ISBN 978-1-939133-33-5

>

NOILVIDOSSY
Xxiuosn

(€2, 1aSN) uoneluswa|dw| pue ubisaqg swaisAg paysomial uo wnisodwAs XINISN Y0z a3 o sbuipasaold

£20Z '61—£1 14dy ySN ‘v “uolsog

conference

oo

proceedings

20th USENIX Symposium on

Networked Systems Design
and Implementation (NSDI "23)

Boston, MA, USA
April 17-19, 2023

Sponsored by

usenix

EEEEEEEEEEE
SSSSSSSSSSSSSSSS

In cooperation with
ACM SIGCOMM and ACM SIGOPS

NSDI ’23 Sponsors USENIX Supporters

Platinum Sponsor

USENIX Patrons
a m a z O n Amazon ¢ Futurewei ® Google * Meta
USENIX Benefactors
Bloomberg * NetApp
Gold Sponsors USENIX Partner

Thinkst Canary ® Two Sigma

Zmruturewel OQ Meta

Technologies

Open Access Supporter

Google

Silver Sponsors Open Access Publishing Partner
Peer]

il ByteDance ~ Google
Bronze Sponsors
MNetApp & TwosieMA @ o™

Open Access Sponsor

alllasc &llall aeala
ayisillg pglell
'\g—__ King Abdullah University of

Science and Technology

USENIX Association

Proceedings of the 20th USENIX Symposium
on Networked Systems Design and
Implementation (NSDI °23)

April 17-19, 2023
Boston, MA, USA

© 2023 by The USENIX Association
All Rights Reserved
This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.

USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-33-5

Conference Organizers

Program Committee

Sangeetha Abdu-Jyothi, University of California, Irvine, and
VMware Research

Fadel Adib, Massachusetts Institute of Technology

Rachit Agarwal, Cornell University

Aditya Akella, The University of Texas at Austin

Deniz Altinbuken, Google

Ganesh Ananthanarayanan, Microsoft Research

Maria Apostolaki, Princeton University

Katerina Argyraki, EPFL

Behnaz Arzani, Microsoft Research

Adam Belay, Massachusetts Institute of Technology

Ken Birman, Cornell University

Matthew Caesar, University of lllinois at Urbana—Champaign

Marco Canini, KAUST

Ranveer Chandra, Microsoft Research

Ang Chen, Rice University

Paolo Costa, Microsoft Research

Murat Demirbas, Amazon

Nandita Dukkipati, Google

Ramakrishnan Durairajan, University of Oregon

Giuila Fanti, Carnegie Mellon University

Anja Feldmann, Max Planck Institute for Informatics

Bryan Ford, EPFL

Yashar Ganjali, University of Toronto, Huawei Canada

Mojgan Ghasemi, Google

Yasaman Ghasempour, Princeton University

Soudeh Ghorbani, Johns Hopkins University

Shyam Gollakota, University of Washington

Prateesh Goyal, Microsoft Research

Arpit Gupta, University of California, Santa Barbara

Indranil Gupta, University of Illinois at Urbana—Champaign

Hamed Haddadi, Imperial College London

Andreas Haeberlen, University of Pennsylvania

Dongsu Han, Korea Advanced Institute of Science and
Technology (KAIST)

Haitham Hassanieh, University of lllinois at Urbana—Champaign
Michio Honda, University of Edinburgh
Jon Howell, VMware Research

Wenjun Hu, Yale University

Rebecca Isaacs

Anand lyer, Microsoft Research
Vikram lyer, University of Washington
Zhihao Jia, Carnegie Mellon University
Junchen Jiang, University of Chicago
Xin Jin, Peking University

Srikanth Kandula, Microsoft Research
Sachin Katti, Stanford University
Anurag Khandelwal, Yale University

Song Min Kim, Korea Advanced Institute of Science and
Technology (KAIST)

Marios Kogias, Imperial College London

Dejan Kostic, KTH Royal Institute of Technology
Gautam Kumar, Google

Jeongkeun Lee, Intel

Alan (Zaoxing) Liu, Boston University

Grace Liu, NYU Shanghai

Jay Lorch, Microsoft Research

Harsha Madhyastha, University of Michigan
Morley Z. Mao, University of Michigan

James Mickens, Harvard University

Radhika Mittal, University of Illinois at Urbana—Champaign

Jayashree Mohan, Microsoft Research India

Igbal Mohomed, Samsung Al Center Toronto
Shuai Mu, Stony Brook University

Rajalakshmi Nandakumar, Cornell Tech

Srinivas Narayana, Rutgers University

Ravi Netravali, Princeton University

Amy Ousterhout, University of California, Berkeley
Aurojit Panda, New York University

Peter Pietzuch, Imperial College London

Sanjay Rao, Purdue University

Jen Rexford, Princeton University

Nirupam Roy, University of Maryland, College Park
Ahmed Saeed, Georgia Institute of Technology
Raja Sambasivan, Tufts University

Stefan Schmid, Technische Universitdt Berlin
Aaron Schulman, University of California, San Diego
Siddhartha Sen, Microsoft Research

Srinivasan Seshan, Carnegie Mellon University
Muhammad Shahbaz, Purdue University

Rachee Singh, Microsoft Research

Dimitrios Skarlatis, Carnegie Mellon University
Alex Snoeren, University of California, San Diego
Brent Stephens, University of Utah

Mina Tahmasbi, Cornell University

Amy Tai, Google

Doug Terry, Amazon

Amin Vahdat, Google

Hakim Weatherspoon, Cornell University

Michael Wei, VMware Research

John Wilkes, Google

Keith Winstein, Stanford University

Yiting Xia, Max Planck Institute for Informatics

Tianyin Xu, University of Illinois at Urbana—Champaign

Neeraja Yadwadkar, The University of Texas at Austin
Francis Yan, Microsoft Research

Ellen Zegura, Georgia Institute of Technology

Ennan Zhai, Alibaba

Ying Zhang, Meta

Ben Zhao, University of Chicago

Zhizhen Zhong, Massachusetts Institute of Technology
Danyang Zhuo, Duke University

Poster Session Co-Chairs

Soudeh Ghorbani, Johns Hopkins University

Francis Yan, Microsoft Research

Test of Time Awards Committee
Aditya Akella, University of Wisconsin—Madison

Sujata Banerjee, VMware Research
Ranjita Bhagwan, Microsoft Research India

Jon Howell, VMware Research

James Mickens, Harvard University

Amar Phanishayee, Microsoft Research

George Porter, University of California, San Diego
Vyas Sekar, Carnegie Mellon University

Minlan Yu, Harvard University

Vamsi Addanki
Anirudh Badam
Sujata Banerjee
Michael Barrow
Theophilus Benson
Jeremias Blendin
Vijay Chidambaram
Asaf Cidon

Angela Demke Brown
Fahad Dogar
Rodrigo Fonseca
Phillipa Gill

Steering Committee

Aditya Akella, University of Wisconsin—Madison
Sujata Banerjee, VMware Research

Ranjita Bhagwan, Microsoft Research India
Casey Henderson, USENIX Association

Jon Howell, VMware Research

Arvind Krishnamurthy, University of Washington

Jay Lorch, Microsoft Research

James Mickens, Harvard University

Amar Phanishayee, Microsoft Research

George Porter, University of California, San Diego
Vyas Sekar, Carnegie Mellon University

Renata Teixeira, Netflix

External Reviewers

Brighten Godfrey
Ramesh Govindan
Kurtis Heimerl
Kyle Jamieson

Anuj Kalia

Ana Klimovic

Ana Klimovic
Morten Konggaard Schou
Yanfang Le
Christos Liaskos
Jonathan Mace
Georgios Nikolaidis

KyoungSoo Park
Chunyi Peng
Chunyi Peng

Ben Pfaff

George Porter
Costin Raiciu
Robert Ricci
Amedeo Sapio
Michael Schapira
Malte Schwarzkopf
Marco Serafini
Elahe Soltanaghai

Laurent Vanbever
Deepak Vasisht
Shivaram Venkataraman
Ymir Vigfusson

Jia Wang

Walter Willinger
Michelle X. Yeo

Yiying Zhang

Lin Zhong

Message from the
NSDI °23 Program Co-Chairs

Welcome to NSDI *23! This year marks the 20th anniversary of the NSDI conference. In these two decades, networked
systems have transformed the way that we live, work, and interact with one another. NSDI papers have spearheaded this
revolution, providing many of the key technological advances behind industries such as Cloud Computing, Big Data,
Software-Defined Networks, and more. With this latest iteration of NSDI, we hope to extend our community’s track record
of enabling and accelerating seismic shifts in computing via foundational research.

NSDI °23 received 560 submissions across two deadlines (272 in the Spring and 288 in the Fall), an increase of 40% from
NSDI "22. To handle this record number of submissions, we assembled a Program Committee of 99 experts from academia
and industry. The reviewing process included two rounds of double-blind review, an online discussion phase, and a two-day
online PC meeting for each of the two deadlines. A total of 96 papers were accepted, resulting in an acceptance rate of 17%.

We thank our Program Committee members, who wrote over 1.6 million words of thoughtful, high-quality feedback across
2172 reviews, and discussed the papers extensively online and during the PC meetings. Many thanks to our poster chairs,
Francis Yan and Soudeh Ghorbani, for bringing back the poster session to NSDI after a three-year hiatus. We thank our
stand-in conflict PC chairs: Ben Y. Zhao, Siddhartha Sen, Indranil Gupta, and Katerina Argyraki. We would also like to
thank Ellen Zegura, Rebecca Isaacs, and Matthew Caesar for helping us select the Best Paper award winners this year; and
Aditya Akella, Sujata Banerjee, Ranjita Bhagwan, Jon Howell, James Mickens, Amar Phanishayee, George Porter, Vyas
Sekar, and Minlan Yu for serving on the Test-of-Time awards committee. We are also grateful to Amar Phanishayee, Vyas
Sekar, Arvind Krishnamurthy, Jay Lorch, Aditya Akella, and the rest of the NSDI Steering Committee for their advice

and insight from running past NSDI instances. We would like to thank Sudarsanan Rajasekaran of MIT, who helped us
immensely with the logistics of the PC meetings. We also thank Casey Henderson, Jasmine Murcia, Ginny Staubach, Jessica
Kim, Sarah TerHune, Heidi Sherwood, Liz Markel, Camille Mulligan, Cathy Bergman, Nicole Santiago, Olivia Vernetti,
Arnold Gatilao, Mo Moreno, and the rest of the USENIX staff for all their hard work behind the scenes. Finally, we would
like to thank all the authors for submitting their best work to NSDI.

We look forward to seeing you all in Boston for the 20th iteration of NSDI!

Mahesh Balakrishnan, Confluent
Manya Ghobadi, Massachusetts Institute of Technology
NSDI °23 Program Co-Chairs

20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI °23)

April 17-19, 2023

Boston, MA, USA
Monday, April 17
RDMA
SRNIC: A Scalable Architecture for RDMA NICS. ... vttt teneeneeeeeeoeeoeeneeasesscsscesseasensenses 1

Zilong Wang, Hong Kong University of Science and Technology; Layong Luo and Qingsong Ning, ByteDance; Chaoliang
Zeng, Wenxue Li, and Xinchen Wan, Hong Kong University of Science and Technology; Peng Xie, Tao Feng, Ke Cheng,
Xiongfei Geng, Tianhao Wang, Weicheng Ling, Kejia Huo, Pingbo An, Kui Ji, Shideng Zhang, Bin Xu, Ruiqing Feng, and
Tao Ding, ByteDance; Kai Chen, Hong Kong University of Science and Technology; Chuanxiong Guo

Hostping: Diagnosing Intra-host Network Bottlenecks in RDMA Servers.covieiieiieiieieeneeneennns 15
Kefei Liu, BUPT; Zhuo Jiang, ByteDance Inc.; Jiao Zhang, BUPT and Purple Mountain Laboratories;, Haoran Wei,

BUPT and ByteDance Inc.; Xiaolong Zhong, BUPT; Lizhuang Tan, ByteDance Inc.; Tian Pan and Tao Huang, BUPT and
Purple Mountain Laboratories

Understanding RDMA Microarchitecture Resources for Performance Isolation......................oo0ouet. 31
Xinhao Kong and Jingrong Chen, Duke University; Wei Bai, Microsoft; Yechen Xu, Shanghai Jiao Tong University;
Mahmoud Elhaddad, Shachar Raindel, and Jitendra Padhye, Microsoft; Alvin R. Lebeck and Danyang Zhuo,

Duke University

Empowering Azure Storage with RDMAottt ittt ittt tineeneeneencencencennns 49
Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir Bahl, Ameya Bhagat, Gowri Bhaskara,
Tanya Brokhman, Lei Cao, Ahmad Cheema, Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek Ette, Igal Figlin,
Daniel Firestone, Mathew George, [lya German, Lakhmeet Ghai, Eric Green, Albert Greenberg, Manish Gupta, Randy
Haagens, Matthew Hendel, Ridwan Howlader, Neetha John, Julia Johnstone, Tom Jolly, Greg Kramer, David Kruse,

Ankit Kumar, Erica Lan, Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen Liu, Guohan Lu, Yuemin Lu, Xiakun Lu,
Vadim Makhervaks, Ulad Malashanka, David A. Maltz, Ilias Marinos, Rohan Mehta, Sharda Murthi, Anup Namdhari,
Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas Phillips, Adrian Power, Suraj Puri, Shachar Raindel, Jordan Rhee,
Anthony Russo, Maneesh Sah, Ali Sheriff, Chris Sparacino, Ashutosh Srivastava, Weixiang Sun, Nick Swanson, Fuhou
Tian, Lukasz Tomczyk, Vamsi Vadlamuri, Alec Wolman, Ying Xie, Joyce Yom, Lihua Yuan, Yanzhao Zhang, and

Brian Zill, Microsoft

Learning with GPUs

Transparent GPU Sharing in Container Clouds for Deep Learning Workloads.cociiiiiiiiienn.. 69
Bingyang Wu and Zili Zhang, Peking University; Zhihao Bai, Johns Hopkins University; Xuanzhe Liu and Xin Jin,
Peking University

ARK: GPU-driven Code Execution for Distributed Deep Learning.cciitiiiiiieiriinennrenesnnes 87
Changho Hwang, KAIST, Microsoft Research; KyoungSoo Park, KAIST; Ran Shu, Xinyuan Qu, Peng Cheng, and
Yonggiang Xiong, Microsoft Research

BGL: GPU-Efficient GNN Training by Optimizing Graph Data I/O and Preprocessingcco0vuven. 103
Tianfeng Liu, Tsinghua University, Zhongguancun Laboratory, ByteDance; Yangrui Chen, The University of Hong

Kong, ByteDance; Dan Li, Tsinghua University, Zhongguancun Laboratory; Chuan Wu, The University of Hong Kong;

Yibo Zhu, Jun He, and Yanghua Peng, ByteDance; Hongzheng Chen, ByteDance, Cornell University; Hongzhi Chen and
Chuanxiong Guo, ByteDance

Zeus: Understanding and Optimizing GPU Energy Consumption of DNN Training...........cccoveveeennn. 119
Jie You, Jae-Won Chung, and Mosharaf Chowdhury, University of Michigan

RPC and Remote Memory

Remote Procedure Call as a Managed System ServiCe.cuoveetiieeeeeeresosesrocacsssssnssssesosnsss 141
Jingrong Chen, Yongji Wu, and Shihan Lin, Duke University; Yechen Xu, Shanghai Jiao Tong University; Xinhao Kong,
Duke University; Thomas Anderson, University of Washington; Matthew Lentz, Xiaowei Yang, and Danyang Zhuo,

Duke University

Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memorycoovvuveerecnnss 161
Chenxi Wang, Yifan Qiao, Haoran Ma, and Shi Liu, UCLA; Yiying Zhang, UCSD; Wenguang Chen, Tsinghua University;
Ravi Netravali, Princeton University; Miryung Kim and Guoqing Harry Xu, UCLA

Hermit: Low-Latency, High-Throughput, and Transparent Remote Memory via Feedback-Directed Asynchrony . . .181
Yifan Qiao and Chenxi Wang, UCLA; Zhenyuan Ruan and Adam Belay, MIT CSAIL; Qingda Lu, Alibaba Group;
Yiying Zhang, UCSD; Miryung Kim and Guoqing Harry Xu, UCLA

NetRPC: Enabling In-Network Computation in Remote Procedure Calls...........ccciiiiiiiiiiirieenennnns 199
Bohan Zhao, Tsinghua University; Wenfei Wu, Peking University; Wei Xu, Tsinghua Univesity

Congestion Control

Bolt: Sub-RTT Congestion Control for Ultra-Low Latency.........cooiiiiiiiiiiiiiiiiiiiiiieiieneeneenns 219
Serhat Arslan, Stanford University; Yuliang Li, Gautam Kumar, and Nandita Dukkipati, Google LLC

Understanding the impact of host networking elements on trafficburstscciiiiiiiiiiiiiiiae, 237
Erfan Sharafzadeh and Sepehr Abdous, Johns Hopkins University; Soudeh Ghorbani, Johns Hopkins University and Meta

Poseidon: Efficient, Robust, and Practical Datacenter CC via Deployable INTccoiiiiiiinnnn. 255
Weitao Wang, Google LLC and Rice University; Masoud Moshref, Yuliang Li, and Gautam Kumar, Google LLC;
T. S. Eugene Ng, Rice University; Neal Cardwell and Nandita Dukkipati, Google LLC

Rearchitecting the TCP Stack for I/0-Offloaded Content Deliverycovviiiiiiiiiiiiiiiiieiieneenns 275
Taehyun Kim and Deondre Martin Ng, KAIST; Junzhi Gong, Harvard University; Youngjin Kwon, KAIST; Minlan Yu,
Harvard University; KyoungSoo Park, KAIST

Distributed Systems

Hydra: Serialization-Free Network Ordering for Strongly Consistent Distributed Applications 293
Inho Choi, National University of Singapore; Ellis Michael, University of Washington; Yunfan Li, National University
of Singapore; Dan R. K. Ports, Microsoft Research; Jialin Li, National University of Singapore

The Benefit of Hindsight: Tracing Edge-Cases in Distributed Systemscoiiiiiiiiiiiiiiiiinen.. 321
Lei Zhang, Emory University and Princeton University; Zhiqiang Xie and Vaastav Anand, Max Planck Institute for
Software Systems; Ymir Vigfusson, Emory University; Jonathan Mace, Max Planck Institute for Software Systems

DiSh: Dynamic Shell-Script Distribution.cotiiiiiiiiiiiiiiiiireeteereesosscerossocsssssssnsns 341
Tammam Mustafa, MIT; Konstantinos Kallas, University of Pennsylvania; Pratyush Das, Purdue University;
Nikos Vasilakis, Brown University

Waverunner: An Elegant Approach to Hardware Acceleration of State Machine Replication 357
Mohammadreza Alimadadi and Hieu Mai, Stony Brook University, Shenghsun Cho, Microsoft; Michael Ferdman,
Peter Milder, and Shuai Mu, Stony Brook University

Wireless
LeakyScatter: A Frequency-Agile Directional Backscatter Network Above 100GHzcc0utns 375
Atsutse Kludze and Yasaman Ghasempour, Princeton University

RF-Bouncer: A Programmable Dual-band Metasurface for Sub-6 Wireless Networkscccvveveeennns 389
Xinyi Li, Chao Feng, Xiaojing Wang, and Yangfan Zhang, Northwest University; Yaxiong Xie, University at Buffalo SUNY;
Xiaojiang Chen, Northwest University

Scalable Distributed Massive MIMO Baseband Processingcciiiiiiiiiiiiiirnrerersocnsesensnsns 405
Junzhi Gong, Harvard University; Anuj Kalia, Microsoft; Minlan Yu, Harvard University

DChannel: Accelerating Mobile Applications With Parallel High-bandwidth and Low-latency Channels 419
William Sentosa, University of Illinois Urbana-Champaign,; Balakrishnan Chandrasekaran, Vrije Universiteit Amsterdam;

P. Brighten Godfrey, University of Illinois Urbana-Champaign and VMware; Haitham Hassanieh, EPFL; Bruce Maggs,
Duke University and Emerald Innovations

Cloud

SkyPilot: An Intercloud Broker for SKy Computing.ovuiiuieiieiireneerscoseesssnssssesossssssnss 437
Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil Bhardwaj, Woosuk Kwon, Siyuan Zhuang,
Frank Sifei Luan, and Gautam Mittal, UC Berkeley; Scott Shenker, UC Berkeley and ICSI; Ion Stoica, UC Berkeley

Unlocking unallocated cloud capacity for long, uninterruptible workloads...........cciiiiiiiiirnrenennnns 457
Anup Agarwal, Carnegie Mellon University, Shadi Noghabi, Microsoft Research; Iiiigo Goiri, Azure Systems Research;
Srinivasan Seshan, Carnegie Mellon University;, Anirudh Badam, Microsoft Research

Invisinets: Removing Networking from Cloud Networks.oouitiieiirenenrnenseeresnssssesosnssnsnss 479
Sarah McClure and Zeke Medley, UC Berkeley; Deepak Bansal and Karthick Jayaraman, Microsoft; Ashok Narayanan,
Google, Jitendra Padhye, Microsoft; Sylvia Ratnasamy, UC Berkeley and Google; Anees Shaikh, Google; Rishabh Tewari,
Microsoft

Bamboo: Making Preemptible Instances Resilient for Affordable Training of Large DNNs..............o0vun. 497
John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, and Yifan Qiao, UCLA; Zhihao Jia, CMU; Minjia Zhang, Microsoft
Research; Ravi Netravali, Princeton University; Guoqing Harry Xu, UCLA

Internet-Scale Networks

ONEWAN is better than two: Unifying a split WAN architecturecoiiiiiiiiiiiiiiiiireeenennnns 515
Umesh Krishnaswamy, Microsoft; Rachee Singh, Microsoft and Cornell University; Paul Mattes, Paul-Andre

C Bissonnette, Nikolaj Bjgrner, Zahira Nasrin, Sonal Kothari, Prabhakar Reddy, John Abeln, Srikanth Kandula,

Himanshu Raj, Luis Irun-Briz, Jamie Gaudette, and Erica Lan, Microsoft

RHINE: Robust and High-performance Internet Naming with E2E Authenticitycooiiiiiiiae, 531
Huayi Duan, Rubén Fischer, Jie Lou, Si Liu, David Basin, and Adrian Perrig, ETH Ziirich

Enabling Users to Control their Internetoiuitiiiiiiiiitiiierereereesssresnssssesessssnsans 555
Ammar Tahir and Radhika Mittal, University of lllinois at Urbana-Champaign

xBGP: Faster Innovation in Routing Protocolscouiiiiiiiiiiiiiiiiiiiiieiereresnsreresnssnnnns 575
Thomas Wirtgen, Tom Rousseaux, Quentin De Coninck, and Nicolas Rybowski, ICTEAM, UCLouvain; Randy Bush,
Internet Initiative Japan & Arrcus, Inc; Laurent Vanbever, NSG, ETH Ziirich; Axel Legay and Olivier Bonaventure,
ICTEAM, UCLouvain

Tuesday, April 18

Synthesis and Formal Methods

TACCL: Guiding Collective Algorithm Synthesis using Communication Sketches, 593
Aashaka Shah, University of Texas at Austin; Vijay Chidambaram, University of Texas at Austin and VMware Research;
Meghan Cowan, Saeed Maleki, Madan Musuvathi, Todd Mytkowicz, Jacob Nelson, and Olli Saarikivi, Microsoft Research;
Rachee Singh, Microsoft and Cornell University

Synthesizing Runtime Programmable Switch Updatesccovtiiiiiieitrineesesrecnsnsserossssnsnes 613
Yiming Qiu, Rice University; Ryan Beckett, Microsoft; Ang Chen, Rice University

Practical Intent-driven Routing Configuration Synthesiscciiiiiiiiiiiiiiiiiiiiiirecererennnnns 629
Sivaramakrishnan Ramanathan, Ying Zhang, Mohab Gawish, Yogesh Mundada, Zhaodong Wang, Sangki Yun,

Eric Lippert, and Walid Taha, Meta; Minlan Yu, Harvard University; Jelena Mirkovic, University of Southern California
Information Sciences Institute

Formal Methods for Network Performance Analysisovitiiiiiiiiiiiiiiieiiieeceressocnsosansnsns 645
Mina Tahmasbi Arashloo, University of Waterloo; Ryan Beckett, Microsoft Research; Rachit Agarwal, Cornell University

Data Centers

Flattened Clos: Designing High-performance Deadlock-free Expander Data Center Networks Using

Graph Contractionveitiiiieeenteeoseseeeneassesosnssssosassssssossssssosnssssossossssssoss 663
Shizhen Zhao, Qizhou Zhang, Peirui Cao, Xiao Zhang, and Xinbing Wang, Shanghai Jiao Tong University;

Chenghu Zhou, Shanghai Jiao Tong University and Chinese Academy of Sciences

Scalable Tail Latency Estimation for Data Center Networks.covtiiiiiiiiiiirririenereresesasennnns 685
Kevin Zhao, University of Washington; Prateesh Goyal, Microsoft Research; Mohammad Alizadeh, MIT CSAIL;
Thomas E. Anderson, University of Washington

Shockwave: Fair and Efficient Cluster Scheduling for Dynamic Adaptation in Machine Learning.............. 703
Pengfei Zheng and Rui Pan, University of Wisconsin-Madison; Tarannum Khan, The University of Texas at Austin;
Shivaram Venkataraman, University of Wisconsin-Madison; Aditya Akella, The University of Texas at Austin

Protego: Overload Control for Applications with Unpredictable Lock Contention.coivvueenenn. 725
Inho Cho, MIT CSAIL; Ahmed Saeed, Georgia Tech; Seo Jin Park, Mohammad Alizadeh, and Adam Belay, MIT CSAIL

Systems for Learning

ToroOpt: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training Jobs......... 739
Weiyang Wang, Moein Khazraee, Zhizhen Zhong, and Manya Ghobadi, Massachusetts Institute of Technology;
Zhihao Jia, Meta and CMU; Dheevatsa Mudigere and Ying Zhang, Meta; Anthony Kewitsch, Telescent

ModelKeeper: Accelerating DNN Training via Automated Training Warmupcoiiiiiiiiiiienn, 769
Fan Lai, Yinwei Dai, Harsha V. Madhyastha, and Mosharaf Chowdhury, University of Michigan
SHEPHERD: Serving DNNsinthe Wild.........oiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiietteiieeneeneeneenns 787

Hong Zhang, University of Waterloo; Yupeng Tang and Anurag Khandelwal, Yale University; Ion Stoica, UC Berkeley

Better Together: Jointly Optimizing ML Collective Scheduling and Execution Planning using SYNDICATE 809
Kshiteej Mahajan, University of Wisconsin - Madison; Ching-Hsiang Chu and Srinivas Sridharan, Facebook;
Aditya Akella, UT Austin

Privacy and Security

Addax: A fast, private, and accountable ad exchange infrastructurecoiiiiiiiiiiirecnrnreennnns 825
Ke Zhong, Yiping Ma, and Yifeng Mao, University of Pennsylvania; Sebastian Angel, University of Pennsylvania &
Microsoft Research

SPEEDEX: A Scalable, Parallelizable, and Economically Efficient Decentralized EXchange 849
Geoffrey Ramseyer, Ashish Goel, and David Mazieres, Stanford University

Boomerang: Metadata-Private Messaging under Hardware Trustcciiiiiiiirieerereecnsnsaennnns 877
Peipei Jiang, Wuhan University and City University of Hong Kong; Qian Wang and Jianhao Cheng, Wuhan University;

Cong Wang, City University of Hong Kong; Lei Xu, Nanjing University of Science and Technology; Xinyu Wang,

Tencent Inc.; Yihao Wu and Xiaoyuan Li, Wuhan University,; Kui Ren, Zhejiang University

Hamilton: A High-Performance Transaction Processor for Central Bank Digital Currencies.................. 901
James Lovejoy, Federal Reserve Bank of Boston; Madars Virza and Cory Fields, MIT Media Lab; Kevin Karwaski and
Anders Brownworth, Federal Reserve Bank of Boston; Neha Narula, MIT Media Lab

Video
RECL: Responsive Resource-Efficient Continuous Learning for Video Analytics............ccoiiiiiiiiaa.s 917
Mehrdad Khani, MIT CSAIL and Microsoft; Ganesh Ananthanarayanan and Kevin Hsieh, Microsoft; Junchen Jiang,

University of Chicago, Ravi Netravali, Princeton University; Yuanchao Shu, Zhejiang University; Mohammad Alizadeh,
MIT CSAIL; Victor Bahl, Microsoft

Boggart: Towards General-Purpose Acceleration of Retrospective Video Analyticsccovviiiennnns 933
Neil Agarwal and Ravi Netravali, Princeton University

Tambur: Efficient loss recovery for videoconferencing via streaming codes.........c.coviiiieeereresenenrnes 953
Michael Rudow, Carnegie Mellon University; Francis Y. Yan, Microsoft Research; Abhishek Kumar, Carnegie Mellon
University; Ganesh Ananthanarayanan and Martin Ellis, Microsoft; KV. Rashmi, Carnegie Mellon University

Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge. 973
Arthi Padmanabhan, UCLA; Neil Agarwal, Princeton University; Anand Iyer and Ganesh Ananthanarayanan, Microsoft
Research; Yuanchao Shu, Zhejiang University,; Nikolaos Karianakis, Microsoft Research; Guoqing Harry Xu, UCLA;

Ravi Netravali, Princeton University

Data

Fast, Approximate Vector Queries on Very Large Unstructured Datasetscccoiiiiierererecnnennnss 995
Zili Zhang and Chao Jin, Peking University; Linpeng Tang, Mogi; Xuanzhe Liu and Xin Jin, Peking University

Arya: Arbitrary Graph Pattern Mining with Decomposition-based Sampling...............cooiiiiiiiiian, 1013
Zeying Zhu, Boston University; Kan Wu, University of Wisconsin-Madison; Zaoxing Liu, Boston University

SECRECY: Secure collaborative analytics in untrusted clouds.ccviiiii ittt iiiiiieeereresnsennnss 1031
John Liagouris, Vasiliki Kalavri, Muhammad Faisal, and Mayank Varia, Boston University

FLASH: Towards a High-performance Hardware Acceleration Architecture for Cross-silo Federated Learning. 1057
Junxue Zhang and Xiaodian Cheng, iSINGLab at Hong Kong University of Science and Technology and Clustar;

Wei Wang, Clustar; Liu Yang, iSINGLab at Hong Kong University of Science and Technology and Clustar;

Jinbin Hu and Kai Chen, iSINGLab at Hong Kong University of Science and Technology

Making Systems Learn

On Modular Learning of Distributed Systems for Predicting End-to-End Latency...................coe.s. 1081
Chieh-Jan Mike Liang, Microsoft Research; Zilin Fang, Carnegie Mellon University; Yuqing Xie, Tsinghua University;

Fan Yang, Microsoft Research; Zhao Lucis Li, University of Science and Technology of China; Li Lyna Zhang,

Mao Yang, and Lidong Zhou, Microsoft Research

Self Tune: Tuning Cluster Manag@ers. . ..o oo vee et teeaeeneesoosssesessssesosassssssssssssssssssssosas 1097
Ajaykrishna Karthikeyan and Nagarajan Natarajan, Microsoft Research; Gagan Somashekar, Stony Brook University;

Lei Zhao, Microsoft; Ranjita Bhagwan, Microsoft Research; Rodrigo Fonseca, Tatiana Racheva, and Yogesh Bansal,
Microsoft

HALP: Heuristic Aided Learned Preference Eviction Policy for YouTube Content Delivery Network 1149
Zhenyu Song, Princeton University; Kevin Chen, Nikhil Sarda, Deniz Altinbiiken, Eugene Brevdo, Jimmy Coleman,
Xiao Ju, Pawel Jurczyk, Richard Schooler, and Ramki Gummadi, Google

IoT Networks

OpenLoRa: Validating LoRa Implementations through an Extensible and Open-sourced Framework 1165
Manan Mishra, Daniel Koch, Muhammad Osama Shahid, and Bhuvana Krishnaswamy, University of Wisconsin-Madison;
Krishna Chintalapudi, Microsoft Research; Suman Banerjee, University of Wisconsin-Madison

VECARE: Statistical Acoustic Sensing for Automotive In-Cabin Monitoringooiiiiiiiieiianes 1185
Yi Zhang, The University of Hong Kong and Tsinghua University; Weiying Hou, The University of Hong Kong;
Zheng Yang, Tsinghua University; Chenshu Wu, The University of Hong Kong

SlimWiFi: Ultra-Low-Power IoT Radio Architecture Enabled by Asymmetric Communication 1201
Renjie Zhao, University of California San Diego; Kejia Wang, Baylor University; Kai Zheng and Xinyu Zhang,
University of California San Diego,; Vincent Leung, Baylor University

SLNet: A Spectrogram Learning Neural Network for Deep Wireless Sensingccoiiiiiiiiiiiines 1221
Zheng Yang and Yi Zhang, Tsinghua University; Kun Qian, University of California San Diego; Chenshu Wu,
The University of Hong Kong

Wednesday, April 19

Programming the Network

A High-Speed Stateful Packet Processing Approach for Tbps Programmable Switches 1237
Mariano Scazzariello and Tommaso Caiazzi, KTH Royal Institute of Technology and Roma Tre University;

Hamid Ghasemirahni, KTH Royal Institute of Technology; Tom Barbette, UCLouvain; Dejan Kosti¢ and

Marco Chiesa, KTH Royal Institute of Technology

ExoPlane: An Operating System for On-Rack Switch Resource Augmentationcccoivieiiieeennns 1257
Daehyeok Kim, Microsoft and University of Texas at Austin; Vyas Sekar and Srinivasan Seshan, Carnegie Mellon University

Sketchovsky: Enabling Ensembles of Sketches on Programmable Switchescciiiiiiiiiinnns. 1273
Hun Namkung, Carnegie Mellon University; Zaoxing Liu, Boston University; Daehyeok Kim, Microsoft Research;
Vyas Sekar and Peter Steenkiste, Carnegie Mellon University

RingLeader: Efficiently Offloading Intra-Server Orchestration to NICscciiiiiiiiiiiiirneennnss 1293
Jiaxin Lin, Adney Cardoza, Tarannum Khan, and Yeonju Ro, UT Austin; Brent E. Stephens, University of Utah;
Hassan Wassel, Google; Aditya Akella, UT Austin

Alternative Networks

StArRrRYNET: Empowering Researchers to Evaluate Futuristic Integrated Space and Terrestrial Networks. 1309
Zeqi Lai and Hewu Li, Tsinghua University and Zhongguancun Laboratory; Yangtao Deng, Tsinghua University;

Qian Wu, Jun Liu, and Yuanjie Li, Tsinghua University and Zhongguancun Laboratory, Jihao Li, Lixin Liu, and

Weisen Liu, Tsinghua University; Jianping Wu, Tsinghua University and Zhongguancun Laboratory

Porycorn: Data-driven Cross-layer Multipath Networking for High-speed Railway through

Composable Schedulerletsooiuiiiiiiiiiiiiiiireenrereesososersssasssossssssssessssasnsns 1325
Yunzhe Ni, Peking University; Feng Qian, University of Minnesota — Twin Cities; Taide Liu, Yihua Cheng, Zhiyao Ma,

and Jing Wang, Peking University;, Zhongfeng Wang, China Railway Gecent Technology Co., Ltd; Gang Huang and
Xuanzhe Liu, Key Laboratory of High Confidence Software Technologies, Ministry of Education, Peking University;
Chenren Xu, Zhongguancun Laboratory and Key Laboratory of High Confidence Software Technologies, Ministry of
Education, Peking University

Augmenting Augmented Reality with Non-Line-of-Sight Perception............. .ottt 1341
Tara Boroushaki, Maisy Lam, and Laura Dodds, Massachusetts Institute of Technology, Aline Eid, Massachusetts
Institute of Technology and University of Michigan; Fadel Adib, Massachusetts Institute of Technology

Acoustic Sensing and Communication Using Metasurfacecoiiiiiiiiiiiiiirirerersecesesansnns 1359
Yongzhao Zhang, Yezhou Wang, and Lanqing Yang, Shanghai Jiao Tong University; Mei Wang, UT Austin; Yi-Chao Chen,
Shanghai Jiao Tong University and Microsoft Research Asia, Lili Qiu, UT Austin and Microsoft Research Asia;

Yihong Liu, University of Glasgow; Guangtao Xue and Jiadi Yu, Shanghai Jiao Tong University

Performance

Skyplane: Optimizing Transfer Cost and Throughput Using Cloud-Aware Overlayscovvennan. 1375
Paras Jain, Sam Kumar, Sarah Wooders, Shishir G. Patil, Joseph E. Gonzalez, and Ion Stoica, University of California,
Berkeley

Electrode: Accelerating Distributed Protocols with eBPFiiiitiiiiiiiiiiiiiineenrennsnsessonns 1391
Yang Zhou, Harvard University; Zezhou Wang, Peking University; Sowmya Dharanipragada, Cornell University;
Minlan Yu, Harvard University

Nu: Achieving Microsecond-Scale Resource Fungibility with Logical Processescocivteiicneeerenns 1409
Zhenyuan Ruan and Seo Jin Park, MIT CSAIL; Marcos K. Aguilera, VMware Research;, Adam Belay, MIT CSAIL;
Malte Schwarzkopf, Brown University

Enabling High Quality Real-Time Communications with Adaptive Frame-Ratecoitu. 1429
Zili Meng, Tsinghua University and Tencent Inc.; Tingfeng Wang, Tsinghua University, Tencent Inc., and

Beijing University of Posts and Telecommunications, Yixin Shen, Tsinghua University; Bo Wang and Mingwei Xu,

Tsinghua University and Zhongguancun Laboratory; Rui Han and Honghao Liu, Tencent Inc.; Venkat Arun,

Massachusetts Institute of Technology; Hongxin Hu, University at Buffalo, SUNY; Xue Wei, Tencent Inc.

Serverless and Network Functions

LemonNFV: Consolidating Heterogeneous Network Functions at LineSpeedcoviiiiiiiieennns. 1451
Hao Li and Yihan Dang, Xi’an Jiaotong University; Guangda Sun, Xi’an Jiaotong University and National University of
Singapore; Guyue Liu, New York University Shanghai; Danfeng Shan and Peng Zhang, Xi’an Jiaotong University

Disaggregating Stateful Network Functionsccoiiiiiiiiiiiiiiiiiiernsenensncossesssnssnsosas 1469
Deepak Bansal, Gerald DeGrace, Rishabh Tewari, Michal Zygmunt, and James Grantham, Microsoft; Silvano Gai,

Mario Baldi, Krishna Doddapaneni, Arun Selvarajan, Arunkumar Arumugam, and Balakrishnan Raman,

AMD Pensando; Avijit Gupta, Sachin Jain, Deven Jagasia, Evan Langlais, Pranjal Srivastava, Rishiraj Hazarika,

Neeraj Motwani, Soumya Tiwari, Stewart Grant, Ranveer Chandra, and Srikanth Kandula, Microsoft

Following the Data, Not the Function: Rethinking Function Orchestration in Serverless Computing 1489
Minchen Yu, Hong Kong University of Science and Technology, Tingjia Cao, University of Wisconsin-Madison;
Wei Wang, Hong Kong University of Science and Technology; Ruichuan Chen, Nokia Bell Labs

Doing More with Less: Orchestrating Serverless Applications without an Orchestrator...................... 1505
David H. Liu and Amit Levy, Princeton University; Shadi Noghabi and Sebastian Burckhardt, Microsoft Research

Real Networks

Enhancing Global Network Monitoring with Magnifier............cooouiiiiiiiiiiiiiiiiiiiiiiieiinennenns 1521
Tobias Biihler and Romain Jacob, ETH Ziirich; Ingmar Poese, BENOCS; Laurent Vanbever, ETH Ziirich

NetPanel: Traffic Measurement of Exchange Online Servicecoiiiiiiiiiiiiiiiiiiiieiieiiennenns 1541
Yu Chen, Microsoft 365, China; Liqun Li and Yu Kang, Microsoft Research, China; Boyang Zheng, Yehan Wang,

More Zhou, Yuchao Dai, and Zhenguo Yang, Microsoft 365, China; Brad Rutkowski and Jeff Mealiffe, Microsoft 365,

USA; Qingwei Lin, Microsoft Research, China

DOTE: Rethinking (Predictive) WAN Traffic Engineering...........coiiiiiiiiiiiiiiiiiiiiiiiiiiennenns 1557
Yarin Perry, Hebrew University of Jerusalem; Felipe Vieira Frujeri, Microsoft Research; Chaim Hoch, Hebrew University
of Jerusalem; Srikanth Kandula and Ishai Menache, Microsoft Research; Michael Schapira, Hebrew University of Jerusalem;
Aviv Tamar, Technion

Dashlet: Taming Swipe Uncertainty for Robust Short Video Streamingc.coiiiiiiiiiiiiiieans 1583
Zhugqi Li, Yaxiong Xie, Ravi Netravali, and Kyle Jamieson, Princeton University

Cellular

CellDAM: User-Space, Rootless Detection and Mitigation for SG DataPlanecciiiiiiinnnn, 1601
Zhaowei Tan, Jinghao Zhao, Boyan Ding, and Songwu Lu, University of California, Los Angeles

LOCA: A Location-Oblivious Cellular Architecturec.c.outiiiitiinitieeneeeeneeeeenoeeennseennnns 1621

Zhihong Luo, Silvery Fu, and Natacha Crooks, UC Berkeley; Shaddi Hasan, Virginia Tech; Christian Maciocco, Intel;
Sylvia Ratnasamy, UC Berkeley; Scott Shenker, UC Berkeley and ICSI

mmWall: A Steerable, Transflective Metamaterial Surface for NextG mmWave Networks 1647
Kun Woo Cho, Princeton University; Mohammad H. Mazaheri, UCLA; Jeremy Gummeson, University of Massachusetts
Ambherst; Omid Abari, UCLA; Kyle Jamieson, Princeton University

Building Flexible, Low-Cost Wireless Access Networks WithMagmacoiiiiiiiiiiiiiiiiennennns 1667
Shaddi Hasan, Virginia Tech;, Amar Padmanabhan, Databricks; Bruce Davie, Systems Approach, Jennifer Rexford,
Princeton University; Ulas Kozat, Hunter Gatewood, Shruti Sanadhya, Nick Yurchenko, Tariq Al-Khasib, Oriol Batalla,
Marie Bremner, Andrei Lee, Evgeniy Makeev, Scott Moeller, Alex Rodriguez, Pravin Shelar, Karthik Subraveti,

Sudarshan Kandi, Alejandro Xoconostle, and Praveen Kumar Ramakrishnan, Meta; Xiaochen Tian, Indepenent;

Anoop Tomar, Meta

Testing

LinkLab 2.0: A Multi-tenant Programmable IoT Testbed for Experimentation with Edge-Cloud Integration ... 1683
Wei Dong, Borui Li, Haoyu Li, Hao Wu, Kaijie Gong, Wenzhao Zhang, and Yi Gao, Zhejiang University

Push-Button Reliability Testing for Cloud-Backed Applications with Rainmakero, 1701
Yinfang Chen and Xudong Sun, University of Illinois at Urbana-Champaign; Suman Nath, Microsoft Research;
Ze Yang and Tianyin Xu, University of Illinois at Urbana-Champaign

Test Coverage for Network Configurationscoiuiiiiiiiiiiiiiireteetneseeresnssssesossssnsons 1717
Xieyang Xu and Weixin Deng, University of Washington; Ryan Beckett, Microsoft; Ratul Mahajan, University of
Washington; David Walker, Princeton University

Norma: Towards Practical Network Load Testingoiuiiuiiiiiiiiiiiiiieieeeresnsnsresosnsensans 1733
Yanqing Chen, State Key Laboratory for Novel Software Technology, Nanjing University and Alibaba Group;

Bingchuan Tian, Alibaba Group; Chen Tian, State Key Laboratory for Novel Software Technology, Nanjing University;

Li Dai, Yu Zhou, Mengjing Ma, and Ming Tang, Alibaba Group; Hao Zheng, Zhewen Yang, and Guihai Chen, State Key
Laboratory for Novel Software Technology, Nanjing University; Dennis Cai and Ennan Zhai, Alibaba Group

Physical Layer

#Mote: Enabling Passive Chirp De-spreading and #W-level Long-Range Downlink for Backscatter Devices 1751
Yihang Song and Li Lu, University of Electronic Science and Technology of China; Jiliang Wang, Tsinghua University;
Chong Zhang, Hui Zheng, and Shen Yang, University of Electronic Science and Technology of China; Jinsong Han,
Zhejiang University, Jian Li, University of Electronic Science and Technology of China

Channel-Aware 5G RAN Slicing with Customizable Schedulerscoiiiiiiiiiiiiiiiiiiiiiiieenn, 1767
Yongzhou Chen and Ruihao Yao, UIUC; Haitham Hassanieh, EPFL; Radhika Mittal, UIUC

RF-CHorp: Towards Deployable RFID Localization System for Logistic Networks.............ccviviinna.. 1783
Bo Liang, Peking University and Alibaba Group; Purui Wang, Massachusetts Institute of Technology; Renjie Zhao,
University of California San Diego; Heyu Guo, Peking University; Pengyu Zhang and Junchen Guo, Alibaba Group;
Shunmin Zhu, Tsinghua University and Alibaba Group; Hongqiang Harry Liu, Alibaba Group; Xinyu Zhang,

University of California San Diego; Chenren Xu, Peking University, Zhongguancun Laboratory, and Key Laboratory

of High Confidence Software Technologies, Ministry of Education (PKU)

Exploring Practical Vulnerabilities of Machine Learning-based Wireless Systemsccoviiiiiians 1801
Zikun Liu, Changming Xu, and Emerson Sie, University of Illinois Urbana-Champaign; Gagandeep Singh, University of
Lllinois Urbana-Champaign and VMware Research; Deepak Vasisht, University of Illinois Urbana-Champaign

SRNIC: A Scalable Architecture for RDMA NICs

2 Qingsong Ning?

Zilong Wang!* Layong Luo
Peng Xie’> Tao Feng?
Kejia Huo?> Pingbo An?> Kui Ji?

Kai Chen!

Abstract

RDMA is expected to be highly scalable: to perform well
in large-scale data center networks where packet losses are
inevitable (i.e., high network scalability), and to support a
large number of performant connections per server (i.e., high
connection scalability). Commercial RoCEv2 NICs (RNICs)
fall short on scalability as they rely on a lossless, limited-scale
network fabric and support only a small number of perfor-
mant connections. Recent work IRN improves the network
scalability by relaxing the lossless network requirement, but
the connection scalability issue remains unaddressed.

In this paper, we aim to address the connection scalabil-
ity challenge, while maintaining high performance and low
CPU overhead as commercial RNICs, and high network scal-
ability as IRN, by designing SRNIC, a Scalable RDMA NIC
architecture. Our key insight in SRNIC is that, on-chip data
structures and their memory requirements in RNICs can be
minimized with careful protocol and architecture co-designs
to improve connection scalability. Guided by this insight, we
analyze all data structures involved in an RDMA conceptual
model, and remove them as many as possible with RDMA
protocol header modifications and architectural innovations,
including cache-free QP scheduler and memory-free selective
repeat. We implement a fully functional SRNIC prototype
using FPGA. Experiments show that, SRNIC achieves 10K
performant connections on chip and outperforms commercial
RNICs by 18x in terms of normalized connection scalability
(i.e., the number of performant connections per IMB mem-
ory), while achieving 97 Gbps throughput and 3.3 ps latency
with less than 5% CPU overhead, and maintaining high net-
work scalability.

1 Introduction

Datacenter applications are increasingly driving the demands
for high-speed networks, which are expected to provide high

* This work is done while Zilong Wang, Chaoliang Zeng, and Xinchen
Wan are interns with ByteDance.

Chaoliang Zeng!* Wenxue Li' Xinchen Wan'*

Ke Cheng®> Xiongfei Geng? Tianhao Wang® Weicheng Ling?
Shideng Zhang? Bin Xu? Ruiqing Feng? Tao Ding?
Chuanxiong Guo’

YHong Kong University of Science and Technology

2ByteDance 3Unaffiliated

throughput, low latency, and low CPU overhead, with a large
number of connections (a.k.a., connection scalability), over a
large-scale network (a.k.a., network scalability). Specifically,
bandwidth-intensive applications like distributed machine
learning training [13,23] and cloud storage [16, 18], require
100 Gbps and beyond network bandwidth between servers;
online services like search [9, 15] and database [25,29], de-
mand low latency to minimize query response time; most
applications desire a network stack with low CPU overhead
to reserve as many CPU cores as possible for computations;
cloud storage like Alibaba Pangu [18] requires a large number
of performant connections per host to provide mesh communi-
cations between chunk servers and block servers; last but not
the least, high-speed networks tend to be deployed at larger
scale as their application footprints expand [19].

Remote Direct Memory Access (RDMA) is emerging as a
popular high-speed networking technique, thanks to its high
throughput, low latency and low CPU overhead provided by
architectural innovations including kernel bypass and trans-
port offload. With these advantages, RoOCEv2 (RDMA over
Converged Ethernet Version 2) is becoming the de-facto stan-
dard for high-speed networks in modern data centers [4,42].

Despite high performance and low CPU overhead, com-
mercial RoOCEv2 NICs (RNICs) suffer from both network
scalability and connection scalability issues. On one hand,
the network scalability issue arises from PFC (Priority-based
Flow Control) which is required by RDMA to implement a
lossless network fabric. PFC brings issues such as head-of-
line blocking, congestion spreading, occasional deadlocks,
and PFC storms in large-scale clusters [18, 19,21, 34,42].
As a result, datacenter operators tend to restrict the PFC con-
figurations within a small network scope (e.g., a moderate
cluster). On the other hand, the connection scalability issue is
the phenomenon that RDMA performance drops dramatically
when the number of connections (a.k.a., queue pairs (QPs))
exceeds a certain small threshold (e.g., 256) [24,28,39]. Al-
though commercial RNICs are blackbox, the root cause of
this performance collapse phenomenon is explained as cache
misses due to context switch between connections [24].

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 1

To improve network scalability of RNICs, existing work
IRN [33] advocates lossy RDMA that eliminates PFC, by
replacing go-back-N with more efficient selective repeat (SR).
However, the introduction of SR is non-trivial: it adds some
SR specific data structures and thus increases memory con-
sumption. To reduce the on-chip memory overhead, IRN
makes some RoCEv2 header extensions, but still requires
3-10% more memory than existing RNIC implementations.
As aresult, IRN achieves high network scalability but leaves
the connection scalability issue unaddressed.

In this paper, we propose SRNIC, a Scalable RDMA NIC
architecture to address the connection scalability issue, while
preserving high performance and low CPU overhead inherited
from transport offload as commercial RNICs, and maintain-
ing high network scalability originated from lossy RDMA as
IRN. The major insight of SRNIC is that, most on-chip data
structures and their memory requirements in RNICs can be
eliminated with careful protocol and architecture co-designs,
and the connection scalability of RNICs could be, as a re-
sult, significantly improved. Guided by this insight, we ex-
amine the typical data flow in a lossy RDMA conceptual
model (§3.1), analyze all the involved data structures, classify
them into two categories: common data structures required
by RDMA in general, and selective repeat specific data struc-
tures brought by lossy RDMA, and finally take customized
optimization strategies to minimize these two types of data
structures respectively to improve the connection scalability
(8§3.2).

In particular, the cache-free QP scheduler proposed in §4.3
optimizes common data structures for RDMA designs no
matter whether the underlying network is lossy or lossless.
The optimizations of RDMA header extensions and bitmap
onloading introduced in §4.4 are for memory-free selective
repeat, hence specific for lossy RDMA.

We have implemented a fully functional SRNIC prototype
with FPGA (§5) and evaluated SRNIC’s scalability and per-
formance through the testbed and simulations. Experiments
(§6) show that SRNIC achieves high connection scalability,
while preserving high performance and low CPU overhead
as commercial RNICs, and high network scalability as IRN.
Specifically, SRNIC supports 10K’ connections/QPs without
performance degradation, which outperforms Mellanox RNIC
CX-5 by 18x in terms of normalized connection scalability
(i.e., the number of performant connections per IMB mem-
ory). Meanwhile, SRNIC achieves 97 Gbps line-rate through-
put and 3.3 ps latency, with only 5% CPU overhead, which
are comparable with Mellanox RNICs. In addition, SRNIC
shows its high network scalability via high loss tolerance (3x
higher goodput than Mellanox RNICs under 1% loss rate) and
predictable performance in large-scale lossy networks.

As a summary, Figure 1 shows the design space of RDMA
NICs and makes a comparative analysis between different so-

1'Unless otherwise stated, K is 1024 in measuring the size of memory,
data structures and messages, and 1000 in measuring the others.

RDMA
High throughput, low latency, low CPU overhead

X |
Commercial RNICs IRN SRNIC
Network Scalability 3 Network Scalability ~/ Network Scalability &/
(PFC + Go-back-N) (PFC-free + Selective Repeat) (PFC-free + Selective Repeat)
Connection Scalability X Connection Scalability X Connection Scalability ~/
(256 QPs) (Unaddressed) (10K QPs)

Figure 1: Design space of RDMA NICs.

lutions. Although all RDMA hardware solutions provide high
throughput, low latency, and low CPU overhead via transport
offload and kernel bypass, their scalability varies. Commer-
cial RNICs suffer from both the network scalability issue
caused by the troublesome PFC, and the connection scala-
bility issue caused by unknown blackbox implementations.
IRN revisits the network supports for RDMA, and eliminates
the need of PFC by introducing selective repeat with 3-10%
extra memory overhead. As a result, the network scalability
is significantly improved, but the connection scalability is left
unsolved. SRNIC leverages the lossy RDMA approach of
IRN to improve network scalability, and further addresses the
connection scalability issue with the design guiding principle:
minimize the on-chip memory requirements of RNICs in a
simple yet performant way. As a result, SRNIC achieves both
high network scalability and connection scalability.
This paper makes the following major contributions:

* We systematically study and quantify the memory require-
ments of RDMA NICs, by introducing an RDMA concep-
tual model (§3).

¢ We design SRNIC, a scalable and high-performance RDMA
NIC architecture, that significantly improves the connection
scalability, guided by an insight that the on-chip memory
requirements in the conceptual model can be minimized
with careful RDMA protocol modifications and architec-
ture innovations, including cache-free QP scheduler and
memory-free selective repeat (§4).

¢ We implement SRNIC using FPGA, with only 4.4 MB on-
chip memory. The implementation achieves our design
goals on scalability, performance, and CPU overhead (§5
and §6).

2 Background and Motivation

2.1 RDMA Overview

Unlike the traditional software transport TCP, RDMA is a
hardware transport that implements the transport functionali-
ties including congestion control and loss recovery entirely in
NIC hardware, and provides kernel-bypass and zero-copy in-
terfaces to the user applications. As a result, RDMA achieves
high throughput, low latency, and low CPU overhead, com-
pared with software transport TCP [42].

2 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

RDMA was originally designed and simplified for lossless
Infiniband [1]. To make RDMA work in Ethernet, RoOCEv2
relies on PFC [22] to turn Ethernet into a lossless fabric. How-
ever, PFC brings management risks and network scalability
challenges (e.g., PFC storms and deadlocks) that affect the
entire network’s availability and also causes collateral dam-
age to innocent flows due to head-of-line blocking [19,42].
Besides, with PFC, the lossless network scale is also limited
by the switch buffer size. Consequently, datacenters usually
limit the scale of RDMA networks [18].

As the network scalability issue of RoCEv2 is mainly
caused by PFC, IRN [33] takes the first step to rethink
RDMA’s network requirements, eliminates PFC and allows
RDMA working well in lossy networks, by replacing the de-
fault lossy recovery mechanism go-back-N with more efficient
selective repeat. However, it leaves the connection scalability
challenge unsolved.

2.2 Connection Scalability Issue

Commercial RNICs face a well-known connection scalabil-
ity issue [24,27,28,39], i.e., the RDMA performance drops
significantly as the number of QPs increases beyond a small
value (varies from 16 to 500 in different settings [28]). We
demonstrate this issue using off-the-shelf commercial RNICs
including Mellanox CX-5 and CX-6 [7, 8] with PFC enabled.
As shown in Figure 2a, the aggregate throughput of Mellanox
CX-6 drops 46% (from 97 to 52 Gbps) when the QP num-
ber increases from 128 to 16384, and there is no obvious
improvement of connection scalability from CX-5 to CX-6.

The root cause of RNIC’s performance degradation is com-
monly explained as cache misses [24, 28, 38]. Commercial
RNICs usually take a DRAM-free architecture, which does
not have DRAM connected directly to the RNIC chip to re-
duce cost, power consumption, and area, but just has limited
on-chip SRAM. As a result, RNICs can cache only a small
number of QPs on chip, while storing the others in host mem-
ory. When the number of active QPs increases beyond the on-
chip memory size, frequent cache misses and context switches
between host memory and RNIC cause performance collapse.
Our experiments in Figure 2b verify this in some sense. We
observed significant extra PCle bandwidth” and an increase
in ICM cache miss® during the performance collapse. Both
metrics reflect certain kinds of cache misses, causing extra
PCle traffic increase after 256 QPs.

Although on-chip SRAM is limited, it is abnormal in that
the performance drops so early. Given the on-chip memory
size and the QP Context (QPC) size for a QP, we can esti-
mate the maximum number of performant QPs that could be
supported without cache misses and performance collapse as:

memory_size
sizeof (QPC)’

2Extra PCIe throughput = PCle throughput - network throughput.
3"ICM Cache Miss" is a counter provided by Mellanox Neohost tool [12].

ey

max_QPs =

©
— &)

] A RNICCX6 | & Extra PCle BW =
?00 Py 256QPs, aNic ox-5 $18{ 4~ ICM Caghetisses (2% 2
8 90 TCP = NS
=~ = 1 S
5 801 @ Ve g
= 70+ 0161 A So
(= (&) - X =2
> o A N =
g 604 o144 ! g
F 50/ £ L2

: ‘ : : B e pa? — o

128 512 2048 8192 128 512 2048 8192

QP Number QP Number

(a) Aggregate throughput (b) ICM Cache misses and extra

PCle traffic

Figure 2: Connection scalability issue of current RNICs. Com-
pared with TCP, the aggregate throughput of current RNICs
collapses when the number of QPs exceeds 256.

Let’s take Mellanox CX-5 as an example. Its on-chip mem-
ory size is ~2 MB [24] and a QPC takes ~375 B [24], so that
the maximum number of performant QPs supported by CX-5
could be up to 5.6K (2 MB/375 B), which contradicts the fact
shown in Figure 2a that CX-5 performance begins to collapse
much earlier at 256 QPs. The contradiction implies that there
is room to significantly improve the connection scalability.

Motivated by this contradiction, we systematically analyze
the memory requirements of RNICs, and improve the connec-
tion scalability based on the insights derived from thorough
memory analysis.

3 RNIC Memory Analysis

As commercial RNICs are blackbox, we are not able to use
their micro-architectures as a reference. Instead, we leverage a
lossy RDMA conceptual model with selective repeat to derive
the involved data structures (§3.1). Then, we summarize and
classify these data structures into two categories: common
data structures required by RDMA in general, and selective
repeat specific data structures brought by lossy RDMA, and
discuss different optimization strategies to minimize them
respectively to improve the connection scalability (§3.2).

3.1 RDMA Conceptual Model

Figure 3 shows an RDMA conceptual model, based on which,
a typical RDMA data flow consists of the following steps:

1. Requester: the user posts a work queue element (WQE)
into a send queue (SQ) to issue a SEND request. RNIC
fetches the WQE from the SQ to a WQE Cache.

2. Requester: RNIC gets the virtual address of the data
buffer by parsing the WQE, translates it into the physical
address through a Memory Translation Table (MTT),
and fetches data from the host data buffer using the physi-
cal address. RNIC then appends an appropriate RoOCEv2
header onto the data and sends out the packet to the
responder. The metadata of all outstanding requests is

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 3

Requester <« » Responder
sQ RQ _ca SQ RQ ca
Data ﬂ u G Data u u el
Buffer Send || Recv. ﬁ Buffer Send || Recv ﬁ
IWQE || waEe _ cPU WQE || \WQE A cPU
@ i@ ﬁpae '® ® PCIeﬁ @ i@
! L

i
1 MTT v MTT
WQE Cache ! WQE Cache

DMA Engine

DMA Engine

ORT JD ORT
arc 3 arc
Reordering Buffer
Bitmaps | Transport

Receiving Buffer I_ Receiving Buffer @

Basig NIC Basic|NIC
RNIC RNIC

Reordering Buffer|

4

Bitmaps | Transport

Figure 3: An RDMA conceptual model, and the RDMA data
flow using a small SEND message as an example.

stored in an Outstanding Request Table (ORT) for fast
retransmission in case of packet loss.

3. Responder: the incoming request is first queued in the
Receiving Buffer and then gets verified. Out-of-order
packets will be recorded in Bitmaps and reordered using
the Reordering Buffer.

4. Responder: upon receiving a SEND packet, RNIC
fetches a Receive WQE from a receive queue (RQ),
queries MTT to get the physical address of the host data
buffer, and DMASs the reordered data from the Reorder-
ing Buffer to the host data buffer.

5. Responder: RNIC replies an acknowledgment (ACK)
packet to the requester, and notifies the user with a com-
pletion queue element (CQE) to indicate the Receive
WQE is consumed.

6. Requester: RNIC receives the ACK, and generates a
CQE to indicate the Send WQE is consumed.

Besides, RNIC leverages a QPC per QP to track
QP/connection related contexts for all modules.

3.2 Data Structures

As concluded in Table 1, we classify the involved data struc-
tures into two categories: (1) common data structures, re-
quired by RDMA in general, and (2) selective repeat specific
data structures, brought by lossy RDMA.

3.2.1 Common Data Structures

Common data structures are essential to RDMA in general,
no matter whether the underlying network is lossy or lossless.

Receiving Buffer. The receiving buffer in the Basic NIC
module is used to queue all incoming packets. Its major pur-
pose is to absorb bursts caused by the temporal performance
gap between the upstream Ethernet port and the whole down-
stream RNIC processing logic.

QPC. A QPC maintains for a QP all its contexts, including
the DMA states (e.g., the start and end addresses, read and
write pointers of SQ & RQ), and connection states (e.g., ex-
pected and next packet sequence numbers, window or rate for
congestion control). The QPC size we allocate for each QP is
210 B, so the total size for 10K QPs is 2.0 MB.

MTT. RDMA uses virtual addresses in the packet while
the PCle system relies on physical addresses to perform DMA
transactions. To perform address translation, RNIC maintains
an MTT to map virtual pages of memory regions into physical
pages. The size of MTT depends on the total size of memory
regions and the page size, irrelevant to the number of connec-
tions. For example, considering the total memory region size
of 4 GB, the page size of 4 KB, and an MTT entry size of 8§ B,
the MTT size is equal to 4 GB/4 KB+ 8B = 8 MB.

WQE Cache. An SQ WQE cache could be used to cache
the Send WQE:s fetched from an SQ in host memory. Assum-
ing each QP stores 8 WQEs (64 B*8) in a dedicated cache,
10K QPs consume 4.9 MB on-chip memory. Similarly, RNIC
needs to fetch Receive WQEs from the RQ to process incom-
ing SEND requests, and could allocate an RQ WQE cache to
store the fetched Receive WQEs. The memory size of the RQ
WQE cache is similar to that of the SQ WQE cache.

3.2.2 Selective Repeat Specific Data Structures

These data structures are all introduced by lossy RDMA using
selective repeat as the loss recovery mechanism.

Bitmap. Bitmaps are used to track which packets are re-
ceived or lost [31]. As mentioned in IRN [33], each QP re-
quires five BDP (bandwidth-delay product)-sized bitmaps
(500 slots for each bitmap to fit the BDP cap of a network
with bandwidth 100 Gbps and RTT 40 ps [5]) and 10K QPs
cost 3.0 MB memory in total.

Reordering Buffer. A reordering buffer is used to rear-
range the out-of-order packets and ensure in-order delivery
to the data buffer in host memory. The reordering buffer is
required in a lossy RNIC implementation with the standard
RoCEv2 header. As RoCEv2 is designed for the lossless net-
work, its header lacks the necessary information to support
out-of-order packet reception without extra reordering buffers.

One option is to allocate a separate reordering buffer for
each QP. Each QP requires a BDP-sized (0.5 MB) reorder-
ing buffer, so it takes 4.9 GB memory to support 10K QPs.
Another option is to maintain a shared reordering buffer for
all QPs [31]. However, it does not scale. When multiple QPs
experience out-of-order packets, it may soon run out of the
shared buffer with limited on-chip SRAM. Hence, we choose
the separate reordering buffer option in the analysis.

4 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Category | Data structures Typical sizes | Optimization ideas Sizes after optimization
Receiving Buffer 0.6 MB None 0.6 MB
Common QPC 2.0MB None 2.0MB
MTT 8§MB Cache (§4.5) 1.2MB
WQE Cache 9.8 MB Cache-free QP scheduler (§4.3) 0
Bitmap 3.0MB Bitmap onloading (§4.4.2) 0
SR Specific | Reordering Buffer 49GB Header extensions (§4.4.1) 0
Outstanding Request Table 114.4MB Header extensions (§4.4.1) 0

Table 1: Data structures in the RDMA conceptual model. The first three columns show the typical data structures and their
memory requirements with 10K QPs. The last two columns summarize our ideas to minimize the on-chip memory requirements
of these data structures, and show the memory size after optimization.

Outstanding Request Table. Outstanding request table is
used to maintain the mapping between outstanding request
packets and their metadata, which are used to quickly lo-
cate and retransmit the lost packets. These metadata include
(1) packet sequence number (PSN), used to track packet se-
quences, (2) message sequence number (MSN), used to track
message sequences and to locate the WQE associated with
that message quickly, and (3) packet offset (PSN_OFFSET),
used to locate the data offset inside the corresponding data
buffer. With these fields, the outstanding request table size for
each QP is 11.7 KB (given the entry size 24 B, entry number
500 sized to BDP), and 10K QPs consume 114.4 MB in total.

In summary, all the data structures derived from the RDMA
conceptual model could be classified into two categories: com-
mon data structures required by RDMA in general, and selec-
tive repeat specific data structures brought by lossy RDMA.
Table | summarizes the memory requirements of these data
structures in the third column. Both categories require signifi-
cant memory sizes, and thus need to be optimized to improve
connection scalability.

To this end, we make different optimization strategies to
minimize these two types of data structures respectively. In
particular, all the common data structures required by RDMA
should be optimized in a generic way, with architectural inno-
vations that are not specific to lossless or lossy RDMA. The
cache-free QP scheduler proposed in §4.3 falls into this strat-
egy. On the other hand, all the selective repeat specific data
structures brought by lossy RDMA, could be optimized based
on the lossy network assumption. The header extensions and
bitmap onloading approaches in the memory-free selective
repeat architecture in §4.4 follow this strategy.

4 SRNIC Design

4.1 Design Goal and Guiding Principles

In the design space of RDMA NICs, Mellanox RNICs rep-
resent the state-of-the-art in terms of high performance and
low CPU overhead, and IRN is the state-of-the-art in network
scalability. The design goal of SRNIC is to maximize the con-

nection scalability, while preserving high performance and
low CPU overhead as Mellanox RNICs, and maintaining high
network scalability as IRN.

To achieve this goal, we follow three design guiding prin-
ciples:(1) keep as many RDMA functionalities as possible
in hardware to achieve high performance and low CPU over-
head; (2) handle packet loss as efficient as possible to allow
discarding PFC and thus to support large-scale lossy networks;
and (3) reduce the on-chip memory requirements as much as
possible to support a large number of performant QPs with a
limited amount of memory.

4.2 Architecture Overview

Guided by the above principles, we design a scalable RDMA
NIC architecture SRNIC, as shown in Figure 4.

The server CPU allocates and manages QPs in the RNIC
driver, and runs applications in user space over these QPs. Be-
sides, a software retransmission module resides in user space
to maintain the memory-consuming retransmission states col-
lected by hardware and assist packet loss processing (§4.4).
A pair of control queues (CtrlQs) is used as the communica-
tion channel between the software retransmission module and
RNIC hardware.

RNIC hardware consists of three layers: DMA Engine,
Transport, and Basic NIC. The DMA Engine layer leverages a
QP scheduler to schedule tens of thousands of QPs from host
memory, decides which QP to send data next, and then fetches
WQE:s and data from that SQ via data mover. The Transport
layer realizes most of RDMA transport functionalities (except
for the software retransmission in CPU), including a con-
gestion control module that implements a hardware-friendly
DCTCP [14], and a hardware retransmission module that im-
plements the hardware part of selective repeat. The Basic NIC
layer implements the primary functions of the Ethernet NIC,
responsible for sending and receiving RoCEv2 packets via the
100GE MAC. In addition to these three layers, there are two
major data structures: QPC, which maintains all QP-related
contexts, and MTT, which stores the mapping between virtual
and physical addresses.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 5

Outbound Path Inbound Fast Path Inbound Slow Path

i >

Software
Retransmission

Application Buffer

User space

Driver

Tx Rx

i

i

i

=

i CtrlQ

1
@ PCle ! cPU

1

e

IRetryQ sQ RQ ca |

Qp

| Data Mover | QP Scheduler | DM,A
Engine

Transpprt

Congestion Hardware QpC
Control *Retransmission

MTT
Basic NIC

100GE|MAC
RNIC

Figure 4: SRNIC architecture.

In order to balance performance and scalability, the data
path of SRNIC is divided into a fast path and a slow path
(§4.4), which handle sequential and out-of-order (OOO) pack-
ets, respectively. The fast path wholly implemented in RNIC
processes the majority of traffic consisting of sequential pack-
ets, and thus provides hardware-level high performance with
low CPU overhead for most packets. The slow path imple-
ments software retransmission, processes very little traffic
consisting of OO0 packets, and onloads bitmaps to host mem-
ory for connection scalability.

The overhead of the data path separation is very low for
two reasons. First, the average packet loss rate in data centers
is low (less than 0.01% [20,41,43]), and the resulting OOO
packets form a very small fraction of traffic. Second, SRNIC
only transmits loss events (i.e., metadata of the OOO packets)
over PCle, further reducing the PCle overhead. For example,
the extra PCle overhead is only 2.46% even with 1% loss rate.

Based on the above architecture, we further make two criti-
cal design optimizations: cache-free QP scheduler (§4.3) and
memory-free selective repeat (§4.4) to optimize RDMA com-
mon data structures and lossy RDMA specific data structures,
respectively, in order to address the scalability issues while
preserving high performance.

4.3 Cache-free QP Scheduler
4.3.1 SQ Scheduler

An SQ is either active when it contains WQEs or inactive oth-
erwise. The SQ scheduler (as modeled in Figure 5a) chooses
one active SQ each time from tens of thousands of SQs in
host memory to send messages next. The design challenges

Tens of thousands of SQs Tens of thousands of RQs

000 000 - 08008

~UHO0H s
Host WaE Host
v &

RNIC 5Q Scheduler RNIC RQ Scheduler
credits
Control
(a) SQ scheduler model. (b) RQ scheduler model.

Figure 5: The QP scheduler models.

of the SQ scheduler are as follows:

* Challenge #1: Active SQs cannot be scheduled blindly,
as they are also subject to congestion control, as shown
in Figure 5a. Once an SQ is scheduled, if it is not allowed
to send messages due to the lack of credits granted by
congestion control, the scheduling does not take effect
but just wastes time and degrades performance.

¢ Challenge #2: The PCle round-trip latency between
RNIC and host memory is high (around 1 ps in FPGA
based RNIC), and it takes at least two PCle transactions
(one WQE fetch and one message fetch), to execute one
scheduling decision. Without careful design, the high
latency between scheduling iterations will significantly
degrade the performance.

¢ Challenge #3: There are tens of thousands of SQs in
host memory but very limited on-chip memory within
RNIC. It is prohibitive to have separate WQE caches for
different SQs in the RNIC.

To address these challenges, SQs should be scheduled when
they are both active and have credits (to address Challenge
#1), with appropriate batch transactions to hide PCle latency
(to address Challenge #2), and in a WQE-cache-free way (to
address Challenge #3).

Guided by these principles, we propose a cache-free SQ

scheduler (as shown in Figure 6) that can do fast scheduling
among tens of thousands QPs with minimal on-chip memory
requirements. It consists of three major components:
Event Mux (EMUX): The EMUX module handles all
scheduling related events, including (1) SQ doorbell* from
the host to indicate which SQ has new WQEs and messages
to send; (2) credit update from the congestion control module
to indicate window or rate adjustment for a connection/SQ;
and (3) dequeue event from the schedule queue to indicate an
SQ is scheduled.

Upon receiving an event, EMUX changes the scheduling
states in QPC. There are three scheduling states: an active
state indicating the SQ has WQEs; a credit value indicating

“4Doorbell is the mechanism for the driver to notify RNIC that a SEND
WQE has been posted into an SQ [26]. It is usually implemented by updating
the write pointer of the SQ into an RNIC register.

6 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Data | WQE
Buffer
Host

|doorbe|l
52

credit

Congestion

Event Mux —
Control

f

¥
DMA QP1: active 0, credit 1, ready O

Engine QP2: active 0, credit 1, ready 0

dequeue

Schedule
Policy

QP3: active 1, credit 1, ready 1
QP4: active 1, credit 0, ready O

enqueue

Schedule Queue

QpPC

Scheduler RNIC

Figure 6: The cache-free SQ scheduler.

the bytes of messages allowed to send, and a ready state indi-
cating the SQ is in the schedule queue and ready for schedul-
ing. An SQ is ready for scheduling only when it is both active
and has available credits, which addresses Challenge #1.
Scheduler: The scheduler leverages a schedule queue to
maintain a list of SQs ready for scheduling. The scheduler
implements a round-robin strategy in the schedule policy
module, by popping a single ready SQ from the head of the
schedule queue each time, and fetching from that SQ a given
amount of WQESs and messages. After this scheduling itera-
tion, if the SQ is still ready for scheduling, it will be pushed
back into the schedule queue by the EMUX. Other scheduling
strategies (e.g., weighted round-robin and strict priority) can
be implemented by modifying the schedule policy module.
DMA Engine: When an SQ is being scheduled, the
DMA engine fetches from that SQ up to n WQEs and
min(burst_size,credit) bytes of messages to address Chal-
lenge #2. After a scheduling iteration, there could be unused
WQEs left in RNIC, if the total message size associated with
the n WQEs is over min(burst_size,credit) bytes. Unused
WQE:s are dropped instead of being cached in RNIC, and
they will be fetched again next time when its SQ is scheduled.
This fetch-and-drop strategy enables us to achieve cache-free
scheduling to address Challenge #3.

There are two critical parameters (n and burst_size) to bal-
ance tradeoffs. n is the maximum number of WQEs, and
burst_size is the maximum bytes of messages allowed to
fetch in each scheduling iteration. n reflects the tradeoff be-
tween PCle bandwidth usage and PCle latency hiding. A
smaller n would lead to less PCle bandwidth waste in the
fetch-and-drop strategy, but be harder to hide the PCle latency
or saturate the PCle bandwidth with small messages, while
a larger n would perform inversely. In SRNIC, n is set to 8
to balance the PCle bandwidth utilization and latency hid-
ing. With this setting, the maximum message rate of a single
QP is 8 million requests per second (Mrps) (i.e., 8 messages
per 1 us). As for burst_size, it reflects the tradeoff between
PCIe bandwidth utilization and scheduling granularity. A

smaller burst_size would enable finer scheduling granularity
and hence less HoL, but be harder to saturate PCle bandwidth,
while a larger burst_size would perform inversely. Based on
this analysis, we set burst_size to the PCle BDP, i.e., 16 KB,
to balance performance and scheduling granularity.

In summary, the SQ scheduler adopts a cache-free archi-
tecture to do fast scheduling among a large number of SQs
with minimal on-chip memory. Specifically, the width of the
schedule queue is 2 bytes, i.e., the QPN (QP Number) size,
and a schedule queue of 19.5 KB can support 10K SQs.

4.3.2 RQ Scheduler

The RQ scheduler is modeled as shown in Figure 5b. Upon
receiving a packet, RNIC gets its QPN by parsing the packet
header, fetches a Receive WQE from the RQ indicated by
that QPN, and places the packet payload into the data buffer
associated with that Receive WQE.

This process seems straightforward, but there is one design
decision affecting connection scalability: do we prefetch and
cache Receive WQE in RNIC before the packet arrives?

If Receive WQE:s are prefetched and cached, the incoming
packet could hit the WQE cache, reducing the latency by
one PCle round-trip time (i.e., around 1 ps). However, it is
hard to predict from which RQ to prefetch Receive WQEs
before packets arrive, and thus the cache hit ratio largely
depends on the traffic pattern and the cache size. Therefore,
we decide to take the cache-free approach without prefetching
or caching Receive WQEs, thus improving the connection
scalability. Given that the typical RDMA network latency for
small messages is tens of microseconds in data centers(e.g.,
for 1KB messages, RDMA P50 and P99 latency is 24us and
40us, respectively [5]), the increased 1 s latency is generally
negligible. For latency-sensitive scenarios where 1 ps matters,
like in rack-scale deployments, a shared Receive WQE cache
can be brought back to optimize the latency.

4.4 Memory-free Selective Repeat

The introduction of selective repeat into RNICs increases the
challenge to achieve high connection scalability. As analyzed
in §3.2.2, the extra data structures brought by selective repeat
include outstanding request tables, reordering buffers, and
bitmaps, whose memory requirements in total exceed the
typical on-chip SRAM sizes of RNICs.

To minimize the memory requirements introduced by se-
lective repeat, SRNIC eliminates the need for outstanding
request tables and reordering buffers via RDMA protocol
header extensions (§4.4.1), and onloads bitmaps into host
memory without sacrificing performance via careful software-
hardware co-designs (§4.4.2).

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 7

4.4.1 Header Extensions

As described in §3.2, the outstanding request table is used
to maintain for each QP the mapping between outstanding
request packets and their metadata including PSN, MSN, and
PSN_OFFSET for fast selective retransmission. We eliminate
the need for this data structure, by carrying these per-packet
metadata on packet headers, instead of storing them in the
on-chip memory. Specifically, we let all outstanding request
packets carry these metadata on their headers, and let their
response packets echo the same metadata back. In this way,
the requester can locate the WQE and its message quickly
with metadata in the response packet header.

The reordering buffer is used by each QP to rearrange
the OOO packets and ensures in-order delivery to the data
buffer of user applications. To get rid of the per-QP reordering
buffer, our approach is in-place reordering, i.e., leveraging
the user data buffer pinned in host memory as the reordering
buffer. To achieve this, all incoming packets should be placed
directly into the user buffer at correct addresses. We make
the following header extensions so that RNIC can derive the
address for each packet by parsing its header: (1) all SEND
packets carry send message sequence number (SSN) and the
aforementioned PSN_OFFSET, which can be used by the
RNIC responder to locate the corresponding receive WQE
and the offset in its associated receive buffer. (2) all WRITE
packets carry their target remote addresses [33].

As to RDMA READ, we add acknowledgements to READ
requests and responses respectively to add self-clocking for
RDMA READ, and schedule RDMA READ at the responder
side similar to RDMA WRITE. By doing so, we can apply
similar header extensions of SEND and WRITE for READ
request and response packets, and more importantly, we can
apply window-based congestion control for RDMA.

With these modifications, both sequential and out-of-order
packets can be placed directly into the user buffer at the cor-
rect address, thus achieving in-place reordering and eliminat-
ing per-QP reordering buffer in the on-chip memory.

The aforementioned extensions add 8 to 20 bytes of headers
to packets. In particular, the header is increased from 58 to
66 bytes for SEND and from 58 to 78 bytes for WRITE,
which will decrease the application goodput by 0.7% and
1.8%, respectively, given 1024 byte RoCE MTU.

4.4.2 Bitmap Onloading

As mentioned in §3.2.2, each QP requires five BDP-sized
bitmaps, and 10K QPs need 3.0 MB memory to store bitmaps,
which alone may exceed the RNIC on-chip memory size (e.g.,
2 MB in Mellanox RNIC [24]), thus increasing the challenge
to achieve high connection scalability.

We observe that, when there is no packet loss, packets from
the same QP are sent and received in order, and an expected
PSN (ePSN) in the responder and a last acknowledged PSN

metadata ctrlq :
PSN=“ePSN"? (PSN & ePSN) |] : ll
request yes ¢ I ® Rx ﬂnl
ket kY i -QP Bi
packe: ® 2 : Per-QP Bitmaps g
S M=] i
Responder | | Transport ePSN ® _AQTX . |
s Logic Update ePSN ;
QpPC H
v ‘
. @ s (gif‘;"z‘c’m ctriq ! _I_l
PSN="eACK”: Rx | I
response | yes 7o ® T nﬂl
packet ® 2 e 1 Per-QP Bitmaps Q
S i c
Transport |1 ek | E] Retransmission
Logic RetryQ |
QPC :

Figure 7: Selective repeat with bitmap onloading.

(IACK) in the requester are enough to track the sequential re-
ception of request and response packets, respectively, without
the need of bitmaps; when there is packet loss, OOO packets
appear, and bitmaps are only required to track OOO packets.

Based on the above observation, for each QP we maintain
an ePSN and a IACK in QPC to process sequential packets in
hardware, and onload all bitmaps into host memory to track
00O packets. Assume packet loss rate is low and sequential
packets are the majority, most traffic is handled by hardware
directly, and little traffic containing the OOO packets is han-
dled by software with the memory-consuming bitmaps in
host memory. In this way, we achieve a balance between high
performance and high connection scalability.

Figure 7 shows the software-hardware co-designed selec-
tive repeat architecture with bitmap onloading. On the respon-
der side, the PSN of an inbound request packet is compared
against the ePSN (@). If they match (@), it is a sequential
packet and will be handled in the RNIC; otherwise (®), it
is an OOO packet and the responder enters into the loss re-
covery state. In this state, the metadata (PSN and ePSN) of
all incoming OOO packets is sent to software, which then
fills the bitmaps in host memory to track received packets.
After lost packets are received and bitmaps are filled accord-
ingly, a new ePSN is updated (®), and the RNIC exits from
the loss recovery state. On the requester side, the PSN of
an inbound response packet is compared against an eACK
(i.e., a coalesced ACK greater than the IACK) (®). If they
match (@), the IACK is updated in hardware; otherwise (e.g.,
upon receiving NACK or SACK) (@), the requester enters
into the loss recovery state. In this state, the metadata of all
incoming OOO response packets including PSN and 1ACK is
sent to the software retransmission module, which then ma-
nipulates the bitmaps in host memory to track which packets
are received by the responder, and makes retransmission de-
cision accordingly. The retransmitted requests are submitted
through a Retry Queue (RetryQ) associated with each QP (®).
After all retransmitted packets are successfully delivered (in-
dicated by ACKs), the requester exits from the loss recovery
state. Another option is to keep bitmaps only in the responder
and make the requester stateless. Then, the responder should
notify the requester exactly which packets to be retransmitted.

8 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

—t>incoming packets EE @

metadata

QPC ePSN=0 (PSN & ePSN))
psn_left=2 bitmaps
LI [1[a]a]ofo]]
fall into [2,5] 0o 1 2 3 4

@ new ePSN=5

] update ePSN=3
m RNIC ® CcPU

Figure 8: Fast exit from the loss recovery state.

A race condition may arise in the responder when exiting
from the loss recovery state. Specifically, when the software
updates the new ePSN, there might be inflight metadata of
00O packets with newer PSN between RNIC and CPU. In
this case, the updated ePSN is not the latest, and thus the exit
fails. To address the race condition problem while preserv-
ing high performance, RNIC records the range of the most
advanced sequential packets (via [psn_left, psn_right]) af-
ter it enters the loss recovery state. A QP can exit from the
loss recovery state if the updated ePSN falls into [psn_left,
psn_right 4+ 1] range, and the ePSN in QPC will be updated
to psn_right + 1, as illustrated in Figure 8.

4.5 Other Design Considerations

With the cache-free QP scheduler and memory-free selective
repeat, all data structures shown in Table | are eliminated,
except for the receiving buffer, QPC, and MTT.

Receiving Buffer is a shared packet buffer among all QPs
and its size is small, so it is not optimized in this paper.

QPC is essential to maintain the per-QP states, and is in-
volved in per-packet processing. To support a large number
of performant QPs, we have to store their QPCs entirely in
on-chip memory. Therefore, this part is not eliminated, and
we preserve as much on-chip memory as possible for QPC to
maximize the number of performant QPs.

MTT is memory-consuming as analyzed in §3.2 (e.g.,4 GB
memory region requires 8 MB MTT size). Therefore, MTT
is maintained in the host memory, and an MTT cache is im-
plemented inside the RNIC by leveraging traffic locality. The
cache size does not increase with the number of QPs, and
its performance is highly related to traffic patterns. In ad-
dition, adopting hugepages (e.g., 2MB/1GB) is a classical
optimization to reduce the memory size of address translation
tables [24,40], but requires modification to the applications.

4.6 Design Summary

The last two columns of Table 1 summarize our ideas to
minimize the RDMA related data structures, and show the
memory requirements after optimizations. Specifically, we
eliminate the WQE cache through a cache-free QP scheduler,
eliminate all SR-related data structures in on-chip memory
through SR-friendly header extensions and bitmap onloading,

Resource Usage

LUT Register BRAM URAM
101102 140816 621 48
Memory Breakdown (MB)
QPC MTT Receiving Buffer ~ SQ Scheduler Total
23 12 0.6 0.3 44

Table 2: Resource usage of the SRNIC prototype.

and minimize the on-chip memory requirements of MTT with
a cache, while keeping the large MTT table in host memory.

5 Implementation

We build a fully functional prototype of SRNIC using a Xilinx
FPGA board with a PCIe Gen3 x16 interface and a 100 Gbps
Ethernet port, running at a clock frequency of 300 MHz.
Congestion Control. Since SRNIC introduces ACK based
self-clocking for RDMA READ, we therefore can use
window-based congestion control for RDMA. Window-based
approach in general is more friendly for hardware implementa-
tion than rate-based congestion control due to its self-clocking
mechanism. More specifically, window-based design is event-
driven: congestion window update events are triggered by
inbound acknowledgement packets, and window based con-
gestion control for each flow is applied at QP scheduling
events. These events are naturally serialized and can be pro-
cessed one by one. On the other hand, rate-based congestion
control is timer-driven. It is challenging to support a large
number of timer-based rate limiters in parallel for many con-
current flows. In SRNIC, we use DCTCP.

Memory Consumption. We realize 10K QPs in SRNIC and
the resource consumption is broken down in Table 2. SRNIC
consumes 4.4 MB on-chip SRAM in total. The QPC table,
whose size increases linearly with the QP number, occupies
2.3 MB” for 10K QPs. The remaining memories are used by
QP-irrelevant data structures, including MTT cache, receiving
buffer, and SQ scheduler, which consume constant memories
when the QP number increases.

Per Table 2, the precious on-chip SRAM of SRNIC is
mainly partitioned between the two most memory-consuming
data structures: the QPC table and the MTT cache. A larger
QPC table would support more performant QPs, while a larger
MTT cache could provide a higher cache hit rate during ad-
dress translation thus better performance. The best on-chip
memory partition strategy between the QPC table and the
MTT cache highly depends on scenarios, and it’s an interest-
ing problem to explore in the future.

5This is slightly larger than 2 MB calculated in Table | due to memory
alignment overhead, e.g., each memory depth should be a power of 2 in FPGA
implementation.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 9

m
£100]
< e
S 90 \
Q.
=
2 80
o
c 4
= 70 SRNIC
% 601 ~ RNIC CX-6
=2 -+ RNIC CX-5
;g 50 TCP
128 256 512 1024 2048 4096 8192 10K

QP Number

Figure 9: Connection scalability. SRNIC maintains constant
high throughput as the number of QPs increases, while the
performance of commercial RNICs (Mellanox CX-5 & 6)
drops dramatically when the QP number exceeds 256.

6 Evaluation

We evaluate SRNIC using both testbed experiments and large-
scale ns-3 simulations [10], and compare it with Mellanox
RNICs, IRN, and TCP. Our results reveal that:

* SRNIC achieves high connection scalability: it supports
10K performant QPs, outperforming Mellanox RNIC CX-5
by 18x in terms of normalized connection scalability.

* SRNIC achieves high throughput (97 Gbps), low latency
(3.3 us), and low (5%) CPU overhead.

* SRNIC achieves high network scalability: it is loss-tolerant
(up to 75 Gbps goodput under 1% loss rate) and maintains
predictable performance over large-scale lossy networks.

6.1 Connection Scalability

We compare SRNIC with Mellanox RNIC CX-5, CX-6, and
TCP in terms of connection scalability. The settings of the
testbed experiments are as follow. We connect two RNICs
directly and launch 16 threads on each side, with each thread
executing 512 B send operations. We set the RoCE MTU to
1024 bytes, and use the standard perftest benchmarks [11]
in all experiments. With the above settings, we measure the
aggregate throughput of these solutions while increasing the
number of QPs from 128 to 10K, as shown in Figure 9.

SRNIC preserves the highest aggregate throughput almost
unchanged at around 97 Gbps when the QP number increases
from 128 to 10K. This is expected, as SRNIC keeps the QPC
of 10K QPs entirely in the on-chip memory while eliminating
or minimizing all other data structures.

TCP also preserves relatively high performance (from 81
to 96 Gbps), as it maintains the contexts of 10K connections
in the large host memory, demonstrating high connection
scalability but lower and unpredictable performance.

In contrast, the aggregate throughput of Mellanox RNICs

CX-5 and CX-6 drops dramatically when the QP number ex-
ceeds 256 due to frequent cache misses, as explained in §2.2.

In summary, SRNIC provides much higher connection scal-
ability than commercial RNICs. Specifically, SRNIC realizes
10K QPs with 4.4 MB memory, while Mellanox CX-5 sup-
ports 256 QPs with 2 MB memory. To make a fair comparison,
we define normalized connection scalability as the number of
performant connections per 1 MB on-chip memory. SRNIC
outperforms Mellanox CX-5° by 18x (10 K QPs/4.4 MB vs.
256 QPs/2 MB) in terms of normalized connection scalability.

6.2 Performance and CPU Overhead

We compare SRNIC with CX-6" and TCP in terms of through-
put, latency, and CPU overhead using a single connection,
with the same settings as above (i.e., 1024-byte RoCE MTU,
two NICs are connected directly).

Throughput. The throughput comparison is shown in Fig-
ure 10a. When the message size exceeds 4 KB, SRNIC and
CX-6 both achieve line-rate throughput (97 Gbps), whereas
TCP can only achieve up to 37 Gbps since the single CPU core
becomes the bottleneck. In our experiments, the maximum
message rate that SRNIC can achieve is 6.6 Mrps, comparable
to that of the CX-6 (6.3 Mrps). This confirms that RNIC can
achieve a high message rate without WQE cache. As men-
tioned in §4.3.1, the message rate of SRNIC depends on the
batch size of the SQ scheduler. In our implementation, the
SQ scheduler can request at most 8 WQEs at a time and the
average PCle RTT we measured is 1.1 ps, therefore our result
is close to the upper bound of 7.2 Mrps.

Latency. We measure the latency for transmitting 64 B small
messages. As Figure 10b shows, the latency of SRNIC is
about 3.3 s, slightly higher than that of CX-6 (1.16 us). We
believe this gap comes from the extra 1 ps added by the cache-
free QP scheduler and the clock frequency difference between
FPGA (300MHz) and ASIC (GHz) implementations. The la-
tency would be decreased if SRNIC adopts the shared Receive
WQE cache or is implemented in ASIC. In contrast, TCP has
the highest latency of 24 ps, indicating that bypassing ker-
nel and offloading transport in RDMA is vital for significant
latency reduction.

CPU overhead. As shown in Figure 10c, the CPU overhead
of SRNIC and CX-6 both maintains at a low level (< 5%)
thanks to transport offload and kernel bypass. TCP consumes
much more CPU cycles at both the client and server sides
(around 100% CPU utilization, not shown in the figure).

6.3 Network Scalability

Finally, we evaluate the network scalability of SRNIC. We
show the efficiency of loss recovery in SRNIC with testbed

5We know the on-chip memory size (i.e., 2 MB) of CX5 [24] but not CX6,
so we only compare with CX-5 in terms of normalized connection scalability.
7CX-5 and CX-6 behave similarly, so we only show CX-6 thereafter.

10 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

B A o & o o 4 o 4

100 SRNIC
-+ BNIC CX-6
TCP

s)

D @
o o
| |

Throughput (Gbp.
N
o

201
0+——+ > T T T T T T T
81 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)
(a) Throughput
g
=251 o SRNIC-Client —— RNIC CX-6-Client
m > SRNIC-Server -+~ RNIC CX-6-Server
3 201 =6
5 2 g A
2 Sates. AN D8 A Y
= 104 5 |48 ¥4 W vy Tewe s
2 5 z21
o--re—0—0-t--—0t-0—b-00"00
Eoll 1 == [1]° (e
= TCP RNICCX-6 SRNIC 16 256 4K 64K 1M
Message Size (Bytes)
(b) Latency (c) CPU overhead

Figure 10: Performance and CPU overhead. SRNIC achieves
high throughput, low latency, and low CPU overhead, similar
to CX-6.

experiments, and the performance of SRNIC over large-scale
lossy networks via simulations.
Loss tolerance. We compare the goodput of SRNIC with
CX-6 at different packet loss rates, which are emulated by
placing an FPGA between two RNICs and letting the FPGA
randomly drop packets at given rates. We use perftest to
generate 4 KB messages continuously. We disable congestion
control here to exclude the influence of congestion control on
loss tolerance, and only compare the loss recovery efficiency
between selective repeat in SRNIC and go-back-N in CX-6.
Figure 11 compares SRNIC with CX-6 in terms of goodput
under different loss rates. The goodput of CX-6 drops rapidly
when the loss rate exceeds 0.1%. In particular, the CX-6

goodput is down to 25 Gbps when the loss rate exceeds 1%.

Meanwhile, we monitor the MAC statistics counters in CX-6
and get its raw throughput of ~97 Gbps, which indicates that
most of the RNIC bandwidth is wasted on retransmission
caused by go-back-N. The goodput of SRNIC drops much
slower than that of CX-6. When the loss rate exceeds 1%, the
goodput is still 75 Gbps, 3x higher (75 vs. 25 Gbps) than that
of CX-6.

The good loss tolerance of SRNIC comes from both the
efficiency of selective repeat and its careful software-hardware
co-designs in §4.4.2.

Performance in large-scale lossy networks. We use ns-3 to
simulate the transport behavior of SRNIC, and compare it with
CX-6 and IRN in large-scale lossy networks. We simulate

100

.80+
(2]
o
o)
G 60
5
£ 40
[}
o
S 50 SRNIC
- RNIC CX-6
0 T T T T T
107® 1078 107 1073 1072

Loss Rate

Figure 11: Loss tolerance. SRNIC achieves higher goodput
than CX-6 when loss rate increases, as the number of retrans-
mitted packets with selective repeat is much fewer than that
with go-back-N.

A= Cx-6Avg IRN Avg

SRNIC A
54 & CX6Tai IRN Tail SRNIQT:* -A- CX-6 Avg SRNIC Avg
S 81 4 IRNAvg
—~ 4] - c
w4 /A % 64
=34 _-7 °
= 2 4]
O o] o
w »
kb ___A__-»———*" 21
0

16 64 256 1024 4096 16 64 256 1024 4096
Server Number Server Number

(a) Average and tail FCT (b) Average slowdown

Figure 12: Performance at different network scales.

the fat-tree topologies with the server number ranging from
16 to 4096, with the (ToR, Aggregate, Core) switch number
varying among five settings: (1, 0, 0), (4, 4, 0), (8, 8, 0), (64,
64, 16) and (128, 128, 64). The subscription ratio is 1:1 in
all topologies. We equip each server with one 100 Gbps NIC
connected to one ToR. ToR, Aggregate, and Core switches
are connected via 400 Gbps links. The propagation delay of
each link is 1 ps.

PFC is enabled for CX-6 but disabled for SRNIC and IRN.
We use the traffic trace in Cache_Follower [36], where 53%
of the flows are sized between 0 - 100 KB, 18% between
100 KB - 1 MB, and the rest are larger than 1 MB. We set the
network load at 0.7 utilization, and configure other algorithm
parameters based on their papers.

We primarily focus on three metrics, i.e., average FCT, P99
tail FCT, and average slowdown [33]. The average FCT and
tail FCT describe the performance of throughput-intensive
flows, while the average slowdown shows the performance of
latency-sensitive flows.

As shown in Figure 12, the performance of SRNIC is
1.9 - 2.2x better than CX-6 across all three metrics. As the
cluster scale increases, SRNIC maintains stable performance,
while the performance gap between SRNIC and CX-6 widens.
Meanwhile, SRNIC and IRN perform similarly well as they
use the same loss-recovery mechanism (selective repeat) and
similar congestion control schemes (DCTCP vs. DCQCN).

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 11

7 Discussion

RDMA Protocol for lossy Ethernet. The RDMA protocol
was originally designed and simplified for lossless Infiniband,
and it "does not support selective packet retransmission nor
the out-of-order reception of packets", written in the Infini-
band RDMA specification [1]. As aresult, the current RDMA,
by design, requires a lossless fabric to perform well.

Based on this requirement, when RDMA is introduced into
Ethernet-based data centers, Ethernet is turned from lossy
to lossless by introducing PFC, rather than re-designing an
Ethernet-native or loss-friendly RDMA protocol.

A lossless Ethernet network, however, is inherently diffi-

cult to scale and hard to maintain for high availability. It is
therefore desirable to look into the other end of the design
spectrum: revising the RDMA protocol for a lossy network.
This is the path taken by the pioneering work of IRN [33],
and SRNIC. We hope these early attempts can inspire the
re-design of a new RDMA specification for lossy network,
which supports out-of-order packet reception and selective
packet retransmission natively and efficiently, and ensures
compatibility and interoperability among different protocol
versions and RNIC vendors.
SRNIC vs. RoCEv2, iWARP and ToE. There exists a long
debate [3, 6] between RoCE and iWARP [35] (ToE [2] is
similar to iWARP in the sense of TCP offload). The former
takes a bottom-up strategy: start from a minimal, hardware-
friendly yet working transport (e.g., go-back-0, no congestion
control) and incrementally add more advanced mechanisms
(e.g., go-back-N/selective repeat, DCQCN/DCTCP) to make
RoCE work better over various networks. The latter takes a
top-down strategy: offloading the fully-compatible TCP/IP
stack (which is already proven to work well over various net-
works at scale), and gradually reduce unnecessary complexity
to improve hardware friendliness.

SRNIC takes a more balanced approach: it inherits the hard-
ware friendliness (and thus high performance) from RoCE,
and introduces only necessary features from TCP such as
selective repeat and DCTCP.

SRNIC demonstrates that high network scalability and hard-
ware friendliness can be achieved simultaneously with careful
architecture and protocol co-designs. We believe that the best
of both RoCE (hardware friendliness) and iWARP/TCP (high
network scalability) can coexist as we have shown in SRNIC.

8 Related Work

Several works [30,32,42] aim at improving RDMA’s network
scalability via bringing advanced congestion control algo-
rithms to RNICs.They control the queue length at switches
and thus improve RDMA’s performance at scale. Note that
these works are orthogonal to ours and can be integrated into
SRNIC if they are hardware-friendly.

Mellanox tries to improve RNIC’s connection scalability
via DCT [17] technology, which restricts the number of ac-
tive connections and avoids QP exhaustion via dynamically
creating and destroying QPs. However, such behavior may
cause frequent flips of connections, resulting in increased la-
tency and bandwidth waste [27]. StaR [39] improves RNIC’s
connection scalability at one side by letting the other side
save states for it. However, this strategy highly relies on the
asymmetric communication pattern, where the client with low
concurrency can share its resources with the server with high
concurrency, to improve the overall connection scalability.

Other software based transport solutions or DPDK-style
NICs, e.g., eRPC [24], FaSST [27], IRMA [38], and Ni-
tro [37], expect NICs to provide scalable connection-less
service including packet transmission and reception, and lever-
age CPU to implement connection-related semantics. In these
solutions, it is the CPU’s responsibility to handle most of the
transport-related tasks, including packet order maintenance,
congestion control, and loss recovery. Though the scalabili-
ties of these approaches are comparable to the software trans-
port TCP, the heavy involvement of CPU results in higher
CPU overhead, higher latency, and higher jitter than that of
hardware-based transport. In contrast, SRNIC handles almost
everything in hardware but leaves only part of retransmission
in software, resulting in hardware-level performance in most
cases when there is no packet loss, and software-level loss
tolerance when packet loss happens.

9 Conclusion

This paper presents the design and implementation of SRNIC,
a scalable RDMA NIC architecture, which addresses the con-
nection scalability challenge, while achieving high network
scalability, high performance, and low CPU overhead at the
same time. Our key insight in SRNIC is to minimize RNIC’s
memory requirement, by eliminating as many on-chip data
structures as possible in a simple yet performant way. Guided
by this insight, we make a few RDMA protocol header exten-
sions and architectural innovations to achieve the design goal.
Our experiences in SRNIC tell us that existing RDMA header
formats originally designed for a lossless environment, are
not suitable for much large-scale, lossy data center networks.
SRNIC therefore is our first attempt towards more scalable
and performant, next-generation ROCE/RDMA designs.

Acknowledgments

We would like to thank our anonymous reviewers and shep-
herd Yashar Ganjali for their valuable comments. This work
is supported in part by the Key-Area Research and Develop-
ment Program of Guangdong Province (2021B0101400001),
the Hong Kong RGC TRS T41-603/20-R, GRF-16215119,
GRF-16213621, ITF ACCESS, the NSFC Grant 62062005,
and a joint HKUST-ByteDance research project.

12 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

[1] Infiniband architecture volume 1, general specifications,
release 1.2.1. www.infinibandta.org/specs, 2008.

[2] Information about the TCP Chimney Offload,
Receive Side Scaling, and Network Direct
Memory Access features in Windows Server
2008. https://docs.microsoft.com/en-us/
troubleshoot/windows-server/networking/
information-about-tcp-chimney-offload-rss-
netdma-feature, 2008.

[3] The pitfalls in RoCE answered with respect to
iWARP. https://www.chelsio.com/wp-content/
uploads/2011/05/RoCE-FAQ-1204121.pdf, 2011.

[4] Supplement to InfiniBand architecture specification
volume 1 release 1.2.2 annex A17: RoCEv2 (IP
routable RoCE). https://www.infinibandta.org/
specs, 2014.

[5] RDMA in Data Centers: Looking Back and Looking For-
ward. https://conferences.sigcomm.org/events/
apnet2017/slides/cx.pdf, 2017.

[6] RoCE vs. iWARP competitive analysis.
https://network.nvidia.com/sites/default/
files/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf,
2017.

[7] Mellanox ConnectX-5 Product Brief. https:
//network.nvidia.com/files/doc-2020/pb-
connectx-5-en-card.pdf, 2020.

[8] Mellanox ConnectX-6 Product Brief. https:
//network.nvidia.com/sites/default/files/
doc-2020/pb-connectx-6-en-card.pdf, 2020.

[9] Microsoft Bing. https://www.bing.com/, 2020.

[10] Network Simulator 3.
2021.

https://www.nsnam.orqg/,

[11] OFED Perftest. https://github.com/linux-rdma/
perftest/, 2021.

[12] Mellanox NEO-Host. https://
support.mellanox.com/s/productdetails/
a2v50000000N201AAK/mellanox—neohost, 2022.

[13] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: A system for large-scale machine learning.
In Proc. OSDI, 2016.

[14] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
tep (detep). In Proc. SIGCOMM, 2010.

[15] Luiz André Barroso, Jeffrey Dean, and Urs Holzle. Web
search for a planet: The google cluster architecture.
IEEE Micro, 2003.

[16] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei
Li, Wenjie Wu, Lingiang Ouyang, Peng Wang, Yijing
Wang, Ray Kuan, et al. POLARDB meets computa-
tional storage: Efficiently support analytical workloads
in Cloud-Native relational database. In Proc. FAST,
2020.

[17] Diego Crupnicoff, Michael Kagan, Ariel Shahar, Noam
Bloch, and Hillel Chapman. Dynamically-connected
transport service, July 3 2012. US Patent 8,213,315.

[18] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, et al. When cloud storage meets
RDMA. In Proc. NSDI, 2021.

[19] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. Rdma
over commodity ethernet at scale. In Proc. SIGCOMM,
2016.

[20] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, et al. Pingmesh: A large-scale
system for data center network latency measurement
and analysis. In Proc. SIGCOMM, 2015.

[21] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Tagger: Prac-
tical pfc deadlock prevention in data center networks.
In Proc. CoNEXT, 2017.

[22] IEEE. 802.1 gbb—priority-based flow control. 2008.

[23] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed DNN training in heterogeneous
GPU/CPU clusters. In Proc. OSDI, 2020.

[24] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In Proc. NSDI,
2019.

[25] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using rdma efficiently for key-value services. In Proc.
SIGCOMM, 2014.

[26] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design guidelines for high performance RDMA systems.
In Proc. ATC, 2016.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 13

www.infinibandta.org/specs
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/information-about-tcp-chimney-offload-rss-netdma-feature
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/information-about-tcp-chimney-offload-rss-netdma-feature
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/information-about-tcp-chimney-offload-rss-netdma-feature
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/information-about-tcp-chimney-offload-rss-netdma-feature
https://www.chelsio.com/wp-content/uploads/2011/05/RoCE-FAQ-1204121.pdf
https://www.chelsio.com/wp-content/uploads/2011/05/RoCE-FAQ-1204121.pdf
https://www.infinibandta.org/ specs
https://www.infinibandta.org/ specs
https://conferences.sigcomm.org/events/apnet2017/slides/cx.pdf
https://conferences.sigcomm.org/events/apnet2017/slides/cx.pdf
https://network.nvidia.com/sites/default/files/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf
https://network.nvidia.com/sites/default/files/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://network.nvidia.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://network.nvidia.com/sites/default/files/doc-2020/pb-connectx-6-en-card.pdf
https://network.nvidia.com/sites/default/files/doc-2020/pb-connectx-6-en-card.pdf
https://network.nvidia.com/sites/default/files/doc-2020/pb-connectx-6-en-card.pdf
https://www.bing.com/
https://www.nsnam.org/
https://github.com/linux-rdma/perftest/
https://github.com/linux-rdma/perftest/
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost

[27] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (RDMA) datagram rpcs. In Proc. OSDI,
2016.

[28] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding performance anomalies in RDMA subsystems.
In Proc. NSDI, 2022.

[29] Feng Li, Sudipto Das, Manoj Syamala, and Vivek R
Narasayya. Accelerating relational databases by lever-
aging remote memory and rdma. In Proc. SIGMOD,
2016.

[30] Yuliang Li, Rui Miao, Honggiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. Hpcc:
High precision congestion control. In Proc. SIGCOMM.
2019.

[31] Yuanwei Lu, Guo Chen, Zhenyuan Ruan, Wencong
Xiao, Bojie Li, Jiansong Zhang, Yongqiang Xiong, Peng
Cheng, and Enhong Chen. Memory efficient loss recov-
ery for hardware-based transport in datacenter. In Proc.
APNet, 2017.

[32] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin Vah-
dat, Yaogong Wang, David Wetherall, and David Zats.
Timely: Rtt-based congestion control for the datacenter.
In Proc. SIGCOMM, 2015.

[33] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting network support for rdma. In
Proc. SIGCOMM, 2018.

[34] Kun Qian, Wenxue Cheng, Tong Zhang, and Fengyuan
Ren. Gentle flow control: avoiding deadlock in lossless
networks. In Proc. SIGCOMM. 2019.

[35] Renato Recio, Bernard Metzler, Paul Culley, Jeff Hil-
land, and Dave Garcia. A remote direct memory access
protocol specification. Technical report, RFC 5040, Oc-
tober, 2007.

[36] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C Snoeren. Inside the social network’s (data-
center) network. In Proc. SIGCOMM, 2015.

[37] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sab-
bag. A cloud-optimized transport protocol for elastic
and scalable hpc. IEEE Micro, 2020.

[38] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F
Wenisch, Monica Wong-Chan, Sean Clark, Milo MK
Martin, Moray McLaren, Prashant Chandra, Rob Cauble,

et al. 1rma: Re-envisioning remote memory access for
multi-tenant datacenters. In Proc. SIGCOMM, 2020.

[39] Xizheng Wang, Guo Chen, Xijin Yin, Huichen Dai, Bo-
jie Li, Binzhang Fu, and Kun Tan. Star: Breaking the
scalability limit for rdma. In Proc. ICNP, 2021.

[40] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
FileMR: Rethinking RDMA networking for scalable
persistent memory. In Proc. NSDI, 2020.

[41] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-resolution measurement of data
center microbursts. In Proc. IMC, 2017.

[42] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale rdma deploy-
ments. In Proc. SIGCOMM, 2015.

[43] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Forster, Arvind Krishnamurthy, and Thomas An-
derson. Understanding and mitigating packet corruption
in data center networks. In Proc. SIGCOMM, 2017.

14 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Hostping: Diagnosing Intra-host Network Bottlenecks
in RDMA Servers

Kefei Liut, Zhuo J iang§, Jiao Zhangﬁ*, Haoran Wei'$, Xiaolong ZhongT,
Lizhuang Tan®, Tian Pan'* and Tao Huang'*

TBUPT *Purple Mountain Laboratories
YByteDance Inc.

Abstract

Intra-host networking was considered robust in the RDMA
(Remote Direct Memory Access) network and received lit-
tle attention. However, as the RNIC (RDMA NIC) line rate
increases rapidly to multi-hundred gigabits, the intra-host net-
work becomes a potential performance bottleneck for network
applications. Intra-host network bottlenecks may result in de-
graded intra-host bandwidth and increased intra-host latency,
which can severely impact network performance. However,
when intra-host bottlenecks occur, they can hardly be no-
ticed due to the lack of a monitoring system. Furthermore,
existing bottleneck diagnosis mechanisms fail to diagnose
intra-host bottlenecks efficiently. In this paper, we analyze
the symptom of intra-host bottlenecks based on our long-
term troubleshooting experience and propose Hostping, the
first bottleneck monitoring and diagnosis system dedicated to
intra-host networks. The core idea of Hostping is conducting
loopback tests between RNICs and endpoints within the host
to measure intra-host latency and bandwidth. Hostping not
only discovers intra-host bottlenecks we already knew but
also reveals six bottlenecks we did not notice before.

1 Introduction

RDMA has been applied to many applications [14] [17] [28]
[30] [42] [46] in data centers to achieve high throughput
and ultra-low latency. As the last hop of network commu-
nication, intra-host networking can significantly impact the
performance of network applications. However, the intra-host
network is far from flawless, and intra-host bandwidth may
degrade due to sudden link failures or occupation by other
traffic. Previously, the intra-host bandwidth was much greater
than the RNIC line rate (e.g., ~63 Gb/s PCle Gen 3 x8 for 25
Gb/s RNIC), providing sufficient bandwidth redundancy for
RNIC traffic. Therefore, the intra-host network rarely became

The first two authors contributed equally to this paper. This work is done
while Kefei Liu, Haoran Wei, and Xiaolong Zhong are doing a joint research
project at ByteDance. (*Jiao Zhang is the corresponding author.)

an obstacle to network communication, and bottlenecks in the
host network received little attention.

However, bottlenecks in the host network are on the rise.
With the increasing demand for high throughput and ultra-low
latency, the RNIC line rate increases rapidly (from 25 Gb/s
to 200 Gb/s). In contrast, the intra-host bandwidth does not
improve equally (e.g., PCle bandwidth increases from ~63
Gb/s to ~252 Gb/s). As a result, when intra-host bandwidth de-
grades, traffic on the RNIC is more likely to be throttled. What
is worse, both the topology and traffic patterns within the host
become much more complicated, making bandwidth degra-
dation caused by sudden link failures or traffic contention
happens more frequently. Besides, as intra-host services be-
come more complex, configuration items in the host also
increase considerably, leading to a high probability of miscon-
figurations. Some of them, such as enabling Access Control
Service, will redirect GDR (GPU Direct RDMA) traffic to the
CPU, leading to a drastic increase in intra-host latency and
severe degradation of intra-host bandwidth.

Intra-host bottlenecks ' may significantly degrade network
performance. In our distributed machine learning system,
one single intra-host bottleneck can significantly degrade the
whole system and may even block the training process. This
phenomenon is common in our data center. When it occurs,
operators may need hours to days to diagnose the root cause.

Why do intra-host bottlenecks have such a severe impact? If
the intra-host bandwidth is lower than the RNIC receiving rate,
the RNIC receive buffer may accumulate or even be saturated.
When this occurs in a lossy environment (without PFC) [39],
RNIC may drop packets. Since RDMA is vulnerable to packet
drops, even a low drop rate will result in drastic throughput
degradation [24]. While in a lossless environment, RNIC will
send PFC pause frames (Tx pause frames) to the upstream
switch’s egress port to stop its traffic. If the RNIC sends pause
frames continually, it may eventually lead to a PFC storm
[21] [24] [36], which may bring down the whole network.

'In the following, we use "intra-host bottleneck” as the bottleneck in the
host network and "network bottleneck" as the bottleneck in the inter-host
network, i.e., switches and cables.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 15

Therefore, when an intra-host bottleneck occurs, it should be
discovered, diagnosed, and resolved as soon as possible.

However, due to the lack of an efficient intra-host bottle-
neck monitoring system, bottlenecks can hardly be noticed
when they occur. When customers complain to the network
team about performance degradation, the upper layer service
usually has been severely influenced by the bottleneck. In
addition, the phenomena caused by intra-host and network
bottlenecks may be similar. Thus, when network performance
degrades, operators need first to judge whether the host or the
network should be blamed. Furthermore, when finding the
bottleneck lies in the host, operators need to log in to the host,
execute a series of test cases and conduct some profiling tools
to infer the bottleneck. The whole process is time-consuming.
What is worse, existing profiling tools could only be used for
specific devices, such as Intel PCM [2] for Intel CPUs, AMD
uProf [1] for AMD CPUs, and Nvidia SMI [9] for Nvidia
GPUs. As each host may have devices from different ven-
dors, operators may need different toolsets for each diagnosis,
which brings additional learning and execution overhead.

To solve the limitations above, we propose Hostping, the
first bottleneck monitoring and diagnosing system dedicated
to intra-host networks. It could be deployed on all RDMA
servers with low overhead and adapt to devices from differ-
ent vendors. When intra-host bottlenecks occur, Hostping
could quickly discover them and automatically diagnose their
root causes. Thus, when network performance degrades, we
can rapidly judge whether the host or the network should be
blamed.

We need to address three challenges to achieve these design
targets. Firstly, we need to find and measure metrics that
could effectively discover and diagnose intra-host bottlenecks.
Secondly, we need to keep responsive to intra-host bottlenecks
with low overhead. Finally, we need to efficiently diagnose
intra-host bottlenecks based on measured data.

Based on our long-term troubleshooting experience, we
realized that leveraging intra-host bandwidth and latency as
metrics could effectively discover and diagnose most intra-
host bottlenecks. This guides the core idea of Hostping: con-
duct loopback tests between RNICs and endpoints (GPUs and
memory nodes [33]) within the host to measure intra-host
latency and bandwidth. By registering memory regions in
different endpoints, Hostping could evaluate the latency and
bandwidth of any intra-host path that a message received by
an RNIC can take. To keep Hostping responsive to intra-host
bottlenecks without degrading application performance, we
design a hardware monitor to determine when to launch it.
Finally, we propose an efficient diagnosing mechanism that
could effectively identify the root cause of intra-host bottle-
necks even under the interference of service traffic on RNICs.

We evaluate Hostping on over 300 servers in our distributed
machine learning system. During the deployment, Hostping
not only discovers intra-host bottlenecks we already knew but
also reveals six bottlenecks we did not notice before, such

as CPU root port failures and memory channel flapping. To
summarize, this paper makes the following contributions:

* We analyze the symptom of intra-host network bottlenecks
based on our long-term troubleshooting experience and
realize that most intra-host bottlenecks have one or both of
the following symptoms: intra-host bandwidth degradation
and intra-host latency increase.

e We design Hostping, the first bottleneck monitoring and
diagnosing system dedicated to intra-host networks.

* We propose an efficient diagnosing mechanism that could
effectively identify the root cause of intra-host bottlenecks
even under the interference of service traffic on RNICs.

2 Background & Motivation

2.1 Intra-host Bottlenecks

When sending/receiving a message, the RNIC will read/write
it from/to an intra-host endpoint (e.g., memory node, GPU)
through multi-hops in the host network, such as PCle links,
memory channels, and inter-socket buses (e.g., Intel QPI
[51]/UPI[11] and AMD xGMI [12]). We refer to the round-
trip latency and the maximum available bandwidth between
the RNIC and the endpoint as intra-host latency and intra-
host bandwidth’ , respectively.

Previously, intra-host bandwidth was much greater than the
RNIC line rate, providing sufficient bandwidth redundancy.
Therefore, the host rarely became an obstacle to network com-
munication, and intra-host bottlenecks received little attention.
In recent years, with the increasing demand for high through-
put and ultra-low latency from applications, the RNIC line
rate has increased rapidly. In contrast, the intra-host band-
width does not improve equally. As a result, when intra-host
bandwidth degrades due to link failures or contention from
other intra-host traffic, it is more likely to trigger network
performance degradation.

What is worse, both the topology and traffic patterns within
the host become much more complex, making the intra-host
bandwidth degradation commonplace [13] [16] [19] [35] [37].
To satisfy the ever-increasing demand for computation capa-
bility, more GPUs and RNICs are integrated into one single
host. For example, the latest Nvidia DGX-A100 [5] server
incorporates 8 Nvidia A100 GPUs and 4 Mellanox 200 Gb/s
RNICs. This leads to much more complicated intra-host traf-
fic patterns and more bandwidth contention. In addition, as
the number of root ports [43] on the CPU socket is limited,
more PCle switches are required to interconnect these devices.
As aresult, the intra-host topology becomes more complex,
leading to more frequent intra-host link failures.

21t could be further divided into sending bandwidth from the endpoint
to the RNIC and receiving bandwidth from the RNIC to the endpoint. If
not explicitly mentioned, it indicates the minimum value of the sending and
receiving bandwidth.

16 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Furthermore, as intra-host services become more compli-
cated, configuration items in the host also increase consid-
erably, leading to a high probability of misconfigurations.
Among them, some misconfigurations may lead to severe
intra-host bottlenecks. For example, ACS (Access Control
Service) is a PCle configuration used in IO virtualization.
GDR is a widely used communication method in machine
learning, which uses the GPU to communicate directly with
the RNIC without any involvement of the CPU and host mem-
ory. However, all GDR traffic will be redirected to the CPU
with ACS enabled, leading to a drastic increase in intra-host
latency and severe degradation of intra-host bandwidth.

2.2 The Impact of Intra-host Bottlenecks

When bottlenecks appear in the host, the intra-host bandwidth
may be lower than the RNIC receiving rate, and the RNIC
receive buffer may accumulate. If the receive buffer is satu-
rated in a lossy environment (without PFC) [39], the RNIC
will drop packets. Since RDMA is vulnerable to packet drops,
even a low drop rate will result in drastic throughput degrada-
tion [24]. While in a lossless environment, when the RNIC
receive buffer exceeds a threshold, it will send pause frames
to the upstream switch’s egress port to stop its traffic. If the
RNIC sends pause frames continually, it may finally lead to a
PFC storm, which may bring down the whole network.

One single intra-host bottleneck may significantly degrade
the distributed machine learning system. To achieve better
training performance, developers aggregate more and more
servers in a distributed system. However, this leads to more
frequent performance bottlenecks. In data-parallel training,
before updating the neural network parameters, all involved
GPUs need to aggregate their local gradients [16] [28] [45]. In
this process, GPUs may communicate in one or several rings
[22] [38] [41] consisting of intra-host links (e.g., NVLinks [8],
PCle links) and network links to achieve optimal bandwidth
utilization. This ring-based communication is extremely sen-
sitive to network and intra-host bottlenecks. A single RNIC
suffering from degraded intra-host bandwidth may signifi-
cantly slow down the aggregation process of the whole system.
We conducted a ring-based nccl all-reduce test [7] with eight
hosts, and each host has a 200 Gb/s RNIC for network commu-
nication. Fig.1 shows the throughput of each host during the
test. In this scenario, an RNIC’s PCle link has degraded band-
width due to a link failure, leading to a slow sending/receiving
rate. As a result, the throughput for all the hosts drops drasti-
cally to 50 Gbps (~70% lower than the ideal).

Frequent intra-host bottlenecks bring more challenges for
performance bottleneck diagnosis. When packet drops or
bandwidth degradation occur on a path, how to diagnose the
root cause? This problem generally lies in the network when
few intra-host bottlenecks appear, and operators only need
to check each link and switch on the path in sequence. How-
ever, as intra-host bottlenecks occur much more frequently,

2 200

5 _

O 150

2 100}

=

on

: Y7 N
= !

0 12 240 360 480
Time Stamp (s)

Figure 1: One single bottleneck degrades the throughput of
the entire machine learning system by 70%. The upper lines
are ideal, and the lower lines are abnormal. The throughput
of each host is calculated every 30 seconds.

the same phenomenon may also be caused by the degraded
intra-host bandwidth. As a result, operators must first dis-
tinguish whether the host or the network should be blamed,
which brings more challenges for bottleneck diagnosis.

2.3 Limitations of Existing Intra-host Bottle-
neck Diagnosis Mechanisms

When an intra-host bottleneck occurs, it must be discovered,
diagnosed, and resolved as soon as possible. Unfortunately,
as far as we know, there are currently no monitoring and
diagnosing systems dedicated to the host network in data
centers, and intra-host bottleneck diagnosis is inefficient.
Unresponsive. When bottlenecks occur in a host, they can
hardly be noticed in time due to the lack of an efficient intra-
host bottleneck monitoring system. However, when customers
(e.g., the machine learning team) complain to the network
team about performance degradation, the upper layer service
has usually been severely influenced. Thus, operators require
a responsive monitoring system to quickly discover intra-host
bottlenecks, avoiding application performance degradation.
Time-consuming. When a system suffers from degraded per-
formance, operators usually need to run benchmark tests, such
as perftest [10] and nccl-test [7], to narrow down the prob-
lem. However, these tests reflect “end-to-end” performance,
including senders, networks, and receivers. Thus, they cannot
quickly determine whether the bottleneck occurs in the net-
work or the host. When finding the bottleneck lies in the host,
root cause diagnosis is still challenging due to the complex
intra-host topology. Operators need to log in to the host, exe-
cute a series of test cases, and conduct some profiling tools to
evaluate all intra-host links. The entire process above needs
to be conducted manually, which is time-consuming.
Fragmented. When an intra-host link has anomalous per-
formance, operators may need to run some profiling tools
to determine whether the link is occupied by other traffic.
However, these tools are usually vendor-specific, such as Intel
PCM for Intel CPUs, AMD uProf for AMD CPUs, Nvidia
SMI for Nvidia GPUs, and Mellanox Neohost [4] for Mel-
lanox RNICs. Unfortunately, each host in data centers may
have a different combination of equipment, such as different

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 17

network adapters (Mellanox, Broadcom, or Intel), different
CPUs (Intel or AMD), and different GPUs (Nvidia or AMD).
As aresult, when diagnosing bottlenecks in the host, operators
need to utilize different combinations of tools, which brings
additional learning and execution overhead.

2.4 Targets of Hostping

Considering the limitations above, we desire to develop a
dedicated intra-host bottleneck monitoring and diagnosing
system, which could be deployed on all RDMA servers with
little overhead and adapt to devices from different vendors.
When intra-host bottlenecks appear, the system can quickly
discover them and automatically diagnose their root causes.
Thus, when network performance degrades, we can rapidly
judge whether the bottleneck lies in the host or the network.
In conclusion, this system should have the following charac-
teristics:

* Responsiveness: It should quickly discover intra-host bot-
tlenecks and diagnose their root causes.

* Deployability: It should be implementable with commodity
hardware.

* Scalability: It should be compatible with equipment from
different vendors.

» Lightweight: It should have negligible interference with
services in the host.

3 Hostping Overview

In this section, we will first introduce the challenges we should
address to achieve the targets of Hostping (3.1). Then we
will analyze the symptoms of intra-host network bottlenecks
based on our long-term troubleshooting experience, which
guides the core idea of Hostping (3.2). Finally, we will briefly
illustrate the framework of Hostping (3.3).

3.1 Challenges

To realize the targets of Hostping, there are three main chal-
lenges to be solved:

Find and measure metrics that could effectively discover
and diagnose intra-host bottlenecks. As the topology and
traffic patterns within the host become much more complex,
the root causes of intra-host performance bottlenecks are het-
erogeneous. We need to find some unified metrics that could
effectively uncover intra-host bottlenecks and precisely infer
their root causes. Besides, since the intra-host network is like
a black box, measuring these metrics with high accuracy is
also challenging.

Be responsive to intra-host bottlenecks with low overhead.
Diagnosing intra-host performance bottlenecks requires eval-
uating all the links in the host. Due to the complexity of the

host topology, this is not an easy task and will have a non-
negligible impact on the applications within the host. For
example, active probing consumes CPU memory, GPU video
memory, and bus bandwidth. How can we quickly perceive
intra-host bottlenecks with low overhead to the performance
of applications running in the host?

Effectively diagnose intra-host performance bottlenecks
based on measured data. During the operation of Hostping,
we will collect many performance data through active probing
and monitoring. However, the complex intra-host topology
makes it challenging to infer intra-host bottlenecks from scat-
tered data. Besides, the data measured by active probing may
be influenced by the service traffic on the RNIC. In this sce-
nario, the degraded performance data does not necessarily
mean the emergence of an intra-host bottleneck. We need to
find an efficient bottleneck diagnosis mechanism to determine
whether there is an intra-host bottleneck and find its root cause
effectively based on scattered performance data.

3.2 Symptoms of Intra-host Bottlenecks

As mentioned above, intra-host bottlenecks are varied. How to
use the least number of metrics to uncover most intra-host bot-
tlenecks? Based on our long-term troubleshooting experience,
we realize that although different root causes may be blamed,
most intra-host bottlenecks have one or both of the following
symptoms: intra-host bandwidth degradation and intra-
host latency increase. Furthermore, leveraging intra-host
bandwidth and latency as metrics could effectively discover
and diagnose most intra-host bottlenecks. This guides the core
idea of Hostping: conduct loopback tests between RNICs and
endpoints within the host to measure intra-host latency and
bandwidth. Next, we will introduce these two symptoms and
their possible causes.

3.2.1 Bandwidth Degradation

Intra-host bandwidth degrades when an intra-host link is failed
or is occupied by other traffic in the host. The RNIC receive
buffer will accumulate when the intra-host bandwidth is lower
than the RNIC receiving rate. If this situation continues, it will
finally trigger packet drops (in lossy environments) or PFC
pause frames (in lossless environments), leading to severe
network performance degradation.

As the host topology becomes more complicated, the pos-
sibility of link failures in the host boosts. In addition, due to
the large number of data center hosts, even if link failures are
unusual on a particular host, they frequently occur throughout
the data center. We encounter abnormal servers even daily
in severe cases. What is worse, the locations of failures are
varied, requiring a great deal of time for debugging. The host
topology inside one of our most used training machines is
shown in Fig.2, which has two Intel Xeon CPUs connected
through Intel UPI (Intel UltraPath Interconnect). Each CPU

18 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

e
1
: RNIC UPI I
I

® ®
-———— e —— - <
. CPUSocket0| T " """ _"T — | CPUSocket1 | 2o &y 1
Root Complex | ***>
[IN©)
SW
®
©] S

Figure 2: The host topology in one of our most used training
machines. @-@ show the GDR distance between an RNIC
and a GPU. @-® show the link failures we encountered in
practice, and ® shows intra-host bandwidth degradation due
to bandwidth contention.

root complex [43] is attached with four Nvidia A100 GPUs®
and two Mellanox CX6-DX 200 Gb/s RNICs through multi-
ple PCle switches. As shown in Fig.2, we have encountered
failures of @ RNIC PCle links, @ GPU PCle links, @ CPU
root ports, @ memory channels, and ® UPI in practice. Some
issues cannot be detected via static commands such as Ispci
and can only be discovered through benchmark tests.

Furthermore, services in the host are becoming more com-
plicated, leading to more bandwidth contention. When the
host bandwidth is occupied by other traffic, traffic on the
RNIC may be congested (Fig.2 ®). Here, we give two practi-
cal examples. First, as RDMA devices are far from flawless,
TCP and RDMA traffic may co-exist in the same host to meet
high availability and a Service-Level Agreement [21]. How-
ever, the processing of TCP in the Linux kernel may consume
a lot of memory bandwidth, leading to a slow receiving rate
for RDMA traffic. Besides, in the training scenario, a physical
machine is usually split into multiple Virtual Machines (VMs)
to fully utilize host resources. In this case, communication
between two VMs in the same host may trigger loopback
traffic, which consumes the RNIC PCle bandwidth and slows
down the receiving rate from other hosts [32]. As shown in
Fig.3, both link failures and bandwidth contention may throt-
tle RNIC throughput and trigger a large number of PFC pause
frames.

3.2.2 Latency Increase

When sending/receiving a message, the RNIC will read/write
it from/to an endpoint (e.g., memory node, GPU) through
multi-hops in the host network, such as PCle links, memory
channels, and inter-socket buses. We refer to the round-trip
latency from the RNIC receive buffer to the endpoint as intra-
host latency. Intra-host latency increases when there are too

3GPUs are connected via NVLinks and NVSwitches [8] for intra-host
GPU-to-GPU communication (not shown in Fig.2).

Throughput

Pause Duration Ratio

"35.7

200
150

100
67.0

Throughput (Gbps)

50

197.0

| 00

S
S & S

[SS)
S G
Pause Duration Ratio (%)

[

0 PCle downgrade

Normal

S o

Throughput (Gbps)

Throughput

Pause Duration Ratio

]
=]
S

W
=)

1=
S

%3
=)

197.0

1 00

Traffic contention

Normal

< S NS
SHhSGd3hS
Pause Duration Ratio (%)

Figure 3: Both link failures (D-®) and bandwidth contention
(®) will lead to intra-host bandwidth degradation, which may
throttle RNIC throughput and trigger a large number of PFC
pause frames.

_ 2.5F 2. 727.511 = 200} 195.0
S0t 7Y | &
= ‘ | 1 O 150} 153 :
215} ‘ | = : 116.4
2 1 1o v L] B0}
3 -]
NV]2
S |]] | = 50f
£ 05 ‘ 3 ‘ 3 3 £
00) 1 1

Distance 1 Distance 3 Distance 4 Distalncc 1 Distalncc 3 Distalncc 4
Figure 4: As the GDR read distance increases (from @ to @),
the intra-host latency rises, especially when going through
the CPU root complex. Accordingly, the throughput degrades
due to limited outstanding read request TLPs.

many hops between the RNIC and the endpoint. High intra-
host latency hurts application latency and may significantly
degrade intra-host bandwidth. When an RNIC needs to read
from an endpoint, it sends PCle read request TLPs (Trans-
action Layer Packets) [34] to the endpoint, and the endpoint
will respond data to the RNIC after receiving the request.
Therefore, when intra-host latency increases, the RNIC needs
to send more read requests to sustain the line rate. However,
RNICs limit the maximum outstanding read requests. As a
result, intra-host bandwidth degrades when intra-host latency
increases significantly.

Next, we leverage GDR traffic to illustrate the impact of
high intra-host latency on intra-host bandwidth. GDR has
been widely used in data centers to improve training perfor-
mance in distributed machine learning systems. With GDR,
the RNIC can write and read GPU video memory directly
without using host memory, effectively improving the intra-
host latency and intra-host bandwidth. However, GDR suffers
from high latency when traffic traverses the CPU root com-
plex. As shown in Fig.2, there are four types of communica-
tion distances between an RNIC and a GPU: @ traversing a
single PCle switch, @ traversing multiple PCle switches with-
out traversing the CPU root complex, ® traversing the CPU
root complex without traversing the UPI, and @ traversing
the UPL

In the experiment, we use GDR read to test the impact
of different communication distances on intra-host latency
and bandwidth. We leverage Mellanox Neohost to measure

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation

19

..................................... >
ey CPU S(t?.lf?‘t--" CPU Socket Wity
-, I.{‘qnt'(‘,omplex Root Complex
Vi a A
RNIC GPU RNIC GPU

Figure 5: The core idea of Hostping: conduct loopback tests
between RNICs and endpoints (GPUs and memory nodes)
within the host to measure intra-host latency and bandwidth.

the intra-host latency. Since the latency of @ and @ is al-
most the same, we only compare the intra-host latency and
the GDR bandwidth of @, ®, and @ in the experiment. As
shown in Fig.4, when the RNIC communicates with the clos-
est GPU (distance @), the host latency is 1 ps, and the RNIC
can achieve almost the line rate. For distance ®, when GDR
packets need to pass through the CPU root complex, the host
latency rises dramatically to 2.2 us, and the throughput drops
sharply to 125.5 Gbps. As for distance @, traversing the UPI
bus brings an additional 200 ns delay, and the throughput
degrades to 116.4 Gbps. Just 1.4 ps of additional intra-host
latency results in a 40% drop in intra-host bandwidth.

3.3 Framework of Hostping

As shown in Fig.5, the core idea of Hostping is conducting
loopback tests between RNICs and endpoints within the host
to measure intra-host latency and bandwidth and leveraging
the measured data to infer intra-host bottlenecks. Hostping is
implemented based on commodity RNICs. Thus, it could run
on all RDMA servers in data centers.

In the loopback test, the RNIC will read messages from one
endpoint to its buffer and then write them back directly. In
this process, all communication occurs inside the host without
any network participation. Therefore, we could leverage the
loopback latency and bandwidth to reflect intra-host latency
and bandwidth. Furthermore, by conducting loopback tests
between an RNIC and all endpoints in the host, we could
evaluate the latency and bandwidth of all intra-host paths that
a message received by the RNIC can take. When network per-
formance degrades, if RNICs find no anomalies in loopback
tests, we infer that the bottleneck occurs in the network. On
the contrary, when the loopback test to an endpoint shows
anomalous results, we confirm that a bottleneck exists on the
path between the RNIC and the endpoint.

Fig.6 shows the framework of Hostping. The Hostping
agent is deployed on RDMA servers and consists of three
components: hardware monitor, Hostping engine, and data
analyzer. The Hostping engine implements the core logic of
Hostping and consists of two functions: (1) leverage RNICs
to measure intra-host latency and bandwidth; (2) monitor
bus utilization (PCle links, inter-socket buses, and memory

Cloud Data Storage

End Host Abnormal Metrics Bottlenecks
Metrics

Hostping Agent

Hardware Monitor
Idle

Metrics
A Probin;
m ., ctive Probing Bottleneck
Diagnosis
RNIC Metrics Bus Monitor RS0l
Abnormal.

Hostping Engine Data Analyzer

Figure 6: The framework of Hostping.

channels). The hardware monitor judges when to run the
Hostping engine based on host status and abnormal metrics on
RNICs. The data analyzer is responsible for diagnosing intra-
host bottlenecks based on the data collected by the Hostping
engine. All these modules will upload the information they
collect to the cloud, which will be the basis for subsequent
bottleneck diagnosis.

4 Hostping Design

In this section, we will first illustrate the functions of the
Hostping engine and how to measure intra-host latency &
bandwidth with the loopback test (4.1). Then, we will intro-
duce how to utilize the hardware monitor to keep Hostping
highly responsive to intra-host bottlenecks with low overhead
(4.2). Finally, we will present how to diagnose intra-host bot-
tlenecks with the data analyzer (4.3).

4.1 Hostping Engine
4.1.1 Measure Intra-host Latency & Bandwidth

Next, we will illustrate how to measure intra-host latency
and bandwidth in the Hostping engine. Fig.7 demonstrates
the process of the loopback test. First, the Hostping engine
leverages ibv_reg_mr [3] to register two memory regions
(read and write) in an endpoint for sending and receiving,
respectively. Next, the Hostping engine uses ibv_post_send
[3] to post a write WQE (Work Queue Element. Tell the RNIC
to read the message of a specified size from the read region
and write it to the write region) and doorbell the RNIC to
fetch the WQE. Then the RNIC will send a request to read the
message from the read region. Since the receiver is the same
RNIC as the sender, the RNIC will directly write the message
back to the write region instead of sending it to the network.
Finally, after all PCle write packets are sent out, the RNIC will
generate a completion notification and inform the Hostping
engine that the transmission is finished. By measuring the
span between the call of ibv_post_send and the polling of
completion, the Hostping engine could figure out the loopback
latency. Moreover, by registering memory regions in different
endpoints, we could get the loopback latency between the

20 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

—— Read Region Write Region
I_Endpoim | € I ¢ JI
Read Request
Write
—_——— Message
™ RNIC T
Fetch 4:
WoE [; Completion
Doorbell .
IcPu/ve

Poll Completion
Figure 7: The process of the loopback test. Hostping engine
figures out loopback latency by measuring the span between
the call of ibv_post_send and the polling of completion.

ol : : :
1 Y Y
Lat,, Size
© host BWhowt

Post Send

RNIC and any intra-host endpoint. The measured loopback
latency could be approximated” as follow:

Lat = Tproc + Latpos + % (D
Tyroc contains two periods: (1) the duration between the
call of ibv_post_send in the Hostping engine and the RNIC
sending the first read request, and (2) the duration between
the RNIC sending out all the PCle write packets and the CPU
polling the completion. The intra-host bandwidth (BW,,)
is determined by the minimum bandwidth in PCle read and
write. Besides, the measured latency also includes intra-host
latency (Laty,sr). When we leverage a small message, the
measured latency is close to:

lim Lat =
size—0

Tproc + Latpoy)

It is hard to measure T, on commodity RNICs. Never-
theless, Ty generally remains the same when the RNIC is
underutilized and does not suffer from intra-host bottlenecks.
In this case, we could leverage the change of small message la-
tency to reflect the variation of intra-host latency. Thus, when
the measured latency of a small message increases drastically,
we could infer that there is an intra-host bottleneck leading to
abnormal intra-host latency. On the contrary, when we use a
very large message, the measured latency is close to:

Size
BW/hOSt

lim Lat =
size—roo

3

Then the latency reflects intra-host bandwidth. Actually,
we do not need to use a very large message in practice. We
could use the difference between the latency of large and
small messages (Equation | - Equation 2) to obtain Equation
3. In practice, our large message size is 128K bytes for 200
Gb/s RNICs, and our small message size is 1 byte.

“Here size refers to the message size. For simplicity, we do not consider
PCle encapsulation overhead (e.g., TLP header).

4.1.2 Monitor Bus Utilization

While the loopback test could reveal anomalous intra-host
paths and links, it fails to diagnose the root cause of anomalies
in some scenarios. For example, when the loopback test shows
a memory channel has degraded bandwidth, how to further
determine whether the root cause lies in traffic contention or
a link failure?

To solve this problem, we implement a monitoring mod-
ule in the Hostping engine to monitor bus utilization (PCle
links, inter-socket buses, and memory channels). Therefore,
when the loopback test shows an intra-host link has degraded
bandwidth, we could further check its utilization. If the link
is overloaded, we infer that the root cause lies in traffic con-
tention. Otherwise, the link is possibly failed. Unlike previous
vendor-specific tools, our monitor could automatically adapt
to devices from different vendors, and operators no longer
need to learn and use various tools for different devices.

4.2 Responsiveness with Low Overhead

When performance bottlenecks occur in the host network, we
hope Hostping can automatically, quickly, and accurately lo-
cate their root causes. However, high responsiveness and low
overhead are usually a trade-off. We can frequently run loop-
back tests to judge whether there are performance bottlenecks
in the host. However, loopback tests consume CPU/GPU
memory and intra-host bandwidth, leading to contention with
service traffic. Thus, frequent loopback tests will have a non-
negligible impact on applications in the host. How could we
ensure responsiveness to bottlenecks with low overhead to
application performance?

Generally, data center hosts keep switching between busy
and idle status. When the host is idle (little traffic on RNICs
and all GPUs are inactive), we could frequently run loopback
tests to keep responsive to intra-host bottlenecks, regardless
of the overhead. When the host is busy with services and
the network performance is degraded due to intra-host bottle-
necks, abnormal metrics on the RNIC, such as packet drops
and Tx pause frames, will usually appear. These metrics are
indicators of intra-host bottlenecks. Therefore, we could exe-
cute loopback tests when these abnormal metrics appear. This
way, Hostping keeps responsive to intra-host bottlenecks with
low overhead to application performance.

We implement a hardware monitor in the Hostping agent
to achieve the targets above. It (1) monitors host status and
abnormal metrics on RNICs and (2) determines when to run
the Hostping engine. In general, it has two functions:

* Monitor RNIC throughput and GPU status periodically.
If the throughput of all RNICs is less than the thresh-
old Thp,,,, and all GPUs are idle, execute the Hostping
engine to detect if there are intra-host bottlenecks. Oth-
erwise, skip this execution.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 21

* Monitor abnormal metrics on all RNICs. If the Tx pause
duration ratio is larger than PFC;e, or packet drops
appear, execute the Hostping engine immediately to di-
agnose intra-host bottlenecks.

4.3 Bottleneck Analysis

In this section, we will demonstrate how the data analyzer
leverages the data collected by the Hostping engine to de-
termine whether there is a bottleneck within the host and
diagnose its root cause. We first discuss how to diagnose
intra-host bottlenecks when the host is idle. In general, the
analyzer determines intra-host path status (normal or abnor-
mal) by comparing the measured intra-host path bandwidth
with the baseline and leverages path status to infer anoma-
lous links. This idea is inspired by binary network tomogra-
phy [15] [18] [27]. Besides, the analyzer compares measured
intra-host path latency with the baseline to assist in root cause
diagnosis. The baseline path bandwidth and path latency are
obtained via loopback tests on a batch of idle hosts with the
same devices and configurations.

yj= H xivvjv (4)

it link; €path j

The measured path bandwidth reflects the minimum link
bandwidth on it. As shown in Equation 4, y;,x; € {0,1}, repre-
sents the status of path j and link i, respectively (1 for normal
and O for abnormal). If the measured path bandwidth is lower
than the baseline by Abnormaly,, we infer that one or more
links on this path suffer from degraded bandwidth and mark
this path as abnormal. However, a path with the expected
bandwidth is not necessarily bottleneck-free. It depends on
whether the RNIC can reach the line rate on this path. For
affinitive endpoints of the RNIC (memory nodes’, GPUs un-
der the same root port as the RNIC), the path bandwidth could
reach the RNIC line rate. If the bandwidth of these paths is
as expected, we consider them normal. However, as demon-
strated in Section 3.2.2, the RNIC could not reach the line rate
for GPUs under different CPU root ports due to high intra-
host latency. In this case, if the bandwidth of a link degrades
but is still higher than the RNIC rate, the measured bandwidth
is still close to the baseline. For these paths, we only judge
whether they are abnormal based on the baseline.

With adequate path status, we can judge the status of each
link within the host. Our algorithm is shown in Algorithm
1. In a symmetric topology like Fig.2, conducting loopback
tests between RNICs and their affinitive endpoints could eval-
uate all intra-host links. Nevertheless, we do full-mesh tests
when the host is idle to improve the accuracy of bottleneck
inference. If no abnormal paths could be found, we conclude
that there is no bandwidth bottleneck. Otherwise, we will

SWe draw this conclusion from the server introduced in Section 3.2.1. For
some types of servers, the RNIC cannot reach the line rate when communi-
cating with the memory in remote NUMA nodes.

Algorithm 1 Detect Links with Bandwidth Degradation
Input: normal and abnormal paths

Qutput: abnormal and gray links

1: function DETECTABNORMALLINKS()

2: InitLinkStatus()

3 for path; in normal paths do

4 for link; in path; do

5 link;.status < normal

6: for path; in abnormal paths do

7 if 3 links € path in uncertain status then
8 for link; in all these links do

9: link;.status <— abnormal
10: link;.abnormal_cnt + +

11: if 3 links € path; in abnormal status then
12: for link; in all these links do

13: if marked abnormal by a new RNIC then
14: link;.abnormal_cnt + +

15: if V links € path; in normal status then
16: for link; in path; do

17: link;.status < gray

18: return abnormal links and gray links

—_

9: function INITLINKSTATUS()
20: for link; in all links do

21: link;.status < uncertain
22: link;.abnormal_cnt < 0

diagnose anomalous links based on Algorithm 1. First, we
mark all intra-host links as uncertain. Next, we traverse all
normal paths and mark all links on them as normal. Then, we
traverse all abnormal paths. If an abnormal path has uncertain
links, we mark all these links as abnormal, and abnormal_cnt
records how many RNICs mark a link as abnormal. If all the
links on an abnormal path are normal, some links may be
flapping. Then we set all the links on this path to gray.

‘When the host is idle, most bottlenecks could be attributed
to link failures or misconfigurations. The analyzer first judges
whether the RNIC is a bottleneck. If the path status between
an RNIC and all its affinitive endpoints is abnormal, then the
RNIC PCle link may be failed. If the PCIe link connected to
a GPU is marked as abnormal, the analyzer will further check
the path latency between the GPU and its affinitive RNIC. If
the latency is also abnormal, a misconfiguration (e.g., enabling
ACS) may be the root cause. Otherwise, a link failure should
be blamed. For other abnormal links, the analyzer diagnoses
them as failed links. In addition, links marked as gray in
three consecutive loopback tests will be identified as flapping
links. All abnormal links and their possible root causes will be
reported to operators for further operations, such as hardware
inspection and reconfigurations.

When abnormal metrics on an RNIC trigger the Host-
ping engine, the host is usually busy with services, and some
RNICs, especially the abnormal RNIC, may have heavy ser-

22 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

vice traffic. In this case, the path bandwidth measured by
these RNICs will degrade due to the contention of service
traffic, even if there is no bottleneck. Thus, we cannot judge
the status of these paths according to the bandwidth baseline.

Nevertheless, these RNICs could still indicate abnormal
paths. In the server introduced in 3.2.1, applications usually
use an RNIC to communicate with its affinitive endpoints
(memory nodes, GPUs under the same root port) to achieve
optimal performance. Furthermore, memory channels and
inter-socket buses generally provide considerable bandwidth
redundancy. Therefore, the measured bandwidth between the
RNIC and its affinitive endpoints is usually identical if no
bottleneck occurs, no matter how much influenced by ser-
vice traffic on the RNIC. Thus, among the RNIC’s affinitive
endpoints, if the measured path bandwidth to one endpoint
is significantly lower than that to the other endpoints (by
Abnormaly,), we infer this path is abnormal. However, we
have no idea whether other paths are normal due to degraded
RNIC loopback bandwidth, leading to reduced diagnosis ac-
curacy. As a workaround, we could check whether there are
idle RNICs on the host, which could still judge path status
according to the baseline.

As applications usually use an RNIC to communicate with
its affinitive endpoints, bottlenecks generally occur on the
paths between the abnormal RNIC and its affinitive endpoints.
Thus, we could focus on finding bottlenecks on these paths.
When triggered by abnormal metrics, the Hostping engine
only conducts loopback tests between RNICs and their affini-
tive endpoints. First, this method is sufficient to diagnose the
status of the memory channel and the inter-socket bus with
low overhead to service traffic. In addition, the service traffic
may affect the measured bandwidth between the affinitive
GPU of the abnormal RNIC and the RNIC under other root
ports. As a result, the analyzer may incorrectly judge these
paths as abnormal, leading to an inaccurate diagnosis. Thus,
for the links under the same root port as the abnormal RNIC,
we only use this abnormal RNIC to judge their status.

The inference of abnormal links is still based on Algorithm
1. However, as RNICs with heavy traffic cannot judge whether
a path is normal, some normal links may be marked as ab-
normal. In this case, links with the highest abnormal_cnt
are most likely abnormal and should receive more attention.
When abnormal metrics trigger the Hostping engine, abnor-
mal links are usually fully loaded. Based on this, we can infer
the root cause by monitoring these links. Links with utiliza-
tion higher than U'tily;e;, will be diagnosed as overloaded links,
while link failures or misconfigurations may be the root cause
of other abnormal links. However, as the abnormal RNIC
suffers from intra-host bottlenecks, the latency measured by
it will rise anomalously. Thus, we cannot judge whether the
degraded GPU PCle link is caused by a link failure or a mis-
configuration. Operators then need to do a further inspection.
Notably, if no abnormal link could be found, the RNIC PCle
link may be the bottleneck, and the analyzer will further check

if it is overloaded with loopback traffic to determine whether
traffic contention or a link failure should be blamed.

S Implementation

For the hardware monitor, throughput and abnormal metrics
are provided by our RNIC vendors, and GPU status is ob-
tained based on Nvidia Management Library (NVML) [6].
For the threshold, T hpy,,, is 5% of the RNIC line rate to judge
whether the RNIC is idle. PFCpqp, is 3% (every second, trans-
mission is paused by 30ms) to trigger the Hostping engine.
During the deployment, the monitor checks the host status ev-
ery five minutes” and collects abnormal metrics every second
to decide whether to start the Hostping engine.

For the Hostping engine, we implement the probing module
with the verbs API and rdma-core libraries [3]. The bus mon-
itor is implemented based on the API and metrics provided
by our vendors: Intel’s and AMD’s API for CPU root ports,
memory channels, and inter-socket buses, NVML for GPU
PCle links, and Mellanox’s metrics for RNIC PCle links.

The data analyzer takes the metrics collected by the Host-
ping engine as input and infers the most susceptible root
causes for intra-host bottlenecks. Abnormal,, is 20% to judge
whether the latency or bandwidth of a path is abnormal, and
Utilpign is 90% to judge whether a bus is overloaded.

The cloud data storage is implemented based on our time-
series database. Every time the Hostping engine starts, all the
information collected and deduced by the Hostping agent will
be uploaded to the cloud. These data help us better understand
the frequency and root causes of bottlenecks. Moreover, oper-
ators may need historical data to determine the root causes in
some scenarios.

6 Evaluation & Intra-host Bottlenecks Found

We evaluate Hostping on over 300 servers in our distributed
machine learning system. The host topology is shown in Fig.2
and introduced in Section 3.2.1, which is the most complex
intra-host topology in our data center servers. In this sec-
tion, we will summarize the bottlenecks we found during the
deployment of Hostping. For known bottlenecks, Hostping
could effectively diagnose their root causes. In addition, Host-
ping also reveals six bottlenecks we did not notice before. We
roughly classify the bottlenecks found by Hostping into three
scenarios according to their root causes.

Scenario 1: Intra-host bandwidth degrades due to link
failures. As the host topology becomes more complex, link
failures occur frequently. During the deployment, we encoun-
tered dozens of instances where failed links resulted in de-
graded intra-host bandwidth, including failures of #/ RNIC
PCle links (Fig.8 (a)), #2 GPU PCle links (Fig.8 (b) & Fig.10

6 As link failures and misconfigurations infrequently appear in a host, 5
minutes is a fine granularity.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 23

A

e‘ o \,\, Q\a
TS S S

RMDDDDDDDDDD

~« [l CBEO0O0O0

~: []l B HBEEEE

~c: [l CCO0000 B8
(@)

> & v &
S PN NS o
S

« ENTINEEEEE

~ [l EBEERCCO0

~: [l EBCO0OEEO0

~ [EERCOCO0O0EE
(d)

Q

S N W A
& & & q\ Qv Qv Q\ q\

RWIDDDIDDDDD

~ [{EOOEEOO0O0

~: lECCOECOEEC

~ lECOOBO0D0DEE
(b)

S & \\ o
e &

=T ooo

v @EL Doo

e @ E EEC

~ BED000CCEE
(e)

N N

2,

Som-
ol
OO
EOO~
ooo®.

S N) N
& \o qx Qx & Q\ Q\, & Qw &

wo DEEECAEEE
< [l]DEHEEN
~c: | I HBEEEC]
~c: [[j [HBRC]CEE
(C)
RMDDIIDDDDDD
e [l [] O00]
~c: (O] C]C) OO0
~o: (Bl OO00000 NN
()

Figure 8: The intra-host end-to-end bandwidth matrices measured by the Hostping engine when hosts are idle. The topology
between RNICs and endpoints is shown in Fig.2. (a)-(e) show intra-host bandwidth degradation due to link failures. (f) shows the
impact of inappropriate configurations. Green, red, and gray indicate that the path status is normal, abnormal, and uncertain,

respectively.

300
250k Flapping |
—— Normal

150
100 |
S50F

0

Measured Bandwidth (Gbps)

Wednesday 15/12/2021

Figure 9: Memory channel flapping on the server. When this
occurs, the bandwidth of the memory channel switches be-
tween normal and abnormal.

(a)), #3 memory channels (Fig.8 (b)), and #4 UPI (Fig.8 (c)).
For the sake of space, Fig.8 (b) contains #2 and #3. Their
problem may be loose PCle interfaces, dust on connecting
fingers, or hardware failures and requires further troubleshoot-
ing. Based on the matrix, the analyzer could accurately infer
abnormal links. Note that in Fig.10 (a), although RNIC2 has a
large amount of service traffic, it could still judge that the path
to GPU4 is abnormal according to other measured paths. With
Hostping, operators could quickly discover and deal with link
failures, avoiding application performance degradation.

[New] #5 CPU root port failures. Before deploying Host-
ping, we only knew four kinds of link failures (#1 to #4).
During the deployment, we found that the CPU root port may
also experience hardware bandwidth degradation. When this
happens, the bandwidth between the RNIC and the GPU un-
der the failed root port is normal. While traffic passes through
the failed root port may suffer from degraded bandwidth. The
corresponding bandwidth matrix is shown in Fig.8 (d) and (e).
They have the same root cause, except that (e) has slight band-
width degradation, and RNICs under other root ports cannot
find anomalies. Nevertheless, Hostping could still accurately
diagnose the root cause in this case.

[New] #6 Memory channel flapping. With the assistance

of Hostping, we found a host suffers from degraded mem-
ory channel bandwidth due to a link failure. However, no
performance issues could be discovered in subsequent man-
ual testing. By continuously running Hostping and collecting
measured data, we found that the root cause lies in the flap-
ping memory channel. As shown in Fig.9, the bandwidth of
the host memory channel switches between normal and ab-
normal. With historical data, we could understand the causes
of intra-host bottlenecks more clearly. This case shows the
necessity to run Hostping periodically.

Scenario 2: Inappropriate configurations lead to degraded
performance. #7 Enabling ACS results in high PCle latency.
We have mentioned this case in 2.1. With ACS enabled, all
GDR traffic will be guided to the CPU instead of directly to
the GPU, resulting in drastic performance degradation. As
shown in Fig.8 (f), all PCle bridges are configured as ACS
enabled in this case. As a result, both the latency and band-
width between the RNIC and the GPU under the same root
port turn abnormal. Hostping could accurately diagnose this
bottleneck and remind operators to check the configuration.

[New] #8 Disabling ATS results in high PCle latency. We
found this case in a virtualized environment. In IO virtualiza-
tion, if Address Translation Service (ATS) is disabled on the
RNIC, all GDR packets will be directed to the CPU root com-
plex for address translation. Similar to #7, with ATS disabled,
the latency between the RNIC and the GPU under the same
root port increases, leading to drastic bandwidth degradation.
By enabling ATS, the translation can be finished in the RNIC
to achieve optimal GDR performance.

[New] #9 Enabling "slow start” on the RNIC. This is a
lossy feature provided by our RNIC vendor. When enabled on
an RNIC, the RNIC sending rate will start from a small value
instead of the line rate. Although "slow start" could alleviate
congestion under Incast scenarios, it increases the completion
time of short flows. Thus, it usually remains disabled in most

24 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

AR IS S TS TR S
PP PGP PP
¥ & & & F ¢ ¢ &

~ [l EEECOOO000

~ [l OOBEECO0O0O0

~c:] JOO00RO00]

~ BEOO0000NE
(a)

\J N S N v ™ L <l o A
S & & QR
& F & & & & & & ¢

~c [JEOOC000000

~ [ElCOCOERCOO0

~: (@O0 O0000000

~ lECOOO000OEE
(b)

S N Q N v > > \J © A
& & N O O O N O N N
A A A S S S <

=~ [l OO0 000000

~ lECO0OEEO0O0

~: B O00000000

~ lEOO0000O0EE
()

Figure 10: The bandwidth matrices measured when hosts are busy with services. (a) shows hardware bandwidth degradation due
to the GPU PCle link failure. (b) and (c) show degraded intra-host bandwidth caused by traffic contention.

scenarios. When "slow start" is enabled, the RNIC bandwidth
to all intra-host endpoints will be lower than the baseline (sim-
ilar to Fig.8 (a)). At first, Hostping diagnosed the root cause
as the RNIC PCle link failure. However, we found no bottle-
necks during continuous bandwidth tests. After configuration
inspection, we finally uncovered the root cause.

[New] #10 Setting "Tx window" too small on the RNIC.
This is also a lossy feature. "Tx window" will limit the maxi-
mum in-flight bytes of each queue pair on an RNIC. There-
fore, "Tx window" influences the maximum bandwidth a QP
could achieve and needs to be set reasonably to alleviate net-
work congestion without degrading throughput. Similar to #9,
when an RNIC’s "Tx window" is too small, its bandwidth to
all intra-host endpoints will be lower than the baseline.

Scenario 3: Intra-host bandwidth degrades due to traffic
contention. [New] #11 Overloaded Inter-socket buses. Dur-
ing the deployment, we found some malfunctioning applica-
tions overloaded the UPI of a host, and cross-socket receiving
traffic on RNICO triggered a large number of Tx pause frames.
Fig.10 (b) shows the corresponding bandwidth matrix mea-
sured by Hostping. In this case, RNICO and RNIC2 have a
large amount of service traffic. Nevertheless, they could still
judge that two paths (RNICO to mem1 and RNIC2 to memQ)
are abnormal according to other measured paths. With the help
of the other two idle RNICs, the analyzer infers that the UPI
is most likely to be abnormal (with the highest abnormal_cnt).
Furthermore, leveraging the bus monitor, it diagnoses the root
cause as the overloaded UPI. The operator then will find out
the traffic source that overloads the UPL

#12 Overloaded memory channels. TCP and RDMA traffic
may co-exist in the same host to keep high availability [21]. In
this case, the processing of TCP may consume a lot of memory
bandwidth, leading to a slow receiving rate for RDMA traf-
fic. However, we did not discover this case in A100 servers
during the deployment of Hostping. As a supplement, we
conduct an experiment to evaluate how Hostping behaves
when the memory channel is overloaded. We use several pro-
cesses to overload the channel of mem0. Besides, RNICO and
RNIC?2 receive traffic writing to memO and meml1, respec-
tively. Fig.10 (c) shows the corresponding bandwidth matrix.
Although RNICO and RNIC2 have a large amount of receiv-
ing traffic, they could still judge that their paths to memO are
abnormal. Similar to #11, in this case, the analyzer infers that
the channel of memO is most likely abnormal and diagnoses

the root cause as the overloaded memory channel.

In this scenario, we evaluate the performance of Hostping
when intra-host links are overloaded. Furthermore, the results
show that Hostping could still effectively diagnose intra-host
performance bottlenecks under the interference of service
traffic on RNICs.

7 Experiences Learned

Conduct Hostping before running applications. As the
intra-host topology becomes more complex, the likelihood of
link failures in the host network boosts. Based on our experi-
ence, some failures may already exist when the server leaves
the factory. Thus, it is essential to evaluate the intra-host net-
work performance before delivering the server to customers.
In addition, as intra-host services become more complicated,
configuration items in the host also increase considerably, and
the configuration methods are varied. For example, the set-
ting of Address Translation Service requires a reboot to take
effect. In contrast, Access Control Service is enabled by de-
fault and needs to be disabled after each reboot. Furthermore,
configurations may not be completed successfully for some
reason. Therefore, misconfigurations occur occasionally. We
recommend conducting Hostping after each reboot to ensure
proper configurations before running applications.

Perceive intra-host bottlenecks with VoQ ECN marking.
Although intra-host bottlenecks should be addressed in a tar-
geted manner (e.g., hardware replacement, reconfigurations),
we argue that congestion control mechanisms should be able
to perceive intra-host bottlenecks. Thus, they could alleviate
the triggering of packet drops and Tx pause frames to pro-
vide better network performance before the bottleneck could
finally be resolved. Generally, packets could only be ECN-
marked in a switch’s egress port, and ECN-based congestion
control mechanisms could only perceive network congestion.
Fortunately, some latest RNICs provide a new function called
VoQ (Virtual Output Queuing) ECN marking, enabling the
receiver RNIC to ECN-mark packets when its receive buffer
exceeds a threshold. By enabling this function, ECN-based
congestion control mechanisms, such as DCQCN [50], can
also perceive intra-host bottlenecks. Thus, the sender could
timely slow down its sending rate to alleviate the triggering
of packet drops or Tx pause frames.

Pay attention to intra-host topologies. Although GDR is

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 25

supported at any distance within the host, it is highly recom-
mended not to conduct GDR across CPU root ports. When
this occurs, the GDR bandwidth degrades severely, which may
lead to a large number of Tx pause frames or packet drops.
Furthermore, when testing some AMD servers, we found
a large number of Tx pause frames and drastic throughput
degradation when the RNIC (200 Gb/s) writes to the memory
in the remote socket. This is due to the low cross-socket hard-
ware bandwidth on these servers, and the root cause lies in
the host architecture. Thus in these servers, we should avoid
using RNICs to communicate with the memory in the remote
socket for optimal performance.

8 Related Work

Bottlenecks in the RNIC and intra-host network. With
the increasing RNIC line rate, the intra-host network and
the RNIC have become potential performance bottlenecks in
network communication. Some literature has studied these
bottlenecks. Kong et al. [32] implement a tool to help data
center operators uncover potential performance bottlenecks
in the RNIC. Martinasso et al. [37] analyze congestion be-
haviors in PCle fabric and develop a congestion-aware per-
formance model for PCle communication. Zhang et al. [49]
study RDMA sharing characteristics and analyze performance
isolation anomalies in RDMA. Neugebauer et al. [40] study
the performance impact of PCle in the host network. Dong et
al. [16] analyze different types of traffic congestion in the host
network and propose a new server architecture to alleviate
intra-host congestion. Faraji et al. [19] show the implication
of distance between GPUs on the GPU-to-GPU communi-
cation performance in the host network. Farshin et al. [20]
study when Intel Data Direct I/O (DDIO) technology becomes
a bottleneck in multi-hundred-gigabit networks and how to
optimize DDIO-enabled systems for I/O intensive applica-
tions. These studies help us better understand the potential
bottlenecks in the RNIC and intra-host network.

Bottleneck diagnosis tools. Diagnosis tools could be broadly
classified as system-based tools and intra-host tools. System-
based tools aim to diagnose performance bottlenecks in the
whole system. Pingmesh [25] implements an end-to-end con-
nectivity and latency monitoring system for network trou-
bleshooting and SLA tracking. Netbouncer [44] leverages
the IP-in-IP technique to probe designated paths and then
diagnoses device and link failures in data center networks.
Deepview [48] builds a near-real-time system for virtual disk
failure localization. Microscope [23] leverages queuing in-
formation at network functions to identify the root causes of
performance bottlenecks. SNAP [47] collects network infor-
mation such as TCP statistics and socket-call logs to pinpoint
the problem in data center network applications. In contrast,
intra-host tools are dedicated to diagnosing bottlenecks in the
host. Haecki et al. [26] implement a latency diagnosis tool
to identify the source of network latency in end-host stacks.

Mellanox Neohost [4] provides plenty of diagnosis counters
on Mellanox RNICs. Nvidia SMI [9] provides the status of
Nvidia GPUs. Intel PCM [2] and AMD uProf [1] provide
the internal resource utilization of the CPU, including the
utilization of buses and interfaces connected to the CPU, such
as inter-socket buses, memory channels, and CPU root ports.

9 Conclusion & Future Work

Intra-host networking has become a potential bottleneck for
RDMA networks, and intra-host bottlenecks can severely de-
grade network performance. This paper proposes Hostping
to monitor and diagnose intra-host bottlenecks. We analyze
the symptom of intra-host bottlenecks based on our long-term
troubleshooting experience and realize that most intra-host
bottlenecks have one or both of the following symptoms: intra-
host bandwidth degradation and intra-host latency increase.
Thus, Hostping measures intra-host bandwidth and latency
as performance metrics to detect and diagnose intra-host bot-
tlenecks. Furthermore, we propose an efficient diagnosing
mechanism that could effectively identify the root cause of
intra-host bottlenecks even under the interference of service
traffic on RNICs. During the deployment, Hostping not only
discovers performance bottlenecks we already knew but also
reveals six bottlenecks we did not notice before.

The deployment of Hostping makes us realize that more
work needs to be done. Firstly, when the host is busy with ser-
vices, due to the influence of service traffic, it is challenging to
accurately diagnose intra-host link status based on binary path
status. If the end-to-end traffic information within the host
can be obtained, it will provide more insights into intra-host
bottlenecks. Secondly, after finding an overloaded link, we
hope Hostping could automatically identify the traffic source,
such as malfunctioning applications. Finally, in addition to
intra-host network bottlenecks, RNIC bottlenecks, such as
scalability problems [29] [30] [31], can also lead to severe
network performance degradation. Thus, it is also important
to diagnose bottlenecks in the RNIC.

Acknowledgments

We would like to thank our shepherd, Raja Sambasivan, and
the anonymous reviewers who helped us improve the quality
of this paper. We would also like to thank Huaping Zhou for
his insightful feedback. This work is supported in part by the
National Natural Science Foundation of China (NSFC) under
Grant 61872401 and Grant 62132022, a BUPT-ByteDance Re-
search Project, and the Fok Ying Tung Education Foundation
under Grant 171059.

26 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

AMD uProf. https://developer.amd.com/amd-u
prof/.

Intel Performance Counter Monitor.
ub. com/opcm/pcm.

https://gith

Linux rdma-core.
a/rdma-core.

https://github.com/linux-rdm

Mellanox Neohost. https://support.mellanox.c
om/s/productdetails/a2v50000000N201AAK/mel
lanox-neohost.

Nvidia DGX-A100. https://www.nvidia.com/e
n-us/data-center/dgx-al00/.

Nvidia Management Library.
nvidia.com/nvidia-management-library-nvml.

Nvidia nccl-tests.
cl-tests.

https://github.com/NVIDIA/nc

Nvidia NVLink and NVSwitch. https://www.nvid
ia.com/en-us/data-center/nvlink/.

Nvidia System Management Interface.
https://developer.nvidia.com/nvidia-sys
tem-management-interface.

OFED perftest.
a/perftest.

https://github.com/linux-rdm

Intel® Xeon® Scalable Processors Datasheet.
https://www.intel.com/content/dam/www/publ
ic/us/en/documents/datasheets/2nd-gen-xeo
n-scalable-datasheet-vol-1.pdf, 2019.

Workload Tuning Guide for AMD EPYC™ 7002 Series
Processor Based Servers. https://developer.am
d.com/wp-content/resources/56745_0.80.pdf,
2020.

Marcelo Amaral, Jorda Polo, David Carrera, Seetharami
Seelam, and Malgorzata Steinder. Topology-Aware
GPU Scheduling for Learning Workloads in Cloud En-
vironments. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, pages 1-12, 2017.

Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett,
Miguel Castro, Wonhee Cho, Joshua Cowhig, Niko-
las Gloy, Karthik Kalyanaraman, Richendra Khanna,
John Pao, et al. Al: A Distributed In-Memory Graph
Database. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data, pages
329-344, 2020.

https://developer.

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

ftalo Cunha, Renata Teixeira, Nick Feamster, and
Christophe Diot. Measurement Methods for Fast and Ac-
curate Blackhole Identification with Binary Tomography.
In Proceedings of the 9th ACM SIGCOMM conference
on Internet measurement, pages 254-266, 2009.

Jianbo Dong, Zheng Cao, Tao Zhang, Jianxi Ye,
Shaochuang Wang, Fei Feng, Li Zhao, Xiaoyong Liu,
Liuyihan Song, Liwei Peng, et al. EFLOPS: Algorithm
and System Co-Design for a High Performance Dis-
tributed Training Platform. In 2020 IEEE International
Symposium on High Performance Computer Architec-
ture (HPCA), pages 610-622. IEEE, 2020.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401-414,
2014.

Nick Duffield. Network Tomography of Binary Network
Performance Characteristics. IEEE Transactions on
Information Theory, 52(12):5373-5388, 2006.

Iman Faraji, Seyed H Mirsadeghi, and Ahmad Afsahi.
Topology-Aware GPU Selection on Multi-GPU Nodes.
In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages
712-720. IEEE, 2016.

Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr,
and Dejan Kosti¢. Reexamining Direct Cache Access to
Optimize I/O Intensive Applications for Multi-hundred-
gigabit Networks. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 673—689, 2020.

Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, et al. When Cloud Storage
Meets RDMA. In /8th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21),
pages 519-533, 2021.

Andrew Gibiansky. Bringing HPC techniques to deep
learning. Baidu Research, Tech. Rep, 2017.

Junzhi Gong, Yuliang Li, Bilal Anwer, Aman Shaikh,
and Minlan Yu. Microscope: Queue-based Performance
Diagnosis for Network Functions. In Proceedings of the
Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,

architectures, and protocols for computer communica-
tion, pages 390-403, 2020.

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over Commodity Ethernet at Scale. In Proceedings of

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 27

https://developer.amd.com/amd-uprof/
https://developer.amd.com/amd-uprof/
https://github.com/opcm/pcm
https://github.com/opcm/pcm
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://www.nvidia.com/en-us/data-center/dgx-a100/
https://www.nvidia.com/en-us/data-center/dgx-a100/
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://github.com/NVIDIA/nccl-tests
https://github.com/NVIDIA/nccl-tests
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-xeon-scalable-datasheet-vol-1.pdf
https://developer.amd.com/wp-content/resources/56745_0.80.pdf
https://developer.amd.com/wp-content/resources/56745_0.80.pdf

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

the 2016 ACM SIGCOMM Conference, pages 202-215,
2016.

Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, and Hua and Chen. Pingmesh: A Large-
Scale System for Data Center Network Latency Mea-
surement and Analysis. Computer communication re-
view, 45(4):139-152, 2015.

Roni Haecki, Radhika Niranjan Mysore, Lalith Suresh,
Gerd Zellweger, Bo Gan, Timothy Merrifield, Sujata
Banerjee, and Timothy Roscoe. How to diagnose
nanosecond network latencies in rich end-host stacks. In
19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 861-877, 2022.

Yiyi Huang, Nick Feamster, and Renata Teixeira. Prac-
tical Issues with Using Network Tomography for Fault
Diagnosis. ACM SIGCOMM Computer Communication
Review, 38(5):53-58, 2008.

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui,
and Chuanxiong Guo. A Unified Architecture for Ac-
celerating Distributed DNN Training in Heterogeneous
GPU/CPU Clusters. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 463—479, 2020.

Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In /6th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 1-16, 2019.

Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. Using RDMA Efficiently for Key-Value Services.
In Proceedings of the 2014 ACM Conference on SIG-
COMM, pages 295-306, 2014.

Anuj Kalia, Michael Kaminsky, and David G Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided Datagram RPCs. In /2th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 185-201, 2016.

Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding Performance Anomalies in RDMA Subsystems.
In 19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22), pages 287-305,
2022.

Christoph Lameter. NUMA (Non-Uniform Memory
Access): An Overview: NUMA becomes more common
because memory controllers get close to execution units
on microprocessors. Queue, 11(7):40-51, 2013.

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

Jason Lawley. Understanding Performance of PCI Ex-
press Systems. WP350 (vi. 2). Xilinx, 97, 2014.

Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li,
Xu Liu, Nathan R Tallent, and Kevin J Barker. Evaluat-
ing Modern GPU Interconnect: PCle, NVLink, NV-SLI,
NVSwitch and GPUDirect. IEEE Transactions on Par-
allel and Distributed Systems, 31(1):94-110, 2019.

Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. HPCC:
High Precision Congestion Control. In Proceedings of
the ACM Special Interest Group on Data Communica-
tion, pages 44-58. 2019.

Maxime Martinasso, Grzegorz Kwasniewski, Sadaf R
Alam, Thomas C Schulthess, and Torsten Hoefler.
A PCle Congestion-Aware Performance Model for
Densely Populated Accelerator Servers. In SC’16: Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pages 739-749. IEEE, 2016.

Hiroaki Mikami, Hisahiro Suganuma, Yoshiki Tanaka,
Yuichi Kageyama, et al. Massively Distributed SGD:
ImageNet/ResNet-50 Training in a Flash. arXiv preprint
arXiv:1811.05233, 2018.

Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting Network Support for RDMA.
In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages

313-326, 2018.

Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio Lépez-Buedo, and Andrew W
Moore. Understanding PCle performance for end host
networking. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communica-
tion, pages 327-341, 2018.

Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in TensorFlow. arXiv
preprint arXiv:1802.05799, 2018.

Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and
Feifei Li. Fast and Concurrent RDF Queries with
RDMA-Based Distributed Graph Exploration. In /2th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 317-332, 2016.

Richard Solomon. PCI Express Basics. PCI-SIG, Oct,
2011.

28

20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

[44] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,
Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.
NetBouncer: Active Device and Link Failure Localiza-
tion in Data Center Networks. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 599-614, 2019.

[45] Xinchen Wan, Hong Zhang, Hao Wang, Shuihai Hu,
Junxue Zhang, and Kai Chen. Rat-Resilient Allreduce
Tree for Distributed Machine Learning. In 4th Asia-
Pacific Workshop on Networking, pages 52-57, 2020.

[46] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lin-
tao Zhang, and Lidong Zhou. Fast Distributed Deep
Learning over RDMA. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1-14, 2019.

[47] Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rex-
ford, Lihua Yuan, Srikanth Kandula, and Changhoon
Kim. Profiling Network Performance for Multi-Tier
Data Center Applications. In 8th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 11),2011.

[48] Qiao Zhang, Guo Yu, Chuanxiong Guo, Yingnong Dang,
Nick Swanson, Xinsheng Yang, Randolph Yao, Murali
Chintalapati, Arvind Krishnamurthy, and Thomas An-
derson. Deepview: Virtual Disk Failure Diagnosis and
Pattern Detection for Azure. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 18), pages 519-532, 2018.

[49] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf
Chowdhury. Justitia: Software Multi-Tenancy in Hard-
ware Kernel-Bypass Networks. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 22), pages 1307-1326, 2022.

[50] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA De-
ployments. ACM SIGCOMM Computer Communication
Review, 45(4):523-536, 2015.

[51] Dimitrios Ziakas, Allen Baum, Robert A Maddox, and
Robert J Safranek. Intel® QuickPath Interconnect Ar-
chitectural Features Supporting Scalable System Ar-
chitectures. In 2010 18th IEEE Symposium on High
Performance Interconnects, pages 1-6. IEEE, 2010.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation

29

Understanding RDMA Microarchitecture Resources for Performance Isolation

Xinhao Kong Jingrong Chen Wei Bai’ Yechen Xu* Mahmoud Elhaddad®
Shachar Raindel” Jitendra Padhye” Alvin R. Lebeck Danyang Zhuo

Duke University "Microsoft #Shanghai Jiao Tong University

Abstract

Recent years have witnessed the wide adoption of RDMA
in the cloud to accelerate first-party workloads and achieve
cost savings by freeing up CPU cycles. Now cloud providers
are working towards supporting RDMA in general-purpose
guest VMs to benefit third-party workloads. To this end, cloud
providers must provide strong performance isolation so that
the RDMA workloads of one tenant do not adversely impact
the RDMA performance of another tenant. Despite many ef-
forts on network performance isolation in the public cloud, we
find that RDMA brings unique challenges due to its complex
NIC microarchitecture resources (e.g., the NIC cache).

In this paper, we aim to systematically understand the im-
pact of RNIC microarchitecture resources on performance
isolation. We present a model that represents how RDMA
operations use RNIC resources. Using this model, we develop
a test suite to evaluate RDMA performance isolation solu-
tions. Our test suite can break all existing solutions in various
scenarios. Our results are acknowledged and reproduced by
one of the largest RDMA NIC vendors. Finally, based on the
test results, we summarize new insights on designing future
RDMA performance isolation solutions.

1 Introduction

Multiplexing workloads from different tenants on a shared
computing infrastructure enables the modern cloud comput-
ing era. The global cloud infrastructure revenue has already
surpassed 400 billion US dollars and is forecast to grow to
reach around 1 trillion US dollars in the next decade [7].

It is well known that having different tenants’ workloads
share computing resources can lead to unpredictable applica-
tion performance interference [12, 18, 66] and privacy leak-
age [32,39]. This drives plenty of studies focusing on per-
formance isolation in the cloud, especially for performance-
critical applications that have stringent service-level objec-
tives [11,12,18,41,63,66,70]. The state of the art in practice
has also significantly advanced: CPU vendors even imple-
ment hardware mechanisms to control and isolate access to
CPU caches [20]. Side channels through shared resources are

100

a Victim alone i —m— Victim
2 801 !
G Isolation | ~ —®— Attacker
=~ J enabled 1
s 01 1 B
5
2 401 !
o] 1
5 201 i Attacker starts
@ i

0 1

0 1 2 3 4 5 6 7 8 9
Time / second
Figure 1: Violations of performance isolation under existing methods

being patched over time [39].

In this paper, we visit one particular hardware device, the
RDMA NIC (RNIC). RDMA offloads the network stack from
OS kernel to NIC hardware to provide high throughput and
ultra-low processing latency with near-zero CPU overhead.
RDMA has been deployed in datacenters at scale to improve
performance and free up CPU cores for first-party workloads
like storage and ML [14,17,38,51]. Now cloud providers
are working towards supporting RDMA in general-purpose
guest VMs to benefit third-party workloads. To this end, cloud
providers must provide strong performance isolation for ten-
ants sharing the same RNIC.

Many efforts have been made to improve network perfor-
mance isolation in the public cloud, with a special focus on
bandwidth and packet processing capacity [3, 15, 16,25, 34,
62,64]. However, RDMA brings new challenges due to its
unique and complex NIC microarchitecture resources (e.g.,
NIC caches and processing units). Their existence and impact
on performance are already known to the research commu-
nity [29, 33]. To avoid performance anomalies, developers
carefully design RDMA systems to avoid exhausting these
microarchitecture resources [5,9,10,27,30,50,61]. Our study
is from a different angle: we look at how these microarchi-
tecture resources affect RDMA performance isolation from a
public cloud provider’s perspective. The cloud provider has
no knowledge and control of tenants’ RDMA applications,
and tenants can consume RNIC microarchitecture resources
in arbitrary manners.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 31

To demonstrate RNIC microarchitecture resources’ signifi-
cant impact on performance isolation, we test the state-of-the-
art approach: using SR-IOV with separated hardware traffic
class (HW TC). Both SR-IOV and HW TC are hardware
mechanisms available on commodity RNICs. HW TC lever-
ages multiple hardware queues (usually 8 queues) in RNICs.
We can assign each tenant application to use one queue. We
run one victim traffic between two virtual machines using
ib_write_bw, a standard RDMA bandwidth testing tool in
Perftest [56]. Each virtual machine is on a different server,
and the two servers are equipped with 100 Gbps NVIDIA
ConnectX-5 RNICs. Figure | shows the bandwidth. The band-
width test achieves 80 Gbps. We start one virtual machine on
each server to represent an attacker (i.e., a buggy or malicious
tenant application) and enable performance isolation to grant
half of the total bandwidth to the victim and the attacker. The
victim traffic reduces to 50 Gbps, which is expected. How-
ever, when we start a carefully designed attacker traffic of
only 1 Gbps to intentionally exhaust one of the RNIC microar-
chitecture resources, the victim immediately drops to 2 Gbps,
violating the performance isolation guarantee (i.e., 50 Gbps
of guaranteed network bandwidth for the victim).

We develop a set of experiments to study how RNIC
microarchitecture resources are used by different types of
RDMA operations. Our experiments surface several interest-
ing findings, including: (1) Exception or error handling pauses
the RNIC’s pipelines and causes other tenants’ performance
to drop drastically. (2) Control verbs cause a severe increase
in cache misses and impair other tenants’ performance. (3)
Data verbs can exhaust different types of microarchitecture
resources and violate performance isolation. To the best of
our knowledge, we are the first to systematically study the
impact of all types of control verbs and exceptions on RDMA
microarchitecture resource consumption.

We leverage these findings to create an RDMA operation
model to describe the relationship between the RDMA verb
operations and the microarchitecture resources consumed.
Our model allows us to understand how to exhaust each of the
RNIC resources. Using the operation model, we create the
first test suite, Husky, to systematically test and evaluate RNIC
performance isolation solutions. Unfortunately, running our
test suite on commodity RNICs reveals bad news: there is
currently no solution that can provide RNIC performance
isolation. We have already reported all of our findings to three
major RNIC vendors, NVIDIA, Chelsio, and Intel. Our results
are fully reproduced and acknowledged by NVIDIA, one of
the largest RDMA NIC manufacturers. Finally, we present
new insights on how future performance isolation solutions
should be built. We hope these insights can benefit future
RNIC design and RDMA software development.

This paper makes the following contributions:

* We identify multiple interactions between RDMA opera-
tions and the RNIC microarchitecture resources, includ-
ing the previously unknown impact of error handling and

control operations.

* We introduce the first RDMA operation model to de-
scribe how RNIC microarchitecture resources are con-
sumed in verb operations (the standard RDMA program-
ming API) and why these microarchitecture resources
affect performance isolation.

* We build the first test suite to systematically test and eval-
uate RNIC performance isolation solutions. We show
that none of the existing performance isolation solutions
can pass our test suite. Husky test suite is available at
https://github.com/host-bench/husky.

This work demonstrates that providing performance isola-
tion for RDMA in the public cloud is much more difficult than
one may think. There must be a higher standard for future
RDMA performance isolation solutions: they should carefully
consider RNIC microarchitecture resources and be evaluated
by systematic benchmarks.

2 Background and Motivation

We first present the background knowledge of the network
performance isolation in the public cloud. Then we introduce
RDMA and discuss new challenges presented by the RDMA
network performance isolation.

2.1 Network Performance Isolation in the Public Cloud

Tenants in the cloud mainly cause contention on two types
of network resources. The first the most obvious one is the
bandwidth in the network fabric. To mitigate bandwidth con-
tention among tenants, one line of work [58, 60, 62] statically
limits per-tenant bandwidth. Another line of work [1, 3,4, 6,
16,24,25,37,58,59,68] gives each tenant a minimum band-
width guarantee and allows tenants to use spare bandwidth
capacity. The second type of resource is the packet process-
ing resources at the end host. Per-packet processing costs
depend on many factors, such as cache misses and operations
to perform. Recently, PicNIC [34] provides isolation for such
software packet processing. People also leverage specialized
hardware to achieve the same goal [64].

It is worthwhile to note that network performance isola-
tion is very different from network virtualization. Network
virtualization orchestrates network resources to provide each
tenant with an illusion of an independent network. A tenant
should not impact the connectivity of the network of another
tenant. The goal of network virtualization is to achieve low
overhead [19,31,57]. In comparison, network performance
isolation focuses on how to manage resource contentions to
ensure that tenants can achieve guaranteed performance.

2.2 RDMA Overview

RDMA allows the NIC to directly transfer data between the
wire and the application memory. The networking protocol is
implemented in the NIC. Figure 2 presents the overview of

32 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://github.com/host-bench/husky

<«—> Control Verbs
<«<——> Data Verbs

Host
User Application

i ibv_post_send
™\ + ibv_post_recv
! ibv_poll_cq

RNIC
Process
Process

ibv_open_device ibv_create_cq

ibv_alloc_pd ibv_create_gp
ibv_reg_mr ibv_modify_qp

s

Userspace Libraries Fabric

Figure 2: Overview of RDMA workflow. Verbs processing logics
are heavily offloaded to the RNIC.

the RDMA workflow. It classifies standard RDMA program-
ming interface, a.k.a., verbs, into two categories: control and
data. An application first needs to call several control verbs
to allocate necessary objects, such as queue pair (QP) and
completion queue (CQ), to set up a reliable connection (RC),
an unreliable connection (UC), or an unreliable datagram
(UD) transmission endpoint. Then the application needs to
register a memory region (MR). This registration essentially
pins the memory in the host DRAM and obtains the mapping
from virtual addresses to physical addresses, which enables
the RNIC to directly read from or write to this memory re-
gion. All these control verbs are processed by the following
procedure: RDMA’s userspace libraries and kernel drivers
process the verb request, generate a request command, put
the command in a negotiated command queue, and ring the
RNIC’s doorbell (e.g., memory-mapped registers). The RNIC
fetches the command from the command queue, processes it,
and pushes the response back to the queue. The drivers then
process the response and return the object to the application.

After the above initialization, the application can start data
transmissions between local and remote memory. There are
several types of operations that applications can use, such as
SEND/RECYV, WRITE, READ, and ATOMIC. We name these
operations as data verbs. To issue a data verb, the applica-
tion generally posts a request to its send queue and rings the
RNIC’s doorbell through userspace libraries. The RNIC then
parses the request, reads data from the host memory, segments
data into packets, and transmits packets. This procedure by-
passes the kernel. There are certain differences in processing
different types of requests. For example, for SEND/RECV
messages, the receiver should post enough RECV requests be-
fore the sender issues SEND requests. Otherwise, the incom-
ing SEND requests may be dropped or need retransmissions
because the receiver RNIC lacks receive requests to process
them, which is known as the receive not ready (RNR) error.
For WRITE/READ data to/from the remote end or execute
ATOMIC operations, the sender should specify correct remote
virtual addresses and memory keys. An invalid address or a
wrong key will trigger a memory protection error and cause
the QP to transition into the error state.

2.3 Why RDMA Performance Isolation is Hard?

As shown above, RDMA offloads many host network func-
tionalities to the RNIC, which has many invisible hardware
components, and each component may individually become a
performance bottleneck. Figure 3 shows the hardware com-
ponents of a commodity RNIC. We draw this figure based on
publicly available documents from NVIDIA [44,46,48]. In
addition to the packet buffers (TX/RX Buffer), the RNIC also
has multiple processing units (PU) and many types of internal
caches. Each internal cache is used to store a specific type of
metadata. For example, in NVIDIA RNICs, the Interconnect
Context Memory (ICM) cache stores QP contexts; the Mem-
ory Translation Table (MTT) and Memory Protection Table
(MPT) store entries for memory address translation and pro-
tection information; and the Work Queue Entry (WQE) cache
stores prefetched send WQESs and posted receive WQEs. As
these caches are derived from the design needs, other RNICs
include similar components. We name these RNIC hardware
components microarchitecture resources based on the anal-
ogy for CPU hardware. CPUs are designed to conform to
a standard instruction set architecture (e.g., ARM, x86), but
the CPU designers can make the microarchitecture-level deci-
sions, such as how many levels of caches and the cache sizes.
RNICs are similar because RNIC vendors have to provide the
same programming interface for RDMA application develop-
ers, but the vendors can decide on these microarchitecture-
level details, e.g., RNIC caches.

Many previous efforts have already identified some im-
pacts of these microarchitecture resources on RDMA applica-
tion performance. For example, [5,29, 50] find that an RNIC
caches QP contexts. A QP context cache miss can trigger
an additional PCle round trip for the RNIC to fetch the con-
text from the host DRAM, thus degrading application per-
formance. For example, 200 connections can cause an 90%
request rate drop on NVIDIA ConnectX-3 NIC [5]. However,
these efforts study microarchitecture resources from the per-
spective of an application developer. After a performance
degradation, they identify the bottleneck resource, seek more
efficient methods to use data verbs, and modify their applica-
tions correspondingly.

However, in public clouds, cloud providers have no control
over tenants’ applications. Tenants thus can consume RNIC’s
microarchitecture resources as they wish, even maliciously.
Therefore, from the perspective of the cloud provider, we need
to understand the microarchitecture resource consumption of
most of (if not all) RDMA verbs, not just common data verbs.
Only with this knowledge can we properly allocate RNIC’s
microarchitecture resources to different tenants to deliver
predictable performance.

3 RNIC Microarchitecture Resources

In this section, we present a study on all the RNIC microarchi-
tecture resources that we are currently aware of. Prior works
have already identified several particular forms of resource

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 33

- ! 1
< RX Pipeline
(Processing Unit) RX Buffer h

P e e

Memory ... PCle coi: F Ml'r/:\‘/lpT
i i ache
Device Network 3 — Cach ©
- S 1CM Cache @ e
(] 1
= M X Pipe;ine I (5) (6)
|— (Processing Unit) TX Buffer

(4)

4

m==p Data — Execution Flow

= Request for metadata from DRAM — Metadata from host DRAM
= Request for metadata from NIC Cache

Metadata from NIC cache

Figure 3: RDMA NIC microarchitecture hardware details: when the doorbell is rung, the RNIC first fetches the control/data verbs request from
the host DRAM. (1) To fetch and process this request, the RNIC may need several metadata (e.g., QP contexts) and there are different types of
caches inside the RNIC that can store this metadata. The RNIC can get the metadata directly from these caches, (2) or fetch them from DRAM
if a cache miss happens (red lines in the figure). Then the RNIC processes the request and (3) sends the response back to the host DRAM for
control verbs or issues DMA requests to read payload for data verbs. After (4) reading data from the host DRAM, the RNIC (5) processes the
data into network packets and (6) sends them to the fabric. The symmetric receiver side is not shown for simplicity.

contention. But our goal here is to systematically study all
possible types of resource contention. For each microarchitec-
ture resource, we study how it is consumed by three categories
of RDMA operations: (1) control verbs that allocate objects
for applications (e.g., ibv_create_gp), (2) data verbs that
initiate data transfer (e.g., ibv_post_send), and (3) excep-
tion handling operations that handle exceptions or errors (e.g.,
RNR errors). Due to space limitations, we first present a few
key findings that have significant implications on RNIC perfor-
mance isolation. After that, we summarize several other find-
ings. We present a detailed analysis of NVIDIA’s responses
to these findings in Appendix B.

3.1 Methodology

Our findings center around how to exhaust RNIC microarchi-
tecture resources through the verbs interface [21], the stan-
dard RDMA programming API. For each key finding, we
demonstrate it with a concrete setting, which consists of a
victim workload and an attacker workload. Although we use
the terminology attacker, the attacker tenant does not get
unauthorized access to other tenants through vulnerabilities.
Instead, the attacker is just a normal RDMA application that
issues standard RDMA verbs. Each tenant has one client and
one server. The clients of the victim and the attacker locate
on the same physical machine and share the same RNIC.
The servers of the victim and the attacker are colocated on
a different physical server. During the measurement, we do
not enable any isolation mechanism. We will study existing
performance isolation solutions in §5.

We focus on the performance interference between the
victim and the attacker through the exhaustion of microar-
chitecture resources. We first run only the victim to saturate
the link bandwidth capacity (bits per second) or the RNIC’s

maximum request rate (requests per second). We then start
the attacker and measure the two metrics for both the victim
and the attacker. If there is no microarchitecture resource con-
tention, the sum of the performance metrics of the two tenants
should match the RNIC’s limit in the specification. Modern
RNICs specify their bandwidth capacity and request rate lim-
its. If the sum of the two tenants’ performance metrics falls
below both specified limits, we attribute this to the contention
of microarchitecture resources. For example, assume there is
no attacker, and the victim can achieve 100 Gbps. However,
with an X Gbps attacker, the victim reduces to Y Gbps, and
X +Y < 100. Let us also assume the total request rate is below
the RNIC specification. In this situation, we conclude that
some microarchitecture resource is bottlenecked. The traffic
is using RC connection unless otherwise noted.

We test four types of 100 Gbps RNICs: NVIDIA
ConnectX-5 EN and ConnectX-6 Dx, Chelsio T62100-LP-
CR, and Intel E810. NVIDIA NICs runs RoCE, and the Chel-
sio NIC runs iWARP. Intel E810 supports both RoCE and
iWARP, but we currently only test its RoOCE implementation.
RoCE and iWARP are two standard ways to run RDMA
over Ethernet-based networks. Our testbed consists of two
servers, each equipped with an RNIC, and the two RNICs
are connected via a 100 Gbps switch. For NVIDIA RNICs,
we have access to their hardware counters, e.g., cache miss
counters, through their network adapter management tool
NEO-Host [44]. These hardware counters allow us to pin-
point which resource is oversubscribed. For example, when
the ICM cache miss counter increases quickly with a certain
application workload, we learn that this workload heavily uses
this cache, making it oversubscribed. Since other RNICs do
not expose such counters, we experiment other RNICs based
on their end-to-end performance metrics (e.g., bandwidth).

34 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Scenarios | Alone | Registration | Deregistration
BW /Gbps | 96.6 95.9 48.0
Miss Rate | 17.2% 22.9% 49.1%

Table 1: MR control verbs exhaust the MTT cache and reduce band-
width.

3.2 NIC Caches

We are aware that an RNIC has at least three types of caches,
as shown in Figure 3. The RNIC stores several types of
metadata in these caches to accelerate the request processing,
such as the QP contexts in the ICM cache. Prior works have
identified some RNIC cache contention problems caused by
data verbs with particular patterns. For example, transmitting
small messages across many RC QPs simultaneously and
random accesses to a large number of memory regions can
cause certain types of severe cache misses (e.g., ICM and
MTT/MPT) [29,53]. ScaleRPC [5] found that this scalability
problem can reduce the WRITE request rate by 90%.

In addition to these well-known problems, we observe a
new, and even more severe way to exhaust caches:

Key finding #1: control verbs can cause excessive cache
misses and a drastic performance reduction. Control verbs
(e.g., ibv_reg_mr) are used to create and destroy objects like
MRs and QPs, which will be used by data verbs to transfer
data. To the best of our knowledge, there is no study on how
control verbs consume RNIC microarchitecture resources.
We find that control verbs can easily trigger excessive cache
misses, thus degrading bandwidth and request rate.

We demonstrate this finding with a simple experiment on
NVIDIA ConnectX-5 RNICs. We let the victim tenant use
6 cores, 16 connections per core, to issue 512B WRITE re-
quests to exhaust the bandwidth capacity of the RNIC (i.e.,
100 Gbps). Table 1 shows the results. The victim can achieve
96.6 Gbps with 17.2% MTT cache miss rate. The victim can
still achieve line rate under such cache miss rate because
QP multiplexing and the RNIC pipeline design can mask the
overhead of cache misses to some degree. We let a single-
threaded attacker keep registering memory regions (MRs)
using ibv_reg_mr (~5K registration per second) on the vic-
tim’s sender side. In this scenario, the victim’s bandwidth is
almost not affected, staying at 95.9 Gbps with the miss rate
slightly increased to 22.9%. However, if the attacker keeps
deregistering MRs, we can see a significant impact on the
victim: the cache miss rate increases to 49.1%, and the band-
width degrades to 48 Gbps. The overhead under such a high
cache miss rate becomes significant and can no longer be
masked by the RNIC processing pipeline. It is worthwhile to
note that the attacker does not need to issue any data verbs,
so the attacker consumes no network bandwidth or request
rate at all. Fortunately, we observe that such interference is
negligible at the receiver side.

Compared with data verbs, we find that control verbs are

easier to cause performance interference. To overfill cache
resources, we need to launch enough in-flight data verbs and
force them to randomly access a large number of objects (e.g.,
MRs). For example, on NVIDIA ConnectX-5 RNIC, we find
that it takes 6 threads to access more than 18K MRs with
96 QPs to cause serious enough MTT cache misses that can
degrade bandwidth by 40.1%. We believe cache misses due to
data verbs will become less serious since RNIC vendors keep
increasing on-chip cache resources. In contrast, control verbs
impact cache resources by their special semantics instead of
simply consuming them, and thus the impact from control
verbs can be hard to mitigate. For example, we speculate that
the MR deregistration may invalidate the entire MTT/MPT
cache to avoid accessing outdated MRs. This causes cache
misses for accessing other MRs.

We also conduct the same experiments on Chelsio and Intel
NICs, and we observe similar results.

3.3 Processing Units

The RNIC has several processing units (PUs) to process verbs
requests. Due to the lack of public available counters to mon-
itor the status of PUs, we use the request rate as the metric
to measure how PUs are consumed by different verbs. We
summarize the following two key findings:

Key finding #2: performance interference between differ-
ent data verbs depends on the complexity of verbs. Dif-
ferent data verbs have different complexities. Simple verbs,
like send and read, only copy data between machines. Com-
plex verbs, such as fetch_and_add, atomically add a 64-bit
value to the memory of a remote address. This operation lever-
ages PCle features (e.g., read-modify-write transactions), and
may also acquire a lock on the target address. These complex
verbs consume more PU resources, resulting in a lower re-
quest rate [29]. Our new discovery here is that this difference
in resource consumption can also open a new pathway for per-
formance interference through resource exhaustion: a victim’s
performance can be substantially penalized when colocated
with an attacker that uses complex verbs intensively.

To understand this effect, we first measure the data verbs
request rate when competing with other data verbs. We begin
with the NVIDIA 100 Gbps ConnectX-5 RNIC. We set up
two workloads for each test, and each workload runs 8 QPs
across 8 dedicated CPU cores to saturate the RNIC’s rate. To
avoid RNIC severe cache misses, we only use 128 QPs in
total and 16 MRs. We observe less than 1% cache miss in all
the PU tests. To avoid reaching the bandwidth capacity limit,
we use 8B as the request size of all data verbs. We first set up
one workload (victim) using a particular type of data verbs,
and then set up the attacker workload with different types of
data verbs. We show their request rate results in Figure 4.

Our first takeaway is that in addition to the ATOMIC opera-
tions [29], the READ operations are also more expensive than
SEND/RECYV and WRITE. When they are running alone (as
victim traffic), FAA and CAS only achieve 5.2 Mrps and 4.8

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 35

SEND WRITE

‘
‘
!
|
|
!
! 30
‘
}ll I ®
1 0

° ©
e & & ‘o \‘< \0
N \‘\\GJ $\\V\ $\Q‘ S8

Rate / Mrps
o & 3
|
I
, I
%, I
N

o & 3

READ FETCH AND_ADD

Qy @ev& & \QVY

CMP_AND_SWAP

>
SSP N ©
QO \(o@@e ~’</$<< é\o

o

10

s | 8

6 | 6

4 ‘ 4

1 LT

0 1 0
\

&
CEEES

Figure 4: The contention of different data verbs on PU (NVIDIA). The leftmost bar on each subﬁgure is the request rate of running the victim
only. The right 5 bars of each subfigure are the victim’s rate when the attacker is running.

WRITE

o

Rate / Mrps

|
i
i
i
i
i
i
2 i
i
0 i

Y W© N

0

Figure 5: The contention of different data verbs on PU (Chelsio).
The leftmost bar on each subfigure is the request rate of running the
victim only. The right 3 bars of each subfigure are the victim’s rate
when the attacker is running.

Mrps respectively. READ achieves approximately 60 Mrps.
SEND and WRITE can achieve more than 90 Mrps.

The second and the more important takeaway is that the
contention behavior between different combinations of data
verb operations can vary. For example, when the victim runs a
READ workload alone, it can achieve 60 Mrps. If the attacker
runs a CAS workload, the victim’s request rate immediately
drops to 3 Mrps. If the attacker runs a READ workload, the
victim’s request rate only drops to 30 Mrps. This means the
complex verbs (e.g., CAS) can consume more resources and
penalize other colocated verb workloads. One non-intuitive
behavior we want to highlight is that the request rate of the vic-
tim running FAA or CAS can actually increase if the attacker
runs a SEND or WRITE workload under this setting'.

We also conduct similar tests on 100 Gbps Chelsio T62100-
LP-CR RNIC, and the results are shown in Figure 5. This
iWARP RNIC does not support ATOMIC operations. We ob-
serve that the iWARP RNIC’s request rate for all types of data
verbs is lower compared with RoOCE RNICs, which matches
findings from previous works [8,49,71]. We find that the
contention among data verbs on Chelsio’s RNIC also varies.
For example, the victim with WRITE workload can achieve
4.76 Mrps without interference. The attacker can cause the
victim’s request rate to drop 55.0% with SEND workload and
73.1% with READ workload. The specific patterns are differ-
ent from NVIDIA RNIC, but this result still demonstrates our
key finding: the PU overhead of different data verbs varies.

Key finding #3: error handling can stall RNIC processing
units and hang all the applications. RNICs need to handle a
few types of errors, including transport timeout (the responder
side does not send an ACK or NACK), Receive Not Ready

'We report this to the RNIC vendor and this observation is acknowledged.
However, the root cause currently has not been figured out yet.

Scenario Victim Bandwidth | SEND Bandwidth
Victim Only 97.07 -

w/o RNR 93.53 4.01

w/ RNR 0.018 0

Table 2: The impact of RNR errors on bandwidth. The unit is Gbps.

(RNR) error (the responder does not have enough receive
requests for arriving send requests), local or remote protection
error (the posted request does not reference a valid local or
remote memory region), and local operation error (an opcode
is operated on the wrong type of QP). Handling these errors
require resources from RNIC processing units and some errors
can be expensive for RNICs to handle.

On NVIDIA ConnectX-5 and ConnectX-6 RNICs, we find
handling RNR errors can completely stall the RNIC process-
ing units. For the victim, we use Perftest [56] to keep 128
outstanding 64KB WRITE requests on a single QP to saturate
the bandwidth capacity. For the attacker, we only use a single
QP (i.e., the SEND application in the table) to keep only one
in-flight 4KB SEND request to consume a small amount of
bandwidth. As shown in Table 2, if the SEND application
generates traffic normally (e.g., the responder posts enough
receive requests), it consumes 4 Gbps bandwidth, and the
bandwidth for the victim only drops approximately 3.5 Gbps.
However, when the SEND application triggers RNR errors
(e.g., the responder side does not post any receive requests),
both the SEND application and the victim are stalled. We
test this RNR errors with both directions and see the same
results. The reason is that the RNIC of the RNR receiver is
stalled, and the RNIC cannot even process the ACK packet.
The victim therefore is stalled even when they are sending
traffics in the opposite direction.

We conduct the same experiments using both Intel and
Chelsio NICs. We observe that the victim’s QP connections
are also terminated unexpectedly during data transfer for Intel
E810. Fortunately, we do not see such RNR issue for Chelsio
T62100-LP-CR. Our best guess is that the iWARP is designed
on the top of TCP and aimed at running on a lossy fabric, so
it may have a more effective error handling mechanism.

3.4 PCle Bandwidth

The RNIC is connected to the PCle controller and transfers
data from/to the CPU using PCle lanes. The impact of PCle

36 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

on the networking stacks has been studied by several prior
works [29,34,52]. Based on existing PCle models, we fur-
ther study how RDMA verbs consume and even use up the
PCle bandwidth. Previous works have already identified how
RDMA loopback traffic can exhaust PCle bandwidth [26, 33].
We therefore focus on the normal RDMA TX and RX traffic.
To transfer an RDMA message, PCle introduces the following
types of extra bytes: (1) an MMIO to ring the doorbell on the
RNIC (64B, depending on cache line size), (2) a Work Queue
Element (WQE) (36B or 64B), (3) the PCle protocol overhead
(e.g., TLP headers), and (4) extra PCle operations triggered
by cache misses. Our key observation for PCle bandwidth is:

Key finding #4: PCle bandwidth will only become the
bottleneck when the request size is in a specific range. We
only need a single tenant to demonstrate this key finding. We
run the experiment on NVIDIA 100 Gbps ConnectX-5 RNIC.
The PCle bandwidth capacity is 128 Gbps (PCle Gen 3.0
x16). We use 96 QPs across 6 cores to saturate the PCle TX
bandwidth. Each QP keeps 256 outstanding WRITE requests.
We vary the request size and collect both the NIC and the PCle
bandwidth consumption by reading the RNIC’s counters. The
result is shown in Figure 6. We first observe that when the
payload size is small, the commodity RNIC can mitigate the
WQE overhead by embedding the small message in the WQE.
As shown in the green rectangle, when the request size is
smaller than 28B, increasing the request size does not cause
more PCle bandwidth consumption because the payload is
embedded in the same MMIO operation with the WQE.

Our second observation is that PCle TX bandwidth may
only become the bottleneck when the payload size of the
request is in a specific range. The reason is that short re-
quests are first throttled by the request rate before exhausting
PCle bandwidth while large requests are always throttled by
the RNIC’s bandwidth capacity. We confirm this observa-
tion through a theoretical PCle consumption model and we
present two concrete examples. We assume the network MTU
is 4096B and the maximum payload per PCle transaction is
128B (the worst setting to maximize the PCle overhead). The
TLP overhead depends on the implementation [52] and we
assume it as 20B, a typical size for a PCle 3.0 device. Trans-
mitting a 29-byte message will consume at most 127 network
bytes and at least 189 PCle bytes [29, 69]. Therefore, to satu-
rate the link bandwidth (100 Gbps), we need at least 148.8
Gbps PCle bandwidth, which is much larger than the PCle
3.0x16 capacity. Appendix A includes the detailed compu-
tation. Our measurement shows that the actual consumption
can be even higher, as shown in Figure 6. The consumption
model for PCle RX bandwidth (i.e., the RNIC to the host) is
similar to that of TX. Additionally, too many cache misses
may also cause high PCle bandwidth consumption due to lots
of PCle reads to fetch metadata. However, in most scenarios,
the large number of cache misses will first slow down the
RNIC execution (e.g., introduce extra latency) and the PCle
bandwidth is therefore less consumed. In our measurement

—s— NIC Bw

require e 1
a another
2100+ DMA ! 1
()
=~ [
% MMIO require
= another
s 507 (WQE+ payload) DMA
2 i
© b’ ===l
2]

0

0 1 24 28 29 128 129 256 257 1024 64K
Message Size / Bytes

Figure 6: The PCle bandwidth and RNIC bandwidth consumed by
the application.

of cache misses, we do not observe cases where PCle TX
bandwidth is exhausted.

Both the theoretical model and our experimental results
demonstrate that the PCle bandwidth can become the bottle-
neck, but only for a particular request size range.

3.5 Other findings

We also have several other interesting findings. In the interest
of space, we only briefly present them here. However, we do
use these findings to guide our test suite design in §4.

Other finding #1: Data verbs contend for different RNIC
caches. We conduct the scalability test using different data
verbs, and observe different types of cache contention. For
example, a large number of RC QPs that issue READ and
WRITE will mainly cause ICM cache misses. A large number
of UD QPs that issue SEND/RECYV requests or many RC
QPs that issue ATOMIC requests can cause severe RECV
WQE cache misses. This observation indicates that data verbs
contend for cache differently, similar to the contention on
RNIC PUs.

Other finding #2: Wide range access across many objects
(QP, CQ, MR) causes ICM cache misses. The scalability
issue has been well studied, but our measurement reveals new
observations. In addition to QP and MR, the context of the
completion queue (CQ) is also stored in the ICM cache. Thus,
accessing a large number of CQs can also trigger severe ICM
cache misses. In addition, allocating a large number of these
objects does not necessarily cause severe ICM cache misses.
Wide range access across the objects (i.e., poor locality) is the
key to triggering severe ICM cache misses and performance
degradation.

Other finding #3: The impact of control verbs is restricted
by its kernel involvement. We observe that all control verbs
are first processed by the kernel drivers, thus causing expen-
sive context switch. The execution rates of these control verbs
are usually throttled by the kernel instead of RNIC process-
ing. Therefore, control verbs have a limited impact on ex-
hausting RNIC PUs. However, they can still cause significant
performance interference and affect the other applications by
triggering severe cache misses, as our key finding #1 shows.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 37

Data Verbs

Post WRITE
| Request Cas

‘H Wide range access
A\

PCle Bandwidth

NIC Bandwidth

Objects {
:

MR pD_|[5 L
) { Modification |

Control Verbs

Allocation

{ Deallocation

timeout ready

‘ ‘ Transport ‘ ‘ Receivernot‘

RNIC Error Handling

Figure 7: The relationship between verbs and microarchitecture
resources. The arrow indicates heavy resource consumption.

3.6 The Resource Consumption Model

We summarize our findings in an RDMA operation model
shown in Figure 7. This model describes which microarchitec-
ture resource a verb operation consumes heavily. Note that a
verb operation can also use other microarchitecture resources
that are not captured by our experiments. This is because the
usages of these resources are low and do not lead to resource
contention. This model is qualitative: we do not try to under-
stand the exact resource usage since we have no visibility into
proprietary RNIC hardware. For example, we know a certain
traffic pattern can trigger a certain type of cache misses, but
we does not figure out the total size of the cache or how much
of the cache an operation consumes. Even so, we show that
this model is sufficiently powerful for us to create the first test
suite for RNIC performance isolation, and it can capture a
wide range of workloads that can break existing performance
isolation solutions.

4 The Husky Test Suite

After we understand how different RDMA operations use
these microarchitecture resources, we can design a test suite
to evaluate performance isolation solutions. Our goal is the
following: given an RNIC hardware and a performance isola-
tion solution, we want to find a set of workloads combinations
for an attacker and a victim that can break the performance
isolation. We need to check different victim workloads for
completeness because different victim workloads are sensitive
to exhaustion of different microarchitecture resources.

Our test suite must be general: we will use it to test various
RNIC performance isolation solutions on different RNICs.
This means we cannot rely on tools and features from spe-
cific vendors, such as Mellanox Neo-Host [44]. In addition,
different RNICs have different amounts of microarchitecture
resources. And existing performance isolation solutions may
only be able to mitigate contention on specific resources.

To this end, we build Husky to systematically test and eval-
uate RNIC performance isolation solutions. Husky targets
at four types of resources: NIC bandwidth, PCle bandwidth,
NIC PU, and NIC cache. For each type of resource, we de-
sign synthetic workloads with different types of behaviors
(e.g., control verbs) to exhaust this resource. More specifi-

cally, we exhaust NIC BW with long messages using different
opcodes (e.g., WRITE); we exhaust PCle bandwidth with
loopback traffic and specific message patterns (from key find-
ing #4); we exhaust NIC PU with expensive data verbs (key
finding #2), small messages, or error handling behaviors (key
finding #3); we exhaust different types of RNIC cache with
intensive control verbs (key finding #1) and a wide range
access of data verbs. We vary parameters (e.g., connection
types) of some synthetic workloads to be more inclusive. In
all, Husky includes 52 attacker synthetic workloads (6 for
NIC BW, 4 for PCle BW, 14 for NIC PU, and 28 for NIC
cache) and 20 synthetic victim workloads. Many of the at-
tacker workloads cannot be directly generated with existing
RDMA traffic engines. We therefore extend Collie [33]’s traf-
fic engine, the most flexible one to the best of our knowledge,
to generate these synthetic RDMA traffics, including flexible
control verbs workloads and error handling workloads.

Husky’s framework can also easily allow running real ap-
plications as additional victim workloads. Husky currently
contains two real applications, including the OSU bench-
mark [54] and eRPC-based Masstree key-value store [27,40].
The OSU benchmark contains workloads such as allreduce
and allgather. Note that we can integrate any RDMA applica-
tions into Husky. We test all the (victim, attacker) workload
pair exhaustively from our test suite.

One key question is how to define a violation of perfor-
mance isolation. Our definition of violation depends on the
concrete isolation solution. Husky uses a user-specified predi-
cate to compute the expected performance results when isola-
tion is enabled. Husky compares the actual performance with
the expected performance to identify violation. For example,
most of existing performance isolation solutions only provide
bandwidth guarantee. The expected performance for these iso-
lation solutions therefore is a guaranteed bandwidth, B,. We
assume the application can consume bandwidth of B, when
running alone. The bandwidth of this application should be at
least (1 — o) min(By, Bg) under any attacker workload, where
o is a tolerance level. A lower o means stricter isolation. We
use an example to demonstrate how this definition works: let
us assume that attacker and the victim are configured to share
the same 100 Gbps network and we set o to be 25%. If the
victim can achieve 60 Gbps when running alone, it should be
able to achieve at least (1 —25%) min(60,50) = 37.5 Gbps
under the attacker’s workload. If the victim can only achieve
10 Gbps when running alone, its consumed bandwidth should
not be less than (1 —25%) min(10,50) = 7.5 Gbps. In prac-
tice, we find all existing performance isolation solutions for
commodity RNICs are bandwidth guarantee or can be trans-
lated into bandwidth guarantee. We use this definition for
performance isolation violation in §5 and set o to be 25%.

5 Evaluation

We use a NVIDIA testbed to evaluate existing RDMA perfor-
mance isolation solutions. There are two servers in the testbed,

38 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Resource Processing Units RNIC Cache PCle BW
NESE:;?;Im Error(IP-{Iér;dhng E?S]gl'grﬁg;lg Data Verbs | Control Verbs | Data Verbs | Data Verbs
SR-IOV v X X X X X
HW TC X X X X X X
SR-IOV + HW TC v X X X X X
Justitia X X v X X X
Justitia + HW TC X X v X X X

Table 3: Performance isolation violation caused by exhausting microarchitecture resource. Justitia can only provide isolation among applications
using the same function, so cannot be combined with SR-IOV. v/ means performance isolation is properly enforced. X means Husky can find a
workload pair (attacker, victim) to violate performance isolation by exhausting microarchitecture resources.

and each is equipped with one 100 Gbps NVIDIA ConnectX-
5 RNIC. The server is equipped with Intel Xeon Gold 5215
CPUs, and the RNICs are connected to the server through
PCIe 3.0 x16. The RNICs are connected to a 100 Gbps
NVIDIA switch. We use Ubuntu 20.04 and the kernel version
is 5.11. For NVIDIA NICs, the kernel drivers and verbs li-
braries are both from 5.4-OFED. The firmware version is
16.31.1014. We also conduct all the experiments also on
NVIDIA ConnectX-6 RNICs and the result is similar.

We evaluate 3 different isolation solutions provided by
RNIC vendors and prior work: (1) NVIDIA separate hard-
ware traffic class (HW TC). Cloud operators can set separate
TCs for different tenants to use, which separate the RNIC
bandwidth and packet buffers [47] to enforce performance
isolation. Modern RNICs typically only have 8 traffic classes.
This means we cannot use HW TC when we want to colocate
more than 8 tenants in a physical server. (2) NVIDIA SR-10V.
Though the SR-IOV technique is designed for hardware vir-
tualization, it provides separate virtual functions with some
separated resources to different tenants and actually achieves
some degrees of performance isolation [45]. (3) Justitia, a
software-based performance isolation solution [71]. Justitia
implements data verbs rate-limiting and pacing in RDMA
userspace libraries to enforce performance isolation. This
means Justitia has no security: malicious applications can
easily circumvent the userspace library. Although Justitia’s
software architecture does not target a multi-tenant public
cloud environment, we still use Husky to evaluate the effect
of its isolation policy (e.g., its token-based algorithm). We
also evaluate all the possible combinations of the above solu-
tions”. Unfortunately, though we have a testbed with Chelsio
T62100-LP-CR and Intel E810 NICs, we did not enable their
hardware-based isolation mechanisms. Justitia also does not
support Chelsio or Intel drivers. We therefore are not able to
conduct the same evaluation on Chelsio or Intel NICs. *

2We do not test Justitia with SR-IOV because Justitia only isolates traffic
through the same device. When SR-IOV is enabled, tenants are using different
devices (i.e., VF) and Justitia does not work for that scenario.

3We contact the NIC vendors and have multiple rounds of conversations
with their experts. However, we still fail to enable any hardware isolation
solution for RDMA on both NICs. In addition, we are not aware of any prior
work that can set up such RDMA isolation.

5.1 Testing Existing Performance Isolation Solutions

Based on the types of verbs and the exhausted resources, we
categorize the workloads generated by Husky into 6 groups.
We distinguish the error handling of RC from UD & UC be-
cause they cause different behaviors of RNIC PU, and we
observe some isolation solution (e.g., SR-IOV) provides dif-
ferent degrees of isolation on these PU behaviors.

We first take a look at the hardware-based isolation mecha-
nism provided by NVIDIA. For NVIDIA SR-IOV, we enable
two virtual functions (VF) and assign both the victim ten-
ant and the attacker tenant with one VF. We also enable the
VF-based rate limiter and restrict the maximal TX bandwidth
of each tenant to be 50 Gbps, which is a typical fair sharing
setting for the public multi-tenant environment. Given this
configuration, we therefore define the isolation violation for
NVIDIA SR-IOV as the victim’s consumed bandwidth (in
terms of bits per second) being reduced by the attacker to
less than (1 — a)min(50,B,), where a. is 25% and B, is the
victim’s bandwidth without attack. For NVIDIA HW TC, we
assign each tenant with a dedicated TC. For example, the vic-
tim exclusively uses TC 0 and the attacker exclusively uses
TC 3. We configure TC 0 and TC 3 to equally share the RNIC
bandwidth and the NIC buffer (which stores the packets, dif-
ferent from the cache). The violation definition for NVIDIA
HW TC therefore is the same as that of NVIDIA SR-IOV.

The first three rows of Table 3 show the isolation effect
provided by SR-IOV, HW TC, and the combination of them.
Unfortunately, we find both SR-IOV and HW TC fail to pro-
vide enough isolation on RNIC’s microarchitecture resources.
For example, by exhausting RNIC’s cache through either con-
trol verbs or data verbs, Husky can successfully affect the
colocated victim’s applications, even when both SR-IOV and
HW TC are enabled. The key reason is that both SR-IOV
and HW TC only isolate the architectural resources (e.g., link
bandwidth) and do not restrict the cache usage of a single
tenant. Husky therefore is able to use an attacker workload
that exhausts RNIC cache, such as MTT/MPT cache. Other
applications would suffer from severe cache miss and hence
the performance drop. In addition, we find that although SR-
IOV is mainly aimed at virtualization, it has indeed enforced
some isolation, especially for RNIC PUs. The RC RNR error

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 39

handling can cause RNIC PUs to pause and even hang the
colocated applications if there is no performance isolation
mechanism enabled. With SR-IOV, the RC RNR error does
not affect tenants running on other VFs. However, the similar
RNR exception handling process for UD and UC still violates
the isolation of SR-IOV. Due to the RNIC’s black box nature,
we do not know the root cause of such a difference. Our best
guess is that some part of the RNIC’s PUs (e.g., that handles
RC RNR) is isolated by different VFs, while other parts are
not well isolated. These hardware-based solutions also cannot
isolate PCIe bandwidth well. We observe that an attacker can
consume substantial PCle bandwidth and reduce the victim’s
usable bandwidth.

We then evaluate the software-based solution, Justitia. Justi-
tia is not designed for the public cloud and requires the tenant
to cooperate (e.g., using modified RDMA libraries). Husky
can certainly break its isolation by bypassing the modified
libraries, but this would defeat the purpose of testing Justitia.
We therefore require all of Husky’s traffics (both the victim
and the attacker) to go through Justitia’s modified drivers and
be paced by Justitia. In addition, Justitia only supports limited
types of data verbs on the latest drivers (i.e., mIx5), so we
restrict the applications to only use the opcodes that Justitia
supports. Justitia aims at providing each tenant a fair share
of the NIC resource. We only set up two tenants, so we sim-
ply define the violation of Justitia as the victim’s bandwidth
is less than (1 — ot)min(B,,50), similar to the definition for
SR-IOV. We also test the combination of Justitia and HW TC.

As shown in Table 3, Justitia does provide some PU iso-
lation but to a limited extent. For example, Justitia takes the
RNIC’s request rate (i.e., execution throughput) into its iso-
lation consideration. It therefore uses a pacer to control the
request rate for each tenant and successfully prevent a single
tenant from posting a large number of requests to exhaust
the PUs. However, its isolation is violated when the attacker
keeps posting requests that trigger error handling on the RNIC.
The reason is that these errors are detected and handled by
RNIC, which is out of Justitia’s control. In addition, Justitia
does not take cache and PCle into consideration. The attacker
tenant therefore can still exhaust the RNIC cache and PCle
bandwidth and cause other tenants to suffer from excessive
cache misses or low usable PCle bandwidth.

It is worthwhile to note that these solutions already provide
more or less tolerable isolation for architectural resources,
e.g., NIC bandwidth. Husky includes a set of workloads that
only contend for NIC bandwidth, and we do not see such
violation on those workloads when enabling these solutions.
However, ignoring microarchitecture resources makes these
solutions insufficient for real public cloud deployment.

5.2 Impact for Real Applications

Next, we conduct experiments on a larger testbed to study
how microarchitecture resource exhaustion impacts real ap-
plication workloads when using state-of-the-art performance

isolation solutions. We use the allreduce workload [54] on
an RDMA-based MPI implementation [55] and eRPC-based
Masstree (a key-value store) [27,40] as two real victim appli-
cations. Our testbed consists of four physical servers. Each
server is equipped with one 100 Gbps NVIDIA ConnectX-5
RNIC. The other settings are the same as §5.1. The victim ap-
plications run their VMs on all the four servers. The attacker
tenant controls two VMs, each on a different server. We set
up the testbed this way to emulate a real multi-tenant environ-
ment because an attacker may not have VMs colocated with
all the victim’s VMs. However, our results demonstrate that
violation of performance isolation in a subset of the victim’s
VMs is already enough to substantially reduce the overall
end-to-end performance of the real distributed applications.

For protection mechanisms, we enable either SR-IOV +
HW TC or Justitia + HW TC to provide isolation for the col-
lective communication application. For eRPC-based Masstree,
we only enable SR-IOV + HW TC. This is because Justitia
only supports high-performance RDMA WRITE on the lat-
est NVIDIA drivers, but eRPC-based Masstree leverages UD
SEND/RECYV for its communication.

We use four types of attackers from the Husky test suite
to demonstrate our results: (1) BW attack is the baseline.
We use the standard Perftest [56] ib_write_bw to setup a
bandwidth-hungry application. It uses 16 RC QPs and each
QP keeps 128 outstanding 1 MB WRITE requests to saturate
the link bandwidth (consuming ~50 Gbps when rate limiter
is enabled). BW attack does not target any microarchitecture
resources. (2) PCle attack exhausts PCle TX bandwidth.
It runs 36 RC QPs on 6 cores and keeps 128 outstanding
257 B WRITE requests. It also consumes almost 50 Gbps
link bandwidth (less than 20 Mrps) but causes more than
73 Gbps PCIe TX bandwidth consumption. This leaves only
about 50 Gbps usable PCle TX bandwidth (i.e., less than
50 Gbps usable network bandwidth) for the victim. (3) Cache
attack exhausts RNIC cache. It runs 1536 RC QPs on 6 cores,
uses 12288 MRs and each QP keeps only a single 256 B
outstanding request. This attacker causes severe cache miss
and only uses less than 7 Gbps link bandwidth (i.e., 3 Mrps).
(4) PU attack pauses RNIC PUs. It runs 1 UC QP on a single
core and keeps 128 outstanding SEND/RECYV requests. Its
receiver side does not post any receive requests, so the RNIC
has to handle many receive not ready exceptions. It consumes
less than 0.5 Gbps and less than 0.5 Mrps.

We begin with testing the RDMA-based allreduce work-
load. Allreduce is a collective communication operation
widely used in distributed deep learning training. It aggre-
gates a vector across all workers and propagates the result
back to all workers. We set up 2 workers on each host (8 in
total) to run allreduce. The allreduce buffer size is set to 1 MB.
We run allreduce continuously and record the execution rate
(allreduce operations per second). The raw rate without any
isolation mechanism and interference is shown as the leftmost
bars in the figure. The bar of no attack indicates the effect of

40 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

B Justitia + HW TC B SR-IOV + HW TC

1500 :
i violation threshold
i SR-IOV + HW TC
£.1000 : { *)
~ E violation threshold
9 (Justitia + HW TC)
@ 500
: 0
0 4
oW | ece ac‘(\)
tec“o“ a’t‘a(’\(RCCENE x C sty ROECy

Figure 8: Allreduce results under exhaustion of different resources.

enabling these isolation solutions. When Justitia is enabled,
the allreduce rate drops by 38.5%. One possible reason is that
Justitia uses a shim layer (the pacer) to exert sender admis-
sion control, which introduces extra performance overheads
compared to the hardware-based solutions. Since the allre-
duce workload only uses less than half of the NIC bandwidth
(23 Gbps), its performance under attack should be at least
(1 —o)P,, where o is 25% and P, is its performance without
any attack. We can then compute a violation threshold in allre-
duce rate for each isolation solution based on the bandwidth
the victim should consume.

The result for allreduce is shown in Figure 8. The horizontal
red lines show the violation threshold. Bars under the red
line indicate isolation violation. P, for the application with
Justitia + HW TC is 38.5% lower than that with SR-IOV +
HW TC. This means the violation threshold is also 38.5%
lower for Justitia + HW TC. We first observe that the BW
attack only causes a negligible performance drop for SR-
IOV + HW TC setting. And Justitia + HW TC also achieves
the bandwidth isolation goal within the tolerance. We then
observe that all the PClIe, Cache, and PU attacks successfully
violate the isolation provided by either Justitia + HW TC or
SR-IOV + HW TC. For example, the PCle attack can cause
the performance of the allreduce application to drop 27.3%
for SR-IOV + HW TC and 42.1% for Justitia + HW TC. The
impact of the Cache attack is more significant. Allreduce
workload’s performance drops more than half (71.3%) for
Justitia + HW TC and almost half for SR-IOV + HW TC. We
observe that the PU attack is the most powerful. It can directly
stall the allreduce application by exhausting the RNIC PUs.

We use the same set of attackers to test the eRPC-based
Masstree. We use the default setting of eRPC-based Masstree
(e.g., key size and the number of threads). We set up the key-
value server in one physical server and three clients each in a
different physical server. We colocate one attacker VM with
the key-value server and another attacker VM with one of the
clients. We collect the execution rate (in terms of the number
of GET requests per second) and the latency from all the
clients. The Masstree server only uses 14 Mrps and less than
20 Gbps, so we define the isolation violation as the same as
the violation of allreduce. Figure 9 and Figure 10 show the
GET rates and the latency results. The SR-IOV + HW TC

I Non-colocated

I Colocated

violation
threshold

Rate / Mrps

oW
Py

0@, cad el

(0.3 % “_ac\i ‘,(_a(,\i “_ac\i

wo o WO
vo«#”° @
Figure 9: Mastree’s GET rate under exhaustion of different resources.
colocated means that the client and the attacker are on the same host.
Non-colocated means that they are on different hosts.

Colocated(p50)
Colocated(p99)

B Non-colocated(p50)

Non-colocated(p99)
100

Fool
3 75
g s0
g
T 25
oL LLox
Wo oW | pCe adh® U
4 o?ec‘\o“ ‘ac‘é aCt a“a o3 ‘ac\c 00 2%

Figure 10: Mastree’s latency under exhaustion of different resources.

more or less achieves the BW isolation goal within tolerance.
We find that all microarchitecture resource exhaustion attacks
successfully violate the isolation for the client that is colocated
with an attacker VM. Similar to the allreduce workload, the
PU attacker stalls the entire key-value store system. Worse
still, it even pauses the clients that are not colocated with an
attacker VM. This is because we stall the key-value server.

Another observation is that the performance of eRPC-based
Masstree is impaired by the cache exhaustion attack but to
a very limited extent. One possible reason is that the eRPC
leverages UD transport. A UD QP does not need as much
connection metadata as an RC QP does and therefore is less
sensitive to the RNIC internal cache miss. In addition, we
find that the Masstree is more sensitive to PCle exhaustion.
This is probably due to its small request size. According to
our key finding #4, requests of a relatively small size cause
more extra PCle TX bandwidth consumption.

We have several high-level takeaways from the real appli-
cation results.

Takeaway #1: targeting microarchitecture resources
makes violating performance isolation easy. If we treat the
RNIC as a black box, it is quite difficult to break performance
isolation. The BW attack targets the bandwidth resource, and
we observe that all the existing solutions provide good pro-
tection. However, once we know a few more details about
how an RNIC works (e.g., the potential microarchitecture
resources), breaking isolation becomes simple. Our attack is
very efficient. For example, Cache Attack only needs 7 Gbps
and 3 Mrps. PU Attack stalls victims with even less bandwidth

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 41

and request rate. Note that these attacks are only targeting
publicly disclosed microarchitecture components.

Takeaway #2: applications’ sensitivity for resource con-
tention is different. Applications’ end-to-end performance
drops can be quite different even for the same attack. The
allreduce application is more sensitive to the cache exhaustion
while the Masstree is more vulnerable to the PCle exhaustion.

Takeaway #3: distributed applications need performance
isolation on every single server. For both applications, the
attacker only has two VMs, but why does the application-level
performance drop substantially even if the application is run-
ning across four machines? Many modern distributed systems’
performance is usually bottlenecked by a few slowest workers
in the system. For example, in allreduce, each iteration re-
quires synchronization of all workers. Thus, our attack on one
or two workers can slow down the entire allreduce procedure.

5.3 Analysis for Existing Solutions

Our evaluation shows that all existing approaches fail to pro-
vide RDMA performance isolation.We now analyze the fun-
damental restrictions of these solutions and some potential
improvements we may achieve.

SR-IOV and separate HW TC. These hardware based
solutions already provide some hardware resource isolation
(e.g., the hardware queue and the on-NIC packet buffer). The-
oretically, RNIC vendors should be able to incorporate more
hardware isolation features to these solutions. For example,
to statically separate NIC PU or partition NIC cache for dif-
ferent VFs can help to build a better isolation mechanism
for SR-IOV. However, these hardware modifications are non-
trivial and can hardly be applied to existing hardware. RNIC
vendors usually release these new features together with their
new hardware products. Cloud providers thus cannot use these
features in existing hardware.

Justitia. Justitia provides modified userspace libraries and
uses sender admission control to enforce fair sharing of both
bandwidth and execution rates for all tenants. Justitia does
not work for a multi-tenant cloud because its policies are not
enforceable: a malicious application can easily circumvent
the modified user libraries. Putting the security aspect aside,
it is worthwhile to ask whether a pure software solution like
Justitia could in theory support RDMA performance isolation.
We do not have a direct answer to this question, and we believe
it is an interesting future research direction. We reckon that
this can be quite difficult for the following reasons. First, it is
challenging to track and control how much cache a tenant has
occupied without hardware support. Second, it is challenging
to establish a quantitative resource consumption model for
verbs. Finally, error handling is deeply integrated into RDMA
NIC hardware, and is opaque to software.

6 Guidelines

Our results show that, unfortunately, no existing RNIC per-
formance isolation solution is sufficient. We analyze the fail-

ure of existing isolation solutions based on our key findings,
and we present several design guidelines for potential future
RDMA performance isolation work. These guidelines may
also be helpful for RDMA application developers to write
better RDMA applications under multi-tenant environments.

Hardware support for isolation is needed. Software ap-
proaches like Justitia [71] have a common problem. They only
monitor architecture-level metrics, e.g., latency, bandwidth,
and request rate. They cannot detect contention in microarchi-
tecture resources, €.g., caches, let alone manage and fair share
those resources. We believe future performance isolation so-
lutions will have to leverage hardware support, similar to how
modern hypervisors can use Intel Resource Director Technol-
ogy (RDT) to monitor and manage access to the last-level
cache and memory. NVIDIA RNICs expose several useful
hardware counters, but they are still insufficient. For example,
we can only observe cache misses, but we cannot manage the
cache access or split the cache for different tenants.

A layer of indirection is needed. RDMA means kernel
bypass for data verbs. This enables low latency and reduced
CPU overheads. So where should performance isolation be en-
forced? We believe that future performance isolation solutions
will require a layer of indirection either in NIC or in software.
Having the enforcement point in the userland RDMA library
(as Justitia) does not work, because it lacks security. Instead,
a software indirection can have a microkernel-like design,
with a set of cores running the isolation logic in a separate
protection domain [43]. RDMA performance isolation should
be enforced in such a central controller that takes over both
control verbs and data verbs.

Programmer, compiler, and library support for RDMA
applications. After a future performance isolation solution
is invented, applications may need modification as well. If
the future performance isolation solution requires strict par-
titioning of microarchitecture resources, this means each ap-
plication has limited microarchitecture resources to use and
can lead to substantially reduced performance. The amount of
microarchitecture resource an application uses may also vary
(depending on how many other tenants are on the same server
or other configurations). Building high-performance RDMA
applications will require additional effort for the programmer,
compiler, and application library to efficiently use these lim-
ited resources. For CPU cache, these efforts occurred in the
research community two decades ago [35,36,42].

7 Discussion

The impact of broken RDMA performance isolation. Our
evaluation shows that a malicious tenant can cause other ten-
ants’ to suffer from drastic performance drop or even get
stuck. In addition, a broken performance isolation exposes
vulnerability for malicious users to conduct side-channel at-
tacks. Since the tenant can affect others’ performance on the
same host, it can set up side channels that leak access pat-

42 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

terns of victim nodes or deliver information by affecting the
host’s performance in a pattern [65]. RDMA performance
isolation therefore is a critical feature for a secured RDMA
public cloud.

What RDMA performance isolation solution should cloud
providers use today? One good news is that we are not
aware of any cloud provider that currently using commodity
RNIC:s to provide RDMA-capable VMs with partitioned host
resources. To rent an RDMA-capable VM, customers have
to rent the entire physical machine. This means currently we
do not need an RNIC performance isolation solution at all,
because the RNIC only runs a single tenant’s traffic. To move
forward to multi-tenant usage of an RNIC, we believe per-
formance isolation is still a major blocker, and multi-tenancy
should not be enabled until a mature performance isolation
solution is ready, one that can at least pass our test suite.

Generalizability to other kernel bypass host networking
architectures. Our test suite design is based on the verbs
interface, which is RDMA-specific. However, we believe our
methodology should be generalizable to find violations of
performance isolation in other kernel bypass architectures,
e.g., DPDK [13], IRMA [64], as these implementations com-
monly require RDMA-like mechanisms in the DMA portion
of the design. The industry trend today is to offload functions
to hardware accelerators. For example, RDMA is offload-
ing congestion control and reliable message delivery into the
hardware. Microarchitecture resources in hardware are criti-
cal to delivering these offloaded functions. Paying attention to
these microarchitecture resources for performance isolation
is going to be increasingly important.

8 Related Work

Microarchitecture resources in RNICs. The existence of
RNIC microarchitecture resources is well-known in the net-
working community, and many studies focus on how to design
RDMA applications to circumvent certain RNIC performance
anomalies due to these resources. For example, HERD [28],
FaSST [30], and eRPC [27] avoid using RDMA reliable con-
nection to mitigate the QP context cache miss for better scal-
ability. ScaleRPC [5] and Flock [50] multiplex reliable con-
nections in a time-sharing manner to mitigate the scalability
problem. Kalia et al. [29] studies the RNIC’s PClIe behaviors
and provides guidelines for writing efficient RDMA programs.
Unfortunately, these works only focus on optimizing applica-
tions to fully utilize the limited resources in RNICs. However,
public cloud providers cannot control the third-party tenants’
applications. Collie [33] conducts a systematic search on
RDMA performance anomalies, and the anomalies are mostly
due to oversubscribed microarchitecture resources. However,
since Collie only focuses on first-party traffic, it just builds
a search space based on normal operations. It therefore only
considers normal data verbs and fails to uncover findings
related to other types of behaviors. For example, the key find-

ings #1, #2, and #3 in §3 are fundamentally not covered by
Collie’s search space because Collie does not take control
verbs, error handling, and expensive atomic verbs into consid-
eration. In all, prior works focus more from the perspective of
application developers. Our work is on a complementary as-
pect by looking from the public cloud provider’s perspective:
how these microarchitecture resources affect performance
isolation. This requires us to be microarchitecture resource
aware and take a look at all types of RDMA behaviors, in-
cluding control verbs and error handling, because we need to
deal with misbehaving and even malicious tenants.

Other NIC performance isolation solutions. PicNIC [34]
provides isolation for both packet processing and bandwidth
on NIC. This allows latency-bound workloads not to be af-
fected by bandwidth-bound workloads. FairNIC [15] isolates
resources in SoC-based SmartNICs. Compared with them,
our work focuses on the RDMA -related resources on NICs.

Performance isolation in other contexts. Performance iso-
lation problems are not limited to NICs. Other server hard-
ware components also have this issue, and they already have
corresponding solutions. There exist several partitioning tech-
niques for CPU caches [11,20] and memory bandwidth [22].
Network bandwidth in the network fabric is also a crucial
resource to isolate [1,3,4,6, 16,24,25,37,58-60,62,68] as
well as the switch processing piplines [67].

9 Conclusion

RDMA is a promising networking technology to enable low
latency and high CPU efficiency in datacenter networks. To
enable RDMA in a multi-tenant environment, performance
isolation is an important property, and RDMA NICs (RNICs)
bring new challenges due to the existence of microarchitecture
resources (e.g., RNIC cache, processing units). We present an
RNIC operation model on how these resources are used by dif-
ferent RDMA operations. Using this model, we create Husky,
the first test suite to evaluate RNIC performance isolation
solutions. Our results show that none of the existing RNIC
performance isolation solutions provides sufficient isolation
against workloads that try to exhaust these microarchitecture
resources. Our findings are acknowledged and reproduced
by one of the largest RDMA NIC vendors. We believe that
building a usable RNIC performance isolation solution will
be a long battle.

Acknowledgement

We thank Chelsio, and Intel for their technical support. We
especially thank NVIDIA, who gives us timely and insightful
feedback, including the root causes of our findings and the cor-
responding solutions. We thank our shepherd Brent Stephens
and other anonymous reviewers for their insightful feedback.
Our work is partially supported by gifts from Adobe, Amazon,
Meta, and IBM.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 43

References

(1]

(2]
(3]

(4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

Sebastian Angel, Hitesh Ballani, Thomas Karagiannis,
Greg O’Shea, and Eno Thereska. End-to-End Perfor-
mance Isolation through Virtual Datacenters. In OSDI,
2014.

Infiniband Trade Association. Rocev2, 2014.

Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and
Ant Rowstron. Towards Predictable Datacenter Net-
works. In SIGCOMM, 2011.

Hitesh Ballani, Keon Jang, Thomas Karagiannis,
Changhoon Kim, Dinan Gunawardena, and Greg
O’Shea. Chatty Tenants and the Cloud Network Sharing
Problem. In NSDI, 2013.

Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable
RDMA RPC on Reliable Connection with Efficient Re-
source Sharing. In EuroSys, 2019.

Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ton
Stoica. HUG:Multi-Resource Fairness for Correlated
and Elastic Demands. In NSDI, 2016.

The Global Cloud Computing Market Size.
https://www.yahoo.com/now/global-cloud-

computing-market-size-081600295.html, 2021.

Chelsio Communications. 100g network performance
for illumos, 2018.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In NSDI, 2014.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No Com-
promises: Distributed Transactions with Consistency,
Auvailability, and Performance. In SOSP, 2015.

Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, Har-
shad Kasture, Xiaosong Ma, and Daniel Sanchez. KPart:
A Hybrid Cache Partitioning-Sharing Technique for
Commodity Multicores. In HPCA, 2018.

Alexandra Fedorova, Margo Seltzer, and Michael D
Smith. Improving performance isolation on chip multi-
processors via an operating system scheduler. In 16th
International Conference on Parallel Architecture and
Compilation Techniques (PACT 2007), pages 25-38.
IEEE, 2007.

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,
Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng
Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang,
Dennis Cai, and Jiesheng Wu. When cloud storage
meets RDMA. In NSDI 21, 2021.

Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C.
Snoeren. SmartNIC Performance Isolation with Fair-
NIC: Programmable Networking for the Cloud. In SIG-
COMM, 2020.

Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang
Yang, Chao Kong, Peng Sun, Wenfei Wu, and Yong-
guang Zhang. SecondNet: A Data Center Network Vir-
tualization Architecture with Bandwidth Guarantees. In
CoNEXT, 2010.

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over Commodity Ethernet at Scale. In SIGCOMM, 2016.

Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and
Amin Vahdat. Enforcing performance isolation across
virtual machines in xen. In ACM/IFIP/USENIX Interna-
tional Conference on Distributed Systems Platforms and
Open Distributed Processing, pages 342-362. Springer,
2006.

Zhigiang He, Dongyang Wang, Binzhang Fu, Kun Tan,
Bei Hua, Zhi-Li Zhang, and Kai Zheng. MasQ: RDMA
for Virtual Private Cloud. In SIGCOMM, 2020.

Andrew Herdrich, Edwin Verplanke, Priya Autee,
Ramesh Illikkal, Chris Gianos, Ronak Singhal, and Ravi
Iyer. Cache QoS: From Concept to Reality in the Intel
Xeon Processor E5-2600 v3 Product Family. In HPCA,
2016.

Jeff Hilland. RDMA Protocol Verbs Specification. Tech-
nical report, Internet Engineering Task Force, 2003.

Derek R. Hower, Harold W. Cain, and Carl A. Wald-
spurger. PABST: Proportionally Allocated Bandwidth
at the Source and Target. In HPCA, 2017.

IEEE. 802.3-2018 - ieee standard for ethernet. https:
//ieeexplore.ieee.org/document/8457469.

Keon Jang, Justine Sherry, Hitesh Ballani, and Toby
Moncaster. Silo: Predictable Message Latency in the
Cloud. In SIGCOMM, 2015.

Vimalkumar Jeyakumar, Mohammad Alizadeh, David
Mazieres, Balaji Prabhakar, Albert Greenberg, and

[13] Linux Foundation. Data plane development kit (DPDK). Changhoon Kim. EyeQ: Practical Network Performance
http://www.dpdk.org, 2015. Isolation at the Edge. In NSDI, 2013.
44 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.yahoo.com/now/global-cloud-computing-market-size-081600295.html
https://www.yahoo.com/now/global-cloud-computing-market-size-081600295.html
https://ieeexplore.ieee.org/document/8457469
https://ieeexplore.ieee.org/document/8457469

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui,
and Chuanxiong Guo. A Unified Architecture for Ac-
celerating Distributed DNN Training in Heterogeneous
GPU/CPU Clusters. In OSDI, 2020.

Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In NSDI,
2019.

Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Using RDMA Efficiently for Key-Value Services. In
SIGCOMM, 2014.

Anuyj Kalia, Michael Kaminsky, and David G. Ander-
sen. Design Guidelines for High Performance RDMA
Systems. In USENIX ATC, 2016.

Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
OSDI, 2016.

Daehyeok Kim, Tianlong Yu, Hongqgiang Harry Liu,
Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong
Guo, Vyas Sekar, and Srinivasan Seshan. FreeFlow:
Software-based Virtual RDMA Networking for Con-
tainerized Clouds. In NSDI, 2019.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting
Speculative Execution. In IEEE S&P, 2019.

Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding Performance Anomalies in RDMA Subsystems.
In NSDI, 2022.

Praveen Kumar, Nandita Dukkipati, Nathan Lewis,
Yi Cui, Yaogong Wang, Chonggang Li, Valas Valancius,
Jake Adriaens, Steve Gribble, Nate Foster, and Amin
Vahdat. PicNIC: Predictable Virtualized NIC. In SIG-
COMM, 2019.

Monica D. Lam, Edward E. Rothberg, and Michael E.
Wolf. The Cache Performance and Optimizations of
Blocked Algorithms. ASPLOS IV, 1991.

A.R. Lebeck and D.A. Wood. Cache Profiling and the
SPEC Benchmarks: a Case Study. Computer,27(10):15-
26, 1994.

Jeongkeun Lee, Yoshio Turner, Myungjin Lee, Lucian
Popa, Sujata Banerjee, Joon-Myung Kang, and Puneet
Sharma. Application-Driven Bandwidth Guarantees in
Datacenters. In SIGCOMM, 2014.

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. HPCC: High Precision Congestion Control. In
SIGCOMM, 2019.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In USENIX Security, 2018.

Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache Craftiness for Fast Multicore Key-Value Storage.
In EuroSys, 2012.

Artemiy Margaritov, Siddharth Gupta, Rekai Gonzalez-
Alberquilla, and Boris Grot. Stretch: Balancing QoS and
Throughput for Colocated Server Workloads on SMT
Cores. In HPCA, 2019.

M. Martonosi, A. Gupta, and T.E. Anderson. Tuning
Memory Performance of Sequential and Parallel Pro-
grams. Computer, 28(4):32—-40, 1995.

Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: A Micro-
kernel Approach to Host Networking. In SOSP, 2019.

Mellanox. Mellanox neo-host network adapter manage-
ment software. https://support.mellanox.com/s/
productdetails/a2v50000000N201AAK/mellanox-
neohost.

Mellanox Single Root 10 Virtualization (SR-IOV).
https://docs.nvidia.com/networking/pages/
viewpage.action?pageld=12013542.

Mellanox. Proprietary mellanox adapter diagnostics
counters. https://docs.nvidia.com/networking/
m/view-rendered-page.action?abstractPageld=
12005244.

Mellanox Quality of Service
https://docs.mellanox.com/pages/
viewpage.action?pageld=19811934, 2018.

(QoS).

Mellanox Adapters Programmer’s
Reference Manual. https://
www.mellanox.com/related-docs/user_manuals/
Ethernet_Adapters_Programming_Manual.pdf,
2021.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 45

https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://support.mellanox.com/s/productdetails/a2v50000000N2OlAAK/mellanox-neohost
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=12013542
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=12013542
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=12005244
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=12005244
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=12005244
https://docs.mellanox.com/pages/viewpage.action?pageId=19811934
https://docs.mellanox.com/pages/viewpage.action?pageId=19811934
https://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf
https://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf
https://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting Network Support for RDMA.
In SIGCOMM, 2018.

Sumit Kumar Monga, Sanidhya Kashyap, and Chang-
woo Min. Birds of a Feather Flock Together: Scaling
RDMA RPCs with Flock. In SOSP, 2021.

Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,
Jie Amy Yang, Leon Gao, Dmytro Ivchenko, Aarti Bas-
ant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani, Xiaodong
Wang, Rakesh Komuravelli, Ching-Hsiang Chu, Ser-
hat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yin-
bin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang,
Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna
Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman, Ki-
ran Kumar Matam, Adi Gangidi, Guoqgiang Jerry Chen,
Manoj Krishnan, Avinash Nayak, Krishnakumar Nair,
Bharath Muthiah, Mahmoud khorashadi, Pallab Bhat-
tacharya, Petr Lapukhov, Maxim Naumov, Ajit Math-
ews, Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and Vi-
jay Rao. Software-Hardware Co-design for Fast and
Scalable Training of Deep Learning Recommendation
Models, 2021.

Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio Lépez-Buedo, and Andrew W.
Moore. Understanding PCIe Performance for End Host
Networking. In SIGCOMM, 2018.

Stanko Novakovic, Yizhou Shan, Aasheesh Kolli,
Michael Cui, Yiying Zhang, Haggai Eran, Boris Pis-
menny, Liran Liss, Michael Wei, Dan Tsafrir, and Mar-
cos Aguilera. Storm: A Fast Transactional Dataplane
for Remote Data Structures. In SYSTOR, 2019.

OSU benchmarks. https://mvapich.cse.ohio-
state.edu/benchmarks/, 2021.

Dhabaleswar Kumar Panda, Hari Subramoni, Ching-
Hsiang Chu, and Mohammadreza Bayatpour. The
MVAPICH project: Transforming Research into High-
Performance MPI Library for HPC Community. Journal
of Computational Science, 2021.

OFED perftest.
perftest, 2021.

https://github.com/linux-rdma/

Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi,
Bernard Metzler, Ionnis Koltsidas, and Thomas R. Gross.
A Hybrid I/O Virtualization Framework for RDMA-
Capable Network Interfaces. In VEE, 2015.

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Lucian Popa, Gautam Kumar, Mosharaf Chowdhury,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Ion Sto-
ica. FairCloud: Sharing the Network in Cloud Comput-
ing. In SIGCOMM, 2012.

Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jef-
frey C Mogul, Yoshio Turner, and Jose Renato Santos.
Elasticswitch: Practical Work-Conserving Bandwidth
Guarantees for Cloud Computing. In SIGCOMM, 2013.

Barath Raghavan, Kashi Vishwanath, Sriram Ramab-
hadran, Kenneth Yocum, and Alex C. Snoeren. Cloud
Control with Distributed Rate Limiting. In SIGCOMM,
2007.

Waleed Reda, Marco Canini, Dejan Kosti¢, and Simon
Peter. RDMA Is Turing Complete, We Just Did Not
Know It Yet! In NSDI, 2022.

Alan Shieh, Srikanth Kandula, Albert Greenberg,
Changhoon Kim, and Bikas Saha. Sharing the Data
Center Network. In NSDI, 2011.

David Shue, Michael J. Freedman, and Anees Shaikh.
Performance Isolation and Fairness for Multi-Tenant
Cloud Storage. In OSDI, 2012.

Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F.
Wenisch, Monica Wong-Chan, Sean Clark, Milo M. K.
Martin, Moray McLaren, Prashant Chandra, Rob Cauble,
Hassan M. G. Wassel, Behnam Montazeri, Simon L.
Sabato, Joel Scherpelz, and Amin Vahdat. IRMA: Re-
Envisioning Remote Memory Access for Multi-Tenant
Datacenters. In SIGCOMM, 2020.

Shin-Yeh Tsai, Mathias Payer, and Yiying Zhang.
Pythia: Remote oracles for the masses. In 28th USENIX
Security Symposium (USENIX Security 19), pages 693—
710, Santa Clara, CA, August 2019. USENIX Associa-
tion.

Ben Verghese, Anoop Gupta, and Mendel Rosenblum.
Performance isolation: Sharing and isolation in shared-
memory multiprocessors. In ASPLOS VIII, 1998.

Tao Wang, Xiangrui Yang, Gianni Antichi, Anirudh
Sivaraman, and Aurojit Panda. Isolation mechanisms
for High-Speed Packet-Processing pipelines. In NSDI,
2022.

Di Xie, Ning Ding, Y Charlie Hu, and Ramana Kom-
pella. The Only Constant is Change: Incorporating
Time-Varying Network Reservations in Data Centers.
In SIGCOMM, 2012.

Understanding Performance of PCI Express Systems.
https://docs.xilinx.com/v/u/en-US/wp350, 2018.

46 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://docs.xilinx.com/v/u/en-US/wp350

[70] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jna- A Network v.s. PCle

gal, Vrigo Gokhgle, and John Wilkes. CPI2: CPU Per- To transmit a payload through Ethernet-based IP-routed
formance Isolation for Shared Compute Clusters. Tn RDMA network (i.e., RoOCEv2), the network protocol intro-
EuroSys, 2013. duces the following overhead.

[71] Yiwen Zhang, Yu'e' Tan, Brent Steph§ns, and Mosharaf 1. Ethernet overhead. Each Ethernet frame includes 14-
Chowdhury. Justitia: Software Multi-Tenancy in Hard- byte Ethernet (exclude VLAN) header and 4-bytes CRC
ware Kernel-Bypass Networks. In NSDI, 2022. as L2 overhead. In addition, each Ethernet frame has L1

overhead - each frame is preceded by a 7-byte preamble
and 1-byte start-of-frame delimiter. The frame is also
followed by an inter-frame gap. The gap should be at
least 12-byte. The total Ethernet overhead per frame
therefore is 38-byte [23].

2. IP overhead. IP overhead comes from the IP header,
with a least size 20-byte.

3. UDP overhead. UDP overhead comes from the 8-byte
UDP header.

4. Infiniband overhead. The Infiniband protocol imple-
ments headers inside the UDP payload. A simple
WRITE message through reliable connection (RC) needs
12-byte Base Transport Header (BTH), 16-byte RDMA
Extended Transport Header (RETH), and 4-byte invari-
ant CRC. Hence, the Infiniband protocol overhead is at
least 32-byte [2].

To transmit the payload from the host DRAM to the RNIC,
the RNIC PCle behaviors include the following overhead.

1. Ringing the doorbell. To post a work request, users need
to ring the RNIC’s doorbell through memory-mapped 10
(MMIO). Each MMIO has a fixed aligned size 64-byte.

2. Work Queue Element. The RNIC needs to fetch a work
queue element (WQE) from host DRAM to the NIC. A
WQE for RC/UC is 36-byte, and 68-byte for UD.

3. TLP overhead. Each PCle transaction has PCle Trans-
action Layer Packet (TLP) header, and the header size
varies for different PCle implementation. We assume its
least size as 20-byte according to [29, 69].

We next shows the computation of the 29-byte payload
example in §3. The 29-byte payload is obviously less than
the MTU, and can be sent using a single network packet.
Therefore, the network bytes consumed by this payload is:

Bytes(network) = Bytes(payload) 4+ Bytes(Ethernet)
+Bytes(IP) + Bytes(UDP) 4 Bytes(IB)
=29+38+20+8+32
= 127(bytes)

For PCle consumption, the 29-byte payload is larger than
the maximal inline size (28-byte). So it cannot be delivered

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 47

in the same PCle transaction as the WQE. It therefore needs
three PCle transactions: (1) Doorbell, (2) WQE, and (3) pay-
load, and consume the following bytes:

Bytes(PCle) = Bytes(payload) + Bytes(payload TLP)

+Bytes(WQE) 4 Bytes(WQE TLP)
-+Bytes(Doorbell) +Bytes(DB TLP)
=29+4+20+4+36+20464+420
= 189(bytes)

Therefore, the PCle consumption for such payload when
saturating the link capacity (100 Gbps) is:

Bytes(PCI
Bandwidth(PCle) — Bandwidth(network) —2 <o 1¢)_
Bytes(network)
189
=100% —— = 148.8(Gb
127 (Gbps)

B Response from NIC Vendors

We report our findings and results to the NIC vendors, in-
cluding NVIDIA, Intel, and Chelsio. NVIDIA, one of the
largest RDMA NIC vendors, has spent substantial effort on
acknowledging and reproducing our experiments. They have
successfully reproduced all of our findings in their own en-
vironment. In addition, NVIDIA provides us with detailed
analysis and feedback. We would like to share them here.

Key finding #1: control verbs can cause excessive cache
misses and a drastic performance reduction. NVIDIA
provides a more accurate analysis of this finding: the deregis-
tration control verbs can cause drastic performance reduc-
tion mainly because of the NIC internal QoS scheduling
policy. The deregistration control verbs have higher prior-
ity than other types of operations and will be scheduled first.
Consequently, these deregistration verbs trigger excessive
cache misses and cause the performance to drop drastically.
NVIDIA has already figured out a solution to address this
issue. The high-level idea is to tune the NIC internal QoS pol-
icy so that deregistration does not have such a high priority.
They are planning for a firmware upgrade to fix this issue.

Key finding #2: performance interference between dif-

ferent data verbs depends on the complexity of verbs.

NVIDIA is familiar with this phenomenon and will roll out
new firmware upgrades to address this issue.

Key finding #3: error handling can stall RNIC processing
units and hang all the applications. NVIDIA provides a
more accurate explanation of this phenomenon: for unreliable
transport types (UC and UD), there is not the same specific
RNR exception handling procedure as RC. Instead, they have
other processing logic that involves firmware that handles

out-of-order packets. This is the root cause of the perfor-
mance interference when attacking using unreliable transport
types. NVIDIA also provides a potential solution to mitigate
such interference. NVIDIA Connect-X series NICs support
monitoring per-VM consumption of the NIC resources. The
cloud operators therefore can enforce VM capabilities policy
based on the visibility of NIC resources consumption. Further-
more, NVIDIA is planning to introduce an additional layer of
protection in the coming NIC firmware/hardware release to
completely eliminate the attack vector for RC.

Key finding #4: PCIe bandwidth will only become the
bottleneck when the request size is in a specific range.
Though PCIe bandwidth contention is not a unique interfer-
ence brought by RDMA, NVIDIA still acknowledged and con-
firmed our observation on the PCle consumption for RDMA
NIC.

We thank NVIDIA for their kind and great support. We
believe the above understanding will benefit cloud operators
and RDMA application developers. In addition, our collabo-
ration with NVIDIA also demonstrates how Husky can help
to improve existing RDMA solutions and build robust RDMA
performance isolation in the future.

48 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Empowering Azure Storage with RDMA

Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir Bahl, Ameya Bhagat, Gowri Bhaskara,
Tanya Brokhman, Lei Cao, Ahmad Cheema, Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek Ette, Igal Figlin,
Daniel Firestone, Mathew George, Ilya German, Lakhmeet Ghai, Eric Green, Albert Greenberg®, Manish Gupta,

Randy Haagens, Matthew Hendel, Ridwan Howlader, Neetha John, Julia Johnstone, Tom Jolly, Greg Kramer, David Kruse,

Ankit Kumar, Erica Lan, Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen Liu*, Guohan Lu, Yuemin Lu, Xiakun Lu,
Vadim Makhervaks, Ulad Malashanka, David A. Maltz, [lias Marinos, Rohan Mehta, Sharda Murthi, Anup Namdhari,
Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas Phillips, Adrian Power, Suraj Puri, Shachar Raindel*, Jordan Rhee*,

Anthony Russo, Maneesh Sah, Ali Sheriff, Chris Sparacino, Ashutosh Srivastava, Weixiang Sun*, Nick Swanson, Fuhou Tian,

Lukasz Tomczyk, Vamsi Vadlamuri, Alec Wolman, Ying Xie, Joyce Yom, Lihua Yuan, Yanzhao Zhang, Brian Zill
Microsoft

Abstract

Given the wide adoption of disaggregated storage in public
clouds, networking is the key to enabling high performance
and high reliability in a cloud storage service. In Azure, we
choose Remote Direct Memory Access (RDMA) as our trans-
port and aim to enable it for both storage frontend traffic
(between compute virtual machines and storage clusters) and
backend traffic (within a storage cluster) to fully realize its
benefits. As compute and storage clusters may be located
in different datacenters within an Azure region, we need to
support RDMA at regional scale.

This work presents our experience in deploying intra-region
RDMA to support storage workloads in Azure. The high com-
plexity and heterogeneity of our infrastructure bring a series
of new challenges, such as the problem of interoperability
between different types of RDMA network interface cards.
We have made several changes to our network infrastructure
to address these challenges. Today, around 70% of traffic in
Azure is RDMA and intra-region RDMA is supported in all
Azure public regions. RDMA helps us achieve significant
disk I/O performance improvements and CPU core savings.

1 Introduction

High performance and highly reliable storage is one of the
most fundamental services in public clouds. In recent years,
we have witnessed significant improvements in storage media
and technologies [73] and customers also desire similar perfor-
mance in the cloud. Given the wide adoption of disaggregated
storage in the cloud [35, 46], the network interconnecting
compute and storage clusters becomes a key performance
bottleneck for cloud storage. Despite the sufficient bandwidth
capacity provided by Clos-based network fabrics [25, 48],
the legacy TCP/IP stack suffers from high processing delay,

*Albert Greenberg is now with Uber. Chen Liu is now with Meta.
Shachar Raindel and Jordan Rhee are now with Google. Weixiang Sun is
now with a stealth startup. This work was performed when they were with
Microsoft.

Il Total traffic I RDMA traffic

Traffic Volume

Jan 22 Jan 29 Feb 05 Feb 12
Date

Figure 1: Traffic statistics of all Azure public regions between
January 18 and February 16, 2023. Traffic was measured by
collecting switch counters of server-facing ports on all Top of
Rack (ToR) switches. Around 70% of traffic was RDMA.

low single-core throughput, and high CPU consumption, thus
making it ill-suited for this scenario.

Given these limitations, Remote Direct Memory Access
(RDMA) offers a promising solution. By offloading the
network stack to the network interface card (NIC) hard-
ware, RDMA achieves ultra-low processing latency and high
throughput with near zero CPU overhead. In addition to per-
formance improvements, RDMA also reduces the number of
CPU cores reserved on each server for network stack process-
ing. These saved CPU cores can then be sold as customer
virtual machines (VMs) or used for application processing.

To fully utilize the benefits of RDMA, we aim to enable
it for both storage frontend traffic (between compute VMs
and storage clusters) and backend traffic (within a storage
cluster). This is different from previous work [46] that targets
RDMA only for the storage backend. In Azure, due to capacity
issues, corresponding compute and storage clusters may be
located in different datacenters within a region. This imposes
a requirement that our storage workloads rely on support for
RDMA at regional scale.

In this paper, we summarize our experience in deploy-
ing intra-region RDMA to support Azure storage workloads.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 49

Regional Hub Long-haul Links

Data Center

Figure 2: The network architecture of an Azure region.

Compared to previous RDMA deployments [46, 50], intra-
region RDMA deployment introduces many new challenges
due to high complexity and heterogeneity within Azure re-
gions. As Azure infrastructure keeps evolving incrementally,
different clusters may be deployed with different RDMA
NICs. While all the NICs support DCQCN [112], their imple-
mentations are very different. This results in many undesir-
able behaviors when different NICs communicate with each
other. Similarly, heterogeneous switch software and hardware
from multiple vendors significantly increase our operational
effort. In addition, long-haul cables interconnecting datacen-
ters cause large propagation delays and large round-trip time
(RTT) variations within a region. This brings new challenges
to congestion control.

We have made several changes to our network infrastruc-
ture, from application layer protocols to link layer flow con-
trol, to safely enable intra-region RDMA for Azure storage
traffic. We developed new RDMA-based storage protocols
with many optimizations and failover support, and seamlessly
integrated them into the legacy storage stack (§4). We built
RDMA Estats to monitor the status of the host network stack
(85). We leveraged SONIC to enforce a unified software stack
across different switch platforms (§6). We updated firmware
of NICs to unify their DCQCN behaviors and used the com-
bination of Priority-based Flow Control (PFC) and DCQCN
to achieve high throughput, low latency and near zero packet
losses (§7).

In 2018, we started to enable RDMA for storage backend
traffic. In 2019, we started to enable RDMA to serve customer
frontend traffic. Figure 1 gives traffic statistics of all Azure
public regions between January 18 and February 16, 2023.
As of February 2023, around 70% of traffic in Azure was
RDMA and intra-region RDMA was supported in all Azure
public regions. RDMA helps us achieve significant disk I/O
performance improvements and CPU core savings.

2 Background

In this section, we first present background on Azure’s net-
work and storage architecture. Then, we introduce the moti-

Storage

Partition
Server

Host
Domain

Compute

Primary Secondary Secondary

Figure 3: High-level architecture of Azure storage.

vation for and challenges to enabling intra-region RDMA.

2.1 Network Architecture of an Azure Region

In cloud computing, a region [2,5,8] is a group of datacenters
deployed within a latency-defined perimeter. Figure 2 shows
the simplified topology of an Azure region. The servers within
a region are connected through an Ethernet-based Clos net-
work with four tiers of switches!: tier 0 (T0), tier 1 (T1), tier 2
(T2) and regional hub (RH). We use external BGP (eBGP) for
routing and equal-cost multi-path (ECMP) for load balancing.
We deploy the following four types of units.

¢ Rack: a TO switch and the servers connected to it.

¢ Cluster: a set of racks connected to the same set of T1
switches.

¢ Datacenter: a set of clusters connected to the same set of
T2 switches.

* Region: datacenters connected to the same set of RH
switches. In contrast with short links (several to hundreds
of meters) in datacenters [50], T2 and RH switches are
connected by long-haul links whose lengths can be as long
as tens of kilometers.

There are two thing to notice about this architecture. First,
due to long-haul links between T2 and RH, the base round-
trip time (RTT) varies from a few microseconds within a
datacenter to as large as 2 milliseconds within a region. Sec-
ond, we use two types of switches: pizza box switches for
TO and T1, and chassis switches for T2 and RH. The pizza
box switch, which has been widely studied in the research
community, typically has a single switch ASIC with shallow
packet buffers [31]. In contrast, chassis switches are built
using multiple switch ASICs with deep packet buffers based
on the Virtual Output Queue (VoQ) architecture [3,6].

2.2 High Level Architecture of Azure Storage

In Azure, we disaggregate compute and storage resources for
cost savings and auto-scaling. There are two main types of

n this paper, we use switch to denote the layer 3 switch which can
perform IP routing. We use the terms switch and router interchangeably.

50 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

clusters in Azure: compute and storage. VMs are created in
compute clusters but the actual storage of Virtual Hard Disks
(VHDs) resides in storage clusters.

Figure 3 shows the high-level architecture of Azure stor-
age [35]. Azure storage has three layers: the frontend layer,
the partition layer, and the stream layer. The stream layer is
an append-only distributed file system. It stores bits on the
disk and replicates them for durability, but it does not un-
derstand higher level storage abstractions, e.g., Blobs, Tables
and VHDs. The partition layer understands different storage
abstractions, manages partitions of all the data objects in a
storage cluster, and stores object data on top of the stream
layer. The daemon processes of the partition layer and the
stream layer are called the Partition Server (PS) and the Ex-
tent Node (EN), respectively. PS and EN are co-located on
each storage server. The frontend (FE) layer consists of a set
of servers that authenticate and forward incoming requests
to corresponding PSs. In some cases, FE servers can also
directly access the stream layer for efficiency.

When a VM wants to write to its disks, the disk driver
running in the host domain of the compute server issues I/O
requests to the corresponding storage cluster. The FE or PS
parses and validates the request, and generates requests to
corresponding ENs in the stream layer to write the data. At the
stream layer, a file is essentially an ordered list of large storage
chunks called "extents". To write a file, data is appended to the
end of an active extent, which is replicated three times in the
storage cluster for durability. Only after receiving successful
responses from all the ENs, the FE or PS sends the final
response back to the disk driver. In contrast, disk reads are
different. The FE or PS reads data from any EN replica and
sends the response back to the disk driver.

In addition to user-facing workloads, there are also many
background workloads in the storage clusters, e.g., garbage
collection and erasure coding [57]. We classify our storage
traffic into two categories: frontend (between compute and
storage servers, e.g., VHD write and read requests) and back-
end (between storage servers, e.g., replication and disk recon-
struction). Our storage traffic has incast-like characteristics.
The most typical example is data reconstruction, which is im-
plemented in the stream layer [57]. The stream layer erasure
codes a sealed extent to several fragments, and then sends
encoded fragments to different servers to store. When the user
wants to read a fragment which is unavailable due to a failure,
the stream layer will read the other fragments from multiple
storage servers to reconstruct the target fragment.

2.3 Motivation for Intra-Region RDMA

Storage technology has improved significantly in recent years.
For example, Non-Volatile Memory Express (NVMe) Solid-
State Drives (SSDs) can provide tens of Gbps of throughput
with request latencies in the hundreds of microseconds [105].
Many customers demand similar performance in the cloud.

High performance cloud storage solutions [1,4] impose strin-
gent performance requirements to the underlying network
due to the disaggregated and distributed storage architecture
(§2.2). While datacenter networks generally provide sufficient
bandwidth capacity, the legacy TCP/IP stack in the OS kernel
becomes a performance bottleneck due to its high processing
latency and low single-core throughput. What is worse, the
performance of the legacy TCP/IP stack also depends on OS
scheduling. To provide predictable storage performance, we
must reserve enough CPU cores on both compute and storage
nodes for the TCP/IP stack to process peak storage workloads.
Burning CPU cores takes away the processing power that
could otherwise be sold as customer VMs, thus increasing the
overall cost of providing cloud services.

Given these limitations, RDMA offers a promising solu-
tion. By offloading the network stack to the NIC hardware,
RDMA achieves predictable low processing latency (a few
microseconds) and high throughput (line rate for a single flow)
with near zero CPU overhead. In addition to its performance
benefits, RDMA also reduces the number of CPU cores re-
served on each server for network stack processing. These
saved CPU cores can then be sold as customer VMs or used
for storage request processing.

To fully achieve the benefits of RDMA, we must enable
RDMA for both storage frontend traffic and backend traffic.
Enabling RDMA for backend traffic is relatively easy because
almost all the backend traffic stays within a storage cluster.
In contrast, frontend traffic crosses different clusters within
a region. Even though we try to co-locate corresponding
compute and storage clusters to minimize latency, sometimes
they may still end up located in different datacenters within a
region due to capacity issues. This imposes the requirement
that our storage workloads rely on support for RDMA at
regional scale.

2.4 Challenges

We faced many challenges when enabling intra-region RDMA
because our design was limited by many practical constraints.

Practical considerations: We aimed to enable intra-region
RDMA over the legacy infrastructure. While we had some
flexibility to reconfigure and upgrade software stacks, e.g.,
the NIC driver, the switch OS, and the storage stack, it was op-
erationally infeasible to replace the underlying hardware, e.g.,
the NICs and switches. Hence, we adopted RDMA over com-
modity Ethernet v2 (RoCEv2) [29] to keep compatibility with
our IP-routed networks (§2.1). Before starting this project,
we had deployed a significant number of our first generation
RDMA NICs, which implement go-back-N retransmission in
the NIC firmware with limited processing capacity. Our mea-
surements showed that it took hundreds of microseconds to
recover a lost packet, which was even worse than the TCP/IP
software stack. Given such a large performance degradation,
we made the decision to adopt Priority-based Flow Control

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 51

(PFC) [60] to eliminate packet losses due to congestion.
Challenges: Before this project, we had deployed RDMA in
some clusters to support Bing services [50], and we learnt
several lessons from this deployment. Compared to intra-
cluster RDMA deployments [46, 50], intra-region RDMA
deployments introduce many new challenges due to the high
complexity and heterogeneity of the infrastructure.

* Heterogeneous NICs: Cloud infrastructure keeps evolving
incrementally, often one cluster or one rack at a time with
the latest generation of server hardware [91]. Different
clusters within a region may have different NICs. We have
deployed three generations of commodity RDMA NICs
from a popular NIC vendor: Genl, Gen2 and Gen3. Each
NIC generation has a different implementation of DCQCN.
This results in many undesired interactions when different
NIC generations communicate with each other.

* Heterogeneous switches: Similar to server infrastructure,
we keep deploying new switches to reduce costs and in-
crease the bandwidth capacity. We have deployed many
switch ASICs and multiple switch OSes from different ven-
dors. However, this has increased our operational effort
significantly because many aspects are vendor specific, for
example, buffer architectures, sizes, allocation mechanisms,
monitoring and configuration, etc.

* Heterogeneous latency: As shown in §2.1, there are large
RTT variations from several microseconds to 2 millisec-
onds within a region, due to long-haul links between T2
and RH. Hence, RTT fairness re-emerges as a key chal-
lenge. In addition, the large propagation delay of long-haul
links also imposes large pressure on PFC headroom [12].

Like other services in public clouds, availability, diagno-
sis, and serviceability are key aspects for our RDMA storage
system. To achieve high availability, we always prepare for
unexpected zero-day problems despite large investments in
testing. Our system must detect performance anomalies and
perform automatic failover if necessary. To understand and
debug faults, we must build fine-grained telemetry systems
to deliver crystal clear visibility into every component in the
end-to-end path. Our system also must be serviceable: stor-
age workloads should survive NIC driver updates and switch
software updates.

3 Overview

We have made several changes to our network infrastructure,
from application layer protocols to link layer flow control,
to safely empower Azure storage with RDMA. We devel-
oped two RDMA-based protocols: sU-RDMA (§4.1) and
sK-RDMA (§4.2), which we have seamlessly integrated into
our legacy storage stack to support backend communication
and frontend communication, respectively. Between the stor-
age protocols and the NIC, we deployed a monitoring system
RDMA Estats (§5), giving us visibility into the host network

stack by providing an accurate breakdown of cost for each
RDMA operation.

In the network, we use the combination of PFC and DC-
QCN [112] to achieve high throughput, low latency, and near
zero losses due to congestion. DCQCN and PFC were the
state-of-the-art commercial solutions when we started the
project. To optimize the customer experience, we use two pri-
orities to isolate storage frontend traffic and backend traffic.
To mitigate the switch heterogeneity problem, we developed
and deployed SONiC [15] to provide a unified software stack
across different switch platforms (§6). To mitigate the in-
teroperability problem of heterogeneous NICs, we updated
the firmware of NICs to unify their DCQCN behaviors (§7).
We carefully tuned DCQCN and switch buffer parameters to
optimize performance across different scenarios.

3.1 PFC Storm Mitigation Using Watchdogs

We use PFC to prevent congestion packet losses. However,
malfunctioning NICs and switches can continually send PFC
pause frames in the absence of congestion [50], thus com-
pletely blocking the peer device for a long time. Moreover,
these endless PFC pause frames can eventually propagate
into the whole network, thus causing collateral damage to
innocent devices. Such endless PFC pause frames are called
a PFC storm. In contrast, normal congestion-triggered PFC
pause frames only slow down the data transmission of the
peer device through intermittent pauses and resumes.

To detect and mitigate PFC storms, we designed and de-
ployed a PFC watchdog [11,50] on every switch and bump-
in-the-wire FPGA card [42] between TO switches and servers.
When the PFC watchdog detects that a queue has been in the
paused state for an abnormally long duration, e.g., hundreds
of milliseconds, it disables PFC and drops all the packets on
this queue, thereby preventing PFC storms from propagating
into the whole network.

3.2 Security

We use RDMA to empower first-party storage traffic in a
trusted environment, including storage servers, the host do-
main of compute servers, switches and links. Therefore we
are secure against issues described in [69, 94, 104, 109].

4 Storage Protocols over RDMA

In this section, we introduce two storage protocols built on
top of RDMA Reliable Connections (RC): sU-RDMA and sK-
RDMA. Both protocols aim to optimize performance while
keeping good compatibility with legacy software stacks.

4.1 sU-RDMA

sU-RDMA [87] is used for storage backend (storage to stor-
age) communication. Figure 4 shows the architecture of our

52 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Storage Role/Application (EN,FE,PS...)
I:l Azure Storage Network Protocol
sU-RDMA Dynamic RDMA Auto TCP
Additions Transition Recovery Failover
sU-RDMALib
User Space - Socket API
Network Direct SPI
Kernel Space I OS Kernel
Hardware RDMA NIC

Figure 4: Azure storage backend network stack.

storage backend network stack with the sU-RDMA modules
highlighted. The Azure Storage Network Protocol is an RPC
protocol directly used by applications to send request and
response objects. It leverages socket APIs to implement con-
nection management, sending and receiving messages.

To simplify RDMA integration with storage stack, we built
sU-RDMALIb, a user space library that exposes socket-like
byte-stream APIs to upper layers. To map socket-like APIs
to RDMA operations, sU-RDMALIb needs to handle the fol-
lowing challenges:

* When the RDMA application cannot directly write into
an existing memory regions (MR), it must either register
the application buffer as a new MR or copy its data into
an existing MR. Both options can introduce large latency
penalties and we should minimize these overhead.

¢ If we use RDMA Send and Receive, the receiver must
pre-post enough Receive requests.

* The RDMA sender and receiver must be in agreement on
the size of data being transferred.

To reduce memory registrations, which are especially ex-
pensive for small messages [44], sU-RDMALIib maintains a
common buffer pool of pre-registered memory shared across
multiple connections. sU-RDMALIb also provides APIs to
allow applications to request and release registered buffers. To
avoid Memory Translation Table (MTT) cache misses on the
NIC [50], sU-RDMALIb allocates large memory slabs from
the kernel and registers memory over these slabs. This buffer
pool can also autoscale based on runtime usage. To avoid over-
whelming the receiver, sU-RDMALIib implements a receiver-
driven credit-based flow control where credits represent the re-
sources (e.g., available buffers and posted Receive requests)
allocated by the receiver. The receiver sends credit update mes-
sages back to the sender regularly. When we started design-
ing sU-RDMALIb, we did consider using RDMA Send and
Receive with a fixed buffer size S for each Send/Receive re-
quest to transfer data. However, this design causes a dilemma.
If we use a large S, we may waste much memory space be-
cause a Send request fully uses the receive buffer of the

Compute Storage Compute Storage
Fast Memory Fast Memory
Registration Seng Registration
(quUesr)

Read data
from any EN

S
€nd (Requesv
Rea

d Res, ta)
D e (D@
respOl
Write data to y

multiple ENs

read Request

cend \Respo“se\
e

Disk Write Disk Read

Figure 5: sK-RDMA’s data flow. We use blue arrows and
red arrows to represent control messages and data massages,
respectively. Arrow width represents data size.

Receive request, regardless of its actual message size. In
contrast, a small S causes large data fragmentation overhead.
Hence, sU-RDMALIb uses three transfer modes based on the
message size [87].

* Small messages: Data is transferred using RDMA Send
and Receive.

* Medium messages: The sender posts a RDMA Tlirite re-
quest to transfer data, and a Send request with "Write
Done" to notify the receiver.

* Large messages: The sender first posts a RDMA Send
request carrying the description of the local data buffer to
the receiver. Then the receiver posts a Read request to pull
the data. Finally, the receiver posts a Send request with
"Read Done" to notify the sender.

On top of sU-RDMALIb, we built modules to enable dy-
namic transitions between TCP and RDMA, which is critical
for failover and recovery. The transition process is gradual.
We periodically close a small portion of all connections and
establish new connections using the desired transport.

Unlike TCP, RDMA uses rate based congestion con-
trol [112] without tracking the number of in-flight packets
(the window size). Hence, RDMA tends to inject excessive
in-flight packets, thus triggering PFC. To mitigate this, we im-
plemented a static flow control mechanism in the Azure Stor-
age Network Protocol by dividing a message into fixed-sized
chunks and only allowing a single in-flight chunk for each
connection. Chunking can significantly improve performance
under high-degree incast with negligible CPU overhead.

4.2 sK-RDMA

sK-RDMA is used for storage frontend (compute to stor-
age) communication. In contrast with sU-RDMA which runs
RDMA in user space, sSK-RDMA runs RDMA in kernel space.
This enables the disk driver, which runs in kernel space in the
host domain of compute servers, to directly use SK-RDMA to

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 53

issue network I/O requests. sSK-RDMA leverages and extends
Server Message Block (SMB) Direct [14] which provides
socket-like kernel-mode RDMA interfaces. Similar to sU-
RDMA, sK-RDMA also provides credit-based flow control
and dynamic transition between RDMA and TCP.

Figure 5 shows sK-RDMA'’s data flow for reading and
writing disks. The compute server first posts a Fast Memory
Registration (FMR) request to register data buffers. Then it
posts an RDMA Send request to transfer a request message
to the storage server. The request carries a disk I/O com-
mand, and a description of FMR registered buffers available
for RDMA access. According to the InfiniBand (IB) speci-
fication, the NIC should wait for the completion of the FMR
request before processing any subsequently posted requests.
Hence, the request message is actually pushed onto the wire
after the memory registration. The data transfer is initiated
by the storage server using RDMA Read or Write. After the
data transfer, the storage server sends a response message to
the compute server using RDMA Send With Invalidate.

To detect data corruptions, which can happen silently due
to various software and hardware bugs along the path, both
sK-RDMA and sU-RDMA implement a Cyclical Redundancy
Check (CRC) on all application data. In sK-RDMA, the com-
pute server calculates the CRC of the data for disk writes.
These calculated CRCs are included in the request messages,
and used by the storage server to validate the data. For disk
reads, the storage server performs the CRC calculations and
includes them in the response messages, and the compute
server uses them to validate the data.

5 RDMA Estats

To understand and debug faults, we need fine-grained teleme-
try tools to capture behaviors of every component in the end-
to-end path. Despite many existing tools [51,97, 114] to diag-
nose switch and link faults, none of these tools gives us good
visibility into the RDMA network stack at end hosts.

Inspired by diagnostic tools for TCP [79], we developed
RDMA Extended Statistics (Estats) to diagnose performance
problems in both the network and the host. If an RDMA
application is performing poorly, RDMA Estats enables us
to tell if the bottleneck is in the sender, the receiver, or the
network.

To this end, RDMA Estats provides a fine-grained break-
down of latency for each RDMA operation, in addition to
collecting regular counters such as bytes sent/received and
number of NACKSs. The requester NIC records timestamps at
one or more measurement points as the work queue element
(WQE) traverses the transmission pipeline. When a response
(ACK or read response) is received, the NIC records addi-
tional timestamps at measurement points along the receive
pipeline (Figure 6). The following measurement points are
required in any RDMA Estats implementation in Azure

Remote NIC

CcPU NIC
Post WQE | T1 Doorbell Mo
T2 | Receive Doorbell

QE DMA

W
< T3 | Fetch WQE

T4 nsmit Message

Data PaCkets
.A%
QE DMA

‘/E___/ T5| Generate CQE

Poll CQE |T6 |

Figure 6: RDMA Estats measurement points. There are four
NIC timestamps and two host timestamps. We use blue arrows
and red arrows to represent PCle transactions and network
transfers, respectively. Arrow width represents data size.

T1: WQE posting: Host processor timestamp when the WQE
is posted to the submission queue.

Ts: CQE generation: NIC timestamp when the completion
queue element (CQE) is generated in the NIC.

Ts: CQE polling: Host timestamp when the CQE is polled
by software.

In Azure, the NIC driver reports various latencies derived
from the above timestamps. For example, T — T is the oper-
ation latency seen by the RDMA consumer, while 75 — T; is
the latency seen by the NIC. A user-mode agent groups the
latency samples by connection, operation type, and (success/-
failure) status to create latency histograms for each group. By
default, a histogram covers a one-minute interval. Each his-
togram’s quantiles and summary statistics are fed into Azure’s
telemetry pipeline. As our diagnostics evolved, we added to
our user-mode agent the ability to collect and upload NIC
and QP state dumps during high latency events. Finally, we
extended the scope of event-triggered data collection by the
user-mode agent to include NIC statistics and state dumps in
case of events not specific to RDMA (e.g., servicing opera-
tions that impact connectivity).

The collection of latency samples adds overhead to the
WQE posting and completion processing code paths. This
overhead is dominated by keeping the NIC and host time
stamps synchronized. To reduce the overhead, we developed
a clock synchronization procedure that attempts to minimize
the frequency of reading the NIC clock registers, while main-
taining low deviations.

RDMA Estats can significantly reduce the time to debug
and mitigate storage performance incidents by quickly ruling
out (or in) network latency. In §8.3, we share our experience
in diagnosing the FMR hidden fence bug using RDMA Estats.

54 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

6 Switch Management

6.1 Overcoming Heterogeneity with SONiC

Our RDMA deployment heavily relies on the support of
switches. However, heterogeneous switch ASICs and OSes
from multiple vendors have brought significant challenges
to network management. For example, commercial switch
OSes are designed to satisfy diverse requirements of all the
customers, thus leading to complex software stacks and slow
feature evolution [39]. In addition, different switch ASICs
provide different buffer architectures and mechanisms, thus in-
creasing the effort to qualify and test them for Azure’s RDMA
deployment.

Our solutions to the above challenges were two-fold. On
one hand, we worked closely with our vendors to define con-
crete feature requirements and test plans, and to understand
their low-level implementation details. On the other hand,
in collaboration with many partners, we developed and de-
ployed an in-house cross-platform switch OS called Software
for Open Networking in the Cloud (SONiC) [15]. Based on
a Switch Abstraction Interface (SAI) [20], SONiC manages
heterogeneous switches from multiple vendors with a sim-
plified and unified software stack. It breaks apart monolithic
switch software into multiple containerized components. Con-
tainerization provides clean isolation, improves development
agility, and enables choices on a per-component basis. Net-
work operators can customize SONiC with only the features
they require, thereby creating a "lean stack".

6.2 Buffer Model and Configuration Practices
of SONiC on Pizza Box Switches

SONIC provides all the features required by RDMA deploy-
ments, such as ECN marking, PFC, a PFC watchdog (§3.1)
and a shared buffer model. In the interest of space, we briefly
introduce the buffer model and configuration practices of
SONIC on pizza box switches, which are used at TO and T1
(§2.1). We provide a buffer configuration example in §A.
We typically allocate three buffer pools on a pizza
box switch: (1) the ingress_pool for ingress admission
control of all packets, (2) the egress_lossy_pool for
egress admission control of lossy packets, and (3) the
egress_lossless_pool for egress admission control of
lossless packets. Note that these buffer pools and queues are
not backed by separate dedicated buffers, but instead are essen-
tially counters applied to a single physical shared buffer and
used for admission control purposes. Each counter is updated
only by the packets mapped to it, and the same packet can be
mapped to multiple queues and pools simultaneously. For ex-
ample, a lossless (lossy) packet of priority p from source port
s to destination port d updates ingress queue (s, p), egress
queue (d,p), ingress_pool and egress_lossless_pool
(egress_lossy_pool). A packet is accepted only if it passes
both ingress and egress admission controls. Counters incre-

ment by the size of the admitted packet, and decrement by
the size of the departing packet. We use both dynamic thresh-
olds [40] and static thresholds to limit the queue lengths.

We apply ingress admission control only to lossless traffic,
and we apply egress admission control only to lossy traffic.
If the switch buffer size is B, then the ingress_pool size
must be smaller than B, reserving enough space for PFC head-
room buffer (§7.1). When an ingress lossless queue hits the
dynamic threshold, the queue enters the “paused” state, and
the switch sends PFC pause frames to the upstream device.
Future arriving packets on this ingress lossless queue use the
PFC headroom buffer rather than ingress_pool. In contrast,
for ingress lossy queues we configure a static threshold which
equals to the switch buffer size B. Since ingress lossy queue
lengths cannot hit the switch buffer size, lossy packets can
bypass ingress admission control.

At egress, lossy and lossless packets are mapped to the
egress_lossy_pool and egress_lossless_pool,
respectively. We configure both the size of the
egress_lossless_pool and the static thresholds for
egress lossless queues to B so that lossless packets bypass
egress admission control. In contrast, the size of the
egress_lossy_pool must be no larger than the size of the
ingress_pool because lossy packets should not use any of
the PFC headroom buffer at ingress. Egress lossy queues are
configured to use dynamic thresholds [40] to drop packets.

6.3 Testing RDMA Features with SONiC

We use nightly tests to track the quality of SONiC switches.
In this section, we briefly introduce our methods for testing
RDMA features with SONiC switches.

Software-based Tests: We leveraged the Packet Testing
Framework (PTF) [10] to develop test cases for SONiC in
general. PTF is mostly used for testing packet forwarding be-
haviors, with which testing RDMA features require additional
effort.

Our testing approach is inspired by breakpoints in software
debugging. To set a “breakpoint” for the switch, we first block
the transmission of a switch port using SAI APIs. We then
generate a series of packets destined for the blocked port and
capture one or several snapshots of the switch states (e.g.,
buffer watermark), analogous to dumping the values of vari-
ables in software debugging. Next, we release the port and
dump the received packets. We determine if the test passes by
analyzing both the captured switch snapshots and the received
packets. We use this approach to test buffer management
mechanisms, buffer related counters, and packet schedulers.

Hardware-based Tests: While the above approach gives us
good visibility into switch states and packet micro-behaviors,
it cannot meet the stringent performance requirements of
some tests. For example, to test PFC watchdog [50], we need
to generate continuous PFC pause frames at high speed and ac-
curately control their intervals due to the small pause duration

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 55

enforced by each PFC frame.

To conduct such performance-sensitive tests, we need to
control traffic generation at us or even ns timescales and
have high-resolution measurement of data plane behaviors.
This motivated us to build a hardware-based test system by
leveraging hardware programmable traffic generators [9]. Our
hardware-based system focuses on testing features like PFC,
PFC watchdog, RED/ECN marking.

As of February 2023, we built 32 software test cases and 50
hardware test cases for RDMA features. The documentation
and implementation of our test cases are available at [18].

7 Congestion Control

We use the combination of PFC and DCQCN to mitigate
congestion. In this section, we discuss how we scale both
techniques at regional scale.

7.1 Scaling PFC over Long Links

Once an ingress queue pauses the upstream device, it requires
a dedicated headroom buffer to absorb in-flight packets be-
fore the PFC pause frame takes effect on the upstream de-
vice [50, 112]. The ideal PFC headroom value depends on
many factors, e.g., link capacity and propagation delay [12].
The total demand on the headroom buffer for a switch is also
in proportion to the number of lossless priorities”.

To extend RDMA from cluster scale [46, 50] to regional
scale, we must deal with long links between T2 and RH (tens
of kilometers), and between T1 and T2 (hundreds of meters),
which demand much larger PFC headroom than that of intra-
cluster links. At first glance, it may seem that a T1 switch in
our production environment can reserve half of the total buffer
for PFC headroom and other usages. At T2 and RH, given
the high port density (100s) of chassis switches and long-haul
links, we need to reserve several GB of PFC headroom buffer.

To scale PFC over long links, we leverage the fact that
pathological cases, e.g., all the ports are congested simulta-
neously, and ingress lossless queues of a port pause peers
sequentially, are likely to be rare. Our solution is two-fold.
First, on chassis switches at T2 and RH, we use deep packet
buffers of off-chip DRAM? to store RDMA packets. Our
analysis shows that our chassis switches in production can
provide abundant DRAM buffers for PFC headroom. Second,
instead of reserving PFC headroom per queue, we allocate a
PFC headroom pool shared by all the ingress lossless queues
on the switch. Each ingress lossless queue has a static thresh-
old to limit its maximum usage in the headroom pool. We
oversubscribe the headroom pool size with a reasonable ratio,

2For an ingress port, the worst case is that its lossless queues sequentially
pause the peer queues, and none of its packets can be drained from the buffer.

3Unlike on-chip SRAM, the bandwidth of off-chip DRAM is slightly
smaller than the forwarding capacity of the switch ASIC. When all the ports
send and receive traffic at line rate, DRAM will suffer from packet drops.

thus leaving more shared buffer space to absorb bursts. Our
production experience shows that the oversubscribed PFC
headroom pool can effectively eliminate congestion losses
and improve burst tolerance.

7.2 DCQCN Interoperability Challenges

We use DCQCN [112] to control the sending rate of each
queue pair (QP). DCQCN consists of three entities: the sender
or reaction point (RP), the switch or congestion point (CP),
and the receiver or notification point (NP). The CP performs
ECN marking at the egress queue based on the RED algo-
rithm [43]. The NP sends Congestion Notification Packets
(CNPs) when it receives ECN-marked packets. The RP re-
duces its sending rate when it receives CNPs. Otherwise, it
leverages a byte counter and a timer to increase the rate.

We deployed three generations of commodity NICs from
a popular NIC vendor: Genl, Gen2 and Gen3, for different
types of clusters. While all of them support DCQCN, their
implementation details differ significantly. This causes an
interoperability problem when different generations of NICs
communicate with each other.

DCQCN implementation differences: On Genl, most of the
DCQCN functionality, such as the NP and RP state machines,
is implemented in firmware. Given the limited processing
capacity of the firmware, Genl minimizes CNP generation
through coalescing at the NP side. As described in [112], the
NP generates at most one CNP in a time window for a flow,
if any arriving packets within this window are ECN marked.
Correspondingly, the RP reduces the sending rate upon re-
ceiving a CNP. In addition, Genl also has limited cache re-
sources. Cache misses can significantly impact RDMA’s per-
formance [50, 63]. To mitigate cache misses, we increase the
granularity of rate limiting on Genl from a single packet to a
burst of packets. Burst transmissions can effectively reduce
the number of active QPs in a fixed interval, thus lowering
pressure on the very limited cache resources of Genl NICs.

In contrast, Gen2 and Gen3 have hardware-based DCQCN
implementations and adopt a RP-based CNP coalescing mech-
anism, which is the exact opposite of the NP-based CNP co-
alescing used by Genl. In Gen2 and Gen3, the NP sends a
CNP for every arriving ECN-marked packet. However, the
RP only cuts the sending rate for a flow at most once in a
time window if it receives any CNPs within that window. It
is worthwhile to note that RP-based and NP-based CNP coa-
lescing mechanisms essentially provide the same congestion
notification granularity. The rate limiting is on a per-packet
granularity on Gen2 and Gen3.

Interoperability challenges: Storage frontend traffic, which
crosses different clusters, may lead to communication be-
tween different generations of NICs. In this scenario, the DC-
QCN implementation differences cause undesirable behaviors.
First, when a Gen2/Gen3 node sends traffic to a Genl node,
its per-packet rate limiting tends to trigger many cache misses

56 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

on the Genl node, thus slowing down the receiver pipeline.
Second, when a Genl node sends traffic to a Gen2/Gen3 node
through a congested path, the Gen2/Gen3 NP tends to send
excessive CNPs to the Genl RP, thus causing excessive rate
reductions and throughput losses.

Our solution: Given the limited processing capacity and
resources of Genl, we cannot make it behave like Gen2 and
Gen3. Instead, we try to make Gen2 and Gen3 behave like
Genl as much as possible. Our solution is two-fold. First, we
move the CNP coalescing on Gen2 and Gen3 from the RP
side to the NP side. On the Gen2/Gen3 NP side, we add a
per-QP CNP rate limiter and set the minimal interval between
two consecutive CNPs to the value of CNP coalescing timer
of the Genl NP. On the Gen2/Gen3 RP side, we minimize the
time window for rate reduction so that the RP almost always
reduces the rate upon receiving a CNP. Second, we enable
per-burst rate limiting on Gen2 and Gen3.

7.3 Tuning DCQCN

There were certain practical limitations when we tuned DC-
QCN in Azure. First, our NICs only support global DCQCN
parameter settings. Second, to optimize customer experience,
we classify RDMA flows into two switch queues based on
their application semantics, rather than RTTs. Hence, instead
of using different DCQCN parameters for inter-datacenter
and intra-datacenter traffic, we use global DCQCN parameter
settings (on the NICs and switches) that work well given the
large RTT variations within a region.

We took a three-step approach to tune DCQCN parameters.
First, we leveraged the fluid model [113] to understand theo-
retical proprieties of DCQCN. Second, we ran experiments
with synthetic traffic in our lab testbed to evaluate solutions to
the interoperability problem and deliver reasonable parameter
settings. Third, we finalized the parameter settings in test clus-
ters, which use the same setup as production clusters carrying
customer traffic. We ran stress tests with real storage applica-
tions and tuned DCQCN parameters based on the application
performance.

To illustrate our findings, we use Kin, Kpay, and Py to
denote the minimum threshold, the maximum threshold, and
the maximum marking probability of RED/ECN [43], respec-
tively. We make the following three key observations (more
experiment results appear in §B):

¢ DCQCN does not suffer from RTT unfairness as it is a
rate-based protocol and its rate adjustment is independent
of RTT.

* To provide high throughput for DCQCN flows with large
RTTs, we use sparse ECN marking with large K;;.x — Kiuin
and small P,,,,.

¢ DCQCN and switch buffers should be jointly tuned [112].
For example, before increasing K,,;;,, we ensure that ingress
thresholds for lossless traffic are large enough. Otherwise,

PFC may be triggered before ECN marking.

8 Experience

In 2018, we started to enable RDMA to serve customer back-
end traffic. In 2019, we started to enable RDMA to serve
customer frontend traffic, with storage and compute clusters
co-located in the same datacenter. In 2020, we enabled intra-
region RDMA in the first Azure region. As of February 2023,
around 70% of traffic in Azure public regions was RDMA
(Figure 1) and intra-region RDMA was supported in all Azure
public regions.

8.1 Deployment and Servicing

We took a three-step approach to gradually enable RDMA in
production environments. First, we leveraged the lab testbed
to develop and test each individual component. Second, we
conducted end-to-end stress tests in test clusters with the same
software and hardware setups as those of production coun-
terparts. In addition to normal workloads, we also injected
common errors, e.g., random packet drops, to evaluate the
robustness of the system. Third, we cautiously increased the
deployment scale of RDMA in production environments to
carry more customer traffic. During our deployment, NIC
driver/firmware and switch OS updates were common. Thus
it was crucial to minimize the impact of such updates to cus-
tomer traffic.

Servicing switches: Compared to switches in T1 or tiers
above, TO switches, especially in compute clusters, were more
challenging to service as they could be a single point of failure
(SPOF) for customer VMs. In this scenario, we leveraged fast
reboot [17] and warm reboot [19] to reduce the data plane
disruption time from a few minutes to less than a second.

Servicing NICs: In some cases, servicing the NIC driver
or firmware required unloading the NIC driver. The driver
could safely unload only after all the NIC resources had been
released. To this end, we needed to signal consumers, e.g., disk
driver, to close RDMA connections and shift traffic to TCP.
Once RDMA and other NIC features with similar concerns
had been disabled, we could reload the driver.

8.2 Performance

Storage backend: Currently almost all the storage backend
traffic in Azure is RDMA. It is no longer feasible to run large-
scale A/B tests with customer traffic because the CPU cores
saved by RDMA have been used for other purposes, not to
mention customer experience degradation. Hence we demon-
strate results of an A/B test conducted in a test cluster in 2018.
In this test, we ran storage workloads with high transactions
per second (TPS) and switched transport between RDMA and
TCP. Figure 7 plots normalized CPU utilization of storage

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 57

100

60 1

40

20

Normalized CPU Utilization (%)

RDMA | TCP | RDMA

0 100 200 300 400
Time (Minutes)

Figure 7: Average CPU usage of storage servers of a storage
tenant. We normalize results to the maximum CPU usage. We
switched traffic between RDMA and TCP twice.

1.0

0.8+

0.4 4

0.2

1072 107! 10°
Normalized Message Completion Time

Figure 8: Message completion times of storage backend traf-
fic measured in a test cluster. We normalize results to the
maximum message completion time.

servers during two transport switches. It is worthwhile to note
that CPU utilization here includes all the types of processing
overhead, e.g., storage application, Azure Storage Network
Protocol, and TCP/IP stack. Figure 8 gives message comple-
tion times measured in Azure Storage Network Protocol layer
(Figure 4), which excludes the overhead of application pro-
cessing. Compared to TCP, RDMA achieved obvious CPU
saving and significantly accelerated network data transfer.

Storage frontend: Since we cannot perform large-scale
A/B tests with customer traffic, we present results of an A/B
test conducted in a test cluster in 2018. In this test, we used
DiskSpd to generate read and write workloads at A IOPS
and B IOPS (A < B). The I/O size was 8 KB. Figure 9 gives
average CPU utilization of the host domain during the test
period. Compared to TCP, RDMA could reduce the CPU
utilization by up to 34.5%.

To understand the performance improvement introduced by
RDMA, we leverage an always-on storage monitoring service.
This service allocates some VMs in each region, uses them to
periodically generate disk read and write workloads, and col-
lects end-to-end performance results. The monitoring service

100

H TCP

mm RDMA

Normalized CPU utilization (%)

IOPS=A Read IOPS=A Write I0PS=B Read |OPS=B Write

Figure 9: Average CPU usage of the host domain. We normal-
ize results to the maximum value.

I TCP s RDMA

[y
=)

o
@

Normalized Latency
<) <)
IS o

o
N

°
o

Write Read Write Read Write Read
4 KB 4 KB 8 KB 8 KB 1MB 1MB

Figure 10: Average access latencies of a type of SSDs across
all Azure public regions between February 22, 2022, and
February 22, 2023. We normalize RDMA results to corre-
sponding TCP results.

covers different I/O sizes, types of disks, and transports for
storage frontend traffic.

Figure 10 shows the overall average access latencies of a
type of SSDs across all Azure public regions collected by the
monitoring service for a year. Note that the RDMA and TCP
in this figure only refer to the transport of frontend traffic
generated by test VMs. We normalize RDMA results to cor-
responding TCP results. Compared to TCP, RDMA yielded
better access latencies with every I/O size. In particular, 1
MB 1/O requests benefited the most from RDMA with 23.8%
and 15.6% latency reductions for read and write, respectively.
This is due to the fact that large I/O requests are more sen-
sitive to throughput than smaller I/O requests, and RDMA
improves throughput drastically since it can run at line rate
using a single connection without slow starts.

Congestion control: We ran stress tests in a test cluster to
drive the DCQCN parameter setting that could achieve rea-
sonable performance even under peak workloads. Figure 11
gives results of the 99th percentile message completion time,
the key metric we used to guide our tuning. At the beginning,
we disabled DCQCN and only tuned switch buffer parame-

58 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Message Completion Time

PFC only DCQCN with

default setting

DCQCN with
optimized setting

Figure 11: The 99th percentile message completion times of
different schemes measured in a test cluster.

ters, e.g., the dynamic threshold of ingress lossless queues,
to explore the best performance achieved by PFC only. After
reaching the best performance of PFC only, we enabled DC-
QCN using the default parameter setting, which was derived
on the lab testbed using synthetic traffic. While DCQCN re-
duced the number of PFC pause frames, it degraded the tail
message completion time as the default setting reduced the
sending rate too aggressively. Given this, we adjusted ECN
marking parameters to improve DCQCN’s throughput. With
optimized setting, DCQCN performs better than using PFC
alone. Our key takeaway from this tuning experience was that
DCQCN and switch buffer should be jointly tuned to optimize
the application performance, rather than PFC pause duration.

8.3 Problems Discovered and Fixed

During tests and deployments, we discovered and fixed a
series of problems in NICs, switches and our RDMA applica-
tions.

FMR hidden fence: In sK-RDMA (§4.2), every I/O request
from compute servers requires a FMR request followed by a
Send request to the storage server, which contains the de-
scription of FMR registered memory and storage commands.
Therefore, the send queue consists of many FMR/Send pairs.
When we deployed sK-RDMA in compute and storage clus-
ters located in different datacenters, we found that the frontend
traffic showed extremely low throughput, even though we kept
many outstanding FMR/Send pairs in the send queue. To debug
this problem, we used RDMA Estats to collect 75 — 7 latency
for every Send request (§5). We found a strong correlation
between 75 — T and inter-datacenter RTT, and noticed that
there was only a single outstanding Send request per RTT.
After we shared these findings with the NIC vendor, they iden-
tified the root cause: to simplify the implementation, NICs
processed the FMR request only after the completions of previ-
ously posted requests. In SK-RDMA, the FMR request created
a hidden fence between two Send requests, thus only allowing
a single Send request in the air, which could not fill the large

network pipe between datacenters. We have worked with the
NIC vendor to fix this problem in the new NIC driver.

PFC and MACsec: After we enabled PFC on long-haul
links between T2 and RH, many long-haul links reported
high packet corruption rates, thus triggering alerts. It turned
out that the MACSec standard [21] did not specify whether
PFC frames should be encrypted. As a result, different ven-
dors had no agreement on whether PFC frames sent should be
encrypted and what to do with arriving encrypted PFC frames.
For example, switch A may send unencrypted PFC frames to
switch B, wile switch B was expecting encrypted PFC frames.
As a result, switch B would treat those PFC frames as cor-
rupted packets and report errors. We have worked with switch
vendors to standardize how MACsec enabled switch ports
treat PFC frames.

Congestion leaking: The problem was found in the testbed.
When we enabled interoperability features (§7.2) on Gen2
NICs, we found that their throughput would be degraded. To
dig into this problem, we used the water filling algorithm
to calculate theoretical per-QP throughput results and com-
pared them with actual throughput results measured from the
testbed. We had two interesting observations when comparing
the results. First, flows sent by a Gen2 NIC always had near
identical sending rates regardless of their congestion degrees.
Second, actual sending rates were very close to the theoret-
ical sending rate of the slowest flow sent from the NIC. It
seemed that all the flows from a Gen2 NIC were throttled by
the slowest flow. We reported these observations to the NIC
vendor, and they identified a head-of-line blocking in the NIC
firmware. We have fixed this problem on all the NICs with
interoperability features.

Slow receiver due to loopback RDMA: This problem was
found in a test cluster. During stress tests, we found that a
large number of servers sent PFC pause frames to TO switches.
However, unlike slow receivers found before, PFC watchdog
was not triggered on any TO switches. It seemed that those
servers only gracefully slowed down the traffic coming from
TO switches, rather than completely blocking TO switches for
a long duration. In addition, where slow receivers were com-
mon at Azure’s scale, it was very unlikely that a significant
portion of servers in a cluster became “mad” simultaneously.

Based on the above observations, we suspected that these
slow receivers were caused by our applications. We found that
each server actually ran multiple RDMA application instances.
All the inter-instance traffic ran on RDMA, regardless of their
locations. Therefore, loopback traffic and external traffic co-
existed on every NIC, thus creating a 2:1 congestion on PCle
lanes of the NIC. Since the NIC could not mark ECN, it could
only throttle loopback traffic and external traffic through PCle
back pressure and PFC pause frames. To validate the above
analysis, we disabled RDMA for loopback traffic on some
servers, then these servers stopped sending PFC frames. We
notice that recent work [61,70] also found this problem.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 59

9 Lessons and Open Problems

In this section, we summarize the lessons learned from our
experience and discuss open problems for future exploration.

Failovers are very expensive for RDMA. While we have
implemented failover solutions in both sU-RDMA and sK-
RDMA as the last resort, we find that failovers are particularly
expensive for RDMA, and should be avoided as much as pos-
sible. Cloud providers adopt RDMA to save CPU cores and
then use freed CPU cores for other purposes. To move traffic
away from RDMA, we need to allocate extra CPU cores to
carry these traffic. This increases CPU utilization, and even
runs out of CPU cores at high loads. Hence, it is risky to per-
form large-scale RDMA failovers, which we treat as serious
incidents in Azure. Given the risk, only after all the tests have
passed, we gradually increase the RDMA deployment scale.
During the rollout, we continuously monitor network perfor-
mance and immediately stop the rolltout once anomalies are
detected. After unavoidable failovers, we should aggressively
switch back to RDMA when possible.

Host network and physical network should be converged.
In 8.3, we present a new type of slow receivers, which is es-
sentially due to congestion inside the host. Recent work [24]
also presents evidence and characterization of host conges-
tion in production clusters. We believe this problem is just
a tip of the iceberg, while many problematic behaviors be-
tween host network and physical network remain unexposed.
In conventional wisdom, host network and physical network
are separated entities and NIC is their border. If we look into
the host, it is essentially a network connecting heterogeneous
nodes (e.g., CPU, GPU, DPU) with proprietary high speed
links (e.g., PCIe link and NVLink) and switches (e.g., PCle
switch and NVSwitch). Inter-host traffic can be treated as
north-south traffic for the host. With the increase of the data-
center link capacity and wide adoptions of hardware offload-
ing and device direct access technologies (e.g., GPUDirect
RDMA), inter-host traffic tends to consume larger and more
various resources inside the host, thus resulting in more com-
plex interactions with intra-host traffic.

We believe that host network and physical network should
be converged in the future. And we envision this converged
network will be an important step towards the dis-aggregated
cloud. We look forward to operating this converged network
in similar ways as we manage physical network today.

Switch buffer is increasingly important and needs more
innovations. The conventional wisdom [26] suggests that low
latency datacenter congestion control [26, 71,82, 112] can
alleviate the need of large switch buffers as they can preserve
short queues. However, we find a strong correlation between
switch buffers and RDMA performance problems in produc-
tion. Clusters with smaller switch buffers tend to have more
performance problems. And many performance problems can
be mitigated by just tuning switch buffer parameters without

touching DCQCN. This is why we always tune switch buffers
before touching DCQCN (§8.2). The importance of switch
buffer lies in the prevalence of bursty traffic and short-lived
congestion events in datacenters [108]. Conventional conges-
tion control solutions are ill-suited for such scenarios given
their reactive nature. Instead, switch buffer plays as the first
resort to absorb bursts and provide fast responses.

With the increase in datacenter link speed, we believe that
switch buffer is increasingly important, thus deserving more
efforts and innovations. First, the buffer size per port per Gbps
on pizza box switches keeps decreasing in recent years [31].
Some switch ASICs even split the packet memory into multi-
ple partitions, thus reducing effective buffer resource. We en-
courage more efforts to put into the development ASICs with
deeper packet buffers and more unified architectures. Second,
today’s commodity switch ASICs only provide buffer manage-
ment mechanisms [40] designed decades ago, thus limiting
the scope of solutions to handle congestion. Following the
trend of programmable data plane [32], we envision that future
switch ASICs would provide more programmability on buffer
models and interfaces, thus enabling the implementation of
more effective buffer management solutions [22].

Cloud needs unified behavior models and interfaces for
network devices. The diversity in software and hardware
brings significant challenges to network operation at cloud
scale. Different NICs from the same vendor can even have
different behaviors that cause interoperability problems, not
to mention devices from different vendors. In spite of all the
efforts we put into the unified switch software (§6) and NIC
congestion control (§7.2), we still experienced problems due
to diversity, e.g., unexpected interactions between PFC and
MACsec (§8.3). We envision that more unified models and
interfaces will emerge to simplify operations and accelerate
innovations in the cloud. Some key areas include chassis
switches, smart network appliances, and RDMA NICs. We
notice that there have been some efforts on standardizing
congestion control for different data paths [85] and APIs for
heterogeneous smart appliances [16].

Testing new network devices is crucial and challenging.
From the day one of this project, we have been making large
investments in building various testing tools and running rig-
orous tests in both testbeds and test clusters. Despite the
significant number of problems discovered during tests, we
still found some problems during deployments (§8.3), mostly
due to micro-behaviors and corner cases that were overlooked.
Some burning questions are given as follows:

* How to precisely capture micro-behaviors of RDMA NIC
implementations in various scenarios?

* Despite many endeavors to measure switches’ micro-
behaviors (§6.3), we still rely on domain knowledge to
design test cases. How to systematically test the correct-
ness and performance of a switch?

These questions motivate us to rethink challenges and re-

60 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

quirements of testing emerging network devices with more
and more features. First, many features lack clear specifica-
tions, which is a prerequisite for systematic testing. Many
seemingly simple features are actually entangled with com-
plex interactions between software and hardware. We believe
that unified behavior models and interfaces discussed above
can help with this. Second, the test system should be able
to interact with network devices at high speed, and precisely
capture micro-behaviors. We believe programmable hardware
can help on this [33,37]. We note that there have been some
recent progresses on testing RDMA NICs [69, 70] and pro-
grammable switches [37, 110].

10 Related Work

This paper focuses on RDMA for cloud storage. The literature
of RDMA and storage systems is vast. Here we only discuss
some closely related ideas.

Deployment experience of RDMA and storage networks:
Before this project, we had deployed RDMA to support some
Bing workloads and encountered many problems, such as
PFC storms, PFC deadlocks, and slow receivers [50]. We
learnt several lessons from this deployment. Gao et al. [46]
summarized the experience of deploying intra-cluster RDMA
to support storage backend traffic in Alibaba. Miao et al. [80]
presented two generations of storage network stacks to carry
Alibaba’s storage frontend traffic: LUNA and SOLAR. LUNA
is a high performance user-space TCP stack while SOLAR
is a storage-oriented UDP stack implemented in proprietary
DPU. Scalable Reliable Datagram (SRD) [96] is a cloud-
optimized transport protocol implemented in AWS custom
Nitro networking card, and used by HPC, ML, and storage
applications [7]. In contrast, we use commodity hardware to
enable intra-region RDMA to support both storage frontend
and backend traffic.

Congestion control in datacenters: There is a large body
of work on datacenter congestion control, including ECN-
based [26, 27, 99, 112], delay-based [71, 72, 76, 82], INT-
based [23,75, 101], credit-based [34,38,45,52,55, 84,86, 88]
and packet scheduling [28, 30, 36,49, 54]. Our work focuses
on regional networks which have large RTT variations. We
notice that some efforts [95, 107] target at similar scenarios.

Improve RDMA in datacenters: In addition to congestion
control, there are many efforts to improve RDMA’s reliability,
security and performance in datacenters, such as deadlock mit-
igation [56,92,103], support of multi-path [77], resilience over
lossy networks [78,83,102], security mechanisms [94,98,104],
virtualization [53, 67, 89, 100], testing [69, 70], and perfor-
mance isolation in multi-tenant environments [109]. Our work
focuses on first party traffic in the trusted environment. Given
the limited retransmission performance of our NICs, we en-
able RDMA over lossless networks (§2.4).

Accelerate storage systems using RDMA and other tech-

niques: Many proposals [41,62-66,74,93,106,111] leverage
RDMA to accelerate storage systems or networked systems in
general. Similar to some solutions [13,47,74,90], our RDMA
protocols (§4) provide socket-like interfaces to keep compati-
bility with legacy storage stack. In addition to RDMA, some
recent proposals improve storage systems using new kernel
designs [58,59, 73] and SmartNIC [68,81].

11 Conclusions and Future Work

In this paper, we summarize our experience in deploying intra-
region RDMA to support storage workloads in Azure. The
high complexity and heterogeneity of our infrastructure brings
a series of new challenges. We have made several changes to
our network infrastructure to address these challenges. Today,
around 70% of traffic in Azure is RDMA and intra-region
RDMA is supported in all Azure public regions. RDMA helps
us achieve significant disk I/O performance improvements
and CPU core savings.

In the future, we plan to further improve our storage sys-
tems through innovations on system architecture, hardware
acceleration, and congestion control. We also plan to bring
RDMA to more scenarios.

Acknowledgements

We thank our shepherd Marco Canini and the anonymous
reviewers for their valuable feedback that significantly im-
proved the final paper. Yuanwei Lu, Liang Yang and Danushka
Menikkumbura also provided important feedback. Yibo Zhu
made contributions to DCQCN and PFC deadlock avoidance
at the early stage of this project. Ranysha Ware contributed to
DCQCN tuning. Zhuolong Yu helped us measure RDMA’s
retransmission performance. This project represents the work
of many engineers, product managers, researchers, data sci-
entists, and leaders across Microsoft over many years, more
than we can list here. We thank them all. Finally, we thank our
partners: Arista Networks, Broadcom, Cisco, Dell, Keysight
and NVIDIA for their technical contributions and support.

References

[1] Amazon ebs volume types. https://aws.amazon.c
om/ebs/volume-types/.

[2] Amazon web services region. https://aws.amazon
.com/about-aws/global-infrastructure/req
ions_az/.

[3] Arista 7500r switch architecture (‘a day in the life of a
packet’). https://www.arista.com/assets/data
/pdf/Whitepapers/Arista7500RSwitchArchitec
tureWP.pdf.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 61

https://aws.amazon.com/ebs/volume-types/
https://aws.amazon.com/ebs/volume-types/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://www.arista.com/assets/data/pdf/Whitepapers/Arista7500RSwitchArchitectureWP.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista7500RSwitchArchitectureWP.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista7500RSwitchArchitectureWP.pdf

[4] Azure managed disk types. https://docs.microso
ft.com/en-us/azure/virtual-machines/disks-
types.

[5

—_

Azure region. https://docs.microsoft.com/en-
us/azure/availability-zones/az-overview.

[6

—_

Cisco silicon one product family. https://www.cisc
o.com/c/dam/en/us/solutions/collateral/sil
icon-one/white-paper-sp-product-family.p
df.

[7

[

A decade of ever-increasing provisioned iops for ama-
zon ebs. https://aws.amazon.com/blogs/aws/a
-decade-of-ever-increasing-provisioned-i
ops-for-amazon-ebs/.

[8] Google cloud region. https://cloud.google.com
/compute/docs/regions-zones.

[9] Keysight network test solutions. https://www.keys
ight.com/us/en/solutions/network-test.ht
ml.

[10] Packet testing framework (ptf). https://github.c
om/p4lang/ptf.

[11] Pfc watchdog in sonic. https://github.com/son
ic-net/SONiC/wiki/PFC-Watchdog-Design.

[12] Priority flow control: Build reliable layer 2 infrastruc-
ture. https://e2e.ti.com/cfs-file/__key/com
munityserver-discussions-components-£file
s/908/802.1g-Flow-Control-white_5F00_pap
er_5F00_cl11_2D00_542809.pdf.

[13] rsocket(7) - linux man page. https://linux.die.
net/man/7/rsocket.

[14] Smb direct. https://learn.microsoft.com/en-u
s/windows-server/storage/file-server/smb
—-direct.

[15] Software for open networking in the cloud (sonic).
https://sonic-net.github.io/SONiC/.

[16] Sonic-dash - disaggregated api for sonic hosts. https:
//github.com/sonic-net/DASH.

[17] Sonic fast reboot. https://github.com/sonic-n
et /SONiC/blob/master/doc/fast-reboot/fas
treboot.pdf.

[18] sonic-mgmt: Management and automation code used
for sonic testbed deployment, tests and reporting. ht
tps://github.com/sonic-net/sonic-mgmt.

[19] Sonic warm reboot. https://github.com/sonic
-net/SONiC/blob/master/doc/warm-reboot /SON
iC_Warmboot .md.

[20] Switch abstraction interface (sai). https://github
.com/opencomputeproject/SAT.

[21] Ieee standard for local and metropolitan area networks-
media access control (mac) security. [EEE Std
802.1AE-2018 (Revision of IEEE Std 802.1AE-2006),
2018.

[22] Vamsi Addanki, Maria Apostolaki, Manya Ghobadi,
Stefan Schmid, and Laurent Vanbever. Abm: active
buffer management in datacenters. In SIGCOMM
2022.

[23] Vamsi Addanki, Oliver Michel, and Stefan Schmid.
Powertcp: Pushing the performance limits of datacen-
ter networks. In NSDI 2022.

[24] Saksham Agarwal, Rachit Agarwal, Behnam Montaz-
eri, Masoud Moshref, Khaled Elmeleegy, Luigi Rizzo,
Marc Asher de Kruijf, Gautam Kumar, Sylvia Rat-
nasamy, David Culler, and Amin Vahdat. Understand-
ing host interconnect congestion. In HotNets 2022.

[25] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. In SIGCOMM 2008.

[26] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan. Data
center tcp (detep). In SIGCOMM 2010.

[27] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall,
Balaji Prabhakar, Amin Vahdat, and Masato Yasuda.
Less is more: trading a little bandwidth for ultra-low
latency in the data center. In NSDI 2012.

[28] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pfabric: Minimal near-optimal datacen-
ter transport. In SIGCOMM 2013.

[29] InfiniBand Trade Association. Supplement to infini-
band architecture specification volume 1 release 1.2. 1
annex al7: Rocev2, 2014.

[30] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Hao Wang. Information-agnostic flow scheduling
for commodity data centers. In NSDI 2015.

[31] Wei Bai, Shuihai Hu, Kai Chen, Kun Tan, and
Yonggiang Xiong. One more config is enough: Sav-
ing (dc) tcp for high-speed extremely shallow-buffered
datacenters. In INFOCOM 2020.

[32] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David

62 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://docs.microsoft.com/en-us/azure/virtual-machines/disks-types
https://docs.microsoft.com/en-us/azure/virtual-machines/disks-types
https://docs.microsoft.com/en-us/azure/virtual-machines/disks-types
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview
https://www.cisco.com/c/dam/en/us/solutions/collateral/silicon-one/white-paper-sp-product-family.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/silicon-one/white-paper-sp-product-family.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/silicon-one/white-paper-sp-product-family.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/silicon-one/white-paper-sp-product-family.pdf
https://aws.amazon.com/blogs/aws/a-decade-of-ever-increasing-provisioned-iops-for-amazon-ebs/
https://aws.amazon.com/blogs/aws/a-decade-of-ever-increasing-provisioned-iops-for-amazon-ebs/
https://aws.amazon.com/blogs/aws/a-decade-of-ever-increasing-provisioned-iops-for-amazon-ebs/
https://cloud.google.com/compute/docs/regions-zones
https://cloud.google.com/compute/docs/regions-zones
https://www.keysight.com/us/en/solutions/network-test.html
https://www.keysight.com/us/en/solutions/network-test.html
https://www.keysight.com/us/en/solutions/network-test.html
https://github.com/p4lang/ptf
https://github.com/p4lang/ptf
https://github.com/sonic-net/SONiC/wiki/PFC-Watchdog-Design
https://github.com/sonic-net/SONiC/wiki/PFC-Watchdog-Design
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/908/802.1q-Flow-Control-white_5F00_paper_5F00_c11_2D00_542809.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/908/802.1q-Flow-Control-white_5F00_paper_5F00_c11_2D00_542809.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/908/802.1q-Flow-Control-white_5F00_paper_5F00_c11_2D00_542809.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/908/802.1q-Flow-Control-white_5F00_paper_5F00_c11_2D00_542809.pdf
https://linux.die.net/man/7/rsocket
https://linux.die.net/man/7/rsocket
https://learn.microsoft.com/en-us/windows-server/storage/file-server/smb-direct
https://learn.microsoft.com/en-us/windows-server/storage/file-server/smb-direct
https://learn.microsoft.com/en-us/windows-server/storage/file-server/smb-direct
https://sonic-net.github.io/SONiC/
https://github.com/sonic-net/DASH
https://github.com/sonic-net/DASH
https://github.com/sonic-net/SONiC/blob/master/doc/fast-reboot/fastreboot.pdf
https://github.com/sonic-net/SONiC/blob/master/doc/fast-reboot/fastreboot.pdf
https://github.com/sonic-net/SONiC/blob/master/doc/fast-reboot/fastreboot.pdf
https://github.com/sonic-net/sonic-mgmt
https://github.com/sonic-net/sonic-mgmt
https://github.com/sonic-net/SONiC/blob/master/doc/warm-reboot/SONiC_Warmboot.md
https://github.com/sonic-net/SONiC/blob/master/doc/warm-reboot/SONiC_Warmboot.md
https://github.com/sonic-net/SONiC/blob/master/doc/warm-reboot/SONiC_Warmboot.md
https://github.com/opencomputeproject/SAI
https://github.com/opencomputeproject/SAI

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

Walker. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communica-
tion Review, 2014.

Pietro Bressana, Noa Zilberman, and Robert Soulé.
Finding hard-to-find data plane bugs with a pta. In
CoNEXT 2020.

Qizhe Cai, Mina Tahmasbi Arashloo, and Rachit Agar-
wal. dcpim: Near-optimal proactive datacenter trans-
port. In SIGCOMM 2022.

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-
tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu,
Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci,
Jaidev Haridas, Chakravarthy Uddaraju, Hemal Kha-
tri, Andrew Edwards, Vaman Bedekar, Shane Mainali,
Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq,
Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya
Dayanand, Anitha Adusumilli, Marvin McNett, Sriram
Sankaran, Kavitha Manivannan, and Leonidas Rigas.
Windows azure storage: A highly available cloud stor-
age service with strong consistency. In SOSP 2011.

Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh.
Scheduling mix-flows in commodity datacenters with
karuna. In SIGCOMM 2016.

Yanqing Chen, Bingchuan Tian, Chen Tian, Li Dai,
Yu Zhou, Mengjing Ma, Ming Tang, Hao Zheng,
Zhewen Yang, Guihai Chen, Dennis Cai, and Ennan
Zhai. Norma: Towards practical network load testing.
In NSDI 2023.

Inho Cho, Keon Jang, and Dongsu Han. Credit-
scheduled delay-bounded congestion control for data-
centers. In SIGCOMM 2017.

Sean Choi, Boris Burkov, Alex Eckert, Tian Fang,
Saman Kazemkhani, Rob Sherwood, Ying Zhang, and
Hongyi Zeng. Fboss: building switch software at scale.
In SIGCOMM 2018.

Abhijit K. Choudhury and Ellen L. Hahne. Dynamic
queue length thresholds for shared-memory packet
switches. IEEE/ACM Transactions on Networking,
1998.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. Farm: Fast remote memory.
In NSDI 2014.

Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chatur-
mohta, Matt Humphrey, Jack Lavier, Norman Lam,
Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw,
Gabriel Silva, Madhan Sivakumar, Nisheeth Srivas-
tava, Anshuman Verma, Qasim Zuhair, Deepak Bansal,
Doug Burger, Kushagra Vaid, David A. Maltz, and Al-
bert Greenberg. Azure accelerated networking: Smart-
NICs in the public cloud. In NSDI 2018.

Sally Floyd and Van Jacobson. Random early detec-
tion gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1993.

Philip Werner Frey and Gustavo Alonso. Minimizing
the hidden cost of rdma. In ICDCS 2009.

Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit
Agarwal, Sylvia Ratnasamy, and Scott Shenker. phost:
Distributed near-optimal datacenter transport over com-
modity network fabric. In CoNEXT 2015.

Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan
Liu, Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu,
Zheng Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong
Wang, Dennis Cai, and Jiesheng Wu. When cloud
storage meets RDMA. In NSDI 2021.

Dror Goldenberg, Michael Kagan, Ran Ravid, and
Michael S Tsirkin. Zero copy sockets direct proto-
col over infiniband-preliminary implementation and
performance analysis. In HOTI 2005.

Albert Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Labhiri,
David A. Maltz, Parveen Patel, and Sudipta Sengupta.
VI12: a scalable and flexible data center network. In
SIGCOMM 2009.

Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert NM Watson, Andrew W Moore, Steven Hand,
and Jon Crowcroft. Queues don’t matter when you can
jump them! In NSDI 2015.

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
Rdma over commodity ethernet at scale. In SIGCOMM
2016.

Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A large-scale system for data center net-
work latency measurement and analysis. In SIGCOMM
2015.

Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W Moore, Gianni Antichi, and
Marcin Wojcik. Re-architecting datacenter networks

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 63

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]
[61]

(62]

[63]

[64]

[65]

[66]

and stacks for low latency and high performance. In
SIGCOMM 2017.

Zhigiang He, Dongyang Wang, Binzhang Fu, Kun Tan,
Bei Hua, Zhi-Li Zhang, and Kai Zheng. Masq: Rdma
for virtual private cloud. In SIGCOMM 2020.

Chi-Yao Hong, Matthew Caesar, and P Godfrey. Fin-
ishing flows quickly with preemptive scheduling. In
SIGCOMM 2012.

Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang,
Baochen Qiao, Kai Chen, Kun Tan, and Yi Wang. Ae-
olus: A building block for proactive transport in data-
centers. In SIGCOMM 2020.

Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Tagger: Prac-
tical pfc deadlock prevention in data center networks.
In CoNEXT 2017.

Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and
Sergey Yekhanin. Erasure coding in windows azure
storage. In ATC 2012.

Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agar-
wal. Tcp ~ rdma: Cpu-efficient remote storage access
with i10. In NSDI 2020.

Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and
Rachit Agarwal. Rearchitecting linux storage stack for
us latency and high throughput. In OSDI 2021.

IEEE. 802.11 gbb. priority based flow control. 2008.

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed dnn training in heterogeneous
gpu/cpu clusters. In OSDI 2020.

Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In NSDI 2019.

Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design guidelines for high performance rdma systems.
In ATC 2016.

Anuj Kalia, Michael Kaminsky, and David G Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (rdma) datagram rpcs. In OSDI 2016.

Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. Using rdma efficiently for key-value services. In
SIGCOMM 2014.

Daehyeok Kim, Amirsaman Memaripour, Anirudh
Badam, Yibo Zhu, Honggiang Harry Liu, Jitu Pad-
hye, Shachar Raindel, Steven Swanson, Vyas Sekar,

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

and Srinivasan Seshan. Hyperloop: group-based nic-
offloading to accelerate replicated transactions in multi-
tenant storage systems. In SIGCOMM 2018.

Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu,
Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong
Guo, Vyas Sekar, and Srinivasan Seshan. Freeflow:
Software-based virtual rdma networking for container-
ized clouds. In NSDI 2019.

Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im,
Marco Canini, Dejan Kosti¢, Youngjin Kwon, Simon
Peter, and Emmett Witchel. Linefs: Efficient smart-
nic offload of a distributed file system with pipeline
parallelism. In SOSP 2021.

Xinhao Kong, Jingrong Chen, Wei Bai, Yechen Xu,
Mahmoud Elhaddad, Shachar Raindel, Jitendra Pad-
hye, and Alvin R Lebeck Danyang Zhuo. Understand-
ing rdma microarchitecture resources for performance
isolation. In NSDI 2023.

Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding performance anomalies in rdma subsystems.
In NSDI 2022.

Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay
is simple and effective for congestion control in the
datacenter. In SIGCOMM 2020.

Changhyun Lee, Chunjong Park, Keon Jang, Sue
Moon, and Dongsu Han. Accurate latency-based con-
gestion feedback for datacenters. In ATC 2015.

Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham,
Jae W. Lee, and Jinkyu Jeong. Asynchronous I/O stack:
A low-latency kernel I/0 stack for Ultra-Low latency
SSDs. In ATC 2019.

Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao
Zhang. Socksdirect: Datacenter sockets can be fast and
compatible. In SIGCOMM 2019.

Yuliang Li, Rui Miao, Honggiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. Hpcc: High precision congestion control. In
SIGCOMM 2019.

Shiyu Liu, Ahmad Ghalayini, Mohammad Alizadeh,
Balaji Prabhakar, Mendel Rosenblum, and Anirudh
Sivaraman. Breaking the transience-equilibrium nexus:
A new approach to datacenter packet transport. In
NSDI 2021.

64 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

[77] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang

Xiong, Peng Cheng, Jiansong Zhang, Enhong Chen,
and Thomas Moscibroda. Multi-path transport for
rdma in datacenters. In NSDI 2018.

Yuanwei Lu, Guo Chen, Zhenyuan Ruan, Wencong
Xiao, Bojie Li, Jiansong Zhang, Yonggiang Xiong,
Peng Cheng, and Enhong Chen. Memory efficient loss

[87] Madhav Himanshubhai Pandya, Aaron William Ogus,

Zhong Deng, and Weixiang Sun. Transport protocol
and interface for efficient data transfer over rdma fabric,
August 2 2022. US Patent 11,403,253.

Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Deverat Shah, and Hans Fugal. Fastpass: A centralized
"zero-queue" datacenter network. In SIGCOMM 2014.

recovery for hardware-based transport in datacenter. In

APNet 2017. [89] Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi,

Bernard Metzler, Ionnis Koltsidas, and Thomas R
[79] Matt Mathis, John Heffner, and Rajiv Raghunarayan. Gross. A hybrid i{ o virtualization framework for r@ma-
Tcp extended statistics mib (rfc 4898). Technical re- capable network interfaces. ACM SIGPLAN Notices,

port, 2007. 2015.

[80] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shu- [90] Jim Pinkerton. Sockets direct protocol v1. 0 rdma
jun Zhuang, Bo Li, Shuguang Cheng, Jiagi Gao, consortium. 2003.
Yan Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi,
Binzhang Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and
Hongqgiang Harry Liu. From luna to solar: The evo-
lutions of the compute-to-storage networks in alibaba
cloud. In SIGCOMM 2022.

[91] Leon Poutievski, Omid Mashayekhi, Joon Ong, Ar-
jun Singh, Mukarram Tariq, Rui Wang, Jianan Zhang,
Virginia Beauregard, Patrick Conner, Steve Gribble,
Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu,
Karthik Nagaraj, Jason Ornstein, Samir Sawhney, Ry-
ohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shi-
dong Zhang, Junlan Zhou, and Amin Vahdat. Jupiter
evolving: Transforming google’s datacenter network
via optical circuit switches and software-defined net-
working. In SIGCOMM 2022.

[81

—_—

Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu
Zhao, Andrew Wei, In Hwan Doh, and Arvind Krish-
namurthy. Gimbal: enabling multi-tenant storage dis-
aggregation on smartnic jbofs. In SIGCOMM 2021.

[82] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. Timely: Rtt-based congestion control for the
datacenter. In SIGCOMM 2015.

[92] Kun Qian, Wenxue Cheng, Tong Zhang, and Fengyuan
Ren. Gentle flow control: avoiding deadlock in lossless
networks. In SIGCOMM 2019.

[93] Waleed Reda, Marco Canini, Dejan Kostic, and Simon
Peter. Rdma is turing complete, we just did not know

[83] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Ei- it yet! Tn NSDI 2022,

tan Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy,
and Scott Shenker. Revisiting network support for [94]

Benjamin Rothenberger, Konstantin Taranov, Adrian
rdma. In SIGCOMM 2018.

Perrig, and Torsten Hoefler. Redmark: Bypassing rdma

L . . security mechanisms. In USENIX Security 2021.
[84] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,

and John Ousterhout. Homa: A receiver-driven low- [95] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad
latency transport protocol using network priorities. In Sharif, Rong Pan, Mostafa Ammar, Ellen Zegura, Keon
SIGCOMM 2018. Jang, Mohammad Alizadeh, Abdul Kabbani, and Amin

Vahdat. Annulus: A dual congestion control loop for

[85] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, datacenter and wan traffic aggregates. In SIGCOMM

Prateesh Goyal, Srinivas Narayana, Radhika Mittal, 2020.

Mohammad Alizadeh, and Hari Balakrishnan. Restruc-

turing endpoint congestion control. In SIGCOMM [96] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sab-
2018. bag. A cloud-optimized transport protocol for elastic

and scalable hpc. IEEE Micro, 2020.
[86

—_

Vladimir Olteanu, Haggai Eran, Dragos Dumitrescu,
Adrian Popa, Cristi Baciu, Mark Silberstein, Georgios [97] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,

Nikolaidis, Mark Handley, and Costin Raiciu. An edge-
queued datagram service for all datacenter traffic. In
NSDI 2022.

Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.
Netbouncer: Active device and link failure localization
in data center networks. In NSDI 2019.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 65

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Konstantin Taranov, Benjamin Rothenberger, Adrian
Perrig, and Torsten Hoefler. srdma: efficient nic-based
authentication and encryption for remote direct mem-
ory access. In ATC 2020.

Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar.
Deadline-aware datacenter tcp (d2tcp). In SIGCOMM
2012.

Dongyang Wang, Binzhang Fu, Gang Lu, Kun Tan, and
Bei Hua. vsocket: virtual socket interface for rdma in
public clouds. In VEE 2019.

Weitao Wang, Masoud Moshref, Yuliang Li, Gautam
Kumar, TS Eugene Ng, Neal Cardwell, and Nandita
Dukkipati. Poseidon: Efficient, robust, and practical
datacenter cc via deployable int. In NSDI 2023.

Zilong Wang, Layong Luo, Qingsong Ning, Chao-
liang Zeng, Wenxue Li, Xinchen Wan, Peng Xie, Tao
Feng, Ke Cheng, Xiongfei Geng, Tianhao Wang, We-
icheng Ling, Kejia Huo, Pingbo An, Kui Ji, Shideng
Zhang, Bin Xu, Ruiqing Feng, Tao Ding, Kai Chen,
and Chuanxiong Guo. Srnic: A scalable architecture
for rdma nics. In NSDI 2023.

Xinyu Crystal Wu and TS Eugene Ng. Detecting and
resolving pfc deadlocks with itsy entirely in the data
plane. In INFOCOM 2022.

Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, Ziyang
Yang, Hongyi Liu, and Ang Chen. Bedrock: Pro-
grammable network support for secure rdma systems.
In USENIX Security 2022.

Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh,
Tameesh Suri, Manu Awasthi, Zvika Guz, Anahita
Shayesteh, and Vijay Balakrishnan. Performance anal-
ysis of nvme ssds and their implication on real world
databases. In SYSTOR 2015.

Jian Yang, Joseph Izraelevitz, and Steven Swanson.
Orion: A distributed file system for non-volatile main
memory and rdma-capable networks. In FAST 2019.

Gaoxiong Zeng, Wei Bai, Ge Chen, Kai Chen, Dongsu
Han, Yibo Zhu, and Lei Cui. Congestion control for
cross-datacenter networks. In ICNP 2019.

Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-resolution measurement of data
center microbursts. In IMC 2017.

Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf
Chowdhury. Justitia: Software multi-tenancy in hard-
ware kernel-bypass networks. In NSDI 2022.

[110]

[111]

[112]

[113]

[114]

Naigian Zheng, Mengqi Liu, Ennan Zhai,
Honggiang Harry Liu, Yifan Li, Kaicheng Yang,
Xuanzhe Liu, and Xin Jin. Meissa: scalable network
testing for programmable data planes. In SIGCOMM
2022.

Bohong Zhu, Youmin Chen, Qing Wang, Youyou Lu,
and Jiwu Shu. Octopus+: An rdma-enabled distributed
persistent memory file system. ACM Transactions on
Storage, 2021.

Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale rdma de-
ployments. In SIGCOMM 2015.

Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra
Padhye. Ecn or delay: Lessons learnt from analysis of
dcqcen and timely. In CoNEXT 2016.

Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,
Ming Zhang, Ben Y. Zhao, and Haitao Zheng. Packet-
level telemetry in large datacenter networks. In SIG-
COMM 2015.

66 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

A SONIC buffer analysis

"BUFFER_POOL": {

"ingress_pool": {
"size": "18000000",
"type": "ingress",
"mode": "dynamic",
"xoff": "6000000"

I

"egress_lossy_pool": {
"size": "14000000",
"type": "egress",

"mode": "dynamic"
)
"egress_lossless_pool": {

"size": "24000000",

"type": "egress",
"mode": "static"
}
}
"BUFFER_PROFILE": {
"ingress_lossless_profile” : {
"pool": "[BUFFER_POOLI|ingress_pool]",
"size": "1248",
"dynamic_th": "-3",
"xoff": "96928",
"xon" "1248",
"xon_offset" "2496"

I
"ingress_lossy_profile": {
"pool": "[BUFFER_POOLIingress_pool]",
"size": "0",
"static_th":"24000000"
)
"egress_lossless_profile": {
"pool": "[BUFFER_POOL|egress_lossless_pool]",
"size": "0",
"static_th": "24000000"
}

"egress_lossy_profile": {

"pool": "[BUFFER_POOL|egress_lossy_pool]",
"size": "1664",
"dynamic_th": "-1"

}
}

Listing 1: SONiC Buffer Configuration Example

Listing 1 gives a buffer configuration example of a SONiC
pizza box switch with 24 MB packet buffer. ingress_pool
has 18 MB (size) shared buffer for all the ingress queues, and
6 MB (xo0ff) PFC headroom buffer exclusively for ingress
lossless queues in the paused state. egress_lossy_pool and
egress_lossless_pool have 14 MB and 24 MB shared
buffer, respectively. It is worthwhile to notice that the sum of
pool sizes can be larger than the physical buffer limit, as they
are only virtual counters for admission control purposes.

Lossless packets are mapped to both ingress lossless queues
(ingress_lossless_profile) and egress lossless queues
(egress_lossless_profile). We use Dynamic Thresh-
old (DT) algorithm [40] to manage the buffer occupancy
of the ingress lossless queue in the 18 MB shared buffer
space of ingress_pool. DT algorithm is controlled by a
parameter called o, which is 1/8 (20v"@"ic-thy) in Listing 1.
Once the ingress lossless queue hits the dynamic threshold
(ox remaining buffer), it will enter the paused state (send
PFC pause frames) and start to use PFC headroom. All
the ingress lossless queues in the paused state share a 6
MB PFC headroom pool (xoff of ingress_pool). Each
ingress lossless queue can use up to 96928 bytes buffer
(xoff of ingress_lossless_profile) in the PFC head-
room pool. We bypass the egress admission control for loss-
less traffic by setting the static threshold of the egress loss-
less queue (static_th of egress_lossless_profile) to
24 MB, which equals to the switch buffer size.

In contrast, we only want to apply egress admission

40
== Intra-rack flow
= Inter-datacenter flow
30
m
Q
a
2
5 20
o
kel
o
]
10
0

0 10 20 30 40 50 60
Time (Second)

Figure 12: Goodput of two flows with different RTTs.

control for lossy traffic. To bypass ingress admission con-
trol for lossy traffic, we configure a sky-high static thresh-
old 24 MB (static_th of ingress_lossy_profile) for
each ingress lossy queue. Since lossy traffic can only
use 18 MB shared buffer space of ingress_pool, the
size of egress_lossy_pool should be no larger than 18
MB (size of ingress_pool). In Listing 1, the size of
egress_lossy_pool is 14 MB. This guarantees that ingress
lossless queues can exclusively use 4 MB shared buffer
(size of ingress_pool - size of egress_lossy_pool) in
ingress_pool before entering the paused state. We use DT
algorithm to manage the egress lossy queue length and set
o to 1/2 (28vmanic_thy Once the egress lossy queue hits the
dynamic threshold, its arriving packets will be dropped.

B DCQCN experiment results

We conduct an experiment in our lab testbed to demonstrate
the RTT fairness of DCQCN. Our lab testbed uses a four-
tier Clos topology like Figure 2. We use 80 km cables to
interconnect T2 switches to a RH switch to emulate a region.

In this experiment, we use two hosts A and B as senders and
a host C as the receiver. Each host is equipped with a Gen1 40
Gbps NIC. Host A and C are located within the same rack with
~2 us base RTT. In contrast, B is in another datacenter. The
base RTT across the RH switch is ~1.77 ms. On each sender,
we use ndperf to create a QP with the receiver and keep
posting 64 KB Write messages. Each QP can keep up to 160
in-flight Write messages, resulting in around 10 MB in-flight
data, which is enough to saturate the large inter-datacenter
pipe (40 Gbps x 1.77 ms = 8.85 MB). We set RED/ECN
marking parameters Kiin, Kigx and Ppqy to 1 MB, 2 MB and
5%, respectively.

As shown in Figure 12, two DCQCN flows achieve similar
goodput regardless of their RTTs. A flow can achieve around
17 Gbps goodput, which is close to half of the line rate. We
also keep polling queue watermark counters at the congested
switch and find queue watermarks oscillate around 1.36 MB,
which is smaller than K. This experiment demonstrates
that DCQCN does not suffer from RTT unfairness.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 67

Transparent GPU Sharing in Container Clouds for Deep Learning Workloads

Bingyang Wu* Zili Zhang*

*Peking University

Abstract

Containers are widely used for resource management in dat-
acenters. A common practice to support deep learning (DL)
training in container clouds is to statically bind GPUs to con-
tainers in entirety. Due to the diverse resource demands of
DL jobs in production, a significant number of GPUs are
underutilized. As a result, GPU clusters have low GPU uti-
lization, which leads to a long job completion time because
of queueing.

We present TGS (Transparent GPU Sharing), a system that
provides transparent GPU sharing to DL training in container
clouds. In stark contrast to recent application-layer solutions
for GPU sharing, TGS operates at the OS layer beneath con-
tainers. Transparency allows users to use any software to
develop models and run jobs in their containers. TGS lever-
ages adaptive rate control and transparent unified memory
to simultaneously achieve high GPU utilization and perfor-
mance isolation. It ensures that production jobs are not greatly
affected by opportunistic jobs on shared GPUs. We have built
TGS and integrated it with Docker and Kubernetes. Experi-
ments show that (i) TGS has little impact on the throughput
of production jobs; (ii) TGS provides similar throughput for
opportunistic jobs as the state-of-the-art application-layer so-
lution AntMan, and improves their throughput by up to 15x
compared to the existing OS-layer solution MPS.

1 Introduction

Containers [1-3] are widely used for resource management
in datacenters. Containers provide lightweight virtualization,
and can significantly reduce the complexity and cost of de-
ployments and managements in datacenters.

Deep learning (DL) is an important workload in data-
centers. With recent advancements in deep neural networks
(DNNG5) [4] and the burst of big data space, DL models have
been increasingly integrated into applications and online ser-
vices. Large enterprises build multi-tenant GPU clusters that
are shared by many teams to develop and train DL models.

A common practice to support DL training in container
clouds is to statically bind complete GPUs to containers.
When a GPU is allocated to a container, the container has
exclusive access to the GPU, which provides performance iso-
lation for production jobs. But it means that other containers

Zhihao Bai" Xuanzhe Liu* Xin Jin*
TJohns Hopkins University

Container 1 Container 2

ResNet Job Inception Job

TensorFlow O PyTorch

Rate Rate Unified
Monitor Control Memory

TGS
Host Operating System

Hardware

Figure 1: TGS architecture.

on the same machine cannot use the GPU when the GPU is
under-utilized or is even completely idle.

The major limitation of this approach is low resource uti-
lization. A recent study on a production GPU cluster by Mi-
crosoft shows that the mean GPU utilization is only 52% [5].
Another measurement on a production GPU cluster at Alibaba
shows even lower GPU utilization—the median GPU utiliza-
tion is no more than 10% [6]. However, due to exclusive GPU
allocation, incoming jobs have to wait in the queue to be
scheduled even when many GPUs are not fully utilized. This
causes a long job completion time for subsequent jobs.

This is a known problem in production GPU clusters [5, 6].
The problem can be addressed by GPU sharing to increase
GPU utilization. In production environments [6—8], DNN
training jobs are typically classified into two classes: produc-
tion jobs, which must run without much great performance
degradation caused by other jobs, and opportunistic jobs,
which utilize spare resources. It is natural to share GPUs
between the two classes of jobs to improve GPU utilization.
Yet, it is critical for production environments to ensure that
the impact of GPU sharing on production jobs is minimized.

GPU sharing solutions can be realized at either the appli-
cation layer or the OS layer. AntMan [6] is a state-of-the-art
application-layer solution. While AntMan can provide high
GPU utilization and performance isolation, it modifies DL
frameworks non-trivially and restricts users to use particu-
lar versions of given frameworks. NVIDIA Multiple Process

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 69

Sharing (MPS) [9] is an OS-layer solution. MPS requires
application knowledge to set resource limits for performance
isolation and does not support GPU sharing under GPU mem-
ory oversubscription. It merges several processes into a single
CUDA context, leading to fate sharing between jobs.

We present TGS, a system that provides transparent GPU
sharing to DL training in container clouds. Unlike application-
layer solutions, TGS works at the OS layer and realizes the
benefits of application-layer solutions at the OS layer without
the limitations of existing OS-layer solutions. Transparency
allows users to choose any version of any DL framework (ei-
ther TensorFlow, PyTorch or a custom framework) to develop
models and run jobs in containers.

The core of TGS is a lightweight indirection layer between
containers and GPUs. It intercepts the system calls from con-
tainers to GPUs and regulates the GPU resource usage for
concurrent jobs. TGS enables GPU sharing between the pro-
duction job and the opportunistic job, but largely isolates the
production job from contention.

There are two primary technical challenges in realizing an
OS-layer GPU sharing solution with performance isolation.
The first challenge is to share GPU compute resources be-
tween containers adaptively without application knowledge.
Inaccurately setting resource limits for each container would
either degrade job performance or leave resources unused.
MPS and MIG require application knowledge to manually set
resource limits. TGS applies an adaptive rate control approach
to address this challenge without application knowledge. It
monitors the performance of production jobs at runtime, and
adaptively updates the resource allocation to opportunistic
jobs. The control loop automatically converges to the point
that opportunistic jobs utilize as many resources as possible
without much affecting production jobs.

The second challenge is to enable transparent GPU mem-
ory oversubscription. GPUs have their own memory to keep
the application state. MPS fails when the total GPU mem-
ory required by containers exceeds the GPU memory size.
AntMan uses a custom memory management component in
DL frameworks to manage memory swapping between GPU
memory and host memory at the application layer. We design
a transparent unified memory mechanism based on CUDA
unified memory to enable unified memory at the OS layer,
obviating the need to explicitly modify applications. This
mechanism manages memory swapping underneath when the
GPU memory is oversubscribed. TGS leverages placement
preferences to ensure that GPU memory is prioritized for
production jobs to protect their performance.

In summary, we make the following contributions.

* We propose TGS, a system that provides transparent GPU
sharing for DL training in container clouds.

* We design adaptive rate control and transparent unified
memory mechanisms to simultaneously achieve high GPU
utilization and performance isolation.

* We implement TGS and integrate it with Docker and Ku-
bernetes. Experiments show that (i) TGS has little impact
on the throughput of production jobs; (ii) TGS provides
similar throughput for opportunistic jobs as state-of-the-
art application-layer solution AntMan and improves their
throughput by up to 15x compared to existing OS-layer
solution MPS.

2 Background and Motivation

In this section, we first introduce containers, deep learning
training, and the current practice to support deep learning
training in container clouds. Then, we show the limitations of
existing solutions to motivate TGS.

2.1 Container Clouds

Containers [1-3] (e.g., Docker) are used widely to manage
resources and deploy workloads in datacenters, and provide
portability and isolation. A container is a standalone software
package including everything needed to run an application.
A containerized application can run across various environ-
ments without any modifications. Such portability enables
developers to use the tools and application stacks of their
choice to develop and run their applications, without worry-
ing about deployment environments. Applications in different
containers are isolated by using independent namespaces.
Containers are lightweight, compared with virtual ma-
chines. Virtual machines use a guest OS, but containers use
the host OS kernel. Thus, applications can achieve bare metal
performance when running in containers. Cloud operators use
a container orchestration platform [10, 11] to provision, man-
age and update containers on many machines in a datacenter.

2.2 DL Training Workloads

DL training uses a dataset to train a DNN model. A train-
ing job contains many iterations. Each iteration uses a batch
of samples from the dataset to train the DNN model. An it-
eration includes a forward pass and a backward pass. The
forward pass uses the DNN model to compute the labels of
the samples in the batch. A loss is computed based on the
output labels and the actual labels using a loss function. The
backward pass propagates the loss from the last layer to the
first layer of the DNN model and computes the gradients for
each weight. The DNN model is updated based on the gradi-
ents using an optimizer. DL training is compute-intensive, so
GPUs are typically used. However, widely-adopted exclusive
GPU allocation leads to low GPU utilization in production,
as reported by Microsoft [5] and Alibaba [6].

2.3 Limitations of Existing Solutions

A natural way to increase GPU utilization is GPU sharing.
If a single container cannot utilize all the GPU resources, a
GPU can be shared by multiple containers to increase GPU
utilization. However, containers on a shared GPU will com-
pete for compute and memory resources of the GPU, and the
interference can slow down the jobs.

70 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

AntMan [6] Salus [12] PipeSwitch [13] MPS [9] MIG [14] TGS
Transparency v v v
High GPU utilization v v v
Performance isolation v v v v v v
Fault isolation v v v v

Table 1: Comparison between TGS and existing GPU sharing solutions.

GPU sharing can be done either at the application layer
or the OS layer. The primary drawback of application-layer
solutions [6, 12, 13] is that they are not transparent to users,
i.e., they require significant modifications to DL frameworks.
Users are restricted to use the set of supported versions of
given frameworks and have to wait for the integration if a
newer version of a particular DL framework comes. This
approach loses the advantage of allowing users to use any
tools to develop and run applications in containers.

NVIDIA MPS [9] is an OS-layer solution for GPU sharing.
It requires application knowledge to properly set the resource
limit for each process to ensure performance isolation. More
importantly, MPS requires the total GPU memory of the pro-
cesses to fit within the GPU memory capacity and relies on
applications to handle memory swapping between GPU mem-
ory and host memory. Another limitation of MPS is that it
does not provide fault isolation. MPS merges the CUDA con-
texts of multiple processes into a single CUDA context to
share the GPU. When a process fails, it leaves the MPS server
and other processes in an undefined state and may result in
process hangs, corruptions, or failures.

NVIDIA Multi-Instance GPU (MIG) [14, 15] is another
OS-layer solution. MIG requires GPU hardware support
and is currently only available on three high-end GPUs, i.e.,
NVIDIA A100, NVIDIA A30, and NVIDIA H100. MIG can-
not arbitrarily partition a GPU based on application needs; it
only supports GPU partitioning for a given set of configura-
tions. For example, an NVIDIA A100 GPU can be partitioned
into GPU instances with separate compute and memory re-
sources for different DL training jobs, but MIG only provides
seven fixed configurations for each GPU instance and each
GPU instance cannot use more than 4/7 of the GPU compute
resources or half of the GPU memory resources. Furthermore,
it cannot dynamically change GPU resources owned by GPU
instances if there are running jobs on the GPU even if the
GPU usage of a container changes. Reconfiguration of MIG
can only happen when the GPU is idle. MIG does not support
memory oversubscription.

3 TGS Overview

TGS is a GPU sharing system for deep learning training in
container clouds that is designed to meet the following goals.
Table | compares TGS with existing GPU sharing solutions
regarding these four goals.

* Transparency. The system should be transparent to appli-
cations so that users can use any software to develop and
train DNN models in containers.

* High GPU utilization. The system should achieve high
GPU utilization for both compute and memory resources.

* Performance isolation. The system should provide perfor-
mance isolation for DL jobs. Production jobs should not be
significantly affected by opportunistic jobs.

 Fault isolation. Application faults should be isolated by
containers. The fault of an application in one container
should not crash applications in other containers.

Architecture. Figure | shows that TGS is an OS-layer ap-
proach: it sits between containers and GPUs. Containers and
applications are unaware of TGS. Users can use any custom
framework to develop and train DNN models. A GPU is ex-
posed as a regular GPU to the containers. The processes in
the containers issue GPU kernels, i.e. functions executed on
the GPU, to the GPU as they do with a dedicated GPU. TGS
uses a lightweight indirection layer to share the GPU between
workloads of several containers. The indirection layer inter-
cepts the GPU kernels from containers and regulates these
GPU kernels to control the resource usage of each container.

Key ideas. TGS leverages an adaptive rate control mecha-
nism and a transparent unified memory mechanism to tackle
two challenges in providing transparent GPU sharing at OS
layer. The first challenge is to adaptively share GPU compute
resources between containers without application knowledge.
To address this challenge, the rate monitor of TGS monitors
the performance of each container, and provides the number
of CUDA blocks (a basic scheduling and execution unit on
the GPU) as a real-time signal for the control loop. Based on
the signal, the rate control of TGS adaptively controls the rate
of sending GPU kernels to the GPU for each container. The
control loop automatically converges to the point that oppor-
tunistic jobs utilize as many remaining resources as possible
to achieve high GPU utilization without greatly affecting the
performance of production jobs.

The second challenge is to enable transparent GPU mem-
ory oversubscription. AntMan [6] modifies DL frameworks
to swap GPU memory when GPU memory is oversubscribed.
OS-layer solution MPS does not support GPU memory over-
subscription, and relies on applications to handle memory
swapping. These approaches are not transparent. To address
this challenge, TGS exploits CUDA unified memory [16]
which unifies GPU memory and host memory in a single

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 71

memory space. TGS intercepts and redirects GPU memory
allocation calls from containers to the CUDA unified memory
space. When the GPU memory is oversubscribed, TGS can
automatically evict some data of opportunistic jobs to the host
memory, and change the mapping of the corresponding virtual
addresses to the new data locations in the host memory. The
entire process is transparent to applications. To ensure perfor-
mance isolation, TGS uses memory placement preferences to
prioritize allocating GPU memory for production jobs over
opportunistic jobs.

The design of TGS has two other benefits. First, the archi-
tecture is lightweight. TGS has low overhead and conforms
with the principle of containers. Second, TGS provides the
same fault isolation property as regular containers. The con-
tainers in TGS use separate GPU contexts, as opposed to MPS
which merges the CUDA contexts of the containers into one.
Therefore, an application fault in one container does not affect
or terminate other containers.

4 TGS Design

In this section, we present the design of TGS. We first describe
the adaptive rate control mechanism to share GPU compute
resources. Then we describe the unified memory mechanism
to share GPU memory resources.

4.1 Sharing GPU Compute Resources

Application code is encapsulated into functions to be executed
on a GPU, which are known as GPU kernels. GPU kernels
are highly optimized based on the particular architecture and
execution model of the GPU. A small DNN training job may
not use all the compute resources of a GPU. In this case, the
GPU has low utilization if it is exclusively allocated to the
container of the job. TGS improves GPU utilization by GPU
sharing. In TGS, a GPU can be exposed to and shared by
multiple containers to increase GPU utilization.

TGS ensures the performance of production jobs is not
greatly affected by opportunistic jobs. Opportunistic jobs use
no more than the resources left by production jobs. To achieve
this, we need to solve two problems. First, we need to estimate
how many resources are left by production jobs. Second, we
need to control opportunistic jobs to use no more than the
remaining resources.

Strawman solution: priority scheduling. A strawman so-
lution is priority scheduling. It intercepts the GPU kernels
from containers and puts them into a production queue and
an opportunistic queue based on the priority of the job. The
kernels in the opportunistic queue are only scheduled to the
GPU when the production queue is empty. In this solution,
whether there are remaining resources is estimated by check-
ing whether the production queue is empty, and controlling
the resource usage of opportunistic jobs is achieved by priori-
tizing the scheduling of the kernels in the production queue.
This is a canonical solution to performance isolation and high
utilization, and has been widely used in computer systems.

GPU kernels from GPU kernels from
high-priority jobs low-priority jobs

l Qin l ﬁin

rfiar __reportai, ' Queue kernels
in and adapt £,
Tout %\AA Bin

Figure 2: Adaptive rate control.

However, this solution is not suitable for GPU sharing.
An empty production queue for GPU jobs does not mean
production jobs are not using the GPU. A GPU kernel is an
optimized GPU function that runs for some time. The GPU
kernels scheduled in the past may still be running on the GPU,
while the production queue is empty. Similarly, an empty
queue also cannot tell how many resources on left on the
GPU. Therefore, if the kernels in the opportunistic queue
are sent to the GPU and the production jobs are using most
of the GPU resources, then the GPU kernels from both jobs
would contend with each other, which incurs large overhead
for production jobs. Keeping track of GPU kernels running
on the GPU is also not feasible, because the state of the GPU
is not fully visible.

It may be possible to implement a priority scheduler into
the GPU device driver, so that the scheduler can have full
visibility of the resource usage and can perform fine-grained
control. This solution is not general. It is tightly tied to the
low-level GPU specifics and requires deep integration with
each type of GPU based on their architecture and execution
model. Some GPUs are blackboxes and do not expose such
control to the OS.

Our solution: adaptive rate control. TGS uses an adaptive
rate control approach (Figure 2). The main idea is to carefully
control the dequeuing rate of the kernels in the opportunistic
queue based on the kernel arrival rate, so that opportunistic
jobs can use up the remaining compute resources without
greatly affecting the production job. This is a general OS-
layer approach: it is decoupled from low-level GPU specifics
and does not require access to GPU internal control.

This approach requires a feedback signal to tell the control
loop whether the dequeuing rate of the opportunistic queue
can be increased to use more resources or should be decreased
to avoid degrading production jobs. Ideally, we want to use
the application performance, i.e., the training throughput for
DL training workloads, as the feedback signal, because this
is the metric we ultimately care about. However, we cannot
directly obtain the training throughput, because this requires
application knowledge, and we aim to design an OS-layer
solution that is transparent to applications.

One choice of the signal is GPU utilization, i.e., increase the
rate if the GPU utilization is below 100%. While this choice

72 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

) GPU is not EinT o flat part
L fully utilized GPU under R
R f ' . contention 0 Bout
: \ (b) Special case 1.
' Ain I no decreasing part
0 . R
B* Bout

0 Bout

(a) General case. (c) Special case 2.

Figure 3: Relationship between the rates of production and oppor-
tunistic jobs.

seems natural, it has two drawbacks. First, the definition of
GPU utilization is hardware-specific and is often vague [17].
Today’s GPUs contain different types of compute units on a
single chip, e.g., Tensor cores and CUDA cores for different
data types on NVIDIA GPUs. GPU utilization reported by
GPU drivers (if supported) often lacks a precise definition.
Even if it does (e.g., the percentage of stream processors
that are used), it is unclear what a single utilization value
actually means for a GPU with several types of compute
units. Second, GPU utilization is only loosely coupled with
the application performance. Even when the reported GPU
utilization is below 100%, it does not mean we can increase
the dequeuing rate of the opportunistic queue without slowing
down production jobs. For example, a production job and an
opportunistic job may compete for the same type of compute
units that are already used up by the production job alone,
though there are other types of compute units that are idle;
two jobs may also compete for other resources than the one
captured by GPU utilization.

In TGS, we use the kernel arrival rate of production jobs
(i.e., the rate that TGS receives kernels from the containers)
as the feedback signal. A DL training job constructs a com-
pute graph based on the DNN model for its training process.
It uses the compute graph to generate and send kernels to
the GPU to perform training. The compute graph captures
the dependencies between the kernels. The kernel arrival rate
directly corresponds to the training throughput. If the training
is slowed down, the kernels are finished slower, the depen-
dencies are satisfied slower, and the kernel arrival rate drops.
Therefore, TGS uses a rate monitoring module to monitor
the kernel arrival rate of production jobs, and uses it as the
feedback signal to control the kernel dequeuing rate of oppor-
tunistic jobs. Note that any contention between production
jobs and opportunistic jobs can be captured by this kernel
arrival rate, including GPU cache contention, CPU contention
and network contention. Some of them are beyond what a
GPU hardware design can control, and TGS uses rate control
as a knob to control all of them. Since there can be a small
variance in the kernel arrival rate, TGS uses a moving average
to smooth the estimation of the kernel arrival rate. For the
kernels from production jobs, TGS only performs a simple
counting operation to estimate the kernel arrival rate. It does

not queue the kernels and directly passes them to the GPU, to
minimize the impact on the performance of production jobs.

Rate adaptation algorithm. The rate adaptation algorithm
controls the kernel dequeuing rate of the opportunistic queue,
so that the kernel arrival rate of production jobs is not greatly
affected and the kernel dequeuing rate of opportunistic jobs
is maximized. Formally, let o;, and o, be the rates that the
kernels of production jobs arrive at and departure from TGS
respectively, and 3;, and B,,, be those of the opportunistic
jobs. TGS only monitors, but does not limit the rate of pro-
duction jobs. So i, = Ol Let the kernel arrival rate of
production jobs when the GPU is not shared be R. The rate
control algorithm is to maximize [, so that o;; = R. In the
formulation, B, is the variable controlled by the algorithm
and o, is dependent on B,,,. Let f be the function that cap-
tures the relationship between o, and By, i.€., O, = f(Bour)-
Then the algorithm has to solve the following optimization
problem.

max Bour (D
s.t. Oy = f(Bout) 2 R (2)
Bour >0 (3)

The exact shape of f(B,,) is unknown, but we know its
rough shape by the nature of the problem. Specifically, f(Bour)
is flat and is equal to R when [, is small, and is monoton-
ically decreasing when B, is large, as illustrated in Fig-
ure 3(a). The intuition is that when B, is small, the GPU is
not fully utilized and executing the kernels of opportunistic
jobs does not affect the performance of production jobs, re-
sulting in a flat line; after the tipping point 3*, opportunistic
jobs start to compete with production jobs for GPU resources,
causing the performance of production jobs to drop. Note that
the monotonically decreasing part is not necessarily linear;
Figure 3(a) illustrates the general trend that o, decreases
when B,,, increases. The goal of the algorithm is to find the
tipping point B* from which f(B,,) starts to decrease.

Figure 3(a) is the general case. There are two special cases.
Figure 3(b) is the special case where the GPU is already fully
utilized by production jobs, so that even executing a small
number of kernels for opportunistic jobs would degrade the
performance of production jobs. In this case, the line does
not have a flat part. Figure 3(c) is the special case where
the demand of opportunistic jobs is very small, so that even
when the dequeuing rate is not limited, the performance of
production jobs is not affected. In this case, the line does not
have a monotonically decreasing part.

To approximate the optimal B,,;, we use the canonical
additive increase multiplicative decrease (AIMD) method to
control the rate B, as shown in Algorithm 1. Specifically,
TGS first measures the rate R of a production job on a GPU
before it adds an opportunistic job to the GPU for sharing (line
1 —3). After the opportunistic job is added, TGS additively
increases By, if O, is greater than or equal to R (line 24 —

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 73

25), or multiplicatively decreases Py, if 0, is below R (line
29 —30). AIMD ensures that B,,, can approximately converge
to the tipping point B*. To accelerate convergence, a slow start
phase is adopted (line 17 —22). Experiments in §6 shows that
the convergence is fast. When the production job changes its
resource usage pattern, TGS detects that the variance of R
is beyond a threshold. In this case, the rate control module
suspends the opportunistic job and measures new R (line
26 — 28). When R becomes stable, the rate control module
uses AIMD to adjust B, to the tipping point. We have the
following theorem to ensure the convergence of the adaptive
rate control algorithm at most cases.

Theorem 1 Assuming DL jobs are stable during the profiling
phase and the convergence phase, the adaptive rate control
algorithm converges in O(Blog B) function calls, where B is
the throughput limit of jobs in the GPU.

The proof of the theorem is in Appendix A. The proof is
based on the stability of the deep learning training workload.
For readers familiar with congestion control in computer net-
working, our problem resembles the bandwidth allocation
problem when multiple flows compete for the bandwidth re-
sources of a shared link. In bandwidth allocation, each flow
uses a congestion control algorithm to control its own rate,
and after the system converges, each flow gets a fair share
of the link bandwidth. Our problem is subtly different from
bandwidth allocation in that we do not limit the rate of pro-
duction jobs, and only control the rate of opportunistic jobs to
ensure that the performance of production jobs is not greatly
affected by resource sharing.

4.2 Sharing GPU Memory Resources

GPUs have GPU memory that is separated from the host mem-
ory. The memory size in modern GPUs ranges from a few GB
to tens of GB. GPU memory stores the state and data needed
by applications to perform their computation on the GPU. The
compute units in the GPU can access the GPU memory much
faster than the host memory. The GPU device driver exposes
the GPU memory to users with an API, which is similar to
the memory management API for the host memory. Users use
the API to allocate and manage GPU memory for their GPU
programs, e.g., cudaMalloc for GPU memory allocation on
NVIDIA GPUs. Similar to GPU compute resources, the GPU
memory can be shared by multiple containers when a single
container cannot utilize all the GPU memory resources.

Strawman solution: pass-through allocation. A strawman
solution is to directly pass the GPU memory allocation calls
from containers to the GPU. In this way, the GPU memory is
fully utilized as long as there is enough demand from contain-
ers. The major limitation of this solution is that it has large
overhead for production jobs. In this solution, when produc-
tion jobs do not use all the GPU memory, opportunistic jobs
can obtain the remaining memory. Later, if the production job
wants to allocate more GPU memory, they would not be able

Algorithm 1 Adaptive Rate Control Algorithm

1: procedure INIT

2: R = measure_high_prio_job_rate()
3 Bom =0

4: state = SLOW _START

5:

6: procedure UPDATE_HIGH_RATE

7: Ruvg = avg(high_rate_window)

8: dR = |R—Ruv|/R

9: if dR < R_threshold then
10: R = max(R,Ruvg)
11: else
12: R = measure_high_prio_job_rate()
13:

14: procedure UPDATE_LOW_RATE_LIMIT
15: do.=|R—di,|/R

16: switch state do

17: case SLOW_START :

18: if do. < thresholdygy, stqre then
19: Bnut * = 8SS

20: else

21: Bou / = 8ss

22: state = CA

23: case CA :

24: if do. < threshold; then

25: Bout“" = 8AI

26: else if do. > threshold, then
27: Bour =0

28: state = SLOW _START
29: else

30: B()ut * = 6MD

to do so because the remaining memory has been allocated
to opportunistic jobs. Without sufficient GPU memory, pro-
duction jobs may run at a lower speed, or even fail, which
violates fault isolation.

Another limitation of this solution is that it does not con-
sider the characteristics of DL frameworks. When starting a
job, some DL frameworks (e.g., TensorFlow) claim all the
available GPU memory even if the training job does not re-
quest that much memory. These DL frameworks typically
have a memory pool that caches all the allocated memory, and
give the memory to the training job on demand. They do not
free and return the allocated memory back to the GPU when
some memory is not used. This is an optimization in these
DL frameworks to avoid the overhead of frequently calling
GPU memory to allocate and release during a job.

This optimization introduces challenges to sharing the GPU
memory. Application-layer solutions like AntMan [6] can
directly modify DL frameworks to obtain the memory usage
of training jobs and disable unnecessary memory caching to
return unused GPU memory back to the GPU. However, to
design a transparent OS-layer solution, modifications on DL
frameworks or applications are not allowed.

Our solution: unified GPU and host memory. Modern
GPUs provide a feature called unified memory which uni-
fies GPU memory and host memory in a single address space.
Unified memory is traditionally used by applications to sim-
plify GPU memory management. TGS applies CUDA unified

74 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

memory [16] in a novel way: it uses CUDA unified memory
allocation as an indirection of GPU memory allocation, in
order to achieve transparency and performance isolation for
GPU memory sharing. Specifically, TGS exposes CUDA uni-
fied memory as pseudo GPU memory to containers. When a
container issues a GPU memory allocation call, whether the
call is for regular GPU memory or CUDA unified memory,
TGS intercepts this call and allocates the memory requested
by the call in the CUDA unified memory space. When pro-
duction jobs do not use up the GPU memory, opportunistic
jobs can obtain the remaining GPU memory.

Pseudo GPU memory refers to that the allocated memory
appears to be normal GPU memory to containers and appli-
cations, while it can actually come from either GPU memory
or host memory depending on availability. Note that we do
not change the virtual memory system. Pseudo memory is
still virtual memory, and applications use virtual memory
addresses to access allocated pseudo memory. A GPU/host
virtual memory address is translated to a GPU/host physical
memory address by the GPU/host memory management unit.

The transparent unified memory in TGS is different from
the original CUDA unified memory in two aspects, which are
(1) performance isolation and (ii) transparent oversubscription
of GPU memory. To provide performance isolation, TGS uses
placement preferences in CUDA unified memory to priori-
tize the allocation of GPU memory to production jobs. When
the GPU memory is not full, the memory allocation requests
from any job get the GPU memory. When the GPU memory
is full, TGS tries to place the blocks of production jobs in the
GPU memory, and evict the blocks of opportunistic jobs to
the host if necessary. This is transparent to the containers, as
the containers still use the same virtual memory addresses
to access their allocated memory space. The virtual mem-
ory addresses are translated to physical memory addresses at
different locations. This mechanism also does not introduce
additional out-of-memory (OOM) faults, because in the view
of DL training jobs, the GPU memory capacity is the same as
the size of the original GPU memory.

The transparent unified memory in TGS also addresses
the issue of overclaiming the GPU memory in existing DL
frameworks, without modifications to DL frameworks. When
the DL framework claims all the available GPU memory, TGS
allocates the requested amount of memory from the CUDA
unified memory space. The actually used memory would
trigger GPU page faults and be swapped to the GPU memory
when it is used for the first time, and then would reside in
the GPU memory. Consequently, only the portion actively
used by the training job is in the GPU memory; the remaining
portion is in the host memory. This allows opportunistic jobs
to efficiently share the GPU memory.

S Implementation

We have implemented a system prototype for TGS with
~3000 lines of code in C++ and Python, and integrated it

with Docker and Kubernetes. A coordinator process takes
charge of resource management and leverages the indirec-
tion layer of TGS to enable GPU sharing between containers.
Specifically, the adaptive rate control and the transparent uni-
fied memory provided by TGS are used for GPU sharing.
The code of TGS is open-source and is publicly available at
https://github.com/pkusys/TGS.

Adaptive rate control. TGS intercepts CUDA driver API
calls related to CUDA kernel launch from containers for rate
monitoring and rate control. Because CUDA kernel launch
may be evoked by multiple threads in the container, TGS
uses a global counter to record the number of CUDA blocks
launched in a given time period. A CUDA block is a group of
threads that must execute in the same SM (Streaming Multi-
processor) and different CUDA blocks can run independently
in parallel. As the number of a CUDA block that a kernel
contains is specified in the CUDA driver API call, the number
of pending CUDA blocks can be treated as a real-time signal
to estimate the performance of production jobs. For a produc-
tion container, a standalone thread serves as the rate monitor,
which reads this counter of the TGS periodically and sends
the value to the rate-control component of the opportunistic
container on the same GPU. For an opportunistic container,
a rate control thread is created when the CUDA driver starts
to work. The rate control thread adjusts the rate limit of the
opportunistic container according to the received statistics.
To keep the kernel launch rate of the opportunistic container
at a desirable value, all CUDA kernel launch API calls are
redirected to the rate control component first. The rate control
component accesses statistics generated by the rate monitor
to examine whether the rate limit is satisfied and defers the
kernel launch if the rate of the opportunistic container exceeds
the rate limit.

Unified memory management. To implement transparent
memory sharing, TGS intercepts CUDA driver API calls re-
lated to GPU memory allocation, such as cuMemAlloc, and
replaces these calls with unified memory allocation calls us-
ing cuMemAllocManaged. We use cuMemAdvise to prioritize
the allocation of GPU memory for production containers.
Specifically, we use cuMemAdvise to set the preferred lo-
cation of memory allocation as the current GPU to avoid
eviction for production containers. When the production con-
tainer finishes, the indirection layer in the opportunistic con-
tainer would use CUDA driver API cuMemPrefetchAsync to
prefetch memory located in the host memory transparently.

6 Evaluation

Setup. Most experiments are conducted on a server ma-
chine configured with an Intel Xeon Silver 4210R CPU, two
NVIDIA A100 40 GB PCle GPUs and 126 GB host mem-
ory. AntMan [6] only open-sourced one particular version
based on TensorFlow 1.15.4 and the version is not compatible

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 75

https://github.com/pkusys/TGS

@ TGS BN Co-execution HEE MIG
E== Exclusive HIll MPS

@ TGS

ShuffleNet MobileNet
(Production, (Opportunistic,
PyTorch) PyTorch)

(a) Low-contention scenario.

BN Co-execution HEE MIG Low contention
E== Exclusive lllll MPS

ResNet-50
(Production,
PyTorch)

(b) High-contention scenario.

High contention
100

X
c 80
kS
Ag 60
© 40
[}
< 20
ShuffleNet 5
(Opportunistic, GU 5 10 15 20
PyTorch) Job Duration Ratio

(¢) JCT reduction of TGS over Exclusive.

Figure 4: Throughput of production and opportunistic jobs for different model pairs when GPU memory is sufficient.

B TGS BN Co-execution HEE MIG EEE TGS BN Co-execution HEE MIG ~—_ Low contention High contention
E== Exclusive Hllll MPS E== Exclusive Hllll MPS g\‘il
g2 1o g3 1o 50
=560.75 55075 B 60
g3 05 €3 05 3 40
- = q)
S20.25 gﬁo.z(s) g 50
ResNet-50 DLRM Bert-Base DLRM b
(Production, (Opportunistic, (Production, (Opportunistic, 00 5 10 15 20
PyTorch) PyTorch) PyTorch) PyTorch) Job Duration Ratio

(a) Low-contention scenario.

(b) High-contention scenario.

(c) JCT reduction of TGS over Exclusive.

Figure 5: Throughput of production and opportunistic jobs for different model pairs under GPU memory oversubscription.

with A100. Therefore, all experiments involved in Tensor-
Flow are conducted on an AWS p3.2xlarge instance which
is configured with eight Intel Xeon Scalable (Skylake) vC-
PUs, one NVIDIA V100 16 GB Tensor Core GPU and 61 GB
host memory. The software environment includes NVIDIA
driver 460.91.03, CUDA 11.2, Docker 20.10.5, PyTorch 1.9.0,
TensorFlow 1.15.4, torchvision 0.10.0 and scipy 1.6.3.

Workloads. We use various models for evaluation. The
models include ShuffleNet, MobileNet, GCN (Graph Con-
volutional Network), ResNet-50, BERT-Base, DLRM (Deep
Learning Recommendation Model) and ESPnet2. These mod-
els are representative and widely-used, and are standard bench-
marks for evaluating DL systems. They vary in terms of GPU
resource usage, which allows us to evaluate TGS under differ-
ent levels of GPU resource contention.

Comparison. To demonstrate the benefits of TGS, we com-
pare the following mechanisms in the experiments. Each job
runs in a separate container. We use throughput (iterations
per second) as the main metric to evaluate the performance of
different mechanisms, because it is a direct metric of a job’s
speed. We run at least 100 seconds for each case to measure
the variance of the throughput, which typically includes 2000
iterations of a DL training job. Because a DL training job
performs the same computation for each iteration (only the
input data is different), the variance is low. We also use job
completion time (JCT), but it depends both on the throughput
and the number of iterations. The latter is configured by the
user and varies from job to job.

* TGS. This is the proposed system.

* Exclusive. The production and opportunistic jobs are given
exclusive access to a GPU when they run.

* Co-execution. The production job and the opportunistic
job are executed concurrently without TGS.

* NVIDIA MPS. The production job and the opportunistic
job run concurrently with NVIDIA MPS. We manually find
the appropriate resource limit to set for each job in MPS
to ensure that the performance of the production job is not
affected by the opportunistic job.

* NVIDIA MIG. We manually set the best configuration to
partition GPUs into different GPU instances so that the
performance degradation of the production job brought by
the opportunistic job is minimal.

Due to the compatibility issue of AntMan [6], we compare it
with TGS in §6.7.

6.1 Adaptive Rate Control

TGS uses an adaptive rate control approach to allocate GPU
compute resources between containers in order to simultane-
ously achieve high GPU utilization and performance isolation.
In this experiment, we show that TGS packs an opportunistic
job with a production job on a GPU to increase GPU uti-
lization when the production job cannot use up all the GPU
resources, and that the overhead of the production job is 5%
to 10.8%. We use two different pairs of DNN models for
the production job and the opportunistic job to evaluate TGS
under different scenarios of resource contention. In this ex-
periment, the total required GPU memory of the two jobs
does not exceed the GPU memory capacity. This allows us to
focus on evaluating the effectiveness of adaptive rate control.
In the experiment, the two jobs arrive at the same time, and
we measure the throughput for each job. To clearly show the
difference between the five mechanisms, we normalize the
throughput of each mechanism to that of Exclusive.

76 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

100

00
EEE TGS E=Em Exclusive BN Co-execution = TGS
80 Exclusive 80
01.25 === Co-execution
- w 60 w 60
o9 1.0) 3
£80.75 40 40 — tes
© .
ég 0.5 20 20 . Exclusive
20.25 = Co-execution
0.0 0.5 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0

0 Production
(a) Average JCT.

Opportunistic

Normalized JCT
(b) CDF of production jobs.

Normalized JCT

(c) CDF of opportunistic jobs.

Figure 6: Performance comparison under a mixed workload job stream.

Figure 4a compares the performance of the five mecha-
nisms when the production job trains ShuffleNet with batch
size 4 and the opportunistic job trains MobileNet with batch
size 4. These two models are small, so this case has low
resource contention, and the throughput of the production
job and the opportunistic job is almost the same for the five
mechanisms. The overhead of TGS is 5%.

Figure 4b shows the results when the production job
trains ResNet-50 with batch size 24 and the opportunistic job
trains ShuffleNet with batch size 64. Both models are more
computation-intensive than the models in Figure 4a. Thus,
this case has a higher resource contention. TGS and MPS
provide higher performance of the production job compared
to Co-execution, because TGS and MPS control the resource
allocation. Co-execution does not provide performance isola-
tion, so the contention with the opportunistic job causes the
throughput of the production job to reduce to 57% of that
under Exclusive. The opportunistic job gets more resources
than it should get by contending with the production job un-
der co-execution. Thus the throughput of the opportunistic
job under co-execution is high. TGS incurs 10.8% overhead
for the production job although the resource contention is
high. The performance provided by MPS is also comparable
with TGS, although MPS sacrifices fault isolation. MIG only
provides limited configurations for each GPU instance. On
an NVIDIA A100 GPU, each GPU instance can only use at
most one half of the total GPU memory and 4/7 of total SMs
for GPU computation when a GPU is partitioned into two
instances. In the high contention scenario, when the produc-
tion job needs more GPU SMs than 4/7 for computation, the
performance of the production job suffers, and is reduced to
77% of that under Exclusive. The opportunistic job gets more
resources than it should, so its throughput is quite high.

While TGS protects production jobs from high contention
caused by the opportunistic job, some sharing overhead is
inevitable. In terms of throughput, Exclusive slightly outper-
forms TGS, because Exclusive runs DL models exclusively
on the GPU. However, in this case, opportunistic jobs have to
wait until the completion of the production job before execu-
tion. This leads to longer JCT for opportunistic jobs. Figure 4c
shows that as the ratio of the job duration of the production
job to that of the opportunistic job becomes larger, TGS can
significantly reduce the queuing delay and thus speed up the

opportunistic job over Exclusive. When the ratio is 20, TGS
can reduce the JCT of the opportunistic job by 95% than
Exclusive at the low-contention scenario and by 47% at the
high-contention scenario.

6.2 Unified Memory Management

In this experiment, we show that TGS provides high GPU
utilization and performance isolation for GPU sharing even
when the GPU memory is oversubscribed. We use two dif-
ferent pairs of DNN models to evaluate TGS under different
scenarios. To oversubscribe the GPU memory, we use DLRM
as the model of the opportunistic job for both pairs. DLRM
is a large recommendation model with high GPU memory
consumption. Similar to previous experiments, two jobs arrive
at the same time, and we measure the throughput of each job.
To clearly show the differences between the five mechanisms,
we normalize the throughput of each mechanism to that of
Exclusive for each job. Because MPS and Co-execution do
not support GPU memory oversubscription, we modify the
DL frameworks to use unified memory to evaluate them.
Figure 5a compares the performance of the five mecha-
nisms when the production job trains ResNet-50 with batch
size 16 and the opportunistic job trains DLRM with batch
size 2048. The overhead of TGS is 2.3% compared to Ex-
clusive. Co-execution has lower throughput due to resource
contention. While MPS can set resource limits for SM usage,
it cannot prioritize GPU memory allocation, and the two jobs
contend for GPU memory resources when the GPU memory
is oversubscribed. This causes significant memory swapping
between GPU memory and host memory for both jobs, which
degrades the performance of the production job under GPU
memory oversubscription. MIG can partition the GPU mem-
ory resources, but it cannot provide sufficient GPU SMs with
the production job due to the configuration constraints. There-
fore, the performance of the production job under MIG is
lower than that of Exclusive and TGS. In terms of the oppor-
tunistic job, Co-execution and MPS have lower throughput
due to GPU memory contention. TGS improves the through-
put by 7.8 x over MPS for the opportunistic job by prioritizing
memory allocation. MIG cannot partition GPU memory flexi-
bly. The GPU instance of the opportunistic job can only use
one half of the GPU memory to maintain performance of the
production job. Therefore, the throughput of the opportunistic

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 77

B Without TGS E=8 With TGS

OI I l

[

Normalized
Throughput
o
(0]

0.0 ResNet-50 BERT-Base
(a) Different DNN models.
1 I Without TGS E= With TGS

Normalized
Throughput
o
(0]

OI I l

BS=16 BS=32
(b) Different batch sizes.

o
o

Figure 7: System overhead of TGS.

job under MIG is even lower than that of Co-execution and
MPS.

Figure 5b shows the results when the production job trains
BERT-Base with batch size 4 and the opportunistic job trains
DLRM with batch size 256. BERT-Base is more computation-
intensive than ResNet-50, and thus there is heavier contention.
TGS maintains the performance as Exclusive with 12.3%
overhead for the production job. Due to heavier contention,
Co-execution and MPS perform worse for the production job.
Due to more GPU compute resource demand, MIG performs
also worse. TGS improves the throughput by 36 x over Co-
execution, 72 x over MPS, and 1.5x over MIG for the produc-
tion job. TGS also performs the best for the opportunistic job
compared to MIG, MPS and Co-execution. They are slower
due to resource contention and simply use unified memory
without leveraging priority information. For the opportunistic
job, TGS improves the throughput by 24 x, 15X and 259 %,
compared to co-execution, MPS, and MIG, respectively.

Exclusive provides all GPU resources to the production
job, even though GPU resources are not fully utilized. As a
result, the opportunistic job has a long queuing time—it has to
wait for the production job to finish before it can be executed.
As shown in figure 5c, when the ratio of the job duration of
the production job to that of the opportunistic job reaches 20,
TGS reduces the JCT of the opportunistic job by 95% over
Exclusive at the low-contention scenario and by 92% at the
high-contention scenario.

6.3 Mixed Workload Job Stream

In this experiment, we compare TGS with Exclusive and Co-
execution when sharing a GPU between a mixed workload
job stream. The DNN models used in the trace are consistent
with previous experiments, including ResNet-50, MobileNet,

—— ShuffleNet (Production)
MobileNet (Oppotunistic)

;\3100
- 80
o
2 60 \
LA
% 40 Pk A e ,‘4\ (‘ »l) h wmmwm
5 20t ‘
&
250 500 750 1000 1250
Time (second)
(a) GPU utilization.
ShuffleNet (Production)
MobileNet (Opptunistic)
1.00
25075
82
c O
£ 3 0.50
S c
=i 0.25

0.0¢y 250 500 750 1000 1250
Time (second)

(b) Training throughput.

Figure 8: Convergence under dynamic job arrival.

ShuffleNet, GCN, BERT-Base, and DLRM. The running time
of the jobs are from a production DL training job trace of Mi-
crosoft [5]. The job stream contains 100 jobs, where half are
production jobs and the other half are opportunistic jobs. We
use fast-forwarding [18] to speed up the experiment. NVIDIA
MIG and NVIDIA MPS cannot dynamically change GPU re-
sources allocated to a DL training job, so we do not compare
them in this experiment.

Figure 6a shows the average JCT when executing the trace.
For fair comparison, we normalize the JCT of each mecha-
nism to that of Exclusive for each job. As shown in figure 6b,
because Co-execution cannot protect production jobs from
contention caused by GPU sharing, the average normalized
JCT of production jobs under Co-execution is 135% of that
under Exclusive, while TGS only incurs 6% overhead. Com-
pared to Exclusive, Figure 6¢ shows that TGS can significantly
reduce the JCT of opportunistic jobs. This is because TGS
can reduce the queueing time of opportunistic jobs, as they
can use remaining GPU resources not used by production
jobs, instead of waiting for production jobs to complete. TGS
reduces the average normalized JCT of opportunistic jobs to
48% of that under Exclusive.

6.4 System Overhead

TGS monitors the rate of production jobs, and relies on the
monitoring to decide whether a GPU can be shared and how
many resources can be allocated to opportunistic jobs. When a
GPU is shared, experiments in previous sections have demon-
strated that opportunistic jobs do not greatly affect production

78 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

—— ESPnet2 (Production)

BERT-Base (Opportunistic)
100

80
60
40y,
20 |

SM Utililization (%)

U

800 850 900 950
Time (second)

1000 1050 1100

(a) GPU utilization.
—— ESPnet2 (Production)
BERT-Base (Opportunistic)
[MMW‘W

-
o

Ry

Normalized
Throughput
o

oy

a [6)]

©
N
()

800 850 900 950 1000 1050 1100
Time (second)

(b) Training throughput.
Figure 9: Convergence under dynamic resource usage.

jobs. In this experiment, we explore the system overhead
of the rate monitoring component in TGS. We measure the
throughput of a job with and without TGS for different config-
urations, and normalize the throughput to that without TGS.

Figure 7a shows the throughput under different DNN mod-
els. The throughput is almost the same with and without TGS
for ResNet-50, GCN and BERT-Base. Figure 7b shows the
throughput under different batch sizes. We use ResNet-50
as the DNN model. Similarly, the JCT is almost the same
with and without TGS for batch size 8, 16 and 32. The re-
sults demonstrate that the rate monitoring component of TGS
incurs 0.3% to 5% overhead for production jobs.

6.5 Convergence

We evaluate the convergence of TGS in different scenarios.
The first scenario evaluates the convergence under dynamic
Jjob arrivals, i.e., a job arrives in the middle to share the GPU
with an existing job. In this scenario, the production job train-
ing ShuffleNet with batch size 4 is running in the beginning.
The opportunistic job training MobileNet with batch size 4
is started after 350 seconds and runs for 240 seconds before
it finishes. Figure 8a and Figure 8b show the time series of
the GPU utilization and normalized throughput, respectively.
As shown in Figure 8a, there are still idle GPU resources
when the production job runs, so the total GPU utilization
increases when the two jobs run concurrently and share the
GPU. Figure 8b shows that the throughput of the opportunis-
tic job increases when it is launched at 350 seconds. At the

ez TGS BN Co-execution

BE= Exclusive Il MPS

o) e
82
© O
€2
oc
2+
0 ShuffleNet MobileNet
(Production, (Opportunistic,
PyTorch) TensorFlow)
(a) Low-contention scenario.
e TGS M Co-execution
E== Exclusive lllll MPS
83 10
= 50.75
g 3 05
S E 0.25 —
0 ResNet-50 ShuffleNet
(Production, (Opportunistic,
PyTorch) TensorFlow)

(b) High-contention scenario.

Figure 10: GPU sharing between different DL frameworks.

same time, GPU sharing does not affect the throughput of the
production job.

The second scenario evaluates the convergence under dy-
namic resource usage, i.e., a job dynamically switches be-
tween high and low GPU utilization, and the other job utilizes
the unused GPU resources. In this scenario, the production
job trains ESPnet2 with batch size 1 and the opportunistic job
trains BERT-Base with batch size 16. ESPnet2 has several
phases, so it changes GPU utilization periodically. Figure 9a
and Figure 9b show the time series of the GPU utilization and
normalized throughput during a transition, respectively. When
ESPnet2 needs more GPU resources, the production job keeps
its maximum throughput. Between 910 and 940 seconds, ES-
Pnet2 does not train, but runs validation in the GPU. Thus
ESPnet?2 still utilizes GPU but the throughput is zero. After
940 seconds, ESPnet2 runs into a phase that primarily uses
CPU, and Figure 9a shows that the GPU utilization of ESP-
net2 decreases to 0. TGS detects the change and dynamically
allocates more GPU resources to the opportunistic job. After
1060 seconds, the production job starts using GPU again and
reclaims all GPU resources. TGS ensures that the production
job is not greatly affected by the opportunistic job.

In summary, these experiments demonstrate that TGS can
converge in different scenarios. On the contrary, MIG can-
not change GPU resource allocation to each GPU instance
whenever there is a job running on the GPU, and MPS cannot
change GPU resources allocated to a job after the job begins.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 79

Zzzz TGS EEE AntMan BE= Exclusive

©
N
S =)

Throughput

Normalized
o

N9
(G

o

(Production,
TensorFlow)

(Opportunistic,
TensorFlow)

(a) Low-contention scenario.

Pz TGS EEE AntMan BE== Exclusive

©
N
U o

Normalized
Throughput

©
N O
)

o wun

ResNet-50
(Production,
TensorFlow)

ShuffleNet
(Opportunistic,
TensorFlow)

(b) High-contention scenario.

Figure 11: Comparison between TGS and AntMan.

6.6 Supporting Different DL. Frameworks

The experiments in previous sections are based on PyTorch,
because TensorFlow-like frameworks claim all GPU memory
by default when DL models start and the baselines cannot be
directly used for GPU sharing for these frameworks. Specifi-
cally, Co-execution does not support GPU memory oversub-
scription or GPU memory allocation on demand. When one
job claims all GPU memory, another job cannot use any GPU
memory and would be aborted under Co-execution. MPS also
suffers from this behavior. To compare TGS with them, we
modify DL frameworks to use CUDA unified memory and
enable dynamic GPU memory allocation.

Figure 10a compares the performance of the four mecha-
nisms when the production job trains ShuffleNet with batch
size 4 on PyTorch and the opportunistic job trains MobileNet
with batch size 4 on TensorFlow. The result is similar to that
of Figure 4a.

Figure 10b compares the performance of the four mech-
anisms in the high contention scenario. The production job
trains ResNet-50 with batch size 16 and the opportunistic job
trains ShuffleNet with batch size 32. Similar to figure 4b, TGS
reduces the throughput of the production job by 14% com-
pared to Exclusive, while Co-execution reduces the through-
put by 41%. MPS achieves comparable performance, but it
has to be manually tuned and breaks fault isolation.

6.7 Comparison with AntMan

In this experiment, we compare TGS with AntMan [6], which
is a state-of-the-art application-layer solution for GPU sharing.
AntMan is closely coupled with DL frameworks and uses an
application-layer metric, iteration time, to control the oppor-

TGS M Co-execution
E= Exclusive llll MPS

Normalized
Throughput

GPT MobileNet

MobileNet
(Opportunistic, (Opportunistic,
PyTorch) PyTorch)

(Production,
Megatron)

Figure 12: GPU sharing with the large model.

tunistic job. The open-sourced GitHub repository of AntMan
is not fully functional. It does not include the logic to dynam-
ically allocate resources to jobs. We contacted the authors of
AntMan and followed their instructions to add necessary code
in order to run AntMan. Figure 11a and 11b show the com-
parison under low-contention (ShuffleNet with batch size 4
and MobileNet with batch size 4) and high-contention scenar-
ios (ResNet-50 with batch size 8 and ShuffleNet with batch
size 4), respectively. Although AntMan uses application-layer
knowledge and controls the jobs at the application layer, TGS
still achieves similar performance to AntMan. The throughput
of the production job under TGS is 104.1% to 104.3% than
that under AntMan, while the throughput of the opportunistic
job using TGS is 103% to 122% than that of AntMan. Com-
pared to AntMan, TGS provides the same benefit of GPU
sharing and is transparent to DL frameworks.

6.8 GPU Sharing for Large Model Training

In §6.2, we have shown that even if a large model (e.g.,
DLRM) with large batch size (e.g., 2048) and large mem-
ory consumption (e.g., 38 GB) runs on a GPU, TGS can still
mostly maintain the performance of the production job, while
providing the remaining GPU resources to the opportunis-
tic job. In this experiment, we show that although it is not a
common scenario, TGS can provide GPU sharing capability
when training a bigger model (e.g., GPT). We train a GPT
with batch size 32 using two NVIDIA A100 GPUs as the
production job, while running two single-GPU opportunistic
jobs training MobileNet with batch size 4. Figure 12 shows
that TGS still can achieve comparable performance compared
to MPS, while MPS breaks fault isolation and Co-execution
breaks performance isolation. NVIDIA MIG does not support
multi-GPU jobs when a GPU is partitioned into several GPU
instances, so it is not evaluated in this case.

7 Discussion

Distributed training. Many solutions have been proposed
to achieve high GPU utilization for distributed training
jobs [19-23]. With these solutions, it is unlikely that a dis-
tributed training job would leave substantial GPU resources
unused; otherwise, the job should reduce its GPUs. Therefore,
there is little need for TGS. It is most suitable for sharing
GPUs between single-GPU jobs, which is also how GPU
sharing is used in previous solutions [6, 12, 13]. Yet, TGS

80 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

can be applied to increase GPU utilization for unoptimized
distributed jobs, by controlling the GPU resource usage of an
opportunistic job on each GPU as for single-GPU jobs.

GPU cluster scheduling. Many solutions [7, 18,24-28] have
been proposed to minimize job completion time and provide
fairness for a GPU cluster. GPU cluster scheduling is orthogo-
nal and complementary to TGS. TGS provides the mechanism
for transparent GPU sharing, which can be used by cluster
schedulers when they schedule and place jobs. We note that
some schedulers [18,28] pack multiple jobs on a GPU, which
are at the application level and require modifications to DL
frameworks. Also, they do not support GPU memory over-
subscription. These schedulers can benefit from TGS.

Space sharing and time sharing. The concepts of GPU
compute sharing and memory sharing are orthogonal to space
sharing and time sharing. Sharing GPU compute resources
can be done either in space sharing or in time sharing. The
adaptive rate control mechanism and transparent unified mem-
ory mechanism of TGS can be used either in space sharing or
in time sharing. GPU space sharing needs hardware support
and is not well supported. Current space sharing solutions
reduce performance isolation (e.g. MIG) or fault isolation
(e.g. MPS). Therefore, TGS currently uses time sharing.

8 Related Work

Deep learning systems. Many DL frameworks have been
proposed for developing and running DNN models [29-36].
Some works optimize communication to improve distributed
training performance [19-23]. Some works use memory swap-
ping to handle the GPU memory problem for training large
DNN models [16,37-39]. They focus on improving the perfor-
mance of a single training job, while TGS provides a solution
for improving the GPU utilization of running many jobs in
a cluster. Some works [40,41] propose algorithms for inter-
job GPU memory management, but they are not transparent
to applications and require modifications to DL frameworks.
GPUswap [42] proposes a transparent GPU memory swap-
ping system, but it needs to modify GPU drivers. However,
most current commercial GPU drivers, such as NVIDIA GPU
drivers, are not open-source. Open-source GPU drivers are
not as high performance as the commercial ones, so they are
not widely used for DL training workloads. MIG-Serving [43]
tries to find better configurations to use MIG for GPU sharing.
However, MIG itself has limitations as described above. We
compare MIG with the best configuration and TGS in the eval-
uation section, and show the benefits of TGS. There are many
solutions for optimizing DL inference workloads [44,45]. We
focus on GPU clusters for training workloads in this paper.
Several scheduling algorithms have been designed to sched-
ule DL training jobs in a GPU cluster [7, 18,24-28]. These
works are orthogonal to TGS.

Containers. Containers provide lightweight virtualization
for applications. Due to the benefits of portability, isola-

tion and performance, containers are widely used in dat-
acenters. Major public cloud services, such as AWS, Mi-
crosoft Azure and Google Cloud, offer containers as a ser-
vice [46-48]. Many container runtimes (e.g., Docker) and
orchestration systems (e.g., Kubernetes) are developed and
deployed [1-3, 10, 11,49, 50]. Some work is proposed to pro-
vide high-performance networking with isolation [51-56].
These solutions are orthogonal to TGS, which focuses on
improving GPU utilization.

GPU sharing. Several solutions have been proposed for
GPU sharing. Early solutions [57-65] explored OS-layer tech-
niques like driver call interception and application-layer tech-
niques like introducing new programming APIs, for sharing
GPU between applications. They focus on jobs with a few
kernels, and are not specifically designed for DL training that
typically has hundreds of kernels. With the emergence of
DL applications, recent solutions [6, 12, 13] have been de-
signed for GPU sharing of DL training. AntMan [6] is the
state-of-the-art application-layer solution for GPU sharing.
Salus [12] uses centralized GPU memory management and
kernel scheduling for GPU sharing. It requires all the appli-
cations to fit in the GPU memory. PipeSwitch [13] provides
fast context switching for DNN jobs, but only one job can
run at each time. They all modify DL frameworks. MPS [9]
is an OS-layer solution, but it requires application knowl-
edge to correctly set resource limits, does not support GPU
memory oversubscription and does not provide fault isolation.
Planaria [66] is an accelerator designed for the multi-tenant
scenario. In comparison, TGS is a software solution that can
be used for sharing a variety of hardware.

9 Conclusion

We have presented TGS, a system that transparently shares
GPUs for DL workloads to improve GPU utilization in con-
tainer clouds. TGS is distinguished from state-of-the-art
application-layer solutions in that it enables users to use any
DL framework and library to develop and train DNN mod-
els in containers. Shared GPUs are exposed to containers as
regular GPU devices, and TGS transparently runs multiple
containers on a GPU when a single container cannot utilize
all GPU resources. TGS achieves both high utilization and
decent performance isolation.

Acknowledgments. We sincerely thank our shepherd John
Wilkes and the anonymous reviewers for their valuable feed-
back. This work was supported by the National Key Research
and Development Program of China under the grant number
2020YFB2104100, the National Natural Science Foundation
of China under the grant number 62172008 and the National
Natural Science Fund for the Excellent Young Scientists Fund
Program (Overseas). Xin Jin is the corresponding author.
Bingyang Wu, Zili Zhang, Xuanzhe Liu and Xin Jin are also
with the Key Laboratory of High Confidence Software Tech-
nologies (Peking University), Ministry of Education.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 81

References [17] J. Gleeson, S. Krishnan, M. Gabel, V. J. Reddi,
[1] “containerd.” https://containerd.io/. E.de .Lara, and G. Pe.:khlmenko, RL—Scope: Cross—st’a’lc.k
profiling for deep reinforcement learning workloads,” in
[2] “cri-0” https://cri-o.io/. Conference on Machine Learning and Systems, 2021.
[3] “Docker” https://www.docker.com/. [18] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu,
N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang,
[4] Y.LeCun, Y. Bengio, and G. Hinton, “Deep learning,” F. Yang, and L. Zhou, “Gandiva: Introspective cluster
Nature, vol. 521, 2015. scheduling for deep learning,” in USENIX OSDI, 2018.
[5] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, [19] A. Sergeev and M. Del Balso, “Horovod: fast and easy
W. Xiao, and F. Yang, “Analysis of large-scale multi- distributed deep learning in tensorflow,” arXiv preprint
tenant GPU clusters for DNN training workloads,” in arXiv:1802.05799, 2018.
USENIX ATC, 2019. [20] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu,
[6] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, apd C Guo, “A generic commum?atl(,)’n. scheduler for
W. Lin, and Y. Jia, “Antman: Dynamic scaling on GPU distributed DNN training acceleration,” in ACM SOSP,
clusters for deep learning,” in USENIX OSDI, 2020. 2019.
[7] W. Qizhen, X. Wencong, Y. Yinghao, W. Wei, W. Cheng, [21] Y Jlagg, Y. Zhu., C. Lan, B. Yi, Y. Cl,n’ ancll C,' Guo,
. - . “ “A unified architecture for accelerating distributed
H. Jian, L. Yong, Z. Liping, L. Wei, and D. Yu, “MLaaS N "
. o . L DNN training in heterogeneous GPU/CPU clusters,” in
in the wild: Workload analysis and scheduling in Large- USENIX OSDI. 2020
Scale heterogeneous GPU clusters,” in USENIX NSDI, > ’
2022. [22] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri,
[8] H. Zhao, Z. Han, Z. Yang, Q. Zhang, F. Yang, L. Zhou, N. R I‘?e.vanur, G.R. Gange.r, P B GllbeI’lS, and.M. Za-
. haria, “PipeDream: generalized pipeline parallelism for
M. Yang, F. C. Lau, Y. Wang, Y. Xiong, and B. Wang, DNN trainine.” in ACM SOSP. 2019
“HiveD: Sharing a GPU cluster for deep learning with & ’ '
guarantees,” in USENIX OSDI, 2020. [23] G. Wang, S. Venkataraman, A. Phanishayee, J. Thelin,
. A I . N. Devanur, and I. Stoica, “Blink: Fast and generic col-
(91 “CUD Mu ti-Process Service. h_ttps ’ lectives for distributed ML,” in Conference on Machine
//docs. nv1d1§ . com/deplloy/pdf/CUDA_Multl_ Learning and Systems, 2020.
Process_Service_Overview.pdf.
. . . [24] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon,
[10] “Kubernetes.” https://kubernetes.io/. J. Qian, H. Liu, and C. Guo, “Tiresias: A GPU clus-
[11] “Docker Swarm.” https://docs. docker . com/ ter manager for distributed deep learning,” in USENIX
, NSDI, 2019.
engine/swarm/.
121 P ¥ d M. Chowdh «Galus: Fi ined GP [25] H.Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq:

[12] P. u an o C owdhury, “Sa us'. 1ne—g.ra1n'e G U quality-driven scheduling for distributed machine learn-
sharing primitives fqr deep le?lrnlng applications,” in ing,” in ACM Symposium on Cloud Computing, 2017.
Conference on Machine Learning and Systems, 2020.

] .) [26] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Opti-

[13] Z.Bai, Z. Zhang, Y. Zhu, and X. Jin, “Pipeswitch: Fast mus: an efficient dynamic resource scheduler for deep
pipelined context switching for deep learning applica- learning clusters,” in EuroSys, 2018.
tions,” in USENIX OSDI, 2020.

o . [27] K. Mahajan, A. Balasubramanian, A. Singhvi,

[14] “Nvidia multi-instance GPU (MIG).” https: S. Venkataraman, A. Akella, A. Phanishayee, and
//www.nvidia.com/en-us/technologies/ S. Chawla, “Themis: Fair and efficient GPU cluster
multi-instance-gpu/. scheduling,” in USENIX NSDI, 2020.

[15] “Nvidia multi-instance =~ GPU user guide.” [28] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phan-
https://docs.nvidia.com/datacenter/tesla/ ishayee, and M. Zaharia, “Heterogeneity-aware cluster
mig-user-guide/. scheduling policies for deep learning workloads,” in

) USENIX OSDI, 2020.

[16] “CUDA Unified Memory.” https://devblogs.
nvidia.com/unified-memory-cuda-beginners/. [29] “TensorFlow.” https://www.tensorflow.org/.

82 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://containerd.io/
https://cri-o.io/
https://www.docker.com/
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://www.tensorflow.org/

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system
for large-scale machine learning,” in USENIX OSDI,
2016.

“PyTorch.” https://pytorch.org/.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Rai-
son, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala, “PyTorch: An imperative style,
high-performance deep learning library,” in Advances
in Neural Information Processing Systems, 2019.

“MXNet.” https://mxnet.apache.org/.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,
T. Xiao, B. Xu, C. Zhang, and Z. Zhang, “MXNet: A
flexible and efficient machine learning library for hetero-
geneous distributed systems,” in LearningSys at Neural
Information Processing Systems, 2015.

M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B.-Y. Su, “Scaling distributed machine learning with the
parameter server,” in USENIX OSDI, 2014.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
M. Mao, M. a. Ranzato, A. Senior, P. Tucker, K. Yang,
Q. Le, and A. Ng, “Large scale distributed deep net-

works,” in Advances in Neural Information Processing
Systems, 2012.

M. Rhu, N. Gimelshein, J. Clemons, A. Zulfigar, and
S. W. Keckler, “vDNN: Virtualized deep neural net-
works for scalable, memory-efficient neural network de-
sign,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2016.

C.-C. Huang, G. Jin, and J. Li, “SwapAdvisor: Pushing
deep learning beyond the GPU memory limit via smart
swapping,” in ACM ASPLOS, 2020.

G. Wang, K. Wang, K. Jiang, X. LI, and I. Stoica,
“Wavelet: Efficient dnn training with tick-tock schedul-
ing,” in Conference on Machine Learning and Systems,
2021.

X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong,
F. Yang, and X. Qian, “Capuchin: Tensor-based gpu
memory management for deep learning,” in ACM ASP-
LOS, 2020.

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

(51]

(52]

[53]

[54]

G. Lim, J. Ahn, W. Xiao, Y. Kwon, and M. Jeon, “Zico:
Efficient GPU memory sharing for concurrent DNN
training,” in USENIX ATC, 2021.

J. Kehne, J. Metter, and F. Bellosa, “GPUswap: Enabling
oversubscription of gpu memory through transparent
swapping,” in ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, 2015.

C. Tan, Z. Li, J. Zhang, Y. Cao, S. Qi, Z. Liu, Y. Zhu,
and C. Guo, “Serving dnn models with multi-instance
gpus: A case of the reconfigurable machine scheduling
problem,” arXiv preprint arXiv:2109.11067, 2021.

J. Kosaian, K. V. Rashmi, and S. Venkataraman, “Parity
models: Erasure-coded resilience for prediction serving
systems,” in ACM SOSP, 2019.

H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Phili-
pose, A. Krishnamurthy, and R. Sundaram, “Nexus: A
GPU cluster engine for accelerating DNN-based video
analysis,” in ACM SOSP, 2019.

“AWS containers.” https://aws.amazon.com/
containers/.
“Microsoft azure containers.” https://azure.

microsoft.com/en-us/product-categories/
containers/.

“Google cloud containers.” https://cloud.google.
com/containers.

A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes, “Large-scale cluster management
at Google with Borg,” in EuroSys, 2015.

M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes, “Omega: flexible, scalable schedulers for large
compute clusters,” in EuroSys, 2013.

D. Kim, T. Yu, H. H. Liu, Y. Zhu, J. Padhye, S. Raindel,
C. Guo, V. Sekar, and S. Seshan, “Freeflow: Software-
based virtual RDMA networking for containerized
clouds,” in USENIX NSDI, 2019.

D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Kr-
ishnamurthy, and T. Anderson, “Slim: OS kernel sup-
port for a low-overhead container overlay network,” in
USENIX NSDI, 2019.

B. Li, T. Cui, Z. Wang, W. Bai, and L. Zhang, “Socksdi-
rect: Datacenter sockets can be fast and compatible,” in
ACM SIGCOMM, 2019.

Z. He, D. Wang, B. Fu, K. Tan, B. Hua, Z.-L. Zhang,
and K. Zheng, “Masq: RDMA for virtual private cloud,”
in ACM SIGCOMM, 2020.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 83

https://pytorch.org/
https://mxnet.apache.org/
https://aws.amazon.com/containers/
https://aws.amazon.com/containers/
https://azure.microsoft.com/en-us/product-categories/containers/
https://azure.microsoft.com/en-us/product-categories/containers/
https://azure.microsoft.com/en-us/product-categories/containers/
https://cloud.google.com/containers
https://cloud.google.com/containers

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,
C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans,
S. Gribble, N. Kidd, R. Kononov, G. Kumar, C. Mauer,
E. Musick, L. Olson, M. Ryan, E. Rubow, K. Springborn,
P. Turner, V. Valancius, X. Wang, and A. Vahdat, “Snap:
a microkernel approach to host networking,” in ACM
SOSP, 2019.

A. Narayan, A. Panda, M. Alizadeh, H. Balakrishnan,
A. Krishnamurthy, and S. Shenker, “Bertha: Tunneling
through the network APL,” in ACM SIGCOMM HotNets
Workshop, 2020.

G. Giunta, R. Montella, G. Agrillo, and G. Coviello, “A
GPGPU transparent virtualization component for high
performance computing clouds,” in European Confer-
ence on Parallel Processing, 2010.

V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche,
N. Tolia, V. Talwar, and P. Ranganathan, “GViM: GPU-
accelerated virtual machines,” in ACM Workshop on
System-level Virtualization for High Performance Com-
puting, 2009.

J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S.
Quintana-Orti, “rCUDA: Reducing the number of GPU-
based accelerators in high performance clusters,” in In-
ternational Conference on High Performance Comput-
ing & Simulation, 2010.

V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar,
“Supporting GPU sharing in cloud environments with a
transparent runtime consolidation framework,” in IEEE
HPDC, 2011.

L. Shi, H. Chen, J. Sun, and K. Li, “vCUDA: GPU-
accelerated high-performance computing in virtual ma-
chines,” IEEE Transactions on Computers, vol. 61,
2011.

S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Im-
proving GPGPU concurrency with elastic kernels,” in
ACM ASPLOS, 2013.

J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collab-
orative preemption for multitasking on a shared GPU,”
in ACM ASPLOS, 2015.

T. T. Yeh, A. Sabne, P. Sakdhnagool, R. Eigenmann,
and T. G. Rogers, “Pagoda: Fine-grained GPU resource
virtualization for narrow tasks,” in ACM PPoPP, 2017.

K. Zhang, B. He, J. Hu, Z. Wang, B. Hua, J. Meng,
and L. Yang, “G-NET: Effective GPU sharing in NFV
systems,” in USENIX NSDI, 2018.

S. Ghodrati, B. H. Ahn, J. Kyung Kim, S. Kinzer, B. R.
Yatham, N. Alla, H. Sharma, M. Alian, E. Ebrahimi,

N. S. Kim, C. Young, and H. Esmaeilzadeh, “Planaria:
Dynamic architecture fission for spatial multi-tenant
acceleration of deep neural networks,” in IEEE/ACM
MICRO, 2020.

84 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

A Convergence of Adaptive Rate Control Al-
gorithm

We assume each GPU has an unknown constant throughput
limit B. The TGS’s goal is to maximize throughput of the
opportunistic job without affecting the production job very
much. We assume throughput of the production job is rela-
tively stable. Therefore, the adaptive rate control algorithm
can accurately measure the throughput of the production job,
i.e. &j;. When throughput of the production job is unstable
beyond a manual tuned threshold, TGS re-estimates Q.. In
this context, we define that a cycle is a phase starting after
TGS detects contention and ending when TGS detects con-
tention again. A step is defined as an invocation of the rate
control component to adjust rate limit of the opportunistic
job, such as an additive increase or a multiplicative decrease.
Hence, a cycle consists of one multiplicative decrease step
and multiple continous additive increase steps. Let the initial
value of B, be Bo (Bo < B). The simplified convergence of
the rate adaptive control algorithm is shown as follow:

Opportunistic Job production Job
BQ min(R,B — Bo)
B1 = Po+8as min(R, B —By)
B2 = Po +8ar +8a; min(R, B — B»)
Br = Bo+0ar+ -+ +8a; min(R, B — By

———

k

Detect Contention: R+Bo+kds > B
Action: Multiplicative Decrease
Br = Do min(R, B — 1)
Bri2 = 5@,*0,) + %ZTAI; + 81 min(R, B — By+2)
Brrs = 5,0+ 5k + dar + B min(R, B — fi3)

Brorin = o + Ry 5,415y, min(R, B —Bry111)
—_———

~ dmp ' Sup
I
Detect Contention: R+ o 4 By 1847 > B
. oup ' Omp
Action: Multiplicative Decrease
_ Bo + ks + 184/ ;
= 5 4 LAl 4 4L min(R,B —
Bk+l+2 512\/[D SIZL/ID Sup () Bk+l+2)

_ Bo k9, 1) .
B = oefg + 810;[3]0 + 1ogA[i0 +--+4+m min(R,B—p*)
MD MD By 2

We assume the unit of bandwith is indivisible. As shown
above, the adaptive rate control algorithm converge in
O(logPo) cycles, because the unknown term By decreases
to zero in O(1 +1ogo) cycles, i.e. O(BlogB) steps. There-

fore, the complexity of the adaptive rate control algorithm is
O(BlogB).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 85

ARK: GPU-driven Code Execution for Distributed Deep Learning

Changho Hwang!-2, KyoungSoo Park!, Ran Shu?, Xinyuan Qu>', Peng Cheng?, and Yongqgiang Xiong?

VKAIST

Abstract

Modern state-of-the-art deep learning (DL) applications
tend to scale out to a large number of parallel GPUs. Un-
fortunately, we observe that the collective communication
overhead across GPUs is often the key limiting factor of per-
formance for distributed DL. It under-utilizes the networking
bandwidth by frequent transfers of small data chunks, which
also incurs a substantial I/O overhead on GPU that interferes
with computation on GPU. The root cause lies in the ineffi-
ciency of CPU-based communication event handling as well
as the inability to control the GPU’s internal DMA engine
with GPU threads.

To address the problem, we propose a GPU-driven code
execution system that leverages a GPU-controlled hardware
DMA engine for I/O offloading. Our custom DMA engine
pipelines multiple DMA requests to support efficient small
data transfer while it eliminates the I/O overhead on GPU
cores. Unlike existing GPU DMA engines initiated only by
CPU, we let GPU threads directly control DMA operations,
which leads to a highly efficient system where GPUs drive
their own execution flow and handle communication events
autonomously without CPU intervention. Our prototype DMA
engine achieves a line-rate from a message size as small as
8KB (3.9x better throughput) with only 4.3us of communi-
cation latency (9.1x faster) while it incurs little interference
with computation on GPU, achieving 1.8x higher all-reduce
throughput in a real training workload.

1 Introduction

Modern machine learning (ML) applications tend to har-
ness an increasingly larger number of accelerators (especially
GPUs in this work) [19, 26]. State-of-the-art deep learning
(DL) algorithms often need to scale out to thousands of GPUs
for higher throughput and accuracy [26]. Unfortunately, this
poses a substantial communication overhead to the entire sys-
tem, which harms GPU utilization by delaying or interfering
with numeric computation.

 Now at Horizon Robotics.

>Microsoft Research

The communication overhead mainly arises in two different
aspects. First, collective communication (e.g., all-reduce, split-
and-gather, all-to-all, etc.), which is widely adopted in most of
popular DL algorithms, often splits the data for transfer into
multiple small chunks for pipelining or for sending to multi-
ple different destinations. The chunk size tends to get smaller
as we scale out, which is detrimental to efficient utilization
of networking bandwidth. Second, popular communication
libraries for GPUs such as NCCL [32] and RCCL [5] often
incur a severe I/O overhead on GPU. This is because they
commonly leverage memory-mapped /O (MMIO) for data
copies between GPUs, which consumes a substantial amount
of GPU resources (i.e., core cycles and L2 cache/DRAM
bandwidth). We observe that concurrent execution of col-
lective communication and numeric computation on GPU
heavily interferes with each other — in our training experiment
with BERT-Large [10], the throughput of parallel computa-
tion drops by 45% while it achieves only 53.6% of the peak
communication throughput (see details in Section 2.3).

Unfortunately, it is challenging for existing systems to ad-
dress both issues (i.e., large transfer delay for small chunks
and I/O overhead on GPU) at the same time. One may avoid
the I/O overhead by offloading the I/O to a hardware DMA
engine instead of employing MMIO with GPU threads. How-
ever, the current DMA engine on commodity GPU is initiated
only by CPU threads, which often enrolls CPU’s control on
the critical path of communication. This incurs the CPU-GPU
synchronization overhead that bloats up the communication
latency, especially detrimental to the throughput of small data
chunk transfer. In fact, one can observe hundreds of ps of com-
munication latency in a popular DL framework as it leverages
the DMA engine. Similarly, if one does not employ the DMA
engine for communication of data chunks, the communication
would suffer from high I/O overhead on GPU.

This paper proposes the GPU-driven system named ARK, a
communication-motivated DL system design. The key idea of
the GPU-driven system lies in autonomous execution control
of GPU code without any control by external devices. This
regime tightly connects computational power of every GPU

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 87

core across machines by allowing GPU threads to communi-
cate directly with remote GPUs without any external control
signals, which ends up achieving low-latency communica-
tion. At the same time, to avoid the I/O overhead on GPU,
we design a GPU-controlled DMA engine. Specifically, our
custom DMA engine is directly initiated by GPU threads,
which avoids the heavy MMIO without CPU intervention.

Our evaluation shows that our DMA engine prototype is es-
pecially beneficial for small messages, achieving a high com-
munication throughput (3.87x over cudaMemcpy with 8KB
messages) at low latency (9.1x faster over CPU intervention).
Furthermore, it does not interfere with computation on GPU,
which delivers both computation and communication through-
put gains over using MMIO-based libraries [5,32] (1.8x faster
all-reduce in BERT-Large [10] training, see Section 5.3).

To realize the GPU-driven system, we also present an effi-
cient scheduler of autonomous execution on GPU. Our key
observation is that online dynamic scheduling is unneces-
sary as DL workloads are typically deterministic at runtime.
Instead, we present the virtual Cooperative Thread Array
(vCTA) framework that abstracts offfine GPU scheduling. Of-
fline scheduling allows eliminating the runtime scheduling
overhead at the back-end, while reusing the existing front-end
interface and GPU kernel implementations.

ARK supports efficient and flexible parallel execution mod-
els for data-, tensor-, and pipeline-parallelisms. Our evalua-
tion demonstrates that ARK delivers substantial performance
gains both in training and inference, achieving 2.5x and 3.6x
throughput improvement, respectively.

2 Background & Motivation

This section explains existing inter-GPU communication tech-
nologies and their limitations.

2.1 Small Data Transfer in Distributed DL

Collective communication consists of several communication
primitives that concurrently exchange the data across multiple
GPUs, which is widely adopted to implement various paral-
lelism methods in distributed DL. Popular use cases include
all-reduce for data-parallelism, split-and-gather for tensor-
parallelism [22,40], and all-to-all for expert-parallelism [11].
As the number of employed GPUs gets larger, the size of unit
data transfer in collective communication becomes smaller
as it splits the local data into multiple pieces to be delivered
to different GPUs. This small transfer size makes the overall
performance of collective communication highly dependent
on the control plane overhead before and after each data trans-
fer. Unfortunately, we observe that the control plane overhead
either with CPU-controlled or even GPU-controlled commu-
nication is pretty substantial (See Section 2.2 and Section 2.3).
Also, existing workarounds (e.g., tensor fusion [39]) that batch
a large amount of data to avoid small transfers would not com-
pletely address the problem as they trade off computational
throughput by intentionally delaying data transfer.

Data Rate (GBps)
O RO ®KDo N

4K b

%4 R

VEVEVEVEY,
ATEES
Message Size (Bytes)
(a) PClIe v3. (b) NVLink v3.

Figure 1: Data dependency between GPUs decreases the inter-
GPU data rate due to event handling delays. Solid lines refer
to actual data rate (for sending one message at a time) in Ten-
sorFlow’s CPU-controlled communication crossing a PCle v3
or a NVLink v3 switch while dashed lines indicate the ideal
data rate without event handling delays.

Message Size (Bytes)

2.2 External Execution Control Overhead

Existing GPU program execution heavily relies on an external
processor (i.e., CPU) to submit GPU commands for kernel ex-
ecution or data transfer. Unfortunately, this model often incurs
a large overhead due to the delay for command delivery from
the host side to GPU hardware queue (i.e., stream). One can
use the conventional GPU event interface (i.e., cudaEvent) to
hide the delay, but it would also suffer from substantial delay
for event handling. When adopted to inter-GPU communi-
cation, which we call CPU-controlled communication (in
contrast to GPU-controlled communication by NCCL [32]),
we observe that event handling becomes the primary cause
for large communication delay beyond the data transfer itself.
We consider a common communication scenario where
two GPUs have a data dependency — one GPU receives com-
putation results of another GPU to feed them as input to its
own computation. In every data transfer, event handling is
needed to check the dependency between the copy and the
GPU commands around the copy operation, which reduces
the actual data rate between GPUs. Figure 1 compares the
ideal inter-GPU data rate (cudaMemcpy throughput) with the
actual data rate in TensorFlow’s CPU-controlled communi-
cation, which is still used along with NCCL especially for
model-parallelism implementations. We see that the event
handling overhead with cudaMemcpy drastically lowers the
data rate both in the PCIe and NVLink interfaces. We explain
two implementations when GPU A sends data to GPU B.

2.2.1 Runtime Intervention for the Control

CPU can serve as an intermediary to deliver an event between
two communicating GPUs. In fact, if GPUs are located in
different NUMA nodes or on different machines, the runtime
intervention by CPU is required for communication. Also,
some frameworks like TensorFlow implement a generic inter-
face that always uses CPU for GPU event handling regardless
of the placement. Figure 2 illustrates the event handling over-
head due to CPU intervention when GPU A sends its data to

88 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

GPUA CPU CPU GPUB
Polling Callback

Thread Thread
command:

copy Ato B

event

deliver event handling
wakeup callback overhead €
command

ﬁ; run callback
command

Figure 2: CPU intervention in inter-GPU event handling.

GPU B that plans to run the next command with the data.
We notice three places for the overhead. First, it is ineffi-
cient for a CPU thread to poll GPU events because the event
interface disallows the CPU thread to monitor multiple events
at the same time. While it takes only ~3us for a dedicated
busy-waiting CPU thread to be notified of a triggered GPU
event,” this approach does not scale when an application
has to run many parallel tasks, which will run many polling
threads. Instead, the event polling loop of TensorFlow uses
only one CPU thread, which incurs a ~58.3us of polling gap
on average (see Table 1). Second, it takes time to wake up
the CPU thread that invokes the callback function of the trig-
gered event. In TensorFlow, it takes ~58.7us for the callback
thread to acquire the mutex lock from when it is released by
the polling thread. This delay could be reduced to as low as
Sus if both threads are running on the same CPU core, but
co-locating the threads or even merging them into a single
one would increase the event polling interval as well as the
overall processing time. Lastly, it is inefficient for the callback
thread to deliver the computation command to GPU B. De-
livering the event signal to GPU B would take only 2~3us if
implemented efﬁciently,3 but we need to deliver the callback
command binary as well. We can avoid the extra delay if we
deliver the GPU command in advance and trigger it later on
the CPU side, but this is not supported by commodity GPU.

2.2.2 Asynchronous Control

If the GPUs are under the same NUMA node, CPU can reserve
a GPU event to be triggered asynchronously so that GPUs
can directly communicate with each other when the event
occurs. In this case, one can deliver the callback command to
GPU B before the actual event and use the conventional GPU
event interface (i.e. cudaEvent or a higher-level wrapper such
as CUDA Graphs [27]) to trigger the callback command on
GPU B with GPU A’s event. Ideally, this should take as short
as sending a single bit from GPU A to GPU B. However,
we find that triggering a GPU event (~4us) and waking up
a dependent GPU command (10~20us) are disappointingly
slow — it ends up taking as much as sending the command

2Please refer to the experiment setup in Section 5.

3This is roughly estimated based on that it takes ~2us for a GPU thread
to read a 4-byte data on the host DRAM and it takes ~3us for a busy-waiting
CPU to read a GPU event.

Overhead Detail ‘ Delay (us)
Initiation
Trigger send ready event on the GPU 3.8
Sync comp. stream and comm. stream 11.6
Completion Check
Event polling gap 58.3
Delay of pthread mutex lock 58.7
GPU kernel launch overhead 19.2
Total ‘ 151.6

Table 1: Breakdown of the constant overhead of inter-GPU
data transfer using TensorFlow in Figure 1.

binary to the GPU at runtime. We suspect that this is due to
inefficient hardware implementation on GPU for event han-
dling. In TensorFlow, this overhead contributes to the delay
for initiating a transfer that depends on GPU computation as
shown in Table 1.

2.3 1/0 Overhead of GPU-side Control

Since CPU intervention incurs a large overhead, how about
managing the communication with GPU itself? NCCL [32] *
leverages GPUDirect [31] to enable this approach, which ex-
poses the GPU memory space for peer-to-peer access so that
GPU threads can read/write data to/from another GPU.? As
GPU threads can directly invoke data copy, they can handle
communication events efficiently without the involvement
of CPU. Since commodity GPU hardware disallows GPU
threads to initiate its own DMA engine, GPU-controlled com-
munication leverages MMIO, which will implicitly conduct
DMA when GPU threads write data on the mapping. Figure 3
compares CPU-controlled and GPU-controlled communica-
tion. The former one (Figure 3a) takes the following steps:
(D CPU is notified when the data is ready, (2) CPU initi-
ates the DMA engine, and (3) DMA copies the data. On the
other hand, GPU-controlled communication with MMIO (Fig-
ure 3b) follows (1) CPU creates a memory map (mmap) of the
destination GPU’s address space prior to runtime execution,
(2) the data is ready at runtime, and (3) GPU threads copy the
data into the mmap, which implicitly conducts DMA copy.
Unfortunately, data copying by GPU threads often heavily
interferes with parallel kernel computation, especially due to
L2 cache pollution and warp scheduler operations. Specifi-
cally, a data-copy GPU thread needs to load the data onto its
register file for data transfer, but this pollutes the L2 cache as
one cannot bypass the L2 cache when reading from DRAM on
commodity GPU [34]. It leads to severe performance degra-
dation over initiating DMA directly, as the latter copies the
data on DRAM directly to the I/O bus (PCle or NVLink).
Additionally, the copying threads frequently issue ’load/store’

4Equally applied to RCCL [5] on AMD GPU as well. For convenience,
we borrow the terms from CUDA or NVIDIA GPUs, which can be easily
converted into corresponding terms in OpenCL or AMD GPUs.

>CPU-controlled communication also leverages GPUDirect for efficient
cudaMemcpy between peer GPUs without crossing the root complex, but its
execution path is different from that of GPU-controlled communication.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 89

GPU (send) GPU (recv) GPU (send) GPU (recv) GPU (send) GPU (recv)
mem mem mem n_l_I_I_l:(!P mem mem
[elpoipyl | [] [pws [o
R I cm— o [———=1 T]

P @ ' of e

fernereennens > CPU CPU i3 DEV

(a) CPU-controlled.

(b) GPU-controlled MMIO.

(c) GPU-controlled DMA (this work).

Figure 3: Comparison between CPU-controlled and GPU-controlled communication — the latter has two different approaches,
which leverage (b) MMIO (like NCCL) or (c) directly initiated DMA (this work). DEV refers to any kinds of devices that can

implement our DMA engine.

instructions that drive warp schedulers busy, which makes
other threads for parallel computation yield their clock cy-
cles. Although the affected computation threads are limited to
those that co-run warp schedulers with data-copy threads, they
delay the entire kernel by falling behind the other threads.

To analyze the impact of the contention, we measure the
slowdown of two different GPU kernels that heavily ac-
cess only a specific type of GPU resources each: L2 cache
(1.96 TBps read) and warp schedulers (2.02 IPC),° respec-
tively (all numbers measured on a V100 GPU), while running
concurrently with NCCL (v2.11.4) 64 MB all-gather’ kernels
using 8x V100 GPUs. We leverage NVIDIA Visual Profiler
(NVVP) and Nsight Compute to verify that (1) the L2 cache
kernel shows near-zero DRAM access and L1 data cache
hit rate and (2) the warp schedulers kernel shows near-zero
L2 cache/DRAM throughput. We have also verified the con-
currency of computation and all-gather kernels and no other
CPU/GPU activities during the experiment. In this experi-
ment, the slowdowns due to L2 cache and warp schedulers
contention are up to 2.4x and 2.0x, respectively, where it
slows down either the computation or the concurrent NCCL
communication (when one side is degraded less, the other
side tends to be impacted more). This result shows that heavy
contention could arise depending on the GPU resource usage
of concurrent computation kernels.

We run a microbenchmark to evaluate the contention of
NCCL all-reduce during data-parallel training of a BERT-
Large [10] model. This model performs 32 MB of all-reduce
at a time, which issues 4 MB data transfer in parallel with
eight GPU workers. On a server with 8x V100 GPUs (con-
nected with a single PClIe switch (16x PCle v3)), the parallel
computation throughput drops by 45.0% while all-reduce
achieves only 5.0 GBps on average, degraded to 53.6% of the
peak throughput without the interference. On a server with 8x
A100 GPUs (connected with an NVSwitch (NVLink v3)), the
slowdown of all-reduce is even worse — the parallel computa-
tion throughput drops by 14.3% while the NCCL all-reduce
achieves only 30.9% of the peak throughput (49.0 GBps).

SHeavy usage of warp schedulers means frequent instruction fetches, i.e.
large instructions per cycle (IPC). > 99.2% of instructions are FFMA.

"We use all-gather as it only performs communication without any extra
computation such as reduction in all-reduce.

3 ARK Framework Design

In this section, we present the design of ARK, our approach
with the GPU-driven code execution that avoids the commu-
nication overhead on GPU without CPU intervention.

3.1 GPU-controlled DMA Engine

We claim that a GPU-controlled DMA engine (Figure 3c) can
eliminate the communication overhead, which in turn serves
as the basis of our GPU-driven system. The GPU-controlled
DMA engine enables a GPU thread to directly initiate DMA
operations when the data is ready ((1)), which will immedi-
ately push the data into the I/O bus without wasting GPU
cycles (). We leverage existing GPUDirect techniques to
expose the GPU’s physical address space to our DMA engine.

While GPU-controlled DMA would deliver low-latency
communication without the MMIO overhead, it is non-trivial
to realize this feature. In fact, an ideal implementation would
be to modify the existing DMA engine on GPU to support
GPU-controlled DMA, but it is infeasible as we cannot up-
date the GPU hardware. Instead, we consider employing an
external device as illustrated in Figure 3c at the cost of extra
communication latency from GPU threads.

Despite of performance benefits, adopting new hardware
for GPU-controlled DMA engine might be costly in many
existing systems. To provide an interim solution, we pursue
a general DMA engine design that can be implemented as
either software or hardware on any hardware platforms (e.g.,
CPU, GPU, SmartNIC, FPGA, etc.) or I/O bus types (PCle,
NVLink [33], or Infinity Fabric Link (xGMI) [3]). Regardless
of the platform, all implementations need to share the same
runtime interface for GPU kernels. Also, the DMA interface
should support low latency and flexibility while meeting the
different requirements of software and hardware engines.

In this paper, we present both a software implementation
and a hardware prototype of GPU-controlled DMA engine.
Our software engine works over any existing systems without
additional hardware as it leverages host CPU cores — busy-
waiting CPU threads read DMA requests from GPU and initi-
ate DMA accordingly. This design is aligned with the princi-
ple of GPU-driven system as GPU threads directly initiate the
data transfer, while CPU threads only mechanically initiate

90 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

data copies without any GPU event handling or GPU resource
consumption. Our hardware engine prototype is implemented
on FPGA, which we present to show the potential benefit of
hardware deployment over the software engine. We explain
the details of DMA engine implementations in Section 4.1.

3.2 Loop Kernel & Virtual CTA

GPU-controlled DMA engines would be easily adopted by
existing systems, e.g., NCCL can replace its MMIO with initi-
ating our DMA engines. However, existing systems would not
fully exploit the benefit of GPU-controlled communication
as the communication APIs are launched by CPU — the CPU
intervention barrier still remains between computation and
communication.

To remove this barrier, we propose a GPU-driven code
execution system that runs an entire DL application in a sin-
gle kernel, called a loop kernel. Our key observation is that
online dynamic scheduling is unnecessary as DL workloads
are typically deterministic at runtime. Instead of dynamically
launching GPU kernels with CPU at runtime, our GPU-driven
system automatically merges all kernels into a loop kernel
(one for each GPU) at compile time and launches it only once
at application start. Then, the loop kernel runs continuously
during the entire lifetime of the application. A loop kernel
is generated by our code generator that reads an operational
graph of a DL application and automatically assembles cor-
responding code snippets of GPU operators to build loop
kernel code. We call this code generation as offline scheduling
as all GPU operators are statically distributed across GPU
cores, or Streaming Multiprocessors (SMs), by the code. Of-
fline scheduling lets GPUs efficiently control the application,
which would minimize the event handling overhead for inter-
GPU communication. We discuss several technical details of
the loop kernel in Section 4.2.

Figure 4 shows that the loop kernel design deviates from
the conventional framework for declaring, scheduling, and
executing GPU tasks. In both CPU- and GPU-driven systems,
a GPU operator is commonly defined as a set of multiple
unit operators that each computes a part of the entire output
in the SIMD manner. Meanwhile, both systems declare the
operator differently in the GPU code. The CPU-driven system
declares each unit operator as a Cooperative Thread Array
(CTA)® and the entire operator as a separate kernel, which
requires launching multiple kernels for multiple operators. In
contrast, our GPU-driven system disallows multiple kernels
as it executes all operators in the single loop kernel. Instead,
it exploits intermediate declaration of unit operators that are
scheduled as part of the CTAs of the loop kernel, which we
call virtual CTAs (vCTAs).

vCTA provides the key abstraction for offline scheduling
in ARK, which enables software-defined SM scheduling. A
vCTA declares the code for a unit operator that is affinitized

8CTA is conceptually and functionally the same as a thread block in
CUDA or a workgroup in OpenCL.

Operator on specific inputs

Define a unit operator it Unit operators

64 AB =C, Ci = Ay/4Bigs, i € [0,11]

>
k €7t 128“30 By 32|B3| m l u
X 128
k I AEROE | = - [CllCs][Ce[]

B € Rkx64 Ag| 1Co|C1[Co]Cs allclle
64¢- 4 C € R64%64 192||' A C,|Cs| Col C; 10 !

code
CPU-drlven System [42] [Cal GolGdCul declaration ll

I3

N

: CTAs
[:] [:] Kernel 1 \
% % % @ Kernel 2| [CTA]-+[CTA nlnlnln
% % - :] kemel
I Taunch [cTA]---[CTA pack 1nt0
l Schedule to SMs LGl Y - a kernel
GPU-driven System *
P . Loo
f Kemgl VT
kernel P4
i schedule each
separately

Figure 4: Comparing the procedures for declaring, scheduling,
and executing GPU computation tasks between CPU- and
GPU-driven systems. For instance, the figure shows a matrix
multiplication operator with a 192x256 output, which is split
into 12 unit operators that calculate 64x64 outputs each.

to a specific SM inside the loop kernel. While a CPU-driven
system relies on the non-programmable hardware scheduler
that distributes the CTAs across SMs at kernel launch () in
Figure 4), a GPU-driven system implements a custom logic
that distributes vCTAs across CTAs (Q) in Figure 4). By
launching one CTA per SM that assigns each CTA to use the
entire resources of an SM, ARK can control the SM-affinity of
vCTAs in a programmable manner. This enables fine-grained
GPU scheduling, which is useful for the GPU-driven system
to implement various computational optimization techniques
such as operator fusion [17,24,35].

Migration of existing code to ARK is straightforward as
ARK can reuse existing GPU kernel implementations with
minimal modification: replacing the CTA ID (blockIdx in
CUDA), thread ID (threadIdx in CUDA), SM-local memory
address (shared memory in CUDA), and synchronization func-
tions (e.g., __syncthreads () in CUDA) into corresponding
constants or functions provided by the ARK framework. This
modification guarantees the correctness of the framework
which we have extensively verified.

As shown in Figure 4, offline scheduling writes a code
snippet of each vCTA inside the if-branch of the loop kernel
that only a particular CTA (or SM) enters. Since each CTA
statically executes specific vCTAs that are planned offline, the
GPU actually runs a static while () loop rather than being
controlled dynamically — internal busy-polling loops inside
vCTAs handle runtime events. For example, in Figure 5b, each
of CTA O (ctaIdis0)and CTA 1 (ctaldis 1) are assigned
three vCTAs from the operator op_0 and two vCTAs from
the operator op_1. Each CTA uses 256 threads, and vCTAs
from op_0 are executed sequentially by thread 0~127, while
tasks from op_1 are executed by thread 128~255 (which im-

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 91

__device__ void op_0(int vcta_id) {

Add<...>(&BUF[1024], &BUF[9728], &BUF[1024], vcta_id);
}
__device__ void op_1(int vcta_id) {

Matmul<...>(

&BUF[11776], &BUF[9728], &BUF[16384], vcta_id);
}
(a) Operators.

__global__ void loop_kernel(volatile int *iter) {
for (55) {
// Wait until iteration is requested by the host.
if (threadId == @) { while (*iter == 0) {} }
__syncthreads();
// Run iterations.
for (int i = @; i < *iter; ++i) {
if (ctald == @) {
if (threadId < 128) { op_0(®); op_0(2); op_0(4); }
else if (threadId < 256) { op_1(9); op_1(2); }
else if (ctald == 1) {
if (threadId < 128) { op_0(1); op_0(3); op_0(5); }
else if (threadId < 256) { op_1(1); op_1(3); }
} ...

—

// Inform the host that iterations are done.
if (threadId == @) { *iter = 0; }
__syncthreads();
}
} (b) Loop kernel.

Figure 5: Example of auto-generated code by the ARK sched-
uler. Note that the code is simplified for readability.

plies that each vCTA is implemented to use 128 co-working
threads). Each vCTA is declared by passing a certain vCTA
ID to a GPU function that defines an operator like in Figure 5a.
The kernel code library of ARK provides the implementation
of common operators (Add or Matmul in the figure) that take
the addresses of data chunks and a vCTA ID as runtime argu-
ments.” The framework assigns proper offsets to the global
GPU buffer (BUF) for each data chunk, and the vCTA ID
locates a specific part of the chunk that the vCTA deals with.

3.3 Offline Scheduler

Figure 6 shows the scheduling workflow in ARK. Overall, it
reads the DAG of a DL model and generates the correspond-
ing loop kernel code. The ARK scheduler is composed of a
high-level scheduler and a profiling module. The high-level
scheduler implements operator fusion with profiling results
fed by the module. In the initial phase, it builds an OpGraph
that spots all operators and their dependencies in the model,
and generates the code to profile all types of vCTAs that
are needed. Then, the high-level scheduler generates its first
scheduling decision with the profiling results. The decision
may consist of multiple different candidates that need to be
profiled to choose the fastest one, then it iterates the overall
process to compare against multiple other candidates, which
may require additional profiling. The scheduler finally returns
the loop kernel when only a single candidate remains.

Reducing compilations in the profiler. Since the code gener-
ator conducts deterministic scheduling with static vCTA-SM
affinity, it can accurately estimate the performance (i.e. la-
tency and core resource usage) of every scheduling decision
by only profiling the performance of vCTAs, which reduces

9Other arguments such as input data sizes can be fixed during compilation
by passing as template arguments, which we omit here.

ARK Scheduler
Kernel Code Library |

| ARK Graph File |
I

| OpGraplvn Builder | |

VCTA set &1 IvCTA info &
buffer info code snippets
—>| Code Generator |
ikeme] code files to profile (.cu)
| Compiler
Re-schedule ¥ GPU code binary (.cubin)
| Profiler

J profile results
| High-level Scheduler |

return

loop kernel code N

Figure 6: The ARK scheduler workflow.

the compilation for evaluating scheduling strategies. Say there
are n parallel operators and each operator has m different im-
plementations of the unit operator (or vCTAs),'" then up to
O(m™) different kernels should be compiled to find the best
fusion decision. Since this number could be unreasonably
large, existing works have developed heuristics to focus on
only promising candidates [17].

At first glance, this appears to require only O(nm) kernels
for vCTA evaluations, but it is more complicated as vCTAs
often complete faster when they are run concurrently on the
same SM than when executed serially, which we say they
have joint efficiency. Joint efficiency arises largely due to two
causes: (1) because the L1 cache hit ratio improves as they
access the common memory space running on the same SM,
(2) because the execution of one VCTA hides the memory
access of another (and vice versa) that improves simultaneous
utilization of ALUs and LSUs. The first case is often found
in the vCTAs from the same operator, while the second case
is prevalent in most vCTAs, i.e., almost all vCTAs have the
joint efficiency with each other.

Considering the joint efficiency, in general, we need to

measure the latency when different types of vCTAs co-run
on the same SM, which requires one kernel compilation for
each. Say up to k vCTAs can run simultaneously in one
SM, then the complexity of the number of compilations is
Y&, ()m' = O(n*m*). In practice, this is much smaller than
O(m") because k is typically a small constant < 4 due to the
limitation of SM resources (# of maximum threads, bytes of
shared memory, and # of registers).
SM load balancing in the code generator. The code gener-
ator automatically maximizes the SM utilization of the loop
kernel by distributing parallel vCTAs across SMs to balance
their workload. Unfortunately, finding the optimal load bal-
ancing is an NP-hard problem due to the joint efficiency. A
brute-force searching would take unreasonably long due to
the large number of vCTAs to schedule simultaneously.

To tackle this issue, we implement a heuristic load balanc-

101t is common to implement multiple different unit operators for the same
operator, e.g. cuBLAS [30] implements at least 8 different-sized unit matrix
multiplications and choose one depending on the input sizes.

92 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

ing on SM by leveraging an existing graph partitioning algo-
rithm. Graph partitioning is a popular load balancing problem
that splits a graph into a given number of subgraphs by cutting
several edges, while achieving two goals: (1) balancing the
total node weights of subgraphs and (2) minimizing the total
weights of cut edges. We represent the SM load balancing
problem into a graph partitioning problem. Specifically, we
first group independent vCTAs that need to be distributed
across SMs. Each group is represented as a graph where each
node represents a VCTA and each edge indicates that the con-
necting nodes (i.e. vCTAs) have joint efficiency. The node
weight is the latency of running the vCTA on an SM, and the
edge weight measures joint efficiency, which is calculated as
the fraction of latency reduction when we run both vCTAs
simultaneously in the same SM compared with when we run
both sequentially.

However, it takes too long to run the partitioning because
it makes too many edges — since almost all vCTAs have joint
efficiency with each other, the graph becomes nearly a mesh
connection. To accelerate the algorithm, we adopt hypergraph
representation [2] instead of an ordinary graph, which repre-
sents an equal-weighted mesh connection of multiple nodes
as a single edge called hyperedge. Fortunately, this repre-
sentation substantially reduces the time for code generation
especially when we use a large batch size (which creates a lot
of vCTAs), from tens of hours to only several seconds.

3.4 Limitations

The vCTA-based scheduling takes a whitebox approach that
assumes all operators to be open-sourced, thus ARK cannot
schedule close-sourced binaries such as cuDNN [28] (similar
to Rammer [24]). Also, the offline scheduler of ARK only
supports static computational graphs, which is less flexible
comparing to e.g. PyTorch’s dynamic graph [13]. However,
such a limitation is commonly found in many popular frame-
works including TensorRT [35] and ONNX Runtime [25].

4 Implementation
This section describes technical details of ARK.

4.1 DMA Engine Implementations

We first present our DMA engine interface, and then introduce
our software and hardware DMA engines.

4.1.1 Interface

The key consideration of our interface design is ensuring
high communication performance while keeping the inter-
face consistent across software and hardware platforms. One
key issue lies in the design of a DMA request message from
GPU, which we call a send request (SR), as it has significant
impact on the performance and the implementation complex-
ity. In terms of hardware, receiving a large SR whose size
exceeds the data bus width (64 bits in modern 64-bit proces-
sors) will take multiple cycles, which would require SR buffer

management, reassembly of segmented SRs, and handling
dropped SRs (caused by SR buffer overflow). Implementing
them on hardware would significantly complicate the logic
and increase the spatial cost. As implementing them on hard-
ware would significantly complicate the logic and increase
the spatial cost, we share an 8-byte SR design for both soft-
ware and hardware engines. While it is challenging to hold
the metadata of a general memory copy (two addresses and
a copy length) within 8 bytes, we address this by adopting a
small number of send/recv buffers, which reduces the address
space by replacing general 8-byte addresses with a few bits
of buffer indices. This is feasible thanks to the static nature of
collective communication where the communicating entities
are fixed — it enables offline pre-scheduling of data transfers
so that receivers know which data arrives at which buffer with-
out any additional metadata received at runtime. Meanwhile,
the DMA requests on different buffers are pipelined for low
latency and high throughput.

In terms of software, keeping an SR buffer would be more
efficient as it would otherwise require extra control to pre-
vent overwriting a previous SR. That is, unlike a hardware
implementation where a fully received SR can immediately
trigger the internal DMA pipeline at every cycle, a software
thread could overwrite an unread SR unless the sender (GPU)
coordinates with the receiver (the DMA stack) prior to send-
ing a new SR. Unfortunately, such coordination would incur
an extra delay as the GPU needs to read a remote flag on
the DMA stack before sending an SR. We address this issue
by maintaining a specialized ring buffer for SR, where the
GPU checks only a local replica of the buffer head before
sending an SR, and the replica is asynchronously updated by
the DMA stack. This removes the coordination delay from the
critical path of communication while providing a consistent
SR interface for both software and hardware engines.

4.1.2 Software Engine

Our software engine harnesses CPU as the data plane while
GPU serves as the control plane. We implement a CPU thread
that busy-waits for SRs and invokes cudaMemcpy or RDMA
writes accordingly, i.e., it leverages the existing hardware
DMA engine on the sender GPU. Note that this is different
from CPU-controlled communication as we use CPU only for
data plane operations while the control plane (event handling)
is managed by GPU threads. For high throughput, the busy-
waiting loop drains all SRs in the ring buffer and invoke
copy once for sending on a continuous memory space. Also,
instead of slow cudaEvent, we use MMIO for the CPU-GPU
communication that delivers SR, SC (Send Completion), and
RC (Receive Completion) signals, which takes only 2~3ps.
Alternatively, the software engine can perform MMIO with
CPU threads instead of initiating the hardware DMA engine,
which can reduce the cudaMemcpy overhead (i.e., sending a
copy request from CPU to the DMA engine on GPU). How-
ever, this approach fails to achieve the line rate in most host

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 93

GPU
7E

PCle TLP & Hard IP
ot
@: Send Arbiter
x v @

Send
. Fetch || Fetch | qp Composer

Splitter | Ctrl (@ 4
D Tabl
ecoder able +<> Send Ctrl

Fetch Block : Send Block
FPGA Stack ®: @I
FPGA FPGA Internal Transfer Path (ITP)

Figure 7: Implementation of the hardware DMA engine.

CPU architectures due to their poor throughput of crossing
the PCle root complex [41,44]. This issue might be resolved
in the future CPU architectures or by leveraging ARM cores
on SmartNICs [4], which is left as our future work.

4.1.3 Hardware Engine

We implement a custom hardware with FPGA for DMA oper-
ations, which delivers two benefits over our software engine
prototype. First, our hardware engine avoids the extra com-
munication delay incurred by the overhead of cudaMemcpy as
it performs DMA directly. Second, unlike existing hardware
DMA engines on GPU, our custom hardware implements
pipelining of multiple parallel DMA operations. This helps
achieve a high data rate even for sending small data chunks.
Table 2 shows resource usage of our implementation on an
Intel Arria 10 FPGA.

Note that our FPGA prototype is limited to support the
communication between only two GPUs and it does not sup-
port NVLink as there is no programmable hardware (or an
off-the-shelf device) that can connect to NVLink. Instead, we
consider it as a proof-of-concept that demonstrates the ideal
benefit rather than a practical device that can be deployed
on a large scale. A more practical implementation would be
realized by future advances in CPU, GPU, or SmartNICs.

Figure 7 shows the hardware structure of inter-GPU com-
munication stack on the FPGA. Unlike the existing GPU
DMA engine, our DMA stack is designed to pipeline multiple
DMA requests with different SIDs to be handled simultane-
ously. This is implemented by splitting a long-length request
into multiple short-length sub-requests, which prevents head-
of-line blocking and improves the PCle throughput when
GPU sends multiple different data at the same time. We ex-
plain how each request is processed by the sender- and the
receiver-side stacks, respectively.

Sender side. When the sender stack receives an SR, the Fetch
Block reads the decoded SR and retrieves the requested SID,
which is translated into the physical source GPU address by
looking up the SID Table ((D). Using the address, the Fetch
Ctrl fetches one sub-request at a time and it may fetch multiple
times if the copy length is long. Each sub-request reads the
corresponding source data from the GPU and stores it in a

ALMs BRAM Blocks
Capacity | # | Capacitry
FPGA Stack | 14253 3.34% | 188 6.93%
PCle 1364 0.32% 13 0.48%

Module Name

Table 2: Resource usage of a single DMA stack.

FIFO buffer of the Fetch Ctrl (2)). When the source data is
fully read from the GPU, the stored data and the sub-request
are forwarded to the receiver stack through FPGA Internal
Transfer Path (ITP). (3)). After processing all sub-requests
out of an SR, the Fetch Ctrl gives an SC flag to the Send
Arbiter, which will be written on the GPU-side SC flag. (@).
Receiver side. The receiver stack receives the sub-request
from the sender stack and stores the data into a FIFO buffer of
the Send Ctrl ((3). At the same time, the SID information in
the sub-request is translated into the physical destination GPU
address (®). The Send Ctrl sends the data to the destination
address, and when it is done, the Send Composer sends an
RC flag to the Send Arbiter, which will be written on the
GPU-side RC flag (), ®).

Resource usage and limitations. We implement the DMA
stack on Intel Arria 10 FPGA [16]. Table 2 shows that each
stack is implemented at a low cost, using only 14253 ALMs
and 188 M20K BRAMs. Note that our current implementation
supports communication between only two GPUs by directly
connecting the FPGA ITP interfaces of their corresponding
FPGA stacks. Our design considers leveraging DUA [41]
to support routing between multiple stacks (either intra- or
inter-machine), but we leave it as future work.

4.2 Loop Kernel Implementation

This section explains several details of optimizing the loop
kernel performance in ARK.

Per-thread register optimization. GPU kernels often fine-
tune the number of concurrent threads per SM by evaluating
the trade-off between running more threads (gain more par-
allelism) vs. running fewer threads with more registers per
each (gain more computational throughput per thread). So,
the loop kernel also needs to tune it. The ARK scheduler
generates multiple versions of the loop kernel with a different
number of per-thread registers and picks the best-performing
one. Actually, in NVIDIA GPUs, only 32, 64, 128, and 256
are available candidates due to hardware limitation.
Dependency on GPU Architecture. Section 3.2 explains
that ARK launches one CTA per SM, but it may launch two
or more CTAs per SM depending on the GPU architecture.
This is because one CTA may be limited to utilize the en-
tire resources of an SM in some architecture. In such cases,
we need to launch two CTAs per SM to use the entire SM
resources. The ARK scheduler automatically analyzes the
resource requirement of the loop kernel and determines the
number of CTAs per SM accordingly.

Program size. We reduce the program size of a loop ker-
nel by coalescing multiple identical unit operators, e.g., if

94 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

a model consists of many convolution operators, only sev-
eral unique implementations of convolution will be actually
defined, which are shared across all operators. Thus, the pro-
gram size depends only weakly on the number of operators
in the model. Instead, it is subject to the aggregate size of op-
erator implementations, which is very limited — e.g., cuBLAS
provides only ~10 instances of a matrix-multiplication imple-
mentation on a single GPU architecture, while a loop kernel
can accommodate over 5000 instances. This should cover an
arbitrary DL program as the size of the matrix-multiplication
implementation is one of the largest among the popular oper-
ators in DL.

5 Evaluation

We evaluate ARK by comparing it with existing DL frame-
works largely in three different aspects. First, the fast inter-
GPU communication of ARK contributes to higher end-to-end
throughput and lower latency of DL applications. Second, the
benefits on communication are obtained without losing the
computational throughput of GPU. Third, ARK has flexibil-
ity to support various parallelism strategies including data-,
tensor-, and pipeline-parallelism.

5.1 Experiment Setup

Software Engine. For experiments that use the software
DMA engine, unless specified differently, we use two Intel
Xeon Gold 6240R CPUs (48 Icores each, 2.40 GHz) and eight
NVIDIA V100 GPUs. We have two NUMA nodes in the ma-
chine but only a single NUMA node hosts all GPUs, i.e. node
0 connects two PCle v3 switches to its PCle root complex
and each switch is directly connected to 4 GPUs. For multi-
node experiments, we use four Azure NDv4 SKUs [7] with
32x NVIDIA A100 GPUs in aggregate (8 per node), where
each GPU has dedicated 200 Gbps NVIDIA Mellanox HDR
InfiniBand connection.

Hardware Engine. For experiments that use the hardware
DMA engine, we use an Intel Xeon Gold 5118 CPU (24
Icores, 2.30 GHz), two NVIDIA V100 GPUs, and an Intel
Arria 10 FPGA. Both GPUs and the FPGA are behind the
same PCle v3 switch. We use the hardware engine only for
experiments in Section 5.2 and Section 5.5.

5.2 DMA Engine Performance

Figure 8 compares the performance of communication be-
tween two GPUs with our DMA engines (G-Drv-S and G-
Drv-H) over a CPU-controlled communication baseline (C-
Drv). C-Drv is our own minimal implementation of a typical
CPU-driven system, but unlike TensorFlow, C-Drv leverages
asynchronous control using cudaEvent when the event is
used only by GPUs, which further reduces CPU-GPU syn-
chronizations to accelerate inter-GPU communication.

We measure the throughput by sending many parallel mes-
sages at the same time and reporting the maximum throughput

Throughput (GBps) Latency (us)

14 r 80 r
% C-Drv 70 | - C-Drv ;
12 N—G-Drv-S ——G-Drv-S N
10 H—e=G-Drv-H 60 | o G-Drv-H
g | 50 f K
6 L 40 "‘~x.xx*x@<.x-x~x-xxxx'x
30
4r 20
2 10 et
0 0 =257 i L L L
TOZT O MMM T OFT LN MMM M
TEREEREEEES TUPREEERESS
Message Size (Bytes) Message Size (Bytes)

Figure 8: Performance comparison between the CPU-
controlled communication (C-Drv) and the GPU-controlled
DMA engines (G-Drv-S (software) and G-Drv-H (hardware))
over PCle v3.

achieved with varying message sizes. For latency measure-
ments, we implement a ping-pong application and report one-
way latency — unlike throughput measurements, this includes
communication event handling delays. This experiment as-
sumes a favorable scenario for the CPU-controlled baseline
where we can adopt the asynchronous control (explained in
Section 2.2.2). In this scenario, a one-way trip requires trigger-
ing only two GPU events and two stream synchronizations.

In the left graph of Figure 8, our software engine (G-Drv-S)
shows the same throughput as that of C-Drv, since both use
cudaMemcpy for the data-plane. In contrast, our hardware en-
gine (G-Drv-H) shows huge throughput improvement, saturat-
ing the bandwidth with only 8 KB messages while G-Drv-S
needs 4 MB messages for saturation. This is because the
hardware DMA engine pipelines processing multiple DMA
requests while cudaMemcpy cannot. This improvement would
be especially beneficial when GPU sends multiple messages
to different destinations at the same time, e.g., all-to-all com-
munication for expert-parallelism, which is popular for scal-
ing out state-of-the-art Transformer-based models [11].

We note that the maximum achieved throughput of
G-Drv-H is 3.68% lower than G-Drv-S. This is because an ex-
ternal DMA stack needs to send both read and write requests
to sender and receiver GPUs, respectively, while the native
DMA engine on the sender GPU needs to send only write
requests. However, as the gap is small, it would not affect the
end-to-end application performance much.

The right graph of Figure 8 shows that the one-way latency
of C-Drv is at least ~39.3us on average. In contrast, G-Drv-S
and G-Drv-H achieve 3.5x and 9.1x better latency, respec-
tively. This is because our DMA engines handle the commu-
nication events directly in GPU threads while C-Drv relies on
the cudaEvent interface that suffers from large overhead to
trigger the events and synchronize streams. This improvement
would be especially beneficial when GPUs perform split-and-
gather of intermediate results to distribute the workload, as in
tensor-parallelism [22,26]. One thing to note about our DMA
engine is that the benefit is obtained with little GPU cycle
consumption. We evaluate this in the following section.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 95

Throughput (sequences/sec) Avg. Latency (ms/iteration)

500 600
——ARK —O— Megatron-LM
400 H—A—PT-TRT 500 H—a—PT-TRT
300 —O—Megatron-LM 400 H—@—ARK
300);M
200
200 T . ——
100 100 ¥
0 1 1 J O 1 J
1 2 4 8 1 2 4 8
GPUs # GPUs

Figure 9: BERT-Large data-parallel training throughput and
average latency per iteration with varying numbers of GPUs
(sequence length 384, batch size 10, mixed-precision).

5.3 Avoiding Communication Interference

To compare the interference between computation and com-
munication of using NCCL against using our DMA engine,
we evaluate data-parallel training throughput of ARK by train-
ing representative NLP models.

Baselines. PT-TRT accelerates PyTorch [12] by adopting Ten-
sorRT [35], which does not scale out to multiple machines.
Megatron-LM [26] is a PyTorch-based framework that sup-
ports large-scale training of NLP models but we use only for
single-node experiments here. SuperBench [42] provides for-
mal DL benchmarks for system performance evaluation also
based on PyTorch, which we use for multi-node experiments.
All baselines leverage NCCL [32] for communication.
Single Node. Single-node experiments train BERT-Large [10]
model using up to 8x V100 GPUs as shown in Figure 9. The
figure shows that ARK outperforms Megatron-LM and PT-
TRT respectively by 2.46x and 2.12x with 8 GPUs. We find
two reasons for the speedup.

First, NCCL adversely affects the computational through-
put during back-propagation while ARK does not as it lever-
ages DMA instead of employing GPU threads for data copy.
Specifically, 64.5% of the end-to-end gap between ARK and
PT-TRT with 8 GPUs is obtained as NCCL operations slow
down due to the interference of MMIO with back-propagation
computation, showing only 5.0 GBps of all-reduce throughput.
We find that NCCL kernels result in 45.0% of slowdown of
the overall back-propagation computation, an increase from
107.63 ms to 156.02 ms. On the other hand, our DMA en-
gine suffers near-zero interference by initiating DMA directly
instead of using MMIO, achieving 9.10 GBps of all-reduce
throughput (1.82x faster).

Second, ARK performs more efficient computation on
GPU. For example, for about 37.8% of the computation time
of PT-TRT, it executes 1.2 thousands of memory-intensive
kernels per iteration, such as element-wise arithmetic or intra-
GPU data movement. Running these operators as separate
kernels would be inefficient because it would incur unneces-
sary kernel launches and intra-GPU synchronizations. ARK
largely reduces such overhead as it schedules all operators in
a single loop kernel, similar as operator fusion [17,24,35].

Throughput (sequences/sec)
r 350

Avg. Latency (ms/iteration)

800

—&— ARK 300
600 | =£—SuperBench

250
200
150

400 r

200 100 —/— SuperBench
50 —8— ARK
0 L L L) 0 L L L L)
1 2 4 8 16 32 1 2 4 8 16 32
GPUs #GPUs

Figure 10: GPT-2 data-parallel training throughput and av-
erage latency per iteration with varying numbers of GPUs
(sequence length 384, batch size 4, mixed-precision).

Multiple Nodes. Multi-node experiments train the
GPT-2 [36] model using up to 32x A100 GPUs as shown in
Figure 10. All results use only InfiniBand for communication
(no NVLink) and use the ring reduction algorithm. The
figure shows that ARK outperforms SuperBench by 1.77x
with 32 GPUs. Furthermore, while per-iteration latency of
SuperBench is consistently increasing, the increment in
ARK is only marginal. This shows the efficiency of our
communication stack over NCCL, which minimizes the
interference between communication and computation. We
also find a big computational benefit of ARK even without
communication (when using a single GPU), which is further
explained in the following section.

5.4 Offline Scheduling Evaluation

This section shows that the offline scheduler of ARK can gen-
erate comparable or even better GPU kernels comparing with
existing DL optimization techniques. Rather than claiming
state-of-the-art performance in DL optimization, we intend to
show that the communication gain of our GPU-driven system
does not come up with any computational performance drop.

We compare the inference performance of popular DL
models over different frameworks using a single GPU. The
DL models include image classification (ResNet-50 [14]
and GoogLeNet [43]), object detection (SSD [23]), and NLP
(BERT-Large [10]) models. TensorFlow (TF) is the primary
comparison target of ARK because it supports flexible par-
allelism for DL applications like ARK. We also compare
with TensorFlow-XLA (TF-XLA) [1] that implements au-
tomatic operator fusion in the TF back-end, but it is not al-
ways beneficial to the performance because the fused kernel
might perform worse than using vendor-provided kernels (e.g.
cuDNN) without fusion. Rammer [24] and TensorRT imple-
ment optimized operator fusion that often outperforms TF
or TF-XLA, but they support only limited parallelism. For
example, TensorRT supports only intra-node data-parallelism
by adopting it to accelerate other frameworks like TF and
PyTorch, as TensorRT itself does not support distributed exe-
cution. Nimble [20] presents careful asynchronous control (or
ahead-of-time scheduling) of GPU kernels to reduce runtime

96 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

ResNet-50 (ms) GoogLeNet (ms)

7 14
6 12
5 10
4 8
3 6
2 4
1 2
0 0
1 2 8 1 2 8
Batch Size Batch Size
30 Sy Ul e e
25 | H 25 P g
20 § 20
15 § 15
10 §ge 10
5 5
0 - 0
1 2 8 1 2 8

Batch Size Batch Size
BTF-XLA BTF ORammer BNimble OTensorRT ®WARK |

Figure 11: Inference latency comparison of popular DL mod-
els over different DL frameworks using a single GPU. All
experiments use mixed-precision computation.

overhead of kernel launch and GPU events. As explained in
Section 2.2.2, however, asynchronous control is limited to
tackle the communication overhead. Nimble also works only
on a single GPU at the moment.

Figure 11 shows that ARK achieves faster single-GPU
inference against existing frameworks in most cases. For in-
stance, ARK shows 1.11x~3.56x lower latency than Ten-
sorRT, except the case of ResNet-50 with batch size 8 that
is ~9.90% worse than TensorRT. This is because our matrix
multiplication kernel is slower than the cuDNN [28] kernel
used in TensorRT in this case (note that we implement con-
volution via matrix multiplication). ARK currently does not
implement vCTAs specialized for large matrix multiplications
(one side of the unit operator’s output is larger than 256 ele-
ments), so it is often slower than existing kernels when the
model consists of large matrix multiplications.

We note that the gain of ARK is especially large when the
model consists of many parallel operators like Googl.eNet
or SSD. This is because our high-level scheduler maximizes
overall SM utilization by choosing the best vCTA (or unit
operator) for each parallel operators. Specifically, when a
lightweight operator runs alone in the GPU, we schedule it
to use fine-grained vCTAs so that it utilizes more concurrent
SMs. In contrast, when the GPU is overloaded due to other
co-running operators, we need to use coarse-grained vCTAs
to utilize SMs more efficiently. This is because coarse-grained
vCTAs work on more input data at the same time and thus
have more opportunities to better utilize the parallelism in
an SM. As explained in Section 3.3, the optimization to find
the best-performing vCTAs is easy in the ARK framework
because it accurately estimates the performance with different
vCTAs without running all candidates. We note that other
frameworks do not provide a similar optimization like this.

v FE v FE v FE v

GPUO

GPU1 A A A A

Figure 12: MoE model-parallel execution for Transformer
architecture using 2 GPUs, composed of MHA (multi-headed
attention) and FF (feed-forward) modules.

Architecture Message Size (KB) Time Gap (us)
BERT-Large [10] 256 60.9
GPT-3 XL [8] 512 187.4
TS 3B [37] 256 166.9
M4 [6] 256 60.9

Table 3: The message size and the smallest time gap between
transactions for MoE inference. The input sequence length is
128. Time gaps are measured using the ARK framework.

5.5 Tensor-parallel Inference

This section presents the latency improvement with the tensor-
parallel approach called mixture-of-experts (MoE) that effi-
ciently scales up the Transformer [45] architecture, which is
commonly used in many popular NLP models [6,8,11,37].
This method is suggested to scale NLP models to one trillion
of model parameters [11,22], but since we do not have enough
GPUs to run the entire model, we evaluate the tensor-parallel
inference of the model using two GPUs. In real practice, this
is replicated to other GPUs to apply pipeline-parallelism (for
training or inference) and data-parallelism (only for training)
as well at the same time.

Figure 12 illustrates the MoE execution. The message size
and the smallest time gap in-between the exchanges depend
on the model hyperparameters, and some examples are shown
in Table 3. Even though we present only 2-GPU experiments
here, the result would be similar to a larger-scale one because
MoE is designed to send each message only up to a small
constant number (e.g. two in GShard [22]) of selected GPUs,
not to all other GPUs.

We evaluate ARK using the hardware engine with three
different comparison baselines — TF, TF-XLA, and C-Drv.
Note that TensorRT-accelerated TensorFlow (TF-TRT) does
not support model-parallelism, so it is not evaluated here.

Results in Figure 13 shows that ARK outperforms TF and
TF-XLA by 1.66x~3.48x and 1.25x~2.31x, respectively. In
terms of only the communication latency, ARK reduces it by
3.68x~5.65x and 1.77x~3.31x, respectively. Overall, C-Drv
achieves better communication latencies over TF or TF-XLA,
but its computation is less efficient because it reuses GPU
kernel implementations in ARK but it does not benefit from
ARK scheduler optimization. We also find that the GPU-
driven communication of ARK delivers a substantial speedup
over the CPU-driven communication of C-Drv, as shown in
Section 5.2. We note that ARK computation is slower than

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 97

BERT-Large MoE Latency (ms) GPT-3 XL MoE Latency (ms)

T5 3B MoE Latency (ms) M4 MoE Latency (ms)

20 30
25
15 B Communication| 20 0O Communication|
10 15
10
5
5
0 0
A RN A NP T o
IS i
< <

B Computation B Computation
Communication O Communication

P PN - N
; F v
s

¢ o &
P
9 éﬁ~ ¥

Figure 13: MoE inference latencies with different NLP model architectures (batch size 1, mixed-precision).

TF-XLA in GPT-3 XL and T5 3B. This is because our matrix
multiplication kernel performs worse than TF-XLA in these
cases, as explained in Section 5.4.

5.6 Pipeline-parallel Training

In this section, we train the GPT-3 [8] 6.7B model, which is
the largest variation of GPT-3 that can fit the memory of eight
V100 GPUs via pipeline-parallel training. The model consists
of 32 sequential layers and each GPU trains 4 layers in the
sequential order — GPU 0 reads the input data and runs the
forward-pass of layer 0~3, and the 16 MB output is passed to
GPU 1, and so on. When GPU 7 completes the forward-pass,
it moves on to the backward-pass of layer 31~28, and the
16 MB of back-propagating gradient is passed to GPU 6, and
so on. We use the mixed-precision computation and set the
number of pipeline stages to 5, the batch size of each stage to
1, and the sequence length to 2048. ARK uses the emulated
DMA stack in this evaluation.

In this experiment, the training throughputs of TF, TF-XLA,
Megatron-LM, and ARK are 0.35, 0.47, 1.69, and 2.38 se-
quences per second, respectively, i.e. ARK outperforms TF,
TF-XLA, and Megatron-LM by 6.80x, 5.06x, and 1.40x, re-
spectively. In this case, most of the improvement of ARK
comes from the computational efficiency on GPU, as pipeline-
parallel training typically overlaps most of the communication
delay with the computation time. This evaluation shows that
ARK delivers the gain of operator fusion while supporting
flexible parallelism for DL.

6 Future Work & Related Work

We expect that hardware advances in near future would enable
more efficient implementations. For example, implementing
our software DMA engine on SmartNIC would avoid the
throughput issue of the PCle root complex [44] via direct PCle
connection with GPUs (e.g., NVIDIA H100 CNX [9] com-
bines GPU with SmartNIC), which enables efficient MMIO
on SmartNIC. NVIDIA has announced their hardware ac-
celerators for inter-GPU communication on SmartNICs (e.g.,
all-to-all engine on NVIDIA BlueField-3 [29]), which implies
that a similar implementation with our hardware engine might
be realized in the future. Additionally, host CPU architectures
in the future may fix the root complex issue, which will en-
able our software DMA engine to replace cudaMemcpy with

CPU-side MMIO, or even more efficiently, DMA engines on
CPU (e.g., Intel I/OAT [15] or AMD PTDMA [21]).

ACE [38] proposes offloading the entire collective com-
munication logic to a hardware accelerator that resides on
intra-machine fabric, which cannot be extended to an external
network (Ethernet, InfiniBand, etc). Our work differs from
ACE as it is generally applicable to any (R)DMA networking
and we can reuse most of existing software logic in popular
collective communication libraries.

GPUnet [18] presents a network socket API set for GPU
threads and leverages CPU intervention to let GPU threads
to trigger DMA. This is inefficient as they add a substantial
intervention overhead especially for small messages because
they do not pipeline processing multiple DMA requests. Its
throughput could be suboptimal as it implements a general
socket interface on GPU while ARK reduces the overhead by
leveraging offline scheduling to remove the metadata to be
managed during runtime.

Nimble [20] accelerates DL execution by minimizing run-
time scheduling overhead of kernels, but it works only on a
single GPU. The proposed methods also cannot help reduce
communication event handling overhead as it still relies on the
CPU-side control using cudaEvent and multi-stream inter-
faces. ARK tackles this by letting GPU threads fully control
all computation and communication tasks.

7 Conclusion

This paper envisions a GPU-driven code execution system
that enables autonomous control of GPU throughout the entire
lifetime of DL applications. We present the GPU-controlled
DMA engine at the heart of the GPU-driven system that en-
ables GPUs to communicate with each other without any ex-
ternal control. To avoid interference between computation and
communication, we design our DMA engine and offline GPU
scheduling to consume little GPU resources for communica-
tion, so that its high communication performance is delivered
without sacrificing computational throughput of GPU. While
our software engine already shows benefits over commodity
hardware, we also present a proof-of-concept of a hardware
engine that shows even higher performance, which indicates
that our system performance would be further improved with
future advances in commodity hardware such as CPU, GPU,
or SmartNIC.

98 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Acknowledgements

We appreciate the feedback by our shepherd, Danyang Zhuo,
as well as anonymous reviewers of NSDI’23. This work is in
part support by the ICT Research and Development Program
of MSIT/ITP, Korea, under [2022-0-00531, Development of
in-network computing techniques for efficient execution of
Al applications] and [2018-0-00693, Development of an ultra
low-latency user-level transfer protocol].

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

XLA: Optimizing Compiler for Machine Learning.
https://www.tensorflow.org/xla, 2021. [Online;
accessed Dec 2022].

Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and
Sebastian Schlag. Engineering a direct k-way hyper-
graph partitioning algorithm. In Proceedings of the
Workshop on Algorithm Engineering and Experiments
(ALENEX), 2017.

AMD. Introducing AMD CDNAT™ 2 Architecture.
https://www.amd.com/system/files/documents/
amd-cdna2-white-paper.pdf, 2021. [Online;
accessed Dec 2022].

AMD. Alveo SN1000 SmartNIC Accelerator Card.
https://www.xilinx.com/products/boards-and-
kits/alveo/sn1000.html, 2022. [Online; accessed
Dec 2022].

AMD. ROCm Communication Collectives
Library (RCCL). https://github.com/
ROCmSoftwarePlatform/rccl, 2022. [Online;
accessed Dec 2022].

Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry
Lepikhin, Melvin Johnson, Maxim Krikun, Mia Xu
Chen, Yuan Cao, George F. Foster, Colin Cherry, Wolf-
gang Macherey, Zhifeng Chen, and Yonghui Wu. Mas-
sively multilingual neural machine translation in the
wild: Findings and challenges. CoRR, abs/1907.05019,
2019.

Microsoft Azure. ND A100 v4-series - Azure Virtual
Machines. https://learn.microsoft.com/en-
us/azure/virtual-machines/ndal00-v4-series,

2022. [Online; accessed Dec 2022].

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learn-
ers. CoRR, abs/2005.14165, 2020.

Charu Chaubal. Build Mainstream Servers for Al
Training and 5G with the NVIDIA HI00 CNX.
https://developer.nvidia.com/blog/build-
mainstream-servers-for-ai-training-and-
5g-with-the-nvidia-h100-cnx/, 2022. [Online;
accessed Dec 2022].

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In Pro-
ceedings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), 2019.

William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with
simple and efficient sparsity. CoRR, abs/2101.03961,
2021.

The Linux Foundation. PyTorch. https://pytorch.
org, 2022. [Online; accessed Dec 2022].

The Linux Foundation. How Computa-
tional Graphs are Constructed in PyTorch.
https://pytorch.org/blog/computational-
graphs-constructed-in-pytorch/, 2023. [Online;
accessed Jan 2023].

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2016.

Intel. Fast memcpy with SPDK and Intel® I[/OAT DMA
Engine. https://www.intel.com/content/www/
us/en/developer/articles/technical/fast-
memcpy-using-spdk-and-ioat-dma-engine.html,
2017. [Online; accessed Dec 2022].

Intel. Intel® FPGAs - Intel® Arria® 10 FP-
GAs. https://www.intel.com/content/www/us/
en/products/details/fpga/arria/10.html, 2022.
[Online; accessed Dec 2022].

Zhihao Jia, Oded Padon, James J. Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: optimizing
deep learning computation with automatic generation of
graph substitutions. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles (SOSP), 2019.

Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu,
Amir Wated, Emmett Witchel, and Mark Silberstein.
Gpunet: Networking abstractions for GPU programs.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 99

https://www.tensorflow.org/xla
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.xilinx.com/products/boards-and-kits/alveo/sn1000.html
https://www.xilinx.com/products/boards-and-kits/alveo/sn1000.html
https://github.com/ROCmSoftwarePlatform/rccl
https://github.com/ROCmSoftwarePlatform/rccl
https://learn.microsoft.com/en-us/azure/virtual-machines/nda100-v4-series
https://learn.microsoft.com/en-us/azure/virtual-machines/nda100-v4-series
https://developer.nvidia.com/blog/build-mainstream-servers-for-ai-training-and-5g-with-the-nvidia-h100-cnx/
https://developer.nvidia.com/blog/build-mainstream-servers-for-ai-training-and-5g-with-the-nvidia-h100-cnx/
https://developer.nvidia.com/blog/build-mainstream-servers-for-ai-training-and-5g-with-the-nvidia-h100-cnx/
https://pytorch.org
https://pytorch.org
https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/
https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10.html

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

In Proceedings of the USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), 2014.

Young Jin Kim, Ammar Ahmad Awan, Alexan-
dre Muzio, Andrés Felipe Cruz-Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and
Hany Hassan Awadalla. Scalable and efficient moe
training for multitask multilingual models. CoRR,
abs/2109.10465, 2021.

Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-
Gon Chun. Nimble: Lightweight and parallel GPU task
scheduling for deep learning. In Proceedings of the
Advances in Neural Information Processing Systems

(NeurIPS), 2020.

Michael Larabel. AMD PTDMA Driver Landing
For Linux 5.15 After Two Years In The Works —
Phoronix. https://www.phoronix.com/scan.php?
page=news_item&px=AMD-PTDMA-For-Linux-5.15,
2021. [Online; accessed Dec 2022].

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. CoRR, abs/2006.16668, 2020.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott E. Reed, Cheng-Yang Fu, and Alexan-
der C. Berg. SSD: single shot multibox detector. In
Proceedings of the European Conference on Computer
Vision (ECCV), 2016.

Lingxiao Ma, Zhiqgiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2020.

Microsoft. ONNX Runtime. https://onnxruntime.
ai/, 2023. [Online; accessed Jan 2023].

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on GPU
clusters. CoRR, abs/2104.04473, 2021.

NVIDIA. Using NCCL with CUDA Graphs.
https://docs.nvidia.com/deeplearning/nccl/
user-guide/docs/usage/cudagraph.html, 2020.
[Online; accessed Dec 2022].

NVIDIA. CUDA Deep Neural Network (cuDNN).
https://developer.nvidia.com/cudnn,2021. [On-
line; accessed Dec 2022].

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

NVIDIA. NVIDIA BlueField-3 DPU - Pro-
grammable Data Center Infrastructure On-a-Chip.
https://www.nvidia.com/content/dam/en-zz/
Solutions/Data-Center/documents/datasheet-
nvidia-bluefield-3-dpu.pdf, 2021. [Online;
accessed Dec 2022].

NVIDIA. cuBLAS. https://developer.nvidia.
com/cublas, 2022. [Online; accessed Dec 2022].

NVIDIA. GPUDirect. https://developer.nvidia.
com/gpudirect, 2022. [Online; accessed Dec 2022].

NVIDIA. NVIDIA Collective Communications Library
(NCCL). https://developer.nvidia.com/nccl,
2022. [Online; accessed Dec 2022].

NVIDIA. NVLink & NVSwitch: Fastest HPC Data
Center Platform. https://www.nvidia.com/en-us/
data-center/nvlink/, 2022. [Online; accessed Dec
2022].

NVIDIA. PTX ISA — Cache Operators. https:
//docs.nvidia.com/cuda/parallel-thread-
execution/index.html#cache-operators,
[Online; accessed Dec 2022].

2022.

NVIDIA. TensorRT SDK. https://developer.
nvidia.com/tensorrt, 2022. [Online; accessed Dec
2022].

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners. OpenAl blog,
1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. CoRR,
abs/1910.10683, 2019.

Saeed Rashidi, Matthew Denton, Srinivas Sridharan, Su-
darshan Srinivasan, Amoghavarsha Suresh, Jade Nie,
and Tushar Krishna. Enabling compute-communication
overlap in distributed deep learning training platforms.
In Proceedings of the ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA), 2021.

Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. CoRR,
abs/1802.05799, 2018.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language
models using model parallelism. CoRR, abs/1909.08053,
2019.

100 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://www.phoronix.com/scan.php?page=news_item&px=AMD-PTDMA-For-Linux-5.15
https://www.phoronix.com/scan.php?page=news_item&px=AMD-PTDMA-For-Linux-5.15
https://onnxruntime.ai/
https://onnxruntime.ai/
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/cudagraph.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/cudagraph.html
https://developer.nvidia.com/cudnn
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/nccl
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

[41] Ran Shu, Peng Cheng, Guo Chen, Zhiyuan Guo, Lei Qu,
Yonggiang Xiong, Derek Chiou, and Thomas Mosci-
broda. Direct universal access: Making data center
resources available to FPGA. In Proceedings of the
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2019.

[42] SuperBench. SuperBench Documentation. https:
//microsoft.github.io/superbenchmark/, 2022.
[Online; accessed Dec 2022].

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott E. Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. CoRR, abs/1409.4842,
2014.

[44] Nathan R Tallent, Nitin A Gawande, Charles Siegel, Ab-
hinav Vishnu, and Adolfy Hoisie. Evaluating on-node
gpu interconnects for deep learning workloads. In Inter-
national Workshop on Performance Modeling, Bench-
marking and Simulation of High Performance Computer
Systems (PMBS), 2017.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Pro-
ceedings of the Advances in Neural Information Pro-
cessing Systems (NeurlPS), 2017.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 101

https://microsoft.github.io/superbenchmark/
https://microsoft.github.io/superbenchmark/

BGL: GPU-Efficient GNN Training by Optimizing Graph Data 1/0 and
Preprocessing

Tianfeng Liu*1#3, Yangrui Chen*%3, Dan Li'**, Chuan Wu?2, Yibo Zhu3, Jun He?,
Yanghua Peng?, Hongzheng Chen?-°, Hongzhi Chen?, Chuanxiong Guo®
YTsinghua University, *The University of Hong Kong, 3ByteDance,
4Zhongguancun Laboratory, > Cornell University,

Abstract

Graph neural networks (GNNs) have extended the success of
deep neural networks (DNNs) to non-Euclidean graph data,
achieving ground-breaking performance on various tasks such
as node classification and graph property prediction. Nonethe-
less, existing systems are inefficient to train large graphs with
billions of nodes and edges with GPUs. The main bottle-
necks are the process of preparing data for GPUs — subgraph
sampling and feature retrieving. This paper proposes BGL,
a distributed GNN training system designed to address the
bottlenecks with a few key ideas. First, we propose a dy-
namic cache engine to minimize feature retrieving traffic. By
co-designing caching policy and the order of sampling, we
find a sweet spot of low overhead and a high cache hit ratio.
Second, we improve the graph partition algorithm to reduce
cross-partition communication during subgraph sampling. Fi-
nally, careful resource isolation reduces contention between
different data preprocessing stages. Extensive experiments on
various GNN models and large graph datasets show that BGL
significantly outperforms existing GNN training systems by
1.9x on average.

1 Introduction

Graphs, such as social networks [23, 36], molecular net-
works [19], knowledge graphs [21], and academic net-
works [47], provide a natural way to model a set of objects and
their relationships. Recently, there is increasing interest in ex-
tending deep learning methods for graph data. Graph Neural
Networks (GNNs) [22,36,46] have been proposed and shown
to outperform traditional graph learning methods [50,57,59]
in various applications such as node classification [36], link
prediction [56] and graph property prediction [51].
Real-world graphs can be massive. For example, the user-
to-item graph on Pinterest contains over 2 billion entities
and 17 billion edges with 18 TB data size [53]. As a major
online service provider, we also observe over 100 TB size of

“Tianfeng Liu and Yangrui Chen contributed equally to this work as first
authors.

graph data, which consists of 2 billion nodes and 2 trillion
edges. Such large sizes make it impossible to load the entire
graph into GPU memory (at tens of GB) or CPU memory (at
hundreds of GB), hence turning down proposals that adopt
full graph training on GPUs [55]. Recent works [23,28,53]
have resorted to mini-batch sampling-based GNN training,
aggregating neighborhood information on sampled subgraphs.

Distributed systems [2, 17, 48] for this training typically in-
clude distributed graph store servers to store partitioned large-
scale graphs and worker machines where each worker has one
GPU for model training. Each training iteration contains three
stages: (1) sampling subgraphs stored in distributed graph
store servers, (2) feature retrieving for the subgraphs from
graph store servers to workers, and (3) forward and backward
computation of the GNN model.

The first two stages, which we refer to as data I/O and
preprocessing, are often the performance bottlenecks in such
sampling-based GNN training. After analyzing popular GNN
training frameworks (e.g., DGL [48], PyG [17], and Euler [2]),
we made two key observations. (1) High data traffic for retriev-
ing training samples: when the sampled subgraph is stored
across multiple graph store servers, there can be frequent
cross-partition communication for sampling; retrieving cor-
responding features from the storage to worker machines
also incurs large network transmission workload. (2) Modern
GPUs can perform the computation of state-of-the-art GNN
models [22, 36, 46] quite fast, leading to high demand for
data input. To mitigate these problems, Euler adopts parallel
feature retrieval; DGL and PyG prefetch the sampling results.
Unfortunately, none of them fully resolves the I/O bottleneck.
For example, we observe only around 10% GPU utilization
in a typical DGL training job on a large graph (§2 and §5),
which means around 90% of GPU cycles are wasted.

In this paper, we propose BGL, a GPU-efficient GNN train-
ing system for large graph learning, to accelerate training and
achieve high GPU utilization (near 100%). Focusing on elim-
inating data I/O and preprocessing bottlenecks, we identify
three key challenges in the existing frameworks, namely: (1)
very heavy network traffic for retrieving features, (2) large

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 103

cross-partition communication overhead during sampling, and
(3) resource contention between different training stages. We
address those challenges, respectively.

The biggest bottleneck of distributed GNN training systems
often lies in retrieving large features (§2.3). PaGraph [38], a
state-of-the-art cache design for GNN training, uses a static
cache (no replacement during training) and explicitly avoids
dynamic caching policy (replacing some cached features at
runtime) because of high overhead. However, we find that
static cache has low hit ratios when the graphs are so large
that only a small fraction of nodes can be cached. Hence, we
co-design a dynamic cache policy and the sampling order of
nodes. We show that a FIFO policy has acceptable overhead
and high hit ratios combined with our proximity-aware order-
ing. The key idea is to leverage temporal locality — in nearby
mini-batches, we always attempt to visit the neighboring train-
ing nodes in the graph. This approach largely increases the
cache hit ratio of FIFO policy. We will further explain the
details of how we ensure the consistency of our multi-GPU
cache engine and GNN convergence in §3.2.

After optimizing feature retrieval, the cross-partition com-
munication for subgraph sampling could become the major
performance bottleneck. Existing algorithms either do not
scale to large graphs or ignore multi-hop neighbor connec-
tivity inside each partition. It leads to heavy cross-partition
communication because, in GNN training, the sampling algo-
rithm usually requests multi-hop neighbors from a given node.
Hence, we design a graph partition algorithm tailored for the
typical GNN sampling algorithms. Our algorithm (in §3.3.2)
strives to maintain multi-hop connectivity in each partition,
while maintaining load balance partitions and scaling to giant
graphs.

Finally, data preprocessing in GNN training takes multiple
stages and is much more complex than that in traditional DNN
training. Execution of some stages may compete for CPU and
bandwidth resources, throttling the performance. Existing
frameworks largely ignore it and let the preprocessing stages
freely compete with each other. Unfortunately, some stages
do not scale well with more resources. They may acquire
more resources than they need, leading to blocking other
stages. Hence, we optimize the resource allocation of data
preprocessing by profiling-based resource isolation. Our key
idea is to formulate the resource allocation problem as an
optimization problem, use profiling to find out the resource
demands of each stage, and isolate resources for each stage.

We implement BGL, including the above design points,
and replace the data I/O and preprocessing part of DGL with
it. The design of BGL is generic — e.g., BGL can also be used
with Euler’s computation backend. However, our evaluation
focuses on using BGL with the DGL GPU backend because
it is more mature and performant. We conduct extensive ex-
periments using multiple representative GNN models with
various graph datasets, including the largest publicly available
dataset and an internal billion-node dataset. We demonstrate

that BGL outperforms existing frameworks, and the geomet-
ric mean of speedups over PaGraph, PyG, DGL, and Euler is
1.91x, 3.02x, 7.04x, and 20.68x, respectively. With the same
GPU backend as DGL, BGL can push the V100 GPU uti-
lization to 99% even when graphs are stored remotely and
distributedly, higher than existing frameworks. It also scales
well with the size of graphs and the number of GPUs.

2 Background and Motivation

2.1 Sampling-based GNN Training

We start by explaining sampling-based GNN training.
Graph. The most popular GNN tasks ' are to train on graphs
with node features, G = (¥, E, F), where V and E denote
the node set and edge set of the graph, and ¥ denotes the
set of feature vectors assigned to each node. For example,
in the graph Ogbn-papers [47], each node (i.e., paper) has a
128-dimensional feature vector representing the embeddings
of the paper title and abstract. We assume graph structures
and node features are immutable in this paper.

Graph neural networks (GNNs). Graph neural networks
are neural networks learned from graphs. The basic idea is col-
lectively aggregating information following the graph struc-
ture and performing various feature transformations. For in-
stance, the Graph Convolution Network (GCN) [36] general-
izes the convolution operation to graphs. For each node, GCN
aggregates the features of its neighbors using a weighted av-
erage function and feeds the result into a neural network. For
another example, GraphSAGE [23] is a graph learning model
that uses neighbor sampling to learn different aggregation
functions on different numbers of hops.

Real-world graphs, such as e-commerce and social net-
works [13,53,55], are often large. The Pinterest graph [53]
consists of 2B nodes and 17B edges, and requires at least 18
TB memory during training. Even performing simple oper-
ations for all nodes would require significant computation
power, not to mention the notoriously computation-intensive
neural networks. Similar to other DNN training tasks, it is
appealing to use GPUs to accelerate GNN training.
Sampling-based GNN training. There are two camps of
training algorithms adopted in existing GNN systems: full-
batch training and mini-batch training. Full-batch training
loads the entire graph into GPUs for training [36], like Neu-
Graph [40] and ROC [31]. Unfortunately, for very large
graphs like Pinterest’s, such an approach would face the limi-
tation of GPU memory capacity.

Thus, we focus on the other approach, mini-batch train-
ing, or often called sampling-based GNN training. In each
iteration, this approach samples a subgraph from the large
original graph to construct a mini-batch as the input to neural
networks. Mini-batch training is more popular and adopted by
literature [11,23,54] and popular GNN training frameworks
like DGL [48], PyG [18] and Euler [2].

I'We focus on node classification tasks in this work.

104 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Graph Store Worker

® §§

Feature

Graph Structure Features

o°

50

Retrieving Model

_ﬁ [Computation
@Subgraph Sampling

=Sl =t
) — =
Mini-batch /
Figure 1: Sampling-based GNN training process.

Sampler

The process of sampling-based GNN training is shown in
Figure 1. The fixed graph data (including the graph structure
and node features) are partitioned and stored in a distributed
graph store. Multiple workers run on worker machines, with
each worker equipped with one GPU. Each training iteration
consists of three stages: (1) Subgraph sampling: Samplers
sample a subgraph from the original graph and send it to
workers. (2) Feature retrieving: After workers receive the
subgraph, the features of its nodes are further retrieved from
the graph store server and placed in GPU memory. (3) Model
computation: Like typical DNN training, workers on GPU
forward-propagate the prepared mini-batch through the GNN
model, calculate the loss function, and then compute gradients
in backward propagation. Then model parameters are updated
using optimizers (e.g., SGD [61], Adam [35]).

In the rest of this paper, we refer to the first two stages as
Data 1/0 and Preprocessing.

2.2 Data I/O and Preprocessing Bottlenecks

Unfortunately, existing GNN training frameworks suffer from
data I/O and preprocessing bottlenecks, especially when run-
ning model computation on GPUs. Here, we test two rep-
resentative frameworks, DGL [48] and Euler [2]. We train
GraphSAGE [23] model with one GPU worker. Using the par-
tition algorithms of DGL and Euler, we split the Ogbn-papers
graph [47] into four partitions and store them on four servers
as a distributed graph store. More configuration details and
the other framework results are in §5.

Figure 2 shows the training time of one mini-batch and the
time breakdown of each stage. 87% and 82% of the training
time were spent in data I/O and preprocessing by Euler and
DGL, respectively. Long data preprocessing time leads to not
only poor training performance but also low GPU utilization.
The maximum GPU utilization of DGL and Euler is 15% and
5%, respectively, as shown in Figure 3.

In GNN training, such a bottleneck is much more severe
than in DNN training like computer vision (CV) or natural
language processing (NLP) for two main reasons.

First, due to the neighbor explosion problem [12,54], the
size of mini-batch data required by each training iteration
is very large. For example, if we sample a three-hop sub-
graph from Ogbn-products with batch size 1,000 and fan out
{15,10,5}, each mini-batch consists of SMB subgraph struc-

5

B Subgraph Sampling

GPU Utilization (%)

«»

EINI Feature Retrieving ‘

B Model Computation \ |

100 200 300 400 0 20 40 60 80 100 120
Training Time (ms) Time (s)

Figure 2: Training time per mini- Figure 3: GPU utilization of
batch of DGL and Euler. DGL and Euler.

ture (roughly 400,000 nodes) and 195 MB node features. As-
suming that we use a common training GPU server like AWS
p3dn.24xlarge [4] (8x NVIDIA V100 GPUs and 100Gbps
NIC) as the worker, and that we could saturate the 100Gbps
NIC pulling such data, we can only pull 60 mini-batches of
data in every second.

Second, the model sizes and required FLOPS of GNN are
much smaller than classic DNN models like BERT [15] or
ResNet [25]. V100 needs only 100MB and 20ms to com-
pute a mini-batch of popular GNN models like GraphSAGE.
P3dn.24xlarge can compute 400 mini-batches per second.

There is clearly a huge gap between the data I/O and pre-
processing speed, and GPU computation speed. Consequently,
though frameworks like DGL and Euler adopt pipelining, the
data I/O and preprocessing bottlenecks can only be hidden by
a small fraction and dominate the end-to-end training speed.

Some recent work [20,29, 38] also observed this problem
and made promising progress. Unfortunately, it still falls short
in performance (§5) and cannot handle giant graphs well.
Next, we will elaborate on the main challenges existing GNN
training frameworks face.

2.3 Challenges in Removing the Bottlenecks

We identify three main challenges. Two are on large commu-
nication traffic for feature retrieving and subgraph sampling
(as shown in Figure | and 2). The other is about resource
contention when running all the stages together.
Challenge 1: Ineffective caching for node feature retriev-
ing. As shown in Figure 2, due to the large volume of data
being pulled to workers, node feature retrieval renders the
biggest bottleneck. A natural idea to minimize such com-
munication traffic is to leverage the power-law degree distri-
bution [16] of real-life graphs. For example, PaGraph [38]
adopted a static (no replacement at runtime) cache that stores
the predicted hottest node features locally. Upon cache hit,
the traffic of feature retrieving can be saved. Unfortunately,
on giants graphs like Pinterest graph [53], such a static cache
may only be able to store a small fraction of nodes due to
memory constraints. We find, when only 10% of nodes can
be cached, the static cache only yields <40% cache hit ratios.
Why not use dynamic (replacing some caches at runtime)
cache policies? It is challenging because it would incur large
searching and updating overhead, pointed out in [38]. Over-
heads become even larger when the cache is large (tens of
GB) and stored on GPU. Our best-effort implementation

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 105

Table 1: Qualitative comparison of graph partition algorithms.

Partition ‘ Scalability to Balanced Multi-hop

Algorithms Giant Graphs | Training Nodes | Connectivity
Random [2,30] | v \ v \ X
e A A
GMiner [10] | v \ X I
PaGraph [38] | X \ v v

echos [42,44] — we also find that popular policies like LRU
and LFU lead to a near 80-millisecond overhead for updating.

Nevertheless, we will show in §3.2 that it is still possible
to achieve a good trade-off between cache hit ratios and dy-
namic cache overhead by exploiting the characteristics of
GNN training and carefully designing the cache engine.
Challenge 2: Need for a graph partition algorithm that
is scalable and friendly to subgraph sampling. Beyond
node feature retrieving, communication overhead of subgraph
sampling renders another major bottleneck.

The partition algorithms affect the sampling overheads
in two ways. First, they determine cross-partition commu-
nication overhead. GNN sampling algorithms construct a
subgraph by sampling from a training node’s multi-hop neigh-
bors. If the neighbors are hosted on the same graph store
server, the sampler colocated with graph store servers can
finish sampling locally. Otherwise, it must request data from
other servers, incurring a high communication overhead. Like
random partitioning” [2,30], naive algorithms are agnostic
to the graph structure. Most state-of-the-art (SOTA) parti-
tion algorithms on graph processing and graph mining, like
GMiner [10] and CuSP [26], only consider one-hop connec-
tivity instead of multi-hop connectivity, which is suboptimal.

Second, partition algorithms determine the load balance
across graph store servers and sampler processes. In a train-
ing epoch, one must iterate all training nodes and sample
subgraphs based on them. For good load balance, one should
balance the training nodes across partitions. However, SOTA
graph partition algorithms only consider balancing all the
nodes, of which only 10% [27,47] are training nodes. Be-
cause they focus on maintaining neighborhood connectivity,
they may produce less balanced partitions than the pure ran-
dom algorithm, especially imbalanced for the training nodes.

Since we aim for GNN training on giant graphs, the parti-
tion algorithm must be scalable to giant graphs as well. Like
the METIS [32,33] used by DGL, some partition algorithms
rely on maximal matching to coarsen the graph, which is not
friendly to giant graphs due to high memory complexity [24].
Some other algorithms, such as PaGraph [38], have high time
complexity and are not friendly to giant graphs.

Ideally, we need a partition algorithm that works on giant

2 Also including Lux [30], which is a random partition algorithm that
frequently re-partitions the graph for load balancing.

Distributed Graph
Data Files

Graph Partition Module

G

Q Graph Partition l J
/" Graph Store Server Cross-Parttion (~ Graph Store Server
Graph Store < Graph Store

£—> Sampler <€ Sampler <—j
1 1
Sampler j—J %{ Sampler
g)\, Sampled @ .
v Subgraphs v v

N\

Remote
Features N .

(p—m— G

Feature Cache Engine

Feature Cache Engine
GPU GPU

() Parameter (| vk [
iWorker ‘jm ‘Worker‘ }Worker}

__Worker Machine __Worker Machine

GPU
NVLINI
‘ Worker }

Figure 4: The architecture of BGL.

graphs and simultaneously minimizes the cross-partition com-
munication and load imbalance during sampling. As shown
in Table 1, none of the existing partition algorithms satisfies
our needs, which motivates our algorithm (§3.3).

Challenge 3: Different data preprocessing stages contend
for resources. When running all stages together, we further
identify a unique problem of GNN training — the preprocess-
ing is much more complex than traditional DNN training.
The subgraph sampling, subgraph structure serialization and
de-serialization, node feature retrieving, and cache engine
all consume CPU and memory/PCle/network bandwidth re-
sources. We observe that if all the processes freely compete
for resources, the resource contention may lead to poor perfor-
mance. Some operations may try to acquire more resources
than what they need and hence block other operations, while
they do not scale well with more resources.

Existing GNN training frameworks largely ignore this prob-
lem. DGL, PyG, and Euler either blindly let all processes
freely compete or leave the scheduling to underlying frame-
works like TensorFlow and PyTorch. The low-level frame-
works are agnostic to the specifics in GNN training, and thus
are also naive and suboptimal. Our answer to this challenge
is a carefully designed resource isolation scheme (§3.4).

3 Design
We design BGL to address the challenges presented in §2.3.
3.1 Architecture and Workflow

The overall architecture of BGL is shown in Figure 4. A
training job has the following stages.

Pre-training preparation: graph partition. The graph par-
tition module loads the graph data stored in the distributed
storage system (e.g., HDFS), and shards the whole graph into
several partitions. Graph partitioning is a one-time cost, and
the results can be saved in storage and used by other GNN
training tasks later. Then, each partition is loaded into a graph
store server’s memory, ready for subgraph sampling.

106 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Assoc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>