
USENIX Association

Proceedings of
LISA 2002:

16th Systems Administration
Conference

Philadelphia, Pennsylvania, USA
November 3–8, 2002

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A New Architecture for
Managing Enterprise Log Data

Pp. 121-132 of the Proceedings of LISA ’02: Sixteenth Systems Administration Conference
(Berkeley, CA: USENIX Association, 2002).

Adam Sah – Addamark Technologies, Inc.

ABSTRACT

Server systems invariably write detailed activity logs whose value is widespread, whether
measuring marketing campaigns, detecting operational trends or catching fraud or intrusion.
Unfortunately, production volumes overwhelm the capacity and manageability of traditional data
management systems, such as relational databases. Just loading 1,000,000 records is a big deal
today, to say nothing of the billions of records often seen in high-end network security, network
operations and web applications. Since the magnitude of the problem is scaling with increases in
CPU and networking speeds, it doesn’t help to wait for faster systems to catch up.

This paper discusses the issues involving large-scale log management, and describes a new
type of data management platform called a Log Management System, which is specifically
designed to cost effectively compress, manage and analyze log records in their original,
unsummarized form. To quote Tom Lehrer, ‘‘I have a modest example here’’ – in this case
commercial software that can store and process logs in parallel across a cluster of Linux-based
PCs using a combination of SQL and perl. The paper concludes with some lessons we learned in
building the system.

What Is a Log and Why There Is a Problem

Logs are append-only, timestamped records rep-
resenting some event that occurred in some computer
or network device. Once upon a time, logs were used
by programmers and system administrators to figure
out ‘‘what’s going on’’ inside systems, and weren’t of
much value to business people. That’s all changed
with the rise of internet-based communication, online
shopping, online exchanges, and legal requirements to
archive traffic and to protect privacy (a.k.a. avoid get-
ting hacked). Unfortunately, tools to manage log data
haven’t kept up with the rise in traffic, and people
have reverted to building custom tools. This paper
describes a general-purpose solution.

As a motivating example, one company we’ll call
ABC Corp. was using a content delivery network
(CDN) to ‘‘accelerate’’ (cache) the results of image
requests from their image repository, which stored over
1,000,000 images. Unfortunately, CDNs are expensive
and actually slow down the delivery performance for
images that aren’t frequently accessed. In ABC’s appli-
cation, the access patterns to the images were tied to
promotions and other unpredictable criteria. To optimize
their use of the CDN, they implemented a log manage-
ment system (LMS) to capture traffic to the image
repository and dynamically choose whether to use the
CDN based on the frequency of access. In addition to
accelerating their content, the system saved ABC
$10,000 per month in network bandwidth costs.

Broadly, companies like KeyNote, NetRatings
(AC Nielsen), DoubleClick, VeriSign, Google and
Inktomi provide various hosted internet services, and
need to report on their usage (for marketing),

performance (for engineering and 24x7 operations)
and conformance to service level agreements (SLAs,
also for operations). Network security applications are
drowning in log data, coming from system logs,
routers, firewalls and intrusion detection systems
(IDSs).

There are many reasons that traditional data
management solutions cannot effectively manage log
data, but the first one that users typically experience is
in the sheer volume of log data. For example, here are
some online applications and the volumes they gener-
ate:

• Loudcloud: over seven GB per day of security-
related syslogs

• iPIX: over 20 GB per day for hosting photos on
eBay.

• topica: over 60 GB per day logging email traf-
fic.

• TerraLycos: 75 GB per day of weblogs from 12
major web portals.

• shockwave.com: over 24 GB per day of logs
about people watching online films and playing
online games.

• DoubleClick: over 200 GB/day of records
about people seeing online ads.
This paper describes a Log Management System

(LMS) which allows network admins to get their arms
around their logs without breaking their backs. The
author envisions never writing another one-off custom
log analyzer, like he had to do for Inktomi (hotbot),
bamboo.com (virtual tours) and Internet Pictures
(eBay Picture Services).

Previous Solutions and Unresolved Problems

Until recently, most companies discarded opera-
tional logs, storing only logs of their financial

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 121

A New Architecture for Managing Enterprise Log Data Sah

transactions. Unfortunately, many companies no
longer have this option: you can’t figure out why
online shoppers are abandoning their shopping carts
before completing their purchases unless you look at
the page views that didn’t lead to sales.

One solution people attempt is to sample the data,
then run reports against the samples. Similarly, people
sometimes run aggregating summaries first, then report
against the summaries. Both sampling and summaries
suffer from the following issues. First, you have to plan
everything in advance – you can’t decide later what
queries you want, since you’ve discarded the original
data. Buggy sampling/summarization code results in
corrupted results forever, another flavor of the
‘‘ c h a n g e d your mind’’ problem. Secondly, sampling is
dangerous: if you don’t sample across the correct
dimension, you get the wrong answer, which can lead to
bad business decisions. Lastly, a sample can’t tell you
whether a something didn’t occur. For example, sam-
ples and summaries are not useful for security applica-
tions or when logs are stored for regulatory reasons.

Another solution is to build an LMS using off-
the-shelf components, such as relational databases.
Unfortunately, you still have to deal with parsing
problems, sequence/session analysis and providing
tools for non-experts to use, so the LMS author isn’t
stuck writing every query. All of these solutions also
need to scale up, i.e., they need to parallelize and sup-
port paging to disk when running low on RAM. For
example, parallel sequence analysis is notoriously
tricky. Relational databases solve some of these scal-
ing issues, to a point. Unfortunately, even the fastest
databases can’t load records as fast as enterprise appli-
cations generate them, much less provide the head-
room to reload data in case something goes wrong in a
load. When it comes time to run queries, they depend
on ‘‘indexes’’ (e.g., B-trees) which accelerate some
queries and not others, resulting in ‘‘cliffs’’ where per-
formance suddenly degrades for no apparent reason.
For example, a regular expression search in a database
cannot take advantage of an index. Finally, databases
are outrageously expensive, both in hardware, soft-
ware and people to customize and tune them.

What Does It Mean to Solve the Problem?

Logs are generated, parsed then indexed and
compressed – this then allows them to be queried and
stored, respectively. As all sysadmins know, manage-
ment tasks are critical, including reorganizing logs
(e.g., for performance) and retiring them when no
longer useful. See Figure 1 for a picture.

It is worth noting that it is usually impractical to
keep logs ‘‘at the edge of the network,’’ i.e., where
they were generated. First, enterprises often require
centralized reports, which becomes difficult when logs
are separated by slow, unreliable networks and fire-
walls – or when the log-generating machines lack the

storage or CPU power to effectively answer complex
queries. Finally, managing widely distributed systems
can be a nightmare, due to heterogeneity of hardware,
operating systems, tools, access, etc.

PARSE INDEX COMPRESS

STOREREPORT

MANAGE RETIRE

Farms of log-generating computers,
each sending its logs to an LMS

local or wide-area network

Figure 1: Workflow of log production and analysis.

It is also worth noting that scalability affects
everything you do with logs: not only are excellent
compressing and indexing basic requirements, but also
parallel execution. Intuitively, if you have 5,000 devices
generating logs, you probably need more than one collect-
ing the results. Practically speaking, the mainframe-
class system capable of keeping up with a large appli-
cation’s traffic costs a ridiculous amount of money.

The Vision

My vision is for a single piece of software to
replace the five-minute perl hacks with solid infrastruc-
ture for handling log data. In doing so, it is key to cre-
ate a community which shares scripts to parse various
log formats, create various reports, etc. Ideally, there
would be a dedicated group of software engineers with
the time and talent to invest in features like parallel data
management tools, concurrency control so you can load
and query data at the same time and connectors to
front-end tools like MRTG and CrystalReports.

So we built one. It’s in use at places like topica,
where they track over one billion emails a month.
Running the LMS, five PCs running RedHat 7.1 are
able to load more than 20,000 records per second (rps)
of weblogs (200-600 bytes/record, depending on the
site), then query them at rates of over 250,000 rps.
We’ve handled qmail logs, apache and IIS weblogs,
syslogs of various kinds, tuxedo logs and numerous
custom logs. Yes, the LMS is a commercial package –
it cost us several million dollars to build it.

Design Decisions for a Scalable LMS

Architecturally, the Addamark LMS looks like a
webserver, only it listens for requests to a reserved URI
(/cgi-app/xmlrpc/execute). If the request contains XML,
the server parses the request (including data, e.g., for
loading) and returns results, errors and/or progress indi-
cators. Behind the scenes, when you connect to a

122 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Sah A New Architecture for Managing Enterprise Log Data

server, it parses up your request, and farms it out across
the cluster. Each host then parses its piece, matches
table and column names against directories and files in
its local filesystem (or its NFS-mounted partitions), and
processes its chunk of the request.

Tree of Data

leaf subtree
(leaf directory containing one
"segment" of compressed data)

one compressed
file per column,
with multiple
records, ordered
by timestamp

older timestamps recent timestamps

ts.gz
url.gz

respsize.gz
...

Figure 2: Sample database file tree.

 Networking
Data Management,
Indexing, Storage

our Web
applications

command-
line apps

XMLRPC/HTTP

XMLRPC/HTTP

XM
LR

PC

another node
in the cluster

 SQL Engine

Perl interpreter

Addamark
Perl code

bzip

thttpd

Test harness
and test
cases

 Common library
 code

 LINUX

disk disk

RAM chips

3rd Party
Perl Libs

gzip

X
M

LR
P

C

di
re

ct
 c

al
ls

Figure 3: LMS software architecture diagram.

There is a single config file listing the members
of each cluster (cluster.xml) and a single config file
describing the local config options for the given host
(athttpd.conf). The local config file, for example,
describes the paths to the data, port to listen on, etc.
The LMS starts up using an /etc/init.d script. Finally,
like apache, you can have multiple LMS installations
per machine, and as long as they have separate paths,
they can run concurrently. In fact, we even conspired
to make the lockfiles compatible and the data file
(backward) compatible, so two installations can share

the same datastore directories, thereby allowing
‘‘rolling upgrades,’’ which is critical for 24x7 opera-
tions, and also critical for avoiding the nightmare of
reloading terabytes of data that were loaded over the
course of months or years. The diagram in Figure 2
shows what a datastore file-tree might look like. Fig-
ure 3 depicts an architecture diagram for the LMS
software. As you can see, we tried to avoid reinvent-
ing the wheel – even the parallel SQL engine started
out as Postgres. As you can see, the network protocol
is XML over HTTP, which makes it quite easy to build
new clients, including test harnesses.

Loading

Requirements. An LMS should handle any type
of logs, not just ‘‘standard’’ ones. Partly, this is

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 123

A New Architecture for Managing Enterprise Log Data Sah

because the apps which most need an LMS are exactly
the type who are likely to have large volumes of logs
and to customize their log formats to save time or
space – or to add special fields they find useful. In our
experience, logs tend to exhibit these parsing issues:

• Quoting and escapification. Since logs are usu-
ally text data separated by some character, you
need some way to handle the case when the
separator character is present in a given field.

• Binary data and internationalization. These
days, every data management tool needs to con-
sider these issues.

some example records (for compatibility, we also support hash-comments)
199.166.228.8 - - [29/Jan/2002:23:44:37 -0800] "GET / HTTP/1.0" 200 7121
"check_http/1.32.2.6 (netsaint-plugins 1.2.9-4)" 0
212.35.97.195 - - [29/Jan/2002:23:45:06 -0800] "GET
/images/lms_overview_page1.gif HTTP/1.1" 200 17252
http://paulboutin.weblogger.com/2002/01/28" "Mozilla/4.0
(compatible; MSIE 6.0; Windows NT 5.0; Q312461)" 1
62.243.230.170 - - [19/Feb/2002:17:29:43 -0800] "POST /cgi-bin/form.pl

HTTP/1.1" 302 5 "http://addamark.com/product/requestform.html"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)" 1
vvvvvv this is the regexp used to parse up the records vvvvvvvvv
ˆ. \[. . .\] "." "..." "..." ...$
ClientIP:VARCHAR,unused1:VARCHAR,unused2:VARCHAR,tsStr:VARCHAR,
Method:VARCHAR, Url:VARCHAR, HttpVers:VARCHAR, RespCode:INT32,
RespSize:INT32, Referrer:VARCHAR, UserAgent:VARCHAR, RespTime:VARCHAR

--
-- ˆˆˆˆˆˆˆˆˆ these are the assigned "parse field" names and datatypes ˆˆˆˆˆˆ
--
-- this is the SQL statement used to transform the parse fields
-- vvvvvvvvv (from the "stdin" table) into the final table records vvvvvv
--
SELECT _strptime(tsStr, "%d/%b/%Y:%H:%M:%S %Z") as ts,

ClientIP,
_rev_dns(ClientIP) as ClientDNS, -- perform a reverse DNS lookup
Method,
Url,
HttpVers,
RespCode,
RespSize,
Referrer,
UserAgent,
_int32(RespTime) as RespTime, -- can also parse strings as numbers here,

FROM stdin;

Display 1: Example PTL script for loading an NCSA weblog.

• ID fields and reverse DNS. Logs will often con-
tain fields whose meaning can only be dis-
cerned by looking the value up in some other
database. An extreme example are IP address
fields, where you might want to query on the
DNS name they represent. This reverse DNS
operation can be very expensive, especially
when IP addresses fail to resolve.

• Va r i a n t and XML records, name=value pairs.
Logs with variant records have different ‘‘for-
mats’’ on each line, usually determined by some
field in first N fields. This is typically found in
custom application logs, rather than logs from
commercial devices. However, XML log records
are becoming more popular. Sometimes, a field

will contain name=value pairs, e.g., the GET
method arguments in a weblog’s URL field.

• Third party algorithms. It is sometimes the case
that you need (or want) to reuse some third
party code to help parse a log record. For exam-
ple, if one of the fields is encrypted, you almost
certainly want to use a third party library for
decrypting it.

• Rejected record handling. It is an unfortunate
reality that log data almost always contains some
number of bogus records that fail to parse. It is
therefore helpful to have good support for han-
dling rejected records when debugging parsing
scripts. Likewise, in cases when ‘‘every byte
counts’’ (e.g., legal disputes), you will want to
ensure that rejected records aren’t lost.

• Excluding and double-loading columns. Some-
times, users will want to discard a column
(heresy!), e.g., to save space. Assuming you
have excellent data compression, this will be
less common than the case when a user will
want to ‘‘double-load’’ a column for faster
query performance, e.g., load both an IP
address as well as its DNS name.

Design Decisions. For performance, we parse
logs in parallel across the cluster, using a regular

124 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Sah A New Architecture for Managing Enterprise Log Data

expression designed to match single-line records. To
handle multi-line records, we pre-process the data
before loading, to force records onto one (virtual) line.
To provide the flexibility needed, we provide a declar-
ative language based on SQL. Roughly, a load ‘‘state-
ment’’ is a SELECT from a table whose columns are
the parse fields, and whose output is used to load the
data. To transform a field (e.g., using builtin or third-
party functions) simply place a SQL expression in the
SELECT statement (the SQL ‘‘targets,’’ as they’re
called); to exclude a column, just don’t mention it in
the SELECT statement; to double-load a column,
mention it twice. For an example, see below (‘‘Load
Script Language’’).

In addition, we’ve extended our SQL to support
functions written in Perl, which you can submit with
any SQL statement, either at load- or query-time. In
this way, you can write custom parsers and use third
party libraries (e.g., perl5 modules) to parse the data.
Using the new Inline Perl module (http://inline.perl.
org/), you can even dynamically load code written in
other languages, including C, C++, Java, Ruby, Python,
etc. In practice, our users have used the Perl interface in
ways we never expected. As an example, one user
implemented functions to parse User-Agent tags and
look for worms. In this way, he could exclude traffic
that wasn’t related to real users, including worms like
NIMDA and robot-agents like the google crawler.

Both the regular expression match, SQL state-
ment and any embedded Perl code are all run in paral-
lel across the cluster. In practice, we’ve seen near-lin-
ear scaleups because parsing is CPU-intensive once
you include all of the ‘‘business rules’’ of real world
parsing.

The Addamark parse-transform-and-load ‘‘lan-
guage’’ (PTL) uses a perl5 regular expression to per-
form the basic parse, while reusing the SQL and perl
engines to perform the transformation. Display 1 shows
an example PTL script for loading an NCSA weblog.

Again, it is important to note that the entire PTL
script is executed in parallel across the cluster. Thus,
even if you embed complex Perl functions or a multi-
tude of complex regular expressions, you’ll still be
able to parse tens of thousands of records per second.
For example, one customer has a PTL script which
calls a home-brewed parse_useragent function on
every record as it comes in, rather than doing this
analysis on every query – although this improves
query performance, the real value is in having the
table pre-populated with the various browser attributes
up-front, which makes query-writing easier.

Putting it together, Figure 4 shows the architec-
ture diagram showing how the LMS loads data; each
box represents a thread of control and set of vertically-
aligned boxes represents one host. In this example, the
cluster is of size three. Typically, a loading client
sends the log data to one of the hosts in the cluster,
which we call the ‘‘master.’’ Any host can play

‘‘master ’’ for any load request; the job of the master is
to break up the datastream into records, and to farm
those records out to machines in the cluster.

Master
Service

Parsing
Service

Parsing
Service

Parsing
Service

Storage
Service

Storage
Service

Storage
Service

XMLRPC over HTTP
(with binary data extensions)

XMLRPC over HTTP
(with binary data extensions)

Local Disk
(plain file
system,

not raw disk)

Network
Attached
Storage

Storage
Area

Network

Figure 4: How LMS loads data.

Parsing and storage then happen in parallel, and
finally, the records are merged into the existing sets of
records on the given storage medium. As suggested by
the diagram, the Addamark LMS can store its log data
on either local disk, network attached storage (NAS,
e.g., NFS), or on a storage area network (SAN, e.g.,
FiberChannel).

It’s not shown in the diagram, but since the
client-server and server-server are identical, it’s
straightforward to have client tools load directly into
LMS datastore nodes, bypassing the need for a master
(and the scalability bottleneck it creates), at the cost of
greater configuration complexity.

Storage and Data Management

Requirements. An LMS should automatically
handle all indexing, compression, storage, layout and
so on – ideally in such a way that queries are then fast
to run.

• Indexing, compression, storage and data
management. Ideally, compression should be
as good as GZIP, since managed storage is
expensive. Compression ratios should be rea-
sonably stable, as should indexing quality –
basic queries should return in the same amount
of time regardless of the log data being loaded.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 125

A New Architecture for Managing Enterprise Log Data Sah

• data administration tools for giant tables.
Although the requirements are rather special-
ized, an LMS shares many requirements with
databases – you need to control concurrent
access, support incremental backup, restore and
replication, deal with corrupted datastores,
retire data and manage the evolution of the data
definition (e.g., add/rename/remove columns).

• Timestamp support. Every log record has a
timestamp. Unfortunately, it’s rarely the case
that log data is all in one format (i.e., need
functions for parsing them), in GMT (i.e., need
flexible timezone support) or synchronized
across multiple sources (i.e., need clock sync
routines). Some log data contains sub-second
resolution, so it’s important to handle this.

• System admin. If you can make the LMS ‘‘not
a server,’’ then it’s a big win because system
admin gets easier because it doesn’t have to
stay up 24x7. Unfortunately, this is probably
not realistic because it leaves too much of the
work for users.
The next best design is to make the LMS into a
set of CGI scripts, hostable inside a webserver,
thereby reusing the 24x7 and monitoring sup-
port found in the webserver. Example issues
include the ability to list/kill/pause/slow LMS
operations such as loads or queries, install/
uninstall/configure/reconfigure the LMS.
It is a terrible idea to use threads or custom
servers for the LMS, because you then need
new tools to manage it and you’ll have separate
security issues, etc.

• Security. Access control, authentication and
security are paramount issues in any data man-
agement system.

Design Decisions
• Indexing, compression, storage and data

management. We chose gzip and bzip to per-
form compression for us, first parsing the data
to get the best possible compression ratio. We
also employ several tricks that leverage our
knowledge of particular types of logs, for
example encoding timestamps as delta-offsets
from one another, rather than as distinct values.
The net result is a compression that almost
always beats gzip by a wide margin, sometimes
as much as 2x better.
We chose to store the log data as sets of plain
files in the filesystem, one per column. Specifi-
cally, the files are laid out as a hierarchical set
of directories, broken out by time. For concur-
rency control, we use lockfiles stored on local
disk (e.g., /var/. . .) because locking over NFS
can be flaky, and we figured that some users
may want to store their log data on network
disks.
We ’ r e careful about touching files, allowing
administrators to perform incremental replication,

backup and restore using tools like rsync(1) and
find(1). For more information, see ‘‘Data Admin-
istration’’ below.

• Clustering and fault tolerance. Because the use
of multiple computers inherently increases the
chances that one system will fail, we included
automatic failover. It works by mirroring every
record across two hosts in the cluster – each host
has a ‘‘sibling’’ for the data it stores.
When a computer fails, the hosts that are trying
to contact it automatically failover to the sib-
ling, e.g., for running queries. This causes a
50% performance degradation during failures,
but 100% performance availability in their
absence (unlike RAID).
Since perfectly even distribution is not
required, when a host fails, loads simply route
around both a host and its sibling. Since our
clusters typically start at five hosts, this leaves
plenty of horsepower even during failures.

• Timestamp support. We support TIMES-
TAMP as a native datatype, represented as a
64-bit integer value of microseconds since the
epoch – Jan 1, 1970. The SQL engine has the C
library functions strptime() and strftime() built
in for parsing and printing TIMESTAMPs,
respectively.
Timezone support is offered in all timestamp-
related functions, and the SQL engine supports
changing its default timezone using the clause
‘‘WITH TIMEZONE . . .’’ To synchronize
clocks, load requests from the log-generating
devices can include their local clocktime, and
the engine will automatically compute the dif-
ference and apply it to the log data.
Internally, we store all data in GMT, which is
simpler, but which requires users to set the time-
zone when printing timestamps using ‘‘WITH
TIMEZONE’’ or in each formatting call.

• System admin. We chose to represent LMS
operations as sets of Linux processes, allowing
users to use linux tools (e.g., ps(1)) on them.
These processes are launched from an off-the-
shelf webserver (currently thttpd). In addition
to being able to control jobs with per-machine
utilities, such as nice(1), we also offer XML-
RPC calls to control sets-of-processes across
the cluster. We included scripts to perform
cluster-wide install/uninstall/reconfigure.

• Concurrency control. The Addamark LMS
provides a timerange-based concurrency con-
trol scheme that enables concurrent updates and
queries. For example, retiring data does not
block queries or new data loads. Also, two data
loads will interleave in such a way as to block
neither one, a critical requirement because
loads can take a long time, causing timeouts in
upstream processes. Unlike generalized
database transactions, loads do not perform

126 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Sah A New Architecture for Managing Enterprise Log Data

reads in between updates, so this interleaving
doesn’t cause integrity loss.

• Low-level tools. Not that this would ever hap-
pen, but in practice files can become corrupted
through software bugs, disk drive problems, etc.
One customer told us a horror story about losing
a person-week trying to recover data from a cor-
rupted Microsoft SQL Server database.
To reduce this pain, the LMS includes low-
level tools to manage the data (e.g., read the
files) that does not depend on the LMS being
up, and which are resilient to corruption. Like-
wise, the Addamark LMS includes low-level
tools for managing files that are replicated
across a cluster, with cluster-wide diff (‘‘cld-
iff’’), synchronization (‘‘clsync’’), run-a-com-
mand (‘‘clssh’’), and so on.
These tools are read the same cluster.xml con-
fig file, so membership changes affect both the
LMS server and the lower-level utilities. How-
ever, for obvious reasons, the utilities can over-
ride the membership list.

• Retirement and data evolution. When the defi-
nition of a log changes, e.g., new columns, you
need to be able change the definition in the LMS.
So-called ‘‘schema evolution’’ can be handled
with standard SQL statements such as ALTER
TA B L E ADD/DROP/RENAME COLUMN.
Retiring data works using DELETE FROM,
which allows you to define WHERE and DUR-
ING clauses to control what data gets deleted.
By the time you read this, we’ll have imple-
mented a policy manager which provides a nice
front-end to handle the most common cases.
Also, since the goal of retirement is to save disk
space, and since summaries are a tiny fraction of
the size of the original data, we’re adding facili-
ties (e.g., INSERT INTO SELECT FROM) to
retire-to-a-summary and utilities to implement
the most common policies.
In a clustered system, retiring to offline media can
either be done per-system, or unified. The former
takes advantage of the file-based storage, while
the latter reuses the query mechanism, which
already unifies data from across the cluster.

• Security. At one level, LMS security is simple:
we support SSL access to the cluster. You can
also use IP blocking, firewalls and/or VPNs to
restrict access to selected clients. In reality, LMS
authentication and access control is a complex
topic, easily filling a paper all by itself. Simulta-
neously, this is an area of active development for
us, so any information would be obsolete. Look
for future reports on the subject.

Querying and Reporting

Requirements. From a high-enough level, query-
ing an LMS is a lot like querying a database. In prac-
tice, the workload looks quite different, and the LMS

should be optimized accordingly. First, for some appli-
cations, it is important to be able to quickly retrieve
the original records – whitespace and all – for exam-
ple, for legal use. More commonly, users want to get
summaries and histograms, such as traffic per unit-
time. More sophisticated queries include lookups (e.g.,
resolve ID fields into live data sources, rather than
during loading) and sequencing/sessionizing queries
(e.g., recreate web user sessions, or match activity to a
given router as an ‘‘attack’’). In practice, real world
use quickly demands custom filters (SQL WHERE
clauses), custom counters (SQL aggregates, such as a
new type of ‘‘SUM’’) and data sources outside the
LMS (virtual/computed tables).

Reporting is the ‘‘higher level’’ functionality
around querying, including metadata queries (‘‘what
data is available?’’), query caching, presentation/for-
matting (e.g., Microsoft Excel, HTML, XML, etc.)
and connectivity (e.g., ODBC, JDBC, DBI/DBD,
etc.).

Parallel queries use a similar scheme to loading,
but in reverse. Specifically, the SQL DURING and
WHERE clauses get executed as part of the filtering
service, then the results routed across the cluster to the
‘‘compute’’ services such that every group (i.e.,
GROUP BY expression) lands on the same host. To
support parallel GROUP BY and SLICE BY, the
groups are distributed randomly across the cluster.
HAVING, which filters groups, is also implemented at
the compute layer. Finally, ORDER BY and TOP-n
are implemented at the compute layer, and merged
together at the master to form the final result. The
above description is the general case for simple aggre-
gation queries – fancier cases like JOINs, subqueries,
UNIONs, etc. are possible as well, but beyond the
scope of this paper, as are the numerous optimizations
that we’ve implemented.

Design Decisions. For querying, we chose to
offer a simplified flavor of SQL, make sure it runs in
parallel, then use the Perl extension mechanism to
handle the custom needs of log applications. To handle
sequences/sessions, we extended GROUP BY with
SLICE BY, which ‘‘slices’’ a group into multiple
groups based on a user-defined predicate. To handle
sessions, this predicate can be stateful, e.g., 10 min-
utes since we’ve seen activity for a given user. The
design of SLICE BY allows the LMS to ‘‘sessionize’’
traffic after it’s been loaded – allowing you to change
the business definition of a ‘‘session’’ after the fact –
and it allows the LMS to sessionize traffic in parallel,
a critical requirement (see Figure 5).

We offer ‘‘system’’ tables which contain lists of
tables, columns, etc. For caching, formatting and con-
nectivity, we provide a set of client-side tools and con-
nectors. In addition, we opted to use XMLRPC-over-
HTTP as our network protocol. This means that you
can submit queries to the LMS using curl, lynx or

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 127

A New Architecture for Managing Enterprise Log Data Sah

even a homebrew perl script – without some fancy
code library. In practice, partner companies have got-
ten new clients to work in under an hour, using noth-
ing but examples.

-- dash-dash starts a SQL comment, much like hash (#) in the shell
WITH TIMEZONE ’US/Pacific’
SELECT TOP 100 _timef("%c", ts), hostname, progname, processID, message
FROM syslog
DURING time(’Aug 08 04:00:00 2001’),time(’max’)

Display 2: SQL to return first 100 log records after midnight, Feb 1.

WITH TIMEZONE ’US/Pacific’
WITH $end AS _now()
WITH $start AS _timeadd($end, -1, "month")

SELECT _timef("%m/%d/%Y", ts) as ’date’
, COUNT(*) as ’hits’

FROM example_websrv
GROUP BY 1 -- rollup the hits by date (result column #1)
ORDER BY 1 -- then sort the results by date (result column #2)
DURING $start, $end

Display 3: Retrieve a histogram of daily web traffic for previous month.

We chose an extended flavor of SQL as the basis
for querying the LMS. Display 2 shows the SQL to
return the first 100 log records after midnight, Feb 1.

Master
Service

Compute
Service

Compute
Service

Compute
Service

Storage Storage Storage

Each computer
runs all 3 services

Master
Service

Master
Service

Figure 5: Database querying architecture.

The WITH clause sends various parameters to
the SQL engine; these can be overridden on the com-
mand-line. In this case, we’re telling the engine to pro-
duce results in California time, rather than its internal
time (GMT).

The SELECT clause tells the engine what
columns should appear in the results, and from which
table to get them. In this case, we want all of the fields
that appear in a (parsed) syslog.

The DURING clause is an Addamark extension
which tells the engine which timerange you’re inter-
ested in querying, so you don’t accidentally query the
whole table. In the rare case when you want to query
everything, you can specify ‘‘DURING ALL’’.

To execute this query, you’d run something like:
atquery lms.myco.com:8072 myquery.sql

atquery(1) is our command-line utility for sending your
SQL statement to the server, capturing the response
(data, errors and/or progress indicators) and pretty-
printing it to the screen, file, etc. In this example,
‘‘lms.myco.com’’ would be one of the systems in an
LMS cluster. You can even map the LMS hosts into a
‘‘virtual IP’’ behind a load-balancer, which then pro-
vides additional fault tolerance.

Here’s a more interesting example, retrieving a
histogram of website traffic by day for the previous
month.

The ‘‘WITH $foo’’ clauses define expression-
macros, which work like C preprocessor macros.
We’ve found macros to be lifesavers in practice, espe-
cially for clauses like DURING. Even better, the client
tools support ‘‘include’’ which includes other files’
worth of macros. This way, you can put the WITH
TIMEZONE in a central file, then have every query
affected by it. Finally, the tools also support overriding
the WITH definitions from the command-line, allow-
ing you to specify the $start and $end from the com-
mand-line, even though they were also given defaults
in the query file. Unlike PL/SQL and other ‘‘stored
procedure’’ languages, Addamark SQL uses Perl, i.e.,
an industry-standard language (Java and C++ coming
soon), and the perl code automatically runs in parallel
across the cluster of PCs. In practice, the CPUs on
modern PCs can execute Perl code amazingly fast,
resulting in terrific performance, even for complex
algorithms containing numerous regular expressions.

128 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Sah A New Architecture for Managing Enterprise Log Data

_now(), _timeadd() and _timef() are builtin
Addamark functions. We chose to prefix our builtins
with underscores to reserve the namespace for other
uses. _now() returns the timestamp when the query
was submitted to the LMS; _timeadd() is a builtin
function which knows how to add timestamps cor-
rectly, including accounting for the timezone. _timef()
is a function for formatting timestamps as ASCII
strings, a direct mapping of the C function strftime(3).

If you also want to return the aggregate band-
width per day, simply add a third result target –
SUM(respsize)/1024.0/1024.0 AS ‘‘MB sent.’’

Lastly, to demonstrate the power of embedded
Perl, Display 4 shows hot to compute the top 25 most
popular ‘‘pages’’ in the website. Only, let’s normalize
the webpages, so that URLs like / and /index.htm
don’t show up separately.

WITH TIMEZONE ’US/Pacific’
WITH $end AS _now()
WITH $start AS _timeadd($end, -1, "month")

-- this defines a new perl function, which can be called from SQL
WITH normalize_url AS ’perl5’ FUNCTION <<EOF
sub normalize_url {
my($url) = @_;

in this site, index.html pages are the same as trailing-slash pages
$url =˜ s@/index.s?html?$@/@;

other rules go here...

#
uncomment this to send debug messages back to the client tool
i.e., they’re collecting from each of the nodes in the cluster,
unified and streamed back over the client-connection as out-of-
band messages.
#
addamark::dbgPrint("hello, world");

return $url;
}
EOF

SELECT TOP 25 -- returns the first 25 records, assuming there’s an
-- ORDER BY to sort them.

_perl("normalize_url", url) as url
, COUNT(*) as ’hits’
, SUM(respsize)/1024.0/1024.0 as ’MB sent’

FROM example_websrv
WHERE respcode < 300 -- ignore HTTP redirects and errors
GROUP BY 1
ORDER BY 2 DESC -- this time, sort by the most-popular-first
DURING $start, $end

Display 4: Compute top 25 most popular ‘‘pages’’ in the website.

Lessons Learned

Here are some of the things we learned imple-
menting the LMS:

• PC clustering changes everything. Modern
networks are very fast and very cheap, and the
CPUs on modern PCs are also very fast, so
much that it almost always makes sense to trade
intra-cluster bandwidth and CPU performance

for other resources, such as RAM capacity or
disk I/O. For $70,000 in hardware, you can put
together a system with over 100 GHz of CPU,
with more switch bandwidth than the CPUs can
saturate, and with 72 terabytes in storage,
including a mirror copy.

• Ti m e s t a m p s are a pain. It is easy to underesti-
mate the hassles in dealing with timestamps. As a
simple example, the default routines for parsing
timezones didn’t recognize ‘‘PDT’’ (pacific day-
light time) even though it’s produced by the
date(1) utility. If you don’t solve issues like
this, users get annoyed with not being able to
cut and paste. Another example is the lack of a
‘‘%Z’’ in strptime() so you can capture the
timezone from logs which contain per-record
timezones. At the user-level, you’ll find logs
that are missing critical time fields, such as sys-
logs that don’t include the year and weblogs
lacking the timezone.

• Buffer the logs. Originally, we thought that
users would want a library for collecting logs –
but between syslog, weblogs, etc. users have
plenty of logs already, they just need a manage-
ment system for them! Typically, they ‘‘roll’’
the logs every T time, creating compressed files
on the log-generating device. So-called ‘‘real-

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 129

A New Architecture for Managing Enterprise Log Data Sah

time analytics’’ turned out to be a red herring:
99% of applications can live with 5-minute
response times because people are involved in
the chain, and they can’t react faster than this.
Five minutes is plenty to roll a log, compress it
and send it to a centralized LMS. Wide-area
collection remains a challenge especially across
firewalls – but this problem doesn’t seem to
have a silver bullet.

• Tag the data. The combination of data com-
pression and columnar storage makes ‘‘tags’’
essentially free in most cases (i.e., few unique
values). Tagging can be used to provide all
sorts of services, and solve all sorts of problems
(for example, see ‘‘guarantees’’ below).

• Guarantees. In theory, end-to-end atomicity
(‘‘once and only once’’) across an enterprise
requires ‘‘two phase commit.’’ In practice, ven-
dor heterogeneity and the complexity of auto-
mated recovery make this impractical. Instead,
we rely on store-and-forward (aka buffering) to
ensure against data loss. The downside is that
duplication becomes possible. Fortunately, the
same data-tagging system we use to allow users
to track data back to its source also allows the
LMS to detect and undo duplicate loads.

• Packaging matters. Packaging turned out to be
surprisingly important. Our decision to ‘‘make
the LMS look like apache’’ was a big win,
because it was instantly familiar to users and
because the config files were easy to explain.
Likewise, replicating all configuration across the
cluster made sense to people, while making the
LMS resilient to individual machine failures. The
biggest win of looking like a webserver, though,
was the choice of HTTP as the network protocol,
including a complete embedded webserver and a
copy of the docs. This meant that our network
protocol can be proxied, encrypted, tunneled, etc.
– all without special support.

The Future

The existence of a scalable LMS has changed
things, but much work remains. First, the combination
of fast loading, aggressive data compression and PC
disks has all but made log storage ‘‘free.’’ Early users
would worry about running out of disk – until they did
the math, and realized that even small clusters of PCs
could store Years of data. Five PCs alone could store a
month of traffic logs from all of Yahoo! This brings us
to the second lesson: although you can store years of
data online, and access to any (short) timerange is
quick, if you want to analyze the whole thing, it’s
going to be slow. Therefore, you want to scale the
LMS – more CPUs, RAM, etc. – according to the
‘‘working set size’’ rather than disk capacity. Thus, a
balanced system would have a tiny disk drive. But
extra disk capacity is cheap, so in practice users buy
far more than they need. In other words, storage
capacity just became free.

Demands from users have suggested our future
directions. First, as users build up larger and larger
recordsets, they are asking us to provide more and
more facilities for managing and reorganizing this data
over time. For example, as you grow a cluster, you’ll
want to buy the latest, fastest hardware, rather than the
same model as when you started. Thus, we’ve recently
added a way for the LMS to automatically detect per-
formance differences between machines in the cluster,
and load balance between them. Only, unlike with
webservers, load balancing parallel SQL requests is
quite complex, and is beyond the scope of this paper.

Second, users have started ‘‘faking out’’ the
LMS by replicating the files by hand among multiple
LMS clusters. While this works to some extent, we
can imagine many features that would facilitate dis-
tributed, poly-clusters, with (partially) replicated data.
Again, this is beyond the scope of this paper.

Thanks

This paper started as a talk at BayLISA April 18,
2002 – thanks to Heather Stern and Strata Rose
Chalup for making that happen, and to Marcus Ranum
and Rob Kolstad from the mother ship who helped get
this paper reviewed and published. Eric Karlson,
Nathan Watson, Cimarron Taylor are amazing engi-
neers – they wrote, tested and shipped the LMS v1.0
in a year and a half, when it usually takes 10-15 engi-
neers, and to Christina Noren, who actually made it
work in production. Andy Mutz, Steve Levin, Rich
Gaushell and Katy Ly (iPIX) contributed many design
ideas. Thanks to the folks at topica, TerraLycos,
AtomShockwave and other customers who waded
through early versions. Michael Stonebraker taught
me most of what I know about data management sys-
tems, and the NOW and Inktomi teams taught me
about streaming, pipelining and clustering. We got big
help from Mark Soloway, Dave Sharnoff, Sanford
Barr, Brent Chapman, Arthur Bohren, Jeff Loomans
and Dave Berger. Lastly, thanks to the angel investors
who helped pay the bills and keep our spirits up
through the dark days of 2001.

Software Availability

The Addamark LMS is a commercial software
package available today, with introductory pricing
starting around $75,000 for a complete package.
Addamark also offers professional services and sup-
port. For more information, please see our website at
http://www.addamark.com/.

Author Biography

Adam Sah is co-founder and CTO of Addamark
Technologies, which makes software to manage enter-
prise log data, a source of recurring nightmares for
him since 1995. Before Addamark, Adam held various
management, 24x7 ops and development roles at iPIX
(exclusive provider of eBay photohosting, market

130 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Sah A New Architecture for Managing Enterprise Log Data

leader in virtual tours of real estate), Cohera (dis-
tributed database systems, acquired by PeopleSoft)
Inktomi (search engines, proxy caches) and Ovid
(medical research databases, now a division of
Kluwer). Before joining Inktomi as its first employee,
Adam was a PhD student at UC Berkeley, where he
specialized in distributed databases and programming
languages, and invented a way to compile TCL as part
of his MS thesis, which Sun added to the language
core starting in v8.0. Reach him electronically at
asah@addamark.com .

References

Below are various papers ([LHMWY82], [G94],
[HD90]) representing some of the key parallel and dis-
tributed database technologies that are used for storing
data and processing queries. Also listed are some prac-
titioner reports on using log data that we bumped into
along the way ([HDM00], [TH99] and [GB98], [M00]
and [M99]). I’m sure there are many I’m neglecting to
mention.
[HDM00] A. Hume, S. Daniels, A. MacLellan.

‘‘Gecko: Tracking a Very Large Billing System,’’
Proc. 2000 USENIX Annual Techn. Conf., 2000.

[TH99] T. Dunigan, G. Hinkel. ‘‘Intrusion Detection
and Intrusion Prevention on a Large Network,’’
Proc. First Workshop on Intrusion Detection and
Network Monitoring, 1999.

[GB98] L. Girardin and D. Brodbeck. ‘‘A Visual
Approach for Monitoring Logs.’’ Proc. of the
12th Large Installation Systems Administration
(LISA) Conf., 1998.

[HD90] H. Hsiao and D. J. DeWitt. ‘‘Chained Declus-
tering: A New Availability Strategy for Multi-
procssor Database Machines,’’ Proc. of Sixth
Intl. Data Eng. Conf., 1990.

[LHMWY82] Lindsay, B. G., Haas, L. M., Mohan, C.,
Wilms, P. F., and Yost, R. A. Computation and
Communication in R*: A Distributed Database
Manager,’’ ACM Trans. Comp. Sys., 2(1), Feb.
1984.

[G94] Goetz Graefe. ‘‘Volcano: An Extensible and
Parallel Query Evaluation System,’’ IEEE Trans.
on Knowledge and Data Eng., 6(1), Feb, 1994.

[M00] M. Morton. ‘‘Logging and Critical Logs Files:
The Decision to Effectively and Proactively Man-
age System Logging and Log Files,’’ http://rr.
sans.org/securitybasics/logging.php .

[M99] J. Mohr. ‘‘Managing Your Log Files,’’ Linux
Magazine, Nov. 1999, http://www.linux-mag.com/
1999-11/guru_04.html .

[G02] google search result for ‘linux vm ‘‘oom killer’’ ’,
http://www.google.com/search?hl=en&q=linux+
vm+%22oom+killer%22

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 131

132 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

