USENIX Association

Proceedings of
L1SA 2002:
16" Systems Administration
Conference

Philadelphia, Pennsylvania, USA
November 3-8, 2002

USENIX
SAGE

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Pp. 83-98 of the Proceedings of LISA ’02: Sixteenth Systems Administration Conference
(Berkeley, CA: USENIX Association, 2002).

Pan: A High-Level
Configuration Language

Lionel Cons and Piotr Poznanski — CERN, European Organization for Nuclear Research

ABSTRACT

The computational requirements for the new Large Hadron Collider are enormous: 5-8
PetaBytes of data generated annually with analysis requiring 10 more PetaBytes of disk storage
and the equivalent of 200,000 of today’s fastest PC processors. This will be a very large and
complex computing system, with about two thirds of the computing capacity installed in “‘regional
computing centres” across Europe, America, and Asia.

Implemented as a global computational grid, the goal of integrating the large geographically
distributed computing fabrics presents challenges in many areas, including: distributed scientific
applications; computational grid middleware, automated computer system management; high
performance networking; object database management; security; global grid operations.

This paper describes our approach to one of these challenges: the configuration management
of a large number of machines, be they nodes in large clusters or desktops in large organizations.

Introduction

The European Organization for Nuclear Research
(CERN) is building the Large Hadron Collider (LHC),
the world’s most powerful particle accelerator. From the
LHC Computing Grid Project home page (http:/
cern.ch/LHCgrid):

The computational requirements of the experi-
ments that will use the LHC are enormous: 5-8
PetaBytes of data will be generated each year, the
analysis of which will require some 10 PetaBytes
of disk storage and the equivalent of 200,000 of
today'’s fastest PC processors. Even allowing for
the continuing increase in storage densities and
processor performance this will be a very large
and complex computing system, and about two
thirds of the computing capacity will be installed
in “regional computing centres” spread across
Europe, America and Asia.

The computing facility for LHC will thus be imple-
mented as a global computational grid [10], with
the goal of integrating large geographically dis-
tributed computing fabrics into a virtual comput-
ing environment. There are challenging problems
to be tackled in many areas, including: distributed
scientific applications, computational grid middle-
ware, automated computer system management;
high performance networking; object database
management; security; global grid operations.

This paper describes our approach to one of these
challenges: the configuration management of a large
number of machines, be they nodes in large clusters or
desktops in large organizations.

Large Scale System Administration

Many solutions for managing a few machines do
not scale well. When dealing with thousands of
machines, some problems start to overwhelm.

2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA

Automation

It is fine to reinstall your home PC by booting
from an installation diskette and typing a few com-
mands but you certainly do not want to do it on a large
cluster. Similarly, it is acceptable to log into one
machine and purge /tmp by hand but this could also be
automated using a tool like Red Hat’s tmpwatch.

Technical solutions exist in many domains (remote
power control, console concentration, network booting,
unattended system installation, package management,
etc.) so manual interventions can and should be limited
to the absolute minimum. What remains to be done by
hand is to configure the programs that will automate
these otherwise manual tasks.

This approach has an interesting side effect. Sys-
tem configurations are known to rot with time because
ad hoc system interventions tend to accumulate small
mistakes until the system malfunctions. An unattended
but complete reinstallation from scratch (not a restore
from backup) is the most cost effective way to get rid of
the problem. All you need is to make sure that the con-
figuration of the installer is kept up to date, which is not
difficult to do.

Abstraction

Once we have reached the full automation of the
installation process, we can define the configuration of a
machine as the sum of all the configurations of all the
programs used either during the installation or after-
wards. This will contain everything from disk partition-
ing information to system or software configuration
(networking, user accounts, X server, etc.).

You should not include all the things that can be
configured but rather the ones that will be configured.
For instance, if you do not need to change the
lusr/share/magic file used by the file command, consider
it as a (static) data file that comes with the file package

83

Pan: A High-Level Configuration Language

itself and therefore outside of the machine configuration
abstraction.

We then want to reason about these machine con-
figurations and, for instance, express the fact that two
machines have the same disk model or the fact than one
thousand machines belong to the same batch cluster. It
is tedious to use the native configuration files, e.g.,
letc/services to describe the known network services or
letclcrontab for cron’s configuration, because of the
duplication of information and the variety of convoluted
formats. We really need an abstraction of this informa-
tion that is easy to use.

The way the configuration information is
abstracted and represented is very important. This is in
line with Eric S. Raymond’s advice in The Cathedral
and the Bazaar [16]: “Smart data structures and dumb
code works a lot better than the other way around.”

It is quite expensive to come to a good abstrac-
tion but it really pays off when managing many
machines. It is a virtuous circle: the more data you put
in the abstraction, the more useful it becomes.

Single Database for Multiple Tools

In theory, a unique system administration tool is
better than a set of unrelated and often overlapping
tools such as AutoRPM, cfengine, RDist, LCFG, etc.
In practice, such a mythical beast does not exist and
system administrators use the tools’ combination
which is adapted to their needs, often with a pinch of
home made scripts with “glue languages” such as Perl
or TCL.

It is good to combine the strengths of these tools,
but the variety of their configuration formats is a big
disadvantage. Information is duplicated and often
cumbersome to maintain. Until recently, the machines
in our computer centre were drawing on information
from more than twenty different sources, from flat
files to real databases. Mistakes when handling these
files (e.g., adding a machine and forgetting to update
one file) were a common source of problems.

A good approach is to use a single source of
information (a central configuration database) and
simple programs that can transform this information
into the format understood by the tools used.

Change Management

In the first eight months of its life, Red Hat
Linux 7.2 had 311 updated RPMs. This is more than
one updated RPM per day on average. Just looking at
security, Red Hat issued 59 security advisories for the
same system during the same period, almost two per
week on average. In large computing centres, changes
will occur frequently so you must manage them ade-
quately.

Every component (be it hardware or software)
has a non-zero failure probability so, statistically, large
computer centres have a high probability of having, at
any point in time, one or more components not

84

Cons & Poznanski

working properly. This is especially true when using
cheap commodity hardware. Some machines will
always be down or somehow unreachable, so configu-
ration changes have to be deployed asynchronously.

Moreover, some critical processes cannot be
interrupted and intrusive system management tasks
(such as changing the kernel in use) have to be
deferred until the system is ready to accept the
changes.

The consequence is that you should not try to
configure a machine directly but rather change its con-
figuration (stored outside of the machine) and let the
machine bring itself into line whenever it can. This
can be called convergent or asymptotic configuration
(see for instance [18]): the machines independently try
to come closer to their “desired state.”

Validation

We should keep in mind this slight modification
of one of Murphy’s laws: anything that can go wrong
will go wrong more spectacularly with central system
administration.

Having a central database holding machine con-
figurations and letting thousands of programs on
remote machines use it is very powerful but mistakes
can have disastrous consequences. It is of paramount
importance to control the changes and detect mistakes
before it is too late. Advanced means of validating the
stored information must be in place.

The good news is that the abstraction mentioned
above really helps. Once you can reason about
machines and their configuration parameters, it is easy
to express constraints such as “for all the machines,
the filesystems mounted through NFS must be
exported by the corresponding server.” The example
given in Appendix C describes exactly this constraint
in our Pan language.

Validation should not only be seen as a way to
prevent mistakes, it can also be used to make sure that
things are really the way you want them to be. Con-
straints can be used, for example, to ensure that all
machines have enough swap space, or that they are
running the correct version of some software.

Our Solution

Overview

The Fabric Management Work Package (WP4
[21]) of the European Union DataGrid Project (EDG
[8]) seeks to control large computing fabrics through
the central management of their “desired state” via a
central configuration database (one per administrative
domain). This information will then be used in differ-
ent ways.

For the initial system installation (we currently
use Red Hat Linux 7.2), it will be used to create the
various files needed to fully automate this process, for
instance DHCP entries and Kickstart files.

2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA

Cons & Poznanski

For the system maintenance (we currently use
LCFQ), the configuration information will be directly
used by a number of modular “component” scripts
which are responsible for different subystems, such as
“mail configuration” or “web server configuration.”
The components are notified when their configuration
changes and are responsible for translating the abstract
configuration into the appropriate configuration files,
and reconfiguring any associated daemons.

Machines will be self healing thanks to sensors
reporting information to a monitoring database and
actuators using this information to trigger recovery
actions such as restarting a daemon or, in extreme
cases, triggering a full reinstallation of the machine.
Through the inclusion of hardware information in the
configuration database, we can also detect problems
such as a dead CPU or stolen memory.

Configuration Database

The configuration database [4] stores two forms
of configuration information. One is called the High
Level Description [5] and is expressed in the Pan lan-
guage. The other is the Low Level Description [11]
and is expressed in XML. Both are explained below.

The system administrators can edit the High Level
Description, either directly or through some scripting
layer. The Low Level Description (one XML file per
machine) is always generated using the Pan compiler.

The XML machine configuration is cached on
the machine (to support disconnected operations) and
access is provided through a high-level library [15]
that hides the details such as the XML schema used.

The database itself includes a scalable distribu-
tion mechanism for the XML files based on HTTP,
and the possibility of adding any number of backends
(such as LDAP or SQL) to support various query pat-
terns on the information stored. It should scale to mil-
lions of configuration parameters.

Low Level Description

Mapping a configuration abstraction to a tree
structure is quite easy. This is the natural format for
most “organized information,” from files in a filesys-
tem to the Windows registry or LDAP. We call this the
Low Level Description (LLD).

Simple values (like strings or numbers) form the
leaves of this tree and are called properties. Internal
nodes of the tree are called resources and are used to
group elements! into lists (accessed by index) or
named lists (aka nlists, accessed by name). Nlists can
conveniently be used to represent tables or records?.
Every element has a unique path which identifies its
position in the tree.

We chose XML to represent this tree in a file
because it maps well to the hierarchical structure of

1The term element refers to either a property or a resource.
2] ¢., similar to Pascal’s record or C’s struct.

2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA

Pan: A High-Level Configuration Language

the information and it is easy to parse and to validate
(with XML Schema). Here is a small example repre-
senting some hardware information (a larger example
can be found in Appendix A):

<{?xml version="1.0" encoding="utf-8"?>
{nlist name="profile">
{nlist name="hardware">
{nlist name="memory">
{long name="size">512</long>
</nlist>
{list name="cpus">
<nlist>
{string name="vendor">
Intel
{/string>
{string name="model">
Pentium III (Coppermine)
{/string>
{double name="speed">
853.22</double>
<{/nlist>
</list>
</nlist>
<{/nlist>

Starting with the toplevel XML element (named
“profile”’), you can see on the fifth line the property
describing the memory size: its path is /hardware/mem-
ory/size and its value is the long integer 512. Similarly,
/hardware/cpus is the resource representing the list of
CPUs. The path /hardware/cpus/0® identifies the first
(and only) CPU which is represented using a nlist that
holds a kind of record or structure describing the CPU.
The model of the CPU is the string at path /hard-
ware/cpus/0/model and its value is “Pentium III (Cop-
permine).”

The way this information appears in the XML
file is dependent on the programs using it. For
instance, if you have only a few X server configura-
tions but a large variety of resolution settings, you
could have something like:

{nlist name="profile">
{nlist name="system">
{nlist name="x">
{string name="XF86Config"
type="fetch">

http://config.cern.ch/XF86Config-ATI64-19

{/string>

{list name="modes">
{string>1280x1024</string>
{string>1024x768</string>

{/list>

{/nlist>
{/nlist>
{/nlist>

The special fetch type is known by our system
and the programs accessing the configuration informa-
tion through our API will simply see the contents of
the file at the given URL as a string. A program

3In paths, numbers are used to identify list items, the first
one having the index 0, like in C.

85

Pan: A High-Level Configuration Language

responsible for managing the X configuration would
simply have to start with this base file, substitute in
the desired modes and write the result to

letc/X11/XF86Config.

High Level Description

Although the previous XML representation is
sufficient for the programs running on the target
machines, we need a High Level Description (HLD) to
reason about groups of machines and share common
information.

Existing tools (such as m4) only cover some of
our requirements so we decided to design our own lan-
guage to represent the HLD and we wrote the accom-
panying compiler transforming this HLD into LLD
(i.e., XML).

We believe (in line with Paul Anderson’s A
Declarative Approach to the Specification of Large-
Scale System Configurations [2]) that a declarative
approach? to configuration specification is better
suited than a procedural one’. Pan has been designed
to stay as declarative as possible while allowing some
form of procedural code, which is required to take full
advantage of the power of validation.

The following is a quick overview of the salient
features of the Pan language. The complete language
specification is available in another document [5].

41.e., describe how things should look like in the end.
51.e., describe the sequence of actions to be performed.

Cons & Poznanski

Overview

Pan mainly consists of assignments, each of
which sets some value in a given part of the LLD
identified by its path. The following code can be used
to generate the LLD shown earlier. The left hand side
of the assignment is the path and the right hand side is
the value. nlist is a builtin function that will return the
nlist made from its arguments.

"/hardware/memory/size" = 512;
"/hardware/cpus/0" = nlist/(
"vendor", "Intel",
"model", "Pentium III (Coppermine)",
"speed", 853.220,
)

Pan also features other statements like include
(very similar to cpp’s #include directive) or delete that
can delete a part of the LLD.

The grouping of statements into templates allows
the sharing of common information and provides a
simple inheritance mechanism. A structure template is
used to represent a subtree of information (for instance
a given disk) while an object template represents a real
world object (the compiler will generate a separate
LLD for every object template encountered).

Listing 1 shows a partial example of two cluster
nodes that share most of their configuration information.

Types

Pan contains a very flexible typing mechanism.
It has several builtin types (such as boolean, string, long,

definition for the disk IBM DTLA-307030

structure template disk ibm_dtla 307030;

l|type" = "disk";
"vendor" = "IBM";
"model" = "DTLA-307030";

"gize" = 29314; §f MB

definition for the hardware Elonex 800x2/512

structure template pc_elonex 800x2_512;

"vendor" = "Elonex";

"model" = "800x2/512";

"cpus" = list(create("cpu_intel p3_800"), create("cpu_intel _p3_800"));
"memory/size" = 512; {f MB

"devices/hda" = create("disk ibm_dtla_307030");

J# definition for the Venus cluster
template cluster_venus;

"/hardware" = create("pc_elonex_800x2_512");

and any other hardware or system information shared by all the

members of the Venus cluster

#f first machine

object template venus001;

include cluster_venus;
"/hardware/serial"™ = "CH01112041";

second machine

object template venus002;

include cluster_venus;
"/hardware/serial™ = "CH01117031";
the first disk has been replaced

"/hardware/devices/hda" = create("disk_quantum_fireballp_as20_5");

Listing 1: Two cluster nodes which share most of their configuration.

86 2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA

Cons & Poznanski

...) and allows compound types to be built on top of
these. Once the type of a configuration element is
known, the compiler makes sure that only values of
the right type are assigned to it. By explicitly specify-
ing the type of the root element (i.e., the top of the
configuration tree), one can completely define the
schema of the information that is found in the LLD.
The type enforcement done by the compiler guaran-
tees that only LLDs conforming to the schema will be
generated. This enforcement is illustrated in Listing 2.

Starting with the root of the LLD, the compiler
will make sure that the data corresponds to the
declared type. Extra and missing fields in structures
trigger a compilation error. The code in Listing 2
ensures that /hardware/memory/size is always present
and contains a positive long integer.

Validation

To have even greater control on the information
generated by the compiler, one can attach arbitrary

Pan: A High-Level Configuration Language

validation code either to a type or to a configuration
path; see Listing 3.

Data Manipulation Language

The validation code is represented in a simple
yet powerful data manipulation language which is a
subset of Pan and syntactically similar to C or Perl.
Rather than embedding another language such as Perl
or Python for this task, we decided to design our own.
This was necessary to maintain control over type
checking and to encourage users to use the declarative
parts of Pan. Builtin functions such as pattern match-
ing and substitution are available and user defined
functions are supported.

Although we prefer the declarative approach to
the procedural approach, this data manipulation lan-
guage is very convenient to perform complex opera-
tions. Listing 4 illustrates the use of Pan to introduce
an element into a given list position.

structure representing the (physical) memory

define type memory_t = {
"size" long(0..)
s

a long which is greater than 0

structure representing the complete hardware

define type hardware_t = {

"vendor" string
"model" : string
"serial" ? string
"memory" memory_t
"cpus" cpu_tf[1..8]
"devices" device_t{}

s

this field is optional

a list of between 1 and 8 cpu_t
a (maybe empty) table of device_t

structure representing the root of the configuration tree

define type root_t = {

"hardware" hardware_t
"system" system_t
"software" software_t

s

the root of the configuration tree (i.e.,

type "/" = root_t;

/) must be of type root_t

Listing 2: Type enforcement.

#f IPv4 address in dotted number notation

define type ipvi4 = string with {

result = matches(self, >~ (\d+)\.(\dt)\.(\d+)\.(\d+)$’);

if (length(result) == 0)
return("bad string");
i=1:

while (i <= 4) {
x = to_long(result[i]);
if (x > 255)

return("chunk " + to_string(i) + " too big: " + result[i]);

i=4i+ 1;
)
return (true) ;

s

#f make sure that we have at least 256MB of RAM per processor
valid "/hardware/memory/size" = self >= 256 * length(value("/hardware/cpus"));

Listing 3: Validation code.

2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA

87

Pan: A High-Level Configuration Language

Miscellaneous

The Pan compiler keeps track of derivation infor-
mation which precisely links configuration informa-
tion appearing in the LLD to the originating HLD
statements. When HLD templates are modified, this
derivation information is used to determine which
LLDs must be recreated, thus minimizing the work
carried out by the compiler. The information is also
used to determine which HLD templates are responsi-
ble for the final value of a given configuration param-
eter.

Comparison With Other Tools

Pan (and its associated compiler) cannot be con-
sidered as a system administration tool by itself: it is
only a language to express configuration information.
As far as we know, there exists no similar tool to com-
pare directly with. What follows is a comparison with
the way different tools or projects manipulate system
configuration information.

Arusha Project

The Arusha Project (ARK, http://ark.source-
forge.net) provides a framework for collaborative sys-
tem administration [13]. It provides a simple, XML-
based language that can be used to describe almost
everything, from package management to documenta-
tion or system configuration. Unfortunately, this lan-
guage lacks strong type checking and validation. It
also mixes code and data (e.g., some Perl or Python
code can be embedded inside XML, close to the data)
which is something that we do not want.

Cfengine

Cfengine (http://www.cfengine.org) is an auton-
omous agent [3] with a high level declarative language
to manage large computer networks. It has no real types
and a limited support for lists. Its configuration is not a
real abstraction of the machine configuration but rather
some instructions for its different modules such as

Cons & Poznanski

network interface configuration, symbolic links man-
agement, checks for permissions and ownership of
files, etc. For instance, the modification of system files
like /etc/inetd.conf is often done with instructions such
as AppendIfNoSuchLine or CommentLinesMatching. It has
no support for validation.

DMTF

The Distributed Management Task Force
(DMTF, http://www.dmtf.org) is an organization
developing “management standards.” The standards
closest to Pan are part of the Common Information
Model (CIM, http://www.dmtf.org/standards/stan-
dard_cim.php). Their approach is complex and mixes
configuration management and system monitoring.
Although their standards could not be used directly
inside our work, we have tried to stay close and to
reuse some parts of their data schemas.

LCFG

LCFG [1] (http://www.lcfg.org) is a system for
automatically installing and managing the configura-
tion of large numbers of Unix systems. It does use
some abstraction to describe the machine configura-
tion but the language used does not really have types.
All the parameters are basically strings similar to X
resources and compound types (such as lists or tables)
are built on top of these with some ad-hoc name man-
gling. The inheritance is achieved by using cpp and
include files. The combination of cpp macros and
embedded Perl code hinder the clarity of this other-
wise mainly declarative language. On the other hand,
it has some advanced features (like constraint based
list ordering) that will probably be added to Pan in the
future.

Although LCFG and EDG are separate projects,
the development teams share ideas and some compati-
bility exists. For instance, the Pan compiler can pro-
duce some XML files that can be understood by the
LCFG components.

insert a string after another one in a list of strings

(or at the end if not found)
define function insert_after = {
if (arge != 3 || lis_string(argv[0]) ||
lis_list(argvI[2]))

lis_string(argv[1]) ||

error("usage: insert_after(string, string, list)");

idx = index(argv[1l], argvI[2]);
if (didx < 0) |
#f not found, we insert at the end
splice(argv[2], length(argv[2]), O,
} else {
found, we insert just after
splice(argv[2], idx+1l, O,
s
return(argv[2]);

}s

list(argv[0]));

list(argv([0]));

here is how to use it to insert "apache" after "dns"

"/boot/services" = list("dns",

= lldhcp",
"/boot/services" =

insert_after ("apache",

"mail",
"dns "
s

"postgres");
value ("/boot/services"));

Listing 4: Introducing an element into a given list position.

88 2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA

Cons & Poznanski

Status and Availability

After a first Perl prototype last year, the new
compiler (built using C++, STL, Lex and Yacc) is
almost complete (at the time of this writing) and will
be delivered to the EDG in September.

The software will be available under the open
source EDG Software License® from the EDG WP4
Configuration Task web site at http://cern.ch/hep-proj-
grid-fabric-config .

At the time of this writing, the Pan language has
been successfully used to describe a large fraction of
the configuration of the Linux machines used inside
the EDG project. Work is in progress to extend this to
other machines in our computer centre at CERN.

Acknowledgements

We would like to thank the European Union for
their support of the EDG project and our colleagues
from the WP4 for their contributions and very fruitful
discussions on the topics of system administration and
configuration.

Authors Biographies

Lionel Cons earned an ‘“Ingénieur de I’Ecole
Polytechnique” (Paris) diploma in 1988 and the
ENSIMAG?’s engineer’s diploma two years later. He
then joined CERN where he worked as a C software
developer and then as a UNIX system engineer in the
Information Technology division. He presently works
on system security and is the leader of the WP4 con-
figuration task of the EDG project.

Piotr Poznanski earned an MSc degree in Com-
puter Science from the Univeristy of Mining and Met-
allurgy (Cracow, Poland). He joined CERN in 2000
and currently works in the EDG project as a software
engineer.

References

[1] Anderson, Paul, “Towards a High-Level
Machine Configuration System,” LISA Confer-
ence Proceedings, 1994.

[2] Anderson, Paul, 4 Declarative Approach to the
Specification of Large-Scale System Configurations,
http://www.dcs.ed.ac.uk/home/paul/publications/
conflang.pdf, 2001.

[3] Burgess, Mark,*“Computer Immunology,” LISA
Conference Proceedings, 1998.

[4] Cons, Lionel and Piotr Poznanski, Configuration
Database Global Design, http://cern.ch/hep-proj-
grid-fabric-config, 2002.

[5] Cons, Lionel and Piotr Poznanski, High Level
Configuration Description Language Specifica-
tion, http://cern.ch/hep-proj-grid-fabric-config, 2002.

[6] da Silva, Fabio Q. B., Juliana Silva da Cunha,
Danielle M. Franklin, Luciana S. Varejao, and

Bhttp://www.eu-datagrid.org/license.html .

2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA

Pan: A High-Level Configuration Language

Rosalie Belian, “A Configuration Distribution
System for Heterogeneous Networks,” LISA
Conference Proceedings, 1998.

[7] da Silveira, Gledson Elias and Fabio Q. B. da
Silva, “A Configuration Distribution System for
Heterogeneous Networks,” LISA Conference
Proceedings, 1998.

[8] European Union DataGrid Project (EDG), http://
www.eu-datagrid.org .

[9] Evard, Rémy, “An Analysis of UNIX System
Configuration,” LISA Conference Proceedings,
1997.

[10] Foster, lan and Carl Kesselman, The Grid:
Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, http://www.mkp.com/books
catalog/catalog.asp?ISBN=1-55860-475-8, 1998.

[11] George, Michael, Node Profile Specification,
http://cern.ch/hep-proj-grid-fabric-config, 2002.

[12] Harlander, Dr. Magnus, “Central System Admin-
istration in a Heterogeneous Unix Environment:
GeNUAdmin,” LISA Conference Proceedings,
1994.

[13] Holgate, Matt and Will Partain, “The Arusha
Project: A Framework for Collaborative Unix
System Administration,” LISA Conference Pro-
ceedings, 2001.

[14] Large Scale System Configuration Workshop,
http://www.dcs.ed.ac.uk/home/dcspaul/wshop, 2001.

[15] Poznanski, Piotr, Node View Access API Specifi-
cation, http://cern.ch/hep-proj-grid-fabric-config,
2002.

[16] Raymond, Eric S., The Cathedral and the
Bazaar. O’Reilly, http://www.oreilly.com/cata-
log/cb, 1999.

[17] Rouillard, John P. and Richard B. Martin, “Con-
fig: A Mechanism for Installing and Tracking
System Configurations,” LISA Conference Pro-
ceedings, 1994.

[18] Sventek, Joe, Configuration, Monitoring and
Management of Huge-scale Applications with a
Varying Number of Application Components,
http://www.dcs.ed.ac.uk/home/dcspaul/wshop/
HugeScale.pdf, 2001.

[19] Traugott, Steve and Joel Huddleston, “Boot-
strapping an Infrastructure,” LISA Conference
Proceedings, 1998.

[20] van der Hoek, André, Dennis Heimbigner, and
Alexander L. Wolf, Sofiware Architecture, Configu-
ration Management, and Configurable Distributed
Systems: A Meénage a Trois, http://citeseer.n;.
nec.com/hoek98software.html, 1998.

[21]1 WP4, EDG Fabric Management Work Package,
http://cern.ch/hep-proj-grid-fabric.

[22]1 WP4C, EDG WP4 Configuration Task, http:/
cern.ch/hep-proj-grid-fabric-config.

89

Pan: A High-Level Configuration Language Cons & Poznanski

Appendix A: Partial LLD Example

This is an oversimplified example; more complete examples can be found on our web site [22].

<{?xml version="1.0" encoding="utf-8"?>
{nlist name="profile" type="record">
{nlist name="hardware" type="record">
{string name="vendor">Elonex{/string>
{string name="model">850/256</string>
{list name="cpus">
{nlist type="record">
{string name="vendor">Intel</string>
{string name="model">Pentium III (Coppermine)<{/string>
{double name="speed">853.22</double>
</nlist>
</list>
{string name="serial">CH01112041</string>
{nlist name="memory" type="record">
{long name="size">256</long>
</nlist>
<nlist name="devices" type="table">
{nlist name="hda" type="record">
{string name="vendor">QUANTUMS/string>
{string name="model">FIREBALLP AS20.5</string>
{string name="type">disk<{/string>
{long name="size">19596</long>
<{/nlist>
{nlist name="hdc" type="record">
{string name="vendor">LG{/string>
{string name="model">CRD-8521B<{/string>
{string name="type">cd<{/string>
<{/nlist>
{nlist name="ethO" type="record">
{string name="vendor">3Com</string>
{string name="model">3c905B-Combo [Deluxe Etherlink XL 10/100]</string>
{string name="type">net<{/string>
{string name="driver">3c59x<{/string>
{string name="address">00:d0:b7:a9:a3:47</string>
</nlist>
</nlist>
</nlist>
{nlist name="system" type="record">
{list name="mounts">
{nlist type="record">
{string name="type">swap<{/string>
{string name="path">swap<{/string>
{string name="device">hdal</string>
</nlist>
{nlist type="record">
{string name="type">ext2<{/string>
{string name="path">/<{/string>
{string name="device">hda2<{/string>
</nlist>
{nlist type="record">
{string name="type">ext2<{/string>
{string name="path">/var<{/string>
{string name="device">hda3<{/string>
</nlist>
{nlist type="record">
{string name="type">proc{/string>
{string name="path">/proc<{/string>
{/nlist>
{nlist type="record">
{string name="type">devpts{/string>
{string name="path">/dev/pts{/string>
{list name="options">

90 2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA

Cons & Poznanski Pan: A High-Level Configuration Language

{string>gid=5</string>
{string>mode=620</string>
</list>
{/nlist>
{nlist type="record">
{string name="type">ext2<{/string>
{string name="path">/mnt/floppy<{/string>
{list name="options">
{string>noauto{/string>
{string>owner</string>
</list>
{string name="device">fd0<{/string>
</nlist>
{nlist type="record">
{string name="type">afs<{/string>
{string name="path">/afs<{/string>
</nlist>
<{nlist type="record">
{string name="type">is09660</string>
{string name="path">/mnt/cdrom</string>
{list name="options">
{string>noauto{/string>
{string>owner</string>

{string>ro<{/string>
</list>
{string name="device">hdc<{/string>
</nlist>
</list>

{nlist name="partitions" type="table">

{nlist name="hdal" type="record">
{string name="type">primary<{/string>
{string name="disk">hda<{/string>
{long name="size">512</long>
{long name="id">82</long>

</nlist>

{nlist name="hda2" type="record">
{string name="type">primary<{/string>
{string name="disk">hda<{/string>
{long name="size">18828</long>
{long name="id">83</long>

</nlist>

{nlist name="hda3" type="record">
{string name="type">primary<{/string>
{string name="disk">hda<{/string>
{long name="size">256</long>
{long name="id">83</long>

</nlist>

</nlist>
</nlist>
</nlist>

Appendix B: Partial HLD Examples

These HLD templates have been used to generate the LLD found in Appendix A. More sample code can be
found on our web site [22].

functions.tpl
THHHHHHHEHHHHEHHHERHHHERHHHRRHHERHHRRHHHRRHHERHHHRRHHHRRHHEHHHRRHHERHHHERHHHE
3 Useful functions.

THHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHERRRRAHHHHHHAHAAAAAAAHHHHHHHHHHHHHEEEERRRE

2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA 91

Pan: A High-Level Configuration Language Cons & Poznanski

declaration template functions;

insert_after(string, string, list): insert the first string after the second
one (if found) or at the end (otherwise); the last argument is modified but
#f also returned as the result of the function

define function insert_after = {
if (arge !'= 3 ||
lis_string(argv[0]) || lis_string(argv[1]) || lis_list(argv[2]))

error("usage: insert_after(string, string, list)");
idx = index(argvI[l], argv[2]);
if (idx < 0) |
not found, we insert at the end
splice(argv[2], length(argv[2]), 0, list(argv[0]));
} else {
found, we insert just after
splice(argv[2], idx+1l, 0, list(argv[0]));
s
return(argv[2]);
)
given a disk name, return a table of three primary partitions for swap, root
and /var with a very simple space allocation algorithm

define function simple_partitions = {
if (arge !'=1 || !lis_string(argv[0]))
error ("usage: simple_partitions(string)");
disk = argvI[0];
disk _size = value("/hardware/devices/" + disk + "/gize");
swap is twice the size of the physical memory
swap = nlist(

"disk", disk,
"type", "primary",
"size", 2 * value("/hardware/memory/size"),
"id", 82, # Linux swap
)
var is 256MB for disks larger than 2GB, 128MB otherwise
var = nlist(
"disk", disk,
"type", "primary",
"size", if (disk_size > 2048) 256 else 128,
"id", 83, # Linux
)
root is the rest
root = nlist(
"disk", disk,
"type", "primary",
"size", disk_size - swap["size"] - var["size"],
"id", 83, # Linux
)

order of partitions is swap, root and var
return(nlist(
disk+"1", swap,
disk+"2", root,
disk+"3", var,
)) s
s

types.tpl
THHHHHHHHHHHHHHERHHHHHERRRAHHHHHRRHHHHHERRRHHAHHERRAHAHERRRHHHHHRRHHHHEERE

Jf Useful (but simplified) types.
THHHHHEHEHEHEHHHHEHEHEHEHEHEHEHEHEHHEHEHEHEHEHEHEHEHHHEHEHEHEHEHEHEHEHEEHEHEHE

92 2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA

Cons & Poznanski Pan: A High-Level Configuration Language

declaration template types;
THHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHERRRHHHHHHHHAAAAAAAAHHHHHHHHHHHEEEEERRRE

simple types

i unsigned long

#(old style) define type ulong = long with self >= 0;
define type ulong = long(0..);

unsigned double

define type udouble = double(0..);

J## IPv4 address in dotted number notation
define type ipvi4 = string with {
result = matches(self, >~ (\d+)\.(\d+)\.(\d+)\.(\d+)$’);

if (length(result) == 0)
return("bad string");
i=1;

while (i <= 4) {
x = to_long(result[i]);
if (x > 255)
return("chunk " + to_string(i) + " too big: " + result[i]);
i=4i+ 1;
s
return (true) ;
)
THHHHHEHEHEHEHHHHEHEHEHEHEHEHERHHHHEHEHEHERERERERHHAEHEHEHEHEHEHERHRHEHEHEHEHE

hardware types

I memory record

define type memory_t = {
"size" : ulong

}s

{ CPU record

define type cpu_t = |

"vendor" : string
"model" : string
"speed" : udouble

}s
device record (describing some hardware devices such as disks)
define type device_t = {

"type" : string with match(self, ’A(disk|cd|net)$’)
"vendor" : string
"model" : string
"size" ? ulong
"driver" ? string
"address" ? string

)

hardware record (describing some complete hardware information)

define type hardware_t = {
"vendor" : string
"model" : string
"serial" : string
"memory" : memory_t
"cpus" : cpu_t[l..] # list of at least one CPU
"devices" : device_ t{} # table of devices, indexed by names such as hda

}s
THHHHHEHEHEHEHHHHEHEHEHEHEHEHEHEHEHHEHEHEHEHEHEHEHEHHAHEHEHEHEHEHEHEHEHEHHEHEHE

system types

mount record (describing what will end up in /etc/fstab)

2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA 93

Pan: A High-Level Configuration Language Cons & Poznanski

define type mount_t = {
"device" ? string

"path" ¢ string
"type" : string
"name" ? string

"options" ? stringl]

)

i partition record (describing how to partition the disks)
define type partition_t = {

"disk" : string with value("/hardware/devices/"+self+"/type") == "disk"
"type" : string
"gize" : ulong
"id" : ulong

}s

i system record (describing some of the system configuration)
define type system_t = {

"mounts" : mount_t[1..] ## list of at least one mount

"partitions" ? partition_t{} # table of partitions, indexed by, e.g., hdal
} .

i1
root type

type of the root of the configuration information

define type root_t = {
"hardware" : hardware_t # hardware subtree
"system" : system_t # system subtree

1
declare that root is indeed of the root type
type "/" = root_t;

hardware.tpl
o 5 1 o

Sample hardware data.
THHHHHHHEHHHHHHHHERHHHERHHHRRHHERHHRRHHERRHHERHHHRRHHERRHHERHHHRRHHERRHHERHHHE
THHHHHHHHHHHHHHEEHHHHHHERRHHHHHHHRRHHHHHERHAHHERRRHHHHERRHHHHERRRHAHHHRRRE
cpus

structure template cpu_intel_p3_800;

"vendor" = "Intel";
"model" = "Pentium III (Coppermine)";
"speed" = 796.550; # MHz

structure template cpu_intel p3_850;

"vendor" = "Intel";
"model" = "Pentium III (Coppermine)";
"speed" = 853.220; {f MHz

THHHHEHHEHHEHHEHEHHEHHEHHEHEEHERHEHHEREEHEHERHERHERHEHERHERHERHEHEHHERHERHEREE
disks

structure template disk quantum_fireballp_as20_5;

lltypell — Ildiskll;

"vendor" = "QUANTUM" ;

"model" = "FIREBALLP AS20.5";
"size" = 19596; # MB

structure template disk ibm dtla 307030;

lltypell = Ildisk";
"vendor" = "IBM";
"model" = "DTLA-307030";

"size" 29314; §f MB

94 2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA

Cons & Poznanski Pan: A High-Level Configuration Language

1515151515 5131313 13131513313 A

cdroms

structure template cdrom_lg crd_8521b;

’ltype" = "Cd";
"vendor" = "LG";
"model" = "CRD-8521B";

THHHHEHHEHHEHHEHEHHEHHEHHEHEEHERHERHEREEHERHERHERHEHHEHERHERHERHEHEEHEHHERHEREE
#f network cards

structure template network 3com_3c905b;

"type" = "net";

"vendor" = "3Com";

"model" = "3c905B-Combo [Deluxe Etherlink XL 10/100]";
"driver" = "3¢c59x";

structure template network_intel_ 82557;

"type" = "net";

"vendor" = "Intel";

"model" = "82557 [Ethernet Pro 100]";
"driver" = "eeprolOO0";

1 s
computers

structure template pc_elonex 850_256;

"vendor" "Elonex";

"model" "850/256";

"cpus" list(create("cpu_intel _p3_850"));
"memory/size" 256; # MB

"devices/hda" create("disk_quantum_fireballp_as20_5");
"devices/hdc" create("cdrom_lg crd_8521b");
"devices/ethO" create("network_3com_3c905b") ;

structure template pc_elonex_800x2_512;

"vendor" "Elonex";
"model" "800x2/512";
"cpus" list(create("cpu_intel_p3_800"), create("cpu_intel_p3_800"));

512; {f MB
create("disk_ibm_dtla_307030");
create("network_intel_82557");

"memory/size"
"devices/hda"
"devices/ethO"

system.tpl
THHEHHHHHHEHHHHEHHHEHREHEHEEHEHEEHEHERREREHEHREHEHEEREHEHEEHEHEEHEHEHEEHEHERRE
i Sample system data.
THHEHHHHHHEHHHHEHHHEHREHEHEEHEHEEHEHERREREHEHREHEHEEREHEHEEHEHEEHEHEHEEHEHERRE
5 s
#f standard mounts

structure template mount_afs;
llpathll "/afs";
utypen "afg":

structure template mount_proc;

"path" = "/proc";

lltypell = "procﬂ;

structure template mount_devpts;
"path" = "/dev/pts";

’ltype" = "devptsll ;

"options" = list("gid=5", "mode=620");

2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA 95

Pan: A High-Level Configuration Language Cons & Poznanski

structure template mount_floppy;

"device" = "fdOo";

"path" = "/mnt/floppy";

"type" = "eth" ;

"options" = list("noauto", "owner");

structure template mount_cdrom;

"device" = undef;

"path" = "/mnt/cdrom";

"type = "i509660";

"options" = list("noauto", "owner", "ro");

THHHHHHHEHHHHHEHHHHRHHHRRHHHRRHHRRRHHRHHHRHHERHHRRHHERRHHRRHHHRHHERRHHRRHHHE
mounting templates

add the standard Linux mount entries

template mounting linux;

"/system/mounts" = merge(value("/system/mounts"), list(
create ("mount_proc"),
create ("mount_devpts"),
create ("mount_floppy"),

1)

add the AFS mount entry
template mounting afs;
"/system/mounts" = merge(value("/system/mounts"), list(create("mount_afs")));

sample.tpl
THHHHHHHEHHHHRHHHERHHHRRHHERHHHRRHHHRRHHERHHRRHHERHHRRHHHRHHERHHHRRHHERRHHRE
Sample object template.
THHHHHHHEHHHHRHHHERHHHRRHHERHHRRHHHRHHERHHHRRHHERRHHRRHHHRRHHERHHHRRHHERRHHRE
object template sample;

standard includes
include types;
include functions;

hardware information

"/hardware" = create("pc_elonex_850_256");

"/hardware/serial" = "CH01112041";

"/hardware/devices/ethO/address" = "00:d0:b7:a9:a3:47";

system information

"/system/partitions" = simple_partitions("hda");

"/system/mounts/0" = nlist("type", "swap", "path", "swap", "device", "hdal");
"/system/mounts/1" = nlist("type", "ext2", "path", "/", "device", "hda2");
"/system/mounts/2" = nlist("type", "ext2", "path", "/var", "device", "hda3");

include mounting linux;
include mounting afs;

we also add a mount entry for our CD drive ...

"/system/mounts" = merge(value("/system/mounts"),
list(create("mount_cdrom", "device", "hdc"))):

...and make sure that hdc indeed contains a CD drive!

valid "/hardware/devices/hdc" = self["type"] == "cd";

Appendix C: NFS Validation Example

xvalidation.tpl
i 5 1

Simplified example of cross object validation.

A1l the NFS clients check that the NFS servers that they use indeed export
the directories that they mount. This is done transparently by adding some

96 2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA

Cons & Poznanski Pan: A High-Level Configuration Language

#
1
#

#
#
#
1

validation code to the mount record type. Further checks such as wildcards
in export list or export/mount options mismatch are left as an exercise for
the reader ;-)

Here is how to compile the server and two clients (result on stdout):

% pan --stdout --output=nfssrvl xvalidation.tpl (will succeed)
% pan --stdout --output=nfscltl xvalidation.tpl (will succeed)
% pan --stdout --output=nfsclt2 xvalidation.tpl (will fail)

1 1 1 A
315 1 1 A

#

types definitions

template types;

#

export record (roughly what is in /etc/exports)

define type export = {

}s

"path" : string description "path of the exported directory"
"client" : string description "name of client allowed to mount it"
"options" ? string[] description "list of exporting options like ro"

mount record (roughly what is in /etc/fstab)

define type mount = {
"device" : string description "device as understood by the mount command"
"path" : string description "path of the mount point"
"type" : string description "type of the mounted filesystem"
"name" ? string description "name or label of this mount entry"
"options" ? string[] description "list of mounting options like ro"

} with valid_mount (self);

validation of a mount record (only nfs type records are checked)

define function valid _mount = {

s
THHHEHEHEHEHEHHHHEHEHEHEHEHEHERHHHEHEHEHERERERERHHEHEHEHEHEHEHERERHRHEHEHEHE

#

the mount record is our only argument
mount = argv[0];
we only care about NFS mounts, other types are considered OK
if (mount["type"] != "nfs")
return (true) ;
the device field will give us the NFS server and path

result = matches(mount["device"], "~ ([\w\.\-]1+):(.+)$’);
if (length(result) == 0)
error ("bad nfs device: " + mount["device"]);
server = result[l];
path = result[2];
we now look at the server’s exports list
exports = value("//" + server + "/system/exports");
i = 0;

len = length(exports);

while (i < len) {
we check if this export record is good for us by checking the client
field against object (i.e., the name of the current object template)
and the path; we want exact match and ignore the export/mount options

if (exports[i] ["client"] == object && exports[i] ["path"] == path)
return (true) ;
i=1+1;

1
we haven’t found any export record matching our needs, we complain:
error("server " + server + " does not export " + path + " to " + object);

NFS server definition

2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA 97

Pan: A High-Level Configuration Language Cons & Poznanski

object template nfssrvl;

type settings
include types;

type "/system/exports" = exportl[];
Jf data for this host
"/system/exports" = list(
nlist(# we export /home to hostx
"path", "/home",
"client", "hostx",
)
nlist(# we export /home to nfscltl, read-only
"path", n/homeu’
"client", "nfscltl",
"options", list("ro"
),

)

1 s s s s
J## NFS clients definitions

template client;

type settings
include types;
type "/system/mounts" = mount/[];

data for this host

"/system/mounts" = list(

nlist(# we mount /dev/hdal as the root filesystem
"device", "/dev/hdal",
"path", n/n,
"type" , "ext2",

),

nlist(## we NFS mount /home from the server nfssrvl
"device", "nfssrvl:/home",
"path", "/home",
"type", "nfs",

).

)

first client: known by the server, compilation will succeed
object template nfscltl;
include client;

#f second client: unknown to the server, compilation will fail with:
*** user error: server nfssrvl does not export /home to nfsclt2
object template nfsclt2;

include client;

98 2002 LISA XVI — November 3-8, 2002 — Philadelphia, PA

