2.0 consists of three layers: device layer, edge layer and
cloud layer. In each layer, there are various programmable
devices to facilitate different levels of programmability and
control for users. Besides programmable devices, there are
dedicated devices and services to manage the programmable
devices, namely LinkLab 2.0 Device Center (LDC). There
are three different data paths among different layers. The ex-
perimental data path is used in the experiments conducted by
users. The control data path is used for programming and con-
trolling the devices of LinkLab 2.0, while the monitoring data
path is used for experimental data collection and system mon-
itoring of LinkLab 2.0 which is important for guaranteeing
24/7 availability.

Currently, LinkLab 2.0 is equipped with 420+ real IoT/edge
devices of 14 different types. Furthermore, LinkLab 2.0 sup-
ports theoretically unlimited virtual devices with device-level
simulation and a web-based IDE for easier access to the de-
vices. The controller-server-client architecture of LDC allows
LinkLab 2.0 to scale easily to accommodate substantial IoT
devices at different physical sites. Table 1 compares the func-
tionality of LinkLab 2.0 with other well-known testbeds.

LinkLab 2.0 (https://linklab.emnets.cn) facilitates
researchers to conduct a broad range of experiments to ex-

plore new system designs. It incorporates various embedded
computing platforms (e.g., Arduino, ESP32), IoT protocols
(e.g., LoRa, MQTT, COAP) and techniques for edge com-
puting (e.g., container-based service composition, edge AI).
Furthermore, during the four-year operation, we extend Lin-
kLab 2.0’s ability to better serve the community, especially
for educational purposes. In §5, we exemplify the supported
experiments and outreaches of our testbed to showcase the
various capabilities of LinkLab 2.0.

2 Basics and Usage of LinkLab 2.0

Building and managing a testbed with numerous heteroge-
neous devices from the device, edge and the cloud layer at
the same time need a prudent design. In this section, we first
present the bird’s-eye view and the usage of LinkLab 2.0, then
we compare LinkLab 2.0 with the existing testbeds.

LinkLab 2.0 in a nutshell. Towards the aforementioned
goal, as Figure 1 shows, LinkLab 2.0 exhibits a three-layer
architecture for both hardware and software, namely the IoT
device layer, edge layer and cloud layer. LinkLab 2.0 supports
both real and virtual devices for users to program with.

Currently, LinkLab 2.0 includes over 420 real devices for
IoT, edge and cloud programming. The IoT devices are de-
ployed in various environments (e.g., multi-hop scenario) as
shown in Figure 2. These devices also incorporate various
sensing peripherals and networking technologies for users.
Another key hardware building block is the programmable
edge devices and cloud server (also listed in Table 2), which is
currently not well-supported by other testbeds such as FIT [1]
and CloudLab [18]. For the programmable cloud server, Lin-
kLab 2.0 provides users with a built-in cloud infrastructure
with general-purpose computing resources (i.e., CPU, GPU).
Moreover, LinkLab 2.0 supports users to use the public cloud
service such as Microsoft Azure or the users’ own server as
the cloud node in their experiment.

In addition to the real devices, LinkLab 2.0 also introduces
virtual devices to support the experiments that are large-scale

or trace-driven. We propose two kinds of virtual devices:
code-level and message-level. The code-level virtual device
accepts the same code as the real node and simulates all
behaviors of the device. The message-level virtual device
only simulates the network behavior such as MQTT publish,
which enables a theoretically unlimited number of devices
for large-scale experiments. Furthermore, LinkLab 2.0 also
supports binding time-stamped datasets to virtual devices to
reproduce an experiment with a pre-recorded trace.

Lifecycle of an experiment. LinkLab 2.0 provides com-
prehensive support for users to carry out experiments. Con-
ducting experiments contains the following steps:

(1) Project Creating and Resource Claiming: Users should
first create a project, select the hardware and claim the occu-
pation time via our web portal. The experiment automatically
terminates when the requested time quota runs out.

(2) Programming and Provisioning: For IoT devices, users

1684 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://linklab.emnets.cn

Table 2: List of deployed programmable devices in LinkLab 2.0.
Cat. Device ISA # Operating System Wireless Peripherals/Characteristics

IoT

TelosB MSP 30 Contiki/RIOT Zigbee Temperature, Humidity etc.
Arduino Mega 2560 AVR 26 Bare-metal/RIOT WiFi/BLE Temperature, Humidity, SD Card, etc.

Arduino Uno AVR 16 Bare-metal/RIOT LoRa LoRa Shield
ESP32-DevKitC Xtensa 180 Zephyr/RIOT/etc. WiFi/BLE LED

nRF52840 ARM32 10 Zephyr/RIOT/etc. Zigbee/BLE/Thread LED
STM32 F103C8 ARM32 54 FreeRTOS/RIOT/etc. LTE Temperature, Humidity, Light, etc.

AliOS Things DevKit ARM32 8 AliOS Things WiFi/BLE 9-axis IMU, pressure, Mic., etc.
HaaS100 ARM32 29 AliOS Things WiFi/BLE/Ethernet SD Card, LED

COTS IoT devices / 11 Philips/Xiaomi/Tuya WiFi/BLE/Zigbee Water/Temp./PIR sensor, Plug, Bulb, etc

Edge

Raspberry Pi 4B ARM64 47 Raspbian Buster (Linux) WiFi/BLE/LoRa with 8GB RAM
NVIDIA Xavier AGX ARM64 3 Ubuntu 18.04 (Linux) Ethernet with AI accelerator
NVIDIA Xavier NX ARM64 1 Ubuntu 18.04 (Linux) Ethernet with AI accelerator
NVIDIA Jetson TX2 ARM64 1 Ubuntu 18.04 (Linux) WiFi/Bluetooth with AI accelerator
NVIDIA Jetson Nano ARM64 8 Ubuntu 18.04 (Linux) Ethernet with AI accelerator

Cloud LinkLab 2.0 Built-in Server x86_64 1 Ubuntu 20.04 (Linux) WiFi/Ethernet with 36-core CPU and GPU

(a) TelosB (b) Arduino Mega (c) Arduino Uno (d) ESP32 (e) nRF52840 (f) STM32 F103 (g) AOS DevKit (h) HaaS100

Figure 2: IoT devices deployment in LinkLab 2.0.

could simply upload the experiment binary via our web portal.
Furthermore, LinkLab 2.0 also provides a web-based IDE and
online compiling services to allow users to conduct experi-
ments anytime and anywhere. For programming the edge and
cloud, LinkLab 2.0 supports both programming with server-
less functions and Docker-based development.

(3) Data Collection Configuring: The experimental data
collection of LinkLab 2.0 is based on logging "channels".
Each channel represents a specific category of experimental
data. Currently, LinkLab 2.0 provides three channels: con-
sole logs, network traffic and energy measurement (for some
devices that are connected to a Monsoon Power Monitor).

(4) Experiment Execution: Once finished the provisioning,
users could start the experiment by clicking the "start" button.
During the experiment, users could select one or more devices
to view the serial/console outputs instantly and adjust the
configurations from the web portal.

(5) Report Acquisition and Data Processing: After the ex-
ecution, users could download the experimental report from
the web portal and use data processing tools such as Python
or R to perform further analysis.

Comparison to other testbeds/infrastructure. We com-
pare the development process of LinkLab 2.0 with the one
using FIT IoT Lab (for IoT device deployment) and FIT
Cloud Lab/Microsoft Azure (for edge/cloud development)
in Figure 3 and summarize the differences as follows. (1) Lin-
kLab 2.0 is the only testbed that includes the IoT, edge and
cloud, which facilitates users to do a one-stop development.
Users are not asked to login with multiple credentials and
the inter-device network is automatically configured. Users
of FIT IoT Lab will spend a long period configuring the bor-
der router and setting up the connectivity between IoT and
the cloud. (2) Furthermore, thanks to our integrated program-

ming support (§3.2), users could have a bird’s-eye view when
selecting devices and the networking parameters are shown
when programming, which could shorten the development
time. (3) The Web-based IDE and built-in online compilation
environment enable the one-key provision of developed ex-
periments. However, using FIT and Azure, developers could
only separately write code for the IoT and cloud and manu-
ally deploy the program, which both need much coordination
efforts between platforms.

3 Designs of Management Services

Managing such a multi-tiered testbed with various heteroge-
neous devices faces several non-trivial challenges. In this part,
we will present the challenges and solutions from the basic
architecture design to programming and reliability issues.

3.1 Overview of Management Architecture
As shown in Figure 4, all the IoT, edge and cloud devices are
managed by a three-tier architecture named LinkLab 2.0 De-
vice Control (LDC). LDC contains three building blocks: the
controller, the server and the client. The LDC controller is the
top-level management service, which is responsible for gath-
ering the programming and controlling tasks from the users.
The LDC server takes the experiment tasks as input, assigns
the tasks to the devices and forward the binaries or configu-
rations to the LDC client (for IoT devices) or directly to the
programmable devices (for the edge/cloud). The LDC client
is at the lowest level, which directly interacts with the IoT
devices and provides device control interfaces (e.g., program,
reset, and keep-alive) to the LDC server via the network.

Kubernetes-based management services. The architec-
tural design of LinkLab 2.0 does not happen overnight. We
next elaborate on the alternatives and our considerations dur-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1685

Development process of FIT IoT Lab + FIT Cloud Lab and FIT IoT Lab + Microsoft Azure

Development process of LinkLab 2.0

Run

Experiment

Run

Experiment

Analyze

Data
Analyze

Data

LoginLogin

LinkLab

Account

Create & Resource ClaimCreate & Resource Claim

• Select devices via topology

• Auto-setup & shows parameters

for users to program with

Program & ProvisionProgram & Provision

• Web-based IDE & built-in enviro.

• Customize serverless offloading

• One-key provision

Run
Experiment

Run
Experiment

Analyze
Data

Analyze
Data

CreateCreate

Profile

Azure

Function

Create

Profile

Azure

Function

Create

Project

with nodes

Create

Project

with nodes

Login

OneLab

Account

Login

OneLab

Account

Login

OneLab

Account

Microsoft

Account

Login

OneLab

Account

Microsoft

Account

SetupSetup

Set ntwk.

Parameters

Event Grid

Subscription

Setup

Set ntwk.

Parameters

Event Grid

Subscription

SetupSetup

Set ntwk.

w/ border

router

Setup

Set ntwk.

w/ border

router

Environ.Environ.

Install cross-

compilation

toolchain

Environ.

Install cross-

compilation

toolchain

Environ.Environ.

Setup exec.

environment

/

Environ.

Setup exec.

environment

/

ProgramProgram

Write &

compile

code

Program

Write &

compile

code

ProgramProgram

Build app.

from scratch

Write

Functions

Program

Build app.

from scratch

Write

Functions

ProvisionProvision

Upload

binary

to FIT IoT

Provision

Upload

binary

to FIT IoT

ProvisionProvision

Manually

deployment

Deploy

Functions

Provision

Manually

deployment

Deploy

Functions

RecordRecord

Manually

instrument

Use Azure

Monitor

Record

Manually

instrument

Use Azure

Monitor

RecordRecord

Built-in

monitoring

tools

Record

Built-in

monitoring

tools

OutputsOutputs

Download

experiment

data

Outputs

Download

experiment

data

OutputsOutputs

Manually

save
Query from

Azure App.

Insights

Outputs

Manually

save
Query from

Azure App.

Insights

OutputsOutputs

Download

experiment

data

Outputs

Download

experiment

data

RecordRecord

Built-in

monitoring

channels

Record

Built-in

monitoring

channels

IoT Device

Development

Edge*/Cloud

Development

IoT-Edge-Cloud

Development

*FIT Cloud Lab and Microsoft Azure do not support edge devices currently.

Figure 3: Development process of FIT IoT Lab (for IoT), FIT Cloud Lab or Microsoft Azure (for cloud) against LinkLab 2.0.

LDC Controller

LDC Server

Device

Allocator

LDC Clients and IoT Devices

Programming
Control Flow

Log Collection
Flow

Containerized
Services

Auto-scaling
Enabled

Databases

Web Portal

Edge and Cloud Devices

LDC API Gateway

Device ClientLog

EMQX MQTT Broker

User

Task

Device

Monitoring

Server

Compilation
API GW

Compilation

Worker

User

Management
Server
Allocator

NATS MsgQ.

Figure 4: Kubernetes-based management services.

ing the development of such a heterogeneous and large-scale
testbed.

Monolithic or cloud-native? In retrospect, LinkLab 2.0 is
originally built in a native, monolithic way, which means the
management functionalities are centralized in a handful of
monolithic services and bare-metally deployed on the server
with binaries. Nevertheless, after a few irritating experiences
of migrating the services between servers or establishing sub-
sites, we decided to adopt a cloud-native architecture (see Fig-
ure 4), which means decoupling functionalities to microser-
vices and deploying them with containers. The rationale is we
frequently build sub-sites to extend LinkLab 2.0’s coverage
and community, which makes us value the ease of service
management and migration brought by cloud-native more
than the extra overhead brought by containerization.

Be adaptive to highly fluctuating workloads. Since one of
LinkLab 2.0’s usage scenarios is online education, we ob-
serve a highly fluctuating workload during the operation of
LinkLab 2.0, i.e., many concurrent requests during classes
while few users are active at night. Simply over-provisioning
the management services is too conservative and uneconomi-
cal, hence LinkLab 2.0 leverages Kubernetes for adaptivity.

Kubernetes [53] is an open-source system that enables the

automated scaling of containerized services by instantiating
service replicas. As Figure 4 shows, all the key services are
containerized and managed by Kubernetes (except NATS, EMQX
and databases because they have their own scaling policy).
The addition of a server allocator makes LinkLab 2.0 scalable
for building LDC servers in multiple remote sub-sites.

Benefits. This Kubernetes-based management architecture
is scalable to user requests. Once the user request bursts,
services shown in Figure 4 will automatically scale up to
handle the requests and scale down to save the resources
when there are few requests.

Tiered management of devices. Due to the different pro-
gramming approaches between IoT and edge/cloud devices,
LinkLab 2.0 employs tiered management of the devices.

IoT devices. The real IoT devices are connected to a Rasp-
berry Pi (RPI), which the LDC client deployed on, via USB
serial. LDC client includes a programming service based on
the burning tool provided by the manufacturers of the devices
(e.g., avrdude for Arduino-series boards). An alternative is
using the Over-The-Air (OTA) technology to update the bi-
naries, while we gave up this idea due to the scarce storage
space on IoT devices and the wireless interference.

The management of virtual devices is akin to the real nodes.
The only difference is the addition of creating and deleting
interfaces for users to adjust the number and type of simulated
devices, and the managing commands are transmitted via the
network rather than USB serial.

Programmable edge and cloud. The management of the
programmable edge/cloud devices differs from IoT devices
in two ways: (1) LinkLab 2.0 leverages network-based con-
trolling instead of USB serial because the transmission speed
of USB serial (115.2Kbps) is generally much slower than the
network (>100Mbps), while the data size for provisioning
edge device is mainly in gigabyte magnitude. (2) The LDC
client is directly deployed on the programmable edge/cloud
devices because they have enough computing ability to handle
the management commands.

Hence, LinkLab 2.0 develops a runtime for the edge/cloud
(Figure 5) to support the programming, controlling and moni-

1686 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Config. Manager

LDC Client

Service Manager

Provision

Router Agent

Func. Runtime

Connector

Exe. Support

Sys. Monitoring

Data Logging

NTP

Data Collection

LinkLab Edge/Cloud Runtime

Database Experimental Applications

Applications

Serverless Function Docker-based App.

KubeEdge

Figure 5: LinkLab 2.0 edge/cloud software stack.

toring tasks. The LDC client is part of the edge/cloud runtime
and responsible for handling the commands sent by the LDC
server and reports the status of the edge device. Once the
LDC client receives an experiment deployment configuration,
the configuration manager parses it and deploys the experi-
ment. After provisioning, the lifecycle of the services of the
experimental application is managed by a service manager,
including starting, restarting and destroying the instances.

Benefits. This tiered management system as well as the
distributed design of LDC client and server dramatically re-
duces the efforts for adding the devices to LinkLab 2.0. Users
who intend to add new IoT devices only need to deploy an
LDC client and plug the device into the client. Without these
designs, adding devices requires plugging them into the same
hardware device that the LDC server lies on, which reduces
the scalability for deploying the IoT devices in the wild or
physically remote from the LDC management cluster.

3.2 Achieving IoT-Edge-Cloud Integration

We now introduce how LinkLab 2.0 achieves the integrated
programming for IoT, edge and cloud and how to guarantee
the reliable programming of the multi-layered devices.

Integrated programming for IoT, edge and cloud. The
most important feature of LinkLab 2.0 is to facilitate one-site
programming for IoT devices, edge and cloud. Moreover, Lin-
kLab 2.0 also supports serverless functions and computation
offloading to lower the threshold for experiencing cutting-
edge programming paradigms.

One-site programming for the three layers. In order to fa-
cilitate the one-site programming for IoT, edge and cloud,
LinkLab 2.0 optimizes each step of conducting an experiment.
(1) During the selection of devices, LinkLab 2.0 provides
users with the hardware network topology. With this view of
topology, users could choose devices from different layers
with fully aware of the connectivity between devices. (2) For
the programming step, users could use a Web-based IDE of
LinkLab 2.0 to write code directly in the web browser and
leave the compilation and deployment to LinkLab 2.0 backend
services. LinkLab 2.0 also automatically handles the network
between devices and shows the networking parameters (e.g.,

IP address) for each device during users’ programming. (3)
During the experiment execution, LinkLab 2.0 supports the
customization of configurations, especially the parameters for
inter-layer communication, which could not be easily config-
ured in other testbeds such as FIT IoT Lab. The programmable
configurations include connectivity settings (e.g., round-trip
time, bandwidth, packet loss rate) and performance settings
(e.g., resource quota of services, docker priority).

Customizable offloading with serverless functions. Recent
advances in serverless computing [60, 61, 74] allow users to
focus on the application logic other than wasting time on
the configuring environment and parallelism from scratch.
Hence, besides the basic Docker-based development, users
of LinkLab 2.0 could decompose their experiment logic into
serverless functions and deploy them on edge or cloud devices.
Moreover, to further simplify the serverless programming in
the IoT-edge-cloud scenario, LinkLab 2.0 provides device-

interaction APIs for serverless functions to read data from an
IoT device.

Based on the serverless functions, LinkLab 2.0 provides
systematic support for function offloading. Primarily, users
could use @remotable annotation to mark the function that
could be offloaded. Moreover, a large amount of related re-
search [36, 50] concentrates on the offloading policy. There-
fore, LinkLab 2.0 presents a customizable offloading frame-

work to enable users to define and test their own offloading
policies. Towards this, LinkLab 2.0 first decouples the of-
floading policy module from the offloading handler, which is
responsible to intercept the function execution and transmit it
to the offloading destination. Second, LinkLab 2.0 provides
customization interfaces for users to define their own policies.

Timely edge control based on vNICs. As we stated before,
LinkLab 2.0 uses the network to manage the programmable
edge and cloud, which is the same data channel that most
experiments use. Suppose an experiment intends to occupy
as much bandwidth as it can (which most experiments do),
the management delay of this device will dramatically in-
crease, or even the device will stop responding to manage-
ment commands. Existing cloud testbeds could alleviate this
by employing a dedicated network interface card (NIC) for
management and control. Nevertheless, most of the COTS
edge devices only have one NIC and are not customizable
after manufacture.

Hence, we develop a software-based tool, resGuard, to en-
sure the responsiveness of the management service under any
circumstances. (1) For outbound traffic, the resGuard first
uses cgroup to categorize the key management tasks (pro-
cesses) and other user tasks. Then, resGuard leverages tc

rate to guarantee the minimum bandwidth of management
tasks. (2) For inbound traffic, however, the aforementioned
approach is not applicable because tc only implements an
egress packet queue and cgroup could not classify the in-
bound traffic to its destination process. Hence, resGuard
takes advantage of the ifb virtual NIC mechanism of Linux.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1687

1 tenant:
2 name: NSDI2023
3 user: "alice", "bob"
4 hardware_exclusive: "AMega-1", "AMega-2", "ESP32-1", "RPI-1"
5 hardware_shared: "ESP32-2", "ESP32-3", "RPI-2"
6 services: "all" # enable all services

7 service_quota:
8 − compiling: 10 # unit: req/s

9 − burning: 5 # unit: req/s

Figure 6: Example configuration to create a tenant.

The ifb vNIC is a message queue by implementation and any
packet that is redirected to ifb will return to its original NIC
automatically after traffic shaping. Therefore, resGuard redi-
rects all the inbound traffic to ifb and uses tc to prioritize the
packet from the IP addresses which host the management ser-
vices. Note that resGuard only prioritizes the management
service, the experiments could only utilize all the resources
if there is no management task. In addition, resGuard also
reserves CPU quota for management tasks via cgroup.

3.3 Achieving Multi-tenancy

During the COVID-19 pandemic, we make LinkLab 2.0 avail-
able to teachers and students for educational purposes. How-
ever, this scenario poses new concurrency and multi-tenancy
challenges for LinkLab 2.0, which is guaranteeing a dedicated
and responsive usage of services and devices during a certain
period of time. This is because the programming requests are
expected to be handled immediately in a limited class time.

The containerized architecture of our management services
(Figure 4) is a good start for achieving multi-tenancy for its
scalability and isolation property. However, the programmable
devices, which are one of the building blocks of LinkLab 2.0,
are not included in this isolation framework. Hence, Lin-
kLab 2.0 proposes device-involved multi-tenancy. With this
technique, operators could easily create a new tenant for a
dedicated usage, and LinkLab 2.0 assures the programming
responsiveness of services and devices within a preset quota.

Device-involved multi-tenancy. Services in Figure 4 are
reconstructed to support multi-tenancy. First of all, each
database owns a TenantID field for other services to look up.
To avoid the interference of the tasks from different tenants,
the device allocator creates waiting queues for each tenant
and launches an appropriate number of instances to handle
the requests. Other services will subscript the task from NATS

once they are assigned to a tenant.
Once a new request of a user is received, LinkLab 2.0 will

first query which tenant the user belongs to and put the re-
quest to the corresponding queue. Then, the device allocator
searches for if there are idle devices that meet the user request
and belong to the requesting tenant. If so, the request will
be assigned to the device. Furthermore, this device-involved
multi-tenancy is also a lightweight approach to IoT device vir-
tualization. When creating a new tenant, administrators could
assign devices to the tenant in the ªexclusiveº or ªsharedº
manner. ªExclusiveº means the device could only be accessed
by the users of the tenant, while ªsharedº means the device

is shared with other tenants. There are primarily sensing and
actuation IoT devices in LinkLab 2.0. If a sensing device is
set to ªsharedº, we can multiplex its sensing data to multiple
tenants if necessary. On the other hand, the actuation devices
cannot be shared after being allocated to avoid conflicting
operations.

We also leverage an accounting mechanism for the con-
tainerized services in Figure 4 to record the resource usage
of each tenant. If a tenant exceeds its preset quota, the user
management will reject the new request from this tenant.

Tenant management. We build a command-line interface
(CLI) for administrators to manage tenants, such as creat-
ing a tenant or to moving a device/user to an existing tenant.
As Figure 6 shows, administrators could allocate users, hard-
ware resources, and software services with quota in a YAML

configuration file when creating a new tenant. Then use our
management CLI with LinkLab 2.0-manage tenant -c

<config>.yaml to create (-c) a new tenant to LinkLab 2.0.
Besides adding new tenants, LinkLab 2.0 also supports modi-
fying (-m) and deleting (-d) tenants.

3.4 Achieving Reliability

Reliability is the principal requirement of a testbed that is
used for both academic and educational purposes. To achieve
24/7 availability, LinkLab 2.0 employs an anomaly detection
system. The goal of the monitoring system is to keep two
groups of reliability problems away from LinkLab 2.0: (1)
Device-related problems, such as unexpected offline and ab-
normal sensor readings; (2) Service-related problems, such
as improper resource occupation and service breakdown.

Proactive and reactive device anomaly detection. To-
wards the device-related problems, we use both proactive and
reactive detection to catch the exceptions as soon as possible.

Reactive detecting. Basically, the devices in LinkLab 2.0
are monitored reactively, which means we only use the data
that is non-intrusively collected from the IoT device. Such
as we monitor the working state of the peripherals using the
readings piggybacked from users’ experiment applications.

Proactive probing. To monitor the devices that are used
infrequently and improve the coverage of device problem
detection, LinkLab 2.0 also employs proactive probing. We
create a benchmark set for each kind of IoT device that covers
most of the functionalities of the device. Once a device is
idled for a period of time (empirically set to 2 hours), our
monitoring system programs the benchmarks to the devices
and analyzes the output. Note that we make the regular user
requests could preempt the execution of probing benchmarks
for a better device utilization. Once abnormal behavior occurs,
our monitoring system will send an alarm to the operators.

Benefits. Besides alarming the maintainers of device fail-
ures, our device anomaly detection approach is also benefi-
cial to the reproducibility of experiments conducted on Lin-
kLab 2.0. To ensure the correctness and accuracy of the exper-
iments, we pay attention to the result consistency and abrasion

1688 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of our devices by correlating the piggybacked sensor data in
the reactive detection with the environmental data collected
by the maintainers and the outputs of proactive probing with
our pre-defined ground truth.

Service anomaly detection via multi-model log fusion.

In this part, we introduce how LinkLab 2.0 detects service
abnormalities through log analysis during system operation.

Multi-model system runtime data collection. The runtime
log is an implicit indicator of the system’s health. LinkLab 2.0
collects both structured and semi-structured runtime data for
further anomaly detection.

(1) Structured key performance indicators (KPIs). KPIs
are the quantitative metrics that reflex the operating status
of the system. For each layer of LinkLab 2.0 (IoT, edge and
cloud), we collect different KPIs according to the intrinsic
difference of each layer. (a) For the edge/cloud layer, we
collect the network throughput, CPU, memory, etc., as the
KPIs. (b) For devices of the IoT layer, the connectivity of
each device (indicated by its heartbeat message to the LDC
client) is recorded. The KPIs are periodically collected by our
monitoring system. The interval is empirically set to 2min in
the current deployment.

(2) Semi-structured event logs. Each building block of Lin-
kLab 2.0, especially the management services in Figure 4,
reports the underlying behavior of the component via the
semi-structured event logs. These logs are mainly service-
specific outputs with timestamps and labels of severity levels
such as FATAL and ERROR. Our monitoring system collects
these logs from each layer of LinkLab 2.0 for further analysis.

Multi-model log fusion based anomaly detection. The col-
lected KPIs are time-series data, which are eligible for further
processing. Nevertheless, the collected semi-structured event
logs also need to be structured for anomaly detection. We pro-
pose the simFDT approach, which extends the widely-used
fixed depth tree (FDT) model with the ability to parse logs in
variable lengths using the similarity between logs and tem-
plates, to cope with diverse logs generated by heterogeneous
devices. After parsing by simFDT, we employ a sliding win-
dow to count the different events in a period of time as vectors
and feed the vectors to our anomaly detection algorithm.

We employ Autoencoder (AE) to detect abnormal events
of our entire system using the KPIs and the vectors parsed by
simFDT. AE is widely used for anomaly detection on time-
series data [13, 42, 55]. In order to reduce the overhead of
transmitting monitoring data, we leverage multi-level detec-
tion by separately training anomaly detection AEs for each
layer and deploying the models on the nearest upper layer of
the devices/services being monitored. For example, the AE
for IoT devices is deployed in the LDC client cluster and the
AE for the LDC client cluster is on LDC servers.

Operational findings of anomaly detection. We have
implemented and deployed the aforementioned anomaly de-
tection approaches to our production environment to achieve
24/7 reliability. Up to now, LinkLab 2.0 achieves 98.2% hard-

Table 3: Detected anomalies during the operation of Lin-
kLab 2.0 (sorted by the occurrence in descending order). Dev.
and Svc. mean the device- and service-related problems, re-
spectively.

Type Root causes of detected anomalies

1 Svc. Docker images of services are recycled by Kubernetes.
2 Svc. Failed deployment of a newly developed feature.
3 Dev. The power supply of an edge/IoT device is broken.
4 Dev. Loose connection between devices and peripherals.
5 Svc. Disconnection of the reverse proxy to the cluster.
6 Dev. The peripheral/pinout of an IoT device is broken.
7 Svc. Network fluctuations for hours or days.
8 Svc. Deletion of key files caused by maintainer’s misoperation.
9 Svc. Power outage in the equipment room of LinkLab 2.0

ware available time across the IoT, edge and cloud layer since
the introduction of this system, and Table 3 shows the de-
tected anomalies. We can see from the table that our anomaly
detection approaches could recognize the abnormal states for
services, devices and the entire system.

Nevertheless, we observe false positives (FPs) and true
negatives (TNs) during the long-term deployment. Here, we
will elaborate on the occurrence of FPs and TNs, and discuss
how LinkLab 2.0 evolves to cope with the problems.

The observed FPs include: (1) The number of testbed us-
ages increases sharply, which leads to the false warning due
to unusual high resource usage. (2) The regular operational
actions by the maintenance team run out of the resources
(i.e., deploying a new version, too many concurrent proac-
tive tests for anomaly detection). (3) The false warning on
unprecedented low resource usage after a server upgrade. The
rationale behind these FPs is the data sources of the anomaly
detection are inadequate. Hence, we subsequently improve
the detection system by correlating the detection results with
the operational data (e.g., active user, deployment status) and
the domain knowledge of operators (e.g., server upgrade).

The TNs are mainly short-time service unavailability (usu-
ally for a few to tens of seconds) incurred by the network
fluctuation. These TNs could be easily addressed by shorten-
ing the interval of KPI collection and proactive probing. We
argue that the selection of the interval in the current deploy-
ment exhibits a good tradeoff between detecting accuracy and
overhead, and we will adjust the interval for the time-sensitive
situations such as supporting live classes and exams.

4 System Performance

We test our system to answer the following questions: (1)
Is LinkLab 2.0 scalable? (2) Whether the resGuard of Lin-
kLab 2.0 is reliable for programming edge/cloud devices and
what is the performance? (3) How does the multi-tenant de-
sign of LinkLab 2.0 perform?

Effectiveness of the scalable architecture. In this part, we
evaluate the scalability of LinkLab 2.0’s architectural design
by simultaneously issuing hundreds of concurrent requests
and see how many resources that used by LinkLab 2.0.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1689

	0

	500

	1000

	1500

	2000

	2500

	3000

	3500

0 300 600

C
P
U
	U
s
a
g
e
	(
c
o
re
·s
)

Concurrent	Requests

MR=1
MR=3
MR=5
MR=7

(a) CPU usage.

	0

	10

	20

	30

	40

	50

	60

	70

	80

0 300 600
A
v
e
ra
g
e
	C
P
U
	(
%
)

Concurrent	Requests

MR=1
MR=3
MR=5
MR=7

(b) Average CPU utilization.

Figure 7: Resource usage of management services for differ-
ent concurrencies. MR is the maximum number of service
replicas (i.e., the number of containers instantiated to serve
the requests of a service) when auto-scaling.

Figure 7(a) illustrates the usage of the CPU. Note that we
use the product of CPU utilization and time as the metric of
CPU usage in order to illustrate the overall usage during a
period of time rather than the instant usage, and we omitted
the illustration of memory usage because it shares almost the
same distribution to the CPU and page limit. We can observe
in Figure 7(a) that the relationship between CPU usage and
the concurrent request is linear across all the settings, which
is scalable because the per-user resource is stable even under
extreme concurrencies. Another observation is that the CPU
usage seems to be decreasing when the maximum number of
replicas (MR) increases. To investigate more on the reason
for the decrease, we go into the average CPU utilization of
each setting, as Figure 7(b) shows. We can see that the CPU is
under-utilized with lower MR, which may be because the tasks
have to wait longer when there is no worker replica to process
them. Nevertheless, the benefit of auto-scaling also has its
upper bound. In our setting, the upper bound is 5 replicas,
which we can see in both Figure 7(a) and 7(b), because the
management services of LinkLab 2.0 are deployed on a cloud
cluster with five nodes (each has a 2.5GHz CPU core).

Effectiveness of resGuard. In this part, we evaluate the
programming reliability of the IoT devices and edge/cloud
devices with our three-tiered management system.

For the IoT devices, there are only 504 (1.9%) failed trials
in 27,216 programming tasks from May 2020 to January
2021. For edge/cloud devices, we conduct an experiment to
evaluate the effectiveness of the resGuard we introduced
in §3.2. The evaluation methodology is that we attempt to
deploy a new experiment on the edge device while another
experiment is still running on that device, and we adjust the
bandwidth occupation of the existing experiment to see how
the deployment time varies under different situations. We
use two jobs as new deployment tasks: (1) the user deploys
an InfluxDB and views the logs, and (2) the user deploys a
Kafka logging service to the edge device. Figure 8 shows the
results. We can see that the deployment time increases rapidly
without resGuard while the deployment times stay still with
resGuard when the existing experiment takes up more than

	0

	50

	100

	150

	200

	0 	1 	2 	3 	4 	5

D
e
p
lo
y
m
e
n
t	
ti
m
e
	(
s
)

BW	of	user	experiments	(MB/s)

Job1	w/	resGd.
Job1	w/o	resGd.
Job2	w/	resGd.
Job2	w/o	resGd.

Figure 8: Provisioning time
of new experiments when an-
other experiment is running
on the edge device with and
without resGuard.

	0

	10

	20

	30

	40

	50

G1=
G2=

61.98

20
10

80
10

20
20 10

20100
40

A
v
g
.	
la
te
n
c
y
	p
e
r	
re
q
u
e
s
t	
(s
)

#	of	requests	for	tenant	G1	and	G2

Compiling
Queuing
Flashing

Figure 9: Average program-
ming latency different concur-
rent request for tenant G1 (80
devices maximum) and G2
(20 devices maximum).

3MB/s bandwidth.
Effectiveness of multi-tenancy. To evaluate the effective-

ness of multi-tenancy, we use 100 devices of LinkLab 2.0 and
separate them into two tenants: G1 and G2. Then we emit
concurrent requests on behalf of the two tenants in different
distributions and record the latency per request of each stage
in LinkLab 2.0. We set the device quota as: G1 has 80 devices
and G2 has 20 devices. Figure 9 shows the results. We can ob-
serve that once the request number exceeds the device quota
of the tenant (e.g., G1=100>80, G2=10<20), its per request
latency increases greatly while the latency of the other tenant
is not affected. Moreover, the increased time is mainly spent
on waiting for allocation, which is a piece of direct evidence
that the tenants would not preempt the resources of others.

5 Representative Use Cases

LinkLab 2.0 facilitates various new usages in addition to
the basic wireless and embedded experiments supported by
existing IoT testbeds [3, 7, 28, 57]. Furthermore, during the
evolution of LinkLab 2.0, we extend it from an academic
testbed to an innovative learning and examining platform for
schools and individuals. We summarize the representative use
cases of LinkLab 2.0 in Table 4 and Table 6 and will elaborate
on both the research usages and outreaches in the rest of this
section, respectively.

5.1 Supported Research Experiments

Potential research domains. We summarize the potential
research domains that LinkLab 2.0 could support in Table 4.
Besides traditional wireless and embedded experiments, re-
searchers could conduct experiments with respect to server-
less computing, edge AI and other research topics easily and
holistically with the integrated architecture, heterogeneous
devices and various deployment methods of LinkLab 2.0. Fur-
thermore, with the involvement of edge and cloud, researchers
could extend the networking protocol experiments to the IoT
domain and obtain data from both the server and client.

While implementing all the research above is beyond the
scope of this paper, we internally developed three represen-

1690 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 4: Research usages of LinkLab 2.0. F1-F4 are LinkLab 2.0’s features: F1: distributed and scalable architecture (§3.1), F2:
serverless/docker-based development (§3.2, S for serverless, D for docker), F3: offloading (§3.2), F4: multi-tenancy (§3.3).

Category LinkLab 2.0’s representative use cases Scale
LinkLab 2.0’s components/features used in researches

Cloud Edge IoT F1 F2 F3 F4

Potential

Research

Domains

Cloud-Edge-IoT integrated application [21, 31, 73, 76] 2+ devices ● ● ●

N/A

S, D ◗

N/A

Wireless and embedded experiments [39, 64, 77] 2+ devices ◗ ● ● D ◗

Offloading algorithms [23±25, 40, 43] 2+ devices ◗ ◗ ● S ◗

FaaS and serverless computing [2, 5, 6, 14, 17, 60, 61] 2+ devices ◗ ◗ ● S ●

Container-based service composition [35, 62, 63, 75] 1+ devices ◗ ◗ ● D ◗

Edge AI [29, 38, 45, 54, 71, 72] 1+ devices ◗ ◗ ● N ◗

IoT networking protocols [15, 37, 59] 3+ devices ◗ ◗ ● D ❍

Industrial Internet of Things [11, 32, 44, 65, 69] 3+ devices ◗ ◗ ● D ◗

Example

Researches

dSpace: Composable abstractions for smart spaces [21] 5~10 devices ● ● ● D ❍

HRank: AI model pruning for edge computing [45] 3+ devices ❍ ● ● S, D ❍

Measurement of different IoT messaging protocol [59] 3+ devices ● ❍ ● D ❍

1
●=all of the cases use the component/feature, ◗=many but not all of the cases use the component/feature, ❍=the component/feature is not used.

2 N/A means feature F1 and F4 is not applicable for individual usages.

Table 5: Collected data in Edge AI experiment with LinkLab.
Device Action Time (s) Size Acc.¶

NVIDIA

Xavier AGX

(w/ accelerator)

Rank generation 590.7
Before:
115MB

⇓
After:
15MB

92.9%
(93.9%)

Model pruning 4,213.5
Inference 15.2

Raspberry Pi

(no accelerator)

Rank generation 180.1
93.9%³

(93.9%)
Model pruning ±²

Inference 385.4³

¶ Values in the parentheses are the results presented by the authors of [45].
² Model pruning on Raspberry Pi (RPI) is too long to finish.
³ Measured using HRank authors’ model since pruning on RPI is too long.

tative experiments that could evaluate the functions and lead
the further usage of LinkLab 2.0. Code and tutorials of these
experiments are publicly available1.

Experiment 1: Cloud-Edge-IoT integrated application.

We use a programming framework for smart spaces named
dSpace [21] as an example to show the potential of Lin-
kLab 2.0 for deploying cloud-edge-IoT integrated research.

Implementation. We directly deploy the open-source
dSpace runtime [20] on the cloud. A home automation frame-
work (Home Assistant in our implementation) is deployed
on the edge to manage the IoT devices locally and provide
device-controlling APIs for the dSpace runtime.

Findings. (1) The original version of dSpace only takes
the COTS IoT devices into consideration. With the help of
LinkLab 2.0, could explore a larger design space by obtaining
more detailed data on network traffics and energy consump-
tion by deploying instrumented codes on the prototyping
devices of LinkLab 2.0. (2) The integrated architecture of
cloud-edge-IoT and the docker-/serverless-based program-
ming approach of LinkLab 2.0 facilitate users to explore the
"sweet spot", and this dSpace case is an ideal example. To
be more specific, users could easily move the Home Assis-
tant module between edge and cloud to evaluate the tradeoff
between deploying the Home Assistant module on the edge
(unreliable edge-cloud connection but shorter local control
latency) and cloud (responsive device-controlling APIs but
higher device control latency).

Experiment 2: Edge AI. Recently, Edge AI is recognized
as one of the emerging technologies by Gartner [22] since

1https://linklab.emnets.cn/tutorials

	0

	200

	400

	600

	800

	1000

	0 	300 	600 	900 	1200 	1500

L
a
te
n
c
y
	(
m
s
)

#	of	IoT	devices

MQTT	QoS=0
MQTT	QoS=1
MQTT	QoS=2
CoAP

(a) End-to-end latency.

	0

	0.002

	0.004

	0.006

	0.008

	0.01

	0 	300 	600 	900 	1200 	1500

M
e
s
s
a
g
e
	l
o
s
s
	r
a
te

#	of	IoT	devices

MQTT	QoS=0
MQTT	QoS=1
MQTT	QoS=2
CoAP

(b) End-to-end message loss rate.

Figure 10: Collected performance of IoT protocols.

it could provide lower latency and better privacy for users.
In order to illustrate how LinkLab 2.0 facilitates Edge AI
experiments, we conducted an example experiment based on
HRank [45] which prunes the AI model to make it feasible to
be executed on the resource-constrained edge devices.

Implementation. For model pruning, HRank first generates
the rank of each layer of the model by performing the training
process with a very small portion of the dataset. Then, HRank
prunes the less important filter by retraining the original model
with the generated rank. With LinkLab 2.0, users could simply
apply for an edge device, deploy the rank generation and
pruning algorithm, and evaluate the accuracy degradation
of inference with the serverless functions or native dockers.
Table 5 shows the comparison of the execution time, model
size and inference accuracy of HRank on heterogeneous edge
devices, namely Xavier AGX (AGX for short) and Raspberry
Pi (RPI for short).

Findings. (1) During our reproduction of HRank, we en-
countered an abnormal result. It is known that AGX’s CPU is
more powerful than RPI’s, and AGX is also featured with a
GPU-like accelerator. Nevertheless, the rank generation time
on AGX is much longer than on RPI (see Table 5), which is
unusual. After our investigation, we finally found the reason
as follows. The HRank code leverages a GPU-based matrix al-
gebra library named MAGMA to accelerate the rank generation,
but it does not have an ARM distribution for AGX. Hence, on
the AGX, HRank must move the intermediate variables during
training from GPU to CPU to calculate rank and move back
to the GPU, which leads to massive performance degradation.
We attribute this interesting finding to LinkLab 2.0’s various
and heterogeneous edge devices that could be used to obtain a

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1691

Table 6: Outreaches of LinkLab 2.0. Similar to Table 4, F1~F4 represent LinkLab’s features and S/D represent serverless/Docker.

Category Outreaches of LinkLab 2.0 Scale
LinkLab 2.0’s components/features used in cases

Cloud Edge IoT F1 F2 F3 F4

Educational

Institutions

E1: IoT curriculum of undergraduates in College A ~40 users/yr. ● ● ● ❍ D ❍ ●

E2: IoT fieldwork courses for students in College B ~90 users/yr. ● ❍ ● ❍ S, D ◗ ❍

E3: Joint construction of an IoT Laboratory with University C ~400 users ● ● ● ● S, D ◗ ●

Commercial

Cooperations

C1: Online IoT device playground of Merchant D ~150 users ❍ ❍ ● ● D ❍ ●

C2: IoT Engineer Certification Exams of Merchant D ~500 users ● ● ● ❍ D ❍ ●

Third-party

Individuals

T1: Geek developers
1000+ users

● ● ● ❍ S, D ◗ ❍

T2: Self-learners of rudimentary IoT developments ● ❍ ● ❍ S, D ❍ ❍

●=all of the cases use the component/feature, ◗=many but not all of the cases use the component/feature, ❍=the component/feature is not used in the case.

more thorough view of the performance of the algorithms. (2)
In addition to the above experiment, LinkLab 2.0 also allows
users to build edge AI applications with the real-world sens-
ing data which could be acquired from our IoT devices and
test the performance brought by unstable wireless networks,
which are currently not supported by other testbeds.

Experiment 3: Measurement of IoT protocols. Different
from the dominance of HTTP for web applications, there is
no unique protocol that could serve all the diverse application
scenarios of IoT. Hence, conducting measurement studies on
IoT protocols under different scenarios is worthwhile, espe-
cially before the actual deployment of IoT applications.

Implementation. As [59] illustrates, we compare the two
most-used IoT protocols, MQTT and CoAP, using Lin-
kLab 2.0. To make the measurement closer to the real-world
application, we leverage the widely-used EMQX message bro-
ker on the cloud for both CoAP and MQTT. With respect to
the clients, we develop the client based on libcoap and paho.
Figure 10 shows the measured end-to-end latency (device-
edge-cloud-device) and message loss rate against the increas-
ing number of devices.

Findings. (1) By virtue of the LinkLab 2.0’s theoretically
unlimited number of virtual IoT devices, users could easily
simulate large-scale, real-world IoT applications to evaluate
the performance of edge cases. (2) With the help of Lin-
kLab 2.0’s bandwidth management, users could measure the
performance of protocols under different network conditions.

5.2 Outreaches
We now report the three types of external users for non-
academical usages as shown in Table 6.

Educational institutions. The most valued and long-acting
outreach of LinkLab 2.0 is supporting the IoT programming
practices of the relevant courses in schools, especially after
the outbreak of the COVID-19 pandemic.

As shown in Table 4, the usage of LinkLab 2.0 covers reg-
ular IoT curriculum (E1) to fieldwork courses (E2). A and B
are both technical colleges that teach students both theoretical
expertise and practical skills, and students of these colleges
mainly choose to serve the local economy for non-academic
jobs after their graduation. To cope with this teaching objec-
tive, LinkLab 2.0 decides to establish a series of experiments
to better train students from various knowledge and socioeco-
nomic backgrounds ready for job markets.

(a) Online virtualization (b) Tabletop model (c) Tabletop schematics

Figure 11: Online-offline integrated smart elderly care educa-
tion toolkit for College B.

We use our cooperation with college B, which is proficient
in serving the local smart elderly care industry, to exemplify
how LinkLab 2.0 works with the institutions and builds cur-
ricula for their students. To initialize the cooperation, we set
up seminars with teachers in college B to introduce the func-
tionalities of LinkLab 2.0 and co-create a basic version of
the experiment series that fulfills the knowledge points of the
courses. Then we support students for one semester’s usage,
collect operational data for each experiment (e.g., average
completion time, retry counts) and discuss again with the
teachers to adjust the difficulty of each experiment or extend
the experiments to cope with the changing demands of the
job market. The above process is performed recursively in
the last three academic years. Up to now, the outcome of our
collaboration with College B includes (1) a set of lab exper-
iments for the technical school students who major in IoT,
and (2) an online/offline integrated education toolkit for smart
elderly care (see Figure 11). The toolkit includes an offline
tabletop model containing necessary sensors and actuators
for students to realize their ideas on smart elderly care, as
well as an online simulated environment to remotely test their
programs in a visualized way with the identical program to
the offline realization.

Furthermore, thanks to the cloud-native architecture, Lin-
kLab 2.0 also jointly built an IoT laboratory (E3) with Uni-
versity C in a short time, which contains a cabinet of devices
with LinkLab 2.0’s containerized management software pre-
installed. This laboratory is used for the experiments, exams
and research of all the IoT-related curricula in University C.

Commercial cooperation. LinkLab 2.0 also draws the at-
tention from commercial institutions. LinkLab 2.0 facilitates
an online IoT device playground named HaaS Lab (C1) for
Merchant D, which releases a new IoT development board
named HaaS (Hardware-as-a-Service). HaaS Lab allows users
to try the features of the HaaS board online before buying it

1692 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

#
	o
f	
re
g
is
te
re
d
	u
s
e
rs

D
e
v
ic
e
	u
s
a
g
e
	h
o
u
rsDevice	usage	hours

#	of	registered	users

0

0.5K

1K

1.5K

2K

'19/01 '19/07 '20/01 '20/07 '21/01 '21/07 '22/01
0

5K

10K

15K

20K

First	wave	of
COVID-19
pandemic

Figure 12: Illustration of the number of registered users and
accumulated working hours of devices of LinkLab 2.0.

Figure 13: Evolution of LinkLab 2.0.

and Merchant D initiates HaaS Lab to promote its sale. More-
over, LinkLab 2.0 also supports an IoT engineer certification
program (C2), which contains a qualifying exam and a lab
exam, by creating a dedicated examination tenant.

Third-party individuals. There are 1,000+ third-party

individuals that use LinkLab 2.0. According to the question-
naire we collected when users are registered, geek develop-
ers and self-learners take a large proportion of individual
users. The geek developers use our testbed to prototype their
new ideas without buying the actual hardware (T1), and the
self-learners study rudimentary IoT developments (T2) with
LinkLab 2.0.

6 Evolution and Lessons Learned

We are excited to see a broad use of LinkLab 2.0 in diverse
scenarios since December 2018. Figure 12 illustrates the num-
ber of registered users and the device usage hours of Lin-
kLab 2.0. We can see from the figure that LinkLab 2.0 has
over 2,100 registered users and they have conducted 17,300
hours of experiments in total. We also noticed that during
the first wave of the COVID-19 pandemic in the first half of
2020, both the new user registration and experiment hours
of LinkLab 2.0 increased rapidly. Before January 2020, the
concept of online education of IoT is not widely recognized

and most of the experiments are occasionally conducted for
research purposes.

We have progressively extended the functionality of Lin-
kLab 2.0 since its first public release. According to the differ-
ent focuses of the LinkLab 2.0’s development, we divide the
four-year operation into three phases, as shown in Figure 13.

Phase I (2018/12~2019/8): IoT device testbed. In this
phase, we focus on the basic building blocks of LinkLab 2.0
as an IoT device testbed, such as device management, on-
line compiling, and the web-based programming interface.
Because of the diversity of the IoT hardware used in IoT
applications, we investigated popular online IoT forums and
academic projects, then selected five far-reaching develop-
ment boards that cover the mainstream IoT ISAs (i.e., ARM,
AVR, MSP and Xtensa).

Phase II (2019/8~2020/5): Integration with cloud and edge.

Based on our experience in IoT application development and
the requests from LinkLab 2.0’s user community, we realized
that the cloud and edge were indispensable for a complete
IoT application. Therefore, we started to bring cloud and
edge devices to LinkLab 2.0 and refactored the management
software to cope with this architectural change. In this phase,
we continue to increase the number of IoT devices. To better
cope with the community’s demand and avoid the waste of
investments, we leverage an expenditure utilization metric
with the device usage per day and the cost of a device to assess
how to allocate the purchase budget of hardware.

Phase III (2020/5~now): Cloud-native and multi-tenancy.

Advancing to the third phase, we extended LinkLab 2.0 with
Kubernetes-based scalability and multi-tenancy. Moreover,
we continued to enrich the list of supported IoT devices in
this phase, such as the nRF52840 and COTS IoT devices.

During this four-year evolution, we have learned a lot
while developing and operating LinkLab 2.0 on a broad scale.
Hence, we report five lessons learned as follows.

Lessons Learned 1⃝: It is not easy to support hetero-

geneous devices for online experimentation. Before Lin-
kLab 2.0, we experienced a smooth development process
using a sensor network testbed with about 100 TelosB motes.
However, it is not a plain sailing when we try to bring more
heterogeneous IoT devices to LinkLab 2.0.

For example, ESP32 boards can not automatically enter
the programming mode because the flashing signal issued
by the uploading software is too short. We finally came up
with the idea of adding a 10µF electrolytic capacitor to the EN
port of ESP32 to lengthen the flashing signal, which works
properly. Unfortunately, we failed to attach some boards that
need to manually switch to the programming mode or restart
the device by pushing an on-device button (e.g., TI CC2650
DK and HiSilicon Hi3861). This manual intervention leads
to the human-in-the-loop problem and does not conform to
the design principle of LinkLab 2.0.

According to our operational experience, we summarize
a checklist on what device could be attached, which is: the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1693

devices (1) do not need a manual restart, (2) owns the inter-
face to get operational logs, and (3) support compilation and
upload via a command-line interface. We believe this check-
list is favorable for the operators of existing or blueprinting
testbeds that use IoT devices, and the researchers that intend
to conduct large-scale experiments automatically.

Lessons Learned 2⃝: It is difficult but important to sup-

port CI/CD (continuous integration/deployment) as well

as online monitoring for providing 24/7 continuous ser-

vices. We planned to adopt the CI/CD process at the beginning
of developing LinkLab 2.0. However, building a proper test-
ing environment for CI/CD is challenging for LinkLab 2.0.
Specifically, a complete testing environment of LinkLab 2.0
includes various devices and cloud servers with the proper
software. It is not easy to build such an environment for each
developer, especially those who worked remotely in a dif-
ferent city during the pandemic. Therefore, CI/CD was not
supported in LinkLab 2.0 during Phase I. However, after expe-
riencing problems like software incompatibilities and devices
offline, we added CI/CD support to LinkLab 2.0 in Phase II.

Specifically, we set up a testing environment with dedicated
cloud servers and a representative subset of devices for CI/CD.
Note that compared with the cloud servers, the IoT/edge de-
vices are much more problematic. Therefore, using a subset
of operating devices instead of using dedicated testing devices
can significantly increase the similarity between the testing
environment and the operating environment. To further avoid
the interference of automatic testing to the operating devices,
a device will only be selected to act as a testing device without
any adjacent tasks.

Even with CI/CD, online monitoring is also important for
quality assurance. Device malfunctioning, wireless connec-
tion instabilities, and bursty usages are inevitable for an IoT
testbed. Hence, LinkLab 2.0 performs online monitoring for
all its software components and devices constantly. In case of
any problems, alerts will be sent to maintainers automatically.

Lessons Learned 3⃝: Cloud-native is not optional, but

necessary. As shown in Figure 12, the number of Lin-
kLab 2.0’s users surges during the COVID-19 pandemic.
Without the containerized architecture, resource management
became painful due to the busty usages (e.g., concurrent ex-
periments of a class of students) and various QoE require-
ments (e.g., time constraints for online exams). Table 4 gives
such examples including classes (E1) and exams (C2). There-
fore, during Phase III, LinkLab 2.0 became fully cloud-native
by containerizing all services and using Kubernetes for on-
demand auto-scaling, service provisioning, etc.

An unexpected benefit of becoming cloud-native is that
it is one of the necessities to support multi-tenancy. After
using LinkLab 2.0 for experiments or teaching, some users
started to ask for dedicated devices instead of shared ones,
for performance and privacy considerations. Therefore, we
extended LinkLab 2.0 to support multi-tenancy (e.g., E3 and
C1 in Table 4 are two typical tenants), which was straightfor-

ward with cloud-native. With multi-tenancy, we could divide
a certain proportion of services and devices into a dedicated
tenant to meet various requirements of the usage scenarios.

Lessons Learned 4⃝: Incorporating open-source projects

can not always accelerate the development process. Lin-
kLab 2.0 builds on top of a large body of open-source projects,
such as the Kubernetes for service management and EMQX
for message dispatch. However, open-source software is not
always ready for out-of-the-box usage, and an active com-
munity is profoundly important. For example, we build our
web-based IDE based on Eclipse Theia [19], but we have to
extend it for interacting with remote IoT devices and many
other features, which means massive modifications. With an
active community like Theia’s, some of the modifications may
be inspired by the existing discussions or solved by submitting
issues. Unluckily, some modifications are unprecedented to
the community and should be conducted by a developer who
knows this open-source project well. Nevertheless, gigantic
projects like Theia are too complicated to know everything
about, especially for student developers.

Lessons Learned 5⃝: Plan for obsolescence. For a long-
term project, the availability of underlying open-source soft-
ware could change unexpectedly. The first example is an IoT
OS named AliOS Things gives up the support of ESP32,
STM32 and other boards after a version iteration due to their
adjustment of commercial strategy. To make things worse,
they also stopped the maintenance of the compilation tool-
chain for the old version, which influences LinkLab 2.0’s
online compilation and flashing service. To this end, we man-
aged to rebuild the obsolete tools with public documentation
and older versions, which costs much labor work. The second
one is the API obsolescence in open-source projects, which
occurs when we update Theia from v0.8 to v1.1. After the
update, most of our WebIDE components work improperly.
Afterward, we check our entire code base for external depen-
dencies, persist the current version to avoid the discontinuance
impact, and be cautious when adopting newer versions.

Hence, according to the above five lessons learned, our
suggestions for future testbed stakeholders are four-fold. (1)
The devices which satisfy the checklist in lessons learned 1
are easier to attach into the testbed. (2) Take fully advantages
of the cloud-native micro-service software architecture to bet-
ter cope with bursty requests and minimize the maintenance
overhead. (3) Try to incorporate the open-source software
which owns an active community and has been tested by time.
(4) Always remember to leave a copy of external resources
such as compiling tools to avoid the obsolescence.

7 Future Directions

In this section, we envision the potential future directions and
our plans for Phase IV of LinkLab 2.0.

Firstly, we plan to attach more types of devices in Lin-
kLab 2.0. Recently, more kinds of heterogeneous devices are
used in edge computing scenario. For example, the FPGA-
based edge devices are widely used [68, 70] because they

1694 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

exhibit excellent performance on accelerating specific tasks
while keeping high energy efficiency. However, FPGA de-
vices have limited support for multi-tenancy, which is a key
feature of LinkLab 2.0. We plan to borrow the partial recon-
figuration approach [33] to provide concurrent programming
support and design a shim [16] for our LDC client to man-
age the FPGAs. Another important group of devices are the
boards featured with the trusted execution environment (TEE)
such as Arm Trustzone [8]. Such devices are used for secure
AI model training [52], sensor data collection [48, 58], etc.
Nevertheless, developing a TEE-based application is differ-
ent from existing development process because it requires
to develop the trusted and untrusted part of the application
separately and deploy them individually. Hence, we plan to
embrace the new programming pattern of TEE-based applica-
tions and attach more devices facilitated with TEE to serve a
broader research community.

Secondly, we also consider improving the granularity and
performance of our monitoring system as the next milestone
of LinkLab 2.0. As the number of supported devices and core
services grow continuously, configuring our monitoring sys-
tem becomes more difficult and requires more human-on-the-
loop efforts. This is mainly because the current metrics-based
and log-based monitoring system is not fine-grained enough to
track the micro-service invocation of each request. Recently,
the micro-service observability based on eBPF (extended
Berkeley Packet Filter) is widely studied both in academia
and industry [10, 12, 46]. It can provide more fine-grained
monitoring by leveraging user-space programmable kernel
extensions. Hence, we plan to incorporate eBPF with our mon-
itoring system to achieve more fine-grained and low-overhead
anomaly detection.

8 Related Work

With the proliferation of IoT technology, applications and
research of IoT grow rapidly. Several testbeds are proposed
to ease IoT research and application developments.

Device-edge/cloud integrated testbeds. FIT IoT Lab
testbed [1], proposed by the FIT consortium, is a large-scale
wireless sensor network testbed deployed across France. Ex-
cept for the full programmability of the sensor devices, FIT
IoT Lab also provides researchers with energy monitoring
and network sniffing infrastructure to obtain the experiment
data from multiple perspectives. Another testbed that con-
sists of experiments for both edge/cloud and IoT devices is
COSMOS [56], deployed in New York. COSMOS focuses on
supporting the experiments of advanced wireless technologies
such as mmWave and dynamic spectrum sharing.

LinkLab 2.0 differs from the above testbeds which also
include the programmability on both IoT and cloud/edge de-
vices in the following: (1) LinkLab 2.0 is the only testbed that
supports the one-site development for IoT, edge and cloud. (2)
For edge/cloud experiments, existing testbeds only provide
bare-metal development, while LinkLab 2.0 supports both
Docker- and serverless-based development. The above two

differences accelerate the experiment setup process for the
users of LinkLab 2.0.

IoT and sensor network testbeds. MoteLab [67] is a wire-
less sensor network testbed maintained by Harvard University.
MoteLab includes 30 MicaZ motes and a web interface. In-
driya2 [7] is a sensor network testbed with 41 TelosBs and
17 CC2650 sensortags that enables users to upload the exe-
cutable, monitor the outputs of the devices and obtain data
from the database. SmartSantander [57] is a city-scale testbed
containing thousands of sensors with IEEE 802.15.4 or RFID
connections that deploy across Santander city. Users could
both work with the sensing data and program the sensors with
executables to for their experiments. GioTTO [3, 4, 66] is a
campus-scale sensor testbed deployed at scale on the UCSD
and CMU campuses across several buildings. With the data
accessing APIs and the machine learning layer of GioTTO,
users could build intelligent inference applications without
writing much code.

Compared with these testbeds, LinkLab 2.0 proposes a
novel multi-tiered architecture for managing and controlling
IoT devices to achieve high deployment extensibility. Further-
more, LinkLab 2.0 leverages the containerized management
services for elastic scaling to enable the concurrent experi-
mentation of multiple users.

9 Concluding Remarks

We introduce LinkLab 2.0, a fully programmable testbed that
facilitates the integrated experiment with IoT devices, edge
devices and the cloud infrastructures. LinkLab 2.0 achieves
multi-tenancy and scalability by leveraging the container-
based architecture and the auto-scaling technique of Kuber-
netes. Moreover, our multi-level monitoring system ensures
the 24/7 availability for both the hardware infrastructure and
software services. Since its public availability in Decem-
ber 2018, LinkLab 2.0 has supported over 17,000 submis-
sions of experiments from 2,100+ users, and the accumu-
lated usage time across all the devices exceeds 17,000 hours.
From the four-year operational experience of LinkLab 2.0
for academia and education, we summarize five key obser-
vations and lessons learned concerning the device support,
CI/CD process and open-source projects adoption, which we
believe is favorable for other projects and testbeds requiring
the integration of cloud, edge and IoT.

Acknowledgement

We would like to express our gratitude to the reviewers and
our shepherd, Anirudh Badam, for their invaluable advice to
improve this work. We also thank all members in the EmNets
group for their contributions to this work. This work is sup-
ported by National Science Foundation of China under grant
No. 62072396 and 62272407, Zhejiang Provincial Natural
Science Foundation for Distinguished Young Scholars un-
der grant No. LR19F020001, and the Fundamental Research
Funds for the Central Universities (No. 226-2022-00087). Yi
Gao is the corresponding author.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1695

References

[1] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan
Harter, Nathalie Mitton, Thomas Noel, Roger Pissard-
Gibollet, Frederic Saint-Marcel, Guillaume Schreiner,
Julien Vandaele, et al. FIT IoT-LAB: A large scale open
experimental iot testbed. In Proc. of IEEE WF-IoT,
2015.

[2] Alexandru Agache, Marc Brooker, Andreea Florescu,
Alexandra Iordache, Anthony Liguori, Rolf Neugebauer,
Phil Piwonka, and Diana-Maria Popa. Firecracker:
Lightweight virtualization for serverless applications.
In Proc. of USENIX NSDI, 2020.

[3] Yuvraj Agarwal and Anind K Dey. Toward building a
safe, secure, and easy-to-use internet of things infras-
tructure. IEEE Computer, 49(4):88±91, 2016.

[4] Yuvraj Agarwal, Rajesh Gupta, Daisuke Komaki, and
Thomas Weng. BuildingDepot: an extensible and dis-
tributed architecture for building data storage, access
and sharing. In Proc. of ACM BuildSys, 2012.

[5] Nabeel Akhtar, Ali Raza, Vatche Ishakian, and Ibrahim
Matta. Cose: Configuring serverless functions using
statistical learning. In Proc. of IEEE INFOCOM, 2020.

[6] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. SAND: Towards high-
performance serverless computing. In Proc. of USENIX

ATC), 2018.

[7] Paramasiven Appavoo, Ebram Kamal William,
Mun Choon Chan, and Mobashir Mohammad. Indriya2:
A heterogeneous wireless sensor network (wsn) testbed.
In Proc. of International Conference on Testbeds and

Research Infrastructures, 2018.

[8] Arm. Trustzone for cortex-a.
https://www.arm.com/technologies/trustzone-for-
cortex-a, 2022.

[9] Mohsen Azimi, Armin Dadras Eslamlou, and Gokhan
Pekcan. Data-driven structural health monitoring and
damage detection through deep learning: State-of-the-
art review. Sensors, 20(10):2778, 2020.

[10] Ido Ben-Yair, Pavel Rogovoy, and Nezer Zaidenberg. AI
& eBPF based performance anomaly detection system.
In Proc. of ACM ICSS, 2019.

[11] Jiangfeng Cheng, He Zhang, Fei Tao, and Chia-Feng
Juang. DT-II: Digital twin enhanced Industrial In-
ternet reference framework towards smart manufactur-
ing. Robotics and Computer-Integrated Manufacturing,
62:101881, 2020.

[12] Cilium. ebpf-based networking, observability, security.
https://cilium.io, 2022.

[13] Andrew Cook, Göksel Mısırlı, and Zhong Fan. Anomaly
detection for iot time-series data: A survey. IEEE Inter-

net of Things Journal, 2019.

[14] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael
Grace, Amir Rahmati, and Adam Bates. Valve: Securing
function workflows on serverless computing platforms.
In Proc. of ACM WWW, 2020.

[15] Jasenka DizdareviÂc and Admela Jukan. Experimen-
tal Benchmarking of HTTP/QUIC Protocol in IoT
Cloud/Edge Continuum. In Proc. of IEEE ICC. IEEE,
2021.

[16] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia,
Binyu Zang, and Haibo Chen. Serverless computing
on heterogeneous computers. In Proceedings of ACM

ASPLOS, 2022.

[17] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guan-
glu Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen.
Catalyzer: Sub-millisecond startup for serverless com-
puting with initialization-less booting. In Proc. of ACM

ASPLOS, 2020.

[18] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design
and operation of CloudLab. In Proc. of the USENIX

ATC, 2019.

[19] Eclipse Foundation. Theia: An open, flexible and ex-
tensible cloud and desktop ide platform. https://theia-
ide.org/, 2022.

[20] Silvery Fu. Github repository of dspace.
https://github.com/digi-project/dspace, 2022.

[21] Silvery Fu and Sylvia Ratnasamy. dSpace: Composable
Abstractions for Smart Spaces. In Proc. of ACM SOSP,
2021.

[22] Gartner. Trends emerge in the gartner hype cycle for
emerging technologies 2018, 2018.

[23] Petko Georgiev, Nicholas D Lane, Kiran K Rachuri,
and Cecilia Mascolo. Leo: Scheduling sensor inference
algorithms across heterogeneous mobile processors and
network resources. In Proc. of ACM MobiCom, 2016.

[24] Gaoyang Guan, Wei Dong, Jiadong Zhang, Yi Gao, Tao
Gu, and Jiajun Bu. Queec: Qoe-aware edge computing
for complex iot event processing under dynamic work-
loads. In Proc. of ACM TURC, 2019.

1696 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[25] Gaoyang Guan, Borui Li, Yi Gao, Yuxuan Zhang, Jiajun
Bu, and Wei Dong. Tinylink 2.0: integrating device,
cloud, and client development for iot applications. In
Proc. of ACM MobiCom, 2020.

[26] Dolvara Gunatilaka and Chenyang Lu. REACT: an
agile control plane for industrial wireless sensor-actuator
networks. In Proc. of IEEE/ACM IoTDI, 2020.

[27] Adam Hall and Umakishore Ramachandran. An execu-
tion model for serverless functions at the edge. In Proc.

of ACM/IEEE IoTDI, 2019.

[28] Mehrdad Hessar, Ali Najafi, Vikram Iyer, and Shyam-
nath Gollakota. TinySDR: Low-Power SDR Platform
for Over-the-Air Programmable IoT Testbeds. In Proc.

of USENIX NSDI, 2020.

[29] Pan Hu, Junha Im, Zain Asgar, and Sachin Katti.
Starfish: resilient image compression for aiot cameras.
In Proc. of ACM SenSys, 2020.

[30] Kang Huang, Wanchun Liu, Yonghui Li, Branka Vucetic,
and Andrey V. Savkin. Optimal downlink-uplink
scheduling of wireless networked control for industrial
iot. IEEE Internet Things Journal, 7(3):1756±1772,
2020.

[31] Yutao Huang, Feng Wang, Fangxin Wang, and
Jiangchuan Liu. Deepar: A hybrid device-edge-cloud
execution framework for mobile deep learning ap-
plications. In Proc. of IEEE INFOCOM Workshops,
2019.

[32] Hongwen Hui, Chengcheng Zhou, Shenggang Xu, and
Fuhong Lin. A novel secure data transmission scheme
in industrial internet of things. China Communications,
17(1):73±88, 2020.

[33] Zsolt István, Gustavo Alonso, and Ankit Singla. Provid-
ing multi-tenant services with FPGAs: Case study on a
key-value store. In Proc. of FPL. IEEE, 2018.

[34] Akshay Ramesh Jadhav, Sai Kiran MPR, and Rajalak-
shmi Pachamuthu. Development of a novel IoT-enabled
power-monitoring architecture with real-time data visu-
alization for use in domestic and industrial scenarios.
IEEE Transactions on Instrumentation and Measure-

ment, 70:1±14, 2020.

[35] Kavita Jaiswal, Srichandan Sobhanayak, Ashok Kumar
Turuk, Sahoo L Bibhudatta, Bhabendu Kumar Mohanta,
and Debasish Jena. An iot-cloud based smart health-
care monitoring system using container based virtual
environment in edge device. In Proc. IEEE ICETIETR,
2018.

[36] Young Geun Kim, Young Seo Lee, and Sung Woo
Chung. Signal strength-aware adaptive offloading with
local image preprocessing for energy efficient mobile de-
vices. IEEE Transactions on Computers, 69(1):99±111,
2019.

[37] Puneet Kumar and Behnam Dezfouli. Implementation
and analysis of QUIC for MQTT. Computer Networks,
150:28±45, 2019.

[38] Seulki Lee and Shahriar Nirjon. Fast and scalable in-
memory deep multitask learning via neural weight vir-
tualization. In Proc. of ACM MobiSys, 2020.

[39] Xinyu Lei, Guan-Hua Tu, Chi-Yu Li, Tian Xie, and
Mi Zhang. SecWIR: securing smart home IoT commu-
nications via wi-fi routers with embedded intelligence.
In Proc. of ACM MobiSys, 2020.

[40] Borui Li and Wei Dong. EdgeProg: Edge-centric Pro-
gramming for IoT Applications. In Proc. of IEEE

ICDCS, 2020.

[41] Borui Li, Wei Dong, and Gao Yi. WiProg: A
WebAssembly-based Approach to Integrated IoT Pro-
gramming. In Proc. of IEEE INFOCOM, 2021.

[42] Nanjun Li, Faliang Chang, and Chunsheng Liu. Spatial-
temporal cascade autoencoder for video anomaly detec-
tion in crowded scenes. IEEE Transactions on Multime-

dia, 2020.

[43] Yongbo Li, Yurong Chen, Tian Lan, and Guru Venkatara-
mani. MobiQoR: Pushing the envelope of mobile edge
computing via quality-of-result optimization. In Proc.

of IEEE ICDCS, 2017.

[44] Fan Liang, Wei Yu, Xing Liu, David Griffith, and Nada
Golmie. Toward edge-based deep learning in industrial
internet of things. IEEE Internet of Things Journal,
7(5):4329±4341, 2020.

[45] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao.
Hrank: Filter pruning using high-rank feature map. In
Proc. of the IEEE/CVF CVPR, 2020.

[46] Chang Liu, Zhengong Cai, Bingshen Wang, Zhimin
Tang, and Jiaxu Liu. A protocol-independent container
network observability analysis system based on ebpf. In
Proc. of IEEE ICPADS. IEEE, 2020.

[47] Peng Liu, Dale Willis, and Suman Banerjee. ParaDrop:
Enabling lightweight multi-tenancy at the network’s ex-
treme edge. In Proc. of ACM/IEEE SEC, 2016.

[48] Tianyuan Liu, Avesta Hojjati, Adam Bates, and Klara
Nahrstedt. Alidrone: Enabling trustworthy proof-of-
alibi for commercial drone compliance. In Proc. of

IEEE ICDCS, 2018.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1697

[49] Ye Liu, Thiemo Voigt, Niklas Wirström, and Joel
Höglund. Ecovibe: On-demand sensing for railway
bridge structural health monitoring. IEEE Internet

Things Journal, 6(1):1068±1078, 2019.

[50] Yuyi Mao, Jun Zhang, and Khaled B Letaief. Dynamic
computation offloading for mobile-edge computing with
energy harvesting devices. IEEE Journal on Selected

Areas in Communications, 34(12):3590±3605, 2016.

[51] Garrett McGrath and Paul R Brenner. Serverless com-
puting: Design, implementation, and performance. In
Proc. of IEEE ICDCS Workshops. IEEE, 2017.

[52] Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas,
Soteris Demetriou, Ilias Leontiadis, Andrea Cavallaro,
and Hamed Haddadi. DarkneTZ: towards model privacy
at the edge using trusted execution environments. In
Proc. of ACM MobiSys, 2020.

[53] NGINX. Using nginx as http load balancer.
https://kubernetes.io/, 2020.

[54] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xue-
hai Qian, Xue Lin, Yanzhi Wang, and Bin Ren. Patdnn:
Achieving real-time dnn execution on mobile devices
with pattern-based weight pruning. In Proc. of ACM

ASPLOS, 2020.

[55] Francisco Lucas F Pereira, Iago Castro Chaves, João
Paulo P Gomes, and Javam C Machado. Using autoen-
coders for anomaly detection in hard disk drives. In
Proc. of IEEE IJCNN, 2020.

[56] Dipankar Raychaudhuri, Ivan Seskar, Gil Zussman,
Thanasis Korakis, Dan Kilper, Tingjun Chen, Jakub
Kolodziejski, Michael Sherman, Zoran Kostic, Xiaox-
iong Gu, et al. Challenge: Cosmos: A city-scale pro-
grammable testbed for experimentation with advanced
wireless. In Proc. of ACM MobiCom, 2020.

[57] Luis Sanchez, Luis Muñoz, Jose Antonio Galache, Pablo
Sotres, Juan R Santana, Veronica Gutierrez, Rajiv Ramd-
hany, Alex Gluhak, Srdjan Krco, Evangelos Theodoridis,
et al. Smartsantander: Iot experimentation over a smart
city testbed. Computer Networks, 61:217±238, 2014.

[58] Carlos Segarra, Ricard Delgado-Gonzalo, and Valerio
Schiavoni. MQT-TZ: Hardening IoT Brokers Using
ARM TrustZone:(Practical Experience Report). In Proc.

of SRDS. IEEE, 2020.

[59] Victor Seoane, Carlos Garcia-Rubio, Florina Almenares,
and Celeste Campo. Performance evaluation of coap and
mqtt with security support for iot environments. Com-

puter Networks, 197:108338, 2021.

[60] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud
provider. In Proc. of USENIX ATC, 2020.

[61] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight
isolation for efficient stateful serverless computing. In
Proc. of USENIX ATC, 2020.

[62] Christopher Stelly and Vassil Roussev. Scarf: A
container-based approach to cloud-scale digital forensic
processing. Digital Investigation, 22:S39±S47, 2017.

[63] Timur Tasci, Jan Melcher, and Alexander Verl. A
container-based architecture for real-time control ap-
plications. In Proc. IEEE ICE/ITMC, 2018.

[64] Rahmadi Trimananda, Janus Varmarken, Athina
Markopoulou, and Brian Demsky. Packet-level signa-
tures for smart home devices. Signature, 10(13):54,
2020.

[65] Junliang Wang, Chuqiao Xu, Jie Zhang, Jingsong Bao,
and Ray Zhong. A collaborative architecture of
the industrial internet platform for manufacturing sys-
tems. Robotics and Computer-Integrated Manufactur-

ing, 61:101854, 2020.

[66] Thomas Weng, Anthony Nwokafor, and Yuvraj Agarwal.
Buildingdepot 2.0: An integrated management system
for building analysis and control. In Proc. of ACM

BuildSys, pages 1±8, 2013.

[67] Geoffrey Werner-Allen, Patrick Swieskowski, and Matt
Welsh. Motelab: A wireless sensor network testbed. In
Proc. of IEEE IPSN, 2005.

[68] Song Wu, Die Hu, Shadi Ibrahim, Hai Jin, Jiang Xiao,
Fei Chen, and Haikun Liu. When fpga-accelerator meets
stream data processing in the edge. In 2019 IEEE 39th

International Conference on Distributed Computing Sys-

tems (ICDCS), pages 1818±1829. IEEE, 2019.

[69] Changqing Xia, Xi Jin, Chi Xu, Yan Wang, and Peng
Zeng. Real-time scheduling under heterogeneous rout-
ing for industrial internet of things. Computers & Elec-

trical Engineering, 86:106740, 2020.

[70] Chenren Xu, Shuang Jiang, Guojie Luo, Guangyu Sun,
Ning An, Gang Huang, and Xuanzhe Liu. The case
for fpga-based edge computing. IEEE Transactions on

Mobile Computing, 2020.

[71] Ran Xu, Chen-lin Zhang, Pengcheng Wang, Jayoung
Lee, Subrata Mitra, Somali Chaterji, Yin Li, and Saurabh
Bagchi. Approxdet: content and contention-aware ap-
proximate object detection for mobiles. In Proc. of ACM

SenSys, 2020.

1698 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[72] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang,
Shengzhong Liu, Huajie Shao, and Tarek Abdelzaher.
Deep compressive offloading: speeding up neural net-
work inference by trading edge computation for network
latency. In Proc. of ACM SenSys, 2020.

[73] Ben Zhang, Xin Jin, Sylvia Ratnasamy, John
Wawrzynek, and Edward A Lee. Awstream: Adaptive
wide-area streaming analytics. In Proc. of ACM

SIGCOMM, 2018.

[74] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jin-
grong Chen, and Ion Stoica. Caerus: Nimble task
scheduling for serverless analytics. In Proc. of USENIX

NSDI, 2021.

[75] Wenzhao Zhang, Hongchang Fan, Yuxuan Zhang,
Yi Gao, and Wei Dong. Enabling rapid edge system
deployment with tinyedge. In Proc. of ACM SIGCOMM

Posters and Demos, 2019.

[76] Wuyang Zhang, Jiachen Chen, Yanyong Zhang, and Di-
pankar Raychaudhuri. Towards efficient edge cloud
augmentation for virtual reality mmogs. In Proc. of

ACM/IEEE SEC, 2017.

[77] Xiao Zhu, Jiachen Sun, Xumiao Zhang, Y Ethan Guo,
Feng Qian, and Z Morley Mao. Mpbond: efficient
network-level collaboration among personal mobile de-
vices. In Proc. of ACM MobiSys, 2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1699

Push-Button Reliability Testing for Cloud-Backed
Applications with Rainmaker

Yinfang Chen, Xudong Sun, Suman Nath†, Ze Yang, Tianyin Xu

University of Illinois at Urbana-Champaign †Microsoft Research

Abstract

Modern applications have been emerging towards a cloud-
based programming model where applications depend on
cloud services for various functionalities. Such “cloud native”
practice greatly simplifies application deployment and real-
izes cloud benefits (e.g., availability). Meanwhile, it imposes
emerging reliability challenges for addressing fault models of
the opaque cloud and less predictable Internet connections.

In this paper, we discuss these reliability challenges. We
develop a taxonomy of bugs that render cloud-backed ap-
plications vulnerable to common transient faults. We show
that (mis)handling transient error(s) of even one REST call
interaction can adversely affect application correctness.

We take a first step to address the challenges by building
a “push-button” reliability testing tool named Rainmaker, as
a basic SDK utility for any cloud-backed application. Rain-
maker helps developers anticipate the myriad of errors under
the cloud-based fault model, without a need to write new poli-
cies, oracles, or test cases. Rainmaker directly works with
existing test suites and is a plug-and-play tool for existing
test environments. Rainmaker injects faults in the interactions
between the application and cloud services. It does so at the
REST layer, and thus is transparent to applications under test.
More importantly, it encodes automatic fault injection policies
to cover the various taxonomized bug patterns, and automatic
oracles that embrace existing in-house software tests. To date,
Rainmaker has detected 73 bugs (55 confirmed and 51 fixed)
in 11 popular cloud-backed applications.

1 Introduction
Modern applications have been emerging towards a cloud-

based programming model where applications depend on
cloud services for various functionalities. Such “cloud na-
tive” practice greatly simplifies application development and
deployment, and realizes cloud benefits (e.g., scalability, avail-
ability, and cost efficiency). Today, all major cloud providers
offer various cloud services to support cloud-based program-
ming, e.g., storage, database, and machine learning [5,10,14].
These cloud services have been increasingly adopted, e.g., the
.NET SDK of Azure Storage services has tens of thousands
of daily downloads [70]. We term the applications that rely
on cloud services cloud-backed applications.

Application

Database

Storage

Application

Database
Service

Storage
Service

REST ca
ll REST call

syscall

lib call
transient

fault
Slow

connection

Server
busy

Internal
server
error

syscall

(a) Traditional applications (b) Cloud-backed applications

Figure 1: Fault domains of (a) traditional applications and (b) cloud-
backed applications (the subjects of this paper).

Cloud-backed applications interact with one or more cloud
services, usually through REST APIs over HTTP/HTTPS. To
ease programming, cloud providers typically offer SDKs on
top of the REST APIs to support applications written in dif-
ferent programming languages. For example, AWS provides
SDKs in 12 languages, such as .NET, Java, Python, and C++.

Despite the attractive benefits, cloud-based programming
imposes emerging reliability challenges introduced by the
fault models of opaque cloud backends and less predictable
connections between the application and cloud services. Fig-
ure 1 compares the fault model of cloud-backed applications
with traditional applications backed by local services. Un-
like traditional applications that have simple, shared fault
domains as the system services with well-specified APIs (e.g.,
POSIX), the fault domains of cloud-backed applications are
more heterogenous, unpredictable, and opaque. It is reported
that cloud-backed applications commonly experience tran-
sient errors and network delays [22, 42, 81, 88].

In this paper, we unravel the reliability challenges faced
by cloud-backed applications. We show that there is a lack
of standards and consistencies of existing cloud services on
what errors are communicated by cloud service APIs, and
how SDKs handle the errors. As a consequence, it is chal-
lenging for application developers to anticipate and correctly
handle myriad faults that could occur during the application’s
interaction with the cloud services, resulting in critical bugs.
For example, many SDKs employ automatic retries to handle
transient errors; however, retries on non-idempotent APIs, if
not done correctly, could result in elusive behavior, such as
silent semantic violations and unhandled exceptions (see §3).

Contributions. We take a first step to address the emerging
reliability challenges by building a “push-button” reliability
testing tool named Rainmaker, as a basic SDK utility for
any cloud-backed application. Rainmaker helps developers

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1701

easily and systematically test their applications’ correctness,
in the face of various errors under the cloud-based fault model.
Rainmaker does not need developers to write policies, oracles,
or test cases. It directly works with existing test suites and is a
plug-and-play tool for existing test environments. Rainmaker
is generic to any type of cloud-backed applications.

Designing Rainmaker is challenging. Despite the rich liter-
ature on fault injection techniques and error-handling analysis
(see §7), we find that no technique can support a push-button
solution for cloud-backed applications. Many existing tools
provide only the basic randomized fault injection policies
and basic crash oracles [6, 37, 47] that can miss critical bugs,
and application-specific techniques are not widely applicable
(e.g., checking data consistency for databases [16,52] and file
systems [20,69]). Techniques that address program faults (ex-
ceptions and errno) and component faults (e.g., node crashes)
are too coarse-grained to capture the nuances of complex
interactions between the application and cloud services.

Rainmaker puts its focus on transient errors faced by cloud-
backed applications. Basically, Rainmaker injects transient
faults (e.g., temporary service unavailability and request time-
outs) by intercepting outbound REST API calls from the ap-
plication to the cloud service at the HTTP layer. HTTP-layer
interception makes it easy to capture fine-grained interactions
(including those triggered by SDK-level retries) and is trans-
parent to applications under test. Hence, Rainmaker requires
no modification of application source code and can be directly
applied to an existing test environment.

A key component of Rainmaker is its automatic fault injec-
tion policies that define 1) what faults to inject and 2) where
(e.g., at which REST calls) to inject faults. The former de-
termines the effectiveness and validity of the injected faults,
while the latter also affects test efficiency. Rainmaker’s fault
injection policies are guided by a bug taxonomy we devel-
oped to describe how error handling could go wrong under the
cloud-based fault model. The taxonomy is simple: it considers
transient error(s) that can occur during one REST API call ini-
tiated by the application (and the corresponding retries by the
SDK); yet, it captures common bug patterns and shows that
error (mis)handling of even one REST call can have major
impacts on application correctness. Rainmaker uses a small
set of injections to cover all taxonomized bug patterns.

Rainmaker also enables efficient testing to achieve high
testing coverage with a small number of test runs. Rainmaker
employs automatic dynamic instrumentation to record the
application’s calling context of each REST API call and to
inject call-site information in the HTTP header of outgoing
requests; Rainmaker’s HTTP-layer fault injection uses the in-
formation to selectively inject faults based on a desired code
coverage metric. The calling context also enables Rainmaker
to build diagnosis support to help developers debug applica-
tion behavior under fault injection (when a bug is detected).

Finally, Rainmaker includes automatic oracles to flag a
fault-injection test outcome as a likely bug, with low false pos-

itives. The oracles utilize exceptions and assertions of existing
software tests. For exceptions, Rainmaker does not naïvely
report any exception that fails a test as a bug, but checks
whether the exception is consistent with the injected fault—
an inconsistent exception indicates that the fault was handled
intentionally, but inappropriately (at least insufficiently).

Key results. We have implemented Rainmaker for .NET
applications. Rainmaker supports a number of cloud ser-
vices: Azure Storage (including Blob Storage [7], Queue Stor-
age [11], and Table Storage [12]), Azure CosmosDB [9], AWS
Simple Storage (S3) [1], and AWS Simple Queue (SQS) [4].
Supporting a new cloud service only takes the configuration of
the SDK API namespace and the request-ID tag. Rainmaker
is fully transparent to the application under test. We evaluate
Rainmaker with 11 popular .NET applications that use the
supported cloud services. Rainmaker found 73 new bugs in
total, among which 55 have been confirmed, and 51 have been
fixed (after we reported them). Many of the bugs have severe
consequences, such as unexpected application termination,
data loss/inaccessibility, and resource leaks. Rainmaker’s test
oracles are mostly accurate, with a very low false-positive
rate (1.96%), making its test results trustworthy.

Summary. The paper makes the following contributions:

• We unravel emerging reliability challenges of cloud-based
programming, faced by cloud-backed applications, under
the existing design of cloud service APIs and SDKs;

• We present a taxonomy to systematically understand error-
handling bugs that render cloud-backed applications vulner-
able to transient errors under the cloud-based fault model;

• We develop Rainmaker, the first push-button reliability
testing technique for cloud-backed applications, which can
effectively and efficiently detect bugs of myriad patterns;

• We have made Rainmaker publicly available at https://
github.com/xlab-uiuc/rainmaker, with instructions to
reproduce all discovered bugs.

2 Background and Motivation
We discuss the emerging reliability challenges faced by

cloud-backed applications as the background and motivation
of our work. Ideally, cloud-based programming should not
be different from traditional application programming using
native libraries. Unfortunately, as we will show in this section,
this is rarely the case in practice—handling errors under the
cloud-based fault model is challenging and error-prone.

2.1 Errors in Cloud-backed Applications
There are three key components related to how cloud ser-

vice related errors are exposed to the applications.

Error responses from cloud services. A request from the
application can fail due to a client-side error (e.g., local net-
work timeout) or a service-side error (e.g., temporary service

1702 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/xlab-uiuc/rainmaker
https://github.com/xlab-uiuc/rainmaker

SDK Retry (HTTP Status Codes) (API) Notes

Azure Storage (Blob/Queue/Table) 408, 429, 500, 502, 503, 504 Any Only 429 and 503 are retried before v12.3.0
Azure CosmosDB (HTTP mode) 403, 404, 408, 503 Read Only enabled for multi-region (no retry for single-region)
AWS S3 / AWS SQS 500, 502, 503, 504 Any Inconsistencies in different lang. SDKs (e.g., Java versus .NET)

Table 1: The retry policies of different cloud services. Besides the HTTP status codes, SDKs could also retry on error messages, e.g., the Azure
Storage SDK also retries on messages including InternalError, OperationTimedOut, and ServerBusy.

unavailability). In the latter case, the service returns an error
response indicating the error type. Most cloud services are
RESTful, and their APIs reuse HTTP response status codes
defined by the HTTP/1.1 standard. HTTP status codes 4XX
and 5XX indicate “client errors” and “server errors” respec-
tively. In addition, a cloud service can include service-specific
error codes in response payload to indicate fine-grained er-
ror types. For example, Azure Blob Storage can return 44
different error codes (e.g., BlobImmutableDueToPolicy and
BlobAlreadyExists) with the same HTTP status code 409
(Conflict) [8]. The practice is also used by other cloud ser-
vices, e.g., CosmosDB [15], S3 [3], and SQS [2]. Applications
use these codes to understand the nature of the errors and take
error-handling actions accordingly.
Retry on transient errors. When a request fails due to a
transient client- or service-side error (e.g., network timeout
and server overload), an application may retry the request,
hoping that it would eventually succeed. Cloud-backed appli-
cations mostly use the SDKs provided by the cloud service
providers to interact with the cloud services. Besides offering
easy-to-use, expressive APIs, SDKs also include error han-
dling logic with the goal of providing a native programming
experience. For example, when a REST API call to a cloud
service fails due to a transient error, the SDK tries to mask
the error from the application by retrying the request [67].
Propagating errors up to the application. If the retry efforts
fail or if the error is of a permanent type, the SDK propagates
the error up to the application in a way that is consistent with
a native programming experience. For example, .NET and
Java SDKs propagate errors to applications as exceptions.

2.2 Emerging Reliability Challenges
2.2.1 A lack of standards and consistencies

Our analysis of multiple cloud service APIs and SDKs from
Azure and AWS reveals a lack of standards and behavior
consistencies in all three components above, across cloud
services and SDKs from the same/different cloud providers.
Unanticipated errors. We observe many undocumented and
inconsistent error codes returned by cloud services. For exam-
ple, as of September 2022, common HTTP error codes such
as 408 (RequestTimeout) and 429 (TooManyRequests) that can
be returned by Azure Table Storage [78] are absent from its
official documentation [66]. We also observe that the same
error can be represented by different error codes across ser-
vices. For example, Azure Queue Storage represents the error

QueueNotFound by the code 404, while AWS SQS uses the
code 400 for the same error. We even reported and fixed
multiple typos in error messages in Azure Storage SDKs.

Second, whether an error will be masked by the SDK (with
retries) and whether an error will be propagated to an applica-
tion vary widely across different services, different versions of
the same service, and different language support of the same
version. Table 1 shows that SDKs of different cloud services
implement different retry policies. Azure Storage .NET SDKs
before v12.3.0 only retry on error codes 429 and 503; the later
versions add retry for 408, 500, 502, and 504 [28]. The .NET
SDK for AWS retries on LimitExceededException, but the
Java SDK does not. Finally, whether an error is propagated
to the application varies even across SDKs from the same
provider. The DeleteMessage API of Azure Queue propagates
an exception to the application when a 404 is returned by
the service. On the other hand, the DeleteEntityAsync API of
Azure Table silently ignores 404 errors and returns success.

The inconsistencies make it hard for developers to antici-
pate whether a cloud service will return a specific error and
whether the SDK will propagate it to the application.

Note that, unlike libraries and system services for tradi-
tional applications, a cloud service neither is a part of the
application nor has standard APIs such as POSIX.

Retry and non-idempotent APIs. While retry is a common
practice to mask transient errors, the retry may introduce
subtle errors. In particular, a retry on a non-idempotent cloud
service API can cause elusive effects, such as remote data
corruption, which can remain latent or lead to additional errors
(more details in §3). However, we observe that each service
implements different retry logic, with no standard practice or
discipline. As a result, the semantic of SDK APIs, under error
conditions, is often opaque and inconsistent.

2.2.2 Rarity and large space of faults
Developers often miss error-handling bugs with small-

scale, short-duration functional tests because cloud-based
faults, which could expose such bugs, are rare. Fault-injection
tools allow developers to simulate error scenarios during
testing. However, although it is not hard to implement fault-
injection mechanisms [35, 44], the key challenges lie in spec-
ifying policies about what faults to inject, where and when
to inject them, and oracles about what post-fault conditions
indicate a likely bug for developers to inspect. The space of
possible fault policies and oracles is large, if not infinite.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1703

2.3 Our Goal
Our goal is to address the emerging reliability challenges

faced by cloud-backed applications by (1) systematically un-
derstanding the bug patterns, and (2) building practical tooling
to systematically test whether a cloud-backed application can
correctly handle the myriad errors that may happen during
interactions with the cloud services it depends on. We em-
phasize a “push-button” technique that can be directly used
by application developers in an existing testing environment,
without the need of writing additional code or configurations.

3 Bug Taxonomy
To systematically understand the patterns of error handling

bugs of cloud-backed applications and to guide the design of
the Rainmaker tool, we develop a bug taxonomy to describe
how error handling could go wrong under the cloud-based
fault model. Figure 2 depicts the bug taxonomy as a tree.
An important trait is that the taxonomy considers transient
error(s) that occurred during one REST API call interaction
initiated by the application. It does not reason about multiple
independent REST API calls.

3.1 No Error Handling
In this pattern, the application simply does not handle cer-

tain transient errors. This can happen due to the inconsisten-
cies mentioned in §2.2.1. An application may not anticipate
a cloud service to return a specific error or may mistakenly
expect the SDK to mask a known transient error. For exam-
ple, an application using Azure Storage’s .NET SDKs before
v12.3.0, which do not retry on certain transient error codes,
may mistakenly assume that all transient errors are masked
by the SDK and hence not handle them. As a result, some
transient error from the cloud service can lead to application
crashes or other undesirable behavior.

3.2 Throwing Unrelated Exceptions
In this pattern, (mis)handling of an error results in a new

unhandled error that is usually unrelated to the root-cause
fault. A common example of this pattern involves request
retries. When a request to a cloud service fails with a timeout,
the SDK or the application cannot determine whether the
timeout happened on the request path or on the response
path. SDKs commonly treat timeout as a transient failure
and retry. However, if the timeout happened on the response
path (in which case, the original request was executed by
the service successfully), the retry can fail with a new error
(different from the original error) since the original request
has invalidated the precondition of the retry. This new error,
if not handled properly, can lead to undesirable effects.

Figure 3 shows an example of such bugs [32] detected by
Rainmaker in Microsoft BotBuilder [17]. BotBuilder stores
logs in the Azure Blob Storage service. Each log operation

Transient Error
Handling Bugs

No Error
Handling (§3.1) Buggy Error Handling

Throwing Unrelated
Exceptions (§3.2) State Divergence (§3.4)

Silent Semantic
Violations (§3.3)

Figure 2: Taxonomy of error handling bugs in cloud-backed ap-
plications. The taxonomy addresses the handling logic of transient
error(s) that occurred during the interaction of one REST API call.

try {
while (transcript.Count > 0) {

var activity = transcript.Dequeue();
await logger.LogActivityAsync(activity);

}
} catch (Exception ex) {

...
}

/* libraries/Microsoft.Bot.Builder/TranscriptLoggerMiddleware.cs */

The BlobAlreadyExists (409)
exception breaks the while loop;
all the subsequent logs get lost.

Azure Blob
Storage

timeout

409

Blob
created

Blob
Already
Exists

Figure 3: A bug of throwing unrelated exceptions in Microsoft
BotBuilder detected by Rainmaker (confirmed and fixed). The Azure
Storage SDK automatically retries on timeouts, which returns a 409
error because its precondition is invalidated by the first request.

calls an SDK API to create a new blob. If the API call success-
fully creates the blob, but the response times out, the Azure
Storage SDK automatically retries the request (§2). However,
since the blob has already been created by the first request,
the retry operation fails with a 409 (BlobAlreadyExists) error.
The SDK propagates this permanent error to the application.
BotBuilder does not anticipate or handle the error. This breaks
the execution of a loop that is supposed to upload a list of logs
to the Blob Storage service, resulting in a loss of subsequent
log data. Note that the exception seen by the application is
unrelated to the root cause (a transient timeout).

In the next two categories, the buggy error handling does
not immediately throw an exception. Rather, it causes unex-
pected (local or remote) state changes that may cause visible
symptoms (e.g., exceptions) during subsequent execution.

3.3 Silent Semantic Violations

In this pattern, mishandling of a transient error causes se-
mantic violations of the REST API specification, without
observable symptoms. The REST call returns successfully,
and hence the application executes in a happy path. However,
the silent semantic violation may eventually result in data
loss/corruption, or other incorrect application behavior. One
common example of this pattern is manifested by a similar
root cause as the one in §3.2: response timeout. Differently,

1704 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

/* src/.../Storage/AzureQueueDataManager.cs */

Azure Queue
Storage

timeout

/// Get a new message from the queue
public async Task<QueueMessage> GetQueueMessage() {

...
var messages = await queueClient.

ReceiveMessagesAsync(maxMessages: 1,
messageVisibilityTimeout);

return messages.Value.FirstOrDefault();
...

}

timeout

200
The queue is de-queued
multiple times and null
is returned.

Figure 4: A silent semantic violation bug in Microsoft Orleans
detected by Rainmaker. Azure Storage SDK automatically retries
multiple times on timeouts, and mistakenly empties the queue.

in this pattern, the retry operation succeeds, and the SDK
successfully hides the transient error from the application.

Figure 4 shows a silent semantic violation [71] detected
by Rainmaker in Microsoft Orleans [13]. Orleans uses Azure
Queue Storage service to manage messages. It implements a
method GetQueueMessage() to dequeue one message from the
queue. As shown in Figure 4, the method calls the SDK API
ReceiveMessagesAsync to dequeue a message from the remote
service. The corresponding HTTP request is non-idempotent
and should not be naïvely retried [76], because each retry
changes the contents of the queue. However, the SDK API au-
tomatically retries the request on a transient fault. If a request
successfully dequeues a message but its response times out,
the SDK retries the request multiple times, each of which, if
successful, can dequeue a message. If the last retry/response
succeeds, the API successfully returns the message. The ap-
plication does not handle this corner case, even though the
API documentation mentions it. Such behavior violates the
semantic of the GetQueueMessage() API which is documented
to only “get a message from the queue” [62]. In fact, repeated
retries can dequeue all the messages from the queue, in which
case the SDK API returns null; Orleans does not expect such
behavior and would dereference the null pointer and crash.
Note that ReceiveMessagesAsync is not the only method that
has such behavior. If we replace it with SendMessageAsync, the
above example can enqueue more messages than expected,
which may lead to silent resource leaks on the cloud service.
Such silent semantic violations are hard for application devel-
opers to fix or even detect, as the retries are done by the SDK
and are agnostic to the application.

3.4 State Divergence
In this pattern, a mishandled transient error leads to diver-

gence of the local state (in the application) and the remote
state (in the cloud service). There is no API semantic violation
as in §3.3, but the state divergence could lead to undesired
application behavior, e.g., exceptions and resource leaks.

State divergence can happen when an application optimisti-
cally updates a local state that is correlated with the success
of a cloud API call made after the update. The bug manifests
if a transient fault fails the request (so no change on the cloud
side), but the application does not restore the optimistic up-

try{ ...
var container = blobClient
.GetContainerReference(containerName);

if (!_checkedContainers.Contains(containerName))
{
_checkedContainers.Add(containerName);
container.CreateIfNotExistsAsync().Wait();

}
...

} catch (Exception ex) {
Trace.traceError(...);

}

/* ...\libraries\...\AzureBlobTranscriptStore.cs*/

...

Azure Blob
Storage

Update local state (succeed)
Update remote state (failed)

The local container becomes a dangling reference; de-referencing it leads to errors.

503

503

Figure 5: A local-state divergence bug in Microsoft BotBuilder
detected by Rainmaker (confirmed and fixed). Azure Storage SDK
automatically retries multiple times (for 503).

date. The updated state makes the application behave as if the
REST API call succeeded, while it actually failed.

Figure 5 shows a state-divergence bug [30] from Mi-
crosoft BotBuilder [17] detected by Rainmaker. BotBuilder
uses Azure Blob Storage to store blob data which is or-
ganized into containers. To create a container, BotBuilder
calls REST API CreateBlobContainer. When transient errors
(e.g., 503 ServerBusy errors) occur on the request path of a
CreateBlobContainer call, BotBuilder swallows the excep-
tion in the catch block. However, BotBuilder adds the con-
tainer into its local state of created containers before calling
CreateBlobContainer. As a result, the local state is corrupted
with a dangling container pointer, which leads to crashes when
BotBuilder dereferences the pointer (e.g., with a list opera-
tion). The bug has the same essence as file system bugs that
violate update dependencies [39]. On the other hand, transient
errors are likely more frequent than file system crashes.

State divergence can also happen when a request changes
the remote state, but the application is unaware of the change.
Such bugs can manifest when a transient fault breaks the
return path of a REST call that has changed the remote state.
If not handled correctly, the application would assume the call
never succeeded, leading to inconsistencies of states.

4 Rainmaker

4.1 Overview
Rainmaker is a “push-button” reliability testing tool for

applications that use RESTful cloud services, such as Azure
Storage, Azure CosmosDB, and AWS S3. It checks whether
the application under test can correctly tolerate or handle com-
mon transient errors under the cloud-based fault model (e.g.,
temporary service unavailability and request timeouts), and de-
tects bugs like the ones described in §3. Its “push-button” na-
ture comes from the automatic fault-injection policies (§4.2)
and oracles (§4.3), which are generic and applicable to any
application that uses the supported cloud services.

A developer can directly apply Rainmaker as a “plugin-
and-play” tool to their existing test suites in their existing
testing environments, without writing additional code or con-
figurations. The plugin-and-play nature is achieved by its fault

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1705

injection mechanism—Rainmaker injects errors by intercept-
ing outbound REST API calls made by the application to
the cloud service at the HTTP layer. It includes a standalone
HTTP proxy component to do the interception. For example,
to inject a 5XX error on the request path of a REST call, the
proxy blocks the request from reaching the service and re-
sponds with an HTTP response containing the 5XX error code.
To inject a timeout on the response path, the proxy lets the
request go to the service; however, on receiving the response,
it introduces a delay to force a timeout at the application.

Compared with injecting faults directly into application
code (e.g., in the forms of exceptions), intercepting at the
HTTP layer brings a number of technical benefits: 1) it allows
intercepting fine-grained REST calls made by the application,
including those triggered by SDK retries. As we discussed in
§3, injecting errors into retry requests and responses is cru-
cial for exposing certain categories of bugs; 2) error handling
in cloud-backed applications depends on not only exception
types but also HTTP status codes; 3) it makes the fault in-
jection mechanism transparent to the application under test
and work irrespective of the application language and archi-
tecture; 4) HTTP requests/responses are highly interpretable,
and errors can be uniformly injected by manipulating HTTP
responses, with no need to understand external dependencies
(e.g., complex exception objects with multiple fields).

Usage. Rainmaker takes as input an existing testing suite that
uses RESTful cloud services such as Azure Storage services
or their emulators [68], and a desired coverage metric (§4.2.2).
Rainmaker first installs a local HTTP proxy that can intercept
and manipulate HTTP traffic to and from cloud services (or
their emulators). It then selects and executes a minimal set
of tests required to achieve the target coverage. As tests are
executed, Rainmaker injects faults into their REST API calls
according to automatic fault-injection policies. After each test
is executed, Rainmaker’s oracles analyze the test outcomes
and raise alerts as potential bugs are detected.

We envision Rainmaker to be a standard, widely-used test-
ing utility as a part of cloud service SDKs.

4.2 Fault Injection Policy
A fault injection policy specifies what faults to inject and

where (at which REST API calls) to inject them. Rainmaker’s
fault injection policies are designed with two main objectives.

First, the policies should be effective. This requires them to
1) inject only valid faults and 2) cover the myriad bug patterns
of the taxonomy (§3). One common policy is randomized fault
injection (e.g., selecting a random fault at a random REST
call). However, randomized injection can hardly be effective.
As shown in §3, to expose certain bug patterns needs multiple
specific faults injected along the interaction of a REST API
call—randomized injection is unlikely to hit the specifics.
In fact, randomized injection cannot even guarantee valid
faults. For example, returning a 503 (ServiceUnavailable)

timeout

Application Cloud Service

200 or 4XX

timeout

timeout

...

...
timeout

...

5XX

5XX

5XX

5XX

P : Timeout the first response P : Timeout all responses

P : Return 5XX to
all requests

P : Timeout the first response;
return 5XX to subsequent requests

Application Cloud Service

Application Cloud Service Application Cloud Service

1 2

3 4

Figure 6: Fault injection policies of Rainmaker that cover all the
bug patterns in our taxonomy (see Table 2). Arrows represent HTTP
requests and responses for a single REST call (and retries). 5XX
represents an error code for transient service-side failure. For a REST
call with no retry, the four policies are reduced to two.

error after a write request is successfully executed is invalid,
because this is inconsistent with the cloud service contract.1

Second, the policies should enable efficient testing—
achieving high testing coverage with a small number of test
runs. Exhaustively injecting all possible faults at every REST
call could be prohibitively expensive, because one test could
issue thousands of REST API calls (see §5.3), and many differ-
ent faults are possible for each call. This is further aggravated
by the fact that each fault injection may require a separate
test run because injecting the first fault might disrupt a test’s
subsequent execution.

We next discuss how Rainmaker achieves the two objec-
tives in §4.2.1 and §4.2.2, respectively. Note that Rainmaker
can be easily extended to support new policies.

4.2.1 What faults to inject (for a REST API call)?
Rainmaker injects transient faults that occur during the in-

teraction of one REST API call, following the taxonomy in §3.
However, the fault space is large even for a single REST call.
This is because each of the large number of possible faults
may occur on the request or the response path of the original
request or subsequent retires issued by the SDK. Interestingly,
we find that a small set of four policies (Figure 6) are suf-
ficient to cover the taxonomized bug patterns, as shown in
Table 2. For REST calls that do not retry, the four policies are

1In practice, a cloud service backend can have bugs to return such an in-
consistent response [23]. However, we do not consider buggy cloud services.

1706 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Bug Pattern Fault Injection Policies

No error handling P1, P2, P3, P4
Throwing unrelated exception P1
Silent semantic violation P1, P2
State divergence P1, P2, P3, P4

Table 2: The mapping from the bug patterns and the error injection
policies that can potentially expose each bug pattern.

reduced to two: 1) return a transient error code to the request,
and 2) timeout the response. The four policies are:

• P1 (Timeout the first response). This policy forces a retry
that can expose bugs related to invalidated preconditions.
Since the timeout is at the response path after the request
takes effect at the cloud service, the retry could trigger
bugs of throwing unrelated exceptions, silent semantic vi-
olation, and/or state divergence, depending on the REST
API semantics and the handling logic.

• P2 (Timeout all responses). This policy presents an entirely
timed-out REST call to the application, while the REST call
has taken effects (potentially multiple times) at the cloud
service. It could trigger bugs of silent semantic violation
and state divergence.

• P3 (Return transient error codes to all requests). Under this
policy, the REST call does not reach the cloud service as
all requests are returned with transient service-side errors.
The policy can potentially expose bugs of state divergence,
if the local state is optimistically changed before the REST
call, but not restored after the call fails.

• P4 (Timeout the first response and return transient error
codes to all subsequent requests). This policy presents a
failed REST call (with a transient error code in response) to
the application, which on the contrary has been successfully
executed exactly once at the cloud service. It could trigger
bugs of state divergence.

Rainmaker by default injects 503 (ServiceUnavailable), as
the transient fault(s) for request failures. For the responses,
Rainmaker injects a timeout fault. These two types of transient
faults are common and safe to inject and thus are valid faults
on the request and response path, respectively. In comparison,
error codes like 500 (InternalServerError) have undefined
semantics and service-side behavior. The error code can be
further customized for specific cloud services and their SDKs
based on their definitions of transient faults and retry policies.

Rainmaker identifies all the retried requests and their re-
sponses of each REST API call by checking the unique re-
quest ID in the HTTP header (e.g., x-ms-client-request-id
for Azure Storage services). The request ID is provided by the
SDK to identify the specific REST call request and is shared
by all the subsequent retried requests and responses.

One design choice we make is to avoid encoding specifica-
tions of REST/SDK APIs in policies (e.g., idempotency of a

Coverage Metric

C1 Cover all tests; for each test, select the first REST call.
C2 Cover all unique call sites of the application code; if a call

site is exercised by multiple tests, select the cheapest test.
C3 Cover all tests and all unique call sites in a pairwise manner.
C4 Cover all unique call sites of every test; if multiple REST calls

exercises the same call site, select the first call to inject.

Table 3: The coverage metrics supported by Rainmaker. We use C4
as the default metric. Note that injecting faults in every REST call
in every test is prohibitive (see §5.3).

REST API and retry behavior of an SDK API). Leveraging
API information can help optimize test efficiency. However,
it is known that specifications are expensive to maintain and
are often incomplete and outdated in practice. Rainmaker
minimizes its assumption on the REST/SDK APIs.

4.2.2 Which REST API calls to inject faults?
A test suite may generate an excessive number of REST

calls; injecting faults into all of them can be prohibitively
expensive, even with the above optimized policies (it could
take several machine-months for one application, §5.3). In
fact, many REST calls can be redundant (e.g., invoked by the
same application code location) for the purpose of covering
new error-handling code. Rainmaker therefore selectively in-
jects faults into a small number of REST calls, which achieves
certain coverage metrics and optimizes testing resources.
Coverage metrics. Rainmaker supports four different cover-
age metrics (Table 3). While C1 measures coverage in terms
of the REST calls, C2–C4 involves call sites of cloud service
APIs. We use the term call site to denote a location in the ap-
plication code that invokes an SDK API that eventually makes
one or more REST calls (typically, one SDK API invokes one
REST API [26, 27]). Call sites reside in the application code,
while REST calls are constructed by the SDK. Hence, C2–C4
are more intuitive to developers than C1.

However, computing C2–C4 is challenging for Rainmaker
and for any other tools that inject faults via a separate HTTP
proxy [37, 47]. This is because the proxy process does not
have visibility of call sites within the test/application process.
Making call sites available to the HTTP proxy. Rainmaker
addresses this challenge with two techniques using automated
instrumentation. First, Rainmaker enables a test to communi-
cate with the HTTP proxy through headers of outgoing HTTP
messages. Given test binaries, Rainmaker automatically in-
struments their outbound HTTP calls. An instrumented call
can put its call site information in the header of an outbound
HTTP request, so the HTTP proxy can retrieve the informa-
tion. This can be done automatically since outbound HTTP
calls are usually made with a small number of standard core
APIs. For example, one needs to instrument only four HTTP
client API families (e.g., HttpClient.SendAsync) provided by
.NET core libraries to intercept outgoing HTTP calls from all
Azure SDKs (see §4.5).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1707

Second, an outbound HTTP call needs to automatically find
its call site to put in the HTTP header. If the application were
single-threaded, the instrumented HTTP call could identify
the call site by taking the caller of the bottom-most SDK
function in the call stack. But, modern applications are multi-
threaded, and an HTTP call usually happens asynchronously
in a child thread created as a result of executing the call site.
In this case, a call stack taken at an outbound HTTP call does
not capture the call site that resides in a different thread.

To solve this problem, Rainmaker utilizes inheritable
thread-local storage (ITLS) supported by modern languages
such as .NET [64] and Java [49]. Any data stored in the cur-
rent thread’s ITLS automatically propagates to all its child
threads. Rainmaker automatically instruments all call sites
(identified by SDK namespace) so that at runtime, they store
their location information in the current thread’s ITLS. When
a call site eventually invokes an instrumented, outgoing HTTP
call, in the same thread or in a child thread, the call retrieves
the call site information from its ITLS and puts it in the HTTP
header for the proxy process to examine.

Test planning. With the call site information available at the
HTTP proxy, Rainmaker can inject faults according to the
specified coverage metric in Table 3. Each coverage metric is
a tradeoff between completeness and cost.

To plan the fault injection runs, Rainmaker first performs
a reference run of the test suite with no fault injection. Dur-
ing the reference run, Rainmaker measures the time taken by
each test and observes, by using its HTTP proxy, the REST
calls made by different tests. It then selects the tests that issue
REST calls as candidate tests for fault injection. Rainmaker
then performs an offline analysis to generate test plans con-
taining the minimum number of fault-injection target REST
calls (and their tests) in order to achieve target coverages. It
also outputs an approximate running time of each plan using
the time of the tests in the reference run and, if any, the de-
lays to be injected to create timeout errors. The time helps a
developer choose the right coverage metric by understanding
the tradeoff between completeness and cost.

Given the time taken by each test and the set of REST calls
each test makes in the reference run, it is straightforward to
implement the policies C1, C2, and C4. For C3, Rainmaker
models it as a linear programming (LP) problem of generating
a set of pairs that cover all N tests and M unique call sites (with
each test covering a subset of call sites), while minimizing the
total test running time (each test has different running time).
It then uses an LP solver to generate a plan.

Note that test planning, including the reference run and LP
solving, is done offline as a one-time effort. The results can
potentially be reused across test runs in CI/CD environments.

4.3 Test Oracles
A test oracle checks whether the outcome of a fault injec-

tion test run indicates a bug. A trustworthy oracle catches

/// test code
public async Task
Should_be_able_to_send_if_container_was_not_found()
{ ...
await plugin.BeforeMessageSend(message); ...

} /* ServiceBus.AttachmentPlugin.Tests/When_sending_message_using_connection_string.cs */

/// application code
public override async Task<Message>
BeforeMessageSend(Message message)
{ ...
try {
await container.CreateIfNotExistsAsync();

}
catch (StorageException ex) {
// intentionally swallow and continue

}
...
await blob.UploadFromByteArrayAsync(...);
...

} /* ServiceBus.AttachmentPlugin/AzureStorageAttachment.cs */

503

Azure.Storage.StorageException:
Service unavailable (503)

Azure.Storage.StorageException:
Container does not exist (404)

Figure 7: An exception captured by Rainmaker to detect a state-
divergence bug in ServiceBus AttachmentPlugin. The exception that
fails the test (404) is inconsistent with the injected fault (503).

different types of bugs with no false alarms so that developers
can focus their investigation only on true bugs.

With the goal of being generic and widely applicable
to any cloud-backed application, Rainmaker does not use
any application-specific oracle. Instead, it devises a set of
application-agnostic oracles on top of the existing test oracles
encoded in developers’ test code. These oracles are effective
in identifying various types of bugs, with low false positives.

4.3.1 Exception Oracle
This oracle flags a fault-injection test outcome as a potential

bug if 1) the test fails with an exception, 2) the exception is
created in application code rather than in test code, and 3)
the exception is inconsistent with the injected fault. We now
explain the rationale behind the three conditions.

When a test fails with an exception as a result of an injected
fault, it may not always mean a bug. For example, in the appli-
cations we use for our evaluation, many tests directly interact
with a cloud service (e.g., to setup the test environment) but
without proper error handling. If Rainmaker injects faults into
such REST calls, the test will fail with an exception. How-
ever, the failure does not indicate application bugs. Rainmaker
applies the second condition to filter out test failures due to
exceptions created in test code, based on the exception call
stack. Note that Rainmaker avoids injecting faults into REST
calls with call sites from the test code.

However, not all test failures due to exceptions created in
application code are bugs. For example, a utility method of
an application may intentionally propagate an exception to
the upper layer and expect it to be handled there. When a test
for this utility fails due to not handling the exception, the test
failure is expected, and it does not indicate a bug.

Rainmaker applies the third condition to only report bugs
when the final exception that causes the test failure is incon-
sistent with the injected fault (by searching the injected HTTP

1708 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

public async Task Receive_SendOne_Received()
{ ...
messages = await client.ReceiveAsync(queue);
Assert.Contains(messages,
m => m.tag == tag);

} /* Trio/MessagingTest.cs */

Assertion failure:
Expect: True; Actual: False
(tag not found in messages)

timeout

Figure 8: An assertion utilized by Rainmaker to detect a bug of silent
semantic violation in Storage.NET backed by AWS SQS. When time-
outs are injected, ReceiveAsync dequeues multiple times, causing
an empty message list returned, which fails the assertion.

status code or error code in the exception stack). The intu-
ition is that, if the test fails due to an error different from
the injected fault, it indicates that the fault was once han-
dled (it shows the developer’s intention to handle it), but the
handling is inappropriate (at least insufficient) and causes a
different error that fails the test. This oracle can capture bugs
of throwing unrelated exceptions as well as silent bugs of
semantic violations and state divergence which do not cause
immediate exceptions but result in exceptions eventually. Fig-
ure 7 shows such an example, where a 503 fault injected
to CreateIfNotExistsAsync leads to a 404 exception from
UploadFromByteArrayAsync and fails the test.

Note that the oracle is incomplete. If an application misses
error handling (§3.1), exceptions exposed by the test could be
a bug. However, at the unit test level, it is indeterminate.

Relaxing the oracle. With all three conditions, the oracle
above is conservative. One can relax it to identify other types
of likely bugs. If the developer is testing an application or
running a system test (instead of a unit test), she can disable
the third condition so that Rainmaker flags any failure (e.g.,
crash) due to exceptions from appliation code as a bug. This
is because Rainmaker only injects transient faults that are
expected to be handled gracefully.

4.3.2 Assertion Violation Oracle
This oracle flags a fault-injection test outcome as a poten-

tial bug if the test fails due to an assertion violation (and not
an unhandled exception). Intuitively, transient faults injected
by Rainmaker should not impair semantic correctness of appli-
cation code; hence existing assertions should not be violated
if the faults are properly handled. The assertions in test code
could be brittle to fault injection [45], i.e., an assertion viola-
tion is not a bug, but caused by the fault injection changing
application runtime behavior. In practice, we find such brittle
assertions are small in numbers, as discussed in §5.2. The
assertion oracle can capture bugs of silent semantic viola-
tions and state divergence. Figure 8 shows how Rainmaker
leverages the existing assertion to capture a silent semantic
violation in Storage.NET [19].

4.4 Diagnosis Support

Associating source-code information with faults. Diag-
nosing and localizing bugs in application code triggered by

HTTP-level faults can be challenging without source-code
context. This can be true even when the developer knows the
fault-injected REST API or SDK API (via instrumentation),
because they can be invoked by multiple program locations.

To help developers debug the test failures, Rainmaker asso-
ciates the fault injection with source-code information in the
form of the call site, together with the call stack of runtime ex-
ceptions or assertions (§4.3). We find the REST API call site
and exception/assertion call stack are critical to debugging.
They help developers to understand what and where fault(s)
were injected and reason about the error propagation inside
application code. One can further apply existing techniques
to automatically reconstruct the failure execution (e.g., [85]).

Reproducing bugs. Rainmaker can reproduce a reported
bug because all fault injections for a test are determined by
the test planner (§4.2.2). If an injected fault exposes a bug,
Rainmaker can rerun the planned fault injection to reproduce
the triggered bug. If the test is nondeterministic, it may take
several runs to reproduce the bug. In our experience, the error
handling behavior for REST calls is typically local to the call
and is rarely affected by nondeterminism of test execution.

4.5 Implementation
We have implemented Rainmaker for Windows. Its HTTP

interception is implemented using MockServer [18], with
fault-injection policies implemented as MockServer rules in
Java. Rainmaker registers a system proxy for Windows Inter-
net Services to forward all HTTP traffic to the MockServer
proxy. This enables Rainmaker to inject faults to any applica-
tion that issues REST APIs. The oracles are implemented in
Python, which analyzes the raw test results and logs.

Rainmaker currently supports coverage metrics C2–C4 for
.NET applications only, which needs dynamic instrumenta-
tion to record and propagate call site information (§4.2.2).
The instrumentation is implemented using the .NET profiling
API [65] that enables changing bytecode of a method before
it is JITed. Rainmaker inserts call site information in HTTP
headers by instrumenting four HTTP API families from the
.NET core library that cover all outgoing HTTP messages. We
believe the same mechanism can be implemented for Java.

To support a new cloud service in Rainmaker only
takes two inputs in the form of configurations: 1) the
SDK namespace (e.g., Azure.Storage* for Azure Storage
SDK) and 2) the request-ID tag of the cloud service (e.g.,
x-ms-client-request-id for Azure Storage services and
amz-sdk-invocation-id for AWS S3). The former instructs
Rainmaker what call sites to record, and the latter identifies a
request and its retries (they all have the same request ID).

5 Evaluation
Our evaluation addresses the following questions: 1) Can

Rainmaker find new bugs in real-world cloud-backed appli-
cations? 2) Are Rainmaker’s testing results trustworthy? 3)

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1709

Application Cloud Service # Stars # LOC Selected Tests

Alpakka Queue 106 14K 9
AttachmentPlugin Blob 67 1.3K 32
BotBuilder Blob, Queue 758 18K 67
DistributedLock Blob 838 17.1K 30
EF Core CosmosDB 11.7K 842.4K 420
FHIR Server CosmosDB 897 112.8K 202
Insights Blob, Queue, Table 20 51.7K 147
IronPigeon Blob 255 5.4K 7
Orleans Blob, Queue, Table 8.8K 187K 155
Sleet S3 276 18.7K 2
Storage.NET Blob, Queue, S3, SQS 567 12.4K 36

Table 4: The cloud-backed applications used in our evaluation.

What is the tradeoff between running time and coverage?

• §5.1: Rainmaker finds 73 new bugs in all 11 evaluated
cloud-backed applications, which represent a swathe of
reliability issues. So far, 55 of them have been confirmed,
and 51 have been fixed by the developers.

• §5.2: Rainmaker’s test oracles have a low false-positive
rate (1.96%) with regards to test failures.

• §5.3: Rainmaker significantly reduces running time com-
pared to exhaustive fault injection with coverage guarantee.

Evaluation setup. We evaluated Rainmaker on 11 popular
.NET applications that use six different cloud services from
two cloud service providers, Azure and AWS (Table 4). These
applications are mature and widely used; many are main-
tained by software companies, such as Orleans, BotBuilder,
EF Core, FHIR Server from Microsoft, Insights from NuGet,
and Alpakka from Petabridge. They use six cloud services:
Blob Storage [7], Queue Storage [11], Table Storage [12],
and CosmosDB [9] from Azure, and Simple Storage Service
(S3) [1] and Simple Queue Service (SQS) [4] from AWS. We
configure Rainmaker to support these services (§4.5).

We apply Rainmaker to existing test suites of the applica-
tions. Rainmaker automatically selects tests that interact with
the cloud services from the test suite by monitoring HTTP traf-
fic during the reference run (§4.2.2). The number of selected
tests varies from 2 to 420 across the applications (Table 4),
including both unit and system tests. We differentiate unit and
system tests based on their naming conventions.

All the tests that interact with Azure cloud services are run
with emulators: Azurite [68] for Blob, Queue, and Table and
the CosmosDB emulator [63] for CosmosDB. The tests that
interact with AWS are run with the real S3/SQS services; we
did not find an official AWS emulator.

5.1 Finding New Bugs
Rainmaker finds a total of 73 new bugs in the evaluated

applications (Table 5). Those bugs include all the bug patterns
in the taxonomy (§3): 29 bugs of no error handling, 23 bugs
of throwing unrelated exceptions, four bugs of silent semantic
violations, and 17 bugs of state divergence. Rainmaker finds
bugs in every application, showing the error-proneness of

Application No Error Throw New Semantic State TotalHandling Exception Violation Divergence

Alpakka 0 0 1 1 2
AttachmentPlugin 0 0 0 2 2
BotBuilder 0 2 0 2 4
DistributedLock 0 2 0 0 2
EF Core 7 0 0 0 7
FHIR Server 11 0 0 0 11
Insights 0 10 0 0 10
IronPigeon 0 1 0 0 1
Orleans 0 5 2 11 18
Sleet 0 2 0 0 2
Storage.NET 11 1 1 1 14

Total 29 23 4 17 73

Table 5: New bugs detected by Rainmaker across the applications.

handling transient faults with cloud-based programming. We
have reported 66 (out of 73) bugs. So far, 55 of them have
been confirmed, and 51 of them have been fixed.

Many of the detected bugs have severe consequences, such
as unexpected application termination, data loss/inaccessibil-
ity, and resource leaks (Table 6). All these consequences are
triggered by transient faults against one REST API call.

Rainmaker detects bugs that are unlikely to be exposed
by randomized fault injection. For example, a bug [36] in
DistributedLock is only triggered when timeout happens to
the response of a specific SDK API call site. The test used
for detecting this bug issues 900+ requests in total; only four
requests are from that specific call site. Rainmaker can con-
sistently detect this bug as it systematically exercises the call
sites of the REST API calls (§4.2.2).

Table 7(a) shows that all four fault injection policies (Fig-
ure 6) employed by Rainmaker are effective in finding bugs.
The four policies address different fault scenarios and are
complementary to each other. No policy detects all the bugs.
Similarly, Table 7(b) shows that oracles are complementary
to each other. For example, all the semantic violation bugs
are captured by assertions as they do not cause exceptions.

The 73 bugs cause 2,654 test failures in total. To inspect
them, we cluster test failures based on (a) the application call
site that invokes the REST API where fault(s) are injected and
(b) the exception stack trace in the application namespace, or
assertion. For two test failures with both (a) and (b) being the
same, they are considered to have the same root cause, i.e.,
injecting to the same API call site causes the same exception
stack trace in application namespace or assertion violation.

No error handling. Rainmaker found 29 bugs of this type,
where neither the SDK nor the application handles the injected
faults. These bugs are all from applications that use Azure
Storage SDK with versions before 12.3.0 and the CosmosDB
SDK; the former does not retry timeouts, and the latter does
not retry with our single-region setting. The applications using
these SDKs are expected to handle transient errors but do not
have error handling. These bugs are manifested in system
tests when Rainmaker injects faults into the REST calls.

1710 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/akkadotnet/Alpakka
https://github.com/SeanFeldman/ServiceBus.AttachmentPlugin
https://github.com/microsoft/botbuilder-dotnet
https://github.com/madelson/DistributedLock
https://github.com/dotnet/efcore
https://github.com/microsoft/fhir-server
https://github.com/NuGet/Insights
https://github.com/AArnott/IronPigeon
https://github.com/dotnet/orleans
https://github.com/emgarten/Sleet
https://github.com/aloneguid/storage

Consequence Example # Bugs

Externalizing IronPigeon-133: Deletion operations perform
unrelated exception on non-existent resources [46]. 36

AttachmentPlugin-277: Containers cannot beOperation failure created due to transient error [24]. 35

Incorrect results BotBuilder-5787: The timestamp metadata of
or states blobs is not set correctly [31]. 13

Application crash FHIR Server-2732: FHIR Server can crash
unexpectedly upon transient faults [38]. 11

Data loss or BotBuilder-6407: Activities that should be
inaccessibility logged are lost [32]. 4

Orleans-7790: Redundant messages were addedResource leak incorrectly to the Queue service [72]. 2

Table 6: Consequences of the bugs found by Rainmaker. One bug
can lead to multiple consequences.

Throwing unrelated exceptions. Rainmaker found 23 bugs
of this type. Rainmaker triggers these bugs by injecting time-
out to the response path after a request takes effect at the cloud
service (see Figure 3). While the bug in Figure 3 is captured
by an assertion on the number of created blobs, many other
bugs are captured by the exception oracle (the exception is
mostly inconsistent with the injected fault). Such bugs can
be avoided if the cloud service can collapse the retries: If the
first attempt is successful, the cloud service should ignore the
following retries of the same SDK API call. This requires the
cloud service to identify the retries of each SDK API call,
which can be specified by the SDK when it issues a retry.

Silent semantic violations. Rainmaker found four bugs of
this type. All of them are caused by retrying non-idempotent
REST APIs (e.g., ReceiveMessagesAsync in Figure 4). Rain-
maker detects these bugs by injecting timeout to trigger non-
idempotent retries and leveraging assertions to catch semantic
violations (as in Figure 8). Different from traditional system
services (e.g., file systems), cloud services seldom have stan-
dard API specifications like POSIX for file system APIs; doc-
uments are often outdated or incomplete. Without precisely
understanding the semantic and side effect of each REST API,
it is difficult for developers to avoid silent semantic violations.

State divergence. Rainmaker found 17 bugs of this type.
Some applications maintain local data structures to reflect
the state of the remote resources hosted by the cloud service.
Rainmaker triggers state divergence by injecting 5XX error
codes to the request path or timeout to the response path (e.g.,
Figure 5). Although the inconsistencies do not immediately
lead to exceptions, Rainmaker can still catch them when the
test throws exceptions (e.g., Figure 7) or fails assertions.

5.2 False Positives
While identifying bugs with its test oracles, Rainmaker in-

troduces a very low false positive rate of 1.96% (52/2,654).
It reports in total 2,654 test failures for the evaluated applica-
tions. Among the failures reported, only 52 of them were false
alarms. The low false positive rate is attributed to Rainmaker’s
exception oracles (see §4.3.1). If Rainmaker directly reports
exceptions thrown by unit tests, it would have reported 3.07

Application Fault Injection Policy
P1 P2 P3 P4

Alpakka 2 1 1 0
AttachmentPlugin 0 1 2 1
BotBuilder 2 1 2 1
DistributedLock 2 0 0 0
EF Core 7 n/a 7 n/a
FHIR Server 11 n/a 11 n/a
Insights 10 0 0 0
IronPigeon 1 0 0 0
Orleans 17 11 11 11
Sleet 2 0 0 0
Storage.NET 13 12 12 12

Total 67 26 46 25

Test Oracle
Exp (Unit) Exp (Sys) Assert.

0 0 2
2 0 0
3 0 1
2 0 0
0 7 0
0 11 0
10 0 0
1 0 0
16 0 2
2 0 0
2 11 1

38 29 6

Table 7: The breakdown of the number of bugs captured by the fault
injection policies (left) and oracles (right). For EF Core and FHIR
Server, the four policies are reduced to two, because CosmosDB
SDK does not retry in our setting (single region). For the exception
oracle (“Exp”), we differentiate unit tests and system tests. Note that
one bug can be exposed by multiple fault injection policies.

times more test failures. To validate that the oracles filter out
little true alarms, we randomly sample a hundred exceptions
that are filtered out by Rainmaker’s exception oracle and find
that none of them indicates a bug.

Among the 52 false alarms, 10 of them come from five
tests of Insights. These tests exercise scenarios where a client
issues invalid requests and expects the return of certain error
codes (e.g., 404 Not Found). Since Rainmaker injects 5XX
on the request path (P3 and P4 in Figure 6), the REST call
fails by assertions on the original error codes. To avoid those
false alarms needs to understand those REST calls, e.g., based
on information from the reference run. Note that Rainmaker
does not inject faults on an HTTP response that already has
an error code.

The other 42 false alarms were caused by 14 tests from
Alpakka and IronPigeon. Those tests use a small connec-
tion timeout that was exceeded due to the fault injection,
resulting in either assertion failures or inconsistent exceptions.
These tests are considered flaky tests in software testing liter-
ature [54]. Strictly speaking, flaky tests should not be counted
as false alarms. However, detecting flaky tests is not a goal
of Rainmaker, and the flakiness is indeed triggered by fault
injection (it can also be triggered by slow connections).

5.3 Running Time with Coverage
Rainmaker takes 0.57–212.77 hours to test each application

under coverage metric, C4 (Table 3), as shown in Table 8.
All the experiments were run on a Windows 10 Pro with
AMD Ryzen 9 5900X 3.70 GHz CPU and 32 GB memory.
Over 93.54% of the running time is spent on executing fault
injection test runs. Rainmaker also spends 0.02–16.61 hours
to 1) conduct the vanilla run and 2) generate the test plan. The
test plan generation using a linear programming (LP) solver
takes only 1.46–3.67 seconds across the applications and is
negligible compared with the time for vanilla test runs. The
numbers of constraints and variables range from 14 to 241 and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1711

Application Running Time (Machine Hours) # Fault Injection
Test Planning Fault Injection Total Test Runs

Alpakka 0.02 0.97 0.99 196
AttachmentPlugin 0.04 2.83 2.87 416
BotBuilder 0.32 10.36 10.68 888
DistributedLock 0.13 4.97 5.10 572
EF Core 10.65 159.60 170.25 4786
FHIR Server 16.61 196.16 212.77 6428
Insights 0.36 10.97 11.33 3056
IronPigeon 0.06 0.51 0.57 120
Orleans 2.57 53.17 55.74 3804
Sleet 0.11 0.63 0.74 72
Storage.NET 2.30 40.27 42.57 1512

Table 8: Running time of Rainmaker in machine hours, for the
most expensive coverage metric C4. Test planning includes both the
vanilla test run and test plan generation (the latter takes seconds).

Alpakka

Atta
chmentP

lugin

BotB
uild

er

Dist
rib

utedLock

EF Core

FHIR
Server

Insig
hts

Iro
nPigeon

Orle
ans

Sleet

Storage.N
ET

101

102

103

104

105

#
T

es
t

R
un

s

Baseline

C4

C3

C2

C1

0
2
4
6
8
10
12
14
16
18
20

#
B

ug
s

Figure 9: The number of fault injection test runs of each coverage
metric, C1–C4 in Table 3 (bars) and the number of bugs detected by
each coverage metric (dots). Baseline refers to exhaustively injecting
faults to all the REST API calls of all the tests.

from 18 to 3214, respectively. Note that test plan generation
is a one-time effort and is done offline; fault injection takes
multiple test runs and is more time-consuming.

Rainmaker’s test planning avoids exhaustively injecting
faults in every REST call (the baseline). Figure 9 shows the
number of fault injection test runs each coverage metric can
reduce, compared to the baseline. Overall, Rainmaker with C4
(default coverage) reduces on average 64.47% of test runs for
each application compared to the baseline. In particular, C4
reduces 394,172 (99.04%) test runs for Orleans alone because
Orleans has stress tests that repeatedly exercise the same SDK
API call site in large loops. C4 reduces fault injection runs by
“deduplicating” REST calls with the same call site. Without
the reduction, Rainmaker would take 588 days to test Orleans.

In terms of bug finding effectiveness, C4 covers all the tests
and REST calls that are covered by C1–C3. Thus, C4 detects
all the bugs that are detected by C1–C3.

6 Discussion and Limitation
Rainmaker’s effectiveness depends on the adequacy of the

existing test suite, in particular, tests that interact with cloud
services. Such tests may not be abundant (Table 4). For exam-
ple, in Microsoft Orleans, only 155 out of 7,002 tests interact
with cloud services. A more common testing practice is to
mock REST APIs [53]. Our future work is to auto-rewrite
mocked tests into tests that can be utilized by Rainmaker.

Rainmaker is not cheap. It may need to run a test multiple
times, each injecting different fault(s) or to a different REST
call. For big test suites, Rainmaker would need significant
machine hours (Table 8). In fact, our evaluation shows that
many bugs trigger multiple test failures (§5.1). A future work
is to reduce the cost using test selection techniques [83].

Rainmaker currently only targets faults that occur in one
interaction of REST API call initiated by the application and
the subsequent retries (§3). We are investigating how to inject
faults to multiple correlated API call interactions which has a
larger fault space and a more complex fault model.

Rainmaker can be extended to test applications under poten-
tial cloud service bugs. In our evaluation, we find that cloud
services have various correctness issues. For example, we ob-
serve that the same REST API of AWS S3 has different consis-
tency guarantees at different regions [25], which can break ap-
plication assumptions. Also, the error behavior is often opaque
and hard to reason, e.g., the side effect of a non-idempotent
API call when it returns 500 (InternalServerError).

Not every bug found by Rainmaker is easy to fix. For exam-
ple, timeouts on the response path make it hard for SDK/ap-
plication to know whether the failed request has taken effect
at the cloud service. Server-side support such as versioning
(e.g., based on HTTP ETag) and transaction-like API support
could potentially help non-idempotent APIs. Moreover, SDKs
should not blindly retry non-idempotent APIs, which however
is not an uncommon practice, as shown in Table 1.

Our current prototype of Rainmaker focuses on .NET ap-
plications. We believe that the prototype can be generally
extended to support applications in other languages as well.
The high-level idea of injecting faults with an HTTP proxy is
independent of the programming language of the target appli-
cation. The only .NET-specific component in our prototype
is the one that computes the coverage metrics C2, C3, and C4
(in Table 3) by using .NET profiling API [65] for dynamic
instrumentation and .NET inheritable thread-local storage
(ITLS) [64] for propagating call-site information. Neither dy-
namic instrumentation nor ITLS is unique to .NET; they are
already available or can be supported in other languages and
runtimes such as Java.

7 Related Work
Our work focuses on push-button tooling to help develop-

ers address emerging reliability challenges of cloud-backed
applications. The techniques that embody Rainmaker have
lineages of error-handling analysis and fault injection.

• Error-handling code analysis. It is known that error han-
dling is a main root cause of production failures of software
systems [40, 41, 84]. Prior work developed static analysis
for error-handling code to search missing logs and TODOs in
error-handling code [84,86], check error specifications [48],
and understand error propagation [41, 77, 82].

1712 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

• Fault injection. Prior work developed fault injection tech-
niques for traditional software applications [29, 35, 59, 87]
and for distributed backend systems (e.g., storage and
data processing systems) that empower modern cloud ser-
vices [16, 20, 21, 33, 34, 40, 43, 51, 55–57, 69, 73, 80]. They
implicitly or explicitly target error-handling code. More-
over, many existing fault injection tools support injection
at the HTTP layer [37, 47].

Unfortunately, we realized that none of the above tech-
niques support a push-button tool that is generic, widely ap-
plicable to cloud-backed applications because they all have
one or more of the following limitations. First, many fault
injection tools only provide mechanisms without fully au-
tomatic policies beyond randomization or oracles beyond
crashes [6, 21, 35, 40, 43, 44, 51, 58, 61, 73, 75]. Developers
need to manually implement them, which is nontrivial. Sec-
ond, many techniques use application or domain knowledge
to devise policies and oracles [16,20,33,34,55,56,69,80]. For
example, fault injection for distributed databases checks con-
sistency and isolation properties by injecting node crashes and
network partitions [16, 52]. These techniques cannot be used
as a common, basic utility for diverse types of applications.
Third, fault injection at the program level [35, 50, 59, 60, 87]
is fundamentally limited to cloud-backed applications: 1) pro-
gram errors (exceptions and errno) are too coarse-grained to
expose certain bug patterns (e.g., silent semantic violations)
which need fine-grained injection at the HTTP layer; 2) it
is nontrivial to construct exception objects—error handling
of cloud-backed applications is based on not only exception
types, but also HTTP status codes (Table 1); 3) few program
fault injection considers cloud states, but assumes a single pro-
gram. Rainmaker instead injects faults at the REST interface,
effectively addressing the above three limitations.

The early form of cloud-backed applications is mobile apps
that interact with cloud backends via REST APIs. Unlike
today’s cloud services, the cloud backend is specific to an
app and is not widely used as a building block of generic
application development. Most fault injection tools for mobile
apps focus on GUI testing [74, 79]; few considers app-cloud
interactions. Rainmaker applies to cloud-backed mobile apps.

8 Concluding Remarks
Rainmaker serves as a first step tooling to help developers

test application reliability under the cloud-based fault model
conveniently, when writing cloud-backed code. Despite being
a simple tool, Rainmaker can effectively detect bugs in many
existing cloud-backed applications, indicating the challenge
and error-proneness of correctly handling transient errors.
Our goal is to make Rainmaker a basic utility running against
every cloud-backed application to detect critical bugs at devel-
opment time. We hope to inspire more advanced, specialized
tooling and raise discussions on cloud service support and
SDK designs to eliminate reliability threats in the first place.

Acknowledgement
We thank the anonymous reviewers and our shepherd, Raja

Sambasivan, for their insightful comments. We thank Shan Lu,
Darko Marinov, Lalith Suresh, and Jun Zeng for valuable feed-
back and discussions that helped improve this work. We thank
Yifei Song for his help on the evaluation and Shuai Wang and
Jinghao Jia for helping with the machine setup. We thank all
the cloud-backed application developers who engaged with us
and reviewed our reports and patches. This work was funded
in part by NSF CNS-2130560, SHF-1816615, CNS-2145295,
and Microsoft Azure credits.

References
[1] Amazon S3. https://aws.amazon.com/s3/, 2022.

[2] Amazon Simple Queue Service Common Errors. https:
//docs.aws.amazon.com/AWSSimpleQueueService/
latest/APIReference/CommonErrors.html, 2022.

[3] Amazon Simple Storage Service Error Responses.
https://docs.aws.amazon.com/AmazonS3/latest/
API/ErrorResponses.html, 2022.

[4] Amazon SQS. https://aws.amazon.com/sqs/, 2022.

[5] AWS Cloud Products. https://aws.amazon.com/products,
2022.

[6] AWS Fault Injection Simulator. https://aws.amazon.com/
fis/, 2022.

[7] Azure Blob Storage. https://azure.microsoft.com/en-
us/services/storage/blobs/, 2022.

[8] Azure Blob Storage error codes. https://learn.microsoft.
com/en-us/rest/api/storageservices/blob-service-
error-codes, 2022.

[9] Azure Cosmos DB. https://azure.microsoft.com/en-
us/services/cosmos-db/, 2022.

[10] Azure products. https://azure.microsoft.com/en-us/
products, 2022.

[11] Azure Queue Storage. https://azure.microsoft.com/en-
us/services/storage/queues/, 2022.

[12] Azure Table Storage. https://azure.microsoft.com/en-
us/services/storage/tables/, 2022.

[13] dotnet/orleans. https://github.com/dotnet/orleans,
2022.

[14] Google Cloud products. https://cloud.google.com/
products, 2022.

[15] HTTP Status Codes for Azure Cosmos DB. https:
//docs.microsoft.com/en-us/rest/api/cosmos-
db/http-status-codes-for-cosmosdb, 2022.

[16] Jepsen. https://jepsen.io/, 2022.

[17] microsoft/botbuilder-dotnet. https://github.com/
microsoft/botbuilder-dotnet, 2022.

[18] MockServer. https://www.mock-server.com/, 2022.

[19] Storage.NET. https://github.com/aloneguid/storage,
2022.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1713

https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/CommonErrors.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/CommonErrors.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/CommonErrors.html
https://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html
https://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html
https://aws.amazon.com/sqs/
https://aws.amazon.com/products
https://aws.amazon.com/fis/
https://aws.amazon.com/fis/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-error-codes
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-error-codes
https://learn.microsoft.com/en-us/rest/api/storageservices/blob-service-error-codes
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/products
https://azure.microsoft.com/en-us/products
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/tables/
https://azure.microsoft.com/en-us/services/storage/tables/
https://github.com/dotnet/orleans
https://cloud.google.com/products
https://cloud.google.com/products
https://docs.microsoft.com/en-us/rest/api/cosmos-db/http-status-codes-for-cosmosdb
https://docs.microsoft.com/en-us/rest/api/cosmos-db/http-status-codes-for-cosmosdb
https://docs.microsoft.com/en-us/rest/api/cosmos-db/http-status-codes-for-cosmosdb
https://jepsen.io/
https://github.com/microsoft/botbuilder-dotnet
https://github.com/microsoft/botbuilder-dotnet
https://www.mock-server.com/
https://github.com/aloneguid/storage

[20] ALAGAPPAN, R., GANESAN, A., PATEL, Y., PILLAI, T. S.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
Correlated Crash Vulnerabilities. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI’16) (Nov. 2016).

[21] ALQURAAN, A., TAKRURI, H., ALFATAFTA, M., AND AL-
KISWANY, S. An Analysis of Network-Partitioning Failures
in Cloud Systems. In Proceedings of the 13th USENIX Con-
ference on Operating Systems Design and Implementation
(OSDI’18) (Oct. 2018).

[22] ARZANI, B., CIRACI, S., CHAMON, L., ZHU, Y., LIU, H.,
PADHYE, J., LOO, B. T., AND OUTHRED, G. 007: Democrat-
ically Finding the Cause of Packet Drops. In Proceedings of
the 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’18) (Apr. 2018).

[23] ATLIDAKIS, V., GODEFROID, P., AND POLISHCHUK, M.
RESTler: Stateful REST API Fuzzing. In Proceedings of
the 37th International Conference on Software Engineering
(ICSE’19) (May 2019).

[24] ATTACHMENTPLUGIN-277. Transient error happening in
container existence check will lead to container not found ex-
ception. https://github.com/SeanFeldman/ServiceBus.
AttachmentPlugin/issues/277, 2022.

[25] AWS-SDK-NET-2084. The retry request of PutBucket will
behave differently between regions. https://github.com/
aws/aws-sdk-net/discussions/2084, 2022.

[26] AWS-SDK-NET-2102. 1-to-N Mappings between SDK API
and REST APIs. https://github.com/aws/aws-sdk-net/
discussions/2102, 2022.

[27] AZURE/AZURE-SDK-FOR-NET-31001. 1-to-N Mappings be-
tween SDK API and REST APIs. https://github.com/
Azure/azure-sdk-for-net/issues/31001, 2022.

[28] AZURE/AZURE-SDK-FOR-NET-9670. Retry on 408, 500, 502,
504 status codes. https://github.com/Azure/azure-sdk-
for-net/pull/9670, 2022.

[29] BANABIC, R., AND CANDEA, G. Fast Black-Box Testing of
System Recovery Code. In Proceedings of the 7th European
Conference on Computer Systems (EuroSys’12) (Apr. 2012).

[30] BOTBUILDER-DOTNET-5778. _checkedContainers can be-
come inconsistent with blob storage and further lead to
unhandled exception. https://github.com/microsoft/
botbuilder-dotnet/issues/5778, 2021.

[31] BOTBUILDER-DOTNET-5787. Metadata of blob can be
missing due to transient error which leads to unhandled
exception. https://github.com/microsoft/botbuilder-
dotnet/issues/5787, 2022.

[32] BOTBUILDER-DOTNET-6407. Activities that should be logged
are missing due to transient network errors. https://github.
com/microsoft/botbuilder-dotnet/issues/6407, 2022.

[33] CANINI, M., VENZANO, D., PEREŠÍNI, P., KOSTIĆ, D., AND

REXFORD, J. A NICE Way to Test OpenFlow Applications.
In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation (NSDI’12) (Apr. 2012).

[34] CHEN, H., DOU, W., WANG, D., AND QIN, F. CoFI:
Consistency-Guided Fault Injection for Cloud Systems. In
Proceedings of the 35th ACM/IEEE International Conference
on Automated Software Engineering (ASE’20) (Sept. 2020).

[35] CHRISTAKIS, M., EMMISBERGER, P., GODEFROID, P., AND

MÜLLER, P. A General Framework for Dynamic Stub Injec-
tion. In Proceedings of the 39th International Conference on
Software Engineering (ICSE’17) (May 2017).

[36] DISTRIBUTEDLOCK-132. Transient error leads to unhandled
409 when releasing an Azure lease. https://github.com/
madelson/DistributedLock/issues/132, 2022.

[37] ENVOY DOCS. Envoy Fault Injection. https:
//www.envoyproxy.io/docs/envoy/latest/api-
v3/extensions/filters/http/fault/v3/fault.proto,
2022.

[38] FHIR SERVER-2732. Retry other HTTP error codes from Cos-
mos DB? https://github.com/microsoft/fhir-server/
issues/2732, 2022.

[39] GANGER, G. R., MCKUSICK, M. K., SOULES, C. A. N.,
AND PATT, Y. N. Soft Updates: A Solution to the Metadata
Update Problem in File Systems. ACM Transactions on Com-
puter Systems (TOCS) 18, 2 (May 2000), 127–153.

[40] GUNAWI, H. S., DO, T., JOSHI, P., ALVARO, P., HELLER-
STEIN, J. M., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU,
R. H., SEN, K., AND BORTHAKUR, D. Fate and Destini: A
Framework for Cloud Recovery Testing. In Proceedings of the
8th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’11) (Mar. 2011).

[41] GUNAWI, H. S., RUBIO-GONZÁLEZ, C., ARPACI-DUSSEAU,
A. C., ARPACI-DUSSEAU, R. H., AND LIBLIT, B. EIO: Er-
ror Handling is Occasionally Correct. In Proceedings of the
6th USENIX Conference on File and Storage Technologies
(FAST’08) (Feb. 2008).

[42] GUO, C., YUAN, L., XIANG, D., DANG, Y., HUANG, R.,
MALTZ, D., LIU, Z., WANG, V., PANG, B., CHEN, H., LIN,
Z.-W., AND KURIEN, V. Pingmesh: A Large-Scale System
for Data Center Network Latency Measurement and Analy-
sis. In Proceedings of the 2015 ACM SIGCOMM Conference
(SIGCOMM’15) (Aug. 2015).

[43] HEORHIADI, V., RAJAGOPALAN, S., JAMJOOM, H., REITER,
M. K., AND SEKAR, V. Gremlin: Systematic Resilience Test-
ing of Microservices. In Proceedings of the IEEE 36th In-
ternational Conference on Distributed Computing Systems
(ICDCS’16) (June 2016).

[44] HUNT, G., AND BRUBACHER, D. Detours: Binary Intercep-
tion of Win32 Functions. In Proceedings of the 3rd USENIX
Windows NT Symposium (July 1999).

[45] HUO, C., AND CLAUSE, J. Improving Oracle Quality by
Detecting Brittle Assertions and Unused Inputs in Tests. In
Proceedings of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (FSE’14) (Nov.
2014).

[46] IRONPIGEON-133. make blob deletion tolerant of transient
errors. https://github.com/AArnott/IronPigeon/pull/
133, 2022.

1714 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/SeanFeldman/ServiceBus.AttachmentPlugin/issues/277
https://github.com/SeanFeldman/ServiceBus.AttachmentPlugin/issues/277
https://github.com/aws/aws-sdk-net/discussions/2084
https://github.com/aws/aws-sdk-net/discussions/2084
https://github.com/aws/aws-sdk-net/discussions/2102
https://github.com/aws/aws-sdk-net/discussions/2102
https://github.com/Azure/azure-sdk-for-net/issues/31001
https://github.com/Azure/azure-sdk-for-net/issues/31001
https://github.com/Azure/azure-sdk-for-net/pull/9670
https://github.com/Azure/azure-sdk-for-net/pull/9670
https://github.com/microsoft/botbuilder-dotnet/issues/5778
https://github.com/microsoft/botbuilder-dotnet/issues/5778
https://github.com/microsoft/botbuilder-dotnet/issues/5787
https://github.com/microsoft/botbuilder-dotnet/issues/5787
https://github.com/microsoft/botbuilder-dotnet/issues/6407
https://github.com/microsoft/botbuilder-dotnet/issues/6407
https://github.com/madelson/DistributedLock/issues/132
https://github.com/madelson/DistributedLock/issues/132
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/http/fault/v3/fault.proto
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/http/fault/v3/fault.proto
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/http/fault/v3/fault.proto
https://github.com/microsoft/fhir-server/issues/2732
https://github.com/microsoft/fhir-server/issues/2732
https://github.com/AArnott/IronPigeon/pull/133
https://github.com/AArnott/IronPigeon/pull/133

[47] ISTIO DOCS. Istio Fault Injection. https://istio.
io/latest/docs/tasks/traffic-management/fault-
injection/, 2022.

[48] JANA, S., KANG, Y., OHIO, S. R., AND RAY, B. Automat-
ically Detecting Error Handling Bugs Using Error Specifica-
tions. In Proceedings of the 25th USENIX Security Symposium
(Aug. 2016).

[49] JAVA API SPECIFICATION. Class InheritableThreadLo-
cal<T>. https://docs.oracle.com/javase/7/docs/api/
java/lang/InheritableThreadLocal.html, 2022.

[50] JIANG, Z.-M., BAI, J.-J., LU, K., AND HU, S.-M. Fuzzing
Error Handling Code using Context-Sensitive Software Fault
Injection. In Proceedings of the 29th USENIX Security Sympo-
sium (Aug. 2020).

[51] JU, X., SOARES, L., SHIN, K. G., RYU, K. D., AND SILVA,
D. D. On Fault Resilience of OpenStack. In Proceedings of
the 12th ACM Symposium on Cloud Computing (SOCC’13)
(Oct. 2013).

[52] KINGSBURY, K., AND ALVARO, P. Elle: Inferring Isolation
Anomalies from Experimental Observations. In Proceedings
of the VLDB Endowment (Nov. 2020).

[53] KRYMETS, P. Unit testing and mocking with Azure SDK
.NET. https://devblogs.microsoft.com/azure-sdk/
unit-testing-and-mocking/, 2020.

[54] LAM, W., MUŞLU, K., SAJNANI, H., AND THUM-
MALAPENTA, S. A Study on the Lifecycle of Flaky Tests. In
Proceedings of the 42nd International Conference on Software
Engineering (ICSE’20) (May 2020).

[55] LEESATAPORNWONGSA, T., HAO, M., JOSHI, P., LUKMAN,
J. F., AND GUNAWI, H. S. SAMC: Semantic-Aware Model
Checking for Fast Discovery of Deep Bugs in Cloud Systems.
In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI’14) (Oct. 2014).

[56] LU, J., LIU, C., LI, L., FENG, X., TAN, F., YANG, J., AND

YOU, L. CrashTuner: Detecting Crash-Recovery Bugs in
Cloud Systems via Meta-Info Analysis. In Proceedings of
the 26th ACM Symposium on Operating System Principles
(SOSP’19) (Oct. 2019).

[57] MAJUMDAR, R., AND NIKSIC, F. Why is Random Testing
Effective for Partition Tolerance Bugs? In Proceedings of the
45th ACM SIGPLAN Symposium on Principles of Program-
ming Languages (POPL’18) (Jan. 2018).

[58] MARINESCU, P. D., BANABIC, R., AND CANDEA, G. An
Extensible Technique for High-Precision Testing of Recovery
Code. In Proceedings of the 2010 USENIX Annual Technical
Conference (USENIX ATC’10) (June 2010).

[59] MARINESCU, P. D., AND CANDEA, G. LFI: A Practical
and General Library-Level Fault Injector. In Proceedings of
the 39th IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’09) (June 2009).

[60] MARINESCU, P. D., AND CANDEA, G. Efficient Testing of
Recovery Code Using Fault Injection. ACM Transactions on
Computer Systems (TOCS) 29, 4 (Dec. 2011), 1–38.

[61] MEIKLEJOHN, C. S., ESTRADA, A., SONG, Y., MILLER, H.,
AND PADHYE, R. Service-Level Fault Injection Testing. In
Proceedings of the 2013 ACM Symposium on Cloud Computing
(SOCC’21) (Nov. 2021).

[62] MICROSOFT DOCS. AzureQueueDataMan-
ager.GetQueueMessage Method. https://learn.
microsoft.com/en-us/dotnet/api/orleans.
azureutils.azurequeuedatamanager.getqueuemessage,
2022.

[63] MICROSOFT DOCS. Install and use the Azure Cos-
mos DB Emulator for local development and testing.
https://learn.microsoft.com/en-us/azure/cosmos-
db/local-emulator, 2022.

[64] MICROSOFT DOCS. .NET CallContext Class.
https://docs.microsoft.com/en-us/dotnet/api/
system.runtime.remoting.messaging.callcontext,
2022.

[65] MICROSOFT DOCS. .NET profiling. https://learn.
microsoft.com/en-us/dotnet/framework/unmanaged-
api/profiling/profiling-overview, 2022.

[66] MICROSOFT DOCS. Table Storage error codes.
https://learn.microsoft.com/en-us/rest/api/
storageservices/table-service-error-codes, 2022.

[67] MICROSOFT DOCS. Transient fault handling. https:
//learn.microsoft.com/en-us/azure/architecture/
best-practices/transient-faults, 2022.

[68] MICROSOFT DOCS. Use the Azurite emulator for local Azure
Storage development. https://docs.microsoft.com/en-
us/azure/storage/common/storage-use-azurite, 2022.

[69] MOHAN, J., MARTINEZ, A., PONNAPALLI, S., RAJU, P.,
AND CHIDAMBARAM, V. Finding Crash-Consistency Bugs
with Bounded Black-Box Crash Testing. In Proceedings of the
13th USENIX Conference on Operating Systems Design and
Implementation (OSDI’18) (Oct. 2018).

[70] NUGET. WindowsAzure.Storage NuGet. https://www.
nuget.org/packages/WindowsAzure.Storage, 2022.

[71] ORLEANS-7738. Popping up queue messages may cause
data loss and unexpected NullReferenceException. https:
//github.com/dotnet/orleans/issues/7738, 2022.

[72] ORLEANS-7790. Data was added repeatedly to the queue
unexpectedly without any warning. https://github.com/
dotnet/orleans/issues/7790, 2022.

[73] PILLAI, T. S., CHIDAMBARAM, V., KISWANY, S. A.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
All File Systems Are Not Created Equal: On the Complexity
of Crafting Crash-Consistent Applications. In Proceedings of
the 11th USENIX Conference on Operating Systems Design
and Implementation (OSDI’14) (Oct. 2014).

[74] RAVINDRANATH, L., NATH, S., PADHYE, J., AND BALAKR-
ISHNAN, H. Automatic and Scalable Fault Detection for Mo-
bile Applications. In Proceedings of the 12th International
Conference on Mobile Systems, Applications, and Services
(MobiSys’14) (June 2014).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1715

https://istio.io/latest/docs/tasks/traffic-management/fault-injection/
https://istio.io/latest/docs/tasks/traffic-management/fault-injection/
https://istio.io/latest/docs/tasks/traffic-management/fault-injection/
https://docs.oracle.com/javase/7/docs/api/java/lang/InheritableThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/InheritableThreadLocal.html
https://devblogs.microsoft.com/azure-sdk/unit-testing-and-mocking/
https://devblogs.microsoft.com/azure-sdk/unit-testing-and-mocking/
https://learn.microsoft.com/en-us/dotnet/api/orleans.azureutils.azurequeuedatamanager.getqueuemessage
https://learn.microsoft.com/en-us/dotnet/api/orleans.azureutils.azurequeuedatamanager.getqueuemessage
https://learn.microsoft.com/en-us/dotnet/api/orleans.azureutils.azurequeuedatamanager.getqueuemessage
https://learn.microsoft.com/en-us/azure/cosmos-db/local-emulator
https://learn.microsoft.com/en-us/azure/cosmos-db/local-emulator
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.remoting.messaging.callcontext
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.remoting.messaging.callcontext
https://learn.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/profiling-overview
https://learn.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/profiling-overview
https://learn.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/profiling-overview
https://learn.microsoft.com/en-us/rest/api/storageservices/table-service-error-codes
https://learn.microsoft.com/en-us/rest/api/storageservices/table-service-error-codes
https://learn.microsoft.com/en-us/azure/architecture/best-practices/transient-faults
https://learn.microsoft.com/en-us/azure/architecture/best-practices/transient-faults
https://learn.microsoft.com/en-us/azure/architecture/best-practices/transient-faults
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://www.nuget.org/packages/WindowsAzure.Storage
https://www.nuget.org/packages/WindowsAzure.Storage
https://github.com/dotnet/orleans/issues/7738
https://github.com/dotnet/orleans/issues/7738
https://github.com/dotnet/orleans/issues/7790
https://github.com/dotnet/orleans/issues/7790

[75] REYNOLDS, P., KILLIAN, C., WIENER, J. L., MOGUL, J. C.,
SHAH, M. A., AND VAHDAT, A. Pip: Detecting the Unex-
pected in Distributed Systems. In Proceedings of the 3rd
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI’06) (May 2006).

[76] RFC 9110 HTTP SEMANTICS. Idempotent Meth-
ods. https://www.rfc-editor.org/rfc/rfc9110.html#
name-idempotent-methods, 2022.

[77] RUBIO-GONZÁLEZ, C., GUNAWI, H. S., LIBLIT, B., ARPACI-
DUSSEAU, R. H., AND ARPACI-DUSSEAU, A. C. Error Prop-
agation Analysis for File Systems. In Proceedings of the ACM
SIGPLAN 2009 Conference on Programming Language De-
sign and Implementation (PLDI’09) (June 2009).

[78] STACKOVERFLOW-39661635. Retry on 408 Time-
out from Azure Table Storage service. https:
//stackoverflow.com/questions//retry-on-408-
timeout-from-azure-table-storage-service, 2016.

[79] SUN, J., SU, T., LI, J., DONG, Z., PU, G., XIE, T., AND SU,
Z. Understanding and Finding System Setting-Related Defects
in Android Apps. In Proceedings of the 2021 ACM SIGSOFT
International Symposium on Software Testing and Analysis
(ISSTA’21) (July 2021).

[80] SUN, X., LUO, W., GU, J. T., GANESAN, A., ALAGAPPAN,
R., GASCH, M., SURESH, L., AND XU, T. Automatic Relia-
bility Testing for Cluster Management Controllers. In Proceed-
ings of the 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’22) (July 2022).

[81] TAN, C., JIN, Z., GUO, C., ZHANG, T., WU, H., DENG, K.,
BI, D., AND XIANG, D. NetBouncer: Active Device and Link
Failure Localization in Data Center Networks. In Proceedings
of the 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’19) (Feb. 2019).

[82] WEIMER, W., AND NECULA, G. C. Finding and Preventing
Run-Time Error Handling Mistakes. In Proceedings of the

19th Annual ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’04)
(Oct. 2004).

[83] YOO, S., AND HARMAN, M. Regression Testing Minimisa-
tion, Selection and Prioritization: A Survey. Software Testing,
Verification, and Reliability 22, 2 (Mar. 2012), 67–120.

[84] YUAN, D., LUO, Y., ZHUANG, X., RODRIGUES, G. R.,
ZHAO, X., ZHANG, Y., JAIN, P. U., AND STUMM, M. Simple
Testing Can Prevent Most Critical Failures: An Analysis of
Production Failures in Distributed Data-Intensive Systems. In
Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI’14) (Oct. 2014).

[85] YUAN, D., MAI, H., XIONG, W., TAN, L., ZHOU, Y., AND

PASUPATHY, S. SherLog: Error Diagnosis by Connecting
Clues from Run-Time Logs. In Proceedings of the 15th Inter-
national Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS-XV) (Mar. 2010).

[86] YUAN, D., PARK, S., HUANG, P., LIU, Y., LEE, M. M.,
TANG, X., ZHOU, Y., AND SAVAGE, S. Be Conservative:
Enhancing Failure Diagnosis with Proactive Logging. In Pro-
ceedings of the 10th USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI’12) (Oct. 2012).

[87] ZHANG, P., AND ELBAUM, S. Amplifying Tests to Validate
Exception Handling Code. In Proceedings of the 34th Interna-
tional Conference on Software Engineering (ICSE’12) (June
2012).

[88] ZHANG, Q., YU, G., GUO, C., DANG, Y., SWANSON, N.,
YANG, X., YAO, R., , CHINTALAPATI, M., KRISHNAMURTHY,
A., AND ANDERSON, T. Deepview: Virtual Disk Failure
Diagnosis and Pattern Detection for Azure. In Proceedings of
the 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’18) (Apr. 2018).

1716 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.rfc-editor.org/rfc/rfc9110.html#name-idempotent-methods
https://www.rfc-editor.org/rfc/rfc9110.html#name-idempotent-methods
https://stackoverflow.com/questions//retry-on-408-timeout-from-azure-table-storage-service
https://stackoverflow.com/questions//retry-on-408-timeout-from-azure-table-storage-service
https://stackoverflow.com/questions//retry-on-408-timeout-from-azure-table-storage-service

Test Coverage for Network Configurations

Xieyang Xu1 Weixin Deng1 Ryan Beckett2 Ratul Mahajan1 David Walker3

1University of Washington 2Microsoft 3Princeton University

Abstract
We develop NetCov, the first tool to reveal which network
configuration lines are tested by a suite of network tests. It
helps network engineers improve test suites and thus increase
network reliability. A key challenge in developing a tool like
NetCov is that many network tests test the data plane instead
of testing the configurations (control plane) directly. We must
be able to efficiently infer which configuration elements con-
tribute to tested data plane elements, even when such contribu-
tions are non-local (on remote devices) or non-deterministic.
NetCov uses an information flow graph based model that pre-
cisely captures various forms of contributions and a scalable
method to infer contributions. Using NetCov, we show that
an existing test suite for Internet2, a nation-wide backbone
network in the USA, covers only 26% of the configuration
lines. The feedback from NetCov makes it easy to define new
tests that improve coverage. For Internet2, adding just three
such tests covers an additional 17% of the lines.

1 Introduction

As critical infrastructure, networks must be highly reliable
but, unfortunately, network outages are common. A primary
culprit is networks’ reliance on complex, low-level configu-
ration that dictates how routers select best paths and forward
traffic. Day-to-day updates to network configuration are error-
prone, leading to outages that knock off important online
services (e.g., banking), ground airplanes, and disable critical
communication (e.g., emergency calls) [3, 33, 34, 39, 45].

To improve network reliability, automatic testing and veri-
fication of configurations is becoming commonplace. Today,
network operators have at their disposal many tools with in-
creasing sophistication that can scale to large networks and
check various aspects of network behavior [5, 23, 40, 49, 51].

However, using such tools is not sufficient by itself; one
must also use them effectively. Outages can occur despite
automated testing when the test suite is poor and does not
cover key aspects of network configuration. This was the case
with the massive Facebook outage during which Facebook,
WhatsApp, Instagram, and Oculus were unavailable for six
hours [35]. Current tools have pushed the limits of what can
be tested but left open the question of what needs to be tested.

Without tool support, it is difficult for engineers to know if
they are effectively testing network configurations. In indus-
trial networks with possibly millions of lines of configurations,

engineers’ understanding of network behavior and dependen-
cies is necessarily incomplete. It is even harder to update
an existing test suite after the network evolves because the
engineers likely do not know what the old test suite is or is
not testing for the updated network.

Recent work has proposed data plane coverage [47] to re-
veal testing gaps. It shows which data plane elements, such as
forwarding rules, are exercised by a test suite. However, well-
tested data plane does not imply well-tested configurations.
Data plane elements are the output of network’s configura-
tions (which define its control plane) and the current operating
environment (failures, external routing information). Testing
a given data plane only tests configuration elements that are
exercised in that particular environment. Other configuration
elements are not tested. We demonstrate this empirically via
a scenario where testing all data plane elements leaves over
half of configuration lines untested.

We develop configuration coverage to provide comprehen-
sive and precise feedback to network engineers on test suite
quality. Our goal is to identify exactly which configuration
lines are tested and which ones are not. We want to consider
all configuration elements, not only those that contribute to
the current data plane. Revealing exactly which lines are
untested helps improve tests—add tests that target untested
lines—which in turn can improve network reliability. This
is similar to how code coverage tools help improve tests and
software reliability [9, 11, 22].

A major challenge we face is that many network tests do
not exercise configurations directly. Instead, they reason about
the data plane elements produced by configurations. We need
to infer the configuration elements that contribute to the tested
data plane elements. This inference is complicated because
contributions can be non-local and non-deterministic. In a
distributed control plane, a piece of tested routing information
may have been propagated and transformed multiple times
along its path, and both local and non-local configurations
may have contributed to its existence. For example, the path
attributes of a BGP route is shaped by routing policies on each
and every hop that it traverses. Further, not all contributions
are deterministic. For instance, any one of possibly multiple
sub-prefixes can lead to the route of an aggregate prefix. We
must scalably account for local and non-local contributions
and for non-deterministic contributions.

Our solution is to model the contribution between config-
uration elements and data plane elements as an information

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1717

flow graph. An IFG is a directed acyclic graph (DAG) where
vertices denote network elements and edges denote contribu-
tions. In addition to direct contributions from configuration
elements to data plane elements, we also model contribu-
tions between data plane elements (from predecessors to suc-
cessors). For instance, a BGP route contributes to the BGP
message that derived from it. Indirect contributions are thus
modeled by multi-hop paths in the DAG. When contributions
exhibit non-determinism, we use special disjunctive nodes to
organize possible DAG paths that may contribute to a given
data plane element.

We build a tool called NetCov based on this model. It
annotates which configuration lines and logical elements are
tested by a given test suite and produces aggregated coverage
statistics. To efficiently map tested data plane element to
the set of contributing configuration elements, it materializes
the IFG lazily, instead of tracking contributions proactively,
during data plane generation. This design avoids the cost to
compute and store contributions for transient or untested data
plane elements. NetCov is open-sourced on GitHub [30].

We evaluate NetCov on Internet2, a nation-wide backbone
network in the USA, and on synthetic data center networks.
We show that test suites proposed in prior work can have poor
coverage. The three tests proposed by Bagpipe [44] covered
only 26% of the configuration lines of Internet2. We also
show how surfacing untested configuration elements suggests
new tests that improve coverage. By adding just three such
tests to the Internet2 test suite based on NetCov’s feedback,
we could improve coverage to 43%, and more similar tests
can be added to further increase coverage. NetCov performs
reasonably well. The time to compute coverage is 1.2 hours
for the largest network that we study, which has over 2 million
forwarding rules. This time is an order of magnitude less than
the time to execute tests.

Stepping back, we note that networking is not alone in
its reliance on configuration. Today, a lot of infrastructure
and distributed applications are deployed by composing ex-
isting components using configuration (e.g., infrastructure
deployment using Terraform, and application deployment us-
ing containers and service meshes). These configurations are
central to correct behavior, which is why there is an intense
focus on testing them properly [21, 38, 43]. As for networks,
there are no tools to help engineers discover how well the con-
figurations are tested. The techniques developed in our work,
the IFG-based contribution tracking and its lazy traversal, can
provide a starting point toward better testing of infrastructure
and distributed application configuration as well.

2 Background on Network Testing

In networks with distributed control planes, each device runs
one or more routing protocol (e.g., BGP, OSPF) instances.
Each instance exchanges routing messages with its neighbor-
ing instances. Routing messages contain attributes of paths

that the sender is using to various destinations. A routing
instance may learn multiple paths to the same destination via
different neighbors. It selects the best one (or multiple best
ones if multipath routing is enabled) based on its policy and
stores that path in its protocol RIB (routing information base).
Multiple routing protocol instances on a device may have
best paths to the same destination. The device selects the best
one(s) based on the relative preference of the protocols and
stores the selection in its main RIB. Information in the main
RIB is used to forward packets.1

Network engineers can control many aspects of the com-
putation above using device configuration. This includes the
routing protocol instances that are running; the peering be-
tween instances; the destination prefixes that are announced
by each routing protocol instance; how routing messages are
transformed prior to sending (export policy) and upon recep-
tion (import policy); and the preference function for best path
selection. Naturally, thus, how the network forwards packets
is intimately dependent on device configurations.

Given the importance of configurations to correct network
behavior, network engineers use automatic testing to find bugs
and gain confidence in their correctness. Network tests come
in two flavors. Data plane tests analyze the computed data
plane state (i.e., RIBs), e.g., checking that node A can reach B
and that route to a particular destination is present at node C.
Control plane tests directly analyze device configuration, e.g.,
checking that the import policy blocks routing messages for
private address space (such as 10.0.0.0/8) and BGP peerings
are correctly configured.

3 Configuration Coverage: Overview

Network engineers today create data and control plane tests
based on past outages and their knowledge of which behaviors
are important to test. There are no tools to provide feedback
on how well they are testing configurations and which aspects
of the configuration are untested. We aim to build such a tool.
Given the complexity of real-world networks, it is difficult for
humans to know if they have covered all important elements of
configurations. As with software, high coverage is necessary
but not sufficient for a good test suite. In addition to exercising
all key behaviors, the tests must also properly assert that those
behaviors match intent. This latter task is not our focus.

Our goal is to reveal which elements of the network config-
uration are covered by a suite of data and control plane tests.
Before discussing our approach, we define what it means for
a configuration element to be covered.

1In reality, for fast forwarding, routers have a forwarding information
base (FIB), which maps each main RIB destination to its outgoing interface,
by recursively resolving next hop information (which may be an IP address).
The difference between main RIB and FIB is not material for our work, and
we use the term main RIB for the table that has forwarding information.

1718 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3.1 Defining coverage
We deem a configuration element to be covered if it i) is
tested directly by a control plane test; or ii) contributes to
the production of a data plane state element (i.e., an entry
in the protocol or main RIB) tested by a data plane test. For
now, assume that contributions are deterministic. We discuss
non-deterministic contributions in the next section.

Figure 1 illustrates configuration coverage as a result of
a data plane test. It shows parts of the two routers’ configu-
ration. R1’s configuration defines one interface (Lines 1-2)
and one BGP peer (192.168.1.2, which is R2’s address), and
it specifies the import and export policy to use. The import
policy (R2-to-R1 at Lines 6-11) denies routing messages for
a particular prefix and sets the preference for another.

R2’s configuration defines two interfaces, a BGP peer (R1)
and routing policies. At Line 13, it states that the prefix
10.10.1.0/24 should be announced to BGP peers iff it is in
the main RIB.2 In our example, 10.10.1.0/24 will be in the
main RIB as it corresponds to the eth1’s prefix. (Address
statements like Line 4 encode the IP address and prefix length.
For eth1, given the address 10.10.1.1 and prefix length of 24,
the prefix is 10.10.1.0/24.) Routers add interface prefixes to
the "connected" protocol RIB, from where those prefixes can
enter the main RIB. The resulting RIBs on the two routers
are shown in the figure. Each entry includes the next hop and
source routing protocol ("conn" = connected).

Suppose the entry for 10.10.1.0/24 at R1 was tested by
a data plane test. The covered configuration elements are
highlighted. On R1, the BGP peer configuration and import
policy binding (Lines 3-4) are covered because the tested
entry came via that peering and passed through that policy.
Parts of the routing policy R2-to-R1 relevant to the tested
state (Lines 6, 9-11) are also covered. The interface definition
(Lines 1-2) is covered because it enables the BGP peering to
be established. In contrast, the export policy R1-to-R2 and
unexercised parts of R2-to-R1 (Lines 7-8) are not covered.

There are covered configuration elements at R2 as well.
These include the interface definitions—eth0 enables the BGP
edge and 10.10.1.0/24 was announced due to eth1—and BGP
peering, the export policy, and the BGP network statement.

Alternative definitions of coverage. One may consider an
alternative definition of coverage that disregards non-local
configuration elements. But we posit that including non-local
elements is more meaningful. These elements, such as the
BGP network statement on R2’s Line 13, are just as key to
the existence of 10.10.1.0/24 at R1 as the local elements.

Another definition of coverage is based on mutation [4]: a
configuration line is deemed covered if its mutation alters the
test result. Compared to the definition of coverage we adopt,
mutation-based coverage will report an additional class of
configuration elements as covered—configuration elements

2Different router vendors have different semantics for BGP network state-
ments. We are assuming Cisco semantics.

Figure 1: An example network with routing tables and con-
figurations. The highlighted configuration lines are covered
when the route to 10.10.1.0/24 is tested at R1.

that de-prioritize (or reject) the competitors of the tested data
plane element. Mutation-based coverage tends to be signifi-
cantly harder to compute [24], and its results can be hard to
interpret. In developing the first tool in this space, we decided
to focus on a simpler, more direct definition of coverage. We
will explore more sophisticated definitions in the future.

3.2 Our approach
While it is straightforward to identify configuration elements
covered by a control plane test, it is not so for data plane tests.
Data plane tests analyze the "output" of the control plane, and
we need a scalable way to compute which configuration ele-
ments contributed to tested data plane state. The relationship
between these inputs and outputs is complex. How a particular
RIB entry comes about relies on many configuration elements
across multiple devices. The need to map tested outputs to
input space sets computation of configuration coverage apart
from data plane coverage and software coverage, for both of
which the coverage domain is the same as test domain.

To motivate our approach to solving this problem, let us
first sketch two strawman approaches. One potential approach
is to express control plane computation declaratively, e.g., in
Datalog. This enables identification of contributing inputs
for a given output using a form of backward-reasoning [46,
52]. However, network control plane computations can be
quite complex (e.g., non-monotonic behaviors [16,36]). While
declarative encodings may work in special cases [27], it is
generally hard to get high-fidelty, performant encodings. That
is why most control plane analysis tools use an imperative
approach [12, 31, 32, 49].3

3Batfish [12], a widely used control plane analysis tool, originally used
Datalog to encode network control planes but switched to imperative simula-
tions due to expressiveness and performance challenges.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1719

Figure 2: Subset of the IFG for the Figure 1 example. It tracks configuration elements that contribute to the tested RIB entry (F1).

Another potential approach is to use simulation-based for-
ward reasoning, i.e., simulate the control plane (imperatively)
and track which configuration elements feed into each part of
the data plane state. However, this approach has scalability
limitations. Network simulation is time and memory inten-
sive [12, 32, 49], and it will become significantly worse if it
needed to track all necessary information along each hop.

Our approach is based on two observations. First, for the
purposes of computing coverage, we do not need a full com-
putational model of the control plane. We need to only track
which configuration elements contribute to tested data plane
state (i.e., taint analysis [41]), not the exact input-output re-
lationship; and we need to reason only about the stable state
(i.e., the the of devices once they have settled on best paths),
not the transient states. Data plane testing [19, 23, 25, 26, 48]
assumes that the analyzed state is stable. Our second observa-
tion is that the stable state contains enough information for us
to infer contributions of configuration elements after the fact,
based on the semantics of the control plane. This inference
is vastly cheaper than tracking contributions towards all data
plane state entries, independent of whether they are tested.

To model contributions to the stable state, we use an infor-
mation flow graph (IFG). Figure 2 shows a subset of the IFG
for the example in Figure 1. Each node is a fact and arrows
denote information flow from the tail to head. IFGs have three
types of facts: i) data plane state, ii) configuration elements,
and iii) auxiliary facts that capture intermediate dependencies
between data plane state and configuration elements.

The main RIB entry 10.10.1.0/24 at R1 (F1) is derived
from the corresponding BGP RIB entry (F5), which in turn is
derived from the BGP message from R2 (F10). This message
exists because of the BGP edge between R1 and R2 (F13),
the source message sent by R2 (F11), and the relevant con-
figuration element within import policy (F20). R2 sent the
BGP message because of the same BGP edge (F13), its ex-
port policy elements (F22), and the BGP RIB entry (F7). This

BGP RIB entry exists because of the configuration element
(F23) and the RIB entry (F3), which exists because of the
connected route (F8). The BGP edge (F13) exists because of
the configuration elements that define the peering (F16, F17)
and paths between R2 and R1 that enable the BGP session
to be established. The paths depend on the RIB entries (F2
and F4, respectively), the contributions to which can be simi-
larly traced. In this manner, the IFG captures all configuration
elements that led to the tested RIB entry (F1).

We do not track IFG dependencies proactively but infer
them on-demand based on control plane semantics, using
a mix of backward-forward reasoning. Backward inference
infers the parent (tail) of the edge from its child (head). The
information in child nodes is not enough to fully recover the
parent nodes, but is often enough to select them from the
known stable state. For instance, we can compute the BGP
RIB entry F5 from the main RIB entry F1—the main RIB
entry indicates that its source routing protocol is BGP, and
we thus look up the BGP RIB for 10.10.1.0/24.

Lookup-based inference does not always work. For in-
stance, given a BGP message which has passed through an
import policy, we cannot compute backwards which terms
of the import policy were exercised (F10← F20). Another
parent of F10, the pre-import BGP message (F11) cannot be
looked up either because it is not part of the input and needs to
be computed on-the-fly. To address these limitations, we com-
bine backward and forward inference. When a parent can not
be directly looked up, we first look up the prerequisites of the
parent. For instance, we can look up F7 based on F10. Next,
we use targeted simulations to compute non-existing facts and
to select relevant facts exercised in a control plane process
or data plane process. For instance, given the BGP route at
R2 (F7), we simulate its processing through the export policy,
which allows us to derive the pre-import BGP message (F11)
and find the policy term exercised during the export process
(F22). Once F11 is computed, we conduct another targeted

1720 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

simulation to discover the policy term exercised in the import
process (F20). Unlike a full control plane simulation, these
targeted simulations are fast. They have limited scope (e.g.,
best path selection is not simulated) and are done only for
messages of interest, not all messages.

By combining backward and forward inference, atop the
stable state IFG, we can scalably discover all covered config-
uration elements. We describe this approach in detail next.

4 Design of NetCov

NetCov takes as input configuration files, data plane state
(protocol RIBs, main RIB and active routing edges) of the
network. The data plane state may be pulled from live net-
work or produced by control plane analysis tools [12, 32, 49].
In addition, NetCov takes as input what is tested: data plane
entries that are tested by data plane tests, and configuration el-
ements that are tested by control plane tests. This information
is produced by network testing tools [12, 47].

Based on these inputs, NetCov computes which config-
uration elements are covered. The core of this computation
efficiently mapping a data plane fact to configuration elements
that contribute to it. We describe this computation next.

4.1 Information flow model
IFGs are directed acyclic graphs whose nodes denote network
facts and edges denote information flow between facts. Table 1
shows the types of network facts modeled by NetCov and the
information flow between different types. Data plane state
has three subtypes: main RIB entries, protocol RIB entries,
and access control list (ACL) entries.

Auxiliary facts have three subtypes: routing edges, routing
messages, and paths of routing messages. These facts are not
strictly necessary, but they help create a compact IFG and
speed up graph walking. For instance, the routing messages
of many protocol RIB entries depend on the same path which
in turn may depend on many main RIB entries. Adding an
explicit fact for the path avoids the need to add all pairs of
edges between routing messages and main RIB entries.

In our model, the auxiliary facts for routing messages rep-
resent messages between routing protocol instances across
devices as well as within a device, i.e., redistribution [10].
This uniform treatment is a modeling convenience. In real-
ity, explicit messages are not exchanged during redistribution
(though redistribution is subject to routing policies akin to
messages between cross-device routing instances).

The last column of Table 1 shows how information flows
among different types of facts. A main RIB entry stems from
a protocol RIB entry and optionally another main RIB entry
(when its next hop is an IP address whose corresponding out-
put interface needs further resolution). A protocol RIB fact
stems from a routing message (for protocols such as BGP),
a configuration element (for connected interfaces and static

Network fact Information flow

Configuration element (c) None

Data
plane
state

Main RIB entry (f)
fi← r j
fi← r j, fk

Protocol RIB entry (r)

ri← m j
ri← c j
ri← f j,ck
ri←{r j1 , ...},ck

ACL entry (a) ai←{ci1 , ...}

Aux-
iliary

Routing message (m)
mi← r j,ek,{cl1 , ...}
mi← m j,ek,{cl1 , ...}

Routing edge (e)
ei←{c j1 , ...}
ei←{c j1 , ...},{pk1 , ...}

Path (p) pi←{ f j1 , ...},{ak1 , ...}

Table 1: Information flow model: Types of facts and all possi-
ble information flows for each type. {t, ...} denotes a set of
facts.

routes), a main RIB entry accompanied with a configuration
element (such as when a BGP network statement populates a
main RIB entry into BGP RIB) or a set of RIB entries accom-
panied with a configuration element (for aggregate routes).
ACLs facts stem from configuration facts and have no other
dependencies. Routing messages stem from a RIB fact or an-
other message (e.g., post-import-policy message depends on
pre-import-policy message), and they also depend on routing
edges and routing policy configurations. Inter-device routing
edges stem from paths that enable sessions to be established
and configuration facts that define peerings; Intra-device rout-
ing edges stem from configuration facts that define redistribu-
tion. Finally, path facts depends on main RIB facts and ACL
facts that impact routing traffic along the way.

For correct computation of coverage, the IFG model must
be sound and realizable. Soundness means that it includes all
relevant dependencies (per control plane semantics) and no
more. Realizable means parents (tails) along all information
flow edges can always be inferred, via lookup or simulation
or a mix. Our model is sound to our knowledge; and that we
are able to use it to compute coverage, using the framework
described next, points to its realizability.

4.2 Inferring the IFG on demand
Based on the information flow model, NetCov uses a
backward-forward inference framework to lazily material-
ize the IFG from any set of facts whose coverage need to be
tracked. The framework is abstracted using a set of inference
rules and an iterative construction algorithm. Each inference
rule is function that takes a materialized IFG node as input
and materializes a set of its ancestor nodes as well as the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1721

Algorithm 1: Rule to infer BGP RIB entry from main
RIB entry.

1 def infer_from_main_rib_entry(f,
stable_state):↪→

2 if not (f is MainRibEntry and f.protocol ==
'bgp'):↪→

3 return []
4 bgp_entry = stable_state.bgp_rib.lookup(
5 host=f.host,
6 prefix=f.prefix,
7 nexthop=f.nexthop,
8 status='BEST'
9)

10 return [(bgp_entry, f)]

edges the allows the ancestors to reach the input node. These
nodes and edges will be merged into the materialized IFG
by the construction algorithm. The implementation of these
functions uses one or both of the lookup-based inference and
simulation-based inference. Let us elaborate.

Lookup-based inference. The computation of data plane
state is lossy. While a main RIB entry may be derived from a
BGP RIB entry, we cannot infer the complete BGP RIB entry
from the main RIB entry because BGP specific attributes (e.g.,
AS-path) are not preserved in the main RIB.

To handle this information loss, our inference takes two
steps. It first infers attributes that can be known from heuris-
tics (we know such heuristics from control plane semantic,
e.g., the BGP RIB entry should have the same prefix as the
main RIB entry derived from it). Next, we look up all en-
tries in the stable state that match the inferred attributes. For
instance, Algorithm 1 shows the simplified function to in-
fer the BGP RIB entry that led to a main RIB entry. Based
on control plane semantics, if a main RIB entry indicates
its source protocol to be BGP, it must have stemmed from a
BGP RIB entry on the same router with the same prefix and
nexthop attributes (Lines 5-7). Besides, the BGP RIB entry
should have been selected as the best route (Line 8). Such
information is enough to uniquely identify the parent within
the known stable state. The return value (Line 10) is a list of
tuples denoting the IFG edges materialized by this rule.

Simulation-based inference. Lookup-based inference falls
short in two scenarios. First, when a parent fact is absent from
the known stable state (e.g., routing messages), and second,
when the heuristics fail to infer enough information so as to
uniquely identify the parents (e.g., we cannot know which
policy clauses are used in the production of a BGP route
by looking at the resulted route). We use local simulations
to complement lookup-based inference. But simulations can
only be performed in the forward direction, i.e., to compute a
fact using simulations, we first need to know its parent. We use

Algorithm 2: Rule to infer ancestors of a post-import
BGP message.

1 def infer_from_bgp_message(m, stable_state):
2 if not (m is BgpMsg and m.is_post_import):
3 return []
4 bgp_edge = stable_state.bgp_edges.lookup(
5 recv_host=m.host
6 send_ip=m.nexthop
7)
8 origin_entry = stable_state.bgp_rib.lookup(
9 host=bgp_edge.send_host,

10 prefix=r.prefix,
11 status='BEST'
12)
13 pre_import_msg, export_clauses =

policy_simulation(↪→

14 input=origin_entry,
15 policy=bgp_edge.export_policy
16)
17 _, import_clauses = policy_simulation(
18 input=pre_import_msg,
19 policy=bgp_edge.import_policy
20)
21 return [(pre_import_msg, m), (bgp_edge, m)]

+↪→

22 [(cl, m) for cl in import_clauses] +
23 [(origin_entry, pre_import_msg), (bgp_edge,

pre_import_msg)] +↪→

24 [(cl, pre_import_msg) for cl in
export_clauses]↪→

a generalized version of lookup-based inference to discover
grandparent facts of a known fact, and then use simulations
with the grandparents to infer their children (i.e., parents of
the original fact).

Algorithm 2 shows the simplified inference rule that in-
fers the ancestors of a post-import BGP message. Line 13
demonstrates the use of simulation-based forward inference
to compute a missing parent fact on the fly. The two prereq-
uisites to simulate the BGP message–the grandparent BGP
RIB entry (origin_entry) and the BGP edge–are discovered
via lookup-based backward inference, on Line 8 and Line 4
respectively. The simulation returns the derived BGP message
after applying the routing policy, as well as the policy clauses
exercised during the process. The second forward-simulation
(Line 17) is to discover the policy clauses that are hit during
the import process. The return value includes the inferred IFG
edges that connect to the input node m as well as ones that
connect to parent pre_import_msg. The former corresponds
to information flow mi← m j,ek,{cl1 , ...} in Table 1 and the
latter corresponds to mi← r j,ek,{cl1 , ...}.

IFG construction. Next, we detail IFG materialization using
inference rules. Assume for now that the information flow

1722 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 3: IFG lazy materialization
Input: Initial nodes {vi}; Inference rules {φi : v 7→ {(ui,vi)}};
Output: Materialized IFG (V,E)
Data: Stable state data plane state (main RIB and protocol RIBs);

Routing edges; Configuration elements;
1 Procedure BuildIFG({vi}, {φi})
2 V,E←{vi},∅
3 Vprev←{vi} // dirty nodes of previous iteration
4 while |Vprev|> 0 do
5 Vcurr ←∅ // dirty nodes of current iteration
6 foreach c ∈Vprev do
7 foreach φ ∈ {φi} do
8 E ′← φ(c)
9 foreach (ui,vi) ∈ E ′ do

10 if ui /∈V then
11 V ←V ∪{ui}, Vcurr ←Vcurr ∪{ui}
12 if vi /∈V then
13 V ←V ∪{vi}, Vcurr ←Vcurr ∪{vi}
14 if (ui,vi) /∈ E then E← E ∪{(ui,vi)}

15 Vprev←Vcurr

16 return (V,E)

is deterministic; the next section discusses how we handle
non-determinism.

As shown in Algorithm 3, the IFG initially contains only
the nodes representing the tested data plane state facts from
the input and does not have any edges (Line 2). It is then
iteratively expanded by applying inference rules on existing
nodes. In each iteration, all inference rules are applied to
the dirty nodes derived from the previous iteration (Line 8).
The new nodes and edges inferred during such process are
collected and merged (with deduplication) into the IFG (Line
9-14). The computation repeats until no new facts can be
derived in an iteration.

4.3 Handling uncertainty

There are situations where it is not certain which stable state
facts contributes to a given fact. One such scenario is BGP
aggregation, where a prefix (e.g., 10.10.0.0/16) is added to
the RIB iff at least one more of its more specific prefixes (e.g.,
10.10.1.0/24) is present. When multiple more specifics are
present, we do not know which one triggered the aggregate.
Another such scenario is when multiple paths are available
for a routing edge to be established, which can happen when
the network uses multipath routing. Here, we do not know
which path is actually used by routing messages.

It is important to model and report such uncertainty be-
cause the notion of contribution is different. Unlike determin-
istic contribution, when the contribution is non-deterministic,
one or more parent facts can disappear without impacting
the outcome represented by the child. Our experiments have
scenarios where 78% of the configuration lines have non-
deterministic contribution, and the tested fact would not be

(a) (b) (c)

Figure 3: Modeling uncertainty. (a) BGP aggregate (F1) has
two potential contributors. (b) F5 is weakly covered but F6
and F7 are strongly covered. (c) The predicates of IFG nodes.

impacted if any of them did not exist. Not separating such
uncertain contribution would lead to misplaced confidence in
how well configurations are tested.

We model contribution uncertainty using disjunctive nodes
in the IFG. This node points to the parent fact (e.g., the ag-
gregated RIB fact) and the multiple contributors to the parent
point to this node. See Figure 3(a) for an example where a
BGP aggregate could be triggered by either of the two more
specific prefixes. When our inference rules encounter uncer-
tainty during IFG materialization, they produce a disjunctive
node and attach all contributors to it as children.

We introduce the notion of weak coverage to capture the
configuration elements whose contribution to the tested facts
is not critical. We define a contribution as non-critical if the
tested fact will not be affected by deleting the configuration
element from the IFG. In Figure 3(b), F5 is weakly covered
when F1 is tested because F1 can be derived without any
contribution from F5, via F2 and F6. On the other hand, F6 is
strongly covered because, without it, neither F2 nor F3 can be
derived and thus the disjunctive node cannot be derived. F7 is
also strongly covered because it contributes to F4, which is
essential to F1.

NetCov labels each covered configuration element as strong
or weak after the materialization of the IFG. The label is deter-
mined as follows. We first assign a Boolean variable to each
configuration element in the IFG. Next, we build a Boolean
predicate of each IFG node on top of these variables. The
predicate of a fact depends on the predicate of its ancestors
in the IFG: A normal node depends on the conjunction of its
immediate parents, and a disjunctive node depends on the dis-
junction of parents. Therefore the predicate of any IFG node is
ultimately composed of the variables associated with configu-
ration elements that lead to it, denoted as Γ(v) =F(x1, . . . ,xn).
Figure 3(c) shows the predicates of IFG nodes in Figure 3(b).
We represent these Boolean predicates using Binary Decision
Diagrams (BDDs) [8] and build BDD predicates by traversing
the IFG. By definition, a configuration fact (denoted as xi)
is strongly covered if and only if there exists a tested data
plane state fact (denoted as v), v is reachable from xi in the
IFG, and xi is a necessary condition of Γ(v). Therefore, once
the predicates are built, we test graph reachability and log-
ical necessity between each pair of configuration facts and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1723

tested data plane facts. Necessity ¬xi⇒¬Γ(v) is equivalent
to unsatisfiability of ¬xi∧Γ(v). While (un)satisfiability is NP-
Complete in general cases, we note that it is efficient in our
case—it can be reduced to computing the cofactor Γ(v)|xi=0
and testing whether the cofactor is constant false, both of
which are efficient using BDD operations.

We further reduce the size of BDD predicates by precluding
configuration facts that can reach tested facts via a path with
no disjunctive node, such as node F7 in Figure 3(b). These
configuration facts must be strongly covered so their necessity
do not need to be tested. Besides, their validity variables can
be replaced with constant true when building BDD predicates,
which will not affect the strong/weak classification of other
configuration elements. We empirically find this heuristic to
be effective in reducing the number of variables used for weak
coverage computation.

4.4 Future Extensions
Our current model tracks the contribution of configuration
elements to concrete data plane state entries. While this view
aligns well with tools that perform data plane testing [50], data
plane verification [25, 29], and control plane testing [12, 49],
it is not applicable to control plane verification tools [1,7] that
reason about data plane symbolically (i.e., simultaneously rea-
son about multiple data planes under different environments).
Control plane verification tools turn configuration into an
internal model that is used for validation. NetCov can be ex-
tended to these tools by tracking how configuration elements
contribute to the model, akin to how compilers link program
source information to its intermediate representations.

The current implementation of NetCov supports BGP, a
path vector protocol, and static routes. Other protocols, in-
cluding link state protocols (e.g., OSPF) and label switching
protocols (e.g., MPLS) can be supported with appropriate ex-
tensions. Such extensions require defining protocol-specific
configuration elements and data plane state facts (such as
label information base entry for MPLS) as well as all new
information flows.

5 Implementation

We implemented NetCov with 4,000 lines of Python code.
A total of 18 lambdas (Python functions) encode the IFG
inference rules. NetCov uses Batfish [6] to extract configu-
ration elements from configuration files and to run targeted
simulations, and it uses CUDD [37] for BDD operations.

NetCov supports several major router vendors supported
by Batfish, including Arista, Cisco, and Juniper. It builds a
vendor-neutral representation of configuration elements using
vendor-specific information provided by Batfish. Table 2 lists
the configuration elements that NetCov currently analyzes.

NetCov may not consider all components of a device’s
configuration. One category of such components is device

Type Purpose

Interface Interface and its settings (e.g., addresses)
BGP peer BGP peer settings (e.g., IP address, AS number)
BGP peer group BGP peer settings inherited by one or more peers
Route policy clause One clause in an export or import route policy
Prefix list List of prefixes, used in route policy clauses
Community list List of BGP communities for route policy clauses
AS-path list List of AS-path expressions for route policy clauses

Table 2: Configuration elements analyzed by NetCov.

management configuration (e.g., login settings), which does
not impact data or control plane functionality. The second
category is control plane components that are not currently
modeled by NetCov. This includes IPv6 (which is not mod-
eled by Batfish currently) and routing protocols other than
BGP (e.g., OSPF). The presence of unconsidered components
does not imply that NetCov cannot be used for that network.
As we show in the next section, NetCov provides helpful
coverage information for parts that are considered.

After constructing the IFG, which yields information on
which configuration elements are covered, NetCov computes
which lines are covered. NetCov leverages the Batfish parser
to map configuration elements to line numbers. Each element
typically spans multiple configuration lines, and when an
element is covered, it deems all of those lines as covered.

Based on element and line coverage, NetCov produces
three main outputs. The first is a coverage report at the granu-
larity of individual lines (or elements). We produce this report
in the lcov format, which is supported by common code cov-
erage tools and enables users to visualize coverage results
as annotations on configuration files. See Figure 4(a) for an
example. The second is coverage aggregated at the file level,
generated with the help of GNU LCOV [17]. See Figure 4(b)
for an example. The third output is coverage aggregated by
the type of configuration element, which shows what fraction
of elements of each type are covered.

These outputs help users uncover testing gaps and improve
their test suites in different ways. The aggregate results help
identify systematic gaps such as "router A is poorly covered"
or "routing policy clauses are poorly covered." The line-level
results help them zoom in to specific gaps and develop tests
that target them. The case study in the next section demon-
strates this test suite improvement process.

6 Case Studies

We present case studies of using NetCov on two disparate
networks, one a wide-area backbone and another a datacenter.
In each case, using realistic test suites, we show that NetCov
provides insight into what is and is not covered and how these
insights help improve the test suites.

1724 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Line-level coverage. Green background denotes covered lines, and red
denotes uncovered lines. Some lines are collapsed for simplicity.

(b) File-level aggregate coverage. The overall coverage is at top right, and
the coverage for individual files (devices) is in the table.

Figure 4: Example NetCov outputs.

6.1 Case Study I: The Internet2 backbone
Internet2 is a nation-wide network that connects over 60,000
US educational, research and government institutions. The
routing design of Internet2 is typical of backbone networks.
It has 10 BGP routers spread across the country. The routers
are organized as a single autonomous system (AS), and they
establish iBGP full mesh on top of internal reachability pro-
vided by the IS-IS protocol. The Internet2 routers connect
to 279 external BGP peers, and heavily use route import and
export policies. The import policy for an external peer has
multiple policy statements, some specific to the peer and some
shared within the same peer group. Peer-specific policies tend
to specify a list of allowed prefixes from this peer, and others
are used for sanity checking, preference setting, etc. Export
policies are similarly structured.

Internet2’s configurations that we study have 96,672 lines
(in Juniper’s JunOS format) across all routers. Of these, Net-
Cov’s coverage computation considers 64,886 lines. The bulk
of the unconsidered lines correspond to device management,
IPv6, and IS-IS protocol.

We do not have the data plane state of Internet2, which
is needed to run data plane tests. We approximate it using
Route Views [42], a repository of BGP routes from over two
hundreds ASes worldwide. This data helps approximate BGP
messages that external peers of Internet2 send to it. Consider
a peer with AS number X . If we find a prefix P in Route-
Views with AS-path [A,X ,Y], we assume that the peer sends

P to Internet2 with AS-path [X ,Y]. The existence of AS-path
[A,X ,Y] means that AS A must have a route to P with AS-
path [X ,Y], which it announces to its neighbors. If we find
multiple AS-paths for a prefix, we pick the one with fewest
AS hops.

We use these BGP messages that each peer sends to In-
ternet2 as inputs to simulate Internet2’s control plane using
Batfish. The data plane state produced by this simulation is
a coarse approximation of the real version, but it suffices to
meet our goals of running data plane tests and characterizing
configuration coverage.

6.1.1 Test suite coverage

To study how NetCov analyzes coverage for realistic test
suites, we use the test suite proposed in Bagpipe [44]. It has
three tests to validate Internet2’s BGP configuration.

• BlockToExternal: ensure that BGP routes with BTE com-
munity are not announced to any external (eBGP) peer.

• NoMartian: ensure that incoming BGP messages from
external peers for prefixes in the private address space
("Martian") are rejected.

• RoutePreference: ensure that if multiple routes to the
same prefix are accepted from multiple external neigh-
bors, the selected route belongs to the most preferred
neighbor. The neighbor’s preference depends on com-
mercial relationship [13]. Customers are most preferred,
followed by peers, and then providers4.

We implemented these tests using Batfish. BlockToExter-
nal and NoMartian are control plane tests. BlockToExternal
evaluates all BGP export policies on a set of BGP routes
carrying the BTE community and asserts that the result be
rejection. We generate the test cases by sampling BGP routes
from the data plane state and attaching the BTE community to
them. NoMartian evaluates all BGP import policies on a set
of BGP routes destined for Martian addresses and asserts that
the results be rejection. RoutePreference is a data plane test.
It focuses on destination prefixes available via multiple neigh-
bors and asserts that their local preferences reflect commercial
relationship. We use CAIDA data [28] to infer commercial
relationship between Internet2 and its BGP neighbors.

After running this test suite on Internet2, we find that it
covers only 26.1% of configuration lines across all devices.
Only a tiny fraction of configuration lines (0.5%) are weakly
covered, so we do not separate weak/strong coverage for this
case study; we will do that in the next one.

4As a not-for-profit network, Internet2 treats its member institutions as
customers and other not-for-profit networks (such as ESNet) as peers. Inter-
net2 does not have providers in its routing preference model.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1725

To help understand what is and is not covered in more detail,
NetCov enables network engineers to look at the data from
multiple perspectives. Figure 4(b) shows per-device coverage.
We see notable variation across devices, from 11.8% to 40.5%.
As we show below, the test suite has systematic gaps, and the
cross-device variation stems from different devices having
different fractions of covered configuration elements.

Figure 5 shows the coverage broken down by the type of
configuration elements. For simplicity, we create four buckets
of element types, as shown in the legend. The bottom bar
shows the fraction of reachable configuration lines in each
bucket. The "Test Suite" bar shows the covered fraction of
those lines, and the top three bars show the coverage of in-
dividual tests. The total coverage of individual tests is 0.6%,
0.9% and 24.7% respectively. BlockToExternal and NoMar-
tian cover only one type of configuration element (routing
policies), and even within this type, they cover a small frac-
tion. RoutePreference covered all four buckets but its overall
coverage is still limited.

Finally, NetCov reports that 27.9% of configuration lines
are "dead code" that will never be exercised. They include de-
fined BGP peer groups with no members and defined routing
policies that are never used for any peer.5

With 69% of BGP configurations, 85% of interfaces, 88%
of routing policies, and 57% of route attribute match lists
being completely untested, this test suite is clearly under-
testing the network. This leaves the network vulnerable to
bugs in untested configurations elements. Prior to NetCov,
it was not possible for network engineers to get any insight
into the quality of their test suite. It was also not possible for
them to get help toward systematically improving tests. We
demonstrate this test suite improvement process next.

6.1.2 Coverage-guided test development

NetCov’s feedback enables a test suite development process
that enables users to systematically improve coverage, which
helps test more critical aspects of the network and prevent
outages. This process is iterative. In each iteration the user
first identifies specific testing gaps and then creates new tests
to target those gaps. We demonstrate the process using three
iterations that focus on different types of gaps.

Iteration 1. We saw that routing policy coverage of NoMar-
tian test is low (Figure 5) despite that it checks the import
policies for all external peers. To investigate, we look at the
structure of Internet2 import policies and find that routers
have a policy named SANITY-IN which is shared by the major-
ity of external neighbors. Figure 4(a) shows this policy with
annotated coverage. Each router has an independent copy of

5Per best practices, these lines should be deleted. Or, at a minimum, they
should be tested lest someone start using an unused, erroneous policy. When
it comes to testing, such lines can never be exercised by data plane tests,
though control plane tests may be written for them.

0% 20% 40% 60% 80% 100%
Coverage

BlockToExternal

NoMartian

RoutePreference

Test Suite

All Lines

0.6%

0.9%

24.7%

26.1%

bgp peer/group interface routing policy prefix/community/as-path list

Figure 5: Coverage of the initial test suite broken down to
each individual test and configuration type.

this policy, but the copies and the coverage results are identi-
cal across routers. Of the five clauses in the policy, the clause
block-martians starting at line 6,896 is the only clause that
is covered. This coverage result confirms that the NoMartian
test did its job, and more importantly, it revealed a systematic
testing gap–the other four classes of forbidden routes are not
being tested.

Once we know the gap, the solution suggests itself. We
added a new test, SanityIn, to enforce that the other four
classes of received BGP messages should be rejected. After
adding this test, we used NetCov to confirm that this testing
gap had been addressed. Routing policy coverage was im-
proved by 0.6% and all five terms of SANITY-IN were covered
by the new test suite. The quantitative improvement is low
because SANITY-IN is just one of many policies in the network.
With feedback from NetCov, network engineers can identify
testing gaps in other routing policies and add more tests in a
similar way.6

Iteration 2. BGP peer configuration coverage of RoutePref-
erence test in Figure 5 is surprisingly low, given that all ex-
ternal BGP peers are supposed to be checked. Upon further
investigation we find that the uncovered peers have permitted
prefix-lists that do not overlap with other peers’ lists, which
left these peers untested.

We added a new test, PeerSpecificRoute, to check that BGP
announcements received from external peers should be ac-
cepted if their prefixes is in a peer-specific prefix list. This
test improved BGP peer coverage from 32% to 46%. The rest
of untested BGP peers are either not allowed to send BGP
routes to Internet2 or is intended for other internal use, such as
monitoring and management. This test also improved prefix-
list coverage from 45% to 63%. The remaining of untested
prefix-lists are mostly (30% out of 37%) ones that are defined
by never referenced.

Iteration 3. The low coverage of interface configuration in
Figure 5 reveals another testing gap. RoutePreference is the
only test in the initial test suite that checks interface configu-
rations, and it only considers one category of interfaces–ones
that are used to establish the tested BGP edges. Many other

6Automatic test generation based on coverage feedback will further help
engineers. We will investigate this in the future.

1726 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0% 20% 40% 60% 80% 100%
Coverage

0: Initial Test Suite

1: Add SanityIn

2: Add PeerSpecificRoute

3: Add InterfaceReachability

All Lines

26.1%

26.7%

36.9%

43.0%

bgp peer/group interface routing policy prefix/community/as-path list

Figure 6: Coverage improvement with test suite iterations.

interfaces remain untested, including but not limited to ones
that associate with untested BGP edges and other routing
protocols, and the ones that are unused.

We added a new PingMesh-style [18] test, InterfaceReach-
ablility, to check that the IPv4 addresses assigned to interfaces
should be reachable from each router in the network. This test
increased interface coverage from 15% to 53%. The rest of
untested interfaces do not have IPv4 addresses assigned.

Figure 6 summarizes the coverage improvement for the
three iterations of test improvement in our study. After only
three iterations, the overall coverage was improved from 26%
to 43%. This final coverage number is far from perfect, but
our goal was not to develop the ideal test suite for Internet2;
we wanted to demonstrate how coverage information helps
develop new tests. Networks are complex, and we should not
expect to get the job done with 6 tests. Many more tests are
likely needed. With NetCov, network engineers now have a
tool to develop new tests that meaningfully improve coverage.

6.2 Case study II: Datacenter networks
We study the coverage for data center networks which have
a different topology and routing design. We create synthetic
fat-tree [2] networks with routers across three tiers. The leaf
routers at the bottom tier connect to hosts. Aggregation routers
at the middle tier connect to leaf routers in a pod and to spine
routers at the top tier. The spine routers connect to the wide
area network (WAN). The WAN is not part of the tested
network. Each leaf router is assigned a /24 prefix which is
advertised inside the data center through eBGP. Spine routers
receive a default route (prefix 0.0.0.0/0) from WAN via eBGP
and propagate it to lower tiers. At each spine router, the entire
address space of the network is summarized into a /8 prefix
and is announced to WAN. Multipath routing (ECMP) is
enabled with maximum number of paths set to 4. Routing
policies are only configured at spine routers to white-list the
default route received from WAN peers. We synthesize the
configurations of these networks in Cisco IOS format.

We study a test suite of three tests inspired in prior works
on data center network validation [18, 23].

• DefaultRouteCheck: ensure that each router has the de-
fault route.

0% 20% 40% 60% 80% 100%
Coverage

DefaultRouteCheck

ToRPingmesh

ExportAggregate

Test Suite

All Lines

81.8%

82.1%

80.7%

85.6%

(strong/weak) bgp peer/group
(strong/weak) interface

(strong/weak) routing policy
(strong/weak) prefix/community/as-path list

Figure 7: Coverage of synthetic datacenter network for differ-
ent tests and types of configuration elements.

• ToRPingmesh: ensure that each leaf router’s assigned
subnet is reachable from all other leaf routers.

• ExportAggregate: ensure that each spine router exports
the aggregate route to WAN.

Figure 7 shows the coverage result when the network has a
total of 80 routers. Given the uniformity of the network and
the test suite, coverage results are similar for other network
sizes. The total coverage of individual tests is 81.5%, 82.1%
and 80.7% respectively, and the three tests together cover
85.3% of configuration lines. We find that these tests cover
largely the same configuration elements—interfaces and BGP
peerings between the data center routers—despite checking
for seemingly different network behaviors. This result indi-
cates that test development without coverage feedback can be
ineffective in terms of covering the testing gaps.

The coverage of ExportAggregate shows a large proportion
of weak coverage. This is because a spine router has routes to
all leaf routers, so that all leaf subnets contribute to the tested
aggregate route, albeit weakly. Separating out weak coverage
here avoids false negatives of testing gaps—the aggregate
routes would be there even if some of the BGP peering or
interfaces are misconfigured, therefore testing the aggregate
routes provides a weaker endorsement for the covered BGP
peerings and interfaces to be bug-free.

By looking at uncovered configuration lines reported by
NetCov, we learn that most correspond to host-facing inter-
faces on leaf routers. Adding tests that target those interfaces
improves this test suite and eliminate testing gaps. We omit
results of this iteration.

7 Performance Evaluation

We benchmark the performance of NetCov on both types of
networks we studied above. Our test machine has two Intel
Xeon CPUs (16 core each, 3.1 Ghz), 384 GiB of DRAM, and
runs Ubuntu 18.04.

Figure 8(a) shows the time to compute coverage for each
test in §6.1 and for the full test suite. It breaks out the time
spent on simulations and strong/weak labeling, and, for refer-
ence, also shows the test execution time. We see that coverage

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1727

0 20 40 60 80 100 120
Time (sec)

BlockToExternal

NoMartian

RoutePreference

SanityIn

PeerSpecificRoute

InterfaceReachablility

Test Suite

32.8

19.5

1701

0.86

11.4

593

2358

0.01

0.01

42.7

0.11

61.1

25.2

99.4

test execution
cov [other]
cov [simulations]
cov [strong/weak labeling]

(a) Internet2.

0 1000 2000 3000 4000 5000
Time (sec)

N= 20

N= 80

N= 180

N= 320

N= 500

N= 720

5.3

126

923

4372

16677

54043

0.6

12

97

427

1473

4413

test execution
cov [other]
cov [simulations]
cov [strong/weak labeling]

(b) Fat-tree networks.

Figure 8: Time to compute coverage.

computation is reasonably fast. The full test suite takes only
99.4 seconds. In comparison, the test execution takes 2,358
seconds. The total coverage computation time is less than the
sum for individual tests because facts tested by multiple tests
are tracked only once. The graph also shows that simulations
and strong/weak labeling are a minority component, which
means that most of the time is spent on walking the IFG and
doing lookups in stable state for backward inference.

Figure 8(b) shows test execution and coverage computation
time for the test suite in §6.2, as a function of the data center
network size. Coverage computation takes 4,413 sec on the
largest network, which has 2,040,624 RIB entries. This time
is less than 9% of the time to execute the test suite. While
substantial, we deem it acceptable in practice. Configuration
coverage analysis can be run in the background, as code cov-
erage is often run. NetCov does not slow down test execution,
which is on the critical path to finding configuration errors
and updating the network.

However, time to compute coverage increases rapidly with
network size. This is because the number of RIB entries grows
quadratically and so does the number of vertices in the IFG.
We find that the average time to materialize an IFG node does
not change substantially because all computation is local to
the node. The scaling trends suggest that to scale NetCov to
much larger networks, we need a concurrent implementation
of IFG materialization. Our current implementation is single-
threaded (as Python interpreter is single-threaded).

8 Comparison to Data Plane Coverage

We demonstrate the unique value of control plane coverage by
comparing it to data plane coverage. Following Yardstick [47],
we quantify data plane coverage as the proportion of main RIB
(forwarding) rules exercised. Figure 9 shows the comparison
for different cases. Figure 9(a) shows the comparison for
Internet2 for all tests in §6.1 and a hypothetical data plane
test that inspects all main RIB rules. Figure 9(b) shows the
comparison for fat-tree tests in §6.2.

Besides the obvious advantage that only control plane cov-
erage can support control plane tests—the graphs show 0%

data plane coverage for these tests—there are two main ad-
vantages to using control plane coverage to guide network
test development. First, it reveals testing gaps that can not be
revealed by data plane coverage. Tests with high data plane
coverage do not necessarily have high control plane coverage,
as we can see in the last row of Figure 9(a). Covering 100%
of the data plane state covered only 41% of the configuration.
If the engineers were to improve the test quality under the
guidance of only data plane coverage, they would not know
that 59% of the configurations remain untested. The reason
of this disagreement is that some configuration lines are only
exercised under specific environments (failures, routing mes-
sages). For instance, list-filtered route policies apply on BGP
messages within a specific range, and will only be exercised
when such messages appear in the environment.

Second, testing more data plane state can sometimes be
redundant in covering configurations, when the tests hit
the same configuration elements. For example, the Default-
RouteCheck test in Figure 9(b) has only 1.8% data plane
coverage because it only tests default routes, which is a small
fraction of all main RIB routes. However, because correct
propagation of default routes incorporates many BGP peer-
ings and interfaces in the network, this test has extensive
configuration coverage (87%). The ToRPingmesh test covers
much more data plane state (88%), but adding it atop Default-
RouteCheck has little value because this state is derived from
almost the same set of configurations lines. We do not nec-
essarily imply that engineers should drop one of these tests,
as there may be other reasons to keep both. Our observations
are about their value toward configuration coverage.

9 Related Work

Our work builds on top of four lines of research.

Code coverage. We borrow from the software domain the
idea of using code coverage to reveal testing gaps, quan-
tify test suite quality, and help engineers improve their test
suites [4, 15, 20]. Our coverage analysis techniques, however,
are specialized to the operation of network configurations.

1728 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0% 20% 40% 60% 80% 100%
Coverage

BlockToExternal

NoMartian

RoutePreference

SanityIn

PeerSpecificRoute

InterfaceReachablility

Test Suite
Hypothetical full DP

0.6%

0.9%

24.7%

0.7%

34.0%

11.5%

43.0%

44.1%

0%

0%

0.7%

0%

1.3%

0.7%

2.7%

100.0%

configuration coverage
data plane coverage

(a) Internet2.

0% 20% 40% 60% 80% 100%
Coverage

DefaultRouteCheck

ToRPingmesh

ExportAggregate

Test Suite

86.8%

88.3%

84.9%

90.4%

1.8%

88.0%

0.1%

89.9%

configuration coverage
data plane coverage

(b) Fat-tree with k=10.

Figure 9: Comparing control plane and data plane coverage.

Data plane coverage. Yardstick introduced data plane cov-
erage metrics [47] that quantify the proportion of data plane
elements such as forwarding rules and paths that are exercised
by network tests. Configuration coverage goes further and
maps tested data plane components to configuration elements
that contribute to them. It provides more direct feedback be-
cause network engineers author configurations, not data plane
state, and it supports testing of configuration elements that
are not exercised by the current data plane state.

Network testing and verification. A range of tools can anal-
yse properties of network data and control planes [7,12,14,18,
19, 23, 25, 26, 48, 49]. NetCov borrows ideas from verification
tools to concisely model the network, e.g., focusing on stable
state and routing protocol instances [7, 14]. However, NetCov
target a different problem—reveal what is tested vs enabling
testing of new properties–and uses different techniques.

Network provenance. Provenance systems can track causal
dependencies of events in distributed systems. Provenance
systems like ExSPAN [52] materialize provenance graphs
by tracing system execution in forward direction. Negative
provenance systems can reason about missing events [46]
and materialize provenance graphs lazily using backward in-
ference. NetCov too uses a graph-based model. However, it
is unique in terms of accommodating network configuration
into a provenance model, and this model, tailored to the sta-
ble state assumption, is more succinct. Further, it combines
backward and forward inference to overcome the limitations
of using only one type of inference.

Software configuration testing. As for networks, configu-
ration testing is an important problem for software systems
as well. Sun et al. developed a system that can link software
tests to exercised configuration parameters [38]. They exploit
dependence on configuration settings being explicit, observ-
able via read/write operations that use standard get/set APIs.
NetCov targets a setting where the dependencies are implicit
and non-local. Routers read the entire configuration file, and
their forwarding behavior depends on that file and informa-
tion received from neighbors who in turn act based on their
configuration files and their neighbors. That led us to develop

a different approach to tracking configuration dependencies.
We will investigate in the future if our approach can be ex-
tended to software systems where dependence between tested
runtime behavior and configuration is not explicit.

10 Summary

NetCov reveals which configuration lines are tested by a suite
of network tests. It uses an information flow model based on
control plane semantics to track which configuration lines con-
tribute to tested data plane state. It accounts for non-local and
non-deterministic contributions, and for performance, it dis-
covers the graph lazily. Our experiments showed that NetCov
successfully reveals coverage gaps for real-world networks
and test suites, and these tests can have surprisingly low cov-
erage, e.g., 26% of configuration lines for Internet2. They also
showed how its feedback helps improve coverage.

Acknowledgments

We thank the NSDI’23 reviewers and our shepherd, Aditya
Akella, for feedback on the earlier version of this paper. This
work was supported in part by NSF grant CNS-2007073 and
Cisco Systems.

Ethical considerations

This work does not raise any ethical issues.

References

[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson,
and Aditya Akella. Tiramisu: Fast multilayer network
verification. In Proceedings of NSDI 20, pages 201–219.
USENIX Association, 2020.

[2] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1729

architecture. In Proceedings of SIGCOMM ’08, page
63–74. ACM, 2008.

[3] Mae Anderson. Time Warner cable says outages largely
resolved. http://www.seattletimes.com/busines
s/time-warner-cable-says-outages-largely-r
esolved, 2014.

[4] James H Andrews, Lionel C Briand, Yvan Labiche, and
Akbar Siami Namin. Using mutation analysis for as-
sessing and comparing testing coverage criteria. IEEE
Transactions on Software Engineering, 32(8):608–624,
2006.

[5] John Backes, Sam Bayless, Byron Cook, Catherine
Dodge, Andrew Gacek, Alan J Hu, Temesghen Kah-
sai, Bill Kocik, Evgenii Kotelnikov, Jure Kukovec, et al.
Reachability analysis for AWS-based networks. In In-
ternational Conference on Computer Aided Verification,
pages 231–241. Springer, 2019.

[6] Batfish: Network configuration analysis tool. https:
//github.com/batfish/batfish.

[7] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A general approach to network configuration
verification. In Proceedings of SIGCOMM ’17, pages
155–168. ACM, 2017.

[8] Karl S Brace, Richard L Rudell, and Randal E Bryant.
Efficient implementation of a BDD package. In Pro-
ceedings of the 27th ACM/IEEE design automation con-
ference, pages 40–45, 1991.

[9] Larry Brader, Howie Hilliker, and Alan Wills. Testing
for Continuous Delivery with Visual Studio 2012. Mi-
crosoft, 2013.

[10] Cisco Systems, Inc. Configure protocol redistribution
for routers. https://www.cisco.com/c/en/us/su
pport/docs/ip/enhanced-interior-gateway-ro
uting-protocol-eigrp/8606-redist.html.

[11] Codecov. Codecov: The leading code coverage solution.
https://about.codecov.io/, 2021.

[12] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd
Millstein. A general approach to network configuration
analysis. In Proceedings of NSDI 15, pages 469–483.
USENIX Association, 2015.

[13] Lixin Gao and Jennifer Rexford. Stable internet routing
without global coordination. IEEE/ACM Transactions
on networking, 9(6):681–692, 2001.

[14] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya
Akella, and Ratul Mahajan. Fast control plane analysis

using an abstract representation. In Proceedings of
SIGCOMM ’16, pages 300–313. ACM, 2016.

[15] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan
Sharma, Mohammad Amin Alipour, and Darko Mari-
nov. Comparing non-adequate test suites using coverage
criteria. In Proceedings of the 2013 International Sym-
posium on Software Testing and Analysis, ISSTA 2013,
page 302–313, 2013.

[16] Timothy G Griffin, F Bruce Shepherd, and Gordon Wil-
fong. The stable paths problem and interdomain routing.
IEEE/ACM Transactions On Networking, 10(2):232–
243, 2002.

[17] GNU Guix. lcov–code coverage tool that enhances gnu
gcov. https://guix.gnu.org/en/packages/lcov-
1.15/.

[18] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A large-scale system for data center network
latency measurement and analysis. In Proceedings of
SIGCOMM ’15, page 139–152. ACM, 2015.

[19] Alex Horn, Ali Kheradmand, and Mukul Prasad. Delta-
net: Real-time network verification using atoms. In
Proceedings of NSDI 17, pages 735–749. USENIX As-
sociation, 2017.

[20] Monica Hutchins, Herb Foster, Tarak Goradia, and
Thomas Ostrand. Experiments on the effectiveness
of dataflow-and control-flow-based test adequacy cri-
teria. In Proceedings of 16th International conference
on Software engineering, pages 191–200. IEEE, 1994.

[21] Istio. Diagnose your configuration with istioctl analyze.
https://istio.io/latest/docs/ops/diagnosti
c-tools/istioctl-analyze/.

[22] Marko Ivanković, Goran Petrović, René Just, and Gor-
don Fraser. Code coverage at google. In Proceedings
of the 2019 27th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 955–963.
ACM, 2019.

[23] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar
Agrawal, Ashish Bhargava, Paul-Andre C Bissonnette,
Shane Foster, Andrew Helwer, Mark Kasten, Ivan
Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi,
Hanukumar Pinnamraju, Adrian Power, Neha Milind
Raje, and Parag Sharma. Validating datacenters at
scale. In Proceedings of SIGCOMM ’19, pages 200–
213. ACM, 2019.

1730 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
https://github.com/batfish/batfish
https://github.com/batfish/batfish
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/8606-redist.html
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/8606-redist.html
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/8606-redist.html
https://about.codecov.io/
https://guix.gnu.org/en/packages/lcov-1.15/
https://guix.gnu.org/en/packages/lcov-1.15/
https://istio.io/latest/docs/ops/diagnostic-tools/istioctl-analyze/
https://istio.io/latest/docs/ops/diagnostic-tools/istioctl-analyze/

[24] Yue Jia and Mark Harman. An analysis and survey of
the development of mutation testing. IEEE transactions
on software engineering, 37(5):649–678, 2010.

[25] Peyman Kazemian, George Varghese, and Nick McK-
eown. Header space analysis: Static checking for net-
works. In Proceedings of NSDI 12, pages 113–126.
USENIX Association, 2012.

[26] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew
Caesar, and P Brighten Godfrey. Veriflow: Verifying
network-wide invariants in real time. In Proceedings of
NSDI 13, pages 15–27. USENIX Association, 2013.

[27] Nuno P Lopes and Andrey Rybalchenko. Fast BGP
simulation of large datacenters. In International Con-
ference on Verification, Model Checking, and Abstract
Interpretation, pages 386–408. Springer, 2019.

[28] Matthew Luckie, Bradley Huffaker, Amogh Dhamdhere,
Vasileios Giotsas, and KC Claffy. AS relationships,
customer cones, and validation. In Proceedings of IMC

’13, pages 243–256, 2013.

[29] Haohui Mai, Ahmed Khurshid, Rachit Agarwal,
Matthew Caesar, P. Brighten Godfrey, and Samuel Tal-
madge King. Debugging the data plane with Anteater.
In Proceedings of SIGCOMM ’11, pages 290–301.
ACM, 2011.

[30] Netcov: Network configuration coverage tool. https:
//github.com/UWNetworksLab/netcov.

[31] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand,
Brighten Godfrey, and Matthew Caesar. Plankton: Scal-
able network configuration verification through model
checking. In Proceedings of NSDI 20, pages 953–967.
USENIX Association, 2020.

[32] Bruno Quoitin and Steve Uhlig. Modeling the routing
of an autonomous system with C-BGP. IEEE network,
19(6):12–19, 2005.

[33] Steve Ragan. BGP errors are to blame for Monday’s
Twitter outage, not DDoS attacks. https://www.csoo
nline.com/article/3138934/security/bgp-err
ors-are-to-blame-for-monday-s-twitter-outa
ge-not-ddos-attacks.html, 2016.

[34] Deon Roberts. It’s been a week and customers are still
mad at BB&T. https://www.charlotteobserver.
com/news/business/banking/article202616124
.html, 2018.

[35] Deon Roberts. Facebook says its outage was caused by
a cascade of errors. https://www.nytimes.com/20
21/10/05/technology/facebook-outage-cause.
html, 2021.

[36] Joao Luis Sobrinho. Network routing with path vector
protocols: Theory and applications. In Proceedings of
the 2003 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications,
pages 49–60, 2003.

[37] Fabio Somenzi. CUDD: CU decision diagram package
release 2.5.0. University of Colorado at Boulder, 2012.

[38] Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine
Ang, Owolabi Legunsen, and Tianyin Xu. Testing con-
figuration changes in context to prevent production fail-
ures. In Proceedings of OSDI’20. USENIX Association,
2020.

[39] Yevgeniy Sverdlik. United says it outage resolved,
dozen flights canceled monday. https://www.datace
nterknowledge.com/archives/2017/01/23/unit
ed-says-it-outage-resolved-dozen-flights-c
anceled-monday, 2017.

[40] Bingchuan Tian, Xinyi Zhang, Ennan Zhai,
Hongqiang Harry Liu, Qiaobo Ye, Chunsheng
Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang,
Da Yu, Chen Tian, Haitao Zheng, and Ben Y. Zhao.
Safely and automatically updating in-network ACL
configurations with intent language. In Proceedings of
SIGCOMM ’19, page 214–226. ACM, 2019.

[41] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Srid-
haran, and Omri Weisman. Taj: effective taint analysis
of web applications. ACM Sigplan Notices, 44(6):87–97,
2009.

[42] Route Views. University of Oregon Route Views project.
http://www.routeviews.org/routeviews/, 1997.

[43] Rosemary Wang. Testing HashiCorp Terraform. https:
//www.hashicorp.com/blog/testing-hashicorp
-terraform.

[44] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D
Ernst, Arvind Krishnamurthy, and Zachary Tatlock.
Scalable verification of border gateway protocol configu-
rations with an SMT solver. In Proceedings of OOPSLA
2016, pages 765–780. ACM, 2016.

[45] Zach Whittaker. T-mobile hit by phone calling, text
message outage. https://techcrunch.com/2020/
06/15/t-mobile-calling-outage/, 2020.

[46] Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wen-
chao Zhou, and Boon Thau Loo. Diagnosing missing
events in distributed systems with negative provenance.
ACM SIGCOMM Computer Communication Review,
44(4):383–394, 2014.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1731

https://github.com/UWNetworksLab/netcov
https://github.com/UWNetworksLab/netcov
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.charlotteobserver.com/news/business/banking/article202616124.html
https://www.charlotteobserver.com/news/business/banking/article202616124.html
https://www.charlotteobserver.com/news/business/banking/article202616124.html
https://www.nytimes.com/2021/10/05/technology/facebook-outage-cause.html
https://www.nytimes.com/2021/10/05/technology/facebook-outage-cause.html
https://www.nytimes.com/2021/10/05/technology/facebook-outage-cause.html
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday
http://www.routeviews.org/routeviews/
https://www.hashicorp.com/blog/testing-hashicorp-terraform
https://www.hashicorp.com/blog/testing-hashicorp-terraform
https://www.hashicorp.com/blog/testing-hashicorp-terraform
https://techcrunch.com/2020/06/15/t-mobile-calling-outage/
https://techcrunch.com/2020/06/15/t-mobile-calling-outage/

[47] Xieyang Xu, Ryan Beckett, Karthick Jayaraman, Ratul
Mahajan, and David Walker. Test coverage metrics for
the network. In Proceedings of SIGCOMM ’21, page
775–787. ACM, 2021.

[48] Hongkun Yang and Simon S. Lam. Real-time verifi-
cation of network properties using atomic predicates.
IEEE/ACM Trans. Netw., 24(2):887–900, April 2016.

[49] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu,
Bingchuan Tian, Qiaobo Ye, Chunsheng Wang, Xin Wu,
Tianchen Guo, Cheng Jin, Duncheng She, Qing Ma,
Biao Cheng, Hui Xu, Ming Zhang, Zhiliang Wang, and
Rodrigo Fonseca. Accuracy, scalability, coverage: A
practical configuration verifier on a global WAN. In
Proceedings of SIGCOMM ’20, page 599–614. ACM,
2020.

[50] Hongyi Zeng, Peyman Kazemian, George Varghese,
and Nick McKeown. Automatic test packet genera-
tion. In Proceedings of the 8th international conference
on Emerging networking experiments and technologies,
pages 241–252, 2012.

[51] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar
Jeyakumar, Mickey Ju, Junda Liu, Nick McKeown, and
Amin Vahdat. Libra: Divide and conquer to verify for-
warding tables in huge networks. In Proceedings of
NSDI 14, pages 87–99. USENIX Association, 2014.

[52] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li,
Boon Thau Loo, and Yun Mao. Efficient querying and
maintenance of network provenance at internet-scale.
In Proceedings of SIGMOD ’10, pages 615–626. ACM,
2010.

1732 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Norma: Towards Practical Network Load Testing
Yanqing Chen†,‡, Bingchuan Tian‡, Chen Tian†, Li Dai‡, Yu Zhou‡, Mengjing Ma‡, Ming Tang‡,

Hao Zheng†, Zhewen Yang†, Guihai Chen†, Dennis Cai‡, and Ennan Zhai‡
†State Key Laboratory for Novel Software Technology, Nanjing University ‡Alibaba Group

Abstract
Network load tester is important to daily network operation.
Motivated by our experience with a major cloud provider,
a practical load tester should satisfy two important require-
ments: (R1) stateful protocol customization, and (R2) real net-
work traffic emulation (including high-throughput traffic gen-
eration and precise rate control). Despite the success of recent
load testers, we found they fail to meet both above require-
ments. This paper presents Norma, a practical network load
tester built upon programmable switch ASICs. To achieve the
above requirements, Norma addresses three challenges: (1)
modeling stateful protocols on the pipelined architecture of
the ASIC, (2) generating replying packets with customized
payload for stateful protocols, and (3) controlling mimicked
traffic in a precise way. Specifically, first, Norma introduces
a stateful protocol abstraction that allows us to program the
logic of the state machine (e.g., control flow and memory
access) on the programmable switch ASIC. Second, Norma
proposes a novel multi-queue structure to generate replying
packets and customize the payload of packets. Third and fi-
nally, Norma coordinates meters and registers to construct a
multi-stage rate control mechanism capable of offering pre-
cise rate and burst control. Norma has been used to test the
performance of our production network devices for over two
years and detected tens of performance issues. Norma can
generate up to 3 Tbps TCP traffic and 1 Tbps HTTP traffic.

1 Introduction
Understanding whether the network meets expected perfor-
mance is essential to today’s cloud providers, especially for
performance-sensitive services such as live streaming and
edge cloud games [30, 35, 57]. For example, in edge cloud
games, the players complain about their unsmooth feelings if
the network latency reaches 50 ms, and cannot play the games
when the latency exceeds 100 ms [54].

Network load tester is one of the most important testing
tools that checks the performance of network devices by
proactively generating various testing packets including dif-
ferent protocols, rates, and traffic patterns [7, 13]. A network
load tester could be used by the operator to test the perfor-
mance of devices, debugging the root causes of packet loss.
In a typical network load testing scenario, the tester gener-
ates user-defined traffic and sends it to the Device Under Test
(DUT). After receiving the testing packets, the DUT processes
the traffic and forwards it back to the tester for further pro-
cessing, such as dropping or replying to the incoming packets.

Based on the analysis of the outgoing and incoming traffic, the
tester can evaluate the performance of the DUT in multiple
aspects, including throughput, latency, and packet loss.

As a major cloud provider, we also deploy load testers in
production networks to test pre-online network devices and
functions. Load testers have become indispensable for daily
network operation tasks, such as performance monitoring,
failure troubleshooting, and stress testing. Building a prac-
tical load tester that works for large-scale cloud networks
should satisfy the following important requirements from our
network operators.

• (R1) Stateful protocol customization. Besides switches
and routers which work in a stateless way, cloud networks
also have complex and stateful network functions, such as
stateful packet filters and L4/L7 load balancers. The proto-
cols used by these network functions might be stateful (e.g.,
HTTP) or self-defined by the cloud provider. To provide the
all-around testing capability, a practical load tester should
be able to generate packets with not only stateless protocols
(e.g., UDP) but also stateful (e.g., TCP) and customized
(e.g., private tunnel protocols) protocols.
• (R2) Real traffic emulation. As the scale and single-port

bandwidth of cloud networks grow fast, a practical load
tester should be able to mimic real, cloud-grade traffic in
a cost-effective way: (1) it can generate Tbps-level traffic,
and (2) it can create and send precise rate packets with
customized payload and burst patterns.

A number of previous efforts have focused on network
load testing [7, 9, 13, 18, 24, 31, 32, 47, 53, 55, 59]. While
these state-of-the-art systems can work well in principle, in
reality in our situation, they fail to simultaneously satisfy
the above two requirements (see Table 1). Specifically, soft-
ware load testers [9, 18, 24, 31, 32, 47] and FPGA-based load
testers [60] are unable to generate Tbps-level traffic or con-
trol rate precisely (i.e., fail R2). On the other hand, hardware
load testers (e.g., Keysight [7] and Spirent [13]) can only
generate and emulate fixed types of protocols (i.e., unable to
support the customized protocols R1). Recently, researchers
have developed load testers based on programmable switch
ASICs [53, 55, 59], which are capable of sending Tbps-level
traffic and are customizable. While these pioneer systems
have shown the potential to partially solve the above prob-
lems, they cannot customize stateful protocols or provide
precise rate control, i.e., partially failing R1 or R2.

We, therefore, decided to build a practical load tester to

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1733

satisfy our operators’ requirements for their daily usage.

Our approach: Norma. This paper presents Norma, a high-
performance network load tester, based on the RMT-based1

programmable switch ASIC. The key idea of Norma is to
execute load testing based on template packets derived from
tested protocols, which enables Norma to achieve R1 and
R2 simultaneously. First, template packets continuously loop
in the pipeline and can be conditionally replicated to gen-
erate testing packets of both stateless and stateful proto-
cols. Operators can flexibly customize headers and payload
of template packets; thus, Norma can be used to test vari-
ous cloud network functions. Second, through controlling
rates and patterns of replicating template packets, Norma can
generate load testing traffic that faithfully mimics realistic
traffic. Besides programmable switch ASIC resource limita-
tions [33, 38, 39, 41, 50–52, 56], building Norma nevertheless
requires us to address the following challenges.

Challenge 1: First, RMT-based programmable switch
ASICs are unfriendly to modeling stateful protocols (e.g.,
TCP and HTTP), since the ASIC architecture is implemented
as a pipeline that processes packets in a sequential way and
only supports accessing states once per packet. However,
most stateful protocols need to read and write a state multiple
times. This, therefore, makes it difficult to model or customize
stateful protocol behaviors on current programmable switch
ASICs. On the other hand, testing the performance of state-
ful protocols (e.g., stateful load balancer, DDoS defense, and
ACL) is crucial, which accounts for the majority of our load
testing requirements and tasks. To the best of our knowledge,
none of the prior work solved this problem. Existing load
testers based on programmable switch ASICs like Hyper-
Tester [59] can only support stateless protocol customization.
To address this challenge, we introduce a new data structure,
named stateful protocol abstraction, to enable programming
the logic of the state machine (including control flow and
memory access) on programmable switch ASICs. We con-
struct a state machine framework via the stateful protocol
abstraction. In the framework, packets are looped inside the
ASIC, and each round corresponds to a step in the state ma-
chine of the emulated stateful protocol. We can use this frame-
work to emulate arbitrarily complex protocols (including both
stateful and stateless), as long as the hardware resources of
the ASIC are sufficient (§4.1 and §4.2).

Challenge 2: Load testers need to reply according to state
machines when receiving packets of stateful protocol from
DUT. Replying packets involves packet generation with
customized payload as well as header modification, which
presents the second challenge. The programmable switch
ASIC uses PHV2 resources to add, delete, and modify packet

1RMT (Reconfigurable Match Tables) is a reconfigurable pipeline-based
architecture for programmable switch ASICs. Each pipeline consists of a
parser, multiple match-action stages, and a deparser [22, 40].

2PHV (Packet Header Vector) stores and transits parsed headers or meta-
data between neighboring stages. More details can be found in [10, 22].

headers and payload. Due to limited PHV resources, the ca-
pability of load testers to generate and modify packets with
a large payload and statefully complex headers is inherently
constrained. To address this challenge, we propose an effi-
cient multi-queue structure based on registers3 inside the pro-
grammable switch ASIC. In this structure, the stateful packet
will enqueue to trigger the corresponding type of template
packet to dequeue. In this way, Norma supports generating
replying packets with customized payloads for most stateful
protocols (§4.3 and §4.4).

Challenge 3: The final challenge is that programmable
switch ASICs is hard to offer precise control of the packet
rate and burst, thus resulting in unrealistic traffic emulation.
The above two control capabilities are important requirements
of our daily operation and testing; however, we have not seen
any of state of the art systems that can achieve the above goals.
The rate control relies on the specific hardware named meter;
however, in practice, the speed limit of the hardware meter
is coarse-grained, i.e., not all target rates can be precisely
achieved, which results in an error in the control of packet
rate. In addition, the programmable switch ASICs do not
support the generation of traffic bursts with given patterns. To
address this challenge, we proposed a multi-stage rate control
mechanism based on the coordination of meters and registers
in the programmable switch ASIC. The meters provide coarse-
grained rate control, which will be further tuned by the follow-
up registers in a fine-grained manner. In this way, the special
requirements of the tester for rate and burst control can be
satisfied with great precision (§5).

Norma has been used to test the performance of pre-online
devices that would be deployed in our production network for
over two years. For example, we used Norma to test the for-
warding capability and ARP learning rate of L2/L3 switches
and tested stateful gateways by generating L4/L7 flows. Eval-
uation results show Norma can generate up to 3 Tbps TCP
traffic and 1 Tbps HTTP traffic while maximizing the use of
pipeline bandwidth. Experiments also show that Norma can
achieve precise rate control and burst capability. The relevant
rate error does not exceed 0.01% in the worst cases.

Contributions. We make the following contributions:

• It is new for us to implement the stateful responder into
the programmable switch ASIC to support stateful pro-
tocols. The pipeline-folded switch ASIC and the queue
implemented in P4 are the keys to make it possible.
• We propose high-precision packet rate and burst control

method. This provides us the ability to reproduce traffic at
accurate rates and desired burst patterns.
• We use Norma to test our pre-online devices. Norma is

useful for our network developers and operators to find
performance issues and system bottlenecks.

3Registers are memory blocks attached to each stage, whose data can be
shared by multiple packets across different ports inside a pipeline [10, 22].

1734 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Ethics. This work does not raise any ethical issues.

2 Background & Motivation
This section details our operators’ requirements and discusses
related work.

2.1 Requirements for Production
Based on the experience of our operators, we summarize the
requirements of our network load tester in Table 1.

(1) Supporting protocol customization. In cloud networks,
traffic can be carried via non-standard private protocols. These
protocols are usually defined and experimentally developed by
the cloud providers, e.g., QUIC [42] and Multipath QUIC [28,
58], which provide great extensibility of network functions
and can be quickly iterated according to the needs of upper-
layer applications. These non-standard protocols and traffic
are not supported by commercial hardware network testers.

In particular, the majority of protocols we need to test
are stateful. The DUT keeps the state of L4/L7 sessions for
stateful protocols. For example, an L4 gateway may perform
a TCP relay or SYN proxy, and an L7 load-balancer balances
the load of the HTTP traffic according to the HTTP header of
the first packet. In these cases, the load tester should be able
to emulate the establish, transmission, and release processes
of a session, and reply to the incoming packets according to
the specification of the protocol.

(2) Emulating realistic traffic. During the development and
operation of network devices, our operators need to evaluate
the device or optimize configurations by emulating realistic
traffic. The volume of mixed traffic flows can be as large as
O(1 Tbps), or O(1 Gpps) for small packets. It is essential
to emulate the traffic similar to the realistic load. We have
observed the case that a DUT works well in the experimental
development with simple traffic, but suffers from continuous
packet drop after it goes online. It is not acceptable for cloud
providers.

To test the DUT with emulated traffic under heavy loads, the
tester should support sending traffic at the line rate of DUTs.
Besides, the tester needs to emulate various traffic patterns
and mixed traffic flows for network operators to determine the
optimal configuration like hash function, CPU allocation, and
queuing policy of devices. The traffic is expected to be cheap
in terms of hardware cost, power consumption, and rack size.
Plus, in cloud network testing, the value of the field in the
packet header is required to be editable. For example, one
may expect the source IP address to be randomly chosen from
the prefix 10.0.0.0/16.

In addition, since a network load tester is usually used for
network checking, debugging, and troubleshooting, it is re-
quired to control the sending rate based on the determined
configuration. In other words, the tester should be able to gen-
erate the random burst traffic and emulate the failure scenarios
precisely. All of the testing data are collected by measuring
the incoming and outgoing traffic in multiple dimensions,

such as throughput and packet drops. A network load tester is
required to support fine-grained bidirectional measurement
of the large volume of traffic.

2.2 Related Work
Table 1 shows the comparison between Norma and the state-
of-the-art load testers in terms of our production requirements.

Software network testers. Software solutions [9, 18, 24,
31, 32, 47] are highly flexible. The early software network
testers [6, 11, 17, 23] are based on the standard Linux IO
API which limits the performance and accuracy. There are
many works [9,18,31,47] that utilize the IO frameworks such
as DPDK [2], Netmap [47], and PF_RING ZC [8] that are
working on accelerating packet processing on various CPU
architectures. However, the computing bottleneck makes it
difficult to apply to 100 Gbps network test scenarios. The
state of the art such as MoonGen [31] needs over 14 2.4 GHz
cores to generate 64-byte packets at 100 Gbps, corresponding
to only one port capability of Norma. In addition, software so-
lutions are not stable when testing complex packet processing
due to the indefinite packet processing time [59]. Therefore,
they are not scalable and cost-effective in industrial scenarios
that require Tbps-level load testing.

Commodity hardware testers. Vendors like Keysight [7]
and Spirent [13] provide network infrastructure performance
tests using their test suites with hardware-based modules.
These commercial hardware testers [7,13] are able to emulate
standard traffic demands by providing rich testing functions.
There are also application and security tests that cover the L4
protocols. Benefiting from the specially designed software
and hardware, it achieves high throughput and accuracy on
packet generation and measurements. Commercial hardware
tester uses dedicated ASICs from the vendors to accelerate
network traffic generation, which can provide O(1 Tbps) traf-
fic for stateless protocols.

However, the commercial hardware tester is a black box,
which makes it hard to adapt to the agile development of self-
defined protocols. The vendors are aiming to provide standard
tests thus the customizability of user-defined packet structures
and protocols is lacking. Besides, they are expensive to deploy
in a large-scale system (e.g., $100,000 for a 100 Gbps dual-
port packet generation module [59]) which requires a large
number of testers.

Programmable hardware testers. To achieve a balance of
programmability and performance, some network testers [19,
27, 48] using programmable hardware such as NetFPGA [60]
are proposed. These works achieve accurate rate controlling
and precise measurement results. However, the NetFPGA-
based testers are still expensive to achieve Tbps-level test
traffic (e.g., a NetFPGA board costs $5,341 with two 100 GbE
interfaces [1], and a programmable switch ASIC with 32
100 GbE interfaces only costs $2160 [5]). And it is non-trivial
to develop new functions on FPGA boards.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1735

Table 1: The required properties of a tester listed by our network operators, and the comparison between Norma and prior work.
Requirements Meaning Norma CHT ST HT NetFPGA
Stateful Protocol Support

Generation Whether the traffic of stateful protocols (e.g., HTTP) can be generated? 3 3 3 7 3
Customization Whether the stateful protocol can be fully customized by users? 3 7 3 3 3

Real Traffic Emulation
Cheap High-Speed Traffic Whether O(1 Tbps) traffic can be generated in a cheap way? 3 7 7 3 7
Precise Rate Control Whether the rate of generated traffic is precise? 3 3 7 7 3
Precise Burst Control Whether the traffic can be sent out with customized burst pattern? 3 3 7 7 3
Precise Measurement Whether the traffic features can be precisely measured? 3 3 7 3 3

CHT=Commercial Hardware Testers ST=Software Testers HT=HyperTester

Programmable switch ASICs like Intel Tofino [16] pro-
vide customizable packet processing logic via programmer-
friendly P4 language [21]. HyperTester [53, 55, 59] leverages
the recirculate primitive in P4 language and packet replication
engine to generate packets. It can generate stateless traffic
at the rate of 1.6 Tbps. HyperTester confirms the feasibility
to implement a stateless hardware tester via Tofino’s pro-
grammable switch ASICs and proves the traffic quality via
microbenchmarks. However, HyperTester cannot emulate the
data plane behavior of the stateful protocol. We cannot use
HyperTester to test a stateful L4/L7 gateway, because Hyper-
Tester cannot generate and maintain the session as what the
TCP/HTTP specification describes. In addition, HyperTester
cannot emulate realistic traffic in a high-fidelity way. We ana-
lyze the reason and conduct experiments in §9.2. Inspired by
HyperTester, IMap [43] uses programmable switch ASICs for
network scanning. It is not a network load tester in a general
sense.

Stateful packet processing. Many works are providing state-
ful packet processing to offload networking functions into
hardware. FlowBlaze [46], FAST [44], and OpenState [20]
define state machine abstraction to describe network func-
tions, while Domino [49], dRMT [26], SDP [34], and Ibanez
et al. [37] propose customized RMT-based architecture using
FPGA to achieve the processing ability of the stateful packet.
These works are orthogonal to Norma. Norma focuses on em-
ulating high-throughput stateful traffic to test the performance
of the DUT, instead of implementing every detail of stateful
protocols. This gives us the chance to implement the state
machine on programmable switch ASICs like Tofino. None
of the prior work focuses on this.

3 Norma Overview

Norma is a practical cloud network tester for load testing.
We use the programmable switch ASIC to leverage its large
capability of packet processing and programmability. In this
part, we explain the reason for using the pipeline-folded [14,
15, 45] programmable switch ASIC first (§3.1). Then, we
introduce the high-level architecture of Norma (§3.2). This
architecture illustrates how our testing functions are arranged
in the ASIC and work as a practical network tester.

Ingress pipeline 0

Egress pipeline 2

Ingress pipeline 1

Ingress pipeline 2

Ingress pipeline 3 Egress pipeline 3

Egress pipeline 0

Egress pipeline 1

Tr
af

fic
 M

an
ag

er

Packet in Packet out

Packet in Packet out

Figure 1: The packet path of pipeline-folded programmable
switch ASICs. Half of the pipelines are in loopback mode.

3.1 The Pipeline-Folded Switch ASIC
As shown in Figure 1, the pipeline-folded programmable
switch ASIC we use (i.e., BFN-T10-032Q [5]) has 64×100G
ports with maximum port bandwidth of 3.2 Tbps. It has four
physical pipelines in total, but only two of them are con-
nected to front panel ports (e.g., pipeline 0/2, namely external
pipeline). The remaining two pipelines are connected to the
internal loopback ports, whose egress direction is wired to the
ingress direction inside the ASIC (e.g., pipeline 1/3, namely
internal pipeline).

Norma chooses the pipeline-folded programmable switch
ASIC for three reasons. (1) The internal pipelines and exter-
nal pipelines can be programmed with different P4 programs.
By dividing functions such as basic switching, packet editor,
stateful responder, etc. into the above two groups, Norma
can support all of them simultaneously with the limited hard-
ware resources inside the ASIC. (2) Besides the recirculation
capability provided by P4 primitives, internal pipelines pro-
vide 3.2 Tbps extra loopback bandwidths. Therefore, high-
throughput traffic generation can be achieved without affect-
ing the front-panel port throughput. (3) The folded pipelines
double the stages we can use. That means we can imple-
ment more complex processing logic than the unfolded one,
which is the fundamentals of stateful packet processing. The
RMT-based programmable switch ASIC guarantees that these
additional stages do not affect the processing rate of the traffic
and only introduce negligible latency.

3.2 Norma’s Architecture
Norma takes advantage of the pipeline-folded programmable
switch ASIC and arranges all required functions in the archi-
tecture shown in Figure 2. The input and output represent
the front-panel ports of the switch. The basic switching logic
(omitted in figures) and measurement functions are imple-

1736 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Internal pipeline
External pipeline

TM

Stateful

1) Classifier

Template
Input Output7) Packet Editor

§5
2) Measurement

§6

5) Stateful Responder
§4 6) Multicast Controller4) Rate/Burst Controller

§5

3) Packet Editor
§5

8) Measurement
§6

S

T

S

T

stateful traffic

template traffic

outgoing/replying traffic

Figure 2: The function models and workflow of Norma. Different colors of arrow lines represent different traffic types. Nodes S
and T are loopback ports.

mented in external pipelines, while other functions are im-
plemented in internal pipelines. The S and T nodes represent
two loopback ports in internal pipelines, allowing packets to
travel from the egress back to the ingress. The traffic manager
(TM) is responsible for packet replication and forwarding.

Traffic. Norma needs to classify incoming traffic to decide
which function to enable according to the user’s test task. We
detail three kinds of traffic shown in Figure 2 as follows.

• Stateful traffic includes incoming packets of stateful pro-
tocols such as TCP and HTTP, represented as blue lines.
Once received, these packets will be preprocessed by the
packet editor (e.g., updating the TCP sequence number)
and then handled by the stateful responder, which triggers
replying traffic.
• Template traffic includes template packets sent from the

control plane, represented as green lines. Control plane pro-
grams construct template packets according to the user’s
test task and send them to the ASIC via PCIe. Then Norma
keeps these packets looping all the time in loopback ports
of internal pipelines. If a template packet is marked by the
multicast controller, it will be replicated by the packet repli-
cation engine (PRE) in the ASIC’s TM module. Then the
replicated packet will be forwarded to the DUT as outgoing
traffic via external egress pipelines. In this way, Norma can
generate line rate traffic on the data plane, though there
is no memory for the ASIC to store packets. The loop-
ing template packets determine what kind of traffic can be
generated.
• Outgoing/Replying traffic is represented as red lines. The

two traffic types can be regarded as the same because they
go through the same paths. The replying traffic is triggered
by the stateful responder, while the outgoing traffic is not.

Modules and workflow. We now show the function modules
of Norma in turn by the following workflow.

1) Classifier. The traffic is classified by the classifier first.
Norma mainly focuses on stateful traffic and template traf-
fic. Other traffic is also classified, but omitted in Figure 2.

2) Measurement. All traffic enters the measurement module
and is measured according to the user’s measurement rules.
Measurement functions are described in §6.

3) Packet Editor. Stateful traffic and template traffic are
forwarded to internal egress pipelines. The packet edi-
tor preprocesses the stateful traffic or modifies template
packet fields. The packet modification function is intro-
duced in §5.

4) Rate/Burst Controller. After looping back to internal
ingress pipelines, the rate/burst controller marks template
packets to control the rate and burst pattern of the gener-
ated traffic. This part is detailed in §5.

5) Stateful Responder. Norma uses the extended finite-state
machine (EFSM) [25] to abstract the stateful protocol.
The stateful responder triggers the EFSM according to the
input stateful traffic. The replying traffic is generated with
the help of the template traffic. This part is detailed in §4.

6) Multicast Controller. The multicast controller marks
the template traffic and forwards it to the internal egress
pipeline it comes from to complete the high-speed looping
of the template traffic. In addition, the marked template
packets are replicated to the target output port through TM.

7) Packet Editor. Outgoing traffic needs to go through the
packet editor on the external egress pipeline one more
time. The supported actions of these two packet editors are
different for sophisticated traffic generation capabilities.

8) Measurement. Finally, all outgoing traffic enters the mea-
surement module in the egress direction.

4 Emulating Stateful Protocol
The essence of emulating a protocol is to run the processing
program on the programmable switch ASIC. Although, it
is not easy to port programs that originally run on CPUs to
the ASIC. The protocol implemented on Norma for testing
the DUT can be reduced to a human-descriptive sequence
of packet interactions, as long as the DUT does not perceive
the differences. Therefore, our high-level idea is to convert
such a program into a state machine and write it into the
match-action table.

In this section, we first introduce the EFSM [25] abstraction
of stateful responder, which helps us establish a general state-
ful protocol programming pattern for Norma (§4.1). Then we
take the HTTP protocol as an example to show the implemen-
tation details of the stateful responder in three steps: executing

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1737

Step I

Step Ⅱ

Step Ⅱ

Step III

Internal pipeline
External pipeline

Stateful

Template0

Classifier

Template1 T1Template packet 1
(TCP with payload)

Read

Write

Write [0] or [1]

Read [0]

TM

EnqueueUpdate state

Restore?

Post-
processing

table(s)

Get flow state

O
ut

pu
t

In
pu

t

a

T0

I

T0

I

a

T0

State table

State register

Queue

Stateful packet with flow ID

Template packet 0
(TCP without payload)

Stateful packet with state ID

Drop?

Read [1]

DequeueRestore?T1

[0]
[1]

T1

R
ep

ly
in

g

Dequeue
Action

I

Figure 3: A detailed view of the components of the stateful
responder. The classifier is not included in the stateful respon-
der but used to describe where the inputs come from.

the state machine (§4.2), generating replying traffic (§4.3),
and postprocessing of the replying traffic (§4.4). The brief
packet path and table placement are shown in Figure 3.

4.1 The Stateful Protocol Abstraction
To handle stateful protocols, we need to program the process-
ing logic of the protocol in the programmable switch ASIC.
The main process is to generate replying packets according
to the flow state and stateful packets, and the abstraction of
this process can be represented by the EFSM.

EFSM abstraction of Norma. An EFSM in Norma is defined
as a 7-tuple M = (I,O,S,D,F,U,T). S is a set of flow states.
I is the current flow state. O is the next flow state. D is a set of
variables, such as packet fields, metadata, and registers. F is a
set of enabling functions that trigger transitions based on the
variables (fi : D→{0,1}). U is a set of update functions that
update variables (ui : D→ D). T is a transition relation (T :
S×F× I→ S×U×O). Table 2 shows the state table of the
EFSM that handles HTTP GET requests. The conditions are
the enabling functions in set F , and the actions are update
functions in set U .

Hardware bases and limitations. The EFSM abstraction
provides an interface for users to customize stateful protocols.
Specifically, users need to construct the following three parts
in Norma to realize the EFSM. The first part is variables D
and flow states S. The parser and deparser provide the ability
to locate packet fields and metadata. Because programmable
switch ASICs natively support registers, the flow states are

Table 2: A part of the simplified HTTP state table.
Curr S Condition Next S Action

0 RST 0 ig_md.skip_mc = 1;
0 SYN 2 hdr.tcp.flags = R;
0 Unknown 1 hdr.tcp.flags = R;
1 SYN 2 hdr.tcp.flags = S|A;
1 Unknown 1 ig_md.skip_mc = 1;
2 RST 0 ig_md.skip_mc = 1;
2 HTTP GET 3 hdr.payload = 0x48· · ·
2 Unknown 1 hdr.tcp.flags = R;

. . .

saved in registers and updated by register actions [14].
The second part is conditions F . The conditions can be im-

plemented as keys in the match-action table. State transitions
and actions are triggered by matching the variables like the
current flow state and the input stateful packet. However, it
should be noted that the matching ability of the key is limited.
The relationship between keys in a table can only be a logi-
cal AND relationship, so complex matching rules need to be
expressed using multiple entries.

The final part is actions U . The actions modify and send
the template packets to reply to the stateful packet. It should
be noted that the implementation of actions is limited by
the resource constraints of the programmable switch ASIC.
Excessive register action and table execution may exceed the
number of stages in the switch. And it is hard to implement
actions that require iteration, such as sorting headers in a
packet. A possible solution is splitting the action that requires
iteration into multiple steps. The stateful packet loops in the
internal pipeline through node I in the internal pipeline in
Figure 3 and executes these steps. But this solution reduces
the throughput of the flow processing.

4.2 Executing State Machine
Implementing the EFSM on programmable switch ASICs
is challenging due to limitations on registers, and table ac-
tions. Next, we will introduce the details of the state machine
implementation, as shown in Figure 3 Step I.

State register. Norma stores the state of each flow in a register
array. Initially, a flow ID is assigned by the classifier to each
flow and used as an index to access registers. Then, the stateful
packet is forwarded to the internal pipeline with its flow ID
for indexing its state register. The flow state registers store
current state ID in Table 2 and other flow information such
as TCP sequence number, which can be read by the template
packet directly for generating the replying packet.

A side benefit of the flow ID is that it releases the fields
of 5-tuples and MAC addresses in the stateful packet. When
we generate the replying packet, these fields can be retrieved
via a post-processing table with flow IDs. Therefore, we can
write the flow ID and other bridged metadata4 into these fields
to avoid additional bandwidth consumption when the packet

4Bridged metadata is a temporary header carrying the data calculated in
current and previous pipelines to the next pipeline [14].

1738 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

carries the metadata looping from egress pipelines to ingress
pipelines.
State updating. As described in §4.1, the state table stores
the conditions for state transition. For the stateful packet, it
first reads its state ID from the state registers. Then, it gets the
next state ID and action ID from the state table. And finally,
the stateful packet writes a new state ID back into the register.
However, this process cannot be done simply because of the
register access restriction that a register cannot be accessed
more than once in one pass (a packet goes through the ingress
pipeline and egress pipeline). Reading and updating are two
accesses that cannot be merged into one due to complex de-
pendencies. To break this limitation, our idea is to let the
stateful packet do another pass. In the first pass, the stateful
packet reads the state register to get the state ID. In the second
pass, the stateful packet gets the new state ID through the state
table and then writes back to the state register. Note that this
design can make state register updating non-atomic, further
discussed in Appendix A.
State machine bypass. Some protocols can be implemented
with state machine bypass. Taking the SYN flood test as an
example, the tester receives a SYN packet and replies with
an RST packet. The SYN packet can be preprocessed by the
packet editor to obtain the action ID. Then, the packet skips
Step I in Figure 3 and directly passes the relevant packet
information to generate replying packets. For the stateless
traffic generation like UDP and ARP reply, the entire stateful
responder can be skipped.

4.3 Generating Replying Packets
Norma generates replying packets by replicating the template
packet looping in the internal pipeline, as shown in Figure 3
Step II. Take the HTTP GET test task as an example. Norma
needs to generate a PUSH packet when receiving an ACK
packet. The PUSH packet has a 1460-byte payload, and the
ACK packet does not. If the programmable switch ASIC can
add or delete the payload, we can generate these two kinds
of packets by modifying the input stateful packet. However,
PHV resources limit the total length of packet headers that
can be parsed. The 1460-byte payload cannot be completely
stored in the PHV. So we have to prepare ACK template traffic
and PUSH template traffic with 1460-byte payload separately
to generate corresponding traffic. Since the stateful packets
and template packets do not share packet fields and metadata,
Norma needs to transfer information from the stateful packets
to the template packets, such as the sequence number and
action ID. Then in post-processing tables, Norma can modify
the template packets according to the transferred information
to generate required replying packets.

Next, we will detail the approach to transferring informa-
tion across different packets.
A strawman solution. A straightforward way to transfer infor-
mation across packets is using a queue. The incoming stateful
packet pushes necessary information into the queue, and then

the template packet pops the information to its corresponding
fields or metadata. The register array in programmable switch
ASICs can be used to implement the queue. Besides the regis-
ter array for the elements, the queue needs three more registers
to maintain the data structure, one for the head pointer, one for
the tail pointer, and one for the queue length. Compared with
the common queue data structure, the one in programmable
switch ASICs has two critical limitations.

First, the template packet cannot decide whether to de-
queue according to the head element. To dequeue according
to the head element, the tester must first check whether the
queue length is zero, then read the queue element via the
head pointer, and finally decide whether to decrease the queue
length. In this way, the queue length register is accessed twice
in one packet path, which is not allowed by programmable
switch ASICs. Since template packets will inevitably take out
information from the queue, the queue cannot be shared by
multiple types of template packets.

Second, there is no way to prevent the queue from over-
flowing. Since the packet paths of the stateful packet and the
template packet are parallel, to ensure parallel safety, the in-
structions for dequeuing and enqueuing must be executed in
the following order. For dequeuing, reading elements must oc-
cur after decreasing the queue length; and for enqueuing, writ-
ing elements must occur before increasing the queue length.
To ensure that the queue does not overflow, the queue length
is compared with its capacity to get the enqueuing permission
first. Then the stateful packet writes its information to the
queue. And finally, the queue length increases. In this way,
the tester accesses the queue length register twice. So there is
no method to check the queue length before enqueuing.

In Norma, the consumer of the queue is the template pack-
ets, and the producer of the queue is the stateful packets. Tem-
plate packets poll from the queue to generate replying packets.
For example, the PUSH template packets poll the queue for
ACK packets. Therefore we must ensure that the polling rate
is higher than the arrival rate of the stateful packets to avoid
queue overflowing.

Multi-queue for multiple template traffic types. Because
of the limitations of the queue, only the stateful packet can
choose what kind of template packets to reply to. It is straight-
forward to allocate a queue for each type of template packets.
As shown in Figure 3 Step II, the stateful packet enqueues
using queue ID which is obtained from the state table and then
triggers the corresponding type of template packet to dequeue.
Compared to the strawman solution, there are two changes to
the multi-queue data structure. The first change is that three
register arrays are used as head pointers, tail pointers, and
queue lengths. Each queue ID identifies an element in these
register arrays. The second change is that the index of the
queue elements needs to be re-planned. A typical method is
using some lower bits of the pointer to represent the queue
ID, and the remaining bits to represent the element offset in
the queue. For example, one register array with a capacity of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1739

256 is used as 16 queues. The lower four bits are the queue
ID and the higher four bits are the offset.

Modifying payload. For some test cases where the complete
or partial payload of the template packet is capable to be
parsed in the PHV, we can treat this payload as a normal
packet header. First, the parser needs to parse the payload as
a header according to the total length in the IP header. Before
entering the post-processing table, the previously added pay-
load header must be set to invalid to avoid adding payloads
repeatedly. Second, the payload header needs to participate in
the calculation of the TCP checksum, which should be imple-
mented in both the parser and the deparser. In this way, Norma
can add, delete, and modify the payload without queues.

4.4 Post-Processing
As shown in Figure 3 Step III, post-processing tables are
used to modify the template packet and finally generate the
replying packet. First, the stateful packet enqueues the flow
ID and action ID. Then, the template packet obtains the action
ID from the queue and executes state actions according to
this action ID in post-processing tables. State actions must
implement the following functions: (1) restoring the MAC
addresses, IP addresses, and TCP ports according to the flow
ID; and (2) setting the correct egress port to the replying
packet. Other instructions such as updating the TCP sequence
number depend on the user’s testing requirements.

5 Emulating Realistic Traffic
Now we introduce how Norma emulates realistic traffic. We
have two requirements for real traffic generation. First, the
types of outgoing traffic generated by Norma cover our test
scenarios (§5.1). The packet editor can modify the fields of
the outgoing packet fields according to the user’s test tasks
such as port scanning and host probing. Second, the rate of
outgoing traffic controlled by Norma covers our test scenar-
ios (§5.2). Norma leverages the packet header compression
technique to overcome the bandwidth bottleneck caused by
bridged metadata conveyance, thus achieves the line-rate traf-
fic generation (Appendix B). On this basis, the rate/burst
controller is able to control the outgoing traffic rate accurately
and the burst pattern can be customized by the controller to
emulate the network traffic in corner cases.

5.1 Two-Stage Packet Editor
If the resources of the external pipeline are sufficient, the
packet editor only needs to be implemented on the exter-
nal egress pipeline. However, most resources of the external
pipeline has been occupied by switching functions. There
are no more stages available to support register operations
like generating random numbers and execution of the packet
editor table actions like packet field assignment.

We propose a two-stage editing mechanism to overcome
this limitation. Instead of editing the outgoing packet on the
external egress pipeline only, Norma splits the packet editor

Register A
(Rate Control)

Bypass Multicast

Meter Register B
(Burst Control) MulticastGreen Pass Pass

Red Skip Skip

Figure 4: The multi-stage rate control mechanism. Meters and
registers determine whether to multicast the template packets
or not to control the traffic rate and burst pattern.

into two parts. Because the internal egress pipeline is not
used by the switching function and measurement functions.
We implement a major packet editor that edits the template
packets on the internal pipeline first to complete most of the
work. However, modifying the template packet alone is not
enough. The outgoing traffic on multiple front-panel ports
is identical if these modified packets are replicated to these
ports through the PRE. So there is a minor one that edits the
outgoing traffic on the external pipeline to differentiate them
on each port. We leave implementation details in Appendix C.

5.2 Precise Rate & Burst Control
The traffic rate is an important feature in realistic traffic em-
ulation. Norma is required to send the traffic exactly at the
configured rate with diverse burst patterns. The meter [36]
(usually implemented by a token bucket) is a common rate
control component provided by the programmable switch
ASIC. In Norma, the meter first colors the template packets
that loop in the internal pipeline at line rate to red or green.
The multicast controller then marks the drop flag to the red
packets and writes the multicast metadata to the green packets
to generate outgoing traffic at the target rate. But the follow-
ing two limitations make the meter not quite practical. 1) The
meter colors the packets of the stable traffic with an equal
time interval. It is impossible to generate burst traffic where
packets are expected to be sent in batches. 2) The target rate
has a finite precision, i.e., not all target rates can be precisely
configured. The actual rate of the meter can be different from
what we set, and the error grows even larger if we choose a
shallower bucket depth to avoid unexpected bursts.

Norma proposes a multi-stage rate control mechanism in
the rate/burst controller to obtain the ability of accurate rate
control and bursts. As shown in Figure 4, the mechanism is
based on a meter, appended with multiple register units (e.g., 2
units in the figure). Each unit is implemented in the same way,
which skips the following m packets after passing n successive
packets. These units are connected in a cascaded way, and the
parameters m and n can be configured individually. Next, we
show how the design solves both two problems.

First, for the case of accurate rate control, the user wants to
generate 10 Gbps traffic. However, the two closest rates sup-
ported by the meter are 9.9 Gbps and 10.1 Gbps. In this case,
we can configure the meter to the larger rate. The parameters
m and n of register A in Figure 4 are set to 1 and 100, respec-
tively, which means skipping 1 packet after passing 100 pack-
ets. Therefore, the final rate becomes 10.1 Gbps×100

1+100 = 10 Gbps.

1740 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Time1 2 3 4

Tester

DUT

report report reportreport

Figure 5: Cross-interval packets make counters out of sync.
In time 2-3, the tester sends two packets and reports one is
lost, but it receives the lost one in time 3-4.

Second, for the case of burst pattern control, the user wants
to send burst traffic whose peak rate and average rate are
10 Gbps and 4 Gbps, respectively, which means there are
1,000 packets in a burst batch. To meet this goal, we only
need to configure the m and n of register B to 1,000 and 1,500,
respectively. These registers can be used flexibly. We can use
two or more registers together to get a more precise rate or to
construct complex burst patterns.

6 More Practical Considerations
To use Norma in practice, we also need to address some
engineering challenges. For a load tester, measurement is one
of the most important engineering challenges, since it is used
to estimate the performance of tested networks. We have two
requirements for the measurement. First, the measurement
must be accurate, which means that the measurement must
be done on the data plane as much as possible. Second, the
measurement should not affect the functionality of the DUT
and the pattern of the outgoing traffic. This means that the
outgoing packet should not carry additional headers to store
information such as timestamps.

This section first presents a measurement technique based
on a flapped version bit, which can obtain high-precision traf-
fic metrics in real time (§6.1). Then, we detail the blind mea-
surement technique used in the delay measurement that avoids
adding extra information to the outgoing packets (§6.2).

6.1 High-Precision Real-Time Measurement
A straightforward way is to let the programmable switch
ASIC periodically report the counter value to control plane
programs. Then, the metrics (e.g., throughput) can be cal-
culated as the quotient of the counter value difference and
the reporting period. However, this method is inaccurate for
complex metrics relying on bidirectional measurements. Con-
sider the measurement of packet drop rate in Figure 5, which
counts in both ingress and egress directions and reports the
difference. Note that there is a cross-interval packet that is
sent before the third report (at time 3) and received after it.
Thus the ASIC knows that there are two packets sent in total
and only one packet received during the reporting interval 2-3,
and reports “one packet is lost” to the control plane at time 3.
But in fact, there is no packet loss.

Norma synchronizes the counters in two directions by em-
bedding a version bit in packet headers (e.g., one bit in the

IPv4 identification field). The version bit flaps every time
a report happens. For example, in Figure 5, the version bit
values in three reporting intervals can be (1,0,1) or (0,1,0),
respectively. In the meanwhile, each original counter will be
replaced by a counter group composed of two counters, corre-
sponding to two versions. When receiving a packet, the ASIC
reads the version it belongs to from the packet header, and
updates the counter indexed by the version. Choosing the re-
porting period to a value larger than the maximum forwarding
time of the DUT, the cross-interval packets will disappear.

While Norma achieves high-precision real-time measure-
ment, it also adds a delay in reporting period to the data report.
In addition, the SRAM used by counters is doubled.

6.2 Blind Measurement of Forwarding Delay
Typically, the forwarding delay can be measured by embed-
ding a timestamp at the end of the packet. When Norma re-
ceives it, the timestamp will be parsed out and then compared
with the current timestamp. However, this method cannot be
applied to the programmable switch ASIC, whose pipelines
are unaware of the packet payload. An alternative way is to
embed to timestamp between the headers where the ASIC
can parse, but it does not work for stateful protocols. For ex-
ample, the HTTP header cannot be parsed by the ASIC due
to the variable header length, and such embedding inserts the
timestamp between the TCP header and the HTTP header.
When the DUT (e.g., an L7 gateway) receives the packet, it
incorrectly treats the timestamp as an HTTP header. Another
way is to embed the timestamp in packet headers, but there is
not enough room for a 32-bit nanosecond timestamp, which
is necessary for measurement precision.

Norma proposes the blind measurement technique, which
does not embed or add a timestamp into the packet but sends
blindly. Our approach is based on the synchronization frame-
work (§6.1). Within each reporting interval, the ASIC records
the timestamp of the first outgoing packet in a register and
regards the value as base timestamp Bo. For following out-
going packets in the interval, the ASIC calculates relevant
time as the difference between its timestamp and the base
timestamp and adds it to a time register. Here we use the
relevant time to avoid arithmetic overflow and denote To and
Po as the sum of relevant time and the outgoing packet num-
ber, respectively. The ASIC processes the incoming pack-
ets in the same way, and we denote corresponding values
as Bi, Ti, and Pi, respectively. When the interval passes, the
ASIC reports the all above values to the control plane, and
then the control plane calculates the average delay d as:
d = (Bi +Ti/Pi)− (Bo +To/Po) . It is noticeable that packet
loss can affect the precision of blind measurement. We leave
the analysis in Appendix D.

We use the example in Figure 6 to illustrate how it works.
Assume that the base timestamps of outgoing and incom-
ing packets are 1000 and 1005, respectively. Three outgoing
packets are sent at the time 1010, 1020, and 1030, so the time

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1741

Outgoing

Incoming

DUT
101010201030

114011301105

Base = 1000

Base = 1005

Time = 60
(10+20+30)

Time = 360
(100+125+135)

Figure 6: An example of blind measurement. The time offsets
are accumulated by Norma and not carried with packets.

100K 1M 10M 100M
Flow length (byte)

0
20
40
60
80

100

Ra
te

(G
bp

s)

Host0
Host1

Host2
Host3

Figure 7: CDN load balance
throughput.

0 2 4 6 8 10 12 14 16
Time (min)

0
50

100
150
200
250
300

Dr
op

 ra
te

(K
pp

s)

Figure 8: Packet drop on the
traffic manager.

register of outgoing packets is added by 10, 20, and 30, respec-
tively, which sum up to 60. Similarly, the time counter of in-
coming packets is 360. Therefore, the control plane calculates
the average delay as (1005+360/3)− (1000+60/3) = 105.

7 Implementation
Different from prior work, Norma depends on the pipeline-
folded programmable switch ASIC, and therefore, is built
from scratch. We write about 1,200 and 1,000 lines of P4 code
to implement HTTP and TCP traffic responding functions,
respectively. Except that, we write about 8,400 lines of P4
code to implement the rest of the data plane, as well as basic
switch functions such as routing and ACL.

The control plane of Norma is implemented with about
2,500 lines of Python code and runs in a SONiC-like operat-
ing system [12]. It uses internal gRPC to communicate with
the ASIC and provides HTTP APIs to users for job manage-
ment. With these APIs, users can create a traffic-sending job
with a desired packet header stack, traffic rate, burst pattern,
measurement, stateful responder, etc., and then submit it to
Norma. After that, the job manager automatically allocates
loopback ports (Appendix E) to these jobs and starts sending
packets, until the job is terminated by users.

8 Case Study
Norma has been used to test our pre-online devices for over
two years. We present three real usage experiences.

CDN load balancer stress test. In a CDN system, the load
balancer (LB) is responsible for distributing user requests to
backend servers and then returning the servers’ responses to
the user. The LB, therefore, needs to afford a large amount
of traffic. Its performance is critical to the CDN system. In
one of our production pre-deployment, the load balancer em-
ploys four 100 Gbps links to connect to the ISP network and
uses the other four 100 Gbps links to connect to the backend
servers. To test the LB, we used Norma to emulate the traf-
fic from both the ISP network and the backend servers. The

traffic of the emulated HTTP clients was sent to the ISP ports
of the LB, and the traffic of the emulated HTTP server was
sent to the backend server ports of the LB. Norma initiated
and maintained 4,000 HTTP connections. If one connection
ends normally, Norma re-initiates the connection; if one con-
nection ends abnormally, Norma shuts down the connection.
Therefore we changed the connection establishing frequency
by tuning the flow length to test whether there existed any
performance issue. As shown in Figure 7, we observed that
when the flow length was greater than 10 MB, the through-
put of each backend server was close to 100 Gbps; however,
when the flow length was less than 1 MB, the throughput
was lower than 80 Gbps due to the limitation of the HTTP
connection establishment capability of the LB. We therefore
successfully measured the performance specifications of the
LB under different types of loads.
Traffic manager burst traffic test. In another LB setup, our
switch should connect to the ISP network with two 100 Gbps
links and 32 backend servers with 25 Gbps links. Normally,
the throughput of the user requests from the ISP to the back-
end servers should be 50 Gbps. These requests trigger about
90 Gbps replying traffic, and 200 Mbps synchronization traf-
fic from each backend server to other servers. But long-term
operation in practice showed that there was packet loss on
the LB. In troubleshooting, we find that requests sometimes
generate bursts of 7 Gbps lasting 9-10 ms on one host, and
drive the burst of synchronization traffic. Even with the bursts,
this level of traffic should not cause a significant packet loss
on the DUT. However, the QAC (Queue Admission Control)
drop counters of backend servers increased irregularly.

The root cause is the improperly configured traffic manager.
The burst traffic can rapidly fill the queue up and then cause
packet loss. To tune the traffic manager configuration, we
set the burst mode to sending 3,000 packets at 2.5 times the
average throughput intermittently on the request traffic and
the synchronization traffic, which can reproduce the bursts
and packet loss. Figure 8 shows our result. There were about
197,000 packets dropped by the traffic manager every second.
And therefore, Norma assisted our operators to optimize the
traffic manager configuration.
ARP learning rate test. We have deployed many pro-
grammable switches in our network. We need to ensure the
correctness and speed of L2/L3 forwarding functions. To this
end, we used Norma to connect these DUTs (i.e., tested pro-
grammable switches) with two links. On one link, Norma
generated ARP-reply traffic at line rate. It announced the
MAC address of a segment of free IPs as the tester itself’s. On
another link, Norma generated UDP traffic at line rate, where
the destination IPs were the free IP addresses announced by
the ARP traffic. The DUTs must be able to learn ARP entries
correctly first. Second, the DUTs need to forward UDP traffic
according to the learned ARP entries. Finally, Norma judged
whether the DUTs had learned all ARP entries by measur-
ing the throughput of the forwarded UDP traffic, and then

1742 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

64 80 96 112 128 256 512 1518 9100
Packet size (byte)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Ra
te

(T
bp

s)

Throughput
Goodput

(a) UDP traffic.

128 256 512 1024 1518
Packet size (byte)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ra
te

(T
bp

s)

(b) TCP traffic.

1K 10K100K1M 10M100M
Flow size (byte)

0.0
0.2
0.4
0.6
0.8
1.0

Ra
te

(T
bp

s)

(c) HTTP traffic.

Figure 9: Maximum throughput of Norma.

calculated the ARP learning rate.
In our testing, Norma showed that when the number of

tested IP addresses was 213, the learning rate was about 462
ARP entries per second. However, when the number of IP
addresses reached 214, the DUTs failed to learn all ARP en-
tries. After our troubleshooting, we found that the control
plane used a hash value of the entry to locate the ARP en-
try. If a hash conflict of ARP entries occurred, the control
plane returned an exception. In addition, the control plane
only supported up to 214 entries, which made our test trigger
hash collisions. These bugs were hard to find in unit tests
because the number of ARP entries in unit tests is limited. No
assertion can be triggered without hash collision.

9 Evaluation
All of our experiments were conducted in two programmable
switches with Tofino programmable switch ASICs, where one
was the tester, and the other was the DUT. Two switches were
connected via 32 100 Gbps optical fibers, which provided
3.2 Tbps bidirectional bandwidth in total.

The traffic quality of Tofino ASICs and software testers
has been well-learned in HyperTester [55] (see Appendix F).
So we omit these experiments in the evaluation. Norma gener-
ates traffic only via dedicated hardware, rather than software.
Therefore, the traffic generated is quite stable and very easy
to reproduce. We got exactly the same results from multiple
runs in our experiments.

9.1 Traffic Throughput
In this part, we evaluated the maximum throughput of three
typical traffic, including UDP, TCP, and HTTP. Packets or
flows with different sizes were required to generate to test
the performance limit of Norma. And loopback ports were
allocated by the algorithms in Appendix E. Unless otherwise
specified, the Ethernet header and frame check sequence are
taken into account when we describe packet or flow sizes,
while the inter-packet gap and preambles are not.

UDP traffic. We first evaluated Norma’s throughput of
UDP traffic with different packet sizes, including small
packets ranging from 64 to 512 bytes, MTU-sized packets
(1518 bytes), and jumbo packets (9100 bytes). The allocation
of loopback ports was straightforward for UDP, whose out-
going packets were directly multicast from template packets,
and did not need other packets to trigger. Therefore, only one
loopback port was occupied by template packets.

Figure 9a shows our results. Norma can generate traffic at
the rate of at least 1.6 Tbps and reaches 3.2 Tbps for packets
longer than 256 bytes. Two bottlenecks limit the performance
of Norma. For small packets, the throughput was bounded by
the operating frequency of the ASIC because there were more
headers for the pipelines to process. And for large packets,
however, the throughput was bounded by the 100 Gbps port
rate. We used goodput to represent the transmission rate of
the payload. As the packet size increased, the proportion
of the packet header decreased, so the goodput increased.
These results indicated that Norma’s performance reached
the limit of ASIC’s capability. In the meanwhile, HyperTester
can generate UDP traffic at the rate of 1.6 Tbps [55] and can
be simply extended to 3.2 Tbps for large packets, similar to
Norma.
TCP traffic. Next, we evaluated Norma’s throughput of TCP
traffic with state machine bypass. The TCP packet received
was forwarded to the loopback pipeline where packet informa-
tion was enqueued directly. Then the template packets looped
in the pipeline read the information from the queue and gen-
erated a replying packet based on TCP flags. For example,
when receiving a pure ACK packet, Norma would send back
a PUSH packet with the payload of a specified size. Since the
size of ACK packets was much smaller than that of PUSH
packets, one loopback port was enough to process the ACK
traffic received from multiple front-panel ports. For example,
one loopback port processing ACK packets can support three
front-panel ports that sent out 256-byte PUSH packets. That
means, every four loopback ports can support up to 300 Gbps
TCP traffic.

Figure 9b shows our results. According to the loopback port
allocation algorithm in Appendix E, the expected throughput
of PUSH packets sized by 128, 256, 512, 1024, and 1518 bytes
was 1.6, 2.4, 2.6, 2.8, and 3.0 Tbps, respectively. However, the
throughput of 128- and 256-byte packets was slightly lower
than expected due to pipeline throughput limitations. For the
rest of the PUSH packet sizes, each front-panel port generated
near-line-rate TCP traffic.
HTTP traffic. Finally, we evaluated Norma’s throughput of
HTTP traffic by emulating HTTP sessions with different flow
sizes, ranging from 1 KB to 100 MB. There were two types
of packets in one HTTP session. One was the packets with
HTTP content, and the other was the TCP control packets.
Norma generated the packets with HTTP content by dupli-
cating the template packets with the 1024-byte payload. For
other packets, Norma used the template packet with no pay-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1743

0.1 1 10 20 40 60 80
Expected rate (Gbps)

0.0
0.2
0.4
0.6
0.8
1.0

M
ea

su
red

 ra
te

(no
rm

ali
ze

d)

Norma 64B
HyperTester 64B
Norma 1518B
HyperTester 1518B

Figure 10: Comparison of rate control accuracy.

load. To achieve the maximum throughput, in each 16-port
internal pipeline, five ports were used for reading state reg-
isters, five ports were used for writing state registers, five
ports were used for generating PUSH packets, and one port
was used for generating TCP control packets. Therefore, we
expected that Norma should generate 1 Tbps HTTP traffic.

Figure 9c shows our results. Norma generated HTTP traffic
with over 950 Gbps throughput, which was slightly lower than
expected. This was because of the gap between the looping
frequency of large template packets (e.g., 11 Mpps) and the
arrival frequency of small packets (e.g., 150 Mpps), which
made the enqueue time and dequeue time unaligned. For
example, a small HTTP control packet may wait in the queue
for triggering a large data packet. This phenomenon was
obvious when small packets dominate in short HTTP sessions
and led to lower throughput.
Stability. We evaluated the stability of Norma by sending
UDP, TCP, and HTTP traffic continuously over 24 hours, at
the rate of 3.2, 3.0 and, 1.0 Tbps, respectively. We recorded
the throughput of Norma periodically and found that it kept
stable during the long-term run.

9.2 Traffic Control
In this part, we evaluated the traffic control capabilities in
Norma in terms of rate control accuracy and traffic bursts.
Rate control. We evaluated rate control on two types of UDP
traffic generated by Norma. One was composed of 64-byte
packets and the other was MTU-sized packets. We measured
the actual throughput of generated traffic and compared it
with the expected rate. For clarity, the actual throughput was
normalized by the expected rate. As shown in Figure 10,
Norma achieved nearly 100% accuracy in all cases. However,

Table 3: The rate error of our multi-stage rate control and pure
meter when generating packets of different sizes.

Rate
(Gbps)

64 Bytes 1518 Bytes
Multi-Stage Pure Meter Multi-Stage Pure Meter

0.1 6×10−6 3×10−3 2×10−5 1×10−3

1 9×10−7 2×10−3 4×10−6 5×10−4

10 8×10−8 4×10−3 1×10−6 3×10−3

20 5×10−8 4×10−3 4×10−8 3×10−3

40 3×10−8 4×10−3 2×10−7 3×10−3

60 5×10−5 3×10−3 2×10−6 8×10−4

80 2×10−4 4×10−3 1×10−7 3×10−3

0 2 4 6 8 10 12 14
Time (μs)

0

5

10

15

20

Se
qu

en
ce

 nu
mb

er 25G Small Burst
50G Small Burst
50G Large Burst

(a) Micro time scale

0 10 20 30 40 50 60
Time (s)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Th
rou

gh
pu

t (
Gb

ps
)

25G Small Burst
50G Small Burst
50G Large Burst

(b) Macro time scale

Figure 11: The traffic generated by Norma’s burst control.

the actual throughput of HyperTester became inaccurate as the
expected rate grew larger. For example, the rate error reached
38% when the expected rate was 80 Gbps.

HyperTester controlled the rate of generated traffic by com-
paring the timestamp gap with a dropping threshold, which
was calculated based on the expected rate. For any two suc-
cessive packets, if the packet gap was less than the threshold,
the second packet would be dropped. However, considering
the scenario when the expected rate was more than half of
the full rate, the dropping threshold would always be larger
than the transmission time of a single packet. It meant there
was always one packet being dropped for any two successive
packets, and the actual rate cannot exceed 50% of the full rate.
When the expected rate reached 80 Gbps, the actual rate of
HyperTester was 80 Gbps×62%≈ 50 Gbps, which was the
same as what we measured above.

We further evaluated the accuracy of our multi-stage rate
control. We used the meter-based rate limiter provided by the
programmable switch ASIC as a baseline. The actual rate is
measured by a counter that counts how many packets pass
through the egress pipeline in a range of time. The error is
the ratio of the difference between the actual rate and the
target rate to the target rate. For Norma, the rate control accu-
racy can be further guaranteed by our multi-stage rate control
design. As shown in Table 3, the error of the meter-based
rate limiter ranged between 0.1% and 1%, because the rate
to limit supported by the hardware meter was not continuous.
After applying the multi-stage rate control, the accuracy was
promoted by at least 10×, and the rate error was less than
0.01% in the worst cases.

Burst control. To test the burst control, we made the Norma
to generate three kinds of traffic with different burst patterns.
For traffic A, B, and C, we set the expected average rate to
10 Gbps, 20 Gbps, and 20 Gbps, and the burst scale (i.e., the
number of packets in a burst batch) to 4, 4, and 8, respectively.
In addition, the burst rate (i.e., peak rate) of all the traffic was
required to be 2.5× the average rate. The performance of burst
control was evaluated on two scales. The micro time scale
showed the packet-level burst pattern, while the macro time
scale showed the traffic-level throughput. For the micro time
scale, we gave each packet an increasing sequence number
and recorded their transmission time. The result was shown in
Figure 11a. In the two burst patterns with an average rate of

1744 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 50 100 500 1000
Packet count

102
103
104
105

De
lay

 (n
s)

Measured
Expected

0
1
2
3
4
5
6

Er
ror

 (%
)

Figure 12: The packet delay when DUT meets bursts.

50 Gbps, there were 8 packets sent continuously in each batch
under the large burst setting, and there were 4 packets under
the small burst setting at the same rate with half the batch
size. For the burst pattern with an average rate of 25 Gbps,
there were 4 packets sent continuously at half rate in the same
batch size as the 50 Gbps large burst pattern. At the macro
time scale shown in Figure 11b, they all stayed at the target
average rate.

9.3 Measurement
In this part, we combined traffic generation and burst con-
trol to evaluate the measurement function of Norma. First,
Norma was connected to the switch under test and generated
100 Gbps line-rate UDP background traffic. The switch then
forwarded background traffic back to one specified port of the
tester. Second, Norma generated burst traffic at 100 Gbps with
different burst scales. And burst traffic was also forwarded by
the switch back to the same port of the tester. The packet size
of burst traffic and background traffic was both 1024 bytes.
Finally, Norma measured the average delay of packets in the
burst traffic and compared it with the expected queuing time
to judge the error of Norma’s measurement.

Note that in this case, both burst traffic and background
traffic were queued at the same egress port of the switch.
We denoted the burst scale as n packets, and then the theo-
retical average packet queuing time was (1024+20) Bytes

100 Gbps × n
2

5.
In addition, the delay measured by Norma included the link
propagation time, which is about 1454 ns.

Results are shown in Figure 12, where the link delay has
been removed. For all of the burst scales, the queuing delay
measured by Norma was very close to the theoretical value.
When the burst scale was greater than 10 packets, the error of
the average delay was less than 4%. The larger the burst size,
the more accurate the measurement of average delay was.

10 Limitation & Discussion
Can Norma emulate full functions of stateful protocols? It
depends on the complexity of the protocol. Besides the hard-
ware limitations we detail in §4.1, the hardware resources
also constrain the implementation of the stateful protocol. A
stateful protocol in Norma consists of its state transitions, the
replying traffic types, and the state actions. The capacity of the
state table determines how many state transitions Norma can
support. The loopback ports determine how many template
packet types Norma can support and the maximum throughput

5The inter-packet gap and preambles (20 bytes) should be considered.

of replying traffic Norma can generate. And most importantly,
the state action may be too complex to implement into the
programmable switch ASIC, because the switch resource al-
location algorithms and related optimizations in compilers
are unknown to developers. Without trying to implement the
protocol and compile it, it is hard to know whether a stateful
protocol can be fully emulated. Therefore, for complex pro-
tocols, we need to simplify them under the premise of being
able to complete the test task.

Can Norma support testing customized protocols? Users
can customize the packet structure and the processing logic
of the protocol in most cases. For example, if we want to
measure the forwarding performance of the GPRS tunneling
protocol [3], we can modify the parser and deparser to support
it. If we want to measure the RDMA write-only throughput
of a host, things become complex. The process of exchanging
information, congestion control algorithm and packet loss
recovery are difficult to express with the EFSM. Even if pos-
sible, it is difficult to implement within limited instructions.
Our approach is to retain only the process of transferring con-
tent in RDMA and remove other logic such as congestion
control. However, Norma cannot support protocols with en-
cryption due to the limitation of programmable switch ASICs,
unless the encrypted data can be regarded as a fixed payload,
or special acceleration cards such as IPU [4] are available.

Can Norma localize the root cause of performance issues?
Norma cannot localize the root cause of performance issues
because the DUT is typically a black or gray box that cannot
be simply modeled. For example, a performance problem can
come from misconfigurations, ASIC capabilities, bottleneck
of switch CPUs, and even signal strength when wireless links
involve. It might be possible to extend Norma to root cause
localization if sufficient information is provided.

11 Conclusion
We present Norma, the first practical network load tester used
in production. Norma employs the programmable switch
ASIC to support stateful protocol generation and customiza-
tion and realistic traffic emulation such as high precise rate
control. Norma has been used in our operation for over two
years and successfully detected many performance issues.

Acknowledgments
We thank our shepherd, Muhammad Shahbaz, and NSDI re-
viewers for their insightful comments. We also thank Xiao-
liang Wang for his valuable feedback on earlier drafts of this
paper. This work is supported by Alibaba Group through Al-
ibaba Research Intern Program. Yanqing Chen, Chen Tian,
and Guihai Chen are also supported in part by the National
Key R&D Program of China (2022YFB2702803), the Na-
tional Natural Science Foundation of China under Grant Num-
bers 62072228, and the Fundamental Research Funds for
the Central Universities. Chen Tian and Ennan Zhai are co-
corresponding authors.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1745

References

[1] Alveo U200 Data Center Accelerator Card. https://www.xi
linx.com/products/boards-and-kits/alveo/u200.h
tml#buy-from-xilinx.

[2] DPDK. https://www.dpdk.org.

[3] GPRS tunnelling protocol. https://www.3gpp.org/DynaR
eport/29274.htm.

[4] Intel IPU. https://www.intel.com/content/www/us/en/
products/network-io/smartnic.html.

[5] Intel Tofino 3.2 Tbps, 4 pipelines. https://www.intel.co
m/content/www/us/en/products/sku/218642/intel-to
fino-3-2-tbps-4-pipelines/specifications.html.

[6] iPerf. https://iperf.fr.

[7] Keysight. https://www.keysight.com/us/en/products/
network-test/network-test-hardware.html.

[8] PF_RING ZC. https://www.ntop.org/products/packet
-capture/pf_ring/pf_ring-zc-zero-copy/.

[9] Pktgen. https://github.com/pktgen/Pktgen-DPDK.

[10] Programmable data plane at terabit speeds. https://confer
ences.sigcomm.org/sigcomm/2018/files/slides/p4/P
4Barefoot.pdf.

[11] Scapy. https://scapy.net/.

[12] SONiC. https://sonic-net.github.io/SONiC.

[13] Spirent. https://www.spirent.com/products/testcen
ter-ethernet-ip-cloud-test.

[14] Tofino native architecture - public version. https://github
.com/barefootnetworks/Open-Tofino/blob/master/PU
BLIC_Tofino-Native-Arch.pdf.

[15] Tofino product family brochure. https://www.intel.com/
content/dam/www/central-libraries/us/en/document
s/tofino-product-family-brochure.pdf.

[16] Tofino programmable Ethernet switch ASIC. https://www.
intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series.html.

[17] Trafgen. http://netsniff-ng.org.

[18] TRex. https://trex-tgn.cisco.com.

[19] Gianni Antichi, Charalampos Rotsos, and Andrew W. Moore.
Enabling performance evaluation beyond 10 gbps. SIGCOMM
Comput. Commun. Rev., 45(4):369–370, aug 2015.

[20] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and
Carmelo Cascone. Openstate: Programming platform-
independent stateful openflow applications inside the switch.
SIGCOMM Comput. Commun. Rev., 44(2):44–51, apr 2014.

[21] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McK-
eown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin
Vahdat, George Varghese, and David Walker. P4: Programming
protocol-independent packet processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, jul 2014.

[22] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese,
Nick McKeown, Martin Izzard, Fernando Mujica, and Mark
Horowitz. Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn. ACM SIGCOMM
Computer Communication Review, 43(4):99–110, 2013.

[23] Alessio Botta, Alberto Dainotti, and Antonio Pescapè. A tool
for the generation of realistic network workload for emerging
networking scenarios. Computer Networks, 56(15):3531–3547,
2012.

[24] Neal Cardwell, Yuchung Cheng, Lawrence Brakmo, Matt
Mathis, Barath Raghavan, Nandita Dukkipati, Hsiao-keng Jerry
Chu, Andreas Terzis, and Tom Herbert. packetdrill: Script-
able network stack testing, from sockets to packets. In 2013
USENIX Annual Technical Conference (ATC), 2013.

[25] Kwang Ting Cheng and A. S. Krishnakumar. Automatic func-
tional test generation using the extended finite state machine
model. In Proceedings of the 30th International Design Au-
tomation Conference, 1993.

[26] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman,
Shay Vargaftik, Alon Berger, Gal Mendelson, Mohammad Al-
izadeh, Shang-Tse Chuang, Isaac Keslassy, Ariel Orda, and
Tom Edsall. Drmt: Disaggregated programmable switching.
In ACM SIGCOMM (SIGCOMM), 2017.

[27] G. Adam Covington, Glenn Gibb, John W. Lockwood, and
Nick Mckeown. A packet generator on the netfpga platform.
In 17th IEEE Symposium on Field Programmable Custom
Computing Machines (FCCM), 2009.

[28] Quentin De Coninck and Olivier Bonaventure. Multipath quic:
Design and evaluation. In Proceedings of the 13th interna-
tional conference on emerging networking experiments and
technologies (CoNEXT), 2017.

[29] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt
solver. In International conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), 2008.

[30] Andrea Di Domenico, Gianluca Perna, Martino Trevisan, Luca
Vassio, and Danilo Giordano. A network analysis on cloud
gaming: Stadia, geforce now and psnow. Network, 1(3):247–
260, 2021.

[31] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Flo-
rian Wohlfart, and Georg Carle. Moongen: A scriptable high-
speed packet generator. In Proceedings of the Internet Mea-
surement Conference (IMC), 2015.

[32] Paul Emmerich, Sebastian Gallenmüller, Gianni Antichi, An-
drew W. Moore, and Georg Carle. Mind the gap - a comparison
of software packet generators. In ACM/IEEE Symposium on
Architectures for Networking and Communications Systems
(ANCS), 2017.

[33] Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya Raghu-
nathan, Aatish Kishan Varma, Pravein Govindan Kannan,
Anirudh Sivaraman, Srinivas Narayana, and Aarti Gupta.
Switch code generation using program synthesis. In ACM
SIGCOMM (SIGCOMM), 2020.

[34] Nadeen Gebara, Alberto Lerner, Mingran Yang, Minlan Yu,
Paolo Costa, and Manya Ghobadi. Challenging the stateless
quo of programmable switches. In Proceedings of the 19th
ACM Workshop on Hot Topics in Networks (HotNets), 2020.

[35] Philippe Graff, Xavier Marchal, Thibault Cholez, Stéphane
Tuffin, Bertrand Mathieu, and Olivier Festor. An analysis
of cloud gaming platforms behavior under different network
constraints. In 17th International Conference on Network and
Service Management (CNSM). IEEE, 2021.

1746 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.xilinx.com/products/boards-and-kits/alveo/u200.html#buy-from-xilinx
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html#buy-from-xilinx
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html#buy-from-xilinx
https://www.dpdk.org
https://www.3gpp.org/DynaReport/29274.htm
https://www.3gpp.org/DynaReport/29274.htm
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/sku/218642/intel-tofino-3-2-tbps-4-pipelines/specifications.html
https://www.intel.com/content/www/us/en/products/sku/218642/intel-tofino-3-2-tbps-4-pipelines/specifications.html
https://www.intel.com/content/www/us/en/products/sku/218642/intel-tofino-3-2-tbps-4-pipelines/specifications.html
https://iperf.fr
https://www.keysight.com/us/en/products/network-test/network-test-hardware.html
https://www.keysight.com/us/en/products/network-test/network-test-hardware.html
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://github.com/pktgen/Pktgen-DPDK
https://conferences.sigcomm.org/sigcomm/2018/files/slides/p4/P4Barefoot.pdf
https://conferences.sigcomm.org/sigcomm/2018/files/slides/p4/P4Barefoot.pdf
https://conferences.sigcomm.org/sigcomm/2018/files/slides/p4/P4Barefoot.pdf
https://scapy.net/
https://sonic-net.github.io/SONiC
https://www.spirent.com/products/testcenter-ethernet-ip-cloud-test
https://www.spirent.com/products/testcenter-ethernet-ip-cloud-test
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/tofino-product-family-brochure.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/tofino-product-family-brochure.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/tofino-product-family-brochure.pdf
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
http://netsniff-ng.org
https://trex-tgn.cisco.com

[36] J. Heinanen and R. Guerin. Rfc2698: A two rate three color
marker. Technical report, RFC Editor, USA, 1999. https:
//www.rfc-editor.org/rfc/rfc2698.html.

[37] Stephen Ibanez, Gianni Antichi, Gordon Brebner, and Nick
McKeown. Event-driven packet processing. In Proceedings of
the 18th ACM Workshop on Hot Topics in Networks (HotNets),
2019.

[38] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun
Lee, Robert Soulé, Changhoon Kim, and Ion Stoica. NetChain:
Scale-Free Sub-RTT coordination. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI), 2018.

[39] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun
Lee, Nate Foster, Changhoon Kim, and Ion Stoica. Netcache:
Balancing key-value stores with fast in-network caching. In
Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP), 2017.

[40] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown.
Compiling packet programs to reconfigurable switches. In
12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2015.

[41] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim,
Jeongkeun Lee, Vyas Sekar, and Srinivasan Seshan. Tea:
Enabling state-intensive network functions on programmable
switches. In ACM SIGCOMM (SIGCOMM), 2020.

[42] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vi-
cente, Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov,
Ian Swett, Janardhan Iyengar, et al. The quic transport protocol:
Design and internet-scale deployment. In ACM SIGCOMM
(SIGCOMM), 2017.

[43] Guanyu Li, Menghao Zhang, Cheng Guo, Han Bao, Mingwei
Xu, Hongxin Hu, and Fenghua Li. IMap: Fast and scalable
in-network scanning with programmable switches. In 19th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2022.

[44] Masoud Moshref, Apoorv Bhargava, Adhip Gupta, Minlan Yu,
and Ramesh Govindan. Flow-level state transition as a new
switch primitive for sdn. In Proceedings of the Third Work-
shop on Hot Topics in Software Defined Networking (HotSDN),
2014.

[45] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang Xu,
Yisong Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan Lu, et al.
Sailfish: Accelerating cloud-scale multi-tenant multi-service
gateways with programmable switches. In ACM SIGCOMM
(SIGCOMM), 2021.

[46] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola, Carmelo
Cascone, Marco Spaziani, Valerio Bruschi, Davide Sanvito,
Giuseppe Siracusano, Antonio Capone, Michio Honda, Felipe
Huici, and Giuseppe Siracusano. FlowBlaze: Stateful packet
processing in hardware. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), 2019.

[47] Luigi Rizzo. netmap: A novel framework for fast packet I/O.
In USENIX Annual Technical Conference (ATC), 2012.

[48] Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood,
and Andrew W. Moore. Oflops: An open framework for open-
flow switch evaluation. In Passive and Active Measurement
(PAM), 2012.

[49] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon
Kim, Mohammad Alizadeh, Hari Balakrishnan, George Vargh-
ese, Nick McKeown, and Steve Licking. Packet transactions:
High-level programming for line-rate switches. In ACM SIG-
COMM (SIGCOMM), 2016.

[50] Junji Takemasa, Ryoma Yamada, Yuki Koizumi, and Toru
Hasegawa. Ccngen: A high-speed generator of bidirectional
ccn traffic using a programmable switch. In Proceedings of
the 8th ACM Conference on Information-Centric Networking
(ICN), 2021.

[51] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu.
Cheetah: Accelerating database queries with switch pruning.
In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), 2020.

[52] Michael D. Wong, Aatish Kishan Varma, and Anirudh Sivara-
man. Testing Compilers for Programmable Switches through
Switch Hardware Simulation. 2020.

[53] Zhaowei Xi, Yu Zhou, Dai Zhang, Jinqiu Wang, Sun Chen,
Yangyang Wang, Xinrui Li, HaoMing Wang, and Jianping Wu.
Hypergen: High-performance flexible packet generator using
programmable switching asic. In ACM SIGCOMM Posters
and Demos, 2019.

[54] Yiling Xu, Qiu Shen, Xin Li, and Zhan Ma. A cost-efficient
cloud gaming system at scale. IEEE Network, 32(1):42–47,
2018.

[55] Dai Zhang, Yu Zhou, Zhaowei Xi, Yangyang Wang, Mingwei
Xu, and Jianping Wu. Hypertester: High-performance net-
work testing driven by programmable switches. IEEE/ACM
Transactions on Networking, 29(5):2005–2018, 2021.

[56] Kaiyuan Zhang, Danyang Zhuo, and Arvind Krishnamurthy.
Gallium: Automated software middlebox offloading to pro-
grammable switches. In Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Protocols
for Computer Communication, 2020.

[57] Xu Zhang, Hao Chen, Yangchao Zhao, Zhan Ma, Yiling Xu,
Haojun Huang, Hao Yin, and Dapeng Oliver Wu. Improv-
ing cloud gaming experience through mobile edge computing.
IEEE Wireless Communications, 26(4):178–183, 2019.

[58] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu
Li, Yuanbo Zhang, Jiuhai Zhang, Wei Shi, Wentao Chen, Ding
Li, et al. Xlink: QoE-driven multi-path QUIC transport in
large-scale video services. In ACM SIGCOMM (SIGCOMM),
2021.

[59] Yu Zhou, Zhaowei Xi, Dai Zhang, Yangyang Wang, Jinqiu
Wang, Mingwei Xu, and Jianping Wu. HyperTester: high-
performance network testing driven by programmable switches.
In Proceedings of the 15th International Conference on Emerg-
ing Networking Experiments And Technologies (CoNEXT),
2019.

[60] Noa Zilberman, Yury Audzevich, Georgina Kalogeridou,
Neelakandan Manihatty-Bojan, Jingyun Zhang, and Andrew
Moore. NetFPGA: Rapid prototyping of networking devices
in open source. In ACM SIGCOMM (SIGCOMM), 2015.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1747

https://www.rfc-editor.org/rfc/rfc2698.html
https://www.rfc-editor.org/rfc/rfc2698.html

APPENDIX
Appendices are supporting material that has not been peer-
reviewed.

A Non-Atomic State Updating
The state updating we detailed in §4.2 is non-atomic, which
brings two drawbacks. First, this inevitably consumes an ex-
tra loopback port and increases the packet processing delay.
Second, because the updating of the state registers is done in
two passes, if the new state ID is too late to be written to the
state register, the next stateful packet may read the old one. In
this situation, the state register can be mistakenly written with
the wrong value. Because the programmable switch ASIC
does not provide the ability to schedule packets, this error
can only be avoided by locking the state register and delaying
the processing of the following stateful packets. This will
bring more problems like keeping following stateful packets
looping in the internal pipeline buffer and then handling them
in order, which makes it impractical. Therefore, a more ac-
ceptable solution is to take the continuously incoming packets
into account when designing the EFSM.

B Full-Speed Traffic Generation
How to elimate bandwidth consumption of bridged meta-
data? Norma generates traffic by multicasting the template
packets that loop inside the internal pipeline. However, there
is no extra bandwidth reserved for the bridged metadata when
the loopback port conveys the packet from the egress back to
the ingress, so all metadata must be packed into the packet,
which increases the length of the packet and forms a band-
width bottleneck. For example, consider the scenario when
we want to send outgoing traffic composed of 64-byte small
packets at the rate of 100 Gbps from one front panel port.
Assume the egress of the loopback port adds 12-byte meta-
data to the template packet, so the packet loops at the rate
of 100 Gbps

(64+20+12)×8 = 130 Mpps. Although the ingress will parse
and remove the metadata header, the packet rate could not in-
crease anymore. As a result, the throughput of outgoing traffic
is only 130 Mpps×(64+20)×8 = 87 Gbps. This is a severe
problem for the network tester, which makes it impossible to
test the DUT under 100% workload.

The key idea of Norma is to compress the packet header.
We noticed that the bandwidth bottleneck only exists in the
internal pipeline, instead of the external pipeline, because only
the internal pipeline has egress-to-ingress forwarding. This
enables Norma to borrow some header bits to temporally store
the metadata in the internal pipeline, and pay them back at
the egress of the external pipeline. The key point is to find the
“traffic/port-invariant” fields, whose value is determined once
the flow ID and outgoing port are given. Practically, Norma
compresses the Ethernet header and borrows 12 bytes in total.

• The 2-byte Ethernet Type field can be compressed to one
byte. This field indicates the type of the next header in the

packet. For example, 0x0800 represents the IPv4 header. In
cloud scenarios, there are no more than 10 possible values
for this field, which can be encoded in one byte.
• The Src MAC and Dst MAC fields can be compressed to-

gether to one byte, which occupy 12 bytes in the original
Ethernet header. MAC addresses are usually fixed given
the traffic ID and the outgoing port, so storing the 1-byte
traffic ID is enough. When the traffic arrives at the egress
of the external pipeline, these fields can be recovered.

How many template packets are needed in one loopback
port? In the RMT-based programmable switch ASIC, one
template packet is not enough to make full use of the hardware
pipeline of a loopback port. Multiple template packets are
required to guarantee the line-rate looping. But unfortunately,
the exact number of template packets we need depends on
many factors, including the packet size, the packet header
depth, and how the compiler arranges P4 tables, which makes
it hard to predict. Based on our experience, the number of
template packets can be represented as a function like y =
Ax−B +C, where A, B, and C are unknown constants, and x
is the packet size. When the packet type and the P4 program
are fixed, the function can be determined via curve fitting. In
general, 10 and 120 packets are enough when packet sizes are
1500 and 64 bytes, respectively.

C Implementation Details of Packet Editors
The major editor can apply step-based or random-based field
editing. There are five modes Norma supports:

1) The direct step mode simply adds a constant to the initial
value. If the value exceeds the bound provided by the user,
it will be subtracted by the bound.

2) The indirect step mode is similar to the direct step mode.
Differently, the value is not directly outputted but used as
an index to access a register array, which saves the real
value to the output provided by the user.

3) The cascaded step mode can be regarded as a combina-
tion of two editors working in the direct step mode. The
first one works as normal, but the second one is triggered
only when the bound excess happens in the first one.

4) The direct random mode simply fills some bits of a field
with random bits. For example, filling the rightmost 8 bits
of the source IP field means randomly choosing an IP
address under a /24 prefix.

5) The ranged random mode also relies on random bits.
Differently, Norma is required to choose a number from a
given range. For example, choose a number for the source
port field uniformly from the range 2000-3000.

Among all these modes, the ranged random is the most
complex one. It is the random bit instead of the random num-
ber that is provided by the programmable switch ASIC, which

1748 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

means the length of the range must be a power of 2. For ex-
ample, with 8 random bits, we can only get a uniform random
number from 0 to 255, instead of any other range. A straight-
forward way is to keep trying until a number in the required
range is acquired. However, it is not suitable for the ASIC,
because there is no cheap way to emulate the while-loop. So
we need a concise method that does not rely on loops. Norma
solves this problem by using the equation n := (n′+ r) mod l,
where n′ is the random number generated in the last execution,
stored in the corresponding field of the template packet. Here,
r is a k-bit random number generated by the ASIC satisfying
2k ≤ l, where l is the length of the range. Note that the mod
operator is not supported by the ASIC, but the restriction to
k makes it representable with no more than one subtraction
and thus can be implemented in the ASIC. We evaluated the
quality of generated random numbers as follows.

We applied the packet editor to UDP packets, whose source
ports were randomly chosen from the range 0-999, so the
length of the range was 1000, and k (i.e., the number of ran-
dom bits) should be set to a number no more than 9 to satisfy
the constraint 2k ≤ 1000. From Figure 13a and Figure 13b, we
can observe that the quality of the generated random number
improved as k becomes larger, benefiting from more random
bits provided. Figure 13c shows the frequency of each number
generated from 100,000 packets. Each number occurred at a
frequency of around 0.1% as expected, which indicated the
uniformity of the generated numbers.

D Analysis of Blind Measurement
We use the sets S and R to represent the packets sent by the
egress pipelines, and received from the ingress pipelines, so
we have R⊆ S, and drops= |S|−|R| is the number of packets
dropped by the DUT. The real average delay can be repre-
sented as delay= 1

|R| ∑i∈R(ri−si), where the dropped packets
are excluded due to incomplete information. However, the
blind average delay becomes delay′ = 1

|R| ∑i∈R ri− 1
|S| ∑i∈S si.

Now, we define the absolute measurement error e as the dif-
ference between delay and delay′, and we have

e =|delay′−delay|

=

∣∣∣∣∣ 1
|R| ∑i∈R

si−
1
|S| ∑i∈S

si

∣∣∣∣∣
=

∣∣∣∣∣ 1
|S|

(
∑
i∈R

si + ∑
i∈S\R

(
1
|R| ∑

j∈R
s j

))
− 1
|S|

(
∑
i∈R

si + ∑
i∈S\R

si

)∣∣∣∣∣
=

∣∣∣∣∣ 1
|S| ∑

i∈S\R

(
1
|R| ∑

j∈R
s j− si

)∣∣∣∣∣≤ 1
|S| ∑

i∈S\R

∣∣∣∣∣ 1
|R| ∑

j∈R
s j− si

∣∣∣∣∣
≤|S|− |R|

|S|

(
max
i∈S

si−min
i∈S

si

)
=

drops
ppstx

,

which means, the more the packets are dropped, or the slower
the packets are sent, the larger the error could be.

E Loopback Port Allocation
As shown in Figure 1, Norma uses two internal pipelines and
each of which contains 16 loopback ports. Each loopback port

(a) k = 6 (b) k = 9
0 200 400 600 800 1000

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
eq

ue
nc

y
(%

)

(c) Frequency

Figure 13: Pseudo-random ports ranging in 0-999.

has a maximum BPS rate (e.g., 100 Gbps) while each pipeline
has a maximum PPS rate shared by all ports belonging to it.

Norma models the loopback port allocation as a satisfiabil-
ity problem, which can be solved efficiently by SMT solvers
such as Z3 [29]. Consider there are n flows using loopback
ports. We use zero-one variables xi, j,k to indicate whether flow
i should be placed to port k in pipeline j. The BPS rate and
PPS rate of flow i are represented as bi and pi, respectively.
The maximum BPS rate of a port and the maximum PPS rate
of a pipeline are represented as B and P, respectively. Then
loopback port allocation can be modeled as the following
integer linear satisfiability problem:

∑
i

∑
k

xi, j,k pi ≤ P for each j, (1)

∑
i

xi, j,kbi ≤ B for each pair of (j,k), (2)

∑
k

xi, j,k = ∑
k

xi′, j,k if i shares data with i′, (3)

∑
j
∑
k

xi, j,k = 1 for each i. (4)

Equations (1) and (2) describe the constraints of the PPS rate
and BPS rate, respectively. Equation (3) enforces flow i and
flow i′ in the same pipeline if they share data via registers,
such as the enqueuing flow and dequeuing flow in §4.3. Equa-
tion (4) guarantees that each flow will be placed to a port and
a port is allowed to be shared by more than one flow.

For all of the cases we met, the satisfiability problems were
solved by Z3 in less than 1 second. Then Norma can allocate
loopback ports according to the solved variables xi, j,k.

F Performance of Software Testers
Zhang et al. [55] evaluated software testers such as Moon-
Gen [31] and TRex [18]. Results are summarized as follows.
First, software testers cannot generate traffic at more than
300 Gbps due to PCIe bandwidth limitations. For small pack-
ets, even with 12 CPU cores, software testers can only gen-
erate traffic at about 40 Gbps. Second, the rate control of
MoonGen relies on NIC meters, which means not all target
rates can be precisely configured. TRex uses software times-
tamps for rate control, which leads to unstable inter-packet
gaps. These results show that software testers cannot generate
precisely-controlled high-speed traffic.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1749

µMote: Enabling Passive Chirp De-spreading and µW-level Long-Range Downlink
for backscatter Devices

Yihang Song1, Li Lu1, Jiliang Wang2, Chong Zhang1, Hui Zheng1, Shen Yang1, Jinsong Han3, and Jian Li1

1University of Electronic Science and Technology of China
2Tsinghua University
3Zhejiang University

Abstract
The downlink range of backscatter devices is commonly con-
sidered to be very limited, compared to tremendous long-
range and low-power backscatter uplink designs that leverage
the chirp spread spectrum (CSS) principle. Recently, some
efforts are devoted to enhancing the downlink, but they are
unable to achieve long-range receiving and low power con-
sumption simultaneously. In this paper, we propose µMote, a
µW -level long-range receiver for backscatter devices. µMote
achieves the first passive chirp de-spreading scheme for nega-
tive SINR in long-range receiving scenarios. Further, without
consuming external energy, µMote magnifies the demodulated
signal by accumulating temporal energy of the signal itself in
a resonator container, and meanwhile it preserves signal infor-
mation during this signal accumulation. µMote then leverages
a µW -level sampling-less decoding scheme to discriminate
symbols, avoiding the high-power ADC-sampling. We proto-
type µMote with COTS components, and conduct extensive
experiments. The result shows that µMote spends an overall
power consumption of 62.07µW to achieve a 400m receiving
range at a 2kbps data rate with 1% BER, under −2dB SINR.

1 Introduction

Backscatter communication has significant advantages over
active radio in terms of power consumption. The recognized
drawback of conventional backscatter devices [10, 46] is their
insufficient communication range of only a few meters. In
the last decade, a number of long-range backscatter tech-
niques [23, 35, 37, 51, 54, 55] are proposed that can signif-
icantly increase the uplink backscatter range to hundreds of
meters or even more than 1km. Their main idea is to reflect
the Chirp Spread Spectrum (CSS) signal. When this chirp
signal is de-spread by the gateway receiver, it will incur a pro-
cessing gain for the receiver, and therefore more interference
immunity and longer communication range.

Nevertheless, the downlink range of this type of long-range
backscatter devices [18, 37] is limited to less than 20 me-
ters [17]. As they still use the conventional envelope detector

Figure 1: The high-level block diagram and basic principle
of µMote.

as a receiver [15,30], rather than de-spreading the chirp signal.
In the last two years, two efforts are devoted to extending the
downlink range. Saiyan [17] leverages an RF band-pass filter
(with 6dB signal strength loss) to assign an envelope to the
chirp signal, and subsequently uses an envelope detector to
detect the assigned envelope. This demodulation method does
not de-spread the chirp signal, so it cannot obtain processing
gain and extend the downlink range. Instead, to extend the
range, Saiyan uses an LNA (Low Noise Amplifier) and an OP
AMP (Operational Amplifier) to amplify the signal [16,21,40]
and gains a receiving range of 180m. However, these two am-
plifiers consume about 88mA, which is similar to the current
consumption of active radio, and 176 times that of the typical
backscatter device [46]. Passive-DSSS [31] employs two en-
velope detection channels to transmit DSSS (Direct Sequence
Spread Spectrum) spreading codes, enabling anti-interference
receiving. However, it strictly requires a positive SINR. Be-
sides, due to the performance limitation of the envelope de-
tector, its downlink range is limited to about 50 meters, far
less than the uplink range of existing long-range backscatter
devices. Therefore, to the best of our knowledge, none of exist-
ing envelope detector-based receivers can achieve long-range
receiving with low power consumption.

In an IoT network consisting of backscatter devices and a
gateway, insufficient downlink range will be the bottleneck
of network coverage. When a backscatter device is placed
far away from the gateway, the incapability of downlink com-
munication can lead to the failure of essential network func-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1751

tions, including ACK and re-transmission [13], multi-access
control [13], network association [27], over-the-air firmware
switching or updating [59,60], and device authentication [41].

Conventional methods to improve the downlink range can
be classified into two categories. The one is to employ spread
spectrum communication to suppress interference, so as to
demodulate the signal at low SINR (signal-to-interference-
plus-noise ratio) or even negative SINR. The other one is
to use amplifiers (i.e., LNAs) [58] to enhance the receiver
sensitivity and combat signal strength loss during propaga-
tion. De-spreading the spread spectrum signal, e.g., the CSS
signal, requires a local-generated carrier and correlated de-
spreading signals, which will incur very high power consump-
tion (e.g., more than 7mW [6]). As for LNAs, by their nature
(see Sec. 2.1), they commonly consume 10mW to more than
100mW [14, 47]. In summary, these two solutions are very
power-consuming, and therefore cannot realize on backscatter
devices whose overall power consumption is commonly less
than 1mW [46].

In this paper, we present µMote, a µW -level reMote receiver
with hundreds of meters of receiving range, which can effec-
tively work even under negative SINR. The high-level idea
incorporates three key designs, as shown in Fig. 1: a novel
Passive Chirp Spread Spectrum (Passive-CSS) de-spreading
design to combat interference, a magnification scheme to
magnify the demodulated signal with zero external power
consumption to combat signal strength loss, and an efficient
decoding design with only tens of µW .

More specifically, µMote addresses the following key chal-
lenges.

(1) How to address interference or even negative SINR with
extremely low power? We try to leverage Chirp Spread Spec-
trum (CSS) technique to resist interference, which has been
widely used in backscatter transmitters. Existing chirp de-
spreading techniques, however, consume very high power con-
sumption, as we describe above. To this end, we present the
first Passive Chirp Spread Spectrum (Passive-CSS) technique,
which removes the conventional power-consuming chirp de-
modulation and de-spreading processes. The basic idea is a
parallel chirp modulation scheme for the gateway and then
a passive chirp de-spreading circuit with zero power. Thus,
we can passively decode the chirp signal while retaining the
long-range and interference-resilient features.

(2) How to increase the signal amplitude without external
power, and meanwhile preserve signal information? Tradi-
tional amplification solutions, such as LNAs, commonly con-
sume more than ten mW of power. To solve this problem,
we leverage an LC resonator (also called LC tank) as a con-
tainer to accumulate the energy of demodulated signal so as
to magnify the signal amplitude. However, when the signal
energy is stored in such an LC tank, the corresponding signal
information that is supposed to be in chronological order can
be overlapped and distorted. To preserve the information, we
expect a new encoding method that can embed information

Figure 2: Amplification principle and current consumption
of an LNA.

into the accumulated signal. Inspired by PIE (Pulse Interval
Encoding), we propose a software/hardware co-designed en-
coding scheme that leverages the duration of the magnified
signal to represent symbols.

(3) How to efficiently decode symbols conveyed by the
magnified signal? Existing receivers usually employ ADC
for high-speed sampling and decoding. This accounts for the
vast majority of the power consumption of backscatter de-
vices. For example, a widely used low-power integrated ADC
IC [49] typically consumes hundreds of µW power. In this pa-
per, we present an analog RC integrator to decode without the
need for ADC. This significantly reduces the power consump-
tion to several µW . Specifically, we introduce a low-power
energy integrator to identify the symbols based on the level of
symbol energy. Moreover, the above circuit is designed to be
programmable to achieve ADC-free symbol synchronization
before decoding. Besides, we present a normalization scheme
to address the “dynamic symbol energy” problem caused by
the diversity of signal strength.

Summary of the contributions and results:

• We propose the design of µMote, a novel µW -level low-
power receiver with hundreds of meters of receiving
range which can effectively resist interference and work
even under negative SINR.

• We address the fundamental challenges for realizing the
receiver. We realize a passive-CSS communication tech-
nique on passive circuits, enabling zero-power chirp de-
spreading and demodulating. We present the zero power
magnification scheme by accumulating the energy of the
demodulated signal itself. And we propose the design of
a sampling-less analog energy integrator for µW symbol
decoding.

• We prototype µMote with COTS components and con-
duct extensive experiments. The results demonstrate that
µMote reaches a communication range of more than
400m at a 1% Bit Error Rate (BER) with an average
working power of 61.07µW . Compared to the literature
of existing works [17,31], µMote improves the downlink
range by 2.5× to 8.65×, with a power consumption re-
duction of at least 63.2%. Under the case of narrowband

1752 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Spectrum of chirp and interference before and after de-spreading

(b) Procedures of conventional chirp de-spreading.

Figure 3: Principle of conventional chirp de-spreading, in
which the power consumption of carrier generation is not
affordable for backscatter devices.

interference, µMote can work at −2dB SINR or above.
To the best of our knowledge, this is the first receiver that
can work under negative SINR with µW -level power.

2 Background and Motivation

Before presenting our design, it is worth investigating why
existing receivers cannot achieve long-range receiving with
low power consumption. We classify existing approaches
to long-range receiving into two categories: amplifying the
signal and spreading spectrum technique.

2.1 Amplifying the Signal
Receivers usually use LNAs to amplify the received signal
strength, as LNAs’ low noise figure can minimize the noise
caused by the amplification process. An LNA usually consists
of multiple triodes and peripheral analog circuits. Its function
of signal amplification is performed by the triodes. Fig. 2
depicts the principle of a triode. By leveraging the external
current injected to its collector (IC), it can amplify small base
current (IB) by β times, and the amplified current is output as
emitter current IE , i.e.,

IE = IC + IB = βIB + IB ≈ βIB(β ≫ 1)

where the β inherently depends on the transistor and can be
typically large up to 100.

However, the practical power efficiency of such triodes is
very low. As shown in Fig. 2, the IB contains not only the
signal current (ISignal), but also a bias current (IBias) that is
significantly larger than ISignal . The IBias contains no signal
information but can ensure that the triode works within the

linear active region (amplifying region). After amplification,
the amplified IBias will be removed. In the widely used com-
mercial LNA ICs [7,8], the IBias is commonly hundreds of µA
or even more than 1mA. Hence, amplifying the IBias makes
commercial LNA ICs consume several mA to even hundreds
of mA of external current. As a comparison, the total power
consumption of a typical backscatter device is 470µA [46].

2.2 Spread Spectrum Technique
Spread spectrum techniques, such as Chirp Spread Spectrum,
has been widely used in LPWAN (Low Power Wide-Area
Network) and backscatter transmitters due to their interfer-
ence immunity and long communication range. In brief, the
basic idea of CSS is “don’t put all the eggs into one basket”.
Specifically, by transmitting or reflecting the wide-band chirp
signal, the information (e.g., a symbol) is distributed to the
chirp’s band (the red shaded area in Fig. 3(a) and Fig. 3(b)).
Hence, the narrow-band interference is unable to cover the
entire band, even if it has a stronger signal strength, as shown
in Fig. 3(a).

The receiver needs to de-spread the chirp to gather the
distributed information. As shown in Fig. 3(b), the chirp is
down-converted to a relatively low frequency (e.g., 1–2MHz)
and then multiplied by a down-chirp signal, incurring a sin-
gle tone signal which sums the frequency of the down-chirp
and the down-converted chirp. Meanwhile, the narrow-band
interference is also multiplied by the down-chirp signal, but
then its energy is spread into the entire chirp’s band. This
means the single-tone signal gains high SINR and can be
easily recognized by FFT (Fast Fourier Transform) operation
(as shown in Fig. 3(a)). With the FFT results, the receiver
knows whether a chirp is transmitted or not, even if the chirp
has lower strength than that of the interference.

Nevertheless, the conventional chirp de-spreading process
is power-consuming, as it requires the receiver to generate the
high-frequency carrier for down-conversion and perform FFT
operation. Generating the carrier needs power-consuming
components, such as the VCO (Variable Crystal Oscillator)
and the PLL (Phase Locked Loop), and performing FFT re-
quires high-speed computing. These operations inevitably
incur high power consumption that is undesirable for backscat-
ter devices [29,34]. Hence, chirp de-spreading has never been
implemented on backscatter devices.

2.3 Motivation
After revisiting existing solutions and their power consump-
tion, we aim to design a receiver with interference resistance,
long-range receiving (high receiving sensitivity), and low-
power consumption. We are motivated to take the following
strategies to solve those problems, respectively.

Interference resilience: When the receiver is far away
from the gateway, the received signal becomes susceptible

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1753

0 50 100 150 200 250 300 350 400 450

Distance(m)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

S
tr
en
g
th
(d
B
m
) Signal

Interference

(a) (b)

Figure 4: (a) Site survey for the strengths of ambient inter-
ference and downlink signal in the campus environment,
and (b)Then measured spectrum of interference signals.

to interference. This significantly decreases the receiving
performance in practice, especially for non-noise-resistant
envelope detectors. Hence, we are motivated to present a
passive chirp de-spreading design to combat interference.

Low-power Magnification: Amplification can combat sig-
nal strength loss and improve receiving range. However, us-
ing LNAs can cause enormous power consumption. Thus, we
present the LNA-free magnification scheme with zero power
consumption, which helps to extend the receiving range.

Low-power decoding: Conventional symbol decoding so-
lution is high-speed ADC sampling. However, it typically
consumes hundreds of microwatts, accounting for the major
part of the power consumption of a backscatter device [46].
Hence, we expect a power-efficient decoding mechanism with-
out high-speed ADC sampling.

3 Passive Chirp De-spreading

The envelope detector is widely used in low-power receivers
as it requires no high-power-consuming components and com-
puting tasks. However, the envelope detector is subject to
interference. When the interference is stronger than the down-
link signal, it will misidentify the envelope of interference as
the envelope of the downlink signal, thereby incurring com-
munication failure. To better understand this, we conduct a
preliminary site survey in a campus environment. As illus-
trated in Fig. 4(a), at the distance of 250m, 350m and above,
the interference strength is stronger than that of the signal. In
those environments, the envelope detector fails to work.

This motivated us to implement CSS downlink on backscat-
ter devices to combat interference and extend the receiving
range. However, as we have introduced in Sec 2.2, the power-
limited backscatter device is unable to afford the power con-
sumption of carrier generation and signal down-conversion.
Therefore, implementing chirp de-spreading seems to be in-
feasible on backscatter devices.

3.1 Passive Chirp De-spreading Design
With an understanding of the major cause of high power con-
sumption in conventional chirp de-spreading, preliminarily,

Figure 5: Transmitted two chirps and circuit for passive
chirp de-spreading.

we explore uploading the task of carrier generation and down-
chirp generation to the gateway. Specifically, we arrange the
gateway to transmit two wide-band chirp signals into the air.
By multiplying one chirp with another one, the receiver can
achieve down-converting and de-spreading without the re-
quirement of a locally generated carrier and the down-chirp
signal.

The transmitted chirp signals are shown in Fig. 5, which are
denoted by ‘chirp_0’ and ‘chirp_1’, respectively. They have
the same chirp rate (i.e., frequency increasing rate whose unit
is Hz/s), and hence there is a constant frequency difference
between them. Unlike narrow-band signals, such as ASK
signals or BFSK signals, these two wide-band chirp signals
will not be covered by narrow-band interference.

These two chirps transmitted to the receiver can be written
as:

chirp_0(t) = cos
[
2π

(
f0t +1/2ut2)] (1)

chirp_1(t) = cos
[
2π

(
f1t +1/2ut2)] (2)

where u is their chirp rate; f0 and f1 are their initial frequen-
cies, respectively.

The receiver de-spreads these two chirps by multiplying
them with each other using a passive, non-linear diode mixer.
In practice, we use two diodes so as to receive the signal from
the positive and negative terminals of the antenna. The result
of signal mixing is expressed as:

+∞

∑
m=−∞

+∞

∑
n=−∞

amncos{2π([m(f1 +ut)+n(f0 +ut)]t} (3)

According to the property of non-linear mixing, we ignore
the high-order harmonics as they have very low energy levels.
Thus, we only consider the low-order harmonics, e.g., the
first, second and third-order harmonics. More specifically,
we can obtain a high-frequency signal and a low-frequency
beat signal (denoted by Sbeat) whose frequency is equal to the
frequency difference f1 − f0. Instead of using FFT to detect
the single tone, we use the LC resonator introduced in the
next section to filter out the high-frequency signal.

Therefore, the only signal that can remain is the Sbeat . If
the receiver detects the presence of the Sbeat , it can infer that
the gateway is transmitting that two chirps. Moreover, by
measuring the duration of the Sbeat , the receiver can know the
transmitting duration of the two chirps. This further allows

1754 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

us to encode different symbols by varying this transmitting
duration, as shown in Fig. 5.

3.2 Interference Resilience Analysis
From the measured spectrum shown in Fig. 4(b), it can be seen
that the interference can be classified into two categories, i.e.,
narrow-band interference, and the spread spectrum signals.
We consider signals using ASK, FSK and PSK modulation
to be narrow-band signals, because they are composed of
one or multiple narrow-band signal components with fixed
frequencies.

Narrow-band interference: As we have introduced,
narrow-band signals will be spread into the chirp’s band in de-
spreading process. More specifically, considering that there is
a narrow-band interference with a fixed frequency fn passes
through the mixer with the two chirp signals, the resulting
signals contain multiple components, including multiple high-
order harmonics, the spread interference, and the envelope
of all these signals. For example, if the interference signal is
mixed with chirp_0 (Eq. 1), the generated signals are

+∞

∑
m=−∞

+∞

∑
n=−∞

amncos{2π [m(f0 +ut)+n fn] t} . (4)

where the high order harmonics and the spread interference
with increasing frequency term (i.e., the ut in Eq. 4) cannot
pass the following filter (i.e., the LC resonator). As for the
envelope, it can hardly pass the filter unless it has the same
frequency of f1 − f0. We argue that this case can hardly occur
in practical scenarios.

Moreover, we should note that we also encountered strong
out-of-band interference in our experiment (whose strength is
about 12dB higher than that of chirp signals), and the passive
mixer can only output the interference envelope instead of
the desired beat frequency. This can be fixed with a SAW
(Surface Acoustic Wave) filter.

Spread spectrum interference: Theoretically, our design
can be interfered with by a specific type of chirp spread spec-
trum interference. This chirp signal should have the same
chirp rate as the chirp signals transmitted by the gateway. Be-
sides, the frequency difference between this interference chirp
and one of the chirp signals transmitted by the gateway should
be equal to (f1 − f0)/2n (where n = 0,1,2,3...). Accord-
ing to our experiment, facing this type of interference, its
anti-interference performance is similar to that of an envelope
detector without an anti-interference design.

4 LNA-free Signal Magnification

Amplifying the received signals can enhance the receiving
sensitivity and improve the receiving range. Receivers typi-
cally employ the LNA to achieve this. As we have introduced
in Sec. 2.1, even the latest LNAs we can find, still consume

Figure 6: Block Diagram of LNA-free Magnification.

several mA to hundreds of mA of external current. Hence, we
are motivated to propose a signal magnification method with
ultra-low power to replace the amplifier.

To achieve this, we explore accumulating the energy of
the signal to implement magnification instead of consuming
external current. We leverage an LC resonator to realize a con-
tainer to accumulate energy. Conventionally, the LC resonator
is used as high-frequency RF elements, e.g., on RF receiving
antennas. It relies on tuning antenna impedance [3] to improve
signal receiving efficiency at a particular frequency [1, 50].
Differing from these conventional uses, µMote’s LC resonator
works at relatively low frequencies (tens of kHz) and is used
to accumulate the signal energy to magnify signal amplitude.
Besides, when the signal energy is being accumulated, the
signal’s physical characteristics (e.g., frequency, amplitude,
and phase which are used to carry data) will be destroyed.
Thus, we should address the issue of information preservation
during energy accumulation.

4.1 Magnifying by Accumulating Energy

In µMote, the LC resonator is placed after the passive-CSS
and consists of an inductor in series and a shunt capacitor, as
shown in Fig. 6. The energy in this circuit will be alternatively
transformed in the manner of magnetic and electric fields
between the capacitor and inductors. The principle behind is
the energy entered the magnetic field of the inductor can be
used to charge the electric field on the capacitor plates, and
vice versa. Similar to a pendulum or a swing, this “energy
reciprocating” has its natural resonance frequency, which can
be written as:

fres =
1

2π
√

L ·Cres

where Cres is the capacitance value of the capacitor in the
resonant circuit.

The input signal of LC circuit is Sbeat , the demodulated
beat signal output by the passive-CSS circuit. If Sbeat has the
same frequency as fresonant , its energy will be accumulated in
the form of resonance for magnification, as shown in Fig. 6.
Thus, the resonator acts as a magnifier and band-pass filter
which only magnifies the voltage of Sbeat whose frequency is
fres.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1755

Table 1: Candidate LC resonators for different symbol rates
Symbol

Rate
L Cres Rinner Q Tdis Vout/Vin

1 ∼ 2kbps
0.05H 270pF 273Ω 49 600µs 40×
0.05H 270pF 384Ω 35 250µs 23×
000...000555HHH 222777000pppFFF 777333444ΩΩΩ 111888 111000000µµµsss 111555×××

5kbps 0.05H 470pF 1.1kΩ 9 70µs 10×
000...000555HHH 444777000pppFFF 111...333kkkΩΩΩ 777...999 333000µµµsss 777×××

4.2 Preserve the Information

Unfortunately, this magnification scheme based on LC cir-
cuit can destroy the physical characteristics of the signal,
e.g., the phase, the frequency and the amplitude of the signal.
For instance, symbols in PSK (Phase-Shift-Keying) or ASK
(Amplitude-Shift-Keying) manner can be destroyed as the
phase and amplitude are instantaneous physical characteris-
tics that cannot be preserved in an energy container. Therefore,
we need to retain the encoding information in the energy ac-
cumulating.

Inspired by PIE (Pulse Interval Encoding), we leverage the
duration of the magnified Sbeat signal (i.e., Sbeat ’s energy) to
represent the binary value of a symbol. The symbols repre-
senting binary bit “1” and binary bit “0” are shown in the right
portion of Fig. 6. For simplicity, we refer to them as symbol
“1” and symbol “0” respectively. Besides, in each symbol,
there is an interval between two consecutive symbols. As the
duration of Sbeat in symbol “1” is longer than that in symbol
“0”, the symbol “1” contains more energy than symbol “0”.
The energy difference can further be distinguished by energy
integration schemes introduced in Sec. 5.

To separate symbols, each symbol’s energy should be re-
leased from LC circuit to avoid affecting the next symbol. In
our scheme, we can separate symbols by assigning an inter-
val between two symbols, as shown in the right portion of
Fig. 6. In detail, during the symbol, the LC circuit has energy
input and keeps resonating. During the interval, the energy
of the current symbol stored in the LC resonator should be
discharged by the circuit’s internal resistance, or controlled
discharging, see Sec.8.

4.3 Symbol Rate vs. Magnification Perfor-
mance

From the symbol definition, we can see that a higher symbol
rate requires a shorter interval, and fast discharging of LC. If
the LC is not discharged completely, the residual energy will
make the next symbol misidentified. Thus, we need a small Q
factor to ensure sufficient discharging. On the other hand, a
small Q means the weak magnification capability of the LC
circuit. There is a trade-off between the magnification times
and the symbol rate.

The Q factor is defined as

Q = 2π
Estore

PdissT

, where Pdiss is the average dissipation power during a reso-
nant period T , and Estore is the energy currently stored in LC.
Hence, a higher Q factor means more energy can be preserved
in LC, or more time to release the stored energy, i.e., discharge
the capacitor in LC. On the other hand, the Q factor of the LC
resonator can be calculated as:

Q =
1

Rinner
·
√

L
Cres

where Rinner is the inner resistance of the LC resonator. From
the two formulas, it can be seen that we can hardly calculate
or measure the time constant of an LC resonator [48] to deter-
mine the required time interval for discharging. Further, it is
also difficult to find COTS “L” and “C” components with the
exact optimal value in practice. Hence, we empirically study
LC resonators of different Q factors with available COTS
components, and practically measure their discharging time.

We present the parameters of candidate LC resonators for
different symbol rates in Table 1. In the table, “Vout/Vin”
means the magnification ratio that the resonator can mag-
nify the voltage of input Sbeat , and the “Tdis” is the measured
discharging time. For example, for a symbol rate of 2kbps, we
can choose parameters of the third resonator, whose discharg-
ing time is more than 100µs. It means that the time interval
of symbols should be more than 100µs also.

5 Low-power Decoding

With LNA-free magnification, we can get the magnified sig-
nals as well as symbols. The next step is to extract binary bits
from the symbols. Mostly, ADC (Analog-to-Digital Conver-
sion) is used for symbol decoding, but ADC will introduce
high power consumption due to two reasons.

First, to ensure decoding accuracy, the ADC has to perform
sampling tens of times when decoding each symbol. Based
on Nyquist’s theorem, the sampling rate should be twice the
frequency of Sbeat . Second, every single sampling operation
of ADC consists of several complicated steps, e.g., extracting
analog samples from a continuous signal, amplifying those
analog samples to improve converting accuracy, integrating
the amplified samples, and converting integration results to
digital values. All aforementioned steps are controlled by an
MCU or custom IC. As a result, even a well-known energy-
efficient ADC [49] will consume more than a couple of 100
µW , which is two to three times higher than the total power
consumption of our µMote including signal amplifying and
symbol decoding.

In µMote, we carefully make use of the signal duration of
Sbeat and interval to represent symbols, as shown in Fig. 6. For

1756 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7: Procedures for energy integration-based decoding.

Figure 8: The practical decoding circuit for symbol syn-
chronization.

example, symbol “1” has a shorter interval and longer signal
duration than symbol “0”, thus the energy of symbol “1” is
higher than symbol “0”. Different symbols to an energy inte-
grator can result in different energy levels which can be used
to discriminate symbols. Thus, a simple energy integrator can
be employed to replace the ADC for decoding each symbol
with only a single integration operation and low power con-
sumption. RC (Resistance Capacitance) circuit is a typical
realization of energy integrator as illustrated in Fig. 7. In order
to save power, we can suppress the internal current to several
µA with high resistance, and reduce the power consumption
of integration to about 10µW . As shown in Fig. 7, the signal
Sbeat can charge the capacitor “C” through the resistor “R”
upon decoding. Because of the longer signal duration, symbol
“1” can charge the capacitor to a higher peak voltage, which
can be detected and converted to “1” by a threshold detector,
and vice versa.

Apart from the basic design, there are several practical
problems that need to be addressed.

Dynamic signal strength. In practice, the charged peak
voltage in capacitor “C” is not only determined by Sbeat’s
duration, but also affected by Sbeat ’s strength. For example, if
the receiver is placed close to the gateway, the incident signal
power is high and hence the time to charge the capacitor
would be short. In this case, a symbol “0” might be identified
as a symbol “1”. Conversely, if the receiver is placed far away,
a symbol “1” may also be incorrectly identified as a symbol
“0”. To address this problem, we normalize Sbeat ’s amplitude
after magnification. Specifically, we place a voltage level
converter after the LC circuit and before the RC integrator,

normalizing the amplitude of Sbeat to a predefined reference
voltage, as illustrated in the left part of Fig. 7. The detailed
implementation of this circuit is introduced in Sec. 6 and its
power consumption is discussed in Sec. 7.4.

Capacitor discharging. The binary value of each symbol
is determined by how much Sbeat charges the capacitor C.
So the capacitor should be discharged fast and completely
before the arrival of the next symbol to avoid inter-symbol in-
terference. Intuitively, we can leverage the self-discharging of
the capacitor. However, this is quite slow and thereby signifi-
cantly slowing down the symbol rate. To address this problem,
we add an NMOS switch to connect the positive plate of the
capacitor to Ground (GND). At the end of each symbol, we
make the capacitor directly connected to the Ground for fast
discharging.

Symbol synchronization. To decode the symbol, the MCU
should know exactly the end time of a symbol and read the
output of the threshold detector at the time. Otherwise, the
MCU may get the wrong integration results and misiden-
tify symbols. In other words, it should be synchronized with
the symbols sent by the gateway. Intuitively, we can make
the gateway transmit preamble symbols for synchronization.
However, if it is not synchronized, the decoding circuit and
MCU cannot decode any symbols.

To achieve synchronization, the decoding circuit is pro-
grammed to switch to another structure which can detect
preamble symbols. Specifically, two resistors and two NMOS
switches are added to the circuit, as shown in the left portion
of Fig. 8. Upon receiving the preamble, SW2 and SW3 are
closed by the MCU so that resistors R2 and R3 are connected
to the circuit. At this time, R and R2 form a smaller resistor,
accelerating the charging speed of the capacitor. With these
resistors, a symbol “0” can rapidly charge the capacitor to
the threshold of the detector, and the charged voltage can be
released via R3 and SW3 before the next symbol “0” arrives,
as illustrated in Fig. 8. Thus, we can use a series of symbol “0”
as the preamble, and the detector will output corresponding
high voltage levels (the green line shown in Fig. 8) to inform
the MCU that the preamble has arrived. The reason we do
not use symbol “1” is that the duration of its Sbeat signal is

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1757

Figure 9: µMote prototype.

too long, so even with the presence of R3, the voltage in the
capacitor cannot be fully released before the next symbol “1”
arrives.

Clock drift canceling. The clock on the backscatter device
drifts over time, leading to synchronization and decoding
errors. To address this, we present a method to cancel the
clock drift. At the end of a symbol, we detect the first rising
edge of the following symbol, as shown in Fig. 7. This rising
edge represents the exact starting time of a symbol, which
can be used to calibrate the clock on the device.

Power consumption. The decoding process requires three
operations at the end of a symbol, i.e., reading the threshold
detector, discharging the capacitor, and canceling the clock
drift. These operations can be accomplished with less than
100 instructions, which incurs < 1% duty cycle and several
µW power consuming. The necessary timing circuit to wake
up the MCU and control the duty cycle is included in the MCU
hardware, and the MCU only consumes nW -level power in
low power mode [49].

Power optimization of RC circuit. We reduce the charging
current to save power. The charging current can be written as

Icharge =
Vre f · exp(−t/RC)

R

, where Vre f is the charging voltage on the capacitor and is
equal to the reference voltage in Sbeat normalization. To sup-
press Icharge, we increase R and reduce C, and keep the product
RC unchanged. For a symbol rate of 5kbps, the proper values
of R and C are 220kΩ and 330pF , and the power consumption
of the RC circuit is 12µW . The concrete evaluation results
can be found in Sec. 7.

6 Implementation

We prototype µMote with COTS components on a 2.4cm×
2.6cm PCB, as shown in Fig. 9. We introduce the hardware
implementation as follows.

Matching circuit and passive-CSS demodulation: The
matching circuit is composed of a series capacitor and a shunt
inductor, as RF signals can easily pass through the capacitor
but cannot go through the inductor to the Ground (GND). The
matching circuit achieves reflection loss lower than −20dB
in the 913−916MHz frequency band, which is wide enough

Figure 10: Indoor and outdoor experiment environment.
for receiving the two chirps. We use Skyworks SMS7630-
005LF RF diodes as the passive mixer for down-conversion
and de-spreading.

LNA-free Magnification: We implement µMote proto-
types of three symbol rates. For 1kbps and 2kbps, we choose
the third resonator shown in Table 1. For 5kbps, we choose
the fifth one. The corresponding resonant frequencies of these
two are 43kHz and 32.8kHz. Before the LC resonator, we
place a capacitor in series for DC-AC conversion, as the LC
resonator requires AC input.

Normalization circuit: We employ a voltage level con-
version circuit to normalize the magnified Sbeat . In practical
realization, we have two choices: (i) NCS2200, a comparator
which has a relatively low power consumption of 18µW and
can work on passive backscatter devices [64].(ii) MAX9914,
which is actually a power-efficient operational amplifier which
can also work as a voltage level converter. It can provide an
extra sensitivity gain of 8dB with a power consumption of
51.17µW , therefore further extending the receiving range. We
use MAX9914 to realize the µMote prototype to explore the
maximum range of our design. Besides, we use NCS2200
to realize a low power version of µMote, which is named
as “µMote−” (i.e., “µMote minus”). Compared with µMote,
µMote− loses 8dB sensitivity but gains 33.17µW power sav-
ing.

RC Decoding circuit: We employ different combinations
of R and C to build RC circuits for different symbol rates.
The detailed values are introduced in Sec. 7.4. After the RC
circuit, we use an S-1000C16 and an NLSV1T244 to build
the threshold detector with a total power consumption of 1µW .
And we use GPIO ports of STM32L476 MCU to record the
decoded data and control the circuit via three DMG2302UK
NMOS switches. The MCU runs at a 1% duty cycle as we
introduced in Sec. 5.

7 Evaluation

In this section, we first introduce the experiment setup in
Sec. 7.1. Then we introduce benchmarks for subsequent eval-
uation in Sec. 7.2. Further, we evaluate communication ranges
of µMote and benchmarks in Sec. 7.3. The power consump-
tion comparison among our design and benchmarks, as well as
µMote power breakdown, are illustrated in Sec. 7.4. Then we
introduce interference experiments using interference signals

1758 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

recorded in practice environments in Sec. 7.5.

7.1 Experiment Setup

We leverage a USRP-2922 to build the gateway’s transmitter
with an ADL5605-EVALZ [9] RF amplifier. Thus, the gate-
way can transmit up to 30dBm power, near the ImpinJ R420
RFID reader. The two downlink chirp signals are in 915MHz
ISM band and their bandwidths are 1MHz. The frequency
difference (i.e., the frequency of Sbeat) between the two chirp
signals is set to the resonant frequencies of LC circuit, i.e.,
43.3kHz for 1kbps and 2kbps symbol rates, and 32.8kHz for
5kbps.

7.2 Benchmarks

• WISP5 [45]: a very widely known backscatter tag with
an envelope detector-based receiver and an ADC for
sampling. It has no amplification and anti-interference
design. To favor the communication range test for the
WISP5, we connect it with a 1.8V power supply module,
instead of using its RF energy harvester which has an
energy harvesting range of only several meters.

• Saiyan [17]: the very recent work that achieves LoRa
symbol receiving with an envelope detector. Saiyan con-
verts chirp symbols to amplitude-modulated signals via
a SAW (Surface Acoustic Wave) filter, and uses an
LNA for amplification. Following the literature [17]
and the BOM (Bill of Material) list of their project
document [16], we implement Saiyan hardware with a
TQP3M9008 LNA and an OPA810 operational amplifier
for signal amplification.

• Passive-DSSS [31]: an envelope detector-based design
which employs two envelope detection channels for
DSSS spreading codes to address interference. Besides,
passive-DSSS employs a TLV9001 operational amplifier
of 180µW to improve sensitivity and range.

Those benchmarks use their original encoding mechanisms,
respectively, i.e., PIE for WISP5, chirp symbols for Saiyan,
and DSSS spreading codes for passive-DSSS. For compari-
son, we manually set the symbol rate of those benchmarks to
1kbps.

7.3 Communication Range

In this section, we first evaluate the receiving sensitivity of
µMote and benchmarks using laboratory tests. Then we con-
duct outdoor experiments to evaluate their practical communi-
cation ranges in LOS (Line-of-Sight) scenario, i.e., a roughly
straight road on campus, as shown in Fig. 10. Finally, we
evaluate the communication range and packet throughput of

-50 -45 -40 -35 -30 -25 -20

RSSI(dBm)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
 0

B
E

R

μMote 1kbps

μMote 5kbps

μMote- 1kbps

Saiyan

passive-DSSS

WISP5

Figure 11: Receiving sensitivity of µMote and benchmarks.

50 100 150 200 250 300 350 400 450

Distance(m)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

B
E

R

Saiyan

passive-DSSS

WISP5

μMote 2kbps
μMote 1kbps

μMote 5kbps

μMote- 1kbps

Figure 12: Communication range in the outdoor LOS sce-
nario.

µMote in the NLOS (Non-Line-of-Sight) scenario. The NLOS
experiment field is illustrated in the left portion of Fig. 10.

Receiving Sensitivity: Without interference, the receiving
sensitivity theoretically determines the receiving range. In ex-
periments, we measure the receiving sensitivity as the lowest
received signal strength with a corresponding physical layer
Bit Error Rate (BER) lower than 1%. To precisely control the
signal strength, we connect the transmitter (i.e., USRP) and
receiver with an RF cable and employ one or two 30dB RF
attenuators in the cable. Thus, the receiving signal strength
can be precisely controlled by setting the transmitting signal
strength and the number of employed attenuators. Besides, to
ensure accuracy, we leverage a professional signal strength
meter [28] to calibrate the transmitting power of USRP. For
each round, we measure the BER by sending 1,280,000 bits.

The measured receiving sensitivities are shown in Fig. 11.
It can be seen that the µMote has the best receiving sensitivity
of −48dBm at 1kbps symbol rate. According to theoretical
estimation [10], its receiving range can reach 500 meters with
the maximum transmitting power of our transmitter (30dBm).
The receiving sensitivities of WISP5, replicated Saiyan, and
passive-DSSS are −28dBm, −43dBm, and −35dBm. Simi-
larly, we estimate their theoretical receiving ranges are 80m,
250m, and about 160m, respectively. The sensitivity of 5kbps
µMote prototype is −43dBm, due to the relatively low Q fac-
tor of LC circuit. The future solution to this is discussed in
Sec. 8. Besides, µMote− has a sensitivity of about −38dBm,
which is similar to Saiyan and better than passive-DSSS.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1759

Figure 13: Throughput of µMote for different bit rates
when twin-CSS signal penetrates one wall.

Figure 14: Throughput of µMote 1kbps and benchmarks
when the signal penetrates one wall.

LOS Experiments: To evaluate the practical communi-
cation ranges of µMote and three benchmarks, we conduct
outdoor experiments in LOS scenarios. The USRP transmits
30dBm RF signals through a 6dBi gain antenna, while each of
the receivers uses a receiving antenna with 3dBi gain. We test
µMote at different symbol rates of 1kbps, 2kbps, and 5kbps.
Each BER value is obtained by counting misidentified bits in
1,280,000 received bits.

The practical receiving ranges are shown in Fig. 12. At
symbol rates of 1kbps and 2kbps, µMote achieves a similar
receiving range of 400 meters, because at these symbol rates,
the LC circuit has the same high Q factor and similar magni-
fication performances. We do not reach the estimated 500m
range, because we encountered strong in-band interference
that came from unknown wireless devices and exceeded the
anti-interference capability of our prototype. The practical
ranges of WISP5, Saiyan and passive-DSSS are 70m, 250m,
and 140m, which are similar to our estimations. We think that
the reason is at these ranges, they do not face interference sig-
nals significantly stronger than signals transmitted by USRP.
And the range of µMote 5kbps is 260m which is an expected
result considering its sensitivity. Besides, µMote− achieves a
maximum range of about 200m.

NLOS Experiments: We also measure the practical receiv-
ing ranges of µMote and benchmarks in the indoor NLOS
scenarios, as a number of IoT devices are deployed in doors

Figure 15: Packet throughput of µMote and benchmarks
when the signal penetrates two walls.

Figure 16: The power consumption of µMote prototype
and benchmarks.

and signals have been attenuated by walls. The dots A and B
represent where the gateway’s USRP transmitter is located,
and the star indicates where the receiver is placed. When the
gateway is placed at the A, the transmitted signals have to
penetrate one wall. When the gateway is at the dot B, the sig-
nals penetrate two walls. The star can be moved far or close
to the transmitter to make different downlink ranges. We
test three symbol rates with µMote and one symbol rate with
benchmarks, and record each of the error bits in 1,280,000
received bits.

Leveraging the recorded error bits, we calculate the packet
throughput at different ranges, which can better represent
the communication performance in actual environments. For
example, even if there is only one error bit, the packet will be-
come unrecognizable and is therefore discarded. The packet
is defined as a 16-bit string, and thus the packet throughput
refers to the number of received packets being correctly rec-
ognized. The test data is a packet which is sent for 10,000
times in a loop.

When there is one wall, the measured packet throughput
of µMote at different symbol rates are shown in Fig. 13.
With 60m downlink range, the µMote receiver achieves 53
packets/s at 1kbps, and 101.5 packets/s at 2kbps. The maxi-
mum range for 5kbps is 30m and the corresponding through-
put is 286.5 packets/s. We can learn from this result that
for µMote, a LC resonator with high Q factor is crucial to
achieving long range.

We also measure the packet throughput of benchmarks
when their downlink signals penetrate one wall, and then
compare them with µMote at 1kbps. The results are plotted

1760 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 2: Power breakdown of two prototypes

Modules Despreading Magnification Regulator RC Decoding (1kbps) MCU (1% duty cycle) Total
µMote 0µW 0µW 51.17µW 3.4µW 7.5µW 62.07µW
µMote− 0µW 0µW 18µW 3.4µW 7.5µW 28.9µW

Table 3: Parameters of RC decoding circuit for different sym-
bol rates

Bit rate R value C value E/symbol Power
1kbps 910kΩ 330pF 2.40nJ/bit 3.4µW
2kbps 470kΩ 330pF 2.36nJ/bit 3.72µW
5kbps 200kΩ 330pF 2.51nJ/bit 13.55µW

in Fig. 14. Among these benchmarks, Saiyan has the longest
range of 30m with a packet throughput of 37.6 packets/s, this
range is half the range of µMote (i.e., 60m at 1kbps).

When there are two walls between the gateway and re-
ceivers, the receiving ranges are further decreased, as shown
in Fig. 15. At the range of 30m, µMote has acceptable through-
put values of 52.8 packets/s at 1kbps and 89.8 packets/s at
5kbps. Saiyan and passive-DSSS can receive at the ranges of
25m and 6m, with packet throughput values of 61.6 packets/s
and 62.1 packets/s, respectively. WISP5 cannot receive its
downlink signal.

7.4 Power Consumption

µMote vs. Benchmarks: To demonstrate the power-efficiency
of our design, we measure the practical power consumption
of µMote prototypes and benchmarks using a sub-µA-level
power monitor [52]. The results are plotted in Fig. 16. We
can see that the total power consumption of µMote (1kbps)
is 61.07µW , which is the lowest. WISP5 and passive-DSSS
have a power consumption of several hundreds of µW , as
we take the power consumption of ADC sampling and the
MCU for ADC control into account. We replicated Saiyan
prototype according to the BOM extracted from their project
files [16, 17]. At its maximum receiving range, the power
consumption of the Saiyan prototype is 446mW . We believe
the cause of this high power consumption is their use of two
amplifiers [21, 40].

µMote power breakdown: Table 2 shows the power break-
down of the µMote prototype. The de-spreading circuit and
magnification circuit consume zero power as they are driven
by the received signal. For different symbol rates, the corre-
sponding power consumption of RC decoding circuit (includ-
ing the threshold detector) is illustrated in Table 3. It can be
observed that at different symbol rates, the energy budget for
decoding one bit remains roughly unchanged. The cause is
that the energy budget is related to capacitance. The MCU
average power consumption is about 7.5µW with 1% duty
cycle.

-6 -4 -2 0 2 4 6 8 10 12 14

SINR(dB)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E
R

passive-DSSS

WISP5

μMote

Saiyan

Figure 17: Receiving BER of µMote and benchmarks under
LoRa interference.

-6 -4 -2 0 2 4 6 8

SINR(dB)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E
R

passive-DSSS
WISP5

μMote

Saiyan

Figure 18: Receiving BER of µMote and benchmarks under
RFID interference.

7.5 Interference Resilience

We evaluate the interference resilience of µMote under inter-
ference in 900MHz ISM band, such as RFID and LoRa. We
use the interference-resilient receiver, i.e., passive-DSSS, as
benchmarks. We also evaluate WISP5 and Saiyan for com-
parison, which are not interference-resilient. We choose the
impinj R420 RFID reader and EBYTE E32-915T30S Lora
transceiver as the interference source. Then we use USRP
to record practical signals transmitted by these two devices,
so we can manually amplify or attenuate the recorded sig-
nals to make interference with different strengths. Finally, we
leverage RF cables to transmit twin-CSS signals as well as
those interference signals to µMote receiver to measure re-
ceiving BER values. Both µMote receiver and passive-DSSS
receiver are set to 1kbps symbol rate. The bandwidths of
RFID and LoRa interference are set to 100kHz and 500kHz,
respectively.

Fig. 17 and Fig. 18 show the BER measurement under
LoRa and RFID interference signals. The results demonstrate
that the µMote prototype can operate under negative SINR
caused by RFID or LoRa interference. In detail, at BER of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1761

1%, the corresponding SINRs caused by LoRa or RFID signal
are about −1dB and −2.7dB, whereas at BER of 0.1% the
SINRs caused by LoRa or RFID signal are about −1dB and
−2.2dB. We can learn µMote can operate under negative
SINR caused by LoRa and RFID interference. Passive-DSSS
has SINR improvement over classic WISP5 which has no
anti-interference design, but it cannot work under negative
SINR.

8 Discussion and Limitations

Accessing multiple devices or gateways: To date, µMote
cannot support concurrent transmissions from the gateway
to multiple backscatter devices, as µMote has no frequency
division or other multiple access designs. A feasible solution
is to employ time division on the MAC layer, similar to RFID
protocols. In addition, µMote fails to work in the face of the
hidden node problem, which occurs when multiple gateways
want to talk with a certain receiver, but they are unaware of
each other’s existence.

Strength loss: The gateway transmitter needs to split its
power across both chirps, and therefore it may require more
transmitting power than it would have been needed to transmit
to a device at the same distance using a conventional active
receiver. Although µMote mixes the two chirps, the generated
harmonics will also result in a loss of signal energy.

Spectrum efficiency: The bandwidth consumed in our de-
sign is about 1.04MHz (1MHz chirp and 43kHz Sbeat). Most
spectrum bandwidth is spent on spectrum spread to resist inter-
ference. Compared with LoRa receivers, our µMote consumes
similar spectrum bandwidth but achieves power consumption
three orders of magnitude lower than LoRa.

Improving symbol rate: As the trade-off introduced in
Sec. 4, in this paper, we cannot achieve the highest symbol
rate and best magnification performance simultaneously. Im-
proving the magnification performance requires increasing
the interval time for discharging the LC resonator, while im-
proving the symbol rate requires decreasing the interval time.
Hence, we explore a discharging mechanism to the LC res-
onator. Specifically, when the symbol synchronization is com-
pleted, we can discharge the LC resonator at the middle (to
discharge the energy of symbol “0”) and the end of a symbol.
Thus, the energy in LC can be discharged more rapidly to
allow a higher symbol rate, even for LC of very high Q factor
to gain high magnification performance. Moreover, we also
plan to explore whether we can add more threshold detec-
tor modules (< 1µW per module) with different thresholds,
and then the symbols can be quantified into more characters,
thereby increasing the bit rate.

9 Related Work

Diode-based mixer. Similar to µMote, there are two existing
works [11, 42, 43] that use the diode mixer [4] to mix two RF
signals and achieve low-power subcarrier generation or very
high-speed receiving. The differences between our work and
them are three-fold. The first difference is waveform modu-
lation. In µMote design, we employ Chirp Spread Spectrum
(CSS) signals as downlink signals, and thus our work can
combat interference and even work under negative SINR. The
second difference lies in µMote’s system design. The passive
chirp de-spreading scheme should be used in conjunction
with the LC resonator which acts as a magnifier and filter,
otherwise the signal strength loss due to chirp mixing would
decrease the receiving range, and the receiver cannot filter or
detect the generated beat signal. The third difference is our
design has the benefit of a relatively long receiving distance.

Long-range backscatter communication. To resist inter-
ference and improve communication range in low-power IoT
systems, tremendous backscatter innovations [23,35,37,51,54,
55] leverage CSS modulation on LoRa, extending the uplink
range to more than one kilometer. Nevertheless, these de-
signs cannot receive spread spectrum signals on the downlink,
as spread spectrum signal demodulation and de-spreading
involve high-power local carrier generation and computing-
intensive correlation for synchronizing local de-spreading
codes or de-spreading signals. This fact causes unbalanced
communication ranges and robustness on uplink and down-
link. Moreover, tunnel diode can be employed in backscatter
transmitters, further increasing the communication range of
backscatter devices [56].

Saiyan [17] employs a SAW filter to re-shape the enve-
lope of chirp signals, enabling an envelope detector to re-
ceive LoRa signals on the downlink. But this method does
not de-spread chirps so it cannot gain the communication
range and robustness improvements of CSS, and instead, it
has to use LNA to boost range. Passive-DSSS [31] receives
both spreading codes and synchronized de-spreading codes
from the transmitter, first achieving the DSSS communica-
tion on envelope detector-based receivers. Compared with
µMote which employs a passive mixer to de-spread two par-
allel chirps, Passive-DSSS relies on envelope detectors to
receiver signal, and hence it cannot receive CSS signals and
work under negative SINR. Moreover, Passive-DSSS does not
contain any low-power signal magnifying scheme (e.g., the
LC resonator) and low-power ADC-free decoding scheme,
resulting in a relatively limited receiving range and relatively
high decoding power.

Signal magnification techniques. The most commonly
used signal amplification means is the LNA. As we introduce
in Sec. 2.1, even the latest commercial LNA ICs consume
more than several mW of power. To magnify signals with
low power, recent researches leverage the principle of Voltage
transforming or Impedance tuning to get signals with mag-

1762 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

nified voltages. For example, XSHIFT [43] leverage a coil
voltage transformer to magnify the voltage of demodulated
signals by 5 times. Besides, LC circuits are also used to boost
the voltage of received RF signal by adjusting the antenna
impedance [1, 50]. However, these two methods cannot mag-
nify the instantaneous power of RF signals or demodulated
signals, so their improvements in receiving sensitivities are
relatively limited, compared to our design.

Backscatter communication. Our work is also related
to backscatter communication techniques, as µMote char-
acteristics have potential benefits existing backscatter de-
vices. For LoRa backscatter devices [23, 35, 37, 51, 54, 55],
it can make up for their limited downlink performance in
terms of range and robustness against interference, with
only µW -level power. For other tremendous backscatter in-
novations features of high data rate [53], high-throughput
[24, 25, 42], robustness [57], large system scale [19], sim-
plified hardware [30, 43, 62], and ambient-signal-compatible
[2, 5, 12, 22, 26, 27, 32, 33, 35, 36, 38, 54, 61, 63], µMote can
provide downlink connection with benefits of interference-
resistant, low-power, and cost-efficiency, at the same time.

ADC-free decoding. Similar to µMote, RFID tags [10]
can decode PIE symbols without ADC. But differing from
µMote, the PIE decoder of RFID tags can extract the synchro-
nization clock from PIE symbols by simply inverting the PIE
waveform (which is illustrated in the citation [28]). However,
according to the symbol definition of our design, our ADC-
free decoding circuit cannot extract the synchronization clock
in the same way as RFID tags. Hence, we have to explore a
dedicated synchronization scheme for our decoding circuit.

Wake-up receiver. Due to the power benefit of integrated
circuits, envelope detector-based wake-up ICs achieve power
consumption of less than 100µW and good receiving sensi-
tivity of lower than −60dBm. These receivers typically has
a low power consumption of less than 100µW , and provide
sensitivities lower to −60dBm [20, 39, 44]. There are two
distinctions between our work and these ICs. First, our design
enables interference-resistant communication with µW -level
power. Second, employing the LC resonator and the dedicated
encoding mechanism can magnify the amplitude of demod-
ulated signals, which is a potential alternative technique for
receivers to enhance the receiving sensitivity.

10 Conclusion

In this paper, we systematically investigate the issue of low-
power and long-range receiving, the critical bottleneck of
communication of backscatter devices. We present µMote, an
µW -power receiver with 400 meters range. We design and
implement the first passive chirp de-spreading method with a
simple mixer by offloading high-power carrier de-chirp gen-
erating to the gateway. Then we present a novel zero-power
magnification method with a LC resonant circuit, effectively
improving the receiving sensitivity. We propose an energy

integration-based decoding mechanism instead of high-power
ADC sampling to reduce power consumption. We conduct
extensive experiments in different scenarios. The evaluation
shows that µMote can support up to 400m receiving range with
62.07µW power consumption at 2kbps symbol rate. Com-
pared to benchmarks, µMote improves the downlink range
by 2.5× to 8.65×, with a power consumption reduction of
63.2% to even three orders of magnitude.

Acknowledgments

We sincerely thank our shepherd and all reviewers for their
time in reviewing our paper and providing valuable feedback.
This paper is partially supported by the National Natural Sci-
ence Foundation of China under Grant U21A20462; National
Key R&D Program of China under Grant 2022YFC3801302;
National Natural Science Foundation of China under Grant
U22A2031; National Key R&D Program of China under
Grant 2021QY0703; National Natural Science Foundation of
China under Grants 61872061, 61932013 and 61872285.

References

[1] Mohamed R Abdelhamid, Ruicong Chen, Joonhyuk
Cho, Anantha P Chandrakasan, and Fadel Adib. Self-
reconfigurable micro-implants for cross-tissue wireless
and batteryless connectivity. In MobiCom’20: Proceed-
ings of the 26th Annual International Conference on
Mobile Computing and Networking, 2020.

[2] Ali Abedi, Farzan Dehbashi, Mohammad Hossein Maza-
heri, Omid Abari, and Tim Brecht. Witag: Seamless wifi
backscatter communication. In Proceedings of the An-
nual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 240–252, 2020.

[3] All about circuits. Applications of reso-
nance. https://www.allaboutcircuits.com/
textbook/alternating-current/chpt-6/
applications-of-resonance/, 2021.

[4] Mark R Barber. Noise figure and conversion loss of
the schottky barrier mixer diode. IEEE Transactions
on Microwave Theory and Techniques, 15(11):629–635,
1967.

[5] Dinesh Bharadia, Kiran Raj Joshi, Manikanta Kotaru,
and Sachin Katti. Backfi: High throughput wifi backscat-
ter. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIG-
COMM ’15, pages 283–296, New York, NY, USA, 2015.
ACM.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1763

https://www.allaboutcircuits.com/textbook/alternating-current/chpt-6/applications-of-resonance/
https://www.allaboutcircuits.com/textbook/alternating-current/chpt-6/applications-of-resonance/
https://www.allaboutcircuits.com/textbook/alternating-current/chpt-6/applications-of-resonance/

[6] Estarija Dan David, Katreena Gabrielle Juntado,
Miguel Lorenzo Panagsagan, Anastacia Alvarez,
Maria Theresa De Leon, Marc Rosales, John Richard
Hizon, and Christopher Santos. Design and implemen-
tation of a baseband lora demodulator using de-chirp
method. In 2019 International Symposium on Multi-
media and Communication Technology (ISMAC), pages
1–4, 2019.

[7] Analog Devices. Adl9005. https://www.analog.
com/media/en/technical-documentation/
data-sheets/adl9005.pdf, 2021.

[8] Analog Devices. Hmc8412chips.
https://www.analog.com/media/en/
technical-documentation/data-sheets/
hmc8412chips.pdf, 2021.

[9] Analog Devices. Evalz-adl5605. https:
//www.analog.com/en/design-center/
evaluation-hardware-and-software/
evaluation-boards-kits/eval-adl5605.html$#
$eb-overview, 2022.

[10] Daniel Dobkin. The rf in RFID: uhf RFID in practice.
Newnes, 2012.

[11] Joshua F Ensworth, Alexander T Hoang, and Matthew S
Reynolds. A low power 2.4 ghz superheterodyne re-
ceiver architecture with external lo for wirelessly pow-
ered backscatter tags and sensors. In 2017 IEEE Inter-
national Conference on RFID (RFID), pages 149–154.
IEEE, 2017.

[12] Joshua F Ensworth and Matthew S Reynolds. Every
smart phone is a backscatter reader: Modulated backscat-
ter compatibility with bluetooth 4.0 low energy (ble) de-
vices. In 2015 IEEE International Conference on RFID
(RFID), pages 78–85, April 2015.

[13] EPCglobal. Epc radio-frequency identity protocols
class-1 generation-2 uhf rfid protocol for communica-
tions at 860 mhz - 960 mhz version 1.2.0, 2008.

[14] Inc. Freescale Semiconductor. Practical consid-
erations for low noise amplifier design - white
paper. https://www.nxp.com/docs/en/white-
paper/RFLNAWP.pdf, 2013.

[15] Jeremy Gummeson, Shane S Clark, Kevin Fu, and
Deepak Ganesan. On the limits of effective hybrid
micro-energy harvesting on mobile crfid sensors. In
Proceedings of the 8th international conference on Mo-
bile systems, applications, and services, pages 195–208.
ACM, 2010.

[16] Xiuzhen Guo. Saiyan-the design and implementation of
a low-power demodulator for lora backscatter systems.
https://github.com/ZangJac/Saiyan, 2022.

[17] Xiuzhen Guo, Longfei Shangguan, Yuan He, Nan Jing,
Jiacheng Zhang, Haotian Jiang, and Yunhao Liu. Saiyan:
Design and implementation of a low-power demodula-
tor for {LoRa} backscatter systems. In 19th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 22), pages 437–451, 2022.

[18] Xiuzhen Guo, Longfei Shangguan, Yuan He, Jia Zhang,
Haotian Jiang, Awais Ahmad Siddiqi, and Yunhao Liu.
Aloba: Rethinking on-off keying modulation for ambi-
ent lora backscatter. In Proceedings of the 18th Confer-
ence on Embedded Networked Sensor Systems, pages
192–204, 2020.

[19] Mehrdad Hessar, Ali Najafi, and Shyamnath Gollakota.
Netscatter: Enabling large-scale backscatter networks.
In Proceedings of the 16th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’19,
pages 271–283, USA, 2019. USENIX Association.

[20] Xiongchuan Huang, Pieter Harpe, Guido Dolmans,
Harmke de Groot, and John R Long. A 780–950 mhz,
64–146 µw power-scalable synchronized-switching ook
receiver for wireless event-driven applications. IEEE
Journal of Solid-State Circuits, 49(5):1135–1147, 2014.

[21] Texas Instruments. Opa810. https://www.ti.com/
product/OPA810/part-details/OPA810IDCKR,
2022.

[22] Vikram Iyer, Vamsi Talla, Bryce Kellogg, Shyamnath
Gollakota, and Joshua Smith. Inter-technology backscat-
ter: Towards internet connectivity for implanted devices.
In Proceedings of the 2016 ACM SIGCOMM Confer-
ence, SIGCOMM’16, pages 356–369, New York, NY,
USA, 2016. Association for Computing Machinery.

[23] Jinyan Jiang, Zhenqiang Xu, Fan Dang, and Jiliang
Wang. Long-range ambient lora backscatter with par-
allel decoding. In Proceedings of the 27th Annual In-
ternational Conference on Mobile Computing and Net-
working, pages 684–696, 2021.

[24] Meng Jin, Yuan He, Xin Meng, Dingyi Fang, and Xi-
aojiang Chen. Parallel backscatter in the wild: When
burstiness and randomness play with you. In Proceed-
ings of the 24th Annual International Conference on Mo-
bile Computing and Networking, pages 471–485, 2018.

[25] Meng Jin, Yuan He, Xin Meng, Yilun Zheng, Dingyi
Fang, and Xiaojiang Chen. Fliptracer: Practical parallel
decoding for backscatter communication. IEEE/ACM
Transactions on Networking, 27(1):330–343, 2019.

[26] Bryce Kellogg, Aaron Parks, Shyamnath Gollakota,
Joshua R. Smith, and David Wetherall. Wi-fi backscat-
ter: Internet connectivity for rf-powered devices. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM,

1764 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.analog.com/media/en/technical-documentation/data-sheets/adl9005.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/adl9005.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/adl9005.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/hmc8412chips.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/hmc8412chips.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/hmc8412chips.pdf
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-adl5605.html$#$eb-overview
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-adl5605.html$#$eb-overview
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-adl5605.html$#$eb-overview
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-adl5605.html$#$eb-overview
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-adl5605.html$#$eb-overview
https://www.ti.com/product/OPA810/part-details/OPA810IDCKR
https://www.ti.com/product/OPA810/part-details/OPA810IDCKR

SIGCOMM ’14, pages 607–618, New York, NY, USA,
2014. Association for Computing Machinery.

[27] Bryce Kellogg, Vamsi Talla, Shyamnath Gollakota, and
Joshua R. Smith. Passive wi-fi: Bringing low power
to wi-fi transmissions. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and
Implementation, NSDI’16, pages 151–164, USA, 2016.
USENIX Association.

[28] Keysight. E4418b epm series single-
channel power meter. https://www.
keysight.com/us/en/product/E4418B/
epm-series-singlechannel-power-meter.html,
2021.

[29] A. Kokkeler, N. B. Molenkamp, and S. H. Gerez. A
comparison of fft processor designs. 2013.

[30] Songfan Li, Chong Zhang, Yihang Song, Hui Zheng,
Lu Liu, Li Lu, and Mo Li. Internet-of-microchips: di-
rect radio-to-bus communication with spi backscatter.
In Proceedings of the 26th Annual International Con-
ference on Mobile Computing and Networking, pages
1–14, 2020.

[31] Songfan Li, Hui Zheng, Chong Zhang, Yihang Song,
Shen Yang, Minghua Chen, Li Lu, and Mo Li. Passive
{DSSS}: Empowering the downlink communication for
backscatter systems. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pages 913–928, 2022.

[32] Yan Li, Zicheng Chi, Xin Liu, and Ting Zhu. Passive-
zigbee: Enabling zigbee communication in iot networks
with 1000x+ less power consumption. In Proceedings
of the 16th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’18, pages 159–171, New York,
NY, USA, 2018. Association for Computing Machinery.

[33] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gol-
lakota, David Wetherall, and Joshua R. Smith. Ambi-
ent backscatter: Wireless communication out of thin
air. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, pages 39–50,
New York, NY, USA, 2013. Association for Computing
Machinery.

[34] microsemi. Zl30260-zl30263. https:
//www.microsemi.com/document-portal/doc_
download/136349-zl30260-zl30263-datasheet,
2022.

[35] Rajalakshmi Nandakumar, Vikram Iyer, and Shyamnath
Gollakota. 3d localization for sub-centimeter sized de-
vices. In Proceedings of the 16th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’18,

pages 108–119, New York, NY, USA, 2018. Association
for Computing Machinery.

[36] Aaron N. Parks, Angli Liu, Shyamnath Gollakota, and
Joshua R. Smith. Turbocharging ambient backscatter
communication. In Proceedings of the 2014 ACM Con-
ference on SIGCOMM, SIGCOMM ’14, pages 619–630,
New York, NY, USA, 2014. Association for Computing
Machinery.

[37] Yao Peng, Longfei Shangguan, Yue Hu, Yujie Qian, Xi-
anshang Lin, Xiaojiang Chen, Dingyi Fang, and Kyle
Jamieson. Plora: A passive long-range data network
from ambient lora transmissions. In Proceedings of the
2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’18, pages 147–160,
New York, NY, USA, 2018. Association for Computing
Machinery.

[38] Carlos Pérez-Penichet, Frederik Hermans, Ambuj Varsh-
ney, and Thiemo Voigt. Augmenting iot networks with
backscatter-enabled passive sensor tags. In Proceedings
of the 3rd Workshop on Hot Topics in Wireless, pages
23–27. ACM, 2016.

[39] Nathan M Pletcher, Simone Gambini, and Jan M Rabaey.
A 2ghz 52 µw wake-up receiver with-72dbm sensitiv-
ity using uncertain-if architecture. In 2008 IEEE In-
ternational Solid-State Circuits Conference-Digest of
Technical Papers, pages 524–633. IEEE, 2008.

[40] Qorvo. Tqp3m9008 high linearity lna gain block.
https://www.qorvo.com/products/p/TQP3M9008,
2022.

[41] Aanjhan Ranganathan, Boris Danev, and Srdjan Cap-
kun. Low-power distance bounding. arXiv preprint
arXiv:1404.4435, 2014.

[42] Mohammad Rostami, Xingda Chen, Yuda Feng,
Karthikeyan Sundaresan, and Deepak Ganesan. Mixiq:
re-thinking ultra-low power receiver design for next-
generation on-body applications. In Proceedings of
the 27th Annual International Conference on Mobile
Computing and Networking, pages 364–377, 2021.

[43] Mohammad Rostami, Karthik Sundaresan, Eugene Chai,
Sampath Rangarajan, and Deepak Ganesan. Redefining
passive in backscattering with commodity devices. In
Proceedings of the 26th Annual International Confer-
ence on Mobile Computing and Networking, pages 1–13,
2020.

[44] Camilo Salazar, Andreia Cathelin, Andreas Kaiser, and
Jan Rabaey. A 2.4 ghz interferer-resilient wake-up re-
ceiver using a dual-if multi-stage n-path architecture.
IEEE Journal of Solid-State Circuits, 51(9):2091–2105,
2016.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1765

https://www.keysight.com/us/en/product/E4418B/epm-series-singlechannel-power-meter.html
https://www.keysight.com/us/en/product/E4418B/epm-series-singlechannel-power-meter.html
https://www.keysight.com/us/en/product/E4418B/epm-series-singlechannel-power-meter.html
https://www.microsemi.com/document-portal/doc_download/136349-zl30260-zl30263-datasheet
https://www.microsemi.com/document-portal/doc_download/136349-zl30260-zl30263-datasheet
https://www.microsemi.com/document-portal/doc_download/136349-zl30260-zl30263-datasheet
https://www.qorvo.com/products/p/TQP3M9008

[45] Aaron Parks & samannp. Wisp 5 - hw.
https://github.com/wisp/wisp5-hw, 2017.

[46] Alanson P Sample, Daniel J Yeager, Pauline S Powledge,
Alexander V Mamishev, and Joshua R Smith. Design
of an rfid-based battery-free programmable sensing plat-
form. IEEE Transactions on Instrumentation and Mea-
surement, 57(11):2608–2615, 2008.

[47] Bill Schweber. Understanding the basics of low-
noise and power amplifiers in wireless designs.
https://www.digikey.com/en/articles/understanding-
the-basics-of-low-noise-and-power-amplifiers-in-
wireless-designs, 2013.

[48] CADENCE PCB SOLUTIONS. What
is the time constant of an rlc circuit?
https://resources.pcb.cadence.com/blog/2020-what-is-
the-time-constant-of-an-rlc-circuit, 2020.

[49] STMicroelectronics. Stm32l4 series. https://www.
st.com/en/microcontrollers-microprocessors/
stm32l4-series.html, 2021.

[50] Mark Stoopman, Shady Keyrouz, Hubregt J Visser, Kath-
leen Philips, and Wouter A Serdijn. Co-design of a cmos
rectifier and small loop antenna for highly sensitive rf
energy harvesters. IEEE Journal of Solid-State Circuits,
49(3):622–634, 2014.

[51] Vamsi Talla, Mehrdad Hessar, Bryce Kellogg, Ali Na-
jafi, Joshua R. Smith, and Shyamnath Gollakota. Lora
backscatter: Enabling the vision of ubiquitous connec-
tivity. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., 1(3), September 2017.

[52] Taobao. Eka950 0.1µa-level power monitor.
https://https://m.tb.cn/h.U1A802y?tk=1u3A2wmBIRx,
2021.

[53] Stewart Thomas and Matthew S Reynolds. Qam
backscatter for passive uhf rfid tags. In 2010 IEEE
International Conference on RFID (IEEE RFID 2010),
pages 210–214. IEEE, 2010.

[54] Ambuj Varshney, Oliver Harms, Carlos Pérez-Penichet,
Christian Rohner, Frederik Hermans, and Thiemo Voigt.
Lorea: A backscatter architecture that achieves a long
communication range. In Proceedings of the 15th
ACM Conference on Embedded Network Sensor Sys-
tems, pages 1–14, 2017.

[55] Ambuj Varshney, Carlos Pérez Penichet, Christian
Rohner, and Thiemo Voigt. Towards wide-area backscat-
ter networks. In Proceedings of the 4th ACM Workshop
on Hot Topics in Wireless, pages 49–53, 2017.

[56] Ambuj Varshney, Wenqing Yan, and Prabal Dutta. Judo:
addressing the energy asymmetry of wireless embedded
systems through tunnel diode based wireless transmit-
ters. In Proceedings of the 20th Annual International
Conference on Mobile Systems, Applications and Ser-
vices, pages 273–286, 2022.

[57] Jue Wang, Haitham Hassanieh, Dina Katabi, and Pi-
otr Indyk. Efficient and reliable low-power backscat-
ter networks. In Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication,
SIGCOMM ’12, pages 61–72, New York, NY, USA,
2012. Association for Computing Machinery.

[58] Wikipedia. Low noise amplifier. https://en.
wikipedia.org/wiki/Low-noise_amplifier,
2022.

[59] Die Wu, Muhammad Jawad Hussain, Songfan Li, and
Li Lu. R2: Over-the-air reprogramming on computa-
tional rfids. In 2016 IEEE International Conference on
RFID (RFID), pages 1–8, 2016.

[60] Wenyu Yang, Die Wu, Muhammad Jawad Hussain, and
Li Lu. Wireless firmware execution control in com-
putational rfid systems. In 2015 IEEE International
Conference on RFID (RFID), pages 129–136, 2015.

[61] Pengyu Zhang, Dinesh Bharadia, Kiran Joshi, and
Sachin Katti. Hitchhike: Practical backscatter using
54 commodity wifi. In Proceedings of the 14th ACM
Conference on Embedded Network Sensor Systems CD-
ROM, SenSys ’16, pages 259–271, New York, NY, USA,
2016. Association for Computing Machinery.

[62] Pengyu Zhang, Pan Hu, Vijay Pasikanti, and Deepak
Ganesan. Ekhonet: High speed ultra low-power
backscatter for next generation sensors. In Proceedings
of the 20th annual international conference on Mobile
computing and networking, pages 557–568. ACM, 2014.

[63] Renjie Zhao, Fengyuan Zhu, Yuda Feng, Siyuan Peng,
Xiaohua Tian, Hui Yu, and Xinbing Wang. Ofdma-
enabled wi-fi backscatter. In The 25th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, MobiCom ’19, pages 20:1–20:15, New York, NY,
USA, 2019. ACM.

[64] Yi Zhao, Joshua R Smith, and Alanson Sample. Nfc-
wisp: A sensing and computationally enhanced near-
field rfid platform. In 2015 IEEE International Confer-
ence on RFID (RFID), pages 174–181. IEEE, 2015.

1766 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.st.com/en/microcontrollers-microprocessors/stm32l4-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l4-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l4-series.html
https://en.wikipedia.org/wiki/Low-noise_amplifier
https://en.wikipedia.org/wiki/Low-noise_amplifier

Channel-Aware 5G RAN Slicing with Customizable Schedulers
Yongzhou Chen1, Ruihao Yao1, Haitham Hassanieh2, Radhika Mittal1

1UIUC, 2EPFL

Abstract. This paper focuses on 5G RAN slicing, where the
5G radio resources must be divided across slices (or enter-
prises) so as to achieve high spectrum efficiency, fairness and
isolation across slices, and the ability for each slice to cus-
tomize how the radio resources are divided across its own
users. Realizing these goals requires accounting for the chan-
nel quality for each user (that varies over time and frequency
domain) at both levels – inter-slice scheduling (i.e. dividing
resources across slices) and enterprise scheduling (i.e. divid-
ing resources within a slice). However, a cyclic dependency
between the inter-slice and enterprise schedulers makes it
difficult to incorporate channel awareness at both levels. We
observe that the cyclic dependency can be broken if both
the inter-slice and enterprise schedulers are greedy. Armed
with this insight, we design RadioSaber, the first RAN slic-
ing mechanism to do channel-aware inter-slice and enterprise
scheduling. We implement RadioSaber on an open-source
RAN simulator, and our evaluation shows how RadioSaber
can achieve 17%-72% better throughput than the state-of-the-
art RAN slicing technique (that performs channel-agnostic
inter-slice scheduling), while meeting the primary goals of
fairness across slices and the ability to support a wide variety
of customizable enterprise scheduling policies.

1 Introduction

Network slicing is one of the key new features introduced in
the 5G standards [3, 9, 37]. It refers to dividing network re-
sources among different services or groups of users to create
virtual customizable networks. Such virtualization enables
cellular networks to expand beyond the classical “individual
mobile user” use-case to a more general “groups of users”
use-case which can support new applications with different
requirements. These groups of users (typically referred to as
enterprises in 5G) enter into service level agreements (SLA)
with the network operator, which provides two features: (1) It
governs the type of service and the total amount of resources
allocated to each slice. For example, it can provide an ultra-
reliable low-latency communication for first responders, con-
nected vehicles, or hospitals performing remote surgeries [20].
It can provide cheap and scalable IoT connectivity for farmers
using sensors to monitor crops and cities deploying sensors
for traffic or air quality monitoring [18]. It can also provide
high throughput connectivity for companies with multiple
users as well as educational and training institutions using
VR/AR [36]. (2) It allows each slice (or enterprise) to cus-
tomize their virtual networks and dynamically manage their
resources [22, 41]. For example, a farming enterprise might

Frequency Time

Resource Blocks

gNB

Inter-Slice
Scheduler

Enterprise 1

Enterprise 2

Enterprise 3

Enterprise 4

Enterprise Scheduler

Enterprise Scheduler

Enterprise Scheduler

Enterprise Scheduler

User 1
User 2
User 3

User 1
User 2

User 1
User 2
User 3
User 4

User 1
User 2

Figure 1: RAN Slicing of resources across 4 enterprises.

want to give higher bandwidth to drones collecting aerial im-
ages of crops as opposed to soil moisture sensors, or a hospital
might want to prioritize traffic for critical remote surgeries at
different times of the day.

Network slicing has two components: 5G RAN (Radio
Access Network) slicing and 5G core slicing [11, 29, 30, 44].
This paper focuses on RAN slicing as the RAN is typically
the bottleneck in cellular networks [11, 27]. The goal is to
divide physical layer resources at the base station (referred
to as gNB in 5G) among different enterprises with devices
connected to that gNB. These resources include time slots as
well as frequency sub-bands used for transmission as shown
in Fig. 1. Ideally, the RAN should schedule these resources
in a manner that:

(1) Achieves high spectrum efficiency.
(2) Ensures fairness among enterprises subject to their SLAs.
(3) Allows enterprises to customize their scheduling policies.

Realizing the above goals, however, can be challenging in
wireless networks because the throughput achieved by using a
certain resource block is highly dependent on which user gets
that block. In particular, the quality of the wireless channel
can change drastically between frequency bands, between
users, and over time. This well known phenomena is called
frequency selective fading and is shown in Fig. 2 where the
capacity can vary by up to 9× across 100 resource blocks
(frequency sub-bands) for two users in a 20 MHz LTE band-
width. Frequency selective fading is even more prominent in
5G where the total bandwidth is expanded to 100 MHz and up
to 400 MHz [6]. Allocating resources in a channel agnostic
manner can lead to inefficient spectrum usage and unfairness
among different slices (enterprises) [10, 22].

Past work has considered the problem of channel aware
spectrum allocation [2, 4, 38, 45], channel aware hierarchi-
cal resource scheduling in WiMax [21], and RAN virtual-
ization in the context of MVNOs (Mobile Virtual Network

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1767

0 10 20 30 40 50 60 70 80 90 100
Frequency Sub-band (Resource Block)

200

400

600

800

1000

C
ap

ac
ity

 in
 k

bp
s

User 1
User 2

Figure 2: The channel quality across 100 RBs for two users
in a 20MHz LTE downlink.

Operators)1 [9, 22]. However, state-of-the-art techniques can
only account for the channel quality between users within
the same slice (as detailed in § 2). In other words, only after
the inter-slice scheduler allocates resources to different slices
irrespective of channel quality, each enterprise can run a chan-
nel aware scheduler. Hence, a slice can end up with resources
that have bad channel quality for its users which significantly
degrades the throughput as we demonstrate in §3.1.

Enabling channel aware scheduling at both the inter-slice
scheduler and enterprise scheduler leads to a chicken and
egg problem. The enterprise scheduler cannot allocate re-
sources in a channel aware manner before it knows all the
resources the inter-slice scheduler will give it, and the inter-
slice scheduler cannot allocate resources among slices in a
channel aware manner if it does not know to which user in
the slice the enterprise scheduler will give a certain resource.
One way to break this deadlock is to enumerate through all
possible resource allocations and run the enterprise scheduler
for each one. However, enumerating all possibilities leads to
exponential complexity and is intractable. As a result, state-
of-the-art work only uses a channel agnostic inter-slice sched-
uler [9, 21, 22].

In this paper, we present RadioSaber, a RAN slicing pol-
icy that enables channel aware resource allocation at both
the inter-slice scheduler and the enterprise scheduler while
allowing each enterprise to customize their scheduling policy.
RadioSaber’s design is based on a simple idea. Since both
the inter-slice scheduler and the enterprise scheduler must
run at the base station for real-time scheduling, the inter-slice
scheduler can use the enterprise scheduling algorithms as sub-
routines in its algorithm. Both the inter-slice and enterprise
scheduler can be channel aware if the inter-slice scheduler can
call the enterprise scheduling algorithm with the following
query: “If we give resource X to slice A, which user in slice
A will get resource X?” If the enterprise scheduler is able to
reply to this query independent of what other resources the
inter-slice scheduler will allocate to its slice, the inter-slice
scheduler can be channel aware. Specifically, the inter-slice
scheduler can query the enterprise scheduler of each slice,
find the user to which the resource X will be allocated and

1Examples of MVNOs include Straight Talk, Virgin Mobile, & Xfinity
mobile, which do not operate their own networks but rather run their traffic
through Verizon, AT&T, & T-mobile networks.

determine the slice in which X will deliver the best channel
quality.

Being able to answer this query, however, limits the space
of scheduling policies that an enterprise can run. In partic-
ular, the enterprise scheduler must decide how to allocate a
resource X independent of the remaining resources that have
not yet been allocated to it as we show in § 4.1. Hence, its
algorithm must greedily allocate one resource at a time. Most
common practical policies, however, like Max. throughput [4],
proportional fairness [45], QoS-aware scheduling [2,4,38,39]
etc., tend to use greedy algorithms that satisfy the above re-
quirement. It is worth noting here that when allocating a
resource X, the algorithms can still account for resources that
have already been allocated to the slice in the past (e.g. in or-
der to provide some notion of fairness or demand-awareness),
but not account for resources that are yet to be allocated in
the future. Hence, RadioSaber is able to accommodate poli-
cies that are both channel aware and flexible to the needs of
different slices.

Realizing RadioSaber in practice, however, requires ad-
dressing algorithmic questions like how do we incorporate
the SLA between the operator and the enterprise into the
inter-slice scheduler? In what order does the inter-slice sched-
uler query the resource blocks to decide which slice gets the
block? How do we support customizable enterprise schedul-
ing, while restricting the schedulers to be greedy? How does
the enterprise scheduler balance between channel quality and
other metrics such as flow priorities? We also have to address
several system level questions like what is a good and simple
interface that we can provide to the enterprises to set their
scheduling policies? How do we incorporate RadioSaber into
the current 5G standards? We address the above questions in
detail in §4.2 and § 4.3.

We have implemented RadioSaber and evaluated it using
trace driven simulations. We used an open-source 5G core
network [1] and a popular RAN simulator [34] that is capa-
ble of simulating both the physical layer and higher layers
at the RAN. We evaluate our system using traces of cellu-
lar signals [46], that were collected using software defined
radios. We compare with:(1) NVS [9, 21, 22], a popular algo-
rithm which enables RAN slicing with channel aware enter-
prise scheduler and (2) a global channel aware scheduler that
schedules all users without slicing.

Our results reveal that RadioSaber is able to outperform
NVS, achieving 17%-72% better throughput for backlogged
flows, 2× to 4× lower FCT (flow completion time) for non-
backlogged flows, and 24× lower packet delays for real-time
flows with constant bitrates. Unlike the global channel aware
(but slicing unaware) scheduler that fails to provide any isola-
tion across slices, RadioSaber is able to achieve desired isola-
tion and fairness. Finally, RadioSaber is able to accommodate
enterprise schedulers with various policies and number of
users. Hence, RadioSaber is able to achieve the three goals of
spectrum efficiency, fairness, and customizability.

1768 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

The paper makes the following contributions:

• We present the first RAN slicing that is channel-aware
both at the inter-slice scheduler and enterprise scheduler.

• We present a new framework for RAN virtualization that
abstracts physical layer scheduling and provides an inter-
face for enterprises to set their own schedulers.

• We implement our techniques and demonstrate significant
improvement in efficiency and fairness.

2 Background & Related Work

In this section, we provide a brief background on the radio
access network (RAN) in cellular networks as well as the
related work for channel aware scheduling and RAN slicing.

1. Resource Blocks: In 5G RANs, the user or device is re-
ferred to as UE (User Equipment) and the base station is
referred to as gNB (next generation Node B). The gNB uses
OFDMA (Orthogonal Frequency Division Multiple Access)
at its PHY and MAC layers in order to divide radio resources
across UEs. In OFDMA, the frequency bandwidth is divided
into sub-carrier frequencies that are orthogonal (i.e. do not in-
terfere) and time is divided into equal slots called TTIs (Trans-
mission Time Interval). A resource block (RB), which is the
smallest resource unit that can be allocated to a UE, is formed
of 12 frequency sub-carriers and 1 TTI slot. Hence, the RBs
are organized into a 2D grid as shown in Fig. 1. In practice,
however, network operators typically schedule resources in
the granularity of resource block groups (RBGs) to minimize
control overhead. Each RBG contains a fixed number of con-
secutive RBs ranging from 1 to 4 [8, 42]. In 4G, each TTI has
a fixed length of 1ms and each sub-carrier has a fixed width of
15 kHz. Thus, the RB spans 12×15 = 180 kHz. 5G, on the
other hand, supports 5 configurable TTI and sub-carrier inter-
vals such that the TTI is 2−µ ms and the sub-carrier interval
is 2µ×15 kHz. µ is commonly referred to as the numerology
and chosen from the values 0,1,2,3,4 depending on the band
of operation [7, 35]. For example, the 5G sub-6GHz band,
supports sub-carrier width of 60 KHz with a TTI of 0.25 ms
for µ = 2 [33, 43]. In this case, the RB spans 720 kHz.

2. Data Rate: The data rate at which a UE can transmit in a
given RB depends on the channel quality which is typically
defined by the SNR (signal-to-noise-ratio). The SNR deter-
mines the capacity of the wireless link and varies across time,
RBs, and users as shown in Fig. 2. The SNR can be computed
at the UE for each OFDM sub-carrier. For a RB or RBG made
of many sub-carriers, the “effective SNR” is typically com-
puted2 as described in [16, 25, 31]. The effective SNR is then
mapped to a discrete value called channel quality indicator

2The effective SNR is not the average across sub-carriers but rather a
weighted exponential average that typically gives a value close to the mini-
mum SNR across sub-carriers. This ensures that the chosen data transmission
rate does not exceed the capacity of the wireless link at any sub-carrier which
would otherwise result in a very high packet loss rate.

UE User Equipment RAN Radio Access Network
gNB 5G Base station TTI Transmission Time Interval
RB Resource Block RBG Resource Block Group
SNR Signal-to-Noise Ratio SLA Service Level Agreement
PF Proportional Fair CQI Channel Quality Indicator
MT Max. Throughput MCS Modulation & Coding Scheme

Table 1: Terms used in 5G networks

(CQI) and periodically reported to the gNB [8]. The CQI is
then used to determine the modulation and coding scheme
(MCS) for the UE which in turn determines the data rate of
the UE. The higher the SNR and channel quality, the higher
order MCS can be used to increase the data rate.

3. Channel Aware Scheduling: The need for channel-aware
scheduling in wireless networks has led to a number of tech-
niques that propose allocating resources across individual
users in a channel-aware manner (e.g. [2,4,13,14,38,39,45]).
In most cases, the scheduling problem is NP-Hard and a
greedy heuristic is adopted whereby RBs are allocated one at
a time to the UE that scores highest on some given metric [4].
These strategies ensure low scheduling overhead and enabling
fast decisions at timescales of a single TTI. Some of the most
common techniques include:
•Maximum Throughput (MT): Assigns the RB to the UE with
the largest CQI to maximize data rate irrespective of fairness.
• Proportional Fair (PF): Extends MT to incorporate fairness
across users by weighing the CQI with the UE’s historical
allocation. This is a very popular strategy in cellular networks
that aims to optimize the sum of the log of throughput of
UEs [17, 24, 45]. The PF metric can also be parameterized to
vary the relative weights of the CQI versus historical alloca-
tion [45].
• Incorporating QoS and delay: The PF metric can be fur-
ther extended to incorporate (i) QoS values that increase the
weights of higher priority UEs [4, 13, 14, 39], or (ii) packet
delays that increase weights of UEs that have been waiting
longer [2, 38, 39].

Non-greedy heuristics have also been proposed for optimiz-
ing proportional fairness [17, 24]. The scheduling problem is
abstracted as an NP-hard integer linear program and solved
using a sub-optimal non-greedy algorithm. Such algorithms,
however, are computationally very expensive and must use
GPUs to compute their solutions [17].

4. RAN Slicing: The inter-slice scheduler provides each en-
terprise with a slice of the RAN by allocating a set of virtual
RBs which it maps to physical RBs. In order to support chan-
nel aware scheduling, it also provides the enterprise scheduler
with the CQIs of the UEs of this enterprise for each virtual
RB. Each enterprise is then able to customize how it allocates
the virtual RBs to its UEs by using virtual control functions at
the gNB to specify its own scheduling policy [9,10]. Note that
both the inter-slice scheduler and enterprise scheduler run on
the gNB which enables RadioSaber to expose the enterprise
scheduling algorithms to the inter-slice scheduler as described
in more details in §4.1.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1769

1

RB1

RB2

RB3

RB4

5 5 15 15

Channel-Agnostic

5 5 15 15

15 15 5 5

15 15 5 5
UE data rate on each

RB in kb/s 40 kb/s

2 3 4

Slice 1 Slice 2

TTI1 TTI2

1

2

1

2

3

4

3

4

3

4

3

4

1

2

1

2

UE:
1

2

3

4

1

2

3

4

Divide TTI
(NVS)

Divide RBs

TTI1 TTI2

Channel
Aware

TTI1 TTI2
20 kb/s 60 kb/s(a) (c)

25 kb/s

3

2

X

1

RB1

RB2

RB3

5 15 10

5 15 5

15 5 5

UE data rate on
each RB in kb/s

2 3 UE: RB1 &
RB2

30 kb/s

2

X

1

RB1 &
RB3

Slice 1 Allocation to
Slice 1

(b)

0 250 500 750 1000 1250 1500
Capacity of a Resource Block in kb/s

0

0.2

0.4

0.6

0.8

1

Em
pi

ric
al

 C
D

F
(P

ro
ba

bi
lit

y)

Figure 3: (a) Illustrative example showing the importance of a channel aware inter-slice scheduler. (b) Distribution of the capacity
of RBs from real traces. (c) Example showing the challenge in enabling a channel aware inter-slice scheduler.

The closest to our work is NVS (Network Virtualization
Substrate) [21], a popular inter-slice scheduler that is used
by multiple RAN slicing schemes [9, 21–23, 26]. NVS allo-
cates all RBs in a given TTI to a single slice independent of
channel quality. It then rotates between slices in a weighted
round-robin manner to satisfy the target throughput of each
slice as specified by SLA. While NVS does allow the enter-
prise scheduler to run a channel aware policy, the inter-slice
scheduler remains agnostic to channel quality which changes
over time and resource blocks. We compare with NVS in §6
and show that our channel aware inter-slice scheduler can
significantly improve performance.

Past work on slicing radio resources also explores support-
ing dynamic demands across slices [40, 47] and deadlines
across slices [12, 15]. All past work, however, constraints the
inter-slice scheduler to allocate virtual RBs to each slice in a
channel-unaware manner. Our goal, in contrast, is to enable
channel-aware scheduling at both inter-slice and enterprise
levels, while still giving each enterprise enough flexibility to
allocate RBs across its users.

3 Motivation and Challenges

In this section, we will explain, using illustrative examples,
the importance of channel aware resource allocation at both
the inter-slice scheduler and enterprise scheduler as well as the
challenge in making the inter-slice scheduler channel aware.

3.1 Need for Channel-Aware Slicing
To best illustrate the need for channel-aware slicing at both
the inter-slice scheduler and enterprise scheduler, consider
the toy example in Fig. 3(a). In this example, there are 4
RBs {R1,R2,R3,R4}, 2 slices {S1,S2}, and each slice has 2
UEs: {u1,u2} ∈ S1 and {u3,u4} ∈ S2. The channel quality is
shown in the left 2D grid in terms of the data rate each UE
can achieve on each RB in kb/s. The enterprise scheduler of
both slices are channel-aware and run a proportional fairness
(PF) policy in order to maximize throughput while ensuring
fairness between UEs.

Consider a channel unaware inter-slice scheduler. The
scheduler could allocate all RBs in the first TTI to S1 and

all RBs in the second TTI to S2 similar to NVS [21]. In this
case, the enterprise scheduler of S1 would allocate {R1,R3}
to u1 and {R2,R4} to u2. Similarly, the enterprise scheduler
of S2 would allocate {R1,R3} to u3 and {R2,R4} to u4. This
allows each UE to achieve 10 kb/s over the two TTIs for a
total of 40 kb/s. An alternative channel unaware inter-slice
scheduler could have also divided the RBs between the two
slices by allocating {R1,R2} to S1 and {R3,R4} to S2 for all
TTIs. In this case, the enterprise scheduler of S1 would allo-
cate {R1} to u1 and {R2} to u2 and that of S2 would allocate
{R3} to u3 and {R4} to u4. This allows each UE to achieve a
data rate of 5 kb/s for a total of 20 kb/s. Since the inter-slice
scheduler is channel-unaware, it has no way of figuring out
that such an allocation is very inefficient.

Consider, on the other hand, a channel-aware inter-slice
scheduler. This scheduler would allocate {R3,R4} to S1 and
{R1,R2} to S2 for all TTIs. In this case, the enterprise sched-
uler of S1 would allocate {R3} to u1 and {R4} to u2 and that
of S2 would allocate {R1} to u3 and {R2} to u4. This allows
each UE to achieve a data rate of 15 kb/s for a total of 60 kb/s.
Hence, the channel-aware inter-slice scheduler enables 1.5×
to 3× higher throughput.

There are two factors in this example that enable a channel-
aware scheduler to achieve better performance than a channel-
agnostic scheduler: (i) The channel quality differs across RBs
for a given slice, and (ii) The two slices have complementary
channel quality distribution across RBs (i.e. slice 1 has a better
channel quality for the first two RBs, and slice 2 has better
channel quality for the last two RBs). It is the combination of
these factors that enables a smarter (channel-aware) resource
allocation policy to achieve better performance. Moreover,
such factors are quite common in practice as can be seen from
the real traces shown in Fig. 2.

While this toy example illustrates the insight behind Ra-
dioSaber, the variation in channel quality in real systems can
be quite significant as was shown in Fig. 2. Fig. 3(b) plots
the cumulative distribution function (CDF) of capacity of all
the RBs in a real trace collected from 4G measurements (ob-
tained from [46]). The figure shows that the channel in real
traces can vary significantly leading to a capacity that can be
as high as 2.2× the median value and as low as 1/20 of the
median value. This diversity which is a result of frequency

1770 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

selective fading in the wireless channel is expected to further
increase in 5G as the bandwidth increases from 10-20 MHz
to 100-400 MHz [6].

Our evaluation in §6 shows that due to this diversity, our
simple insight from the toy example generalizes to more
complex scenarios.

3.2 Challenge in Channel-Aware Slicing

In order to allocate RBs across slices in a channel-aware
manner, we first need to know what channel quality each slice
would achieve for each RB. While in the above toy example
it is easy to see what the best channel aware allocation is, the
problem is challenging in more general settings. In particular,
if the inter-slice scheduler gives RB Ri to slice S j, then the
channel quality of Ri will depend on which UE belonging to S j
will use Ri which in turn depends on the enterprise scheduling
policy. However, the enterprise scheduling policy itself could
be channel-aware, in which case, the allocation of Ri to a
given UE will depend on which RBs the inter-slice scheduler
has allocated to S j. This creates a deadlock as the inter-slice
scheduler needs to know how the enterprise scheduler will
allocate Ri to determine its channel quality and whether to
give Ri to this slice. At the same time, the enterprise scheduler
needs to know what RBs the inter-slice scheduler will give it
so it can allocate them in a channel-aware manner.

Fig. 3(c) illustrates this through a toy example. Consider
a slice with three UEs {u1,u2,u3}. Suppose the inter-slice
scheduler must allocate two RBs to this slice (as per its
weighted share) and suppose the enterprise scheduling pol-
icy assigns a RB to the user which has maximum data rate
for the RB, while limiting each user’s allocation to a single
RB. If the inter-slice scheduler allocates {R1,R2} to the slice,
then the enterprise scheduler would first allocate R2 to u2 and
then allocate R1 to u3. However, if the inter-slice scheduler
allocates {R1,R3} to the slice, the enterprise scheduler would
allocate R1 to u2 and R3 to u1. The data rate associated with
R1 for this slice is 10 kbps in the first case and 15 kbps in the
second case. Hence, while determining whether to allocate
R1 to this slice or not, the inter-slice scheduler does not know
the data rate that R1 will deliver as it depend on whether the
other RB allocated to the slice is R2 or R3.

One way out is to enumerate through all possible combina-
tions of inter-slice allocations, and run the enterprise sched-
uler for each slice for each allocation. However, this is clearly
intractable with the number of possible allocations increasing
exponentially with the number of slices and resource blocks.

3.3 RadioSaber’s Approach

In order to break the deadlock challenge outlined in §3.2, we
leverage the following insights. First, both the inter-slice and
enterprise scheduler must run on the base station (gNB) to

guarantee real-time scheduling. Hence, the inter-slice schedul-
ing algorithm can use the enterprise scheduling algorithm as
a subroutine and query it to figure out how it will allocate a
certain RB. Second, we can break the deadlock if the enter-
prise scheduler is able to reply to the following query from
the inter-slice scheduler: “If I give resource Ri to slice S j,
which UE in slice S j will get resource Ri?”.

For the enterprise scheduler to be able to reply to this query,
its algorithm should determine how to allocate a RB indepen-
dent of other RBs that the inter-slice scheduler might allocate
to it. Restricting the enterprise scheduling algorithm to greed-
ily allocate one RB at a time makes it independent of the
remaining RBs that will be allocated to it. It may still need to
account for the historical allocation of RBs (i.e. RBs already
assigned to the slice) to correctly estimate the remaining de-
mand of a user or to account for fairness. A greedy inter-slice
scheduler, that assigns RBs to slices one at a time, enables the
enterprise scheduler to update its scheduling state based on
its allocation so far. Restricting both scheduler to be greedy
thus enables the enterprise scheduler to effectively answer
the query while still accounting for historical allocation, and
for the inter-slice scheduler to use the result of the query to
assign the RB to the slice with the best channel quality.

4 RadioSaber’s Design

Objectives. RadioSaber tackles the problem of dividing N
RBs (over one or more TTIs) across K slices, and then divid-
ing the RBs allocated to each slice across the UEs within that
slice, such that the following objectives are met:
(i) Weighted fairness across slices. Each slice must get its
weighted fair share of resource blocks. We assume that the
weights are known and are proportional to each slice’s demand
(based on the SLA between the slice owner and the cellular
network operator). Prior work on RAN slicing [22] shows how
SLAs can be specified either in terms of number of RBs or
overall throughput, and how both can be translated to dynamic
per-slice weights. We use these weights to compute a quota
of RBs for each slice, as detailed in §4.1.
(ii) High spectrum efficiency. The system must allocate RBs
across slices so as to use the spectrum efficiently and achieve
high overall throughput. For this, RadioSaber uses the ap-
proach outlined in §3.3 to greedily determine which RBs are
allocated to a slice to fulfill its quota in a channel-aware man-
ner. We detail RadioSaber’s greedy channel-aware inter-slice
scheduling algorithm in §4.1.
(iii) Customizable enterprise scheduler. Each slice can have
a different policy for dividing the RBs allocated to it across
its UEs and flows. The system should provide an expressive
interface for slice operators to specify their desired policies,
and should be able to enforce them. §4.2 describes RadioS-
aber’s framework for supporting a variety of greedy enterprise
schedulers.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1771

After describing individual components of RadioSaber’s
design, we end this section with describing our overall work-
flow for RAN slicing in §4.3.

4.1 Inter-slice Scheduler

We divide inter-slice scheduling logic into two steps: (i) com-
puting the quota of RBs for each slice in a TTI, and (ii) greed-
ily allocating RBs to slices as per their quota in a channel-
aware manner. 3 We detail these steps below.
Computing Per-slice Quotas. In each TTI, RadioSaber first
computes the quota of RBGs (the granularity at which RBs
are allocated) for each slice, based on per-slice weights. Let
the number of RBs and the number of RBGs in each TTI be
|R B| and |R BG | respectively. A naive strategy is to simply
compute the quota of slice s as ws|R BG |, where ws is the
normalized weight of the slice. However,there are a few prac-
tical considerations: (i) The quota for a slice computed in
this manner could be non-integral (and possibly less than 1,
depending on the number of other slices and their weights).
We cannot have non-integral allocation of RBGs. (ii) If |R B|
is not a perfect multiple of the default number of RBs in each
group (say k), then the last RBG will have fewer RBs.

RadioSaber accounts for these aspects by maintaining an
offset from the (ideal) target share of RBs for each slice, that
rolls over to the next TTI. Algorithm1 presents the pseudo-
code. We first compute the target share of each slice (in num-
ber of RBs) as its absolute weighted share in a TTI (given
by ws|R B|) subtracted by its rolling offset from the previous
TTIs (initialized to zero for a new slice). We then set the quota
for the slice (in number of RBGs) as its target share divided
by k, and round down the result. Because of the rounding
down, the sum of quota across all slices would be less than
the available number of RBGs. We then increment the quota
of a random set of slices by one, so as to account for all of
the extra RBGs. This can result in a few slices getting less
than their fair share of RBs, and a few slices getting more. We
capture this by updating the offset for each slice. This offset
is then taken into account when computing the quotas in the
next TTI – the slices that get more than their fair share of RBs
in the current TTI will have a positive offset and a lower share
in the next TTI, while the slices that get less than their fair
share of RBs in the current TTI will have a negative offset
and a higher share in the next TTI.

As mentioned above, one of the RBGs allocated to a slice
may have fewer than k RBs. We account for this by adjusting
the offset of the slice that is allocated the aberrant RBG when
assigning RBGs to slices (we skip mentioning this step when
discussing our assignment algorithm below).
Assigning RBGs to Slices. Given per-slice quotas, we next

3RadioSaber follows the standard practice of making radio resource al-
location decisions at timescales of a TTI (§2). Consequently, any temporal
variations in a UEs CQI is naturally accounted for when recomputing the
schedule over each subsequent TTIs.

Algorithm 1 Calculating RBGs quota for slices
1: variable rbs_offset_
2: procedure SLICEQUOTA
3: rbs_share = []
4: rbgs_quota = []
5: k← rbs_per_rbg()
6: for s in S do
7: rbs_share[s]← |R B|×ws - rbs_offset_[s]
8: rbgs_quota[s]← ⌊ rbs_share[s] / k ⌋
9: end for

10: extra_rbgs = |R BG | - sum(rbgs_quota)
11: while extra_rbgs > 0 do
12: rbgs_quota[S .rand()] += 1
13: extra_rbgs -= 1
14: end while
15: for s in S do
16: rbs_offset_[s] = rbgs_quota[s] × k - rbs_share[s]
17: end for
18: return rbgs_quota
19: end procedure

RB1

RB2

RB3

1 2

20 5 15

Sequential

30 5 15

UE data rate on each RB in kb/s

3

1

RadioSaberUE:

15 20 25

1

3

2

3

2

1

3

2

Optimal

50kb/s 60kb/s 65kb/s

S1 S2 S3

Figure 4: Allocating three RBs to three slices with same
weights using different strategies.

need to assign RBGs to slices in a channel-aware manner, so
as to maximize spectrum efficiency. Even if we assume that
the channel-quality (or the data-rate) associated with each
slice for each RBG is known in advance (which, as illustrated
in §3, is not the case), computing the optimal assignment of
RBGs that maximizes the total data-rate, while adhering to
the quota on RBGs for each slice is an NP-hard problem. 4

A greedy heuristic is therefore a natural choice for finding (a
potentially sub-optimal) solution to this problem. But more
importantly, as discussed in §3.3, a greedy approach allows
the inter-slice scheduler to effectively query the enterprise
scheduler and determine the channel quality for each RBG.

The basic allocation logic then becomes relative straight-
forward: In each TTI, RadioSaber greedily picks a RBG and
assigns it to the slice that achieves the maximum channel
quality for that RBG. Once a slice has been allocated its quota
of RBGs, it is no longer considered for subsequent RBGs
allocation in that TTI.

The order in which the inter-slice scheduler allocates

4It reduces to an Integer Linear Programming problem [45].

1772 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 2 Assigning RBGs to slices
1: procedure RBALLOCATION
2: rbgs_quota← sliceQuota()
3: rbgs_assignment = []
4: slice_user = [] ▷ Users that each slice decides to

schedule for all RBs
5: slice_cqi = [] ▷ Channel qualities of each slice(based

on scheduled users) for all RBs
6: slice_rbgs = []
7: for i in range(|R BG |) do
8: for s in S do
9: u∗ ← s.enterpriseScheduler(i)

10: slice_user[i][s]← u∗

11: slice_cqi[i][s]← u∗.channelQuality(i)
12: end for
13: end for
14: while rbs_assignment.size() < |R BG | do
15: i∗,s∗ ← argmaxi,s slice_cqi and i not in

rbgs_assignment and slice_rbgs[s] < rbgs_quota[s]
16: u∗ ← slice_user[s∗]
17: u∗.allocRB(i∗)
18: rbgs_assignment[i∗] = u∗

19: slice_rbgs[s∗] += 1
20: if slice_rbgs[s∗] >= rbgs_quota[s∗] then
21: Continue
22: end if
23: for i in range(|R BG |) do
24: u

′ ← s∗.enterpriseScheduler(i)
25: slice_user[i][s∗]← u

′

26: slice_cqi[i][s∗]← u
′
.channelQuality(i)

27: end for
28: end while
29: end procedure

the RBGs can impact spectrum efficiency. Fig. 4 illus-
trates this with an example. It shows the channel quality
(datarate) associated with three slices {s1,s2,s3} for three
RBGs {R1,R2,R3}. Each slice has a quota of 1 RBG. As-
signing RBGs sequentially in the order {R1,R2,R3} to the
slice that has maximum datarate (until it exhausts its quota)
results in a total datarate of 50Kb/s. In comparison, allocating
RBGs in decreasing order of channel quality achieves a higher
datarate of 60Kb/s as it greedily selects the best RBG-slice
mapping (in terms of datarate) in each iteration. RadioSaber
adopts this strategy for inter-slice scheduling.

While this greedy strategy results in a better outcome than
the sequential allocation, it does not produce the optimal re-
sult. In fact, the optimal allocation for the example in Fig. 4
would have resulted in a higher datarate of 65kb/s. This sub-
optimality is expected from any polynomial time algorithm,
given the NP-hardness of our resource allocation problem.

Algorithm2 presents the pseudo-code for RadioSaber’s
inter-slice scheduler. It computes maximum channel quality

across slices for each unallocated RBG (lines 7-13). It allo-
cates the RBG with the highest channel quality (say i∗) to the
corresponding slice (s∗) that has the highest channel quality
for it (line 15). If the quota for slice s∗ is not exhausted, it re-
computes the channel quality for the remaining RBGs for that
s∗ (lines 20-24). This recomputation is needed because the
previous allocation may influence how the enterprise sched-
uler in s∗ schedules UEs for subsequent RBGs allocated to it
(e.g. if a UE has met its demand or to ensure fairness across
UEs). The above steps are then repeated to proceed with the
allocation of the next RBG.

This algorithm has a polynomial time complexity of
O(|R BG |2(|S |+T)+ |R BG ||S |T) in the worst case, where
T is the time complexity of the enterprise scheduler for assign-
ing an RBG to a UE (this is typically O(|U|) for |U| UEs in
a slice for the greedy enterprise scheduler described in §4.2).

4.2 Customizable Enterprise Scheduling
We now describe RadioSaber’s framework for supporting dif-
ferent enterprise scheduling policies. Restricted by the need
for the enterprise scheduler to be greedy (§3), and inspired by
existing channel-aware wireless schedulers (described in §2),
we adopt a metric-based allocation strategy. The enterprise
scheduler computes a metric for each UE for the RBG it is
assigned (or queried about by the inter-slice scheduler) and se-
lects the UE that scores highest on that metric. These metrics
are parameterized – RadioSaber exposes these parameters to
the slice operators, allowing them to tune the parameters in
order to express different scheduling policies. 5

At a high-level RadioSaber allows the slice operator to
specify a variety of policies based on flow priorities, fairness
across UEs, channel-quality, and packet delays. It supports
two scheduling paradigms:
Paradigm 1: Select User First. This paradigm assigns a
given RBG i to a UE that scores the highest on the follow-
ing metric (corresponding to the generalized PF [45]), and
schedules the highest priority flow belonging to that UE.

metric(u, i) = dε
u,i/Rψ

u

Here, du,i is the instantaneous data rate of UE u for RBG i, and
Ru captures the historical RBG allocation for the UE u as an
exponential weighted moving average of the user’s through-
put, based on its datarate for the RBGs it has been assigned
so far. The parameters, ε and ψ, are integers that determine
the relative weightage of channel quality and historical allo-
cation. For example, setting ε = ψ = 1 instantiates the default

5RadioSaber makes an implicit assumption that each slice operator wishes
to implement a customized scheduler, and accordingly specifies the schedul-
ing parameters that allow RadioSaber’s enterprise scheduling framework to
answer the inter-slice scheduler’s query and to allocate resources. For slices
that do not wish to implement a customized policy, RadioSaber can initialize
the scheduling parameters to reflect the default scheduling policy decided by
the network operator.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1773

PF(proportional fairness) scheduler, or setting ε= 1 and ψ= 0
instantiates the MT(maximum throughput) scheduler.
Paradigm 2: Select Highest Priority First. This paradigm
always assigns a given RBG i to the flow with highest priority.
When the highest priority level (p) has multiple flows (across
multiple UEs), it selects a flow (or a UE) 6 based on the
following metric (from [2, 4]):

metric(u, p, i) = (βDu,p +(1−β))(dε
u,i/Rψ

u)

Here, Du,p is the queuing delay experienced by the packet at
the head of the queue corresponding to UE u and priority p. β

is a binary parameter that determines whether the head packet
delay (Du,p) influences the choice of UE. du,i, Ru, ε and ψ are
as described above. Setting β = ε = ψ = 1 instantiates the
M-LWDF(Modified-Largest Weighted Delay First) Scheduler
[2].

A binary parameter α allows a slice operator to pick be-
tween the two paradigms (α = 0 picks the first paradigm and
α = 1 picks the second paradigm).

In summary, there are four parameters that RadioSaber
exposes for tuning the enterprise schedulers:
(1) α that determines whether a UE is selected first or the
priority level.
(2) ε that determines the weightage of channel quality.
(3) ψ that determines the weightage of historical allocation.
(4) β that determines whether the head packet delay is a factor.
A slice operator can tune these parameters differently to ex-
press different policies, as per their requirements and work-
load. These parameters are initialized when the slice operator
creates the slice, and are stored in the data repository in the
5G core (as detailed in §4.3). 7

While our enterprise scheduling approach is heavily in-
spired from existing wireless scheduling techniques, we in-
troduce some new aspects. In particular, cellular schedulers
typically do not consider different priority levels for a given
UE. Instead, they map all flows belonging to a UE to a single
queue (the default radio bearer). We introduce the notion of
different priority levels for each UE, as we believe that is an
important requirement for emerging applications where each
UE may have different types of flows.

4.3 RAN Slicing Workflow

We now explain the RAN slicing workflow for RadioSaber.

6We assume each UE has a single flow at each priority level. Even if a
UE has multiple flows for a given priority level, they are served in a FIFO
order with respect to one another, and we can logically treat them as a single
flow.

7We assume that the slice operators are fine with sharing their coarse-
grained scheduling policies with the network operators (in the form of these
parameters). Extending our system to provide a secure environment for the
slice operators to schedule their UEs and to answer the inter-slice scheduler’s
query in manner that does not reveal the scheduling policies is an interesting
future direction, that is beyond the scope of this paper.

UPF

AMF SMF

UDM&
UDR

5G Core

NRF

NSSF

AUSF

PCF

Requests/Responses for user registration

Requests/Responses for slice selection

Query of Slice RAN context

Instruction to create Slice RAN Runtime

Figure 5: 5G Core network architecture, and the workflow for
relaying slice context from 5G core to gNB.

4.3.1 Relaying Slice Context to gNB

The relevant slice context for RadioSaber includes the slice ID,
a list of its users, the slice SLA (or weight), and the enterprise
scheduling parameters. When the slice operator registers a
new slice, this context is initialized and stored in the 5G core.
When a user belonging to this slice attaches to a gNB, the
relevant context must be relayed from the 5G core to the gNB
for RAN slicing. We now describe the workflow for it.

Fig. 5 shows different modules of 5G core. The modules
relevant for RadioSaber’s workflow are shaded in blue. UDM
& UDR (Universal Data Management & Repository) manages
and stores all user-related data including slice contexts. AMF
(Access and Mobility Function) manages different aspects of
a UE (other than data forwarding) – these include connection,
reachability, mobility, authentication, authorization, and lo-
cation services. NSSF (Network Slicing Selector Function)
handles slice selection request and manages the life cycle of
a network slice instance.

Standard implementations for 5G core provide a framework
to support core slicing. We extend it for RAN slicing with
RadioSaber by adding the following workflow:
(1) When a UE tries to connect, it issues a registration request
to the gNB, which then forwards the request to the AMF.
(2) The AMF in turn issues a request to the NSSF to fetch the
slice context associated with the UE.
(3) If the corresponding slice instance is not available at the
NSSF, it means that the UE is the first to register for the slice.
The NSSF then constructs the slice instance based on the slice
context stored in the UDM, and passes the context to the AMF
in response. If an instance for the slice is already available at
the NSSF, it directly responds to AMF.
(4) The AMF then relays the slice context obtained from
NSSF to gNB through the NGAP(NG Application Protocol).
(5) The gNB uses the information received from the AMF

1774 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

UPF

PDCP(Packet Data Convergence Protocol)

RLC entity

Radio bearer

IP Packets

𝑈𝐸! packets

MAC Packet Scheduler

RLC entity

Radio bearer

𝑈𝐸" packets

......

RRC

𝑠𝑙𝑖𝑐𝑒!
runtime

𝑠𝑙𝑖𝑐𝑒"
runtime

AMF

Slice Context

MAC frames
Slice scheduler
params & runtime info

...

gNB

Figure 6: 5G gNB architecture: it shows how RRC maintains
slice runtimes, and controls the MAC scheduler behavior.

to create a RAN slice runtime instance if that UE is the first
to register for that slice at the gNB. Otherwise, it uses the
information to determine the slice ID for the UE, and map the
UE to the corresponding RAN slice instance.

4.3.2 Scheduling at gNB

The gNB stores the slice context obtained from the 5G core
at the RRC (Radio Resource Control). The IP packets arrive
at the gNB from the UPF (User Plane Function), and are in-
tercepted by the PDCP (Packet Data Convergence Protocol).
PDCP is responsible for compressing IP headers and cipher-
ing data for integrity protection. For RadioSaber, it parses the
packet priority from the DSCP field in the IP header.

Typically, a gNB maintains a single queue for each UE
associated with a single QoS level (radio bearer) [32]. To
support multiple priority levels within a UE, we simply allow
multiple discrete priority queues (radio bearers) for each UE. 8

Upon parsing the priority level from the packet header, the
PDCP can then forward the packets to the radio bearer with
the corresponding UE and priority level.

The packet scheduler in the gNB uses the slice context
stored in the RRC (that includes slice weights and enterprise
scheduling parameters) and the per-UE context (including its
periodically updated CQI and historical allocations) to run
both the inter-slice and the enterprise schedulers.

5 Implementation

5G Core Support. We extend Open5GS (an open-source
5G core) [1] to add support for the RadioSaber workflow de-
scribed in §4.3.1. Open5GS already provides a framework
for core slicing. We add the serialization and deserialization

8We expect a typical deployment to support 4-8 priority levels.

procedure of our RAN slice context, and the communication
between the AMF and gNB for the construction and destruc-
tion of RAN slice runtime. This implementation comprises
530 lines of code in total.

RAN Slicing and Scheduling Logic. Due to high overhead
and massive cost of deploying a base station and scaling to
large number of users, we evaluate our system using trace-
driven simulations. We implement RadioSaber’s RAN slicing
and scheduling logic in an open-source RAN simulator [34].
By default, the simulator was configured to use LTE settings.
We extend it to support 5G configuration. In particular, we
configure the downlink bandwidth to 100MHz and the TTI
to 250µs. We set the guard band to 3920KHz so there are
128 RBs and 32 RBGs in total. We also add support for some
practical considerations (e.g. CQI reporting intervals). We
ensure that UEs report subband CQI every 40ms, at a granu-
larity that covers 4 RBs. We extend the simulator to support
multiple priority levels for each UE. Moreover, we imple-
ment multiple scheduling policies in the simulator, including
RadioSaber’s inter-slice scheduler, the inter-slice scheduling
logic in NVS [22], and the enterprise scheduling policies.

As detailed in §6, we use this simulator to do trace
driven simulations to evaluate RadioSaber, using traces from
LTScope [46]. These traces measure LTE signal strength
(SNR over time and sub-carriers) for major US mobile carri-
ers. We extend those measurements to 5G by concatenating
five randomly selected distinct measurements of the 20 MHz
LTE bandwidth to generate measurements over a 100 MHz
5G bandwidth.

6 Evaluation

We use the simulator described in §5 to evaluate RadioSaber.
Our evaluation results in the following key takeaways:
• RadioSaber achieves higher overall throughput than
the state-of-the-art (channel-unaware) inter-slice scheduler,
NVS [9, 21, 22] (§6.1).
• RadioSaber can correctly enforce isolation and weighted
fairness across slices (§6.1).
• RadioSaber is able to support diverse and customizable
enterprise scheduling policies. The throughput wins with Ra-
dioSaber over NVS translate to better performance on the
corresponding slice-specific metrics (§6.2).
• Complementary CQI distribution across slices is required
for channel awareness to produce throughput gains (§6.3).
• RadioSaber’s performance benefits hold as we vary the
number of slices and UEs/slice (§6.4).
• RadioSaber performs better than NVS with non-greedy PF
enterprise schedulers(§6.5).
• RadioSaber performance is very close to our (contrived)
upperbound (§6.6).
• The scheduling latency of RadioSaber is within a TTI and
the runtime overhead is low (§6.7).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1775

1 3 5 7 9 11 13 15 17 19
Slice Id

15000

20000

25000

30000

35000

40000

45000

Re
so

ur
ce

 b
lo

ck
s(

pe
r-s

ec
on

d)

(a) per-slice RBs per second

No-Slicing NVS RadioSaber

1 3 5 7 9 11 13 15 17 19
Slice Id

0

5

10

15

20

25

Th
ro

ug
hp

ut
(M

bp
s)

(b) per-slice throughput

No-Slicing NVS RadioSaber

No-Slicing NVS RadioSaber0

50

100

150

200

250

300

Th
ro

ug
hp

ut
(M

bp
s)

(c) sum total throughput

Figure 7: Comparing RadioSaber with NVS and no slicing. Number of slices is fixed to 20, with 5-15 UEs in each slice. The first
10 slices use MT and the next 10 use PF enterprise schedulers (except for no slicing, which uses a global PF scheduler).

6.1 Spectrum Efficiency and Fairness

We first evaluate how RadioSaber can achieve both high spec-
trum efficiency and fairness between slices. We configure our
experiment to use 20 slices, and randomly assign between 5 to
15 UEs to each slice. While we expect there to be hundreds of
slices, and hundreds of UEs associated with each slice, only a
few of them will be active (and in the geographical vicinity)
of a given gNB.

We configure all slices to have the same weight. To evaluate
total spectrum efficiency of RadioSaber, we instantiate each
UE with a single backlogged flow. The enterprise scheduler-
ing policy is configured to follow MT scheduling for the first
10 slices (with β = 0, ε = 1, and ψ = 0), and PF scheduling
for the last 10 slices (with β = 0, ε = 1, and ψ = 1).

We compare RadioSaber with two baselines in this exper-
iment: (i) NVS, with a channel-agnostic inter-slice sched-
uler described in §2, and the same (channel-aware) enterprise
schedulering policy for each slice as described above; (ii) No-
Slicing, which uses a global PF scheduler to schedule UEs
without any notion of slicing.

Fig. 7(a) shows the number of resource blocks allocated
to each slice over intervals of 1 second. Both RadioSaber
and NVS allocate same shares of radio resources to slices
since each slice is configured to have the same weight. In con-
trast, No-Slicing cannot guarantee the same level of fairness
across slices. With No-Slicing, the allocated RBs for a slice
is roughly proportional to the number of UEs in the slice.

Fig. 7(b) shows the aggregate average throughput achieved
by each slice. We see that, even though NVS and RadioSaber
allocate the same number of RBs to each slice, RadioSaber
achieves better throughput than NVS for each slice by en-
abling a better (channel-aware) assignment of RBs to slices.
As expected, for both RadioSaber and NVS, the first 10 slices
(that use MT schedulers) achieve higher average throughput
than the last 10.

Fig. 7(c) shows the overall throughput computed as the
total number of bytes transmitted across all UEs and over all
TTIs and divided by the total number of TTIs in the experi-
ment run. RadioSaber achieves 51% higher throughput than

Slices Scheduler
(α,β,ε,ψ) Traffic generation Metrics

1-5 PF(0,0,1,1) a backlogged flow average throughput

6-10 PF(1,0,1,1) heavy-tail distributed
flows

FCT(Flow Com-
pletion Time)

11-15 PF(1,0,1,1) heavy-tail distributed
flows(25% prioritized)

FCT of prioritized
flows

16-20 M-LWDF
(1,1,1,1)

a 1280kbps real-time
video flow

average queueing
delay

Table 2: Scheduling configuration, workloads per user, and
metrics to evaluate in different slices.

NVS and 11% higher throughput than No-Slicing. The higher
throughput compared to NVS comes from channel-aware
inter-slice scheduling with RadioSaber. The higher through-
put compared with No-Slicing stems from the first 10 slices
applying MT enterprise schedulers as compared to all UEs be-
ing scheduled as per the PF policy with No-Slicing (that does
not have any notion of customizable per-slice scheduling).

We also evaluated a setting where slices differ in their
weights. Both NVS and RadioSaber adhered to the speci-
fied per-slice weights when allocating RBs, while No-Slicing
could not, and RadioSaber achieved better throughput than
NVS. We present these results in Appendix§A.1.

If No-Slicing used MT instead of PF, it would have neces-
sarily achieved a better overall throughput than RadioSaber,
but would have failed to provide weighted fairness across
users. In contrast, RadioSaber strives to maximize throughput
while meeting this basic objective of isolation and fairness
across RAN slices.

6.2 Diverse Enterprise Schedulers

We now evaluate how RadioSaber supports diverse and cus-
tomizable enterprise schedulers, and maintains isolation be-
tween slices. We compare against the same baselines: NVS
and No-Slicing. We consider a total of 20 slices, and ran-
domly assign between 5-15 users to each slice. We group the
slices into 4 categories, with 5 slices in each category. Table
2 summarizes the configuration for slices in each category,
including the enterprise scheduler, workloads per user, and

1776 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Slices Metrics RadioSaber NVS No-
Slicing

1-5 throughput (Mbps) 13.02 8.45 17.41
6-10 average FCT(s) 2.606 5.708 5.714
11-15 average FCT(s) 0.489 1.686 2.988

16-20 average queueing
delay(s) 0.061 1.493 0.696

Table 3: Experiment results w.r.t different metrics in all slices
of RadioSaber and baselines.

metrics: (i) Slices 1-5 use PF based enterprise scheduling
policy. Every user in a slice instantiates a backlogged flow,
and we measure the average aggregate throughput as the met-
ric. (ii) Slices 6-10 also use PF based enterprise scheduling
policy. Each slice in this category generates flows with Pois-
son inter-arrival time, arriving at an average rate of 12Mbps,
following a heavy-tailed Internet flow distribution [28]. It ran-
domly and evenly assign these flows to its UEs. We measure
the FCT(Flow Completion Time) of flows as the evaluation
metric. (iii) Slices 11-15 use the same workload generator as
the previous category, but assigns a higher priority to 25%
of the flows (that are randomly selected). We measure the
FCT of prioritized flows as the key metric. (iv) For slices 16-
20, each user streams a real-time video flow with 1280kbps
average bitrate. Each slice applies the M-LWDF policy for
enterprise scheduling, to ensure low packet delays for the real-
time streaming. We compute per-packet queuing delays as
the key evaluation metric. We configure the weights of slices
16-20 to be 2× higher than the weights of the other slices.

Table 3 summarizes the results (aggregating the slice-
specific metrics across all slices in each category). We
also present the CDF of different metrics, to highlight the
performance differences at different percentiles in the Ap-
pendix§A.2.

We find that RadioSaber consistently outperforms NVS
across all slice-specific metrics, with 1.5× higher throughput
for slices 1-5, 2-4× lower FCT for slices 6-15 and 24× lower
packet delays for slices 16-20. This shows that the throughput
wins of RadioSaber directly translate to other relevant metrics
such as flow completion time and packet delays. No-Slicing
achieves higher throughput than RadioSaber for slices 1-5
which have backlogged flows, but fares significantly worse
in the performance metrics for other slices (with 2-7× higher
FCT in slices 6-15 and 10× higher packet delays in slices 16-
20). This is because: (i) No-Slicing cannot provide isolation
across slices and correctly enforce weighted fairness. Instead,
it ends up allocating a larger share of RBs to the first category
of slices (1-5) which have more number of active users at any
given time (as they are all backlogged). (ii) No-Slicing’s PF
policy is not compliant with the requirements of other slices
(i.e. prioritization for slices 11-15 and low packet delays for
slices 16-20)

NVS RadioSaber0

50

100

150

200

250

300

Th
ro
ug

hp
ut
(M

bp
s)

(a) Real Trace

NVS RadioSaber0

50

100

150

200

250

300

Th
ro
ug

hp
ut
(M

bp
s)

(b) Synthetic: no varia-
tion in sub-band CQI

NVS RadioSaber0

50

100

150

200

250

300

Th
ro
ug

hp
ut
(M

bp
s)

(c) Synthetic: non-
complementary
subband CQI

Figure 8: Experiments with different types of CQI traces

6.3 What Makes RadioSaber Win Over NVS?

We now validate the intuition discussed in §3, that the through-
put gain from channel-aware inter-slice scheduling originates
from the complementary channel quality distribution between
slices. We use the same setting as that in §6.1, except that we
generate synthetic CQI reports using the default channel prop-
agation module in our RAN simulator that models losses due
to multipath [19], path loss, penetration and shadowing [34].
Fig. 8(a) shows experiment results from real traces for com-
parison (these results are the same as those presented in §6.1).

In the first experiment, we exclude the multipath loss to
make the channel quality same across all RBs (although the
channel quality still varies across different UEs). Channel
quality variations over time happen at granularity of 40ms
(the CQI reporting interval), which translates to 160 TTIs.
Fig. 8(b) shows that NVS and RadioSaber both achieve the
same throughput. If we consider a 2D grid spanning 20 TTIs
(number of slices in our setup), the channel quality for a UE
neither varies in the frequency domain, nor in the time domain
– so, as long as all slices are assigned RBs as per their quotas,
it does not matter which RBs they get assigned.

In the second experiment, we synthetically make the sub-
band channel distribution non-complementary. For this, we
exclude the multipath loss, and manually decrease SNR of
the first 50MHz channel by 10dB and increase SNR of the
lower 50MHz channel by 10dB. What this implies is that all
UEs have equally high channel quality for the first half of
the RBs in the frequency domain, and equally low channel
quality for the second half. Fig. 8(c) shows that NVS and
RadioSaber again achieve similar throughput with this “non-
complementary” CQI distribution. This is because, with both
NVS and RadioSaber, each RB will produce the same datarate
(that is either high or low), no matter which slice/UE it gets
assigned to.

These results highlight that RadioSaber wins over NVS
when (i) the CQIs differ across UEs in the frequency domain,
and (ii) the CQIs for a RB across different UEs complement
one another (i.e. if some UEs have low CQIs for a given
RB, there are other UEs having high CQIs for it). We found
this to be the case for the LTE cellular traces used in our
experiments, and expect these trends to be stronger for 5G
with larger bandwidths.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1777

5 10 15 20
Num of Slices

0
50

100
150
200
250
300

Th
ro

ug
hp

ut
(M

bp
s) NVS RadioSaber

(a) backlogged flows

5 10 15 20
Num of Slices

0
50

100
150
200
250
300

Th
ro

ug
hp

ut
(M

bp
s) NVS RadioSaber

(b) heavy-tail distributed flows

Figure 9: Varying the number of slices (5-15 UEs per slice).

6.4 Varying Number of Slices and UEs per
Slice

We next evaluate the robustness RadioSaber’s throughput
wins over NVS, as we vary the number of slices and the num-
ber of users in each slice. For simplicity of analyzing the
results, we configure each slice to apply the PF enterprise
scheduling policy. We experiment with two types of work-
loads: (i) each user maintains a backlogged flow; (ii) the
heavy-tail distribution of flows across UEs (as described in
§6.2), and an average load of 24Mbps per slice.
Varying number of slices. We increase the number of slices
from 5 to 20 and randomly assign between 5-15 users in each
slice. In Fig. 9(a), we find that with backlogged flows, the
aggregate throughput remains almost unchanged in RadioS-
aber as we increase the number of slices, but the aggregate
throughput keeps dropping in NVS. It shows that the spectrum
efficiency of RadioSaber remains unaffected and scales well
with the number of slices. RadioSaber achieves 17.2%-40.5%
higher throughput than NVS.

We find some interesting trends in Fig. 9(b), with non-
backlogged flows. RadioSaber is able to make better use of
the spectrum as the number of slices increase, which increases
the number of active users (with diverse and complementary
subband CQI distributions) that can be scheduled per TTI.
NVS does not experience a similar trend, and in fact, has
a significantly lower aggregate throughput compared to the
backlogged flows scenario in Fig. 9(a). This is because NVS
allocates all RBs in a TTI to the same slice, and since there
are fewer active users in a slice in this scenario, the multi-
user diversity gain reduces, which reduces the throughput
achieved with the PF scheduler. RadioSaber achieves 37.3%-
50% higher throughput than NVS in this context for 10-20
slices. Note that when there are 5 slices, the throughput is
limited by the total incoming network traffic.
Varying number of UEs. In the second experiment, we fix
the number of slices to 20, and increase the number of UEs
per slice. In Fig. 10(a), the aggregate throughput of NVS in-
creases a little when the number of users per slice increases.
This is reasonable since more users bring more diverse sub-
band channel quality distributions for the PF enterprise sched-
uler in NVS to allocate RBs smartly. However, RadioSaber
still outperforms NVS by 35.2%-56.8%. From Fig. 10(b), Ra-
dioSaber outperforms NVS by 49.7%-72.2% when the flows
are heavy-tail distributed.

5 10 15 20
Num of UEs per Slice

0
50

100
150
200
250
300

Th
ro

ug
hp

ut
(M

bp
s) NVS RadioSaber

(a) backlogged flows

5 10 15 20
Num of UEs per Slice

0
50

100
150
200
250
300

Th
ro

ug
hp

ut
(M

bp
s) NVS RadioSaber

(b) heavy-tail distributed flows

Figure 10: Varying the number of UEs per slice for 20 slices.

6.5 Non-greedy Enterprise Schedulers
Our evaluation so far only considered greedy enterprise sched-
ulers. Indeed, most proposed (and potentially deployed) radio
resource schedulers employ a greedy heuristic to achieve low
runtime overheads [4]. We now compare how RadioSaber
(using a greedy enterprise scheduler for PF) compares against
NVS using a non-greedy heuristic for PF [17]. We briefly ex-
plain the non-greedy heuristic before presenting our results.

A UE can only use a single MCS(Modulation and Coding
Scheme) across all RBs that are allocated to it. The typical
practice is to first assign RBs to users, and then compute the
MCS based on effective SNR across these RBs. The final data-
rate so achieved is less than the sum of the data-rates achieved
if one could use the optimal MCS value for each RB (our
experimental results take this effect into account). Given this
effect, GPF [17] uses a non-greedy heuristic to co-optimize
the MCS assignment and the RB allocation – it samples 300
plausible mappings between each user and a corresponding
MCS value (assuming that all RBs are available for a given
user), and computes the best RB allocation for each of these
MCS mappings. It then selects the MCS mapping and RB
allocation that achieves the highest PF metric.

We evaluate how NVS using the above non-greedy PF
scheduler for each slice compares against NVS and RadioS-
aber using greedy PF enterprise schedulers. We fix the num-
ber of slices to 20 and vary the number of UEs in each
slice. Fig. 11 reports the overall throughput across the three
schemes. We find that NVS with non-greedy PF achieves
13%-19% higher aggregate throughput than NVS with greedy
PF. This better spectrum efficiency results from the tactical
assignment of RBGs and MCS to users. However, the aggre-
gate throughput of NVS (non-greedy PF) is still 14%-18%
lower than RadioSaber since NVS is channel-unaware.

6.6 Is There a Better Inter-Slice Scheduler?
We now evaluate two questions:
(i) What is the impact of assigning RBGs in the order of
decreasing channel quality? For this, we modify RadioS-
aber’s inter-slice scheduler to greedily assign RBGs to the
slices with maximum channel quality in a sequential order
(from top to bottom). We term this strategy as "Sequential".
With this approach, the inter-slice scheduler can query en-
terprise schedulers to determine the channel quality when it

1778 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 20 30
Num of UEs per Slice

100

150

200

250

300
Th

ro
ug

hp
ut

(M
bp

s) NVS w/ greedy PF NVS w/ non-greedy PF RadioSaber

Figure 11: Comparing RadioSaber (using a greedy PF sched-
uler) with NVS (using a non-greedy PF scheduler). We fix
number of slices to 20, and vary the number of UEs per slice.

5 10 15 20
Num of Slices

100
150
200
250
300
350
400

Th
ro

ug
hp

ut
(M

bp
s) NVS Sequential RadioSaber Upperbound

Figure 12: Comparing RadioSaber with a simple greedy inter-
slice scheduler, and with a contrived upperbound. We vary
the number of slices, with 5-15 random users in each slice,
and use MT scheduling policy in each slice.

assigns RBGs, which avoids the need for recomputing chan-
nel quality after each allocation (as in the original inter-slice
scheduling algorithm), resulting in a lower time complexity
of O(|R BG ||S|T).
(ii) Could we have achieved a better allocation? For this we
compare RadioSaber with an impractical scheme that gives us
an upper-bound on the spectrum efficiency that any inter-slice
scheduler can achieve. In this scheme, we greedily allocate
the RBG with the best channel quality to each slice until the
slice’s quota is exhausted. However, in doing so we allow a
given RBG to be repeatedly allocated to multiple slices. As
a result, each slice gets its best set of RBGs, independent of
the allocation for other slices. Note that this upperbound still
enforces fairness between slices, and allows customizable
enterprise scheduling within each slice.

To make it easier to analyze the inter-slice schedulers we
configure the enterprise scheduler in each slice to use the
MT policy. We evaluate the overall throughput as we vary
the number of slices, with 5-15 users in each slice. Fig. 12
shows that RadioSaber performs only 4%-6% worse than
Upperbound and 6%-10% better than Sequential. We see
similar trends across other settings (e.g. using PF policy in
each slice, varying the number of users, etc).

The key takeaways are: (a) RadioSaber’s inter-slice
scheduling policy is close to optimal, and (b) Even the simple
channel-aware greedy inter-slice scheduler achieves 25%-
36% better throughput than channel-agnostic NVS, and is a
good option if lower time complexity is required, at a cost of
some throughput penalty compared to our current algorithm.

 10x20 20x20 30x20 40x20
#Slices x #UEs per slice

0

100

200

300

La
te

nc
y(

us
)

(a) varying number of slices

 20x10 20x20 20x30 20x40
#Slices x #UEs per slice

0

100

200

300

(b) varying UEs per slice

Figure 13: RadioSaber’s scheduling latency

6.7 Scheduling Latency and Overhead

To evaluate RadioSaber’s scheduling latency and runtime
overhead, we implement its MAC scheduling logic on a sys-
tem using a single Intel Xeon core. For simplicity of analysis,
we configure each slice to apply the PF scheduling policy
with backlogged users. Fig. 13(a) shows how the scheduling
latency increases linearly with the number of slices when the
number of UEs per slice is fixed to 20. Similarly, Fig. 13(b)
shows how the scheduling latency increases linearly with the
number of UEs per slice when the number of slices is fixed
to 20. In both cases, the scheduling system can support as
many as 600 users and make the scheduling decision within
the stringent TTI constraint (250us).

7 Limitations and Future Work

• So far, we have only considered scheduling for downlink
radio resources and not for uplink. The uplink channel ap-
plies SC-FDMA [5], which is similar to OFDMA and allows
radio resources allocation in both time and frequency domain.
This indicates that RadioSaber can be extended to uplink
scheduling. However, it requires more complicated control
information exchange between UEs and the base station. We
leave a detailed exploration of this to future work.
•We only consider scheduling radio resources in a channel-
aware manner for a single gNB. An interesting future direc-
tion is to extend our work in the context of multiple gNBs
with small cells. The problem expands to a 3D allocation
of frequency, time, and space resources in a channel aware
manner.

Acknowledgement

We would like to thank our shepherd, Ganesh Anantha-
narayanan, and the anonymous NSDI reviewers for their in-
sightful comments and feedback. We’re grateful to Ammar
Tahir, Emerson Sie for their feedback in the camera-ready
version. We would also like to thank Yaxiong Xie for sharing
the LTE SNR traces with us. This work was supported by
Intel, Facebook, AG NIFA under grant 2021-67021-34418,
and UIUC’s Smart Transport Infrastructure Initiative.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1779

References

[1] Open5gs is a c-language open source implementation for 5g
core and epc. https://github.com/open5gs, 2021.

[2] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting,
and R. Vijayakumar. Providing quality of service over a shared
wireless link. IEEE Communications Magazine, 39(2):150–
154, 2001.

[3] G. S. Association. 5g network slicing self-management
white paper. https://www-file.huawei.com/-/media/
corporate/pdf/news/5g-network-slicing-self-
management-white-paper.pdf?la=en-us, 2020.

[4] F. Capozzi, G. Piro, L. Grieco, G. Boggia, and P. Camarda.
Downlink packet scheduling in lte cellular networks: Key de-
sign issues and a survey. IEEE Communications Surveys Tuto-
rials, 15(2):678–700, 2013.

[5] ETSI. 5g; 5g system; network slice selection services;. https:
//www.etsi.org/deliver/etsi_ts/129500_129599/
129531/15.01.00_60/ts_129531v150100p.pdf, 2018.

[6] ETSI. 5g; nr; base station (bs) radio transmission
and reception. https://www.etsi.org/deliver/
etsi_ts/138100_138199/138104/15.02.00_60/
ts_138104v150200p.pdf, 2018.

[7] ETSI. 5g nr: Physical channels and modulation(3gpp
ts 38.211 version 16.2.0 release 16). https:
//www.etsi.org/deliver/etsi_ts/138200_138299/
138211/16.02.00_60/ts_138211v160200p.pdf, 2020.

[8] ETSI. Evolved universal terrestrial radio access (e-utra);
physical layer procedures. https://www.etsi.org/
deliver/etsi_ts/136200_136299/136213/15.10.00_60/
ts_136213v151000p.pdf, 2020.

[9] X. Foukas, M. K. Marina, and K. Kontovasilis. Orion: Ran
slicing for a flexible and cost-effective multi-service mobile
network architecture. In Proceedings of the 23rd Annual Inter-
national Conference on Mobile Computing and Networking,
MobiCom ’17, page 127–140, New York, NY, USA, 2017. As-
sociation for Computing Machinery.

[10] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and
K. Kontovasilis. Flexran: A flexible and programmable plat-
form for software-defined radio access networks. In Proceed-
ings of the 12th International on Conference on Emerging Net-
working EXperiments and Technologies, CoNEXT ’16, page
427–441, New York, NY, USA, 2016. Association for Comput-
ing Machinery.

[11] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina.
Network slicing in 5g: Survey and challenges. IEEE Commu-
nications Magazine, 55(5):94–100, 2017.

[12] J. García-Morales, M. C. Lucas-Estañ, and J. Gozalvez.
Latency-sensitive 5g ran slicing for industry 4.0. IEEE Access,
7:143139–143159, 2019.

[13] M. Gidlund and J.-C. Laneri. Scheduling algorithms for 3gpp
long-term evolution systems: From a quality of service perspec-
tive. In 2008 IEEE 10th International Symposium on Spread
Spectrum Techniques and Applications, pages 118–123, 2008.

[14] M. K. Giluka, N. Rajoria, A. C. Kulkarni, V. Sathya, and B. R.
Tamma. Class based dynamic priority scheduling for uplink
to support m2m communications in lte. In 2014 IEEE World
Forum on Internet of Things (WF-IoT), pages 313–317, 2014.

[15] T. Guo and A. Suárez. Enabling 5g ran slicing with edf
slice scheduling. IEEE Transactions on Vehicular Technol-
ogy, 68(3):2865–2877, 2019.

[16] M. B. Hcine and R. Bouallegue. Analytical downlink effective
sinr evaluation in lte networks. In 2015 IEEE 29th Interna-
tional Conference on Advanced Information Networking and
Applications Workshops, pages 376–381, 2015.

[17] Y. Huang, S. Li, Y. T. Hou, and W. Lou. Gpf: A gpu-based
design to achieve 100 us scheduling for 5g nr. In Proceedings
of the 24th Annual International Conference on Mobile Com-
puting and Networking, MobiCom ’18, page 207–222, New
York, NY, USA, 2018. Association for Computing Machinery.

[18] H. Hui, Y. Ding, Q. Shi, F. Li, Y. Song, and J. Yan. 5g network-
based internet of things for demand response in smart grid: A
survey on application potential. Applied Energy, 257:113972,
2020.

[19] W. C. Jakes and D. C. Cox. Microwave Mobile Communica-
tions. Wiley-IEEE Press, 1994.

[20] E. Kahuha. 5 real life use cases of 5g ultra-
reliable low-latency communication (urllc). https:
//www.section.io/engineering-education/five-
real-life-use-cases-of-5g-ultra-reliable-low-
latency-communication-urllc/, 2021.

[21] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan. Nvs: A
virtualization substrate for wimax networks. In Proceedings of
the Sixteenth Annual International Conference on Mobile Com-
puting and Networking, MobiCom ’10, page 233–244, New
York, NY, USA, 2010. Association for Computing Machinery.

[22] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan. Nvs:
A substrate for virtualizing wireless resources in cellular net-
works. IEEE/ACM Trans. Network., 20(5), oct 2012.

[23] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan. Cell-
slice: Cellular wireless resource slicing for active ran sharing.
In 2013 Fifth International Conference on Communication
Systems and Networks (COMSNETS), pages 1–10, 2013.

[24] R. Kwan, C. Leung, and J. Zhang. Proportional fair multiuser
scheduling in lte. IEEE Signal Processing Letters, 16(6):461–
464, 2009.

[25] H. Liu, L. Cai, H. Yang, and D. Li. Eesm based link error
prediction for adaptive mimo-ofdm system. In 2007 IEEE 65th
Vehicular Technology Conference - VTC2007-Spring, pages
559–563, 2007.

[26] R. Mahindra, M. A. Khojastepour, H. Zhang, and S. Rangara-
jan. Radio access network sharing in cellular networks. In
2013 21st IEEE International Conference on Network Proto-
cols (ICNP), pages 1–10, 2013.

[27] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-
Perez. How should i slice my network? a multi-service empiri-
cal evaluation of resource sharing efficiency. In Proceedings
of the 24th Annual International Conference on Mobile Com-
puting and Networking, MobiCom ’18, page 191–206, New
York, NY, USA, 2018. Association for Computing Machinery.

1780 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/open5gs
https://www-file.huawei.com/-/media/corporate/pdf/news/5g-network-slicing-self-management-white-paper.pdf?la=en-us
https://www-file.huawei.com/-/media/corporate/pdf/news/5g-network-slicing-self-management-white-paper.pdf?la=en-us
https://www-file.huawei.com/-/media/corporate/pdf/news/5g-network-slicing-self-management-white-paper.pdf?la=en-us
https://www.etsi.org/deliver/etsi_ts/129500_129599/129531/15.01.00_60/ts_129531v150100p.pdf
https://www.etsi.org/deliver/etsi_ts/129500_129599/129531/15.01.00_60/ts_129531v150100p.pdf
https://www.etsi.org/deliver/etsi_ts/129500_129599/129531/15.01.00_60/ts_129531v150100p.pdf
https://www.etsi.org/deliver/etsi_ts/138100_138199/138104/15.02.00_60/ts_138104v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/138100_138199/138104/15.02.00_60/ts_138104v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/138100_138199/138104/15.02.00_60/ts_138104v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138211/16.02.00_60/ts_138211v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138211/16.02.00_60/ts_138211v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138211/16.02.00_60/ts_138211v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/136200_136299/136213/15.10.00_60/ts_136213v151000p.pdf
https://www.etsi.org/deliver/etsi_ts/136200_136299/136213/15.10.00_60/ts_136213v151000p.pdf
https://www.etsi.org/deliver/etsi_ts/136200_136299/136213/15.10.00_60/ts_136213v151000p.pdf
https://www.section.io/engineering-education/five-real-life-use-cases-of-5g-ultra-reliable-low-latency-communication-urllc/
https://www.section.io/engineering-education/five-real-life-use-cases-of-5g-ultra-reliable-low-latency-communication-urllc/
https://www.section.io/engineering-education/five-real-life-use-cases-of-5g-ultra-reliable-low-latency-communication-urllc/
https://www.section.io/engineering-education/five-real-life-use-cases-of-5g-ultra-reliable-low-latency-communication-urllc/

[28] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. Recur-
sively cautious congestion control. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Im-
plementation, NSDI’14, page 373–385, USA, 2014. USENIX
Association.

[29] A. Nakao, P. Du, Y. Kiriha, F. Granelli, A. A. Gebremariam,
T. Taleb, and M. Bagaa. End-to-end network slicing for 5g
mobile networks. Journal of Information Processing, 25:153–
163, 2017.

[30] N. Nikaein, E. Schiller, R. Favraud, K. Katsalis, D. Stavropou-
los, I. Alyafawi, Z. Zhao, T. Braun, and T. Korakis. Network
store: Exploring slicing in future 5g networks. MobiArch
’15, page 8–13, New York, NY, USA, 2015. Association for
Computing Machinery.

[31] A. Oborina, T. Henttonen, V. Koivunen, and M. Moisio. Effi-
cient computation of effective sinr. In 2012 46th Annual Con-
ference on Information Sciences and Systems (CISS), pages
1–6, 2012.

[32] M. Olsson, S. Sultana, S. Rommer, L. Frid, and C. Mulligan.
Chapter 6 - session management and mobility. In M. Olsson,
S. Sultana, S. Rommer, L. Frid, and C. Mulligan, editors, SAE
and the Evolved Packet Core, pages 97–140. Academic Press,
Oxford, 2010.

[33] L. Peterson and O. Sunay. 5G Mobile Networks: A Systems
Approach. USA, 2020.

[34] G. Piro, L. A. Grieco, G. Boggia, F. Capozzi, and P. Camarda.
Simulating lte cellular systems: An open-source framework.
IEEE Transactions on Vehicular Technology, 60(2):498–513,
2011.

[35] Qualcomm. Future of 5g: Building a unified, more ca-
pable 5g air interface for the next decade and beyond.
https://www.qualcomm.com/media/documents/files/
making-5g-nr-a-commercial-reality.pdf, 2020.

[36] I. Qualcomm Technologies. Vr and ar pushing connectivity
limits. https://www.qualcomm.com/media/documents/
files/vr-and-ar-pushing-connectivity-limits.pdf,
2018.

[37] A. Rao. 5g network slicing: crossdomain orchestra-
tion and management will drive commercialization.
https://www.cisco.com/c/dam/en/us/products/
collateral/cloud-systems-management/network-
services-orchestrator/white-paper-sp-5g-network-
slicing.pdf, 2020.

[38] J.-H. Rhee, J. Holtzman, and D.-K. Kim. Scheduling of
real/non-real time services: adaptive exp/pf algorithm. In The
57th IEEE Semiannual Vehicular Technology Conference, 2003.
VTC 2003-Spring., volume 1, pages 462–466 vol.1, 2003.

[39] B. Sadiq, R. Madan, and A. Sampath. Downlink scheduling
for multiclass traffic in lte. EURASIP J. Wirel. Commun. Netw.,
2009, mar 2009.

[40] J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore,
and X. Costa-Perez. Overbooking network slices through yield-
driven end-to-end orchestration. In Proceedings of the 14th
International Conference on Emerging Networking EXperi-
ments and Technologies, CoNEXT ’18, page 353–365, New
York, NY, USA, 2018. Association for Computing Machinery.

[41] K. Samdanis, X. Costa-Perez, and V. Sciancalepore. From
network sharing to multi-tenancy: The 5g network slice broker.
IEEE Communications Magazine, 54(7):32–39, 2016.

[42] sharetech. Resource allocation type.
https://www.sharetechnote.com/html/
Handbook_LTE_RAType.html, 2020.

[43] Techplayon. 5g nr resource block definition and rbs calcula-
tion. https://www.techplayon.com/nr-resource-block-
definition-and-rbs-calculation/, 2019.

[44] N. Van Giang and Y. H. Kim. Slicing the next mobile packet
core network. In 2014 11th International Symposium on Wire-
less Communications Systems (ISWCS), pages 901–904, 2014.

[45] C. Wengerter, J. Ohlhorst, and A. von Elbwart. Fairness and
throughput analysis for generalized proportional fair frequency
scheduling in ofdma. In 2005 IEEE 61st Vehicular Technology
Conference, volume 3, pages 1903–1907 Vol. 3, 2005.

[46] Y. Xie, F. Yi, and K. Jamieson. Pbe-cc: Congestion control
via endpoint-centric, physical-layer bandwidth measurements.
In Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Com-
munication, SIGCOMM ’20, page 451–464, New York, NY,
USA, 2020. Association for Computing Machinery.

[47] M. Yan, G. Feng, J. Zhou, Y. Sun, and Y.-C. Liang. Intelli-
gent resource scheduling for 5g radio access network slicing.
IEEE Transactions on Vehicular Technology, 68(8):7691–7703,
2019.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1781

https://www.qualcomm.com/media/documents/files/making-5g-nr-a-commercial-reality.pdf
https://www.qualcomm.com/media/documents/files/making-5g-nr-a-commercial-reality.pdf
https://www.qualcomm.com/media/documents/files/vr-and-ar-pushing-connectivity-limits.pdf
https://www.qualcomm.com/media/documents/files/vr-and-ar-pushing-connectivity-limits.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/cloud-systems-management/network-services-orchestrator/white-paper-sp-5g-network-slicing.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/cloud-systems-management/network-services-orchestrator/white-paper-sp-5g-network-slicing.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/cloud-systems-management/network-services-orchestrator/white-paper-sp-5g-network-slicing.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/cloud-systems-management/network-services-orchestrator/white-paper-sp-5g-network-slicing.pdf
https://www.sharetechnote.com/html/Handbook_LTE_RAType.html
https://www.sharetechnote.com/html/Handbook_LTE_RAType.html
https://www.techplayon.com/nr-resource-block-definition-and-rbs-calculation/
https://www.techplayon.com/nr-resource-block-definition-and-rbs-calculation/

1 3 5 7 9 11 13 15 17 19
Slice Id

15000

20000

25000

30000

35000

40000

45000

Re
so

ur
ce

 b
lo

ck
s(

pe
r-s

ec
on

d)

(a) per-slice RBs per second

No-Slicing NVS RadioSaber

1 3 5 7 9 11 13 15 17 19
Slice Id

0

5

10

15

20

25

Th
ro

ug
hp

ut
(M

bp
s)

(b) per-slice throughput

No-Slicing NVS RadioSaber

No-Slicing NVS RadioSaber0

50

100

150

200

250

300

Th
ro

ug
hp

ut
(M

bp
s)

(c) sum total throughput

Figure 14: (a) the average allocated RBs per second to slices; (b) the average aggregate throughput of slices; (c) the sum total
throughput of three systems

0 1 2 3 4 5
Flow Completion Time(s)

0.0

0.2

0.4

0.6

0.8

Ra
tio

No-Slicing
NVS
RadioSaber

(a) All flows in slice 6-10

0 1 2 3 4 5
Flow Completion Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

No-Slicing
NVS
RadioSaber

(b) Prioritized flows in slice 11-15

0 1 2 3 4 5
Queueing Delay(s)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

No-Slicing
NVS
RadioSaber

(c) All real-time video flows

Figure 15: CDFs of (a) completion time of flows in slices 6-10, (b) completion time for the higher prioritized flows in slices
11-15, and (c) queuing delay of packets in slices 16-20. We cut the graphs at 5s to better highlight the trends.

A Supplemental Evaluation

A.1 Slices with Different Weights
§6.1 evaluated the scenario where every slice has the same
weight. Here we do the same experiment but slightly modify
SLAs of slices: slices with PF schedulers have 3X higher
weights than slices with MT schedulers. Fig. 14 shows the
experiment results. From Fig. 14(a) and Fig. 14(b), it’s obvi-
ous that the last 10 slices get 3X more RBs than the first 10
slices, and approximately 3X higher throughput. Meanwhile,
it’s impossible for No-Slicing to meet the SLAs of slices since
it doesn’t support network slicing between groups of users at
all.

A.2 CDF Graphs of FCT and Queueing Delay
We provide more evaluation results in §6.2. Fig. 15(a) shows
the CDF of flow completion time in the slice 6-10, and
Fig. 15(b) shows the CDF of flow completion time for the
higher priority flows in slices 11-15, and Fig. 15(c) shows the
CDF of queuing delay for slices 16-20. We cut the graphs
at 5s to better highlight the trends. For flows in slices 6-15,
the FCT in No-Slicing is the longest since No-Slicing cannot
enforce fairness for slices in which flows arrive intermittently.
NVS suffers from the longest queuing delay in slices 16-20
due to low spectrum efficiency.

1782 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RF-CHORD: Towards Deployable RFID Localization System for Logistics Network
Bo LiangPA, Purui WangM, Renjie ZhaoU, Heyu GuoP, Pengyu ZhangA, Junchen GuoA

Shunmin ZhuTA, Hongqiang Harry LiuA, Xinyu ZhangU, Chenren XuPZKB ∗
PPeking University AAlibaba Group MMassachusetts Institute of Technology UUniversity of California San Diego TTsinghua University

ZZhongguancun Laboratory KKey Laboratory of High Confidence Software Technologies, Ministry of Education (PKU)

Abstract – RFID localization is considered the key en-
abler of automating the process of inventory tracking and
management for the high-performance logistic network. A
practical and deployable RFID localization system needs to
meet reliability, throughput, and range requirements. This pa-
per presents RF-CHORD, the first RFID localization system
that simultaneously meets all three requirements. RF-CHORD
features a multisine-constructed wideband design that can
process RF signals with a 200 MHz bandwidth in real-time
to facilitate one-shot localization at scale. In addition, mul-
tiple SINR enhancement techniques are designed for range
extension. On top of that, a kernel-layer near-field localiza-
tion framework and a multipath-suppression algorithm are
proposed to reduce the 99th long-tail errors. Our empirical
results show that RF-CHORD can localize up to 180 tags 6
m away from a reader within 1 second and with 99th long-
tail error of 0.786 m, achieving a 0% miss reading rate and
~0.01% cross-reading rate in the warehouse and fresh food
delivery store deployment.

1 Introduction
Today’s major e-commerce companies like Alibaba and Ama-
zon need to handle a package volume that is tens of billions
per year [1], calling for increasingly high-performance au-
tomated logistics operations in their network. Considering a
typical warehouse in which tens or even hundreds of packages
pass through each checkpoint – the packages need to be veri-
fied, recorded, sorted, and tracked when checking in/out. In
widely adopted barcode-based logistic networks, the worker
spends 1~3 seconds on scanning one package. Although this
operation can be automated by robots [2], the line-of-sight and
field of view requirements of vision-based approaches limits
work range and scalability fundamentally. RFID technology,
since its invention, has been carrying the vision of replacing
inefficient labor and automating inventory management with
zero power, near-zero cost, and high throughput.

Towards a highly practical and deployable RFID empow-
ered automated logistic network shown in Fig. 1, there are
three key considerations: i) Reliability. The classic ROI (range
of interest) reading task requires the reader to scan all the
RFID tags within the ROI (i.e., near-zero miss-reading rate)

∗Bo Liang and Purui Wang are the co-primary student authors. Purui
Wang was affiliated to Peking University and Alibaba Group during which
he contributed to this work.
B: chenren@pku.edu.cn

ROI
Zero Miss-reading

Out of ROI
Zero Cross-reading

100 – 200 packages
near the gate

3 – 5 m

Figure 1: In a typical logistic scenario, the packages are dis-
charged from the truck, scanned at an inventory gate and
sorted for warehouse check in. The RFID-based inventory
gate should meet reliability, throughput, and range require-
ments at the same time.

while excluding any tag out of the ROI (i.e., near-zero cross-
reading rate); ii) Throughput. The packages come to the check-
point in a burst (i.e., 100~200 per pallet) 1 while all the logis-
tic operations, including verification and recording need to be
finished within 2~3 seconds before check-in/out; iii) Range.
A single reader should cover tags within 3~5 m, which is the
typical width of the check-in/out aisle.

Unfortunately, today’s read-or-not inventory systems, both
industrial products and research prototypes, all have limi-
tations in meeting these three requirements simultaneously.
Industry-grade RFID systems (e.g., Impinj) suffer from miss-
reading and cross-reading when deployed in the logistic ware-
houses. RFGo [3] reports 99.8% recall with 10 carrier-level
synchronized antennas and neural network based classifier
but limits its operating range to sub-meter. NFC+ [4] achieves
a sharp inventory boundary with magnetic resonance engi-
neering that meets the reliability (i.e., miss-reading rate of
0.03% and cross-reading rate of 0%) and range (~3 m) re-
quirements but cannot achieve the desired throughput. No
current inventory-based solutions can support automatic pack-
age management in a practical logistics network.

RFID localization technique offers an alternative approach
toward the same goal by filtering out the reading outside the
ROI. Compared with the inventory-based system, the tag loca-
tion brings a new dimension of information, which can realize
a more flexible and accurate ROI reading. The reliability of

1Even though one trailer can carry up to 50 packages, the reader should
be able to cover all the tags (100~200 tags) near the gate (including passed
trailer and undischarged packages) to ensure to read all the passing packages.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1783

ROI reading depends on localization accuracy. However, the
legitimate narrow frequency band (i.e., 26 MHz ISM band
within 902~928 MHz) of RFID fundamentally limits its ca-
pacity of combating multipath and ambiguity [5]. To improve
the localization accuracy, approaches like fingerprinting [6]
and synthetic aperture radar (SAR) based hologram [7, 8]
have been proposed. However, they suffer from prolonged
latency due to lots of tag inventory, especially at scale. Cross-
frequency based approaches utilize higher frequency band to
overcome the bandwidth limitation (e.g., 2.4 GHz [9,10], mil-
limeter wave [11], UWB [12,13]) but introduce extra tag man-
ufacturing cost due to wider frequency response and higher
power attenuation. More recently, sniffer-based RFID archi-
tecture [14, 15] has been proposed to leverage the advantage
of wideband (e.g., 100~200 MHz) near 915 MHz to boost lo-
cation accuracy without violating FCC regulation. Despite the
potential, these systems either suffer from latency issues due
to the lack of hardware support on multi-band parallel infor-
mation capture [14], or report limited sub-meter range [15].

This paper introduces the design and implementation of
RF-CHORD, an active sniffer-based wideband RFID localiza-
tion system that tackles the above challenges. RF-CHORD
exploits wideband signal and a hologram-based localization
algorithm to realize high reliability. It employs lossless data
stream compression and a GPU-based decoder to guarantee
real-time decoding and channel estimation for high through-
put. It utilizes a customized wideband waveform, full packet
matching integration, fine-grained clock offset mitigation, and
channel diversity decoding to improve SINR for long range.

RF-CHORD ensures high reliability (i.e., near zero miss
reading and cross reading) by high-accuracy localization. Our
study (§5.1) shows that the multipath profile causes long-
tail localization errors. Therefore, we design the fine-grained
distance resolution hardware and multipath-suppression al-
gorithm to handle these long-tail errors. Considering that the
distance resolution is inversely proportional to bandwidth (i.e.,
c

2B), the distance resolution of a conventional UHF RFID
reader, which works on a 26 MHz wide ISM band, is only 5.78
m. RF-CHORD introduces an extra active sniffer-based reader
to help UHF RFID reader realize 200 MHz parallel wideband
localization (§3.2). However, the distance resolution of 200
MHz (0.75 m) is still not enough in all situations. RF-CHORD
exploits a kernel-layer-based near-field localization algorithm
framework to handle corner cases. The kernel function char-
acterizes the location estimation from a single channel, and
layer functions coherently combine multiple channels into
a final location estimation. This framework supports choos-
ing different kernel and layer functions suitable for various
deployment scenarios to achieve multipath suppression and
ambiguity reduction (§5.3). For example, in RF-CHORD’s
deployment in the warehouse, the work range is fixed so it
can be taken as prior information for direct path enhancement
to effectively suppress the multipath effect (§5.4).

RF-CHORD ensures high throughput by one-shot channel

measurement and one-shot location estimation. The hardware
supports concurrent phase and amplitude capture across mul-
tiple antennas and wide bandwidth. Therefore, RF-CHORD
can obtain the necessary information (i.e., wideband channel
estimation across multiple antennas) for localization within
only one shot measurement. It is challenging because: i) di-
rectly capturing the wideband signal from a large array will
result in a huge amount of real-time data (~64 Gbps); ii) the
commercial reader does not support real time synchroniza-
tion (i.e., synchronizing with our sniffer-based reader at each
slot [18]). Utilizing the essence that the wideband backscat-
tered signal is a combination of scattered narrowband signals,
RF-CHORD distills 4 MHz valid bandwidth from 200 MHz
bandwidth to reduce the data rate by 50x without information
loss (§3.4). Meanwhile, we develop a GPU-based wideband
decoder to ensure real time decoding and channel estimation.
In other words, the sniffer-based reader has an independent de-
coder and does not depend on any specific commercial reader
interface. It makes our design adaptive to any ISM band com-
mercial reader, which primarily serves as a power activator
and multiple access handler (§4). Finally, RF-CHORD sup-
ports one-shot localization with 8 antennas and 16 frequencies
across 200 MHz in ~5 ms.

RF-CHORD ensures long range (up to 6 m) with multi-
sine waveform sniffer and sophisticated wideband channel
information estimation. To follow the FCC regulation, the
strength of the sniffer excitation signal needs to be smaller
than -13.3 dBm (see §A for the calculation), which is 50 dB
weaker than that of commercial readers. RF-CHORD features
the following designs for signal-to-interference-plus-noise
ratio (SINR) enhancement without modifying the tag chip: i)
It exploits a multisine waveform, which constructs a whole
200 MHz band by taking samples with multiple narrow bands,
to significantly reduce the noise bandwidth (§4.1); ii) It han-
dles the high dynamic range requirements introduced by self-
interference through high-resolution digital channelization
and a low crest factor waveform design (§4.2); iii) It further
exploits the integration gain of full packet matching (§4.3)
and performs accurate tag clock offset mitigation (§4.4) and
decoding with channel diversity (§4.5).

We deploy RF-CHORD and our results show that RF-
CHORD presents the first RFID (localization) system meeting
all the requirements (i.e., reliability, throughput, and range)
in the logistic network (Tab. 1). The key results are:
• Reliability. We evaluate RF-CHORD’s performance at 384
locations and collect over 20k tag responses in the lab envi-
ronments. Its 99% localization error is 0.786 m. We deploy
RF-CHORD in the dock door of a warehouse and the scanning
gate of a fresh food delivery store. We find that it could read
100% of the tags passing the checkpoint (0% miss-reading
rate). Its cross-reading rate is only 0.0025%~0.0154%, which
is up to 12x improvement compared to state-of-the-art [3, 4].
• Throughput. RF-CHORD can localize up to 180 tags per
second, which is very close to pure inventory devices [16] and

1784 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Solutions
Requirements Throughput (> 100 tags/s) Range (> 3 m) Reliability (Near Zero Miss-reading & Cross-reading) Commercial Tag

Barcode (widely deployed) No (~1 tag per second) No (~1 m) High (depend on the human labor) Yes
xSpan [16] (Inventory based) Yes (~185 tags/s with 142 mode) Yes (~10 m) Low (~6% miss reading and ~2% cross reading) Yes
RFgo [3] No (TDMA-based) No (sub-meter) High (99.8% recall) Yes
NFC+ [4] No data reported Yes (~3 m) High (0% miss reading and ~0.03% cross reading) No
PinIt [6] No data reported Yes (> 5 m) Median (a few decimeters) Yes
RF-IDraw [17] No data reported Yes (> 5 m) Low (sub-meter) Yes
Tagoram [7] No (0.2 second for one tag) No (~2 m) Median (a few decimeters) Yes
MobiTagbot [8] No data reported No (~1.5 m) High (a few centimeters) Yes
NLTL tags [9] No (depend on switching) No (~1 m) High (a few millimeters) No
mmwave RFID [11] No data reported No data reported Median (a few decimeters) No
RFind [14] No (6.4 second for one tag) Yes (> 5 m) High (a few centimeters) Yes
TurboTrack [15] No data reported No (sub-meter) High (a few centimeters) Yes
RF-CHORD (Our system) Yes (180 tags/s) Yes (6 m) High (0% miss reading and ~0.01% cross reading) Yes

Table 1: Comparing RF-CHORD with state-of-the-art wireless systems for logistic network requirements.

Channel
samples

Tx

Active sniffer

No info
exchangeImpinj reader

Demodulator

Rxs

High power
ISM signal

Kernel-layer
based localization

Channel
estimation

𝑓

Multisine wave

Full packet matching

𝑡

Payload

Tag frame

Reader command

Preamble

Direct path
enhanced

Direct path determination
with ROI info

ROI info

Direct path

Work range
prior info

Multipath

Sinc leakage

Impinj Tx

Low power
wideband signal

−𝐹௦/2 𝐹௦/2

⋯

Digital channelization

⋯

Ch 1
Ch 2

Ch 16
200 MHz to
250 kHz each

❶

❷

❸ High dynamic A/Ds

❻

❹

❺

❼

Figure 2: RF-CHORD system overview.

two to three orders of magnitude faster than state-of-the-art
localization systems [7, 14].
• Range. RF-CHORD can localize tags 6 m away from the
reader with transmit power below -15 dBm. There is no obvi-
ous throughput and reliability loss with distance increasing.

We open sourced the RF-CHORD’s hardware and software
as well as the evaluation dataset in https://soar.group/p
rojects/rfid/rfchord.

2 RF-CHORD’s System Overview
A high level operational flow of RF-CHORD is shown in
Fig. 2. RF-CHORD embraces any ISM-band reader 1 as
the tag activator that is capable of charging, coordinating
multiple access over EPC Gen II tags. Active sniffer reader
observes tags by emitting a low power (-15 dBm) wideband
multi-sine waveform to pick up tag responses over a wide
frequency band. Specifically, we build the RF frontend and
FPGA hardware 2 as a scalable platform that can receive the
tag response from 8 antennas and 16 frequencies of carriers
simultaneously. Furthermore, despite the strict legal emission
power limit, we still achieve a long range in sniffing the tag
response in the wideband without exchanging any informa-
tion (e.g., EPC ID) with the ISM-band reader. RF-CHORD
achieve independent decoding and channel estimation by us-
ing dynamic range optimization 3 , digital channelization 4
in hardware, and a real-time full packet matching 5 in soft-

ware. After one-shot tag inventory, RF-CHORD obtains ade-
quate information from both frequency and spatial domains,
which are important for robust localization in a multipath-
rich environment. RF-CHORD also uses a kernel-layer-based
near-field localization algorithm to suppress the multipath
effect. This algorithm identifies the direct path with the time
of flight profile and prior knowledge (region of interest or ROI
information in our paper) 6 . Then it enhances the direct path
and estimates the location with a summation layer (a form of
near-field AoA+ToF localization) 7 .

3 One-shot Wideband with Multisine Wave

This section explains why we select multisine wave as the
wideband signal and how RF-CHORD acquires fine-grained
tag responses in one shot. We review the primer of the
backscatter signal model and its fundamental narrowband
constraint. Then we present our design of constructing a wide-
band backscatter signal with the multisine waveform on Tx
and slicing it for real-time parallel processing on Rx.

3.1 Backscatter Signal Model Primer

The basic backscatter operation in RFID systems is shown in
Fig. 3a. A device emits a high-power single-tone excitation
signal s(t) to power the tag and act as a carrier. This carrier
will be modulated by the baseband signal Btag(t) of the tag.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1785

https://soar.group/projects/rfid/rfchord
https://soar.group/projects/rfid/rfchord

𝑠 𝑡

𝑟(𝑡)

Tx

Rx

Tag

𝐵!"#(𝑡)𝑓

𝑓

(a) Single-tone Backscatter.

𝑓!

…

𝑓" 𝑓!#

Multisine across 200 MHz

Narrowband
tag modulation

M
ag

ni
tu

de

𝑓

One channel

(b) Multisine Excitation Signals.

Figure 3: Model of Multisine Backscatter.

The resulting (mixed) backscattered signal is:

r(t) = s(t) ·Btag(t)

Note that the bandwidth of r(t) is the summation of that
of s(t) and Btag(t), and Btag(t) is typically a narrowband
signal2 for low power purpose according to the EPC Gen II
standard. Therefore, the backscattered signal r(t) will also be
narrowband given that s(t) is a single tone.

3.2 Backscattering with Wideband Multisine Wave
When applying a wideband signal s(t), one can retrieve a
wideband backscatter signal r(t). Following this idea, RF-
CHORD adopts a multisine signal as s(t). The multisine sig-
nal is a combination of multiple single tones across wide
band with the same amplitude s(t) =

∑
i sin(fit+ϕi). The

backscattered signal will be r(t) =
∑
iBtag(t) ·sin(fit+ϕi).

RF-CHORD adopts 16 carriers with different frequencies
across a 200 MHz band in the practical implementation.
Fig. 3b shows the spectrum of multisine signal s(t) with
backscatter signal r(t). Since the difference between each car-
rier frequency is much larger than the bandwidth of Btag(t),
the received signal can be treated as multiple copies ofBtag(t)
modulated on different carrier fi. Therefore, on Rx, r(t) can
be sliced to 16 individual narrowband channels without infor-
mation loss, and then the channel information at each carrier
frequency fi can be extracted by using a well-explored RFID
processing mechanism (e.g., mixing and demodulating) in
parallel. In a nutshell, we sample the wideband with multiple
narrowband signals, enabling RF-CHORD to construct the
wideband channel information within one shot.

3.3 Why Multisine Wave
The multisine waveform has two advantages. First, the multi-
sine waveform is adaptive to conventional narrowband decod-
ing and channel estimation because the signal in each chan-
nel is still narrowband. Extracting these narrowband signals
can achieve excellent data rate compression (§3.4). Second,
the multisine waveform is amenable to noise and interfer-
ence reduction because of the low noise bandwidth and low
chances of being interfered with, resulting in SINR enhance-
ment, which improves the work range (§4.1). Compared with
the two alternative well-known wideband waveform choices,
frequency hopping [14] and OFDM signal [15], the multi-
sine waveform is more efficient because it avoids the time

2We take 250 kHz as the bandwidth Btag(t) for the whole paper accord-
ing to the standard [18].

Σ
Splitter

ADC

𝑓!

⋯

Ch 2

ADC

𝑓"
Ch 1

ADC

𝑓"#
Ch 16

𝑓" 𝑓! 𝑓"#

⋯

(a) Analog Channelization.

𝑓! 𝑓" 𝑓!#

⋯

ADC

𝑓$ = 𝑓!# + 𝑓! /2

Digital Processing:
𝑧!,# 𝑡 = 𝑥! 𝑡 𝑁# 𝑡 ;
𝑦!,# = (𝑧!,# ∗ BPF) ↓ 960

Ch 1
Ch 2

Ch 16

⋯

−𝐹$/2 𝐹$/2
⋯

(b) Digital Channelization.

Figure 4: Two channelization approaches.

overhead in switching between carriers introduced by the
former one, and uses the same bandwidth as the (tag) modu-
lation bandwidth, which is 250 kHz out of the full 200MHz
bandwidth used by the latter one. In fact, this wideband but
narrow sample signal can introduce 29 dB gain on the SINR
compared to the full wideband signal (see §4.1), which means
around 5× range under the same transmit power. Furthermore,
since the multisine wave captures all the backscatter signals
in the time domain, the whole packet of tags can be fully
utilized for integration gain to improve the SINR (see §4.4).

3.4 Digital Wideband Channelization
RF-CHORD utilizes channelization, which enables one-shot
capturing of wideband signals across multiple antennas and
reduces the amount of data to be processed during real-time
operation. Channelization is a process of extracting effective
narrowband signals from a received signal. When a wideband
tag signal is received, the aggregated bandwidth of 8 antennas
will be 1.6 GHz, resulting in a total of 64 Gbps data (16-
bit IQ sample, 1.25× Nyquist). It is challenging to process
such massive data in real time. However, recall that with a
multisine excitation signal, the effective tag signal is only
located around the carrier frequencies, as shown in Fig. 3b.
Therefore, the effective bandwidth of the system should be
8 × 16 × 250 kHz = 32 MHz, only 1/50 of the full 200
MHz bandwidth, so that channelization can compress the data
validly without information loss.

There are two channelization schemes to extract these nar-
rowband signals: analog channelization and digital channel-
ization. As shown in Fig. 4a, the sniffer with analog channel-
ization has multiple RF chains for the corresponding channels.
Each RF chain uses one carrier frequency fi as its local oscil-
lator (LO) for down-conversion and a filter at the baseband to
filter the signal from other channels out. Alternatively, digital
channelization finishes all the aforementioned functions in
the digital domain as shown in Fig. 4b.

RF-CHORD adopts digital channelization – the sniffer will
generate and capture the whole multisine wave with one RF
chain. On the Rx side, an ADC/DAC with a 245.76 MHz
sampling rate captures all tag signals simultaneously. Fur-
ther channel extraction can be achieved by digital down-
conversion and digital filtering. Digital channelization offers
two significant benefits over analog channelization: First, it
has better scalability because it only needs one RF chain for
each antenna, regardless of the number of channels (and sine

1786 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Self-interference

𝑓!

Noise
floor

Tag double
sideband signal

Insufficient
dynamic

range

(a) Dynamic Range.

Self-interference

𝑓!

Noise
floor

Phase
noise

Quantization
noise

(b) Unpredictable Noise.

Figure 5: Two issues caused by self-interference.

tones) are required, while in analog channelization, each chan-
nel needs an exclusive RF chain with bulk components (e.g.,
mixer, PLL, and VCO). Second, it is precisely synchronized
among different tones in the multisine wave, while analog
channelization needs extensive engineering efforts to syn-
chronize among a large amount of ADCs/DACs and LOs.
Nevertheless, analog channelization still has it own advan-
tages, including the convenience of extending or switching
bandwidth by changing the carrier frequency and the lower
requirements of ADC bandwidth. RF-CHORD also embraces
these advantages through the high-speed ADC and low crest
factor multisine waveform, which will be introduced in §4.

4 SINR Improvement for Long Range
This section first presents how RF-CHORD improves SINR
under long work range by reducing the external noise and
canceling self-interference. It next explains how RF-CHORD
exploits the full tag packet to incorporate the integration gain,
which is based on the multiple channel decoder with clock
offset mitigation.

4.1 External Noise Suppression
To follow the FCC regulation, the signal strength of each
frequency component in the multisine is -15 dBm, which is 51
dB lower than the 36 dBm excitation signal in the ISM band
(see details in §A). With the low signal strength limitation but
the long range requirement, we need to reduce the external
noise and interference as much as possible.

RF-CHORD adopts the tag signal with reduced band-
width for lower chances of in-band interference and lower
noise. The relationship between thermal noise Pnoise and sig-
nal bandwidth B at room temperature can be expressed as
Pnoise =−174+10log10(B) [19]. As described in §3.4, the
digital channelization at the receiver separates a combined
200 MHz wideband signal into multiple 250 kHz narrowband
signals. This means that the thermal noise can be reduced
from -91 dBm to -120 dBm (29 dB gain). Furthermore, the
reduced bandwidth also reduces the probability of being in-
terfered with by other devices working in the same band.

4.2 Self-interference Canceling
Besides the external interference from other devices, the self-
interference caused by the natural full-duplex operation of our
active sniffer will also limit the SINR. RF-CHORD’s multisine
waveform and low power transmission reduce the complexity
of self-interference cancellation. As shown in Fig. 5a, the

self-interference in one channel is just a single tone after
channelization. A commercial tag uses double-sideband mod-
ulation with a subcarrier to differentiate the tag signal from
the single-tone excitation signal. Therefore, RF-CHORD uses
filters to cancel the self-interference caused by the single tone.

However, given the wideband signals are too weak (i.e.,
-15 dBm), there remain two practical challenges. First, the
dynamic range of the receiver may not be large enough to
detect the tag signal. Second, any unpredictable noise, such
as phase noise and circuit noise from Tx, will be transmitted
along with the s(t) and may bury the wideband signal. Then
we’ll go over how to deal with these issues.

Dynamic Range. Dynamic range is the ratio between the
largest and smallest values that the received signal can assume.
Specifically, the largest value is the self-interference, and the
smallest signal is the targeted wideband tag signal. As shown
in the Fig. 5a, even though the tag signal strength is higher
than the noise floor and interference, it can still be buried if
the dynamic range is not large enough. RF-CHORD meets
the requirement of dynamic range by adopting the following
strategies: First, it adopts a high-resolution ADC because the
dynamic range of the receiver will be bottlenecked by the
dynamic range of the ADC. The theoretical dynamic range of
the receiver is 6.02 N + 1.76 dB [20], where N is the resolution
of the ADC. Therefore, a fundamental way to solve the issue
is to increase the resolution of the ADC. RF-CHORD adopts
16-bit ADC, which has the largest resolution in 2022 when
satisfying the 200 MHz bandwidth requirement. Secondly, it
adopts a carefully designed low crest factor multisine wave on
the transmission side to relax the dynamic range requirement
of the Rx. The intuition behind this is that since the dynamic
range requirement on the ADC is more related to the peak
amplitude of the self-interference signal instead of the average
signal power, it can be relaxed by using a lower peak signal
while remaining the average power. The crest factor is the
peak amplitude divided by the RMS value of the waveform,
and for a multisine signal, it has been well studied that the
crest factor can be reduced by tuning the phases ϕi in the
multisine signal. Following the methods mentioned in [21],
the crest factor of the multisine waveform adopted by RF-
CHORD can be reduced from 4 to 1.24 (or peak-to-average
power ratio from 12 dB to 1.87 dB).

Unpredictable Noise. The unpredictable noise is caused by
the response of self-interference in the circuit. As illustrated in
Fig. 5b, the noise floor may be dominated by the phase noise,
DAC quantization noise, etc. along with the self-interference.
Fortunately, RF-CHORD does not require a dedicated cancel-
lation circuit like [22] because the power of RF-CHORD’s
self-interference is much lower than that of a commercial
RFID reader. Moreover, RF-CHORD utilizes Analog Devices
ADRV9009 transceiver of 16-bit ADC [23] and HMC7044
VCXO-based clock tree [24], ensuring an optimal quantiza-
tion and clock phase noise below the noise floor. Therefore,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1787

the RF frontend of RF-CHORD’s receiver is not saturated, and
the noise will only go through the air instead of the feedback
path of the receiver. The noise experienced by RF-CHORD is
not dominated by unpredictable noise.

4.3 Full Packet Matching
RF-CHORD estimates each channel in parallel and then com-
bines them into a wideband channel estimation. The standard
channel estimation techniques for one channel can be ex-
pressed as follows:

hi =
∑
t

r(t)Î∗(t)

where r(t) is received tag response and Î(t) is a template. In
most RFID systems, only the pilot signal part (RN16) is used
for clock and phase estimation, and the main part of the tag
signal (EPC ID) is left unused. RF-CHORD utilizes the full
packet signal, including RN16 and EPC ID. The length of
the signal will be extended from 0.31 ms to 2.31 ms when
assuming the backscatter link frequency (BLE) of the tag is
250 kHz and the EPC ID length is 96 bits [25]. By doing the
full packet matching, RF-CHORD can achieve 10log10

2.31
0.31 =

8.7 dB integration gain.
We need to generate a noiseless template of the full packet

for full packet channel estimation. However, unlike the prede-
fined pilot signal, the template of the packet changes depend-
ing on the tag’s EPC ID. Collecting EPC ID and timestamp
from a commercial reader device in real-time is unsupported
due to the interface limitation: i) the available interface from
a commercial reader is usually done by using asynchronous
communication, which hinders real-time processing; ii) the
timing information is usually not reported by commercial
readers. Therefore, RF-CHORD needs to decode the wide-
band signal into EPC ID independently.

4.4 Clock Offset Mitigation
Accurate decoding needs to mitigate the clock offset of the
RFID tag signal. Specifically, the protocol tolerates up to
± 10% frequency offset and ± 2.5% frequency fluctuation
during backscattering (refer to Tab. 6.9 of [18]). For example,
say we read a tag that is 2.5% faster than nominal BLF. For a
typical randomized uplink packet of 128 bits with a perfect
match at the start of the frame, the received signal will be
ahead of the template by one bit at the 32nd bit, and the
remaining 96 bits thereafter contribute useless fluctuations
to channel estimation, as figured out in Fig. 6. RF-CHORD
needs to analyze the clock and estimate the offset parameters
for mitigation, which can be described by:

τ(t) = Square((fBLF−α0−α(t))(t− t0))

Where t0 is the actual start of frame (SOF), α0 is the ini-
tial clock frequency offset (CFO) from prescribed BLF, and
α(t) is the fluctuation of the clock. Next, we introduce RF-
CHORD’s components which estimate these parameters.

Raw samples Packet template Offset compensated

Drift by one bit

Figure 6: The waveforms of the tag signal with clock offset,
the reference, and recovery signal from the offset.

Preamble Matching for t0 and α0. RF-CHORD first esti-
mates the t0 and α0 by adopting a standard sliding window
correlator with a known preamble p(t). Specifically, we derive
the initial estimation of t̂0 and α̂0 by this correlation calcu-
lation, where the x(t) is the received samples, pα(t) is the
reference template tuned to a clock frequency of fBLF−α0:

{t̂0, α̂0}= argmax
t0,α0

∣∣∣∣∣
∫ Tp

0
p∗
α0(t)x(t+ t0)dt

∣∣∣∣∣
PLL to Trackα(t) Variation. After eliminating α0, the clock
still has residual offset α(t), which comes from the tag clock
fluctuation during the communication and may be significant
in the long packet. Because the Miller code of RFID [18] is
a self-clocked and modulated bandpass signal, RF-CHORD
can extract the subcarrier of the line code to track the clock
frequency offset accurately. RF-CHORD adopts a feedback-
based digital Costas PLL [26] to track the clock continuously.

After compensating estimated clock τ(t), the clock offset
is mitigated (the last waveform shown in Fig. 6). We can see
that the signal is well synchronized with the template.

4.5 Decoding with Channel Diversity

After clock offset mitigation, we can decode the full packet,
extract the correct template Î(t), and assemble the decoder.
Because the tag baseband signals on all channels are the same,
RF-CHORD can apply nulling and beamforming algorithms to
utilize the diversity across frequencies and antennas to make a
joint decoder. RF-CHORD combines the signals from all chan-
nels into one steered single-channel signal – it first performs
an adaptive maximum signal-to-noise ratio (MSNR) beam-
forming over the array of each frequency to null the major
jammer in the spatial domain and then performs maximum-
ratio combining (MRC) beamforming across the frequency
domain to improve the SINR further. With this cleaned steered
single channel, RF-CHORD exploits a Viterbi decoder to de-
code the EPC ID. It then applies the EPC ID to make accurate
channel estimations on all the channels. A series of efforts in-
troduced in this section, including suppressing external noise,
canceling self-interference, matching full packet, mitigating
clock offset, and decoding with diverse channels, guarantees
RF-CHORD to extract wideband channel estimations at a long
distance even with the ultra-low power emission signal.

1788 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.5 1 1.5 2

C
D

F

Error (m)

Direct Localization
Calibrate Multipath Profile

0.9

0.95
0.99

 0 1 2
0.9

0.95
0.99

 0 1 2
0.9

0.95
0.99

 0 1 2

Figure 7: Eliminating the multipath effect
reduces the 99th long-tail error.

 Theoretical Phase
at One Grid

Received Phase
𝜙1,1 𝜙1,𝑛

𝜙𝑘,𝑛

...

𝜙𝑘,1 ...

...

n antennasm
fre

qu
en

cie
s

 One Channel

Traversing Search Space

X range

Y r
an

ge

Kernel
Function

Layer
Function

Similarity with Theoretical
Phase in Search Space

Location Estimation
in Search Space

⋯

⋯

Figure 8: Kernel-Layer Framework.

5 Localization with Kernel-Layer Framework
In this section, we first conduct empirical experiments which
show: i) multipath is the primary factor that confines the long-
tail performance of the RFID localization system once the
tag is successfully inventoried; ii) 200 MHz bandwidth is
not sufficient to eliminate all the long-tail errors caused by
multipath. To address these problems, we propose a kernel-
layer framework for localizing RFID tags in the near field. It
can suppress long tail errors from multipath by enhancing the
direct path and incorporating prior knowledge from logistics.
5.1 Long-tail Errors Source Demystification
We conduct a validation experiment to confirm that multipath
is the primary source of long-tail localization errors. In this ex-
periment, we put five tags at a distance of 4 m from the reader.
We use 16 carriers evenly spaced across 200 MHz bandwidth,
8 antennas, and a hologram-based localization algorithm (see
details in §5.2). There is a metallic heater 1.5 m from the tag
as the multipath source. Fig. 7 shows that the 99th localiza-
tion error (red line) is 1.798 m, too large to ensure reliable
usage in industry settings. The theoretical analysis explains
this observation – the 200 MHz bandwidth is only able to
differentiate paths that have a propagation distance difference
larger than c/(2B) ≈ (3×108 m/s)/(2×200 MHz) = 0.75
m. Once the propagation distance of two paths is smaller than
0.75 m, which is common for many indoor deployments, 200
MHz is insufficient for differentiating one from the other.

Then we evaluate the performance without the multipath
effect to check our results double. We keep the experiment
setup, conduct RF measurement of a reference tag close to
target tags and extract its phase offset from the groundtruth.
Considering that the multipath profiles of nearby tags are
similar, we subtract each tag’s channel estimation with the
offset from the reference tag. The 99th localization error of
the same set of tags decreases to 0.400 m (green line in Fig. 7).
It proves that multipath is the primary factor determining the
long-tail performance of the RFID localization system, even
with 200 MHz bandwidth.
5.2 Near-field Localization with Hologram Algorithm
Like most recent RFID localization systems, RF-CHORD
locates a tag under the near-field condition, which differs
from locating a distant target. Considering the Fraunhofer
distance [27], a target is at near-field when its distance d from
the antenna array meets:

d <
2D2

λ

where D is the aperture of the antenna array, and λ is the
signal’s wavelength. The wavelength of the 915 MHz signal
is around 30 cm. When using an antenna array or SAR, the
aperture can easily span to 1 m for adequate spatial resolution.
(2D2)/(λ) = (2× 1 m2)/(0.3 m) = 6.7 m and d < 6.7 m
under most circumstances. Therefore, the response from a tag
does not form a plane wave when reaching different elements
in the antenna array.

We propose to develop our localization algorithm on top
of hologram-based localization framework, which essentially
identifies the most likely location as the location estimation,
independent of plane wave incidence conditions. In the basic
hologram algorithm, the theoretical phase θ(g(i,j),Ak,fl) of
a tag at location g(i,j) received by an antennaAk at frequency
fl can be written as:

θ(g(i,j),k, l) = 2πfl
c

(dTx−Tag +dTag−Rx) (mod 2π)

where dTx−Tag and dTag−Rx are the distance between the
tag and the transmitter and receiver, respectively. For location
g(i,j), its likelihood P (g(i,j)) of being the tag’s true loca-
tion can be measured by the similarity between empirically
received phase ϕk,l from lth carrier at kth antenna and the
theoretically modeled phase θ(g(i,j),k, l). The hologram al-
gorithm makes the similarity comparison across multiple an-
tennas and frequencies. P (g(i,j)) can be written using the
following equation:

P (g(i,j)) =

∣∣∣∣∣
L∑
l=1

K∑
k=1

e−j(ϕk,l−θ(gi,j ,k,l))

∣∣∣∣∣ (1)

Then we can estimation the location of the tag by choosing
(i, j) with maximum P .

5.3 Kernel-layer Framework
Beyond the basic hologram algorithm [28], there are many
hologram variants [7, 8, 29, 30]. We find that two key factors
determine the performance of hologram-based localization
algorithms, namely, kernel and layer:
Definition 1. Kernel is the function that measures the simi-
larity between the received signal and the theoretical signal

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1789

① Direct path
identification

Direct path boundary
from prior information

② Multipath ambiguity

③ Sinc leakage

0 10 20 30 40 50ns
0

0.2

0.4

0.6

0.8

1
Measurement ToF Profile
Groundtruth ToF Profile
Groundtruth Location

Figure 9: Direct Path Identification with ROI Information.

from one channel (i.e., single carrier from a single antenna).
For example, the ej(ϕ−θ) in Eqn. 1 is a kernel function that
measures the phase similarity with an exponential function.

Definition 2. Layer is a function that determines how to com-
bine kernels from multiple channels (i.e., multiple carriers
from multiple antennas) and obtain the location estimation.
For example, the

∑L
l=1

∑K
k=1 in Eqn. 1 is a layer function.

We introduce a kernel-layer framework that tells us how
kernel and layer affect the localization performance. Fig. 8
summarizes our kernel-layer framework, which describes the
fundamentals of hologram-based algorithms. This framework
can be used following these steps:

• Model calculates the theoretical channel information (e.g.,
propagation phase) for each location.

• Measurement obtains the empirical channel information
(e.g., propagation phase and RSSI) by interrogating the tags.

• Kernel function profiles the similarity between the theoreti-
cal and empirical channel information.

• Layer function combines kernel function output from dif-
ferent antennas and frequencies.

• Output picks the location with the maximum likelihood as
the estimated location.

Different kernels and layers can be combined into various
near-field localization algorithms. See more examples in §B.

5.4 RF-CHORD’s Kernel and Layer
We design our localization algorithm based the kernel-layer
framework. When designing RF-CHORD’s kernel and layer,
we want to reduce the impact of multipath for low long-tail
error, which can be achieved with the carefully designed ker-
nel, layer, and prior information from the logistic scenario.
RF-CHORD’s kernel is similar to basic hologram algorithms:

RF-CHORD’s kernel: e−j(ϕ−θ)

RF-CHORD has 4 layer functions: ToF estimation layer,
direct path identification layer, direct path enhancement layer,
and summation layer. These layers work together to suppress
the multipath and combat long-tail localization errors.

ToF Profile Layer. By using the wideband bandwidth cap-
tured, this layer computes the time-of-flight profile of the
received signal. The computation follows Eqn. 2 where ϕ is

the empirically measured phase value, fl is the frequency, and
τ is the propagation delay of each path.

ToF estimation layer: S(τ) =
L∑
l=0

e−j(ϕl−2πflτ) (2)

Direct Path Identification Layer. It is still challenging to
identify the direct path in the ToF profile layer in Fig. 9 be-
cause there are three interfering factors: 1 If the difference
is smaller than 0.75 m, we can only observe one mixed peak
in the time-of-flight profile of the received signal. 2 If the
difference is larger than 0.75 m, there will be ambiguity from
multipath at the locations farther from the groundtruth. 3 The
sample on the frequency domain, which is a sinc function on
the time domain, may leak its side lobe and form fake peaks
at a nearer location than the groundtruth. To address these
problems, RF-CHORD leverages a key observation: prior in-
formation. In practical logistic deployment, we can employ
the size of the scanning area, the track of tags, etc. to help
localization. RF-CHORD constructs a layer that leverages
this prior information for direct path identification. Fig. 9
shows an example of this layer with scanning range [a,b]
in meters as prior information, which is common in ware-
house deployment. The corresponding algorithm is shown in
Alg. 1. In this example, we first compute the bound of the
theoretical propagation time in this range τa = a/(3×108)
and τb = b/(3×108). The prior information, τa and τb, acts
as a filter that eliminates any multipath with a propagation
time smaller than τa or larger than τb, which helps us identify
the right direct path (right peak) rather than nearer one from
sinc leakage or farther one from multipath.

Algorithm 1 Direct path identification layer

Input: 1. ToF profile: [S(τ1),S(τ2), ...,S(τs)]1×s
2. Prior info: scanning area in meters [a,b]
3. Peak threshold: p

Output: Direct path distance rough estimation d̃0
1. d̃0 = 0, τa = a

3×108 , τb = b
3×108 ;

2. L = find τi closest to τa in [τ1, τ2, ..., τs], return index;
3. R = find τi closest to τb in [τ1, τ2, ..., τs] , return index;
4. S(τ)← S(τ)[L : R];
5. path← S(τ)[0 : end−1]−S(τ)[1 : end]
for i← 1 to s−1 do

if path[i]> 0 & path[i−1]< 0 & S(i)> p then
d̃0 = τi×3×108;
break;

end if
end for

Direct Path Enhancement Layer. RF-CHORD uses a across-
frequency phase redress algorithm to further enhance the sig-
nal quality of the direct path signal. RF-CHORD first identifies
potential multipath – if there are multiple peaks (identified by

1790 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

❶

❷

❸

(a) Basic Hologram.

❹

(b) RF-CHORD’s Algorithm.

Figure 10: RF-CHORD can suppress sinc leakage, multipath
ambiguity, and enhance direct path for finer resolution com-
pared to basic hologram algorithms in Eqn. 1.

2D peak find algorithm [31]) in the basic hologram results,
the location estimation is likely affected by the multipath
effect. Instead of using the empirically measured phase ϕ,
RF-CHORD combines the direct path signal from all frequen-
cies and constructs an enhanced phase ϕ̃l. This process is
done by the layer function of Eqn. 3. See §C for detailed
mathematical derivation.

Direct path enhancement layer: ϕ̃l = ∠
L∑
i=1

ejϕiej
2π
c (fi−fl)d̃0

(3)
Summation Layer. The last layer in RF-CHORD is the sum-
mation layer, which combines information from all L frequen-
cies and K antennas and computes the likelihood of the tag
position. For every location g(i,j), RF-CHORD computes the
likelihood P (g(i,j)) and choose the position with the highest
likelihood as the estimated result.

Summation layer: P (g(i,j)) =

∣∣∣∣∣
L∑
l=0

K∑
k=0

e−j(˜ϕl,k−θ(g(i,j),l,k))

∣∣∣∣∣
(4)

Putting Everything Together. All above layers and kernel
work together as our multipath suppression algorithm. Fig. 10
shows an visual example. The heatmaps are the location like-
lihood with the basic summation layer in Eqn. 1 (Fig. 10a)
and with our direct path enhancement algorithm (Fig. 10b).
The green cross is groundtruth and the red cross is location es-
timation. If we only use the simple summation layer, there are
three factors disturbing the localization accuracy. RF-CHORD
handles them with customized kernel-layer algorithm design.
The peak of location estimation 1 is the superimposed re-
sponses from all the paths within distance resolution nearer
the direct path. RF-CHORD utilizes coherent summation layer
with full 200 MHz bandwidth to increase distance resolution
to 0.75 m. The paths with large distance differences from
the direct path will generate ambiguity at farther arrival dis-
tances as multipath ambiguities 2 or even at nearer distance
as sinc leakage 3 . By using prior information of work range
(tags are in different check-in passage with different ranges)
to clarify the direct path identification and using direct path
enhancement to suppress multipath, we obtain the accurate
location estimation 4 .

6 Implementation
6.1 Active Sniffer
Antenna. We chose a recent variant [32] of the Foursquare
patch antenna [33], which is metal-backed and of concentric
dual-polarization, as our wideband Tx and Rx antennas for
its advantages of small-size, low-cost, and high adaptability
to surroundings. The original antenna design is for 1.7~2.7
GHz LTE and we scaled it with HFSS [34] to fit the UHF
band 700~1100 MHz. We also attached each Rx antenna to
a 915 MHz bandstop filter [35] to suppress the high-power
ISM-band leakage from the commercial reader.
Array. We built the Rx array through a laser-cutting sheet of
aluminum. The mounting holes and SMA clearances on the
sheet define a 1×8 linear array with element spacing of 21 cm.
We set a notable 31.5 cm gap in the middle for a 2:3 co-prime
array configuration [36] to suppress the grating lobe. We hang
two Txs 0.4 m lower than the receiver’s horizontal array along
its geometric bisection. The right one was wideband Tx and
the left one was ISM-band Tx.
Baseband Processor. One of the key implementation chal-
lenges towards one-shot inventory is to convert the 31 Gbps
I/Q samples from the A/D to the application processor. We de-
veloped high throughput baseband with 2 ADRV9009 [23,37]
RF chips and an XCKU060 FPGA SoM [38, 39] in charge of
4 receivers over 200 MHz bandwidth for PCIe streaming.
Application Processor. The host is equipped with a Core-i9
9900 CPU and an RTX 3090 GPU for real-time decoding
and CSI acquisition. GPU was used to handle the template
matching during the decoding with FFT convolution accel-
eration and parallelism. We used Process Explorer [40] to
measure resource utilization and report the results in Tab. 2.
The decoder is developed with C++/Eigen except that the
most compute-intensive part, i.e., the full packet matching
algorithm, is implemented on GPU with CUFFT [41].

CPU (Utilization) GPU (Utilization) I/O Bandwidth Memory

Core-i9 9900 (16.1%) RTX 3090 (38.0%) 520.1 MBps 4.1 GB

Table 2: Hardware Resource Utilization.

6.2 RFID Tags
In order to ensure compatibility and low-cost, we used a com-
mercial RFID IC Impinj Monza-M4A [42] and implemented
a bandwidth extension technique [43] to redesign the metal
inlay (antenna) on 80 × 80 mm single-sided PCB. The CAD
of the RFID antenna is shown at the top left of Fig. 11 and its
direction gain (similar to dipole antenna) is shown in Fig. 15a.
It works on 700~1000 MHz, whose copper geometry can be
transferred to flexible inlay for massive production.

7 Evaluation
7.1 Experimental Setup
Testing Environment. We evaluate RF-CHORD in an office
with multiple reflectors (e.g., metal furniture, low ceilings,

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1791

Figure 11: Experimental setup for evaluating performance.
Five tags are mounted on the rail and ~20k tag responses are
collected in 384 locations.

and walls). The evaluation range is the area of 6 × 3.2 m
ahead of the antenna. We divide the evaluation space into 20
cm grids and use guide rails to move the tags. All the tags are
facing the array. The dataset containing about 20k wideband
RFID channel information measurements at 384 locations is
open-sourced at [44]. The setup is shown in Fig. 11.

Location Groundtruth. Groundtruth is measured from a
total station theodolite (TST) [45] with a 2 mm/2′′ accuracy.

Frequency Band Configuration of Active Sniffer. We use
the band of 787~987 MHz and avoid selecting carriers in ISM
band 902~928 MHz. The carriers are almost evenly selected
with spacing of 11.1 MHz3. The spectrum analyzer shows the
inter-modulation distortion of carriers is very little.

ISM-band Reader. We use an Impinj R700 [46] as the
ISM-band reader, which is configured on “Radio Mode 142”
(Miller-4 coding and BLF of 256 kHz) and a single linear-
polarized antenna aligned with the wideband Tx. We empiri-
cally pick this mode since it balances throughput and range.
Other coding methods and BLF can also be adopted with few
modifications to our system.

7.2 Throughput in One-shot Localization
Fig. 12 shows RF-CHORD’s throughput at different distance.
RF-CHORD can read and localize ~180 tags per second (97%
of the tags read by an Impinj reader) at up to 6 m. RF-CHORD
is 1000× faster compared to previous sniffer-based wideband
systems with frequency-hopping. For instance, RFind [14]
needs 6.4 seconds to localize one tag. We also evaluate RF-
CHORD’s throughput across emission power. Fig. 13 shows
that RF-CHORD’s throughput decreases when we reduce its
emission peak power from -15 dBm to -35 dBm. It works fine
with an emission power above -25 dBm.

3The frequency set of carriers is {787.1, 798.2, 809.3, 820.4, 831.5, 842.6,
853.7, 864.8, 875.9, 887.0, 898.1, 942.5, 953.6, 964.7, 975.8, 986.9 MHz}.

0

30

60

90

120

150

180

2 3 4 5 6

T
a

g
s
 P

e
r

S
e

c
o

n
d

Distance (m)

Impinj RF-Chord

Figure 12: Throughput across distances. RF-CHORD can
localize around 180 tags/s with -15 dBm emission power.

0

30

60

90

120

150

180

2 3 4 5 6

T
a

g
s
 P

e
r

S
e

c
o

n
d

Distance (m)

-10dBm
-15dBm

-20dBm
-25dBm

-30dBm
-35dBm

Figure 13: Throughput across distances with different emis-
sion power. The performance of RF-CHORD is stable with
above -25 dBm emission power.

7.3 Localization Performance
RF-CHORD utilizes large bandwidth, multiple antennas, and
the multipath-suppression algorithm to realize one-shot and
high-reliability localization. We conduct microbenchmarks
to evaluate how physical resources (frequency and spatial do-
main), algorithms, and orientation influence the localization.
Bandwidth. We evaluate the localization performance with
8 antennas and different bandwidths. Fig. 14a shows 99th
localization errors are 2.398 m, 1.646 m, 1.203 m and 0.786
m with 50 MHz, 100 MHz, 150 MHz and 200 MHz band-
widths. The median errors are 0.325 m, 0.227 m, 0.155 m, and
0.144 m, separately. The results show increasing bandwidth,
thus increasing the time resolution, can not only improve the
median performance but also reduce the long-tail error. Even
when the median performance is close to the upper limit (150
MHz v.s. 200 MHz), the long-tail errors can still be reduced
by increasing bandwidth.
Number of Antennas. We evaluate RF-CHORD’s localiza-
tion performance with 200 MHz bandwidth and different
numbers of antennas (thus different array apertures). Fig. 14b
shows RF-CHORD’s 99th localization errors are 4.513 m,
1.467 m, 1.081 m and 0.786 m when 2, 4, 6 and 8 anten-
nas are used. The performance of the 4, 6, and 8 antennas
is very similar on median errors (about 0.14 m). However,
their long-tail errors are significantly different. The results

1792 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

Error (m)

50 MHz
100 MHz

150 MHz
200 MHz

0.9

0.95

0.99

 0.5 1 1.5
0.9

0.95

0.99

 0.5 1 1.5
0.9

0.95

0.99

 0.5 1 1.5

(a) Bandwidth.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

Error (m)

2 Antennas
4 Antennas

6 Antennas
8 Antennas

0.9

0.95
0.99

 0.5 1 1.5
0.9

0.95
0.99

 0.5 1 1.5
0.9

0.95
0.99

 0.5 1 1.5

(b) Number of Antennas.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

Error (m)

Baseline
Multipath-suppression

0.9

0.95

0.99

 0.5 1 1.5
0.9

0.95

0.99

 0.5 1 1.5
0.9

0.95

0.99

 0.5 1 1.5

(c) Algorithm.

Figure 14: RF-CHORD’s localization errors with different bandwidths, antenna numbers, and algorithms.

ℎ =127 cm

Rx antenna

Incidence

Reflection

ℎ = 93 cm

Tx antenna

𝜃

𝜑
ℎ
RFID tag

Tag polar pattern

(a) Orientation Setup.

 0

 20

 40

 60

 80

 100

 120

-90° -60° -30° 0° 30° 60° 90°

E
rr

o
r

(c
m

)

(b) Pitch/Roll Angle (θ).

 0

 10

 20

 30

0° 60° 120° 180° 240° 300°

E
rr

o
r

(c
m

)

(c) Yaw Angle (ϕ).

 0

 10

 20

 30

75cm 93cm 111cm 129cm 147cm

E
rr

o
r

(c
m

)

(d) Height (h).

Figure 15: Microbenchmarks with different tag orientations and heights related to the antennas.

show increasing the number of antennas (from 2 to 8) can
always improve long-tail performance. Increasing the number
of antennas/apertures strengthens the system’s immunity to
interference in specific directions and improves the angular
resolution for localization.

Algorithms. We take basic hologram (Eqn. 1) as the baseline
algorithm and evaluate our multipath-suppression algorithm
with 8 antennas and 200 MHz bandwidth. Fig. 14c shows that
99th localization errors of baseline and RF-CHORD are 1.018
m and 0.786 m respectively. The median errors of baseline and
RF-CHORD are 0.143 m and 0.144 m, respectively. The algo-
rithm effort can improve long-tail performance by handling
more corner cases, but hard to improve median performance.
Physical resources (i.e., the bandwidth and the antenna array
aperture) fundamentally limit the algorithm’s performance,
and the long-tail improvement from the algorithm is primarily
attributed to the introduction of prior information – it provides
an appropriate carrier for making use of prior information.

Orientation. In practice, the orientation of tags will influence
the link angle and polarization, thus introducing SINR and
phase changes. We evaluate how orientation influences the
localization error. We set the target tag at a 1-m fixed distance
to the antenna array to eliminate the influence of the multipath
effect. Then, we change the pitch angle θ (as same as the roll
angle due to the symmetry), yaw angle ϕ, and height of the
tags as shown in Fig. 15a for orientation microbenchmark:

• Pitch/Roll Angle. In Fig. 15b, we keep ϕ= 0◦ and h= 111
cm (at the center between Tx and Rx). The worst performance
occurs when the pole of the antenna points to the rx, which
rarely happens in practical deployments (to be discussed in
§8.1). It is difficult to read tags due to the low SINR, and even
if successful, the long-tail error will be more than 1 m.

• Yaw Angle. In Fig. 15c, we keep θ = 0◦, h = 111 cm and

change ϕ from 0◦ to 300◦. The errors at different yaw angles
are similar because the directional gain across ϕ is symmet-
rical. The results show that the yaw angle does not affect
long-tail localization error (bounded within 30 cm).
• Height. In Fig. 15d, we keep θ = 0◦,ϕ= 0◦ and move the
tag from 75 cm to 147 cm. The long-tail errors do not change
much across different heights, which shows that height is not
the key factor affecting long-tail errors.

8 Practical Deployment
8.1 Deployment Constraints
We summarize the practical factors that influence SINR in
Fig. 16 and introduce the constraints in real-world logistic
scenarios. We also explain how we avoid or utilize them for
high-reliability localization.
Orientation. The localization error may be significant if the
pitch angle of the tag is closed to 90◦ according to §7.3.
In the deployment shown as Fig. 17, the orientation of tags
may not be uniform but unlikely to be completely disordered.
All the tags are attached to the sides of boxes or crates and
then stacked on the pallet. The chaos of stacking and the
movement of the pallet may cause yaw angle (ϕ) change
but not cause much pitch/roll angle (θ) change, which only
introduces negligible localization errors according to Fig. 15c.
Polarization. We set the tags and sniffer antennas all verti-
cally polarized, so horizontal tags can not be read. Similar to
orientation, no tag will be misplaced in our scene because the
pallet stack constraints the crate direction.
NLOS and Tag Coupling. We also stipulate that all the tags
should be in the line of sight from one side dock door, which
means stacking at most two-column crates on the pallet. It is
because the performance of UHF RFID will decrease rapidly
with nearby water [47]. This rule excludes severe NLOS oc-
clusion/reflection and severe tag coupling. Most of the pallets

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1793

Distance

NLOS

Tag coupling

Orientation

Polarization

Figure 16: The Factors Affecting Signal Quality.

Scanning
Area

8 Antennas

Figure 17: Warehouse Dock Door.

4 Antennas

Figure 18: Food Delivery Store.

Miss Reading Rate Cross Reading Rate

Warehouse 0 0.0025%
Food delivery 0 0.0154%

Table 3: Reliability performance in practical deployments.

in our scenes naturally meet this requirement, and in rare
cases, we need to waste some space.

8.2 Real World Deployment
We deployed the full-fledged RF-CHORD (i.e., 200 MHz
bandwidth and 8 antennas) in the warehouse dock door and
lightweight RF-CHORD (i.e., 200 MHz bandwidth and 4 an-
tennas) in the fresh food delivery store according to cost and
scene conditions for operational evaluation.

Warehouse Deployment. We deploy RF-CHORD in a ware-
house to understand its performance in logistic check in and
out. RF-CHORD is installed in the dock door of the warehouse
as shown in Fig. 17. This warehouse’s goal is to distribute
a large amount of food and daily necessities supplied by the
upstream warehouse to city delivery stations. The crates are
various and packaged without unified standards. Ideally, RF-
CHORD should report all the tags inside of the scanning area
and not report any tags outside of the scanning area. Our pre-
vious deployment experiments in the same scenario show that
commercial read-or-not solution Impinj xSpan [16] has ~6%
miss-reading rate and ~2% cross-reading rate in the similar
scene. We attached over 10,000 tags to various items, mainly
plastic crates, also including water bottles, cans, milk boxes,
rice, etc. The scanning area is 2 × 1 m between the two poles
of the dock door (as ROI) and the user walks through the aisle
with about 50~100 tags on a trailer in 1 to 4 seconds. Accord-
ing to Tab. 3, RF-CHORD is able to identify tags inside of
scanning area with a 100% accuracy (perfectly no miss read-
ing) and 0.0025% cross reading. Therefore, RF-CHORD can
provide sufficient localization accuracy in the warehouse de-
ployment, which significantly outperforms the state-of-the-art
commercial solutions.

Fresh Food Deliver Store Deployment. As shown in Fig. 18,
we also deploy lightweight RF-CHORD in a fresh food de-
livery store where fresh food is packaged into a container
and transported via a moving belt. Once the RFID tag on the

container is scanned, the delivery personnel will be allocated
to pick it up. RF-CHORD needs to ensure all the containers
on the moving belt are scanned and do not scan any tag out-
side of the moving belt. Tab. 3 shows that the miss-reading
rate of RF-CHORD is 0%, and cross-reading rate is 0.0154%.
Therefore, RF-CHORD can achieve sufficient accuracy in the
fresh food delivery store deployment.

9 Discussion

Polarization Mismatch. In our scenarios, the work pipeline
guarantees the polarization match. However, in more general
scenarios, the polarization may be mismatched when the ori-
entation of tags is disordered. The conventional solution is
to use circular polarization antenna [48] or dual-polarization
switching [16]. RF-CHORD can be adapted to them conve-
niently because its wideband four point antenna is inherently
dual-polarized. We can plug a polarization switch into each
sniffer antenna, which acts synchronously and does not influ-
ence throughput and range performance.

Blind Spots. RF-CHORD is free of cross reading, and there-
fore it can use high transmission power and sensitivity ISM-
band reader for achieving nearly zero miss-reading rate. How-
ever, miss reading still threatens reliability in certain complex
environments. It can be mitigated by switching between an-
tennas or beam patterns [3, 49]. As our Tx is synthesizing
multiple tones, it is feasible to add a Tx beamforming array
for blind spot suppression.

Integration with Robots. In recent years, logistics robots
(e.g., automated guided vehicle (AGV) [50], automated stor-
age and retrieval systems (ASRS) [51], and autonomous mo-
bile robots (AMR) [52]) have been developed rapidly to re-
duce the movements and operations of sorters and improve
efficiency. These robots still need to cooperate with a label
identification system (e.g., barcode or QR code). RF-Chord
has the potential to replace such system and cooperate with
logistics robots to achieve more efficient automation.

Cost. The ultimate goal of deploying RFID is to reduce man-
ual labor and error while improving efficiency, which requires
careful cost accounting. We emphasize that although base-
band chips and RF circuits will increase the cost of readers to
thousands of dollars, the main cost of RFID-based logistics

1794 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

still comes from RFID tags. Considering a medium ware-
house with 10k packages delivered every day, the annual cost
of tags is approximately $0.1 × 10,000 × 365 = $365,000.
Our strategy is not modifying the tag chip because most of
the manufacturing cost comes from the chip and the assem-
bly process [53]. Therefore, the wideband tag we designed
maintains almost the exact cost as current commercial tags
when in massive manufacturing.

10 Related Work
Narrowband Localization. There are three main localiza-
tion approaches to boost accuracy even with the limited time
resolution of narrow ISM bandwidth: The first approach is to
improve spatial resolution by SAR. Tagoram [7] uses the mo-
tion of tags to build multiple virtual antennas, while Mobitag-
bot [8] exploits antenna motion. The hologram algorithms in
these two systems inspired the kernel-layer framework in our
paper. Other hologram algorithm variants [29,30,54] can also
be viewed as different combinations of kernels and layers.
However, the assumption of free antennas or tags mobility
and lengthy startup time for tracking do not fit the logistic
network. The second approach is to acquire prior information
by reference tag. PinIt [6] exploits a dense grid of reference
tags and determines the nearest reference tag for NLOS local-
ization by dynamic time wrapping. However, reference tags
share time slots, which influences the throughput and scala-
bility. The third approach is to increase the number of links
by tag array. Attaching more tags to the target can increase
the number of links and improve localization performance.
Tagyro [55], and RF-Dial [56] utilize the phase difference
of the tag array to solve orientation ambiguity and improve
localization performance. Trio [57] models the equivalent
circuits of coupled tag and uses the tag interference for re-
fined localization. Liu et al. [58] uses spatial-temporal phase
profiling for relative RFID localization. These tag array based
localization approaches are accurate but may be error-prone in
a complex environment. Unlike these proposals, RF-CHORD
is a sniffer-based wideband localization system that improves
time resolution for fundamental performance enhancement.

Wideband Localization. Wideband RFID localization has
been proposed to overcome the time resolution limitation.
RFind [14] uses a low-power sniffer antenna by frequency
hopping to collect the narrow sample channel state informa-
tion across 220 MHz. Turbotrack [15] develops an OFDM-
based one-shot wideband channel estimation approach and
a Bayesian space-time super-resolution algorithm to achieve
fine-grained localization. However, these systems need mul-
tiple shots in the channel estimation or the algorithm to con-
verge for fine location estimation, thus very slow startup for
localization or tracking. Modifying tags to work on other
frequencies (e.g., Wi-Fi [59], millimeter-wave [11], UWB
[12, 13]) or cross-frequency based approaches (e.g., commu-
nicate with Wi-Fi [10], communicate at 1.4~2.4 GHz [60])
are also expected as the solutions for both finer localization

and higher throughput, but their tags are not ready for massive
manufacturing at low cost due to the complicated RF frontend
and control circuits. Inspired by these works, RF-CHORD de-
velops a multisine waveform to realize one-shot localization
without modifying the commercial tag chips, resulting in high
accuracy with no throughput loss or cost increase.
RFID Reader. Commercial RFID readers [46, 61, 62] have
heavily optimized RF analog frontend, decoder, and protocol
stack but do not support real-time tag critical information
(i.e., EPC ID, timestamp) retrieval. There are a series of open-
source RFID reader systems. Buettner et al. implemented EPC
Gen II downlink stack [63] and the full functional reader [64],
respectively. Kimionis et al. implemented a GNU radio-based
reader, which supported OOK and noncoherent FSK [65].
However, their energy and edge detection algorithms are too
simple to decode applicable code (e.g., miller-4 coding). A
recent reader designed by Kragas et al. [66] is featured by
coherent detection and initial duration deviation search but
only supports simple FM0 encoding. There are other research
projects featured by multisine waveform [67], parallel sensing
support [68], and active transmit leakage cancellation [69].
However, they only focus on specific optimization and do not
provide source code. In a nutshell, no out-of-box reader design
meets our requirements of high throughput and low decoding
threshold, so we develop a wideband reader with a customized
RF frontend and decoder while reusing the MAC layer of the
commercial reader for slot arrangement and collision handling.
It supports our wideband localization with high efficiency,
sensitivity, and compatibility.

11 Conclusion
We illustrate the three key requirements in reliability, through-
put, and range to meet the industry-grade standard of the
logistic network, and present RF-CHORD, the first RFID sys-
tem that considers all these factors from wideband signal
and baseband processing to localization algorithm framework
development. We believe our real-world empirical results
demonstrate that RF-CHORD paves the way for the prac-
tical hardware-software methodological solution of RFID
localization-based logistic network and makes an important
step towards large-scale operational deployment.

Acknowledgments
We are grateful to the reviewers for their constructive critique,
and our shepherd, Vikram Iyer in particular, for his valuable
comments, all of which have helped us greatly improve this
paper. We also thank Xieyang Xu and Weicheng Wang for pro-
viding an early implementation version of the work. We are
grateful to Yunfei Ma for the thoughtful suggestions based on
the early version of the work. This work is supported in part by
National Key Research and Development Plan, China (Grant
No. 2020YFB1710900), National Natural Science Foundation
of China (Grant No. 62022005, 62272010, and 62061146001)
and Alibaba Innovative Research. Chenren Xu and Shunmin
Zhu are the corresponding authors.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1795

References
[1] Global parcel volumes expected to double

by 2026 on e-commerce boom. https:
//rogistics.net/global-parcel-volumes-o
n-course-to-double-by-2026/.

[2] Inside an amazon robotic sortation center: How
automation is changing the ‘middle mile’.
https://www.geekwire.com/2022/inside-a
n-amazon-robotic-sortation-center-how-aut
omation-is-changing-the-middle-mile/.

[3] Carlos Bocanegra, Mohammad A Khojastepour,
Mustafa Y Arslan, Eugene Chai, Sampath Rangarajan,
and Kaushik R Chowdhury. Rfgo: a seamless self-
checkout system for apparel stores using rfid. In ACM
MobiCom, 2020.

[4] Renjie Zhao, Purui Wang, Yunfei Ma, Pengyu Zhang,
Hongqiang Harry Liu, Xianshang Lin, Xinyu Zhang,
Chenren Xu, and Ming Zhang. Nfc+ breaking nfc net-
working limits through resonance engineering. In ACM
SIGCOMM, 2020.

[5] Gang Li, Daniel Arnitz, Randolf Ebelt, Ulrich
Muehlmann, Klaus Witrisal, and Martin Vossiek.
Bandwidth dependence of cw ranging to uhf rfid tags in
severe multipath environments. In IEEE RFID, 2011.

[6] Jue Wang and Dina Katabi. Dude, where’s my card?
rfid positioning that works with multipath and non-line
of sight. In ACM SIGCOMM, 2013.

[7] Lei Yang, Yekui Chen, Xiang-Yang Li, Chaowei Xiao,
Mo Li, and Yunhao Liu. Tagoram: Real-time tracking
of mobile rfid tags to high precision using cots devices.
In ACM MobiCom, 2014.

[8] Longfei Shangguan and Kyle Jamieson. The design and
implementation of a mobile rfid tag sorting robot. In
ACM MobiSys, 2016.

[9] Yunfei Ma, Xiaonan Hui, and Edwin C Kan. 3d real-time
indoor localization via broadband nonlinear backscatter
in passive devices with centimeter precision. In ACM
MobiCom, 2016.

[10] Zhenlin An, Qiongzheng Lin, and Lei Yang. Cross-
frequency communication: Near-field identification of
uhf rfids with wifi! In ACM MobiCom, 2018.

[11] Ajibayo O Adeyeye, Jimmy Hester, and Manos M
Tentzeris. Miniaturized millimeter wave rfid tag for spa-
tial identification and localization in internet of things
applications. In IEEE EuMC, 2019.

[12] Daniel Arnitz, Klaus Witrisal, and Ulrich Muehlmann.
Multifrequency continuous-wave radar approach to rang-
ing in passive uhf rfid. IEEE transactions on microwave
theory and techniques, 57(5), 2009.

[13] Nicolo Decarli, Francesco Guidi, and Davide Dardari.
Passive uwb rfid for tag localization: Architectures and
design. IEEE Sensors Journal, 16(5), 2015.

[14] Yunfei Ma, Nicholas Selby, and Fadel Adib. Minding
the billions: Ultra-wideband localization for deployed
rfid tags. In ACM MobiCom, 2017.

[15] Zhihong Luo, Qiping Zhang, Yunfei Ma, Manish Singh,
and Fadel Adib. 3d backscatter localization for fine-
grained robotics. In USENIX NSDI, 2019.

[16] Impinj dual-polarized xspan rfid reader.
https://support.impinj.com/hc/article_at
tachments/360002045159/xSpan_Overview_Data
sheet_including_Software_Tools_Accessories
_and_Specifications_20190405.pdf.

[17] Jue Wang, Deepak Vasisht, and Dina Katabi. Rf-idraw:
virtual touch screen in the air using rf signals. In ACM
SIGCOMM, 2014.

[18] Epc(tm) rfid class-1 gen-2 protocol. https:
//www.gs1.org/sites/default/files/docs/e
pc/uhfc1g2_1_2_0-standard-20080511.pdf.

[19] J. R. Pierce. Physical sources of noise. Proceedings of
the IRE, 44(5), 1956.

[20] Quantization noise: An expanded deriva-
tion of the equation, snr = 6.02 n + 1.76 db.
https://www.analog.com/media/en/training
-seminars/tutorials/MT-229.pdf.

[21] Yuxiang Yang, Fu Zhang, Kun Tao, Benjamin Sanchez,
He Wen, and Zhaosheng Teng. An improved crest factor
minimization algorithm to synthesize multisines with
arbitrary spectrum. Physiological Measurement, 36(5),
2015.

[22] Developing a uhf rfid reader rf front end
with an analog devices solution. https:
//www.analog.com/en/technical-articles/
developing-a-uhf-rfid-reader-rf-front-end
-with-an-analog-devices-solution.html.

[23] Adrv9009. https://www.analog.com/en/products
/adrv9009.html.

[24] Hmc7044. https://www.analog.com/en/products
/hmc7044.html.

1796 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://rogistics.net/global-parcel-volumes-on-course-to-double-by-2026/
https://rogistics.net/global-parcel-volumes-on-course-to-double-by-2026/
https://rogistics.net/global-parcel-volumes-on-course-to-double-by-2026/
https://www.geekwire.com/2022/inside-an-amazon-robotic-sortation-center-how-automation-is-changing-the-middle-mile/
https://www.geekwire.com/2022/inside-an-amazon-robotic-sortation-center-how-automation-is-changing-the-middle-mile/
https://www.geekwire.com/2022/inside-an-amazon-robotic-sortation-center-how-automation-is-changing-the-middle-mile/
https://support.impinj.com/hc/article_attachments/360002045159/xSpan_Overview_Datasheet_including_Software_Tools_Accessories_and_Specifications_20190405.pdf
https://support.impinj.com/hc/article_attachments/360002045159/xSpan_Overview_Datasheet_including_Software_Tools_Accessories_and_Specifications_20190405.pdf
https://support.impinj.com/hc/article_attachments/360002045159/xSpan_Overview_Datasheet_including_Software_Tools_Accessories_and_Specifications_20190405.pdf
https://support.impinj.com/hc/article_attachments/360002045159/xSpan_Overview_Datasheet_including_Software_Tools_Accessories_and_Specifications_20190405.pdf
https://www.gs1.org/sites/default/files/docs/epc/uhfc1g2_1_2_0-standard-20080511.pdf
https://www.gs1.org/sites/default/files/docs/epc/uhfc1g2_1_2_0-standard-20080511.pdf
https://www.gs1.org/sites/default/files/docs/epc/uhfc1g2_1_2_0-standard-20080511.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-229.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-229.pdf
https://www.analog.com/en/technical-articles/developing-a-uhf-rfid-reader-rf-front-end-with-an-analog-devices-solution.html
https://www.analog.com/en/technical-articles/developing-a-uhf-rfid-reader-rf-front-end-with-an-analog-devices-solution.html
https://www.analog.com/en/technical-articles/developing-a-uhf-rfid-reader-rf-front-end-with-an-analog-devices-solution.html
https://www.analog.com/en/technical-articles/developing-a-uhf-rfid-reader-rf-front-end-with-an-analog-devices-solution.html
https://www.analog.com/en/products/adrv9009.html
https://www.analog.com/en/products/adrv9009.html
https://www.analog.com/en/products/hmc7044.html
https://www.analog.com/en/products/hmc7044.html

[25] Dogbone monza r6. https://rfid.averydennison
.com/content/dam/rfid/en/products/rfid-pro
ducts/data-sheets/datasheet-Dogbone-Monza
-R6.pdf.

[26] John G. Proakis and Masoud Salehi. Digital communi-
cations. McGraw-Hill., 2008.

[27] Krishnasamy T Selvan and Ramakrishna Janaswamy.
Fraunhofer and fresnel distances: Unified derivation for
aperture antennas. IEEE Antennas and Propagation
Magazine, 59(4), 2017.

[28] Robert Miesen, Fabian Kirsch, and Martin Vossiek.
Holographic localization of passive uhf rfid transpon-
ders. In IEEE RFID, 2011.

[29] Huatao Xu, Dong Wang, Run Zhao, and Qian Zhang.
Faho: deep learning enhanced holographic localization
for rfid tags. In ACM SenSys, 2019.

[30] Huatao Xu, Dong Wang, Run Zhao, and Qian Zhang.
Adarf: Adaptive rfid-based indoor localization using
deep learning enhanced holography. ACM IMWUT,
3(3), 2019.

[31] Fast 2d peak finder. https://www.mathworks.com/
matlabcentral/fileexchange/37388-fast-2d-p
eak-finder.

[32] Dong-Ze Zheng and Qing-Xin Chu. A wideband dual-
polarized antenna with two independently controllable
resonant modes and its array for base-station applica-
tions. IEEE Antennas and Wireless Propagation Letters,
16, 2017.

[33] Seong-Youp Suh, WL Stutzman, and WA Davis. Low-
profile, dual-polarized broadband antennas. In IEEE
Antennas and Propagation Society International Sympo-
sium, volume 2, 2003.

[34] Ansys hfss. https://www.ansys.com/products/e
lectronics/ansys-hfss.

[35] 902-928 Cavity Band Rejection Filter WT-A3678-
R10. https://www.wtmicrowave.com/en/product
/WT-A3678-R10.html.

[36] Zhao Tan, Yonina C Eldar, and Arye Nehorai. Direction
of arrival estimation using co-prime arrays: A super
resolution viewpoint. IEEE Transactions on Signal
Processing, 62(21), 2014.

[37] David J McLaurin, Kevin G Gard, Richard P Schubert,
Manish J Manglani, Haiyang Zhu, David Alldred, Zhao
Li, Steven R Bal, Jianxun Fan, Oliver E Gysel, et al. A
highly reconfigurable 65nm cmos rf-to-bits transceiver
for full-band multicarrier tdd/fdd 2g/3g/4g/5g macro
basestations. In IEEE ISSCC, 2018.

[38] Xilinx ultrascale series fpga. https://www.xilinx.c
om/support/documentation/selection-guides/
ultrascale-fpga-product-selection-guide.p
df.

[39] Third party xcku060 som (in chinese). https://deta
il.tmall.com/item.htm?id=654943824333.

[40] Process-explorer. https://learn.microsoft.com/
en-us/sysinternals/downloads/process-explo
rer.

[41] Cufft library. https://docs.nvidia.com/cuda/cuf
ft/index.html.

[42] Monza 4 datasheet. https://support.impinj.com
/hc/en-us/articles/202756908-Monza-4-Datas
heet.

[43] Daniel D Deavours. Analysis and design of wideband
passive uhf rfid tags using a circuit model. In IEEE
International Conference on RFID, 2009.

[44] Towards deployable rfid localization system for logis-
tics network. https://soar.group/projects/rfid
/rfchord/.

[45] Total station instrument tutorial. https:
//www.aps.anl.gov/files/APS-Uploads/DET
/Detector-Pool/Beamline-Components/Lecia_
Optical_Level/Surveying_en.pdf.

[46] Impinj r700 rain rfid reader for enterprise-grade iot solu-
tions. https://www.impinj.com/products/reader
s/impinj-r700.

[47] Supreetha Rao Aroor and Daniel D Deavours. Evalu-
ation of the state of passive uhf rfid: An experimental
approach. IEEE Systems Journal, 1(2), 2007.

[48] Impinj Inc. Impinj far-field rfid antenna. https://su
pport.impinj.com/hc/article_attachments/36
0000841520/ANT-DS-S9028PCxx_Impinj1218.pdf.

[49] Jingxian Wang, Junbo Zhang, Rajarshi Saha, Haojian
Jin, and Swarun Kumar. Pushing the range limits of
commercial passive rfids. In USENIX NSDI, 2019.

[50] Automated guided vehicle. https://en.wikipedia
.org/wiki/Automated_guided_vehicle.

[51] Maximize warehouse storage with as/rs.
https://www.bastiansolutions.com/solutio
ns/technology/asrs/.

[52] Autonomous mobile robot technology and use cases.
https://www.intel.com/content/www/us/en/ro
botics/autonomous-mobile-robots/overview.h
tml.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1797

https://rfid.averydennison.com/content/dam/rfid/en/products/rfid-products/data-sheets/datasheet-Dogbone-Monza-R6.pdf
https://rfid.averydennison.com/content/dam/rfid/en/products/rfid-products/data-sheets/datasheet-Dogbone-Monza-R6.pdf
https://rfid.averydennison.com/content/dam/rfid/en/products/rfid-products/data-sheets/datasheet-Dogbone-Monza-R6.pdf
https://rfid.averydennison.com/content/dam/rfid/en/products/rfid-products/data-sheets/datasheet-Dogbone-Monza-R6.pdf
https://www.mathworks.com/matlabcentral/fileexchange/37388-fast-2d-peak-finder
https://www.mathworks.com/matlabcentral/fileexchange/37388-fast-2d-peak-finder
https://www.mathworks.com/matlabcentral/fileexchange/37388-fast-2d-peak-finder
https://www.ansys.com/products/electronics/ansys-hfss
https://www.ansys.com/products/electronics/ansys-hfss
https://www.wtmicrowave.com/en/product/WT-A3678-R10.html
https://www.wtmicrowave.com/en/product/WT-A3678-R10.html
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://detail.tmall.com/item.htm?id=654943824333
https://detail.tmall.com/item.htm?id=654943824333
https://learn.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://learn.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://learn.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://docs.nvidia.com/cuda/cufft/index.html
https://docs.nvidia.com/cuda/cufft/index.html
https://support.impinj.com/hc/en-us/articles/202756908-Monza-4-Datasheet
https://support.impinj.com/hc/en-us/articles/202756908-Monza-4-Datasheet
https://support.impinj.com/hc/en-us/articles/202756908-Monza-4-Datasheet
https://soar.group/projects/rfid/rfchord/
https://soar.group/projects/rfid/rfchord/
https://www.aps.anl.gov/files/APS-Uploads/DET/Detector-Pool/Beamline-Components/Lecia_Optical_Level/Surveying_en.pdf
https://www.aps.anl.gov/files/APS-Uploads/DET/Detector-Pool/Beamline-Components/Lecia_Optical_Level/Surveying_en.pdf
https://www.aps.anl.gov/files/APS-Uploads/DET/Detector-Pool/Beamline-Components/Lecia_Optical_Level/Surveying_en.pdf
https://www.aps.anl.gov/files/APS-Uploads/DET/Detector-Pool/Beamline-Components/Lecia_Optical_Level/Surveying_en.pdf
https://www.impinj.com/products/readers/impinj-r700
https://www.impinj.com/products/readers/impinj-r700
https://support.impinj.com/hc/article_attachments/360000841520/ANT-DS-S9028PCxx_Impinj 1218.pdf
https://support.impinj.com/hc/article_attachments/360000841520/ANT-DS-S9028PCxx_Impinj 1218.pdf
https://support.impinj.com/hc/article_attachments/360000841520/ANT-DS-S9028PCxx_Impinj 1218.pdf
https://en.wikipedia.org/wiki/Automated_guided_vehicle
https://en.wikipedia.org/wiki/Automated_guided_vehicle
https://www.bastiansolutions.com/solutions/technology/asrs/
https://www.bastiansolutions.com/solutions/technology/asrs/
https://www.intel.com/content/www/us/en/robotics/autonomous-mobile-robots/overview.html
https://www.intel.com/content/www/us/en/robotics/autonomous-mobile-robots/overview.html
https://www.intel.com/content/www/us/en/robotics/autonomous-mobile-robots/overview.html

[53] Gitanjali Swamy. Manufacturing cost simulations for
low cost rfid. Available at SSRN 3690073, 2020.

[54] Qingyun Zhang, Leixian Shen, Jiewen Shao, and
Fu Xiao. Rf-track: Real-time tracking of rfid tags with
stationary antennas. In ACM TURC, 2020.

[55] Teng Wei and Xinyu Zhang. Gyro in the air: tracking
3d orientation of batteryless internet-of-things. In ACM
MobiCom, 2016.

[56] Yanling Bu, Lei Xie, Yinyin Gong, Chuyu Wang, Lei
Yang, Jia Liu, and Sanglu Lu. Rf-dial: An rfid-based
2d human-computer interaction via tag array. In IEEE
INFOCOM, 2018.

[57] Han Ding, Jinsong Han, Chen Qian, Fu Xiao, Ge Wang,
Nan Yang, Wei Xi, and Jian Xiao. Trio: Utilizing tag
interference for refined localization of passive rfid. In
IEEE INFOCOM, 2018.

[58] Longfei Shangguan, Zheng Yang, Alex X Liu, Zimu
Zhou, and Yunhao Liu. Relative localization of rfid
tags using spatial-temporal phase profiling. In USENIX
NSDI, 2015.

[59] Bryce Kellogg, Aaron Parks, Shyamnath Gollakota,
Joshua R Smith, and David Wetherall. Wi-fi backscatter:
Internet connectivity for rf-powered devices. In ACM
SIGCOMM, 2014.

[60] Yunfei Ma and Edwin Chihchuan Kan. Accurate indoor
ranging by broadband harmonic generation in passive
nltl backscatter tags. IEEE transactions on microwave
theory and techniques, 62(5), 2014.

[61] Impinj speedway rain rfid readers for flexible solution
development. https://www.impinj.com/products/
readers/impinj-speedway.

[62] Alien alr-9900+. https://www.alientechnology.
com/products/files-2/alr-9900/.

[63] Michael Buettner and David Wetherall. An empirical
study of uhf rfid performance. In ACM MobiCom, 2008.

[64] Michael Buettner and David Wetherall. A software
radio-based uhf rfid reader for phy/mac experimentation.
In IEEE RFID, 2011.

[65] John Kimionis, Aggelos Bletsas, and John N Sahalos.
Design and implementation of rfid systems with soft-
ware defined radio. In IEEE EUCAP, 2012.

[66] Nikos Kargas, Fanis Mavromatis, and Aggelos Bletsas.
Fully-coherent reader with commodity sdr for gen2 fm0
and computational rfid. IEEE Wireless Communications
Letters, 4(6), 2015.

[67] Alírio J Soares Boaventura and Nuno Borges Carvalho.
The design of a high-performance multisine rfid reader.
IEEE Transactions on Microwave Theory and Tech-
niques, 65(9), 2017.

[68] Yanwen Wang, Jiannong Cao, and Yuanqing Zheng. To-
ward a low-cost software-defined uhf rfid system for
distributed parallel sensing. IEEE Internet of Things
Journal, 8(17), 2021.

[69] Edward A Keehr. A low-cost software-defined uhf rfid
reader with active transmit leakage cancellation. In
IEEE RFID, 2018.

[70] Understanding the fcc part 15 regulations
for low power, non-licensed transmitters.
https://transition.fcc.gov/oet/info/docu
ments/bulletins/oet63/oet63rev.pdf.

[71] 15.231 - periodic operation in the band 40.66-40.70 mhz
and above 70 mhz. https://www.law.cornell.edu/
cfr/text/47/15.231.

[72] Section 15.231, operating on multiple carrier frequen-
cies. https://apps.fcc.gov/oetcf/kdb/forms/F
TSSearchResultPage.cfm?id=41685&switch=P.

A FCC Compliance
RF-CHORD adopts a 200 MHz bandwidth in the UHF band,
much wider than the 902~928 MHz ISM band. We need to
reduce the power of the signal emitted in the licensed band
to follow the FCC regulation [70]. Similar operations exist
in other systems, such as RFind [14]. RFind adopts a duty-
cycled single-tone signal with a peak power of -3 dBm and
average power of -13.3 dBm. However, due to the throughput
requirement of the localization, RF-CHORD’s sniffer should
always be ready to localize a tag, which means duty cycling
is unacceptable. Therefore, RF-CHORD adopts a hard limit
of -15 dBm per tone and can be even lower with similar
performance. One may concern that the multiple carrier op-
eration will not be the same as RFind [14] since the total
bandwidth is larger than the 0.25% bandwidth limitation in
FCC 15.231 (c) [71]. However, RF-CHORD can adopt the al-
ternative method mentioned in [72], which calculates the total
bandwidth by summing the individual occupied bandwidths
of each carrier frequency. Since we did not apply any modula-
tion to the carriers, the sum of respective bandwidths will be
extremely small, which can comply with the FCC regulation.
Other modulated waveforms (e.g., OFDM) cannot follow this
alternative method and may potentially violate the regulation.

B Kernel-layer Combinations for Different Lo-
calization Algorithms

Kernel-Layer near-field localization framework supports vari-
ous localization algorithms because of the flexibility of mea-
suring the similarity between receiving signal and theoretical

1798 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.impinj.com/products/readers/impinj-speedway
https://www.impinj.com/products/readers/impinj-speedway
https://www.alientechnology.com/products/files-2/alr-9900/
https://www.alientechnology.com/products/files-2/alr-9900/
https://transition.fcc.gov/oet/info/documents/bulletins/oet63/oet63rev.pdf
https://transition.fcc.gov/oet/info/documents/bulletins/oet63/oet63rev.pdf
https://www.law.cornell.edu/cfr/text/47/15.231
https://www.law.cornell.edu/cfr/text/47/15.231
https://apps.fcc.gov/oetcf/kdb/forms/FTSSearchResultPage.cfm?id=41685&switch=P
https://apps.fcc.gov/oetcf/kdb/forms/FTSSearchResultPage.cfm?id=41685&switch=P

signal and combining information across channels. For ex-
ample, traditional ToF and AoA estimation algorithms can
be implemented under the near-field condition with different
kernels and layers.
Kernel and Layers for ToF Estimation. ToF estimation can
be done by choosing the following kernel and layer, where ϕl
and θl are the empirical and theoretical phases at frequency
fl respectively, and d is the distance between tag and reader.

Kernel: e−j(ϕl−θl) = e−j(ϕl−2πfld/c) = e−jϕle2πflτ

Layer:
n∑
l=0

S(τ) =
n∑
l=0

e−jϕle2πflτ
(5)

When using the above kernel and layer functions, S(τ) is
the inverse Fourier transformation of the empirically mea-
sured phase value ϕ1,ϕ2, ...,ϕn. Therefore, S(τ) is the time-
of-flight expression of the empirically measured phases.
Kernel and Layers for AoA Estimation. Similar to the ToF
estimation, we can also design kernel and layer functions to
extract angle-of-arrive (AoA) estimation. For the AoA esti-
mation, we can use the following kernel and layer functions,
where ϕk and θk are the empirical and theoretical phases
at antenna k, respectively. ∆d is the distance between two
neighboring antennas.

Kernel: e−j(ϕk−θk) = e−j(ϕk−2πfk∆dsin(ψ)/c)

Layer:
m∑
k=1

S(ψ) =
m∑
k=0

e−jϕke2πfk∆dsin(ψ)/c (6)

S(ψ) measures the similarity of the theoretical signal com-
ing from angle ψ and the empirically measured phase value
ϕ1,ϕ2, ...,ϕm received by m antennas. Therefore, correct
AoA ψ is identified when S(ψ) is maximized.

The summation layer, which sums up all the channels first
by row and then by column, combines all the information
for the final result. In this case, it combines near-field ToF
and AoA estimations. We can develop more complex algo-
rithms with the kernel-layer framework, such as the multipath-
suppression algorithm in our paper.

C Direct Path Enhancement
We enhance the direct path and suppress the influence from
multipath with a frequency domain algorithm [14]. Assume
there are N paths with distances of d0,d1,d2, . . . ,dN , and
d0 is the direct path. The channel hl of lth carrier can be
expressed as:

hl = a0e
−j 2π

c fld0 +
N∑
i=1

aie
−j 2π

c fldi

ai is the propagation attenuation of the ith path. To simplify
the derivation without loss of generality, we assume a0 =

ai = 1, (i= 1,2,3, . . .), and what we measure is the phase of
channel response:

ϕl = ∠hl = ∠{e−j 2π
c fld0 +

N∑
i=1

e−j 2π
c fldi}

If we have a rough estimation of d0, called d̃0, we can
use this algorithm to enhance the part of a0e

−j 2π
c fld0 (direct

path) and suppress the part of
∑N
i=1 aie

−j 2π
c fldi (multipaths)

for a better location estimation. In more detail, we use the
prior knowledge of ROI to help determine the rough estima-
tion of direct path d̃0 with Alg. 1. Then we enhance the direct
path profile and suppress profiles of other paths by Eqn. 3
because the enhanced phase ϕ̃l can be written as:

ϕ̃l = ∠
n∑
i=1

ejϕiej
2π
c (fi−fl)d̃0

= ∠{e−j 2π
c fld0

N∑
i=1

ej
2π
c (fi−fl)(d̃0−d0)

+
N∑
i=1

[e−j 2π
c fldi

N∑
i=1

ej
2π
c (fi−fl)(d̃0−di)]}

d̃0 ≈ d0 so (d̃0−d0)∆f/c≪ 1, and it leads to:

N∑
i=1

ej
2π
c (i−l)∆f(d̃0−d0) ≈

N∑
i=1

1 =N

For multipath whose di is different from d̃0, d̃0−di is large
so∣∣∣∣∣

∑N
i=1 e

j 2π
c (fi−fl)(d̃0−di)

N

∣∣∣∣∣≈ ∣∣sinc
[
B

(
d̃0−di

)
/c

]∣∣≪ 1

The part of the direct path is much larger than the part
of other paths, so the direct path is reinforced. d̃0 helps to
get rid of the leakage interference from multipath, and the
following summation layer can make a better estimation of
d0 as the final output. Besides using the prior knowledge,
other methods (e.g., fingerprinting-based algorithm, Bayesian-
based algorithm) can also be used to determine the rough
estimation d̃0, which is beyond the scope of this paper.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1799

Exploring Practical Vulnerabilities of Machine Learning-based Wireless Systems
Zikun Liu†, Changming Xu†, Emerson Sie†, Gagandeep Singh†‡, Deepak Vasisht†

†University of Illinois Urbana-Champaign, ‡VMware Research

Abstract
Machine Learning (ML) is an increasingly popular tool for de-
signing wireless systems, both for communication and sensing
applications. We design and evaluate the impact of practically
feasible adversarial attacks against such ML-based wireless
systems. In doing so, we solve challenges that are unique to
the wireless domain: lack of synchronization between a be-
nign device and the adversarial device, and the effects of the
wireless channel on adversarial noise. We build, RAFA (RA-
dio Frequency Attack), the first hardware-implemented adver-
sarial attack platform against ML-based wireless systems and
evaluate it against two state-of-the-art communication and
sensing approaches at the physical layer. Our results show
that both these systems experience a significant performance
drop in response to the adversarial attack.

1 Introduction

Next-generation networks, 5G and beyond, promise to be
unprecedented in their scale and the diversity of applications,
ranging from virtual reality to low power Internet of Things
applications. Machine Learning (ML) has emerged as a key
component of such future networks to deliver application-
specific performance goals by optimally managing the diverse
capabilities of these networks – multiple antennas, different
spectrum bands, and smart surfaces. In academia, researchers
have efficaciously applied ML for both communication [45,
55, 60, 79, 85] and sensing [6, 51, 59, 74, 94] applications. ML-
based techniques are increasingly making their way to the
industry, in both RAN (radio access network) and the network
core. This trend has been accelerated by the recent shift of
telcos to cloud-based execution models.

Our goal: We investigate the vulnerabilities of using ML
in wireless systems. Our investigation is motivated by two
reasons. First, wireless networks play a crucial role in many
human-critical applications like autonomous driving, smart
healthcare, factory control, etc. Any failure to meet network
performance goals can have severe consequences in such
settings. Second, in popular domains such as computer vision
and natural language processing, past work has shown that
an adversary can add small imperceptible noise to the inputs
of a neural network making it predict completely different
results [27, 76] (e.g., a turtle is classified as a gun). Several
of these attacks have been reproduced in the real-world on
state-of-the-art ML models in these domains [5, 48, 49, 71],
showing that despite their impressive performance, the ML
models are not robust. These practical attacks have promoted

the development of new techniques for formal verification [40,
72, 73] and robust training [11, 34, 81, 84, 87, 90] in the vision
and NLP domains.

Our goal is to explore the practical vulnerabilities of state-
of-the-art ML-based wireless systems using adversarial at-
tacks. To mount practical real-world adversarial attacks, an
adversary must meet three requirements. First, it must not
need access to the infrastructure in real-time, i.e., it cannot
coordinate its transmissions with a benign sender, or access
the signal sensed by a benign receiver. Second, it must be low
complexity, i.e., it must not require large antenna arrays. Fi-
nally, it must be low power. It is relatively straightforward to
jam the spectrum with blind high-power transmissions. How-
ever, jamming causes large-scale disruption to the spectrum
and causes spectrum owners (e.g., telecom operators) to react.
We are interested in small changes of the signal that specifi-
cally target the ML models in wireless systems, and expose
their vulnerabilities.

Past work [2, 7, 9, 17, 18, 23, 43, 68] has studied adversar-
ial attacks against ML-based wireless systems in simulation.
These attacks do not meet the requirements above. Specifi-
cally, these attacks make unrealistic assumptions about the
attacker capabilities. For example, they assume that an adver-
sary can perfectly transmit adversarial signal or the attacker
can directly manipulate the input matrix to the neural network.
In practice, these assumptions do not hold. Adversarial signal
undergoes wireless transformations described below before
it arrives at a receiver. Similarly, directly altering the input
matrix to the neural network requires access to the receiver.

Challenges: Consider the scenario shown in Fig. 1, where
a (multi-antenna) base station communicates with a client
device and uses ML-based models to deliver communication
or sensing services. The adversary introduces small amounts
of noise in the environment. Generating real-world adversar-
ial attacks in such scenarios is challenging because of the
underlying physics of wireless signal propagation. A typical
adversarial attack takes an input to the ML model and crafts a
noise vector specific to this input. This structured noise, when
added to the input, causes the model to predict an incorrect
output. In the wireless systems context, an attacker does not
know the wireless channel between the client and the base
station, and therefore does not know the signal being fed to
the ML model. Secondly, the noise vector transmitted by the
attacker is vastly different from what gets observed at the base
station because: (a) Propagation effects: As the noise travels
from the attacker to the end device, the noise vector undergoes
the wireless channel experiencing reflection, attenuation, and
phase shifts in the environment. (b) Clock offsets: the clock of

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1801

Figure 1: A multi-antenna base station uses ML-based meth-
ods to deliver communication or sensing services to the client.
The adversary transmits small amounts of noise and disrupts
these services.

the adversary is not synchronized with the end device, leading
to random time and frequency offsets.

RAFA: We build the first real-world hardware-implemented
adversarial attack platform, RAFA, that solves these chal-
lenges and targets ML-based wireless systems. Our system
operates using a single antenna software defined radio and
does not need real time access to the client or the base station
in the attack setup. RAFA senses an ongoing communica-
tion on the wireless medium and introduces small amounts
of noise (perturbation) to the medium that disrupts state-of-
the-art ML-models. We demonstrate this attack on two state-
of-the-art systems at the physical layer: one communication
system (FIRE [55]) and one localization system (DLoc [6]).
We show the effectiveness of RAFA in both white-box and
black-box settings. The design of RAFA solves the following
challenges:

Unknown Inputs: Adversarial algorithms [16, 27, 57] typ-
ically identify a perturbation that changes the output of a
neural network for a given input. However, in practice, a wire-
less adversary, like RAFA, does not know the input to the
ML model because: (a) the wireless channel from the client
to the base station is unknown to the adversary, and (b) once
the signal is received at the base station, the signal under-
goes transformations (e.g., correcting for carrier frequency
offsets) before it is fed to the ML model. Therefore, to model
practical attacks, we require generating input-agnostic adver-
sarial perturbations. We, first, design a universal adversarial
perturbation (UAP), that focuses on changing the output on
a distribution of inputs, rather than a single input. This al-
lows us to be robust to the distribution of wireless signals,
implying that we do not need to know the channel from the
client to the base station. Furthermore, we develop differential
versions of the pre-processing steps so that the adversary can
generate perturbation vectors that remain adversarial even on
pre-processed data points.

Lack of Synchronization: The adversary is not synchronized

with the client or the base station. Therefore, its transmission
is not aligned with the client in time or frequency. The lack of
time synchronization creates temporal misalignment between
the benign signal and the adversarial perturbation. Similarly,
the lack of frequency synchronization creates a time-varying
phase shift between them. Furthermore, such clock offsets
are random and hard to predict beforehand. To counter such
offsets, we create a robustness mechanism in our UAP design,
that tests the perturbation vector for arbitrary phase offsets,
and picks perturbation vectors that are robust to such offsets.
By doing so, we shift the burden of dealing with the clock
offsets from hardware to software, therefore simplifying our
hardware design for the attack.

Channel-induced Transformation: Finally, the perturbation
vector crafted by RAFA undergoes a channel transformation
as it travels to the base station. The channel transformation
changes both the amplitude and phase of the perturbation
vector. Therefore, there are no guarantees on the value of
the perturbation vector after the channel transformation. This
means we cannot design a perturbation vector that is robust to
these transforms. RAFA leverages reciprocity to counter this
challenge. Specifically, the base station occasionally transmits
beacons or responses to its legitimate clients. Our adversary
overhears these transmissions and uses it to estimate the chan-
nel from the base station to itself. Due to the reciprocity
principle, this channel is equal to the channel from the adver-
sary to the base station. Once we know this channel, we use
our robust UAP method to construct a perturbation vector that
is effective even after the channel transform.

While these factors serve as natural protectors for wireless
systems against adversarial attacks, RAFA demonstrates the
ability to mount effective adversarial attacks despite these
challenges. We have implemented RAFA using the USRP
software defined radio against two state-of-the-art ML-based
wireless systems: FIRE [55] (for MIMO communication),
and DLoc [6] (for ML-based localization). For FIRE, RAFA’s
adversarial attack can reduce the median SNR (from origi-
nal SNR of 17.8 dB) of the predicted channel by 4.1 dB on
average compared to just 2.1 dB drop for Gaussian baseline.
Similarly, for DLoc, RAFA increases the median localization
error (from original error of 1.04 m) by 71 cm on average
compared to just 2 cm increase for Gaussian baseline. Our
results also present a preliminary version of potential defense
strategies.
Contributions: Our main contributions are:

• We design a new robust adversarial attack against ML-
based wireless systems that is input-agnostic and models
real-world effects such as lack of synchronization.

• We leverage channel reciprocity to model the effect of
wireless channel on adversarial perturbations.
• We demonstrate the first hardware-implemented adversarial

attacks against ML-based wireless systems.

ML-based wireless systems are increasingly being pro-

1802 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

posed in academia [6, 10, 35, 55, 94], and actively being ex-
plored in the industry [39, 64, 65] . Therefore, it is timely
and important to explore the challenges posed by adversarial
attacks in this context. To the best of our knowledge, our work
is the first to demonstrate realistic hardware-implemented at-
tacks against ML-based wireless systems. We believe RAFA
will allow researchers and practitioners to test the practical
robustness of ML systems before they get deployed widely in
the real-world and have severe consequences for any failures
when exposed to such attacks. We also envision that adver-
sarial examples exposed by RAFA will lead to development
of robust ML models. An early attempt at developing such
robust models is demonstrated in Sec. 6.6.

2 Adversary Model

Objective: Our goal is to promote the development of ro-
bust ML-models by identifying the attack surface of ML-
based wireless systems in the real world. We focus on the
existence and performance of practically feasible wireless
attacks. We identify practically feasible as attacks that can be
implemented using real hardware and without requiring coor-
dination with the base station or client. Furthermore, we are
interested in vulnerabilities specific to ML-models in the wire-
less setting. Therefore, we do not consider jamming, which
is a brute-force solution that blocks all communication in the
medium. We consider the scenario in Fig. 1. A client commu-
nicates with a base station on the wireless medium. The base
station can have multiple antennas. The base station relies
on a machine learning based approach to deliver communica-
tion or localization services to the client. Some examples for
ML-based communication systems are shown in Tab. 1.

Application Examples
Communication FIRE [55], OptML [10], NeuMac [35]
Localization DLoc [6], IPS [93] , LAFA [38]

Table 1: Examples of ML-based Wireless Systems

Adversary Goal: The adversary wants to degrade the quality
of ML-based location or communication service offered by
the base station. The adversary aims to target specific ML-
based services, and not jam the entire spectrum. To achieve
this objective, the adversary transmits a carefully designed
perturbation signal over the wireless channel. This pertur-
bation gets superimposed at the receiver (which could be a
cellular base station, access point, etc) with the benign signal
transmitted from the client such as a cell phone. The receiver
will later feed this seemingly intact but actually compromised
signal into the ML-pipeline, negatively affecting its output
prediction. Consistent with recent trends, we focus on neural
networks as target ML models for this paper.

We describe the attacker properties in our threat model:

Coordination-free: We do not assume any coordination
between the base station and the adversary (or between the

client and adversary). This implies that the adversary is un-
synchronized, i.e. has time and frequency shifts with respect
to the other (benign) devices. The adversary also does not
know when the transmission from the client begins or ends.

Base Station Information: The adversary does not know
the location of the client or the base station. The adversary
knows only public information about base station hardware,
such as information which can be gleaned from FCC filings
or standards documents.

Low-complexity: The adversary uses low complexity hard-
ware. Even though the base station and the client may have
multiple antennas, the adversary uses a single antenna trans-
mitter. This reduces the cost and complexity of the attack,
making it more universal, and generalizable.

Knowledge about the ML model: We assume that the
adversary can sample data from the training distribution of the
ML model running on the base station and knows the model
family (e.g.,variational autoencoder) but not necessarily the
architecture (e.g., fully-connected, convolutional), and the
operations involved in the pre-processing pipeline. We believe
that these assumptions are feasible for the real-world ML-
based wireless systems because: (1) details about the model
family are disclosed and accessible, (2) the attacker can access
sample data simply by overhearing the client transmission,
and measuring the corresponding wireless signals, (3) pre-
processing pipelines (e.g., correcting for channel frequency
offsets) are fairly standardized. We consider both white-box
(access to model architecture and parameters) and black-box
adversaries (no access to model architecture and parameters).
Our results show that black-box adversaries are almost as
effective as white-box ones.

Noise Budget: To avoid large-scale disruption to the wireless
spectrum, we require that the L∞-norm of the noise vector
crafted by the adversary is bounded by a small constant ε ∈R.
This prevents the noise being concentrated in individual sub-
frequencies. We show the effect of the noise crafted with
different values of ε on the model performance in Sec. 6.

Test Time Attack: We do not consider attacks that interfere
with model training, the model is trained and fixed for our
attacks. The adversary transmits a noise signal at test time.

3 System Overview

3.1 Target Systems
We consider two state-of-the-art ML-based wireless systems
– one each for communication and sensing. In this paper,
we focus solely on physical layer systems, while delegating
investigation of attacks on higher layers to future work.

A. FIRE: Reciprocity for FDD MIMO systems – In order
to achieve MIMO capabilities in 5G, base stations need to
know the downlink wireless channel from their antennas to
every client device. In FDD (Frequency Domain Duplexing)

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1803

Robust Wireless UAP

Robust to
CFO + Unsync

∆𝜑

Coordination-Free Client-Agnostic Stealthiness

𝑣

𝑢

𝑝
< 𝜖

Small Amplitude

Adversarial
Perturbation

Original Model
(White Box)

Substitute Model
(Black Box)

or

Model

Gradient
𝑣 𝑝 < 𝜖 𝑣

Robust to
Client CSIs

𝑣

Figure 2: RAFA Pipeline: RAFA works in both modes – white-box and black-box (with a substitute model). RAFA is robust to
multiple wireless transformations such as clock offsets and channel transformations.

systems, dominant in the United States, the client devices
measure the wireless channel using extra preamble symbols
transmitted by the base station and send it as feedback to
the base station. However, this feedback is unsustainable and
causes huge spectrum waste. Leveraging the intuition that
both uplink and downlink channels are generated by the same
underlying physical environment, recent work [55] proposed
FIRE which uses an end-to-end ML based approach to predict
the downlink channels without any feedback from the client.
FIRE’s ML model uses a variant of the variational autoen-
coders (VAE). FIRE takes uplink channels measured at the
base station as input and predicts the downlink channel. The
accuracy of the downlink channel prediction determines the
performance of multi-antenna techniques like MIMO, MU-
MIMO. Our goal is to induce errors in this model and make
it predict erroneous downlink channels. Errors in downlink
channel estimates reduce the communication efficiency of
multi-antenna systems (e.g., MIMO).
B. DLoc: Deep Learning based Wireless Localization –
DLoc [6] is a deep learning based wireless localization algo-
rithm that overcomes traditional limitations of RF-based lo-
calization approaches such as mutlipath and occlusions. DLoc
acquires wireless channels from four fixed access points to
the user device that it wants to localize. The wireless channels
are then sent into an autoencoder neural network as input.
The network predicts the user location in 2D-Cartesian coor-
dinates. DLoc achieves state-of-the-art localization accuracy
in indoor localization. Therefore, we choose DLoc as the rep-
resentative sensing application. Our goal is to increase the
localization error of DLoc, and hence, increase failures in
location-based applications (such as robotic navigation).

3.2 Operation Overview
Both the systems defined above rely on the wireless channel
estimated at the base station. Our goal is to alter this wire-
less channel by transmitting a perturbation vector during the
channel estimation process. During the channel estimation
process, the client transmits a preamble. The preamble is by
the standard and is, therefore, public knowledge. The base sta-
tion receives the preamble and uses it to identify the wireless
channel. Due to the broadcast characteristic of the wireless

channel, we can pollute the channel estimation process by
transmitting a noise signal. RAFA transmits the adversarial
perturbation using our custom hardware platform. Thus, the
signal received at the base station is a function of both the
preamble transmitted by the client and the noise transmitted
by our platform.

Fig. 2 shown an overview of RAFA’s operation. RAFA’s
algorithm (discussed in Sec. 4) computes an adversarial per-
turbation which will be transmitted by the RAFA hardware,
described in Sec. 5. The base station receives a sum of the
signal transmitted by the client and the adversary, with chan-
nel and clock distortions. This combined signal then passes
through the pre-processing steps and the ML-models defined
above. We evaluate the performance of the ML-models with
and without the adversarial perturbation in Sec. 6.
Notation: For the rest of this paper, we use capital-bold
to denote matrices (M,N,...), small-bold to denote vectors
(u,v,...), and mathematical font to denote functions or ML-
models (A ,L , ...).

4 RAdio Frequency Attack (RAFA)
In this section, we present our formulation of RAFA. We start
with a brief background on adversarial attacks then discuss
our attack formulation and modeling of wireless properties.
Finally, we discuss our algorithmic implementation of RAFA.

4.1 Background on Adversarial Perturbations
For a given trained ML-model M mapping inputs xi to out-
puts yi, an adversarial attack algorithm aims to find a per-
turbation vector, vi, whose magnitude is bounded by a small
constant ε ∈ R in some norm, such that the loss function
L(M (xi +vi),yi) is maximized, i.e., the output of the model
for the perturbed input xi +vi is far away from the target yi.
Formally, the attack algorithm solves the following optimiza-
tion problem:

argmax
vi

L(M (xi +vi)) s.t. ||vi||< ε (1)

This attack problem formulation is well studied and many
approaches [16, 27, 57] have been proposed to approximate
this optimization problem. We utilize the state-of-the-art Pro-
jected Gradient Descent (PGD) [57] method. PGD iteratively

1804 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

takes steps in the direction of the gradient while restricting the
total perturbation to be within ε. The constraint on the norm
of the noise vector ensures that the perturbed vector is not
significantly different from the original input xi. We note that
PGD requires access to the model parameters for computing
gradients. One way to handle the black-box setting where the
attacker does not have this access is to train a surrogate model
on the training distribution of the original model (to which
the attacker has access) and transfer the attacks computed on
the surrogate model to the original model.

As discussed before, our model does not know the input to
the model, therefore we rely on universal adversarial perturba-
tions (UAPs) [58]. Instead of computing a different additive
noise for each input, UAPs compute a single additive noise
that is effective for all inputs, X = {xi}N

i=1 in the training
distribution of the ML model. One way to encode this is by
maximizing the expected value of the loss.

argmax
v

Exi∈X L(M (xi +v),yi) s.t. ||v||< ε (2)

Typically, this optimization problem is approximated by
iteratively computing input-aware gradient updates (obtained
from the original or a surrogate model) to a perturbation
vector over the training set [58]. We use a variant of the UAP,
called robust UAP [83], which designs a universal adversarial
perturbation such that it is robust to transformations (such as
image rotations, and translations etc for vision models).

4.2 Our Attack Formulation

For simplicity, we start with a single input case, i.e., we wish to
design a perturbation vector that is specific to wireless channel
matrix, H, observed at the base station. H is a Nant ×Nsubc
matrix, where Nant is the number of antennas on the base
station and Nsubc is the number of OFDM subcarriers. Our
goal is to search for a perturbation vector, v, of length Nsubc
that can disrupt a machine learning model Mθ, where θ is the
set of weights for the model. Specifically, we aim to optimize:

argmax
v

ETτ∈Tτ
L(Mθ(P (H+Tτ(v))),y), s.t. ||v||p < ε

(3)
where L(·, ·) is a chosen loss function to measure the differ-
ence between the model’s prediction and the ground truth,
ε restricts the lp norm of the perturbation vector. We also
define two new abstractions in the equation above: P (·) is
the pre-processing pipeline used by the base station, before
it is fed to the ML-model, Mθ. Similarly, Tτ represents the
transformations Tτ the perturbation vector goes through be-
fore it arrives at the base station. These transformations are
parameterized by τ. Next, we discuss how these abstractions
model the real-world effects for wireless systems.

4.3 Modeling Pre-Processing
Both our target systems perform pre-processing on the es-
timated channel and feed the processed channel to the neu-
ral network for prediction. We model these pre-processing
steps as P . FIRE involves two pre-processing steps: it stan-
dardizes the Carrier Frequency Offset (CFO) and hardware
detection delay across different measurements of the same
channel. DLoc transforms the channel into the 2D-cartesian
heatmap representing the probability of a signal originating
from a given location (using signal-processing approaches
like Fourier Transforms).

We need to represent P as a differential operation, to enable
optimization in Eqn. 3. In both pre-processing methods, there
are non-differentiable functions such as argmax(), ceil(),
sign() that hinder gradient propagation for our optimization
problem. Therefore, we use a differentiable approximation of
these functions which is supplied by common ML frameworks
such as Pytorch [61].

4.4 Modeling Lack of Synchronization
Since the adversary is not synchronized with the client or the
base station, the noise transmitted by it experiences two kinds
of distortions that must be modelled by Tτ(·) defined above:

Carrier Frequency Offset: The oscillators at the adversary
and the base station are not synchronized. This leads to a CFO
between them. This frequency offset, denoted by ∆ f , will
continuously add a phase shift in the received signal ŝ(t) with
respect to the true signal s(t) over time: ŝ(t) = s(t)e j2π∆ f t .

Since the client and attacker have different transmission
chains, their CFO with respect to the base station is also
different. Assume the CFO between the client and the base
station is ∆ f1, the CFO between the attacker and the base
station is ∆ f2, thus the CFO discrepancy will add phase offset
e j2π(∆ f1−∆ f2)t to the transmitted adversarial signal with respect
to the client signal. This is a time-varying effect, implying
that the sum of the client signal and the adversary signal
changes over time. Since t, ∆ f1 and ∆ f2 are random, we can
simplify this effect as a multiplication of e jφ,φ ∈ [0,2π] to
the adversary signal.

Unsynchronized Transmissions: Ideally, the adversary
should start transmitting the perturbation signal at the same
time when the client starts transmitting the preamble so that
the perturbation can be superimposed at the base station pre-
cisely. In the real-world setting, this is hard to achieve since
the attacker cannot coordinate with the client preemptively
or synchronize its clocks. There are two possible approaches
to solve this problem: (a) A part of the signal preamble is
used for packet detection before the channel estimation phase.
One can design an attacker that detects the start of the packet,
and starts transmitting a perturbation in response. This can
achieve coarse-grained synchronization, but requires fast pro-
cessing (e.g., FPGAs). (b) An alternative approach is to let the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1805

adversary transmit multiple copies of the perturbation signal,
and deal with the resulting large mis-alignment.

For simplicity, we go with the latter approach, which re-
quires much lower overhead. This causes a random time delay
∆t between the benign client signal and the adversary signal
in the time domain. Due to the properties of OFDM, this is
equal to a phase offset e− j2π∆t fi , where fi is the frequency of
the ith OFDM subcarrier. Note that, this is similar to timing
misalignment in typical OFDM receivers [24, 77], wherein a
portion of the OFDM symbol is repeated (in the cyclic pre-
fix). Any sample misalignment adds a phase that is linearly
dependent on the amount of misalignment and the frequency
of the subcarrier. We model this phase shift in Tτ(·).

4.5 Modeling Channel Transformations on the
Perturbation Vector

Like any other wireless signal, the perturbation vector trans-
mitted by the adversary goes through the wireless channel.
Let us say that the wireless channel matrix for the adversary is,
Ha, with dimensions Nant ×Nsubc (same dimensions as H for
the client). Then, if the adversary transmits the perturbation
vector, v, it is received at the base station as Hav+g, where
g is additive white Gaussian noise.

Each element in Ha has an amplitude and a phase. There-
fore, the final outcome of the added perturbation can be un-
bounded, if we do not know Ha. However, Ha can only be
measured at the base station, that too in the absence of the
client signal. Clearly, measurement by this method is not pos-
sible for the attacker because it does not have any coordination
with the client or the base station. Therefore, it is pertinent to
find an alternative method to measure Ha.

To estimate Ha, we leverage channel reciprocity. Channel
reciprocity is a fundamental physical principle that states
that wireless signals take the same path in either direction
between any two devices. Therefore, the wireless channel
from the adversary to the base station is equal to the wireless
channel from the base station to the adversary (modulo some
hardware differences). RAFA listens to the wireless medium
and captures signals transmitted by the base station (either
periodic beacons or communication with legitimate clients).
This allows the adversary to estimate an approximation to Ha.
We discuss in Sec. 5 how this step is implemented in practice.

4.6 Generating Practical Adversarial Attacks
The above factors will jointly modify the adversarial perturba-
tion signal vi transmitted in the ith subcarrier by the following
transformation function:

Tφ,∆t,hi
a,gi

(vi) = vie jφe− j2π fi∆thi
a +gi (4)

Note that the CFO term φ is invariant to the frequency, so it’s
the same across all the subcarriers.

Algorithm 1: Robust Wireless UAP (RW-UAP)
Input :Dataset xi,yi ∈H , network model Mθ, l∞

norm threshold ε, desired network loss value
δ, attacker channel Ha, number of epochs ep

Output :Robust universal perturbation vg for dataset
X

1 Initialize vg←Uni f orm(−ε,ε)
2 for n← 0 to ep−1 do
3 for each batch Bi ⊂H do
4 ∆vi← RW-PGD (Bi,vg,Mθ,ε,δ,Ha)
5 vg← (vg +∆vi).clamp(−ε,ε)

6 end for
7 end for
8 return vg

Now that we have characterized both P and Tτ, we try to
find a perturbation that is robust to these wireless factors. We
build on the algorithm presented in [83] which works in the
vision domain to work with P and Tτ, Algorithm 1 shows
the pseudocode for generating Robust Universal Adversarial
Perturbations in the wireless setting. It contains twp loops
to iterate multiple times on the training dataset and on ev-
ery batch of data points respectively. We first initialize the
perturbation vector vg randomly. Because of random initial-
ization, we can generate several different UAPs by running
the algorithm multiple times. The algorithm iteratively up-
dates the initial perturbation with the goal of being adversarial
for all elements in the training set. Given a set of training data
points H sampled from the training distribution of the ML
model, the algorithm iterates over batches B ⊂ H . During
each epoch, it iterates over every batch, Bi, finding an adver-
sarial direction vector ∆vi that is robust to wireless factors
for that batch using the Robust Wireless PGD (RW-PGD) algo-
rithm shown in Algorithm 2. ∆vi is then added to vg and the
result is projected back so that the updated vg does not violate
the constraint on its norm.

Next, we describe the RW-PGD algorithm shown in Algo-
rithm 2. It contains two loops to iterate multiple times on the
input data points and on different transformations respectively.
The algorithm takes a batch of inputs, B. It then first randomly
samples N tuples of wireless factors including CFO, resyn-
chronization, and gaussian noise as described in the previous
section. Increasing the value of N increases both the robust-
ness of the output perturbation and the runtime of the RW-PGD
algorithm. We chose a value of N that balances the tradeoff
between cost and robustness. At each iteration, we transform
our current perturbation by each of the N transformations. We
then compute the mean loss over all data points in the batch
added to each of our N transformed perturbations and conduct
gradient ascent on it aiming to increase the mean loss. Unlike
traditional PGD [57], we compute a single vector per batch
of data points. We further found that using the raw gradient

1806 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 2: Robust Wireless PGD (RW-PGD)
Input :Batch of data points xi,yi ∈ B, current

perturbation vg, network model Mθ, l∞ norm
threshold ε, desired network loss value δ,
attacker channel Ha, maximum number of
epochs ep, learning rate α, number of
transformations N

Output :Robust perturbation v
1 Initialize v← 0
2 Sample N sets of wireless factors,

τ j←{φ j,∆t j,g j,Ha}, uniformly at random
3 for n← 0 to ep−1 do
4 for xi,yi ∈ B, j ∈ [N] do
5 Get predictions for N transformations:

y∗i,j←Mθ(xi +Tτ j(vg + v))
6 end for
7 LB← 1

N·|B| ∑i L(yi,y∗i,j)
8 if LB > δ then
9 break

10 end if
11 v← (v+α ·∆LB).clamp(−ε,ε)

12 end for
13 return v

to update was more effective than the sign(·) of the gradient
in our case. Note that, Ha, i.e., the wireless channel between
the attacker and the base station, is fixed and obtained by the
attacker without sending any preambles.

Ha is continuously sampled by the attacker, so we need to
recompute the attack on the fly. This is inevitable as differ-
ent Ha have essentially unbounded effect on the perturbation.
Thus, we further speed up our algorithm by computing multi-
ple UAPs at the same time. We have chosen algorithm param-
eters that maximize the speed for our required performance.

By using the above algorithm, we are able to find robust
universal perturbations that work effectively against a variety
of wireless factors. In order to truly expose the vulnerabilities
of wireless system models, we show in a real-world hardware
setting that our attack is effective.

5 Hardware Design
After identifying the adversarial noise to inject, we ask if
this noise is feasible in practice, i.e., can we design hardware
that can introduce such noise? In this section, we design a
generic physical hardware platform as an attacker to inject
such perturbation into wireless channels. We believe that this
step is novel and unique to the wireless domain because no
past work has demonstrated hardware-driven attacks on wire-
less systems. We describe the design principles of RAFA’s
hardware platform and its implementation.

5.1 Design Principle

We design our platform with following design principles:

No Synchronization Needed: We design RAFA’s platform
to have minimum assumptions, no requirement to access the
client and the base station. Our attack belongs to the realm
of pilot contamination but previous literatures [28, 36, 37] all
assume that the attacker know the exact timing to synchronize
with the client so that it can transmit the noise signal at the
same time when client transmits the preamble. In our design,
we get rid of this assumption and instead, transmit the at-
tacker’s perturbation in a unsynchronized manner. According
to Sec. 6.2, our perturbation is robust to such unsynchroniza-
tion on the sample level, as a result, we don’t need the timing
of the client to conduct effective attack.

Leveraging Reciprocity: Recall that we leverage reciprocity
to estimate Ha, the channel from the attacker to the base
station. However, reciprocity requires correcting for the hard-
ware effects caused by each respective transmitter. These
effects comprise of phase and signal strength variations. The
phase variations are captured in the transformations caused
due to CFO and timing offsets for our perturbations. There-
fore, in our attack, we just need to calibrate for the difference
in transmit power between the attacker and the base station.

Specifically, the transmit power is different at the attacker
and the base station (the base station transmits a much higher
power). Although transmit powers don’t affect the applica-
tions enabled by reciprocity such as beamforming, signal
nulling, etc. [41, 47, 53], we need to know the true channel
value including the power in order to control the received per-
turbation power at the base station, as shown in Algorithm 2.
The adversary can obtain the transmit power of the base sta-
tion using public documents like FCC filings. We can estimate
the transmit power of the adversary hardware using specifi-
cation sheets. Then, the adversary computes the difference
between the two and uses it to correct for the transmit power
difference.

Single Antenna: We design RAFA’s hardware platform with
a single antenna. This limits our hardware complexity and
making it easy to implement (single transmit-receive chain).
One class of adversarial attacks on traditional systems [42,44]
is only effective when the attacker has same or more number
of antennas as the base station. In our case, we show that even
with one antenna, it is possible to mount reasonable attacks.

However, this choice limits the capability of the attack.
While the input channel matrix, H, has dimension Nant×Nsubc,
the perturbation is a vector v with length Nsubc. Inherently,
this implies that the perturbation has less control over the
final output. Mathematically, v operates in a 1-dimensional
subspace of a Nant dimensional antenna space. The larger
the Nant , the less powerful our adversary. We expect multi-
antenna adversaries to be more effective, but we chose single
antenna adversaries for their low complexity.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1807

Nexmon
(Rx)

USRP
(Tx)

RAFA
Algorithm

Attacker’s
Channel

Adversarial

Perturbation

Figure 3: (Top) The top-down view of the attacker hard-
ware platform. (Bottom) The platform consists of a Nexmon-
receiver and a USRP transmitter – both share a single antenna
connected through a splitter.

10 m

7
 m

Figure 4: Layout of the experimental environment: We conduct
our experiments in a lab setup measuring 10m by 7m. (Blue:
Client Locations, Yellow: Base station, Red: Attacker)

5.2 System Implementation

We use the Nexmon [29] tool to measure wireless channels.
We build a 4-antenna base station using a commercial Asus
RT-AC86U router with bcm4366c0 WIFI Chip. This router
reports channel state information (CSI) and signal strength
(RSSI) for each received packet. We configure a client to
connect to this router and send Wi-Fi packets. The router
periodically sends broadcast beacons, as is standard for the
Wi-Fi protocol and is set to work in the 5GHz frequency band.

For the attacker, we use a Nexmon receiver and a USRP
(X310 [21], a software-defined radio) as the transmitter. The
Nexmon receiver and the USRP transmitter share a single
antenna through a splitter. The Nexmon receiver measures the
wireless channel from the base station to itself and feeds it into
the RAFA system. RAFA applies the reciprocity correction
to estimate, Ha, and computes an adversarial perturbation, v,
and transmits it using the USRP software-defined radio. The
setup is shown in Fig. 3

We implement the client using a USRP software-defined
radio (X310) equipped with one antenna and we configure it
to transmit the 802.11ac packets generated from MATLAB
wireless toolbox. This signal is received by the base station

and used to measure the wireless channels as the input to
the neural networks in the wireless applications mentioned
in Section 3.1. Note that, the client and attacker do not have
any time or frequency synchronization between them.

During our experiment, we deploy RAFA on a local ma-
chine with RTX3070 GPU, a low-end GPU. Our implemen-
tation is written in PyTorch. For attacking FIRE, it takes 13
seconds on average to generate a single perturbation. We
believe that further speedup can be achieved using more ad-
vanced computing resources.

6 Results
In this section, we show the effectiveness of the RAFA attack
against FIRE and DLoc. We further show that our attack can
be performed in a black-box setting. Finally, we show that
adversarial training can be used in order to harden our models
and defend against these attacks.

Baselines: We compare RAFA against two baselines: (a)
Gaussian noise, and (b) vanilla UAP. Gaussian noise transmits
randomly sampled noise into the air. Vanilla UAP designs and
injects perturbations attacks that do not include robustness
to wireless transformations implemented by RAFA. For fair-
ness, we evaluate each method with the same budget ε on the
magnitude of the perturbation vector measured in L∞-norm.

6.1 Wireless Systems Re-implementation

We do a best-effort re-implementation of our target systems:
FIRE [55] and DLoc [6] using details provided in the respec-
tive papers and by email exchanges with the authors.

We re-implement the Variational Autoencoder for FIRE.
We adopt 7 linear layers in both the encoder and decoder
networks, which is 3 layers more than the original design to
optimize FIRE’s performance. We train FIRE using dataset
collected in our environment. We collect 10000 data points
by moving the antenna randomly in a lab space shown in
Fig. 4. The size of the lab is 10m by 7m, and is composed of
many reflectors (like metal cupboards, white-boards, etc.) and
obstacles. We split the dataset in the radio of 8:2 for training
and testing , and the training takes roughly 20 minutes. Note
that the training only needs to be done once before the attack
is initiated. Our trained model achieves a channel SNR of
17.8dB on the test dataset and confirm the SNR of 15.8dB on
validation dataset, which is consistent with the performance
of FIRE reported in [55].

Training DLoc requires dataset collected using a robot
(which performs joint mapping and localization). We do not
have access to the robot, thus cannot recreate the original
experiments. However, the datasets and code for DLoc are in
the public domain. Therefore, we train DLoc model using the
datasets collected by its authors with the name ’jacobs_Jul28’
and keep the original neural network architecture and training
setting. The dataset contains channel estimation matrices col-
lected from 4 routers and each router has 4 antennas (so 16

1808 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 2 4 6 8
Channel SNR Drop/dB

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

RAFA
UAP
Gaussian

(a) Attack Performance

RAFA UAP Gaussian

0

10

20

30

40

Sp
ec

tra
l E

ffi
cie

nc
y

Dr
op

 (%
)

26.85

14.49 13.09

(b) Spectral Efficiency Drop

5 10 15 20 25
Perturbation Budget (%)

−5

0

5

10

15

20

Ch
an

ne
l S

NR
 D

ro
p/

dB

(c) Perturbation Budget Analysis

−2.5 0.0 2.5 5.0 7.5 10.0
Channel SNR Drop/dBm

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

RAFA
w/o Ha
w/o Sync
w/o Ha+Sync

(d) Ablation Study

Figure 5: Attacking FIRE: (a) RAFA causes a median drop of 4.06 dB on FIRE’s channel prediction accuracy, over 2X better
than baselines. (b) This corresponds to a 26.85% drop in spectral efficiency. (c) Increasing the perturbation budget increases the
effectiveness of the RAFA adversary. (d) Modelling channel reciprocity is the dominant reason for RAFA’s improved performance.

antennas in total), and the training takes roughly 40 minutes.
We achieve the localization accuracy of 1.04m on the test
dataset which is randomly split with the ratio of 3:7 to the
training dataset. This is consistent with the results reported
by the authors in [6]. To create the adversarial perturbation
for RAFA, we sample channels from the same distribution as
the data used for training.

6.2 Adversarial Attacks against FIRE
To mimic a real-world setup, we deploy the base station at a
fixed location, while the client moves across the 16 positions
shown in Fig. 4. The attacker is also deployed at a fixed
location shown in the figure. The attacker and the client can
be in line-of-sight or non-line-of-sight.

Attack Effectivenss: We first compare RAFA with other
two baselines in the real world attack scenario. FIRE pre-
dicts downlink channels, given uplink channels. Our goal is
to reduce the SNR of the predicted channels, so as to disrupt
multi-antenna communication between the base station and
the client. To perform this experiment, we perform five attack
rounds for every method at each client location. In each round,
the adversary transmits the RAFA adversarial perturbation
for 10 seconds. Then, we transmit the UAP adversarial per-
turbation and Gaussian perturbation each for 10 seconds at
the same perturbation budget as RAFA which is set to be
maximum of 20%. The budget is the ratio of the maximum
value that’s allowed for any element of the perturbation vector
compared to the average amplitude of the benign channel es-
timates and is ε in Algorithm 1. Overall, we get 8000 channel
estimates at each client location for every baseline. We set
the learning rate of RW-UAP to start from 10 and decay by
0.6 for every epoch. We set the number of total epochs in
RW-UAP to be 3 and we only use a random 10% of the train-
ing dataset for each epochs to accelerate the training which
leads to a running time of roughly 30 seconds with the setup
in Sec. 5. We set the RW-PGD iterations to be 10, and 10
transformations in each iterations are used to get the robust
perturbations. We use the same parameters (e.g., number of
epochs, % of training dataset) for training Vanilla UAP.

We show the effect of different attack methods on FIRE
prediction in Fig. 5a. Each of these methods causes the SNR

of the predicted channel to drop. We plot the CDF of this drop
in channel SNR across all of our attacks, e.g., a CDF value
of 0.3 with a corresponding drop of X dB indicates that 30%
of the inputs had a drop of X dB or less in performance. It
shows that when being attacked by RAFA, the SNR of the
channel predicted by FIRE drops by 4.06dB on average (7.15
dB drop on the 90-th percentile). Traditional UAP attacks and
Gaussian baseline are not as effective. RAFA outperforms
the baselines by 2.21× and 2.14× respectively on this met-
ric. Our benefits over Gaussian noise stem from the directed
nature of our attack, i.e., we specifically target the ML model
and find its vulnerability. On the other hand, the UAP-based
model finds perturbations that are directed at the ML model,
but undergo transformations in-air which render it ineffective
when implemented in the real world. This result highlights
that: (a) FIRE is vulnerable to practical adversarial attacks,
even when the adversary uses low-complexity hardware, and
(b) modelling the wireless transformations on the adversarial
noise (as done in RAFA) are essential for practical adversarial
attacks.

We also show how these adversarial attacks affect the appli-
cation quality in the real world. We plot the spectral efficiency
(bits per Hz) results with the budget of 20% in Fig. 5b. Spec-
tral efficiency is the data rate that can be transmitted over
a given bandwidth and can be computed through channel
SNR [62]. With small amount of budget, RAFA is able to
shrink the user data rate by 26.85% which is two times as
effective as the UAP attack. This will affect the user experi-
ence severely, especially in latency critical applications such
as online meetings.

Finally, we note that, we focus on reducing SNR for FIRE,
because FIRE is trained to optimize for SNR. SNR is also a
key metric for any communication techniques. Independent
mechanisms like coding and CRC checks do not prevent
against attacks like RAFA. For example, if a coding scheme
is chosen to optimize for SNR X dB, it won’t be sufficient if
the actual SNR is X-5 dB (when under attack).

Effect of Adversarial Budget: In the same setup as above,
we study the effect of budget on the effectiveness of the attack.
We experiment with 5 different budget parameters and plot
the SNR drop for these parameters in Fig. 5c. As expected, as

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1809

0 1 2 3 4 5
Localization Accuracy Drop (m)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

RAFA
UAP
Gaussian

(a) Attack Performance

0 1 2 3 4
Localization Accuracy Drop/m

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

10%
20%
30%
40%
50%

(b) Perturbation Budget Analysis

0 1 2 3 4
Localization Accuracy Drop (m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

RAFA
w/o Ha
w/o Sync
w/o Ha+Sync

(c) Ablation Study

Figure 6: Attacking DLoc: (a) DLoc’s original localization error (median) is 1.04 m. RAFA increases this by 0.71m. (b) The
attack performance improves with increasing perturbation budget. (c) Synchronization robustness is the most important factor in
attacks on DLoc.

Budget (%) 10 20 30 40 50
Power Ratio-FIRE (%) 1.5 4.7 8.6 14.7 12.0
Power Ratio-DLoc (%) 1.3 8.6 20.2 34.6 51.8

Table 2: Power Ratio vs Budget
the budget parameter increases, RAFA’s attack becomes more
effective. With the budget parameter set to 25%, the SNR of
the predicted channel drops by 7.4 dB on average, with lower
drops at lower budget values (e.g., 2.14 dB at 15%).

Note that, the budget defines what’s the maximum absolute
value of any perturbation subcarrier, and not the average value.
Therefore, the average power of the perturbation is expected
to be lower than the budget. We compare the average power
of the adversarial signal to the average power of the user sig-
nal at the base station. We show this ratio as a function of
the budget parameter in Table. 2. As shown, for 20% budget,
RAFA’s perturbations utilize <5% power on average com-
pared to the user signal. Even with a 50% budget parameter,
this value is only 12%. This shows that RAFA’s attacks are
surreptitious. Note that, counter-intuitively, the power ratio at
50% is lower than 40% budget parameters. This is possible
because bigger budget parameters allow some subcarriers to
have larger peaks, and enable more flexibility for RAFA to
choose "peakier" more effective perturbation vectors.

Ablation Study: Next, we analyze the contribution of dif-
ferent components of RAFA. We conduct an ablation study
on attacking FIRE using the same dataset that we used for
real-world attack experiment. We compare the original RAFA
effectiveness with the following cases: removing the attacker
channel (Ha), removing the synchronization robustness term
(Sync), and removing both of them. The results are shown in
Fig. 5d. For FIRE application, removing the knowledge of
the attacker’s channel has the most significant impact on the
effectiveness of the attack, the channel SNR drop decreases
by 59.5% compared to the optimal performance achieved by
RAFA. This is because our RW-UAP algorithm derives an ad-
versarial perturbation specifically for a given attacker’s chan-
nel. When removing the synchronization robustness term, the
SNR drop decreases by 7.5%. We believe that this effect is
milder because FIRE’s design includes some pre-processing
to normalize CFO, hardware detection delays, etc.

6.3 Adversarial Attacks against DLoc
Next, we study the effect of RAFA on DLoc. DLoc con-
ducts user localization using the channels estimated from 4
routers with a total of 16 antennas as the input to a neural
network, consisting of 12 Resnet blocks [32]. Compared to
FIRE, which uses a single router, four antennas, and a simpler
network structure, the attack scenario is harder.

Experiment Setup: As noted before, getting ground truth
location estimates for DLoc in new environments requires a
robot for data collection. We perform our attack in a trace-
driven simulation using the data collected by the authors as
we do not have access to their robot. We randomly sample,
Ha, the attacker’s channel to each access point from the set of
channels in the original DLoc dataset. Then, RAFA’s pertur-
bation undergoes the attacker channel in addition to random
time and frequency offsets. We repeat this experiment with
different values of Ha to remove any bias. Our attacker is still
a single antenna attack. We limit to a set of 128 datapoints,
out of 8008, randomly sampled from the original training set
and use only 4 transformations during RW-PGD. We train the
perturbation for 3 epochs. The learning rate is set to 0.006
and decays by 0.99 per iteration. We evaluate on randomly
sampled ∼500 datapoints from the test set and average the
performance of the attack over 8 randomly sampled trans-
formations to generate different wireless transmissions. The
same parameters are used for training Vanilla UAP.

Attack Effectiveness: The adversary aim is to reduce
DLoc’s localization accuracy. We plot the accuracy degra-
dation caused by RAFA, traditional UAP, and Gaussian noise
in Fig. 6a. The attacker has a single antenna simultaneously
attacking 16 infrastructure antennas, so we set a budget of
50%. The original DLoc median localization accuracy is 1.04
meters, RAFA is able to increase this error by 0.71 meters.
Furthermore, RAFA increases the error by more than 1 meter
in 30 % of cases. This is significant as some safety-critical ap-
plications such as autonomous driving [66,67] are sensitive to
even 0.1 meters of localization accuracy drop. Our two base-
lines, UAP and Gaussian are only able to drop the accuracy
by 0.02 m, and 0.08 m respectively. Similar to our discussion
before, this shows the benefit of our directed, robust attack.

1810 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 10 15 20 25 30
Perturbation Budget (%)

0

2

4

6

8
Ch

an
ne

l S
NR

 D
ro

p/
dB

m RAFA
RAFA Black Box

(a) Black box attack

5 10 15 20 25 30
Perturbation Budget (%)

0

5

10

15

Ch
an

ne
l S

NR
 D

ro
p/

dB
m RAFA

PGD

(b) Comparison to PGD attack

7.5 10.0 12.5 15.0 17.5 20.0
Channel SNR/dB

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Origin
RAFA on Origin
RAFA on Robust Model

(c) Robust Training

Figure 7: Other Attack Models and Defense on FIRE: (a) A black-box attack, where RAFA does not know about the model
running on the base station is feasible and has similar attack performance to the white-box attack. (b) An unrealistic attack,
where adversary has access to model inputs, performs better than RAFA, but is not practically feasible. (c) Our adversarial
training approach can improve model robustness on FIRE.

Next, we study how choosing different budgets will affect
RAFA’s potency on DLoc. We increase the budget from 10%
to 50% and plot the DLoc accuracy on Fig. 6b. We also calcu-
lated the power ratio of the perturbation generated on DLoc
in the second row of the Table. 2. As expected, as the pertur-
bation budget increases, the power used by RAFA increases.
Similarly, the attack efficacy increases. We highlight that the
power used by RAFA for attacking DLoc is higher than that
for FIRE. This is because we have a single-antenna attacker
attacking a sixteen-antenna system spread out in space (one-
dimensional control in a 16-dimensional space). RAFA adapts
to this large space by increasing the power of its transmitted
noise, achieving an error increase of 0.71 m at 50% budget.

Ablation Study on attacking DLoc: We conduct an ablation
study on DLoc to understand the contribution of RAFA’s dif-
ferent components, using the same 50% budget from above.
Similar to ablation study settings on FIRE, we compare the
original RAFA effectiveness with the cases when removing
Ha, removing Sync and removing both, and the results are
shown in Fig. 6c. Different from FIRE’s ablation study re-
sults, it shows that removing Sync term will bring down the
effectiveness the most, the median localization accuracy drop
decreases by 73.4% compared to the original RAFA. This
is because DLoc localizes the user by receiving the signal
at four routers instead of one in FIRE case. Thus misalign-
ment becomes much more significant when the attack signal
reaches multiple routers and modeling this effect is neces-
sary. Compared to the ablation study on FIRE, we confirm
that different components in RAFA modeling have different
impact on different applications. So, to expose vulnerabili-
ties on generic wireless algorithms, we should leverage the
end-to-end model with all the components of RAFA.

6.4 Comparison to Input-Aware Attacks

RAFA is an adversarial attack that aims to work in the real-
world. Therefore, it does not assume access to the input. What
is the impact of this assumption on RAFA’s performance?
What if we give RAFA access to the input. We evaluate this

hypothetical case next. We compare RAFA’s adversarial per-
formance with input-aware attack, e.g, PGD. Since this attack
is not realistic, we evaluate this in a simulator. We plot the
result in Fig. 7b. Note that we implement the PGD by using
Algorithm. 2, for each data point in the test dataset, we get
a PGD perturbation that is robust to wireless properties, but
this perturbation is not universal across data point.

The results show that an input-aware attack is more effec-
tive. At 30% budget on FIRE, the input-aware attack achieves
an SNR drop of 10.97 dB, compared to the 7.77 dB drop of
RAFA. This result highlights that the properties of the wire-
less medium (e.g., the adversary not knowing the channel
from client to base station) provide some natural protection
against adversarial attacks. However, even with this protec-
tion, real-world adversarial attacks are possible and effective.

6.5 Black Box RAFA

In this section, we evaluate RAFA under a preliminary black
box setting to show its feasibility, where the attacker knows
the model family but not the specific architecture or weights.
In order to conduct the black box attack, the attacker can train
a substitute model on a dataset with a similar distribution to
attack. The attacker can later use the obtained perturbation
from the substitute model to attack the true model.

In order to conduct the black box attack, we use a substitute
model with a different architecture (4 less layers, different
number of neurons, and batchnorm). Using the same pipeline
for RAFA we attack on a different dataset collected in the
same lab. We then use that perturbation to attack the orig-
inal model in a trace-driven simulation. Fig. 7a compares
the performance of RAFA in white box and black box sce-
narios under different perturbation budgets. As shown, the
performance of the black-box adversary closely matches that
of the white-box adversary, with only a minor drop. At 25%
perturbation budget, the black-box adversary causes a 5.7dB
of channel SNR drop for FIRE which is only 0.5dB less than
the white box setting. This result shows that while access to
the model helps, we can still get good performance without it.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1811

6.6 Defense: Adversarial Training

RAFA’s attacks demonstrate effectiveness across different sys-
tems and settings. To initiate a discussion on potential defense
strategies, we show that FIRE can enhance its robustness to
adversarial attacks with robust training. Adversarial training
involves adding adversarial examples while training [57]. In
our case, since we are defending against a UAP based attack,
we use our RW-PGD algorithm in order to compute batch-wise
perturbations. We choose the RW-PGD algorithm since it is sim-
ilar but stronger than RW-UAP as it assumes that the attacker
has access to the inputs processed by the ML model.

During training, we compute 5 random attacks on each
batch with a budget of 10%. We then apply each attack to the
entire batch before learning. While this method adds overhead
during training, it significantly reduces the ability of RAFA to
find successful attacks. With our initial study and parameters
we find that training time goes from ∼5 mins to ∼125 mins;
however, we expect that further tuning could significantly
reduce this training time. Fig. 7c shows the effect of RAFA
at the budget of 30% on FIRE. When applying RAFA on
the original model, the average channel SNR provided by
FIRE drops from 17.79dB to 10.16dB. Promisingly, the robust
model maintains an SNR of 14.09dB, which is 38.6% higher
than original model improving the model robustness by 57%.
This result highlights the potential for building robust training
approaches. We delegate a detailed study of such methods to
future work.

7 Related Work
Adversarial Attacks in Other Domains: Adversarial at-
tacks have been widely studied for measuring model robust-
ness in computer vision for tasks including object detec-
tion [80, 82], image classification [19, 20, 33], and semantic
segmentation [4, 12]. Beyond vision, adversarial attacks exist
for natural language processing [14, 88, 91], reinforcement
learning [25, 52, 63], and graph classification [92, 96]. While
most of these works only expose theoretical vulnerabilities
as the generated attacks are not physically realizable, recent
studies show that real-world adversarial attacks are possible.
The works of [5, 22, 46, 49, 56, 71, 82] generate real-world
adversarial examples for the models in the vision domain.
Compared to the wireless setting, there is less signal distor-
tion and hardware imperfections in the vision domain. The
authors in [50] attack voice assistant systems such as Alexa,
but their attack generates loud guitar music which is easy to
detect and defend against. [83] proposes the basic structure
of robust adversarial attacks in vision domain, we extend this
into wireless domain by modeling the effect of wireless trans-
formations and further test them out in real-world rather than
purely simulation. To the best of our knowledge, we are the
first to consider real-world attacks in wireless systems.

ML-based Wireless Systems: Machine learning has been
extensively used in different tasks in wireless systems in-

cluding both sensing and communication. In sensing, ML
has been leveraged for human motion sensing [3, 95], sleep
monitoring [30, 51, 89], emotion detection [94], indoor posi-
tioning [1,6,15,75], etc. In communication, ML is also widely
used in MIMO systems [31, 45, 60], modulation and signal
classification [54, 78], resource allocation and management,
and MAC protocol design [13, 35, 86]. In this paper, we limit
our analysis to physical layer ML-models.

Adversarial Attacks against Wireless Systems: Recent
work has shown theoretical attacks [2,7,9,17,18,23,43,68–70]
on ML-based wireless systems. However, none of these are
feasible in the real world as they consider unrealistic threat
models such as no distortion exists during transmission or the
availability of coordination between the base station and the
attacker. The closest work to ours is [8], where the authors
use generative models [26] to obtain universal perturbations.
They demonstrate the attack on simulated data and are not
feasible in the real-world because the attack model does not
account for: (a) the effect of the wireless channel on adver-
sarial noise, (b) the lack of time-synchronization between a
client’s and adversary’s transmissions. Our work is the first
to demonstrate real-world hardware-implemented adversarial
attacks by explicitly incorporating robustness to real-world
channel transformations and un-synchronized transmissions.

8 Concluding Discussion
We present RAFA, the first real-world adversarial attack de-
sign on machine learning-based wireless systems. Our results
show that adversarial attacks are feasible in the real-world, in
spite of channel distortions, hardware noise, and black-box
assumptions. We conclude with some directions that future
work may consider for expanding on our paper:
• More Capable Adversary: We consider a single antenna

adversary and show its feasibility in conducting real world
attack. A multi-antenna adversary has more degrees of
freedom and can cause more damage. It also opens up new
questions on synchronization between different antennas,
the tradeoffs between antenna count, efficiency, etc.

• Higher Layer Attacks: We focus on physical layer ML
systems. We envision future work will consider attacks at
higher layers (e.g., MAC), which can explore new modali-
ties such as frame injection attacks.

• Robust Training and Other Defenses: How do we train
models that are not prone to adversarial attacks? We show
it is feasible to defend, but can this be made faster and more
robust? Adversarial training provides empirical robustness,
can we provide formal guarantees on when a model does or
does not work? Finally, can we design cross-layer defense
mechanisms that are robust to attacks in the physical layer?

Acknowledgements – We are grateful to the Qualcomm Inno-
vation Fellowship program and NSF RINGS Award 2148583
for supporting this work. We also thank the reviewers and our
shepherd, Fadel Adib, for constructive feedback.

1812 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller. 3d
tracking via body radio reflections. In 11th {USENIX}
Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 14), pages 317–329, 2014.

[2] A. Albaseer, B. S. Ciftler, and M. M. Abdallah. Perfor-
mance evaluation of physical attacks against E2E autoen-
coder over rayleigh fading channel. In proc. IEEE Inter-
national Conference on Informatics, IoT, and Enabling
Technologies, ICIoT, pages 177–182. IEEE, 2020.

[3] M. A. Alsheikh, S. Lin, D. Niyato, and H.-P. Tan. Ma-
chine learning in wireless sensor networks: Algorithms,
strategies, and applications. IEEE Communications Sur-
veys & Tutorials, 16(4):1996–2018, 2014.

[4] A. Arnab, O. Miksik, and P. H. Torr. On the robustness
of semantic segmentation models to adversarial attacks.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 888–897, 2018.

[5] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthe-
sizing robust adversarial examples. In International con-
ference on machine learning, pages 284–293. PMLR,
2018.

[6] R. Ayyalasomayajula, A. Arun, C. Wu, S. Sharma, A. R.
Sethi, D. Vasisht, and D. Bharadia. Deep learning based
wireless localization for indoor navigation. In Proceed-
ings of the 26th Annual International Conference on
Mobile Computing and Networking, pages 1–14, 2020.

[7] A. Bahramali, M. Nasr, A. Houmansadr, D. Goeckel,
and D. Towsley. Robust adversarial attacks against dnn-
based wireless communication systems. In ACM Confer-
ence on Computer and Communications Security (CCS),
pages 126–140. ACM, 2021.

[8] A. Bahramali, M. Nasr, A. Houmansadr, D. Goeckel,
and D. Towsley. Robust adversarial attacks against dnn-
based wireless communication systems. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 126–140, 2021.

[9] S. Bair, M. DelVecchio, B. Flowers, A. J. Michaels, and
W. C. Headley. On the limitations of targeted adversarial
evasion attacks against deep learning enabled modula-
tion recognition. In Proc. ACM Workshop on Wireless
Security and Machine Learning, WiseML@WiSec, pages
25–30. ACM, 2019.

[10] A. Bakshi, Y. Mao, K. Srinivasan, and S. Parthasarathy.
Fast and efficient cross band channel prediction us-
ing machine learning. In The 25th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, pages 1–16, 2019.

[11] M. Balunovic and M. T. Vechev. Adversarial training
and provable defenses: Bridging the gap. In 8th In-
ternational Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[12] V. Besnier, A. Bursuc, D. Picard, and A. Briot. Trigger-
ing failures: Out-of-distribution detection by learning
from local adversarial attacks in semantic segmentation.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 15701–15710, 2021.

[13] N. Z. binti Zubir, A. F. Ramli, and H. Basarudin. Op-
timization of wireless sensor networks mac protocols
using machine learning; a survey. In 2017 International
Conference on Engineering Technology and Techno-
preneurship (ICE2T), pages 1–5. IEEE, 2017.

[14] N. Boucher, I. Shumailov, R. Anderson, and N. Papernot.
Bad characters: Imperceptible nlp attacks. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 1987–
2004. IEEE, 2022.

[15] S. Bozkurt, G. Elibol, S. Gunal, and U. Yayan. A com-
parative study on machine learning algorithms for in-
door positioning. In 2015 International Symposium
on Innovations in Intelligent SysTems and Applications
(INISTA), pages 1–8. IEEE, 2015.

[16] N. Carlini and D. A. Wagner. Towards evaluating the
robustness of neural networks. In IEEE Symposium
on Security and Privacy, pages 39–57. IEEE Computer
Society, 2017.

[17] M. DelVecchio, V. Arndorfer, and W. C. Headley. In-
vestigating a spectral deception loss metric for train-
ing machine learning-based evasion attacks. CoRR,
abs/2005.13124, 2020.

[18] M. DelVecchio, B. Flowers, and W. C. Headley. Effects
of forward error correction on communications aware
evasion attacks. CoRR, abs/2005.13123, 2020.

[19] D. I. Dimitrov, G. Singh, T. Gehr, and M. T. Vechev.
Provably robust adversarial examples. In Proc. Interna-
tional Conference on Learning Representations, ICLR.
OpenReview.net, 2022.

[20] Y. Dong, Q.-A. Fu, X. Yang, T. Pang, H. Su, Z. Xiao, and
J. Zhu. Benchmarking adversarial robustness on image
classification. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 321–331, 2020.

[21] ettus. USRP X310. https://www.ettus.com/all-
products/x310-kit/.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1813

https://www.ettus.com/all-products/x310-kit/
https://www.ettus.com/all-products/x310-kit/

[22] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati,
C. Xiao, A. Prakash, T. Kohno, and D. Song. Robust
physical-world attacks on deep learning visual classi-
fication. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1625–
1634, 2018.

[23] B. Flowers, R. M. Buehrer, and W. C. Headley. Commu-
nications aware adversarial residual networks for over
the air evasion attacks. In Proc. IEEE Military Commu-
nications Conference, MILCOM, pages 133–140. IEEE,
2019.

[24] M.-G. Garcia and J. M. Páez-Borrallo. Tracking of time
misalignments for ofdm systems in multipath fading
channels. IEEE Transactions on Consumer Electronics,
48(4):982–989, 2002.

[25] A. Gleave, M. Dennis, C. Wild, N. Kant, S. Levine, and
S. Russell. Adversarial policies: Attacking deep rein-
forcement learning. arXiv preprint arXiv:1905.10615,
2019.

[26] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial networks. Commun. ACM,
63(11):139–144, oct 2020.

[27] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

[28] B. Gopalakrishnan and N. Jindal. An analysis of pi-
lot contamination on multi-user mimo cellular systems
with many antennas. In 2011 IEEE 12th international
workshop on signal processing advances in wireless
communications, pages 381–385. IEEE, 2011.

[29] F. Gringoli, M. Schulz, J. Link, and M. Hollick. Free
your csi: A channel state information extraction platform
for modern wi-fi chipsets. In Proceedings of the 13th In-
ternational Workshop on Wireless Network Testbeds, Ex-
perimental Evaluation & Characterization, WiNTECH
’19, page 21–28, 2019.

[30] Y. Gu, Y. Wang, Z. Liu, J. Liu, and J. Li. Sleepguardian:
An rf-based healthcare system guarding your sleep from
afar. IEEE Network, 34(2):164–171, 2020.

[31] D. He, C. Liu, T. Q. Quek, and H. Wang. Transmit
antenna selection in mimo wiretap channels: A machine
learning approach. IEEE Wireless Communications
Letters, 7(4):634–637, 2018.

[32] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 770–778, 2016.

[33] H. Hirano, A. Minagi, and K. Takemoto. Universal
adversarial attacks on deep neural networks for medical
image classification. BMC medical imaging, 21(1):1–13,
2021.

[34] R. Jia, A. Raghunathan, K. Göksel, and P. Liang. Cer-
tified robustness to adversarial word substitutions. In
K. Inui, J. Jiang, V. Ng, and X. Wan, editors, Proc. Em-
pirical Methods in Natural Language Processing and
International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP, pages 4127–4140. Asso-
ciation for Computational Linguistics, 2019.

[35] S. Jog, Z. Liu, A. Franques, V. Fernando, S. Abadal,
J. Torrellas, and H. Hassanieh. One protocol to rule
them all: Wireless {Network-on-Chip} using deep re-
inforcement learning. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 973–989, 2021.

[36] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vish-
wanath. Pilot contamination problem in multi-cell tdd
systems. In 2009 IEEE International Symposium on
Information Theory, pages 2184–2188. IEEE, 2009.

[37] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vish-
wanath. Pilot contamination and precoding in multi-cell
tdd systems. IEEE Transactions on Wireless Communi-
cations, 10(8):2640–2651, 2011.

[38] S. Kagi and B. S. Mathapati. Localization in wireless
sensor network using machine learning optimal trained
deep neural network by parametric analysis. Measure-
ment: Sensors, page 100427, 2022.

[39] I. Karmanov, F. G. Zanjani, I. Kadampot, S. Merlin, and
D. Dijkman. Wicluster: Passive indoor 2d/3d position-
ing using wifi without precise labels. In 2021 IEEE
Global Communications Conference (GLOBECOM),
pages 1–7. IEEE, 2021.

[40] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J.
Kochenderfer. Reluplex: An efficient smt solver for
verifying deep neural networks. In International Con-
ference on Computer Aided Verification, pages 97–117.
Springer, 2017.

[41] R. A. Kennedy, D. B. Ward, and T. D. Abhayapala.
Nearfield beamforming using radial reciprocity. IEEE
Transactions on Signal Processing, 47(1):33–40, 1999.

[42] B. Kim, Y. Sagduyu, K. Davaslioglu, T. Erpek, and
S. Ulukus. Adversarial machine learning for nextg
covert communications using multiple antennas. En-
tropy, 24(8):1047, 2022.

1814 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[43] B. Kim, Y. E. Sagduyu, K. Davaslioglu, T. Erpek, and
S. Ulukus. Channel-aware adversarial attacks against
deep learning-based wireless signal classifiers. IEEE
Trans. Wirel. Commun., 21(6):3868–3880, 2022.

[44] B. Kim, Y. E. Sagduyu, T. Erpek, K. Davaslioglu, and
S. Ulukus. Adversarial attacks with multiple antennas
against deep learning-based modulation classifiers. In
2020 IEEE Globecom Workshops (GC Wkshps, pages
1–6. IEEE, 2020.

[45] A. Klautau, P. Batista, N. González-Prelcic, Y. Wang,
and R. W. Heath. 5g mimo data for machine learning:
Application to beam-selection using deep learning. In
2018 Information Theory and Applications Workshop
(ITA), pages 1–9. IEEE, 2018.

[46] A. Kurakin, I. Goodfellow, S. Bengio, et al. Adversarial
examples in the physical world, 2016.

[47] L. Lan, G. Liao, J. Xu, Y. Zhang, and B. Liao. Transceive
beamforming with accurate nulling in fda-mimo radar
for imaging. IEEE Transactions on Geoscience and
Remote Sensing, 58(6):4145–4159, 2020.

[48] J. Li, S. Qu, X. Li, J. Szurley, J. Z. Kolter, and F. Metze.
Adversarial music: Real world audio adversary against
wake-word detection system. In Proc. Neural Informa-
tion Processing Systems (NeurIPS), pages 11908–11918,
2019.

[49] J. Li, F. R. Schmidt, and J. Z. Kolter. Adversarial cam-
era stickers: A physical camera-based attack on deep
learning systems. In Proc. International Conference on
Machine Learning, ICML, volume 97, pages 3896–3904,
2019.

[50] J. B. Li, S. Qu, X. Li, J. Szurley, J. Z. Kolter, and
F. Metze. Adversarial music: Real world audio adver-
sary against wake-word detection system. arXiv preprint
arXiv:1911.00126, 2019.

[51] C.-T. Lin, M. Prasad, C.-H. Chung, D. Puthal, H. El-
Sayed, S. Sankar, Y.-K. Wang, J. Singh, and A. K. San-
gaiah. Iot-based wireless polysomnography intelligent
system for sleep monitoring. IEEE Access, 6:405–414,
2017.

[52] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-
Y. Liu, and M. Sun. Tactics of adversarial attack on
deep reinforcement learning agents. arXiv preprint
arXiv:1703.06748, 2017.

[53] D. Liu, W. Ma, S. Shao, Y. Shen, and Y. Tang. Perfor-
mance analysis of tdd reciprocity calibration for massive
mu-mimo systems with zf beamforming. IEEE Commu-
nications Letters, 20(1):113–116, 2015.

[54] X. Liu, C. Zhao, P. Wang, Y. Zhang, and T. Yang. Blind
modulation classification algorithm based on machine
learning for spatially correlated mimo system. IET Com-
munications, 11(7):1000–1007, 2017.

[55] Z. Liu, G. Singh, C. Xu, and D. Vasisht. Fire: enabling
reciprocity for fdd mimo systems. In Proceedings of
the 27th Annual International Conference on Mobile
Computing and Networking, pages 628–641, 2021.

[56] B. Luo, Y. Liu, L. Wei, and Q. Xu. Towards imper-
ceptible and robust adversarial example attacks against
neural networks. In Thirty-second aaai conference on
artificial intelligence, 2018.

[57] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. Towards deep learning models resistant to
adversarial attacks. In Proc. International Conference
on Learning Representations (ICLR), 2018.

[58] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and
P. Frossard. Universal adversarial perturbations. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1765–1773, 2017.

[59] I. A. Najm, A. K. Hamoud, J. Lloret, and I. Bosch. Ma-
chine learning prediction approach to enhance conges-
tion control in 5g iot environment. Electronics, 8(6):607,
2019.

[60] T. J. O’Shea, T. Erpek, and T. C. Clancy. Deep
learning based mimo communications. arXiv preprint
arXiv:1707.07980, 2017.

[61] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in pytorch. Ad-
vances in neural information processing systems, 2017.

[62] P. S. Pati, S. S. Sahoo, D. Krishnaswamy, and R. Datta.
A novel machine learning approach for link adaptation in
5g wireless networks. In 2020 2nd PhD Colloquium on
Ethically Driven Innovation and Technology for Society
(PhD EDITS), pages 1–2, 2020.

[63] A. Pattanaik, Z. Tang, S. Liu, G. Bommannan, and
G. Chowdhary. Robust deep reinforcement learning with
adversarial attacks. arXiv preprint arXiv:1712.03632,
2017.

[64] Qualcomm. 5G RF. https://www.qualcomm.com/
news/releases/2021/02/qualcomm-announces-
next-generation-5g-rf-front-end-solutions-
featuring-use.

[65] Qualcomm. X70. https://www.qualcomm.com/
news/releases/2022/02/new-snapdragon-x70-
modem-rf-harnesses-worlds-first-5g-ai-
processor-industry.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1815

https://www.qualcomm.com/news/releases/2021/02/qualcomm-announces-next-generation-5g-rf-front-end-solutions-featuring-use
https://www.qualcomm.com/news/releases/2021/02/qualcomm-announces-next-generation-5g-rf-front-end-solutions-featuring-use
https://www.qualcomm.com/news/releases/2021/02/qualcomm-announces-next-generation-5g-rf-front-end-solutions-featuring-use
https://www.qualcomm.com/news/releases/2021/02/qualcomm-announces-next-generation-5g-rf-front-end-solutions-featuring-use
https://www.qualcomm.com/news/releases/2022/02/new-snapdragon-x70-modem-rf-harnesses-worlds-first-5g-ai-processor-industry
https://www.qualcomm.com/news/releases/2022/02/new-snapdragon-x70-modem-rf-harnesses-worlds-first-5g-ai-processor-industry
https://www.qualcomm.com/news/releases/2022/02/new-snapdragon-x70-modem-rf-harnesses-worlds-first-5g-ai-processor-industry
https://www.qualcomm.com/news/releases/2022/02/new-snapdragon-x70-modem-rf-harnesses-worlds-first-5g-ai-processor-industry

[66] K. Rehrl and S. Gröchenig. Evaluating localiza-
tion accuracy of automated driving systems. Sensors,
21(17):5855, 2021.

[67] T. G. Reid, S. E. Houts, R. Cammarata, G. Mills,
S. Agarwal, A. Vora, and G. Pandey. Localization re-
quirements for autonomous vehicles. arXiv preprint
arXiv:1906.01061, 2019.

[68] M. Sadeghi and E. G. Larsson. Adversarial attacks on
deep-learning based radio signal classification. CoRR,
abs/1808.07713, 2018.

[69] M. Sadeghi and E. G. Larsson. Adversarial attacks on
deep-learning based radio signal classification. IEEE
Wireless Communications Letters, 8(1):213–216, 2018.

[70] M. Sadeghi and E. G. Larsson. Physical adversarial
attacks against end-to-end autoencoder communication
systems. IEEE Communications Letters, 23(5):847–850,
2019.

[71] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter.
Accessorize to a crime: Real and stealthy attacks on
state-of-the-art face recognition. In Proc. ACM SIGSAC
Conference on Computer and Communications Security
(CCS), pages 1528–1540. ACM, 2016.

[72] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. T.
Vechev. Fast and effective robustness certification.
NeurIPS, 1(4):6, 2018.

[73] G. Singh, T. Gehr, M. Püschel, and M. Vechev. An
abstract domain for certifying neural networks. Pro-
ceedings of the ACM on Programming Languages,
3(POPL):1–30, 2019.

[74] B. Sliwa, R. Falkenberg, T. Liebig, J. Pillmann, and
C. Wietfeld. Machine learning based context-predictive
car-to-cloud communication using multi-layer connec-
tivity maps for upcoming 5g networks. In 2018
IEEE 88th Vehicular Technology Conference (VTC-Fall),
pages 1–7. IEEE, 2018.

[75] P. Sthapit, H.-S. Gang, and J.-Y. Pyun. Bluetooth based
indoor positioning using machine learning algorithms.
In 2018 IEEE International Conference on Consumer
Electronics-Asia (ICCE-Asia), pages 206–212. IEEE,
2018.

[76] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow, and R. Fergus. Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[77] D. Tse and P. Viswanath. Fundamentals of wireless
communication. Cambridge university press, 2005.

[78] F. Wang, S. Huang, H. Wang, and C. Yang. Automatic
modulation classification exploiting hybrid machine
learning network. mathematical Problems in engineer-
ing, 2018, 2018.

[79] M. Wasilewska, H. Bogucka, and A. Kliks. Spectrum
sensing and prediction for 5g radio. In Big Data Tech-
nologies and Applications, pages 176–194. Springer,
2020.

[80] X. Wei, S. Liang, N. Chen, and X. Cao. Transferable
adversarial attacks for image and video object detection.
arXiv preprint arXiv:1811.12641, 2018.

[81] E. Wong and J. Z. Kolter. Provable defenses against
adversarial examples via the convex outer adversarial
polytope. In J. G. Dy and A. Krause, editors, Proc.
International Conference on Machine Learning, ICML,
volume 80, pages 5283–5292, 2018.

[82] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille.
Adversarial examples for semantic segmentation and ob-
ject detection. In Proceedings of the IEEE international
conference on computer vision, pages 1369–1378, 2017.

[83] C. Xu and G. Singh. Robust universal adversarial per-
turbations. CoRR, abs/2206.10858, 2022.

[84] K. Xu, Z. Shi, H. Zhang, Y. Wang, K.-W. Chang,
M. Huang, B. Kailkhura, X. Lin, and C.-J. Hsieh. Auto-
matic perturbation analysis for scalable certified robust-
ness and beyond. In Proc. Neural Information Process-
ing Systems (NeurIPS), pages 1129–1141, 2020.

[85] T. Xu, T. Zhou, J. Tian, J. Sang, and H. Hu. Intelligent
spectrum sensing: When reinforcement learning meets
automatic repeat sensing in 5g communications. IEEE
Wireless Communications, 27(1):46–53, 2020.

[86] B. Yang, X. Cao, Z. Han, and L. Qian. A machine learn-
ing enabled mac framework for heterogeneous internet-
of-things networks. IEEE Transactions on Wireless
Communications, 18(7):3697–3712, 2019.

[87] R. Yang, J. Laurel, S. Misailovic, and G. Singh. Train-
ing certifiably robust neural networks against seman-
tic perturbations. In Proc. International Conference
on Learning Representations, ICLR. OpenReview.net,
2023.

[88] J. Y. Yoo and Y. Qi. Towards improving adversarial train-
ing of nlp models. arXiv preprint arXiv:2109.00544,
2021.

[89] B. Yu, Y. Wang, K. Niu, Y. Zeng, T. Gu, L. Wang,
C. Guan, and D. Zhang. Wifi-sleep: sleep stage moni-
toring using commodity wi-fi devices. IEEE internet of
things journal, 8(18):13900–13913, 2021.

1816 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[90] H. Zhang, H. Chen, C. Xiao, S. Gowal, R. Stanforth,
B. Li, D. Boning, and C.-J. Hsieh. Towards stable and
efficient training of verifiably robust neural networks.
In Proc. International Conference on Learning Repre-
sentations (ICLR), 2020.

[91] W. E. Zhang, Q. Z. Sheng, A. Alhazmi, and C. Li. Ad-
versarial attacks on deep-learning models in natural lan-
guage processing: A survey. ACM Transactions on
Intelligent Systems and Technology (TIST), 11(3):1–41,
2020.

[92] X. Zhang and M. Zitnik. Gnnguard: Defending graph
neural networks against adversarial attacks. Advances in
neural information processing systems, 33:9263–9275,
2020.

[93] Z. Zhang, M. Lee, and S. Choi. Deep-learning-based
wi-fi indoor positioning system using continuous csi of
trajectories. Sensors, 21(17):5776, 2021.

[94] M. Zhao, F. Adib, and D. Katabi. Emotion recognition
using wireless signals. In Proceedings of the 22nd an-
nual international conference on mobile computing and
networking, pages 95–108, 2016.

[95] M. Zhao, T. Li, M. Abu Alsheikh, Y. Tian, H. Zhao,
A. Torralba, and D. Katabi. Through-wall human pose
estimation using radio signals. In IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

[96] D. Zügner, O. Borchert, A. Akbarnejad, and S. Günne-
mann. Adversarial attacks on graph neural networks:
Perturbations and their patterns. ACM Transactions on
Knowledge Discovery from Data (TKDD), 14(5):1–31,
2020.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1817

	nsdi23_proceedings_interior
	nsdi23_proceedings_monday
	nsdi23-wang-zilong
	Introduction
	Background and Motivation
	RDMA Overview
	Connection Scalability Issue

	RNIC Memory Analysis
	RDMA Conceptual Model
	Data Structures
	Common Data Structures
	Selective Repeat Specific Data Structures

	SRNIC Design
	Design Goal and Guiding Principles
	Architecture Overview
	Cache-free QP Scheduler
	SQ Scheduler
	RQ Scheduler

	Memory-free Selective Repeat
	Header Extensions
	Bitmap Onloading

	Other Design Considerations
	Design Summary

	Implementation
	Evaluation
	Connection Scalability
	Performance and CPU Overhead
	Network Scalability

	Discussion
	Related Work
	Conclusion

	nsdi23-liu-kefei
	Introduction
	Background & Motivation
	Intra-host Bottlenecks
	The Impact of Intra-host Bottlenecks
	Limitations of Existing Intra-host Bottleneck Diagnosis Mechanisms
	Targets of Hostping

	Hostping Overview
	Challenges
	Symptoms of Intra-host Bottlenecks
	Bandwidth Degradation
	Latency Increase

	Framework of Hostping

	Hostping Design
	Hostping Engine
	Measure Intra-host Latency & Bandwidth
	Monitor Bus Utilization

	Responsiveness with Low Overhead
	Bottleneck Analysis

	Implementation
	Evaluation & Intra-host Bottlenecks Found
	Experiences Learned
	Related Work
	Conclusion & Future Work

	nsdi23-kong
	Introduction
	Background and Motivation
	Network Performance Isolation in the Public Cloud
	RDMA Overview
	Why RDMA Performance Isolation is Hard?

	RNIC Microarchitecture Resources
	Methodology
	NIC Caches
	Processing Units
	PCIe Bandwidth
	Other findings
	The Resource Consumption Model

	The Husky Test Suite
	Evaluation
	Testing Existing Performance Isolation Solutions
	Impact for Real Applications
	Analysis for Existing Solutions

	Guidelines
	Discussion
	Related Work
	Conclusion
	Network v.s. PCIe
	Response from NIC Vendors

	nsdi23-bai
	Introduction
	Background
	Network Architecture of an Azure Region
	High Level Architecture of Azure Storage
	Motivation for Intra-Region RDMA
	Challenges

	Overview
	PFC Storm Mitigation Using Watchdogs
	Security

	Storage Protocols over RDMA
	sU-RDMA
	sK-RDMA

	RDMA Estats
	Switch Management
	Overcoming Heterogeneity with SONiC
	Buffer Model and Configuration Practices of SONiC on Pizza Box Switches
	Testing RDMA Features with SONiC

	Congestion Control
	Scaling PFC over Long Links
	DCQCN Interoperability Challenges
	Tuning DCQCN

	Experience
	Deployment and Servicing
	Performance
	Problems Discovered and Fixed

	Lessons and Open Problems
	Related Work
	Conclusions and Future Work
	SONiC buffer analysis
	DCQCN experiment results

	nsdi23-wu
	Introduction
	Background and Motivation
	Container Clouds
	DL Training Workloads
	Limitations of Existing Solutions

	TGS Overview
	TGS Design
	Sharing GPU Compute Resources
	Sharing GPU Memory Resources

	Implementation
	Evaluation
	Adaptive Rate Control
	Unified Memory Management
	Mixed Workload Job Stream
	System Overhead
	Convergence
	Supporting Different DL Frameworks
	Comparison with AntMan
	GPU Sharing for Large Model Training

	Discussion
	Related Work
	Conclusion
	Convergence of Adaptive Rate Control Algorithm

	nsdi23-hwang
	Introduction
	Background & Motivation
	Small Data Transfer in Distributed DL
	External Execution Control Overhead
	Runtime Intervention for the Control
	Asynchronous Control

	I/O Overhead of GPU-side Control

	ARK Framework Design
	GPU-controlled DMA Engine
	Loop Kernel & Virtual CTA
	Offline Scheduler
	Limitations

	Implementation
	DMA Engine Implementations
	Interface
	Software Engine
	Hardware Engine

	Loop Kernel Implementation

	Evaluation
	Experiment Setup
	DMA Engine Performance
	Avoiding Communication Interference
	Offline Scheduling Evaluation
	Tensor-parallel Inference
	Pipeline-parallel Training

	Future Work & Related Work
	Conclusion

	nsdi23-liu-tianfeng
	Introduction
	Background and Motivation
	Sampling-based GNN Training
	Data I/O and Preprocessing Bottlenecks
	Challenges in Removing the Bottlenecks

	Design
	Architecture and Workflow
	Feature Cache Engine
	Dynamic Cache Policy
	Proximity-Aware Ordering
	Maximizing Cache Size

	Graph Partition Module
	Partition Workflow
	Assignment Heuristic

	Resource Isolation For Contending Stages

	Implementation
	Evaluation
	Methodology
	Overall Performance
	Impact of Feature Cache Engine
	Impact of Graph Partition
	Impact of Resource Isolation
	Scalability to Multiple Worker Machines
	Impact of Hyper Parameters
	Model Accuracy

	Related Work
	Conclusion

	nsdi23-you
	nsdi23-chen-jingrong
	Introduction
	Background
	Remote Procedure Call
	The Need for Manageability

	Overview
	Design
	Dynamic RPC Binding
	Efficient RPC Policy Enforcement and Observability
	Live Upgrades
	Security Considerations

	Advanced Manageability Features
	Implementation
	Evaluation
	Microbenchmarks

	Related Work
	Conclusion

	nsdi23-wang-chenxi
	Introduction
	Background
	Motivating Performance Study
	Swap System Isolation
	Isolation-Enabled Swap Optimizations
	Adaptive Swap Entry Allocation
	Two-tier Adaptive Prefetching
	Two-Dimensional RDMA Scheduling

	Evaluation
	Basic Swap Systems
	Overall Performance
	Isolation Reduces Degradation and Variation
	Effectiveness of Adaptive Optimizations
	Adaptive Swap Entry Allocator
	Prefetching Effectiveness
	RDMA Scheduling

	Related Work
	Conclusion
	Extended Motivation
	Recent Kernel Development

	nsdi23-qiao
	Introduction
	Background
	Understanding Existing Swap Systems
	The Life Cycle of Remote Memory Access
	Root Causes of Inefficiencies

	Hermit Design
	Design Overview
	Reclaim Scheduling
	Adapt Swap-in to Fast Remote Memory
	CPU-Efficient Page Reclamation

	Implementation
	Evaluation
	Real-world Applications
	Tail Latency of Latency-Critical Applications
	Throughput of Batch Applications
	Design Drill-Down
	Remote Memory Access Latency
	Page Reclamation Efficiency
	Effectiveness of Feedback-directed Asynchrony
	Breaking Down End-to-End Speedup
	Resource Consumption of Swap Operations

	Related Work
	Conclusion
	Tail Latency of Linux-Based Applications
	CPU Usage of Other Applications
	Tail Latency in Other Percentiles

	nsdi23-zhao-bohan
	Introduction
	Related Work
	Design Overview
	INC Application Types
	Challenges and Solution Overview

	RPC Layer in NetRPC
	INC Layer in NetRPC
	Reliable Data Stream
	Reliable INC Primitive Designs
	Computation and arithmetic overflows
	Memory: INC map-access primitives
	Forwarding: the CntFwd primitive

	Evaluation
	Experiment Settings
	Reducing User Code Complexity
	End-to-end Application Performance
	Micro-benchmarks
	Multiple Concurrent Applications
	Running on Multiple Switches

	Conclusion and Future Work
	Arithmetic in NetRPC
	NetRPC Protocol
	Packet Format

	Switch pipeline details
	NetRPC Implementation Examples

	nsdi23-arslan
	Introduction
	Towards Minimal Control Loop Delay
	Feedback Delay
	Congestion Notification
	Under-utilization Feedback

	Observation Period

	Design
	SRC - Sub-RTT Control
	PRU - Proactive Ramp Up
	SM - Supply Matching

	Implementation
	Switch Prototype
	Host Prototype
	Security and Authentication

	Evaluation
	Micro-Benchmarks
	Significance of SRC
	Significance of PRU
	Significance of SM

	Sensitivity Analysis
	Overhead of SRC
	Robustness Against Higher Line Rates

	Fairness Analysis
	Large Scale Simulations
	Bolt in the Lab

	Practical Considerations
	Related Work
	Conclusion
	Approximating SRC Overhead
	Bolt with QoS
	Ideal Approach
	Heuristic Approach

	nsdi23-sharafzadeh
	Introduction
	Background: scale-invariant burstiness
	Approaches to measuring traffic bursts
	Conventional host networking
	Capturing timestamps

	Valinor measurement framework
	Valinor-H: burst measurement in hosts
	Valinor-N: in-network burst measurement

	Findings
	Revisiting structural causality
	Impact of workloads
	Sources and implications of burstiness
	Transports and congestion control
	Software switching
	Software pacing
	Byte Queue Limits
	Linux process scheduling

	Related work
	Conclusions
	Rescaled-range analysis for estimating H
	Theoretical analysis of software pacing under different workloads

	nsdi23-wang-weitao
	Introduction
	Motivation
	CC Challenges in Datacenters
	Decelerating Before Reaching Fair-share
	Multi-hop Congestion
	Reverse-path Congestion
	Slow Convergence and Throughput Oscillation

	Deployment

	Design
	Key-idea: Only React to Bottleneck Hop
	Single-hop Fairness
	Adaptive Update Steps
	Network-wide Max-min Fairness

	Deployment
	Brownfield Deployment
	A Deployable INT Format for CC
	Requirements
	INT formats

	Evaluation
	Implementation in Testbed
	Robustness From Max-min Fairness
	Fast Convergence and Stability
	Application-level Improvements
	Brownfield Evaluation
	Sensitivity Analysis
	Ablation Study
	Robustness of Parameters

	Related Work
	Conclusion
	Poseidon Algorithm
	A Valid Cluster of Functions
	Proof for Target Functions
	Proof for Update Functions
	Updating Based on Ratio vs. Distance

	Flow Scaling in Swift
	Proof of Lemma 1
	Proof of Convergence to Max-min Fairness

	nsdi23-kim-taehyun
	Introduction
	Background & Motivation
	Inefficiencies in Content Delivery System Stacks
	Mismatch between I/O Device Advances and CPU Capacity
	Opportunities with SmartNIC

	Design
	Separating TCP control and data planes
	IO-TCP Offload API Functions
	IO-TCP Host Stack
	IO-TCP NIC Stack
	Challenges with Integrated I/O
	Handling Errors
	Support for TLS and QUIC

	Implementation
	Evaluation
	Experiment Setup
	IO-TCP Throughput
	Evaluation of IO-TCP Design Choices
	Overhead Evaluation
	Source of Performance Improvement

	Related Work
	Conclusion
	Support for the QUIC protocol
	Performance Comparison with Asynchronous sendfile() on FreeBSD

	nsdi23-choi
	Introduction
	Background
	Request Ordering in the Network
	Limitations of In-Network Serialization

	Sequencing with Multiple Sequencers
	Deployment Options
	Addressing and Routing

	Hydra: Serialization-Free Network Ordering
	High-Level Abstraction
	Prior Approach: Centralized Sequencer
	Consistent Ordering with Multiple Sequencers
	Physical Clocks for Message Ordering
	Combining Physical Clocks and Multi-Stamps for Drop Detection
	Ensuring Progress with Flush Messages

	Handling Sequencer Failures
	Correctness
	Optimizations
	Receiver-Side Flush Message Solicitation
	In-Network Flush Message Aggregation

	Hydra Implementation
	Building Distributed Systems using Hydra
	Evaluation
	Hydra Groupcast Microbenchmarks
	Latency and Throughput
	Impact of Flush Messages
	Sequencer Scalability

	HydraPaxos Evaluations
	HydraTxn Evaluations
	Network-Level Load Balancing
	Sequencer Failover

	Related Work
	Conclusion
	Additional Evaluation
	Clock Skew
	Message Loss for HydraPaxos and HydraTxn

	Proof of Safety
	Hydra TLA+ Specification

	nsdi23-zhang-lei
	Introduction
	Motivation
	Edge-Case Troubleshooting
	Distributed Tracing
	Edge-Case Troubleshooting Troubles

	Approach
	Design
	Trace Coherence
	Efficient Data Management
	Triggers

	Implementation
	Data Plane Buffer Pool
	Client Library
	Agent

	Evaluation
	Overhead vs. Edge-Cases
	Scalability and Overload
	Case Studies
	Hindsight Performance

	Discussion
	Triggers
	Consistent Hashing
	The Event Horizon
	Comparison with Tail Sampling
	Robustness

	Related Work
	Conclusion
	Supplemental Experiment Results
	End-to-end Application Overheads
	Head-Sampling and Tail-Sampling Overheads.
	Client throughput
	Control-Data Trade-offs

	nsdi23-mustafa
	Introduction
	Background, Example, and Overview
	Dynamic Shell Orchestrator
	Compiler
	Command Annotations
	Dataflow Model
	Dynamic Dependency Untangling (DDU)

	Distributed Scheduling
	Runtime Support
	Evaluation
	Performance
	Dynamic Dependency Untangling
	Correctness

	Related Work
	Discussion

	nsdi23-alimadadi
	Introduction
	Background & Motivation
	State Machine Replication
	Programmable NIC with FPGA
	Motivation

	Waverunner System Overview
	Waverunner Hardware
	Hardware Architecture
	Raft Leader and Follower Operation
	User-Space Log Considerations
	Transmission with UDP

	Waverunner Control Plane
	Switching to Software via Leader Election
	Synchronizing Missing Logs
	Enabling Hardware Acceleration

	Evaluation and Results
	Setup
	Methodology
	Replication Performance Results
	Fault Tolerance and View Change
	Real-world Applications
	Comparison to Prior Work

	Related Work
	Conclusions
	Correctness
	An Example of Waverunner Operations
	Hardware and Software Variables

	nsdi23-kludze
	Introduction
	Background and Related Work
	Wireless Backscatter Communication
	Leaky-Wave Antennas

	Design
	Design Overview
	Retrodirectivity in LeakyScatter
	Data Modulation and Demodulation
	Design Optimization for Maximizing Reflection Gain
	Slit Geometry
	Parabolic Mirror vs. Flat Mirror

	Concurrent Backscatter Links

	Experimental Platform and Methodology
	Evaluation
	Reciprocity
	Retrodirectivty
	Data Modulation
	Multiple Concurrent LeakyScatters

	Discussion and blackLimitations
	Conclusion
	Acknowledgments

	nsdi23-li-xinyi
	Introduction
	Related Work
	Hardware Design of the Metasurface
	Design Goal and Challenges
	Design of Meta-Atoms
	Dual-band Meta-Atoms
	Empowering Programmability for Meta-Atoms

	Metasurface by Assembling Meta-Atoms

	Beamfomring Through RF-Bouncer
	Problem Formulation
	Single Band Beamforming
	Dual-band Beamforming
	Harnessing the Ambient Multipath
	Beam Alignment

	Evaluation
	Hardware Verification
	Communication Performance
	Performance under Mobility
	 Coverage Extension

	Discussion
	Conclusion
	Appendix

	nsdi23-gong
	Introduction
	Background and motivation
	Massive MIMO basics
	Massive MIMO baseband processing
	Types of parallelism
	Challenge: Inter-stage data shuffling

	The need for distributed computing
	Limitations of prior distributed designs
	Motivation and challenges for Hydra

	Design
	Scalable fronthaul traffic partitioning
	Scalable PHY computation partitioning
	Hydra's approach
	BigStation's approach

	Scaling within a machine
	Downlink processing

	Implementation
	Evaluation
	Evaluation setup
	Server setup
	Emulated fronthaul traffic generator
	Wireless parameters

	End-to-end performance
	Comparison with BigStation

	Comparison with Agora
	Hydra's performance details
	Tail latency
	Additional network traffic
	Server scalability
	User scalability

	Benefits of leveraging RU features
	Impact of intra-server optimizations
	Dynamic CPU core scaling

	Related Work
	Conclusion

	nsdi23-sentosa
	1 Introduction
	2 Background and Motivation
	2.1 Channels in 5G
	2.2 Web browsing traffic

	3 DChannel Design
	3.1 High-Level Architecture
	3.2 Steering Granularity
	3.3 Packet Steering Intuition
	3.4 Rewards and Cost
	3.5 The Packet Steering Algorithm
	3.6 Reordering buffers at the endpoints

	4 Prototype and Experimental Setup
	4.1 Live-eMBB Setting
	4.2 Emulated-eMBB Setting
	4.2.1 Collecting network traces
	4.2.2 Emulating the traces

	5 Evaluation
	5.1 Testbed Configuration
	5.2 Application use cases
	5.3 Comparing steering schemes
	5.4 Live 5G Experiments
	5.5 Evaluating the reordering buffer
	5.6 Bulk download performance
	5.7 Mobile application performance

	6 Discussions and Future Work
	7 Related work
	A Appendix
	A.1 Algorithm Listing
	A.2 Parameter Calibration
	A.3 Understanding DChannel Performance
	A.3.1 Performance under high eMBB RTT
	A.3.2 Varying URLLC latency
	A.3.3 Varying URLLC bandwidth
	A.3.4 Working with Incorrect Latency Estimates
	A.3.5 DChannel under TCP BBR

	A.4 DChannel rewards calculation accuracy

	nsdi23-yang-zongheng
	Introduction
	Related Concepts and Recent Developments
	Why Not Just Adopt Standards?
	Why Isn't This Just Multicloud?
	Growth In Interface Compatibility

	The Vision of Sky Computing
	What Is Sky Computing?
	Why Is This Transformational?

	Intercloud Broker
	Requirements
	Architecture
	SkyPilot: An Implementation

	Experiments
	Machine Learning Pipelines
	Vision Pipeline
	NLP Pipeline

	Bioinformatics
	Managed Data Analytics
	Analyzing the Broker

	Deployment Experience
	Related Work
	Conclusion
	Appendix
	Implications and Economics of the Sky
	Embracing Diversity
	Economic Analysis
	Speculation

	ML Training on Spot Instances Across Clouds

	nsdi23-agarwal-anup
	Introduction
	Characterization & Motivation
	Harvest VMs
	Target Workloads
	Running Workloads on HVMs
	Opportunities for Improvement

	SlackSched Design
	SlackSched Scheduler
	Prediction Engine
	Match Maker

	SlackSched Acquirer
	Implementation

	Evaluation
	Methodology
	Scheduler Evaluation
	Improvement Conditions and Robustness

	Acquirer Evaluation
	Scaling and Cost Comparison
	Case Study: Renewable Energy Sources

	Related Work
	Conclusion
	Pseudocode
	Additional Evaluation
	Comparison to prior work for Spot VMs
	Alternate method for computing the completion probability
	Mixing interruptible and uninterruptible
	Acquirer with known ground truth
	Absolute JCT metrics

	nsdi23-mcclure
	Introduction
	Motivation
	Deployment Walkthrough
	Problems
	Current Solutions
	It's Time for Simplification

	Approach
	PRDO Addressing
	Addressing in Today's Clouds
	Applied to Invisinets
	Security Implications

	API Design
	Connectivity
	Availability
	Security
	Performance
	Grouping

	Implementation
	Evaluation
	Evaluating Simplicity via Case Studies
	Terraform Complexity
	Scalability

	Limitations
	Related Work
	Conclusion
	Benefits of dedicated links.
	QoS Controller
	Case Study 1 Code
	Terraform Example

	nsdi23-thorpe
	Introduction
	Background
	Motivation
	Overview
	Redundant Computation
	Redundant Layers and Computation
	Schedule Redundant Computation

	Evaluation
	Training Performance and Costs
	Different Failure Models
	Comparisons with Other Systems
	Microbenchmarks of Redundant Computation
	Cross-Zone Communication

	Related Work
	Conclusion
	Pipeline Reconfiguration
	Support for Pure Data Parallelism
	Additional Experiments
	Bubble Size
	Bamboo for Pure Data Parallelism

	nsdi23-krishnaswamy
	Introduction
	OneWAN Architecture
	OneWAN Traffic Steering
	OneWAN Agent and Local Repair
	Evaluation

	Traffic Engineering Optimization
	Path computation
	Priority fairness solver
	Diverse path solver

	Measuring WAN Traffic Matrices
	Error correction in measured TMs
	Traffic matrix characteristics

	Operational Experience
	Related Work
	Conclusion

	nsdi23-duan
	Introduction
	Problem Statement
	Name Resolution Basics
	Authentication in DNS
	Problems with DNSSEC
	Desired Properties

	RHINE Overview
	Notation and Primitives
	Threat Model
	Design Rationale
	Validating Zone Ownership (A1)
	Preventing Certificate Misissuance (A2 & A3)
	Countering Parental Attacks (A4)

	Delegation Transparency
	RHINE Protocols
	Secure Delegation Setup
	Secure Delegation Update
	DT Aggregation and Retrieval
	Authenticated Name Resolution

	Formal Security Analysis
	Implementation
	Performance Evaluation
	Offline Management Performance
	Name Resolution Performance

	Related Work
	Conclusion and Discussion
	Protocol Specifications
	Authenticated Name Resolution
	Secure Delegation Update
	DT Aggregation with Modified Logres

	Formal Verification of RHINE
	Protocol Specification
	Property Specification

	Achieving High Availability

	nsdi23-tahir
	Introduction
	Overview
	CRAB Framework
	Goals and Challenges
	CRAB's Scope

	CRAB Control Loop
	Throughput Measurement
	Rate Computation Overview
	Reallocation
	Reclamation
	Bandwidth Estimation
	CRAB's Router Control Loop

	System Implementation
	CRAB's Placement
	Throughput Measurement
	Rate Enforcement
	User Interface
	Flow Filter Management
	Home Router Implementation

	Evaluation
	CRAB in action
	Video Streaming
	Web Browsing
	Alternative way of using CRAB's framework
	Multiple end-devices need CRAB at home-router
	Impact of CRAB's Parameters
	Other Results

	Related Work
	Conclusion and Discussion
	Acknowledgements
	Pseudocode for Redivision of Excess Bandwidth
	Stability of Wifi Connection
	Robustness to Different Traffic Characteristics
	Bandwidth Probing with Limited Demand Flows
	CRAB's Sensitivity to Lent Bandwidth Headroom
	Overhead of CRAB

	nsdi23-wirtgen
	Introduction
	Architecture
	The xBGP API
	Executing xBGP programs
	Adding xBGP to BGP implementations

	Ensuring the safety of xBGP programs
	Proving xBGP Programs' Termination
	Preventing Memory and C Errors
	Ensuring BGP and xBGP Compliance
	Enforcing Operator-Imposed Restrictions

	Overhead of the current xBGP prototype
	Use Cases
	Customer Selecting Routes
	Detecting BGP Zombies
	Monitoring the BGP Routing Decision
	Measuring BGP Route Propagation Times

	Related Work
	Conclusion
	Additional use cases
	BGP in data centers
	Validating BGP Prefix Origins
	Filtering Routes Based on IGP Costs

	Verification macros

	nsdi23_proceedings_tuesday
	nsdi23-shah
	nsdi23-qiu
	Introduction
	Motivation
	Runtime programmable switch updates
	A motivating example
	Computing a safe and feasible transition
	FlexPlan: A program synthesis perspective

	Specifying Safe Updates
	Update Plan Synthesis
	Synthesizing a program sequence
	Version sketch: Encoding program snapshots
	Zooming in on resource constraints
	Sequence sketch: Encoding a transition plan

	Accelerating the CEGIS loop
	Diagnosing the synthesis
	Remarks

	Discussions and Limitations
	Evaluation
	Macrobenchmarks
	Consistency levels vs. headroom
	Snapshot learning and verification
	Introspection and diagnosis

	Related Work
	Conclusion
	Appendix
	Specifications
	Instrumentations

	nsdi23-ramanathan
	Introduction
	Background and Challenges
	Background
	Handling Dynamic Configurations
	Expressing Conditional Policies
	Reconfigurations At Scale

	Aura Design
	Base Paths: Minimizing Reconfiguration
	Staging and Labeling: Supporting Dynamic Configurations

	RPL: Expressing Conditional Policies
	Compiler Implementation
	Supporting Base Paths
	Supporting Dynamic Network
	Validating Configuration

	Evaluation
	Minimize Switch Changes
	Aura Reduces Operational Burden
	Aura Configuration Properties

	Operational Experience
	Related Works
	Conclusion
	Routing Policy Validation Algorithm
	Issues detected via emulation
	Detecting Ambiguous Statements
	RPL changes to change intent

	nsdi23-tahmasbi
	Introduction
	Overview and Motivation
	Using Synthesis to Analyze Performance

	Modeling Contention Points
	Performance Queries
	The Workload Language
	Synthesizing Answers
	Verifying workloads
	Generating the next candidate
	The Cost Function
	Generating The Example Sets
	Optimizations

	Case Study: Packet Scheduling
	Stand-alone Schedulers
	Composing Host and NIC Schedulers
	Tractability

	Case Study: A Small Leaf-Spine Network
	Discussion and Future Directions
	Related Work
	Conclusion
	Efficient Encoding of FIFOs in SMT
	Defintion of costS
	Details on Search Engine Optimizations
	More Details on the Leaf-Spine Case Study
	Introducing New Packet Metadata
	From User Interface to Logical Formulas
	Example Generation Optimizations

	nsdi23-zhao-shizhen
	Introduction
	Background & Motivation
	Deploy RDMA over Ethernet in Clos
	Priority-based Flow Control (PFC)
	PFC-induced Deadlocks
	Avoiding Deadlocks in Clos Networks

	From Clos to Expander
	ECMP/KSP are not CBD-free in Expanders
	Probability of Containing CBDs

	Flattened Clos
	Topology
	Theoretical Topology Properties of FC

	Routing
	Edge-disjoint Virtual Up-down Routing
	FC's Routing is CBD Free
	How Routing Affects FC's Topology Design?
	Computational Complexity of FC's Routing

	Cabling

	Numerical Throughput Analysis
	FC's Routing vs EDST Routing
	FC's Routing vs ECMP/KSP Routing
	FC vs Clos

	Packet-Level Simulation
	Formation and Impact of Deadlocks
	Trigger Deadlocks in a Real Testbed
	Understanding Deadlocks via Simulation

	Discussion
	Handling Link/Node Failures
	Handling Route Reconfiguration
	The Scalability of Routing Tables

	Conclusion
	Appendix
	Finding Edge-Disjoint Paths Using Min-Cost Max-Flow
	A Sufficient and Necessary Condition for CBD-Free Routing
	Proof of Lemma 4

	Generating a Clos Network with H Hosts Using N p-Port Switches
	Network Cost Analysis
	FC's Layout
	Clos's Layout
	Comparison Results

	Additional Results
	Impact of Cabling on FC's Routing
	Throughput Analysis
	Routing-Path Analysis
	More Packet-Level Simulation Results

	nsdi23-zhao-kevin
	Abstract
	1 Introduction
	2 Parsimon Overview
	3 Key Methods: Decompose and Aggregate
	3.1 Generating Link-Level Workloads
	3.2 Generating Link-Level Topologies
	3.3 Post-Processing Link-Level Results
	3.4 Aggregating Link-Level Estimates
	3.5 Primary Source of Speedup
	3.6 Primary Sources of Error

	4 Complementary Methods
	4.1 Fast Link-Level Simulation
	4.2 Clustering and Pruning Simulations

	5 Evaluation
	5.1 General Setup
	5.2 Analysis on a Large-Scale Network
	5.3 Sensitivity Analysis at Small Scale
	5.4 Analysis of One Configuration

	6 Conclusion
	References
	A Mixed Workloads
	B Link Failures
	C Studying Error Sources
	C.1 First-Hop Delays
	C.2 Correlated and Simultaneous Delays

	D Clustering Details

	nsdi23-zheng
	Introduction
	Motivation
	Jointly Optimizing Fairness and Efficiency
	Handling Dynamic Batch Size Scaling
	Supporting User-defined Dynamic Ddaptation

	Overview
	Dynamic Market Theory Formulation
	Volatile Fisher Market
	Equilibrium Properties
	Handling Uncertainty

	Predicting Dynamic Adaptation
	Shockwave Design
	Schedule Solver
	Long-term Fairness and Efficiency Estimators

	Implementation
	Evaluation
	Experiment Setup
	Baseline Schedulers
	Evaluating Efficiency and Fairness
	A Closer Look at Shockwave's Schedule
	Scaling to Large Clusters
	Benefits of Proactive Scheduling
	Shockwave versus Pollux
	Varying Cluster Contention and Workload
	Solver Overhead
	Resilience to Prediction Error

	Related Work
	Conclusion
	Dynamic Batch Scaling Degrades Accuracy
	When does batch size scaling degrade accuracy
	Example: Pollux's automatic batch size scaling leads to accuracy loss in NeuMF-m1-lm training

	Static Filters Degrade Efficiency, Fairness
	Volatile Fisher Market (VFM)
	Market formulation
	Solving Equilibrium of VFM

	Proof of Theorem C.1
	Linear Utility
	Leontief Utility

	Proof of Theorem 4.0.1
	Stochastic Dynamic Program for Efficiency and Fairness in Expectation
	Shockwave Design Details
	Implementing Nash Social Welfare over Time
	Implementing Estimators for Long-Term Effects
	An End-to-End Schedule Optimizer

	Constraints Of Program 11
	Varying Contention Factor
	Varying the Cluster Trace

	nsdi23-cho-inho
	Introduction
	Motivation
	Locking Complicates Overload Control
	Problems with Existing Overload Control Schemes
	Challenges

	System Design
	Performance-driven Admission Control
	Active Synchronization Queue Management (ASQM)
	System Parameters

	Implementation
	Evaluation
	Evaluation Setup
	Mutex-intensive Application: Lucene
	Latency-critical Application: Memcached
	Microbenchmark
	Limitations of Protego

	Discussion
	Related Work
	Conclusion

	nsdi23-wang-weiyang
	nsdi23-lai-fan
	Introduction
	Background and Motivation
	DNN Model Training
	Opportunities for Repurposing Models

	ModelKeeper Overview
	ModelKeeper Design
	Matcher: Identify Similar Models
	Mapper: Transform Maximal Parent Information
	Zoo Manager: Transform Effectively At Scale

	Implementation
	Evaluation
	Methodology
	End-to-End Performance
	Performance Breakdown
	Sensitivity and Ablation Studies

	Discussion and Future Work
	Related Work
	Conclusion
	ModelKeeper Analysis
	Design Criteria
	Information-Preserving Transformation

	nsdi23-zhang-hong
	Introduction
	Background and Motivation
	System Model and Goals
	Short-term Workload Unpredictability

	Shepherd Design
	Overcoming Short-term Unpredictability
	Design Overview

	Periodic Planner: Herd
	Online Serving Algorithm: Flex
	Problem Formulation
	Flex Algorithm

	Shepherd Implementation
	Evaluation
	Shepherd in the Wild
	Understanding Shepherd Benefits
	Understanding Shepherd Overheads

	Discussion and Caveat
	Related Work
	Conclusion
	Competitive Ratio without Preemption
	Competitive Ratio Analysis for Flex
	Single-GPU Single-Model Setting (sgsm)
	Single-GPU Multi-Model Setting (sgmm)
	Multi-GPU Multi-Model Setting (mgmm)

	Complexity Analysis for Flex

	nsdi23-mahajan
	Introduction
	Background
	Parallelization Strategies
	Communication Operations (Comm-Ops)
	Evolving Network Infrastructure

	Motivation
	Disjoint Scheduling, Execution Planning
	Communication Stack Overview
	Example to highlight suboptimality

	Interface constraints Joint Optimization
	Issues with Coarse-Grained Scheduling

	Syndicate Design
	Overview
	Motif Abstraction
	Motif Transformation Operators

	Central Optimizer
	Joint Optimization Procedure

	Enforcer

	Implementation
	Evaluation
	Testbed
	Workloads
	Metrics
	Baselines
	Evaluation on Testbed
	Sources of Improvement

	Microbenchmarks

	Other Related Work
	Conclusion
	Appendix
	Transformation Operator Algebra

	nsdi23-zhong
	1 Introduction
	2 Background and goals
	2.1 Header bidding
	2.2 Concerns with existing exchanges
	2.3 Goals
	2.4 Potential solutions (baselines)

	3 Addax Overview
	3.1 Assumptions and threat model
	3.2 Security properties

	4 Private ad auction
	4.1 Affine-aggregatable encodings (AFE)
	4.2 Computing the MAX function with AFE
	4.3 Private and decentralized MAX
	4.4 Private and decentralized auction

	5 Adding public verifiability
	5.1 Verifiable and private AFEs
	5.2 Verifiable, private, and decentralized auction
	5.3 Assigning blame

	6 Optimizations
	6.1 Less communication with an interactive MAX
	6.2 Lower latency by leaking the existence of ties

	7 Search and filtering
	7.1 Filtering and inviting advertisers

	8 Implementation
	9 Evaluation
	9.1 Microbenchmarks: Addax's auction protocol
	9.2 End-to-end performance
	9.3 Costs over a non-private unverifiable baseline
	9.4 Cost of verification

	10 Related work
	11 Discussion
	A Proofs for lemmas
	B Proof for Addax's security properties
	C Safeguarding interactive Addax
	C.1 Asynchronous: find sale price bidder
	C.2 Checking the validity of a V-AFE vector
	C.3 Commitment to a V-AFE tuple with random mask
	C.4 Zero-knowledge proof of commitment relation
	C.5 Proofs of lemmas 5 and 6

	D Subsets of faulty parties
	D.1 Narrow down faulty bidders when both auctioneers are honest

	E Interacting with the public log
	E.1 A brief primer on Algorand
	E.2 Workflow of a deployed smart contract
	E.3 Costs of interacting with public log

	F What about TEE-based solutions
	G Compatible user privacy features

	nsdi23-ramseyer
	Introduction
	SPEEDEX: Towards an Ideal DEX
	SPEEDEX Overview

	System Architecture
	SPEEDEX Module Architecture
	Design Properties

	Commutative DEX Semantics
	Price Computation
	Requirements
	From Theory To Practice

	Price Computation: Tâtonnement
	Efficient Demand Queries
	Multiple Tâtonnement Instances

	Evaluation: Price Computation
	Accuracy and Orderbook Size
	Robustness Checks

	Evaluation: Scalability
	Alternative Scaling Techniques

	Design Limitations and Mitigations
	Implementation Details
	Blockchain Integration
	Caches and Tâtonnement
	Batched Trie Design

	Related Work
	Conclusion
	Mathematical Model Underlying SPEEDEX
	Arrow-Debreu Exchange Markets
	From SPEEDEX to Exchange Markets
	Existence of Unique* Equilibrium Prices

	Approximation Error
	Tâtonnement Modifications
	Price Update Rule
	Heuristic Choice

	Demand Smoothing
	Periodic Feasibility Queries

	Linear Program
	Market Structure Decomposition
	Alternative Batch Solving Strategies
	Convex Optimization
	Mixed Integer Programming

	Tâtonnement Preprocessing
	Buy Offers are PPAD-hard
	Deterministic Filtering Performance
	Block-STM Baseline
	Additional Implementation Details
	Data Organization
	Data Storage and Persistence
	Follower Optimizations
	Replay Prevention
	Fast Offer Sorting
	Nondeterministic Block Assembly

	Additional Replicas

	nsdi23-jiang
	Introduction
	Threat Model and Security Goals
	Threat Model and Assumptions
	Security Goals

	Boomerang: Basic Instantiation
	Overview
	Client
	Server
	Background of Oblivious Primitives
	Oblivious Proactive Pattern Patching
	Oblivious Re-order

	Boomerang+: Horizontal Scalability
	Overview
	Entry Nodes
	Irregular Pattern Patching
	One-time Message Assignment
	Oblivious Sub-batch Padding

	Boomerang Node
	Server Churn

	Analysis
	Implementation and Evaluation
	Evaluation Overview
	Boomerang+ Performance
	Microbenchmarks

	Related Work
	Conclusion
	Discussion and Limitations
	Balls into Bins
	Security Analysis
	Proof of Theorem 5.1
	Proof of Theorem 5.2

	Boomerang Performance
	Supplementary Experiments for Resource Allocation
	System Dollar Cost

	nsdi23-lovejoy
	1 Introduction
	2 System model and security goals
	2.1 Actors
	2.2 Threat model
	2.3 Data representation
	2.4 System operations
	2.5 Security properties

	3 Transaction design and processing
	3.1 Bitcoin's UTXO model
	3.2 UTXO model challenges
	3.3 UTXO hash set
	3.4 Transaction format
	3.5 Transaction execution
	3.6 Transaction format security
	3.7 Transaction protocol

	4 Processing transactions at scale
	4.1 Applying transactions to the UHS
	4.2 Fault Tolerance
	4.3 Comparison to blockchain architectures

	5 Implementation
	6 Evaluation
	6.1 Comparison
	6.2 Fault Tolerance
	6.3 Workload Variability

	7 Related Work
	8 Conclusion
	9 Acknowledgements

	nsdi23-khani
	Introduction
	Background and Motivation
	Continuous Retraining for Video Analytics
	The Case of Reusing Historical Expert Models

	Design of RECL
	Model Selection
	Model Retraining
	Updating the Model Zoo & Selector

	Implementation
	Evaluations
	Methodology & Setup
	Results
	Ablation Studies

	Discussion
	Related work
	Conclusion
	Acknowledgements

	nsdi23-agarwal-neil
	Introduction
	Background and Motivation
	Primer on Retrospective Video Analytics
	Existing Acceleration Approaches
	The Problem: Model-Specific Preprocessing

	Overview of Boggart
	Boggart's Preprocessing
	Fast, Accurate Query Execution
	Propagating CNN Results
	Selecting Representative Frames

	Evaluation
	Methodology
	Query Execution Speedups
	Comparison to State-of-the-Art
	Profiling Boggart

	Additional Related Work
	Conclusion

	nsdi23-rudow
	Introduction
	Background and motivation
	Conventional FEC and its challenges in videoconferencing
	Streaming codes
	Challenges of using streaming codes for videoconferencing

	Packet loss in the wild
	FEC metrics
	Network quality
	Potential of streaming codes
	Key findings

	Tambur
	Tambur's streaming code
	Bandwidth overhead predictor
	Implementation

	Evaluation
	Experimental methodology and highlights
	Offline evaluation
	Sensitivity analysis
	Online evaluation

	Related work
	Conclusion
	Recovering a burst with Tambur's streaming code
	Tambur's streaming code's flow network
	Parameters of the GE channel
	Encoding and decoding overheads
	Tail duration of freezes
	Analysis of recovering bursts

	nsdi23-padmanabhan
	Introduction
	Methodology & Pilot Study
	Motivation
	Memory Pressure in Edge Video Analytics
	Limitations of Existing GPU Memory Management

	Our Approach: Model Merging
	Opportunities
	Challenges

	Gemel Design
	Overview
	Guiding Observations
	Merging Heuristic
	Edge Inference

	Evaluation
	Overall Performance
	Analyzing Gemel
	Generalization Study

	Additional Related Work
	Conclusion
	Appendix
	Implementation Details
	Generalization Workload Query Knobs
	Workload Memory Settings
	Additional Figures

	nsdi23-zhang-zili
	Introduction
	Background and Motivation
	Vector Queries on Unstructured Datasets
	Bounding Performance for Vector Queries
	Applying to Distributed Settings

	Auncel Overview
	Auncel Design
	Problem Formulation
	Workflow and Key Idea
	Handling Error Bounds
	Scaling Factor under Euclidean Distance
	Scaling Factor under Angular Distance

	Handling Latency Bounds
	Applying to Distributed Settings

	Implementation
	Evaluation
	Overall Performance
	Effectiveness of ELP Techniques
	Validation of Mathematical Formulation
	System Overhead
	Scalability

	Discussion
	Related Work
	Conclusion
	Appendix
	Validation of Local Uniform Distribution
	Analysis of Formula 10

	nsdi23-zhu
	Introduction
	Background and Motivation
	Graph Pattern Mining
	Approximation with Graph Decomposition

	Arya Overview
	Basic Design
	Pattern Sampling Algorithms
	Sampler-Friendly Graph Structures
	Advanced Pattern Mining Features
	Error Latency Profile (ELP)

	Scaling Arya to Distributed Settings
	Distributed Replicated Graphs
	Distributed Partitioned Graphs

	Implementation
	Evaluation
	Single-Machine Performance
	Scaling Arya on Distributed Settings
	Distributed Replicated Graphs
	Distributed Partitioned Graphs

	Effectiveness of Arya ELP

	Related Work
	Conclusions
	More Details on Predicate Matching
	Detailed Explanation of Sampling Algorithms
	Computation-Communication Ratio Analysis in Partitioned-graph Setting

	nsdi23-liagouris
	Introduction
	Secrecy system overview
	Design principles
	Threat model and security guarantees
	Cost-based secure query optimization

	Background on MPC
	Replicated secret sharing
	Oblivious primitives

	Secrecy operators and cost model
	Oblivious relational operators
	Composing oblivious operators
	Computing optimal plan costs

	Secrecy optimizations for relational MPC
	Logical transformation rules
	Blocking operator push-down
	Join push-up
	Join-Aggregation decomposition

	Physical optimizations
	Predicate fusion
	Operator fusion
	Vectorization and message batching

	Secret-sharing optimizations
	Dual sharing
	Proactive sharing

	Generality of optimizations

	Secrecy implementation
	Experimental evaluation
	Evaluation setup
	Benefits of query optimization
	Performance on real and synthetic queries
	Micro-benchmarks
	Comparison with other MPC frameworks

	Related Work
	Conclusions
	ANALYTICAL COST MODEL
	Oblivious Secrecy primitives
	Oblivious Secrecy operators
	Composition of oblivious operators

	SECURITY ANALYSIS
	SUMMARY OF MPC-BASED SYSTEMS FOR RELATIONAL ANALYTICS
	ADDITIONAL EXPERIMENTS
	Performance of Secrecy primitives
	Performance of Secrecy operators
	EMP vs Secrecy on oblivious join

	QUERIES USED IN THE PAPER

	nsdi23-zhang-junxue
	Introduction
	Cross-silo Federated Learning
	Analysis of Cryptographic Operations
	Cryptographic Operations
	Quantifying the Performance Impact
	Challenges of Offloading Cryptographic Operations
	Opportunities with Accelerating Basic Operators

	The FLASH Design
	Architecture Overview
	Modular Exponentiation and Multiplication Engines
	Algorithm Optimization
	Pipelining
	On-chip & Off-chip Memory

	Dataflow Scheduling
	Dynamic Engine Switching
	Building Cryptographic Operations

	Software Integration

	Implementation
	Evaluation
	Methodology
	Cryptographic Operations
	Cross-silo FL Applications
	FLASH Deep-dive
	ASIC Performance Assessment

	Discussion
	Related Works
	Conclusion
	Cross-silo Federated Learning
	Cross-silo Horizontal FL
	Cross-silo Vertical FL
	Security Analysis of Cross-silo FL

	Paillier Cryptosystem
	RSA Intersection
	Modular Exponentiation & Multiplication Algorithm Optimization
	Binary Exponentiation
	Montgomery Modular Multiplication

	The Montgomery Modular Multiplication Circuit Design
	Hierarchical Data Distribution
	Software Stack Architecture

	nsdi23-liang-chieh-jan
	Introduction
	Background and Motivations
	Performance Prediction and Modeling
	High Costs to Maintain ML Models
	Modularized Learning

	Fluxion Framework
	Learning Assignments
	Inference Graph of Learning Assignments
	Inference Graph Construction
	Graph Inferencing to Predict End-to-End Latency
	Inference Graph Re-training

	Implementation
	Graph Engine (GE)
	Learning Assignment APIs
	Graph Update APIs

	Testing Engine (TE)
	Ingestion Engine (IE)

	Evaluation
	Microservice Systems
	Performance Modeling Error Reduction
	Model Adaptation Time Reduction
	End-to-end System Latency Speedup

	Microbenchmarks
	Exposing a Spectrum of Performance Metrics
	Capturing System's Temporal Dynamics
	Graph Re-training

	Related Work
	Discussion
	Conclusion
	Appendix

	nsdi23-karthikeyan
	Introduction
	Related Work
	Algorithm
	Framework

	SelfTune Overview
	SelfTune Interface
	SelfTune Components

	The Bluefin Algorithm
	Large-scale Workload Scheduling System
	Substrate
	WLM
	Evaluation

	Serverless Scheduling in the Cloud
	FaaS Resource Usage
	Evaluation Setup and Goals
	Per-application Tuning
	Time-varying Tuning

	Container Rightsizing
	Results

	Conclusion
	SelfTune's Client API Implementation
	Parameter Convergence
	Baselines

	nsdi23-alomar
	Introduction
	Motivation
	Bias in Trace-Driven Simulation
	An Example Using Real-world Traces
	Simulation via Expert Modeling (ExpertSim)
	Simulation via Supervised Learning (SLSim)
	What Went Wrong?

	Causal Inference to the Rescue!

	Model and Problem Statement
	Causal Model
	Problem Formulation

	CausalSim: Theoretical Insights
	Counterfactual Estimation as Matrix Completion
	Exploiting RCT for Matrix Completion
	Discussion

	CausalSim: Algorithm
	Evaluation
	Simulation Accuracy
	Can CausalSim simulate a policy it has not seen?

	Case Study: CausalSim in the Wild
	A Closer Look at Simulated Trajectories
	Additional experiments

	A Second Example: Server Load Balancing
	Experiment setup
	Can CausalSim Faithfully Simulate New Policies?

	Related-Work
	Concluding Remarks
	Acknowledgement
	Tensor Completion with policy invariance
	Real-world ABR
	Comprehensive results
	Policy Discriminator and Latent Invariance
	What makes a simulation scenario easy/hard?
	A More Fine-grained Evaluation
	How to Tune CausalSim's Hyper-parameters?
	How to Tune SLSim's Hyper-parameters?
	Simulation Accuracy: Continued
	Dataset & Algorithms
	Training setup

	Synthetic ABR
	Simulation Dynamics
	Data & Algorithms
	Training setup

	Can CausalSim Faithfully Simulate New Policies?
	Learning ABR policies with CausalSim
	How to train policies via simulators?
	Does CausalSim train better policies?

	Low-rank structure

	Load Balancing
	Does CausalSim Faithfully Infer Latent States?
	Data & Algorithms
	Training setup

	Causal Inference Related Work

	nsdi23-song-zhenyu
	Introduction
	Background
	YouTube CDN Edge Cluster Architecture
	Heuristic and Learned Cache Algorithms

	HALP Eviction Policy Design
	Heuristic-based Candidate Selection
	Ranking-based Learned Eviction

	Impact Distribution Analysis
	Model of Measurements
	Measurement Setup
	Fitting Impact Distribution

	Evaluation
	Deployment Setup
	Experimental Methodology
	HALP Improvements in Production
	HALP Computation Overhead
	HALP vs. Other Cache Algorithms
	Hyperparameter Selection

	Related Work
	Future Work
	Conclusion
	Details about the loss function and model weight updates
	Analysis of a simple model for reranking

	nsdi23-mishra
	Introduction
	LoRa Demodulators Validated
	FTrack xia2019ftrack
	CoLoRa tong2020colora
	NScale tong2020combating
	Concurrent Interference Cancellation osama2021cic

	Framework Implementation
	Datasets : Experimental setup for data collection
	Demodulators Block
	Standard LoRa Decoder Block
	Metrics

	Cross Validation of the Demodulators
	Experimental Evaluation
	Impact of transmission rate on Network Throughput
	Impact of Signal to Noise Ratio (SNR) on Network Throughput
	Impact of Interference on Network Throughput
	Impact of concurrent transmissions on Packet Reception Rate
	Impact of Packet Time Offset (PTO) on Packet Reception Rate

	Discussions and Limitations
	Conclusions
	Acknowledgements
	Appendix: LoRa Primer
	Appendix: LoRa Demodulators Validated
	FTrack xia2019ftrack
	CoLoRa tong2020colora
	NScale tong2020combating
	Concurrent Interference Cancellation osama2021cic
	Other recent works on LoRa demodulation

	Appendix: Implementation Overview
	Python Implementation
	Code Organization

	Appendix: Additional Results
	Impact of transmission rate on Network Throughput

	Appendix: Experimental Setup & Methodology
	Network Experiments
	Interference Experiments
	Concurrent Transmissions Experiment
	Packet Time Offset Experiment

	nsdi23-zhang-yi
	Introduction
	Design Space
	Statistical Acoustic Sensing
	VeCare Design
	Acoustic Channel Estimation
	Sensing Signal Enhancement
	Child Presence Detection

	Implementation
	Evaluation
	Experimental Setup
	Indoor Performance
	Real-World CPD Study
	Comparative Study
	Benchmark Study

	Discussions and Limitations
	Related Work
	Conclusion
	Appendix
	Speed Estimation
	Synchronization
	ACF Outliers

	nsdi23-zhao-renjie
	nsdi23-yang-zheng
	Abstract
	1 Introduction
	2 Primer
	2.1 Preprocessing of RF Data
	2.2 Complex-Valued Neural Network

	3 SLNet Architecture
	3.1 Spectrogram Enhancement Network
	3.2 Multi-Resolution Spectrogram Fusion
	3.3 Task-Adaptive Network

	4 Implementation & Experiments
	4.1 Implementation
	4.2 Experiments

	5 Evaluation
	5.1 Comparison Study
	5.2 Ablation Study
	5.3 Parameter Study

	6 Related Work
	7 Conclusion
	References

	nsdi23_proceedings_wednesday
	nsdi23-scazzariello
	Introduction
	Motivation
	System Design
	Splitting and Merging Packets
	High-Speed Reliable RDMA

	Supporting Advanced Network Functions
	Implementation
	Evaluation
	Throughput and Latency Gains
	Advanced Network Functions
	RDMA Interference Analysis
	ASIC Resource Usage

	Discussion
	Related Work
	Conclusion
	Experimental Setup
	Ribosome Tail Latency Impacts
	Recovering RDMA Queue-Pairs
	Splitter and Rebuilder Components
	Custom Ethernet Frames and Headers
	RDMA Latency Microbenchmark

	nsdi23-kim-daehyeok
	Introduction
	Motivation and related work
	Motivating example
	Stateful switch applications
	Prior work and limitations

	Overview
	Case for on-rack augmentation
	ExoPlane architecture
	Design challenges

	ExoPlane runtime environment
	Packet-pinning operating model
	Handling workload changes
	Synchronizing shared stateful objects
	Scaling to multiple devices
	Handling external device failures

	ExoPlane planner
	Implementation
	Evaluation
	Performance in steady state
	Performance under dynamic workload
	Shared stateful object synchronization
	Failover
	Runtime resource overheads

	Conclusions
	Skewness of traffic traces
	State synchronization algorithm
	Details of Application Merger
	Performance of ExoPlane Planner

	nsdi23-namkung
	Introduction
	Background and Related Work
	Sketches and Programmable Switches
	Need for Ensemble of Sketch Instances
	Prior Work and Limitations

	Sketchovsky Overview
	Optimization Building Blocks
	 Hash Computations
	 Counter Update
	 Heavy Flowkey Storage

	Strategy Finder
	Problem Formulation
	Challenges
	Our Approach

	Auto-Code Composition
	Sketch P4 Codes and Concatenation
	Code Rewriting

	Implementation
	Evaluation
	Experimental Setup
	Accuracy
	Resource Reduction

	Discussion
	Conclusions
	Supplement to Background
	Counter Update Type

	Supplement to Optimizations
	SRAM reduction of SaluReuse (OCtr1)

	Supplement to Auto-code Composition
	SketchLib and Lib for Optimization
	Before and After Code Snippets for OCtr1, OCtr2, and OKey

	Supplement to Evaluation
	Eleven Sketch Algorithms for Evaluation
	Four Ensembles for Accuracy Evaluation
	Experiment for Greedy Heuristic Algorithm

	nsdi23-lin
	Introduction
	Background and Motivation
	Intra-server Orchestration Today
	A Case for NIC-Offloaded Orchestration
	On-NIC Orchestration Challenges

	RingLeader Overview
	System Assumptions
	Key Ideas and Design Overview

	RingLeader Design
	OS-NIC Interface
	On-NIC Load Balancing with JBSRQ
	Non-blocking On-NIC Request Scheduler
	NIC-assisted CPU Assignment

	Hardware Design
	Load Balancer Hardware
	End-to-End Example

	Implementation
	Evaluation
	Methodology
	Load Balancing Performance
	Scheduling Performance
	Benefits of RingLeader Components
	NIC-Assisted Core Assignment
	Scalability and Resource Usage

	Related Work
	Discussion
	Conclusions
	Acknowledgements:
	Appendix
	JBSRQ Policy parameters
	Supporting Multiple NICs

	nsdi23-lai-zeqi
	Introduction
	Preliminaries
	How Can Researchers Evaluate Their New Thoughts for ISTNs?
	ENE Requirements
	Why Existing ENEs are Insufficient?

	StarryNet Design
	System Overview
	Constellation Observer
	Constellation Synchronizer
	Hybrid models
	Constellation consistency

	Constellation Orchestrator
	Multi-machine support for constellation emulation
	Efficient time synchronization and state update

	Open APIs for ISTN Experiments

	Implementation and Usage
	Framework Evaluation
	Ability to Satisfy Various Experimental Requirements for ISTNs
	Fidelity Analysis

	Evaluating Futuristic ISTN Research with StarryNet: Case Studies
	Exploring the Design Space of Integrating LEO Satellites and Terrestrial Facilities
	Evaluating ISTN Resilience
	Hardware-in-the-loop Testing

	Limitation and Future Work
	Related Work
	Conclusion

	nsdi23-ni
	Introduction
	Networking Performance Measurement
	Data Collection Methodology
	Throughput & Latency Characterization
	Predictability of Networking Performance
	Multipath Heterogeneity
	Implications on System Design

	Handover Failure Prediction
	System Design of Polycorn
	Overall Architecture
	Composable Multipath Scheduler
	Handover-failure-aware Path Rejection
	Tail-aware Path Rejection
	Extended Reinjection
	Opportunistic Redundant Traffic Injection
	Putting Everything Together

	Implementation
	Evaluation
	Experimental Setup
	Bulk Data Download Performance
	Multi-user Instant Messaging Performance

	Discussion
	Related Work
	Conclusion
	Example for Tail-aware Path Rejection

	nsdi23-boroushaki
	Introduction
	System Overview
	AR-Conformal Antenna
	Investigating a Single Loop Design
	Wideband AR-Conformal Antenna

	RF-Visual Synthetic Aperture Radar
	Background on SAR
	AR-Based SAR
	Practical Considerations

	RF-Visual Verification
	RF-Visual R-SAR
	Compensating for Natural Tilts

	Implementation & Evaluation
	Results
	3D Localization Accuracy
	In-Hand Verification

	Related Work
	Discussion and Limitations
	Conclusion

	nsdi23-zhang-yongzhao
	Introduction
	Related Work
	Acoustic Metasurface
	Background of Acoustic Metasurface
	Properties of Acoustic Metasurface

	Phased Array with Metasurface
	Phased Array
	Phased Array Coupled with Metasurface
	Problem Formulation
	Optimization
	Additional Design Details
	System Design

	Performance Evaluation
	Evaluation Methodology
	SNR Comparison
	Beam Pattern
	Beam Width
	Frequency Response
	Impact of Lens Size and Phased Array Size

	Distance Estimation Performance
	Impact of Measurement Distance
	Impact of Measurement Angle
	Impact of Lens Size and Phased Array Size

	AoA Estimation Performance
	Impact of Measurement Distance
	Impact of Measurement Angle
	Impact of Lens Size and Phased Array Size

	Acoustic Communication Performance
	Impact of Distance
	Impact of AoA

	Discussion
	Conclusion

	nsdi23-jain
	Introduction
	Background
	Overview of Skyplane
	Overlay formulation in Skyplane's planner
	Profiling cloud networks
	Skyplane's data plane

	Principles of Skyplane's planner
	Achieving low instance and egress costs
	Choosing the relay region
	Combining multiple paths

	Parallel TCP for high bandwidth
	Multiple VMs for high bandwidth

	Finding optimal transfer plans
	Cost minimizing overlay paths
	Objective: Minimize cost from egress and VMs
	Constraints: Cloud provider service limits
	Continuous relaxation of MILP
	Full formulation of the cost optimal solver

	Throughput maximizing overlay paths

	Implementation of Skyplane
	Evaluation
	Experimental setup
	How much faster is Skyplane than existing data transfer solutions?
	How much faster are the overlay paths?
	Where are transfer bottlenecks?
	Skyplane microbenchmarks
	Comparison against academic baselines

	Related Work
	Conclusion

	nsdi23-zhou
	Introduction
	Background
	Consensus Protocols
	eBPF and Hooks

	Electrode Overview
	Electrode Designs
	Message Broadcasting in TC
	Fast Acknowledging in XDP
	Wait-on-Quorums in TC + XDP

	Electrode Implementation
	Apply Electrode to Multi-Paxos
	Evaluation
	Overall Results
	Performance Gain Breakdown
	Application Performance
	CPU Utilization
	Comparison with Kernel-Bypassing

	Discussion and Future Work
	Related Work
	Conclusion
	Electrode Generalizability
	Impact of Interrupt Coalescing

	nsdi23-ruan
	Introduction
	Motivation: Resource Fungibility
	The Logical Process Abstraction
	Address Spaces and Cache Coherence
	Programming Model
	Porting Applications to Logical Processes
	Security and Threat Model
	Fault Tolerance

	The Nu Runtime System
	Serialization and Communication
	Memory Management
	Migration
	Controller
	Replication
	Limitations

	Application Case Studies
	Evaluation
	Application Performance under Resource Pressure
	Comparison with Existing Implementations
	Scalability
	Design Drill-Down
	Impact of Compute Intensity
	Migration Time and Bandwidth
	Controller Performance
	Proclet Replication

	Conclusion
	Appendix
	Application Performance Under Memory Pressure
	Application Performance Under Compute Pressure

	nsdi23-meng
	Introduction
	Background: High-Quality RTC
	Motivations and Challenges
	Motivation: Drastic Queuing Delay
	Choice: Controlling Proper Parameters
	Challenges

	Design – Adaptive Frame-Rate (AFR)
	Workflow Overview
	Stationary Controller
	Transient Controller

	Implementation
	Simulator Design
	Simulation Setup
	Deployment setup

	Evaluation
	Delay Improvements
	Frame-rate Maintenance
	Parameter Sensitivity
	Microbenchmarking
	Deployment in the Wild

	Discussions
	Related Work
	Conclusion
	Potential Solutions and Concerns
	Potential Solutions
	Practical Concerns

	Measurement over Dataset
	User Characteristics
	Delay Distributions
	Root Cause Analysis
	Decoding Performance
	Decoder Degradation
	Component Correlation Analysis

	Simulator Implementation
	Supplementary Experiments
	Average Delay
	Frame Costs of AFR with Skipping
	Parameter Sensitivity

	Convergence Analysis

	nsdi23-li-hao
	nsdi23-bansal
	Introduction
	Background and Motivation
	Stateful Network Functions
	NF workload at a public cloud
	Characterizing NF Performance

	Disaggregating NF processing in Sirius
	Connectivity and availability
	In-line Connection State Replication
	Dividing NF load appropriately
	Pin fNIC locally or to one card pair
	Disaggregation Cost/ Benefit Analysis
	Split the load of an fNIC across multiple cards
	Use Sirius as a load spillover

	Efficient and high-rate NF processing
	Implementation
	Evaluation
	Methodology
	Processing Stateful NFs in Sirius
	Stateful NFs under faults
	VM-to-VM: Offloading fNICs to Sirius
	Measuring the Sirius datapath in Azure
	Offloading fNICs of middlebox NVAs

	Related Work
	Conclusion
	Discussion
	Complications in failover
	fNIC abstraction guarantees
	Encryption, Traffic QoS

	Additional Results
	Packing floating NICs into Sirius cards
	Variation in the load for NFs at Azure

	Additional Related Work

	nsdi23-yu
	Introduction
	Background and Motivation
	Serverless Computing
	Limitations of Current Platforms

	Data-Centric Function Orchestration
	Key Insight
	Data Bucket and Trigger Primitives
	Programming Interface

	Pheromone System Design
	Architecture Overview
	Scalable Distributed Scheduling
	Bucket Management and Data Sharing
	Fault Tolerance

	Implementation
	Evaluation
	Experimental Setup
	Function Interaction
	Scalability
	Fault Tolerance
	Case Studies

	Discussion and Related Work
	Conclusion

	nsdi23-liu-david
	Introduction
	Background & Motivation
	Standalone Orchestrators

	Design
	Architecture
	Unum Intermediate Representation
	Execution Guarantees Using Checkpoints
	Fault Tolerance

	Fan-in Patterns
	Garbage Collection
	Naming

	Implementation
	AWS Lambda & DynamoDB
	Google Cloud Functions & Firestore

	Evaluation
	Experimental setup
	Performance
	Chaining
	Fan-out and fan-in

	Cost
	Case Study: ExCamera
	Performance
	Cost

	Related Work
	Discussion & Limitations
	Conclusion

	nsdi23-buhler
	Introduction
	Overview
	Problem statement
	Building blocks
	Illustrative example

	Ingress & egress identification
	Sentinel search and definition
	Sentinel subnet sizes
	Sentinel-based ingress & egress detection

	Mirroring-based validation
	Validating found sentinels with mirroring
	Limiting the amount of mirroring rules

	Magnifier's controller
	Evaluation
	Evaluation setups, datasets, and metrics
	Magnifier's performance
	Coverage and mirrored traffic volume
	Impact of limited mirroring budget
	Comparison with the lab setup
	Micro-benchmarks

	Comparison with Everflow
	Sentinels in Tier-1 dataset
	Existence of sentinels
	Per-device sentinel changes

	Related work
	Conclusion
	CRediT statement
	Magnifier's controller placement
	Everflow implementation
	Additional evaluation results
	Magnifier lab setup
	CAIDA data analysis
	Additional Magnifier plots
	Stability of sentinels
	Additional comparison with Everflow

	nsdi23-chen-yu
	Introduction
	Background
	EXO Service Traffic
	How EXO Traffic Generated?
	Traffic Measurements

	Motivation and Design Goals
	Motivation
	Design Goals and Challenges

	System Design
	Data Sources
	Data Processing
	Feature Translation
	Data Split and Aggregation

	Data Validation
	Result Database
	Component Traffic Estimation
	Monitoring

	Production Results
	Traffic Overview
	Several ports dominate the overall traffic
	Several components dominate the traffic of a top port

	Case Studies
	Service Traffic Optimization
	Legacy Traffic Discovery
	Anomaly Traffic Burst Detection
	WAN Feature Validation

	Evaluation
	Overhead in the Production Environment
	Overhead outside the Production Environment
	Data Storage
	Computation

	Related Work
	Conclusion

	nsdi23-perry
	Introduction
	Motivation and Key Insights
	Inter-DC vs. Customer-Facing Traffic
	Demand Prediction vs. Direct Optimization
	TE as Stochastic Optimization
	Harnessing Deep Learning

	Direct Optimization for TE (DOTE)
	Modeling WAN TE
	The DOTE TE Framework
	Analytical Optimality Results
	Scalability and Real-World Traffic
	On Maximum and Concurrent Flow
	Realizing DOTE

	Evaluation
	Methodology
	Comparing DOTE with Other TE Schemes
	Generalizing to Other TE Objectives and Tunnel Choices
	Coping with Network Failures
	Robustness to Traffic Noise and Drift

	Limitations and Future Research
	Related Work
	Conclusion
	Predictability of WAN TE Traffic
	Analytical Results
	Minimizing Max-Link Utilization
	Maximum-Multicommodity-Flow and Maximum- Concurrent-Flow
	General results
	Results for Maximum-Multicommodity-Flow
	Results for Maximum-Concurrent-Flow

	A Closer Look at Demand Prediction
	Robustness to Unexpected Traffic Changes
	Stochastic Optimization Loss Function Pseudocode
	Additional Failure Results

	nsdi23-li-zhuqi
	Introduction
	A TikTok Case Study
	Short Video Streaming Primer
	Analysis of TikTok
	Chunk Download Control
	Network and Swipe Input Adaptation
	Buffering logic on different versions of TikTok
	Limitations of Current Short Video Streaming

	Characterizing User Swipes
	Design
	Forecasting Rebuffering Delay
	Determining Buffering Sequences
	Selecting the candidate chunk set
	Priority-ordering the buffer sequence

	Implementation

	Evaluation
	Methodology
	End-to-End performance
	Ablation study
	Micro Benchmarks

	Related work
	Discussion
	Conclusion
	Acknowledgement
	Dashlet Pseudocode
	Dashlet Implementation Further Detail
	TikTok is conservative in video bitrate selection.
	Questionnaire sample.

	nsdi23-tan
	nsdi23-luo
	Introduction
	Background
	Approach and Design Rationale
	System Assumptions and Threat Model
	Goals
	Approach

	Design
	 Registration
	Attachment
	Mobility
	Identity-based Services
	Settlements

	Privacy Analysis
	Semi-honest and Non-colluding
	Hiding U's identity from O
	Hiding U's location from B
	Hiding U's trajectory

	With out-of-protocol information
	With collusion

	Implementation and Evaluation
	Implementation
	Scaling analysis
	Blind signature
	Anonymous communication
	Aggregate Claiming with zk-SNARK

	Performance analysis

	Discussion
	Beyond semi-honest and non-colluding
	Beyond privacy

	Related Work
	Conclusion
	Unlinkable token
	Aggregate Claiming

	nsdi23-cho-kun-woo
	Introduction
	Related Work
	Design
	Surface Hardware
	Design Goals
	Design Process

	Surface Control
	Biasing lines
	Beam steering and splitting

	Link Layer Design

	Implementation
	Evaluation
	Methodology
	In-situ Performance
	Multi-armed Beams
	Microbenchmarks

	Discussion
	Conclusion
	Acknowledgements
	Unit Cell Electromagnetic Analysis
	Magnetic Meta-atom
	Electric Meta-atom
	Design Parameters

	Path Loss Model
	Meta-atom controllability and sensitivity

	nsdi23-hasan
	Introduction
	The Radio Access Technology Should Not Drive the Network Architecture
	WiFi vs. Cellular Access Networks
	Lowering the Barriers

	Magma Architecture
	Abstracting the Radio Access Technology
	Hierarchical SDN Control Plane
	Fault Tolerance Via Small Fault Domains
	State Synchronization
	Software Data-Plane Implementation
	Federation With Other Networks

	Evaluation
	Supporting Typical Deployments
	Control and User Plane Separation
	Deployment
	Fixed Wireless Hotspots
	Franchised MNO Extension

	Related Work
	Conclusion

	nsdi23-dong
	Introduction
	Basics and Usage of LinkLab 2.0
	Designs of Management Services
	Overview of Management Architecture
	Achieving IoT-Edge-Cloud Integration
	Achieving Multi-tenancy
	Achieving Reliability

	System Performance
	Representative Use Cases
	Supported Research Experiments
	Outreaches

	Evolution and Lessons Learned
	Future Directions
	Related Work
	Concluding Remarks

	nsdi23-chen-yinfang
	Introduction
	Background and Motivation
	Errors in Cloud-backed Applications
	Emerging Reliability Challenges
	A lack of standards and consistencies
	Rarity and large space of faults

	Our Goal

	Bug Taxonomy
	No Error Handling
	Throwing Unrelated Exceptions
	Silent Semantic Violations
	State Divergence

	Rainmaker
	Overview
	Fault Injection Policy
	What faults to inject (for a REST API call)?
	Which REST API calls to inject faults?

	Test Oracles
	Exception Oracle
	Assertion Violation Oracle

	Diagnosis Support
	Implementation

	Evaluation
	Finding New Bugs
	False Positives
	Running Time with Coverage

	Discussion and Limitation
	Related Work
	Concluding Remarks

	nsdi23-xu
	Introduction
	Background on Network Testing
	Configuration Coverage: Overview
	Defining coverage
	Our approach

	Design of NetCov
	Information flow model
	Inferring the IFG on demand
	Handling uncertainty
	Future Extensions

	Implementation
	Case Studies
	Case Study I: The Internet2 backbone
	Test suite coverage
	Coverage-guided test development

	Case study II: Datacenter networks

	Performance Evaluation
	Comparison to Data Plane Coverage
	Related Work
	Summary

	nsdi23-chen-yanqing
	Introduction
	Background & Motivation
	Requirements for Production
	Related Work

	Norma Overview
	The Pipeline-Folded Switch ASIC
	Norma's Architecture

	Emulating Stateful Protocol
	The Stateful Protocol Abstraction
	Executing State Machine
	Generating Replying Packets
	Post-Processing

	Emulating Realistic Traffic
	Two-Stage Packet Editor
	Precise Rate & Burst Control

	More Practical Considerations
	High-Precision Real-Time Measurement
	Blind Measurement of Forwarding Delay

	Implementation
	Case Study
	Evaluation
	Traffic Throughput
	Traffic Control
	Measurement

	Limitation & Discussion
	Conclusion
	Non-Atomic State Updating
	Full-Speed Traffic Generation
	Implementation Details of Packet Editors
	Analysis of Blind Measurement
	Loopback Port Allocation
	Performance of Software Testers

	nsdi23-song-yihang
	Introduction
	Background and Motivation
	Amplifying the Signal
	Spread Spectrum Technique
	Motivation

	Passive Chirp De-spreading
	Passive Chirp De-spreading Design
	Interference Resilience Analysis

	LNA-free Signal Magnification
	Magnifying by Accumulating Energy
	Preserve the Information
	Symbol Rate vs. Magnification Performance

	Low-power Decoding
	Implementation
	Evaluation
	Experiment Setup
	Benchmarks
	Communication Range
	Power Consumption
	Interference Resilience

	Discussion and Limitations
	Related Work
	Conclusion

	nsdi23-chen-yongzhou
	Introduction
	Background & Related Work
	Motivation and Challenges
	Need for Channel-Aware Slicing
	Challenge in Channel-Aware Slicing
	RadioSaber's Approach

	RadioSaber's Design
	Inter-slice Scheduler
	Customizable Enterprise Scheduling
	RAN Slicing Workflow
	Relaying Slice Context to gNB
	Scheduling at gNB

	Implementation
	Evaluation
	Spectrum Efficiency and Fairness
	Diverse Enterprise Schedulers
	What Makes RadioSaber Win Over NVS?
	Varying Number of Slices and UEs per Slice
	Non-greedy Enterprise Schedulers
	Is There a Better Inter-Slice Scheduler?
	Scheduling Latency and Overhead

	Limitations and Future Work
	Supplemental Evaluation
	Slices with Different Weights
	CDF Graphs of FCT and Queueing Delay

	nsdi23-liang-bo
	Introduction
	RF-Chord's System Overview
	One-shot Wideband with Multisine Wave
	Backscatter Signal Model Primer
	Backscattering with Wideband Multisine Wave
	Why Multisine Wave
	Digital Wideband Channelization

	SINR Improvement for Long Range
	External Noise Suppression
	Self-interference Canceling
	Full Packet Matching
	Clock Offset Mitigation
	Decoding with Channel Diversity

	Localization with Kernel-Layer Framework
	Long-tail Errors Source Demystification
	Near-field Localization with Hologram Algorithm
	Kernel-layer Framework
	RF-Chord's Kernel and Layer

	Implementation
	Active Sniffer
	RFID Tags

	Evaluation
	Experimental Setup
	Throughput in One-shot Localization
	Localization Performance

	Practical Deployment
	Deployment Constraints
	Real World Deployment

	Discussion
	Related Work
	Conclusion
	FCC Compliance
	Kernel-layer Combinations for Different Localization Algorithms
	Direct Path Enhancement

	nsdi23-liu-zikun
	Introduction
	Adversary Model
	System Overview
	Target Systems
	Operation Overview

	RAdio Frequency Attack (RAFA)
	Background on Adversarial Perturbations
	Our Attack Formulation
	Modeling Pre-Processing
	Modeling Lack of Synchronization
	Modeling Channel Transformations on the Perturbation Vector
	Generating Practical Adversarial Attacks

	Hardware Design
	Design Principle
	System Implementation

	Results
	Wireless Systems Re-implementation
	Adversarial Attacks against FIRE
	Adversarial Attacks against DLoc
	Comparison to Input-Aware Attacks
	Black Box RAFA
	Defense: Adversarial Training

	Related Work
	Concluding Discussion

	Blank Page

