
Dynamic Block-level Cache Management for Cloud

Computing Systems
Dulcardo Arteaga, Douglas Otstott, Ming Zhao

 Florida International University,

{darte003, dotst001, ming}@cs.fiu.edu

ABSTRACT

Block-level distributed storage systems (e.g., SAN,

iSCSI) are commonly used in the emerging cloud

computing systems to provide virtual machine (VM)

storage. They allow fast VM migration across different

hosts and improved VM availability leveraging typical

fault-tolerance measures (e.g., RAID) available in such

storage systems. However, as the size of cloud systems

and the number of hosted VMs rapidly grow, the

scalability of shared block-level storage systems

becomes a serious issue. This paper proposes to address

this issue by using client-side storage to implement

block-level caching and exploit the data locality

available in VM data accesses. By leveraging the

capacity of fast storage devices such as SSD available

on the VM hosts, this approach has the potential to

substantially improve the performance of VMs and the

load on the shared storage system. This approach is

implemented upon dm-cache, a generic block-level

caching utility. Our current prototype supports cache

sharing across different co-hosted VMs in order to

maximize cache utilization.

1. INTRODUCTION

System virtualization is the key enabling

technology of the emerging cloud computing systems.

It enables flexible server consolidation and allows

applications to be conveniently deployed along with

their required execution environment through virtual

machines (VM). Applications hosted on VMs can be

relocated across different physical servers to improve

performance, reduce resource usage, achieve better

isolation, and save power consumption. To enable fast

VM migration and improve data availability, cloud

systems commonly employ storage area networks

(SAN) or IP-based SAN (e.g., iSCSI [3], NBD [5]) to

store VM images for a set of VM hosts. Such a shared

storage system allows VMs to be quickly migrated

across different hosts. It also provides improved

availability of VMs by leveraging the commonly

deployed fault-tolerance measures such as RAID.

However, as the size of cloud systems and the

number of hosted VMs rapidly grow, the scalability of

shared block-level storage systems becomes a serious

issue. The performance of VMs can be hurt

substantially when the storage system is overloaded.

Meanwhile, the VMs can also adversely impact each

other’s performance when they compete for the shared

storage system. This paper proposes to address the

above scalability issue by leveraging the client-side

storage to implement block-level caching and exploit

data locality. The feasibility of this approach is

supported by the continuing deceasing cost of storage

and the availability of new, fast storage devices (e.g.,

SSD) _on the VM hosts. With local cache storage, each

VM can improve the I/O performance by doing I/O

locally to the cache device, whereas the load on the

storage system can be reduced. This proposed approach

is implemented upon dm-cache [6], a generic block-

level caching utility. Our current prototype supports

different VMs on the same host to share the cache

device in order to maximally utilize the available cache

capacity.

2. DESIGN

A shared block-level cache enables multiple co-hosted

VMs to use the same cache device without causing data

corruption. It can maximize the cache utilization as any

VM can use any part of the available cache space for

storing its data.

Figure 1. DM-cache share cache feature

Figure 1 illustrates an example of the architecture of

our proposed approach. In this example we have two

VMs each with its own virtual disk (vm1.img and

vm2.img) which is stored directly on a logical volume

(LV) remotely accessed through iSCSI/SAN. The local

storage device (/dev/sdb) available on the VM host is

used to provide block-level caching for the VM images.

In order for the VMs to share the cache device, we

create a virtual cache for each VM’s virtual disk, which

is only another level of mapping between the virtual

disk and cache device. All virtual caches are in the end

mapped to the same physical cache device. The per-VM

virtual cache helps the shared-cache differentiate the

IOs issued by different VMs.

The use of virtual caches helps the shared cache tag the

blocks belong to different VMs, which is also necessary

to handle VM migration. When a VM migrates across

hosts, its data stored in the cache needs to be flushed.

Tagged cache blocks allow the shared-cache to flush

only the data that belongs to the migrating VM but not

the entire cache.

3. IMPLEMENTATION

Our proposed approach is implemented upon dm-cache

[6] a generic block-level disk cache for storage

networking. It is built upon the Linux device mapper

[2], a generic block device virtualization infrastructure.

It can be transparently plugged into to the physical

servers to provide cache for VM disks, which use LVs,

connected to remote storage using storage area network

(SAN) or iSCSI [3]. Current implementation of dm-

cache can be modified to support cache sharing through

multiple VMs.

In order to implement the shared-cache feature upon

dm-cache, we need to map the I/Os issued to different

VM images to the same shared cache device. To

address this need, we will leverage device-mapper’s [2]

capabilities of mapping block-level I/Os between

different block devices. It works by processing data

passed in from a virtual block device, that it itself

provides, and then passing the resultant data on to

another block device. Using device-mapper

implementation multiple devices can be mapped to a

single one, leaving all the management to the driver,

which has to deal with multiple block-level I/Os

arriving from different devices.

The core data structure of the generic block layer is a

descriptor of an ongoing I/O block device operation

called “bio”. Each bio essentially includes an identifier

for a disk storage area, the initial sector number and the

number of sectors included in the storage area and the

one or more segments describing the memory areas

involved in the I/O operation. Dm-cache uses a

structure called a “cacheblock” to express data relevant

to a source block to cache block mapping. A

cacheblock includes the address of the block in the

source device, the address of the block in the cache

device and the status of the block in the cache (valid,

invalid, reserved, dirty or writeback). Dm-cache takes

the bio structure field bi_sector and bi_bdev as inputs

for mapping a block from source device to cache

device. The first input identifies the number of the

sector and second identifies the device. With these two

parameters we can guarantee unique mappings for all

sectors from different VM LVs.

Finally, in order to do mapping from source device to

cache device, dm-cache uses radix tree to store the

cache-blocks and an LRU linked list for block

replacement. These algorithms allow fast cache look-

ups and block replacements and insertions as well as

full cache utilization.

4. CONCLUSIONS AND FUTURE

WORK

We are evaluating our prototype implementation using

typical benchmarks such as IOzone [4] and IOmetter

[1] in a representative cloud setting using iSCSI-based

storage system. In our future work we will consider

more intelligent cache management algorithms that

allocate the shared cache capacity among the VMs in a

way that guarantees each VM’s while maintaining good

cache utilization. We will study how to tailor such

algorithms according to the characteristics of SSDs. In

addition, we will consider cooperative caching which

allows multiple VM to share their caches, leading to

better cache performance and utilization.

5. REFERENCES

[1] ATA over Ethernet, AoE protocol specification

URL:

http://support.coraid.com/documents/AoEr11.pdf

[2] Device-mapper URL:

http://sources.redhat.com/dm/

[3] Internet Small Computer Systems Interface (iSCSI)

RFC 3720 URL: http://tools.ietf.org/html/rfc3720

[4] IOzone File System benchmark URL:

http://www.iozone.org

[5] Network Block Devic URL:

http://nbd.sourceforge.net/

[6] Eric Van Hensbergen and Ming Zhao. Dynamic

Policy Disk Caching for Storage Networking.

URL: http://visa.cs.fiu.edu/ming/dmcache

[7] IOmetter benchmark URL: http://www.iometer.org

http://support.coraid.com/documents/AoEr11.pdf
http://sources.redhat.com/dm/
http://tools.ietf.org/html/rfc3720
http://www.iozone.org/
http://nbd.sourceforge.net/
http://visa.cs.fiu.edu/ming/dmcache
http://www.iometer.org/

