
Simple Verifiable Elections

Josh Benaloh
Microsoft Research

June 14, 2006

Abstract

Much work has been done in recent decades to
apply sophisticated cryptographic techniques to
achieve strong end-to-end verifiability in election
protocols. The properties of these protocols are
much stronger than in any system in general use;
however, the complexity of these systems has re-
tarded their adoption. This paper describes a rela-
tively simple but still effective approach to crypto-
graphic elections. Although not as computation-
ally efficient as previously proposed cryptographic
approaches, the work presented herein is intended
to be more accessible and therefore more suitable
for comparison with other voting systems.

1 Introduction

Cryptographic protocols can allow each voter to
ensure that all votes are counted properly, but
they use sophisticated techniques that can be
difficult for non-specialists to fully understand
([Chau81], [DLM82], [CoFi85], [Bena87], [PIK93],
[BeTu94], [SaKi95], [CGS97], [BJR01], [FuSa01],
[Neff01], [GZBJJ02], [JJR02], [Grot03], [Chau04],
[Furu04], [Chau05], and [PBD05] offer just a sam-
pling). Most cryptographic election systems can
be divided into two phases

1. Each voter prepares and casts an encrypted
ballot that represents the voter’s intended se-
lections. Once encrypted, these ballots — and
even the identity of the voter that cast each
one — can be made public.

2. Once all participating voters have cast their
encrypted ballots, the set of encrypted ballots
is cryptographically processed to produce a
tally and a proof that the tally matches the
set of ballots cast. In some cases, the orig-
inal decrypted ballots are revealed, but the
individual associations between the revealed

ballots and the identities of the voters are re-
moved.

Historically, the second or these two phases has
received the most attention from researchers, and
sophisticated cryptographic techniques have pro-
duced exceptionally strong results. The first phase
went largely ignored until recently, and several
new approaches have been built to support this
verifiable encryption requirement.

While some systems have some overlap between
the two phases described above, the work herein
will provide a clear separation.

2 Background

While the intent of this work is to be, to the extent
possible, fully self-contained, one well-established
cryptographic tool will be taken as a primitive.
Threshold encryption is a special form of public-
key encryption. With ordinary public key encryp-
tion, one entity generates a public encryption key
that can be used by others to encrypt values that
can only be decrypted by the original entity. A
wide-variety of public-key encryption technologies
are available — with the most common being RSA
encryption [RSA78].

Encryption is not used here to ensure election
accuracy. Accuracy is instead verified by statisti-
cal means. The sole purpose of encryption is to
protect voter privacy, and even a complete fail-
ure of the encryption system would not have any
impact on the integrity of the election tally.

The reason for using threshold encryption in-
stead of ordinary public-key encryption is to avoid
any single point of potential privacy compromise.
Threshold encryption does not allow decryption
by any single entity. Instead, a pre-determined
minimum number of trustees must work together
to decrypt. Since we also don’t want a small num-
ber of entities to be able to prevent the completion
of an election, some robustness must be built in to
allow for some failures among trustees.
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With threshold encryption, participating enti-
ties each generate and publish an encryption key.
When properly aggregated (in a publicly verifi-
able way), an aggregate public key is produced
that allows others to encrypt data that can only
be decrypted by the co-operative work of a pre-
determined number of the original key publishers.

Within the context of elections, each member of
a large set of trustees — representing widely dis-
parate interests — can generate and publish a pub-
lic key. An aggregate of these keys can be formed
in a public and verifiable manner, and this aggre-
gate can be used by voters to encrypt their ballots.
After the application of cryptographic operations
which scramble but do not alter the semantic con-
tent of the set of encrypted ballots, any sufficiently
large subset of the trustees can decrypt the final
set to reveal the ballots and thereby determine the
tally of the election.

The threshold number of trustees required to
allow decryption should be set sufficiently high
to prevent a small subset from working together
to compromise privacy (note that even all of the
trustees acting in concert cannot compromise the
accuracy of the tally), but this number should not
be set so high as to allow a small number of discon-
tented trustees to prevent the completion of the
election by refusing to co-operate with the final de-
cryption. Depending upon the size of an election
and political and practical constraints, reasonable
threshold values for a particular election may, for
example, be 3 of 5 trustees, 8 of 10 trustees, or 90
of 100 trustees.

One advantage of this approach is that it en-
ables a clean mechanism for handling provisional
ballots. With typical voting systems in current
use, a preliminary tally of an election is produced
while the legitimacy of provisional ballots is ad-
judicated. Any provisional ballot that is subse-
quently deemed valid is then added to the tally.
This method undermines the privacy of legitimate
voters who, for whatever reason, are forced to use
provisional ballots. With the proposed crypto-
graphic paradigm, provisional ballots can be in-
cluded within any preliminary tally. Any provi-
sional ballots later deemed to be ineligible could
then be selectively removed by co-operation of a
sufficiently large subset of election trustees. Thus,
privacy is compromised only for illegitimate pro-
visional ballots.

Numerous threshold encryption schemes exist
(see, for example, [DeFr89], [Pede91], [GJKR96],
[BoFr97], [Shou00], and [CDN01]) — many of
which have a “probabilistic” character with many

different encryptions possible for each value. A
property available in many such threshold encryp-
tion schemes is the ability to transform an en-
crypted value to a different encryption of the same
value without knowledge of the decrypted value.
This “random re-encryption” capability will be
used in the election system to be described. Ran-
dom re-encryption is often composible in that if A
is separately re-encrypted twice to form each of B
and C, then the re-encryptions can be composed
so that C can be regarded as a direct re-encryption
of B without being linked or associated with A.

One threshold encryption scheme that offers this
capability is described in the appendix, but it is
important to stress that this approach does not
depend on any one threshold encryption embodi-
ment.

With threshold encryption available as a prim-
itive, the vote casting and tallying phases can be
described with a minimum of cryptographic de-
tails. For pedagogical reasons, the tallying phase
will be described first in section 3 followed by a
description of vote casting in section 4.

3 Ballot Tallying

The problem of verifiably tallying a set of ballots
is easy if the privacy constraint is removed. Once
the set of ballots — together with the identities of
the voters that cast each one — is made public,
voters can verify the accuracy of their own votes,
and everyone can independently verify the accu-
racy of the tally. Privacy complicates the task,
but cryptographers have spent years developing
techniques for working with and proving things
about encrypted data without revealing the orig-
inal data. One such technique is known as an in-
teractive proof.

3.1 Interactive Proofs

The notion of an interactive proof was developed
more than twenty years ago and first published
in [GMR85]. It’s roots are found in challenge-
response protocols which date back much further.
The basic idea is that a prover can be repeat-
edly challenged by a verifier to answer queries that
could only be answered if certain claims are true.
A simple claim of this sort would be, “I have the
decryption key that corresponds to a particular
public encryption key.” The verifier can select val-
ues, encrypt them with the public key, and chal-
lenge the prover to decrypt them. If the prover
succeeds, the verifier should be convinced that the
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prover really does have the decryption key — with-
out the prover having to reveal the actual key.

A somewhat more elaborate interactive proof
can be used to show that two sets of encrypted bal-
lots consist of exactly the same set of votes. Those
familiar with the subject will recognize this inter-
active proof as virtually identical to the standard
interactive proof that two graphs are isomorphic.

A set B of (threshold) encrypted ballots can be
verifiably shuffled by an entity that does not know
their decryptions as follows.

1. Each ballot Bi ∈ B is randomly re-encrypted
to form a ballot B′

i which has exactly the same
decryption as Bi.

2. The set of re-encrypted ballots
{B′

1, B
′
2, . . . , B

′
m} is then randomly permuted

to form a new ballot set B′.1

3. A collection of n additional ballot sets
B1,B2, . . . ,Bn is generated — each in the
same way as B′ — by randomly re-encrypting
each ballot and then permuting the set.
[Think of n ≈ 100.]

4. A set of n challenge bits c1, c2, . . . , cn is
generated.2

5. For each i such that ci = 0, ballot set Bi is
shown to be equivalent to ballot set B by re-
vealing all of the re-encryption and permuta-
tion data used to create ballot set Bi.

6. For each i such that ci = 1, ballot set Bi

is shown to be equivalent to ballot set B′ by
composing the re-encryption and permutation
data used to create ballot set Bi with that
used to create B′ and then revealing the com-
position.

If any ballot set Bi can be shown to be equiv-
alent to both B and B′, then this proves with ab-
solute certainty that B and B′ are equivalent ballot
sets. However, a direct demonstration of equiv-
alence reveals which individual ballots in B and
B′ are equivalent and thereby defeats the entire
purpose of the shuffle. Instead, with the inter-
active proof process above, no direct equivalences
are ever produced.

1Instead of randomly permuting the elements of the new
ballot set, the re-encrypted ballots can simply be sorted —
numerically, alphabetically, or lexicographically — to ob-
scure the association between the original encrypted ballots
and the re-encrypted ballots.

2This will be elaborated upon shortly.

It is possible to “defeat” the interactive proof
if and only if every one of the n challenge bits
are known or guessed in advance by the prover.
Any attempt to guess n random challenge bits will
succeed with probability only 2−n. How the chal-
lenges are selected is therefore crucial to the via-
bility of this approach.

It is possible to engage trusted entities in a pro-
tocol to select challenge bits, but there’s a better
way.

3.2 The Fiat-Shamir Heuristic

The so-called Fiat-Shamir heuristic ([FiSh86]) can
be used to generate challenge bits within the inter-
active proof process — without need for an exter-
nal challenger. All of the ballot sets B1,B2, . . . ,Bn

can be combined as input to a one-way hash
function to produce a set of n challenge bits
c1, c2, . . . , cn which are then used, as previously,
to determine which equivalences among the ballot
sets will be revealed. Any attempt to alter any of
the ballot sets in response to the challenge bits
produced will change the input to the one-way
hash and cause an entirely different set of chal-
lenge bits to be produced.

If 2n distinct ballot sets are run through this
process, one could expect to find one such that
non-equivalent ballot sets B and B′ would appear
to have been shown to be equivalent. Thus, n
must be chosen to be large enough to preclude
this attack, and choosing n = 100 is more than
sufficient.

3.3 Completing the Shuffle

The shuffling process now becomes simple and se-
quential. The original encrypted ballots are col-
lected into a ballot set, the names of the voters
and/or other identifying information associated
with each ballot are removed, and any interested
parties are invited to individually shuffle the bal-
lot set. Each shuffle is accompanied by a complete
interactive proof that the resulting ballot set is
equivalent to the ballot set prior to that shuffle. As
long as the accompanying proof is valid, the shuf-
fled set is then passed to the next shuffler. If the
proof fails, the newly shuffled set is ignored and
the ballot set prior to that last shuffle is passed to
the next shuffler. By failing to produce a correct
shuffle, a party does no damage to the process and
only fails to add a level of indirection between the
original ballot set and the final ballot set.

The entire process is public and verifiable.
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Every step can be published and verified at a later
time. Once the final shuffling is complete, the en-
crypted ballot set is decrypted (again in a verifi-
able fashion) by any sufficiently large subset of the
pre-selected trustees who hold the decryption keys
for the threshold encryption.

It is important to note that while
catastrophic failure of the threshold encryption
system could compromise privacy, it would not im-
pact the accuracy of the tally. Accuracy is guaran-
teed statistically and by the one-way hash. Indeed
the only drawback of the use of the Fiat-Shamir
heuristic is that it introduces a dependence on a
cryptographic process to achieve accuracy. The
cryptographic assumption here is relatively weak,
and even the very substantial recent attacks on
cryptographic hash functions like MD5 and SHA-
1 do not provide any known attacks to their use in
a verifiable election process (although more mod-
ern one-way hash functions would certainly be pre-
ferred).

4 Ballot Casting

Now that a complete process for verifiably tally-
ing a set of encrypted ballots is in place, it remains
to determine how individual voters can create en-
crypted ballots to represent their voting selections.
This does not seem terribly difficult at first glance,
since voters could use systems they trust to per-
form their encryptions, but this approach could
leave voters vulnerable to coercion. If voters are
to use “standard” equipment supplied by election
officials, then how are they to develop confidence
that the encrypted ballots that they create repre-
sent their true intentions?

Several clever schemes have been devised to
solve this problem using cryptographic bindings,
physical apparatuses, and/or creative uses of com-
monplace products (see, for instance, [Chau04],
[Neff04], [Chau05], and [CRS05]), but these sys-
tems all impose additional requirements on voters.
With substantial rates of voter error even in well-
designed traditional systems, it is undesirable to
add new requirements whose purpose may not be
clear to voters.

In order to better understand what is possible,
it is worthwhile to step back and examine the re-
quirements on a ballot encrypting device. Such
a device can have a rich user interface much like
a traditional electronic voting device. It must be
able to process a voter’s selections and create an
encrypted ballot that accurately represents those

selections. However, such a device need not know
the identities of voters using the device; it need
not authenticate that users even have the right to
vote; it need not limit voters to a single use; it
need not record the encrypted ballots it creates;
it need not have any remote communication abil-
ities; and it need not be involved in the casting of
ballots.

With these ancillary requirements removed, it is
possible to validate the accuracy of ballot encryp-
tions without forcing every voter to participate in
ballot validation activities. It is not difficult to
imagine a simple, stand-alone device which offers
a rich user interface but has no responsibilities be-
yond providing the voter with an encrypted ballot
representing the voter’s selections. This is not at
all difficult to construct, but how then are voters to
gain confidence that these devices are accurately
creating encrypted ballots which reflect their in-
tentions?

The key here is separating the vote creation and
vote casting functions. By doing so, voters can be
relieved of any requirement to take actions out-
side of today’s norm, but those who desire to do
so — whether voters, election officials, or outside
observers — can audit and validate the accuracy
of any votes produced by a vote creation device.

It should be noted here that while this sepa-
ration of roles can help provide voter privacy, it
does not guarantee privacy.3 It is easy to imag-
ine a malicious vote creation device retaining data
about votes that could later be combined with ex-
ternally obtained identification data to compro-
mise privacy. However, privacy is not the primary
purpose of the role separation. If the vote creation
device does not know in real-time who is using it,
then it is unable to distinguish, for instance, be-
tween an ordinary voter and an inspector who is
using the device for auditing purposes. A mali-
cious device that does not know when it is more
likely to successfully “cheat” can do no better than
to cheat at random, and this allows integrity to be
provided by a random auditing process instead of
requiring each event to be individually audited.

4.1 The Typical Voter View

The process for a voter can be as simple as for any
voter using an electronic voting device today.

A typical voter would enter a polling station and
approach a vote creation device — perhaps with-

3No voting system can ensure privacy. There is no way
to prove, for instance, that a hidden camera or other covert
device has not been surreptitiously added to the system.
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out even checking in with poll workers.4The voter
would then interact with the device, make selec-
tions, and receive an encrypted ballot representing
those choices. A variety of media could be used
to carry this encrypted ballot. One option would
be a paper card with a magnetic stripe such as
those commonly used on public transit systems.
The encrypted ballot and/or a short cryptographic
thumbprint thereof5 could be printed on the card
while the full encrypted ballot would be recorded
on the magnetic stripe.

Once in possession of an encrypted ballot,
the voter would proceed to a poll worker and
sign-in, presenting whatever identification may
be required. The voter would then swipe the
magnetic-stripe card through a reader to record
the encrypted ballot together with the voter’s
name. The voter can leave the poll site with the
magnetic-stripe card and, if desired, later confirm
that this encrypted ballot is properly associated
with the voter’s name on the published set of en-
crypted ballots which will subsequently be used to
produce a verifiable tally.

4.2 Auditing View

The only observable difference between the vote
creation device described above and a traditional
electronic voting kiosk would be one or more addi-
tional options offered by the vote creation device
at the conclusion of the process. While a voter can
simply take the vote created by the device and cast
it as described above, a voter, official, or observer
would be offered at least one of several additional
options.

4.2.1 Immediate Decryption

One option would be to have the vote immediately
decrypted by the vote creation device. If, after
the production of an encrypted ballot, the user
of the device selects this option, the voting device

4When polling sites cover multiple precincts, it may be
necessary for a voter to provide the device with geographic
information to select the proper precinct as well as indicat-
ing other options such as party affiliation where appropri-
ate. This may be facilitated by voters checking in with poll
workers to receive tokens to indicate the ballots that should
be used, but there need be no restrictions on eligibility at
this point. Anyone should be able to complete any avail-
able ballot on any vote creation device at any time during
an election.

5A cryptographic thumbprint can be produced by ap-
plying a one-way hash to the desired data. Its output is
usually about 20-30 bytes or approximately 30-50 alphanu-
meric characters, although thumbprints as short as 15 al-
phanumeric characters would likely suffice here.

would provide additional data that allows the user
to later check that the encrypted ballot matches
the voter’s intentions.

If a ballot is verifiably decrypted by a device,
the ballot must be marked as invalid for casting
since this verifiable decryption would serve as a re-
ceipt that could subject the voter to the potential
of coercion. Marking an encrypted ballot as in-
valid for casting may be most easily accomplished
by adding a second component to each encrypted
ballot. Once the encrypted ballot is produced and
can no longer be altered by the vote creation de-
vice, the vote creation device would then (upon
selection made by the voter) either digitally sign
an attestation of the legitimacy of the encrypted
ballot or provide a verifiable decryption of the bal-
lot. Encrypted ballots accompanied by proper at-
testations could be cast, while others would not
be deemed as allowable for casting.

The question presented to the voter may be as
simple as, “Do you wish to cast this vote?” If the
answer is “yes”, then an attestation allowing the
encrypted vote to be cast is added to the vote.
If the answer is “no”, a verifiable decryption is
provided which the voter may keep for later veri-
fication or simply discard. The voter can then be
given the option to change selections and, when
complete, a new encrypted vote will be provided.
Even if no changes are made, the new encrypted
version of this vote will be distinct from the prior
version, so no linkage will be possible.

4.2.2 The Interactive Proof Option

Another option would be to allow voters to en-
gage in a more elaborate interactive protocol to
demonstrate that the encrypted ballot produced
matches the voter’s intentions. Unlike the previ-
ous option, a more elaborate proof technique can
be used which would not invalidate the ballot for
casting. The principal drawback of this option
is that voters would have to make random selec-
tions or pick random values — something which
humans are notoriously poor at doing. It is es-
sential to remember, however, that this is not a
requirement that would be imposed on all voters
but would rather be an option that voters could
avail themselves of if they so choose. The timing-
based protocol of [BeTu94] will be described here.

The vote creation device creates a set of, per-
haps 100, encrypted ballots that all represent votes
identical to the original encrypted ballot already
in the voter’s possession. The device then com-
mits to these additional ballots by printing them
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in a location or form that can not be read by the
voter.6 The voter is then given an opportunity to
select a random subset of the encrypted ballots.7

Once the random selection of encrypted ballots is
made by the voter, all selected ballots are verifi-
ably decrypted to show that they all indicate the
desired vote. Additional data is also released to
show that all unselected ballots are encryptions of
votes identical to that of the original encrypted
ballot — the demonstration of equivalency of the
unselected encrypted ballots and the original en-
crypted ballot in the voter’s possession is done in
such a way as to not reveal the votes on these bal-
lots. As a final step, the device creates, for each
candidate or option not voted for, encrypted bal-
lots and verifiable decryptions thereof that corre-
spond to these other options — one for each ballot
that the voter selected to have opened.

The ordering of the above steps is crucial. It is
easy for the device to create substitute opened bal-
lots that correspond to a candidate not voter for.
When these substitute ballots replace the previous
opened ballots, the interactive proof appears to be
a perfectly legitimate proof that the encrypted bal-
lot originally produced for the voter represents a
vote for this alternate candidate. The voter now
has two or more proofs of the contents of the en-
crypted ballot, one for each available candidate.
These proofs all appear to be equally valid. How-
ever, the only proof that is actually valid is the
one in which the additional ballots are commit-
ted to prior to the random challenge issued by the
voter. The voter knows the order in which these
values were produced, but has no way to prove
this order to a third party and is thereby pro-
tected from coercion. It is therefore essential that
the commitments must be recorded on separated
slips of paper, cards, or regions of a single readable
medium or recorded electronically or magnetically
in a manner that does not reveal ordering.

A final option is a variant of the above. If an
unpredictable source of random challenge bits can
be agreed upon, then voters can be relieved of the
burden of having to make random selections and
it would no longer be necessary to shield the com-
mitments from the voter prior to the issuance of
challenge bits. However, this added physical as-
sumption may not be acceptable.

6These additional ballots could be printed behind an
opaque screen or on the back of a card or could be written
on an electronic or magnetic medium that cannot be read
by the voter during this process.

7If 100 additional ballots are used, one or more random
values totaling 100 bits of data can be supplied to select a
subset of the encrypted ballots.

4.2.3 Effectiveness of Auditing

Voters have the opportunity to audit the vote cre-
ation process by either creating extra ballots and
having them decrypted or engaging in interactive
proofs to verify the accuracy of the ballots they ac-
tually cast. It seems likely, however, that few vot-
ers would avail themselves of these opportunities.
This may seem to destroy the reliability of such a
system. However, Neff has shown ([Neff03]) that
very little auditing is required in order to achieve
a high degree of assurance of election accuracy.

In a large election, if a mere thousand random
voters, officials, and/or observers avail themselves
of the opportunity to each audit a single encrypted
ballot, and if all such probes are successful, then
there an extremely high probability that the an-
nounced tally is within 0.5% of the true tally of
voters’ intentions. The key factor that makes this
work is that the lack of identification of voters by
vote creation devices effectively forces the devices
to always behave honestly. It is no longer neces-
sary for each voter to independently audit the vote
creation devices.

4.3 The View for Voting Officials

The task for election officials is to collect all cast
ballots and publish them on a public site. Since
they are encrypted, the cast ballots can even carry
the names of the voters who cast each one — al-
though the names can be removed if this is pre-
ferred. Any interested party may then be offered
an opportunity to shuffle the ballot set and pro-
vide a proof that the resulting ballot set is equiv-
alent. Each shuffling and its proof of correctness
is posted on a public site.

Once the final encrypted ballot set has been pro-
duced, any sufficiently large set of election trustees
act jointly to decrypt each individual ballot in this
set. The decryption process also provides data to
allow verification that the decryptions are accu-
rate.

Any officials, observers, and voters who wish to
do so can use the public data to verify that each
step is correct. Voters can also check that their
ballots were included unaltered in the original en-
crypted ballot set, although they will not be able
to identify their own ballots among the decrypted
final ballots.
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5 Conclusions

The methods described above offer a verifiable
election system that is far simpler than other such
systems previously suggested. From the perspec-
tive of a voter, this system can look almost iden-
tical to voting with on a “traditional” electronic
voting device. However, added capabilities are in-
cluded which allow voters who care to do so to
check that their votes are properly recorded, cast,
and included within the tally. Voters and any
other interested parties also gain the capability to
check that all votes are associated with legitimate
voters and are properly tallied. This end-to-end
verifiability is much stronger than traditional elec-
tion systems in which voters can have confidence
that their votes are cast as intended but have no
direct means to ensure that their votes are in-
cluded in the tally or that the tally in any way
represents an accurate count of legitimate votes.
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APPENDIX: A Threshold En-
cryption System

Many threshold encryption mechanisms are avail-
able based on a variety of standard public-key
mechanisms (see, for example, [DeFr89], [Pede91],
[GJKR96], [BoFr97], [Shou00], and [CDN01]).
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While several (including [DeFr89], [GJKR96], and
[BoFr97]) are based directly on the well-known
RSA cryptosystem ([RSA78]), the Pedersen sys-
tem ([Pede91]), which is based on the Diffie-
Hellman key exchange protocol ([DiHe76]) that
pre-dates RSA, is somewhat better suited to these
purposes.

The so-called ElGamal encryption scheme
([ElGa85]) is a direct application of Diffie-Hellman
key exchange. A large prime number p and a gen-
erator g of the multiplicative subgroup of integers
modulo p are agreed upon and may be shared by
all users of the system.8 Any user of the system
may generate a private secret key s by randomly
selecting an integer s such that 0 < s < p and pub-
lishing the corresponding public key z = gs mod p.
An integer message M in the range 0 ≤ M < p can
be encrypted by selecting a random integer value r
such that 0 < r < p and forming the pair (x, y) =
(Mzr mod p, gr mod p). With access to the cor-
responding secret key s, one can decrypt (x, y)
by computing x/ys mod p = Mzr/grs mod p =
Mgrs/grs mod p = M mod p = M . There is no
known method for decrypting an ElGamal pair
without access to the private secret key s. Indeed,
this thirty-year-old assertion is the first and oldest
mathematical basis in public-key cryptography.

To improve readability, for the remainder of this
section, all of the mathematics will be implicitly
performed modulo p unless specifically indicated
to the contrary.

An ElGamal encryption pair (x, y) = (Mzr, gr)
can be randomly re-encrypted by selecting a ran-
dom integer value r′ in the range 0 < r′ < p and
forming the new pair (x′, y′) = (xzr′ , ygr′). It can
be seen that the decryption of (x′, y′) produces
x′/(y′)s = xzr′/(ygr′)s = Mzr+r′/g(r+r′)s =
Mg(r+r′)s/g(r+r′)s = M . It is therefore a simple
matter for any individual — even one who has no
knowledge of the decryption of the ElGamal pair
(x, y) to form a new ElGamal pair (x′, y′) which
has the same decryption. Based on the same ba-
sic Diffie-Hellman assumption, there is no way for
an observer without access to the secret key s to
see that (x, y) and (x′, y′) have the same decryp-
tion without assistance. However, this assistance
can be provided by simply releasing the value r′

which can be used by any observer to check that
(x′, y′) = (xzr′ , ygr′) and that therefore (x, y) and
(x′, y′) do indeed have identical decryptions.

This random re-encryption can be composed
in a variety of ways. For instance, if (x′, y′) =

8A generator is a value g such that r = p − 1 is the
smallest positive integer such that gr mod p = 1.

(xzr′ , ygr′) and (x′′, y′′) = (xzr′′ , ygr′′) are two
re-encryptions of the same ElGamal pair (x, y),
then both (x′y′) and (x′′, y′′) will have the same
decryptions. They can be shown to both match
(x, y) by providing both r′ and r′′, but this not
only shows that (x′, y′) and (x′′, y′′) are equiv-
alent to each other but also that they are both
equivalent to (x, y). By releasing only the single
value (r′−r′′) mod (p−1). The two ElGamal pairs
(x′, y′) and (x′′, y′′) can be shown to have the same
decryptions without any linkage or association to
the original ElGamal pair (x, y).

ElGamal encryption supports random re-
encryption nicely, but how is the threshold encryp-
tion property achieved?

From the perspective of the party forming an
encryption, ElGamal, threshold encryption looks
identical to ordinary ElGamal encryption. The
only differences are manifested in management
and use of the secret decryption key. Suppose,
for instance, that two parties shared the decryp-
tion function by holding secret values a and b such
that s = a + b mod (p− 1). Then a value (x, y) =
(Mzr, gr) can be decrypted if the two parties con-
tribute the respective values A = ya and B = yb.
The decryption of (x, y) can then be computed
as x/A/B = Mzr/yar/ybr = Mgrs/gar+br =
Mgrs/grs = M . In a similar fashion, the secret
decryption key s can be shared amongst more than
two parties by splitting s into as many summands
as desired.

This alone, however, is not sufficient to al-
low decryption by an arbitrary threshold such as
any 2 of 3 shareholders. Full threshold encryp-
tion is achieved by employing Shamir’s thresh-
old scheme ([Sham79]) in which a secret value is
shared by using polynomial interpolation and eval-
uation. A random polynomial P (x) = ak−1x

k−1+
ak−2x

k−2 + · · ·+ a2x
2 + a1x + s is selected where

k is the desired threshold number of shareholders
required to decrypt, the ai are randomly selected
integers in the range 0 < ai < p, and s is the
secret value. Parties P1,P2, . . .Pn (with n ≥ k)
each hold a point on this polynomial (Pi holds the
value P (i)). It is not difficult to show that any k of
these points allow interpolation of the polynomial
and discovery of the secret value s = P (0), while
even complete co-operation among shareholders
with k − 1 points give no information whatsoever
about the value of s.

As in the prior summation case where the re-
quired value grs can be developed from gr, A =
gar, and B = gbr without ever exposing the com-
posite secret s, a formula can be described for com-
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puting grs directly from any k of the values grP (i).
The question remains of how shares of a secret

decryption key are to be generated and shared
amongst an appropriate set of shareholders. While
one could imagine a secure device that performs
this task and is perhaps even destroyed afterwards,
no such device is necessary. Instead, each of the
intended shareholders can generate a secret poly-
nomial of the form described above and create a
public commitment to this secret polynomial by
revealing gcj for each coefficient cj of its secret
polynomial. The value of this polynomial at point
i is given to shareholder Pi and can be checked by
Pi by verifying that gP (i) =

∑
(gcj )ij

. The col-
lection of the polynomials generated by the share-
holders is summed to form an aggregate polyno-
mial describing an aggregate secret value s, and
the sum of the values received by any shareholder
constitute a point on this aggregate polynomial.
The public key gs that is associated with the ag-
gregate secret value s is formed as a by-product
of the commitment process as the product of the
commitments gc0 of the constant terms of each of
the constituent polynomials. This allows the shar-
ing of the private key s and thereby satisfies the
final requirement for threshold encryption.
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