
USENIX Association

Proceedings of
LISA 2002:

16th Systems Administration
Conference

Philadelphia, Pennsylvania, USA
November 3–8, 2002

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

An Analysis of RPM Validation Drift

Pp. 155-166 of the Proceedings of LISA ’02: Sixteenth Systems Administration Conference
(Berkeley, CA: USENIX Association, 2002).

John Hart and Jeffrey D’Amelia – Tufts University

ABSTRACT

Experiments that analyze dependencies in RedHat Linux and RpmFind.net show disturbing
conflicts and overlaps between software packages that result in installing multiple differing versions
of dynamic libraries. The final state of a system containing conflicting packages depends upon the
order in which packages are installed, as well as user input during the installation process. This leads
to system states that may or may not have been tested, lowering confidence that the resulting
software configuration will function properly. We describe the details of the problem, potential
effects, and potential solutions involving improving the practice of building RPM packages.

Introduction

RedHat Package Manager (RPM) files and their
equivalents have revolutionized the ease with which one
can add software to a Linux system. But do RPMs
embody ease, or perhaps danger? The following excerpt
from Ladislav Bodnar’s article ‘‘Is RPM Doomed?’’ [2]
gives a very accurate account of a situation that most
system administrators have experienced:

‘‘You have just found this great software on the
Internet and off you go to download and install
it. It’s all free and GPL and, as luck would
have it, the author provides a binary package
in RPM format. It doesn’t take long to down-
load it, then you run the customary rpm -Uvh
package-name.rpm command. OOPS! The instal-
lation fails, reporting a missing dependent pack-
age without which it will not install or function
correctly. Off you go again to search the Inter-
net for the missing library.

Unfortunately, installing that missing library
fails because of three other missing libraries
and two other libraries that come in incorrect
versions. Depending on how badly you want
the original package, you have two choices –
either go and search for all missing dependent
libraries as well as all libraries dependent on
the dependent libraries, or you just give up.
How many times have you given up?

If you are persistent and lucky, you might even-
tually install the RPM package. If you are per-
sistent and not lucky, then you have probably
acquired a few bumps from banging your head
against the nearest wall in sheer desperation.
RPM dependency hell can be a hugely frustrat-
ing experience – anything from circular depen-
dencies (the catch 22 situation) to incorrect
library version when there wouldn’t be much
left untouched had you really persisted in get-
ting that badly wanted RPM installed.’’

The root of several problems with RPM (and
many other kinds of package management) is that
‘‘order matters’’ [11]. It is common practice among

many administrators to install and uninstall RPMs and
other kinds of software packages with little concern
for change control and without keeping a journal of
the order of modifications. But case studies and theo-
retical analyses [10, 11] suggest that the only way to
produce a predictable and reliable system is to decide
upon some particular order for package installations
and other configuration actions, and always perform
the actions in that order. Another independent analysis
[5] suggests that order matters whenever system con-
figuration actions do not take a rather restrictive form
in which all configuration actions are ‘‘homogeneous’’
with one another; this means that if two actions
change the same file, they change it to have the exact
same content. While this would seem a reasonable
requirement, in our experience, RPM installations do
not satisfy this restriction.

How dangerous is it in practice to ignore this dis-
cipline of ordering? It seems from practical experi-
ence that the danger is far greater than most of us real-
ize. Many of us have managed to put systems into a
state where ‘‘only starting over is feasible.’’ Why is
this so?

This study looks at the risks associated with
installing and uninstalling RPMs. We look at the
nature of dependencies between packages to under-
stand how one package has the potential to break
another. We explain how use of poorly structured
RPMs causes a ‘‘validation drift’’ in which the final
system gradually ‘‘drifts’’ over time to a configuration
that has not been tested. Using global analysis of
existing RPM repositories, we identify subtle inconsis-
tencies in well-known RPM packages that can lead us
to doubt the results of installing them.

First we must comment that this study is limited
in several ways. We only study the i386 distributions
of RedHat 6.2, RedHat 7.2, and the Contrib directory,
as listed on RedHat.com and RpmFind.net. These
directories contain highly volatile data that will be
quickly outdated. Much of the work was done in April
of 2002 and repeated in July of 2002, with differing
results due to changes (mostly improvements) in

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 155

An Analysis of RPM Validation Drift Hart & D’Amelia

repository files! We are happy to report that one major
example of repository rot that was discovered in April
could not be reproduced from July data. We hope that
none of the inconsistencies we report will ever be
reported again, because implementors and repository
managers will be motivated to address the problems
we have found. Though there may be different incon-
sistencies, do not expect to necessarily find any of
these particular problems in future RPM repositories.

Why RPM?

There are many package managers available to
Linux developers and choosing one to focus on was
difficult. Package managers such as Debian’s DEB
[13] or Slackware’s TGZ [15] would have been fine
choices for our analysis. However, the nature of RPM
makes it a good basis to analyze the nature of installa-
tion failures and validation drift while also providing a
framework for thinking about solutions to these prob-
lems. RPM is deployed in large and small network
installations and many system administrators depend
on it for installing and maintaining complex sets of
software. It has a rich feature set that allows the instal-
lation and removal of individual packages or sets of
packages and it maintains an internal database that
records and verifies each change to the system.

Like most other package managers, RPM as a
system allows a user to install packages in a computer,
while checking an internal database to verify that all
known prerequisites are met before allowing the pack-
age to install. After configuration, RPM allows the
package to run arbitrary binary and script files prior to
and for the completion of installation and uninstalla-
tion [1]. Because of this, we concentrate upon the Red
Hat package management system [1] for Red Hat 6.2
and 7.2, including the contributed packages available
from http://www.rpmfind.net.

Many readers have commented that we already
know that the contrib directory is broken, so why ana-
lyze it? We respond that it helps to know how things
break, so that we can avoid them in the future. We
knew when we started that there would be serious
problems, but had no idea of the nature of the prob-
lems we would find. And, surprisingly, the problems
we found are not the problems that we expected!

RPM Dependencies

In every RPM package there exist several different
kinds of dependencies. Declared dependencies external
to the file are contained in the header information in
each RPM package. Each package declares which ser-
vices it ‘‘provides’’ and ‘‘requires.’’ A service is nothing
more than a string. RPM satisfies dependencies by forc-
ing one to sequence software installations so that ser-
vices are ‘‘provided’’ by installed packages before they
are ‘‘required’’ by others.

But also, each executable file in an RPM archive
has requirements, some of which can be determined

through use of techniques like those of sowhat [4].
These internal dependencies are intrinsic to the file
and may or may not be related to dependencies
declared in the RPM header. Sowhat’s analysis utilizes
the output of ldd and is not exhaustive; one can subvert
it, e.g., by using dlopen to open a dynamic library by
name, bypassing ldd and ld.so.conf.

Some kinds of errors are relatively insignificant.
If an RPM package is over-declared (the set of depen-
dencies in the header exceeds the set that the program
needs), the consequence is that extra, possibly useless,
programs are installed. If a package is under-declared,
the packages actually used and required are greater
then what is declared. This means that a package
installation will fail even if the declared dependency
requirements are fulfilled.

Are RPM Dependencies Sloppy?
The root of all evil in RPM seemed to be – at the

outset – the way RPM packages are expected to
declare what they need in order to operate. In RPM,
there is a simple mechanism for notating dependencies
between packages. In the package header, each pack-
age is declared to ‘‘provide’’ zero or more services.
These are just strings with no real semantic meaning.
A package that needs a service then ‘‘requires’’ it.
This mechanism is mainly used to declare dependen-
cies between packages using a dynamic library and the
package(s) that might provide a copy of the library, so
the ‘‘services’’ are typically library base-names.

Those of us who have experienced ‘‘dependency
hell’’ (as documented in the excerpt in the introduc-
tion) have suspected major problems with the RedHat
dependency system. We attempted to validate our sus-
picion by running a simple test to check the difference
between actual and declared dependencies. The results
were both more encouraging than expected and, in a
way, depressing. The true dependency errors seem to
be few in number and cannot account for the trouble
many people report in using RPMs.

Checking Dynamic Library Dependencies
We could not in general determine all dependen-

cies for a package, but we can determine all the
dynamic libraries needed by a package. We did this by
unpacking each package (using cpio) and skipping
execution of the installation scripts. Then we ran ldd
on each executable or dynamic library in the package.
Finally, we compared the actual dependencies exposed
by ldd with the declared dependencies in the header.

Comparing these was a complex process due to
the free-form nature of dependencies. It was a multi-
step process that takes into account all the ways a
dependency can be declared in a collection of RPMs.
The cases for each target RPM (the RPM from the col-
lection currently under investigation) include:

a) The required library is part of the target RPM
that requires it. In this case, no dependency list-
ing is required.

156 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Hart & D’Amelia An Analysis of RPM Validation Drift

b) The required library is explicitly required by
the target RPM and provided by another. This is
normal.

c) The required library is part of an RPM that pro-
vides another service that happens to be
required by the target RPM. This is an implicit
dependency based upon a service tag that is
actually unrelated to the real library depen-
dency (Figure 1). This is usually bad style for
dependency declarations, at least for dynamic
libraries. The only exception is that to save
space, some implementors use blanket tags for
service subsystems, e.g., ‘‘require qt’’. This is
to avoid listing all the core libraries of the ser-
vice explicitly.

d) The required library is part of the RedHat core
distribution, for which dependencies are not
explicitly listed, as their presence in any Red-
Hat system is assured.

e) The required library is in another RPM with
which the target RPM shares no explicit or
implicit dependency. This is a dependency error.

To analyze the distribution of these kinds of
dependencies within RPM repositories, we wrote two
programs. Rift lists all of the dependencies in a set of
packages that can be exposed through ldd. Tree reads
all RPM files in an RPM distribution and outputs all
dependency and checksum information from the dis-
tribution. The output of tree, together with the output
of rift, is fed to a new program deps that categorizes
dynamic library dependencies into each of the five
classes above.

DigitalDJ-0.5-1.i386
 requires libX11.so.6
 contains /usr/bin/ddj
 needs libX11.so.6

 needs libXi.so.6

XFree86-libs-3.3.2p12-1.i386
 provides libX11.so.6

 contains /usr/lib/libX11.so.6
 (declared)
 contains /usr/lib/libXi.so.6
 (undeclared)

Figure 1: Implicit dependency of ddj upon libXi.so.6
via libX11.so.6.

Our results for the RedHat i386 distribution are
shown in Table 1. The good news is that the distribu-
tion itself, as it comes from RedHat, is rather well-
constructed with few errors. The errors seem to be sta-
tistical outliers. Errors we found were isolated to two
packages. The anaconda runtime package anaconda-
runtime-7.2-7.i386.rpm fails to require ld-linux.so.2,
libc.so.6, libresolv.so.2, and libz.so.1. These are part of the
core distribution so that this has no observable behav-
ioral effect; it is just a bit sloppy. PyQt-2.4-1.i386.rpm
fails to require libstdc++-libc6.1-1.so.2; this is a bit more
serious and requires user intervention.

Our results for the RedHat contrib directory (i386)
are shown in Table 2. Here things become more ‘‘inter-
esting.’’ Most packages are astoundingly well-behaved

about declaring their needs. Outright errors are almost a
statistical outlier. Errors we observed are listed in Table
3. These are annoying but minor at best.

deps Kind of Dependencies
741 normal: ‘‘requires’’ and ‘‘provides’’

correct.
26 internal: package contains library

upon which it depends.
5 errors: dependency declaration

omitted.

Table 1: Dependency types in RedHat 7.2 .

deps Kind of Dependencies
1201 normal: ‘‘requires’’ and ‘‘provides’’

correct.
21 internal: package contains library

upon which it depends.
9 implicit: unrelated dependency

includes file.
8 errors: dependency declaration

omitted.

Table 2: Dependency types in RedHat Contrib.

Package Fails to require
Eterm-0.8.8-1.i386.rpm libungif.so.4
Frodo-4.1a-1.i386.rpm Logo
ImageMagick-4.2.7-

1.i386.rpm
libbz2.so.0

ImageMagick-perl-
4.2.7-1.i386.rpm

libbz2.so.0

Qtabman-0.1-1.i386.rpm libclntsh.so.1.0
XITE-3.3-3.i386.rpm libjpeg.so.62
XITE-3.3-3.i386.rpm libz.so.1
aktion-0.2.1-1.i386.rpm libstdc++-libc6.1-1.so.2

Table 3: Dependency errors in RedHat i386 Contrib.

One disturbing tendency was some use of implicit
loading of libraries. There were nine instances in which
a dynamic library was required implicitly as a side-
effect of another explicit requirement. The X11 library
libXi.so.6 was implicitly required six times as a result of
explicitly requiring libX11.so.6. Likewise, libdl.so.g was
implicitly required three times as a result of explicitly
requiring libc.so.6. These libraries were also among
those that were formerly bundled with the libraries
whose dependencies load them. The implicit loads of
these libraries are probably due to packages being
designed before that library design change took place.

The prognosis of this work is surprisingly good.
While it would seem that the contributed RPM reposi-
tory would be chaos, our simple checks showed con-
tributed RPMs to be relatively organized and well-
structured. Our obvious question, then, is ‘‘what is
really wrong?’’ It is not the dependencies, because

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 157

An Analysis of RPM Validation Drift Hart & D’Amelia

errors in these are statistically insignificant. We must
look deeper for potential problems within RPMs. The
key to this looking deeper is the concept of validation
of the resulting system.

Validation

The central theme of this paper is not depen-
dency analysis itself, but rather the relationship
between dependency analysis and validation of soft-
ware installation. In software engineering [9], there
are two forms of sanity checking:

• ‘‘verification’’: ‘‘are we making the product
right?’’ Does it conform to our own ideas of
how it should work?

• ‘‘validation’’: are we making ‘‘the right prod-
uct?’’ Does it conform to customer needs?

In system administration, we often concentrate
upon validation to the exclusion of any concept of veri-
fication. We have less design freedom than software
authors, and user requirements are usually more com-
pletely spelled out than for a software engineer, so that
there is much less difference between ‘‘verification’’
and ‘‘validation’’ than there would be in a software
development environment. The key to validation is rig-
orous testing [12] in a realistic setting. One must actu-
ally try the system and see if things work as expected.

Last year, Couch and Sun described global anal-
ysis [4] without emphasizing validation, its most
important component. Any analysis of what went
wrong with a system must be tempered by knowledge
that at some time in the past, ‘‘things were right.’’
One’s reasoning must always flow from knowledge
that the system did work properly before. Otherwise,
the question of ‘‘what broke’’ – central to use of
sowhat – has no meaning. Unfortunately, it is often the
case that the user thinks ‘‘things were right’’ in their
system configuration when in fact they have been
working with a system that was not completely vali-
dated. This perception by the user can contribute to
the problem at hand. Dependency problems are always
problems of validation: ‘‘can we be sure that in mak-
ing a change, we do not break anything?’’. Given a
rather strongly validated core distribution of RPMs,
how can we avoid breaking anything in it that worked
before?

Validation Rot
Brooks [3] points out that in software engineer-

ing, ‘‘software rot’’ occurs when too many small
changes are made to a complex system, so that no one
really understands the function of the software. Couch
points out that a similar kind of ‘‘filesystem rot’’
occurs in software repositories managed over long
time periods [6], so that meanings of specific files
become unclear and inaccessible.

Our analyses show that RedHat machines man-
aged via RPM suffer from a new kind of rot: ‘‘valida-
tion rot.’’ This is a gradual divergence from a fully

tested configuration that invalidates and undermines
prior testing. Here is how it works:

• We start with a ‘‘baseline configuration,’’ e.g., a
RedHat distribution. This configuration is pre-
sent on a multitude of hosts around the internet,
so we can wait until this baseline has been
comprehensively validated by an extensive
community of users.

• Gradually, over time, we add functionality in
the form of ‘‘contributed RPMs.’’ Each one of
these adds some files and may replace others.
The result is that the system diverges not only
from the baseline, but also into a fairly unique
state that may not be replicated anywhere else
on the Internet.

• At any point in this process, one has a unique
system that has never been validated by any-
one.

The user community (and vendors) validate
packages in relation to the baseline, not in relation to
other packages. It is nearly impossible to test, yet
alone reach, all possible package states due to combi-
natorial explosions. This means that a user is ‘‘at risk’’
when their system reaches a configuration state that
has not been achieved by any previous population of
users or the software developer. It is possible, then,
that there are latent bugs that will show up only on
that particular machine.

Validation Expense
Validating software is expensive. For commer-

cial software, it often requires the expertise of a Soft-
ware Quality Assurance(SQA) [9] team. For open-
source freeware, the user community itself often
serves that purpose over longer time periods, submit-
ting bug reports and fixes. Either way, software can
only be validated as working properly by extensive
testing in multiple environments and with various
kinds of inputs. There is no such thing as ‘‘completely
tested software’’ [10] and one must always decide
what form of testing is ‘‘good enough’’ or ‘‘complete
enough’’ [12].

Transitive Validation
The expense of validation has led the Linux Stan-

dard Base [14] to employ a ‘‘transitive validation’’
strategy. Previously, a vendor wanting to market a soft-
ware package for linux had to validate its function on
every distribution of linux. The Linux Standard Base
was created in order to give vendors the assurance that
a package that works somewhere, works everywhere. If
we control the couplings between a software package
and its operating environment, and can validate the
environment as possessing appropriate couplings, then
validating it in one compliant environment validates it
in all such environments.

There are two parts to the Linux Standard Base:
1) a code validator that indicates whether a spe-

cific binary file is compliant with the base. This

158 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Hart & D’Amelia An Analysis of RPM Validation Drift

checks whether the system calls used by the
binary file are loaded from correct versions of
dynamic libraries.

2) an environment validator that checks whether
the environment on a specific linux machine
complies with the minimal requirements needed
for system calls to work properly. This checks
not only the existence and versions of key
libraries, but also checks that particular system
control files are found in standardized loca-
tions, e.g., /etc/hosts.

The key assertion chain of LSB is that:
a) If a particular vendor software package passes

code validation, i.e., only utilizes approved sys-
tem and library calls, and

b) The vendor package has been tested on one
LSB-compliant system, and

c) A particular linux system passes environmental
validation, i.e., has all its libraries and files in
appropriate places, then

d) The vendor software should function fine on
any environmentally compliant system.

This is a ‘‘transitive validation’’ claim: software
that works in one compliant environment works in
every such environment. This can potentially save
tons of money in validating software for different dis-
tributions of linux.
Is Validation Trust Transitive?

We are inspired by the LSB strategy and would
like to apply a similar process to the problem of vali-
dating RPM-managed systems. The key question is
‘‘What can we trust?’’. Trying to answer this question
cuts to the heart of the RPM problem. We contend that
‘‘we usually put too much trust in existing infrastruc-
ture.’’

For example, let’s consider the following appar-
ent assertions about ‘‘transitive trust’’:

1) If a program works properly on a RedHat 7.2
system, it will work properly on all RedHat 7.2
systems.

2) If a script works properly for a particular ver-
sion of Perl, then it will work properly in the
same version of Perl regardless of the environ-
ment in which it executes.

3) If a program or dynamic library compiled with
one compiler works properly, then it will work
properly if compiled with another compiler.

4) If a program works before new software is
installed, it will work after the software is
installed.

In each case, we decide to trust something in a
new situation based upon validation in an old situa-
tion. All of the above assertions seem reasonable, and
all are quite obviously false to the point of being ludi-
crous. Each of these points can be expressed in realis-
tic terms as follows:

1) Just what is a RedHat 7.2 system? This is the
baseline, but what has been done to the system

since then? If a program depends, e.g., upon
/etc/foo, then it will only work if one has
installed /etc/foo. This has nothing to do with
the baseline.

2) Any Perl programmer knows that Perl does
some rather strange things to cope with system
differences. For example, its implementation of
lockf can take at least four forms depending
upon support for locking in the operating sys-
tem. These forms are semantically different.

3) Modern compilers have bugs, especially when
optimization is turned on. Validation under one
compiler is no guarantee of function when the
same program is compiled with another.

4) Even in the simplest of cases, it is easy to break
a program by installing another. The problem is
‘‘hidden dependencies’’ between programs and
other programs and libraries.

These simple examples are obviously bogus, but
administrators who install RPMs on an ad-hoc basis
are using them as assumptions. We come to the inex-
orable conclusion that a system is validated as func-
tional if:

1) it is constructed starting from a validated base-
line,

2) all software packages installed in addition to
the baseline are:
a) validated against the baseline configura-

tion by being installed against it and thor-
oughly tested.

b) homogeneous [5], in the sense that over-
laps between packages other than the base-
line install the exact same content.

c) uncoupled from the contents of other pack-
ages (excluding homogeneous overlaps),
so that software within each package only
refers to baseline content and the content
of the specific package.

Analysis of RPM Failures

There are four main things that can interfere with
the proper operation of a single package:

1) Hidden dependencies not known to the package
designer.

2) Version skew between files and the programs
that utilize them.

3) Relationships between files that are obscured
by scripting.

4) Asynchronous operations other than package
management that affect package files or
required files.

Hidden dependencies are those unknown to the
package designer or simply undeclared. Every pack-
age implicitly depends, e.g., upon the whole base dis-
tribution. If something in the base distribution
changes, the package may break, but such dependen-
cies are never made explicit. According to the results
above, though, these may be statistically insignificant.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 159

An Analysis of RPM Validation Drift Hart & D’Amelia

Version skew is a very common problem with
which many people are familiar in both the Unix and
Windows worlds. This happens when a library or pro-
gram associated with more then one program is
upgraded and the newer version is not functionally
compatible with the older version.

Installation scripts, which are commonly
included with programs today, are usually designed to
move files and create directories that are custom to the
package. But with larger, more complex packages,
installation scripts are non-trivial and can perform
tasks that have system-wide effects. Since the changes
that an installation script can make are limited only by
the rights of the user running it, (the user is typically
root) any program has the ability to touch any other
program or file. A common example is when an
Apache RPM is installed. It makes modifications to
the inetd.conf file that are not obvious if one is not
aware that modifications are being made.

Asynchronous operations, which include
installing non-RPMs, manually changing files that
rpm controls, hacking, etc., can also have a com-
pelling effect on the validity of installations. Since
most complex systems span multiple volumes, when a
package is located on one volume and a dependent
package is located on a different volume, both vol-
umes must be mounted or the dependent package may
not work. This type of dependency is difficult to prop-
erly diagnose.

Global Analysis
The problem with the above descriptions of fail-

ure modes is that they are all module-centric. They
can explain what’s happening when one module is
installed, but do not depict potentially subtle multi-
module interactions. We applied the global analysis
techniques of sowhat [4] to this problem and found
potential and subtle failures in adding RPMs to the
standard distributions. While the configuration lan-
guage for RPM files allows expression of ‘‘backward’’
dependencies between referrer and required resource,
‘‘forward’’ dependencies between a new resource and
an old program that uses it can lead to systems whose
function has not been properly tested.

Our Experiments

We undertook several experiments to understand
the scope of the problem of validation drift. Our first
task was to identify the scope of inhomogeneity within
RPM packages. We obtained several package distribu-
tions (for the i386 architecture) using the sites red-
hat.com and rpmfind.net. We then wrote several custom
scripts to analyze their contents and pinpoint potential
validation problems.

Inhomogeneities
Because of the computational difficulty of read-

ing large distributions, we broke our analysis into sev-
eral short scripts, each of which provides input to the

next. Our first Perl script tree reads all RPM files in an
RPM distribution and outputs all dependency and
checksum information from the distribution as a text
file. This data is then read by a second script, munch,
which computes a list of files that are inhomoge-
neously provided by more than one package, as indi-
cated by differing MD5 signatures for the exact same
file path. We then went over these inhomogeneities
using a filtering script punch to eliminate conflicts
based upon hardware differences (i386 vs. i686)
where needed. This was done based upon the naming
conventions for RPM files.

Results of this process differed greatly depending
upon where we tried to do it. RedHat 7.2 (i386)
exposed no conflicts whatsoever. RedHat 6.2 (i386)
exposed 14 conflicts, of which one was a difference
between a software bundle and an individual package;
three were due to packages that are mutually exclusive,
e.g., mail delivery agents; six were due to multiple ver-
sions of the same software, and the remaining four were
due to unforeseen and simple packaging mistakes. Each
‘‘ c o n f l i c t ’’ is a system file that has multiple versions
listed in the RPM repository, where there may be up to
five versions available for a single conflict.

But it should be no surprise that as a result of
performing this process on the contrib directory, we
found 3499 inhomogeneities distributed as in Table 4.
The majority of the problems were due to the presence
of multiple versions of the same software, sometimes
with recognizable naming patterns, sometimes not.

Errors Kind of Error
3095 differing versions of the same software.
238 file version conflicts in apache modules.
80 software packages are mutually exclu-

sive by design.
52 software bundle disagrees with individ-

ual tool package.
25 inconsistent versions in overlapping

software bundles.
9 other conflict

Table 4: Inhomogeneities found in contrib directory
of rpmfind.net.

Apache contributed modules were a source of
great chaos; conflicts encompassed everything from
HTML and GIFs to dynamic libraries as described in
Table 5. One big surprise is that a single apache add-
on, php, was responsible for 125 of the 238 file ver-
sion conflicts for apache modules. Most of this was
due to replacing – for no reason apparent to us – much
of the HTML documentation for apache itself inside
apache_php3-1.3b6-1.i386.rpm. This is a classic case of
‘‘repository poisoning;’’ one RPM creates inconsisten-
cies that affect several others.

Another much more potentially serious problem
is that there were 36 dynamic libraries with multiple

160 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Hart & D’Amelia An Analysis of RPM Validation Drift

versions, as listed in Table 6. These are the libraries
loaded by Apache httpd itself. This was due to the
contents of only five modules as described in Table 7.
Each of these modules contained copies of between 32
and 36 dynamic libraries.

Conflicts Kind of Conflict
113 HTML documentation (.html)
36 dynamic libraries (.so)
32 manual pages (.1-.8)
30 header files (.h)
10 executables
4 configuration files
3 other

Table 5: Kinds of file conflicts in Apache.

The remainder of the inhomogeneities were due
to several kinds of problems. Several packages were
mutually exclusive by design, e.g., mail delivery
agents or service daemons for the same service. 52
times, a software bundle disagreed with the package
containing an individual tool added to the bundle. 25
files were inconsistent among two or more different
software bundles. nine conflicts were simply unfore-
seen couplings between files and modules, e.g.,
expect-5.31.2-2.rh6.1.i386.rpm surprisingly instantiates
/usr/bin/rftp along with socks-4.3.beta2-2.i386.rpm.

Binary Differences
At a more detailed level, while executables and

libraries that are exact binary copies of others are func-
tionally identical, executables and libraries that exhibit
binary differences may or may not be interchangeable.
Binary differences are evidence that there may be a
functional difference, but this functional difference may
or may not exist when the programs are executed.

Binary differences between files can also occur
for completely gratuitous reasons. One can use two
different compilers to compile the same .c file to get
two object files that are different in binary but identi-
cal in text and function. As indicated by the above
analysis, validation of code is not invariant of choice
of compiler.

Our goal was to look at the grouping of RPMs
available to us and determine which executables and
libraries showing binary differences were possibly
problematic and not caused by gratuitous metadata.
The basic issue is whether two files that differ do so in
a way that changes the behavior of programs. The files
upon which we concentrated are all the Extensible
Link Format [8] files in a linux system, including exe-
cutables and dynamic libraries (.so).

We compared two different versions of the same
file through a C program (provided by our advisor
Alva Couch) that compares the binary contents of the
text, data, and bss segments of an ELF [8] file. If two
ELF files – executables, libraries, etc. – do not differ
in text, data, and bss segments, then they are

functionally equivalent, even if they differ in other
metadata such as date, compiler version, etc.

Versions Dynamic Library
5 /usr/lib/apache/mod_access.so
5 /usr/lib/apache/mod_actions.so
5 /usr/lib/apache/mod_alias.so
5 /usr/lib/apache/mod_asis.so
5 /usr/lib/apache/mod_auth.so
5 /usr/lib/apache/mod_auth_anon.so
5 /usr/lib/apache/mod_auth_db.so
5 /usr/lib/apache/mod_autoindex.so
5 /usr/lib/apache/mod_cern_meta.so
5 /usr/lib/apache/mod_cgi.so
5 /usr/lib/apache/mod_digest.so
5 /usr/lib/apache/mod_dir.so
5 /usr/lib/apache/mod_env.so
5 /usr/lib/apache/mod_example.so
5 /usr/lib/apache/mod_expires.so
5 /usr/lib/apache/mod_headers.so
5 /usr/lib/apache/mod_imap.so
5 /usr/lib/apache/mod_include.so
5 /usr/lib/apache/mod_info.so
5 /usr/lib/apache/mod_mime.so
5 /usr/lib/apache/mod_mime_magic.so
5 /usr/lib/apache/mod_mmap_static.so
5 /usr/lib/apache/mod_negotiation.so
5 /usr/lib/apache/mod_rewrite.so
5 /usr/lib/apache/mod_setenvif.so
5 /usr/lib/apache/mod_speling.so
5 /usr/lib/apache/mod_status.so
5 /usr/lib/apache/mod_userdir.so
5 /usr/lib/apache/mod_usertrack.so
4 /usr/lib/apache/libproxy.so
4 /usr/lib/apache/mod_log_agent.so
4 /usr/lib/apache/mod_log_config.so
4 /usr/lib/apache/mod_log_referer.so
4 /usr/lib/apache/mod_unique_id.so
3 /usr/lib/apache/mod_bandwidth.so
2 /usr/lib/apache/mod_vhost_alias.so

Table 6: Number of multiple versions of each Apache
dynamic library.

Lib’s RPM file
34 apache-fp-1.3.3-1.i386.rpm

apache-mod_ssl-fp2000-1.3.12.2.6.2-
0.6.0.i386.rpm

36

36 apache-php3perl-1.3.12-3nosyb.i386.rpm
32 apache-ssl-jserv-1.3.2-2.i386.rpm
35 apache_modperl-1.3.6-1.19-1.i386.rpm

Table 7: Apache RPMs asserting conflicting dynamic
libraries.

The result of this analysis was that of the 981
inhomogeneities in ELF format, only 13 of these
turned out to be functionally equivalent, and 10 of
these equivalences arose from two differing revisions

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 161

An Analysis of RPM Validation Drift Hart & D’Amelia

of the same package. The remaining three were
unusual; It turns out that the two RPMs:

• apache-mod_ssl-fp2000-1.3.12.2.6.2-0.6.0.i386.rpm
• apache-php3perl-1.3.12-3nosyb.i386.rpm

have exactly equivalent copies of mod_unique_id.so,
mod_log_referer.so, and mod_log_agent.so, for reasons
we do not understand.

In summary, lack of equivalence is the rule.
There were 968 inhomogeneities that were not able to
be proven as functionally equivalent because they dif-
fer in text, data, or bss segment.

Update Skew
We know that RedHat validates the core distribu-

tion and each update, and have verified that their core
RPMs are homogeneous in RedHat 7.2. But our analy-
ses of contributed RPMs show that it is easy to par-
tially update a system so that updated files are version-
skewed with respect to one another.

In several cases, notably involving contributed
versions of Apache, updates overlap in asserting new
contents for particular libraries. RPMs assure that back-
ward dependencies are satisfied (so that all libraries
used by executables in the update are updated), but fail
to update so that forward dependencies are satisfied.
Any other pre-existing program that happens to use the
same library is at risk of malfunctioning unless it is
updated or validated against the new library as well.

In analyzing global dependencies in the RedHat
distribution, updates, and contributed modules, we
have observed two main kinds of failure of validation.
Either an existing program is forced to use new
libraries with unpredictable results, or the contents of
a specific library depend upon installation order.

Case Study: Updating Apache
In Apache, the exact contents of a library depend

upon the sequence of RPM installations. It is consid-
ered good practice to encapsulate apache updates,
extensions, and modules into individual RPM packages,
where each package contains an Apache module and all
files that the module might potentially need [1,7]. This
means, however, that many files in the main Apache
package are duplicated among the update packages. If
duplicated files are identical across all packages, there
are few potential problems, but if they differ, we have
reason to suspect that system states are attainable that
have not been tested by anyone.

By a simple signature analysis, we found, e.g.,
that in the updates to RedHat 7.2, there are five differ-
ent versions of /usr/lib/apache/mod_autoindex.so con-
tained in five module RPMs:

• apache_modperl-1.3.6-1.19-1.i386.rpm
• apache-mod_ssl-fp2000-1.3.12.2.6.2-0.6.0.i386.rpm
• apache-ssl-jserv-1.3.2-2.i386.rpm
• apache-fp-1.3.3-1.i386.rpm
• apache-php3perl-1.3.12-3nosyb.i386.rpm

In principle, all copies of mod_autoindex.so should be
identical in function, but comparison of md5 signatures

shows that all these files differ in binary content. This
means that there are five different states for this file on
an updated system, depending upon which updated
module is installed last.

apache_modperl-1.3.6-1.19-
1.i386.rpm

apache-mod_ssl-fp2000-
1.3.12.2.6.2-0.6.0.i386.rpm

apache-ssl-jserv-1.3.2-
2.i386.rpm

apache-fp-1.3.3-1.i386.rpm

apache-php3perl-1.3.12-
3nosyb.i386.rpm

mod_autoindex.so

Order of
Installation

Figure 2: The unseen effects of updating apache: val-
idation rot.

Figure 2 shows one possible configuration that
could be used as an installation sequence for the five
apache RPMs described above. The arrows from each
RPM to mod_autoindex.so represent that RPMs instal-
lation of mod_autoindex.so. The problem here is that
each RPM file has its own version of mod_autoin-
dex.so. Thus, based on the order of installation and
user input (about replacing files), the RPM that is
installed last is the one that determines which version
of mod_autoindex.so will be the one used by all of the
packages once they are installed. This can cause the
user to fall into an untested state and ultimately lead to
a system failure.

Now in an ideal world, all that might differ in the
various copies of mod_autoindex.so is ‘‘circumstantial’’
and does not affect behavior, e.g., the time that the
source file was compiled. We actually think this is the
case here, but have no easy way to validate contents
against source code. This configuration situation rep-
resents a risk that one or more of these copies exhibits
different behavior than the others. To be sure that a
system works properly after updating, we need to
know that the version that we have has been validated
with the other modules that use this library.

Lessons Learned

Our preliminary analysis of the ‘‘contrib’’ branch
of the RedHat distribution indicates that there are

162 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Hart & D’Amelia An Analysis of RPM Validation Drift

roughly 324 potential library version skew conflicts,
without even considering supporting executables and
scripts. We believe that an even more detailed analysis
will expose many more skew conflicts. These conflicts
overshadow the dependency errors in RPM declara-
tions, which are statistically insignificant by compari-
son. While these types of errors may be statistically
insignificant, they can be annoying and can cause
major problems in some instances

Many administrators suffer from the illusion that
one can install and manage packages in a relatively
ad-hoc way at low cost. This illusion is shattered by
considering the implications and cost of testing of ad-
hoc configurations with the same rigor with which
core distributions are tested. Testing is very costly, we
consider it the vendors’ responsibility, and yet we put
our systems into states the vendor could not test and
validate. If we fail to test the system ourselves, then
the user of the system will inadvertently test it for us.

Using global analysis techniques, it is possible to
predict whether one is moving to an untested configu-
ration and to take corrective action so that one’s sys-
tem remains one that is widely used and tested. It is
possible to minimize divergences between one’s con-
figurations and those used by the broader community,
and to understand the cost of ad-hoc or divergent
administrative methods.

Changing Practices
So what can we do differently to avoid these

problems and assure that what we install will work
properly? The key seems to be a different attitude and
technique in creating and using RPMs. We can
demand homogeneity in RPMs contributed by out-
siders. We can analyze their dependencies and validate
this homogeneity to some extent. We can minimize the
effects of scripting by re-architecting RPMs and sys-
tems to have simpler script requirements, e.g., by cre-
ating directories rather than files, i.e., xinetd.conf rather
than inetd.conf.

Av o i d i n g gratuitous changes to validated baseline
distributions will help ease the problems as well. We
must look at changes more carefully before we make
them. Each change not only represents a modification
to our system but also pushes us farther from the base-
line system. By constantly updating and changing our
systems, we are moving farther and farther away from
the baseline and a system that we know is validated. By
viewing system changes as both updates and jumps
from the baseline, we must make more informed deci-
sions before we gratuitously install packages.

We can also avoid conflicts over dynamic
libraries by making crucial libraries specific to the
packages they serve. If a package needs a special
dynamic library, name it differently than the normal
one to avoid conflicts. This will help alleviate the
problem of a library getting updated from one package
when another package relies on the old version of it.

By coupling packages with the libraries that are cru-
cial to their proper functioning, we can remove a prob-
lem that is difficult to recognize prior to system fail-
ures. This strategy trades memory for robustness; one
must often make a library effectively unshared in
order to isolate it from interactions.

Avoiding update skews in large packages by
updating coupled executables and libraries simultane-
ously will continue to solve the problem of multiple
packages relying on a single library. When several
packages rely on an important library, an upgrade of
any one of them can create unpredictable behavior.
Even more problematic is the differing behavior we
observe depending on the order that packages are
updated. By coupling update packages together, these
problems will no longer have to be addressed.

But as system administrators, we need to be able
to deal with these issues now without waiting for
package development practices to change. We must
fully understand the problems that our unique systems
may face through global analysis. Understanding the
causes of potential problems and recognizing warning
signs when updating our systems will only help make
our machines and systems more stable. Even without
changing the way packages are developed, we can
help to protect ourselves from the headaches of valida-
tion drift by using proper practices. For example,
installation order of packages must be carefully
observed as it is up to the system administrator to
detect problematic conditions and assure the packages
are installed in the proper order.

Many of the practices mentioned above trade
space for validation. Nowadays, space in systems is
cheap, while validation is expensive. By changing the
practices we use in administering Linux systems, par-
ticularly with RPMs, we can save ourselves time and
effort. The cost of this is the added space that multiple
copies of libraries and packages may take up. But
when you weigh the benefits versus the drawbacks, it
is clear that a change in practices will help everyone.

Future Work

While the global analysis techniques upon which
we report are based upon the strategies in sowhat, we
have yet to integrate these into the tool proper. While
we have a good grasp of the problem, a truly practical
methodology seems to require this integration. We
expect to do this some time in the coming year.

Further, we intend to look at the arbitrary script
actions performed by RPMs before and after installa-
tion. These scripts can cause numerous things in a sys-
tem to change; things that the user probably does not
know are being changed. By looking at these scripts and
comparing them against one another, we will be able to
get an even better handle on exactly what an RPM is
doing when updating a system in a baseline state.

But this work is just the tip of the iceberg.
Homogeneity of packages is necessary, but not

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 163

An Analysis of RPM Validation Drift Hart & D’Amelia

sufficient. A truly practical strategy would account for
all dependencies; not just those one can discover with
ldd, but also dependencies that can only be discovered
by tracing library references. We and Yizhan Sun are
also working on wrapping library calls to trace per-
haps non-conventional use of dynamic libraries (using
dlopen), and even tracing – at a fine grain – actual file
use in a live system. These measures will give us a
better idea of the true dependencies in a running sys-
tem that can be violated by poor practice.

Open Questions and Controversies

This work also brings up some rather important
open questions for study by the whole community of
RPM users. These are not questions that we feel that
we can address ourselves with the technology we
have. We leave them to other researchers.

One of the most heated controversies in current
systems management is whether binary equivalence is
necessary for behavioral equivalence of programs,
libraries, or systems [10, 11]. It seems that the com-
munity is strongly divided into factions of ‘‘theorists’’
and ‘‘practitioners.’’ Some ‘‘practitioners’’ believe
that only identical binary files are guaranteed to
behave identically (our premise) and that differing
compilers, for example, cannot be trusted to compile
the same source code with identical behavioral results.
Some ‘‘theorists’’ believe, however, that ‘‘we should
be able to write compilers that perfect’’ and that the
source code should be the real measure of equiva-
lence. Some extremists also argue that even differing
source code can be proved behaviorally equivalent by
compiler optimization techniques. We take the very
conservative position that ‘‘only practical techniques
can be applied now’’ and thus believe binary equiva-
lence the only currently practical measure of behav-
ioral equivalence. Only time will tell whether the other
ideas of equivalence will be practical.

Another open question concerns the general
nature of dependency. So far, we can only describe
dependencies in a very coarse way, by saying which
files should be present or which packages should be
installed. Dependency, in general, is a much more
complex thing. It creates limits on the contents of files
as well as their presence and location. How far can we
go with describing dependencies before the cure (of
discovering and declaring dependencies) is worse than
the disease (of dependency failure)?

Conclusions

We have shown that problems in RedHat installa-
tions are not always caused by problems with depen-
dencies between packages, but instead (and perhaps
more commonly) by overlaps between packages.
Dependencies declared inside a typical collection of
RPMs are surprisingly accurate. But overlaps between
package files seem to be a plague upon both closed and
open repositories containing reusable binary RPMs.

In casually installing RPMs in a Linux system, it
is easily possible to put the system into a state that no
one has validated or tested. While for a ‘‘home com-
puter ’’ the risk of down time is fairly low, in an enter-
prise management strategy, such ad-hoc system
updates should be avoided in favor of staying near
configurations that have been extensively tested and
‘‘burned in’’ by the community. We show that devia-
tions from tested states can sometimes be detected
before an RPM is installed by global analysis of all
RPMs available. We also suggest that RPMs be con-
structed so that any combination, in any order, always
results in a validated system state. This is easy to
accomplish by isolating dependencies and avoiding
inhomogeneous overlaps, but seemingly only the
major distributions have managed to do this properly.

Acknowledgements

Our advisor Alva Couch helped us with the
scripts, resources, and writing involved in completing
this paper. We would also like to recognize the ongoing
and much appreciated efforts of RedHat, RpmFind, and
other organizations dedicated to making software pack-
age installation more efficient, predictable, and robust.
We do not intend anything in this article as a criticism
of their noble efforts. In this paper we have shown how
hard their job really is.

Author Biographies

Jeffrey D’Amelia is a graduate student at Tufts
University working towards his Masters degree which
will be completed in the Spring of 2003. Beginning in
January 2002, Jeff was awarded a fellowship in the
NSF GK-12 program. Through this program, he works
at a junior high school in Malden, MA with the goal of
infusing computer science problem solving approaches
into the K-12 math curriculum. He has also worked at
the college level as both an undergraduate and graduate
teaching assistant for several different courses. Jeff
can be reached via U. S. Mail at Tufts University,
Department of Computer Science, Halligan Hall, 161
College Ave., Medford, MA 02155 or electronically at
jdamelia@eecs.tufts.edu

John Hart is a graduate student at Tufts Univer-
sity working towards his Masters degree which will be
completed in the Spring of 2003. He received his
Bachelor of Engineering degree from Tufts University
in Computer Engineering and has worked as under-
graduate and graduate teaching assistant. John can be
reached via U. S. Mail at Tufts University, Department
of Computer Science, Halligan Hall, 161 College
Ave., Medford, MA 02155 or electronically at
jhart@eecs.tufts.edu

References

[1] Bailey, Ed, ‘‘Maximum RPM,’’ SAMS, Inc., 1997.
[2] Bodnar, Ladislav, ‘‘Is RPM Doomed?’’, http://

www.distrowatch.com/article-rpm.php .

164 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Hart & D’Amelia An Analysis of RPM Validation Drift

[3] Brooks, Fredrick, ‘‘The Mythical Man-Month,’’
Addison-Wesley, Inc, 1995.

[4] Couch, Alva and Yizhan Sun, ‘‘Global Analysis
of Dynamic Library Dependencies,’’ Proceed-
ings LISA 2001, San Diego, CA, 2001.

[5] Couch, Alva, ‘‘The Maelstrom: Network Service
Debugging via ‘Ineffective Procedures’,’’ Pro-
ceedings LISA 2001, San Diego, CA, 2001.

[6] Couch, Alva, ‘‘SLINK: Effective Abstractions
for Community-Based Administration,’’ Pro-
ceedings LISA 96, San Diego, CA, 1996.

[7] Hess, Joey, ‘‘A comparison of the deb, rpm, tgz,
slp, and pkg package formats,’’ http://www.kitenet.
net/˜joey/pkg-comp/ .

[8] Levine, John, ‘‘Linkers and Loaders,’’ First Edi-
tion, Morgan Kaufmann Publishers, 1999.

[9] Pressman, Roger, ‘‘Software Engineering: A Prac-
titioners’ Approach,’’ Fifth Edition, McGraw-Hill,
Inc, 2001.

[10] Traugott, Steve and Joel Huddleston, ‘‘Boot-
strapping an Infrastructure,’’ Proceedings LISA
XII, USENIX Association, 1998.

[11] Traugott, Steve, and Lance Brown, ‘‘Why Order
Matters: Turing Equivalence in Automated Sys-
tems Administration,’’ Proceedings LISA XVI,
USENIX Association, 2002.

[12] Watkins, John, ‘‘Testing IT: an Off-The-Shelf
Software Testing Process,’’ Cambridge Univer-
sity Press, 2001.

[13] ‘‘Debian GNU/Linux,’’ http://www.debian.org .
[14] The Linux Standard Base, ‘‘The Linux Standard

Base Project,’’ http://www.linuxbase.org .
[15] The Slackware Linux Project, http://www.slackware.

com .

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 165

166 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

