Experimental Challenges in Cyber Security:

A Story of Provenance and Lineage for Malware

Tudor Dumitraș Symantec Research Labs Iulian Neamtiu **UC** Riverside

The IROP Keyboard

[Zeller, 2011]

To prevent bugs, remove the keystrokes that predict 74% of failure-prone modules in Eclipse

Our Approach

- Provenance and lineage reconstruction through static, dynamic, and contextual analysis
- Key idea:

Evolution of open source binaries = Training data

FreeBSD: Linux:

 20 years of evolution 18 years of evolution

- 70+ versions - 22+ versions

Use the WINE benchmark for validation

Dumitraș & Neamtiu :: Experimental Challenges in Cyber Security

Lineage and Provenance

establish the ancestors and descendants Lineage:

of a binary artifact

Provenance: determine the compiler, development

environment, testing methods,

release schedule

Contextual Analysis

- Obfuscation techniques (e.g., *packing, randomization*) reduce effectiveness of static / dynamic analyses
- Idea: use contextual information
 - Network traces
 - Infection reports
- Answers questions such as
 - When has a malware artifact first appeared?
 - Where has it spread?
 - How has gained access?

Threats to Validity

- Lineage
 - Lack of ground truth on malware families
 - Lack of contextual data: e.g., date and time of appearance
- Provenance
 - Different information provided by compilers and assemblers
 - Lack of contextual data: e.g., origin geolocation, dissemination patterns

Illustrate general threats to validity in experimental cyber security

Candidate Approaches

Validity

- Testbeds for repeatable experimentation (Emulab, DETER)
 - Representative data sets are also needed
- Synthetic test data generation [Lippmann, 2000]
 - Short-lived relevance

- Field-gathered data [DHS PREDICT; Leita, 2010; Bilge, 2011]
 - Honeypots: instrumentation could alter results

- Network traces: reveal only part of malware behavior
- Lack of metadata on collection process
- Multiple

[Camp, 2009; CSET 2009]

Dumitras & Neamtiu: Experimental Challenges in Cyber Security

symantec. 11

The Worldwide Intelligence Network Environment (WINE)

- Goal: reproducible experiments in cyber security
- Data collected on millions of end-hosts
- Data sampled from Symantec's operational data sets
- Access WINE on SRL site: Culver City, CA or Herndon, VA - Fee required
- Store *reference data* sets used in prior experiments
- Maintain lab book

Dumitraș & Neamtiu :: Experimental Challenges in Cyber Security

WINE: Cover all Phases of Cyber Threat Lifecycle Vulnerability Automatic Exploit Generation Zero-Day **Attacks** Remediation Malware New Samples **Attacks** Patch Advisory Binary Dissemination A/V & Concealment Reputation Telemetry **URL Reputation** Spam symantec. 14

WINE Experiments: Threats to Validity (2)

- Experiment metadata: recorded in lab book
 - External researcher describes experiment in proposal
 - · Research hypothesis
 - Input/output data
 - Researcher develops script to run experiment from end to end
 - Hypothesis, data and script are documented on a wiki
- Enables independent verification of experimental design (internal and construct validity)

Conclusions

- Rigorous experiments give us an edge in the security arms race
 - Develop techniques that are likely to keep working tomorrow
- Challenges
 - Ground truth
 - Relevant data sets
 - Rigorous analysis
- WINE: first step toward a rigorous benchmark for cyber security

symantec. 19

