SmartCookie: Blocking Large-Scale SYN Floods with a Split-Proxy Defense on Programmable Data Planes

Authors: 

Sophia Yoo, Xiaoqi Chen, and Jennifer Rexford, Princeton University

Abstract: 

Despite decades of mitigation efforts, SYN flooding attacks continue to increase in frequency and scale, and adaptive adversaries continue to evolve. Meanwhile, volumes of benign traffic in modern networks are also growing rampantly. As a result, network providers, which run thousands of servers and process 100s of Gbps of traffic, find themselves urgently requiring defenses that are secure against adaptive adversaries, scalable against large volumes of traffic, and highly performant for benign applications. Unfortunately, existing defenses local to a single device (e.g., purely software-based or hardware-based) are failing to keep up with growing attacks and struggle to provide performance, security, or both. In this paper, we present SmartCookie, the first system to run cryptographically secure SYN cookie checks on high-speed programmable switches, for both security and performance. Our novel split-proxy defense leverages emerging programmable switches to block 100% of SYN floods in the switch data plane and also uses state-of-the-art kernel technologies such as eBPF to enable scalability for serving benign traffic. SmartCookie defends against adaptive adversaries at two orders of magnitude greater attack traffic than traditional CPU-based software defenses, blocking attacks of 136.9 Mpps without packet loss. We also achieve 2x-6.5x lower end-to-end latency for benign traffic compared to existing switch-based hardware defenses.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.