
USENIX Association

Proceedings of
LISA 2002:

16th Systems Administration
Conference

Philadelphia, Pennsylvania, USA
November 3–8, 2002

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Spam Blocking with a Dynamically
Updated Firewall Ruleset

Pp. 13-20 of the Proceedings of LISA ’02: Sixteenth Systems Administration Conference
(Berkeley, CA: USENIX Association, 2002).

Deeann M. M. Mikula, Chris Tracy, and Mike Holling – Telerama Public Access Internet

ABSTRACT

In this paper, we detail our methods for controlling spam at a small ISP, reducing both
resource usage and customer complaints. We will discuss our initial unsuccessful tactics, and the
resulting development of our unique spam blocking system. Deny-Spammers classifies hosts as
probable spammers and inserts those hosts into a dynamically updated firewall ruleset on our mail
server, thereby effectively blocking the host from making an SMTP connection to our mail server.
Our analysis demonstrates that this has been effective in reducing the amount of spam that our
customers receive, and the burden on our limited resources.

Introduction

Are you aggravated by spammers launching
what are effectively Denial of Service Attacks against
your mail server? We were, and after several attempts
at using some established spam-control techniques, we
recognized the need to create our own novel approach,
which we affectionally call ‘‘Deny-Spammers.’’

With the abundance of spam on the Internet
today, nearly every ISP finds themselves forced to par-
ticipate in some kind of spam1 blocking.

Jon Postel wrote in RFC 706 [1], ‘‘there is no
mechanism for the [email] Host to selectively refuse
messages. This means that a Host which desires to
receive some particular messages must read all mes-
sages addressed to it. Such a Host could be sent many
messages by a malfunctioning Host. This would con-
stitute a denial of service to the normal users of this
Host. Both the local users and the network communi-
cation could suffer.’’

While this scenario is common enough today, it
was a shocking thought in 1975 when Postel authored
RFC 706. Then, the Internet was still a place of co-
operation where users operated with the ‘‘greater good
of the net’’ in mind. Today’s mail servers operate
under an almost constant threat of Spam Denial of
Service attacks.

In an article in The New York Times from June 27,
2002, Jennifer Lee writes, ‘‘Brightmail, which maintains
a network of In boxes to attract spam, now records
140,000 spam attacks a day, each potentially involving
thousands of messages, if not millions.’’ [2] A similarly
bleak report from Hotmail states that 80% of its almost
two billion processed email messages are spam [3].

Of particular interest to us as an ISP is the reac-
tion of the customer base to spam in their inbox. A
1‘‘Spam’’ is the term commonly used to refer to mass-

emailed, unsolicited commercial email (also known as
UCE), sent by a person or organization usually referred to as
a ‘‘spammer.’’

report by Gartner Consulting states that 53% of its
respondents place the blame for spam on their ISP.
They found that UCE (Unsolicited Commercial
Email) ranks fourth in reasons for customer churn [4].

For these reasons, having a spam control policy
is no longer an option for an ISP, no matter what its
size. Hotmail subscribes to MAPS (Mail Abuse Pre-
vention System) RBL (Realtime Blackhole List) [5].
Both AOL and Earthlink advertise their spam filtering
as a benefit to their services.

Telerama is a small ISP, established in Pitts-
burgh, PA in 1991. Our mail system consists of a sin-
gle server for both incoming and outgoing mail. It
uses a 1 GHz Athlon processor and has 640 MB of
RAM, running FreeBSD 2.2.8-STABLE. Our mail
transport agent is qmail-1.03 [6]. In addition to the
stock qmail distribution, we are using the qmail-uce
checklocal patch [7] to reject mail for non-existent
mailboxes.

This server handles all incoming and outgoing
mail for approximately 7,000 accounts, including well
over 600 hosted virtual domains, and their associated
addresses. The server typically delivers between
50,000 and 70,000 incoming e-mail messages to local
users in a 24-hour period. Attempted deliveries,
including messages to non-existent mailboxes, varies
between 100,000 to 140,000 messages in the same
time period. We approximate that 50% of the
attempted deliveries are blocked by the qmail-uce
checklocal patch alone.

From the user’s perspective, spammers cause a
general slowing down of our entire mail system. At
times, a single spammer would open hundreds of simul-
taneous SMTP connections to our mail server, dumping
thousands of messages into our mail queue. This causes
delays in message delivery lasting from minutes to
hours. A user sending mail through our system could
wait up to 30 seconds before a 220 response [8] code is
returned by the SMTP server. As most spam is gener-
ated during business hours, the mail queue would

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 13

Spam Blocking with a Dynamically Updated Firewall Ruleset Mikula, Tracy, & Holling

shrink back to manageable sizes in the evening. The
next day, the problem repeats itself. When the snappy
performance we are used to diminishes, our users start
to complain about the sluggish performance. We
wanted to be able to identify spammers and simultane-
ously block them in order to prevent degradation of the
performance of the mail server.

What We Tried First

Two alternate approaches we attempted before
developing Deny-Spammers were:

• using qmail-uce’s checklocal patch to deny
mail for non-existent mailboxes

• using ucspi-tcp’s rblsmtpd [9] in conjunction
with several RBL sources

First, we attempted to implement the qmail-uce
checklocal patch alone. This patch makes qmail reject
mail for non-existent mailboxes. qmail, by default,
accepts mail for non-existent addresses. It determines
later whether or not the user exists.

Unfortunately, this did not prevent spammers
from getting connected to the mail server and getting
messages into the mail queue. Many spammers make
several parallel SMTP connections, so it was not
uncommon to see 50 or more SMTP connections from
a single IP address. Although the checklocal patch
prevented messages to non-existent addresses from
entering our mail queue, spammers essentially created
a Denial of Service to the users of our mail server.

We immediately realized that the qmail-uce
checklocal patch would not solve our problem on its
own. Our next approach involved using rblsmtpd,
which is part of the ucspi-tcp [10] package that
includes tcpserver [11]. rblsmtpd attempts to block
mail from RBL-listed sites by querying one or more
RBL sources. rblsmtpd works with any smtpd server
that runs under tcpserver. It can be configured to
respond with a permanent (553) failure error message
or a temporary (451) failure error message.

We attempted to implement rblsmtpd in several
ways. First, we configured rblsmtpd to run continu-
ously and deliver a temporary (451) error to RBL-
listed sites. This prompted many customer complaints
regarding legitimate mail not getting through. Next,
we set up rblsmtpd to deliver a permanent (553) error
to those RBL-listed sites. Again, this caused many of
our customers to complain about mail bouncing.

Our last attempt involved running rblsmtpd only
during times when we were being heavily spammed.
Because it was configured to deliver a temporary error
to RBL-listed sites, it was effectively useless. Spam
would just queue up on the originating server until we
turned off rblsmtpd. At that point, it was obvious that
we needed something other than rblsmtpd. rblsmtpd
did not help us solve the problem of our mail server
getting pummeled by spammers’ SMTP connections,
and it brought on many complaints.

Some other alternatives to rblsmtpd include utili-
ties such as Sieve [12] or SpamAssassin [13]. Unfortu-
nately, these utilities must process each message indi-
vidually. This results in a significant increase in the
overall system resources required by the mail system.
Compounded with the fact that spammers were
already utilizing all of our server’s resources, these
utilities were not an option. Another option was to buy
faster hardware or multiple servers. We opted for a
homegrown software solution before investing in
more hardware.

Design Goals

Each site is going to have its own unique prob-
lems when implementing an ‘‘out of the box’’ spam
filter. In order to effectively implement a spam filtra-
tion system, a site needs to address these questions:

• What has not worked for us in the past?
• Do we have enough resources to allow client-

side filtering options?
• Do we have the time and expertise to create our

own spam blocking solutions?
• Would it be more effective to purchase faster

and better hardware than to script a custom
solution?

• How transparent does the spam blocking need
to be to the user base?

• Are we concerned with bandwidth consumed
by spam attacks?

After addressing the questions above, and ruling
out failed approaches, we realized that we needed to
refine our goals for a spam filtering system, and would
probably need to engineer our own software-based
solution based on those design goals.

Our requirements were:
• The method must conserve system resources.
• The method must reduce the amount of band-

width consumed by spam attacks.
• The method must not add much additional

overhead to mail processing.
• The method must prevent spamming sites from

getting mail into the mail queue.
• The method must be manageable in a way that

allows us to exempt certain hosts or networks.
• The method must keep our customers happy by

minimizing the number of false positives.
• The method must be as transparent as possible

to end users.

Our number one concern was to implement a
solution which solved our problem without increasing
the load on our mail server, as we did not desire a
hardware upgrade at the time we were developing
Deny-Spammers. This limitation ruled out utilizing a
processor intensive spam control system, such as Spa-
mAssassin or Sieve.

In addition to the headaches of a major mail
migration, simply throwing hardware at the spam

14 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Mikula, Tracy, & Holling Spam Blocking with a Dynamically Updated Firewall Ruleset

attacks would only be a short term solution. There has
been, and will likely continue to be, a practically expo-
nential growth in the amount of spam on the Internet. In
a matter of months, our new hardware could be over-
whelmed by additional and more creative spam attacks.

A hardware solution also fails to rein in the prob-
lem of bandwidth consumption by spam attacks. We
simply wanted to reduce the ability of spammers to
consume our resources (such as bandwidth and CPU
utilization) conserving them for legitimate mail.

We choose to use frequency of attempts to deliver
email messages to non-existent mailboxes as our heuris-
tic. We later felt validated in choosing this metric
because it was proposed by Jon Postel in RFC 706,
which states, ‘‘A Host might make use of such a facility
by measuring, per source, the number of undesired mes-
sages per unit time, if the measure exceeds a threshold,
then the Host could issue the ‘refuse message from Host
X message . . .’ ’’ Other metrics, such as number of con-
current SMTP connections could be used to qualify the
sending SMTP server as a spammer.

Once identified as a spammer, a method is
needed to block future delivery attempts from that
host to our mail server. We chose the most efficient
method, which is to do the filtering at the IP level, in
order to put the load of the filtration process on the
operating system’s kernel, rather than at the applica-
tion level. Filtering at the application level, such as is
done by SpamAssassin and Sieve, for example, would
not prevent a spam Denial of Service attack.

Implementation/Solution

Deny-Spammers is a daemon that interfaces to
the mail transfer agent and the firewall ruleset control
program. It uses a strategy based upon patterns that
spammers produce, including attempts to send to non-
existent addresses, to dynamically update the server’s
ingress rules. This approach moves blocking spam
away from the delivery agent to the mail server’s ker-
nel, thus conserving system resources.

We chose to implement our filtration tool in Perl
to increase the speed of development. This allowed us
to have a working prototype within a few days of our
idea’s inception. Although the Perl implementation
works well in production for our system, larger sites
may want to consider using a more efficient develop-
ment language. This becomes even more of a neces-
sity as more heuristic tests are introduced.

We needed a solution that would work with the
software that we were already using. Therefore, the
current revision of Deny-Spammers is specifically
designed for use on FreeBSD systems running qmail.

Presently, Deny-Spammers has two major pre-
requisites:

• any version of FreeBSD with IP firewall sup-
port installed in the kernel

• a patched version of qmail that includes the
qmail-uce checklocal patch to reject mail for
nonexistent addresses

Deny-Spammers interacts with the kernel’s fire-
wall by using FreeBSD’s ipfw [14] program to ban and
un-ban hosts. ipfw provides the user-level control of
the firewall ruleset. Using Deny-Spammers with
another operating system’s firewall application would
require additions to the code. Support for iptables,
ipchains, packetfilter or IP Filter would all be simple
to add. Modifying the system calls that Deny-Spam-
mers makes would suffice to add support for any of
these packet filters.

The types of patterns produced by spammers
determines how Deny-Spammers interfaces to the
mail transfer agent. In our case, spammers are
detected by multiple sends to nonexistent addresses. In
order to detect delivery attempts to nonexistent
addresses in qmail, the qmail-uce checklocal patch
was required. This patch provides a modification for
qmail’s SMTP daemon, qmail-smtpd, and logs details
about each attempted delivery to a nonexistent mail-
box, including the IP address of the host which
attempted this delivery.

Although Deny-Spammers is currently depen-
dent on the qmail-uce checklocal patch, it could be
adapted to function with other MTAs. The exact
implementation, would depend on the MTA itself.
Sendmail, for example, defaults to logging delivery
attempts to nonexistent addresses.

Deny-Spammers is intended to be executed at
boot time and to run continuously. Many parameters
can be fine-tuned from within the script. More infor-
mation about these can be found in the code itself and
in the implementation details that follow. To obtain the
source code for Deny-Spammers, see the availability
section near the end of this paper.

Because the checklocal patch logs all attempted
deliveries to nonexistent addresses, Deny-Spammers
monitors the system’s mail log for messages emitted by
the patch. These messages are parsed for the IP address
of the host that attempted to make such a delivery. By
defining thresholds of how many of these messages can
be seen in a given time period, Deny-Spammers selec-
tively prohibits hosts from making any more SMTP
connections for a given ‘‘ban time’’ period.

To produce this behavior, three hash structures
are used to track the state of the spam filtering system.
One is used to track the times that hosts sent undeliv-
erable messages, another for banned spammers, and
another for the exception list.

The %spammer hash is a hash of lists. The keys
of the hash are host IP addresses. The values of the
hash are lists for each host which contains a list of
timestamps. These timestamps represent times in
which a host sent mail to a nonexistent address.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 15

Spam Blocking with a Dynamically Updated Firewall Ruleset Mikula, Tracy, & Holling

The %banned hash is a plain hash. The keys of
the hash are the host’s IP address. The values of the
hash are scalars containing the timestamp in which
that host was banned.

The %noban_list hash is a 4-level hash which
contains the IP address exception list. This hash is
organized such that the first level represents the first
set of octets, the second level represents the second set
of octets, and so on. The keys of this hash represent
octets, with asterisks interpreted as wildcards. The val-
ues of the hash are ‘1’ if a host or network is on the
exception list.

While (true) {

Match incoming lines against a regular expression for
undeliverable messages to nonexistent addresses and parse
timestamp and IP address.

Skip line if host is in the exception list.

Trim the timestamp list for this host to $MAX_SPAMMER_ENTRIES.

Add the timestamp to the host’s list contained in the spammer
hash.

Check how many delivery attempts to nonexistent address this host
has made in the sampling interval, $SPAM_TIMESPAN.

If nondeliverable messages > $SPAM_TRIGGER then filter this IP.

If current time >= $next_refresh then
calculate next refresh,
reload the exception list and prune the banned hosts list
(un-ban hosts who have been banned for $BAN_TIME)

}

Listing 1: Pseudocode for infinite loop.

Jan 1 00:00:00 mailhost smtpd: 1234567890.123456 12345: DENYMAIL:
RCPT_TO:_Filter.NoUser:_ relay unknown [123.123.123.123] FROM
<bounce@your-info.net> ADDR <abcdefgh@telerama.com>

Listing 2: Typical nonexistent-user message.

The exception list is populated with the contents
of the exception list file specified when the program
starts. It is a flat ASCII text file containing one IP or
network per line. An example exception list is pro-
vided with the distribution. The list is periodically re-
read by the script and any necessary firewall changes
happen automatically.

There are a number of variables in the beginning
of the script that may need to be adjusted based on the
application. The most important parameters are the
number of non-deliverable message attempts during a
time span that occur and the time span itself. Ten
attempts during a five-minute period has worked for us.
The ban time, or length of time a host stays banned, is
also adjustable. Lower ban times will typically keep the
size of the firewall ruleset reasonably small.

Other variables include the path to the exception
list, log files, ipfw and the regular expression used to
match incoming timestamps and IP addresses from the
mail log input. With the qmail-uce checklocal patch,
nonexistent user messages should appear in the sys-
tem’s mail log as shown in Listing 2.

Periodically the program will prune the banned
list, unbanning hosts which have been banned for the
length of time specified by the administrator or hosts
which have been added to the exception list since the
last refresh. The refresh time is also configurable.

An end rule is also defined. If this rule number is
ever reached, Deny-Spammers will clear the existing
ruleset and start over. This feature is useful if a server
can only handle a certain number of rules efficiently.

The pseudocode in Listing 1 shows the infinite
loop which occurs right after initialization. It is where
virtually all of the processing occurs in Deny-Spam-
mers. Incoming IP addresses from the mail log lines are
matched against a regular expression and are parsed.
The IP address and timestamps are stored for each
nonexistent user message. Every time a line is received
and tracked, the program decides if the IP should be
banned based on the given parameters in the code.

We have been using the same algorithm since
Deny-Spammers was put into production. Only minor
changes to the parameters and bug fixes have been
required to produce the results we desired. For exam-
ple, we keep the firewall ruleset small by using a rela-
tively short ban time of three days, as opposed to, say,
two weeks.

We have only implemented one spam signature
pattern so far. Other metrics could be developed and
implemented in a similar manner as described above. In
most settings, each test would have to be carefully cho-
sen, designed, and assessed for minimal negative
impact to the users. Different tests are likely to intrinsi-
cally block more legitimate mail than other tests. If
multiple signatures were available, sites may also want
to pick and choose depending on the needs of their

16 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Mikula, Tracy, & Holling Spam Blocking with a Dynamically Updated Firewall Ruleset

users. Fine-tuning the tests may also be required, again
depending on their needs, to achieve the desired results.

Figure 1: Attempt deliveries to non-existent mailboxes and number of firewall rules.

In Production

Figure 1 shows the number of attempted deliver-
ies to non-existent mailboxes and the number of fire-
wall rules over a four-day period. The first two days
shows Deny-Spammers running. For graphing purposes
we intentionally reset it three times. The last two days
show what happens when Deny-Spammers is disabled.

A five minute sampling interval was used for
both the number of firewall rules as well as the num-
ber of undeliverable mail attempts.

The graph starts with one firewall rule on April
25th. At this point Deny-Spammers was initialized. At
this point, the firewall rules begin to increase. As the
firewall rules approach 1,000, the delivery attempts
average around 100-200 attempts every five minutes.

When the firewall is reset, the firewall rules go
back to one, and the delivery attempts begin to
increase. As the delivery attempts decrease, the firewall

ruleset starts increasing at a slower rate. Notice that the
firewall rules increase very quickly when the number of
delivery attempts counts is high and the firewall has
just been reset.

Shortly after midnight on April 27th, the firewall
is at 1 for the third time. The delivery attempts increased
dramatically when Deny-Spammers was disabled for
about six hours.

Deny-Spammers was restarted where the firewall
rules start to increase again (on the morning of April
27th). A similar pattern occurs, the delivery attempts
decrease as the firewall rules increase.

In the last two days of the graph, Deny-Spam-
mers was completely disabled. The delivery attempts
average more than twice that of when the spam filtra-
tion system was enabled.

Limitations

Despite its usefulness, Deny-Spammers has
some limitations.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 17

Spam Blocking with a Dynamically Updated Firewall Ruleset Mikula, Tracy, & Holling

• The exemption list only supports individual
hosts and/or classful networks. CIDR notation
is not supported.

• Deny-Spammers is currently only compatible
with FreeBSD machines running qmail.

• Another known issue with the software is that
qmail-smtpd processes will hang for a while if a
host is banned while they have an active connec-
tion. This is mostly a problem when the script is
first started as the initial surge of banning causes
a large number of such hung processes.

• Scalability is limited in some cases. The kernel
firewall code itself may not be able to effi-
ciently process thousands of rules, which is a
common scenario. We have determined that
older revisions of FreeBSD, for example, are
subject to this problem. With older versions,
firewall rules were stored in a linked list.
Newer revisions use a tree structure, making
the handling of large rulesets much more effi-
cient. Using an inefficient data structure ulti-
mately caps the maximum number of rules that
a server can handle efficiently.

• Spammers could exploit the qmail-uce checklocal
patch to find valid addresses. qmail, by default,
doesn’t allow a sender to know whether or not an
address is valid. If this was a major concern, the
checklocal patch could be modified so that it only
logs the attempts, instead of logging and bounc-
ing the message. In this case, spammers wouldn’t
be able to verify addresses, and Deny-Spammers
would still operate correctly.

These limitations have not prevented Deny-
Spammers from being a very useful tool. Customers
are not receiving as much spam and it effectively deals
with Denial of Service instances caused by spam. Cus-
tomer complaints have been minimal compared to our
other approaches. When a false positive is detected by
a user and brought to our attention, simply adding the
correct host or network to the exception list should be
all that is required to resolve the issue.

Future Plans

Deny-Spammers was developed as a quick and
dirty hack to solve a pressing problem that we had. As
such, it works very well for us, on our platform, and
for our staff, who understand its limitations.

Now that it has been in production for over a year,
and providing the results we desire, we can see many
areas in which to expand its functionality to make it
attractive and usable for the general community. Some
obvious improvements planned are addressing Deny-
Spammer ’s current lack of scalability and interoperabil-
ity, and adding a GUI interface to allow non-administra-
tors to access its log files and exception list.

• Scalability issues. Implement Deny-Spammers
for a mail server farm or a single server with
many more users.

• Add the ability to use a separate firewall. Cur-
rently, the firewall must be located on the same
machine that is processing mail. A separate fire-
wall could be updated remotely via an ssh tun-
nel. This feature could also be useful when scal-
ing this application to a mail server farm, so that
one firewall could be responsible for a group of
mail servers. Given a secure communication
mechanism to update the firewall rules, such an
improvement should be straightforward.

• Integration with third-party applications such as
SpamAssassin or Anomy Sanitizer. Allow
results from SpamAssassin/Anomy to deter-
mine whether or not a host gets banned.

• Improve statistical generation for research pur-
poses. Create historical averages of number of
hosted blocked over long periods of time. Look
for interesting patterns, such as whether spam
comes in bursts and when it most frequently
occurs.

• Develop a better interface for unbanning hosts
and managing the exception list. Add CIDR
notation support for the exception list.

• Interoperability with other operating systems.
This is simply a matter of adapting the firewall
system calls to work with various firewall
implementations (ipchains, iptables, IP Filter,
packetfilter).

• Interoperability with other mail transfer agents
(sendmail, postfix, et cetera). Because each pro-
gram works slightly differently, interfacing each
spam signature pattern could be a tedious process.

• Develop more ‘‘spam signatures.’’ A few other
patterns we’ve considered using as criteria are:
1. The number of concurrent SMTP connec-

tions made by a host – experience has
shown that spammers are capable of mak-
ing many parallel SMTP connections to
the same mail server.

2. The number of recipients a message is sent
to – Spammers often send messages with
extremely large RCPT TO lists.

• A point system for hosts could be introduced,
such that multiple spam signature patterns are
taken into account for each host (similar to the
‘hits’ mechanism used by SpamAssassin).

Availability

Deny-Spammers is freely available source code
and documentation can be found at http://deny-spam-
mers.telerama.com. Deny-Spammers is written in Perl
5 and developed in and tested under FreeBSD. It con-
tains no dependencies on non-standard modules or
libraries. Specific questions regarding Deny-Spam-
mers can be sent to denyspam@telerama.com.

Conclusions

This paper describes a stateful inspection strat-
egy for dynamically creating firewall rules that block

18 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Mikula, Tracy, & Holling Spam Blocking with a Dynamically Updated Firewall Ruleset

access from mail hosts based upon their recent behav-
ior. If the sending mail host is determined to be a
spammer (based on our criteria) a daemon updates the
firewall ruleset for our mail server.

Proving the success of our strategy is difficult due
to the impossibility of measuring the lack of an event
(lack of delivery of spam messages). Many alternative
approaches were too resource-intensive for us to imple-
ment. We found that other spam filters that were accept-
able for us resource-wise (such as MAPS-RBL) created
large and obvious negative customer feedback. We have
not had that backlash upon implementing Deny-Spam-
mers. We feel that we have fewer customer complaints
about receiving spam, but we don’t have enough data to
support that point empirically.

What our data does show is that we are banning
thousands of misbehaving mail hosts based on our
metrics. We believe all of these hosts to be likely
spammers.

Authors

All of the authors have worked at Telerama Inter-
net (http://www.telerama.com) for the past several
years.

Deeann M. M. Mikula is the Director of Opera-
tions and Junior Unix System Administrator at Tel-
erama Internet, and is co-founder of the local SAGE
Chapter in Pittsburgh. She has worked as a Behavioral
Neuroscience Researcher, a Coffeehouse Manager and
a Visual Artist. When not in front of a keyboard, she
can be found drinking scotch at a Gothic club or paint-
ing and drawing. Deeann can be reached via email at
deeann@telerama.com .

Chris Tracy is Telerama Internet’s Senior Net-
work and Systems Engineer and a SCinet Volunteer.
He holds a Bachelor’s Degree in Computer Engineer-
ing from the University of Pittsburgh. When not in
front of a keyboard, Chris can be found drinking beer,
DJ’ing or playing drums. Chris can be reached via
email at chris@telerama.com .

Mike Holling is a part-time Network Engineer
with Telerama Internet. He holds Bachelor’s Degrees in
Computer Science and Electrical Engineering from
Carnegie-Mellon University. When not snow boarding,
skate boarding or drinking beer, Mike can be found
working as a Network Consultant in Whitefish, Mon-
tana. Mike can be reached at myke@telerama.com .

Acknowledgments

We are grateful to many people for their contri-
butions to this project and this paper. We would like to
thank Doug Luce, owner and CEO of Telerama, for
fostering a workplace where we are encouraged to try
novel approaches to problems. We thank our fellow
staff at Telerama for putting up with the real-time
tweaking of our production mail server.

Especially valuable in producing this paper was
peer review and support. We would like to thank

Esther Filderman and Josh Simon for encouraging us
to publish our work, and for support along the way.
The advice of our shepherd, John Sellens, and the
comments of our anonymous reviewers, were invalu-
able in shaping our final paper.

References

[1] Postel, Jon, ‘‘RFC 706: On the Junk Mail Prob-
lem,’’ November 1975. Network Working
Group. 10 April 2002, http://www.faqs.org/rfcs/
rfc706.html .

[2] Lee, Jennifer B., ‘‘Spam: An Escalating Attack
of the Clones,’’ New York Times, June 27, 2002.

[3] Gomes, Lee, ‘‘How Hotmail Keeps Its Email
Empire From Spam’s Clutches,’’ Wall Street
Journal, July 8, 2002.

[4] Gartner Consulting, ‘‘ISPs and Spam: The
Impact of Spam on Customer Retention and
Acquisition,’’ June 14, 1999.

[5] ‘‘Mail Abuse Prevention System LLC,’’ http://
mail-abuse.org/rbl .

[6] Bernstein, Dan, ‘‘qmail home page,’’
http://www.qmail.org .

[7] Varshavchik, Sam, ‘‘MAIL 1.01 unified Anti-
UCE/Mailbombing patch,’’ http://portofhoodsport.
org/qmail/misc/uce.html .

[8] Postel, Jonathan B, ‘‘RFC 821: Simple Mail
Transfer Protocol,’’ August 1982. Information
Sciences Institute: University of Southern Cali-
fornia, 20 April 2002, http://www.ietf.org/rfc/
rfc0821.txt .

[9] Bernstein, Dan, ‘‘The rblsmtpd program,’’ http://
cr.yp.to/ucspi-tcp/rblsmtpd.html .

[10] Bernstein, Dan, ‘‘ucspi-tcp home page,’’ http://
cr.yp.to/ucspi-tcp.html .

[11] Bernstein, Dan, ‘‘The tcpserver program,’’ http://
cr.yp.to/ucspi-tcp/tcpserver.html .

[12] Showalter, T., ‘‘Sieve: A Mail Filtering Lan-
guage,’’ January 2001. Network Working Group,
14 April 2002, http://www.ietf.org/rfc/rfc3028.txt .

[13] Hughes, Craig R., ‘‘SpamAssassin home page,’’
http://www.spamassassin.org .

[14] Ugen J. S. Antsilevich, Poul-Henning Kamp,
Alex Nash, Archie Cobbs, and Luigi Rizzo,
‘‘Manual page for ipfw – IP firewall and traffic
shaper control program,’’ http://www.freebsd.
org/cgi/man.cgi?query=ipfw .

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 19

20 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

