
USENIX Association

Proceedings of
LISA 2002:

16th Systems Administration
Conference

Philadelphia, Pennsylvania, USA
November 3–8, 2002

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

An Approach for Secure
Software Installation†

Pp. 219-226 of the Proceedings of LISA ’02: Sixteenth Systems Administration Conference
(Berkeley, CA: USENIX Association, 2002).

V. N. Venkatakrishnan, R. Sekar, T. Kamat, S. Tsipa and Z. Liang
– Computer Science Dept., SUNY at Stony Brook

ABSTRACT

We present an approach that addresses the problem of securing software configurations from
the security-relevant actions of poorly built/faulty installation packages. Our approach is based on
a policy-based control of the package manager’s actions and is customizable for site-specific
policies. We discuss an implementation of this approach in the context of the Linux operating
system for the Red Hat Package manager (RPM).

Introduction

Management of software installations has been
one of the biggest problems facing system admin-
istrators.1 Significant progress [6] has been made in
some aspects of this problem, e.g., management of
dependencies and conflicts among packages. In other
areas that concern overall system security and interoper-
ability with existing applications, package managers still
fall short, as they make several unrealistic assumptions:

• System administrators want to treat packages
as ‘‘black boxes. Although system administra-
tors are not interested in the details of installa-
tion, they certainly care about package installa-
tion actions that have implications for overall
system security and operation, e.g., addition of
new users, modifications to boot-time scripts,
addition of entries to crontab, modifications of
system libraries, changes to global configura-
tion files (e.g., /etc/inetd.conf) or application-
specific configuration files or in the case of
Windows, changes to system registry.

• Package installation steps operate correctly. Few
provisions exist for dealing with poorly-written
packages that crash in the middle of the installa-
tion process. Typically, such crashes would result
from unanticipated conditions (involving the
configuration of the system on which the pack-
age is being installed) encountered by install
scripts that are included with many packages.
System administrators are all too familiar with
situations when packages can neither be fully
installed, nor be fully uninstalled, leaving the
system in an inconsistent state.

• All software and system configuration updates are
the result of package installation: In practice,
however, system administrators have to frequently

†This research is supported in part by a ONR University Re-
search Initiative grant N000140110967 and NSF grant
CCR-0098154.
1In this paper, we use the term ‘‘system administrator’’ to

refer to professionals and end-users that perform software
installation.

configure systems or packages by manually edit-
ing config files. In addition, software is frequently
installed outside of the package management sys-
tem, e.g., by downloading and compiling a
source-code archive. Package managers interact
poorly with such situations, often ending up over-
writing critical application files. Although pack-
age managers can save backup copies of certain
config files, the sysadmin is usually not alerted
that the config files have been updated.

We describe a new approach that augments exist-
ing package managers such as RPM to overcome the
above problems. Our approach enables system admin-
istrators to reason about the security-critical actions of
an installation/upgrade process, check whether these
actions are compatible with specified security policies,
and if so, allow the installation to proceed. During the
installation, all actions are logged so that they can be
rolled back in the event of an installation failure.2 We
have implemented our approach in the form of a tool
called RPMShield that operates in conjunction with
RedHat’s package manager (RPM). As compared to
existing package managers, our approach offers the
following benefits:

• Policy-based control of package installation
actions. While existing package managers such
as RPM allow a system administrator to exam-
ine package contents and installation scripts in
detail, this is a cumbersome process and hence
seldom undertaken. In contrast, our approach
presents a convenient interface through which a
system administrator can exert control over
installation actions that impact system security
or the operation of existing applications.

• Interoperability with changes made outside of
package managers. Our approach provides a

2Note that a complete rollback is impossible if the installa-
tion scripts communicate over the network, or when process-
es unrelated to the installation are allowed to make system
changes after reading files modified by the installation pro-
cess.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 219

An Approach for Secure Software Installation Venkatakrishnan, Sekar, Kamat, Tsipa & Liang

convenient mechanism to control updates to
manually edited files, files shared among multi-
ple packages, or more generally, files installed
outside the scope of the package manager.

• Normal-user installation of packages. Individ-
ual users often want to install packages that are
of interest to themselves. Since all RPM instal-
lation actions require super-user privilege, nor-
mal users are unable to install such packages
for themselves. Our approach can support this
capability through the use of security policies
that limit installation actions so that the changes
are restricted to a specific user directory.

• To l e r a n c e to failures. Package managers offer
poor support to revert to original system configu-
ration when an installation upgrade/process fails.
Our automatic recovery mechanism reverts the
system to its original (consistent) state.

Consistency
Resolver

RPM
DatabasePackage

Model
Generator

Conflict
Feedback

System
Admin

Policy

Figure 2: Pre-installation phase.

Policy

System
Admin

Package Checks
Pre−Installation Installation Time

Checks

Figure 1: Approach overview.

We note that this paper is concerned with the pack-
age installation process, and does not address security
implications of running the applications installed as a
result. Ensuring safety of the system while supporting
the execution of untrusted application is an orthogonal
problem. This is the subject of many papers on digital

signatures [7], sandboxing [9], proof-carrying code [11]
and model-carrying code [12].

Overview of Approach

Our approach, presented in Figure 1 divides
package installation into two phases. 1) In the pre-
installation phase, a package is analyzed to determine
its compatibility with a system administrator’s poli-
cies. 2) In the installation phase, where the actual
package installation takes place in a controlled envi-
ronment. Each of these phases is described below.
Pre-installation Phase

The pre-installation phase (see Figure 2) consists
of the following steps:

• Generation of behavioral models. In this phase,
a package is analyzed to identify the security-
relevant actions that will take place during its
installation. The analysis involves two steps: 1)
finding the list of files the package will
install/upgrade, and 2) capturing the intended
behavior of its (pre-install and post-install)
scripts. The first step involves querying the
package itself as well as the packages database.
The second step involves learning the behavior
of the scripts/make files. More details on the
model generation process is presented in the
section ‘Model Generation’

• Consistency resolution. The model generated in
the previous step is supplied to the consistency
re s o l v e r which checks whether this behavior is
in accordance with the security policy provided
by the system administrator. A discussion of
security policies that could be enforced though
the system is presented in the ‘Security Policies’
section. Consistency resolution is described in its
own section.

By performing consistency resolution before installa-
tion, our approach avoids the time-consuming step of
actual installation when there is a conflict. In addition,
all conflicts with the policy are identified and presented
together, which enables a system administrator to make
more informed decisions. This contrasts with conflict
identification during actual installation, when each con-
flict must be presented individually to the system

220 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Ve n k a t a k r i s h n a n , Sekar, Kamat, Tsipa & Liang An Approach for Secure Software Installation

administrator for acceptance. This cumbersome process
can lead to ‘‘click fatigue,’’ sometimes causing the sys-
tem administrator to make inappropriate decisions.

Database
RPM

Package

Policy
Conflict

Feedback

System
Admin

System call
Interception

Logic
Rollback

Policy Enforcement

Manager
Package

Linux kernel

ptrace

Figure 3: Installation phase.

Installation Phase
While the benefits of pre-installation checks

were identified above, it is not always possible to
identify all conflicts statically. Scripts may perform
complex computations (e.g., creating a file name from
several command-line arguments or environment vari-
ables) whose results cannot always be statically deter-
mined. Such conflicts are dealt with during the second
phase of package installation (refer to Figure 2),
namely, the installation phase.

In this phase, as shown in Figure 3, the package
manager is allowed to run in an environment where
the system calls made by the package manager process
and its children are monitored by RPMShield. These
system calls are compared with the policy provided by
the system administrator during the pre-installation
phase. Typically there are no policy violations in this
phase, as they would have been handled in the previ-
ous phase. However, if conflicts do arise, this informa-
tion is presented to the system administrator. If the
violation is accepted, then package installation pro-
ceeds. If not, installation is aborted, and the system
state is restored as it was prior to the installation. The
runtime-checking mechanism is described in the ‘Run-
time Interception’ section.

Description

This section elaborates on the various compo-
nents that were introduced in the preceding high-level
discussion.
Security Policies

We use an expressive policy language that, in
addition to capturing conventional access-control

policies, can also express context sensitive policies
such as ‘‘this application cannot modify files owned
by other applications,’’ or history sensitive policies
such as ‘‘the installation process can only delete the
files it has created.’’ Access control policies and con-
text sensitive policies are specified conveniently
through a GUI, as shown in Figure 3. In this figure,
the system administrator can specify whether the
package installation process can possess the corre-
sponding capabilities. The first row describes a capa-
bility where a package can create files in directories
not owned by itself; In the second row, policy specifi-
cation for writes to files that are owned by the pack-
age, but modified from the original installation (e.g.,
config files) are shown; and writes to files owned by
other packages are shown in the succeeding row.

Similar capabilities that could be specified using
the GUI include the ability to add users, perform net-
work operations, update shared libraries, modify sys-
tem services (e.g., files in the /etc/rc.d/* directories),
execution of arbitrary system commands and so on.
History sensitive policies are currently not expressed
through the GUI, but could be specified using our
underlying expressive policy language [13].

These security policies are internally represented
as extended finite state machines. An finite state
machine consists of states and transitions. The states
of these machines correspond to various program
points and the transitions are over an alphabet of sys-
tem calls with their arguments. There are condition
guards associated with transitions. Whenever, a condi-
tion guard is enabled, an optional action associated
with the guard is triggered. A simple example of an
extended finite state automaton is presented in Figure
5, which illustrates the use of these automata in keep-
ing track of the number of bytes written to a file
(denoted by MY_FILE).

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 221

An Approach for Secure Software Installation Venkatakrishnan, Sekar, Kamat, Tsipa & Liang

In this figure, whenever an open system call is
made, the condition guard associated with this transition
checks whether the file opened is MY_FILE, and if so,
the file descriptor is stored in the variable X. Later in the
program, if a write operation is performed, the condition
guard associated with this transition checks whether the
file descriptor equals the descriptor stored in X, and if
so, increments the variable count. (For simplicity, we do
not show the states and transitions corresponding to the
invocations of the close system call). The policy repre-
sented thus is a simple example of a history sensitive
policy, and the variables that are associated with the
transitions enable such policy specifications.

Figure 4: Screen shot of RPMShield.

P0 P1 P2

FILE == $MY_FILE

 write(des,buf, count)

des == x −> {count ++}

fd = open (FILE,WR)

−−> { X = fd}

Figure 5: An extended finite state automaton.

For more information on our work in compiling
high level specifications into extended finite-state
machines, we refer the reader to [13].

Model Generation

Model generation involves determining the secu-
rity relevant actions of the scripts and obtaining the list
of files the package plans to modify/upgrade. The latter
is obtained directly by querying the package, so we
describe the analysis of scripts in the following section.

Scripts

There are several approaches that address the
problem of analyzing a shell script to determine its
behavior. A static analysis based approach is one
which would analyze the actions of a script without
executing it. It usually involves parsing the input
script, and interpret the script’s actions to analyze its
behavior. Such an approach could build on modifying
the shell interpreter and performing operations in an

222 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Venkatakrishnan, Sekar, Kamat, Tsipa & Liang An Approach for Secure Software Installation

abstract domain (a general technique called abstract
interpretation [8]).

The main advantage of a static analysis based
approach is that it has the ability to reason about the
actions of the program at a level closer to the program
source. However, there are a few disadvantages with
such an approach. Shell scripts heavily depend on the
environment and redirection for their successful com-
pletion. Any static analysis based approach has to
approximate the environment and the effects of redi-
rection. Thus, the behavior obtained through analysis
is usually incomplete.

In addition, there is one more practical imple-
mentation problem: The number of shell interpreters
that are available in a general purpose system abound.
An analyzer that has to deal with an arbitrary script
needs to have a front end that would support the
idiosyncrasies of the syntax of a number of languages
(bash, csh, perl to name a few!). Clearly, this is not a
desirable situation.

We follow an alternate approach that follows the
program behavior learning approach. In this
approach, we intercept the system calls of the shell
script. We inspect the system call and its arguments,
and allow it based on whether it is trying to perform a
security-critical operation. We allow access to all
operations that are not security-critical: for example,
reads to non-sensitive files, creation of temporary
files, execution of commands that do not alter the sys-
tem state and so on. When the program performs
write-operations or security critical operations like
adding a system service or a user, we simply fake the
return value of the system call.

By faking, we mean returning success without
executing the corresponding system call. Thus, the
original operation is not performed, and the trace that
is generated is the model of the program capturing the
intended behavior of the program. All the environment
related information is available to this approach
(unlike the previous approach). See the ‘Examples’
section for an example of a model that is generated.
Consistency Resolution

The consistency resolution step involves check-
ing of the model that is generated from the previous
step against the security policies of interest. This step
involves two operations. The first operation involves
checking whether the scripts in the package conform
to the security policy. The second operation involves
checking whether the file creation / update operations
of the package is in accordance to the policy.
Script Checking

Checking whether the execution of a script will
violate the given security policy is an interesting prob-
lem. The model generated for the shell script contains
the trace of the script execution. The security policy
(discussed in its own section earlier), is represented in
the form of an extended finite state automaton. The
policy proscribes all the invalid traces. The model,

obtained as an output of the previous step, is presented
as an input string to this automaton. If the trace execu-
tion is a valid string that is accepted by this automa-
ton, then we can conclude that the execution of this
script will violate the specified policy.

As an example, consider an installation script
that adds a new user to the /etc/passwd file, while the
policy allows no such addition. This conflict informa-
tion (including the specific action and/or file that
caused the conflict) is presented to the system admin-
istrator, who may decide to abort the installation, or
refine the policy to eliminate the conflict, e.g., permit
addition of user to the password file.

Checking of File Updates

The consistency resolver detects any conflicts
between the policy and the package behavior model,
e.g., if the policy allows updates only to those files
owned by a package, then a conflict will arise if the
package updates a file that has been updated manually
or by a different package. Similar violations are
reported for creating files in directories that are not
owned by the package, deletion of files and so on.

Runtime interception

The installation phase is realized by the follow-
ing components.

• System call interception environment. System
calls and arguments are forwarded to the policy
enforcement engine using a ptrace-based system
call interception facility that we had developed
earlier for Linux [10]. This infrastructure pro-
vides the facilities for one program to inspect
another (target) program whenever the target pro-
gram performs system calls; check the arguments
to the system call; and, if necessary, fake the
return value without executing the system call.

• Policy enforcement engine. The policy enforce-
ment engine is implemented as an extended
finite state machine. which was discussed
These automata enforce these policies with
very low overheads (typically under 2%) [13].

In addition, the policy enforcement engine
incorporates rollback logic, which keeps track
of the files modified by the package manager
(since the original installation), as well as the
original contents of these files. If the installa-
tion is to be aborted, then this information is
used to reset the system state to what it was
before the package installation began.

Other Features

Our tool has a convenient user interface and
incorporates attractive usability features, which we
describe below.

Query downloads. Most packages have depen-
dencies, i.e., they can be installed only if certain other
packages are present in the system. A novel feature in

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 223

An Approach for Secure Software Installation Venkatakrishnan, Sekar, Kamat, Tsipa & Liang

RPMShield facilitates easy installation of such pack-
ages, by downloading them from RPM mirror servers
(such as rpmfind.net). The user can configure this set
of servers. When an installation encounters depen-
dency requirements, our implementation searches for
the existence of these dependency packages on any of
the servers.

/sbin/chkconfig --add httpd
safely add .htm to mime types if it is not already there
[-f /etc/mime.types] || exit 0
TEMPTYPES=‘/bin/mktemp /tmp/mimetypes.XXXXXX‘
[-z "$TEMPTYPES"] && {
echo "could not make temporary file, htm not added to /etc/mime.types" >&2
exit 1

}
(grep -v "ˆtext/html" /etc/mime.types
types=$(grep "ˆtext/html" /etc/mime.types | cut -f2-)
echo -en "text/html==>[ignored: t]<====>[ignored: t]<====>[ignored: t]<=="
for val in $types ; do

if ["$val" = "htm"] ; then
continue

fi
echo -n "$val "

done
echo "htm"

) > $TEMPTYPES
cat $TEMPTYPES > /etc/mime.types && /bin/rm -f $TEMPTYPES

Listing 2: Post-installation script of apache server.

If the dependency package is found, it is reported
to the user and downloaded at his/her discretion . Of
course, the downloaded dependency is subjected to the
same security checks. Finally, after a successful down-
load, the entire installation process is resumed.
RPMShield also takes care of transitive dependencies,
e.g., if a package A is dependent on package B which
in turn is dependent on package C and so on, then
both, packages B and C (and further dependencies) are
downloaded and installed first and finally package A
is installed.

The implementation of this feature involves the
construction of a directed-graph where the nodes rep-
resent packages and the edges represent the dependen-
cies between such packages. The installation then
starts by installing from the nodes farthest from the
root and then proceeds back to the root.

Normal User Installation. Since RPM installa-
tions require root privileges, normal users (who do not
have root privileges) do not have an opportunity to
install packages that are of interest to themselves.
Using a highly constrained security policy, we can
provide a confined environment where the package
can be installed by the normal user. However, not all
packages can be installed by a normal user. The pack-
ages have to be re-locatable, and must not update any
system owned files. Due to the nature of this con-
strained policies, it is not possible to change them
through the graphical-user interface. (One could how-
ever change them by modifying the policies in the
underlying language).

Examples

We illustrate our approach by running through
the installation of the web-server program Apache
through our tool. We illustrate the various stages of the
installation process through this example.

Apache is a popular and freely-available Web
server. The package consists of a set of installation
files as well as pre-install and post-install scripts. This
example pertains to the version of 1.3.20-16 of apache
server.

The system first queries whether the package sat-
isfies all dependency checks. If there are any depen-
dencies on packages that are not yet installed on the
system, then the user is queried for downloading of
these packages from the download sites. These checks
are run through the same security checks as the pack-
age. In the following discussion we assume that all
dependencies are satisfied.

The pre-installation script is given in Listing 1.
The script creates a user in the system. Obviously, this
is a sensitive operation, and the system administrator
is alerted of this operation. (We do not show the model
for this script, but present the model for the post-
install script).

Add the "apache" user
/usr/sbin/useradd -c "Apache" -u 48 \

-s /bin/false -r -d /var/www apache \
2> /dev/null || :

Listing 1: Pre-installation script.

Listing 2 is the post-installation script of apache
server. The generated model is shown in the Figure 6.
In this model the states refer to various program
points, and the transitions refer to various system calls
with their arguments. Due to constraints on the size of
the figure, we omit some details such as system call
arguments for a selected set of system calls.

224 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Venkatakrishnan, Sekar, Kamat, Tsipa & Liang An Approach for Secure Software Installation

This script performs a update to the system ser-
vices scripts. Also the script updates the file
/etc/mime.types that is shared by other applications. The
user is alerted of these operations. The other opera-
tions performed by the script such a creating and
deleting of temporary and running other utilities such
as cut, grep etc., are allowed by the security policy.

In addition, suppose if this installation of apache
was actually an upgrade from a previous version, then
the system keeps track of all the files that have been
modified since the previous installation. This not only
includes all configuration files, but other files such as
local symbolic links, text files, etc. An attempt to
delete/overwrite these files is presented to the system
administrator. All through the installation, such files
are backed up, such that in case the user decides to
abort the installation, the system can be reverted to its
original state.

Applicability to Other Systems

Although the approach presented in this paper is
described only in the context of the Linux operating
system and the RedHat package manager, the overall
architecture can be ported to other Unix like environ-
ments with relative ease. We discuss about migrating
to other package managers below.

P0 P1 P2 P3 P4

P5P6P7P8P9

execve(’chkconfig’)
execve(’mktemp’)

open(’/tmp/mimetypes...’, W)

execve(’grep’)

execve(’grep’)

execve(’cut’)
open(’etc/mimetypes’,W)

execve(’cat’)execve(’rm’)

Figure 6: Model of apache server’s post-install script.

We have used the Java environment for the
implementation of the graphical user interface. Hence
this portion of the implementation is portable. The
model generation involves querying the package and
hence this has to be customized for the particular
package format. The consistency checking involves
querying the package database and this requires cus-
tomization as per the package manager’s programming
interface for querying and modifying its database. The
model generation for scripts and the runtime checking
steps involve system call tracing. Although, the ptrace
system call is not completely portable across different
Unix environments, similar facilities exist for other
Unix variants, as evidenced by the implementation of
gdb-like debuggers for these systems. In fact, our sys-
tem call interceptor [10] provides a uniform program-
ming interface implementation that abstracts the archi-
tecture dependencies. Our interceptor has been imple-
mented for Linux and Solaris.

Other popular package managers like pkg [3]
(used on Solaris systems), lpp [2] (used on AIX

systems), dpkg [1] (used on Debian Linux distribu-
tions) have interfaces similar to that of RPM and
hence our approach is applicable to these package
managers with the corresponding implementation
changes that were described above. There are a few
other package managers like SEPP [4], SLP [5] (used
on Stampede Linux) that simply do not offer conve-
nient interfaces to query packages and the package
databases, and hence are not particularly suitable for
our approach.

Conclusion

In this paper, we have discussed the design of a
secure software installation framework. Our frame-
work allows a system administrator to control the
installation process through a configurable set of poli-
cies and enforce these policies through static and run-
time checks. Our future work would include exporting
the prototype in the context of other operating systems
and package managers.

Author Biographies

All the authors of this paper are members of the
Secure Systems Laboratory of Stony Brook and their
homepages are accessible on the web from the labora-
tory page at http://www.seclab.cs.sunysb.edu .

R. Sekar is currently an Associate professor of
Computer Science and heads the Secure Systems labo-
ratory at SUNY, Stony Brook. Prof. Sekar’s research
interests include computer system and network secu-
rity, software and distributed systems, programming
languages and software engineering. He can be
reached by electronic mail at sekar@cs.sunysb.edu .

VN Venkatakrishnan is a Ph.D. student in the
Computer science department at Stony Brook. His
main research area is computer security and is cur-
rently working on combining static and runtime tech-
niques for assuring software security. He is available
by email at venkat@cs.sunysb.edu .

Tapan Kamat is a M.S. student in the Computer
Science department at Stony Brook. Tapan does
research in the area of computer security. He can be
reached via email at tkamat@cs.sunysb.edu .

Sofia Tsipa is currently working as a System
Administrator in the Network Operations Center at the
University of Thessaloniki, Greece after completing

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 225

An Approach for Secure Software Installation Venkatakrishnan, Sekar, Kamat, Tsipa & Liang

her M.S. degree in the computer science department at
SUNY, Stony Brook. She can be reached via email at
sofia@cs.sunysb.edu .

Zhenkai Liang is a Ph.D. student in Computer
Science at SUNY, Stony Brook. His research interests
include computer security and algorithms. He can be
reached by email at zliang@cs.sunysb.edu.

References

[1] dpkg: A Medium Level Package Manager for
Debian, http://www.debian.org/doc/manuals/quick-
reference/ch-package .

[2] lpp: Aix package distribution, http://usgibm.nersc.
gov/doc_link/en_US/a_doc_lib/aixins/inslppkg/
toc.htm .

[3] pkg: Solaris package distribution, Solaris man
pages.

[4] Sepp: Software Installation and Sharing System,
http://www.sepp.ee.ethz.ch/seppdoc.pdf .

[5] Slp: Stampede Linux Packages, http://www.
marblehorse.org/projects/slp/SLPv5a-draft-
specification.html .

[6] Anderson, E. and D. Patterson, ‘‘A Restrospective
on Twelve Years of lisa Proceedings,’’ Proceed-
ings of Usenix System Administration, LISA, 1999.

[7] Mitchell, M. W. C. and P. Wild, Contemporary
Cryptology: The Science of Information Integrity,
Chapter Digital Signatures, IEEE Press, Piscat-
away, NJ, 1992.

[8] Cousot, P., ‘‘Static Determination of Dynamic
Properties of Programs,’’ Proceedings of the Sec-
ond International Symposium on Programming,
Paris, 1976.

[9] Gong, L., M. Mueller, H. Prafullchandra, and R.
Schemers, ‘‘Going Beyond the Sandbox: An
Overview of the New Security Architecture In
the Java Development Kit 1.2,’’ Proceedings of
the USENIX Symposium on Internet Technolo-
gies and Systems, Monterey, California, Decem-
ber 1997.

[10] Jain, K. and R. Sekar, ‘‘User-level Infrastructure
for System Call Interposition: A Platform for
Intrusion Detection and Confinement,’’ ISOC
Network and Distributed System Security, 2000.

[11] Necula, G., ‘‘Proof Carrying Code,’’ ACM Prin-
ciples of Programming Languages, 1997.

[12] Sekar, R., C. Ramakrishnan, I. Ramakrishnan, and
S. Smolka, ‘‘Model Carrying Code: A New
Paradigm for Mobile Code Security,’’ Proceedings
of the New Security Paradigms Workshop, 2001.

[13] Sekar, R. and P. Uppuluri, ‘‘Synthesizing Fast
Intrusion Prevention/Detection Systems From
High-Level Specifications,’’ Proceedings of the
USENIX Security Symposium, 1999.

226 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

